I spuaumndo(q Areyudunddng
[enuUBJA] S JoWWeI301d XIu)

PSl1

Unix Programmer’s Manual
Supplementary Documents 1

Printed by the USENIX Association as a service to the UNIX Communi-
ty. This material is copyrighted by The Regents of the University of
California and/or Bell Telephone Laboratories, and is reprinted by per-
mission. Permission for the publication or other use of these materials
may be granted only by the Licensors and copyright holders.

Cover design by John Lassetter, Lucasfilm, Ltd.

4.2 BSD edition:

First Printing
Second Printing
Third Printing
Fourth Printing

4.3 BSD edition:

First Printing
Second Printing

July 1984
December 1984
September 1985
March 1986

November 1986
June 1987

UNIX Programmer’s Supplementary Documents
Volume 1
(PS1)

4.3 Berkeley Software Distribution
Virtual YVAX-11 Version

April, 1986

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Documents PSI1:1, 9, 10, 12, 15, 16, and 17 are copyright 1979,
AT&T Bell Laboratories, Incorporated. Documents PS1:2, and
5 are modifications of earlier documents that are copyrighted
1979 by AT&T Bell Laboratories, Incorporated. Holders of
UNIX™/32V, System III, or System V software licenses are
permitted to copy these documents, or any portion of them, as
necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

Document PS1:13 is part of the user contributed software and
is copyright 1983 by Walter F. Tichy. Permission to copy the
RCS documentation or any portion thereof as necessary for
licensed use of the software is granted to licensees of this
software, provided this copyright notice is included.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
N00039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

PS1 Contents

UNIX Programmer’s Supplementary Documents, Volume 1 (PS1)
4.3 Berkeley Software Distribution, Virtual vaAx-11 Version

April, 1986

These two volumes contain documents which supplement the manual pages in The UNIX}
Programmer’s Reference Manual for the Virtual vAX-11 version of the system as distributed by U.C.
Berkeley.

Languages in common use (other languages in Programmer’s Supplement, volume 2)
The C Programming Language - Reference Manual PSI1:1

Official statement of the syntax of C. Should be supplemented by “The C Programming
Language,” B.W. Kernighan and D.M. Ritchie, Prentice-Hall, 1978, that contains a tutorial
introduction and many examples.

A Portable Fortran 77 Compiler PS1:2

A revised version of the document which originally appeared in Volume 2b of the Bell
Labs documentation; this version reflects the ongoing work at Berkeley.

Introduction to the 77 I/O Library PS1:3

A description of the revised input/output library for Fortran 77, reflecting work carried out
at Berkeley.

Berkeley Pascal User’s Manual PSi1:4
An implementation of this language popular for learning to program.

Berkeley Vax/UNIX Assembler Reference Manual PS1:5
The usage and syntax of the assembler; useful mostly by compiler writers.

- General Reference

Berkeley Software Architecture Manual (4.3 Edition) PS1:6

A concise and terse description of the system call interface provided in Berkeley Unix, as
revised for 4.3BSD. This will never be a best seller.

An Introductory 4.3BSD Interprocess Communication Tutorial PS1:7
How to write programs that use the Interprocess Communication Facilities of 4.3BSD.

1 UNIX is a trademark of AT&T Bell Laboratories.

PS1 Contents

An Advanced 4.3BSD Interprocess Communication Tutorial PS1:8

The reference document (with some examples) for the Interprocess Communication Facili-
ties of 4.3BSD.

Programming Tools
Lint, A C Program Checker PS1:9

Checks C programs for syntax errors, type violations, portability problems, and a variety
of probable errors.

A Tutorial Introduction to ADB PS1:10

How to debug programs using the adb debugger. For hints on the use of ADB for debug-
ging the UNIX kernel, see “Using ADB to Debug the Kernel”, SMM:3

Debugging with dbx PS1:11
How to debug programs without having to know much about machine language.

Make ~ A Program for Maintaining Computer Programs PS1:12
Indispensable tool for making sure large programs are properly compiled with minimal
effort.

An Introduction to the Revision Control System PS1:13

RCS is a user-contributed tool for working together with other people without stepping on
each other’s toes. An alternative to sccs for controlling software changes.

An Introduction to the Source Code Control System PS1:14
A useful introductory article for those users with installations licensed for SCCS.

YACC: Yet Another Compiler-Compiler PS1:15

Converts a BNF specification of a language and semantic actions written in C into a com-
piler for that language.

LEX - A Lexical Analyzer Generator PS1:16

Creates a recognizer for a set of regular expressions: each regular expression can be fol-
lowed by arbitrary C code to be executed upon finding the regular expression.

The M4 Macro Processor PS1:17
M4 is a macro processor useful in its own right and as a front-end for C, Ratfor, and
Cobol.

Programming Libraries
Screen Updating and Cursor Movement Optimization PS1:18

Describes the curses package, an aid for writing screen-oriented, terminal-independent pro-
grams.

The C Programming Language - Reference Manual

Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

This manual is a reprint, with updates to the current C standard, from The C Programming
Language, by Brian W. Kernighan and Dennis M. Richie, Prentice-Hall, Inc., 1978.

1. Introduction

This manual describes the C language on the DEC PDP-11%, the DEC VAX-11, and the AT&T
3B 20}. Where differences exist, it concentrates on the VAX, but tries to point out implementation-
dependent details. With few execptions, these dependencies follow directly from the underlying pro-
perties of the hardware; the various compilers are generally quite compatible.

2. Lexical Conventions

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other
separators. Blanks, tabs, new-lines, and comments (collectively, “white space’) as described below
are ignored except as they serve to separate tokens. Some white space is required to separate other-
wise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken
to include the longest string of characters which could possibly constitute a token.

2.1. Comments

The characters /* introduce a comment which terminates with the characters */. Comments do
not nest.

2.2. Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The under-
score (_) counts as a letter. Uppercase and lowercase letters are different. Although there is no limit
on the length of a name, only initial characters are significant: at least eight characters of a non-
external name, and perhaps fewer for external names. Moreover, some implementations may collapse
case distinctions for external names. The external name sizes include:

PDP-11 7 characters, 2 cases
VAX-11 >100 characters, 2 cases
AT&T 3B 20 >100 characters, 2 cases

2.3. Keywords
The following identifiers are reserved for use as keywords and may not be used otherwise:

1 DEC PDP-11, and DEC VAX-11 are trademarks of Digital Equipment Corporation.
1 3B 20 is a trademark of AT&T.

PS1:1-2 The C Programming Language - Reference Manual

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long struct while
default float register switch

Some implementations also reserve the words fortran, asm, gfloat, hfloat and quad

2.4. Constants

There are several kinds of constants. Each has a type; an introduction to types is given in
“NAMES.” Hardware characteristics that affect sizes are summarized in “Hardware Characteristics”
under “LEXICAL CONVENTIONS.”

2.4.1. Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0
(digit zero). An octal constant consists of the digits 0 through 7 only. A sequence of digits preceded
by 0x or 0X (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits include a or A
through f or F with values 10 through 15. Otherwise, the integer constant is taken to be decimal. A
decimal constant whose value exceeds the largest signed machine integer is taken to be long; an octal
or hex constant which exceeds the largest unsigned machine integer is likewise taken to be long. Oth-
erwise, integer constants are int.

2.4.2, Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a
long constant. As discussed below, on some machines integer and long values may be considered
identical.

2.4.3. Character Constants

A character constant is a character enclosed in single quotes, as in ’x’. The value of a character
constant is the numerical value of the character in the machine’s character set.

Certain nongraphic characters, the single quote (°) and the backslash (\), may be represented
according to the following table of escape sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote ’ \
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is \0 (not followed by a
digit), which indicates the character NUL. If the character following a backslash is not one of those
specified, the behavior is undefined. A new-line character is illegal in a character constant. The type
of a character constant is int.

The C Programming Language - Reference Manual PS1:1-3

2.4.4. Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of
digits. Either the integer part or the fraction part (not both) may be missing. Either the decimal
point or the e and the exponent (not both) may be missing. Every floating constant has type double.

2.4.5. Enumeration Constants

Names declared as enumerators (see “Structure, Union, and Enumeration Declarations” under
“DECLARATIONS?”) have type int.

2.5. Strings

A string is a sequence of characters surrounded by double quotes, as in "...". A string has type
“array of char” and storage class static (see “NAMES”) and is initialized with the given characters.
The compiler places a null byte (\0) at the end of each string so that programs which scan the string
can find its end. In a string, the double quote character (") must be preceded by a \; in addition, the
same escapes as described for character constants may be used.

A \ and the immediately following new-line are ignored. All strings, even when written identi-
cally, are distinct.

2.6. Hardware Characteristics
The following figure summarize certain hardware properties that vary from machine to machine.

DEC PDP-11 DEC VAX-11 AT&T 3B
(ASCII) (ASCII) (ASCII)
char 8 bits 8 bits 8bits
int 16 32 32
short 16 16 16
long 32 32 32
float 32 32 32
double 64 64 64
float range +10 **8 +10 **8 +10 =8
double range +10 *38 +10 *38 +10 *308

3. Syntax Notation

Syntactic categories are indicated by italic type and literal words and characters in bold type.
Alternative categories are listed on separate lines. An optional terminal or nonterminal symbol is
indicated by the subscript “opt,” so that

ression
{ exp opt }

indicates an optional expression enclosed in braces. The syntax is summarized in “SYNTAX SUM-
MARY”.

4. Names

The C language bases the interpretation of an identifier upon two attributes of the identifier —
its storage class and its type. The storage class determines the location and lifetime of the storage
associated with an identifier; the type determines the meaning of the values found in the identifier’s
storage.

- N "0

PS1:1-4 The C Programming Language - Reference Manual

4.1. Storage Class
There are four declarable storage classes: Automatic Static External Register.

Automatic variables are local to each invocation of a block (see “Compound Statement or
Block” in “STATEMENTS”) and are discarded upon exit from the block. Static variables are local to -
a block but retain their values upon reentry to a block even after control has left the block. External
variables exist and retain their values throughout the execution of the entire program and may be
used for communication between functions, even separately compiled functions. Register variables
are (if possible) stored in the fast registers of the machine; like automatic variables, they are local to
each block and disappear on exit from the block.

4.2. Type

The C language supports several fundamental types of objects. Objects declared as characters
(char) are large enough to store any member of the implementation’s character set. If a genuine char-
acter from that character set is stored in a char variable, its value is equivalent to the integer code for
that character. Other quantities may be stored into character variables, but the implementation is
machine dependent. In particular, char may be signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer integers
provide no less storage than shorter ones, but the implementation may make either short integers or
long integers, or both, equivalent to plain integers. “Plain” integers have the natural size suggested
by the host machine architecture. The other sizes are provided to meet special needs.

The properties of enum types (see “Structure, Union, and Enumeration Declarations” under
“DECLARATIONS”) are identical to those of some integer types. The implementation may use the
range of values to determine how to allocate storage.

Unsigned integers, declared unsigned, obey the iaws of arithmetic modulo 2" where 7 is the
number of bits in the representation. (On the PDP-11, unsigned long quantities are not supported.)

Single-precision floating point (float) and double precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be
referred to as arithmetic types. Char, int of all sizes whether unsigned or not, and enum will collec-
tively be called integral types. The float and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned by functions that
generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types
constructed from the fundamental types in the following ways: Arrays of objects of most types Func-
tions which return objects of a given type Pointers to objects of a given type Structures containing a
sequence of objects of various types Unions capable of containing any one of several objects of vari-
ous types.

In general these methods of constructing objects can be applied recursively.

5. Objects and Lvalues

An object is a manipulatable region of storage. An /value is an expression referring to an object.
An obvious example of an lvalue expression is an identifier. There are operators which yield lvalues:
for example, if E is an expression of pointer type, then *E is an lvalue expression referring to the
object to which E points. The name “lvalue” comes from the assignment expression E1 = E2 in
which the left operand E1 must be an lvalue expression. The discussion of each operator below indi-
cates whether it expects lvalue operands and whether it yields an lvalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This part explains the result to be expected from such conver-
sions. The conversions demanded by most ordinary operators are summarized under “Arithmetic

The C Programming Language - Reference Manual PS1:1-5

Conversions.” The summary will be supplemented as required by the discussion of each operator.

6.1. Characters and Integers

A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a shorter integer to a longer preserves sign. Whether
or not sign-extension occurs for characters is machine dependent, but it is guaranteed that a member
of the standard character set is non-negative. Of the machines treated here, only the PDP-11 and
VAX-11 sign-extend. On these machines, char variables range in value from -128 to 127. The more
explicit type unsigned char forces the values to range from 0 to 255.

On machines that treat characters as signed, the characters of the ASCII set are all non-negative.
However, a character constant specified with an octal escape suffers sign extension and may appear
negative; for example, \377 has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is truncated on the left.
Excess bits are simply discarded.

6.2. Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float appears in an
expression it is lengthened to double by zero padding its fraction. When a double must be converted
to float, for example by an assignment, the double is rounded before truncation to float length. This
result is undefined if it cannot be represented as a float. On the VAX, the compiler can be directed to
use single percision for expressions containing only float and interger operands.

6.3. Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In particular, the
direction of truncation of negative numbers varies. The result is undefined if it will not fit in the
space provided.

Conversions of integral values to floating type are well behaved. Some loss of accuracy occurs if
the destination lacks sufficient bits.

6.4. Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case, the
first is converted as specified in the discussion of the addition operator. Two pointers to objects of
the same type may be subtracted; in this case, the result is converted to an integer as specified in the
discussion of the subtraction operator.

6.5. Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted
to unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed
integer (modulo 2%°rdsize) In a 2’s complement representation, this conversion is conceptual; and
there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is the same numeri-
cally as that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6. Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This pattern
will be called the ‘“usual arithmetic conversions.” First, any operands of type char or short are con-
verted to int, and any operands of type unsigned char or unsigned short are converted to unsigned int.
Then, if either operand is double, the other is converted to double and that is the type of the result.
Otherwise, if either operand is unsigned long, the other is converted to unsigned long and that is the
type of the result. Otherwise, if either operand is long, the other is converted to long and that is the
type of the result. Otherwise, if one operand is long, and the other is unsigned int, they are both

N R -]

PS1:1-6 The C Programming Language - Reference Manual

converted to unsigned long and that is the type of the result. Otherwise, if either operand is unsigned,
the other is converted to unsigned and that is the type of the result. Otherwise, both operands must
be int, and that is the type of the result.

6.7. Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor
implicit conversion may be applied. Because a void expression denotes a nonexistent value, such an
expression may be used only as an expression statement (see “Expression Statement” under “STATE-
MENTS”) or as the left operand of a comma expression (see ‘““Comma Operator” under “EXPRES-
SIONS”).

An expression may be converted to type void by use of a cast. For example, this makes explicit
the discarding of the value of a function call used as an expression statement.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this
section, highest precedence first. Thus, for example, the expressions referred to as the operands of +
(see “Additive Operators”) are those expressions defined under “Primary Expressions”, “Unary
Operators”, and “Multiplicative Operators”. Within each subpart, the operators have the same pre-
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators are summarized in the grammar of
“SYNTAX SUMMARY”.

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler con-
siders itself free to compute subexpressions in the order it believes most efficient even if the subex-
pressions involve side effects. The order in which subexpression evaluation takes place is unspecified.
Expressions involving a commutative and associative operator (*, +, &, |, *) may be rearranged arbi-
trarily even in the presence of parentheses; to force a particular order of evaluation, an explicit tem-
porary must be used.

The handling of overflow and divide check in expression evaluation is undefined. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point
exceptions varies between machines and is usually adjustable by a library function.

7.1. Primary Expressions
Primary expressions involving ., —>, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression |
primary-expression (expression-list)
primary-expression . identifier
primary-expression —> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as discussed below.
Its type is specified by its declaration. If the type of the identifier is “array of ...”, then the value of
the identifier expression is a pointer to the first object in the array; and the type of the expression is
“pointer to ...”. Moreover, an array identifier is not an lvalue expression. Likewise, an identifier
which is declared “function returning ...”, when used except in the function-name position of a call,

The C Programming Language - Reference Manual PSI1:1-7

is converted to “pointer to function returning ...”.

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int and floating constants have type double.

A string is a primary expression. Its type is originally “array of char”, but following the same
rule given above for identifiers, this is modified to “pointer to char” and the result is a pointer to the
first character in the string. (There is an exception in certain initializers; see “Initialization” under
“DECLARATIONS.”)

A parenthesized expression is a primary expression whose type and value are identical to those
of the unadorned expression. The presence of parentheses does not affect whether the expression is
an lvalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type “pointer to ...”, the
subscript expression is int, and the type of the result is “...”. The expression E1[E2] is identical (by
definition) to *((E1)+E2)). All the clues needed to understand this notation are contained in this sub-
part together with the discussions in “Unary Operators” and “Additive Operators™ on identifiers, *
and + respectively. The implications are summarized under “Arrays, Pointers, and Subscripting”
under “TYPES REVISITED.”

A function call is a prlmary expression followed by parentheses containing a possibly empty,
comma—separated list of expressions which constitute the actual arguments to the function. The pri-
mary expression must be of type “function returning ...,” and the result of the function call is of type
“...”. As indicated below, a hitherto unseen identiﬁer followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer; thus in the most common case,
integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of type char or
short are converted to int. Array names are converted to pointers. No other conversions are per-
formed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see “Unary Operators” and
“Type Names” under “DECLARATIONS.”

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all argu-
ment passing in C is strictly by value. A function may change the values of its formal parameters,
but these changes cannot affect the values of the actual parameters. It is possible to pass a pointer on
the understanding that the function may change the value of the object to which the pointer points.
An array name is a pointer expression. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first
expression must be a structure or a union, and the identifier must name a member of the structure or
union. The value is the named member of the structure or union, and it is an lvalue if the first
expression is an lvalue.

A primary expression followed by an arrow (built from - and >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must
name a member of that structure or union. The result is an lvalue referring to the named member of
the structure or union to which the pointer expression points. Thus the expression E1->MOS is the
same as (*E1).MOS. Structures and unions are discussed in “Structure, Union, and Enumeration
Declarations” under “DECLARATIONS.”

7.2. Unary Operators
Expressions with unary operators group right to left.

PS1:1-8 The C Programming Language - Reference Manual

unary-expression:
* expression
& Ivalue
— expression
! expression
~ expression
++ Ivalue
——lvalue
Ivalue ++
Ivalue — -
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection ; the expression must be a pointer, and the result is an
Ivalue referring to the object to which the expression points. If the type of the expression is “pointer
to ...,” the type of the result is “...”.

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the
type of the Ivalue is “...”, the type of the result is “pointer to ...”.

The result of the unary — operator is the negative of its operand. The usual arithmetic conver-
sions are performed. The negative of an unsigned quantity is computed by subtracting its value from
2" where n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one if the value of its operand is zero, zero if the
value of its operand is nonzero. The type of the result is int. It is applicable to any arithmetic type
or to pointers.

The ~ operator yields the one’s complement of its operand. The usual arithmetic conversions
are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The value is the new
value of the operand but is not an lvalue. The expression ++x is equivalent to x=x+1. See the dis-
cussions “Additive Operators” and “Assignment Operators” for information on conversions.

The lvalue operand of prefix —— is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an lvalue, the result is the value of the object referred to by the
Ivalue. After the result is noted, the object is incremented in the same manner as for the prefix ++
operator. The type of the result is the same as the type of the lvalue expression.

When postfix —— is applied to an lvalue, the result is the value of the object referred to by the
Ivalue. After the result is noted, the object is decremented in the manner as for the prefix —— opera-
tor. The type of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value
of the expression to the named type. This construction is called a cast. Type names are described in
“Type Names” under “Declarations.”

The sizeof operator yields the size in bytes of its operand. (A byfe is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations, a byte is the space
required to hold a char.) When applied to an array, the result is the total number of bytes in the
array. The size is determined from the declarations of the objects in the expression. This expression
is semantically an unsigned constant and may be used anywhere a constant is required. Its major use
is in communication with routines like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size in bytes of an object of the indicated type.

The C Programming Language - Reference Manual PS1:1-9

The construction sizeof(type) is taken to be a unit, so the expression sizeof(zype)-2 is the same
as (sizeof(type))-2.

7.3. Multiplicative Operators

The multiplicative operators *, /, and % group left to right. The usual arithmetic conversions
are performed.

multiplicative expression:
expression x expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative, and expressions
with several multiplications at the same level may be rearranged by the compiler. The binary / opera-
tor indicates division.

The binary % operator yields the remainder from the division of the first expression by the
second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of truncation is
machine-dependent if either operand is negative. On all machines covered by this manual, the
remainder has the same sign as the dividend. It is always true that (a/b)+b + a%b is equal to a (if b is
not 0).

7.4. Additive Operators

The additive operators + and — group left to right. The usual arithmetic conversions are per-
formed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and
a value of any integral type may be added. The latter is in all cases converted to an address offset by
multiplying it by the length of the object to which the pointer points. The result is a pointer of the
same type as the original pointer which points to another object in the same array, appropriately
offset from the original object. Thus if P is a pointer to an object in an array, the expression P+1 is a
pointer to the next object in the array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level may be
rearranged by the compiler.

The result of the — operator is the difference of the operands. The usual arithmetic conversions
are performed. Additionally, a value of any integral type may be subtracted from a pointer, and then
the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by
the length of the object) to an int representing the number of objects separating the pointed-to
objects. This conversion will in general give unexpected results unless the pointers point to objects in
the same array, since pointers, even to objects of the same type, do not necessarily differ by a multi-
ple of the object length.

7.5. Shift Operators

The shift operators << and >> group left to right. Both perform the usual arithmetic conver-
sions on their operands, each of which must be integral. Then the right operand is converted to int;
the type of the result is that of the left operand. The result is undefined if the right operand is nega-
tive or greater than or equal to the length of the object in bits. On the VAX a negative right operand
is interpreted as reversing the direction of the shift.

PS1:1-10 The C Programming Language - Reference Manual

shift-expression:
expression << expression
expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits are 0
filled. The value of E1>>E2 is El right-shifted E2 bit positions. The right shift is guaranteed to be
logical (O fill) if E1 is unsigned; otherwise, it may be arithmetic.

7.6. Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or
equal to) all yield 0 if the specified relation is false and 1 if it is true. The type of the result is int.
The usual arithmetic conversions are performed. Two pointers may be compared; the result depends
on the relative locations in the address space of the pointed-to objects. Pointer comparison is port-
able only when the pointers point to objects in the same array.

7.7. Equality Operators

equality-expression:
expression == expression
expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence. (Thus a<b == c¢<d is | whenever a<b and c<d have the
same truth value).

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to

which 0 has been assigned is guaranteed not to point to any object and will appear to be equal to 0.
In conventional usage, such a pointer is considered to be null.

7.8. Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The usual arith-
metic conversions are performed. The result is the bitwise AND function of the operands. The
operator applies only to integral operands.

7.9. Bitwise Exclusive OR Operator

exclusive-or-expression:
expression " expression

The * operator is associative, and expressions involving “ may be rearranged. The usual arith-
metic conversions are performed; the result is the bitwise exclusive OR function of the operands.
The operator applies only to integral operands.

The C Programming Language - Reference Manual PSI:1-11

7.10. Bitwise Inclusive OR Operator

inclusive-or-expression:
expression | expression

The | operator is associative, and expressions involving | may be rearranged. The usual arith-
metic conversions are performed; the result is the bitwise inclusive OR function of its operands. The
operator applies only to integral operands.

7.11. Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands evaluate to nonzero, 0
otherwise. Unlike &, && guarantees left to right evaluation; moreover, the second operand is not
evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or
be a pointer. The result is always int.

7.12. Logical OR Operator

logical-or-expression:
expression || expression

The || operator groups left to right. It returns 1 if either of its operands evaluates to nonzero, 0
otherwise. Unlike |, || guarantees left to right evaluation; moreover, the second operand is not
evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of the fundamental types or
be a pointer. The result is always int.

7.13. Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is
nonzero, the result is the value of the second expression, otherwise that of third expression. If possi-
ble, the usual arithmetic conversions are performed to bring the second and third expressions to a
common type. If both are structures or unions of the same type, the result has the type of the struc-
ture or union. If both pointers are of the same type, the result has the common type. Otherwise, one
must be a pointer and the other the constant 0, and the result has the type of the pointer. Only one
of the second and third expressions is evaluated.

7.14. Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an
lvalue as their left operand, and the type of an assignment expression is that of its left operand. The
value is the value stored in the left operand after the assignment has taken place. The two parts of a
compound assignment operator are separate tokens.

PSI1:1-12 The C Programming Language - Reference Manual

assignment-expression:

Ivalue = expression
Ivalue += expression
Ivalue —= expression
Ivalue = expression
Ivalue /= expression
Ivalue %= expression
Ivalue >>= expression
Ivalue <<= expression
Ivalue &= expression
Ivalue ~= expression
Ivalue | = expression

In the simple assignment with =, the value of the expression replaces that of the object referred
to by the lvalue. If both operands have arithmetic type, the right operand is converted to the type of
the left preparatory to the assignment. Second, both operands may be structures or unions of the
same type. Finally, if the left operand is a pointer, the right operand must in general be a pointer of
the same type. However, the constant 0 may be assigned to a pointer; it is guaranteed that this value
will produce a null pointer distinguishable from a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking it as
equivalent to E1 = E1 op (E2); however, E1 is evaluated only once. In += and -=, the left operand
may be a pointer; in which case, the (integral) right operand is converted as explained in “Additive
Operators.” All right operands and all nonpointer left operands must have arithmetic type.

7.15. Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value of the left
expression is discarded. The type and value of the result are the type and value of the right operand.
This operator groups left to right. In contexts where comma is given a special meaning, e.g., in lists
of actual arguments to functions (see “Primary Expressions”) and lists of initializers (see ‘Initializa-
tion” under “DECLARATIONS”), the comma operator as described in this subpart can only appear
in parentheses. For example,

f(a, (t=3, t+2), ¢)
has three arguments, the second of which has the value 5.

8. Declarations

Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers dec[arator-listopt R

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers
consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers
. . 0]
sc-specifier decI-spectﬁersopt

The list must be self-consistent in a way described below.

The C Programming Language - Reference Manual PS1:1-13

8.1. Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a “storage class specifier” only for
syntactic convenience. See “Typedef” for more information. The meanings of the various storage
classes were discussed in “Names.”

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case, there must be an external definition
(see “External Definitions”) for the given identifiers somewhere outside the function in which they are
declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com-
piler that the variables declared will be heavily used. Only the first few such declarations in each
function are effective. Moreover, only variables of certain types will be stored in registers; on the
PDP-11, they are int or pointer. One other restriction applies to register variables: the address-of
operator & cannot be applied to them. Smaller, faster programs can be expected if register declara-
tions are used appropriately, but future improvements in code generation may render them unneces-
sary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing from a
declaration, it is taken to be auto inside a function, extern outside. Exception: functions are never
automatic.

8.2. Type Specifiers
The type-specifiers are

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

At most one of the words long or short may be specified in conjunction with int; the meaning is
the same as if int were not mentioned. The word long may be specified in conjunction with fleat; the
meaning is the same as double. The word unsigned may be specified alone, or in conjunction with int
or any of its short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival use
of long, short, or unsigned is not permitted with typedef names. If the type-specifier is missing from a

PS1:1-14 The C Programming Language - Reference Manual

declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in “Structure, Union, and
Enumeration Declarations.” Declarations with typedef names are discussed in “Typedef.”

8.3. Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators,
each of which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializerapt

Initializers are discussed in “Initialization”. The specifiers in the declaration indicate the type
and storage class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant—expressionopt]

The grouping is the same as in expressions.

8.4. Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an una-
dorned identifier appears as a declarator, then it has the type indicated by the specifier heading the
declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imagine a declaration
T D1
where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declaration makes the

identifier have type “... T ,” where the “...” is empty if D1 is just a plain identifier (so that the type
of x in ‘int x” is just int). Then if D1 has the form

*D
the type of the contained identifier is “... pointerto T .”
If D1 has the form
D()
then the contained identifier has the type ... function returning T.”
If D1 has the form

D [constant-expression]

The C Programming Language - Reference Manual PS1:1-15

or
D[]

then the contained identifier has type “... array of T.” In the first case, the constant expression is an
expression whose value is determinable -at compile time , whose type is int, and whose value is posi-
tive. (Constant expressions are defined precisely in “Constant Expressions.”) When several “array
of”’ specifications are adjacent, a multidimensional array is created; the constant expressions which
specify the bounds of the arrays may be missing only for the first member of the sequence. This eli-
sion is useful when the array is external and the actual definition, which allocates storage, is given
elsewhere. The first constant expression may also be omitted when the declarator is followed by ini-
tialization. In this case the size is calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or
union, or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are
as follows: functions may not return arrays or functions although they may return pointers; there are
no arrays of functions although there may be arrays of pointers to functions. Likewise, a structure or
union may not contain a function; but it may contain a pointer to a function.

As an example, the declaration
int i, «ip, f(), «fip(), (+pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip return-
ing a pointer to an integer, and a pointer pfi to a function which returns an integer. It is especially
useful to compare the last two. The binding of *fip() is #(fip()). The declaration suggests, and the
same construction in an expression requires, the calling of a function fip. Using indirection through
the (pointer) result to yield an integer. In the declarator (spfi)(), the extra parentheses are necessary,
as they are also in an expression, to indicate that indirection through a pointer to a function yields a
function, which is then called; it returns an integer.

As another example,
float fa[17], =afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d[3}[5][7];

declares a static 3-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an
array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d[i], x3d[i][j], x3d[i}[j][k] may reasonably appear in an expres-
sion. The first three have type “array” and the last has type int.

8.5. Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each member may have
any type. A union is an object which may, at a given time, contain any one of several members.
Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list)
struct-or-union identifier

struct-or-union:
struct
union

PS1:1-16 The C Programming Language - Reference Manual

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A
structure member may also consist of a specified number of bits. Such a member is also called a field
; its length, a non-negative constant expression, is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the declarations are
read left to right. Each nonfield member of a structure begins on an addressing boundary appropriate
to its type; therefore, there may be unnamed holes in a structure. Field members are packed into
machine integers; they do not straddle words. A field which does not fit into the space remaining in a
word is put into the next word. No field may be wider than a word.

Fields are assigned right to left on the PDP-11 and VAX-11, left to right on the 3B 20.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field use-
ful for padding to conform to externally-imposed layouts. As a special case, a field with a width of 0
specifies alignment of the next field at an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields, but implementa-
tions are not required to support any but integer fields. Moreover, even int fields may be considered
to be unsigned. On the PDP-11, fields are not signed and have only integer values; on the VAX-11,
fields declared with int are treated as containing a sign. For these reasons, it is strongly recom-
mended that fields be declared as unsigned. In all implementations, there are no arrays of fields, and
the address-of operator & may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size
is sufficient to contain any of its members. At most, one of the members can be stored in a union at
any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A
subsequent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long
part of the declaration to be given once and used several times. It is illegal to declare a structure or
union which contains an instance of itself, but a structure or union may contain a pointer to an
instance of itself.

The C Programming Language - Reference Manual PS1:1-17

The third form of a structure or union specifier may be used prior to a declaration which gives
the complete specification of the structure or union in situations in which the size of the structure or
union is unnecessary. The size is unnecessary in two situations: when a pointer to a structure or
union is being declared and when a typedef name is declared to be a synonym for a structure or
union. This, for example, allows the declaration of a pair of structures which contain pointers to each
other.

The names of members and tags do not conflict with each other or with ordinary variables. A
particular name may not be used twice in the same structure, but the same name may be used in
several different structures in the same scope.

A simple but important example of a structure declaration is the following binary tree structure:

struct tnode

{
char tword[20];
int count;
struct tnode +left;
struct tnode *right;

%
which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort.
With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and
s.right->tword[0]

refers to the first character of the tword member of the right subtree of s.

8.6. Enumeration Declarations
Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear wherever constants are
required. If no enumerators with = appear, then the values of the corresponding constants begin at 0

PS1:1-18 The C Programming Language - Reference Manual

and increase by 1 as the declaration is read from left to right. An enumerator with = gives the associ-
ated identifier the value indicated; subsequent identifiers continue the progression from the assigned
value.

The names of enumerators in the same scope must all be distinct from each other and from
those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag
in a struct-specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret=20, winedark };
enum color *xcp, col;

col = claret;

cp = &col;

if (*xcp == burgundy) ...

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type. The possible values are drawn from the
set {0,1,20,21).

8.7. Initialization

A declarator may specify an initial value for the identifier being declared. The initializer is pre-
ceded by = and consists of an expression or a list of values nested in braces.
initializer:
= expression
= { initializer-list)
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list ,)

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in “CONSTANT EXPRESSIONS”, or expressions which reduce to the address of
a previously declared variable, possibly offset by a constant expression. Automatic or register vari-
ables may be initialized by arbitrary expressions involving constants and previously declared variables
and functions.

Static and external variables that are not initialized are guaranteed to start off as zero.
Automatic and register variables that are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a
single expression, perhaps in braces. The initial value of the object is taken from the expression; the
same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate written in
increasing subscript or member order. If the aggregate contains subaggregates, this rule applies recur-
sively to the members of the aggregate. If there are fewer initializers in the list than there are
members of the aggregate, then the aggregate is padded with zeros. It is not permitted to initialize
unions or automatic: aggregates.

Braces may in some cases be omitted. If the initializer begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of the aggregate; it is erroneous

The C Programming Language - Reference Manual PS1:1-19

for there to be more initializers than members. If, however, the initializer does not begin with a left
brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current
aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive
characters of the string initialize the members of the array.

For example,
intx[] =(1,3,5)

declares and initializes x as a one-dimensional array which has three members, since no size was
specified and there are three initializers.

float y[4][3] =

(
(1,35}
(2,4,6),
(357

%

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0], namely
yl[0][0], y[0}{1], and y[0][2]. Likewise, the next two lines initialize y[1] and y[2]. The initializer ends
early and therefore y[3] is initialized with 0. Precisely, the same effect could have been achieved by

float y[4][3] =
1,3,5,24,6,3,57
%
The initializer for y begins with a left brace but that for y[0] does not; therefore, three elements
from the list are used. Likewise, the next three are taken successively for y[1] and y[2]. Also,
float y[4][3] =
{(1){2){3)(4)
initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.
Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string,.

8.8. Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument of
sizeof), it is desired to supply the name of a data type. This is accomplished using a “type name”,
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

PSI1:1-20 The C Programming Language - Reference Manual

abstract-declarator:
empty
(abstract-declarator)
« abstract-declarator
abstract-declarator ()
abstract-declarator | constant—expressionapl]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction
were a declarator in a declaration. The named type is then the same as the type of the hypothetical
identifier. For example,

int

int »

int *[3]

int (»)[3]

int «()

int (+)0

int (+[3D0

name respectively the types “integer,” “pointer to integer,” “array of three pointers to integers,”
“pointer to an array of three integers,” “function returning pointer to integer,” “pointer to function
returning an integer,” and “array of three pointers to functions returning an integer.”

LLINTS ” <

8.9. Typedef

Declarations whose “storage class” is typedef do not define storage but instead define identifiers
which can be used later as if they were type keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any
declarator therein becomes syntactically equivalent to the type keyword naming the type associated
with the identifier in the way described in “Meaning of Declarators.” For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is “pointer to int, ” and that of z is
the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for types which could be
specified in another way. Thus in the example above distance is considered to have exactly the same
type as any other int object.

The C Programming Language - Reference Manual PS1:1-21

9. Statements)
Except as indicated, statements are executed in sequence.

9.1. Expression Statement
Most statements are expression statements, which have the form

expression ;
Usually expression statements are assignments or function calls.

9.2. Compound Statement or Block

So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called “block”) is provided:

compound-statement:
(declaration-list statement-list)
opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializa-
tions are not performed. Initializations of static variables are performed only once when the program
begins execution. Inside a block, extern declarations do not reserve storage so initialization is not
permitted. ‘

9.3. Conditional Statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is executed.
In the second case, the second substatement is executed if the expression is 0. The “else” ambiguity
is resolved by connecting an else with the last encountered else-less if.

9.4. While Statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains nonzero.
The test takes place before each execution of the statement.

9.5. Do Statement
The do statement has the form

do statement while (expression) ;

PS1:1-22 The C Programming Language - Reference Manual

The substatement is executed repeatedly until the value of the expression becomes 0. The test
takes place after each execution of the statement.

9.6. For Statement
The for statement has the form:

for (exp-lopl N exp-Zom N exp-3opl) statement

Except for the behavior of continue, this statement is equivalent to

exp-1;
while (exp-2)

statement
exp-3 ;
}

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration, such that the loop is exited when the expression becomes 0. The third expres-
sion often specifies an incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the implied while clause
equivalent to while(1); other missing expressions are simply dropped from the expansion above.

9.7. Switch Statement

The switch statement causes control to be transferred to one of several statements depending on
the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int. The
statement is typically compound. Any statement within the statement may be labeled with one or
more case prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in “CONSTANT EXPRESSIONS.”

There may also be at most one statement prefix of the form
default :

When the switch statement is executed, its expression is evaluated and compared with each case
constant. If one of the case constants is equal to the value of the expression, control is passed to the
statement following the matched case prefix. If no case constant matches the expression and if there
is a default, prefix, control passes to the prefixed statement. If no case matches and if there is no
default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues unimpeded across
such prefixes. To exit from a switch, see “Break Statement.”

Usually, the statement that is the subject of a switch is compound. Declarations may appear at
the head of this statement, but initializations of automatic or register variables are ineffective.

9.8. Break Statement
The statement

The C Programming Language - Reference Manual PS1:1-23

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

9.9. Continue Statement

The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for state-
ment; that is to the end of the loop. More precisely, in each of the statements

while (...) { do { for (...) {
statement ; statement ; Statement ;
contin: ; contin: ; contin: ;

} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null statement, see “Null State-
ment”.)

9.10. Return Statement
A function returns to its caller by means of the return statement which has one of the forms

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value of the expression
is returned to the caller of the function. If required, the expression is converted, as if by assignment,
to the type of function in which it appears. Flowing off the end of a function is equivalent to a return
with no returned value. The expression may be parenthesized.

9.11. Goto Statement
Control may be transferred unconditionally by means of the statement

goto identifier ;
The identifier must be a label (see “Labeled Statement’) located in the current function.
9.12. Labeled Statement

Any statement may be preceded by label prefixes of the form
identifier :

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function, excluding any subblocks in which the same identifier has been
redeclared. See “SCOPE RULES.”

9.13. Null Statement
The null statement has the form
5

A null statement is useful to carry a label just before the } of a compound statement or to sup-
ply a null body to a looping statement such as while.

PS1:1-24 The C Programming Language - Reference Manual

10. External Definitions

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type. The type-
specifier (see “Type Specifiers” in “DECLARATIONS”) may also be empty, in which case the type is
taken to be int. The scope of external definitions persists to the end of the file in which they are
declared just as the effect of declarations persists to the end of a block. The syntax of external
definitions is the same as that of all declarations except that only at this level may the code for func-
tions be given.

10.1. External Function Definitions
Function definitions have the form

Sfunction-definition:
decl-speciﬁersopt Jfunction-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see “Scope of Exter-
nals” in “SCOPE RULES” for the distinction between them. A function declarator is similar to a
declarator for a “function returning ...” except that it lists the formal parameters of the function
being defined.

function-declarator:
- declarator (parameter-listopt)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

Sfunction-body:
dec[aration-listopl compound-statement

The identifiers in the parameter list, and oniy those identifiers, may be declared in the declara-
tion list. Any identifiers whose type is not given are taken to be int. The only storage class which
may be specified is register; if it is specified, the corresponding actual parameter will be copied, if
possible, into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)
inta, b, c;

(.
int m;
m=(a>b)?a:bh;
return((m > ¢) ? m : c);
}

Here int is the type-specifier; max(a, b, c) is the function-declarator; inta, b, c; is the
declaration-list for the formal parameters; { ... } is the block giving the code for the statement.

The C program converts all float actual parameters to double, so formal parameters declared
float have their declaration adjusted to read double. All char and short formal parameter declarations
are similarly adjusted to read int. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of for-
mal parameters declared “array of ...” are adjusted to read “pointer to”

The C Programming Language - Reference Manual PS1:1-25

10.2. External Data Definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static but not auto or
register.

11. Scope Rules

A C program need not all be compiled at the same time. The source text of the program may be
kept in several files, and precompiled routines may be loaded from libraries. Communication among
the functions of a program may be carried out both through explicit calls and through manipulation
of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the lexical scope
of an identifier, which is essentially the region of a program during which it may be used without
drawing “undefined identifier” diagnostics; and second, the scope associated with external identifiers,
which is characterized by the rule that references to the same external identifier are references to the
same object.

11.1. Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the definition
through the end of the source file in which they appear. The lexical scope of identifiers which are for-
mal parameters persists through the function with which they are associated. The lexical scope of
identifiers declared at the head of a block persists until the end of the block. The lexical scope of
labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the
block constituting a function, any declaration of that identifier outside the block is suspended until
the end of the block.

Remember also (see “Structure, Union, and Enumeration Declarations” in “DECLARA-
TIONS?”) that tags, identifiers associated with ordinary variables, and identities associated with struc-
ture and union members form three disjoint classes which do not conflict. Members and tags follow
the same scope rules as other identifiers. The enum constants are in the same class as ordinary vari-
ables and follow the same scope rules. The typedef names are in the same class as ordinary
identifiers. They may be redeclared in inner blocks, but an explicit type must be given in the inner
declaration:

typedef float distance;

.o

{

auto int distance;

}

The int must be present in the second declaration, or it would be taken to be a declaration with
no declarators and type distance.

11.2. Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among the files or
libraries constituting the complete program there must be at least one external definition for the
identifier. All functions in a given program which refer to the same external identifier refer to the
same object, so care must be taken that the type and size specified in the definition are compatible
with those specified by each function which references the data.

PS1:1-26 The C Programming Language - Reference Manual

It is illegal to explicitly initialize any external identifier more than once in the set of files and
libraries comprising a multi-file program. It is legal to have more than one data definition for any
external non-function identifier; explicit use of extern does not change the meaning of an external
declaration.

In restricted environments, the use of the extern storage class takes on an additional meaning.
In these environments, the explicit appearance of the extern keyword in external data declarations of
identities without initialization indicates that the storage for the identifiers is allocated elsewhere,
either in this file or another file. It is required that there be exactly one definition of each external
identifier (without extern) in the set of files and libraries comprising a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

12. Compiler Control Lines

The C compiler contains a preprocessor capable of macro substitution, conditional compilation,
and inclusion of named files. Lines beginning with # communicate with this preprocessor. There
may be any number of blanks and horizontal tabs between the # and the directive. These lines have
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1. Token Replacement
A compiler-control line of the form

#define identifier token-stringopt

causes the preprocessor to replace subsequent instances of the identifier with the given string of
tokens. Semicolons in or at the end of the token-string are part of that string. A line of the form

#define identifier(identifier, ...)token-stringom

where there is no space between the first identifier and the (, is a macro definition with arguments.
There may be zero or more formal parameters. Subsequent instances of the first identifier followed
by a (, a sequence of tokens delimited by commas, and a) are replaced by the token string in the
definition. Each occurrence of an identifier mentioned in the formal parameter list of the definition is
replaced by the corresponding token string from the call. The actual arguments in the call are token
strings separated by commas; however, commas in quoted strings or protected by parentheses do not
separate arguments. The number of formal and actual parameters must be the same. Strings and
character constants in the token-string are scanned for formal parameters, but strings and character
constants in the rest of the program are not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a
long definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of “manifest constants,” as in
#define TABSIZE 100

int table [TABSIZE];

A control line of the form
#undef identifier

causes the identifier’s preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no intervening #undef, then
the two token-strings are compared textually. If the two token-strings are not identical (all white
space is considered as equivalent), then the identifier is considered to be redefined.

The C Programming Language - Reference Manual PSI1:1-27

12.2. File Inclusion
A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename. The named file is
searched for first in the directory of the file containing the #include, and then in a sequence of
specified or standard places. Alternatively, a control line of the form

#include <filename >
searches only the specified or standard places and not the directory of the #include. (How the places
are specified is not part of the language.)
#includes may be nested.

12.3. Conditional Compilation
A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions are dis-
cussed in “CONSTANT EXPRESSIONS”; the following additional restrictions apply here: the con-
stant expression may not contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary expression
defined identifier
or
defined(identifier)
which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced by their token-
strings (except those identifiers modified by defined) just as in normal text. The restricted constant
expression will be evaluated only after all expressions have finished. During this evaluation, all
undefined (to the procedure) identifiers evaluate to zero.

A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been the sub-
ject of a #define control line. It is equivalent to #ifdef(identifier). A control line of the form

#ifndef identifier
checks whether the identifier is currently undefined in the preprocessor. It is equivalent to
#if !defined(identifier).
All three forms are followed by an arbitrary number of lines, possibly containing a control line
#else
~ and then by a control line

#endif

If the checked condition is true, then any lines between #else and #endif are ignored. If the
checked condition is false, then any lines between the test and a #else or, lacking a #else, the #endif
are ignored.

PS1:1-28 The C Programming Language - Reference Manual

These constructions may be nested.

12.4. Line Control
For the benefit of other preprocessors which generate C programs, a line of the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next
source line is given by the constant and the current input file is named by "filename". If "filename" is
absent, the remembered file name does not change.

13. Implicit Declarations

It is not always necessary to specify both the storage class and the type of identifiers in a
declaration. The storage class is supplied by the context in external definitions and in declarations of
formal parameters and structure members. In a declaration inside a function, if a storage class but no
type is given, the identifier is assumed to be int; if a type but no storage class is indicated, the
identifier is assumed to be auto. An exception to the latter rule is made for functions because auto
functions do not exist. If the type of an identifier is “function returning ...,” it is implicitly declared
to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared to
be “function returning int.”

14. Types Revisited
This part summarizes the operations which can be performed on objects of certain types.

14.1. Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and returned by func-
tions. Other plausible operators, such as equality comparison and structure casts, are not imple-
mented.

In a reference to a structure or union member, the name on the right of the -> or the . must
specify a member of the aggregate named or pointed to by the expression on the left. In general, a
member of a union may not be inspected unless the value of the union has been assigned using that
same member. However, one special guarantee is made by the language in order to simplify the use
of unions: if a union contains several structures that share a common initial sequence and if the
union currently contains one of these structures, it is permitted to inspect the common initial part of
any of the contained structures. For example, the following is a legal fragment:

The C Programming Language - Reference Manual PS1:1-29

union
{
struct
{
int type;
}m
struct
{
int type;
int intnode;
} ni;
struct
{
int type;
float floatnode;
} nfy
}u

l;:nf.type = FLOAT;
u.nf.floatnode = 3.14;

lf (u.n.type == FLOAT)
... sin(u.nf.floatnode) ...

14.2. Functions

There are only two things that can be done with a function m, call it or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a pointer to
the function is generated. Thus, to pass one function to another, one might say

int f();
g(®;
Then the definition of g might read

g(funcp)
int (xfuncp)();
{

i:funcp)o;

)

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was
not followed by (. *

14.3. Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to
the first member of the array. Because of this conversion, arrays are not Ivalues. By definition, the
subscript operator [] is interpreted in such a way that E1[E2] is identical to *((E1)+E2)). Because of
the conversion rules which apply to +, if E1 is an array and E2 an integer, then E1[E2] refers to the
E2-th member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

PS1:1-30 The C Programming Language - Reference Manual

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional
array of rank ixjx...xk, then E appearing in an expression is converted to a pointer to an (n-1)-
dimensional array with rank jx...xk. If the x operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the result is the pointed-to (n-1)-dimensional array, which
itself is immediately converted into a pointer.

For example, consider
int x[3][5];

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a pointer
to (the first of three) 5S-membered arrays of integers. In the expression x[i], which is equivalent to
*(x+i), x is first converted to a pointer as described; then i is converted to the type of x, which
involves multiplying i by the length the object to which the pointer points, namely 5-integer objects.
The results are added and indirection applied to yield an array (of five integers) which in turn is con-
verted to a pointer to the first of the integers. If there is another subscript, the same argument applies
again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the
declaration helps determine the amount of storage consumed by an array. Arrays play no other part
in subscript calculations.

14.4. Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-dependent
aspects. They are all specified by means of an explicit type-conversion operator, see “Unary Opera-
tors” under“EXPRESSIONS” and “Type Namesunder “DECLARATIONS.”

A pointer may be converted to any of the integral types large enough to hold it. Whether an int
or long is required is machine dependent. The mapping function is also machine dependent but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries
an integer converted from a pointer back to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned
in storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer
to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate,
and return a char pointer; it might be used in this way.

extern char *malloc();
double *dp;

dp = (double *) malloc(sizeof(double));
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for conver-
sion to a pointer to double; then the use of the function is portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and measures bytes.
The char’s have no alignment requirements; everything else must have an even address.

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary objects are aligned on
a boundary equal to their length, except that double quantities need be aligned only on even 4-byte
boundaries. Aggregates are aligned on the strictest boundary required by any of their constituents.

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are aligned
on 4-byte boundaries. Shorts are aligned in all cases on 2-byte boundaries. Arrays of characters, all
structures, ints, longs, floats, and doubles are aligned on 4-byte boundries; but structure members may

The C Programming Language - Reference Manual PS1:1-31

be packed tighter.

14.5. CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after case, as array bounds,
and in initializers. In the first two cases, the expression can involve only integer constants, character
constants, casts to integral types, enumeration constants, and sizeof expressions, possibly connected
by the binary operators

+-x/%&|"<<>> ==1=<><=>=&& ||

or by the unary operators

~

or by the ternary operator
%

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one
can also use floating constants and arbitrary casts and can also apply the unary & operator to external
or static objects and to external or static arrays subscripted with a constant expression. The unary &
can also be applied implicitly by appearance of unsubscripted arrays and functions. The basic rule is
that initializers must evaluate either to a constant or to the address of a previously declared external
or static object plus or minus a constant.

15. Portability Considerations

Certain parts of C are inherently machine dependent. The following list of potential trouble
spots is not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and integer
division have proven in practice to be not much of a problem. Other facets of the hardware are
reflected in differing implementations. Some of these, particularly sign extension (converting a nega-
tive character into a negative integer) and the order in which bytes are placed in a word, are nui-
sances that must be carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine as does the set of valid types. Nonetheless, the compilers all do things properly for their
own machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to
write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. The order in
which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter character constants may
be permitted. The specific implementation is very machine dependent because the order in which
characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some machines and left to
right on other machines. These differences are invisible to isolated programs that do not indulge in
type punning (e.g., by converting an int pointer to a char pointer and inspecting the pointed-to
storage) but must be accounted for when conforming to externally-imposed storage layouts.

16. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact state-

PS1:1-32 The C Programming Language - Reference Manual

ment of the language.

16.1. Expressions
The basic expressions are:

expression:
primary
* expression
&lvalue
— expression
! expression
~ expression
++ lvalue
——Ilvalue
Ivalue ++
Ivalue — -
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list)
primary [expression] °
primary . identifier
primary - identifier

Ivalue:
identifier
primary [expression |
Ivalue . identifier
primary - identifier
* expression
(lvalue)

The primary-expression operators
on.-
have highest priority and group left to right. The unary operators
* & - | 7 ++ —— sizeof (type-name)

have priority below the primary operators but higher than any binary operator and group right to left.
Binary operators group left to right; they have priority decreasing as indicated below.

The C Programming Language - Reference Manual PS1:1-33

binop:
* / %
+ -
>> <<

The conditional operator groups right to left.
Assignment operators all have the same priority and all group right to left.

asgnop:
= += —= *x= /= Y%= >>= <<= &= "= |=

The comma operator has the lowest priority and groups left to right.

16.2. Declarations

declaration:
decl-specifiers init—declarator—listopt :

decl-specifiers:
type-specifier decl-specifiers
. . [y
sc-specifier decl—speczﬁersopt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

PS1:1-34 The C Programming Language - Reference Manual

enum-specifier:
enum { enum-list)
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializergpt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionom]

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list)
struct identifier
union { struct-decl-list)
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

The C Programming Language - Reference Manual PS1:1-35

initializer:
= expression
= { initializer-list }
= { initializer-list ,)

initializer-list:
expression
initializer-list , initializer-list
(initializer-list }
(initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressionopt]

typedef-name:
identifier

16.3. Statements

compound-statement:
{ declaration-list _ statement-list)
opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

PSI1:1-36 The C Programming Language - Reference Manual

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp,,pexp,,pexp,,,) statement
switch (expression) statement
case constant-expression : statement
default : statement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

’

16.4. External definitions

program:
external-definition
external-definition program

external-definition:
Junction-definition
data-definition

Sfunction-definition:
decl-speciﬁeropt Sfunction-declarator function-body

Junction-declarator:

declarator (parameter-listam)
parameter-list:

identifier

identifier , parameter-list

Sfunction-body:
decIaration-listopt compound-statement

data-definition:

extern declaration ;
static declaration ;

17. Preprocessor

The C Programming Language - Reference Manual PS1:1-37

#define identifier token-stringop,

#define identifier(identifier,...)token-string
#undef identifier opt
#include “filename"

#include <filename>

#if restricted-constant-expression

#ifdef identifier

#ifndef identifier

#else

#endif

#line constant " filename"

A Portable Fortran 77 Compiler

S. I. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

J. Berkman

University of California
Berkeley, CA 94720

ABSTRACT

The Fortran language has been revised. The new language, known as
Fortran 77, became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language. It is
believed to be the first complete Fortran 77 system to be implemented. This com-
piler is designed to be portable, to be correct and complete, and to generate code
compatible with calling sequences produced by C compilers. In particular, this For-
tran is quite usable on UNIXt systems. In this paper, we describe the language com-
piled, interfaces between procedures, and file formats assumed by the I/O system.
Appendix A describes the Fortran 77 language extensions.

This is a standard Bell Laboratories document reproduced with minor
modifications to the text. The Bell Laboratory’s appendix on “Differences Between
Fortran 66 and Fortran 77 has been changed to Appendix A, and a local appendix
has been added. Appendix B contains a list of Fortran 77 references (some from the
original Bell document and some added at Berkeley).

Revised September, 1985

1 UNIX is a trademark of AT&T Bell Laboratories.

PS1:2-2 A Portable Fortran 77 Compiler

Table of Contents

1. Introduction
L1 USAGE .eveeveeeieircieniecieiitneestetssteseeasasestssesns st ssessesaesssnsantssesssssssesssensssonsessessessesssesassssesaases
1.2. Documentation COnventionscccceeeeeevenseenens
1.3. Implementation Strategyccceccevervrerecrersnesuenes
1.4. Debugging Aids

2. Language Extensions
2.1. Double Complex Data TYPEcccceveevrerrreerreccreereensenes .
2.2. INtErN@l FIIES ...ccceeiireeiiireeieinceieinestitentestesaestestsesssesasssssessssssssssaessenssssessessassens
2.3. Implicit Undefined Statement

4

4

6

6

6

6

[

7

7

2.4. Recursion 7
2.5. Automatic Storage .. 7
2.6. Source Input Formatccccecevveneerierurcucnnnne. 7
7

8

8

8

8

8

9

9

9

9

1

2.7. Include Statement ..
2.8. Binary Initialization CONStANtSc.ccccvveevrerrerreneecrenenessesesansessens
2.9. CharaCter SEINESccceevevereeresreresseseesessesessesesseossssessosessessssenssssssssessesassosssssaenns
2.10. Hollerith
2.11. Equivalence Statementsccoeeeveereerrerneneeernnnes

2.12. One-Trip DO LOOPS ..coovvevreeeerreeceenreeevensvenane

2.13. Commas in Formatted Input . retrseenreteaentenens
2.14. Short Integers

2.15. Additional Intrinsic FUNCHONSc.cccevievirervccirunrecsinnnseeenssessnsesnsenseenne .
2.16. NAMELISt J/O ...cveouerrrirnrenriisienennssiesissestessssessesessessassssessesessssessssessessssessssessssensessssessessesassenses
2.17. Automatic Precision INCTEASEcccecrermvenririenrrerisirnnuesensiensesessesessessssssessesessesseseesesssssens 1
2.18. Characters and Integers eerreeesiteessteeiteeebaeeste e teeestaeesansaeearrnennns 12
3. Violations of the Standard eereeeeesteesee ettt e aa e e te s b e e taesraeerbaansans 12
3.1. Double Precision ALIZNMENLcccccceeveereerrerseererieresesresieesassssssessessesssssessesseseessessessassasssessenss 12
3.2. Dummy Procedure Arguments reereeeeeereeereet et e saa et e a e et e s aeesaeeeraeeatenras 12
3.3. T and TL FOIMALSccccoeueiuriininiiristnistsssisists st sttt st ssassss s sasbessessenassasenaons 12
3.4. Carriage Control ettt ettt a et e as e e e ssnaesaanaans 12
3.5. ASSIZNEA GO0 ...coveevevirerrcerrreraeneseessesaesesnenesasnene . 13
4, Inter-Procedure INterfaceccccoeveeeereerenenessennnseesesnenees 13
4.1. Procedure NAMEScccoveeivrinininsinsecsiinenistineses et st essessssssssssessesssanes . 13
4.2, Data Representations rteeeeeteereeste et eete e e ae st st et e R e st et b e e b e e st et et aesaeaasrneneen 13
4.3. Arrays erreeeteeesreeaaeesareeesaeerareenreeeaas 13
4.4, REtUIN VALUESooiriiiiiiniiiiitienenietcetetss e esstesess et csaessestssbssasst st seasaessasasesaassensens 13

4.5, ArgUMENT LiSES .cc.oevvevveirieriinriieeieesrenereestesnestessessssseessessessassessessassees 14

A Portable Fortran 77 Compiler PS1:2-3

4.6. SyStem INTETTACEcoeviiiivieriiriiiictiietcce ettt e sas e s e sassnesnis 14
5. FLIE FOIMALS .eeveviirieerieeieninneeirensttenteesaeeeatenet e te et eseesseesaeeeseesseest e saasase st sasesassssnesesesnassssassnasrassnne 15
5.1. Structure of FOrtran Filescccocceeverieniierrninnienieseneenieesteisseseesesessssensesene 15
5.2. Portability Considerations eereesteesreeete e et e e e st et e re st e esa s aeaesasasaans 15
5.3. Logical Units and FIlEsc.cccevrerrneniinieniieniereeenieseeenieessestsecssesessssseessessssesessassessssesns 15
Appendix A. Differences Between Fortran 66 and Fortran 77cccecevveveniivcnneeneeiesneereeercseeneens 17
1. Features Deleted from FOItran 66ccecivievninieniinieninenniniiiincciescetnsscssesssssssnsaesssssens 17
) R (0]) (<3 63+ RO OO 17
1.2. Extended Range 0f DOcccocviiviinieeeriiereiiniienriseesieeesessessessssssassesssessssessssssssnnssosesssassnns 17
2. Program FOrmcccccciviireiiinnneinninneinccncinccnnecnees TN 17
2.1, BIANK LINES ..ueeivveeiiiieiiineriiritnneenitesiesisieeiesstesssessessatsssesssesssesstesstesasssesnssssessssssssessessesssssssns 17
2.2. Program and Block Data Statements ... 17
2.3. ENTRY Statementcccocevvvevinevnvinenienininnns 17
2.4, DO LOODS «evveerieeirrrereiiiiineeeesessnnesesssseesssssssnsesssssssnnssssssssnns 18
2.5. Alternate Returns creeereeeteeeeeaenes 18
3. DeClarationsceccevieeeeeriieesternieeiiesesseessnesscssanesssssnsossassnne 18
3.1. CHARACTER Data TYPE ..cccccvrerurriririrreerinincrtetsresiecesesissessesissessssssssnssessonsssestssensssssssssesses 18
3.2. IMPLICIT Statement 18
3.3. PARAMETER Statement 18
3.4. Array Declarationscocceceeveeveerenerseensessneensesseesesseenne reeereresteesreaesranas 19
3.5. SAVE Statement retreteetee et e e ta et e s an s e e s s raesatesasssnns . 19
3.6. INTRINSIC StateImEntcccooceereeereecrereriiesieesressuecssesssesssosssesssesssssstsssesssssssessssessssssssesessasossans 19
4. EXPIessionsccceeveverveeneennes 19
4.1. Character Constants 19
4.2. Concatenation 20
4.3. Character String ASSIgNMENtcccceceererieeerenerscrseennen . 20
4.4. Substringsccceeeveeruenene . 20
4.5. Exponentiation ... eeeeetteeeart et ee et e e se b e s et e s s s e s s et e e s b e e s Rt e e b aaeate e eansanaaas 20
4.6. Relaxation of Restrictions . 21
S. Executable Statements 21
5.1. IF-THEN-ELSE 21
5.2. Alternate Returnscccecevevveeniinecnnicnecnnns 21
6. Input/Outputcoveeriieiiiiiiiicnncn e 22
6.1. Format Variablesc.cecceverrereeennerennennrennnene . . 22
6.2. END=, ERR=, and IOSTAT = ClaUSESccceserrerreruererirrirreseereressesseneseeesesesesseressssensesessens 22
6.3. Formatted I/Occeuuenee . . e et sbe e 22
6.4. Standard Units et enene 24
6.5. List-Directed 1/0 24
6.6. Direct I/O 24
6.7. Internal Files 25
6.8. OPEN, CLOSE, and INQUIRE Statementscccceceveevererecrereerisennen 25

Appendix B. References and Bibliography 28

PS1:2-4 A Portable Fortran 77 Compiler

1. INTRODUCTION

)} The Fortran language has been revised. The new language, known as Fortran 77, became an official
American National Standard [1] on April 3, 1978. Fortran 77 supplants 1966 Standard Fortran [2].
We report here on a compiler and run-time system for the new extended language. The compiler and
§ computation library were written by S.IF., the I/O system by P.J.W. We believe ours to be the first
complete Fortran 77 system to be implemented. This compiler is designed to be portable to a
number of different machines, to be correct and complete, and to generate code compatible with cal-
ling sequences produced by compilers for the C language [3]. In particular, it is in use on UNIX sys-
tems. Two families of C compilers are in use at Bell Laboratories, those based on D. M. Ritchie’s
PDP-11 compiler [4] and those based on S. C. Johnson’s portable C compiler [5]. This Fortran com-
piler can drive the second passes of either family. In this paper, we describe the language compiled,
interfaces between procedures, and file formats assumed by the I/O system. We will describe imple-
mentation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11, the VAX-11/780, and the
Interdata 8/32 UNIX systems. The command to run the compiler is

£77 flags file. ..

£77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The f77 and cc commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file name suffixes are understood:

f Fortran source file
.F Fortran source file

. EFL source file

. Ratfor source file

. C source file

.8 Assembler source file
.0 Object file

Arguments whose names end with .f are taken to be Fortran 77 source programs; they are com-
piled, and each object program is left on the file in the current directory whose name is that of
the source with .o substituted for .f.

Arguments whose names end with .F are also taken to be Fortran 77 source programs; these are
first processed by the C preprocessor before being compiled by 77.

Arguments whose names end with .r or .e are taken to be Ratfor or EFL source programs,
respectively; these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with .c or .s are taken to be C or assembly source
programs and are compiled or assembled, producing a .o file.

The following flags are understood:

-c Compile but do not load. Output for x.f, x.F, x.e, x.r, X.c, or X.s is put on file x.o0.

-d Used in debugging the compiler.

-g Have the compiler produce additional symbol table information for dbx(1). This
flag is incompatible with —~O. See section 1.4 for more details.

-i2 On machines which support short integers, make the default integer constants and

variables short (see section 2.14). (-id is the standard value of this option). All log-

A Portable Fortran 77 Compiler PS1:2-5

-o file

ical quantities will be short.

Apply the M4 macro preprocessor to each EFL or Ratfor source file before using the
appropriate compiler.

Put executable module on file file. (Default is a.out).

—onetrip or -1

Compile code that performs every do loop at least once (see section 2.12).

-p Generate code to produce usage profiles.

-pg Generate code in the manner of —p, but invoké a run-time recording mechanism
that keeps more extensive statistics. See gprof(1).

-q Suppress printing of file names and program unit names during compilation.

-r8 Treat all floating point variables, constants, functions and intrinsics as double preci-
sion and all complex quantities as double complex. See section 2.17.

-u Make the default type of a variable undefined (see section 2.3).

-v Print the version number of the compiler and the name of each pass.

-w Suppress all warning messages.

-w66 Suppress warnings about Fortran 66 features used.

-C Compile code that checks that subscripts are within array bounds. For multi-
dimensional arrays, only the equivalent linear subscript is checked.

—Dname=def

—-Dname Define the name to the C preprocessor, as if by ‘#define’. If no definition is given,
the name is defined as "1". (.F files only).

-Estr Use the string str as an EFL option in processing .e files.

-F Ratfor, EFL, and .F source files are pre-processed into .f files, and those .f files are
left on the disk without being compiled.

-Xdir ‘#include’ files whose names do not begin with ¢/’ are always sought first in the
directory of the file argument, then in directories named in -I options, then in
directories on a standard list. (.F files only).

—-Nlqxscn]nnn
Make static tables in the compiler bigger. The compiler will complain if it overflows
its tables and suggest you apply one or more of these flags. These flags have the fol-
lowing meanings:

q Maximum number of equivalenced variables. Default is 150.

X Maximum number of external names (common block names, subroutine and
function names). Default is 200.

s Maximum number of statement numbers. Default is 401.

c Maximum depth of nesting for control statements (e.g. DO loops). Default is
20.

n Maximum number of identifiers. Default is 1009.

-0 Invoke the object code optimizer. Incompatible with —g.

—~Rstr Use the string str as a Ratfor option in processing .r files.

-U Do not convert upper case letters to lower case. The default is to convert Fortran
programs to lower case except within character string constants.

-S Generate assembler output for each source file, but do not assemble it. Assembler

output for a source file x.f, x.F, x.e, x.r, or x.c is put on file x.s.

Other flags, all library names (arguments beginning -1I), and any names not ending with one of
the understood suffixes are passed to the loader.

PS1:2-6 A Portable Fortran 77 Compiler

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.-

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler inter-
mediate code. Since there are C compilers running on a variety of machines, relatively small
changes will make this Fortran compiler generate code for any of them. Furthermore, this
approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The runtime 1/0 library makes use of D. M. Ritchie’s Stan-
dard C I/0 package [8] for transferring data. With the few exceptions described below, only
documented calls are used, so it should be relatively easy to modify to run on other operating
systems.

1.4. Debugging Aids

A memory image is sometimes written to a file core in the current directory upon abnormal ter-
mination for errors caught by the f77 libraries, user calls to abort, and certain signals (see
sigvec(2) in the UNIX Programmer’s Manual). Core is normally created only if the —g flag was
specified to f77 during loading.} The source-level debugger dbx (1) may be used with the execut-
able and the core file to examine the image and determine what went wrong,.

In the event that it is necessary to override this default behavior, the user may set the environ-
ment variable f77_dump_flag. If f77_dump_flag is set to a value beginning with n, a core file is
not produced regardless of whether —g was specified at compile time, and if the value begins
with y, dumps are produced even if —g was not specified.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences briefly in
Appendix A. The most important additions are a character string data type, file-oriented
input/output statements, and random access I/0. Also, the language has been cleaned up consider-
ably.

In addition to implementing the language specified in the new Standard, our compiler implements a
few extensions described in this section. Most are useful additions to the language. The remainder
are extensions to make it easier to communicate with C procedures or to permit compilation of old
(1966 Standard) programs.

2.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double preci-
sion real values. The statements

z1 =(0.1d0, 0.2d0) -
z2 = demplx(dx, dy)

assign double complex values to z1 and z2. The double precision values which constitute the
double complex value may be isolated by using dreal or dble for the real part and imag or dimag
for the imaginary part. To compute the double complex conjugate of a double complex value,
use conjg or dconjg. The other double complex intrinsic functions may be accessed using their
generic names or specific names. The generic names are: abs, sqrt, exp, log, sin, and cos. The
specific names are the same as the generic names preceded by either cd or z, e.g. you may code
sqrt, zsqrt or cdsqrt to compute the square root of a double complex value.

1Specify —g when loading with cc or £77; specify -lg as a library when using 1d directly.

A Portable Fortran 77 Compiler PS1:2-7

2.2

2.3.

24.

2.5.

2.6.

2.7.

Internal Files

The Fortran 77 standard introduces “internal files” (memory arrays), but restricts their use to
formatted sequential 1/0 statements. Our I/O system also permits internal files to be used in for-
matted direct reads and writes and list directed sequential read and writes.

Implicit Undefined Statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type statement is
integer if its first letter is i, j, k, I, m or n, and real otherwise. Fortran 77 has an implicit state-
ment for overriding this rule. As an aid to good programming practice, we permit an additional
type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each
variable that is used but does not appear in a type statement. Specifying the —u compiler flag is
equivalent to beginning each procedure with this statement.

Recursion

Procedures may call themselves, directly or through a chain of other procedures. Since Fortran
variables are by default static, it is often necessary to use the automatic storage extension to
prevent unexpected results from recursive functions.

Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as “types”
in type statements and in implicit statements. Local variables are static by default; there is only
one instance of the variable. For variables declared automatic, there is a separate instance of the
variable for each invocation of the procedure. Automatic variables may not appear in
equivalence, data, or save statements. Neither type of variable is guaranteed to retain its value
between calls to a subprogram (see the save statement in Appendix A).

Source Input Format

The Standard expects input to the compiler to be in 72-column format: except in comment
lines, the first five characters are the statement number, the next is the continuation character,
and the next 66 are the body of the line. (If there are fewer than 72 characters on a line, the
compiler pads it with blanks; characters after the seventy-second are ignored.)

In order to make it easier to type Fortran programs, our compiler also accepts.input in variable
length lines. An ampersand “&” in the first position of a line indicates a continuation line; the
remaining characters form the body of the line. A tab character in one of the first six positions
of a line signals the end of the statement number and continuation part of the line; the remain-
ing characters form the body of the line. A tab elsewhere on the line is treated as another kind
of blank by the compiler.

In the Standard, there are only 26 letters — Fortran is a one-case language. Consistent with
ordinary UNIX system usage, our compiler expects lower case input. By default, the compiler
converts all upper case characters to lower case except those inside character constants. How-
ever, if the —U compiler flag is specified, upper case letters are not transformed. In this mode,
it is possible to specify external names with upper case letters in them, and to have distinct vari-
ables differing only in case. If —U is specified, keywords will only be recognized in lower case.

Include Statement
The statement

include stuff’

is replaced by the contents of the file stuff; include statements may be nested to a reasonable

PS1:2-8 A Portable Fortran 77 Compiler

depth, currently ten.

2.8. Binary Initialization Constants

A variable may be initialized in a data statement by a binary constant, denoted by a letter fol-
lowed by a quoted string. If the letter is b, the string is binary, and only zeroes and ones are
permitted. If the letter is o, the string is octal, with digits 0—7. If the letter is z or x, the string
is hexadecimal, with digits 0-9, a—f. Thus, the statements

integer a(3)
dataa/b'1010’, 0’12, z’a’ /

initialize all three elements of a to ten.

2.9. Character Strings

2.10.

2.11.

2.12.

For compatibility with C usage, the following backslash escapes are recognized:

\n newline

\t tab

\b backspace

\f form feed

\0 null

\' apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)
W\

\x x, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system recog-
nize both the apostrophe “’ > and the double-quote “ " ”. If a string begins with one variety of
quote mark, the other may be embedded within it without using the repeated quote or backslash
escapes.

Each character string constant appearing outside a data statement is followed by a null character
to ease communication with C routines. ’

Hollerith

Fortran 77 does not have the old Hollerith “nh” notation, though the new Standard recom-
mends implementing the old Hollerith feature in order to improve compatibility with old pro-
grams. In our compiler, Hollerith data may be used in place of character string constants, and
may also be used to initialize non-character variables in data statements.

Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply-dimensioned
array to be represented by a singly-subscripted reference in equivalence statements. Fortran 77
does not permit this usage, since subscript lower bounds may now be different from 1. Our
compiler permits single subscripts in equivalence statements, under the interpretation that all
missing subscripts are equal to 1. A warning message is printed for each such incomplete sub-
script.

One-Trip DO Loops
The Fortran 77 Standard requires that the range of a do loop not be performed if the initial
value is already past the limit value, as in

do10i=2,1

The 1966 Standard stated that the effect of such a statement was undefined, but it was common
practice that the range of a do loop would be performed at least once. In order to accommodate
old programs, though they were in violation of the 1966 Standard, the —onetrip or —1 compiler

A Portable Fortran 77 Compiler PS1:2-9

2.13.

2.14.

2.15.

2.16.

flags causes non-standard loops to be generated.

Commas in Formatted Input

The I/O system attempts to be more lenient than the Standard when it seems worthwhile. When
doing a formatted read of non-character variables, commas may be used as value separators in
the input record, overriding the field lengths given in the format statement. Thus, the format

(i10, £20.10, i4)
will read the record

-345,.05¢-3,12
correctly.

Short Integers

On machines that support halfword integers, the compiler accepts declarations of type integers2.
(Ordinary integers follow the Fortran rules about occupying the same space as a real variable;
they are assumed to be of C type long int; halfword integers are of C type short int.) An expres-
sion involving only objects of type integers2 is of that type. Generic functions return short or
long integers depending on the actual types of their arguments. If a procedure is compiled using
the —i2 flag, all small integer constants will be of type integers2. If the precision of an integer-
valued intrinsic function is not determined by the generic function rules, one will be chosen that
returns the prevailing length (integers2 when the —i2 command flag is in effect). When the -i2
option is in effect, all quantities of type logical will be short. Note that these short integer and
logical quantities do not obey the standard rules for storage association.

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In
addition, there are built-in functions for performing bitwise logical and boolean operations on
integer and logical values (or, and, xor, not, Ishift, and rshift), and intrinsic functions for double
complex values (see section 2.1). The {77 library contains many other functions, such as access-
ing the UNIX command arguments (getarg and iargc) and environment (getenv). See intro(3f)
and bit(3f) in the UNIX Programmer’s Manual for more information.

Namelist I/0

Namelist I/O provides an easy way to input and output information without formats. Although
not part of the standard, namelist I/O was part of many Fortran 66 systems and is a common
extension to Fortran 77 systems.

Variables and arrays to be used in namelist I/O are declared as part of a namelist in a namelist
statement, e.g.:

character strx12

logical flags(20)

complex c(2)

real arr1(2,3), arr2(0:3,4)

namelist /basic/ arrl, arr2, key, str, c /flglst/ key, flags

This defines two namelists: list basic consists of variables key and str and arrays arrl, arr2, and
¢; list flglst consists of variable key and array flags. A namelist can include variables and arrays
of any type, and a variable or array may be in several different namelists. However dummy
arguments and array elements may not be in a namelist. A namelist name may be used in exter-
nal sequential read, write and print statements wherever a format could be used.

In a namelist read, column one of each data record is ignored. The data begins with an amper-
sand in column 2 followed by the namelist name and a blank. Then there is a sequence of value
assignments separated by commas and finally an “&end”. A simple example of input data

PS1:2-10 A Portable Fortran 77 Compiler

corresponding to namelist basic is:
&basic key=5, str="hi there’ &end

For compatibility with other systems, dollar signs may be used instead of the ampersands:
$basic key=5, str="hi there’ $end

A value assignment in the data record must be one of three forms. The simplest is a variable
name followed by an equal sign followed by a data value which is assigned to that variable, e.g.
“key=5". The second form consists of an array name followed by “=" followed by one or more
values to be assigned to the array, e.g.:

c=(1.1,-2.9),(-1.8¢+10,14.0e-3)

assigns values to c¢(1) and c(2) in the complex array c.

As in other read statements, values are assigned in the order of the array in memory, i.e.
column-major order for two dimensional arrays. Multiple copies of a value may be represented
by a repetition count followed by an asterisk followed by the value; e.g. “3*55.4” is the same as
“55.4, 55.4, 55.4”. It is an error to specify more values than the array can hold; if less are
specified, only that number of elements of the array are changed. The third form of a value
assignment is a subscripted variable name followed by “="" followed by a value or values, e.g.:
“arr2(0,4)=15.2”. Only integer constant subscripts may be used. The correct number of sub-
scripts must be used and the subscripts must be legal. This form is the same as the form with
an array name except the array is filled starting at the named element.

In all three forms, the variable or array name must be declared in the namelist. The form of the
data values is the same as in list directed input except that in namelist I/O, character strings in
the data must be enclosed in apostrophes or double quotes, and repetition counts must be fol-
lowed by data values.

One use of namelist input is to read in a list of options or flags. For example:

logical flags(14)
namelist /pars/ flags, iters, xlow, xhigh, xinc
data flags/14*.false./

10 read(5,pars,end=900)
print pars
call calc(xlow, xhigh, xinc, flags, iters)
goto 10
900 continue
end

could be run with the following data (each record begins with a space):

&pars iters=10, xlow=0.0, xhigh=1.0, xinc=0.1 &end
&pars xinc=0.2,

flags(2)=2*.true., flags(8)=.true. &end
&pars xlow=2.0, xhigh=8.0 &end

The program reads parameters for the run from the first data set and computes using them.
Then it loops and each successive set of namelist input data specifies only those data items
which need to be changed. Note the second data set sets the 2"¢, 3™ and 8" elements in the
array flags to .true..

When a namelist name is used in a write or print statement, all the values in the namelist are
output together with their names. For example the print in the program above prints the follow-
ing:

A Portable Fortran 77 Compiler PS1:2-11

&pars flags= f, f, f, f, f, f, f, f, f, f, f, f f f iters=
10, xlow= 0., xhigh= 1.00000, xinc= 0.100000

&end

&pars flags= f, t, t, f, f, f, £, t, f, f, f, f, f, f iters=
10, xlow= 0., xhigh=1.00000, xinc= 0.200000

&end

&pars flags= f, t, t, f, f, f, f, t, f, f, f, f, f, f iters=
10, xlow=2.00000, xhigh=8.00000, xinc= 0.200000

&end

Each line begins with a space so that namelist output can be used as input to a namelist read.
The default is to use ampersands in namelist print and write. However, dollar signs will be used
if the last preceding namelist read data set used dollar signs. The character to be used is stored
as the first character of the common block namelistkey.

2.17. Automatic Precision Increase

The -r8 flag allows a user to run a program with increased precision without changing any of
the program source, i.e. it allows a user to take a program coded in single precision and compile
and execute it as if it had been coded in double precision. The option extends the precision of
all single precision real and complex constants, variables, external functions, and intrinsic func-
tions. For example, the source:

implicit complex(c)
real last

intrinsic sin, csin
data last/0.3/

x = 0.1

y = sqrt(x)+sqrt(last)
cl =(0.1,0.2)

c2 = sqrt(cl)

x = real(i)

y = aimag(cl)

call fun(sin,csin)

is compiled under this flag as if it had been written as:

implicit double precision (a-b,d-h,0-z), double complex(c)
double precision last

intrinsic dsin, cdsin

data last/0.3d0/

x = 0.1d0

y = sqrt(x)+sqrt(last)
cl = (0.1d0,0.2d0)
c2 = sqrt(cl)

x = dreal(i)

y = dimag(cl)

call fun(dsin,cdsin)

When the —r8 flag is invoked, the calls using the generic name sqrt will refer to a different
specific function since the types of the arguments have changed. This option extends the preci-
sion of all single precision real and complex variables and functions, including those declared
real*4 and complexs8.

In order to successfully use this flag to increase precision, the entire program including all the
subroutines and functions it calls must be recompiled. Programs which use dynamic memory

PS1:2-12 A Portable Fortran 77 Compiler

2.18.

allocation or use equivalence or common statements to associate variables of different types may
have to be changed by hand. Similar caveats apply to the sizes of records in unformatted I/0.

Characters and Integers

A character constant of integer length or less may be assigned to an integer variable. Individual
bytes are packed into the integer in the native byte order. The character constant is padded
with blanks to the width of the integer during the assignment. Use of this feature is deprecated;
it is intended only as a porting aid for extended Fortran 66 programs. Note that the intrinsic
ichar function behaves as the standard requires, converting only single bytes to integers.

3. VIOLATIONS OF THE STANDARD
We know only a few ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment

The Fortran Standards (both 1966 and 1977) permit common or equivalence statements to force
a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4),c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on
double word boundaries; other machines (e.g., IBM 370), run inefficiently if this alignment rule is
not observed. It is possible to tell which equivalenced and common variables suffer from a
forced odd alignment, but every double precision argument would have to be assumed on a bad
boundary. To load such a quantity on some machines, it would be necessary to use separate
operations to move the upper and lower halves into the halves of an aligned temporary, then to
load that double precision temporary; the reverse would be needed to store a result. We have
chosen to require that all double precision real and complex quantities fall on even word boun-
daries on machines with corresponding hardware requirements, and to issue a diagnostic if the
source code demands a violation of the rule.

3.2. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of that pro-
cedure must be declared in an external statement. This requirement arises as a subtle corollary
of the way we represent character string arguments and of the one-pass nature of the compiler.
A warning is printed if a dummy procedure is not declared external. Code is correct if there are
no character arguments.

3.3. T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective. These
codes allow rereading or rewriting part of the record which has already been processed (section
6.3.2 in Appendix A). The implementation uses seeks, so if the unit is not one which allows
seeks, such as a terminal, the program is in error. A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any record
lengths except where specifically required by Fortran or the operating system.

3.4. Carriage Control

The Standard leaves as implementation dependent which logical unit(s) are treated as “printer”
files. In this implementation there is no printer file and thus by default, no carriage control is
recognized on formatted output. This can be changed using form="'print’ in the open statement
for a unit, or by using the fpr(1) filter for output; see [9].

A Portable Fortran 77 Compiler PS1:2-13

3.5. Assigned Goto

The optional list associated with an assigned goto statement is not checked against the actual
assigned value during execution.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is necessary to know
the conventions for procedure names, data representation, return values, and argument lists that the
compiled code obeys.

4.1. Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an underscore
appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran built-in procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2. Data Representations
The following is a table of corresponding Fortran and C declarations:

Fortran C

integers2 x short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

complex x struct { float r, i; } x;
double complex x struct { double dr, di; } x;
character=6 x char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory.)

4.3. Arrays

The first element of a C array always has subscript zero, while Fortran arrays begin at 1 by
default. Fortran arrays are stored in column-major order in contiguous storage, C arrays are
stored in row-major order. Many mathematical libraries have subroutines which transpose a
two dimensional matrix, e.g. f0lcrf in the NAG library and vtran in the IMSL library. These
may be used to transpose a two-dimensional array stored in C in row-major order to Fortran
column-major order or vice-versa.

4.4. Return Values

A function of type integer, logical, real, or double precision declared as a C function returns the
corresponding type. A complex or double complex function is equivalent to a C routine with an
additional initial argument that points to the place where the return value is to be stored. Thus,

complex function f(. . .)
is equivalent to

f_(temp,...)
struct { float r, i; } *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a
data address and a length. Thus,

character=15 function g(...)

PS1:2-14 A Portable Fortran 77 Compiler

4.5.

4.6.

is equivalent to

g_(result, length, . . .)
char result[];
long int length;

and could be invoked in C by
char chars[15];

g_(chars, 15L,...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the func-
tion, but are used to do an indexed branch in the calling procedure. (If the subroutine has no
entry points with alternate return arguments, the returned value is undefined.) The statement

call nret(x1, *2, *3)
is treated exactly as if it were the computed goto
goto (1, 2, 3), nret()

Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of type
character or that is a dummy procedure, an argument giving the length of the value is passed.
(The string lengths are long int quantities passed by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external {
characterx7 s
integer b(3)

call sam(f, b(2), s)
is equivalent to that in

int £();

char s[7];

long int b[3];

sam_(f, &b[1], s, OL, 7L);

System Interface

To run a Fortran program, the system invokes a small C program which first initializes signal
handling, then calls f_init to initialize the Fortran I/O library, then calls your Fortran main pro-
gram, and then calls f_exit to close any Fortran files opened.

f_init initializes Fortran units 0, 5, and 6 to standard error, standard input, and standard output
respectively. It also calls setlinebuf to initiate line buffering of standard error. If you are using
Fortran subroutines which may do I/O and you have a C main program, call f_init before calling
the Fortran subroutines. Otherwise, Fortran units 0, 5, and 6 will be connected to files fort.0,
fort.5, and fort.6, and error messages from the {77 libraries will be written to fort.0 instead of to
standard error. If your C program terminates by calling the C function exit, all files are

A Portable Fortran 77 Compiler PS1:2-15

automatically closed. If there are Fortran scratch files to be deleted, first call f_exit. F_init and
f_exit do not have any arguments.

The —d flag will show what libraries are used in loading Fortran programs.

5. FILE FORMATS

5.1.

5.2.

Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and direct
formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran /0 is based on records. When a direct file is opened in a Fortran program, the record
length of the records must be given, and this is used by the Fortran I/O system to make the file
look as if it is made up of records of the given length. In the special case that the record length
is given as 1, the files are not considered to be divided into records, but are treated as byte-
addressable byte strings; that is, as ordinary UNIX file system files. (A read or write request on
such a file keeps consuming bytes until satisfied, rather than being restricted to a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be
read or written by any means except Fortran 1/0 statements. Each record is preceded and fol-
lowed by an integer containing the record’s length in bytes.

The Fortran 1/0O system breaks sequential formatted files into records while reading by using
each newline as a record separator. The result of reading off the end of a record is undefined
according to the Standard. The I/O system is permissive and treats the record as being extended
by blanks. On output, the I/O system will write a newline at the end of each record. It is also
possible for programs to write newlines for themselves. This is an error, but the only effect will
be that the single record the user thought he wrote will be treated as more than one record when
being read or backspaced over.

Portability Considerations

The Fortran I/0 system uses only the facilities of the standard C /0 library, a widely available
and fairly portable package, with the following two nonstandard features: the I/O system needs
to know whether a file can be used for direct I/O, and whether or not it is possible to backspace.
Both of these facilities are implemented using the fseek routine, so there is a routine canseek
which determines if fseek will have the desired effect. Also, the inquire statement provides the
user with the ability to find out if two files are the same, and to get the name of an already
opened file in a form which would enable the program to reopen it. Therefore there are two
routines which depend on facilities of the operating system to provide these two services. In
any case, the I/0O system runs on the PDP-11, VAX-11/780, and Interdata 8/32 UNIX systems.

5.3. Logical Units and Files

Fortran logical unit numbers may be any integer between 0 and 99. The number of simultane-
ously open files is currently limited to 48.

Units 5, 6, and 0 are connected before the program begins to standard input, standard output,
and standard error respectively.

If an unit is opened explicitly by an open statement with a file= keyword, then the file name is
the name from the open statement. Otherwise, the default file name corresponding to unit # is
fort.n. If there is an environment variable whose name is the same as the tail of the file name
after periods are deleted, then the contents of that environment variable are used as the name of
the file. See [9] for details.

The default connection for all units is for sequential formatted I/0. The Standard does not
specify where a file which has been explicitly opened for sequential I/O is initially positioned.
The I/O system will position the file at the beginning. Therefore a write will destroy any data

PSI1:2-16 A Portable Fortran 77 Compiler

already in the file, but a read will work reasonably. To position a file to its end, use a read loop,
or the system dependent function fseek. The preconnected units 0, 5, and 6 are positioned as
they come from the program’s parent process.

A Portable Fortran 77 Compiler PS1:2-17

APPENDIX A: Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1966 [2] and the 1977 [1]
Standard languages. We assume that the reader is familiar with Fortran 66. We do not pretend to be
complete, precise, or unbiased, but plan to describe what we feel are the most important aspects of
the new language. The best current information on the 1977 Standard is in publications of the X3J3
Subcommittee of the American National Standards Institute, and the ANSI X3.9-1978 document, the
official description of the language. The Standard is written in English rather than a meta-language,
but it is forbidding and legalistic. A number of tutorials and textbooks are available (see Appendix
B).

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of “Hollerith” (nh) as data have been officially removed, although our compiler, like
almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range of DO

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is permissible
to jump out of the range of a do loop, then jump back into it. Extended range has been
removed in the Fortran 77 language. The restrictions are so special, and the implementation of
extended range is so unreliable in many compilers, that this change really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements
A main program may now begin with a statement that gives that program an external name:
program work
Block data procedures may also have names.
block data stuff

There is now a rule that only one unnamed block data procedure may appear in a program.
(This rule is not enforced by our system.) The Standard does not specify the effect of the pro-
gram and block data names, but they are clearly intended to aid conventional loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have additional
entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, ¢)

Execution begins at the first statement following the entry line. All variable declarations must
precede all executable statements in the procedure. If the procedure begins with a subroutine
statement, all entry points are subroutine names. If it begins with a function statement, each
entry is a function entry point, with type determined by the type declared for the entry name. If
any entry is a character-valued function, then all entries must be. In a function, an entry name
of the same type as that where control entered must be assigned a value. Arguments do not
retain their values between calls. (The ancient trick of calling one entry point with a large
number of arguments to cause the procedure to “remember” the locations of those arguments,
then invoking an entry with just a few arguments for later calculation, is still illegal.

PS1:2-18 : A Portable Fortran 77 Compiler

24.

2.5.

Furthermore, the trick doesn’t work in our implementation, since arguments are not kept in
static storage.)

DO Loops
do variables and range parameters may now be of integer, real, or double precision types. (The
use of floating point do variables is very dangerous because of the possibility of unexpected
roundoff, and we strongly recommend against their use.) The action of the do statement is now
defined for all values of the do parameters. The statement

do10i=1ud
performs max(0, [(u -/ +d)/d |) iterations. The do variable has a predictable value when exit-
ing a loop: the value at the time a goto or return terminates the loop; otherwise the value that
failed the limit test.
Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by an aster-
isk, as in

subroutine s(a, *, b, *)

The meaning of the “alternate returns” is described in section 5.2 of Appendix A.

3. Declarations

3.1.

3.2.

CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data type.
Local and common character variables must have a length denoted by a constant expression:

characterx17 a, b(3,4)
character*(6+3) ¢

If the length is omitted entirely, it is assumed equal to 1. A character string argument may have
a constant length, or the length may be declared to be the same as that of the corresponding
actual argument at run time by a statement like

character*(x) a

(There is an intrinsic function len that returns the actual length of a character string.) Character
arrays and common blocks containing character variables must be packed: in an array of charac-
ter variables, the first character of one element must follow the last character of the preceding
element, without holes.

e
IMPLICIT Statement
The traditional implied declaration rules still hold: a variable whose name begins with i, j, k, 1,
m, or n is of type integer; other variables are of type real, unless otherwise declared. This gen-
eral rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), characterx(17) (s)

declares that variables whose name begins with an a ,b, ¢, or g are real, those beginning with w,
X, ¥, or z are assumed complex, and so on. It is still poor practice to depend on implicit typing,
but this statement is an industry standard.

3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in

A Portable Fortran 77 Compiler PS1:2-19

character strx(x)
parameter (x=17, y=x/3, pi=3.14159d0, str="hello’)

The type of each parameter name is governed by the same implicit and explicit rules as for a
variable. Symbolic names for character constants may be declared with an implied length “(x)”.
The right side of each equal sign must be a constant expression (an expression made up of con-
stants, operators, and already defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in 1966.) The
lower bound of each dimension may be declared to be other than 1 by using a colon. Further-
more, an adjustable array bound may be an integer expression involving constants, arguments,
and variables in common.

real a(-5:3, 7, m:n), b(n+1:2xn)

The upper bound on the last dimension of an array argument may be denoted by an asterisk to
indicate that the upper bound is not specified:

integer a(5, *), b(*), c(0:1, —2:%)

3.5. SAVE Statement

A little known rule of Fortran 66 is that variables in a procedure do not necessarily retain their
values between invocations of that procedure. This rule permits overlay and stack implementa-
tions for the affected variables. In Fortran 77, three types of variables automatically keep there
values: variables in blank common, variables defined in data statements and never changed, and
variables in named common blocks which have not become undefined. At any instant in the
execution of a program, if a named common block is declared neither in the currently executing
procedure nor in any of the procedures in the chain of callers, all of the variables in that com-
mon block become undefined. Fortran 77 permits one to specify that certain variables and com-
mon blocks are to retain their values between invocations. The declaration

save a, /b/, ¢

leaves the values of the variables a and ¢ and all of the contents of common block b unaffected
by an exit from the procedure. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block must be
saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, “intrinsic functions”,
rather than being divided into “intrinsic” and “basic external” functions. If an intrinsic func-
tion is to be passed to another procedure, it must be declared intrinsic. Declaring it external (as
in Fortran 66) causes a function other than the built-in one to be passed.

4. Expressions

4.1.

Character Constants
Character string constants are marked by strings surrounded by apostrophes. If an apostrophe is
to be included in a constant, it is repeated:

q

'abc
’, ain”tl

PS1:2-20 A Portable Fortran 77 Compiler

4.2.

43.

44.

4.5.

Although null (zero-length) character strings are not allowed in the standard Fortran, they may
be used with f77. Our compiler has two different quotation marks, *“’ > and “ " . (See section
2.9 in the main text.)

Concatenation

One new operator has been added, character string concatenation, marked by a double slash
“//”. The result of a concatenation is the string containing the characters of the left operand fol-
lowed by the characters of the right operand. The character expressions

‘ab’ // 'ed’
‘abed’
are equal.
Dummy arguments of type character may be declared with implied lengths:

subroutine s (a, b))
character ax(*), bx(*)

Such dummy arguments may be used in concatenations in assign statements:
s=allb
but not in other contexts. For example:

if(a // b .eq. ‘abc’) key = 1
call sub(a//b)

are legal statements if “a” and “b” are dummy arguments declared with explicit lengths, or if
they are not arguments. These are illegal if they are declared with implied lengths.

Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed imple-
mentation of character assignment is to copy characters from the right to the left side.) If the
left side is longer than the right, it is padded with blanks. If the left side is shorter than the
right, trailing characters are discarded. Since the two sides of a character assignment must be
disjoint, the following are illegal:

str=""//str

str = str(2:)

These are not flagged as errors during compilation or execution, however the result is undefined.

Substrings
It is possible to extract a substring of a character variable or character array element, using the
colon notation:

a(i,j) (m:n)

is the string of (n—m +1) characters beginning at the m* character of the character array ele-
ment a;. Results are undefined unless m<n. Substrings may be used on the left sides of
assignments and as procedure actual arguments.

Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to real or
complex powers. (The principal part of the logarithm is used.) Also, multiple exponentiation is
now defined:

axxb#xC is equivalent to a »x (bxxc)

A Portable Fortran 77 Compiler PS1:2-21

4.6. Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine integer
and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data statements and
format statements. (A constant expression is made up of explicit constants and parameters and
the Fortran operators, except for exponentiation to a floating-point power.) An adjustable
dimension may now be an integer expression involving constants, arguments, and variables in
common.

Subscripts may now be general integer expressions; the old cv¢ rules have been removed. do
loop bounds may be general integer, real, or double precision expressions. Computed goto
expressions and I/O unit numbers may be general integer expressions.

5. Executable Statements

5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a “Block If”.
A Block If begins with a statement of the form

if (...)then
and ends with an
end if
statement. Two other new statements may appear in a Block If. There may be several
else if (. . .) then
statements, followed by at most one
else

statement. If the logical expression in the Block If statement is true, the statements following it
up to the next else if, else, or end if are executed. Otherwise, the next else if statement in the
group is executed. If none of the else if conditions are true, control passes to the statements fol-
lowing the else statement, if any. (The else block must follow all else if blocks in a Block If. Of
course, there may be Block Ifs embedded inside of other Block If structures.) A case construct
may be rendered:

if (s .eq. ‘ab’) then
e.ls.e' if (s .eq. ‘cd’) then
else
end if

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, as
in:

call joe(j, #10, m, %2)
A return statement may have an integer expression, such as:
return k

If the entry point has »n alternate return (asterisk) arguments and if 1<k<n, the return is fol-
lowed by a branch to the corresponding statement label; otherwise the usual return to the

PS1:2-22 A Portable Fortran 77 Compiler

statement following the call is executed.
6. Input/Output

6.1. Format Variables

A format may be the value of a character expression (constant or otherwise), or be stored in a
character array, as in:

write(6, ‘(i5)) x

6.2. END=, ERR=, and IOSTAT= Clauses
A read or write statement may contain end=, err=, and iostat= clauses, as in:
write(6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the I/O is done, 101 is the statement number of the associ-
ated format, 20 and 30 are statement numbers, and a and x are integer variables. If an error
occurs during I/O, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable referred to in
the iostat= clause is given a value when the I/O statement finishes. (Yes, the value is assigned to
the name on the right side of the equal sign.) This value is zero if all went well, negative for end
of file, and some positive value for errors.

6.3. Formatted I/0

6.3.1. Character Constants
Character constants in formats are copied literally to the output.
A format may be specified as a character constant within the read or write statement.
write(6,’(12,” isn’’"'t *,i1)") 7, 4
produces
7isn't 4
In the example above, the format is the character constant
(i2,"isn’'t ',il)
and the embedded character constant
isn't
is copied into the output.

The example could have been written more legibly by taking advantage of the two types of
quote marks.

write(6,’(i2," isn’ 't ",il)") 7, 4
However, the double quote is not standard Fortran 77.

The standard does not allow reading into character constants or Hollerith fields. In order to
facilitate running older programs, the Fortran I/O library allows reading into Hollerith fields;
however this is a practice to be avoided.

A Portable Fortran 77 Compiler PS1:2-23

6.3.2. Positional Editing Codes
t, tl, tr, and x codes control where the next character is in the record. trn or nx specifies that the
next character is n to the right of the current position. tln specifies that the next character is n
to the left of the current position, allowing parts of the record to be reconsidered. tn says that
the next character is to be character number n in the record. (See section 3.3 in the main text.)

6.3.3. Colon

A colon in the format terminates the I/O operation if there are no more data items in the I/O
list, otherwise it has no effect. In the fragment

x='("hello", :, " there", i4)
write(6, x) 12
write(6, x)

the first write statement prints
hello there 12

while the second only prints
hello

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in front of
non-negative numeric output. The sp format code may be used to make the optional plus signs
actually appear for all subsequent items while the format is active. The ss format code guaran-
tees that the 1/0 system will not insert the optional plus signs, and the s format code restores the
default behavior of the I/O system. (Since we never put out optional plus signs, ss and s codes
have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks, will be ignored following a bn code in
a format statement, and will be treated as zeros following a bz code in a format statement. The
default for a unit may be changed by using the open statement. (Blanks are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required by a
format code, the output field must be filled with asterisks. (We think this should have been an
option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at least
m digits in the output field, including, if necessary, leading zeros. The case iw.0 is special, in
that if the value being printed is 0, the output field is entirely blank. iw.1 is the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. On
output we always use e or d. The e and d format codes also have identical meanings. A leading
zero before the decimal point in e output without a scale factor is optional with the implementa-
tion. There is a gw.d format code which is the same as ew.d and fw.d on input, but which
chooses f or e formats for output depending on the size of the number and of d.

PS1:2-24 A Portable Fortran 77 Compiler

6.3.9. “A” Format Code

The a code is used for character data. aw uses a field width of w, while a plain a uses the length
of the internal character item.

Q
2 6.4. Standard Units
There are default formatted input and output units. The statement

read 10,a,b

reads from the standard unit using format statement 10. The default unit may be explicitly
specified by an asterisk, as in

read(s, 10) a, b

Similarly, the standard output unit is specified by a print statement or an asterisk unit:

print 10
write(x, 10)

6.5. List-Directed 1/0

List-directed I/0 is a kind of free form input for sequential I/0. It is invoked by using an aster-
isk as the format identifier, as in

read(6, *) a,b,c

On input, values are separated by strings of blanks and possibly a comma. On UNIX, tabs may
be used interchangeably with blanks as separators. Values, except for character strings, cannot
contain blanks. End of record counts as a blank, except in character strings, where it is ignored.
Complex constants are given as two real constants separated by a comma and enclosed in
parentheses. A null input field, such as between two consecutive commas, means the
corresponding variable in the I/O list is not changed. Values may be preceded by repetition
counts, as in

4%(3.,2.) 2%, 4x'hello’
which stands for 4 complex constants, 2 null values, and 4 string constants.

The Fortran standard requires data being read into character variables by a list-directed read to
be enclosed in quotes. In our system, the quotes are optional for strings which do not start with
a digit or quote and do not contain separators.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes. According to the standard, they could not be read back
using list-directed input. However much of this data could be read back in with list-directed /O
on our system.

6.6. Direct 1/0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order, using
direct access I/0 statements.

Direct access read and write statements have an extra argument, rec=, which gives the record
number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)
reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below). Direct access files may
be connected for either formatted or unformatted 1I/0.

A Portable Fortran 77 Compiler PS1:2-25

6.7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type char-
acter. In the former cases there is only a single record in the file; in the latter case each array
element is a record. The Standard includes only sequential formatted I/O on internal files. (/O
is not a very precise term to use here, but internal files are dealt with using read and write.)
Internal files are used by giving the name of the character object in place of the unit number, as
in

character»80 x
read(5,(a)) x
read(x,'(13,i4)) n1,n2

which reads a character string into x and then reads two integers from the front of it. A sequen-
tial read or write always starts at the beginning of an internal file.

We also support two extensions of the standard. The first is direct I/O on internal files. This is
like direct I/0 on external files, except that the number of records in the file cannot be changed.
In this case a record is a single element of an array of character strings. The second extension is
list-directed I/O on internal files.

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather information
about units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the con-
nection. The following is a minimal example.

open(1, file="fort.junk’)
open takes a variety of arguments with meanings described below.

unit= an integer between 0 and 99 inclusive which is the unit to which the file is to be con-
nected (see section 5.3 in the text). If this parameter is the first one in the open statement,
the unit= can be omitted.

jostat= is the same as in read or write.
err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the file to be
connected to the unit. The file name should not be given if the status="scratch’.

status= one of ‘old, ‘mew, ’‘scratch’, or ‘unkmown’. If this parameter is not given,
‘unknown’ is assumed. The meaning of 'unknown’ is processor dependent; our system will
create the file if it doesn’t exist. If ‘scratch’ is given, a temporary file will be created. Tem-
porary files are destroyed at the end of execution. If ‘new’ is given, the file must not exist.
It will be created for both reading and writing. If ‘old’ is given, it is an error for the file not
to exist.

access= ‘sequential’ or ‘direct, depending on whether the file is to be opened for sequential or
direct /0.

form= ‘formatted’ or ‘unformatted’. On UNIX systems, form="print’' implies ‘formatted’ with verti-
cal format control. (See section 3.4 of the text).

recl= a positive integer specifying the record length of the direct access file being opened. We
measure all record lengths in bytes. On UNIX systems a record length of 1 has the special
meaning explained in section 5.1 of the text.

PS1:2-26 A Portable Fortran 77 Compiler

blank= ‘null’ or ‘zero’. This parameter has meaning only for formatted I/O. The default value is
‘null’. ‘zero’ means that blanks, other than leading blanks, in numeric input fields are to be
treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given. The
optional parameters are iostat= and err= with their usual meanings, and status= either 'keep’ or
‘delete’. For scratch files the default is ‘delete’; otherwise ‘keep’ is the default. ‘delete’ means the
file will be removed. A simple example is

close(3, err=17)

6.8.3. INQUIRE

The inquire statement gives information about a unit (“inquire by unit”) or a file (“inquire by
file”). Simple examples are:

inquire(unit=3, name=xx)
inquire(file='junk’, number=n, exist=1)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file name
are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or unit=
must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and is set to
false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to a unit
or if the unit is connected to a file, and it is set to .false. otherwise.

number= an integer variable to which is assigned the number of the unit connected to the file, if
any.

named= a logical variable to which is assigned .true. if the file has a name, or .false. otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or the
name of the file connected to the unit (inquire by unit).

access= a character variable to which will be assigned the value ‘sequential’ if the connection is
for sequential 1/0, ‘direct’ if the connection is for direct I/O, ‘unknown’ if not connected.

sequential= a character variable to which is assigned the value ‘yes’ if the file could be connected
for sequential I/0, ‘no’ if the file could not be connected for sequential I/0, and ‘unknown’ if
we can’t tell.

direct= a character variable to which is assigned the value ‘yes’ if the file could be connected for
direct I/O, ‘mo’ if the file could not be connected for direct I/0, and ‘unknown’ if we can’t
tell.

form= a character variable to which is assigned the value ‘unformatted’ if the file is connected for
unformatted I/0, ‘formatted’ if the file is connected for formatted I/0, ‘print’ for formatted
1/0 with vertical format control, or ‘'unknown’ if not connected.

formatted= a character variable to which is assigned the value ‘yes’ if the file could be connected
for formatted I/O, ‘ne’ if the file could not be connected for formatted I/0, and ‘unknown’ if
we can’t tell.

A Portable Fortran 77 Compiler PS1:2-27

unformatted= a character variable to which is assigned the value ‘yes’ if the file could be con-
nected for unformatted I/0, ‘no’ if the file could not be connected for unformatted I/0, and
‘unknown’ if we can’t tell.

recl= an integer variable to which is assigned the record length of the records in the file if the
file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the last
record read from a file connected for direct access.

blank= a character variable to which is assigned the value ‘nuil’ if null blank control is in effect
for the file connected for formatted 1/0, ‘zero’ if blanks are being converted to zeros and
the file is connected for formatted I/0.

For information on file permissions, ownership, etc., use the Fortran library routines stat and
access.

For further discussion of the UNIX Fortran I/O system see “Introduction to the f77 1/0 Library”
9

PS1:2-28 A Portable Fortran 77 Compiler

APPENDIX B: References and Bibliography

References

. American National Standard Programming Language FORTRAN, ANSI X3.9-1978. New York:

American National Standards Institute, 1978.

2. USA Standard FORTRAN, USAS X3.9-1966. New York: United States of America Standards Insti-
tute, 1966. Clarified in Comm. ACM 12:289 (1969) and Comm. ACM 14:628 (1971).

3. Kernighan, B. W., and D. M. Ritchie. The C Programming Language. Englewood Cliffs:
Prentice-Hall, 1978.

4. Ritchie, D. M. Private communication.

5. Johnson, S. C. “A Portable Compiler: Theory and Practice,” Proceedings of Fifth ACM Sympo-
sium on Principles of Programming Languages. 1978.

6. Feldman, S. 1. “An Informal Description of EFL,” internal memorandum.

7. Kernighan, B. W. “RATFOR—A Preprocessor for Rational Fortran,” Bell Laboratories Computing
Science Technical Report #55. 1977.

8. Ritchie, D. M. Private communication.

9. Wasley, D. L. “Introduction to the f77 I/O Library”, UNIX Programmer’s Manual, Volume 2c.

Bibliography

The following books or documents describe aspects of Fortran 77. This list cannot pretend to be
complete. Certainly no particular endorsement is implied.

1.
2. Day, A. C. Compatible Fortran. Cambridge University Press, 1979.

3.

‘4, Feldman, S. I. “The Programming Language EFL,” Bell Laboratories Technical Report. June

AN W

8.
9.

Brainerd, Walter S., et al. Fortran 77 Programming. Harper Row, 1978.

Dock, V. Thomas. Structured Fortran IV Programming. West, 1979.

1979.

. Hume, J. N, and R. C. Holt. Programming Fortran 77. Reston, 1979.
. Katzan, Harry, Jr. Fortran 77. Van Nostrand-Reinhold, 1978.
. Meissner, Loren P., and Organick, Elliott I. Fortran 77 Featuring Structured Programming,

Addison-Wesley, 1979.
Merchant, Michael J. ABC'’s of Fortran Programming. Wadsworth, 1979.
Page, Rex, and Richard Didday. Fortran 77 for Humans. West, 1980.

10. Wagener, Jerrold L. Principles of Fortran 77 Programming. Wiley, 1980.

Introduction to the f77 I/O Library PS1:3-1

Introduction to the f77 I/O Library

David L. Wasley
J. Berkman

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

The f77 1/O library, libI77.a, includes routines to perform all of the standard
types of Fortran input and output specified in the ANSI 1978 Fortran standard. The
I/0 Library was written originally by Peter J. Weinberger at Bell Labs. Where the
original implementation was incomplete, it has been rewritten to more closely imple-
ment the standard. Where the standard is vague, we have tried to provide flexibility
within the constraints of the UNIX} operating system. A number of logical exten-
sions and enhancements have been provided such as the use of the C stdio library
routines to provide efficient buffering for file I/O.

Revised September, 1985

+ UNIX is a trademark of AT&T Bell Laboratories.

PS1:3-2

Table of Contents

1. Fortran 170

Introduction to the f77 1/0 Library

1.1. Types of I/0 and logical records
1.1.1. Direct access external I/0

1.1.2. Sequential access external I/Occccocerervurnennrincncrcecrensnnne

1.1.3. List directed and namelist sequential external I/O
1.1.4. Internal I/0

1.2. J/O €XECULIONcvveveeerrereesrereraerseresserassessnserersenenes

2. Implementation details

2.1. Number of logical units
2.2. Standard logical units

2.3. Vertical format control

2.4. File names and the open statement ..

2.5. Format interpretation

2.6. List directed output
2.7. 1/O errors

3. Non-“ANSI Standard” extensions

3.1. Format specifiers

3.2. Print files

3.3. Scratch files
3.4. List directed 1/0

3.5. Namelist I/0

4. Running older programs
4.1. Traditional unit control parameters

4.2. Toinit()

5. Magnetic tape 1/0

6. Caveat Programmer

Appendix A: I/O Library Error Messages
Appendix B: Exceptions to the ANSI Standard

—

— \0 00 00 00 00 = NN N N NN AN A AR PR DWW W W W WW

Introduction to the f77 1/0 Library PS1:3-3

1. Fortran 1/O

The requirements of the ANSI standard impose significant overhead on programs that do large
amounts of 1/0. Formatted I/O can be very “expensive” while direct access binary I/O is usually very
efficient. Because of the complexity of Fortran I/O, some general concepts deserve clarification.

1.1. Types of 1/0 and logical records

There are four forms of 1/0: formatted, unformatted, list directed, and namelist. The last two are
related to formatted but do not obey all the rules for formatted 1/0. There are two types of “files’”:
external and internal and two modes of access to files: direct and sequential. The definition of a logi-
cal record depends upon the combination of I/0 form, file type, and access mode specified by the For-
tran I/O statement.

1.1.1. Direct access external 1/0

A logical record in a direct access external file is a string of bytes of a length specified when the
file is opened. Read and write statements must not specify logical records longer than the original
record size definition. Shorter logical records are allowed. Unformatted direct writes leave the unfilled
part of the record undefined. Formatted direct writes cause the unfilled record to be padded with
blanks.

1.1.2. Sequential access external 1/0

Logical records in sequentially accessed external files may be of arbitrary and variable length.
Logical record length for unformatted sequential files is determined by the size of items in the iolist.
The requirements of this form of I/O cause the external physical record size to be somewhat larger
than the logical record size. For formatted write statements, logical record length is determined by the
format statement interacting with the iolist at execution time. The “newline” character is the logical
record delimiter. Formatted sequential access causes one or more logical records ending with “new-
line” characters to be read or written.

1.1.3. List directed and namelist sequential external 1/0

Logical record length for list directed and namelist I/O is relatively meaningless. On output, the
record length is dependent on the magnitude of the data items. On input, the record length is deter-
mined by the data types and the file contents. By ANSI definition, a slash, “/”, terminates execution
of a list directed input operation. Namelist input is terminated by “&end” or “$end” (depending on
whether the character before the namelist name was “&” or “$”).

1.1.4. Internal I/O

The logical record length for an internal read or write is the length of the character variable or
array element. Thus a simple character variable is a single logical record. A character variable array is
similar to a fixed length direct access file, and obeys the same rules. Unformatted and namelist 1/0
are not allowed on “internal” files.

1.2. 1I/0 execution

Note that each execution of a Fortran unformatted 1/0 statement causes a single logical record to
be read or written. Each execution of a Fortran formatted 1/O statement causes one or more logical
records to be read or written.

A slash, “/”, will terminate assignment of values to the input list during list directed input and
the remainder of the current input line is skipped. The standard is rather vague on this point but
seems to require that a new external logical record be found at the start of any formatted input.
Therefore data following the slash is ignored and may be used to comment the data file.

Direct access list directed I/O is not allowed. Unformatted internal 1/0 is not allowed. Namelist
I/0 is allowed only with external sequential files. All other flavors of I/O are allowed, although some
are not part of the ANSI standard.

PS1:3-4 Introduction to the f77 I/O Library

Any I/O statement may include an err= clause to specify an alternative branch to be taken on
errors and/or an fostat= clause to return the specific error code. Any error detected during I/0 pro-
cessing will cause the program to abort unless either err= or iostat= has been specificed in the pro-
gram. Read statements may include end= to branch on end-of-file. The end-of-file indication for that
logical unit may be reset with a backspace statement. File position and the value of I/O list items is
undefined following an error.

2. Implementation details

Some details of the current implementation may be useful in understanding constraints on For-
tran 1/0.

2.1. Number of logical units

Unit numbers must be in the range 0 — 99. The maximum number of logical units that a pro-
gram may have open at one time is the same as the UNIX system limit, currently 48.

2.2. Standard logical units

By default, logical units 0, 5, and 6 are opened to “stderr”, “stdin”, and “stdout” respectively.
However they can be re-defined with an open statement. To preserve error reporting, it is an error to
close logical unit 0 although it may be reopened to another file.

If you want to open the default file name for any preconnected logical unit, remember to close
the unit first. Redefining the standard units may impair normal console I/0. An alternative is to use
shell re-direction to externally re-define the above units. To re-define default blank control or format
of the standard input or output files, use the open statement specifying the unit number and no file
name (see §2.4).

The standard units, 0, 5, and 6, are named internally “stderr”, “stdin”, and “stdout” respec-
tively. These are not actual file'names and can not be used for opening these units. Inquire will not
return these names and will indicate that the above units are not named unless they have been
opened to real files. The names are meant to make error reporting more meaningful.

2.3. Vertical format control

Simple vertical format control is implemented. The logical unit must be opened for sequential
access with form = ‘print’ (see §3.2). Control codes “0” and “1” are replaced in the output file with
‘“\n” and “\f” respectively. The control character “+” is not implemented and, like any other char-
acter in the first position of a record written to a “print” file, is dropped. The form = ‘print’ mode
does not recognize vertical format control for direct formatted, list directed, or namelist output.

An alternative is to use the filter fpr(1) for vertical format control. It replaces “0” and “1” by
“N\n” and “\f” respectively, and implements the “+” control code. Unlike form = ‘print’ which drops
unrecognized form control characters, fpr copies those characters to the output file.

2.4. File names and the open statement

A file name may be specified in an open statement for the logical unit. If a logical unit is
opened by an open statement which does not specify a file name, or it is opened implicitly by the exe-
cution of a read, write, or endfile statement, then the default file name is fort. N where N is the logical
unit number. Before opening the file, the library checks for an environment variable with a name
identical to the tail of the file name with periods removed.} If it finds such an environment variable,
it uses its value as the actual name of the file. For example, a program containing:

1Periods are deleted because they can not be part of environment variable names in the Bourne shell.

Introduction to the f77 I/O Library PS1:3-5

open(32,file="/usr/guest/census/data.d’)
read(32,100) vec
write(44) vec

normally will read from /usr/guest/census/data.d and write to fort.44 in the current directory. If the
environment variables datad and fort44 are set, e.g.:

% setenv datad mydata
% setenv fort44 myout

in the C shell or:

$ datad=mydata
$ fort44=myout
$ export datad fort44

in the Bourne shell, then the program will read from mydata and write to myout.

An open statement need not specify a file name. If it refers to a logical unit that is already open,
the blank= and form= specifiers may be redefined without affecting the current file position. Other-
wise, if status = ‘scratch’ is specified, a temporary file with a name of the form tmp. FXXXXXX will be
opened, and, by default, will be deleted when closed or during termination of program execution.

It is an error to try to open an existing file with status = 'new . It is an error to try to open a
nonexistent file with status = ‘old’ . By default, status = 'unknown’ will be assumed, and a file will be
created if necessary.

By default, files are positioned at their beginning upon opening, but see fseek(3f) and ioinit(3f)
for alternatives. Existing files are never truncated on opening. Sequentially accessed external files are
truncated to the current file position on close, backspace, or rewind only if the last access to the file
was a write. An endfile always causes such files to be truncated to the current file position.

2.5. Format interpretation

Formats which are in format statements are parsed by the compiler; formats in read, write, and
print statements are parsed during execution by the I/O library. Upper as well as lower case charac-
ters are recognized in format statements and all the alphabetic arguments to the I/O library routines.

If the external representation of a datum is too large for the field width specified, the specified
field is filled with asterisks (¥). On Ew.dEe output, the exponent field will be filled with asterisks if
the exponent representation is too large. This will only happen if “e” is zero (see appendix B).

On output, a real value that is truly zero will display as “0.” to distinguish it from a very small
non-zero value. If this causes problems for other input systems, the BZ edit descriptor may be used
to cause the field following the decimal point to be filled with zero’s.

Non-destructive tabbing is implemented for both internal and external formatted I/O. Tabbing
left or right on output does not affect previously written portions of a record. Tabbing right on out-
put causes unwritten portions of a record to be filled with blanks. Tabbing right off the end of an
input logical record is an error. Tabbing left beyond the beginning of an input logical record leaves
the input pointer at the beginning of the record. The format specifier T must be followed by a posi-
tive non-zero number. If it is not, it will have a different meaning (see § 3.1).

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in I/O to a ter-
minal or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit that can
seek. Otherwise tabbing right or spacing with X will write blanks on the output.

2.6. List directed output

In formatting list directed output, the I/O system tries to prevent output lines longer than 80
characters. Each external datum will be separated by two spaces. List directed output of complex
values includes an appropriate comma. List directed output distinguishes between real and double
precision values and formats them differently. Output of a character string that includes “\n” is

PS1:3-6 Introduction to the f77 I/O Library

interpreted reasonably by the output system.

2.7. /O errors

If I/O errors are not trapped by the user’s program an appropriate error message will be written
to “stderr” before aborting. An error number will be printed in “[]”” along with a brief error message
showing the logical unit and 1/0 state. Error numbers < 100 refer to UNIX errors, and are described
in the introduction to chapter 2 of the UNIX Programmer’s Manual. Error numbers = 100 come
from the I/O library, and are described further in the appendix to this writeup}. For internal 1/0,
part of the string will be printed with “|” at the current position in the string. For external I/O, part
of the current record will be displayed if the error was caused during reading from a file that can
backspace.

3. Non-“ANSI Standard” extensions

Several extensions have been added to the I/O system to provide for functions omitted or poorly
defined in the standard. Programmers should be aware that these are non-portable.

3.1. Format specifiers

B is an acceptable edit control specifier. It causes return to the logical unit’s default mode of
blank interpretation. This is consistent with S which returns to default sign control.

P by itself is equivalent to OP . It resets the scale factor to the default value, 0.

The form of the Ew.dEe format specifier has been extended to D also. The form Ew.d.e is
allowed but is not standard. The “e” field specifies the minimum number of digits or spaces in the
exponent field on output. If the value of the exponent is too large, the exponent notation-e or d will
be dropped from the output to allow one more character position. If this is still not adequate, the “¢”
field will be filled with asterisks («). The default value for “e” is 2.

An additional form of tab control specification has been added. The ANSI standard forms TRn,
TLn, and Tn are supported where n is a positive non-zero number. If T or nT is specified, tabbing
will be to the next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be lined up
without counting.

A format control specifier has been added to suppress the newline at the end of the last record
of a formatted sequential write. The specifier is a dollar sign (§). It is constrained by the same rules as
the colon (:). It is used typically for console prompts. For example:

write (x, "(enter value for x: ’,$)")
read (*,*) X

Radices other than 10 can be specified for formatted integer I/0 conversion. The specifier is pat-
terned after P, the scale factor for floating point conversion. It remains in effect until another radix is
specified or format interpretation is complete. The specifier is defined as [n]R where 2 < n < 36. If n
is omitted, the default decimal radix is restored.

The format specifier Om.n may be used for an octal conversion; it is equivalent to 8R,Im.n,10R.
Similarly, Zm.n is equivalent to 16R,Im.n,I0R and may be used for an hexadecimal conversion;

In conjunction with the above, a sign control specifier has been added to cause integer values to
be interpreted as unsigned during output conversion. The specifier is SU and remains in effect until
another sign control specifier is encountered, or format interpretation is complete.f Radix and

1 On many systems, these are also available in help f77 io_err_msgs.

tNote: Unsigned integer values greater than (2«31 - 1), can be read and written using SU. However they
can not be used in computations because Fortran uses signed arithmetic and such values appear to the ar-
ithmetic unit as negative numbers.

Introduction to the f77 I/O Library PS1:3-7

“unsigned” specifiers could be used to format a hexadecimal dump, as follows:

2000 format (SU, 8Z10.8)

3.2. Print files

The ANSI standard is ambiguous regarding the definition of a “print” file. Since UNIX has no
default “print” file, an additional form= specifier is now recognized in the open statement. Specifying
form = ‘print’ implies formatted and enables vertical format control for that logical unit (see §2.3).
Vertical format control is interpreted only on sequential formatted writes to a “print” file.

The inquire statement will return print in the form= string variable for logical units opened as
“print” files. It will return -1 for the unit number of an unconnected file.

If a logical unit is already open, an open statement including the form= option or the blank=
option will do nothing but re-define those options. This instance of the open statement need not
include the file name, and must not include a file name if unit= refers to a standard input or output.
Therefore, to re-define the standard output as a “print” file, use:

open (unit=6, form="print’)

3.3. Scratch files

A close statement with status = 'keep’ may be specified for temporary files. This is the default
for all other files. Remember to get the scratch file’s real name, using inquire , if you want to re-open
it later.

3.4, List directed 1/0

List directed read has been modified to allow tab characters wherever blanks are allowed. It
also allows input of a string not enclosed in quotes. The string must not start with a digit or quote,
and can not contain any separators (“,”, “/”, blank or tab). A newline will terminate the string
unless escaped with \. Any string not meeting the above restrictions must be enclosed in quotes (* "
” or 7 ’))‘

Internal list directed I/O has been implemented. During internal list reads, bytes are consumed
until the iolist is satisfied, or the “end-of-file” is reached. During internal list writes, records are filled
until the iolist is satisfied. The length of an internal array element should be at least 20 bytes to
avoid logical record overflow when writing double precision values. Internal list read was imple-
mented to make command line decoding easier. Internal list write should be avoided.

3.5. Namelist I/0

Namelist I/O is a common extension in Fortran systems. The 77 version was designed to be
compatible with other vendors versions; it is described in “A Portable Fortran 77 Compiler”, by
Feldman and Weinberger, August, 1985. -

4. Running older programs

: Traditional Fortran environments usually assume carriage control on all logical units, usually
interpret blank spaces on input as “0’’s, and often provide attachment of global file names to logical
units at run time. There are several routines in the I/0O library to provide these functions.

PS1:3-8 Introduction to the f77 I/0O Library

4.1. Traditional unit control parameters

If a program reads and writes only units 5 and 6, then including -1I66 in the f77 command will
cause carriage control to be interpreted on output and cause blanks to be zeros on input without
further modification of the program. If this is not adequate, the routine ioinit(3f) can be called to
specify control parameters separately, including whether files should be positioned at their beginning
or end upon opening.

4.2. Ioinit()

Ioinit(3f) can be used to attach logical units to specific files at run time, and to set global param-
eters for the I/0 system. It will look for names of a user specified form in the environment and open
the corresponding logical unit for sequential formatted I/0O. Names must be of the form PREFIXnn
where PREFIX is specified in the call to ioinit and nn is the logical unit to be opened. Unit numbers
< 10 must include the leading “0”.

Ioinit should prove adequate for most programs as written. However, it is written in For-
tran-77 specifically so that it may serve as an example for similar user-supplied routines. A copy
may be retrieved by “ar x /usr/lib/libU77.a ioinit.f”. See §2.4 for another way to override program
file names through environment variables.

5. Magnetic tape I/0

Because the 1/0 library uses stdio buffering, reading or writing magnetic tapes should be done
with great caution, or avoided if possible. A set ~f routines has been provided to read and write arbi-
trary sized buffers to or from tape directly. The buffer must be a character object. Internal I/O can be
used to fill or interpret the buffer. These routines do not use normal Fortran I/O processing and do
not obey Fortran I/0O rules. See topen(3f).

6. Caveat Programmer

The 1/0 library is extremely complex yet we believe there are few bugs left. We’ve tried to
make the system as correct as possible according to the ANSI X3.9-1978 document and keep it com-
patible with the UNIX file system. Exceptions to the standard are noted in appendix B.

Introduction to the £77 I/O Library PS1:3-9

Appendix A

1/0 Library Error Messages

The following error messages are generated by the I/O library. The error numbers are returned
in the iostat= variable. Error numbers < 100 are generated by the UNIX kernel. See the introduction
to chapter 2 of the UNIX Programmers Manual for their description.

100

101

102

103

104

105

106

107

108

109

110

111

112

error in format
See error message output for the location of the error in the format. Can be caused by
more than 10 levels of nested parentheses, or an extremely long format statement.

illegal unit number
It is illegal to close logical unit 0. Unit numbers must be between 0 and 99 inclusive.

formatted i/o not allowed
The logical unit was opened for unformatted 1/0.

unformatted i/o not allowed
The logical unit was opened for formatted I/0O.

direct i/o not allowed
The logical unit was opened for sequential access, or the logical record length was specified
as 0.

sequential i/o not allowed
The logical unit was opened for direct access 1/0.

can’t backspace file
The file associated with the logical unit can’t seek. May be a device or a pipe.

off beginning of record
The format specified a left tab beyond the beginning of an internal input record.

can’t stat file
The system can’t return status information about the file. Perhaps the directory is unread-
able.

no * after repeat count
Repeat counts in list directed I/0O must be followed by an * with no blank spaces.

off end of record
A formatted write tried to go beyond the logical end-of-record. An unformatted read or
write will also cause this.

truncation failed
The truncation of an external sequential file on close, backspace, rewind, or endfile failed.

incomprehensible list input
List input has to be just right.

- N v

PS1:3-10

113

114

115

116

117

118

119

120

121

122

123

124

125

Introduction to the 77 I/O Library

out of free space
The library dynamically creates buffers for internal use. You ran out of memory for this.
Your program is too big!

unit not connected
The logical unit was not open.

invalid data for integer format term
Only spaces, a leading sign and digits are allowed.

invalid data for logical format term
Legal input consists of spaces (optional), a period (optional), and then a “t”, “T”, “f”, or
“F”'

‘new’ file exists
You tried to open an existing file with “status="new"’.

can't find ‘old’ file
You tried to open a non-existent file with “status=‘old”’.

opening too many files or unknown system error
Either you are trying to open too many files simultaneously or there has been an
undetected system error.

requires seek ability
Direct access requires seek ability. Sequential unformatted 1/0 requires seek ability on the
file due to the special data structure required. Tabbing left also requires seek ability.

illegal argument
Certain arguments to open, etc. will be checked for legitimacy. Often only non-default
forms are looked for.

negative repeat count
The repeat count for list directed input must be a positive integer.

illegal operation for unit

An operation was requested for a device associated with the logical unit which was not
possible. This error is returned by the tape 1/0 routines if attempting to read past end-of-
tape, etc.

invalid data for d, e, f or g format term
Input data must be legal.

illegal input for namelist
Column one of input is ignored, the namelist name must match, the variables must be in
the namelist, and the data must be of the right type.

Introduction to the f77 1/0 Library PS1:3-11

Appendix B

Exceptions to the ANSI Standard

A few exceptions to the ANSI standard remain.

Vertical format control

The ‘““+” carriage control specifier is not fully implemented (see §2.3). It would be difficult to
implement it correctly and still provide UNIX-like file 1/0O.

Furthermore, the carriage control implementation is asymmetrical. A file written with carriage
control interpretation can not be read again with the same characters in column 1.

An alternative to interpreting carriage control internally is to run the output file through a “For-
tran output filter” before printing. This filter could recognize a much broader range of carriage control
and include terminal dependent processing. One such filter is fpr(1).

Default files

Files created by default use of endfile statements are opened for sequential formatted access.
There is no way to redefine such a file to allow direct or unformatted access.

Lower case strings

It is not clear if the ANSI standard requires internally generated strings to be upper case or not.
As currently written, the inquire statement will return lower case strings for any alphanumeric data.

Exponent representation on Ew.dEe output

If the field width for the exponent is too small, the standard allows dropping the exponent char-
acter but only if the exponent is > 99. This system does not enforce that restriction. Further, the
standard implies that the entire field, “w”, should be filled with asterisks if the exponent can not be
displayed. This system fills only the exponent field in the above case since that is more diagnostic.

Pre-connection of files

The standard says units must be pre-connected to files before the program starts or must be
explicitly opened. Instead, the I/O library connects the unit to a file on its first use in a read, write,
print, or endfile statement. Thus inquire by unit can not tell prior to a unit number use the charac-
teristics or name of the file corresponding to a unit.

Berkeley Pascal User’s Manual
Version 3.1 - April 1986

William N. Joy#, Susan L. Graham, Charles B. Haleyf,
Marshall Kirk McKusick, and Peter B. Kessler}

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Berkeley Pascal is designed for interactive instructional use and runs on
the pDP/11 and VAX/11 computers. Interpretive code is produced, providing
fast translation at the expense of slower execution speed. There is also a fully
compatible compiler for the vaAX/11. An execution profiler and Wirth’s cross
reference program are also available with the system.

The system supports full Pascal. The language accepted is ‘standard’
Pascal, and a small number of extensions. There is an option to suppress the
extensions. The extensions include a separate compilation facility and the
ability to link to object modules produced from other source languages.

The User’s Manual gives a list of sources relating to the UNIX} system,
the Pascal language, and the Berkeley Pascal system. Basic usage examples
are provided for the Pascal components pi, px, pix, pc, and pxp. Errors
commonly encountered in these programs are discussed. Details are given of
special considerations due to the interactive implementation. A number of
examples are provided including many dealing with input/output. An appen-
dix supplements Wirth’s Pascal Report to form the full definition of the
Berkeley implementation of the language.

Introduction

The Berkeley Pascal User’s Manual consists of five major sections and an appendix. In
section 1 we give sources of information about UNIX, about the programming language Pas-
cal, and about the Berkeley implementation of the language. Section 2 introduces the Berke-
ley implementation and provides a number of tutorial examples. Section 3 discusses the error
diagnostics produced by the translators pc and pi, and the runtime interpreter px. Section 4
describes input/output with special attention given to features of the interactive implementa-
tion and to features unique to UNIX. Section 5 gives details on the components of the system
and explanation of all relevant options. The User’s Manual concludes with an appendix to
Wirth’s Pascal Report with which it forms a precise definition of the implementation.

Copyright 1977, 1979, 1980, 1983 W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, P. B. Kessler
fAuthor’s current addresses: William Joy: Sun Microsystems, 2550 Garcia Ave., Mountain View, CA
94043; Charles Haley: S & B Associates, 1110 Centennial Ave., Piscataway, NJ 08854; Peter Kessler:
Xerox Research Park, Palo Alto, CA

+ UNIX is a trademark of AT&T Bell Laboratories.

PS1:4-2 Berkeley Pascal User’s Manual

History of the implementation

The first Berkeley system was written by Ken Thompson in early 1976. The main
features of the present system were implemented by Charles Haley and William Joy during
the latter half of 1976. Earlier versions of this system have been in use since January, 1977.

The system was moved to the vax-11 by Peter Kessler and Kirk McKusick with the
porting of the interpreter in the spring of 1979, and the implementation of the compiler in the
summer of 1980.

1. Sources of information

This section lists the resources available for information about general features of UNIX,
text editing, the Pascal language, and the Berkeley Pascal implementation, concluding with a
list of references. The available documents include both so-called standard documents -
those distributed with all UNIX system — and documents (such as this one) written at Berke-
ley.

1.1. Where to get documentation

Current documentation for most of the UNIX system is available “on line” at your ter-
minal. Details on getting such documentation interactively are given in section 1.3.

1.2. Documentation describing UNIX

The following documents are those recommended as tutorial and reference material
about the UNIX system. We give the documents with the introductory and tutorial materials
first, the reference materials last.

UNIX For Beginners — Second Edition
This document is the basic tutorial for UNIX available with the standard system.

Communicating with UNIX

This is also a basic tutorial on the system and assumes no previous familiarity with
computers; it was written at Berkeley.

An introduction to the C shell

This document introduces csh, the shell in common use at Berkeley, and provides a
good deal of general description about the way in which the system functions. It provides a
useful glossary of terms used in discussing the system.

UNIX Programmer’s Manual

This manual is the major source of details on the components of the UNIX system. It
consists of an Introduction, a permuted index, and eight command sections. Section 1 con-
sists of descriptions of most of the “commands™ of UNIX. Most of the other sections have
limited relevance to the user of Berkeley Pascal, being of interest mainly to system program-
mers.

UNIX documentation often refers the reader to sections of the manual. Such a reference
consists of a command name and a section number or name. An example of such a reference
would be: ed (1). Here ed is a command name - the standard UNIX text editor, and ‘(1)
indicates that its documentation is in section 1 of the manual.

The pieces of the Berkeley Pascal system are pi (1), px (1), the combined Pascal transla-
tor and interpretive executor pix (1), the Pascal compiler pc (1), the Pascal execution profiler
pxp (1), and the Pascal cross-reference generator pxref (1).

It is possible to obtain a copy of a manual section by using the man (1) command. To
get the Pascal documentation just described one could issue the command:

Berkeley Pascal User's Manual PS1:4-3

% man pi

to the shell. The user input here is shown in bold face; the ‘% ’°, which was printed by the
shell as a prompt, is not. Similarly the command:

% man man

asks the man command to describe itself.

1.3. Text editing documents

The following documents introduce the various UNIX text editors. Most Berkeley users
use a version of the text editor ex; either edit, which is a version of ex for new and casual
users, ex itself, or vi (visual) which focuses on the display editing portion of ex.

A Tutorial Introduction to the UNIX Text Editor

This document, written by Brian Kernighan of Bell Laboratories, is a tutorial for the
standard UNIX text editor ed. It introduces you to the basics of text editing, and provides
enough information to meet day-to-day editing needs, for ed users.

Edit: A tutorial

This introduces the use of edif, an editor similar to ed which provides a more hospit-
able environment for beginning users.

Ex/edit Command Summary

This summarizes the features of the editors ex and edit in a concise form. If you have
used a line oriented editor before this summary alone may be enough to get you started.

Ex Reference Manual - Version 3.7
A complete reference on the features of ex and edit.

An Introduction to Display Editing with Vi

Vi is a display oriented text editor. It can be used on most any CRT terminal, and uses
the screen as a window into the file you are editing. Changes you make to the file are
reflected in what you see. This manual serves both as an introduction to editing with vi and
a reference manual.

Vi Quick Reference

This reference card is a handy quick guide to vi; you should get one when you get the
introduction to vi.

1.4. Pascal documents — The language

This section describes the documents on the Pascal language which are likely to be most
useful to the Berkeley Pascal user. Complete references for these documents are given in sec-
tion 1.7.

Pascal User Manual

By Kathleen Jensen and Niklaus Wirth, the User Manual provides a tutorial introduc-
tion to the features of the language Pascal, and serves as an excellent quick-reference to the
language. The reader with no familiarity with Algol-like languages may prefer one of the Pas-
cal text books listed below, as they provide more examples and explanation. Particularly
important here are pages 116-118 which define the syntax of the language. Sections 13 and
14 and Appendix F pertain only to the 6000-3.4 implementation of Pascal.

PS1:4-4 Berkeley Pascal User’s Manual

Pascal Report

By Niklaus Wirth, this document is bound with the User Manual. 1t is the guiding refer-
ence for implementors and the fundamental definition of the language. Some programmers
find this report too concise to be of practical use, preferring the User Manual as a reference.

Books ¢n Pascal

Several good books which teach Pascal or use it as a medium are available. The books
by Wirth Systematic Programming and Algorithms + Data Structures = Programs use Pascal
as a vehicle for teaching programming and data structure concepts respectively. They are
both recommended. Other books on Pascal are listed in the references below.

1.5. Pascal documents - The Berkeley Implementation

This section describes the documentation which is available describing the Berkeley
implementation of Pascal.

User’s Manual

The document you are reading is the User’s Manual for Berkeley Pascal. We often refer
the reader to the Jensen-Wirth User Manual mentioned above, a different document with a
similar name.

Manual secpions

The sections relating to Pascal in the UNIX Programmer’s Manual are pix (1), pi (1), pc
(1), px (1), pxp (1), and pxref (1). These sections give a description of each program, sum-
marize the available options, indicate files used by the program, give basic information on the
diagnostics produced and include a list of known bugs.

Implementation notes

For those interested in the internal organization of the Berkeley Pascal system there are
a series of Implementation Notes describing these details. The Berkeley Pascal PXP Imple-
mentation Notes describe the Pascal interpreter px ; and the Berkeley Pascal PX Implementa-
tion Notes describe the structure of the execution profiler pxp.

1.6. References

UNIX Documents

Communicating With UNIX
Computer Center

University of California, Berkeley
January, 1978.

Ricki Blau and James Joyce

Edit: a tutorial

UNIX User’s Supplementary Documents (USD), 14
University of California, Berkeley, CA. 94720
April, 1986.

Ex/edit Command Summary
Computer Center

University of California, Berkeley
August, 1978.

Berkeley Pascal User’s Manual PS1:4-5

William Joy

Ex Reference Manual - Version 3.7

UNIX User’s Supplementary Documents (USD), 16
University of California, Berkeley, CA. 94720
April, 1986.

William Joy

An Introduction to Display Editing with Vi

UNIX User’s Supplementary Documents (USD), 15
University of California, Berkeley, CA. 94720
April, 1986.

William Joy

An Introduction to the C shell (Revised)

UNIX User’s Supplementary Documents (USD), 4
University of California, Berkeley, CA. 94720
April, 1986.

Brian W. Kernighan

UNIX for Beginners - Second Edition

UNIX User’s Supplementary Documents (USD), 1
University of California, Berkeley, CA. 94720
April, 1986.

Brian W. Kernighan

A Tutorial Introduction to the UNIX Text Editor
UNIX User’s Supplementary Documents (USD), 12
University of California, Berkeley, CA. 94720
April, 1986.

Dennis M. Ritchie and Ken Thompson

The UNIX Time Sharing System

Reprinted from Communications of the ACM July 1974 in

UNIX Programmer’s Supplementary Documents, Volume 2 (PS2), 1
University of California, Berkeley, CA. 94720

April, 1986.

Pascal Language Documents

Cooper and Clancy

Oh! Pascal!, 2nd Edition

W. W. Norton & Company, Inc.
500 Fifth Ave., NY, NY. 10110
1985, 475 pp.

Cooper

Standard Pascal User Reference Manual
W. W. Norton & Company, Inc.

500 Fifth Ave., NY, NY. 10110

1983, 176 pp.

PS1:4-6 Berkeley Pascal User’s Manual

Kathleen Jensen and Niklaus Wirth
Pascal - User Manual and Report
Springer-Verlag, New York.

1975, 167 pp.

Niklaus Wirth

Algorithms + Data structures = Programs
Prentice-Hall, New York.

1976, 366 pp.

Berkeley Pascal documents

The following documents are available from the Computer Center Library at the
University of California, Berkeley.

William N. Joy

Berkeley Pascal PX Implementation Notes

Version 1.1, April 1979,

(Vax-11 Version 2.0 By Kirk McKusick, December, 1979)

William N. Joy
Berkeley Pascal PXP Implementation Notes
Version 1.1, April 1979.

2. Basic UNIX Pascal

The following sections explain the basics of using Berkeley Pascal. In examples here we
use the text editor ex (1). Users of the text editor ed should have little trouble following
these examples, as ex is similar to ed. We use ex because it allows us to make clearer exam-
ples.t The new UNIX user will find it helpful to read one of the text editor documents
described in section 1.4 before continuing with this section.

2.1. A first program

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and
to ‘login’ to the system on this account. These procedures are described in the documents
Communicating with UNIX and UNIX for Beginners.

Once we are logged in we need to choose a name for our program,; let us call it ‘first’ as
this is the first example. We must also choose a name for the file in which the program will
be stored. The Berkeley Pascal system requires that programs reside in files which have
names ending with the sequence ‘.p’ so we will call our file ‘first.p’.

A sample editing session to create this file would begin:

% ex first.p
"first.p" [New file]

We didn’t expect the file to exist, so the error diagnostic doesn’t bother us. The editor now
knows the name of the file we are creating. The ‘.’ prompt indicates that it is ready for com-
mand input. We can add the text for our program using the ‘append’ command as follows.

:append

t Users with CRT terminals should find the editor vi more pleasant to use; we do not show its use here be-
cause its display oriented nature makes it difficult to illustrate.

Berkeley Pascal User’s Manual PS1:4-7

program first(output)
begin

writeln(Hello, world!)
end.

The line containing the single ‘.’ character here indicated the end of the appended text. The
‘> prompt indicates that ex is ready for another command. As the editor operates in a tem-
porary work space we must now store the contents of this work space in the file ‘first.p’ so we
can use the Pascal translator and executor pix on it.

:write

"first.p” [New file] 4 lines, 59 characters

:quit ’

%
We wrote out the file from the edit buffer here with the ‘write’ command, and ex indicated
the number of lines and characters written. We then quit the editor, and now have a prompt
from the shell.f

We are ready to try to translate and execute our program.

% pix first.p

Wed May 7 14:56 1986 first.p:
2 begin

e -—-4-— Inserted 5

Execution begins...

Hello, world!

Execution terminated.

1 statements executed in 0.00 seconds cpu time.
%

The translator first printed a syntax error diagnostic. The number 2 here indicates that
the rest of the line is an image of the second line of our program. The translator is saying
that it expected to find a ;> before the keyword begin on this line. If we look at the Pascal
syntax charts in the Jensen-Wirth User Manual, or at some of the sample programs therein,
we will see that we have omitted the terminating ‘;’ of the program statement on the first line
of our program.

One other thing to notice about the error diagnostic is the letter ‘e’ at the beginning. It
stands for ‘error’, indicating that our input was not legal Pascal. The fact that it is an ‘¢’
rather than an ‘E’ indicates that the translator managed to recover from this error well enough
that generation of code and execution could take place. Execution is possible whenever no
fatal ‘E’ errors occur during translation. The other classes of diagnostics are ‘w’ warnings,
which do not necessarily indicate errors in the program, but point out inconsistencies which
are likely to be due to program bugs, and ‘s’ standard-Pascal violations.f

After completing the translation of the program to interpretive code, the Pascal system
indicates that execution of the translated program began. The output from the execution of
the program then appeared. At program termination, the Pascal runtime system indicated the
number of statements executed, and the amount of cpu time used, with the resolution of the

1 Our examples here assume you are using csh.
$The standard Pascal warnings occur only when the associated s translator option is enabled. The s option
is discussed in sections 5.1 and A.6 below. Warning diagnostics are discussed at the end of section 3.2, the
associated w option is described in section 5.2.

PS1:4-8 Berkeley Pascal User’s Manual

latter being 1/60’th of a second.

Let us now fix the error in the program and translate it to a permanent object code file
obj using pi. The program pi translates Pascal programs but stores the object code instead of
executing itf.

% ex first.p

"first.p" 4 lines, 59 characters
:1 print

program first(output)

s/$/;

program first(output);

:write

"first.p" 4 lines, 60 characters
:quit

% pi first.p

%

If we now use the UNIX Is list files command we can see what files we have:

% Is
first.p
obj

%

The file ‘obj’ here contains the Pascal interpreter code. We can execute this by typing:

% px obj
Hello, world!

1 statements executed in 0.00 seconds cpu time.

Alternatively, the command:

% obj .
will have the same effect. Some examples of different ways to execute the program follow.

% px
Hello, world!

1 statements executed in 0.00 seconds cpu time.
% pi —p first.p

% px obj

Hello, world!

% pix —p first.p

Hello, world!

%

Note that px will assume that ‘obj’ is the file we wish to execute if we don’t tell it other-
wise. The last two translations use the —p no-post-mortem option to eliminate execution

$This script indicates some other useful approaches to debugging Pascal programs. As in ed we can shorten
commands in ex to an initial prefix of the command name as we did with the substitute command here.
‘We have also used the ‘!’ shell escape command here to execute other commands with a shell without leav-
ing the editor.

Berkeley Pascal User’s Manual PS1:4-9

statistics and ‘Execution begins’ and ‘Execution terminated’ messages. See section 5.2 for
more details. If we now look at the files in our directory we will see:

% Is
first.p
obj

%

We can give our object program a name other than ‘obj’ by using the move command mv (1).
Thus to name our program ‘hello’:

% mv obj hello
% hello

Hello, world!
% Is

first.p

hello

%

Finally we can get rid of the Pascal object code by using the rm (1) remove file command,
e.g.:

% rm hello
% Is

first.p

%

For small programs which are being developed pix tends to be more convenient to use
than pi and px. Except for absence of the obj file after a pix run, a pix command is
equivalent to a pi command followed by a px command. For larger programs, where a
number of runs testing different parts of the program are to be made, pi is useful as this obj
file can be executed any desired number of times.

2.2. A larger program

Suppose that we have used the editor to put a larger program in the file ‘bigger.p’. We
can list this program with line numbers by using the program cat-n i.e.:

% cat —n bigger.p

1 (=
2 » Graphic representation of a function
3+ f(x) = exp(—x) = sin(2 * pi * x)
4 %)
5 program graphl(output);
6 const
7 d = 0.0625; (= 1/16, 16 lines for interval [x, x+1] %)
8 s = 32; (* 32 character width for interval [x, x+1]
9 h = 34; (» Character position of x—axis #)
10 c=6.28138; (*2 *pi*)
11 lim = 32;
12 var
13 X, y: real;
14 i, n: integer;
15 begin
16 fori:= 0 to lim begin

17 x:=d/i;

PS1:4-10 Berkeley Pascal User’s Manual

18 y := exp(-x9 = sin(i » x);
19 n := Round(s # y) + h;
20 repeat

21 write(’);

22 n:=n-1

23 writeln(’*)

24 end.

%

This program is similar to program 4.9 on page 30 of the Jensen-Wirth User Manual. A
number of problems have been introduced into this example for pedagogical reasons.

If we attempt to translate and execute the program using pix we get the following
response:

% pix bigger.p
Wed May 7 14:56 1986 bigger.p:
9 h = 34; (» Character position of x—axis *)
w 4 -—-— (» in a (= ... *) comment
16 for i := 0 to lim begin
e 4 ------ Inserted keyword do
18 y := exp(-x9 = sin(i * x);
E 4 —----- Undefined variable
e 4 Inserted)
19 n := Round(s * y) + h;
E 4 -—-- Undefined function
E 4 ---—- Undefined variable
23 writeln(*")
€ —ommmemememeneeees 4 ---—- Inserted %’
24 end.
E -----4 - Expected keyword until
E -------ee---f - Malformed declaration
S —— 4 --—-—- Unexpected end-of-file - QUIT
Execution suppressed due to compilation errors
%

Since there were fatal ‘E’ errors in our program, no code was generated and execution
was necessarily suppressed. One thing which would be useful at this point is a listing of the
program with the error messages. We can get this by using the command:

% pi -1 bigger.p

There is no point in using pix here, since we know there are fatal errors in the program. This
command will produce the output at our terminal. If we are at a terminal which does not
produce a hard copy we may wish to print this listing off-line on a line printer. We can do
this with the command:

% pi -1 bigger.p | Ipr
In the next few sections we will illustrate various aspects of the Berkeley Pascal system

by correcting this program.

2.3. Correcting the first errors

Most of the errors which occurred in this program were syntactic errors, those in the
format and structure of the program rather than its content. Syntax errors are flagged by
printing the offending line, and then a line which flags the location at which an error was

Berkeley Pascal User’s Manual PS1:4-11

detected. The flag line also gives an explanation stating either a possible cause of the error, a
simple action which can be taken to recover from the error so as to be able to continue the
analysis, a symbol which was expected at the point of error, or an indication that the input
was ‘malformed’. In the last case, the recovery may skip ahead in the input to a point where
analysis of the program can continue.

In this example, the first error diagnostic indicates that the translator detected a com-
ment within a comment. While this is not considered an error in ‘standard’ Pascal, it usually
corresponds to an error in the program which is being translated. In this case, we have
accidentally omitted the trailing ‘»)’ of the comment on line 8. We can begin an editor ses-
sion to correct this problem by doing:

% ex bigger.p
"bigger.p” 24 lines, 512 characters
:8s/8/)

s = 32; (» 32 character width for interval [x, x+1] *)

The second diagnostic, given after line 16, indicates that the keyword do was expected
before the keyword begin in the for statement. If we examine the statement syntax chart on
page 118 of the Jensen-Wirth User Manual we will discover that do is a necessary part of the
for statement. Similarly, we could have referred to section C.3 of the Jensen-Wirth User
Manual to learn about the for statement and gotten the same information there. It is often
useful to refer to these syntax charts and to the relevant sections of this book.

We can correct this problem by first scanning for the keyword for in the file and then
substituting the keyword do to appear in front of the keyword begin there. Thus:

:/for

fori:= 0 to lim begin
:s/begin/do &

for i := 0 to lim do begin

The next error in the program is easy to pinpoint. On line 18, we didn’t hit the shift key and
got a ‘9’ instead of a)’. The translator diagnosed that ‘x9’ was an undefined variable and,
later, that a)’ was missing in the statement. It should be stressed that pi is not suggesting
that you should insert a)’ before the ‘;>. It is only indicating that making this change will
help it to be able to continue analyzing the program so as to be able to diagnose further
errors. You must then determine the true cause of the error and make the appropriate correc-
tion to the source text.

This error also illustrates the fact that one error in the input may lead to multiple error
diagnostics. Pi attempts to give only one diagnostic for each error, but single errors in the
input sometimes appear to be more than one error. It is also the case that pi may not detect
an error when it occurs, but may detect it later in the input. This would have happened in
this example if we had typed ‘x’ instead of ‘x9’.

The translator next detected, on line 19, that the function Round and the variable A
were undefined. It does not know about Round because Berkeley Pascal normally distin-
guishes between upper and lower case.t On UNIX lower-case is preferredf, and all keywords
and built-in procedure and function names are composed of lower-case letters, just as they are
in the Jensen-Wirth Pascal Report. Thus we need to use the function round here. As far as
h is concerned, we can see why it is undefined if we look back to line 9 and note that its

+In “standard” Pascal no distinction is made based on case.
1One good reason for using lower-case is that it is easier to type.

s 4
S
1

PS1:4-12 Berkeley Pascal User’s Manual

definition was lost in the non-terminated comment. This diagnostic need not, therefore, con-
cern us.

The next error which occurred in the program caused the translator to insert a *;’ before
the statement calling writeln on line 23. If we examine the program around the point of error
we will see that the actual error is that the keyword until and an associated expression have
been omitted here. Note that the diagnostic from the translator does not indicate the actual
error, and is somewhat misleading. The translator made the correction which seemed to be
most plausible. As the omission of a ‘;’ character is a common mistake, the translator chose
to indicate this as a possible fix here. It later detected that the keyword until was missing, but
not until it saw the keyword end on line 24. The combination of these diagnostics indicate to
us the true problem.

The final syntactic error message indicates that the translator needed an end keyword to
match the begin at line 15. Since the end at line 24 is supposed to match this begin, we can
infer that another begin must have been mismatched, and have matched this end. Thus we
see that we need an end to match the begin at line 16, and to appear before the final end. We
can make these corrections:

:/x9/s//x)

y := exp(—x) * sin(i * X);
:+s/Round/round

n := round(s * y) + h;
:/write

write(');

7

writeln(’s)
:insert

until n = 0;
$
end.
:insert

end

.

At the end of each procedure or function and the end of the program the translator sum-
marizes references to undefined variables and improper usages of variables. It also gives
warnings about potential errors. In our program, the summary errors do not indicate any
further problems but the warning that ¢ is unused is somewhat suspicious. Examining the
program we see that the constant was intended to be used in the expression which is an argu-
ment to sin, so we can correct this expression, and translate the program. We have now
made a correction for each diagnosed error in our program.

i ?%//c/

y := exp(-x) * sin(c * x);
:write
"bigger.p" 26 lines, 538 characters
quit
% pi bigger.p
%

It should be noted that the translator suppresses warning diagnostics for a particular pro-
cedure, function or the main program when it finds severe syntax errors in that part of the
source text. This is to prevent possibly confusing and incorrect warning diagnostics from
being produced. Thus these warning diagnostics may not appear in a program with bad

Berkeley Pascal User’s Manual PS1:4-13

syntax errors until these errors are corrected.

We are now ready to execute our program for the first time. We will do so in the next
section after giving a listing of the corrected program for reference purposes.

% cat —n bigger.p

I (=
2 Graphic representation of a function
3« f(x) = exp(—x) = sin(2 * pi * x)
4 ¥)
5 program graphl(output);
6 const
7 d = 0.0625; (» 1/16, 16 lines for interval [x, x+1] *)
8 s =32; (* 32 character width for interval [x, x+1] *)
9 h = 34; (* Character position of x—axis *)
10 c=6.28138; (»2 »pi=*)
11 lim = 32;
12 var
13 X, y: real;
14 i, n: integer;
15 begin
16 for i := 0 to lim do begin
17 x:=d/1i
18 y := exp(—x) = sin(c * Xx);
19 n := round(s * y) + h;
20 repeat
21 write(" *);
22 n:=n-1
23 until n = 0;
24 writeln(')
25 end
26 end.

%

2.4. Executing the second example

We are now ready to execute the second example. The following output was produced
by our first run.

% px
Execution begins...

Real division by zero

Error in "graph1”+2 near line 17.
Execution terminated abnormally.

2 statements executed in 0.00 seconds cpu time.
%

Here the interpreter is presenting us with a runtime error diagnostic. It detected a ‘division
by zero’ at line 17. Examining line 17, we see that we have written the statement ‘x :=d / i
instead of ‘x := d » i’. We can correct this and rerun the program:

% ex bigger.p
"bigger.p" 26 lines, 538 characters

PS1:4-14
17
x:=d/i
s7/’s
x:=d=i
:write

"bigger.p” 26 lines, 538 characters

q
% pix bigger.p
Execution begins...

Execution terminated.

2550 statements executed in 0.16 seconds cpu time.
%

Berkeley Pascal User’s Manual

This appears to be the output we wanted. We could now save the output in a file if we

wished by using the shell to redirect the output:

% px > graph

We can use cat (1) to see the contents of the file graph. We can also make a listing of the

graph on the line printer without putting it into a file, e.g.

Berkeley Pascal User's Manual PS1:4-15

% px | Ipr
Execution begins...
Execution terminated.

2550 statements executed in 0.15 seconds cpu time.
%

Note here that the statistics lines came out on our terminal. The statistics line comes out on
the diagnostic output (unit 2.) There are two ways to get rid of the statistics line. We can
redirect the statistics message to the printer using the syntax ‘| & to the shell rather than ‘|,
ie.:

% px | & Ipr
%

or we can translate the program with the p option disabled on the command line as we did
above. .This will disable all post-mortem dumping including the statistics line, thus:

% pi —p bigger.p
% px | Ipr
%

This option also disables the statement limit which normally guards against infinite looping.
You should not use it until your program is debugged. Also if p is specified and an error
occurs, you will not get run time diagnostic information to help you determine what the prob-
lem is. :

2.5. Formatting the program listing

It is possible to use special lines within the source text of a program to format the pro-
gram listing. An empty line (one with no characters on it) corresponds to a ‘space’ macro in
an assembler, leaving a completely blank line without a line number. A line containing only a
control-l (form-feed) character will cause a page eject in the listing with the corresponding line
number suppressed. This corresponds to an ‘eject’ pseudo-instruction. See also section 5.2
for details on the n and i options of pi.

2.6. Execution profiling

An execution profile consists of a structured listing of (all or part of) a program with
information about the number of times each statement in the program was executed for a par-
ticular run of the program. These profiles can be used for several purposes. In a program
which was abnormally terminated due to excessive looping or recursion or by a program fault,
the counts can facilitate location of the error. Zero counts mark portions of the program
which were not executed; during the early debugging stages they should prompt new test data
or a re-examination of the program logic. The profile is perhaps most valuable, however, in
drawing attention to the (typically small) portions of the program that dominate execution
time. This information can be used for source level optimization.

An example

A prime number is a number which is divisible only by itself and the number one. The
program primes, written by Niklaus Wirth, determines the first few prime numbers. In
translating the program we have specified the z option to pix. This option causes the transla-
tor to generate counters and count instructions sufficient in number to determine the number
of times each statement in the program was executed.} When execution of the program

1The counts are completely accurate only in the absence of runtime errors and nonlocal goto statements.
This is not generally a problem, however, as in structured programs nonlocal goto statements occur infre-
quently, and counts are incorrect after abnormal termination only when the upward look described below to

PS1:4-16 Berkeley Pascal User's Manual

completes, either normally or abnormally, this count data is written to the file pmon.out in
the current directory.} It is then possible to prepare an execution profile by giving pxp the
name of the file associated with this data, as was done in the following example.

% pix —1 —z primes.p
Berkeley Pascal PI — - Version 3.1 (9/7/85)

Wed May 7 14:56 1986 primes.p

1 program primes(output);
2 constn = 50; nl = 7; (#*nl = sqrt(n)x)
3 var ikx,inc,lim,square,l: integer;
4 prim: boolean;
5 p,v: array[1..n1] of integer;
6 begin
7 write(2:6, 3:6); 1 := 2;
8 X := l;inc := 4; lim := 1; square := 9;
9 fori:= 3tondo
10 begin (#find next primes)
11 repeat X := X + inc; inc := 6-ingc;
12 if square <= x then
13 begin lim := lim+1;
14 v[lim] := square; square := sqr(p[lim+1])
15 end ;
16 k := 2; prim := true;
17 while prim and (k<lim) do
18 begin k := k+1;
19 if v[k] < x then v[k] := v[k] + 2#p[k];
20 prim := x <> v[k]
21 end
22 until prim;
23 if i <= nl then p[i] := x;
24 write(x:6); 1 := 1+1;
25 if 1 = 10 then
26 begin writeln; 1 := 0
27 end
28 end ;
29 writeln;
30 end.

Execution begins...
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution terminated.

1404 statements executed in 0.08 seconds cpu time.
%

get a count passes a suspended call point.
}$Pmon.out has a name similar to mon.out the monitor file produced by the profiling facility of the C com-
piler cc (1). See prof (1) for a discussion of the C compiler profiling facilities.

Berkeley Pascal User’s Manual PS1:4-17

Discussion

The header lines of the outputs of pix and pxp in this example indicate the version of
the translator and execution profiler in use at the time this example was prepared. The time
given with the file name (also on the header line) indicates the time of last modification of the
program source file. This time serves to version stamp the input program. Pxp also indicates
the time at which the profile data was gathered.

% pxp -z primes.p
Berkeley Pascal PXP —- Version 2.13 (4/2/84)

Wed May 7 14:56 1986 primes.p

Profiled Wed May 7 18:18 1986

1 1. -----|program primes(output);
2 |const
2 | n=50
2 | nl =7;(snl = sqrt(n)*)
3 |var
3 | 1, k, x, inc, lim, square, I: integer;
4 | prim: boolean;
5 | p, v:array [1..n1] of integer;
6 |begin
7 | write(2: 6, 3: 6);
7 | =2
8 | x:=1;
8 | inc:=4;
8 | lim:=1;
8 | square:=9;
9 | fori:= 3 to n do begin (sfind next primes)
9 48. -----| repeat
11 76. -] x:=x + inc;
11 | inc:= 6 - inc;
12 | if square <= x then begin
13 5. -] lim:=lim + I;
14 | v[lim] := square;
14 | square := sqr(p[lim + 1)
14 | end;
16 | k=2
16 | prim := true;
17 | while prim and (k < lim) do begin
18 157, | k:i=k+1;
19 | if v[k] < x then
19 42, -—-| v[k] := v[k] + 2 » p[k];
20 | prim:= x <> v[k]
20 | end
20 |until prim;
23 | ifi <= nl then
23 5. pli]:=x;
24 | write(x: 6);
24 | l:=1+1;
25 | if 1= 10 then begin
26 5.----| writeln;

26 | 1:=0

PS1:4-18 Berkeley Pascal User's Manual

26 | end
26 | end;

29 | writeln
29 |end.

%

To determine the number of times a statement was executed, one looks to the left of the
statement and finds the corresponding vertical bar ‘|”. If this vertical bar is labelled with a
count then that count gives the number of times the statement was executed. If the bar is not
labelled, we look up in the listing to find the first ¢|” which directly above the original one
which has a count and that is the answer. Thus, in our example, ¥ was incremented 157
times on line 18, while the write procedure call on line 24 was executed 48 times as given by
the count on the repeat.

More information on pxp can be found in its manual section pxp (1) and in sections
5.4, 5.5 and 5.10.

3. Error diagnostics

This section of the User’s Manual discusses the error diagnostics of the programs pi, pc
and px. Pix is a simple but useful program which invokes pi and px to do all the real pro-
cessing. See its manual section pix (1) and section 5.2 below for more details. All the diag-
nostics given by pi will also be given by pc.

3.1. Translator syntax errors

A few comments on the general nature of the syntax errors usually made by Pascal pro-
grammers and the recovery mechanisms of the current translator may help in using the sys-
tem.

Illegal characters

Characters such as ‘$’, ‘", and ‘@’ are not part of the language Pascal. If they are found
in the source program, and are not part of a constant string, a constant character, or a com-
ment, they are considered to be ‘illegal characters’. This can happen if you leave off an open-
ing string quote “*. Note that the character ¢, although used in English to quote strings, is
not used to quote strings in Pascal. Most non-printing characters in your input are also illegal
except in character constants and character strings. Except for the tab and form feed charac-
ters, which are used to ease formatting of the program, non-printing characters in the input
file print as the character ‘?” so that they will show in your listing.

String errors

There is no character string of length 0 in Pascal. Consequently the input *” is not
acceptable. Similarly, encountering an end-of-line after an opening string quote > without
encountering the matching closing quote yields the diagnostic “Unmatched * for string”. It is
permissible to use the character ‘#° instead of “* to delimit character and constant strings for
portability reasons. For this reason, a spuriously placed ‘#’ sometimes causes the diagnostic
about unbalanced quotes. Similarly, a ‘#’ in column one is used when preparing programs
which are to be kept in multiple files. See section 5.11 for details.

Comments in a comment, non-terminated comments

As we saw above, these errors are usually caused by leaving off a comment delimiter.
You can convert parts of your program to comments without generating this diagnostic since
there are two different kinds of comments ~ those delimited by ‘{’ and ‘}’, and those delim-
ited by ‘(*’ and ‘*)’. Thus consider:

{ This is a comment enclosing a piece of program

Berkeley Pascal User’s Manual PS1:4-19

a := functioncall; (* comment within comment)

procedurecall;
lhs := rhs; (* another comment *)
}

By using one kind of comment exclusively in your program you can use the other delim-
iters when you need to “comment out” parts of your programt. In this way you will also
allow the translator to help by detecting statements accidentally placed within comments.

If a comment does not terminate before the end of the input file, the translator will
point to the beginning of the comment, indicating that the comment is not terminated. In
this case processing will terminate immediately. See the discussion of “QUIT” below.

Digits in numbers

This part of the language is a minor nuisance. Pascal requires digits in real numbers
both before and after the decimal point. Thus the following statements, which look quite rea-
sonable to FORTRAN users, generate diagnostics in Pascal:

Wed May 7 14:56 1986 digits.p:

4 r:=0,;

[A —eeeee Digits required after decimal point
5 r:=.0;

[4 -——--- Digits required before decimal point
6 r:=1.el0;

L 4 e Digits required after decimal point
7 r:=.05e-10;

€ mmmmmeeeme A e Digits required before decimal point

These same constructs are also illegal as input to the Pascal interpreter px.

Replacements, insertions, and deletions

When a syntax error is encountered in the input text, the parser invokes an error
recovery procedure. This procedure examines the input text immediately after the point of
error and considers a set of simple corrections to see whether they will allow the analysis to
continue. These corrections involve replacing an input token with a different token, inserting
a token, or replacing an input token with a different token. Most of these changes will not
cause fatal syntax errors. The exception is the insertion of or replacement with a symbol such
as an identifier or a number; in this case the recovery makes no attempt to determine which
identifier or what number should be inserted, hence these are considered fatal syntax errors.

Consider the following example.

% pix —1 synerr.p
Berkeley Pascal PI -- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 synerr.p

1 program syn(output);
2 var i, j are integer;
€ mmmmmmemeee- 4--- Replaced identifier with a
3 begin
4 for j :» 1 to 20 begin

+If you wish to transport your program, especially to the 6000-3.4 implementation, you should use the char-
acter sequence ‘(" to delimit comments. For transportation over the rcslink to Pascal 6000-3.4, the charac-
ter ‘# should be used to delimit characters and constant strings.

PS1:4-20 Berkeley Pascal User’s Manual

€ -e-ememeemmnmen--e-f--- Replaced " with a ‘="

e 4--- Inserted keyword do
5 write(j);
6 i=2%j;

€ --------mececmeeee—4--- Inserted %’

E 4--- Inserted identifier
7 writeln(i)) .

E 4--- Deleted)’
8 end
9 end.

%

The only surprise here may be that Pascal does not have an exponentiation operator, hence
the complaint about ‘s#’. This error illustrates that, if you assume that the language has a
feature which it does not, the translator diagnostic may not indicate this, as the translator is
unlikely to recognize the construct you supply.

Undefined or improper identifiers

If an identifier is encountered in the input but is undefined, the error recovery will
replace it with an identifier of the appropriate class. Further references to this identifier will
be summarized at the end of the containing procedure or function or at the end of the program
if the reference occurred in the main program. Similarly, if an identifier is used in an inap-
propriate way, e.g. if a type identifier is used in an assignment statement, or if a simple vari-
able is used where a record variable is required, a diagnostic will be produced and an
identifier of the appropriate type inserted. Further incorrect references to this identifier will
be flagged only if they involve incorrect use in a different way, with all incorrect uses being
summarized in the same way as undefined variable uses are.

Expected symbols, malformed constructs

If none of the above mentioned corrections appear reasonable, the error recovery will
examine the input to the left of the point of error to see if there is only one symbol which can
follow this input. If this is the case, the recovery will print a diagnostic which indicates that
the given symbol was ‘Expected’.

In cases where none of these corrections resolve the problems in the input, the recovery
may issue a diagnostic that indicates that the input is “malformed”. If necessary, the transla-
tor may then skip forward in the input to a place where analysis can continue. This process
may cause some errors in the text to be missed.

Consider the following example:

% pix -1 synerr2.p
Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 synerr2.p
1 program synerr2(input,outpu);

2 integer a(10)
E -----} ------ Malformed declaration

3 begin
4 read(b);

SR — 4 -—---- Undefined variable
5 forc:=11to 10 do

E --—--—-—-—-er—4 -~ Undefined variable
6 alc):=b=xc;

E ----e--eeeeeeeeeeeeec} eeu Undefined procedure

Berkeley Pascal User’'s Manual PS1:4-21

E -eememeeeeemee e LR Malformed statement
7 end.

E 1 - File outpu listed in program statement but not declared
In program synerr2:

E - a undefined on lines 6

E - b undefined on line 4

E - c undefined on line 5 6
Execution suppressed due to compilation errors
%

Here we misspelled output and gave a FORTRAN style variable declaration which the translator
diagnosed as a ‘Malformed declaration’. When, on line 6, we used ‘(’ and ‘)’ for subscripting
(as in FORTRAN) rather than the ‘[’ and ‘]’ which are used in Pascal, the translator noted that
a was not defined as a procedure. This occurred because procedure and function argument
lists are delimited by parentheses in Pascal. As it is not permissible to assign to procedure
calls the translator diagnosed a malformed statement at the point of assignment.

Expected and unexpected end-of-file, “QUIT”

If the translator finds a complete program, but there is more non-comment text in the
input file, then it will indicate that an end-of-file was expected. This situation may occur after
a bracketing error, or if too many ends are present in the input. The message may appear

N2

after the recovery says that it “Expected ".”” since ‘.’ is the symbol that terminates a program.

If severe errors in the input prohibit further processing the translator may produce a
diagnostic followed by “QUIT”. One example of this was given above — a non-terminated
comment; another example is a line which is longer than 160 characters. Consider also the
following example.

% pix —1 mism.p
Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 mism.p

1 program mismatch(output)

2 begin
[Inserted 7’
3 writeln(‘*x");
4 { The next line is the last line in the file }
5 writeln
E o 4 e Malformed declaration
S 4 —eem- Unexpected end-of-file - QUIT

%

3.2. Translator semantic errors

The extremely large number of semantic diagnostic messages which the translator pro-
duces make it unreasonable to discuss each message or group of messages in detail. The mes-
sages are, however, very informative. We will here explain the typical formats and the termi-
nology used in the error messages so that you will be able to make sense out of them. In any
case in which a diagnostic is not completely comprehensible you can refer to the User Manual
by Jensen and Wirth for examples.

Format of the error diagnostics

As we saw in the example program above, the error diagnostics from the Pascal transla-
tor include the number of a line in the text of the program as well as the text of the error

PS1:4-22 Berkeley Pascal User’'s Manual

message. While this number is most often the line where the error occurred, it is occasionally
the number of a line containing a bracketing keyword like end or until. In this case, the diag-
nostic may refer to the previous statement. This occurs because of the method the translator
uses for sampling line numbers. The absence of a trailing ;’ in the previous statement causes
the line number corresponding to the end or until. to become associated with the statement.
As Pascal is a free-format language, the line number associations can only be approximate and
may seem arbitrary to some users. This is the only notable exception, however, to reasonable
associations.

Incompatible types

Since Pascal is a strongly typed language, many semantic errors manifest themselves as
type errors. These are called ‘type clashes’ by the translator. The types allowed for various
operators in the language are summarized on page 108 of the Jensen-Wirth User Manual. It
is important to know that the Pascal translator, in its diagnostics, distinguishes between the
following type ‘classes’

array Boolean char file integer
pointer real record scalar string

These words are plugged into a great number of error messages. Thus, if you tried to assign
an integer value to a char variable you would receive a diagnostic like the following:

Wed May 7 14:56 1986 clash.p:
E 7 - Type clash: integer is incompatible with char
... Type of expression clashed with type of variable in assignment

In this case, one error produced a two line error message. If the same error occurs more than
once, the same explanatory diagnostic will be given each time.

Scalar

The only class whose meaning is not self-explanatory is ‘scalar’. Scalar has a precise
meaning in the Jensen-Wirth User Manual where, in fact, it refers to char, integer, real, and
Boolean types as well as the enumerated types. For the purposes of the Pascal translator,
scalar in an error message refers to a user-defined, enumerated type, such as ops in the exam-
ple above or color in

type color = (red, green, blue)

For integers, the more explicit denotation integer is used. Although it would be correct, in
the context of the User Manual to refer to an integer variable as a scalar variable pi prefers
the more specific identification.

Function and procedure type errors

For built-in procedures and functions, two kinds of errors occur. If the routines are
called with the wrong number of arguments a message similar to:

Wed May 7 14:56 1986 sinl.p:
E 12 - sin takes exactly one argument
is given. If the type of the argument is wrong, a message like
Wed May 7 14:56 1986 sin2.p:
E 12 - sin’s argument must be integer or real, not char

is produced. A few functions and procedures implemented in Pascal 6000-3.4 are diagnosed
as unimplemented in Berkeley Pascal, notably those related to segmented files.

Berkeley Pascal User’s Manual PS1:4-23

Can’t read and write scalars, etc.

The messages which state that scalar (user-defined) types cannot be written to and from
files are often mysterious. It is in fact the case that if you define

type color = (red, green, blue)

“standard” Pascal does not associate these constants with the strings ‘red’, ‘green’, and ‘blue’
in any way. An extension has been added which allows enumerated types to be read and
written, however if the program is to be portable, you will have to write your own routines to
perform these functions. Standard Pascal only allows the reading of characters, integers and
real numbers from text files. You cannot read strings or Booleans. It is possible to make a

file of color

but the representation is binary rather than string.

Expression diagnostics

The diagnostics for semantically ill-formed expressions are very explicit. Consider this
sample translation:

% pi —1 expr.p
Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 expr.p

1 program x(output);
2 var
3 a: set of char;
4 b: Boolean;
5 ¢: (red, green, blue);
6 p: } integer;
7 A: alfa;
8 B: packed array [1..5] of char;
9 begin
10 b := true;
11 c:=red;
12 new(p);
13 =]
14 A := "Hello, yellow’
15 b:=aandb;
16 a:=a=x*3;
17 if input < 2 then writeln(boo’);
18 if p <= 2 then writeln('sure nuff);
19 if A = B then writeln('same’);
20 if ¢ = true then writeln(hue’s and colors’)
21 end.
E 14 - Constant string too long
E 15 - Left operand of and must be Boolean, not set
E 16 — Cannot mix sets with integers and reals as operands of
E 17 - files may not participate in comparisons
E 18 - pointers and integers cannot be compared — operator was <=
E 19 - Strings not same length in = comparison
E 20 - scalars and Booleans cannot be compared — operator was =
e 21 — Input is used but not defined in the program statement
In program x:

PS1:4-24 Berkeley Pascal User’s Manual

w — constant green is never used

w — constant blue is never used

w — variable B is used but never set
%

This example is admittedly far-fetched, but illustrates that the error messages are sufficiently
clear to allow easy determination of the problem in the expressions.

Type equivalence

Several diagnostics produced by the Pascal translator complain about ‘non-equivalent
types’. In general, Berkeley Pascal considers variables to have the same type only if they were
declared with the same constructed type or with the same type identifier. Thus, the variables
x and y declared as

var
x: 4 integer;
y: 4 integer;

do not have the same type. The assignment

X:i=y
thus produces the diagnostics:
Wed May 7 14:56 1986 typequ.p:

E 7 - Type clash: non-identical pointer types
... Type of expression clashed with type of variable in assignment

Thus it is always necessary to declare a type such as

type intptr = 4 integer;

and use it to declare

var x: intptr; y: intptr;
Note that if we had initially declared

var X, y: 4 integer;

then the assignment statement would have worked. The statement

x4 =yt

is allowed in either case. Since the parameter to a procedure or function must be declared
with a type identifier rather than a constructed type, it is always necessary, in practice, to
declare any type which will be used in this way.

Unreachable statements

Berkeley Pascal flags unreachable statements. Such statements usually correspond to
errors in the program logic. Note that a statement is considered to be reachable if there is a
potential path of control, even if it can never be taken. Thus, no diagnostic is produced for
the statement:

if false then
writeln(impossible!)

Berkeley Pascal User’s Manual PS1:4-25

Goto’s into structured statements

The translator detects and complains about goto statements which transfer control into
structured statements (for, while, etc.) It does not allow such jumps, nor does it allow branch-
ing from the then part of an if statement into the else part. Such checks are made only within
the body of a single procedure or function.

Unused variables, never set variables

Although pi always clears variables to 0 at procedure and function entry, pc does not
unless runtime checking is enabled using the C option. It is not good programming practice
to rely on this initialization. To discourage this practice, and to help detect errors in program
logic, pi flags as a ‘w’ warning error:

1) Use of a variable which is never assigned a value.

2) A variable which is declared but never used, distinguishing between those variables
for which values are computed but which are never used, and those completely
unused.

In fact, these diagnostics are applied to all declared items. Thus a const or a procedure which
is declared but never used is flagged. The w option of pi may be used to suppress these warn-
ings; see sections 5.1 and 5.2.

3.3. Translator panics, i/o errors

Panics

One class of error which rarely occurs, but which causes termination of all processing
when it does is a panic. A panic indicates a translator-detected internal inconsistency. A typ-
ical panic message is:

snark (rvalue) line=110 yyline=109
Snark in pi

If you receive such a message, the translation will be quickly and perhaps ungracefully ter-
minated. You should contact a teaching assistant or a member of the system staff, after sav-
ing a copy of your program for later inspection. If you were making changes to an existing
program when the problem occurred, you may be able to work around the problem by ascer-
taining which change caused the snark and making a different change or correcting an error
in the program. A small number of panics are possible in px. All panics should be reported
to a teaching assistant or systems staff so that they can be fixed.

Qut of memory

The only other error which will abort translation when no errors are detected is running
out of memory. All tables in the translator, with the exception of the parse stack, are dynami-
cally allocated, and can grow to take up the full available process space of 64000 bytes on the
PDP-11. On the VAX-11, table sizes are extremely generous and very large (25000) line pro-
grams have been easily accommodated. For the PDP-11, it is generally true that the size of
the largest translatable program is directly related to procedure and function size. A number
of non-trivial Pascal programs, including some with more than 2000 lines and 2500 state-
ments have been translated and interpreted using Berkeley Pascal on PDP-11’s. Notable
among these are the Pascal-S interpreter, a large set of programs for automated generation of
code generators, and a general context-free parsing program which has been used to parse sen-
tences with a grammar for a superset of English. In general, very large programs should be
translated using pc and the separate compilation facility.

If you receive an out of space message from the translator during translation of a large
procedure or function or one containing a large number of string constants you may yet be
able to translate your program if you break this one procedure or function into several

PS1:4-26 Berkeley Pascal User’'s Manual

routines.

I/0 errors

Other errors which you may encounter when running pi relate to input-output. If pi
cannot open the file you specify, or if the file is empty, you will be so informed.

3.4. Run-time errors

We saw, in our second example, a run-time error. We here give the general description
of run-time errors. The more unusual interpreter error messages are explained briefly in the
manual section for px (1).

Start-up errors

These errors occur when the object file to be executed is not available or appropriate.
Typical errors here are caused by the specified object file not existing, not being a Pascal
object, or being inaccessible to the user.

Program execution errors

These errors occur when the program interacts with the Pascal runtime environment in
an inappropriate way. Typical errors are values or subscripts out of range, bad arguments to
built-in functions, exceeding the statement limit because of an infinite loop, or running out of
memoryf. The interpreter will produce a backtrace after the error occurs, showing all the
active routine calls, unless the p option was disabled when the program was translated.
Unfortunately, no variable values are given and no way of extracting them is available.*

As an example of such an error, assume that we have accidentally declared the constant
nl to be 6, instead of 7 on line 2 of the program primes as given in section 2.6 above. If we
run this program we get the following response.

% pix primes.p
Execution begins...
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167
Subscript value of 7 is out of range

Error in "primes”+8 near line 14.
Execution terminated abnormally.

941 statements executed in 0.07 seconds cpu time.
%

Here the interpreter indicates that the program terminated abnormally due to a sub-
script out of range near line 14, which is eight lines into the body of the program primes.

Interrupts

If the program is interrupted while executing and the p option was not specified, then a
backtrace will be printed.f The file pmon.out of profile information will be written if the

$The checks for running out of memory are not foolproof and there is a chance that the interpreter will
fault, producing a core image when it runs out of memory. This situation occurs very rarely.

= On the vax-11, each variable is restricted to allocate at most 65000 bytes of storage (this is a PDP-11ism
that has survived to the vax.)

tOccasionally, the Pascal system will be in an inconsistent state when this occurs, e.g. when an interrupt
termi a dure or function entry or exit. In this case, the backtrace will only contain the current

Berkeley Pascal User’s Manual PS1:4-27

program was translated with the z option enabled to pi or pix.

I/0 interaction errors

The final class of interpreter errors results from inappropriate interactions with files,
including the user’s terminal. Included here are bad formats for integer and real numbers
(such as no digits after the decimal point) when reading.

4. Input/output

This section describes features of the Pascal input/output environment, with special
consideration of the features peculiar to an interactive implementation.

4.1. Introduction

Qur first sample programs, in section 2, used the file output. We gave examples there of
redirecting the output to a file and to the line printer using the shell. Similarly, we can read
the input from a file or another program. Consider the following Pascal program which is
similar to the program cat (1).

% pix —1 kat.p <primes
Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 kat.p

1 program kat(input, output);
2 var
3 ch: char;
4 begin
5 while not eof do begin
6 while not eoln do begin
7 -read(ch);
8 write(ch)
9 end;

10 readln;

11 writeln

12 end

13 end { kat }.
Execution begins...
2 3 S 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution terminated.
925 statements executed in 0.06 seconds cpu time.

%

Here we have used the shell’s syntax to redirect the program input from a file in primes in
which we had placed the output of our prime number program of section 2.6. It is also possi-
ble to ‘pipe’ input to this program much as we piped input to the line printer daemon /pr (1)
before. Thus, the same output as above would be produced by

line. A reverse call order list of procedures will not be given.

PS1:4-28 Berkeley Pascal User’s Manual

% cat primes | pix -1 kat.p

All of these examples use the shell to control the input and output from files. One very
simple way to associate Pascal files with named UNIX files is to place the file name in the pro-
gram statement. For example, suppose we have previously created the file data. We then use
it as input to another version of a listing program.

% cat data

line one.

line two.

line three is the end.

% pix -1 copydata.p

Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 copydata.p

1 program copydata(data, output);
2 var
3 ch: char;
4 data: text;
5 begin
6 reset(data);
7 while not eof(data) do begin
8 while not eoln(data) do begin
9 read(data, ch);

10 write(ch)

11 end;

12 readin(data);

13 writeln

14 end

15 end { copydata }.
Execution begins...
line one.
line two.
line three is the end.
Execution terminated.

134 statements executed in 0.02 seconds cpu time.
%

By mentioning the file data in the program statement, we have indicated that we wish it to
correspond to the UNIX file data. Then, when we ‘reset(data)’, the Pascal system opens our
file ‘data’ for reading. More sophisticated, but less portable, examples of using UNIX files will
be given in sections 4.5 and 4.6. There is a portability problem even with this simple exam-
ple. Some Pascal systems attach meaning to the ordering of the file in the program statement
file list.. Berkeley Pascal does not do so.

4.2. Eof and eoln

An extremely common problem encountered by new users of Pascal, especially in the
interactive environment offered by UNIX, relates to the definitions of eof and eoln. These
functions are supposed to be defined at the beginning of execution of a Pascal program, indi-
cating whether the input device is at the end of a line or the end of a file. Setting eof or eoln
actually corresponds to an implicit read in which the input is inspected, but no input is “used
up”. In fact, there is no way the system can know whether the input is at the end-of-file or
the end-of-line unless it attempts to read a line from it. If the input is from a previously

Berkeley Pascal User’s Manual ' } PS1:4-29

created file, then this reading can take place without run-time act‘@’é"by the user. However, if
the input is from a terminal, then the input is what the user types.t If the system were to do
an initial read automatically at the beginning of program execution, and if the input were a
terminal, the user would have to type some input before execution could begin. This would
make it impossible for the program to begin by prompting for input or printing a herald.

Berkeley Pascal has been designed so that an initial read is not necessary. At any given
time, the Pascal system may or may not know whether the end-of-file or end-of-line condi-
tions are true. Thus, internally, these functions can have three values - true, false, and “I
don’t know yet; if you ask me I'll have to find out”. All files remain in this last, indeter-
minate state until the Pascal program requires a value for eof or eoln either explicitly or
implicitly, e.g. in a call to read. The important point to note here is that if you force the Pas-
cal system to determine whether the input is at the end-of-file or the end-of-line, it will be
necessary for it to attempt to read from the input.

Thus consider the following example code

while not eof do begin
write(number, please? °);
read(i);
writeln(‘that was a *, i: 2)
end

At first glance, this may be appear to be a correct program for requesting, reading and echoing
numbers. Notice, however, that the while loop asks whether eof is true before the request is
printed. This will force the Pascal system to decide whether the input is at the end-of-file.
The Pascal system will give no messages; it will simply wait for the user to type a line. By
producing the desired prompting before testing eof, the following code avoids this problem:

write(number, please ?);
while not eof do begin
read(i);
writeln(‘that was a ’, i:2);
write(number, please ?)
end

The user must still type a line before the while test is completed, but the prompt will ask for
it. This example, however, is still not correct. To understand why, it is first necessary to
know, as we will discuss below, that there is a blank character at the end of each line in a Pas-
cal text file. The read procedure, when reading integers or real numbers, is defined so that, if
there are only blanks left in the file, it will return a zero value and set the end-of-file condi-
tion. If, however, there is a number remaining in the file, the end-of-file condition will not be
set even if it is the last number, as read never reads the blanks after the number, and there is
always at least one blank. Thus the modified code will still put out a spurious

that was a 0

at the end of a session with it when the end-of-file is reached. The simplest way to correct the
problem in this example is to use the procedure readln instead of read here. In general,
unless we test the end-of-file condition both before and after calls to read or readin, there will
be inputs for which our program will attempt to read past end-of-file.

11t is not possible to determine whether the input is a terminal, as the input may appear to be a file but ac-
tually be a pipe, the output of a program which is reading from the terminal.

PS1:4-30 Berkeley Pascal User’s Manual

4.3. More about eoln

To have a good understanding of when eoln will be true it is necessary to know that in
any file there is a special character indicating end-of-line, and that, in effect, the Pascal system
always reads one character ahead of the Pascal read commands.t For instance, in response to
‘read(ch)’, the system sets c/ to the current input character and gets the next input character.
If the current input character is the last character of the line, then the next input character
from the file is the new-line character, the normal UNIX line separator. When the read rou-
tine gets the new-line character, it replaces that character by a blank (causing every line to end
with a blank) and sets eoln to true. Eoln will be true as soon as we read the last character of
the line and before we read the blank character corresponding to the end of line. Thus it is
almost always a mistake to write a program which deals with input in the following way:

read(ch);
if eoln then

Done with line
else

Normal processing

as this will almost surely have the effect of ignoring the last character in the line. The
‘read(ch)’ belongs as part of the normal processing.

Given this framework, it is not hard to explain the function of a readin call, which is
defined as:

while not eoln do
get(input);
get(input);

This advances the file until the blank corresponding to the end-of-line is the current input
symbol and then discards this blank. The next character available from read will therefore be
the first character of the next line, if one exists.

4.4. Output buffering

A final point about Pascal input-output must be noted here. This concerns the buffering
of the file output. It is extremely inefficient for the Pascal system to send each character to
the user’s terminal as the program generates it for output; even less efficient if the output is
the input of another program such as the line printer daemon /pr (1). To gain efficiency, the
Pascal system “buffers” the output characters (i.e. it saves them in memory until the buffer is
full and then emits the entire buffer in one system interaction.) However, to allow interactive
prompting to work as in the example given above, this prompt must be printed before the
Pascal system waits for a response. For this reason, Pascal normally prints all the output
which has been generated for the file output whenever

1) A writeln occurs, or

2) The program reads from the terminal, or

3) The procedure message or flush is called.
Thus, in the code sequence

fori:=1to S do begin

write(i: 2);

Compute a lot with no output
end;
writeln

+In Pascal terms, ‘read(ch)’ corresponds to ‘ch := input{; get(input)’

Berkeley Pascal User’s Manual PS1:4-31

the output integers will not print until the writeln occurs. The delay can be somewhat discon-
certing, and you should be aware that it will occur. By setting the b option to 0 before the
program statement by inserting a comment of the form

(»$b0x)

we can cause output to be completely unbuffered, with a corresponding horrendous degrada-
tion in program efficiency. Option control in comments is discussed in section 5.

4.5. Files, reset, and rewrite

It is possible to use extended forms of the built-in functions reset and rewrite to get
more general associations of UNIX file names with Pascal file variables. When a file other
than input or output is to be read or written, then the reading or writing must be preceded by
a reset or rewrite call. In general, if the Pascal file variable has never been used before, there
will be no UNIX filename associated with it. As we saw in section 2.9, by mentioning the file
in the program statement, we could cause a UNIX file with the same name as the Pascal vari-
able to be associated with it. If we do not mention a file in the program statement and use it
for the first time with the statement

reset(f)
or

rewrite(f)

then the Pascal system will generate a temporary name of the form ‘tmp.x’ for some character
‘x’, and associate this UNIX file name name with the Pascal file. The first such generated
name will be ‘tmp.1’ and the names continue by incrementing their last character through the
Ascl set. The advantage of using such temporary files is that they are automatically removed
by the Pascal system as soon as they become inaccessible. They are not removed, however, if
a runtime error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable we can
give that name in the reset or rewrite call, e.g. we could have associated the Pascal file data
with the file ‘primes’ in our example in section 3.1 by doing:

reset(data, ‘primes’)

instead of a simple

reset(data)

In this case it is not essential to mention ‘data’ in the program statement, but it is still a good
idea because is serves as an aid to program documentation. The second parameter to reset
and rewrite may be any string value, including a variable. Thus the names of UNIX files to be
associated with Pascal file variables can be read in at run time. Full details on file name/file
variable associations are given in section A.3.

4.6. Argc and argv

Each UNIX process receives a variable length sequence of arguments each of which is a
variable length character string. The built-in function argc and the built-in procedure argv
can be used to access and process these arguments. The value of the function argc is the
number of arguments to the process. By convention, the arguments are treated as an array,
and indexed from 0 to argc-1, with the zeroth argument being the name of the program being
executed. The rest of the arguments are those passed to the command on the command line.
Thus, the command

PS1:4-32 Berkeley Pascal User’s Manual

% obj /etc/motd /usr/dict/words hello

will invoke the program in the file obj with argc having a value of 4. The zeroth element
accessed by argv will be ‘obj’, the first ‘/etc/motd’, etc.

Pascal does not provide variable size arrays, nor does it allow character strings of vary-
ing length. For this reason, argv is a procedure and has the syntax

argv(i, a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly trun-
cated or blank padded) i ’th argument of the current process to the string variable a. The file
manipulation routines reset and rewrite will strip trailing blanks from their optional second
arguments so that this blank padding is not a problem in the usual case where the arguments
are file names.

We are now ready to give a Berkeley Pascal program ‘kat’, based on that given in section
3.1 above, which can be used with the same syntax as the UNIX system program cat (1).

% cat kat.p
program kat(input, output);
var
ch: char;
i: integer;
name: packed array [1..100] of char;
begin
i:=1
repeat
if i < argc then begin
argv(i, name);
reset(input, name);
ic=i+1
end;
while not eof do begin
while not eoln do begin
read(ch);
write(ch)
end;
readln;
writeln
end
until i >= argc
end { kat }.
%

Note that the reset call to the file input here, which is necessary for a clear program, may be
disallowed on other systems. As this program deals mostly with argc and argv and UNIX sys-
tem dependent considerations, portability is of little concern.

If this program is in the file ‘kat.p’, then we can do

% pi kat.p
% mv obj kat
% kat primes
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173

Berkeley Pascal User’s Manual PS1:4-33

179 181 191 193 197 199 211 223 227 229

930 statements executed in 0.06 seconds cpu time.

% kat

This is a line of text.

This is a line of text.

The next line contains only an end-of-file (an invisible control-d!)
The next line contains only an end-of-file (an invisible control-d!)

287 statements executed in 0.02 seconds cpu time.

%
Thus we see that, if it is given arguments, ‘kat’ will, like cat, copy each one in turn. If no
arguments are given, it copies from the standard input. Thus it will work as it did before,
with

% kat < primes

now equivalent to

% kat primes

although the mechanisms are quite different in the two cases. Note that if ‘kat’ is given a bad
file name, for example:

% kat xxxxqqq
Could not open xxxxqqq: No such file or directory
Error in "kat"+35 near line 11.

4 statements executed in 0.00 seconds cpu time.

it will give a diagnostic and a post-mortem control flow backtrace for debugging. If we were
going to use ‘kat’, we might want to translate it differently, e.g.:

% pi —pb kat.p
% mv obj kat

Here we have disabled the post-mortem statistics printing, so as not to get the statistics or the
full traceback on error. The b option will cause the system to block buffer the input/output
so that the program will run more efficiently on large files. We could have also specified the t
option to turn off runtime tests if that was felt to be a speed hindrance to the program. Thus
we can try the last examples again:

% kat xxxxqqq
Could not open xxxxqqq: No such file or directory

Error in "kat”
% kat primes
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173

PS1:4-34 Berkeley Pascal User’s Manual

179 181 191 193 197 199 211 223 227 229
%

The interested reader may wish to try writing a program which accepts command line
arguments like pi does, using argc and argv to process them.

5. Details on the components of the system

5.1. Options

The programs pi, pc, and pxp take a number of options.t There is a standard UNIX
convention for passing options to programs on the command line, and this convention is fol-
lowed by the Berkeley Pascal system programs. As we saw in the examples above, option
related arguments consisted of the character ‘-’ followed by a single character option name.

Except for the b option which takes a single digit value, each option may be set on
(enabled) or off (disabled.) When an on/off valued option appears on the command line of pi
or it inverts the default setting of that option. Thus

% pi -1 foo.p

enables the listing option 1, since it defaults off, while

% pi —t foo.p
disables the run time tests option t, since it defaults on.

In additon to inverting the default settings of pi options on the command line, it is also
possible to control the pi options within the body of the program by using comments of a
special form illustrated by

{81-)

Here we see that the opening comment delimiter (which could also be a ‘(*’) is immedi-
ately followed by the character ‘$’. After this ‘$’, which signals the start of the option list, we
can place a sequence of letters and option controls, separated by °,’ charactersf. The most
basic actions for options are to set them, thus

{$1+ Enable listing}

or to clear them

{$t-,p— No run-time tests, no post mortem analysis}

Notice that ‘+’ always enables an option and ‘-’ always disables it, no matter what the default
is. Thus ‘-’ has a different meaning in an option comment than it has on the command line.
As shown in the examples, normal comment text may follow the option list.

1As pix uses pi to translate Pascal programs, it takes the options of pi also. We refer to them here, howev-
er, as pi options.

$This format was chosen because it is used by Pascal 6000-3.4. In general the options common to both im-
plementations are controlled in the same way so that comment control in options is mostly portable. It is
recommended, however, that only one control be put'per comment for maximum portability, as the Pascal
6000-3.4 implementation will ignore controls after the first one which it does not recognize.

Berkeley Pascal User’s Manual PS1:4-35

5.2. Options commeon to Pi, Pc, and Pix

The following options are common to both the compiler and the interpreter. With each
option we give its default setting, the setting it would have if it appeared on the command
line, and a sample command using the option. Most options are on/off valued, with the b
option taking a single digit value.

Buffering of the file output - b

The b option controls the buffering of the file output. The default is line buffering, with
flushing at each reference to the file input and under certain other circumstances detailed in
section 5 below. Mentioning b on the command line, e.g.

% pi —b assembler.p

causes standard output to be block buffered, where a block is some system-defined number of
characters. The b option may also be controlled in comments. It, unique among the Berkeley
Pascal options, takes a single digit value rather than an on or off setting. A value of 0, e.g.

{$b0})

causes the file output to be unbuffered. Any value 2 or greater causes block buffering and is
equivalent to the flag on the command line. The option control comment setting b must pre-
cede the program statement.

Include file listing - i

The i option takes the name of an include file, procedure or function name and causes it
to be listed while translatingt. Typical uses would be

% pix —i scanner.i compiler.p

to make a listing of the routines in the file scanner.i, and

% pix —i scanner compiler.p

to make a listing of only the routine scanner. This option is especially useful for
conservation-minded programmers making partial program listings.

Make a listing - 1

The 1 option enables a listing of the program. The 1 option defaults off. When specified
on the command line, it causes a header line identifying the version of the translator in use
and a line giving the modification time of the file being translated to appear before the actual
program listing. The 1 option is pushed and popped by the i option at appropriate points in
the program.

Standard Pascal only - s

The s option causes many of the features of the UNIX implementation which are not
found in standard Pascal to be diagnosed as ‘s’ warning errors. This option defaults off and is
enabled when mentioned on the command line. Some of the features which are diagnosed
are: non-standard procedures and functions, extensions to the procedure write, and the padding
of constant strings with blanks. In addition, all letters are mapped to lower case except in
strings and characters so that the case of keywords and identifiers is effectively ignored. The s
option is most useful when a program is to be transported, thus

fInclude files are discussed in section 5.9.

PS1:4-36 Berkeley Pascal User’s Manual

% pi —s isitstd.p

will produce warnings unless the program meets the standard.

Runtime tests — t and C

These options control the generation of tests that subrange variable values are within
bounds at run time. pi defaults to generating tests and uses the option t to disable them. pc
defaults to not generating tests, and uses the option C to enable them. Disabling runtime
tests also causes assert statements to be treated as comments.}

Suppress warning diagnostics - w

The w option, which defaults on, allows the translator to print a number of warnings
about inconsistencies it finds in the input program. Turning this option off with a comment
of the form

{($w-}

or on the command line

% pi -w tryme.p

suppresses these usually useful diagnostics.

Generate counters for a pxp execution profile - z

The z option, which defaults off, enables the production of execution profiles. By speci-
fying z on the command line, i.e.

% pi -z foo.p

or by enabling it in a comment before the program statement causes pi and pc to insert
operations in the interpreter code to count the number of times each statement was executed.
An example of using pxp was given in section 2.6; its options are described in section 5.6.
Note that the z option cannot be used on separately compiled programs.

§5.3. Options available in Pi

Post-mortem dump - p

The p option defaults on, and causes the runtime system to initiate a post-mortem back-
trace when an error occurs. It also cause px to count statements in the executing program,
enforcing a statement limit to prevent infinite loops. Specifying p on the command line dis-
ables these checks and the ability to give this post-mortem analysis. It does make smaller and
faster programs, however. It is also possible to control the p option in comments. To prevent
the post-mortem backtrace on error, p must be off at the end of the program statement. Thus,
the Pascal cross-reference program was translated with

% pi —pbt pxref.p

5.4. Options available in Px

The first argument to px is the name of the file containing the program to be inter-
preted. If no arguments are given, then the file 0bj is executed. If more arguments are given,
they are available to the Pascal program by using the built-ins argc and argv as described in

$See section A.1 for a description of assert statements.

Berkeley Pascal User’s Manual PS1:4-37

section 4.6.
Px may also be invoked automatically. In this case, whenever a Pascal object file name

is given as a command, the command will be executed with px prepended to it; that is
% obj primes

will be converted to read

% px obj primes

5.5. Options available in Pc

Generate assembly language - S
The program is compiled and the assembly language output is left in file appended .s.

Thus
% pc —S foo.p

creates a file foo.s. No executable file is created.

Symbolic Debugger Information — g

The g option causes the compiler to generate information needed by sdb(1) the symbolic
debugger. For a complete description of sdb see Volume 2c¢ of the UNIX Reference Manual.

Redirect the output file — o

The name argument after the -o is used as the name of the output file instead of a.out.
Its typical use is to name the compiled program using the root of the file name. Thus:

% pc —o myprog myprog.p

causes the compiled program to be called myprog .

Generate counters for a prof execution profile — p

The compiler produces code which counts the number of times each routine is called.
The profiling is based on a periodic sample taken by the system rather than by inline counters
used by pxp. This results in less degradation in execution, at somewhat of a loss in accuracy.
See prof(1) for a more complete description.

Run the object code optimizer - O

The output of the compiler is run through the object code optimizer. This provides an
increase in compile time in exchange for a decrease in compiled code size and execution time.

5.6. Options available in Pxp

Pxp takes, on its command line, a list of options followed by the program file name,
which must end in ‘.p’ as it must for pi, pc, and pix. Pxp will produce an execution profile if
any of the z, t or ¢ options is specified on the command line. If none of these options is
specified, then pxp functions as a program reformatter.

It is important to note that only the z and w options of pxp, which are common to pi,
pc, and pxp can be controlled in comments. All other options must be specified on the com-
mand line to have any effect.

The following options are relevant to profiling with pxp:

PS1:4-38 Berkeley Pascal User’s Manual

Include the bodies of all routines in the profile — a

Pxp normally suppresses printing the bodies of routines which were never executed, to
make the profile more compact. This option forces all routine bodies to be printed.

Suppress declaration parts from a profile - d

Normally a profile includes declaration parts. Specifying d on the command line
suppresses declaration parts.

Eliminate include directives - e

Normally, pxp preserves include directives to the output when reformatting a program,
as though they were comments. Specifying —e causes the contents of the specified files to be
reformatted into the output stream instead. This is an easy way to eliminate include direc-
tives, e.g. before transporting a program.

Fully parenthesize expressions — f

Normally pxp prints expressions with the minimal parenthesization necessary to
preserve the structure of the input. This option causes pxp to fully parenthesize expressions.
Thus the statement which prints as

d:=a+bmodc/e

with minimal parenthesization, the default, will print as

d:=a+ ((bmodc)/e)
with the f option specified on the command line.

Left justify all procedures and functions - j

Normally, each procedure and function body is indented to reflect its static nesting
depth. This option prevents this nesting and can be used if the indented output would be too
wide.

Print a table summarizing procedure and function calls - t

The t option causes pxp to print a table summarizing the number of calls to each pro-
cedure and function in the program. It may be specified in combination with the z option, or
separately.

Enable and control the profile — z

The z profile option is very similar to the i listing control option of pi. If z is specified
on the command line, then all arguments up to the source file argument which ends in “.p’ are
taken to be the names of procedures and functions or include files which are to be profiled. If
this list is null, then the whole file is to be profiled. A typical command for extracting a
profile of part of a large program would be

% pxp —z test parser.i compiler.p

This specifies that profiles of the routines in the file parser.i and the routine test are to be
made.

5.7. Formatting programs using pxp
The program pxp can be used to reformat programs, by using a command of the form

% pxp dirty.p > clean.p

Berkeley Pascal User’s Manual

PS1:4-39

Note that since the shell creates the output file ‘clean.p’ before pxp executes, so ‘clean.p’ and

‘dirty.p’

must not be the same file.

Pxp automatically paragraphs the program, performing housekeeping chores such as
comment alignment, and treating blank lines, lines containing exactly one blank and lines
containing only a form-feed character as though they were comments, preserving their vertical
spacing effect in the output. Pxp distinguishes between four kinds of comments:

Left marginal comments, which begin in the first column of the input line and are

1
2)
3)

4)

placed in the first column of an output line.

Aligned comments, which are preceded by no input tokens on the input line.
These are aligned in the output with the running program text.

Trailing comments, which are preceded in the input line by a token with no more
than two spaces separating the token from the comment.

Right marginal comments, which are preceded in the input line by a token from
which they are separated by at least three spaces or a tab. These are aligned down
the right margin of the output, currently to the first tab stop after the 40th column

from the current “left margin”.

Consider the following program.

When formatted by pxp the following output is produced.

% cat comments.p

{ This is a left marginal comment. }

program hello(output);

var i : integer; {This is a trailing comment}

j : integer; {This is a right marginal comment})

k : array [1..10] of array [1..10] of integer; {Marginal, but past the margin}

An aligned, multi-line comment
which explains what this program is
all about

}

begin

i:= 1; {Trailing i comment}

{A left marginal comment}

{An aligned comment}

ji=1 {Right marginal comment})
k[1]:=1;

writeln(i, j, k[1])

end.

% pxp comments.p
{ This is a left marginal comment. }

program hello(output);
var
i: integer; {This is a trailing comment)
j: integer;
k: array [1..10] of array [1..10] of integer;

An aligned, multi-line comment
which explains what this program is
all about

)

(This is a right marginal comment}
{Marginal, but past the margin}

PS1:4-40 . Berkeley Pascal User's Manual

begin
i:= 1; {Trailing i comment}
{A left marginal comment}
{An aligned comment}
ji=1; {Right marginal comment}
k[1]:=1;
writeln(i, j, k[1])
end.
%

The following formatting related options are currently available in pxp. The options f and j
described in the previous section may also be of interest.

Strip comments -s
The s option causes pxp to remove all comments from the input text.

Underline keywords — _
A command line argument of the form - _ as in

% pxp —_ dirty.p
can be used to cause pxp to underline all keywords in the output for enhanced readability.

Specify indenting unit - [23456789]

The normal unit which pxp uses to indent a structure statement level is 4 spaces. By
giving an argument of the form -d with d a digit, 2 < d <9 you can specify that d spaces are
to be used per level instead.

5.8. Pxref

The cross-reference program pxref may be used to make cross-referenced listings of Pas-
cal programs. To produce a cross-reference of the program in the file ‘foo.p’ one can execute
the command:

% pxref foo.p

The cross-reference is, unfortunately, not block structured. Full details on pxref are given in
its manual section pxref (1).

5.9. Multi-file programs

A text inclusion facility is available with Berkeley Pascal. This facility allows the inter-
polation of source text from other files into the source stream of the translator. It can be used
to divide large programs into more manageable pieces for ease in editing, listing, and mainte-
nance.

The include facility is based on that of the UNIX C compiler. To trigger it you can place
the character ‘4’ in the first portion of a line and then, after an arbitrary number of blanks or
tabs, the word ‘include’ followed by a filename enclosed in single <> or double ‘"’ quotation
marks. The file name may be followed by a semicolon ‘;’ if you wish to treat this as a
pseudo-Pascal statement. The filenames of included files must end in ‘.i’. An example of the

use of included files in a main program would be:
program compiler(input, output, obj);

#include "globals.i"
#include "scanner.i”

Berkeley Pascal User’s Manual PS1:4-41

#include "parser.i”
#include "semantics.i”

begin
{ main program }
end.

At the point the include pseudo-statement is encountered in the input, the lines from the
included file are interpolated into the input stream. For the purposes of translation and run-
time diagnostics and statement numbers in the listings and post-mortem backtraces, the lines
in the included file are numbered from 1. Nested includes are possible up to 10 deep.

See the descriptions of the i option of pi in section 5.2 above; this can be used to con-
trol listing when include files are present.

When a non-trivial line is encountered in the source text after an include finishes, the
‘popped’ filename is printed, in the same manner as above.

For the purposes of error diagnostics when not making a listing, the filename will be
printed before each diagnostic if the current filename has changed since the last filename was
printed.

5.10. Separate Compilation with Pc

A separate compilation facility is provided with the Berkeley Pascal compiler, pc. This
facility allows programs to be divided into a number of files and the pieces to be compiled
individually, to be linked together at some later time. This is especially useful for large pro-
grams, where small changes would otherwise require time-consuming re-compilation of the
entire program.

Normally, pc expects to be given entire Pascal programs. However, if given the -¢
option on the command line, it will accept a sequence of definitions and declarations, and
compile them into a .o file, to be linked with a Pascal program at a later time. In order that
procedures and functions be available across separately compiled files, they must be declared
with the directive external. This directive is similar to the directive forward in that it must
precede the resolution of the function or procedure, and formal parameters and function
result types must be specified at the external declaration and may not be specified at the reso-
lution.

Type checking is performed across separately compiled files. Since Pascal type
defintions define unique types, any types which are shared between separately compiled files
must be the same definition. This seemingly impossible problem is solved using a facility
similar to the include facility discussed above. Definitions may be placed in files with the
extension .h and the files included by separately compiled files. Each definition from a .h file
defines a unique type, and all uses of a definition from the same .h file define the same type.
Similarly, the facility is extended to allow the definition of comsts and the declaration of
labels, vars, and external functions and procedures. Thus procedures and functions which are
used between separately compiled files must be declared external, and must be so declared in
a .h file included by any file which calls or resolves the function or procedure. Conversely,
functions and procedures declared external may only be so declared in .h files. These files may
be included only at the outermost level, and thus define or declare global objects. Note that
since only external function and procedure declarations (and not resolutions) are allowed in .h
files, statically nested functions and procedures can not be declared external.

An example of the use of included .h files in a program would be:
program compiler(input, output, obj);

#include "globals.h"
#include "scanner.h”

PS1:4-42 Berkeley Pascal User's Manual

#include "parser.h”
#include "semantics.h”

begin
{ main program }
end.

This might include in the main program the definitions and declarations of all the global
labels, consts, types vars from the file globals.h, and the external function and procedure
declarations for each of the separately compiled files for the scanner, parser and semantics.
The header file scanner.h would contain declarations of the form:

type
token = record
{ token fields }
end;

function scan(var inputfile: text): token;
external,;

Then the scanner might be in a separately compiled file containing:

#include "globals.h"
#include "scanner.h”

function scan;
begin

{ scanner code }
end;

which includes the same global definitions and declarations and resolves the scanner functions
and procedures declared external in the file scanner.h.

A. Appendix to Wirth’s Pascal Report

This section is an appendix to the definition of the Pascal language in Niklaus Wirth’s
Pascal Report and, with that Report, precisely defines the Berkeley implementation. This
appendix includes a summary of extensions to the language, gives the ways in which the
undefined specifications were resolved, gives limitations and restrictions of the current imple-
mentation, and lists the added functions and procedures available. It concludes with a list of
differences with the commonly available Pascal 6000-3.4 implementation, and some com-
ments on standard and portable Pascal.

A.1. Extensions to the language Pascal
This section defines non-standard language constructs available in Berkeley Pascal. The

s standard Pascal option of the translators pi and pc can be used to detect these extensions in
programs which are to be transported.

String padding

Berkeley Pascal will pad constant strings with blanks in expressions and as value param-
eters to make them as long as is required. The following is a legal Berkeley Pascal program:

program x(output);
var z : packed array [1 .. 13] of char;
begin

z ;= Tted;

Berkeley Pascal User’s Manual PS1:4-43

writeln(z)
end;

The padded blanks are added on the right. Thus the assignment above is equivalent to:

z:= Ted

which is standard Pascal.

Octal constants, octal and hexadecimal write

~ Octal constants may be given as a sequence of octal digits followed by the character ‘b’
or ‘B’. The forms

write(a:n oct)

and

write(a:n hex)

cause the internal representation of expression @, which must be Boolean, character, integer,
pointer, or a user-defined enumerated type, to be written in octal or hexadecimal respectively.

Assert statement

An assert statement causes a Boolean expression to be evaluated each time the state-
ment is executed. A runtime error results if any of the expressions evaluates to be false. The
assert statement is treated as a comment if run-time tests are disabled. The syntax for assert
is:

assert <expr>

Enumerated type input-output

Enumerated types may be read and written. On output the string name associated with
the enumerated value is output. If the value is out of range, a runtime error occurs. On
input an identifier is read and looked up in a table of names associated with the type of the
variable, and the appropriate internal value is assigned to the variable being read. If the
name is not found in the table a runtime error occurs.

Structure returning functions

An extension has been added which allows functions to return arbitrary sized structures
rather than just scalars as in the standard.

Separate compilation

The compiler pc has been extended to allow separate compilation of programs. Pro-
cedures and functions declared at the global level may be compiled separately. Type checking
of calls to separately compiled routines is performed at load time to insure that the program
as a whole is consistent. See section 5.10 for details.

A.2. Resolution of the undefined specifications

File name - file variable associations

Each Pascal file variable is associated with a named UNIX file. Except for input and
output, which are exceptions to some of the rules, a name can become associated with a file in
any of three ways:

PS1:4-44 Berkeley Pascal User's Manual

1) If a global Pascal file variable appears. in the program statement then it is associ-
ated with UNIX file of the same name.

2) If a file was reset or rewritten using the extended two-argument form of reset or
rewrite then the given name is associated.

3) If a file which has never had UNIX name associated is reset or rewritten without

specifying a name via the second argument, then a temporary name of the form
‘tmp.x’ is associated with the file. Temporary names start with ‘tmp.1’ and con-
tinue by incrementing the last character in the USASCII ordering. Temporary files
are removed automatically when their scope is exited.

The program statement
The syntax of the program statement is:

program <id> (<file id> { , <fileid > }) ;

The file identifiers (other than input and output) must be declared as variables of file type in
the global declaration part.

The files input and output

The formal parameters input and output are associated with the UNIX standard input
and output and have a somewhat special status. The following rules must be noted:
1) The program heading must contains the formal parameter output. If input is used,
explicitly or implicitly, then it must also be declared here.

2) Unlike all other files, the Pascal files input and output must not be defined in a
declaration, as their declaration is automatically:

var input, output: text

3) The procedure reset may be used on input. If no UNIX file name has ever been
associated with input, and no file name is given, then an attempt will be made to
‘rewind’ input. If this fails, a run time error will occur. Rewrite calls to output act
as for any other file, except that output initially has no associated file. This means
that a simple

rewrite(output)
associates a temporary name with output.

Details for files

If a file other than input is to be read, then reading must be initiated by a call to the
procedure reset which causes the Pascal system to attempt to open the associated UNIX file
for reading. If this fails, then a runtime error occurs. Writing of a file other than output
must be initiated by a rewrite call, which causes the Pascal system to create the associated
UNIX file and to then open the file for writing only.

Buffering

The buffering for output is determined by the value of the b option at the end of the
program statement. If it has its default value 1, then output is buffered in blocks of up to 512
characters, flushed whenever a writeln occurs and at each reference to the file input. If it has
the value 0, output is unbuffered. Any value of 2 or more gives block buffering without line
or input reference flushing. All other output files are always buffered in blocks of 512 charac-
ters. All output buffers are flushed when the files are closed at scope exit, whenever the pro-
cedure message is called, and can be flushed using the built-in procedure flush.

Berkeley Pascal User’s Manual PS1:4-45

An important point for an interactive implementation is the definition of ‘input{’. If
input is a teletype, and the Pascal system reads a character at the beginning of execution to
define ‘inputf’, then no prompt could be printed by the program before the user is required to
type some input. For this reason, ‘inputf’ is not defined by the system until its definition is
needed, reading from a file occurring only when necessary.

The character set

Seven bit USASCII is the character set used on UNIX. The standard Pascal symbols ‘and’,
’or’, ’not’, '<=’, ’>=’, ’<>’, and the uparrow ‘4’ (for pointer qualification) are recognized.t
Less portable are the synonyms tilde *~ for not, ‘&’ for and, and ‘|’ for or.

Upper and lower case are considered to be distinct. Keywords and built-in procedure
and function names are composed of all lower case letters. Thus the identifiers GOTO and
GOto are distinct both from each other and from the keyword goto. The standard type
‘boolean’ is also available as ‘Boolean’.

Character strings and constants may be delimited by the character *” or by the character
‘#’; the latter is sometimes convenient when programs are to be transported. Note that the ‘#’
character has special meaning when it is the first character on a line — see Multi-file programs
below.

The standard types
The standard type integer is conceptually defined as

type integer = minint .. maxint;

Integer is implemented with 32 bit twos complement arithmetic. Predefined constants of
type integer are:

const maxint = 2147483647; minint = —-2147483648;

The standard type char is conceptually defined as

type char = minchar .. maxchar;

Built-in character constants are ‘minchar’ and ‘maxchar’, ‘bell’ and ‘tab’; ord(minchar) = 0,
ord(maxchar) = 127.

The type real is implemented using 64 bit floating point arithmetic. The floating point
arithmetic is done in ‘rounded’ mode, and provides approximately 17 digits of precision with
numbers as small as 10 to the negative 38th power and as large as 10 to the 38th power.

Comments

Comments can be delimited by either ‘(’ and ‘)’ or by ‘(** and ‘x)’. If the character ‘{’
appears in a comment delimited by ‘{(’ and ¢)’, a warning diagnostic is printed. A similar
warning will be printed if the sequence ‘(** appears in a comment delimited by ‘(»’ and ‘s).
The restriction implied by this warning is not part of standard Pascal, but detects many other-
wise subtle errors.

f

1On many terminals and printers, the up arrow is repr d as a cir “’. These are not distinct
characters, but rather different graphic representations of the same internal codes.
The proposed standard for Pascal considers them to be the same.

PS1:4-46 Berkeley Pascal User’s Manual

Option control

Options of the translators may be controlled in two distinct ways. A number of options
may appear on the command line invoking the translator. These options are given as one or
more strings of letters preceded by the character ‘-’ and cause the default setting of each given
option to be changed. This method of communication of options is expected to predominate
for UNIX. Thus the command

% pi -1 -s foo.p

translates the file foo.p with the listing option enabled (as it normally is off), and with only
standard Pascal features available.

If more control over the portions of the program where options are enabled is required,
then option control in comments can and should be used. The format for option control in
comments is identical to that used in Pascal 6000-3.4. One places the character ‘$’ as the
first character of the comment and follows it by a comma separated list of directives. Thus
an equivalent to the command line example given above would be:

{8$1+,s+ listing on, standard Pascal}

as the first line of the program. The ‘I’ option is more approrriately specified on the com-
mand line, since it is extremely unlikely in an interactive environment that one wants a listing
of the program each time it is translated.

Directives consist of a letter designating the option, followed either by a ‘+’ to turn the
option on, or by a ‘-’ to turn the option off. The b option takes a single digit instead of a ‘+’

Notes on the listings

The first page of a listing includes a banner line indicating the version and date of gen-
eration of pi or pc. It also includes the UNIX path name supplied for the source file and the
date of last modification of that file.

Within the body of the listing, lines are numbered consecutively and correspond to the
line numbers for the editor. Currently, two special kinds of lines may be used to format the
listing: a line consisting of a form-feed character, control-l, which causes a page eject in the
listing, and a line with no characters which causes the line number to be suppressed in the
listing, creating a truly blank line. These lines thus correspond to ‘eject’ and ‘space’ macros
found in many assemblers. Non-printing characters are printed as the character ‘?’ in the list-
ing.t

The standard procedure write

If no minimum field length parameter is specified for a write, the following default
values are assumed:

integer 10

real 22

Boolean length of ‘true’ or ‘false’
char 1

string length of the string
oct 11

hex 8

The end of each line in a text file should be explicitly indicated by ‘writeln(f)’, where

1The character generated by a control-i indents to the next ‘tab stop’. Tab stops are set every 8 columns in
UNIX. Tabs thus provide a quick way of indenting in the program.

Berkeley Pascal User’s Manual PS1:4-47

‘writeln(output)’ may be written simply as ‘writeln’. For UNIX, the built-in function ‘page(f)’
puts a single ASCII form-feed character on the output file. For programs which are to be tran-
sported the filter pcc can be used to interpret carriage control, as UNIX does not normally do
sO.

A.3. Restrictions and limitations

Files
Files cannot be members of files or members of dynamically allocated structures.

Arrays, sets and strings

The calculations involving array subscripts and set elements are done with 16 bit arith-
metic. This restricts the types over which arrays and sets may be defined. The lower bound
of such a range must be greater than or equal to -32768, and the upper bound less than
32768. In particular, strings may have any length from 1 to 65535 characters, and sets may
contain no more than 65535 elements.

Line and symbol length

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be
distinct if they differ in any single position over their entire length. There is a limit, however,
on the maximum input line length. This limit is quite generous however, currently exceeding
160 characters.

Procedure and function nesting and program size

At most 20 levels of procedure and function nesting are allowed. There is no fundamen-
tal, translator defined limit on the size of the program which can be translated. The ultimate
limit is supplied by the hardware and thus, on the PDP-11, by the 16 bit address space. If one
runs up against the ‘ran out of memory’ diagnostic the program may yet translate if smaller
procedures are used, as a lot of space is freed by the translator at the completion of each pro-
cedure or function in the current implementation.

On the VAX-11, there is an implementation defined limit of 65536 bytes per variable.
There is no limit on the number of variables.

Overflow

There is currently no checking for overflow on arithmetic operations at run-time on the
pDP-11. Overflow checking is performed on the VAX-11 by the hardware.

A.4. Added types, operators, procedures and functions

Additional predefined types
The type alfa is predefined as:

type alfa = packed array [1..10] of char

The type intset is predefined as:

type intset = set of 0..127

In most cases the context of an expression involving a constant set allows the translator to
determine the type of the set, even though the constant set itself may not uniquely determine
this type. In the cases where it is not possible to determine the type of the set from local con-
text, the expression type defaults to a set over the entire base type unless the base type is
integert. In the latter case the type defaults to the current binding of intset, which must be

+The current translator makes a special case of the construct ‘if ... in [...]’ and enforces only the more lax
restriction on 16 bit arithmetic given above in this case.

PS1:4-48

Berkeley Pascal User's Manual

“type set of (a subrange of) integer” at that point.
Note that if intset is redefined via:

type intset = set of
then the default integer set

0..58;
is the implicit intset of Pascal 6000-3.4

Additional predefined operators
The relationals ‘<’ and ‘>’ of proper set inclusion are available. With ¢ and b sets, note

that

(not (a < b)) <> (a

>=b)

As an example consider the sets a = [0,2] and b = [1]. The only relation true between these

sets is ‘<>’.

Non-standard procedures
argv(i,a)

date(a)

flush(f)
halt

linelimit(f,x)

message(X,...)

null

remove(a)
reset(f,a)
rewrite(f,a)
stlimit(i)

time(a)

tCurrently ignored by pdp-11 px.

where i is an integer and a is a string variable assigns the (possi-
bly truncated or blank padded) i ’th argument of the invocation of
the current UNIX process to the variable a. The range of valid i
is 0 to argc-1.

assigns the current date to the alfa variable a in the format ‘dd
mmm yy ’, where ‘mmm’ is the first three characters of the month,
ie. ‘Apr’.

writes the output buffered for Pascal file f into the associated
UNIX file.

terminates the execution of the program with a control flow back-
trace.

with f a textfile and x an integer expression causes the program to
be abnormally terminated if more than x lines are written on file
f. If x is less than 0 then no limit is imposed.

causes the parameters, which have the format of those to the
built-in procedure write, to be written unbuffered on the diagnostic
unit 2, almost always the user’s terminal.

a procedure of no arguments which does absolutely nothing. It is
useful as a place holder, and is generated by pxp in place of the
invisible empty statement.

where a is a string causes the UNIX file whose name is a, with
trailing blanks eliminated, to be removed.

where a is a string causes the file whose name is @ (with blanks
trimmed) to be associated with f in addition to the normal func-
tion of reset.

is analogous to ‘reset’ above.

where i is an integer sets the statement limit to be / statements.
Specifying the p option to pc disables statement limit counting.
causes the current time in the form ¢ hh:mm:ss ’ to be assigned to
the alfa variable a.

Berkeley Pascal User’s Manual PS1:4-49

Non-standard functions

argc returns the count of arguments when the Pascal program was
invoked. Argc is always at least 1.

card(x) returns the cardinality of the set x, i.e. the number of elements
contained in the set.

clock returns an integer which is the number of central processor mil-
liseconds of user time used by this process.

expo(x) yields the integer valued exponent of the floating-point representa-
tion of x; expo(x) = entier(log2(abs(x))).

random(x) where x is a real parameter, evaluated but otherwise ignored,

invokes a linear congruential random number generator. Succes-
sive seeds are generated as (seed#a + c¢) mod m and the new ran-
dom number is a normalization of the seed to the range 0.0 to 1.0;
a is 62605, c is 113218009, and m is 536870912, The initial seed
is 7774755.

seed(i) where i is an integer sets the random number generator seed to i
and returns the previous seed. Thus seed(seed(i)) has no effect
except to yield value 7.

sysclock an integer function of no arguments returns the number of central
processor milliseconds of system time used by this process.
undefined(x) a Boolean function. Its argument is a real number and it always

returns false.

wallclock an integer function of no arguments returns the time in seconds
since 00:00:00 GMT January 1, 1970.

A.5. Remarks on standard and portable Pascal

It is occasionally desirable to prepare Pascal programs which will be acceptable at other
Pascal installations. While certain system dependencies are bound to creep in, judicious
design and programming practice can usually eliminate most of the non-portable usages.
Wirth’s Pascal Report concludes with a standard for implementation and program exchange.

In particular, the following differences may cause trouble when attempting to transport
programs between this implementation and Pascal 6000-3.4. Using the s translator option
may serve to indicate many problem areas.}

Features not available in Berkeley Pascal
Segmented files and associated functions and procedures.
The function trunc with two arguments.
Arrays whose indices exceed the capacity of 16 bit arithmetic.

Features available in Berkeley Pascal but not in Pascal 6000-3.4
The procedures reset and rewrite with file names.
The functions argc, seed, sysclock, and wallclock.
The procedures argv, flush, and remove.
Message with arguments other than character strings.

+The s option does not, however, check that identifiers differ in the first 8 characters. Pi and pc also do
not check the semantics of packed.

PS1:4-50 Berkeley Pascal User's Manual

Write with keyword hex.

The assert statement.

Reading and writing of enumerated types.
Allowing functions to return structures.
Separate compilation of programs.
Comparison of records.

Other problem areas

Sets and strings are more general in Berkeley Pascal; see the restrictions given in the
Jensen-Wirth User Manual for details on the 6000-3.4 restrictions.

The character set differences may cause problems, especially the use of the function chr,
characters as arguments to ord, and comparisons of characters, since the character set order-
ing differs between the two machines.

The Pascal 6000-3.4 compiler uses a less strict notion of type equivalence. In Berkeley
Pascal, types are considered identical only if they are represented by the same type identifier.
Thus, in particular, unnamed types are unique to the variables/fields declared with them.

Pascal 6000-3.4 doesn’t recognize our option flags, so it is wise to put the control of
Berkeley Pascal options to the end of option lists or, better yet, restrict the option list length
to one.

For Pascal 6000-3.4 the ordering of files in the program statement has significance. It is
desirable to place input and output as the first two files in the program statement.

Acknowledgments

The financial support of William Joy and Susan Graham by the National Science Foun-
dation under grants MCS74-07644-A04, MCS78-07291, and MCS80-05144, and the William
Joy by an IBM Graduate Fellowship are gratefully acknowledged.

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-1

Berkeley VAX/UNIX Assembler Reference Manual

John F. Reiser
Bell Laboratories,
Holmdel, NJ

and

Robert R. Henry!
Electronics Research Laboratory
University of California
Berkeley, CA 94720

November 5, 1979

Revised
February 9, 1983

1. Introduction

This document describes the usage and input syntax of the UNIX VAX-11 assembler as.
As is designed for assembling the code produced by the “C” compiler; certain concessions
have been made to handle code written directly by people, but in general little sympathy has
been extended. This document is intended only for the writer of a compiler or a maintainer
of the assembler.

1.1. Assembler Revisions since November 5, 1979

There has been one major change to as since the last release. As has been updated to
assemble the new instructions and data formats for “G” and “H” floating point numbers,
as well as the new queue instructions.

1.2. Features Supported, but No Longer Encouraged as of February 9, 1983
These feature(s) in as are supported, but no longer encouraged.
- The colon operator for field initialization is likely to disappear.

2. Usage
As is invoked with these command arguments:
as [-LVWJIR] [-dn][-DTS] [-t directory] [-0 output] [name,] - - - [name,]

The -L flag instructs the assembler to save labels beginning with a “L” in the symbol
table portion of the output file. Labels are not saved by default, as the default action of the
link editor /d is to discard them anyway.

The -V flag tells the assembler to place its interpass temporary file into virtual
memory. In normal circumstances, the system manager will decide where the temporary file
should lie. Our experiments with very large temporary files show that placing the temporary
file into virtual memory will save about 13% of the assembly time, where the size of the tem-
porary file is about 350K bytes. Most assembler sources will not be this long.

Preparation of this paper supported in part by the National Science Foundation under grant MCS #78-07291.

February 9, 1983 1

-]
n
Y
ih
1
N

Rerkeley VAX/IINIX Assembler Reforance Manual

v AL NaJs SABEC S e

The ~W turns of all warning error reporting.

The -J flag forces UNIX style pseudo-branch instructions with destinations further
away than a byte displacement to be turned into jump instructions with 4 byte offsets. The
-J flag buys you nothing if -d2 is set. (See §8.4, and future work described in §11)

The -R flag effectively turns “.data n” directives into “.text n” directives. This obvi-
ates the need to run editor scripts on assembler source to “read-only” fix initialized data
segments. Uninitialized data (via .lcomm and .comm directives) is still assembled into the
data or bss segments.

The -d flag specifies the number of bytes which the assembler should allow for a dis-
placement when the value of the displacement expression is undefined in the first pass. The
possible values of 7 are 1, 2, or 4; the assembler uses 4 bytes if -d is not specified. See §8.2.

Provided the -V flag is not set, the —t flag causes the assembler to place its single tem-
porary file in the directory instead of in /tmp.

The -o flag causes the output to be placed on the file output. By default, the output of
the assembler is placed in the file a.out in the current directory.

The input to the assembler is normally taken from the standard input. If file argu-
ments occur, then the input is taken sequentially from the files name,, name, - - - name,
This is not to say that the files are assembled separately; name, is effectively concatenated to
name,, so multiple definitions cannot occur amongst the input sources.

The -D (debug), -T (token trace), and the -S (symbol table) flags enable assembler
trace information, provided that the assembler has been compiled with the debugging code
enabled. The information printed is long and boring, but useful when debugging the assem-
bler.

3. Lexical conventions

Assembler tokens include identifiers (alternatively, “symbols” or “names”), constants,
and operators.

3.1. Identifiers

An identifier consists of a sequence of alphanumeric characters (including period “.”,
underscore “_”, and dollar “$”). The first character may not be numeric. Identifiers may

be (practically) arbitrary long; all characters are significant.
3.2. Constants

3.2.1. Scalar constants

All scalar (non floating point) constants are (potentially) 128 bits wide. Such con-
stants are interpreted as two’s complement numbers. Note that 64 bit (quad words) and
128 bit (octal word) integers are only partially supported by the VAX hardware. In addi-
tion, 128 bit integers are only supported by the extended VAX architecture. As supports 64
and 128 bit integers only so they can be used as immediate constants or to fill initialized
data space. As can not perform arithmetic on constants larger than 32 bits.

Scalar constants are initially evaluated to a full 128 bits, but are pared down by dis-
carding high order copies of the sign bit and categorizing the number as a long, quad or
octal integer. Numbers with less precision than 32 bits are treated as 32 bit quantities.

The digits are “0123456789abcdefABCDEF” with the obvious values.
An octal constant consists of a sequence of digits with a leading zero.

2 February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-3

A decimal constant consists of a sequence of digits without a leading zero.

A hexadecimal constant consists of the characters “0x” (or “0X”) followed by a
sequence of digits.

A single-character constant consists of a single quote “’” followed by an ASCII char-
acter, including ASCII newline. The constant’s value is the code for the given character.

3.2.2. Floating Point Constants

Floating point constants are internally represented in the VAX floating point format
that is specified by the lexical form of the constant. Using the meta notation that [dec] is
a decimal digit (“0123456789”), [expt] is a type specification character (“fFdDhHgG”),
[expe] is a exponent delimiter and type specification character (“eEfFdDhHgG”), x* means
0 or more occurences of x, x* means 1 or more occurences of x, then the general lexical
form of a floating point number is:

Ofexpe]([+-][dec]*(.)([dec]")([expt]([+-])(dec]*))
The standard semantic interpretation is used for the signed integer, fraction and signed
power of 10 exponent. If the exponent delimiter is specified, it must be either an “e” or
“E”, or must agree with the initial type specification character that is used. The type
specification character specifies the type and representation of the constructed number, as
follows:

type character floating representation size (bits)

f,F F format floating 32
d, D D format floating 64
e, G G format floating 64
h,H H format floating 128

Note that “G” and “H” format floating point numbers are not supported by all implemen-
tations of the VAX architecture. As does not require the augmented architecture in order
to run.

The assembler uses the library routine atoff) to convert “F” and “D” numbers, and
uses its own conversion routine (derived from atof, and believed to be numerically accu-
rate) to convert “G” and “H” floating point numbers.

Collectively, all floating point numbers, together with quad and octal scalars are
called Bignums. When as requires a Bignum, a 32 bit scalar quantity may also be used.

3.2.3. String Constants

A string constant is defined using the same syntax and semantics as the “C” language
uses. Strings begin and end with a *“*”’ (double quote). The DEC MACRO-32 assembler con-
ventions for flexible string quoting is not implemented. All “C” backslash conventions are
observed; the backslash conventions peculiar to the PDP-11 assembler are not observed.
Strings are known by their value and their length; the assembler does not implicitly end
strings with a null byte.

3.3. Operators
There are several single-character operators; see §6.1.

3.4. Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be
used within tokens (except character constants). A blank or tab is required to separate
adjacent identifiers or constants not otherwise separated.

February 9, 1983 3

- N v

PS1:54 Berkeley VAX/IINIX Acsembler Roference Manua!

3.5. Scratch Mark Comments

The character “#” introduces a comment, which extends through the end of the line
on which it appears. Comments starting in column 1, having the format “#
expression string”, are interpreted as an indication that the assembler is now assembling
file string at line expression. Thus, one can use the “C” preprocessor on an assembly
language ‘source file, and use the #include and #define preprocessor directives. (Note that
there may not be an assembler comment starting in column 1 if the assembler source is
given to the “C” preprocessor, as it will be interpreted by the preprocessor in a way not
intended.) Comments are otherwise ignored by the assembler.”

3.6. “C” Style Comments

The assembler will recognize “C” style comments, introduced with the prologue /*
and ending with the epilogue */. “C” style comments may extend across multiple lines, and
are the preferred comment style to use if one chooses to use the “C” preprocessor.

4. Segments and Location Counters

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The UNIX operating system makes some assumptions about the con-
tent of these segments; the assembler does not. Within the text and data segments there are
a number of sub-segments, distinguished by number (“text 07, “text 1, - - - “data 0”, “‘data
17, - -+). Currently there are four subsegments each in text and data. The subsegments are
for programming convenience only.

Before writing the output file, the assembler zero-pads each text subsegment to a multi-
ple of four bytes and then concatenates the subsegments in order to form the text segment;
an analogous operation is done for the data segment. Requesting that the loader define sym- .
bols and storage regions is the only action allowed by the assembler with respect to the bss
segment. Assembly begins in “text 0.

Associated with each (sub)segment is an implicit location counter which begins at zero
and is incremented by 1 for each byte assembled into the (sub)segment. There is no way to
explicitly reference a location counter. Note that the location counters of subsegments other
than “text 0 and “data 0” behave peculiarly due to the concatenation used to form the text
and data segments.

5. Statements

A source program is composed of a sequence of statements. Statements are separated
either by new-lines or by semicolons. There are two kinds of statements: null statements and
keyword statements. Either kind of statement may be preceded by one or more labels.

5.1. Named Global Labels

A global label consists of a name followed by a colon. The effect of a name label is to
assign the current value and type of the location counter to the name. An error is indicated
in pass 1 if the name is already defined; an error is indicated in pass 2 if the value assigned
changes the definition of the label.

A global label is referenced by its name.
Global labels beginning with a “ L are discarded unless the -L option is in effect.

5.2. Numeric Local Labels

A numeric label consists of a digit 0 to 9 followed by a colon. Such a label serves to
define temporary symbols of the form “nb” and “nf”, where n is the digit of the label. As

4 February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-5

in the case of name labels, a numeric label assigns the current value and type of the loca-
tion counter to the temporary symbol. However, several numeric labels with the same digit
may be used within the same assembly. References to symbols of the form “nb” refer to
the first numeric label “n:” backwards from the reference; “nf” symbols refer to the first
numeric label “n:” forwards from the reference. Such numeric labels conserve the inven-
tive powers of the human programmer.

For various reasons, as turns local labels into labels of the form Ln.$m. Although
unlikely, these generated labels may conflict with programmer defined labels.

5.3. Null statements

A null statement is an empty statement ignored by the assembler. A null statement
may be labeled, however.

5.4. Keyword statements

A keyword statement begins with one of the many predefined keywords known to as;
the syntax of the remainder of the statement depends on the keyword. All instruction
opcodes are keywords. The remaining keywords are assembler pseudo-operations, also
called directives. The pseudo-operations are listed in §8, together with the syntax they
require.

6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, operators, and parentheses. Each expression has a type.

All operators in expressions are fundamentally binary in nature. Arithmetic is two’s
complement and has 32 bits of precision. A4s can not do arithmetic on floating point
numbers, quad or octal precision scalar numbers. There are four levels of precedence, listed
here from lowest precedence level to highest:

precedence operators
binary +, -
binary |, &,",!
binary * /, %,
unary -

All operators of the same precedence are evaluated strictly left to right, except for the
evaluation order enforced by parenthesis.

6.1. Expression Operators
The operators are:

February 9, 1983 5

- N v

PS1:5-6

Berkeley VAX/UNIX Assembler Reference Manual

operator meaning
+ addition
(binary) subtraction
multiplication
division
modulo
(unary) 2’s complement
bitwise and
bitwise or
bitwise exclusive or
bitwise or not
bitwise 1’s complement

YR | R~ % |

> logical right shift
>> logical right shift
< logical left shift
< logical left shift

Expressions may be grouped by use of parentheses, “(” and “)”.

6.2. Data Types

The assembler manipulates several different types of expressions. The types likely to
be met explicitly are:

undefined Upon first encounter, each symbol is undefined. It may become undefined if it

is assigned an undefined expression. It is an error to attempt to assemble an
undef