
-

PSI

Unix Programmer's Manual
Supplementary Documents 1

•

Printed by the USENIX Association as a service to the UNIX Communi­
ty. This material is copyrighted by The Regents of the University of
California and/or Bell Telephone Laboratories, and is reprinted by per­
mission. Permission for the publication or other use of these materials
may be granted only by the Licensors and copyright holders.

Cover design by John Lassetter, Lucasfilm, Ltd.

4.2 BSD edition:
First Printing
Second Printing
Third Printing
Fourth Printing

4.3 BSD edition:
First Printing
Second Printing

July 1984
December 1984
September 1985
March 1986

November 1986
June 1987

UNIX Programmer's Supplementary Documents
Volume 1

(PSl)

4.3 Berkeley Software Distribution
Virtual V AX-11 Version

·~:·.

April, 1986

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California 94 720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Documents PSI:!, 9, 10, 12, 15, 16, and 17 are copyright 197°9,
AT&T Bell Laboratories, Incorporated. Documents PS1:2, and
5 are modifications of earlier documents that are copyrighted
1979 by AT&T Bell Laboratories, Incorporated. Holders of
UNIX™/32V, System III, or System V software licenses are
permitted to copy these documents, or any portion of them, as
necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

Document PSl:l3 is part of the user contributed software and
is copyright 1983 by Walter F. Tichy. Permission to copy the
RCS documentation or any portion thereof as necessary for
licensed use of the software is granted to licensees of this
software, provided this copyright notice is included.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
N00039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

PS I Contents

UNIX Programmer's Supplementary Documents, Volume I (PSI)

4.3 Berkeley Software Distribution, Virtual VAX-11 Version

April, 1986

These two volumes contain documents which supplement the manual pages in The UN!Xf
Programmer's Reference Manual for the Virtual VAX-I I version of the system as distributed by U.C.
Berkeley.

Languages in common use (other languages in Programmer's Supplement, volume 2)

The C Programming Language - Reference Manual PS I: I

Official statement of the syntax of C. Should be supplemented by "The C Programming
Language," B. W. Kernighan and D.M. Ritchie, Prentice-Hall, 1978, that contains a tutorial
introduction and many examples.

A Portable Fortran 77 Compiler PS1:2
A revised version of the document which originally appeared in Volume 2b of the Bell
Labs documentation; this version reflects the ongoing work at Berkeley.

Introduction to the f77 1/0 Library PSl:3

A description of the revised input/output library for Fortran 77, reflecting work carried out
at Berkeley.

Berkeley Pascal User's Manual PS1:4
An implementation of this language popular for learning to program.

Berkeley Vax/UNIX Assembler Reference Manual PSl:5
The usage and syntax of the assembler; useful mostly by compiler writers.

General Reference

Berkeley Software Architecture Manual (4.3 Edition) PS1:6
A concise and terse description of the system call interface provided in Berkeley Unix, as
revised for 4.3BSD. This will never be a best seller.

An Introductory 4.3BSD Interprocess Communication Tutorial PS1:7

How to write programs that use the Interprocess Communication Facilities of 4.3BSD.

t UNIX is a trademark of AT&T Bell Laboratories.

PS I Contents

An Advanced 4.3BSD Interprocess Communication Tutorial PSl:8

The reference document (with some examples) for the Interprocess Communication Facili­
ties of 4.3BSD.

Programming Tools
Lint, A C Program Checker PSl:9

Checks C programs for syntax errors, type violations, portability problems, and a variety
of probable errors.

A Tutorial Introduction to ADB PSl:IO

How to debug programs using the adb debugger. For hints on the use of ADB for debug­
ging the UNIX kernel, see "Using ADB to Debug the Kernel", SMM:3

Debugging with dbx PSI:!!

How to debug programs without having to know much about machine language.

Make - A Program for Maintaining Computer Programs PS I: 12

Indispensable tool for making sure large programs are properly compiled with minimal
effort.

An Introduction to the Revision Control System PSl:l3

RCS is a user-contributed tool for working together with other people without stepping on
each other's toes. An alternative to sccs for controlling software changes.

An Introduction to the Source Code Control System PSl:14

A useful introductory article for those users with installations licensed for SCCS.

YACC: Yet Another Compiler-Compiler PSl:15

Convert·s a BNF specification of a language and semantic actions written in C into a com­
piler for that language.

LEX - A Lexical Analyzer Generator PS1:16

Creates a recognizer for a set of regular expressions: each regular expression can be fol­
lowed by arbitrary C code to be executed upon finding the regular expression.

The M4 Macro Processor PSI :17

M4 is a macro processor useful in its own right and as a front-end for C, Ratfor, and
Cobol.

Programming Libraries
Screen Updating and Cursor Movement Optimization PSI: 18

Describes the curses package, an aid for writing screen-oriented, terminal-independent pro­
grams.

The C Programming Language - Reference Manual

Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

This manual is a reprint, with updates to the current C standard, from The C Programming
Language, by Brian W. Kernighan and Dennis M. Richie, Prentice-Hall, Inc., I 978.

1. Introduction

This manual describes the C language on the DEC PDP-I It, the DEC VAX-I I, and the AT&T
3B 20t. Where differences exist, it concentrates on the VAX, but tries to point out implementation­
dependent details. With few execptions, these dependencies follow directly from the underlying pro­
perties of the hardware; the various compilers are generally quite compatible.

2. Lexical Conventions

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other
separators. Blanks, tabs, new-lines, and comments (collectively, "white space") as described below
are ignored except as they serve to separate tokens. Some white space is required to separate other­
wise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken
to include the longest string of characters which could possibly constitute a token.

2.1. Comments

The characters /* introduce a comment which terminates with the characters *'· Comments do
not nest.

2.2. Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a Jetter. The under­
score (_) counts as a letter. Uppercase and lowercase letters are different. Although there is no limit
on the length of a name, only initial characters are significant: at least eight characters of a non­
external name, and perhaps fewer for external names. Moreover, some implementations may collapse
case distinctions for external names. The external name sizes include:

PDP-II
VAX-II
AT&T 3B 20

2.3. Keywords

7 characters, 2 cases
> 100 characters, 2 cases
>I 00 characters, 2 cases

The following identifiers are reserved for use as keywords and may not be used otherwise:

t DEC PDP-I I, and DEC VAX-I I are trademarks of Digital Equipment Corporation.

* 3B 20 is a trademark of AT&T.

PSl:l-2 The C Programming Language - Reference Manual

auto do for return typedef
break double goto short union
case else If sizeof unsigned
char en um Int static void
continue external long struct while
default float register switch

Some implementations also reserve the words fortran, asm, gfloat, hfloat and quad

2.4. Constants
There are several kinds of constants. Each has a type; an introduction to types is given in

"NAMES." Hardware characteristics that affect sizes are summarized in "Hardware Characteristics"
under "LEXICAL CONVENTIONS."

2.4.1. Integer Constants
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0

(digit zero). An octal constant consists of the digits 0 through 7 only. A sequence of digits preceded
by Ox or OX (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits include a or A
through for F with values 10 through 15. Otherwise, the integer constant is taken to be decimal. A
decimal constant whose value exceeds the largest signed machine integer is taken to be long; an octal
or hex constant which exceeds the largest unsigned machine integer is likewise taken to be long. Oth­
erwise, integer constants are int.

2.4.2. Explicit Long Constants
A decimal, octal, or hexadecimal integer constant immediately followed by I (letter ell) or L is a

long constant. As discussed below, on some machines integer and long values may be considered
identical.

2.4.3. Character Constants
A character constant is a character enclosed in single quotes, as in 'x'. The value of a character

constant is the numerical value of the character in the machine's character set.
Certain nongraphic characters, the single quote (') and the backslash (\), may be represented

according to the following table of escape sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
forin feed FF \f
backslash \ \\
single quote \'
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by l, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is \0 (not followed by a
digit), which indicates the character NUL. If the character following a backslash is not one of those
specified, the behavior is undefined. A new-line character is illegal in a character constant. The type
of a character constant is int.

The C Programming Language - Reference Manual PSJ:J-3

2.4.4. Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of
digits. Either the integer part or the fraction part (not both) may be missing. Either the decimal
point or the e and the exponent (not both) may be missing. Every floating constant has type double.

2.4.5. Enumeration Constants

Names declared as enumerators (see "Structure, Union, and Enumeration Declarations" under
"DECLARATIONS") have type int.

2.5. Strings

A string is a sequence of characters surrounded by double quotes, as in " ... ". A string has type
"array of char" and storage class static (see "NAMES") and is initialized with the given characters.
The compiler places a null byte (\0) at the end of each string so that programs which scan the string
can find its end. In a string, the double quote character (") must be preceded by a \; in addition, the
same escapes as described for character constants may be used.

A \ and the immediately following new-line are ignored. All strings, even when written identi­
cally, are distinct.

2.6. Hardware Characteristics

The following figure summarize certain hardware properties that vary from machine to machine.

DEC PDP-11 DEC VAX-11 AT&T 38
(ASCII) (ASCII) (ASCII)

char 8 bits 8 bits 8bits
int 16 32 32
short 16 16 16
long 32 32 32
float 32 32 32
double 64 64 64

float range ±10 ±38 ±10 ±38 ±10 ±38

double range ±10 ±38 ±10 ±38 ±10 ±308

3. Syntax Notation

Syntactic categories are indicated by italic type and literal words and characters in bold type.
Alternative categories are listed on separate lines. An optional terminal or nonterminal symbol is
indicated by the subscript "opt," so that

{ expression }
opt

indicates an optional expression enclosed in braces. The syntax is summarized in "SYNTAX SUM­
MARY".

4. Names

The C language bases the interpretation of an identifier upon two attributes of the identifier -
its storage class and its type. The storage class determines the location and lifetime of the storage
associated with an identifier; the type determines the meaning of the values found in the identifier's
storage.

PSl:l-4 The C Programming Language - Reference Manual

4.1. Storage Class

There are four declarable storage classes: Automatic Static External Register.

Automatic variables are local to each invocation of a block (see "Compound Statement or
Block" in "STATEMENTS") and are discarded upon exit from the block. Static variables are local to
a block but retain their values upon reentry to a block even after control has left the block. External
variables exist and retain their values throughout the execution of the entire program and may be
used for communication between functions, even separately compiled functions. Register variables
are (if possible) stored in the fast registers of the machine; like automatic variables, they are local to
each block and disappear on exit from the block.

4.2. Type

The C language supports several fundamental types of objects. Objects declared as characters
(char) are large enough to store any member of the implementation's character set. If a genuine char­
acter from that character set is stored in a char variable, its value is equivalent to the integer code for
that character. Other quantities may be stored into character variables, but the implementation is
machine dependent. In particular, char may be signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer integers
provide no less storage than shorter ones, but the implementation may make either short integers or
long integers, or both, equivalent to plain integers. "Plain" integers have the natural size suggested
by the host machine architecture. The other sizes are provided to meet special needs.

The properties of enum types (see "Structure, Union, and Enumeration Declarations" under
"DECLARATIONS") are identical to those of some integer types. The implementation may use the
range of values to determine how to allocate storage.

Unsigned integers, declared unsigned, obey the iaws of arithmetic modulo 2n where n is the
number of bits in the representation. (On the PDP-11, unsigned long quantities are not supported.)

Single-precision floating point (float) and double precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be
referred to as arithmetic types. Char, int of all sizes whether unsigned or not, and enum will collec­
tively be called integral types. The float and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned by functions that
generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types
constructed from the fundamental types in the following ways: Arrays of objects of most types Func­
tions which return objects of a given type Pointers to objects of a given type Structures containing a
sequence of objects of various types Unions capable of containing any one of several objects of vari­
ous types.

In general these methods of constructing objects can be applied recursively.

5. Objects and Lvalues

An object is a manipulatable region of storage. An /value is an expression referring to an object.
An obvious example of an !value expression is an identifier. There are operators which yield !values:
for example, if E is an expression of pointer type, then •E is an !value expression referring to the
object to which E points. The name "!value" comes from the assignment expression El = E2 in
which the left operand El must be an !value expression. The discussion of each operator below indi­
cates whether it expects !value operands and whether it yields an !value.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This part explains the result to be expected from such conver­
sions. The conversions demanded by most ordinary operators are summarized under "Arithmetic

The C Programming Language - Reference Manual PSI: 1-5

Conversions." The summary will be supplemented as required by the discussion of each operator.

6.1. Characters and Integers

A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a shorter integer to a longer preserves sign. Whether
or not sign-extension occurs for characters is machine dependent, but it is guaranteed that a member
of the standard character set is non-negative. Of the machines treated here, only the PDP-I I and
VAX-I I sign-extend. On these machines, char variables range in value from -128 to 127. The more
explicit type unsigned char forces the values to range from 0 to 255.

On machines that treat characters as signed, the characters of the ASCII set are all non-negative.
However, a character constant specified with an octal escape suffers sign extension and may appear
negative; for example, '\377' has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is truncated on the left.
Excess bits are simply discarded.

6.2. Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float appears in an
expression it is lengthened to double by zero padding its fraction. When a double must be converted
to float, for example by an assignment, the double is rounded before truncation to float length. This
result is undefined if it cannot be represented as a float. On the VAX, the compiler can be directed to
use single percision for expressions containing only float and interger operands.

6.3. Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In particular, the
direction of truncation of negative numbers varies. The result is undefined if it will not fit in the
space provided.

Conversions of integral values to floating type are well behaved. Some loss of accuracy occurs if
the destination lacks sufficient bits.

6.4. Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case, the
first is converted as specified in the discussion of the addition operator. Two pointers to objects of
the same type may be subtracted; in this case, the result is converted to an integer as specified in the
discussion of the subtraction operator.

6.5. Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain integer is converted

to unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed
integer (modulo 2wordsize). In a 2's complement representation, this conversion is conceptual; and
there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is the same numeri­
cally as that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6. Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This pattern
will be called the "usual arithmetic conversions." First, any operands of type char or short are con­
verted to int, and any operands of type unsigned char or unsigned short are converted to unsigned int.
Then, if either operand is double, the other is converted to double and that is the type of the result.
Otherwise, if either operand is unsigned long, the other is converted to unsigned long and that is the
type of the result. Otherwise, if either operand is long, the other is converted to long and that is the
type of the result. Otherwise, if one operand is long, and the other is unsigned int, they are both

PSl:l-6 The C Programming Language - Reference Manual

converted to unsigned long and that is the type of the result. Otherwise, if either operand is unsigned,
the other is converted to unsigned and that is the type of the result. Otherwise, both operands must
be int, and that is the type of the result.

6.7. Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor
implicit conversion may be applied. Because a void expression denotes a nonexistent value, such an
expression may be used only as an expression statement (see "Expression Statement" under "STATE­
MENTS") or as the left operand of a comma expression (see "Comma Operator" under "EXPRES­
SIONS").

An expression may be converted to type void by use of a cast. For example, this makes explicit
the discarding of the value of a function call used as an expression statement.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this
section, highest precedence first. Thus, for example, the expressions referred to as the operands of +
(see "Additive Operators") are those expressions defined under "Primary Expressions'', "Unary
Operators", and "Multiplicative Operators". Within each subpart, the operators have the same pre­
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators are summarized in the grammar of
"SYNTAX SUMMARY".

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler con­
siders itself free to compute subexpressions in the order it believes most efficient even if the subex­
pressions involve side effects. The order in which subexpression evaluation takes place is unspecified.
Expressions involving a commutative and associative operator(•, +, &, I,-) may be rearranged arbi­
trarily even in the presence of parentheses; to force a particular order of evaluation, an explicit tem­
porary must be used.

The handling of overflow and divide check in expression evaluation is undefined. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point
exceptions varies between machines and is usually adjustable by a library function.

7.1. Primary Expressions

Primary expressions involving., ->,subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-list)
primary-expression . identifier opt

primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as discussed below.
Its type is specified by its declaration. If the type of the identifier is "array of ... ", then the value of
the identifier expression is a pointer to the first object in the array; and the type of the expression is
"pointer to ... ". Moreover, an array identifier is not an !value expression. Likewise, an identifier
which is declared "function returning ... ", when used except in the function-name position of a call,

The C Programming Language - Reference Manual PSl: 1-7

is converted to "pointer to function returning ... ".
A constant is a primary expression. Its type may be int, long, or double depending on its form.

Character constants have type int and floating constants have type double.
A string is a primary expression. Its type is originally "array of char", but following the same

rule given above for identifiers, this is modified to "pointer to char" and the result is a pointer to the
first character in the string. (There is an exception in certain initializers; see "Initialization" under
"DECLARATIONS.")

A parenthesized expression is a primary expression whose type and value are identical to those
of the unadorned expression. The presence of parentheses does not affect whether the expression is
an !value.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer to ... ", the
subscript expression is int, and the type of the result is " ... ''. The expression El(E2) is identical (by
definition) to •((El)+ E2)). All the clues needed to understand this notation are contained in this sub­
part together with the discussions in "Unary Operators" and "Additive Operators" on identifiers, •
and + respectively. The implications are summarized under "Arrays, Pointers, and Subscripting"
under "TYPES REVISITED."

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The pri­
mary expression must be of type "function returning .. ., " and the result of the function call is of type
" ... ''. As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer; thus in the most common case,
integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of type char or
short are converted to int. Array names are converted to pointers. No other conversions are per­
formed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see "Unary Operators" and
"Type Names" under "DECLARATIONS."

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all argu­
ment passing in C is strictly by value. A function may change the values of its formal parameters,
but these changes cannot affect the values of the actual parameters. It is possible to pass a pointer on
the understanding that the function may change the value of the object to which the pointer points.
An array name is a pointer expression. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first
expression must be a structure or a union, and the identifier must name a member of the structure or
union. The value is the named member of the structure or union, and it is an !value if the first
expression is an !value.

A primary expression followed by an arrow (built from - and >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must
name a member of that structure or union. The result is an !value referring to the named member of
the structure or union to which the pointer expression points. Thus the expression El-> MOS is the
same as (•El).MOS. Structures and unions are discussed in "Structure, Union, and Enumeration
Declarations" under "DECLARATIONS."

7.2. Unary Operators
Expressions with unary operators group right to left.

PSl:l-8

unary-expression:
* expression
& /value
- expression
! expression

expression
++!value
--/value
/value++
/value - -
(type-name) expression
sizeof expression
sizeof (type-name)

The C Programming Language - Reference Manual

The unary * operator means indirection ; the expression must be a pointer, and the result is an
!value referring to the object to which the expression points. If the type of the expression is "pointer
to ... ," the type of the result is " ... ".

The result of the unary & operator is a pointer to the object referred to by the !value. If the
type of the !value is" ... ", the type of the result is "pointer to ... ".

The result of the unary - operator is the negative of its operand. The usual arithmetic conver­
sions are performed. The negative of an unsigned quantity is computed by subtracting its value from
2n where n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operatOi ! is one if the value of its operand is zero, zero if the
value of its operand is nonzero. The type of the result is int. It is applicable to any arithmetic type
or to pointers.

The - operator yields the one's complement of its operand. The usual arithmetic conversions
are performed. The type of the operand must be integral.

The object referred to by the !value operand of prefix + + is incremented. The value is the new
value of the operand but is not an !value. The expression + +x is equivalent to x=x+ 1. See the dis­
cussions "Additive Operators" and "Assignment Operators" for information on conversions.

The !value operand of prefix - - is decremented analogously to the prefix + + operator.

When postfix + + is applied to an !value, the result is the value of the object referred to by the
!value. After the result is noted, the object is incremented in the same manner as for the prefix + +
operator. The type of the result is the same as the type of the !value expression.

When postfix - - is applied to an !value, the result is the value of the object referred to by the
!value. After the result is noted, the object is decremented in the manner as for the prefix - - opera­
tor. The type of the result is the same as the type of the !value expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value
of the expression to the named type. This construction is called a cast. Type names are described in
"Type Names" under "Declarations."

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations, a byte is the space
required to hold a char.) When applied to an array, the result is the total number of bytes in the
array. The size is determined from the declarations of the objects in the expression. This expression
is semantically an unsigned constant and may be used anywhere a constant is required. Its major use
is in communication with routines like storage allocators and 1/0 systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size in bytes of an object of the indicated type.

The C Programming Language - Reference Manual PSI: 1-9

The construction sizeof(type) is taken to be a unit, so the expression sizeof(type)-2 is the same
as (sizeof(type))-2.

7 .3. Multiplicative Operators
The multiplicative operators •, /, and % group left to right. The usual arithmetic conversions

are performed.

multiplicative expression:
expression * expression
expression I expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative, and expressions
with several multiplications at the same level may be rearranged by the compiler. The binary I opera­
tor indicates division.

The binary % operator yields the remainder from the division of the first expression by the
second. The operands must be integral.

When positive integers are divided, truncation is toward O; but the form of truncation is
machine-dependent if either operand is negative. On all machines covered by this manual, the
remainder has the same sign as the dividend. It is always true that (a/b)•b + a%b is equal to a (if b is
not 0).

7 .4. Additive Operators
The additive operators + and - group left to right. The usual arithmetic conversions are per­

formed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and
a value of any integral type may be added. The latter is in all cases converted to an address offset by
multiplying it by the length of the object to which the pointer points. The result is a pointer of the
same type as the original pointer which points to another object in the same array, appropriately
offset from the original object. Thus if P is a pointer to an object in an array, the expression P+ 1 is a
pointer to the next object in the array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level may be
rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual arithmetic conversions
are performed. Additionally, a value of any integral type may be subtracted from a pointer, and then
the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by
the length of the object) to an int representing the number of objects separating the pointed-to
objects. This conversion will in general give unexpected results unless the pointers point to objects in
the same array, since pointers, even to objects of the same type, do not necessarily differ by a multi­
ple of the object length.

7.5. Shift Operators

The shift operators << and >> group left to right. Both perform the usual arithmetic conver­
sions on their operands, each of which must be integral. Then the right operand is converted to int;
the type of the result is that of the left operand. The result is undefined if the right operand is nega­
tive or greater than or equal to the length of the object in bits. On the VAX a negative right operand
is interpreted as reversing the direction of the shift.

PSl:l-10

shift-expression:
expression <<expression
expression>> expression

The C Programming Language - Reference Manual

The value of El<<E2 is El (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits are 0
filled. The value of El>>E2 is El right-shifted E2 bit positions. The right shift is guaranteed to be
logical (0 fill) if El is unsigned; otherwise, it may be arithmetic.

7.6. Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression<= expression
expression>= expression

The operators< (less than), > (greater than), <= (less than or equal to), and>= (greater than or
equal to) all yield 0 if the specified relation is false and I if it is true. The type of the result is int.
The usual arithmetic conversions are performed. Two pointers may be compared; the result depends
on the relative locations in the address space of the pointed-to objects. Pointer comparison is port­
able only when the pointers point to objects in the same array.

7.7. Equality Operators

equality-expression:
expression = = expression
expression != expression

The = = (equal to) and the != (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence. (Thus a<b = = c<d is I whenever a<b and c<d have the
same truth value).

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to
which 0 has been assigned is guaranteed not to point to any object and will appear to be equal to 0.
In conventional usage, such a pointer is considered to be null.

7.8. Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The usual arith­
metic conversions are performed. The result is the bitwise AND function of the operands. The
operator applies only to integral operands.

7.9. Bitwise Exclusive OR Operator

exclusive-or-expression:
expression • expression

The • operator is associative, and expressions involving • may be rearranged. The usual arith­
metic conversions are performed; the result is the bitwise exclusive OR function of the operands.
The operator applies only to integral operands.

The C Programming Language - Reference Manual

7.10. Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

PSl:l-11

The I operator is associative, and expressions involving I may be rearranged. The usual arith­
metic conversions are performed; the result is the bitwise inclusive OR function of its operands. The
operator applies only to integral operands.

7.11. Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns I if both its operands evaluate to nonzero, 0
otherwise. Unlike &, && guarantees left to right evaluation; moreover, the second operand is not
evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or
be a pointer. The result is always int.

7.12. Logical OR Operator

logical-or-expression:
expression 11 expression

The 11 operator groups left to right. It returns 1 if either of its operands evaluates to nonzero, 0
otherwise. Unlike I, 11 guarantees left to right evaluation; moreover, the second operand is not
evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of the fundamental types or
be a pointer. The result is always int.

7.13. Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is
nonzero, the result is the value of the second expression, otherwise that of third expression. If possi­
ble, the usual arithmetic conversions are performed to bring the second and third expressions to a
common type. If both are structures or unions of the same type, the result has the type of the struc­
ture or union. If both pointers are of the same type, the result has the common type. Otherwise, one
must be a pointer and the other the constant 0, and the result has the type of the pointer. Only one
of the second and third expressions is evaluated.

7.14. Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an
!value as their left operand, and the type of an assignment expression is that of its left operand. The
value is the value stored in the left operand after the assignment has taken place. The two parts of a
compound assignment operator are separate tokens.

PSl:l-12

assignment-expression:
/value = expression
/value + = expression
/value - = expression
/value * = expression
/value I= expression
/value %= expression
/value >> = expression
/value<<= expression
/value &= expression
/value • = expression
/value I = expression

The C Programming Language - Reference Manual

In the simple assignment with =, the value of the expression replaces that of the object referred
to by the lvalue. If both operands have arithmetic type, the right operand is converted to the type of
the left preparatory to the assignment. Second, both operands may be structures or unions of the
same type. Finally, if the left operand is a pointer, the right operand must in general be a pointer of
the same type. However, the constant 0 may be assigned to a pointer; it is guaranteed that this value
will produce a null pointer distinguishable from a pointer to any object.

The behavior of an expression of the form El op = E2 may be inferred by taking it as
equivalent to El = El op (E2); however, El is evaluated only once. In+= and -=,the left operand
may be a pointer; in which case, the (integral) right operand is converted as explained in "Additive
Operators." All right operands and all nonpointer left operands must have arithmetic type.

7.15. Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value of the left
expression is discarded. The type and value of the result are the type and value of the right operand.
This operator groups left to right. In contexts where comma is given a special meaning, e.g., in lists
of actual arguments to functions (see "Primary Expressions") and lists of initializers (see "Initializa­
tion" under "DECLARATIONS"), the comma operator as described in this subpart can only appear
in parentheses. For example,

f(a, (t=3, t+ 2), c)

has three arguments, the second of which has the value 5.

8. Declarations

Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-list ;

opt

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers
consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-specifiers opt

opt

The list must be self-consistent in a way described below.

The C Programming Language - Reference Manual

8.1. Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

PSl:l-13

The typedef specifier does not reserve storage and is called a "storage class specifier" only for
syntactic convenience. See "Typedef' for more information. The meanings of the various storage
classes were discussed in "Names."

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case, there must be an external definition
(see "External Definitions") for the given identifiers somewhere outside the function in which they are
declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com­
piler that the variables declared will be heavily used. Only the first few such declarations in each
function are effective. Moreover, only variables of certain types will be stored in registers; on the
PDP-I I, they are int or pointer. One other restriction applies to register variables: the address-of
operator & cannot be applied to them. Smaller, faster programs can be expected if register declara­
tions are used appropriately, but future improvements in code generation may render them unneces­
sary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing from a
declaration, it is taken to be auto inside a function, extern outside. Exception: functions are never
automatic.

8.2. Type Specifiers
The type-specifiers are

type-specifier:
struct-or-union-specifier
typedef name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

At most one of the words long or short may be specified in conjunction with int; the meaning is
the same as if int were not mentioned. The word long may be specified in conjunction with float; the
meaning is the same as double. The word unsigned may be specified alone, or in conjunction with int
or any of its short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival use
of long, short, or unsigned is not permitted with typedef names. If the type-specifier is missing from a

PSI:l-14 The C Programming Language - Reference Manual

declaration, it is taken to be int.
Specifiers for structures, unions, and enumerations are discussed in "Structure, Union, and

Enumeration Declarations." Declarations with typedef names are discussed in "Typedef."

8.3. Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of declarators,
each of which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializer

opt

Initializers are discussed in "Initialization". The specifiers in the declaration indicate the type
and storage class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression]

opt

The grouping is the same as in expressions.

8.4. Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an una­
dorned identifier appears as a declarator, then it has the type indicated by the specifier heading the
declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imagine a declaration

TDl

where T is a type-specifier (like int, etc.) and Dl is a declarator. Suppose this declaration makes the
identifier have type " ... T , " where the " ... " is empty if Dl is just a plain identifier (so that the type
of x in 'int x" is just int). Then if Dl has the form

*D

the type of the contained identifier is " . . . pointer to T . "

If Dl has the form

D()

then the contained identifier has the type" ... function returning T."

If Dl has the form

D [constant-expression)

The C Programming Language - Reference Manual PSl:l-15

or

D[)

then the contained identifier has type " ... array of T." In the first case, the constant expression is an
expression whose value is determinable at compile time , whose type is int, and whose value is posi­
tive. (Constant expressions are defined precisely in "Constant Expressions.") When several "array
of' specifications are adjacent, a multidimensional array is created; the constant expressions which
specify the bounds of the arrays may be missing only for the first member of the sequence. This eli­
sion is useful when the array is external and the actual definition, which allocates storage, is given
elsewhere. The first constant expression may also be omitted when the declarator is followed by ini­
tialization. In this case the size is calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or
union, or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are
as follows: functions may not return arrays or functions although they may return pointers; there are
no arrays of functions although there may be arrays of pointers to functions. Likewise, a structure or
union may not contain a function; but it may contain a pointer to a function.

As an example, the declaration

inti, •ip, co, •fipO, (•pfi)O;

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip return­
ing a pointer to an integer, and a pointer pfi to a function which returns an integer. It is especially
useful to compare the last two. The binding of •fip() is •(fip()). The declaration suggests, and the
same construction in an expression requires, the calling of a function tip. Using indirection through
the (pointer) result to yield an integer. In the declarator (•pfi)(), the extra parentheses are necessary,
as they are also in an expression, to indicate that indirection through a pointer to a function yields a
function, which is then called; it returns an integer.

As another example,

float fa[l 7], •afp[17);

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d[3)(5)[7);

declares a static 3-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an
array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d[i), x3d[i)[j), x3d[iJUJ[k) may reasonably appear in an expres­
sion. The first three have type "array" and the last has type int.

8.5. Structure and Union Declarations
A structure is an object consisting of a sequence of named members. Each member may have

any type. A union is an object which may, at a given time, contain any one of several members.
Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

PSl:l-16 The C Programming Language - Reference Manual

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A
structure member may also consist of a specified number of bits. Such a member is also called a field
; its length, a non-negative constant expression, is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the declarations are
read left to right. Each nonfield member of a structure begins on an addressing boundary appropriate
to its type; therefore, there may be unnamed holes in a structure. Field members are packed into
machine integers; they do not straddle words. A field which does not fit into the space remaining in a
word is put into the next word. No field may be wider than a word.

Fields are assigned right to left on the PDP-I I and VAX-11, left to right on the 3B 20.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field use­
ful for padding to conform to externally-imposed layouts. As a special case, a field with a width of 0
specifies alignment of the next field at an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields, but implementa­
tions are not required to support any but integer fields. Moreover, even int fields may be considered
to be unsigned. On the PDP-11, fields are not signed and have only integer values; on the V AX-11,
fields declared with int are treated as containing a sign. For these reasons, it is strongly recom­
mended that fields be declared as unsigned. In all implementations, there are no arrays of fields, and
the address-of operator & may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size
is sufficient to contain any of its members. At most, one of the members can be stored in a union at
any time.

A structure or union specifier of the second form, that is, one of

struct identifier (struct-decl-list }
union identifier (struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A
subsequent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long
part of the declaration to be given once and used several times. It is illegal to declare a structure or
union which contains an instance of itself, but a structure or union may contain a pointer to an
instance of itself.

The C Programming Language - Reference Manual PSl:l-17

The third form of a structure or union specifier may be used prior to a declaration which gives
the complete specification of the structure or union in situations in which the size of the structure or
union is unnecessary. The size is unnecessary in two situations: when a pointer to a structure or
union is being declared and when a typedef name is declared to be a synonym for a structure or
union. This, for example, allows the declaration of a pair of structures which contain pointers to each
other.

The names of members and tags do not conflict with each other or with ordinary variables. A
particular name may not be used twice in the same structure, but the same name may be used in
several different structures in the same scope.

A simple but important example of a structure declaration is the following binary tree structure:

struct tnode
{

};

char tword[20);
int count;
struct tnode •left;
struct tnode •right;

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, •sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort.
With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.Ieft

refers to the left subtree pointer of the structure s; and

s.right->tword[O)

refers to the first character of the tword member of the right subtree of s.

8.6. Enumeration Declarations

Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear wherever constants are
required. If no enumerators with = appear, then the values of the corresponding constants begin at 0

PSl:l-18 The C Programming Language - Reference Manual

and increase by 1 as the declaration is read from left to right. An enumerator with = gives the associ­
ated identifier the value indicated; subsequent identifiers continue the progression from the assigned
value.

The names of enumerators in the same scope must all be distinct from each other and from
those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag
in a struct-specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret=20, winedark };

enum color ucp, col;

col = claret;
cp =&col;

if (**CP = = burgundy) ...

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type. The possible values are drawn from the
set {0,1,20,21).

8. 7. Initialization

A declarator may specify an initial value for the identifier being declared. The initializer is pre­
ceded by = and consists of an expression or a list of values nested in braces.

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in "CONSTANT EXPRESSIONS", or expressions which reduce to the address of
a previously declared variable, possibly offset by a constant expression. Automatic or register vari­
ables may be initialized by arbitrary expressions involving constants and previously declared variables
and functions.

Static and external variables that are not initialized are guaranteed to start off as zero.
Automatic and register variables that are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a
single expression, perhaps in braces. The initial value of the object is taken from the expression; the
same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate written in
increasing subscript or member order. If the aggregate contains subaggregates, this rule applies recur­
sively to the members of the aggregate. If there are fewer initializers in the list than there are
members of the aggregate, then the aggregate is padded with zeros. It is not permitted to initialize
unions or automatic· aggregates.

Braces may in some cases be omitted. If the initializer begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of the aggregate; it is erroneous

The C Programming Language - Reference Manual PSl:l-19

for there to be more initializers than members. If, however, the initializer does not begin with a left
brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current
aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive
characters of the string initialize the members of the array.

For example,

int x[] = (1, 3, 5 };

declares and initializes x as a one-dimensional array which has three members, since no size was
specified and there are three initializers.

float y(4)[3) =

(

};

(1, 3, 5 },
(2, 4, 6 },
(3, 5, 7 },

is a completely-bracketed initialization: I, 3, and 5 initialize the first row of the array y[OJ, namely
y[OJ[O), y[OJ[l), and y(OJ[2). Likewise, the next two lines initialize y[l) and y[2). The initializer ends
early and therefore y[3) is initialized with 0. Precisely, the same effect could have been achieved by

float y[4)[3) =

(
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y begins with a left brace but that for y[O) does not; therefore, three elements
from the list are used. Likewise, the next three are taken successively for y[l) and y(2). Also,

float y(4)[3J =

(
(1 }, (2 }, (3 }, (4 }

};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.

Finally,

char msg(J = '"Syntax error on line %s\n'";

shows a character array whose members are initialized with a string.

8.8. Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument of
sizeot), it is desired to supply the name of a data type. This is accomplished using a "type name'',
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

PSl:l-20

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()

The C Programming Language - Reference Manual

abstract-declarator [constant-expression]
opt

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction
were a declarator in a declaration. The named type is then the same as the type of the hypothetical
identifier. For example,

int
int*
int •[3)
int (•)[3)
int •O
int (•)0
int (*[3))0

name respectively the types "integer," "pointer to integer," "array of three pointers to integers,"
"pointer to an array of three integers," "function returning pointer to integer," "pointer to function
returning an integer," and "array of three pointers to functions returning an integer."

8.9. Typedef

Declarations whose "storage class" is typedef do not define storage but instead define identifiers
which can be used later as if they were type keywords naming fundamental or derived types.

typedef name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any
declarator therein becomes syntactically equivalent to the type keyword naming the type associated
with the identifier in the way described in "Meaning of Declarators." For example, after

typedef int MILES, •KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, •zp;

are all legal declarations; the type of distance is int, that of metricp is "pointer to int, " and that of z is
the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for types which could be
specified in another way. Thus in the example above distance is considered to have exactly the same
type as any other int object.

The C Programming Language - Reference Manual PSl:l-21

9. Statements
Except as indicated, statements are executed in sequence.

9.1. Expression Statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2. Compound Statement or Block

So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called "block") is provided:

compound-statement:
{ declaration-list statement-list }

opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializa­
tions are not performed. Initializations of static variables are performed only once when the program
begins execution. Inside a block, extern declarations do not reserve storage so initialization is not
permitted.

9.3. Conditional Statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is executed.
In the second case, the second substatement is executed if the expression is 0. The "else" ambiguity
is resolved by connecting an else with the last encountered else-less if.

9.4. While Statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains nonzero.
The test takes place before each execution of the statement.

9.5. Do Statement
The do statement has the form

do statement while (expression) ;

PSl:l-22 The C Programming Language - Reference Manual

The substatement is executed repeatedly until the value of the expression becomes 0. The test
takes place after each execution of the statement.

9.6. For Statement

The for statement has the form:

for (exp-1 ; exp-2 ; exp-3) statement
opt opt opt

Except for the behavior of continue, this statement is equivalent to

exp-1;
while (exp-2)
(

statement
exp-3;

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration, such that the loop is exited when the expression becomes 0. The third expres­
sion often specifies an incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the implied while clause
equivalent to while(l); other missing expressions are simply dropped from the expansion above.

9.7. Switch Statement

The switch statement causes control to be transferred to one of several statements depending on
the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int. The
statement is typically compound. Any statement within the statement may be labeled with one or
more case prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in "CONSTANT EXPRESSIONS."

There may also be at most one statement prefix of the form

default:

When the switch statement is executed, its expression is evaluated and compared with each case
constant. If one of the case constants is equal to the value of the expression, control is passed to the
statement following the matched case prefix. If no case constant matches the expression and if there
is a default, prefix, control passes to the prefixed statement. If no case matches and if there is no
default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues unimpeded across
such prefixes. To exit from a switch, see "Break Statement."

Usually, the statement that is the subject of a switch is compound. Declarations may appear at
the head of this statement, but initializations of automatic or register variables are ineffective.

9.8. Break Statement

The statement

The C Programming Language - Reference Manual PSl:l-23

break;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

9.9. Continue Statement

The statement

continue;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for state­
ment; that is to the end of the loop. More precisely, in each of the statements

while (...) (
statement;
contin:;

do {
statement;
contin:;

} while (...);

for (...) {
statement;
contin: ;

a continue is equivalent to goto contin. (Following the contin: is a null statement, see "Null State­
ment".)

9.10. Return Statement

A function returns to its caller by means of the return statement which has one of the forms

return;
return expression ;

In the first case, the returned value is undefined. In the second case, the value of the expression
is returned to the caller of the function. If required, the expression is converted, as if by assignment,
to the type of function in which it appears. Flowing off the end of a function is equivalent to a return
with no returned value. The expression may be parenthesized.

9.11. Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see "Labeled Statement") located in the current function.

9.12. Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier:

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function, excluding any subblocks in which the same identifier has been
redeclared. See "SCOPE RULES."

9.13. Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a compound statement or to sup­
ply a null body to a looping statement such as while.

PSI:I-24 The C Programming Language - Reference Manual

IO. External Definitions

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type. The type­
specifier (see "Type Specifiers" in "DECLARATIONS") may also be empty, in which case the type is
taken to be int. The scope of external definitions persists to the end of the file in which they are
declared just as the effect of declarations persists to the end of a block. The syntax of external
definitions is the same as that of all declarations except that only at this level may the code for func­
tions be given.

10.1. External Function Definitions

Function definitions have the form

function-definition:
decl-specifiers function-declarator function-body

opt

The only sc-specifiers allowed among the decl-specifiers are extern or static; see "Scope of Exter­
nals" in "SCOPE RULES" for the distinction between them. A function declarator is similar to a
declarator for a "function returning ... " except that it lists the formal parameters of the function
being defined.

function-declarator:
declarator (parameter-list)

opt

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-list compound-statement

opt

The identifiers in the parameter list, and oniy those identifiers, may be declared in the declara­
tion list. Any identifiers whose type is not given are taken to be int. The only storage class which
may be specified is register; if it is specified, the corresponding actual parameter will be copied, if
possible, into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;

int m;

m = (a > b) ? a : b;
return((m > c) ? m : c);

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, c; is the
declaration-list for the formal parameters; { ... } is the block giving the code for the statement.

The C program converts all float actual parameters to double, so formal parameters declared
float have their declaration adjusted to read double. All char and short formal parameter declarations
are similarly adjusted to read int. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of for­
mal parameters declared "array of ... " are adjusted to read "pointer to "

The C Programming Language - Reference Manual

10.2. External Data Definitions

An external data definition has the form

data-definition:
declaration

PSl:l-25

The storage class of such data may be extern (which is the default) or static but not auto or
register.

11. Scope Rules

A C program need not all be compiled at the same time. The source text of the program may be
kept in several files, and precompiled routines may be loaded from libraries. Communication among
the functions of a program may be carried out both through explicit calls and through manipulation
of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the lexical scope
of an identifier, which is essentially the region of a program during which it may be used without
drawing "undefined identifier" diagnostics; and second, the scope associated with external identifiers,
which is characterized by the rule that references to the same external identifier are references to the
same object.

11.1. Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the definition
through the end of the source file in which they appear. The lexical scope of identifiers which are for­
mal parameters persists through the function with which they are associated. The lexical scope of
identifiers declared at the head of a block persists until the end of the block. The lexical scope of
labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the
block constituting a function, any declaration of that identifier outside the block is suspended until
the end of the block.

Remember also (see "Structure, Union, and Enumeration Declarations" in "DECLARA­
TIONS") that tags, identifiers associated with ordinary variables, and identities associated with struc­
ture and union members form three disjoint classes which do not conflict. Members and tags follow
the same scope rules as other identifiers. The enum constants are in the same class as ordinary vari­
ables and follow the same scope rules. The typedef names are in the same class as ordinary
identifiers. They may be redeclared in inner blocks, but an explicit type must be given in the inner
declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with
no declarators and type distance.

11.2. Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among the files or
libraries constituting the complete program there must be at least one external definition for the
identifier. All functions in a given program which refer to the same external identifier refer to the
same object, so care must be taken that the type and size specified in the definition are compatible
with those specified by each function which references the data.

PSl:l-26 The C Programming Language - Reference Manual

It is illegal to explicitly initialize any external identifier more than once in the set of files and
libraries comprising a multi-file program. It is legal to have more than one data definition for any
external non-function identifier; explicit use of extern does not change the meaning of an external
declaration.

In restricted environments, the use of the extern storage class takes on an additional meaning.
In these environments, the explicit appearance of the extern keyword in external data declarations of
identities without initialization indicates that the storage for the identifiers is allocated elsewhere,
either in this file or another file. It is required that there be exactly one definition of each external
identifier (without extern) in the set of files and libraries comprising a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

12. Compiler Control Lines
The C compiler contains a preprocessor capable of macro substitution, conditional compilation,

and inclusion of named files. Lines beginning with # communicate with this preprocessor. There
may be any number of blanks and horizontal tabs between the # and the directive. These lines have
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1. Token Replacement
A compiler-control line of the form

#define identifier token-string
opt

causes the preprocessor to replace subsequent instances of the identifier with the given string of
tokens. Semicolons in or at the end of the token-string are part of that string. A line of the form

#define identifier(identifier, ...)token-string
opt

where there is no space between the first identifier and the (, is a macro definition with arguments.
There may be zero or more formal parameters. Subsequent instances of the first identifier followed
by a (, a sequence of tokens delimited by commas, and a) are replaced by the token string in the
definition. Each occurrence of an identifier mentioned in the formal parameter list of the definition is
replaced by the corresponding token string from the call. The actual arguments in the call are token
strings separated by commas; however, commas in quoted strings or protected by parentheses do not
separate arguments. The number of formal and actual parameters must be the same. Strings and
character constants in the token-string are scanned for formal parameters, but strings and character
constants in the rest of the program are not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a
long definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants," as in

#define TABSIZE 100

int table IT ABSIZE I ;

A control line of the form

#undef identifier

causes the identifier's preprocessor definition (if any) to be forgotten.
If a #defined identifier is the subject of a subsequent #define with no intervening #undef, then

the two token-strings are compared textually. If the two token-strings are not identical (all white
space is considered as equivalent), then the identifier is considered to be redefined.

The C Programming Language - Reference Manual PSl:l-27

12.2. File Inclusion

A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename. The named file is
searched for first in the directory of the file containing the #include, and then in a sequence of
specified or standard places. Alternatively, a control line of the form

#include <filename>

searches only the specified or standard places and not the directory of the #include. (How the places
are specified is not part of the language.)

#includes may be nested.

12.3. Conditional Compilation

A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions are dis­
cussed in "CONSTANT EXPRESSIONS"; the following additional restrictions apply here: the con­
stant expression may not contain sizeof casts, or an enumeration constant.)

or

A restricted constant expression may also contain the additional unary expression

defined identifier

defined(identifier)

which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced by their token­
strings (except those identifiers modified by defined) just as in normal text. The restricted constant
expression will be evaluated only after all expressions have finished. During this evaluation, all
undefined (to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been the sub­
ject of a #define control line. It is equivalent to #ifdef(identifier). A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is equivalent to

#if ! defined(identifier).

All three forms are followed by an arbitrary number of lines, possibly containing a control line

#else

and then by a control line

#endif

If the checked condition is true, then any lines between #else and #endif are ignored. If the
checked condition is false, then any lines between the test and a #else or, lacking a #else, the #endif
are ignored.

PSl:l-28 The C Programming Language - Reference Manual

These constructions may be nested.

12.4. Line Control
For the benefit of other preprocessors which generate C programs, a line of the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next
source line is given by the constant and the current input file is named by "filename". If "filename" is
absent, the remembered file name does not change.

13. Implicit Declarations
It is not always necessary to specify both the storage class and the type of identifiers in a

declaration. The storage class is supplied by the context in external definitions and in declarations of
formal parameters and structure members. In a declaration inside a function, if a storage class but no
type is given, the identifier is assumed to be int; if a type but no storage class is indicated, the
identifier is assumed to be auto. An exception to the latter rule is made for functions because auto
functions do not exist. If the type of an identifier is "function returning ... , " it is implicitly declared
to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared to
be "function returning int."

14. Types Revisited
This part summarizes the operations which can be performed on objects of certain types.

14.1. Structures and Unions
Structures and unions may be assigned, passed as arguments to functions, and returned by func­

tions. Other plausible operators, such as equality comparison and structure casts, are not imple­
mented.

In a reference to a structure or union member, the name on the right of the -> or the . must
specify a member of the aggregate named or pointed to by the expression on the left. In general, a
member of a union may not be inspected unless the value of the union has been assigned using that
same member. However, one special guarantee is made by the language in order to simplify the use
of unions: if a union contains several structures that share a common initial sequence and if the
union currently contains one of these structures, it is permitted to inspect the common initial part of
any of the contained structures. For example, the following is a legal fragment:

The C Programming Language - Reference Manual

union

struct
{

int type;
} n;
struct
{

int type;
int intnode;

} ni;
struct
{

int type;
float floatnode;

} nf;
} u;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if(u.n.type ==FLOAT)
.•. sin(u.nf.floatnode) ...

14.2. Functions

PSl:l-29

There are only two things that can be done with a function m, call it or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a pointer to
the function is generated. Thus, to pass one function to another, one might say

int f();

g(Q;

Then the definition of g might read

g(funcp)
int (*funcp)();

Notice that f must be declared explicitly in the calling routine since its appearance in g(Q was
not followed by (. ·

14.3. Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to
the first member of the array. Because of this conversion, arrays are not !values. By definition, the
subscript operator [) is interpreted in such a way that El[E2) is identical to *((El)+E2)). Because of
the conversion rules which apply to +, if El is an array and E2 an integer, then El[E2) refers to the
E2-th member of El. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

PSI:l-30 The C Programming Language - Reference Manual

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional
array of rank ixjx ... xk, then E appearing in an expression is converted to a pointer to an (n-1)­
dimensional array with rank jx ... xk. If the * operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the result is the pointed-to (n-1)-dimensional array, which
itself is immediately converted into a pointer.

For example, consider

int x[3J[S);

Here x is a 3 x 5 array of integers. When x appears in an expression, it is converted to a pointer
to (the first of three) 5-membered arrays of integers. In the expression x[i), which is equivalent to
•(x+i), x is first converted to a pointer as described; then i is converted to the type of x, which
involves multiplying i by the length the object to which the pointer points, namely 5-integer objects.
The results are added and indirection applied to yield an array (of five integers) which in tum is con­
verted to a pointer to the first of the integers. If there is another subscript, the same argument applies
again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the
declaration helps determine the amount of storage consumed by an array. Arrays play no other part
in subscript calculations.

14.4. Explicit Pointer Conversions
Certain conversions involving pointers are permitted but have implementation-dependent

aspects. They are all specified by means of an explicit type-conversion operator, see "Unary Opera­
tors" under"EXPRESSIONS" and "Type Names"under "DECLARATIONS."

A pointer may be converted to any of the integral types large enough to hold it. Whether an int
or long is required is machine dependent. The mapping function is also machine dependent but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries
an integer converted from a pointer back to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned
in storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer
to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate,
and return a char pointer; it might be used in this way.

extern char •malloc();
double •dp;

dp = (double •) malloc(sizeof(double));
•dp = 22.0 I 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for conver­
sion to a pointer to double; then the use of the function is portable.

The pointer representation on the PDP-I I corresponds to a 16-bit integer and measures bytes.
The char's have no alignment requirements; everything else must have an even address.

On the VAX- I I, pointers are 32 bits long and measure bytes. Elementary objects are aligned on
a boundary equal to their length, except that double quantities need be aligned only on even 4-byte
boundaries. Aggregates are aligned on the strictest boundary required by any of their constituents.

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are aligned
on 4-byte boundaries. Shorts are aligned in all cases on 2-byte boundaries. Arrays of characters, all
structures, ints, longs, floats, and doubles are aligned on 4-byte boundries; but structure members may

The C Programming Language - Reference' Manual PSl:l-31

be packed tighter.

14.5. CONSTANT EXPRESSIONS
In several places C requires expressions that evaluate to a constant: after case, as array bounds,

and in initializers. In the first two cases, the expression can involve only integer constants, character
constants, casts to integral types, enumeration constants, and sizeof expressions, possibly connected
by the binary operators

+ - *I% & I A<<>> == != < > <= >= && 11

or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one
can also use floating constants and arbitrary casts and can also apply the unary & operator to external
or static objects and to external or static arrays subscripted with a constant expression. The unary &:
can also be applied implicitly by appearance of unsubscripted arrays and functions. The basic rule is
that initializers must evaluate either to a constant oi.' to the address of a previously declared external
or static object plus or minus a constant.

15. Portability Considerations

Certain parts of C are inherently machine dependent. The following list of potential trouble
spots is not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and integer
division have proven in practice to be not much of a problem. Other facets of the J:iardware are
reflected in differing implementations. Some of these, particularly sign extension (converting a nega­
tive character into a negative integer) and the order in which bytes are placed in a word, are nui­
sances that must be carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine as does the set of valid types. Nonetheless, the compilers all do things properly for their
own machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to
write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. The order in
which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter character constants may
be permitted. The specific implementation is very machine dependent because the order in which
characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some machines and left to
right on other machines. These differences are invisible to isolated programs that do not indulge in
type punning (e.g., by converting an int pointer to a char pointer and inspecting the pointed-to
storage) but must be accounted for when conforming to externally-imposed storage layouts.

16. Syntax Summary

This summary of C syntax is intended more for aiding comprehension than as an exact state-

PSI: 1-32

ment of the language.

16.1. Expressions

The basic expressions are:

expression:
primary
* expression
&!value
- expression
[expression

expression
++!value
- -!value
!value++
!value - -
sizeof expression
sizeof (type-name)
(type-name) expression

The C Programming Language - Reference Manual

expression binop expression
expression ? expression : expression
!value asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list)
primary [expression] opt
primary . identifier
primary - identifier

!value:
identifier
primary [expression]
!value . identifier
primary - identifier
* expression
(!value)

The primary-expression operators

() [] . -

have highest priority and group left to right. The unary operators

* & - ! ~ ++ -- sizeof (type-name)

have priority below the primary operators but higher than any binary operator and group right to left.
Binary operators group left to right; they have priority decreasing as indicated below.

The C Programming Language - Reference Manual

binop:

*
+
>>
<

&

I
&&
II

%

<<
> <= >=
!=

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

asgnop:
= += -= •= I= %= >>= <<= &= '= I=

The comma operator has the lowest priority and groups left to right.

16.2. Declarations

declaration:
decl-specifiers init-declarator-list ; opt

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-specifiers opt

opt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef name
en um-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

PSl:l-33

PSl:l-34 The C Programming Language - Reference Manual

enum-specijier:
enum { enum-list)
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializer

opt

declarator:
identifier
(declarator)
• declarator
declarator ()
declarator [constant-expression j

opt

struct-or-union-specifier:
struct { struct-decl-list)
struct identifier { struct-decl-list)
struct identifier
union { struct-decl-list)
union identifier { struct-decl-list)
union identifier

struct-decl-/ist:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

The C Programming Language - Reference Manual

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
• abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression j

opt

typedef name:
identifier

16.3. Statements

compound-statement:
{ declaration-list statement-list }

opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

PSl:l-35

PSl:l-36

statement:
compound-statement
expression ;
if (expression) statement

The C Programming Language - Reference Manual

if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp0Pr.exp opioexp0Pi statement
switch (expression) statement
case constant-expression : statement
default : statement
break;
continue;
retum;
retum expression ;
goto identifier ;
identifier : statement

16.4. External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
decl-specifier function-declarator function-body opt

function-declarator:
declarator (parameter-list) opt

parameter-list:
identifier
identifier , parameter-list

function-body:
declaration-list compound-statement opt

data-definition:

17. Preprocessor

extern declaration ;
static declaration ;

The C Programming Language - Reference Manual

#define identifier token-stringopt
#define identifier(identifier, •.•)token-string
#undef identifier opt
#include "filename"
#include <filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant ''filename"

PSl:l-37

A Portable Fortran 77 Compiler

S. I. Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

J. Berkman

University of California
Berkeley, CA 94720

ABSTRACT

The Fortran language has been revised. The new language, known as
Fortran 77, became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language. It is
believed to be the first complete Fortran 77 system to be implemented. This com­
piler is designed to be portable, to be correct and complete, and to generate code
compatible with calling sequences produced by C compilers. In particular, this For­
tran is quite usable on UNIXt systems. In this paper, we describe the language com­
piled, interfaces between procedures, and file formats assumed by the I/O system.
Appendix A describes the Fortran 77 language extensions.

This is a standard Bell Laboratories document reproduced with minor
modifications to the text. The Bell Laboratory's appendix on "Differences Between
Fortran 66 and Fortran 77'' has been changed to Appendix A, and a local appendix
has been added. Appendix B contains a list of Fortran 77 references (some from the
original Bell document and some added at Berkeley).

Revised September, 1985

t UNIX is a trademark of AT&T Bell Laboratories.

PS1:2-2 A Portable Fortran 77 Compiler

Table of Contents

1. Introduction 4
1.1. Usage ... 4

1.2. Documentation Conventions .. 6
1.3. Implementation Strategy ... 6

1.4. Debugging Aids ... 6
2. Language Extensions 6

2.1. Double Complex Data Type ... 6

2.2. Internal Files ... 7

2.3. Implicit Undefined Statement .. 7

2.4. Recursion ~... 7
2.5. Automatic Storage ... 7

2.6. Source Input Format ... 7

2.7. Include Statement ... 7

2.8. Binary Initialization Constants ... 8

2.9. Character Strings ... 8
2.10. Hollerith 8

2.11. Equivalence Statements .. 8

2.12. One-Trip DO Loops .. 8

2.13. Commas in Formatted Input .. 9
2.14. Short Integers .. 9

2.15. Additional Intrinsic Functions ... 9

2.16. Namelist 110 .. 9

2.1 7. Automatic Precision Increase 11

2.18. Characters and Integers .. 12
3. Violations of the Standard ... 12

3.1. Double Precision Alignment... 12

3.2. Dummy Procedure Arguments ... 12

3.3. T and TL Formats .. 12

3.4. Carriage Control .. 12
3.5. Assigned Goto ... 13

4. Inter-Procedure Interface ... 13

4.1. Procedure Names .. 13

4.2. Data Representations .. 13
4.3. Arrays .. 13

4.4. Return Values.. 13

4.5. Argument Lists .. 14

A Portable Fortran 77 Compiler PS1:2-3

4.6. System Interface .. 14

5. File Formats ... 15

5.1. Structure of Fortran Files ... 15

5.2. Portability Considerations .. 15

5.3. Logical Units and Files ... 15

Appendix A. Differences Between Fortran 66 and Fortran 77 .. 17

I. Features Deleted from Fortran 66 ... 17

1.1. Hollerith 17

1.2. Extended Range of DO ... 17

2. Program Form .. 17

2.1. Blank Lines .. 17

2.2. Program and Block Data Statements ... 17

2.3. ENTRY Statement .. 17

2.4. DO Loops ... 18

2.5. Alternate Returns .. 18

3. Declarations .. 18

3.1. CHARACTER Data Type .. 18

3.2. IMPLICIT Statement.. 18

3.3. PARAMETER Statement ... 18

3.4. Array Declarations .. 19

3.5. SAVE Statement .. 19

3.6. INTRINSIC Statement 19

4. Expressions 19

4.1. Character Constants .. 19

4.2. Concatenation ... 20

4.3. Character String Assignment .. 20

4.4. Substrings .. 20

4.5. Exponentiation .. 20

4.6. Relaxation of Restrictions .. 21

5. Executable Statements .. 21

5.1. IF-THEN-ELSE ... 21

5.2. Alternate Returns .. 21

6. Input/Output ... 22

6.1. Format Variables... 22

6.2. END=, ERR=, and IOSTAT= Clauses.. . 22

6.3. Formatted 1/0 .. 22

6.4. Standard Units .. 24

6.5. List-Directed 1/0 ... 24

6.6. Direct 1/0 ... 24

6.7. Internal Files ... 25

6.8. OPEN, ~LOSE, and INQUIRE Statements ... 25

Appendix B. References and Bibliography ... 28

PSl:2-4 A Portable Fortran 77 Compiler

1. INTRODUCTION
The Fortran language has been revised. The new language, known as Fortran 77, became an official
American National Standard [l] on April 3, 1978. Fortran 77 supplants 1966 Standard Fortran [2].
We report here on a compiler and run-time system for the new extended language. The compiler and
computation library were written by S.l.F., the I/O system by P.J.W. We believe ours to be the first
complete Fortran 77 system to be implemented. This compiler is designed to be portable to a
number of different machines, to be correct and complete, and to generate code compatible with cal­
ling sequences produced by compilers for the C language [3]. In particular, it is in use on UNIX sys­
tems. Two families of C compilers are in use at Bell Laboratories, those based on D. M. Ritchie's
PDP-I I compiler [4] and those based on S. C. Johnson's portable C compiler [5]. This Fortran com­
piler can drive the second passes of either family. In this paper, we describe the language compiled,
interfaces between procedures, and file formats assumed by the IIO system. We will describe imple­
mentation details in companion papers.

1.1. Usage
At present, versions of the compiler run on and compile for the PDP-I I, the VAX-111780, and the
Interdata 8/32 UNIX systems. The command to run the compiler is

f 77 flags file ...

f77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The f77 and cc commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file name suffixes are understood:

.f Fortran source file

.F Fortran source file

.e EFL source file

.r Ratfor source file

.c C source file

.s Assembler source file

.o Object file

Arguments whose names end with .f are taken to be Fortran 77 source programs; they are com­
piled, and each object program is left on the file in the current directory whose name is that of
the source with .o substituted for .f.
Arguments whose names end with .F are also taken to be Fortran 77 source programs; these are
first processed by the C preprocessor before being compiled by f77.
Arguments whose names end with .r or .e are taken to be Ratfor or EFL source programs,
respectively; these are first transformed by the appropriate preprocessor, then compiled by f77.
In the same way, arguments whose names end with .c or .s are taken to be C or assembly source
programs and are compiled or assembled, producing a .o file.
The following flags are understood:
-c Compile but do not load. Output for x.f, x.F, x.e, x.r, x.c, or x.s is put on file x.o.
-d Used in debugging the compiler.
-g Have the compiler produce additional symbol table information for dbx(J). This

flag is incompatible with -0. See section 1.4 for more details.
-i2 On machines which support short integers, make the default integer constants and

variables short (see section 2.14). (-i4 is the standard value of this option). All log-

A Portable Fortran 77 Compiler PSl:2-5

ical quantities will be short.

-m Apply the M4 macro preprocessor to each EFL or Ratfor source file before using the
appropriate compiler.

-ofile Put executable module on file file. (Default is a.out).

-onetrip or -1
Compile code that performs every do loop at least once (see section 2.12).

-p Generate code to produce usage profiles.

-pg Generate code in the manner of -p, but invoke a run-time recording mechanism
that keeps more extensive statistics. See gprof(1).

-·q Suppress printing of file names and program unit names during compilation.

-r8 Treat all floating point variables, constants, functions and intrinsics as double preci-
sion and all complex quantities as double complex. See section 2.17.

-u Make the default type of a variable undefined (see section 2.3).

-v Print the version number of the compiler and the name of each pass.

-w Suppress all warning messages.

-w66 Suppress warnings about Fortran 66 features used.
-C Compile code that checks that subscripts are within array bounds. For multi-

dimensional arrays, only the equivalent linear subscript is checked.

-Dname=def
-Dname Define the name to the C preprocessor, as if by '#define'. If no definition is given,

the name is defined as ··1 ··. (.F files only).

- Es tr Use the string str as an EFL option in processing .e files.

-F Ratfor, EFL, and .F source files are pre-processed into .f files, and those .f files are
left on the disk without being compiled.

-Idir '#include' files whose names do not begin with '/' are always sought first in the
directory of the file argument, then in directories named in - I options, then in
directories on a standard list. (.F files only).

-N[qxscn]nnn

-0
-Rstr

-U

Make static tables in the compiler bigger. The compiler will complain if it overflows
its tables and suggest you apply one or more of these flags. These flags have the fol­
lowing meanings:

q Maximum number of equivalenced variables. Default is 150.

x Maximum number of external names (common block names, subroutine and
function names). Default is 200.

s Maximum number of statement numbers. Default is 401.

c Maximum depth of nesting for control statements (e.g. DO loops). Default is
20.

n Maximum number of identifiers. Default is 1009.

Invoke the object code optimizer. Incompatible with -g.

Use the string str as a Ratfor option in processing .r files.

Do not convert upper case letters to lower case. The default is to convert Fortran
programs to lower case except within character string constants.

-S Generate assembler output for each source file, but do not assemble it. Assembler
output for a source file x.f, x.F, x.e, x.r, or x.c is put on file x.s.

Other flags, all library names (arguments beginning -1), and any names not ending with one of
the understood suffixes are passed to the loader.

A Portable Fortran 77 Compiler

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.·

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler inter­
mediate code. Since there are C compilers running on a variety of machines, relatively small
changes will make this Fortran compiler generate code for any of them. Furthermore, this
approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The runtime 1/0 library makes use of D. M. Ritchie's Stan­
dard C 1/0 package [8) for transferring data. With the few exceptions described below, only
documented calls are used, so it should be relatively easy to modify to run on other operating
systems.

1.4. Debugging Aids

A memory image is sometimes written to a file core in the current directory upon abnormal ter­
mination for errors caught by the f77 libraries, user calls to abort, and certain signals (see
sigvec(2) in the UNIX Programmer's Manual). Core is normally created only if the -g flag was
specified to f77 during loading.t The source-level debugger dbx(I) may be used with the execut­
able and the core file to examine the image and determine what went wrong.

In the event that it is necessary to override this default behavior, the user may set the environ­
ment variable f77 _dump_flag. If f77 _dump_flag is set to a value beginning with n, a core file is
not produced regardless of whether -g was specified at compile time, and if the value begins
with y, dumps are produced even if -g was not specified.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences briefly in
Appendix A. The most important additions are a character string data type, file-oriented
input/output statements, and random access 1/0. Also, the language has been cleaned up consider­
ably.

In addition to implementing the language specified in the new Standard, our compiler implements a
few extensions described in this section. Most are useful additions to the language. The remainder
are extensions to make it easier to communicate with C procedures or to permit compilation of old
(1966 Standard) programs.

2.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double preci­
sion real values. The statements

zl = (O.ldO, 0.2d0)
z2 = dcmplx(dx, dy)

assign double complex values to zl and z2. The double precision values which constitute the
double complex value may be isolated by using dreal or dble for the real part and imag or dimag
for the imaginary part. To compute the double complex conjugate of a double complex value,
use conjg or dconjg. The other double complex intrinsic functions may be accessed using their
generic names or specific names. The generic names are: abs, sqrt, exp, log, sin, and cos. The
specific names are the same as the generic names preceded by either cd or z, e.g. you may code
sqrt, zsqrt or cdsqrt to compute the square root of a double complex value.

tSpecify -g when loading with cc or rT7; specify -lg as a library when using Id directly.

A Portable Fortran 77 Compiler PS1:2-7

2.2. Internal Files

The Fortran 77 standard introduces "internal files" (memory arrays), but restricts their use to
formatted sequential 1/0 statements. Our 110 system also permits internal files to be used in for­
matted direct reads and writes and list directed sequential read and writes.

2.3. Implicit Undefined Statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type statement is
integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an implicit state­
ment for overriding this rule. As an aid to good programming practice, we permit an additional
type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each
variable that is used but does not appear in a type statement. Specifying the -u compiler flag is
equivalent to beginning each procedure with this statement.

2.4. Recursion

Procedures may call themselves, directly or through a chain of other procedures. Since Fortran
variables are by default static, it is often necessary to use the automatic storage extension to
prevent unexpected results from recursive functions.

2.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as "types"
in type statements and in implicit statements. Local variables are static by default; there is only
one instance of the variable. For variables declared automatic, there is a separate instance of the
variable for each invocation of the procedure. Automatic variables may not appear in
equivalence, data, or save statements. Neither type of variable is guaranteed to retain its value
between calls to a subprogram (see the save statement in Appendix A).

2.6. Source Input Format

The Standard expects input to the compiler to be in 72-column format: except in comment
lines, the first five characters are the statement number, the next is the continuation character,
and the next 66 are the body of the line. (If there are fewer than 72 characters on a line, the
compiler pads it with blanks; characters after the seventy-second are ignored.)

In order to make it easier to type Fortran programs, our compiler also accepts.input in variable
length lines. An ampersand "&" in the first position of a line indicates a continuation line; the
remaining characters form the body of the line. A tab character in one of the first six positions
of a line signals the end of the statement number and continuation part of the line; the remain­
ing characters form the body of the line. A tab elsewhere on the line is treated as another kind
of blank by the compiler.

In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent with
ordinary UNIX system usage, our compiler expects lower case input. By default, the compiler
converts all upper case characters to lower case except those inside character constants. How­
ever, if the -U compiler flag is specified, upper case letters are not transformed. In this mode,
it is possible to specify external names with upper case letters in them, and to have distinct vari­
ables differing only in case. If - U is specified, keywords will only be recognized in lower case.

2.7. Include Statement

The statement

include 'stuff'

is replaced by the contents of the file stuff; include statements may be nested to a reasonable

PSI :2-8 A Portable Fortran 77 Compiler

depth, currently ten.

2.8. Binary Initialization Constants

A variable may be initialized in a data statement by a binary constant, denoted by a letter fol­
lowed by a quoted string. If the letter is b, the string is binary, and only zeroes and ones are
permitted. If the letter is o, the string is octal, with digits 0-7. If the letter is z or x, the string
is hexadecimal, with digits 0-9, a-f. Thus, the statements

integer a(3)
data a I b'IOIO', o'l2', z'a' I

initialize all three elements of a to ten.

2.9. Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

\n newline
\t tab
\b backspace
\f form feed
\0 null
\' apostrophe (does not terminate a string)
\ • quotation mark (does not terminate a string)
\ \ \
\x x, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and 1/0 system recog­
nize both the apostrophe "'" and the double-quote" " ". If a string begins with one variety of
quote mark, the other may be embedded within it without using the repeated quote or backslash
escapes.

Each character string constant appearing outside a data statement is followed by a null character
to ease communication with C routines.

2.10. Hollerith

Fortran 77 does not have the old Hollerith "nh" notation, though the new Standard recom­
mends implementing the old Hollerith feature in order to improve compatibility with old pro­
grams. In our compiler, Hollerith data may be used in place of character string constants, and
may also be used to initialize non-character variables in data statements.

2.11. Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply-dimensioned
array to be represented by a singly-subscripted reference in equivalence statements. Fortran 77
does not permit this usage, since subscript lower bounds may now be different from I. Our
compiler permits single subscripts in equivalence statements, under the interpretation that all
missing subscripts are equal to I. A warning message is printed for each such incomplete sub­
script.

2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the initial
value is already past the limit value, as in

do 10 i = 2, I

The 1966 Standard stated that the effect of such a statement was undefined, but it was common
practice that the range of a do loop would be performed at least once. In order to accommodate
old programs, though they were in violation of the 1966 Standard, the -onetrip or -1 compiler

A Portable Fortran 77 Compiler PS1:2-9

flags causes non-standard loops to be generated.

2.13. Commas in Formatted Input
The 1/0 system attempts to be more lenient than the Standard when it seems worthwhile. When
doing a formatted read of non-character variables, commas may be used as value separators in
the input record, overriding the field lengths given in the format statement. Thus, the format

(i 10, f20. l 0, i4)

will read the record

-345,.05e-3, 12

correctly.

2.14. Short Integers
On machines that support halfword integers, the compiler accepts declarations of type integer•2.
(Ordinary integers follow the Fortran rules about occupying the same space as a real variable;
they are assumed to be of C type long int; halfword integers are of C type short int.) An expres­
sion involving only objects of type integer•2 is of that type. Generic functions return short or
long integers depending on the actual types of their arguments. If a procedure is compiled using
the -i2 flag, all small integer constants will be of type integer•2. If the precision of an integer­
valued intrinsic function is not determined by the generic function rules, one will be chosen that
returns the prevailing length (integer•2 when the -i2 command flag is in effect). When the -i2
option is in effect, all quantities of type logical will be short. Note that these short integer and
logical quantities do not obey the standard rules for storage association.

2.15. Additional Intrinsic Functions
This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In
addition, there are built-in functions for performing bitwise logical and boolean operations on
integer and logical values (or, and, xor, not, !shift, and rshift), and intrinsic functions for double
complex values (see section 2.1). The n1 library contains many other functions, such as access­
ing the UNIX command arguments (getarg and iargc) and environment (getenv). See intro(3f)
and bit(3f) in the UNIX Programmer's Manual for more information.

2.16. Namelist 1/0

Namelist 1/0 provides an easy way to input and output information without formats. Although
not part of the standard, namelist 1/0 was part of many Fortran 66 systems and is a common
extension to Fortran 77 systems.
Variables and arrays to be used in namelist 1/0 are declared as part of a namelist in a namelist
statement, e.g.:

character stu 12
logical flags(20)
complex c(2)
real arr1(2,3), arr2(0:3,4)
namelist /basic/ arr 1, arr2, key, str, c /flglst/ key, flags

This defines two namelists: list basic consists of variables key and str and arrays arrl, arr2, and
c; list flglst consists of variable key and array flags. A namelist can include variables and arrays
of any type, and a variable or array may be in several different namelists. However dummy
arguments and array elements may not be in a namelist. A namelist name may be used in exter­
nal sequential read, write and print staV,:ments wherever a format could be used.
In a namelist read, column one of each data record is ignored. The data begins with an amper­
sand in column 2 followed by the namelist name and a blank. Then there is a sequence of value
assignments separated by commas and finally an "&end". A simple example of input data

PS1:2-10 A Portable Fortran 77 Compiler

corresponding to namelist basic is:

&basic key=5, str='hi there' &end

For compatibility with other systems, dollar signs may be used instead of the ampersands:

$basic key=5, str='hi there' $end

A value assignment in the data record must be one of three forms. The simplest is a variable
name followed by an equal sign followed by a data value which is assigned to that variable, e.g.
"key=5". The second form consists of an array name followed by"=" followed by one or more
values to be assigned to the array, e.g.:

c=(l. l,-2.9),(-l .8e+ 10,14.0e-3)

assigns values to c(l) and c(2) in the complex array c.

As in other read statements, values are assigned in the order of the array in memory, i.e.
column-major order for two dimensional arrays. Multiple copies of a value may be represented
by a repetition count followed by an asterisk followed by the value; e.g. "3*55.4" is the same as
"55.4, 55.4, 55.4". It is an error to specify more values than the array can hold; if Jess are
specified, only that number of elements of the array are changed. The third form of a value
assignment is a subscripted variable name followed by"=" followed by a value or values, e.g.:
"arr2(0,4)= 15.2". Only integer constant subscripts may be used. The correct number of sub­
scripts must be used and the subscripts must be legal. This form is the same as the form with
an array name except the array is filled starting at the named element.

In all three forms, the variable or array name must be declared in the namelist. The form of the
data values is the same as in list directed input except that in namelist I/O, character strings in
the data must be enclosed in apostrophes or double quotes, and repetition counts must be fol­
lowed by data values.
One use of namelist input is to read in a list of options or flags. For example:

logical flags(l 4)
namelist /pars/ flags, iters, xlow, xhigh, xinc
data flags/I 4 *.false./

10 read(5,pars,end=900)
print pars
call calc(xlow, xhigh, xinc, flags, iters)
go to 10

900 continue
end

could be run with the following data (each record begins with a space):

&pars iters= 10, xlow=O.O, xhigh= 1.0, xinc=0.1 &end
&pars xinc=0.2,

flags(2)=2*.true., flags(8)=.true. &end
&pars xlow=2.0, xhigh=8.0 &end

The program reads parameters for the run from the first data set and computes using them.
Then it loops and each successive set of namelist input data specifies only those data items
which need to be changed. Note the second data set sets the 2"d, yd, and gth elements in the
array flags to .true ..

When a namelist name is used in a write or print statement, all the values in the namelist are
output together with their names. For example the print in the program above prints the follow­
ing:

A Portable Fortran 77 Compiler

&pars flags= f, f, f, f, f, f, f, f, f, f, f, f, f, f, iters=
10, xlow= 0., xhigh= 1.00000, xinc= 0.100000

&end
&pars flags= f, t, t, f, f, f, f, t, f, f, f, f, f, f, iters=

10, xlow= 0., xhigh= 1.00000, xinc= 0.200000
&end
&pars flags= f, t, t, f, f, f, f, t, f, f, f, f, f, f, iters=

10, xlow= 2.00000, xhigh= 8.00000, xinc= 0.200000
&end

PS1:2-l l

Each line begins with a space so that namelist output can be used as input to a namelist read.
The default is to use ampersands in namelist print and write. However, dollar signs will be used
if the last preceding namelist read data set used dollar signs. The character to be used is stored
as the first character of the common block namelistkey.

2.17. Automatic Precision Increase

The -r8 flag allows a user to run a program with increased precision without changing any of
the program source, i.e. it allows a user to take a program coded in single precision and compile
and execute it as if it had been coded in double precision. The option extends the precision of
all single precision real and complex constants, variables, external functions, and intrinsic func­
tions. For example, the source:

implicit complex(c)
real last
intrinsic sin, csin
data last/0.3/

x = 0.1
y = sqrt(x)+sqrt(last)
cl = (0.1,0.2)
c2 = sqrt(cl)
x = real(i)
y = aimag(cl)
call fun(sin,csin)

is compiled under this flag as if it had been written as:

implicit double precision (a-b,d-h,o-z), double complex(c)
double precision last
intrinsic dsin, cdsin
data last/0.3d0/

x = 0.ldO
y = sqrt(x)+sqrt(last)
cl = (0.ld0,0.2d0)
c2 = sqrt(cl)
x = dreal(i)
y = dimag(cl)
call fun(dsin,cdsin)

When the -r8 flag is invoked, the calls using the generic name sqrt will refer to a different
specific function since the types of the arguments have changed. This option extends the preci­
sion of all single precision real and complex variables and functions, including those declared
real•4 and complex•S.

In order to successfully use this flag to increase precision, the entire program including all the
subroutines and functions it calls must be recompiled. Programs which use dynamic memory

PS1:2-12 A Portable Fortran 77 Compiler

allocation or use equivalence or common statements to associate variables of different types may
have to be changed by hand. Similar caveats apply to the sizes of records in unformatted 1/0.

2.18. Characters and Integers
A character constant of integer length or less may be assigned to an integer variable. Individual
bytes are packed into the integer in the native byte order. The character constant is padded
with blanks to the width of the integer during the assignment. Use of this feature is deprecated;
it is intended only as a porting aid for extended Fortran 66 programs. Note that the intrinsic
ichar function behaves as the standard requires, converting only single bytes to integers.

3. VIOLATIONS OF THE STANDARD
We know only a few ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment
The Fortran Standards (both 1966 and 1977) permit common or equivalence statements to force
a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(l),b), (a(4),c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on
double word boundaries; other machines (e.g., IBM 370), run inefficiently if this alignment rule is
not observed. It is possible to tell which equivalenced and common variables suffer from a
forced odd alignment, but every double precision argument would have to be assumed on a bad
boundary. To load such a quantity on some machines, it would be necessary to use separate
operations to move the upper and lower halves into the halves of an aligned temporary, then to
load that double precision temporary; the reverse would be needed to store a result. We have
chosen to require that all double precision real and complex quantities fall on even word boun­
daries on machines with corresponding hardware requirements, and to issue a diagnostic if the
source code demands a violation of the rule.

3.2. Dummy Procedure Arguments
If any argument of a procedure is of type character, all dummy procedure arguments of that pro­
cedure must be declared in an external statement. This requirement arises as a subtle corollary
of the way we represent character string arguments and of the one-pass nature of the compiler.
A warning is printed if a dummy procedure is not declared external. Code is correct if there are
no character arguments.

3.3. T and TL Formats
The implementation of the t (absolute tab) and ti (leftward tab) format codes is defective. These
codes allow rereading or rewriting part of the record which has already been processed (section
6.3.2 in Appendix A). The implementation uses seeks, so if the unit is not one which allows
seeks, such as a terminal, the program is in error. A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any record
lengths except where specifically required by Fortran or the operating system.

3.4. Carriage Control
The Standard leaves as implementation dependent which logical unit(s) are treated as "printer"
files. In this implementation there is no printer file and thus by default, no carriage control is
recognized on formatted output. This can be changed using form= 'print' in the open statement
for a unit, or by using the fpr(l) filter for output; see [9].

A Portable Fortran 77 Compiler PS1:2-13

3.S. Assigned Goto

The optional list associated with an assigned goto statement is not checked against the actual
assigned value during execution.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is necessary to know
the conventions for procedure names, data representation, return values, and argument lists that the
compiled code obeys.

4.1. Procedure Names
On UNIX systems, the name of a common block or a Fortran procedure has an underscore
appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran built-in procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2. Data Representations

The following is a table of corresponding Fortran and C declarations:

Fortran C

integer•2 x
integer x
logical x
real x
double precision x
complex x
double complex x
character•6 x

short int x;
long int x;
long int x;
float x;
double x;
struct { float r, i; } x;
struct { double dr, di; } x;
char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory.)

4.3. Arrays

The first element of a C array always has subscript zero, while Fortran arrays begin at I by
default. Fortran arrays are stored in column-major order in contiguous storage, C arrays are
stored in row-major order. Many mathematical libraries have subroutines which transpose a
two dimensional matrix, e.g. fOlcrf in the NAG library and vtran in the IMSL library. These
may be used to transpose a two-dimensional array stored in C in row-major order to Fortran
column-major order or vice-versa.

4.4. Return Values

A function of type integer, logical, real, or double precision declared as a C function returns the
corresponding type. A complex or double complex function is equivalent to a C routine with an
additional initial argument that points to the place where the return value is to be stored. Thus,

complex function f(...)

is equivalent to

L(temp, ...)
struct { float r, i; } •temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a
data address and a length. Thus,

character• 15 function g(. . .)

PS1:2-14

is equivalent to

g_(result, length, ...)
char result[] ;
long int length;

and could be invoked in C by

char chars[15];

g_(chars, I SL, ...);

A Portable Fortran 77 Compiler

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the func­
tion, but are used to do an indexed branch in the calling procedure. (If the subroutine has no
entry points with alternate return arguments, the returned value is undefined.) The statement

call nret(*l, *2, *3)

is treated exactly as if it were the computed goto

goto (I, 2, 3), nret()

4.5. Argument Lists
All Fortran arguments are passed by address. In addition, for every argument that is of type
character or that is a dummy procedure, an argument giving the length of the value is passed.
(The string lengths are long int quantities passed by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
character* 7 s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

int f();
char s[7];
long int b[3];

sam_(f, &b[l], s, OL, 7L);

4.6. System Interface
To run a Fortran program, the system invokes a small C program which first initializes signal
handling, then calls f_init to initialize the Fortran I/O library, then calls your Fortran main pro­
gram, and then calls f_exit to close any Fortran files opened.

f_init initializes Fortran units 0, 5, and 6 to standard error, standard input, and standard output
respectively. It also calls setlinebuf to initiate line buffering of standard error. If you are using
Fortran subroutines which may do I/O and you have a C main program, call f_init before calling
the Fortran subroutines. Otherwise, Fortran units 0, 5, and 6 will be connected to files fort.O,
fort.5, and fort.6, and error messages from the f77 libraries will be written to fort.O instead of to
standard error. If your C program terminates by calling the C function exit, all files are

A Portable Fortran 77 Compiler PS1:2-15

automatically closed. If there are Fortran scratch files to be deleted, first call f_exit. F _init and
f_exit do not have any arguments.

The -d flag will show what libraries are used in loading Fortran programs.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and direct
formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran I/O is based on records. When a direct file is opened in a Fortran program, the record
length of the records must be given, and this is used by the Fortran I/O system to make the file
look as if it is made up of records of the given length. In the special case that the record length
is given as 1, the files are not considered to be divided into records, but are treated as byte­
addressable byte strings; that is, as ordinary UNIX file system files. (A read or write request on
such a file keeps consuming bytes until satisfied, rather than being restricted to a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be
read or written by any means except Fortran I/O statements. Each record is preceded and fol­
lowed by an integer containing the record's length in bytes.

The Fortran I/O system breaks sequential formatted files into records while reading by using
each newline as a record separator. The result of reading off the end of a record is undefined
according to the Standard. The 110 system is permissive and treats the record as being extended
by blanks. On output, the 110 system will write a newline at the end of each record. It is also
possible for programs to write newlines for themselves. This is an error, but the only effect will
be that the single record the user thought he wrote will be treated as more than one record when
being read or backspaced over.

5.2. Portability Considerations

The Fortran I/O system uses only the facilities of the standard C I/O library, a widely available
and fairly portable package, with the following two nonstandard features: the IIO system needs
to know whether a file can be used for direct IIO, and whether or not it is possible to backspace.
Both of these facilities are implemented using the fseek routine, so there is a routine canseek
which determines if fseek will have the desired effect. Also, the inquire statement provides the
user with the ability to find out if two files are the same, and to get the name of an already
opened file in a form which would enable the program to reopen it. Therefore there are two
routines which depend on facilities of the operating system to provide these two services. In
any case, the I/O system runs on the PDP-11, VAX-111780, and Interdata 8/32 UNIX systems.

5.3. Logical Units and Files

Fortran logical unit numbers may be any integer between 0 and 99. The number of simultane­
ously open files is currently limited to 48.

Units 5, 6, and 0 are connected before the program begins to standard input, standard output,
and standard error respectively.

If an unit is opened explicitly by an open statement with a file= keyword, then the file name is
the name from the open statement. Otherwise, the default file name corresponding to unit n is
fort.n. If there is an environment variable whose name is the same as the tail of the file name
after periods are deleted, then the contents of that environment variable are used as the name of
the file. See [9] for details.

The default connection for all units is for sequential formatted I/O. The Standard does not
specify where a file which has been explicitly opened for sequential I/O is initially positioned.
The 1/0 system will position the file at the beginning. Therefore a write will destroy any data

PS1:2-16 A Portable Fortran 77 Compiler

already in the file, but a read will work reasonably. To position a file to its end, use a read loop,
or the system dependent function fseek. The preconnected units 0, 5, and 6 are positioned as
they come from the program's parent process.

A Portable Fortran 77 Compiler PS1:2-17

APPENDIX A: Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1966 [2] and the 1977 [l]
Standard languages. We assume that the reader is familiar with Fortran 66. We do not pretend to be
complete, precise, or unbiased, but plan to describe what we feel are the most important aspects of
the new language. The best current information on the 1977 Standard is in publications of the X3J3
Subcommittee of the American National Standards Institute, and the ANSI X3.9-l 978 document, the
official description of the language. The Standard is written in English rather than a meta-language,
but it is forbidding and legalistic. A number of tutorials and textbooks are available (see Appendix
B).

I. Features Deleted from Fortran 66

1.1. Hollerith

All notions of "Hollerith" (n h) as data have been officially removed, although our compiler, like
almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range of DO

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is permissible
to jump out of the range of a do loop, then jump back into it. Extended range has been
removed in the Fortran 77 language. The restrictions are so special, and the implementation of
extended range is so unreliable in many compilers, that this change really counts as no loss.

2. Program Form

2.1. Blank Lines

Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external name:

program work

Block data procedures may also have names.

block data stuff

There is now a rule that only one unnamed block data procedure may appear in a program.
(This rule is not enforced by our system.) The Standard does not specify the effect of the pro­
gram and block data names, but they are clearly intended to aid conventional loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have additional
entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations must
precede all executable statements in the procedure. If the procedure begins with a subroutine
statement, all entry points are subroutine names. If it begins with a function statement, each
entry is a function entry point, with type determined by the type declared for the entry name. If
any entry is a character-valued function, then all entries must be. In a function, an entry name
of the same type as that where control entered must be assigned a value. Arguments do not
retain their values between calls. (The ancient trick of calling one entry point with a large
number of arguments to cause the procedure to "remember" the locations of those arguments,
then invoking an entry with just a few arguments for later calculation, is still illegal.

PS1:2-18 A Portable Fortran 77 Compiler

Furthermore, the trick doesn't work in our implementation, since arguments are not kept in
static storage.)

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types. (The
use of floating point do variables is very dangerous because of the possibility of unexpected
roundoff, and we strongly recommend against their use.) The action of the do statement is now
defined for all values of the do parameters. The statement

do 10 i = 1, u, d

performs max(O, L(u -I +d)/d J) iterations. The do variable has a predictable value when exit­
ing a loop: the value at the time a goto or return terminates the loop; otherwise the value that
failed the limit test.

2.5. Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by an aster­
isk, as in

subroutine s(a, •, b, •)

The meaning of the "alternate returns" is described in section 5.2 of Appendix A.

3. Declarations

3.1. CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data type.
Local and common character variables must have a length denoted by a constant expression:

character• 17 a, b(3,4)
character•(6+3) c

If the length is omitted entirely, it is assumed equal to I. A character string argument may have
a constant length, or the length may be declared to be the same as that of the corresponding
actual argument at run time by a statement like

character•(*) a

(There is an intrinsic function Jen that returns the actual length of a character string.) Character
arrays and common blocks containing character variables must be packed: in an array of charac­
ter variables, the first character of one element must follow the last character of the preceding
element, without holes.

//

3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j, k, I,
m, or n is of type integer; other variables are of type real, unless otherwise declared. This gen­
eral rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character•(l 7) (s)

declares that variables whose name begins with an a ,b, c, or g are real, those beginning with w,
x, y, or z are assumed complex, and so on. It is still poor practice to depend on implicit typing,
but this statement is an industry standard.

3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in

A Portable Fortran 77 Compiler PS1:2-l 9

character stro(*)
parameter (x= 17, y=x/3, pi=3.14159d0, str='hello')

The type of each parameter name is governed by the same implicit and explicit rules as for a
variable. Symbolic names for character constants may be declared with an implied length"(*)".
The right side of each equal sign must be a constant expression (an expression made up of con­
stants, operators, and already defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in 1966.) The
lower bound of each dimension may be declared to be other than 1 by using a colon. Further­
more, an adjustable array bound may be an integer expression involving constants, arguments,
and variables in common.

real a(-5:3, 7, m:n}, b(n+l:2*n)

The upper bound on the last dimension of an array argument may be denoted by an asterisk to
indicate that the upper bound is not specified:

integer a(5, *), b(*), c(O:l, -2:*)

3.5. SA VE Statement

A little known rule of Fortran 66 is that variables in a procedure do not necessarily retain their
values between invocations of that procedure. This rule permits overlay and stack implementa­
tions for the affected variables. In Fortran 77, three types of variables automatically keep there
values: variables in blank common, variables defined in data statements and never changed, and
variables in named common blocks which have not become undefined. At any instant in the
execution of a program, if a named common block is declared neither in the currently executing
procedure nor in any of the procedures in the chain of callers, all of the variables in that com­
mon block become undefined. Fortran 77 permits one to specify that certain variables and com­
mon blocks are to retain their values between invocations. The declaration

save a, /b/, c

leaves the values of the variables a and c and all of the contents of common block b unaffected
by an exit from the procedure. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block must be
saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, "intrinsic functions",
rather than being divided into "intrinsic" and "basic external" functions. If an intrinsic func­
tion is to be passed to another procedure, it must be declared intrinsic. Declaring it external (as
in Fortran 66) causes a function other than the built-in one to be passed.

4. Expressions

4.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apostrophe is
to be included in a constant, it is repeated:

'abc'
'ain1't'

PS1:2-20 A Portable Fortran 77 Compiler

Although null (zero-length) character strings are not allowed in the standard Fortran, they may
be used with f77. Our compiler has two different quotation marks, "'"and" " ". (See section
2.9 in the main text.)

4.2. Concatenation

One new operator has been added, character string concatenation, marked by a double slash
"11". The result of a concatenation is the string containing the characters of the left operand fol­
lowed by the characters of the right operand. The character expressions

'ab' II 'cd'
'abed'

are equal.

Dummy arguments of type character may be declared with implied lengths:

subroutine s (a, b)
character a•(*), b•(•)

Such dummy arguments may be used in concatenations in assign statements:

s = a II b

but not in other contexts. For example:

if(a II b .eq. 'abc') key = I
call sub(a 11 b)

are legal statements if "a" and "b" are dummy arguments declared with explicit lengths, or if
they are not arguments. These are illegal if they are declared with implied lengths.

4.3. Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed imple­
mentation of character assignment is to copy characters from the right to the left side.) If the
left side is longer than the right, it is padded with blanks. If the left side is shorter than the
right, trailing characters are discarded. Since the two sides of a character assignment must be
disjoint, the following are illegal:

str = ''II str
str = str(2:)

These are not flagged as errors during compilation or execution, however the result is undefined.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using the
colon notation:

a(i,j) (m:n)

is the string of (n -m +I) characters beginning at the m th character of the character array ele­
ment a;1. Results are undefined unless m 5.n. Substrings may be used on the left sides of
assignments and as procedure actual arguments.

4.5. Exponentiation

It is now permissible to raise real qu'antities to complex powers, or complex quantities to real or
complex powers. (The principal part of the logarithm is used.) Also, multiple exponentiation is
now defined: '

a**b**C is equivalent to a ** (b**c)

A Portable Fortran 77 Compiler PS1:2-21

4.6. Relaxation of Restrictions
Mixed mode expressions are now permitted. (For instance, it is permissible to combine integer
and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data statements and
format statements. (A constant expression is made up of explicit constants and parameters and
the Fortran operators, except for exponentiation to a floating-point power.) An adjustable
dimension may now be an integer expression involving constants, arguments, and variables in
common.

Subscripts may now be general integer expressions; the old cv±c' rules have been removed. do
loop bounds may be general integer, real, or double precision expressions. Computed goto
expressions and 1/0 unit numbers may be general integer expressions.

S. Executable Statements

5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a "Block If".
A Block If begins with a statement of the form

if (...) then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There may be several

else if(...) then

statements, followed by at most one

else

statement. If the logical expression in the Block If statement is true, the statements following it
up to the next else if, else, or end if are executed. Otherwise, the next else if statement in the
group is executed. If none of the else if conditions are true, control passes to the statements fol­
lowing the else statement, if any. (The else block must follow all else if blocks in a Block If. Of
course, there may be Block Ifs embedded inside of other Block If structures.) A case construct
may be rendered:

if (s .eq. 'ab') then

else if (s .eq. 'cd') then

else

end if

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, as
in:

call joeG, * 10, m, *2)

A return statement may have an integer expression, such as:

return k

If the entry point has n alternate return (asterisk) arguments and if I :::;k :::;n, the return is fol­
lowed by a branch to the corresponding statement label; otherwise the usual return to the

PS1:2-22 A Portable Fortran 77 Compiler

statement following the call is executed.

6. Input/Output

6.1. Format Variables

A format may be the value of a character expression (constant or otherwise), or be stored in a
character array, as in:

write(6, '(i5)') x

6.2. END=, ERR=, and IOSTAT= Clauses

A read or write statement may contain end=, err=, and iostat= clauses, as in:

write(6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the I/O is done, 101 is the statement number of the associ­
ated format, 20 and 30 are statement numbers, and a and x are integer variables. If an error
occurs during I/O, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable referred to in
the iostat= clause is given a value when the I/O statement finishes. (Yes, the value is assigned to
the name on the right side of the equal sign.) This value is zero if all went well, negative for end
of file, and some positive value for errors.

6.3. Formatted 1/0

6.3.1. Character Constants

Character constants in formats are copied literally to the output.

A format may be specified as a character constant within the read or write statement.

write(6,'(i2," isn""t ",ii)') 7, 4

produces

7 isn't 4

In the example above, the format is the character constant

(i2,' isn "t ',i 1)

and the embedded character constant

isn't

is copied into the output.

The example could have been written more legibly by taking advantage of the two types of
quote marks.

write(6,'(i2," isn"t ",ii)') 7, 4

However, the double quote is not standard Fortran 77.

The standard does not allow reading into character constants or Hollerith fields. In order to
facilitate running older programs, the Fortran I/O library allows reading into Hollerith fields;
however this is a practice to be avoided.

A Portable Fortran 77 Compiler PS1:2-23

6.3.2. Positional Editing Codes
t, ti, tr, and x codes control where the next character is in the record. trn or nx specifies that the
next character is n to the right of the current position. tin specifies that the next character is n
to the left of the current position, allowing parts of the record to be reconsidered. tn says that
the next character is to be character number n in the record. (See section 3.3 in the main text.)

6.3.3. Colon
A colon in the format terminates the 110 operation if there are no more data items in the 1/0
list, otherwise it has no effect. In the fragment

x='("hello", :, "there", i4)'
write(6, x) 12
write(6, x)

the first write statement prints

hello there 12

while the second only prints

hello

6.3.4. Optional Plus Signs
According to the Standard, each implementation has the option of putting plus signs in front of
non-negative numeric output. The sp format code may be used to make the optional plus signs
actually appear for all subsequent items while the format is active. The ss format code guaran­
tees that the 110 system will not insert the optional plus signs, and the s format code restores the
default behavior of the 110 system. (Since we never put out optional plus signs, ss and s codes
have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks, will be ignored following a bn code in
a format statement, and will be treated as zeros following a bz code in a format statement. The
default for a unit may be changed by using the open statement. (Blanks are ignored by default.)

6.3.6. Unrepresentable Values
The Standard requires that if a numeric item cannot be represented in the form required by a
format code, the output field must be filled with asterisks. (We think this should have been an
option.)

6.3.7. Iw.m
There is a new integer output code, iw.m. It is the same as iw, except that there will be at least
m digits in the output field, including, if necessary, leading zeros. The case iw.O is special, in
that if the value being printed is 0, the output field is entirely blank. iw.1 is the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. On
output we always use e or d. The e and d format codes also have identical meanings. A leading
zero before the decimal point in e output without a scale factor is optional with the implementa­
tion. There is a gw.d format code which is the same as ew.d and fw.d on input, but which
chooses for e formats for output depending on the size of the number and of d.

PS1:2-24 A Portable Fortran 77 Compiler

6.3.9. "A" Formitt Code
The a code is used for character data. aw uses a field width of w, while a plain a uses the length
of the internal character item.

6.4. Standard Units
There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be explicitly
specified by an asterisk, as in

read(*• 10) a, b

Similarly, the standard output unit is specified by a print statement or an asterisk unit:

print 10
write(•, 10)

6.5. List-Directed 1/0

List-directed 1/0 is a kind of free form input for sequential 1/0. It is invoked by using an aster­
isk as the format identifier, as in

read(6, •) a,b,c

On input, values are separated by strings of blanks and possibly a comma. On UNIX, tabs may
be used interchangeably with blanks as separators. Values, except for character strings, cannot
contain blanks. End of record counts as a blank, except in character strings, where it is ignored.
Complex constants are given as two real constants separated by a comma and enclosed in
parentheses. A null input field, such as between two consecutive commas, means the
corresponding variable in the 1/0 list is not changed. Values may be preceded by repetition
counts, as in

4•(3.,2.) 2•, 4•'hello'

which stands for 4 complex constants, 2 null values, and 4 string constants.
The Fortran standard requires data being read into character variables by a list-directed read to
be enclosed in quotes. In our system, the quotes are optional for strings which do not start with
a digit or quote and do not contain separators.
For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes. According to the standard, they could not be read back
using list-directed input. However much of this data could be read back in with list-directed 1/0
on our system.

6.6. Direct 1/0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order, using
direct access 1/0 statements.
Direct access read and write statements have an extra argument, rec=, which gives the record
number to be read or written.

read(2, rec= 13, err=20) (a(i), i= 1, 203)

reads the thirteenth record into the array a.
The size of the records must be given by an open statement (see below). Direct access files may
be connected for either formatted or unformatted 1/0.

A Portable Fortran 77 Compiler PS1:2-25

6.7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type char­
acter. In the former cases there is only a single record in the file; in the latter case each array
element is a record. The Standard includes only sequential formatted 110 on internal files. (110
is not a very precise term to use here, but internal files are dealt with using read and write.)
Internal files are used by giving the name of the character object in place of the unit number, as
in

character•80 x
read(5,'(an x
read(x,'(i3,i4n nl,n2

which reads a character string into x and then reads two integers from the front of it. A sequen­
tial read or write always starts at the beginning of an internal file.

We also support two extensions of the standard. The first is direct 1/0 on internal files. This is
like direct 110 on external files, except that the number of records in the file cannot be changed.
In this case a record is a single element of an array of character strings. The second extension is
list-directed 1/0 on internal files.

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather information
about units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the con­
nection. The following is a minimal example.

open(l, file='fort.junk')

open takes a variety of arguments with meanings described below.

unit= an integer between 0 and 99 inclusive which is the unit to which the file is to be con­
nected (see section 5.3 in the text). If this parameter is the first one in the open statement,
the unit= can be omitted.

iostat= is the same as in read or write.

err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the file to be
connected to the unit. The file name should not be given ifthe status='scratch'.

status= one of 'old', 'new', 'scratch', or 'unknown'. If this parameter is not given,
'unknown' is assumed. The meaning of 'unknown' is processor dependent; our system will
create the file if it doesn't exist. If 'scratch' is given, a temporary file will be created. Tem­
porary files are destroyed at the end of execution. If 'new' is given, the file must not exist.
It will be created for both reading and writing. If 'old' is given, it is an error for the file not
to exist.

access= 'sequential' or 'direct', depending on whether the file is to be opened for sequential or
direct 110.

form= 'formatted' or 'unformatted'. On UNIX systems, form='print' implies 'formatted' with verti­
cal format control. (See section 3.4 of the text).

reel= a positive integer specifying the record length of the direct access file being opened. We
measure all record lengths in bytes. On UNIX systems a record length of 1 has the special
meaning explained in section 5.1 of the text.

PS1:2-26 A Portable Fortran 77 Compiler

blank= 'null' or 'zero'. This parameter has meaning only for formatted 1/0. The default value is
'null'. 'zero' means that blanks, other than leading blanks, in numeric input fields are to be
treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the old file.

6.8.2. CWSE

close severs the connection between a unit and a file. The unit number must be given. The
optional parameters are iostat= and err= with their usual meanings, and status= either 'keep' or
'delete'. For scratch files the default is 'delete'; otherwise 'keep' is the default. 'delete' means the
file will be removed. A simple example is

close(3, err= 17)

6.8.3. INQUIRE
The inquire statement gives information about a unit ("inquire by unit") or a file ("inquire by
file"). Simple examples are:

inquire(unit=3, name=xx)
inquire(file='junk', number=n, exist=!)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file name
are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or unit=
must be used.

iostat=, err= are as before.
exist= a logical variable. The logical variable is set to .true. if the file or unit exists and is set to

.false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to a unit
or if the unit is connected to a file, and it is set to .false. otherwise.

number= an integer variable to which is assigned the number of the unit connected to the file, if
any.

named= a logical variable to which is assigned .true. ifthe file has a name, or .false. otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or the
name of the file connected to the unit (inquire by unit).

access= a character variable to which will be assigned the value 'sequential' if the connection is
for sequential 1/0, 'direct' if the connection is for direct 1/0, 'unknown' if not connected.

sequential= a character variable to which is assigned the value 'yes' if the file could be connected
for sequential 1/0, 'no' if the file could not be connected for sequential 1/0, and 'unknown' if
we can't tell.

direct= a character variable to which is assigned the value 'yes' if the file could be connected for
direct 110, 'no' if the file could not be connected for direct 1/0, and 'unknown' if we can't
tell.

form= a character variable to which is assigned the value 'unformatted' if the file is connected for
unformatted 1/0, 'formatted' if the file is connected for formatted 1/0, 'print' for formatted
1/0 with vertical format control, or 'unknown' if not connected .

. formatted= a character variable to which is assigned the value 'yes' if the file could be connected
for formatted 110, 'no' if the file could not be connected for formatted 110, and 'unknown' if
we can't tell.

A Portable Fortran 77 Compiler PS1:2-27

unformatted• a character variable to which is assigned the value 'yes' if the file could be con­
nected for unformatted 110, 'no' if the file could not be connected for unformatted 1/0, and
'nnknown' if we can't tell.

reel• an integer variable to which is assigned the record length of the records in the file if the
file is connected for direct access.

nextrec• an integer variable to which. is assigned one more than the number of the the last
record read from a file connected for direct access.

blank• a character variable to which is assigned the value 'null' if null blank control is in effect
for the file connected for formatted 1/0, 'zero' if blanks are being converted to zeros and
the file is connected for formatted 1/0.

For information on file permissions, ownership, etc., use the Fortran library routines stat and
access.
For further discussion of the UNIX Fortran 110 system see "Introduction to the f77 1/0 Library"
(9).

PS1:2-28 A Portable Fortran 77 Compiler

APPENDIX B: References and Bibliography

References

I. American National Standard Programming Language FORTRAN, ANSI X3.9-1978. New York:
American National Standards Institute, 1978.

2. USA Standard FORTRAN, USAS X3.9-1966. New York: United States of America Standards Insti­
tute, 1966. Clarified in Comm. ACM 12:289 (1969) and Comm. ACM 14:628 (1971).

3. Kernighan, B. W., and D. M. Ritchie. The C Programming Language. Englewood Cliffs:
Prentice-Hall, 1978.

4. Ritchie, D. M. Private communication.

5. Johnson, S. C. "A Portable Compiler: Theory and Practice," Proceedings of Fifth ACM Sympo­
sium on Principles of Programming Languages. 1978.

6. Feldman, S. I. "An Informal Description of EFL," internal memorandum.

7. Kernighan, B. W. "RATFOR-A Preprocessor for Rational Fortran," Bell Laboratories Computing
Science Technical Report #55. 1977.

8. Ritchie, D. M. Private communication.

9. Wasley, D. L. "Introduction to the f77 1/0 Library", UNIX Programmer's Manual, Volume 2c.

Bibliography

The following books or documents describe aspects of Fortran 77. This list cannot pretend to be
complete. Certainly no particular endorsement is implied.

I. Brainerd, Walter S., et al. Fortran 77 Programming. Harper Row, 1978.

2. Day, A. C. Compatible Fortran. Cambridge University Press, 1979.

3. Dock, V. Thomas. Structured Fortran IV Programming. West, 1979.

4. Feldman, S. I. "The Programming Language EFL," Bell Laboratories Technical Report. June
1979.

5. Hume, J. N., and R. C. Holt. Programming Fortran 77. Reston, 1979.

6. Katzan, Harry, Jr. Fortran 77. Van Nostrand-Reinhold, 1978.

7. Meissner, Loren P., and Organick, Elliott I. Fortran 77 Featuring Structured Programming,
Addison-Wesley, 1979.

8. Merchant, Michael J. ABC's of Fortran Programming. Wadsworth, 1979.

9. Page, Rex, and Richard Didday. Fortran 77 for Humans. West, 1980.

10. Wagener, Jerrold L. Principles of Fortran 77 Programming. Wiley, 1980.

Introduction to the f77 I/O Library

Introduction to the f77 1/0 Library

David L. Wasley

J. Berkman

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

The f77 I/O library, libI77.a, includes routines to perform all of the standard
types of Fortran input and output specified in the ANSI 1978 Fortran standard. The
I/O Library was written originally by Peter J. Weinberger at Bell Labs. Where the
original implementation was incomplete, it has been rewritten to more closely imple­
ment the standard. Where the standard is vague, we have tried to provide flexibility
within the constraints of the UNIXt operating system. A number of logical exten­
sions and enhancements have been provided such as the use of the C stdio library
routines to provide efficient buffering for file I/O.

Revised September, 1985

t UNIX is a trademark of AT&T Bell Laboratories.

PS1:3-1

PSI :3-2 Introduction to the rn I/O Library

Table of Contents

I. Fortran I/O 3

1.1. Types of I/O and logical records 3

1.1.1. Direct access external I/O 3

1.1.2. Sequential access external I/O 3
1.1.3. List directed and namelist sequential external I/O .. 3

1.1.4. Internal I/O .. 3

1.2. I/O execution ... 3
2. Implementation details 4

2.1. Number of logical units .. 4

2.2. Standard logical units 4

2.3. Vertical format control ... 4

2.4. File names and the open statement 4
2.5. Format interpretation ... 5

2.6. List directed output ... 5
2.7. 1/0 errors ... 6

3. Non-"ANSI Standard" extensions ... 6

3.1. Format specifiers ... 6

3.2. Print files 7

3.3. Scratch files .. 7
3.4. List directed 1/0 .. 7

3.5. Namelist 110 .. 7

4. Running older programs 7

4.1. Traditional unit control parameters ... 8

4.2. loinit() 8
5. Magnetic tape 1/0 ... 8

6. Caveat Programmer 8

Appendix A: 1/0 Library Error Messages 9

Appendix 8: Exceptions to the ANSI Standard .. 11

Introduction to the f77 I/O Library PS1:3-3

1. Fortran I/O
The requirements of the ANSI standard impose significant overhead on programs that do large

amounts of I/O. Formatted I/O can be very "expensive" while direct access binary I/O is usually very
efficient. Because of the complexity of Fortran I/O, some general concepts deserve clarification.

1.1. Types of 1/0 and logical records
There are four forms of 1/0: formatted, unformatted, list directed, and namelist. The last two are

related to formatted but do not obey all the rules for formatted 1/0. There are two types of "files":
external and internal and two modes of access to files: direct and sequential. The definition of a logi­
cal record depends upon the combination of 1/0 form, file type, and access mode specified by the For­
tran 1/0 statement.

1.1.1. Direct access external 1/0
A logical record in a direct access external file is a string of bytes of a length specified when the

file is opened. Read and write statements must not specify logical records longer than the original
record size definition. Shorter logical records are allowed. Unformatted direct writes leave the unfilled
part of the record undefined. Formatted direct writes cause the unfilled record to be padded with
blanks.

1.1.2. Sequential access external 1/0
Logical records in sequentially accessed external files may be of arbitrary and variable length.

Logical record length for unformatted sequential files is determined by the size of items in the iolist.
The requirements of this form of 1/0 cause the external physical record size to be somewhat larger
than the logical record size. For formatted write statements, logical record length is determined by the
format statement interacting with ihe iolist at execution time. The "newline" character is the logical
record delimiter. Formatted sequential access causes one or more logical records ending with "new­
line" characters to be read or written.

1.1.3. List directed and namelist sequential external 1/0
Logical record length for list directed and namelist 1/0 is relatively meaningless. On output, the

record length is dependent on the magnitude of the data items. On input, the record length is deter­
mined by the data types and the file contents. By ANSI definition, a slash, "/",terminates execution
of a list directed input operation. Namelist input is terminated by "&end" or "$end" (depending on
whether the character before the namelist name was"&" or"$").

1.1.4. Internal I/O
The logical record length for an internal read or write is the length of the character variable or

array element. Thus a simple character variable is a single logical record. A character variable array is
similar to a fixed length direct access file, and obeys the same rules. Unformatted and namelist 1/0
are not allowed on "internal" files.

1.2. 1/0 execution
Note that each execution of a Fortran unformatted 1/0 statement causes a single logical record to

be read or written. Each execution of a Fortran formatted 1/0 statement causes one or more logical
records to be read or written.

A slash, "/'', will terminate assignment of values to the input list during list directed input and
the remainder of the current input line is skipped. The standard is rather vague on this point but
seems to require that a new external logical record be found at the start of any formatted input.
Therefore data following the slash is ignored and may be used to comment the data file.

Direct access list directed 1/0 is not allowed. Unformatted internal 1/0 is not allowed. Namelist
I/O is allowed only with external sequential files. All other flavors of 1/0 are allowed, although some
are not part of the ANSI standard.

PS1:3-4 Introduction to the f77 1/0 Library

Any 1/0 statement may include· an err= clause to specify an alternative branch to be taken on
errors and/or an iostat= clause to return the specific error code. Any error detected during 1/0 pro­
cessing will cause the program to abort unless either err= or iostat= has been specificed in the pro­
gram. Read statements may include end= to branch on end-of-file. The end-of-file indication for that
logical unit may be reset with a backspace statement. File position and the value of 1/0 list items is
undefined following an error.

2. Implementation details

Some details of the current implementation may be useful in understanding constraints on For­
tran 1/0.

2.1. Number of logical units
Unit numbers must be in the range 0 - 99. The maximum number of logical units that a pro­

gram may have open at one time is the same as the UNIX system limit, currently 48.

2.2. Standard logical units

By default, logical units 0, 5, and 6 are opened to "stderr", "stdin'', and "stdout" respectively.
However they can be re-defined with an open statement. To preserve error reporting, it is an error to
close logical unit 0 although it may be reopened to another file.

If you want to open the default file name for any preconnected logical unit, remember to close
the unit first. Redefining the standard units may impair normal console 1/0. An alternative is to use
shell re-direction to externally re-define the above units. To re-define default blank control or format
of the standard input or output files, use the open statement specifying the unit number and no file
name (see § 2.4).

The standard units, 0, 5, and 6, are named internally "stderr", "stdin", and "stdout" respec­
tively. These are not actual file-names and can not be used for opening these units. Inquire will not
return these names and will indicate that the above units are not named unless they have been
opened to real files. The names are meant to make error reporting more meaningful.

2.3. Vertical format control
Simple vertical format control is implemented. The logical unit must be opened for sequential

access with form = 'prinf (see §3.2). Control codes "O" and "1" are replaced in the output file with
"\n" and "\f' respectively. The control character"+" is not implemented and, like any other char­
acter in the first position of a record written to a "print" file, is dropped. The form = 'prinf mode
does not recognize vertical format control for direct formatted, list directed, or namelist output.

An alternative is to use the filter .fpr(l) for vertical format control. It replaces "O" and "1" by
"\n" and "\f' respectively, and implements the"+" control code. Unlike form = 'prinf which drops
unrecognized form control characters, fpr copies those characters to the output file.

2.4. File names and the open statement
A file name may be specified in an open statement for the logical unit. If a logical unit is

opened by an open statement which does not specify a file name, or it is opened implicitly by the exe­
cution of a read, write, or endfile statement, then the default file name is fort.N where N is the logical
unit number. Before opening the file, the library checks for an environment variable with a name
identical to the tail of the file name with periods removed. t If it finds such an environment variable,
it uses its value as the actual name of the file. For example, a program containing:

tPeriods are deleted because they can not be part of environment variable names in the Bourne shell.

Introduction to the f77 I/O Library

open(32,file='/usr/guest/census/data.d')
read(32, 100) vec
write(44) vec

PS1:3-5

normally will read from /usrlguestlcensus/data.d and write to fort.44 in the current directory. If the
environment variables datad andfort44 are set, e.g.:

% setenv datad mydata
% setenv fort44 myout

in the C shell or:

$ datad=mydata
$ fort44=myout
$ export datad fort44

in the Bourne shell, then the program will read from mydata and write to myout.

An open statement need not specify a file name. If it refers to a logical unit that is already open,
the blank= and form= specifiers may be redefined without affecting the current file position. Other­
wise, if status = 'scratch' is specified, a temporary file with a name of the form tmp.FXXXXXX will be
opened, and, by default, will be deleted when closed or during termination of program execution.

It is an error to try to open an existing file with status = 'new' . It is an error to try to open a
nonexistent file with status = 'old' . By default, status = 'unknown' will be assumed, and a file will be
created if necessary.

By default, files are positioned at their beginning upon opening, but see fseek(3f) and ioinit(3f)
for alternatives. Existing files are never truncated on opening. Sequentially accessed external files are
truncated to the current file position on close, backspace, or rewind only if the last access to the file
was a write. An endfile always causes such files to be truncated to the current file position.

2.5. Format interpretation

Formats which are in format statements are parsed by the compiler; formats in read, write, and
print statements are parsed during execution by the 1/0 library. Upper as well as lower case charac­
ters are recognized in format statements and all the alphabetic arguments to the I/O library routines.

If the external representation of a datum is too large for the field width specified, the specified
field is filled with asterisks (*). On Ew .dEe output, the exponent field will be filled with asterisks if
the exponent representation is too large. This will only happen if "e" is zero (see appendix B).

On output, a real value that is truly zero will display as "O." to distinguish it from a very small
non-zero value. If this causes problems for other input systems, the BZ edit descriptor may be used
to cause the field following the decimal point to be filled with zero's.

Non-destructive tabbing is implemented for both internal and external formatted I/O. Tabbing
left or right on output does not affect previously written portions of a record. Tabbing right on out­
put causes unwritten portions of a record to be filled with blanks. Tabbing right off the end of an
input logical record is an error. Tabbing left beyond the beginning of an input logical record leaves
the input pointer at the beginning of the record. The format specifier T must be followed by a posi­
tive non-zero number. Ifit is not, it will have a different meaning (see §3.1).

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in I/O to a ter­
minal or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit that can
seek. Otherwise tabbing right or spacing with X will write blanks on the output.

2.6. List directed output

In formatting list directed output, the 1/0 system tries to prevent output lines longer than 80
characters. Each external datum will be separated by two spaces. List directed output of complex
values includes an appropriate comma. List directed output distinguishes between real and double
precision values and formats them differently. Output of a character string that includes "\n" is

PS1:3-6 Introduction to the rn 1/0 Library

interpreted reasonably by the output system.

2.7. 110 errors
If 1/0 errors are not trapped by the user's program an appropriate error message will be written

to "stderr" before aborting. An error number will be printed in "[]" along with a brief error message
showing the logical unit and 1/0 state. Error numbers < 100 refer to UNIX errors, and are described
in the introduction to chapter 2 of the UNIX Programmer's Manual. Error numbers ~ 100 come
from the 1/0 library, and are described further in the appendix to this writeup;. For internal 1/0,
part of the string will be printed with "I" at the current position in the string. For external 1/0, part
of the current record will be displayed if the error was caused during reading from a file that can
backspace.

3. Non-"ANSI Standard" extensions
Several extensions have been added to the 1/0 system to provide for functions omitted or poorly

defined in the standard. Programmers should be aware that these are non-portable.

3.1. Format specifiers
B is an acceptable edit control specifier. It causes return to the logical unit's default mode of

blank interpretation. This is consistent with S which returns to default sign control.
P by itself is equivalent to OP . It resets the scale factor to the default value, 0.
The form of the Ew.dEe format specifier has been extended to D also. The. form Ew.d.e is

allowed but is not standard. The "e" field specifies the minimum number of digits or spaces in the
exponent field on output. If the value of the exponent is too large, the exponent notation ·e or d will
be dropped from the output to allow one more character position. If this is still not adequate, the "e"
field will be filled with asterisks (*). The default value for "e" is 2.

An additional form of tab control specification has been added. The ANSI standard forms TRn,
TLn, and Tn are supported where n is a positive non-zero number. If T or nT is specified, tabbing
will be to the next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be lined up
without counting.

A format control specifier has been added to suppress the newline at the end of the last record
of a formatted sequential write. The specifier is a dollar sign ($). It is constrained by the same rules as
the colon (:). It is used typically for console prompts. For example:

write{•, "('enter value for x: ',$)")
read{•,•) x

Radices other than IO can be specified for formatted integer 1/0 conversion. The specifier is pat­
terned after P, the scale factor for floating point conversion. It remains in effect until another radix is
specified or format interpretation is complete. The specifier is defined as [n]R where 2 s n s 36. If n
is omitted, the default decimal radix is restored.

The format specifier Om.n may be used for an octal conversion; it is equivalent to 8R,Im.n,IOR.
Similarly, Zm.n is equivalent to 16R,Im.n,IOR and may be used for an hexadecimal conversion;

In conjunction with the above, a sign control specifier has been added to cause integer values to
be interpreted as unsigned during output conversion. The specifier is SU and remains in effect until
another sign control specifier is encountered, or format interpretation is complete. t Radix and

t On many systems, these are also available in help f77 io_e" _msgs.
tNote: Unsigned integer values greater than (2 .. 31 • I), can be read and written using SU. However they
can not be used in computations because Fortran uses signed arithmetic and such values appear to the ar­
ithmetic unit as negative numbers.

Introduction to the f77 I/O Library PS1:3-7

"unsigned" specifiers could be used to format a hexadecimal dump, as follows:

2000 format (SU, 8ZI0.8)

3.2. Print files
The ANSI standard is ambiguous regarding the definition of a "print" file. Since UNIX has no

default "print" file, an additional form= specifier is now recognized in the open statement. Specifying
form = 'print' implies formatted and enables vertical format control for that logical unit (see § 2.3).
Vertical format control is interpreted only on sequential formatted writes to a "print" file.

The inquire statement will return print in the form= string variable for logical units opened as
"print" files. It will return -1 for the unit number of an unconnected file.

If a logical unit is already open, an open statement including the form= option or the blank=
option will do nothing but re-define those options. This instance of the open statement need not
include the file name, and must not include a file name if unit= refers to a standard input or output.
Therefore, to re-define the standard output as a "print" file, use:

open (unit=6, form='print')

3.3. Scratch files

A close statement with status = 'keep' may be specified for temporary files. This is the default
for all other files. Remember to get the scratch file's real name, using inquire , if you want to re-open
it later.

3.4. List directed I/O
List directed read has been modified to allow tab characters wherever blanks are allowed. It

also allows input of a string not enclosed in quotes. The string must not start with a digit or quote,
and can not contain any separators (",", "!", blank or tab). A newline will terminate the string
unless escaped with \. Any string not meeting the above restrictions must be enclosed in quotes (" "
" or " ' ").

Internal list directed I/O has been implemented. During internal list reads, bytes are consumed
until the iolist is satisfied, or the "end-of-file" is reached. During internal list writes, records are filled
until the iolist is satisfied. The length of an internal array element should be at least 20 bytes to
avoid logical record overflow when writing double precision values. Internal list read was imple­
mented to make command line decoding easier. Internal list write should be avoided.

3.5. Namelist I/O

Namelist I/O is a common extension in Fortran systems. The f77 version was designed to be
compatible with other vendors versions; it is described in "A Portable Fortran 77 Compiler", by
Feldman and Weinberger, August, 1985.

4. Running older programs

Traditional Fortran environments usually assume carriage control on all logical units, usually
interpret blank spaces on input as "O"s, and often provide attachment of global file names to logical
units at run time. There are several routines in the 1/0 library to provide these functions.

PS1:3-8 Introduction to the rn I/O Library

4.1. Traditional unit control parameten

If a program reads and writes only units 5 and 6, then including -1166 in the f77 command will
cause carriage control to be interpreted on output and cause blanks to be zeros on input without
further modification of the program. If this is not adequate, the routine ioinit(3f) can be called to
specify control parameters separately, including whether files should be positioned at their beginning
or end upon opening.

4.2. IoinitO
Ioinit(3f) can be used to attach logical units to specific files at run time, and to set global param­

eters for the 110 system. It will look for names of a user specified form in the environment and open
the corresponding logical unit for sequential formatted I/O. Names must be of the form PREFIXnn
where PREFIX is specified in the call to ioinit and nn is the logical unit to be opened. Unit numbers
< 10 must include the leading "O".

loinit should prove adequate for most programs as written. However, it is written in For­
tran-77 specifically so that it may serve as an example for similar user-supplied routines. A copy
may be retrieved by "ar x /usrnib/libU77.a ioinit.r•. See §2.4 for another way to override program
file names through environment variables.

5. Magnetic tape I/O

Because the I/O library uses stdio bufferin~. reading or writing magnetic tapes should be done
with great caution, or avoided if possible. A set "If routines has been provided to read and write arbi­
trary sized buffers to or from tape directly. The buffer must be a character object. Internal 110 can be
used to fill or interpret the buffer. These routines do not use normal Fortran 1/0 processing and do
not obey Fortran 1/0 rules. See topen(3f).

6. Caveat Programmer

The I/O library is extremely complex yet we believe there are few bugs left. We've tried to
make the system as correct as possible according to the ANSI X3.9-1978 document and keep it com­
patible with the UNIX file system. Exceptions to the standard are noted in appendix B.

Introduction to the f77 I/O Library PS1:3-9

Appendix A

110 Library Error Messages

The following error messages are generated by the I/O library. The error numbers are returned
in the iostat= variable. Error numbers < 100 are generated by the UNIX kernel. See the introduction
to chapter 2 of the UNIX Programmers Manual for their description.

100 error in format
See error message output for the location of the error in the format. Can be caused by
more than l 0 levels of nested parentheses, or an extremely long format statement.

101 illegal unit number
It is illegal to close logical unit 0. Unit numbers must be between 0 and 99 inclusive.

102 formatted ilo not allowed
The logical unit was opened for unformatted I/O.

103 unformatted ilo not allowed
The logical unit was opened for formatted I/O.

104 direct ilo not allowed
The logical unit was opened for sequential access, or the logical record length was specified
as 0.

105 sequential ilo not allowed
The logical unit was opened for direct access I/O.

106 can't backspace file
The file associated with the logical unit can't seek. May be a device or a pipe.

l 07 off beginning of record
The format specified a left tab beyond the beginning of an internal input record.

108 can't stat file
The system can't return status information about the file. Perhaps the directory is unread­
able.

109 no * after repeat count
Repeat counts in list directed I/O must be followed by an * with no blank spaces.

110 off end of record
A formatted write tried to go beyond the logical end-of-record. An unformatted read or
write will also cause this.

111 truncation failed
The truncation of an external sequential file on close, backspace, rewind, or endfile failed.

112 incomprehensible list input
List input has to be just right.

PS1:3-10 Introduction to the f77 1/0 Library

113 out of free space
The library dynamically creates buffers for internal use. You ran out of memory for this.
Your program is too big!

114 unit not connected
The logical unit was not open.

11 S invalid data for integer format term
O~ly spaces, a leading sign and digits are allowed.

116 invalid data for logical format term
Legal input consists of spaces (optional), a period (optional), and then a "t'', "T", "r', or
"F'.

117 'new' file exists
You tried to open an existing file with "status= 'new"'.

118 can't find 'old' file
You tried to open a non-existent file with "status= 'old"'.

119 opening too many files or unknown system error
Either you are trying to open too many files simultaneously or there has been an
undetected system error.

120 requires seek ability
Direct access requires seek ability. Sequential unformatted 1/0 requires seek ability on the
file due to the special data structure required. Tabbing left also requires seek ability.

121 illegal argument
Certain arguments to open, etc. will be checked for legitimacy. Often only non-default
forms are looked for.

122 negative repeat count
The repeat count for list directed input must be a positive integer.

123 illegal operation for unit
An operation was requested for a device associated with the logical unit which was not
possible. This error is returned by the tape 1/0 routines if attempting to read past end-of­
tape, etc.

124 invalid data for d, e, for g format term
Input data must be legal.

125 illegal input for namelist
Column one of input is ignored, the namelist name must match, the variables must be in
the namelist, and the data must be of the right type.

Introduction to the n1 IIO Library PS1:3-l l

Appendix B

Exceptions to the ANSI Standard

A few exceptions to the ANSI standard remain.

Vertical format control
The "+"carriage control specifier is not fully implemented (see §2.3). It would be difficult to

implement it correctly and still provide UNIX-like file I/O.
Furthermore, the carriage control implementation is asymmetrical. A file written with carriage

control interpretation can not be read again with the same characters in column 1.
An alternative to interpreting carriage control internally is to run the output file through a "For­

tran output filter" before printing. This filter could recognize a much broader range of carriage control
and include terminal dependent processing. One such filter is fprl.. l).

Default files
Files created by default use of endfile statements are opened for sequential formatted access.

There is no way to redefine such a file to allow direct or unformatted access.

Lower case strings
It is not clear if the ANSI standard requires internally generated strings to be upper case or not.

As currently written, the inquire statement will return lower case strings for any alphanumeric data.

Exponent representation on Ew.dEe output
If the field width for the exponent is too small, the standard allows dropping the exponent char­

acter but only if the exponent is > 99. This system does not enforce that restriction. Further, the
standard implies that the entire field, "w", should be filled with asterisks if the exponent can not be
displayed. This system fills only the exponent field in the above case since that is more diagnostic.

Pre-connection of files

The standard says units must be pre-connected to files before the program starts or must be
explicitly opened. Instead, the I/O library connects the unit to a file on its first use in a read, write,
print, or endfile statement. Thus inquire by unit can not tell prior to a unit number use the charac­
teristics or name of the file corresponding to a unit.

Berkeley Pascal User's Manual
Version 3.1 - April 1986

William N. Joyf, Susan L. Graham, Charles B. Haleyf,
Marshall Kirk McKusick, and Peter B. Kesslerf

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Berkeley Pascal is designed for interactive instructional use and runs on
the PDP/11 and VAX/11 computers. Interpretive code is produced, providing
fast translation at the expense of slower execution speed. There is also a fully
compatible compiler for the VAX/ l I. An execution profiler and Wirth's cross
reference program are also available with the system.

The system supports full Pascal. The language accepted is 'standard'
Pascal, and a small number of extensions. There is an option to suppress the
extensions. The extensions include a separate compilation facility and the
ability to link to object modules produced from other source languages.

The User's Manual gives a list of sources relating to the UNIXt system,
the Pascal language, and the Berkeley Pascal system. Basic usage examples
are provided for the Pascal components pi, px, pix, pc, and pxp. Errors
commonly encountered in these programs are discussed. Details are given of
special considerations due to the interactive implementation. A number of
examples are provided including many dealing with input/output. An appen­
dix supplements Wirth's Pascal Report to form the full definition of the
Berkeley implementation of the language.

Introduction
The Berkeley Pascal User's Manual consists of five major sections and an appendix. In

section 1 we give sources of information about UNIX, about the programming language Pas­
cal, and about the Berkeley implementation of the language. Section 2 introduces the Berke­
ley implementation and provides a number of tutorial examples. Section 3 discusses the error
diagnostics produced by the translators pc and pi, and the runtime interpreter px. Section 4
describes input/output with special attention given to features of the interactive implementa­
tion and to features unique to UNIX. Section 5 gives details on the components of the system
and explanation of all relevant options. The User's Manual concludes with an appendix to
Wirth's Pascal Report with which it forms a precise definition of the implementation.

Copyright 1977, 1979, 1980, 1983 W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, P. B. Kessler
fAuthor's current addresses: William Joy: Sun Microsystems, 2550 Garcia Ave., Mountain View, CA
94043; Charles Haley: S & B Associates, 1110 Centennial Ave., Piscataway, NJ 08854; Peter Kessler:
Xerox Research Park, Palo Alto, CA
t UNIX is a trademark of AT&T Bell Laboratories.

PSl:4-2 Berkeley Pascal User's Manual

History of the implementation

The first Berkeley system was written by Ken Thompson in early 1976. The main
features of the present system were implemented by Charles Haley and William Joy during
the latter half of 1976. Earlier versions of this system have been in use since January, 1977.

The system was moved to the VAX-I I by Peter Kessler and Kirk McKusick with the
porting of the interpreter in the spring of 1979, and the implementation of the compiler in the
summer of 1980.

I. Sources of information
This section lists the resources available for information about general features of UNIX,

text editing, the Pascal language, and the Berkeley Pascal implementation, concluding with a
list of references. The available documents include both so-called standard documents -
those distributed with all UNIX system - and documents (such as this one) written at Berke­
ley.

I.I. Where to get documentation

Current documentation for most of the UNIX system is available "on line" at your ter­
minal. Details on getting such documentation interactively are given in section 1.3.

1.2. Documentation describing UNIX

The following documents are those recommended as tutorial and reference material
about the UNIX system. We give the documents with the introductory and tutorial materials
first, the reference materials last.

UNIX For Beginners - Second Edition
This document is the basic tutorial for UNIX available with the standard system.

Communicating with UNIX

This is also a basic tutorial on the system and assumes no previous familiarity with
computers; it was written at Berkeley.

An introduction to the C shell
This document introduces csh, the shell in common use at Berkeley, and provides a

good deal of general description about the way in which the system functions. It provides a
useful glossary of terms used in discussing the system.

UNIX Programmer's Manual

This manual is the major source of details on the components of the UNIX system. It
consists of an Introduction, a permuted index, and eight command sections. Section 1 con­
sists of descriptions of most of the "commands" of UNIX. Most of the other sections have
limited relevance to the user of Berkeley Pascal, being of interest mainly to system program­
mers.

UNIX documentation often refers the reader to sections of the manual. Such a reference
consists of a command name and a section number or name. An example of such a reference
would be: ed (l). Here ed is a command name - the standard UNIX text editor, and '(l)'
indicates that its documentation is in section 1 of the manual.

The pieces of the Berkeley Pascal system are pi (1), px (1), the combined Pascal transla­
tor and interpretive executor pix (I), the Pascal compiler pc (l), the Pascal execution profiler
pxp (I), and the Pascal cross-reference generator pxref (1).

It is possible to obtain a copy of a manual section by using the man (I) command. To
get the Pascal documentation just described one could issue the command:

Berkeley Pascal User's Manual PSl:4-3

% man pi

to the shell. The user input here is shown in bold face; the '% ', which was printed by the
shell as a prompt, is not. Similarly the command:

% man man

asks the man command to describe itself.

1.3. Text editing documents

The following documents introduce the various UNIX text editors. Most Berkeley users
use a version of the text editor ex; either edit, which is a version of ex for new and casual
users, ex itself, or vi (visual) which focuses on the display editing portion of ex.

A Tutorial Introduction to the UNIX Text Editor

This document, written by Brian Kernighan of Bell Laboratories, is a tutorial for the
standard UNIX text editor ed. It introduces you to the basics of text editing, and provides
enough information to meet day-to-day editing needs, for ed users.

Edit: A tutorial
This introduces the use of edit, an editor similar to ed which provides a more hospit­

able environment for beginning users.

Ex/edit Command Summary

This summarizes the features of the editors ex and edit in a concise form. If you have
used a line oriented editor before this summary alone may be enough to get you started.

Ex Reference Manual - Version 3.7

A complete reference on the features of ex and edit.

An Introduction to Display Editing with Vi

Vi is a display oriented text editor. It can be used on most any CRT terminal, and uses
the screen as a window into the file you are editing. Changes you make to the file are
reflected in what you see. This manual serves both as an introduction to editing with vi and
a reference manual.

Vi Quick Reference
This reference card is a handy quick guide to vi; you should get one when you get the

introduction to vi.

1.4. Pascal documents -The language

This section describes the documents on the Pascal language which are likely to be most
useful to the Berkeley Pascal user. Complete references for these documents are given in sec­
tion 1.7.

Pascal User Manual

By Kathleen Jensen and Niklaus Wirth, the User Manual provides a tutorial introduc­
tion to the features of the language Pascal, and serves as an excellent quick-reference to the
language. The reader with no familiarity with Algol-like languages may prefer one of the Pas­
cal text books listed below, as they provide more examples and explanation. Particularly
important here are pages 116-118 which define the syntax of the language. Sections 13 and
14 and Appendix F pertain only to the 6000-3.4 implementation of Pascal.

PS1:4-4 Berkeley Pascal User's Manual

Pascal Report

By Niklaus Wirth, this document is bound with the User Manual. It is the guiding refer­
ence for implementors and the fundamental definition of the language. Some programmers
find this report too concise to be of practical use, preferring the User Manual as a reference.

Books on Pascal

Several good books which teach Pascal or use it as a medium are available. The books
by Wirth Systematic Programming and Algorithms + Data Structures = Programs use Pascal
as a vehicle for teaching programming and data structure concepts respectively. They are
both recommended. Other books on Pascal are listed in the referen~s below.

1.5. Pascal documents -The Berkeley Implementation

This section d~scribes the documentation which is available describing the Berkeley
implementation of Pascal.

User's Manual

The document you are reading is the User's Manual for Berkeley Pascal. We often refer
the reader to the Jensen-Wirth User Manual mentioned above, a different document with a
similar name.

Manual sections

The sections relating to Pascal in the UNIX Programmer's Manual are pix (1), pi (1), pc
(1), px (1), pxp (1), and pxref (1). These sections give a description of each program, sum­
marize the available options, indicate files used by the program, give basic information on the
diagnostics produced and include a list of known bugs.

Implementation notes

For those interested in the internal organization of the Berkeley Pascal system there are
a series of Implementation Notes describing these details. The Berkeley Pascal PXP Imple­
mentation Notes describe the Pascal interpreter px ; and the Berkeley Pascal PX Implementa­
tion Notes describe the structure of the execution profiler pxp.

1.6. References

UNIX Documents

Communicating With UNIX
Computer Center
University of California, Berkeley
January, 1978.

Ricki Blau and James Joyce
Edit: a tutorial
UNIX User's Supplementary Documents (USD), 14
University of California, Berkeley, CA. 94720
April, 1986.

Ex/ edit Command Summary
Computer Center
University of California, Berkeley
August, 1978.

Berkeley Pascal User's Manual

William Joy
Ex Reference Manual - Version 3. 7
UNIX User's Supplementary Documents (USD), 16
University of California, Berkeley, CA. 94720
April, 1986.

William Joy
An Introduction to Display Editing with Vi
UNIX User's Supplementary Documents (USD), 15
University of California, Berkeley, CA. 94720
April, 1986.

William Joy
An Introduction to the C shell (Revised)
UNIX User's Supplementary Documents (USD), 4
University of California, Berkeley, CA. 94720
April, 1986.

Brian W. Kernighan
UNIX for Beginners - Second Edition
UNIX User's Supplementary Documents (USD), 1
University of California, Berkeley, CA. 94 720
April, 1986.

Brian W. Kernighan
A Tutorial Introduction to the UNIX Text Editor
UNIX User's Supplementary Documents (USD), 12
University of California, Berkeley, CA. 94720
April, 1986.

Dennis M. Ritchie and Ken Thompson
The UNIX Time Sharing System
Reprinted from Communications of the ACM July 1974 in
UNIX Programmer's Supplementary Documents, Volume 2 (PS2), 1
University of California, Berkeley, CA. 94720
April, 1986.

Pascal Language Documents

Cooper and Clancy
Oh! Pascal!, 2nd Edition
W. W. Norton & Company, Inc.
500 Fifth Ave., NY, NY. 10110
1985, 475 pp.

Cooper
Standard Pascal User Reference Manual
W.W. Norton & Company, Inc.
500 Fifth Ave., NY, NY. 10110
1983, 176 pp.

PS1:4-5

PS1:4-6

Kathleen Jensen and Niklaus Wirth
Pascal - User Manual and Report
Springer-Verlag, New York.
1975, 167 pp.

Niklaus Wirth
Algorithms + Data structures = Programs
Prentice-Hall, New York.
1976, 366 pp.

Berkeley Pascal documents

Berkeley Pascal User's Manual

The following documents are available from the Computer Center Library at the
University of California, Berkeley.

William N. Joy
Berkeley Pascal PX Implementation Notes
Version 1.1, April 1979.
(Vax-11Version2.0 By Kirk McKusick, December, 1979)

William N. Joy
Berkeley Pascal PXP Implementation Notes
Version 1.1, April 1979.

2. Basic UNIX Pascal
The following sections explain the basics of using Berkeley Pascal. In examples here we

use the text editor ex (1). Users of the text editor ed should have little trouble following
these examples, as ex is similar to ed. We use ex because it allows us to make clearer exam­
ples. t The new UNIX user will find it helpful to read one of the text editor documents
described in section 1.4 before continuing with this section.

2.1. A first program

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and
to 'login' to the system on this account. These procedures are described in the documents
Communicating with UNIX and UNIX for Beginners.

Once we are logged in we need to choose a name for our program; let us call it 'first' as
this is the first example. We must also choose a name for the file in which the program will
be stored. The Berkeley Pascal system requires that programs reside in files which have
names ending with the sequence '.p' so we will call our file 'first.p'.

A sample editing session to create this file would begin:

% ex first.p
"first.p" [New file]

We didn't expect the file to exist, so the error diagnostic doesn't bother us. The editor now
knows the name or"the file we are creating. The':' prompt indicates that it is ready for com­
mand input. We can add the text for our program using the 'append' command as follows.

:append

t Users with CRT terminals should find the editor vi more pleasant to use; we do not show its use here be­
cause its display oriented nature makes it difficult to illustrate.

Berkeley Pascal User's Manual

program first(output)
begin

writeln(Hello, world!')
end.

PS1:4-7

The line containing the single '.' character here indicated the end of the appended text. The
':' prompt indicates that ex is ready for another command. As the editor operates in a tem­
porary work space we must now store the contents of this work space in the file 'first.p' so we
can use the Pascal translator and executor pix on it.

:write
"first.p" [New file] 4 lines, 59 characters
:quit
%

We wrote out the file from the edit buffer here with the 'write' command, and ex indicated
the number of lines and characters written. We then quit the editor, and now have a prompt
from the shell.t

We are ready to try to translate and execute our program.

% pix first. p
Wed May 7 14:56 1986 first.p:

2 begin
e --t- Inserted ·;·
Execution begins ...
Hello, world!
Execution terminated.

1 statements executed in 0.00 seconds cpu time.
%

The translator first printed a syntax error diagnostic. The number 2 here indicates that
the rest of the line is an image of the second line of our program. The translator is saying
that it expected to find a ';' before the keyword begin on this line. If we look at the Pascal
syntax charts in the Jensen-Wirth User Manual, or at some of the sample programs therein,
we will see that we have omitted the terminating ';' of the program statement on the first line
of our program.

One other thing to notice about the error diagnostic is the letter 'e' at the beginning. It
stands for 'error', indicating that our input was not legal Pascal. The fact that it is an 'e'
rather than an 'E' indicates that the translator managed to recover from this error well enough
that generation of code and execution could take place. Execution is possible whenever no
fatal 'E' errors occur during translation. The other classes of diagnostics are 'w' warnings,
which do not necessarily indicate errors in the program, but point out inconsistencies which
are likely to be due to program bugs, and 's' standard-Pascal violations.t

After completing the translation of the program to interpretive code, the Pascal system
indicates that execution of the translated program began. The output from the execution of
the program then appeared. At program termination, the Pascal runtime system indicated the
number of statements executed, and the amount of cpu time used, with the resolution of the

* Our examples here assume you are using csh.
tThe standard Pascal warnings occur only when the associated s translator option is enabled. The s option
is discussed in sections 5.1 and A.6 below. Warning diagnostics are discussed at the end of section 3.2, the
associated w option is described in section 5.2.

PS1:4-8 Berkeley Pascal User's Manual

latter being 1/60'th of a second.

Let us now fix the error in the program and translate it" to a permanent object code file
obj using pi. The program pi translates Pascal programs but stores the object code instead of
executing itt.

% ex first.p
"first.p" 4 lines, 59 characters
:1 print
program first(output)
:s/$/;
program first(output);
:write
"first.p" 4 lines, 60 characters
:quit
% pi first.p
%

If we now use the UNIX ls list files command we can see what files we have:

% Is
first.p
obj
%

The file 'obj' here contains the Pascal interpreter code. We can execute this by typing:

% px obj
Hello, world!

1 statements executed in 0.00 seconds cpu time.
%

Alternatively, the command:

% obj

will have the same effect. Some examples of different ways to execute the program follow.

%px
Hello, world!

I statements executed in 0.00 seconds cpu time.
% pi -p first.p
% px obj
Hello, world!
% pix -p first.p
Hello, world!
%

Note that px will assume that 'obj' is the file we wish to execute if we don't tell it other­
wise. The last two translations use the -p no-post-mortem option to eliminate execution

;This script indicates some other useful approaches to debugging Pascal programs. As in ed we can shorten
commands in ex to an initial prefix of the command name as we did with the substitute command here.
We have also used the '!' shell escape command here to execute other commands with a shell without leav­
ing the editor.

Berkeley Pascal User's Manual PS1:4-9

statistics and 'Execution begins' and 'Execution terminated' messages. See section 5.2 for
more details. If we now look at the files in our directory we will see:

% ls
first.p
obj
%

We can give our object program a name other than 'obj' by using the move command mv (1).
Thus to name our program 'hello':

% mv obj hello
% hello
Hello, world!
% ls
first.p
hello
%

Finally we can get rid of the Pascal object code by using the rm (l) remove file command,
e.g.:

% rm hello
% ls
first.p
%

For small programs which are being developed pix tends to be more convenient to use
than pi and px. Except for absence of the obj file after a pix run, a pix command is
equivalent to a pi command followed by a px command. For larger programs, where a
number of runs testing different parts of the program are to be made, pi is useful as this obj
file can be executed any desired number of times.

2.2. A larger program

Suppose that we have used the editor to put a larger program in the file 'bigger.p'. We
can list this program with line numbers by using the program cat-n i.e.:

% cat -n bigger.p
I (•
2 * Graphic representation of a function
3 • f(x) = exp(-x) • sin(2 • pi * x)
4 •)
5 program graphl(output);
6 const
7
8
9

10
11
12 var
13
14
15 begin
16
17

d = 0.0625; (• 1/16, 16 lines for interval [x, x+I] •)
s = 32; (• 32 character width for interval [x, x+ I]
h = 34; (• Character position of x-axis •)
c = 6.28138; (• 2 *pi•)
Jim= 32;

x, y: real;
i, n: integer;

for i : = 0 to Jim begin
x := d Ii;

PS1:4-10

18
19
20
21
22
23
24

%
end.

y := exp(-x9 • sin(i • x);
n := Round(s • y) + h;
repeat

write(');
n := n - 1

writeln('•)

Berkeley Pascal User's Manual

This program is similar to program 4.9 on page 30 of the Jensen-Wirth User Manual. A
number of problems have been introduced into this example for pedagogical reasons.

If we attempt to translate and execute the program using pix we get the following
response:

% pix bigger.p
Wed May 7 14:56 1986 bigger.p:

9 h = 34; (•Character position of x-axis•)
w ----------t -- (• in a(• ... •)comment

16 for i := 0 to lim begin
e t -- Inserted keyword do

18 y := exp(-x9 • sin(i • x);
E - -----t --- Undefined variable
e ------------------t --- Inserted)'

19 n := Round(s • y) + h;
E -----------t --- Undefined function
E ---------------t -- Undefined variable

23 writeln('•)
e ---------t --- Inserted ';'

24 end.
E ---t --- Expected keyword until
E -------t -- Malformed declaration
E ----t --- Unexpected end-of-file - QUIT
Execution suppressed due to compilation errors
%

Since there were fatal 'E' errors in our program, no code was generated and execution
was necessarily suppressed. One thing which would be useful at this point is a listing of the
program with the error messages. We can get this by using the command:

% pi -I bigger.p

There is no point in using pix here, since we know there are fatal errors in the program. This
command will produce the output at our terminal. If we are at a terminal which does not
produce a hard copy we may wish to print this listing off-line on a line printer. We can do
this with the command:

% pi -I bigger.p I lpr

In the next few sections we will illustrate various aspects of the Berkeley Pascal system
by correcting this program.

2.3. Correcting the first errors

Most of the errors which occurred in this program were syntactic errors, those in the
format and structure of the program rather than its content. Syntax errors are flagged by
printing the offending line, and then a line which flags the location at which an error was

Berkeley Pascal User's Manual PS1:4-ll

detected. The flag line also gives an explanation stating either a possible cause of the error, a
simple action which can be taken to recover from the error so as to be able to continue the
analysis, a symbol which was expected at the point of error, or an indication that the input
was 'malformed'. In the last case, the recovery may skip ahead in the input to a point where
analysis of the program can continue.

In this example, the first error diagnostic indicates that the translator detected a com­
ment within a comment. While this is not considered an error in 'standard' Pascal, it usually
corresponds to an error in the program which is being translated. In this case, we have
accidentally omitted the trailing '*)' of the comment on line 8. We can begin an editor ses­
sion to correct this problem by doing:

% ex bigger.p
"bigger.p" 24 lines, 512 characters
:8s/$/ •)

s = 32; (• 32 character width for interval [x, x+ l] •)

The second diagnostic, given after line 16, indicates that the keyword do was expected
before the keyword begin in the for statement. If we examine the statement syntax chart on
page 118 of the Jensen-Wirth User Manual we will discover that do is a necessary part of the
for statement. Similarly, we could have referred to section C.3 of the Jensen-Wirth User
Manual to learn about the for statement and gotten the same information there. It is often
useful to refer to these syntax charts and to the relevant sections of this book.

We can correct this problem by first scanning for the keyword for in the file and then
substituting the keyword do to appear in front of the keyword begin there. Thus:

:/for
for i := 0 to lim begin

:s/begin/do &
for i := 0 to lim do begin

The next error in the program is easy to pinpoint. On line 18, we didn't hit the shift key and
got a '9' instead of a ')'. The translator diagnosed that 'x9' was an undefined variable and,
later, that a ')' was missing in the statement. It should be stressed that pi is not suggesting
that you should insert a ')' before the ';'. It is only indicating that making this change will
help it to be able to continue analyzing the program so as to be able to diagnose further
errors. You must then determine the true cause of the error and make the appropriate correc­
tion to the source text.

This error also illustrates the fact that one error in the input may lead to multiple error
diagnostics. Pi attempts to give only one diagnostic for each error, but single errors in the
input sometimes appear to be more than one error. It is also the case that pi may not detect
an error when it occurs, but may detect it later in the input. This would have happened in
this example if we had typed 'x' instead of'x9'.

The translator next detected, on line 19, that the function Round and the variable h
were undefined. It does not know about Round because Berkeley Pascal normally distin­
guishes between upper and lower case.t On UNIX lower-case is preferredi, and all keywords
and built-in procedure and function names are composed of lower-case letters, just as they are
in the Jensen-Wirth Pascal Report. Thus we need to use the function round here. As far as
h is concerned, we can see why it is undefined if we look back to line 9 and note that its

tin "standard" Pascal no distinction is made based on case.
:j:One good reason for using lower-case is that it is easier to type.

PSl:4-12 Berkeley Pascal User's Manual

definition was lost in the non-terminated comment. This diagnostic need not, therefore, con­
cern us.

The next error which occurred in the program caused the translator to insert a ';' before
the statement calling writeln on line 23. If we examine the program around the point of error
we will see that the actual error is that the keyword until and an associated expression have
been omitted here. Note that the diagnostic from the translator does not indicate the actual
error, and is somewhat misleading. The translator made the correction which seemed to be
most plausible. As the omission of a ';' character is a common mistake, the translator chose
to indicate this as a possible fix here. It later detected that the keyword until was missing, but
not until it saw the keyword end on line 24. The combination of these diagnostics indicate to
us the true problem.

The final syntactic error message indicates that the translator needed an end keyword to
match the begin at line 15. Since th.e end at line 24 is supposed to match this begin, we can
infer that another begin must have been mismatched, and have matched this end. Thus we
see that we need an end to match the begin at line 16, and to appear before the final end. We
can make these corrections:

:/x9/s//x)
y := exp(-x) • sin(i • x);

:+s/Round/round

:/write

:/

:insert

:$
end.
:insert

end

n := round(s • y) + h;

write(');

writeln('•)

until n = O;

At the end of each procedure or function and the end of the program the translator sum­
marizes references to undefined variables and improper usages of variables. It also gives
warnings about potential errors. In our program, the summary errors do not indicate any
further problems but the warning that c is unused is somewhat suspicious. Examining the
program we see that the constant was intended to be used in the expression which is an argu­
ment to sin, so we can correct this expression, and translate the program. We have now
made a correction for each diagnosed error in our program.

:?I ?s//c I
y := exp(-x) * sin(c • x);

:write
"bigger.p" 26 lines, 538 characters
:quit
% pi bigger.p
%

It should be noted that the translator suppresses warning diagnostics for a particular pro­
cedure, function or the main program when it finds severe syntax errors in that part of the
source text. This is to prevent possibly confusing and incorrect warning diagnostics from
being produced. Thus these warning diagnostics may not appear in a program with bad

Berkeley Pascal User's Manual PSI :4-13

syntax errors until these errors are corrected.

We are now ready to execute our program for the first time. We will do so in the next
section after giving a listing of the corrected program for reference purposes.

% cat -n bigger.p
I (•
2 * Graphic representation of a function

%

3 * f(x) = exp(-x) • sin(2 • pi • x)
4 •)
5 program graphl(output);
6 const
7
8
9

10
11
12 var
13
14
15 begin
16
17
18
19
20
21
22
23
24
25
26 end.

d = 0.0625; (• 1/16, 16 lines for interval [x, x+l] •)
s = 32; (• 32 character width for interval [x, x+ I] •)
h = 34; (• Character position of x-axis •)
c = 6.28138; (• 2 *pi•)
Jim = 32;

x, y: real;
i, n: integer;

for i : = 0 to Jim do begin
x := d Ii;

end

y := exp(-x) * sin(c * x);
n := round(s • y) + h;
repeat

write(');
n := n - I

until n = O;
writeln('•)

2.4. Executing the second example

We are now ready to execute the second example. The following output was produced
by our first run.

%px
Execution begins ...

Real division by zero

Error in "graph I "+ 2 near line 17.
Execution terminated abnormally.

2 statements executed in 0.00 seconds cpu time.
%

Here the interpreter is presenting us with a runtime error diagnostic. It detected a 'division
by zero' at line 17. Examining line 17, we see that we have written the statement 'x := d / i'
instead of 'x := d • i'. We can correct this and rerun the program:

% ex bigger.p
"bigger.p" 26 lines, 538 characters

PSl:4-14

:17
x := d Ii

:s'/'•
x := d. i

:write
"bigger.p" 26 lines, 538 characters
:q
% pix bigger.p
Execution begins ...

* •
•
•

*

•

*

*
*
* •
* •

*
Execution terminated.

*
*

•
*

•
•
•
•
*
* •

* •

•

*

*
•

*
*

2550 statements executed in 0.16 seconds cpu time.
%

Berkeley Pascal User's Manual

This appears to be the output we wanted. We could now save the output in a file if we
wished by using the shell to redirect the output:

% px >graph

We can use cat (I) to see the contents of the file graph. We can also make a listing of the
graph on the line printer without putting it into a file, e.g.

Berkeley Pascal Users Manual

%pxllpr
Execution begins ...
Execution terminated.

2550 statements executed in 0.15 seconds cpu time.
%

PS1:4-15

Note here that the statistics lines came out on our terminal. The statistics line comes out on
the diagnostic output (unit 2.) There are two ways to get rid of the statistics line. We can
redirect the statistics message to the printer using the syntax 'I&' to the shell rather than 'I',
i.e.:

%pxl&lpr
%

or we can translate the program with the p option disabled on the command line as we did
above. This will disable all post-mortem dumping including the statistics line, thus:

% pi -p bigger.p
%pxllpr
%

This option also disables the statement limit which normally guards against infinite looping.
You should not use it until your program is debugged. Also if p is specified and an error
occurs, you will not get run time diagnostic information to help you determine what the prob­
lem is.

2.S. Formatting the program listing

It is possible to use special lines within the source text of a program to format the pro­
gram listing. An empty line (one with no characters on it) corresponds to a 'space' macro in
an assembler, leaving a completely blank line without a line number. A line containing only a
control-I (form-feed) character will cause a page eject in the listing with the corresponding line
number suppressed. This corresponds to an 'eject' pseudo-instruction. See also section 5.2
for details on the n and i options of pi.

2.6. Execution profiling
An execution profile consists of a structured listing of (all or part of) a program with

information about the number of times each statement in the program was executed for a par­
ticular run of the program. These profiles can be used for several purposes. In a program
which was abnormally terminated due to excessive looping or recursion or by a program fault,
the counts can facilitate location of the error. Zero counts mark portions of the program
which were not executed; during the early debugging stages they should prompt new test data
or a re-examination of the program logic. The profile is perhaps most valuable, however, in
drawing attention to the (typically small) portions of the program that dominate execution
time. This information can be used for source level optimization.

An example
A prime number is a number which is divisible only by itself and the number one. The

program primes, written by Niklaus Wirth, determines the first few prime numbers. In
translating the program we have specified the z option to pix. This option causes the transla­
tor to generate counters and count instructions sufficient in number to determine the number
of times each statement in the program was executed.t When execution of the program

tThe counts are completely accurate only in the absence of runtime errors and nonlocal goto statements.
This is not generally a problem, however, as in structured programs nonlocal goto statements occur infre­
quently, and counts are incorrect after abnormal termination only when the upward look described below to

PS1:4-16 Berkeley Pascal User's Manual

completes, either normally or abnormally, this count data is written to the Ii.le pmon.out in
the current directory.t It is then possible to prepare an execution profile by giving pxp the
name of the file associated with this data, as was done in the following example.

% pix -1 -z primes.p
Berkeley Pascal PI -- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 primes.p

1 program primes(output);
2 const n = 50; nl = 7; (•nl = sqrt(n)•)
3 var i,k,x,inc,lim,square,l: integer;
4 prim: boolean;
5 p,v: array[l..nl) of integer;
6 begin
7 write(2:6, 3:6); 1 : = 2;
8 x := 1; inc:= 4; lim := 1; square:= 9;
9 for i := 3 to n do

10 begin (•find next prime•)
11 repeat x := x + inc; inc:= 6-inc;
12 if square<= x then
13 begin lim := lim+l;
14 v[lim] := square; square := sqr(p[lim+ 1])
15 end;
16 k := 2; prim:= true;
17 while prim and (k<lim) do
18 begin k := k+ 1;
19 if v[k] < x then v[k] := v[k] + 2•p[k];
20 prim:= x <> v[k]
21 end
22 until prim;
23 ifi <= nl then p[i] := x;
24 write(x:6); 1 := l+ 1;
25 if 1 = 10 then
26 begin writeln; 1 : = 0
27 end
28 end;
29 writeln;
30 end.

Execution begins ...
2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution terminated.

1404 statements executed in 0.08 seconds cpu time.
o/o

get a count passes a suspended call point.
;Pmon.out has a name similar to man.out the monitor file produced by the profiling facility of the C com­
piler cc (I). See prof (I) for a discussion of the C compiler profiling facilities.

Berkeley Pascal User's Manual PS1:4-17

Discussion

The header lines of the outputs of pix and pxp in this example indicate the version of
the translator and execution profiler in use at the time this example was prepared. The time
given with the file name (also on the header line) indicates the time of last modification of the
program source file. This time serves to version stamp the input program. Pxp also indicates
the time at which the profile data was gathered.

% pxp -z primes.p
Berkeley Pascal PXP -- Version 2.13 (4/2/84)

Wed May 7 14:56 1986 primes.p

Profiled Wed May 7 18:18 1986

I I. -----!program primes(output);
2 lconst
2 I n = 50;
2 I nl = 7; (•nl = sqrt(n)•)
3 Ivar
3 I i, k, x, inc, Jim, square, I: integer;
4 I prim: boolean;
5 I p, v: array [I .. n I) of integer;
6 I begin
7 I write(2: 6, 3: 6);
7 I 1 := 2;
8 I x := I;
8 I inc:= 4;
8 I Jim:= I;
8 I square:= 9;
9 I for i : = 3 to n do begin (•find next prime•)
9 48. ---1 repeat

11 76. ---1 x := x + inc;
11 I inc : = 6 - inc;
12 I ifsquare<=xthenbegin
13 5. ----1 Jim:= Jim + I;
14 I v[lim] := square;
14 I square : = sqr(p(lim + I))
14 end;
16 k:= 2;
16 prim : = true;
17 I while prim and (k < Jim) do begin
18 157. ---1 k := k + I;
19 I ifv[k) < x then
19 42. --1 v[k) := v[k) + 2 • p[k);
20 I prim:= x <> v[k)
20 I end
20 I until prim;
23 I if i <= nl then
23 5. ---1 p[i] := x;
24 I write(x: 6);
24 I I:= 1 + I;
25 I if 1 = 10 then begin
26 5. --1 writeln;
26 I 1 := o

PS1:4-18

%

26
26
29
29

I end
end;

I writeln
lend.

Berkeley Pascal User's Manual

To detetmine the number of times a statement was executed, one looks to the left of the
statement and finds the corresponding vertical bar 'I'. If this vertical bar is labelled with a
count then that count gives the number of times the statement was executed. If the bar is not
labelled, we look up in the listing to find the first 'I' which directly above the original one
which has a count and that is the answer. Thus, in our example, k was incremented 157
times on line 18, while the write procedure call on line 24 was executed 48 times as given by
the count on the repeat.

More information on pxp can be found in its manual section pxp (1) and in sections
5.4, 5.5 and 5.10.

3. Error diagnostics

This section of the User's Manual discusses the error diagnostics of the programs pi, pc
and px. Pix is a simple but useful program which invokes pi and px to do all the real pro­
cessing. See its manual section pix (1) and section 5.2 below for more details. All the diag­
nostics given by pi will also be given by pc.

3.1. Translator syntax errors

A few comments on the general nature of the syntax errors usually made by Pascal pro­
grammers and the recovery mechanisms of the current translator may help in using the sys­
tem.

Illegal characters

Characters such as '$', '!', and '@' are not part of the language Pascal. If they are found
in the source program, and are not part of a constant string, a constant character, or a com­
ment, they are considered to be 'illegal characters'. This can happen if you leave off an open­
ing string quote ,., . Note that the character "", although used in English to quote strings, is
not used to quote strings in Pascal. Most non-printing characters in your input are also illegal
except in character constants and character strings. Except for the tab and form feed charac­
ters, which are used to ease formatting of the program, non-printing characters in the input
file print as the character '?' so that they will show in your listing.

String errors
There is no character string of length 0 in Pascal. Consequently the input ,_, is not

acceptable. Similarly, encountering an end-of-line after an opening string quote "' without
encountering the matching closing quote yields the diagnostic "Unmatched· for string". It is
permissible to use the character '#' instead of ·~ to delimit character and constant strings for
portability reasons. For this reason, a spuriously placed '#' sometimes causes the diagnostic
about unbalanced quotes. Similarly, a '#' in column one is used when preparing programs
which are to be kept in multiple files. See section 5.11 for details.

Comments in a comment, non-terminated comments

As we saw above, these errors are usually caused by leaving off a comment delimiter.
You can convert parts of your program to comments without generating this diagnostic since
there are two different kinds of comments - those delimited by '{' and '}', and those delim­
ited by'(•' and'•)'. Thus consider:

{ This is a comment enclosing a piece of program

Berkeley Pascal User's Manual PS1:4-19

a:= functioncall; (•comment within comment•)
procedurecall;
lhs := rhs; (•another comment•)
}

By using one kind of comment exclusively in your program you can use the other delim­
iters when you need to "comment out" parts of your. programt. In this way you will also
allow the translator to help by detecting statements accidentally placed within comments.

If a comment does not terminate before the end of the input file, the translator will
point to the beginning of the comment, indicating that the comment is not terminated. In
this case processing will terminate immediately. See the discussion of "QUIT" below.

Digits in numbers

This part of the language is a minor nuisance. Pascal requires digits in real numbers
both before and after the decimal point. Thus the following statements, which look quite rea­
sonable to FORTRAN users, generate diagnostics in Pascal:

Wed May 7 14:56 1986 digits.p:
4 r := O.;

e --------------t ------ Digits required after decimal point
5 r := .O;

e -----------t ------ Digits required before decimal point
6 r := 1.e!O;

e --------------t ------ Digits required after decimal point
7 r:=.05e-10;

e -----------t ------ Digits required before decimal point

These same constructs are also illegal as input to the Pascal interpreter px.

Replacements, insertions, and deletions

When a syntax error is encountered in the input text, the parser invokes an error
recovery procedure. This procedure examines the input text immediately after the point of
error and considers a set of simple corrections to see whether they will allow the analysis to
continue. These corrections involve replacing an input token with a different token, inserting
a token, or replacing an input token with a different token. Most of these changes will not
cause fatal syntax errors. The exception is the insertion of or replacement with a symbol such
as an identifier or a number; in this case the recovery makes no attempt to determine which
identifier or what number should be inserted, hence these are considered fatal syntax errors.

Consider the following example.

o/o pix -1 synerr.p
Berkeley Pascal PI -- Version 3.1 (9/7 /85)

Wed May 7 14:56 1986 synerr.p

I program syn(output);
2 var i, j are integer;

e ---------------t--- Replaced identifier with a ':'
3 begin
4 for j :• 1 to 20 begin

tlf you wish to transport your program, especially to the 6000-3.4 implementation, you should use the char­
acter sequence'(* to delimit comments. For transportation over the res/ink to Pascal 6000-3.4, the charac­
ter'#' should be used to delimit characters and constant strings.

PS1:4-20 Berkeley Pascal User's Manual

e -------------------+-- Replaced '* with a '='
e ------------------------------+-- Inserted keyword do

5 write(j);
6 i = 2 ** j;

e ------------------t--- Inserted ':'
E --------------------------+-- Inserted identifier

7 writeln(i))
E --------------------------------t--- Deleted ')'

8 end
9 end.

%

The only surprise here may be that Pascal does not have an exponentiation operator, hence
the complaint about 'u'. This error illustrates that, if you assume that the language has a
feature which it does not, the translator diagnostic may not indicate this, as the translator is
unlikely to recognize the construct you supply.

Undefined or improper identifiers

If an identifier is encountered in the input but is undefined, the error recovery will
replace it with an identifier of the appropriate class. Further references to this identifier will
be summarized at the end of the containing procedure or function or at the end of the program
if the reference occurred in the main program. Similarly, if an identifier is used in an inap­
propriate way, e.g. if a type identifier is used in an assignment statement, or if a simple vari­
able is used where a record variable is required, a diagnostic will be produced and an
identifier of the appropriate type inserted. Further incorrect references to this identifier will
be flagged only if they involve incorrect use in a different way, with all incorrect uses being
summarized in the same way as undefined variable uses are.

Expected symbols, malformed constructs

If none of the above mentioned corrections appear reasonable, the error recovery will
examine the input to the left of the point of error to see if there is only one symbol which can
follow this input. If this is the case, the recovery will print a diagnostic which indicates that
the given symbol was 'Expected'.

In cases where none of these corrections resolve the problems in the input, the recovery
may issue a diagnostic that indicates that the input is "malformed". If necessary, the transla­
tor may then skip forward in the input to a place where analysis can continue. This process
may cause some errors in the text to be missed.

Consider the following example:

% pix -1 synerr2.p
Berkeley Pascal PI -- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 synerr2.p

1 program synerr2(input,outpu);
2 integer a(10)

E -----t ---- Malformed declaration
3 begin
4 read(b);

E -------------t----- Undefined variable
5 for c := I to 10 do

E ---------t ------ Undefined variable
6 a(c) := b • c;

E ---------------t ------Undefined procedure

Berkeley Pascal User's Manual

E -------------------------t ------ Malformed statement
7 end.

E 1 - File outpu listed in program statement but not declared
In program synerr2:

E - a undefined on lines 6
E - b undefined on line 4
E - c undefined on line 5 6

Execution suppressed due to compilation errors
o/o

PS1:4-21

Here we misspelled output and gave a FORTRAN style variable declaration which the translator
diagnosed as a 'Malformed declaration'. When, on line 6, we used '(' and')' for subscripting
(as in FORTRAN) rather than the '[' and ']' which are used in Pascal, the translator noted that
a was not defined as a procedure. This occurred because procedure and function argument
lists are delimited by parentheses in Pascal. As it is not permissible to assign to procedure
calls the translator diagnosed a malformed statement at the point of assignment.

Expected and unexpected end-of-file, "QUIT"

If the translator finds a complete program, but there is more non-comment text in the
input file, then it will indicate that an end-of-file was expected. This situation may occur after
a bracketing error, or if too many ends are present in the input. The message may appear
after the recovery says that it "Expected'.'" since'.' is the symbol that terminates a program.

If severe errors in the input prohibit further processing the translator may produce a
diagnostic followed by "QUIT''. One example of this was given above - a non-terminated
comment; another example is a line which is longer than 160 characters. Consider also the
following example.

o/o pix - I mism.p
Berkeley Pascal Pl -- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 mism.p

1 program mismatch(output)
2 begin

e -----t ------ Inserted ';'
3 writeln('•u');
4 { The next line is the last line in the file }
5 writeln

E -----------------------t ------ Malformed declaration
E -----------------------t ------Unexpected end-of-file - QUIT
o/o

3.2. Translator semantic errors
The extremely large number of semantic diagnostic messages which the translator pro­

duces make it unreasonable to discuss each message or group of messages in detail. The mes­
sages are, however, very informative. We will here explain the typical formats and the termi­
nology used in the error messages so that you will be able to make sense out of them. In any
case in which a diagnostic is not completely comprehensible you can refer to the User Manual
by Jensen and Wirth for examples.

Format of the error diagnostics
As we saw in the example program above, the error diagnostics from the Pascal transla­

tor include the number of a line in the text of the program as well as the text of the error

PS1:4-22 Berkeley Pascal User's Manual

message. While this number is most often the line where the error occurred, it is occasionally
the number of a line containing a bracketing keyword like end or until. In this case, the diag­
nostic may refer to the previous statement. This occurs because of the method the translator
uses for sampling line numbers. The absence of a trailing ';' in the previous statement causes
the line number corresponding to the end or until. to become associated with the statement.
As Pascal is a free-format language, the line number associations can only be approximate and
may seem arbitrary to some users. This is the only notable exception, however, to reasonable
associations.

Incompatible types
Since Pascal is a strongly typed language, many semantic errors manifest themselves as

type errors. These are called 'type clashes' by the translator. The types allowed for various
operators in the language are summarized on page 108 of the Jensen-Wirth User Manual. It
is important to know that the Pascal translator, in its diagnostics, distinguishes between the
following type 'classes':

array Boolean char file integer
pointer real record scalar string

These words are plugged into a great number of error messages. Thus, if you tried to assign
an integer value to a char variable you would receive a diagnostic like the following:

Wed May 7 14:56 1986 clash.p:
E 7 - Type clash: integer is incompatible with char

... Type of expression clashed with type of variable in assignment

In this case, one error produced a two line error message. If the same error occurs more than
once, the same explanatory diagnostic will be given each time.

Scalar
The only class whose meaning is not self-explanatory is 'scalar'. Scalar has a precise

meaning in the Jensen-Wirth User Manual where, in fact, it refers to char, integer, real, and
Boolean types as well as the enumerated types. For the purposes of the Pascal translator,
scalar in an error message refers to a user-defined, enumerated type, such as ops in the exam­
ple above or color in

type color = (red, green, blue)

For integers, the more explicit denotation integer is used. Although it would be correct, in
the context of the User Manual to refer to an integer variable as a scalar variable pi prefers
the more specific identification.

Function and procedure type errors
For built-in procedures and functions, two kinds of errors occur. If the routines are

called with the wrong number of arguments a message similar to:

Wed May 7 14:56 1986 sinl.p:
E 12 - sin takes exactly one argument

is given. If the type of the argument is wrong, a message like

Wed May 7 14:56 1986 sin2.p:
E 12 - sin's argument must be integer or real, not char

is produced. A few functions and procedures implemented in Pascal 6000-3.4 are diagnosed
as unimplemented in Berkeley Pascal, notably those related to segmented files.

Berkeley Pascal User's Manual PS1:4-23

Can't read and write scalars, etc.
The messages which state that scalar (user-defined) types cannot be written to and from

files are often mysterious. It is in fact the case that if you define

type color = (red, green, blue)

"standard" Pascal does not associate these constants with the strings 'red', 'green', and 'blue'
in any way .. An extension has been added which allows enumerated types to be read and
written, however if the program is to be portable, you will have to write your own routines to
perform these functions. Standard Pascal only allows the reading of characters, integers and
real numbers from text files. You cannot read strings or Booleans. It is possible to make a

file of color

but the representation is binary rather than string.

Expression diagnostics
The diagnostics for semantically ill-formed expressions are very explicit. Consider this

sample translation:

% pi -I expr.p
Berkeley Pascal Pl -- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 expr.p

l program x(output);
2 var
3 a: set of char;
4 b: Boolean;
5 c: (red, green, blue);
6 p: t integer;
7 A: alfa;
8 B: packed array [1..5] of char;
9 begin
10 b := true;
11 c :=red;
12 new(p);
13 a:=[];
14 A:= 1Iello, yellow';
15 b:=aandb;
16 a:= a* 3;
17 if input < 2 then writeln(boo);
18 ifp <= 2 then writeln('sure nuff);
19 if A = B then writeln('same);
20 if c = true then writeln(hue·s and color*s)
21 end.

E 14 - Constant string too long
E 15 - Left operand of and must be Boolean, not set
E 16 - Cannot mix sets with integers and reals as operands of *
E l 7 - files may not participate in comparisons
E 18 - pointers and integers cannot be compared - operator was<=
E 19 - Strings not same length in = comparison
E 20 - scalars and Booleans cannot be compared - operator was =
e 21 - Input is used but not defined in the program statement
In program x:

PSl:4-24

w - constant green is never used
w - constant blue is never used
w - variable B is used but never set

%

Berkeley Pascal User's Manual

This example is admittedly far-fetched, but illustrates that the error messages are sufficiently
clear to allow easy determination of the problem in the expressions.

Type equivalence

Several diagnostics produced by the Pascal translator complain about 'non-equivalent
types'. In general, Berkeley Pascal considers variables to have the same type only if they were
declared with the same constructed type or with the same type identifier. Thus, the variables
x and y declared as

var
x: t integer;
y: t integer;

do not have the same type. The assignment

x := y

thus produces the diagnostics:

Wed May 7 14:56 1986 typequ.p:
E 7 - Type clash: non-identical pointer types

... Type of expression clashed with type of variable in assignment

Thus it is always necessary to declare a type such as

type intptr = t integer;

and use it to declare

var x: intptr; y: intptr;

Note that if we had initially declared

var x, y: t integer;

then the assignment statement would have worked. The statement

xt := Yt
is allowed in either case. Since the parameter to a procedure or function must be declared
with a type identifier rather than a constructed type, it is always necessary, in practice, to
declare any type which will be used in this way.

Unreachable statements

Berkeley Pascal flags unreachable statements. Such statements usually correspond to
errors in the program logic. Note that a statement is considered to be reachable if there is a
potential path of control, even if it can never be taken. Thus, no diagnostic is produced for
the statement:

if false then
writeln('impossible!)

Berkeley Pascal User's Manual PS1:4-25

Goto's into structured statements
The translator detects and complains about goto statements which transfer control into

structured statements (for, while, etc.) It does not allow such jumps, nor does it allow branch­
ing from the then part of an if statement into the else part. Such checks are made only within
the body of a single procedure or function.

Unused variables, never set variables
Although pi always clears variables to 0 at procedure and function entry, pc does not

unless runtime checking is enabled using the C option. It is not good programming practice
to rely on this initialization. To discourage this practice, and to help detect errors in program
logic, pi flags as a 'w' warning error:

1) Use of a variable which is never assigned a value.

2) A variable which is declared but never used, distinguishing between those variables
for which values are computed but which are never used, and those completely
unused.

In fact, these diagnostics are applied to all declared items. Thus a const or a procedure which
is declared but never used is flagged. The w option of pi may be used to suppress these warn­
ings; see sections 5.1 and 5.2.

3.3. Translator panics, i/ o errors

Panics

One class of error which rarely occurs, but which causes termination of all processing
when it does is a panic. A panic indicates a translator-detected internal inconsistency. A typ­
ical panic message is:

snark (rvalue) line= 110yyline=109
Snark in pi

If you receive such a message, the translation will be quickly and perhaps ungracefully ter­
minated. You should contact a teaching assistant or a member of the system staff, after sav­
ing a copy of your program for later inspection. If you were making changes to an existing
program when the problem occurred, you may be able to work around the problem by ascer­
taining which change caused the snark and making a different change or correcting an error
in the program. A small number of panics are possible in px. All panics should be reported
to a teaching assistant or systems staff so that they can be fixed.

Out of memory

The only other error which will abort translation when no errors are detected is running
out of memory. All tables in the translator, with the exception of the parse stack, are dynami­
cally allocated, and can grow to take up the full available process space of 64000 bytes on the
PDP-1 l. On the VAX-11, table sizes are extremely generous and very large (25000) line pro­
grams have been easily accommodated. For the PDP-11, it is generally true that the size of
the largest translatable program is directly related to procedure and function size. A number
of non-trivial Pascal programs, including some with more than 2000 lines and 2500 state­
ments have been translated and interpreted using Berkeley Pascal on PDP-11 's. Notable
among these are the Pascal-S interpreter, a large set of programs for automated generation of
code generators, and a general context-free parsing program which has been used to parse sen­
tences with a grammar for a superset of English. In general, very large programs should be
translated using pc and the separate compilation facility.

If you receive an out of space message from the translator during translation of a large
procedure or function or one containing a large number of string constants you may yet be
able to translate your program if you break this one procedure or function into several

PS1:4-26 Berkeley Pascal User's Manual

routines.

1/0 errors
Other errors which you may encounter when running pi relate to input-output. If pi

cannot open the file you specify, or if the file is empty, you will be so informed.

3.4. Run-time errors
We saw, in our second example, a run-time error. We here give the general description

of run-time errors. The more unusual interpreter error messages are explained briefly in the
manual section for px (1).

Start-up errors

These errors occur when the object file to be executed is not available or appropriate.
Typical errors here are caused by the specified object file not existing, not being a Pascal
object, or being inaccessible to the user.

Program execution errors

These errors occur when the program interacts with the Pascal runtime environment in
an inappropriate way. Typical errors are values or subscripts out of range, bad arguments to
built-in functions, exceeding the statement limit because of an infinite loop, or running out of
memoryt. The interpreter will produce a backtrace after the error occurs, showing all the
active routine calls, unless the p option was disabled when the program was translated.
Unfortunately, no variable values are given and no way of extracting them is available.•

As an example of such an error, assume that we have accidentally declared the constant
nl to be 6, instead of 7 on line 2 of the program primes as given in section 2.6 above. If we
run this program we get the following response.

% pix primes.p
Execution begins ...

2 3 5 7 11 13 17
31 37 41 43 47 53 59
73 79 83 89 97 IOI 103

127 131 137 139 149 151 157
Subscript value of 7 is out of range

Error in "primes" +8 near line 14.
Execution terminated abnormally.

941 statements executed in 0.07 seconds cpu time.
%

19 23 29
61 67 71

107 109 113
163 167

Here the interpreter indicates that the program terminated abnormally due to a sub­
script out of range near line 14, which is eight lines into the body of the program primes.

Interrupts

If the program is interrupted while executing and the p option was not specified, then a
backtrace will be printed.t The file pmon.out of profile information will be written if the

:j:The checks for running out of memory are not foolproof and there is a chance that the interpreter will
fault, producing a core image when it runs out of memory. This situation occurs very rarely.
• On the VAX-I I, each variable is restricted to allocate at most 65000 bytes of storage (this is a PDP-1 lism
that has survived to the VAX.)

tOccasionally, the Pascal system will be in an inconsistent state when this occurs, e.g. when an interrupt
terminates a procedure or function entry or exit. In this case, the backtrace will only contain the current

Berkeley Pascal User's Manual PS1:4-27

program was translated with the z option enabled to pi or pix.

1/0 interaction errors

The final class of interpreter errors results from inappropriate interactions with files,
including the user's terminal. Included here are bad formats for integer and real numbers
(such as no digits after the decimal point) when reading.

4. Input/output

This section describes features of the Pascal input/ output environment, with special
consideration of the features peculiar to an interactive implementation.

4.1. Introduction

Our first sample programs, in section 2, used the file output. We gave examples there of
redirecting the output to a file and to the line printer using the shell. Similarly, we can read
the input from a file or another program. Consider the following Pascal program which is
similar to the program cat (I).

% pix -I kat.p <primes
Berkeley Pascal PI -- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 kat.p

I program kat(input, output);
2 var
3 ch: char;
4 begin
5 while not eof do begin
6 while not eoln do begin
7 ·read(ch);
8 write(ch)
9 end;

10 readln;
11 writeln
12 end
13 end (kat }.

Execution begins ...
2 3 5 7 11 13 17

31 37 41 43 47 53 59
73 79 83 89 97 101 103

127 131 137 139 149 151 157
179 181 191 193 197 199 211

Execution terminated.

925 statements executed in 0.06 seconds cpu time.
%

19 23 29
61 67 71

107 109 113
163 167 173
223 227 229

Here we have used the shell's syntax to redirect the program input from a file in primes in
which we had placed the output of our prime number program of section 2.6. It is also possi­
ble to 'pipe' input to this program much as we piped input to the line printer daemon !pr (I)
before. Thus, the same output as above would be produced by

line. A reverse call order list of procedures will not be given.

PS1:4-28 Berkeley Pascal User's Manual

% cat primes I pix -1 kat.p

All of these examples use the shell to control the input and output from files. One very
simple way to associate Pascal files with named UNIX files is to place the file name in the pro­
gram statement. For example, suppose we have previously created the file data. We then use
it as input to another version of a listing program.

% cat data
line one.
line two.
line three is the end.
% pix -I copydata.p
Berkeley Pascal PI -- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 copydata.p

1 program copydata(data, output);
2 var
3 ch: char;
4 data: text;
5 begin
6 reset(data);
7 while not eof(data) do begin
8 while not eoln(data) do begin
9 read(data, ch);

10 write(ch)
11 end;
12 readln(data);
13 writeln
14 end
15 end { copydata } .

Execution begins ...
line one.
line two.
line three is the end.
Execution terminated.

134 statements executed in 0.02 seconds cpu time.
%

By mentioning the file data in the program statement, we have indicated that we wish it to
correspond to the UNIX file data. Then, when we 'reset(data)', the Pascal system opens our
file 'data' for reading. More sophisticated, but less portable, examples of using UNIX files will
be given in sections 4.5 and 4.6. There is a portability problem even with this simple exam­
ple. Some Pascal systems attach meaning to the ordering of the file in the program statement
file list. Berkeley Pascal does not do so.

4.2. Eof and eoln

An extremely common problem encountered by new users of Pascal, especially in the
interactive environment offered by UNIX, relates to the definitions of eof and eoln. These
functions are supposed to be defined at the beginning of execution of a Pascal program, indi­
cating whether the input device is at the end of a line or the end of a file. Setting eof or eoln
actually corresponds to an implicit read in which the input is inspected, but no input is "used
up". In fact, there is no way the system can know whether the input is at the end-of-file or
the end-of-line unless it attempts to read a line from it. If the input is from a previously

Berkeley Pascal User's Manual PS1:4-29

created file, then this reading can take place without run-time act·, ~);iy the user. However, if
the input is from a terminal, then the input is what the user types:f If the system were to do
an initial read automatically at the beginning of program execution, and if the input were a
terminal, the user would have to type some input before execution could begin. This would
make it impossible for the program to begin by prompting for input or printing a herald.

Berkeley Pascal has been designed so that an initial read is not necessary. At any given
time, the Pascal system may or may not know whether the end-of-file or end-of-line condi­
tions are true. Thus, internally, these functions can have three values - true, false, and "I
don't know yet; if you ask me I'll have to find out". All files remain in this last, indeter­
minate state until the Pascal program requires a value for eof or eo/n either explicitly or
implicitly, e.g. in a call to read. The important point to note here is that if you force the Pas­
cal system to determine whether the input is at the end-of-file or the end-of-line, it will be
necessary for it to attempt to read from the input.

Thus consider the following example code

while not eof do begin
write('number, please? ');
read(i);
writeln('that was a ', i: 2)

end

At first glance, this may be appear to be a correct program for requesting, reading and echoing
numbers. Notice, however, that the while loop asks whether eof is true before the request is
printed. This will force the Pascal system to decide whether the input is at the end-of-file.
The Pascal system will give no messages; it will simply wait for the user to type a line. By
producing the desired prompting before testing eof. the following code avoids this problem:

write('number, please?');
while not eof do begin

read(i);
writeln('that was a ', i:2);
write('number, please ?')

end

The user must still type a line before the while test is completed, but the prompt will ask for
it. This example, however, is still not correct. To understand why, it is first necessary to
know, as we will discuss below, that there is a blank character at the end of each line in a Pas­
cal text file. The read procedure, when reading integers or real numbers, is defined so that, if
there are only blanks left in the file, it will return a zero value and set the end-of-file condi­
tion. If, however, there is a number remaining in the file, the end-of-file condition will not be
set even if it is the last number, as read never reads the blanks after the number, and there is
always at least one blank. Thus the modified code will still put out a spurious

that was a 0

at the end of a session with it when the end-of-file is reached. The simplest way to correct the
problem in this example is to use the procedure read/n instead of read here. In general,
unless we test the end-of-file condition both before and after calls to read or readln, there will
be inputs for which our program will attempt to read past end-of-file.

tit is not possible to determine whether the input is a terminal, as the input may appear to be a file but ac­
tually be a pipe, the output of a program which is reading from the terminal.

PSI :4-30 Berkeley Pascal User's Manual

4.3. More about eoln
To have a good understanding of when eoln will be true it is necessary to know that in

any file there is a special character indicating end-of-line, and that, in effect, the Pascal system
always reads one character ahead of the Pascal read commands.t For instance, in response to
'read(ch)', the system sets ch to the current input character and gets the next input character.
If the current input character is the last character of the line, then the next input character
from the file is the new-line character, the normal UNIX line separator. When the read rou­
tine gets the new-line character, it replaces that character by a blank (causing every line to end
with a blank) and sets eoln to true. Eoln will be true as soon as we read the last character of
the line and before we read the blank character corresponding to the end of line. Thus it is
almost always a mistake to write a program which deals with input in the following way:

read(ch);
if eoln then

Done with line
else

Normal processing

as this will almost surely have the effect of ignoring the last character in the line. The
'read(ch)' belongs as part of the normal processing.

Given this framework, it is not hard to explain the function of a readln call, which is
defined as:

while not eoln do
get(input);

get(input);

This advances the file until the blank corresponding to the end-of-line is the current input
symbol and then discards this blank. The next character available from read will therefore be
the first character of the next line, if one exists.

4.4. Output buffering

A final point about Pascal input-output must be noted here. This concerns the buffering
of the file output. It is extremely inefficient for the Pascal system to send each character to
the user's terminal as the program generates it for output; even less efficient if the output is
the input of another program such as the line printer daemon /pr (I). To gain efficiency, the
Pascal system "buffers" the output characters (i.e. it saves them in memory until the buffer is
full and then emits the entire buffer in one system interaction.) However, to allow interactive
prompting to work as in the example given above, this prompt must be printed before the
Pascal system waits for a response. For this reason, Pascal normally prints all the output
which has been generated for the file output whenever

I) A writeln occurs, or

2) The program reads from the terminal, or

3) The procedure message or flush is called.

Thus, in the code sequence

for i := I to 5 do begin
write(i: 2);
Compute a lot with no output

end;
writeln

tin Pascal terms, 'read(ch)' corresponds to 'ch := inputt; get(input)'

Berkeley Pascal User's Manual PS1:4-31

the output integers will not print until the writeln occurs. The delay can be somewhat discon­
certing, and you should be aware that it will occur. By setting the b option to 0 before the
program statement by inserting a comment of the form

(•$b0*)

we can cause output to be completely unbuffered, with a corresponding horrendous degrada­
tion in program efficiency. Option control in comments is discussed in section 5.

4.5. Files, reset, and rewrite

It is possible to use extended forms of the built-in functions reset and rewrite to get
more general associations of UNIX file names with Pascal file variables. When a file other
than input or output is to be read or written, then the reading or writing must be preceded by
a reset or rewrite call. In general, if the Pascal file variable has never been used before, there
will be no UNIX filename associated with it. As we saw in section 2.9, by mentioning the file
in the program statement, we could cause a UNIX file with the same name as the Pascal vari­
able to be associated with it. If we do not mention a file in the program statement and use it
for the first time with the statement

reset(t)

or

rewrite(t)

then the Pascal system will generate a temporary name of the form 'tmp.x' for some character
'x', and associate this UNIX file name name with the Pascal file. The first such generated
name will be 'tmp. l' and the names continue by incrementing their last character through the
ASCII set. The advantage of using such temporary files is that they are automatically removed
by the Pascal system as soon as they become inaccessible. They are not removed, however, if
a runtime error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable we can
give that name in the reset or rewrite call, e.g. we could have associated the Pascal file data
with the file 'primes' in our example in section 3.1 by doing:

reset(data, 'primes)

instead of a simple

reset(data)

In this case it is not essential to mention 'data' in the program statement, but it is still a good
idea because is serves as an aid to program documentation. The second parameter to reset
and rewrite may be any string value, including a variable. Thus the names of UNIX files to be
associated with Pascal file variables can be read in at run time. Full details on file name/file
variable associations are given in section A.3.

4.6. Argc and argv

Each UNIX process receives a variable length sequence of arguments each of which is a
variable length character string. The built-in function argc and the built-in procedure argv
can be used to access and process these arguments. The value of the function argc is the
number of arguments to the process. By convention, the arguments are treated as an array,
and indexed from 0 to argc-1, with the zeroth argument being the name of the program being
executed. The rest of the arguments are those passed to the command on the command line.
Thus, the command

PS1:4-32 Berkeley Pascal User's Manual

% obj /etc/motd /usr/dict/words hello

will invoke the program in the file obj with argc having a value of 4. The zeroth element
accessed by argv will be 'obj', the first '/etc/motd', etc.

Pascal does not provide variable size arrays, nor does it allow character strings of vary­
ing length. For this reason, argv is a procedure and has the syntax

argv(i, a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly trun­
cated or blank padded) i 'th argument of the current process to the string variable a. The file
manipulation routines reset and rewrite will strip trailing blanks from their optional second
arguments so that this blank padding is not a problem in the usual case where the arguments
are file names.

We are now ready to give a Berkeley Pascal program 'kat', based on that given in section
3.1 above, which can be used with the same syntax as the UNIX system program cat (1).

% cat kat.p
program kat(input, output);
var

ch: char;
i: integer;
name: packed array [1..100] of char;

begin
i := l;
repeat

if i < argc then begin
argv(i, name);
reset(input, name);
i := i + 1

end;
while not eof do begin

while not eoln do begin
read(ch);
write(ch)

end;
readln;
writeln

end
until i > = argc

end { kat }.
%

Note that the reset call to the file input here, which is necessary for a clear program, may be
disallowed on other systems. As this program deals mostly with argc and argv and UNIX sys­
tem dependent considerations, portability is of little concern.

If this program is in the file 'kat.p', then we can do

% pi kat.p
% mvobj kat
% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173

Berkeley Pascal User's Manual

179 181 191 193 197 199 211

930 statements executed in 0.06 seconds cpu time.
% kat
This is a line of text.
This is a line of text.

223 227 229

The next line contains only an end-of-file (an invisible control-d!)
The next line contains only an end-of-file (an invisible control-di)

287 statements executed in 0.02 seconds cpu time.
%

PS1:4-33

Thus we see that, if it is given arguments, 'kat' will, like cat, copy each one in turn. If no
arguments are given, it copies from the standard input. Thus it will work as it did before,
with

% kat < primes

now equivalent to

% kat primes

although the mechanisms are quite different in the two cases. Note that if 'kat' is given a bad
file name, for example:

% kat xxxxqqq

Could not open xxxxqqq: No such file or directory

Error in "kat" +5 near line 11.

4 statements executed in 0.00 seconds cpu time.
%

it will give a diagnostic and a post-mortem control flow backtrace for debugging. If we were
going to use 'kat', we might want to translate it differently, e.g.:

% pi -pb kat.p
% mv obj kat

Here we have disabled the post-mortem statistics printing, so as not to get the statistics or the
full traceback on error. The b option will cause the system to block buffer the input/output
so that the program will run more efficiently on large files. We could have also specified the t
option to turn off runtime tests if that was felt to be a speed hindrance to the program. Thus
we can try the last examples again:

% kat xxxxqqq

Could not open xxxxqqq: No such file or directory

Error in "kat"
% kat primes

2 3 5 7 11
31 37 41 43 47
73 79 83 89 97

127 131 137 139 149

13
53

101
151

17 19 23
59 61 67

103 107 109
157 163 167

29
71

113
173

PSl:4-34 Berkeley Pascal User's Manual

179 181 191 193 197 199 211 223 227 229

%

The interested reader may wish to try writing a program which accepts command line
arguments like pi does, using argc and argv to process them.

5. Details on the components of the system

5.1. Options

The programs pi, pc, and pxp take a number of options. t There is a standard UNIX
convention for passing options to programs on the command line, and this convention is fol­
lowed by the Berkeley Pascal system programs. As we saw in the examples above, option
related arguments consisted of the character '-' followed by a single character option name.

Except for the b option which takes a single digit value, each option may be set on
(enabled) or off (disabled.) When an on/off valued option appears on the command line of pi
or it inverts the default setting of that option. Thus

% pi -I foo.p

enables the listing option I, since it defaults off, while

% pi -t foo.p

disables the run time tests option t, since it defaults on.

In additon to inverting the default settings of pi options on the command line, it is also
possible to control the pi options within the body of the program by using comments of a
special form illustrated by

{$1-}

Here we see that the opening comment delimiter (which could also be a '(•')is immedi­
ately followed by the character '$'. After this '$ ', which signals the start of the option list, we
can place a sequence of letters and option controls, separated by ',' characterst. The most
basic actions for options are to set them, thus

{$1+ Enable listing}

or to clear them

{$t-,p- No run-time tests, no post mortem analysis}

Notice that'+' always enables an option and'-' always disables it, no matter what the default
is. Thus '-' has a different meaning in an option comment than it has on the command line.
As shown in the examples, normal comment text may follow the option list.

tAs pix uses pi to translate Pascal programs, it takes the options of pi also. We refer to them here, howev­
er, as pi options.
;This format was chosen because it is used by Pascal 6000-3.4. In general the options common to both im­
plementations are controlled in the same way so that comment control in options is mostly portable. It is
recommended, however, that only one control be put ·per comment for maximum portability, as the Pascal
6000-3.4 implementation will ignore controls after the first one which it does not recognize.

Berkeley Pascal User's Manual PSI :4-35

5,2. Options common to Pi, Pc, and Pix

The following options are common to both the compiler and the interpreter. With each
option we give its default setting, the setting it would have if it appeared on the command
line, and a sample command using the option. Most options are on/off valued, with the b
option taking a single digit value.

Buffering of the file output - b
The b option controls the buffering of the file output. The default is line buffering, with

flushing at each reference to the file input and under certain other circumstances detailed in
section 5 below. Mentioning b on the command line, e.g.

% pi - b assembler.p

causes standard output to be block buffered, where a block is some system-defined number of
characters. The b option may also be controlled in comments. It, unique among the Berkeley
Pascal options, takes a single digit value rather than an on or off setting. A value of 0, e.g.

{$b0}

causes the file output to be unbuffered. Any value 2 or greater causes block buffering and is
equivalent to the flag on the command line. The option control comment setting b must pre­
cede the program statement.

Include file listing - i

The i option takes the name of an include file, procedure or function name and causes it
to be listed while translatingt. Typical uses would be

% pix -i scanner.i compiler.p

to make a listing of the routines in the file scanner.i, and

% pix -i scanner compiler.p

to make a listing of only the routine scanner. This option is especially useful for
conservation-minded programmers making partial program listings.

Make a listing - I

The I option enables a listing of the program. The I option defaults off. When specified
on the command line, it causes a header line identifying the version of the translator in use
and a line giving the modification time of the file being translated to appear before the actual
program listing. The I option is pushed and popped by the i option at appropriate points in
the program.

Standard Pascal only - s

The s option causes many of the features of the UNIX implementation which are not
found in standard Pascal to be diagnosed as 's' warning errors. This option defaults off and is
enabled when mentioned on the command line. Some of the features which are diagnosed
are: non-standard procedures and functions, extensions to the procedure write, and the padding
of constant strings with blanks. In addition, all letters are mapped to lower case except in
strings and characters so that the case of keywords and identifiers is effectively ignored. The s
option is most useful when a program is to be tra!_lsported, thus

tinclude files are discussed in section 5.9.

PS1:4-36 Berkeley Pascal User's Manual

% pi -s isitstd.p

will produce warnings unless the program meets the standard.

Runtime tests - t and C
These options control the generation of tests that subrange variable values are within

bounds at run time. pi defaults to generating tests and uses the option t to disable them. pc
defaults to not generating tests, and uses the option C to enable them. Disabling runtime
tests also causes assert statements to be treated as comments.;

Suppress warning diagnostics - w
The w option, which defaults on, allows the translator to print a number of warnings

about inconsistencies it finds in the input program. Turning this option off with a comment
of the form

{$w-}

or on the command line

% pi -w tryme.p

suppresses these usually useful diagnostics.

Generate counters for a pxp execution profile - z
The z option, which defaults off, enables the production of execution profiles. By speci­

fying z on the command line, i.e.

% pi -z foo.p

or by enabling it in a comment before the program statement causes pi and pc to insert
operations in the interpreter code to count the number of times each statement was executed.
An example of using pxp was given in section 2.6; its options are described in section 5.6.
Note that the z option cannot be used on separately compiled programs.

5.3. Options available in Pi

Post-mortem dump - p
The p option defaults on, and causes the runtime system to initiate a post-mortem back­

trace when an error occurs. It also cause px to count statements in the executing program,
enforcing a statement limit to prevent infinite loops. Specifying p on the command line dis­
ables these checks and the ability to give this post-mortem analysis. It does make smaller and
faster programs, however. It is also possible to control the p option in comments. To prevent
the post-mortem backtrace on error, p must be off at the end of the program statement. Thus,
the Pascal cross-reference program was translated with

% pi -pbt pxref.p

5.4. Options available in Px
The first argument to px is the name of the file containing the program to be inter­

preted. If no arguments are given, then the file obj is executed. If more arguments are given,
they are available to the Pascal program by using the built-ins argc and argv as described in

;see section A. I for a description of assert statements.

Berkeley Pascal User's Manual PS1:4-37

section 4.6.

Px may also be invoked automatically. In this case, whenever a Pascal object file name
is given as a command, the command will be executed with px prepended to it; that is

% obj primes

will be converted to read

% px obj primes

5.5. Options available in Pc

Generate assembly language - S

The program is compiled and the assembly language output is left in file appended .s.
Thus

% pc -S foo.p

creates a file foo.s. No executable file is created.

Symbolic Debugger Information - g

The g option causes the compiler to generate information needed by sdb (I) the symbolic
debugger. For a complete description of sdb see Volume 2c of the UNIX Reference Manual.

Redirect the output file - o

The name argument after the -o is used as the name of the output file instead of a.out.
Its typical use is to name the compiled program using the root of the file name. Thus:

% pc -o myprog myprog.p

causes the compiled program to be called myprog.

Generate counters for a prof execution profile - p

The compiler produces code which counts the number of times each routine is called.
The profiling is based on a periodic sample taken by the system rather than by inline counters
used by pxp. This results in less degradation in execution, at somewhat of a loss in accuracy.
See prof(I) for a more complete description.

Run the object code optimizer - 0

The output of the compiler is run through the object code optimizer. This provides an
increase in compile time in exchange for a decrease in compiled code size and execution time.

5.6. Options available in Pxp

Pxp takes, on its command line, a list of options followed by the program file name,
which must end in '.p' as it must for pi, pc, and pix. Pxp will produce an execution profile if
any of the z, t or c options is specified on the command line. If none of these options is
specified, then pxp functions as a program reformatter.

It is important to note that only the z and w options of pxp, which are common to pi,
pc, and pxp can be controlled in comments. All other options must be specified on the com­
mand line to have any effect.

The following options are relevant to profiling with pxp:

PS1:4-38 Berkeley Pascal User's Manual

Include the bodies of all routines in the profile - a
Pxp normally suppresses printing the bodies of routines which were never executed, to

make the profile more compact. This option forces all routine bodies to be printed.

Suppress declaration parts from a profile - d

Normally a profile includes declaration parts. Specifying d on the command line
suppresses declaration parts.

Eliminate include directives - e
Normally, pxp preserves include directives to the output when reformatting a program,

as though they were comments. Specifying -e causes the contents of the specified files to be
reformatted into the output stream instead. This is an easy way to eliminate include direc­
tives, e.g. before transporting a program.

Fully parenthesize expressions - f

Normally pxp prints expressions with the minimal parenthesization necessary to
preserve the structure of the input. This option causes pxp to fully parenthesize expressions.
Thus the statement which prints as

d := a + b mod c I e

with minimal parenthesization, the default, will print as

d := a + ((b mod c) I e)

with the f option specified on the command line.

Left justify all procedures and functions - j
Normally, each procedure and function body is indented to reflect its static nesting

depth. This option prevents this nesting and can be used if the indented output would be too
wide.

Print a table summarizing procedure and function calls - t
The t option causes pxp to print a table summarizing the number of calls to each pro­

cedure and function in the program. It may be specified in combination with the z option, or
separately.

Enable and control the profile - z
The z profile option is very similar to the i listing control option of pi. If z is specified

on the command line, then all arguments up to the source file argument which ends in '.p' are
taken to be the names of procedures and functions or include files which are to be profiled. If
this list is null, then the whole file is to be profiled. A typical command for extracting a
profile of part of a large program would be

% pxp -z test parser.i compiler.p

This specifies that profiles of the routines in the file parser.i and the routine test are to be
made.

5.7. Formatting programs using pxp
The program pxp can be used to reformat programs, by using a command of the form

% pxp dirty.p > clean.p

Berkeley Pascal User's Manual PS1:4-39

Note that since the shell creates the output file 'clean.p' before pxp executes, so 'clean.p' and
'dirty.p' must not be the same file.

Pxp automatically paragraphs the program, performing housekeeping chores such as
comment alignment, and treating blank lines, lines containing exactly one blank and lines
containing only a form-feed character as though they were comments, preserving their vertical
spacing effect in the output. Pxp distinguishes between four kinds of comments:

!) Left marginal comments, which begin in the first column of the input line and are
placed in the first column of an output line.

2) Aligned comments, which are preceded by no input tokens on the input line.
These are aligned in the output with the running program text.

3) Trailing comments, which are preceded in the input line by a token with no more
than two spaces separating the token from the comment.

4) Right marginal comments, which are preceded in the input line by a token from
which they are separated by at least three spaces or a tab. These are aligned down
the right margin of the output, currently to the first tab stop after the 40th column
from the current "left margin".

Consider the following program.

% cat comments.p
{ This is a left marginal comment. }
program hello(output);
var i : integer; (This is a trailing comment}
j : integer; {This is a right marginal comment}
k: array [1..10] of array (1..10] of integer; {Marginal, but past the margin}
{

An aligned, multi-line comment
which explains what this program is
all about

}
begin
i := I; {Trailing i comment}
{A left marginal comment}
{An aligned comment}

j := !; {Right marginal comment}
k[l] := !;
writeln(i, j, k[l])
end.

When formatted by pxp the following output is produced.

% pxp comments.p
{ This is a left marginal comment. }

program hello(output);
var

(

}

i: integer; {This is a trailing comment}
j: integer;
k: array [1..1 OJ of array [1..10] of integer;

An aligned, multi-line comment
which explains what this program is
all about

(This is a right marginal comment}
{Marginal, but past the margin}

PS1:4-40

begin
i := 1; {Trailing i comment}

{A left marginal comment}
{An aligned comment}
j := 1;
k[l] := 1;
writeln(i, j, k[l])

end.
%

Berkeley Pascal User's Manual

{Right marginal comment}

The following formatting related options are currently available in pxp. The options f and j
described in the previous section may also be of interest.

Strip comments -s

The s option causes pxp to remove all comments from the input text.

Underline keywords - _

A command line argument of the form - _ as in

% pxp - _ dirty.p

can be used to cause pxp to underline all keywords in the output for enhanced readability.

Specify indenting unit - [23456789)

The normal unit which pxp uses to indent a structure statement level is 4 spaces. By
giving an argument of the form -d with d a digit, 2 ::;; d ::S: 9 you can specify that d spaces are
to be used per level instead.

5.8. Pxref

The cross-reference program pxref may be used to make cross-referenced listings of Pas­
cal programs. To produce a cross-reference of the program in the file 'foo.p' one can execute
the command:

% pxref foo.p

The cross-reference is, unfortunately, not block structured. Full details on pxref are given in
its manual section pxref (!).

5.9. Multi-file programs

A text inclusion facility is available with Berkeley Pascal. This facility allows the inter­
polation of source text from other files into the source stream of the translator. It can be used
to divide large programs into more manageable pieces for ease in editing, listing, and mainte­
nance.

The include facility is based on that of the UNIX C compiler. To trigger it you can place
the character '#' in the first portion of a line and then, after an arbitrary number of blanks or
tabs, the word 'include' followed by a filename enclosed in single "' or double '"' quotation
marks. The file name may be followed by a semicolon ';' if you wish to treat this as a
pseudo-Pascal statement. The filenames of included files must end in '.i'. An example of the
use of included files in a main program would be:

program compiler(input, output, obj);

#include "globals.i"
#include "scanner.i"

Berkeley Pascal User's Manual

#include "parser.i"
#include "semantics.i"

begin
{ main program }

end.

PS1:4-41

At the point the include pseudo-statement is encountered in the input, the lines from the
included file are interpolated into the input stream. For the purposes of translation and run­
time diagnostics and statement numbers in the listings and post-mortem backtraces, the lines
in the included file are numbered from 1. Nested includes are possible up to 10 deep.

See the descriptions of the i option of pi in section 5.2 above; this can be used to con­
trol listing when include files are present.

When a non-trivial line is encountered in the source text after an include finishes, the
'popped' filename is printed, in the same manner as above.

For the purposes of error diagnostics when not making a listing, the filename will be
printed before each diagnostic if the current filename has changed since the last filename was
printed.

5.10. Separate Compilation with Pc

A separate compilation facility is provided with the Berkeley Pascal compiler, pc. This
facility allows programs to be divided into a number of files and the pieces to be compiled
individually, to be linked together at some later time. This is especially useful for large pro­
grams, where small changes would otherwise require time-consuming re-compilation of the
entire program.

Normally, pc expects to be given entire Pascal programs. However, if given the -c
option on the command line, it will accept a sequence of definitions and declarations, and
compile them into a .o file, to be linked with a Pascal program at a later time. In order that
procedures and functions be available across separately compiled files, they must be declared
with the directive external. This directive is similar to the directive forward in that it must
precede the resolution of the function or procedure, and formal parameters and function
result types must be specified at the external declaration and may not be specified at the reso­
lution.

Type checking is performed across separately compiled files. Since Pascal type
defintions define unique types, any types which are shared between separately compiled files
must be the same definition. This seemingly impossible problem is solved using a facility
similar to the include facility discussed above. Definitions may be placed in files with the
extension .h and the files included by separately compiled files. Each definition from a .h file
defines a unique type, and all uses of a definition from the same .h file define the same type.
Similarly, the facility is extended to allow the definition of consts and the declaration of
labels, vars, and external functions and procedures. Thus procedures and functions which are
used between separately compiled files must be declared external, and must be so declared in
a .h file included by any file which calls or resolves the function or procedure. Conversely,
functions and procedures declared external may only be so declared in .h files. These files may
be included only at the outermost level, and thus define or declare global objects. Note that
since only external function and procedure declarations (and not resolutions) are allowed in .h
files, statically nested functions and procedures can not be declared external.

An example of the use of included .h files in a program would be:

program compiler(input, output, obj);

#include "'globals.h"
#include "scanner.h"

PS1:4-42

#include "parser.h"
#include "semantics.h"

begin
{ main program }

end.

Berkeley Pascal User's Manual

This might include in the main program the definitions and declarations of all the global
labels, consts, types vars from the file globals.h, and the external function and procedure
declarations for each of the separately compiled files for the scanner, parser and semantics.
The header file scanner.h would contain declarations of the form:

type
token = record

{ token fields }
end;

function scan(var inputfile: text): token;
external;

Then the scanner might be in a separately compiled file containing:

#include "globals.h"
#include "scanner.h"

function scan;
begin

{ scanner code }
end;

which includes the same global definitions and declarations and resolves the scanner functions
and procedures declared external in the file scanner.h.

A. Appendix to Wirth's Pascal Report

This section is an appendix to the definition of the Pascal language in Niklaus Wirth's
Pascal Report and, with that Report, precisely defines the Berkeley implementation. This
appendix includes a summary of extensions to the language, gives the ways in which the
undefined specifications were resolved, gives limitations and restrictions of the current imple­
mentation, and lists the added functions and procedures available. It concludes with a list of
differences with the commonly available Pascal 6000-3.4 implementation, and some com­
ments on standard and portable Pascal.

A.1. Extensions to the language Pascal

This section defines non-standard language constructs available in Berkeley Pascal. The
s standard Pascal option of the translators pi and pc can be used to detect these extensions in
programs which are to be transported.

String padding

Berkeley Pascal will pad constant strings with blanks in expressions and as value param­
eters to make them as long as is required. The following is a legal Berkeley Pascal program:

program x(output);
var z : packed array [1 .. 13] of char;
begin

z := 'red';

Berkeley Pascal User's Manual

writeln(z)
end;

PS1:4-43

The padded blanks are added on the right. Thus the assignment above is equivalent to:

z :='red

which is standard Pascal.

Octal constants, octal and hexadecimal write
Octal constants may be given as a sequence of octal digits followed by the character 'b'

or.'B'. The forms

write(a:n oct)

and

write(a:n hex)

cause the internal representation of expression a, which must be Boolean, character, integer,
pointer, or a user-defined enumerated type, to be written in octal or hexadecimal respectively.

Assert statement
An assert statement causes a Boolean expression to be evaluated each time the state­

ment is executed. A runtime error results if any of the expressions evaluates to be false. The
assert statement is treated as a comment if run-time tests are disabled. The syntax for assert
is:

assert <expr>

Enumerated type input-output
Enumerated types may be read and written. On output the string name associated with

the enumerated value is output. If the value is out of range, a runtime error occurs. On
input an identifier is read and looked up in a table of names associated with the type of the
variable, and the appropriate internal value is assigned to the variable being read. If the
name is not found in the table a runtime error occurs.

Structure returning functions
An extension has been added which allows functions to return arbitrary sized structures

rather than just scalars as in the standard.

Separate compilation
The compiler pc has been extended to allow separate compilation of programs. Pro­

cedures and functions declared at the global level may be compiled separately. Type checking
of calls to separately compiled routines is performed at load time to insure that the program
as a whole is consistent. See section 5.10 for details.

A.2. Resolution of the undefined specifications

File name - file variable associations
Each Pascal file variable is associated with a named UNIX file. Except for input and

output, which are exceptions to some of the rules, a name can become associated with a file in
any of three ways:

PS1:4-44 Berkeley Pascal User's Manual

I) If a global Pascal file variable appears in the program statement then it is associ­
ated with UNIX file of the same name.

2) If a file was rl:set or rewritten using the extended two-argument form of reset or
rewrite then the given name is associated.

3) If a file which has never had UNIX name associated is reset or rewritten without
specifying a name via the second argument, then a temporary name of the form
'tmp.x' is associated with the file. Temporary names start with 'tmp. l' and con­
tinue by incrementing the last character in the USASCII ordering. Temporary files
are removed automatically when their scope is exited.

The program statement

The syntax of the program statement is:

program <id> (<file id> { , <file id > }) ;

The file identifiers (other than input and output) must be declared as variables of file type in
the global declaration part.

The files input and output

The formal parameters input and output are associated with the UNIX standard input
and output and have a somewhat special status. The following rules must be noted:

I) The program heading must contains the formal parameter output. If input is used,
explicitly or implicitly, then it must also be declared here.

2) Unlike all other files, the Pascal files input and output must not be defined in a
declaration, as their declaration is automatically:

var input, output: text

3) The procedure reset may be used on input. If no UNIX file name has ever been
associated with input, and no file name is given, then an attempt will be made to
'rewind' input. If this fails, a run time error will occur. Rewrite calls to output act
as for any other file, except that output initially has no associated file. This means
that a simple

rewrite(output)

associates a temporar; name with output.

Details for files

If a file other than input is to be read, then reading must be initiated by a call to the
procedure reset which causes the Pascal system to attempt to open the associated UNIX file
for reading. If this fails, then a runtime error occurs. Writing of a file other than output
must be initiated by a rewrite call, which causes the Pascal system to create the associated
UNIX file and to then open the file for writing only.

Buffering

The buffering for output is determined by the value of the b option at the end of the
program statement. If it has its default value I, then output is buffered in blocks of up to S 12
characters, flushed w.henever a writeln occurs and at each reference to the file input. If it has
the value 0, output is unbuffered. Any value of 2 or more gives block buffering without line
or input reference flushing. All other output files are always buffered in blocks of 512 charac­
ters. All output buffers are flushed when the files are closed at scope exit, whenever the pro­
cedure message is called, and can be flushed using the built-in procedure flush.

Berkeley Pascal User's Manual PSl:4-45

An important point for an interactive implementation is the definition of 'inputf. If
input is a teletype, and the Pascal system reads a character at the beginning of execution to
define 'inputf, then no prompt could be printed by the program before the user is required to
type some input. For this reason, 'inputf is not defined by the system until its definition is
needed, reading from a file occurring only when necessary.

The character set

Seven bit USASCII is the character set used on UNIX. The standard Pascal symbols 'and',
'or', 'not', '<=', '>=', '<>', and the uparrow 't' (for pointer qualification) are recognized.t
Less portable are the synonyms tilde ·-· for not, '&' for and, and 'I' for or.

Upper and lower case are considered to be distinct. Keywords and built-in procedure
and function names are composed of all lower case letters. Thus the identifiers GOTO and
GOto are distinct both from each other and from the keyword goto. The standard type
'boolean' is also available as 'Boolean'.

Character strings and constants may be delimited by the character M or by the character
'#'; the latter is sometimes convenient when programs are to be transported. Note that the '#'
character has special meaning when it is the first character on a line - see Multi-file programs
below.

The standard types

The standard type integer is conceptually defined as

type integer = minint .. maxint;

Integer is implemented with 32 bit twos complement arithmetic. Predefined constants of
type integer are:

const maxint = 2147483647; minint = -2147483648;

The standard type char is conceptually defined as

type char = minchar .. maxchar;

Built-in character constants are 'minchar' and 'maxchar', 'bell' and 'tab'; ord(minchar) = 0,
ord(maxchar) = 127.

The type real is implemented using 64 bit floating point arithmetic. The floating point
arithmetic is done in 'rounded' mode, and provides approximately 17 digits of precision with
numbers as small as 10 to the negative 38th power and as large as IO to the 38th power.

Comments

Comments can be delimited by either '{' and '}' or by '(*' and '*)'. If the character'{'
appears in a comment delimited by '{' and ')', a warning diagnostic is printed. A similar
warning will be printed if the sequence '(*' appears in a comment delimited by '(*' and '*)'.
The restriction implied by this warning is not part of standard Pascal, but detects many other­
wise subtle errors.

tOn many terminals and printers, the up arrow is represented as a cirpumflex "''. These are not distinct
characters, but rather different graphic representations of the same internal codes.
The proposed standard for Pascal considers them to be the same.

PSJ:4-46 Berkeley Pascal User's Manual

Option control
Options of the translators may be controlled in two distinct ways. A number of options

may appear on the command line invoking the translator. These options are given as one or
more strings of letters preceded by the character '-' and cause the default setting of each given
option to be changed. This method of communication of options is expected to predominate
for UNIX. Thus the command

% pi -I -s foo.p

translates the file foo.p with the listing option enabled (as it normally is oft), and with only
standard Pascal features available.

If more control over the portions of the program where options are enabled is required,
then option control in comments can and should be used. The format for option control in
comments is identical to that used in Pascal 6000-3.4. One places the character '$' as the
first character of the comment and follows it by a comma separated list of directives. Thus
an equivalent to the command line example given above would be:

($1+,s+ listing on, standard Pascal}

as the first line of the program. The 'I' option is more approi:riately specified on the com­
mand line, since it is extremely unlikely in an interactive environment that one wants a listing
of the program each time it is translated.

Directives consist of a letter designating the option, followed either by a '+' to turn the
option on, or by a'-' to turn the option off. The b option takes a single digit instead of a'+'
or'-'.

Notes on the listings

The first page of a listing includes a banner line indicating the version and date of gen­
eration of pi or pc. It also includes the UNIX path name supplied for the source file and the
date oflast modification of that file.

Within the body of the listing, lines are numbered consecutively and correspond to the
line numbers for the editor. Currently, two special kinds of lines may be used to format the
listing: a line consisting of a form-feed character, control-I, which causes a page eject in the
listing, and a line with no characters which causes the line number to be suppressed in the
listing, creating a truly blank line. These lines thus correspond to 'eject' and 'space' macros
found in many assemblers. Non-printing characters are printed as the character '?' in the list­
ing. t

The standard procedure write

If no minimum field length parameter is specified for a write, the following default
values are assumed:

integer
real
Boolean
char
string
oct
hex

10
22

length of 'true' or 'false'
1

length of the string
11
8

The end of each line in a text file should be explicitly indicated by 'writeln(f)', where

fThe character generated by a control-i indents to the next 'tab stop'. Tab stops are set every 8 columns in
UNIX. Tabs thus provide a quick way of indenting in the program.

Berkeley Pascal User's Manual PSl:4-47

'writeln(output)' may be written simply as 'writeln'. For UNIX, the built-in function 'page(t)'
puts a single ASCII form-feed character on the output file. For programs which are to be tran­
sported the filter pee can be used to interpret carriage control, as UNIX does not normally do
so.

A.3. Restrictions and limitations

Files

Files cannot be members of files or members of dynamically allocated structures.

Arrays, sets and strings

The calculations involving array subscripts and set elements are done with 16 bit arith­
metic. This restricts the types over which arrays and sets may be defined. The lower bound
of such a range must be greater than or equal to -32768, and the upper bound less than
32768. In particular, strings may have any length from I to 65535 characters, and sets may
contain no more than 65535 elements.

Line and symbol length

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be
distinct if they differ in any single position over their entire length. There is a limit, however,
on the maximum input line length. This limit is quite generous however, currently exceeding
160 characters.

Procedure and function nesting and program size

At most 20 levels of procedure and function nesting are allowed. There is no fundamen­
tal, translator defined limit on the size of the program which can be translated. The ultimate
limit is supplied by the hardware and thus, on the PDP- I I, by the 16 bit address space. If one
runs up against the 'ran out of memory' diagnostic the program may yet translate if smaller
procedures are used, as a lot of space is freed by the translator at the completion of each pro­
cedure or function in the current implementation.

On the VAX-II, there is an implementation defined limit of 65536 bytes per variable.
There is no limit on the number of variables.

Overflow

There is currently no checking for overflow on arithmetic operations at run-time on the
PDP- I I. Overflow checking is performed on the v AX-11 by the hardware.

A.4. Added types, operators, procedures and functions

Additional predefined types

The type a/fa is predefined as:

type alfa = packed array [I .. I 0] of char

The type intset is predefined as:

type intset = set of 0 .. 127

In most cases the context of an expression involving a constant set allows the translator to
determine the type of the set, even though the constant set itself may not uniquely determine
this type. In the cases where it is not possible to determine the type of the set from local con­
text, the expression type defaults to a set over the entire base type unless the base type is
integert. In the latter case the type defaults to the current binding of intset, which must be

tThc current translator makes a special case of the construct 'if ... in [...]' and enforces only the more lax
restriction on 16 bit arithmetic given above in this case.

PS1:4-48 Berkeley Pascal User's Manual

"type set of (a subrange of) integer" at that point.
Note that if intset is redefined via:

type intset = set of 0 .. 58;

then the default integer set is the implicit intset of Pascal 6000-3.4

Additional predefined operators
The relationals '<'and'>' of proper set inclusion are available. With a and b sets, note

that

(not (a < b)) <> (a >= b)

As an example consider the sets a = [0,2] and b = [l]. The only relation true between these
sets is'<>'.

Non-standard procedures
argv(i,a)

date(a)

flush(f)

halt

linelimit(f,x)i

message(x, ...)

null

remove(a)

reset(f,a)

rewrite(f,a)
stlimit(i)

time(a)

where i is an integer and a is a string variable assigns the (possi­
bly truncated or blank padded) i 'th argument of the invocation of
the current UNIX process to the variable a. The range of valid i
is 0 to argc-1.

assigns the current date to the alfa variable a in the format 'dd
mmm yy ', where 'mmm' is the first three characters of the month,
i.e. 'Apr'.

writes the output buffered for Pascal file f into the associated
UNIX file.
terminates the execution of the program with a control flow back­
trace.
with f a textfile and x an integer expression causes the program to
be abnormally terminated if more than x lines are written on file
f. If x is less than 0 then no limit is imposed.
causes the parameters, which have the format of those to the
built-in procedure write, to be written unbuffered on the diagnostic
unit 2, almost always the user's terminal.
a procedure of no arguments which does absolutely nothing. It is
useful as a place holder, and is generated by pxp in place of the
invisible empty statement.
where a is a string causes the UNIX file whose name is a, with
trailing blanks eliminated, to be removed.
where a is a string causes the file whose name is a (with blanks
trimmed) to be associated with f in addition to the normal func­
tion of reset.
is analogous to 'reset' above.
where i is an integer sets the statement limit to be i statements.
Specifying the p option to pc disables statement limit counting.
causes the current time in the form ' hh:mm:ss ' to be assigned to
the alfa variable a.

;currently ignored by pdp-11 px.

Berkeley Pascal User's Manual PSl:'l-49

Non-standard functions

argc

card(x)

clock

expo(x)

random(x)

seed(i)

sysclock

undefined(x)

wallclock

returns the count of arguments when the Pascal program was
invoked. Argc is always at least 1.
returns the cardinality of the set x, i.e. the number of elements
contained in the set.
returns an integer which is the number of central processor mil­
liseconds of user time used by this process.
yields the integer valued exponent of the floating-point representa­
tion of x; expo(x) = entier(log2(abs(x))).
where x is a real parameter, evaluated but otherwise ignored,
invokes a linear congruential random number generator. Succes­
sive seeds are generated as (seed.a + c) mod m and the new ran­
dom number is a normalization of the seed to the range 0.0 to 1.0;
a is 62605, c is 113218009, and mis 536870912. The initial seed
is 7774755.
where i is an integer sets the random number generator seed to i
and returns the previous seed. Thus seed(seed(i)) has no effect
except to yield value i.

an integer function of no arguments returns the number of central
processor milliseconds of system time used by this process.
a Boolean function. Its argument is a real number and it always
returns false.
an integer function of no arguments returns the time in seconds
since 00:00:00 GMT January 1, 1970.

A.5. Remarks on standard and portable Pascal

It is occasionally desirable to prepare Pascal programs which will be acceptable at other
Pascal installations. While certain system dependencies are bound to creep in, judicious
design and programming practice can usually eliminate most of the non-portable usages.
Wirth's Pascal Report concludes with a standard for implementation and program exchange.

In particular, the following differences may cause trouble when attempting to transport
programs between this implementation and Pascal 6000-3.4. Using the s translator option
may serve to indicate many problem areas. t

Features not available in Berkeley Pascal

Segmented files and associated functions and procedures.
The function trunc with two arguments.
Arrays whose indices exceed the capacity of 16 bit arithmetic.

Features available in Berkeley Pascal but not in Pascal 6000-3.4

The procedures reset and rewrite with file names.
The functions argc, seed, sysclock, and wallclock.
The procedures argv, flush, and remove.
Message with arguments other than character strings.

tThe s option does not, however, check that identifiers differ in the first 8 characters. Pi and pc also do
not check the semantics of packed.

PS1:4-50

Write with keyword hex.
The assert statement.

Reading and writing of enumerated types.

Allowing functions to return structures.
Separate compilation of programs.

Comparison of records.

Other problem areas

Berkeley Pascal User's Manual

Sets and strings are more general in Berkeley Pascal; see the restrictions given in the
Jensen-Wirth User Manual for details on the 6000-3.4 restrictions.

The character set differences may cause problems, especially the use of the function chr,
characters as arguments to ord, and comparisons of characters, since the character set order­
ing differs between the two machines.

The Pascal 6000-3.4 compiler uses a less strict notion of type equivalence. In Berkeley
Pascal, types are considered identical only if they are represented by the same type identifier.
Thus, in particular, unnamed types are unique to the variables/fields declared with them.

Pascal 6000-3.4 doesn't recognize our option flags, so it is wise to put the control of
Berkeley Pascal options to the end of option lists or, better yet, restrict the option list length
to one.

For Pascal 6000-3.4 the ordering of files in the program statement has significance. It is
desirable to place input and output as the first two files in the program statement.

Acknowledgments
The financial support of William Joy and Susan Graham by the National Science Foun­

dation under grants MCS74-07644-A04, MCS78-07291, and MCSS0-05144, and the William
Joy by an IBM Graduate Fellowship are gratefully acknowledged.

Berkeley VAX/UNIX Assembler Reference Manual PSl:S-1

1. Introduction

Berkeley VAX/UNIX Assembler Reference Manual

John F. Reiser
Bell Laboratories,

Holmdel, NJ

and

Robert R. Henry1

Electronics Research Laboratory
University of California

Berkeley, CA 94720

November 5, 1979

Revised
February 9, 1983

This document describes the usage and input syntax of the UNIX VAX-11 assembler as.
As is designed for assembling the code produced by the "C" compiler; certain concessions
have been made to handle code written directly by people, but in general little sympathy has
been extended. This document is intended only for the writer of a compiler or a maintainer
of the assembler.

1.1. Assembler Revisions since November 5, 1979

There has been one major change to as since the last release. As has been updated to
assemble the new instructions and data formats for "G" and "H" floating point numbers,
as well as the new queue instructions.

1.2. Features Supported, but No Longer Encouraged as of February 9, 1983

These feature(s) in as are supported, but no longer encouraged.

The colon operator for field initialization is likely to disappear.

2. Usage

As is invoked with these command arguments:
as [-LVWJR] [-dn] [-DTS] [-t directory] [-o output] [name1 I · · · [namen]

The -L flag instructs the assembler to save labels beginning with a "L" in the symbol
table portion of the output file. Labels are not saved by default, as the default action of the
link editor Id is to discard them anyway.

The -V flag tells the assembler to place its interpass temporary file into virtual
memory. In normal circumstances, the system manager will decide where the temporary file
should lie. Our experiments with very large temporary files show that placing the temporary
file into virtual memory will save about 13% of the assembly time, where the size of the tem­
porary file is about 350K bytes. Most assembler sources will not be this long.

'Preparation of this paper supported in part by the National Science Foundation under grant MCS #78-07291.

February 9, 1983 1

PS!:5-2 Ri:al"lcoli:a.v VAY/TTl\TIY AaC!o.wnhlo• Vofopon.-o Mannal --------., ... __ ._. .. ·--- .. _____ .. _______ ..., _______ ... ·--··--·

The -W turns of all warning error reporting.

The -J flag forces UNIX style pseudo-branch instructions with destinations further
away than a byte displacement to be turned into jump instructions with 4 byte offsets. The
-J flag buys you nothing if -d2 is set. (See §8.4, and future work described in § 11)

The -R flag effectively turns ".data n" directives into ".text n" directives. This obvi­
ates the need to run editor scripts on assembler source to "read-only" fix initialized data
segments. Uninitialized data (via .Icomm and .comm directives) is still assembled into the
data or bss segments.

The -d flag specifies the number of bytes which the assembler should allow for a dis­
placement when the value of the displacement expression is undefined in the first pass. The
possible values of n are I, 2, or 4; the assembler uses 4 bytes if-dis not specified. See §8.2.

Provided the -V flag is not set, the -t flag causes the assembler to place its single tem­
porary file in the directory instead of in ltmp.

The -o flag causes the output to be placed on the file output. By default, the output of
the assembler is placed in the file a.out in the current directory.

The input to the assembler is normally taken from the standard input. If file argu­
ments occur, then the input is taken sequentially from the files namei, name2 · · • namen
This is not to say that the files are assembled separately; name 1 is effectively concatenated to
name2, so multiple definitions cannot occur amongst the input sources.

The -D (debug), -T (token trace), and the -S (symbol table) flags enable assembler
trace information, provided that the assembler has been compiled with the debugging code
enabled. The information printed is long and boring, but useful when debugging the assem­
bler.

3. Lexical conventions

Assembler tokens include identifiers (alternatively, "symbols" or "names"), constants,
and operators.

3.J. Identifiers

An identifier consists of a sequence of alphanumeric characters (including period ". '',
underscore "_'', and dollar "$"). The first character may not be numeric. Identifiers may
be (practically) arbitrary long; all characters are significant.

3.2. Constants

2

3.2.1. Scalar constants

All scalar (non floating point) constants are (potentially) 128 bits wide. Such con­
stants are interpreted as two's complement numbers. Note that 64 bit (quad words) and
128 bit (octal word) integers are only partially supported by the VAX hardware. In addi­
tion, 128 bit integers are only supported by the extended VAX architecture. As supports 64
and 128 bit integers only so they can be used as immediate constants or to fill initialized
data space. As can not perform arithmetic on constants larger than 32 bits.

Scalar constants are initially evaluated to a full 128 bits, but are pared down by dis­
carding high order copies of the sign bit and categorizing the number as a long, quad or
octal integer. Numbers with less precision than 32 bits are treated as 32 bit quantities.

The digits are "0123456789abcdefABCDEF" with the obvious values.

An octal constant consists of a sequence of digits with a leading zero.

February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PSI:S-3

A decimal constant consists of a sequence of digits without a leading zero.

A hexadecimal constant consists of the characters "Ox" (or "OX") followed by a
sequence of digits.

A single-character constant consists of a single quote ""' followed by an ASCII char­
acter, including ASCII newline. The constant's value is the code for the given character.

3.2.2. Floating Point Constants

Floating point constants are internally represented in the v AX floating point format
that is specified by the lexical form of the constant. Using the meta notation that [dee] is
a decimal digit ("0123456789"), [expt] is a type specification character ("fFdDhHgG"),
[expe] is a exponent delimiter and type specification character ("eEfFdDhHgG"), x· means
0 or more occurences of x, x+ means 1 or more occurences of x, then the general lexical
form of a floating point number is:

O[expe]([+-])[decj+(.)([dec]*}([expt]([+-])(dee]+))
The standard semantic interpretation is used for the signed integer, fraction and signed
power of l 0 exponent. If the exponent delimiter is specified, it must be either an "e" or
"E", or must agree with the initial type specification character that is used. The type
specification character specifies the type and representation of the constructed number, as
follows:

type character
f, F
d,D
g,G
h,H

floating representation
F format floating
D format floating
G format floating
H format floating

size (bits)
32
64
64

128

Note that "G" and "H'' format floating point numbers are not supported by all implemen­
tations of the VAX architecture. As does not require the augmented architecture in order
to run.

The assembler uses the library routine atof() to convert "F" and "D" numbers, and
uses its own conversion routine (derived from atof, and believed to be numerically accu­
rate) to convert "G" and "H" floating point numbers.

Collectively, all floating point numbers, together with quad and octal scalars are
called Bignums. When as requires a Bignum, a 32 bit scalar quantity may also be used.

3.2.3. String Constants

A string constant is defined using the same syntax and semantics as the "C" language
uses. Strings begin and end with a""" (double quote). The DEC MACR0-32 assembler con­
ventions for flexible string quoting is not implemented. All "C" backslash conventions are
observed; the backslash conventions peculiar to the PDP-I I assembler are not observed.
Strings are known by their value and their length; the assembler does not implicitly end
strings with a null byte.

3.3. Operators

There are several single-character operators; see §6.1.

3.4. Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be
used within tokens (except character constants). A blank or tab is required to separate
adjacent identifiers or constants not otherwise separated.

February 9, 1983 3

PSI:S-4 Berkeley V AXllJN!X Asseml!!e! Ref~m~::~ M::::::::!

3.5. Scratch Mark Comments

The character "#" introduces a comment, which extends through the end of the line
on which it appears. Comments starting in column I, having the format "#
expression string", are interpreted as an indication that the assembler is now assembling
file string at line expression. Thus, . one can use the "C" preprocessor on an assembly
language source file, and use the #include and #define preprocessor directives. (Note that
there may not be an assembler comment starting in column I if the assembler source is
given to the "C" preprocessor, as it will be interpreted by the preprocessor in a way not
intended.) Comments are otherwise ignored by the assembler.-

3.6. "C" Style Comments

The assembler will recognize "C" style comments, introduced with the prologue /*
and ending with the epilogue*/. "C" style comments may extend across multiple lines, and
are the preferred comment style to use if one chooses to use the "C" preprocessor.

4. Segments and Location Counters

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The UNIX operating system makes some assumptions about the con­
tent of these segments; the assembler does not. Within the text and data segments there are
a number of sub-segments, distinguished by number ("text O", "text 1 ", · · · "data O", "data
l ", · · ·). Currently there are four subsegments each in text and data. The subsegments are
for programming convenience only.

Before writing the output file, the assembler zero-pads each text subsegment to a multi­
ple of four bytes and then concatenates the subsegments in order to form the text segment;
an analogous operation is done for the data segment. Requesting that the loader define sym­
bols and storage regions is the only action allowed by the assembler with respect to the bss
segment. Assembly begins in "text O".

Associated with each (sub)segment is an implicit location counter which begins at zero
and is incremented by 1 for each byte assembled into the (sub)segment. There is no way to
explicitly reference a location counter. Note that the location counters of subsegments other
than "text O" and "data O" behave peculiarly due to the concatenation used to form the text
and data segments.

5. Statements

A source program is composed of a sequence of statements. Statements are separated
either by new-Jines or by semicolons. There are two kinds of statements: null statements and
keyword statements. Either kind of statement may be preceded by one or more labels.

5.1. Named Global Labels

A global label consists of a name followed by a colon. The effect of a name label is to
assign the current value and type of the location counter to the name. An error is indicated
in pass I if the name is already defined; an error is indicated in pass 2 if the value assigned
changes the definition of the label.

A global label is referenced by its name.

Global labels beginning with a "L" are discarded unless the -L option is in effect.

5.2. Numeric Local Labels

4

A numeric label consists of a digit 0 to 9 followed by a colon. Such a label serves to
define temporary symbols of the form "n b" and "n r', where n is the digit of the label. As

February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-5

in the case of name labels, a numeric label assigns the current value and type of the loca­
tion counter to the temporary symbol. However, several numeric labels with the same digit
may be used within the same assembly. References to symbols of the form "nb" refer to
the first numeric label "n :" backwards from the reference; "n r· symbols refer to the first
numeric label "n :"forwards from the reference. Such numeric labels conserve the inven­
tive powers of the human programmer.

For various reasons, as turns local labels into labels of the form Ln .$m. Although
unlikely, these generated labels may conflict with programmer defined labels.

5.3. Null statements
A null statement is an empty statement ignored by the assembler. A null statement

may be labeled, however.

5.4. Keyword statements
A keyword statement begins with one of the many predefined keywords known to as;

the syntax of the remainder of the statement depends on the keyword. All instruction
opcodes are keywords. The remaining keywords are assembler pseudo-operations, also
called directives. The pseudo-operations are listed in §8, together with the syntax they
require.

6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, operators, and parentheses. Each expression has a type.

All operators in expressions are fundamentally binary in nature. Arithmetic is two's
complement and has 32 bits of precision. As can not do arithmetic on floating point
numbers, quad or octal precision scalar numbers. There are four levels of precedence, listed
here from lowest precedence level to highest:

precedence
binary
binary
binary
unary

operators
+, -
I,&, A'!
*,/,o/o,

All operators of the same precedence are evaluated strictly left to right, except for the
evaluation order enforced by parenthesis.

6.1. Expression Operators

The operators are:

February 9, 1983 5

PSl:S-6 Berkeley VAX/UNIX Assembler Reference Manual

operator
+

*
I
%

&
I

>
>>
<
<<

meaning
addition
(binary) subtraction
multiplication
division
modulo
(unary) 2's complement
bitwise and
bitwise or
bitwise exclusive or
bitwise or not
bitwise l's complement
logical right shift
logical right shift
logical left shift
logical left shift

Expressions may be grouped by use of parentheses, "("' and ")".

6.2. Data Types

6

The assembler manipulates several different types of expressions. The types likely to
be met explicitly are:

undefined Upon first encounter, each symbol is undefined. It may become undefined if it
is assigned an undefined expression. It is an error to attempt to assemble an
undefined expression in pass 2; in pass 1, it is not (except that certain keywords
require operands which are not undefined).

undefined external
A symbol which is declared .glob! but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor Id must be used
to load the assembler's output with another routine that defines the undefined
reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is
unaffected by any possible future applications of the link-editor to the output
file.

text The value of a text symbol is measured with respect to the beginning of the text
segment of the program. If the assembler output is link-edited, its text symbols
may change in value since the program need not be the first in the link editor's
output. Most text symbols are defined by appearing as labels. At the start of an
assembly, the value of " . " is "text O".

data The value of a data symbol is measured with respect to the origin of the data
segment of a program. Like text symbols, the value of a data symbol may
change during a subsequent link-editor run since previously loaded programs
may have data segments. After the first .data statement, the value of "." is
"data O".

bss The value of a bss symbol is measured from the beginning of the bss segment of
a program. Like text and data symbols, the value of a bss symbol may change
during a subsequent link-editor run, since previously loaded programs may have
bss segments.

external absolute, text, data, or bss
Symbols declared .glob! but defined within an assembly as absolute, text, data,

February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PSl:S-7

register

other types

or bss symbols may be used exactly as if they were not declared .globl; however,
their value and type are available to the link editor so that the program may be
loaded with others that reference these symbols.

The symbols
rO rl r2 r3 r4 r5 r6 r7 r8 r9 r10 rll r12 r13 r14 r15 ap fp sp pc

are predefined as register symbols. In addition, the "%" operator converts the
following absolute expression whose value is between 0 and 15 into a register
reference.

Each keyword known to the assembler has a type which is used to select the rou­
tine which processes the associated keyword statement. The behavior of such
symbols when not used as keywords is the same as if they were absolute.

6.3. Type Propagation in Expressions

When operands are combined by expression operators, the result has a type which
depends on the types of the operands and on the operator. The rules involved are complex
to state but were intended to be sensible and predictable. For purposes of expression
evaluation the important types are

The combination rules are then

undefined
absolute
text
data
bss
undefined external
other

(I) If one of the operands is undefined, the result is undefined.

(2) If both operands are absolute, the result is absolute.

(3) If an absolute is combined with one of the "other types" mentioned above, the
result has the other type. An "other type" combined with an explicitly discussed
type other than absolute it acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external,
the result has the postulated type and the other operand must be absolute.

If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand); or
the second operand may have the same type as the first (in which case the result is
absolute). If the first operand is external undefined, the second must be absolute. All
other combinations are illegal.

others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations (Directives)

The keywords listed below introduce directives or instructions, and influence the later
behavior of the assembler for this statement. The metanotation

[stuff]

February 9, 1983 7

PSl:S-8 Berkeley VAX/UNIX Assembler Reference Manual

means that 0 or more instances of the given "stuff" may appear.

Boldface tokens must appear literally; words in italic words are substitutable.

The pseudo-operations listed below are grouped into functional categories.

7.1. Interface to a Previous Pass

.ABORT

As soon as the assembler sees this directive, it ignores all further input (but it does
read to the end of file), and aborts the assembly. No files are created. It is anticipated that
this would be used in a pipe interconnected version of a compiler, where the first major
syntax error would cause the compiler to issue this directive, saving unnecessary work in
assembling code that would have to be discarded anyway .

. file string

This directive causes the assembler to think it is in file string, so error messages reflect
the proper source file .

. line expression

This directive causes the assembler to think it is on line expression so error messages
reflect the proper source file.

The only effect of assembling multiple files specified in the command string is to insert
the file and line directives, with the appropriate values, at the beginning of the source from
each file.

expression string
expression

This is the only instance where a comment is meaningful to the assembler. The "#"
must be in the first column. This meta comment causes the assembler to believe it is on
line expression. The second argument, if included, causes the assembler to believe it is in
file string, otherwise the current file name does not change.

7.2. Location Counter Control

.data [expression]

.text [expression]

These two pseudo-operations cause the assembler to begin assembling into the indi­
cated text or data subsegment. If specified, the expression must be defined and absolute; an
omitted expression is treated as zero. The effect of a .data directive is treated as a .text
directive if the -R assembly flag is set. Assembly starts in the .text 0 subsegment.

The directives .align and .org also control the placement of the location counter.

7.3. Filled Data

.align align_ expr [, fil! _ expr]

8

The location counter is adjusted so that the expression lowest bits of the location
counter become zero. This is done by assembling from 0 to 2align_expr bytes, taken from the

February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PSl:S-9

low order byte of fill_ expr. If present, fill_ expr must be absolute; otherwise it defaults to
0. Thus ".align 2" pads by null bytes to make the location counter evenly divisible by 4.
The align_expr must be defined, absolute, nonnegative, and less than 16.

Warning: the subsegment concatenation convention and the current loader conven­
tions may not preserve attempts at aligning to more than 2 low-order zero bits .

. org org _ expr [, fill_ expr]

The location counter is set equal to the value of org _expr, which must be defined and
absolute. The value of the org _ expr must be greater than the current value of the location
counter. Space between the current value of the location counter and the desired value are
filled with bytes taken from the low order byte of fill_ expr, which must be absolute and
defaults to 0 .

. space space_ expr [, fill_ expr]

The location counter is advanced by space expr bytes. Space expr must be defined
and absolute. The space is filled in with bytes taken from the low order byte of fill expr,
which must be defined and absolute. Fill expr defaults to 0. The .fill directive is a more
general way to accomplish the .space directive .

. fill rep_ expr, size_ expr, fill_ expr

All three expressions must be absolute. fill_expr, treated as an expression of size
size_expr bytes, is assembled and replicated rep_expr times. The effect is to advance the
current location counter rep_expr * size_expr bytes. size_expr must be between I and 8.

7 .4. Symbol Definitions

7 .5. Initialized Data

.byte expr [, expr]

.word expr [, expr]

.int expr [, expr]

.long expr [, expr)

The expressions in the comma-separated list are truncated to the size indicated by the
key word:

keyword
.byte
.word
.int

.long

length (bits)
8

16
32
32

and assembled in successive locations. The expressions must be absolute.

Each expression may optionally be of the form:

expression 1 : expression 2

In this case, the value of expression 2 is truncated to expression 1 bits, and assembled in the
next expression 1 bit field which fits in the natural data size being assembled. Bits which are
skipped because a field does not fit are filled with zeros. Thus, ".byte 123" is equivalent to

February 9, 1983 9

PSI:S-10 Berkeley VAX/UNIX Assembler Reference Manual

".byte 8:123", and ".byte 3:1,2:1,5:1" assembles two bytes, containing the values 9 and I.

NB: Bit field initialization with the colon operator is likely to disappear in future
releases of the assembler.

.quad

.octa

.float

.double

.moat

.dfloat

.gtloat

.htloat

number [, number]
number [, number]
number [, number]
number [, number]
number [, number]
number [, number]
number [, number]
number [, number]

These initialize Bignums (see §3.2.2) in successive locations whose size is a function
on the key word. The type of the Bignums (determined by the exponent field, or lack
thereof) may not agree with type implied by the key word. The following table shows the
key words, their size, and the data types for the Bignums they expect.

keyword format length (bits) valid number(s)
.quad quad scalar 64 scalar
.octa octal scalar 128 scalar
.float F float 32 F, D and scalar

.moat F float 32 F, D and scalar
.double D float 64 F, D and scalar
.dtloat D float 64 F, D and scalar
.gtloat G float 64 G scalar
.htloat H float 128 H scalar

As will correctly perform other floating point conversions while initializing, but issues
a warning message. As performs all floating point initializations and conversions using only
the facilities defined in the original (native) architecture .

. ascii string [, string]

.asciz string [, string]

Each string in the list is assembled into successive locations, with the first letter in the
string being placed into the first location, etc. The .ascii directive will not null pad the
string; the .asciz directive will null pad the string. (Recall that strings are known by their
length, and need not be terminated with a null, and that the "C" conventions for escaping
are understood.) The .ascii directive is identical to:
.byte string0 , string1 , • • •

.comm name, expression

Provided the name is not defined elsewhere, its type is made "undefined external",
and its value is expression. In fact the name behaves in the current assembly just like an
undefined external. However, the link editor Id has been special-cased so that all external
symbols which are not otherwise defined, and which have a non-zero value, are defined to
lie in the bss segment, and enough space is left after the symbol to hold expression bytes .

. lcomm name, expression

IO February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PSl:S-11

expression bytes will be allocated in the bss segment and name assigned the location
of the first byte, but the name is not declared as global and hence will be unknown to the
link editor .

. glob! name

This statement makes the name external. If it is otherwise defined (by .set or by
appearance as a label) it acts within the assembly exactly as if the .globl statement were not
given; however, the link editor may be used to combine this object module with other
modules referring to this symbol.

Conversely, if the given symbol is not defined within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbol.
The assembler makes all otherwise undefined symbols external.

.set name, expression

The (name, expression) pair is entered into the symbol table. Multiple .set statements
with the same name are legal; the most recent value replaces all previous values .

.lsym name, expression

A unique and otherwise unreferencable instance of the (name, expression) pair 1s
created in the symbol table. The Fortran 77 compiler uses this mechanism to pass local
symbol definitions to the link editor and debugger .

. stabs string, ex pr i. expr 2, ex pr 3, expr 4

.stabn expr i. expr 2, expr 3, expr 4

.stabd expri. exprz, expr3

The stab directives place symbols in the symbol table for the symbolic debugger, sdb2•

A "stab" is a symbol table entry. The .stabs is a string stab, the .stabn is a stab not having
a string, and the .stabd is a "dot" stab that implicitly references "dot'', the current location
counter.

The string in the .stabs directive is the name of a symbol. If the symbol name is zero,
the .stabn directive may be used instead.

The other expressions are stored in the name list structure of the symbol table and
preserved by the loader for reference by sdb; the value of the expressions are peculiar to for­
mats required by sdb.

expr 1 is used as a symbol table tag (nlist field n_type).

expr2 seems to always be zero (nlist field n_other).

expr3 is used for either the source line number, or for a nesting level (nlist field n_desc).

expr 4 is used as tag specific information (nlist field n_value). In the case of the .stabd
directive, this expression is nonexistent, and is taken to be the value of the location
counter at the following instruction. Since there is no associated name for a .stabd
directive, it can only be used in circumstances where the name is zero. The effect of
a .stabd directive can be achieved by one of the other .stabx directives in the follow­
ing manner:

2Katseff, H.P. Sdb: A Symbol Debugger. Bell Laboratories, Holmdel, NJ. April 12, 1979.
Katseff, H.P. Symbol Table Format for Sdb, File 39394, Bell Laboratories, Holmdel, NJ. March 14, 1979.

February 9, 1983 11

PSl:S-12

.stabn expri. expr2, expr3, LLn
LLn:

Berkeley VAX/UNIX Assembler Reference Manual

The .stabd directive is preferred, because it does not clog the symbol table with labels
used only for the stab symbol entries.

8. Machine instructions

The syntax of machine instruction statements accepted by as is generally similar to the
syntax of DEC MACR0-32. There are differences, however.

8.1. Character set

As uses the character "$" instead of "#" for immediate constants, and the character
"*" instead of "@" for indirection. Opcodes and register names are spelled with lower-case
rather than upper-case letters.

8.2. Specifying Displacement Lengths

Under certain circumstances, the following constructs are (optionally) recognized by as
to indicate the number of bytes to allocate for the displacement used when constructing dis­
placement and displacement deferred addressing modes:

primary
If
w
L'

alternate length
byte (1 byte)
word (2 bytes)
long word (4 bytes)

One can also use lower case b, w or 1 instead of the upper case letters. There must be
no space between the size specifier letter and the "'" or ' 0 ". The constructs s· and G' are
not recognized by as, as they are by the DEC MACR0-32 assembler. It is preferred to use the
' 0 "displacement so that the ""' is not misinterpreted as the xor operator.

Literal values (including floating-point literals used where the hardware expects a
floating-point operand) are assembled as short literals if possible, hence not needing the s·
DEC MACR0-32 directive.

If the displacement length modifier is present, then the displacement is always assem­
bled with that displacement, even if it will fit into a smaller field, or if significance is lost.
If the length modifier is not present, and if the value of the displacement is known exactly
in as's first pass, then as determines the length automatically, assembling it in the shortest
possible way, Otherwise, as will use the value specified by the -d argument, which defaults
to 4 bytes.

8.3. casex Instructions

As considers the instructions caseb, easel, casew to have three operands. The displace­
ments must be explicitly computed by as, using one or more .word statements.

8.4. Extended branch instructions

These opcodes (formed in general by substituting a "j" for the initial "b" of the stan­
dard opcodes) take as branch destinations the name of a label in the current subsegment. It
is an error if the destination is known to be in a different subsegment, and it is a warning if
the destination is not defined within the object module being assembled.

If the branch destination is close enough, then the corresponding short branch "b"
instruction is assembled. Otherwise the assembler choses a sequence of one or more

12 February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PSl:S-13

instructions which together have the same effect as if the "b" instruction had a larger span.
In general, as chooses the inverse branch followed by a brw, but a brw is sometimes pooled
among several "j" instructions with the same destination.

As is unable to perform the same long/short branch generation for other instructions
with a fixed byte displacement, such as the sob, aob families, or for the acbx family of
instructions which has a fixed word displacement. This would be desirable, but is prohibi­
tive because of the complexity of these instructions.

If the -J assembler option is given, a jmp instruction is used instead of a brw instruc­
tion for ALL "j" instructions with distant destinations. This makes assembly of large
(> 32K bytes) programs (inefficiently) possible. As does not try to use clever combinations
of brb, brw and jmp instructions. The jmp instructions use PC relative addressing, with the
length of the offset given by the -d assembler option.

These are the extended branch instructions as recognizes:

jeql jeqlu jneq
jgeq jgequ jgtr
jleq jlequ jlss
jbcc jbsc jbcs

jibe jibs
jcc jcs
jvc jvs
jbc jbs
jbr

Note that jbr turns into brb if its target is close enough; otherwise a brw is used.

9. Diagnostics

Diagnostics are intended to be self explanatory and appear on the standard output.
Diagnostics either report an error or a warning. Error diagnostics complain about lexical,
syntactic and some semantic errors, and abort the assembly.

The majority of the warnings complain about the use of VAX features not supported by
all implementations of the architecture. As will warn if new opcodes are used, if "G" or
"H" floating point numbers are used and will complain about mixed floating conversions.

10. Limits

limit

Arbitrary3

BUFSIZ
Arbitrary
Arbitrary
Arbitrary
4 .
4

what

Files to assemble
Significant characters per name
Characters per input line
Characters per string
Symbols
Text segments
Data segments

3Although the number of characters available to the argv line is restricted by UNIX to 10240.

February 9, 1983 13

PSl:S-14 Berkeley VAX/UNIX Assembler Reference Manual

11. Annoyances and Future Work

Most of the annoyances deal with restrictions on the extended branch instructions.

As only uses a two level algorithm for resolving extended branch instructions into short
or long displacements. What is really needed is a general mechanism to turn a short condi­
tional jump into a reverse conditional jump over one of two possible unconditional branches,
either a brw or a jmp instruction. Currently, the -J forces the jmp instruction to always be
used, instead of the shorter brw instruction when needed.

The assembler should also recognize extended branch instructions for sob, aob, and
acbx instructions. Sob instructions will be easy, aob will be harder because the synthesized
instruction uses the index operand twice, so one must be careful of side effects, and the acbx
family will be much harder (in the general case) because the comparison depends on the sign
of the addend operand, and two operands are used more than once. Augmenting as with
these extended loop instructions will allow the peephole optimizer to produce much better
loop optimizations, since it currently assumes the worst case about the size of the loop body.

The string temporary file is not put in memory when the -V flag is set. The string table
in the generated a.out contains some strings and names that are never referenced from the
symbol table; the loader removes these unreferenced strings, however.

14 February 9, 1983

Berkeley Software Architecture Manual
4.3BSD Edition

William Joy, Robert Fabry,

Samuel Leffler, M. Kirk McKusick,

Michael Karels

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

This document summarizes the facilities provided by the 4.3BSD version of
the UNIX• operating system. It does not attempt to act as a tutorial for use of the
system nor does it attempt to explain or justify the design of the system facilities. It
gives neither motivation nor implementation details, in favor of brevity.

The first section describes the basic kernel functions provided to a UNIX pro­
cess: process naming and protection, memory management, software interrupts,
object references (descriptors), time and statistics functions, and resource controls.
These facilities, as well as facilities for bootstrap, shutdown and process accounting,
are provided solely by the kernel.

The second section describes the standard system abstractions for files and file
systems, communication, terminal handling, and process control and debugging.
These facilities are implemented by the operating system or by network server
processes.

• UNIX is a trademark of Bell Laboratories.

PS1:6-2

TABLE OF CONTENTS

Introduction.

0. Notation and types

I. Kernel primitives

1.1. Processes and protection
1.1.1. Host and process identifiers
1.1.2. Process creation and termination
1.1.3. User and group ids
1.1.4. Process groups
1.2. Memory management
1.2.1. Text, data and stack
1.2.2. Mapping pages
1.2.3. Page protection control
1.2.4. Giving and getting advice
1.2.5. Protection primitives

1.3. Signals
1.3.1. Overview
1.3.2. Signal types
1.3.3. Signal handlers
1.3.4. Sending signals
1.3.5. Protecting critical sections
1.3.6. Signal stacks

1.4. Timing and statistics
1.4.1. Real time
1.4.2. Interval time

1.5. Descripton
1.5.1. The reference table
1.5.2. Descriptor properties
1.5.3. Managing descriptor references
1.5.4. Multiplexing requests
1.5.5. Descriptor wrapping

1.6. Resource controls
1.6.1. Process priorities
1.6.2. Resource utilization
1.6.3. Resource limits

1.7. System operation support
I. 7. I. Bootstrap operations
1.7.2. Shutdown operations
1.7.3. Accounting

4.3BSD Architecture Manual

4.3BSD Architecture Manual

2. System facilities

2.1. Generic operations
2.1.1. Read and write
2.1.2. Input/output control
2.1.3. Non-blocking and asynchronous operations

2.2. File system
2.2. l Overview
2.2.2. Naming
2.2.3. Creation and removal
2.2.3.1. Directory creation and removal
2.2.3.2. File creation
2.2.3.3. Creating references to devices
2.2.3.4. Portal creation
2.2.3.6. File, device, and portal removal
2.2.4. Reading and modifying file attributes
2.2.5. Links and renaming
2.2.6. Extension and truncation
2.2. 7. Checking accessibility
2.2.8. Locking
2.2.9. Disc quotas

2.3. Interprocess communication
2.3.1. Interprocess communication primitives
2.3. l .1. Communication domains
2.3. l .2. Socket types and protocols
2.3. l.3. Socket creation, naming and service establishment
2.3.1.4. Accepting connections
2.3.l.5. Making connections
2.3.l.6. Sending and receiving data
2.3.1.7. Scatter/gather and exchanging access rights
2.3. l.8. Using read and write with sockets
2.3.1.9. Shutting down halves of full-duplex connections
2.3.1.10. Socket and protocol options
2.3.2. UNIX domain
2.3.2.1. Types of sockets
2.3.2.2. Naming
2.3.2.3. Access rights transmission
2.3.3. INTERNET domain
2.3.3.1. Socket types and protocols
2.3.3.2. Socket naming
2.3.3.3. Access rights transmission
2.3.3.4. Raw access

2.4. Terminals and devices
2.4.1. Terminals
2.4.1.1. Terminal input
2.4. l. l.1 Input modes
2.4. l.1.2 Interrupt characters
2.4.1.1.3 Line editing
2.4.1.2. Terminal output
2.4.1.3. Terminal control operations
2.4.1.4. Terminal hardware support
2.4.2. Structured devices

PS1:6-3

PSl:6-4

2.4.3. Unstructured devices

2.5. Process control and debugging

I. Summary of facilities

4.3BSD Architecture Manual

4.3BSD Architecture Manual PS1:6-5

o. Notation and types

The notation used to describe system calls is a variant of a C language call, consisting of a pro­
totype call followed by declaration of parameters and results. An additional keyword result, not part
of the normal C language, is used to indicate which of the declared entities receive results. As an
example, consider the read call, as described in section 2.1:

cc = read(fd, buf, nbytes);
result int cc; int fd; result char *buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the second
line cc is an integer and read also returns information in the parameter buf

Description of all error conditions arising from each system call is not provided here; they
appear in the programmer's manual. In particular, when accessed from the C language, many calls
return a characteristic -1 value when an error occurs, returning the error code in the global variable
errno. Other languages may present errors in different ways.

A number of system standard types are defined in the include file <sys/types.h> and used in the
specifications here and in many C programs. These include caddr_t giving a memory address (typi­
cally as a character pointer), off_t giving a file offset (typically as a long integer), and a set of unsigned
types u_char, u_short, u_int and u_long, shorthand names for unsigned char, unsigned short, etc.

PSl:6-6 4.3BSD Architecture Manual

I. Kemel primitives

The facilities available to a UNIX user process are logically divided into two parts: kernel facili­
ties directly implemented by UNIX code running in the operating system, and system facilities imple­
mented either by the system, or in cooperation with a server process. These kernel facilities are
described in this section I.

The facilities implemented in the kernel are those which define the UNIX virtual machine in
which each process runs. Like many real machines, this virtual machine has memory management
hardware, an interrupt facility, timers and counters. The UNIX virtual machine also allows access to
files and other objects through a set of descriptors. Each descriptor resembles a device controller, and
supports a set of operations. Like devices on real machines, some of which are internal to the
machine and some of which are external, parts of the descriptor machinery are built-in to the operat­
ing system, while other parts are often implemented in server processes on other machines. The facil­
ities provided through the descriptor machinery are described in section 2.

4.3BSD Architecture Manual PS1:6-7

1.1. Processes and protection

1.1.1. Host and process identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 64 characters
(as defined by MAXHOSTNAMELEN in <sys/param.h>). These are set (by a privileged user) and
returned by the calls:

sethostid(hostid)
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len)
char •name; int len;

len = gethostname(buf, bufl.en)
result int len; result char *buf; int bufl.en;

On each host runs a set of processes. Each process is largely independent of other processes, having
its own protection domain, address space, timers, and an independent set of references to system or
user implemented objects.

Each process in a host is named by an integer called the process id. This number is in the range
1-30000 and is returned by the getpid routine:

pid = getpid();
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the (hos­
tid, process id) pairs are guaranteed unique.

1.1.2. Process creation and termination
A new process is created by making a logical duplicate of an existing process:

pid =fork();
result int pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of the child,
and once in the child process where pid is 0. The parent-child relationship induces a hierarchical
structure on the set of processes in the system.

A process may terminate by executing an exit call:

exit(status)
int status;

returning 8 bits of exit status to its parent.
When a child process exits or terminates abnormally, the parent process receives information

about any event which caused termination of the child process. A second call provides a non­
blocking interface and may also be used to retrieve information about resources consumed by the pro­
cess during its lifetime.

PS1:6-8

#include <sys/wait.h>

pid = wait(astatus);
result int pid; result union wait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus *astatus;
int options; result struct rusage *arusage;

4.3BSD Architecture Manual

A process can overlay itself with the memory image of another process, passing the newly
created process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system, either a binary exe­
cutable file or a file which causes the execution of a specified interpreter program to process its con­
tents.

1.1.3. User and group ids

Each process in the system has associated with it two user-id's: a real user id and a effective user
id, both 16 bit unsigned integers (type uid_t). Each process has an real accounting group id and an
effective accounting group id and a set of access group id's. The group id's are 16 bit unsigned integers
(type gid_t). Each process may be in several different access groups, with the maximum concurrent
number of access groups a system compilation parameter, the constant NGROUPS in the file
<syslparam.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:

ruid = getuid();
result uid_t ruid;

euid = geteuid();
result uid_t euid;

the real and effective accounting group ids by:

rgid = getgid();
result gid_t rgid;

egid = getegid();
result gid_t egid;

The access group id set is returned by a getgroups call*:

ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize];

The user and group id's are assigned at login time using the setreuid, setregid, and setgroups
calls:

• The type of the gidset array in getgroups and setgroups remains integer for compatibility with 4.2BSD. It
may change to gid_t in future releases.

4.3BSD Architecture Manual

setreuid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset)
int gidsetsize; int gidset[gidsetsize];

PS1:6-9

The setreuid call sets both the real and effective user-id's, while the setregid call sets both the real and
effective accounting group id's. Unless the caller is the super-user, ruid must be equal to either the
current real or effective user-id, and rgid equal to either the current real or effective accounting group
id. The setgroups call is restricted to the super-user.

1.1.4. Process groups
Each process in the system is also normally associated with a process group. The group of

processes in a process group is sometimes referred to as a job and manipulated by high-level system
software (such as the shell). The current process group of a process is returned by the getpgrp call:

pgrp = getpgrp(pid);
result int pgrp; int pid;

When a process is in a specific process group it may receive software interrupts affecting the group,
causing the group to suspend or resume execution or to be interrupted or terminated. In particular, a
system terminal has a process group and only processes which are in the process group of the terminal
may read from the terminal, allowing arbitration of terminals among several different jobs.

The process group associated with a process may be changed by the setpgrp call:

setpgrp(pid, pgrp);
int pid, pgrp;

Newly created processes are assigned process id's distinct from all processes and process groups, and
the same process group as their parent. A normal (unprivileged) process may set its process group
equal to its process id. A privileged process may set the process group of any process to any value.

PSl:6-10 4.3BSD Architecture Manual

1.2. Memory managementt

1.2.1. Text, data and stack
Each process begins execution with three logical areas of memory called text, data and stack.

The text area is read-only and shared, while the data and stack areas are private to the process. Both
the data and stack areas may be extended and contracted on program request. The call

addr = sbrk(incr);
result caddr_t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while

addr = sstk(incr);
result caddr_t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed. On the
VAX the text and data areas are adjacent in the PO region, while the stack section is in the PI region,
and grows downward.

1.2.2. Mapping pages
The system supports sharing of data between processes by allowing pages to be mapped into

memory. These mapped pages may be shared with other processes or private to the process. Protec­
tion and sharing options are defined in <syslmman.h> as:

I* protections are chosen from these bits, or-ed together*/
#define PROT _READ
#define PROT _WRITE
#define PROT _EXEC

Ox04
Ox02
OxOI

!*pages can be read*/
!* pages can be written */
!* pages can be executed */

/*flags contain mapping type, sharing type and options*/
!* mapping type; choose one*/
#define MAP _FILE
#define MAP _ANON
#define MAP_ TYPE

I* sharing types; choose one*/
#define MAP _SHARED
#define MAP _PRIVATE

!* other flags *I
#define MAP _FIXED
#define MAP _NOEXTEND
#define MAP _HASSEMPHORE
#define MAP _INHERIT

OxOOOI !*mapped from a file or device*/
Ox0002 !*allocated from memory, swap space*/
OxOOOf !* mask for type field */

OxOOIO I* share changes*/
OxOOOO !* changes are private */

Ox0020 !* map addr must be exactly as requested */
Ox0040 !* for MAP _FILE, don't change file size */
Ox0080 !*region may contain semaphores*/
OxO I 00 !* region is retained after exec */

The cpu-dependent size of a page· is returned by the getpagesize system call:

pagesize = getpagesize();
result int pagesize;

The call:

t This section represents the interface planned for later releases of the system. Of the calls described in this
section, only sbrk and getpagesize are included in 4.3BSD.

4.3BSD Architecture Manual PS1:6-l l

maddr = mmap(addr, len, prot, flags, fd, pos);
result caddr_t maddr; caddr_t addr; int *len, prot, flags, fd; off_t pos;

causes the pages starting at addr and continuing for at most ten bytes to be mapped from the object
represented by descriptor fd, starting at byte offset pos. The starting address of the region is returned;
for the convenience of the system, it may be different than that supplied unless the MAP _FIXED flag
is given, in which case the exact address will be used or the call will fail. The actual amount mapped
is returned in fen. The addr, fen, and pos parameters must all be multiples of the pagesize. The
parameter prot specifies the ·accessibility of the mapped pages. The parameter flags specifies the type
of object to be mapped, mapping options, and whether modifications made to this mapped copy of
the page are to be kept private, or are to be shared with other references. Possible types include
MAP _FILE, mapping a regular file or character-special device memory, and MAP _ANON, which
maps memory not associated with any specific file. The file descriptor used for creating MAP _ANON
regions is used only for naming, and may be given as -1 if no name is associated with the regionf.
The MAP _NOEXTEND flag prevents the mapped file from being extended despite rounding due to
the granularity of mapping. The MAP _HASSEMAPHORE flag allows special handling for regions
that may contain semaphores. The MAP _INHERIT flag allows a region to be inherited after an exec.

A facility is provided to synchronize a mapped region with the file it maps; the call

msync(addr, len);
caddr_t addr; int len;

writes any modified pages back to the filesystem and updates the file modification time. If fen is 0, all
modified pages within the region containing addr will be flushed; if ten is non-zero, only the pages
containing addr and fen succeeding locations will be examined. Any required invalidation of memory
caches will also take place at this time. Filesystem operations on a file which is mapped for shared
modifications are unpredictable except after an msync.

A mapping can be removed by the call

munmap(addr);
caddr_t addr;

This call deletes the region containing the address given, and causes further references to addresses
within the region to generate invalid memory references.

1.2.3. Page protection control

A process can control the protection of pages using the call

mprotect(addr, len, prot);
caddr_t addr; int len, prot;

This call changes the specified pages to have protection prot. Not all implementations will guarantee
protection on a page basis; the granularity of protection changes may be as large as an entire region.

1.2.4. Giving and getting advice

A process that has knowledge of its memory behavior may use the madvise call:

madvise(addr, len, behav);
caddr_t addr; int len, behav;

Behav describes expected behavior, as given in <syslmman.h>:

:j: The current design does not allow a process to specify the location of swap space. In the future we may
define an additional mapping type, MAP _SWAP, in which the file descriptor argument specifies a file or
device to which swapping should be done.

PS!:6-!2

#define MADY _NORMAL 0
#define MADY _RANDOM 1
#define MADY _SEQUENTIAL 2
#define MADY - WILLNEED 3
#define MADY _DONTNEED 4
#define MADY _SP ACEA VAIL S

4.3BSD t\rchitecture Manual

I* no further special treatment*/
I* expect random page references*/
I* expect sequential references */
I* will need these pages*/
I* don't need these pages*/
I* insure that resources are reserved * /

Finally, a process may obtain information about whether pages are core resident by using the call

mincore(addr, len, vec)
caddr_t addr; int len; result char *vec;

Here the current core residency of the pages is returned in the character array vec, with a value of 1
meaning that the page is in-core.

1.2.5. Synchronization primitives

Primitives are provided for synchronization using semaphores in shared memory. Semaphores
must lie within a MAP _SHARED region with at least modes PROT _READ and PROT _WRITE.
The MAP _HASSEMAPHORE flag must have been specified when the region was created. To acquire
a lock a process calls:

value = mset(sem, wait)
result int value; semaphore *sem; int wait;

Mset indivisibly tests and sets the semaphore sem. If the the previous value is zero, the process has
acquired the lock and mset returns true immediately. Otherwise, if the wait flag is zero, failure is
returned. If wait is true and the previous value is non-zero, the "want" flag is set and the test-and-set
is retried; if the lock is still unavailable mset relinquishes the processor until notified that it should
retry.

To release a lock a process calls:

mclear(sem)
semaphore *sem;

Mclear indivisibly tests and clears the semaphore sem. If the "want" flag is zero in the previous
value, mclear returns immediately. If the "want" flag is non-zero in the previOus value, me/ear
arranges for waiting processes to retry before returning.

Two routines provide services analogous to the kernel sleep and wakeup functions interpreted in
the domain of shared memory. A process may relinquish the processor by calling msleep:

msleep(sem)
semaphore *sem;

The process will remain in a sleeping state until some other process issues an mwakeup for the same
semaphore within the region using the call:

mwakeup(sem)
semaphore •sem;

An mwakeup may awaken all sleepers on the semaphore, or may awaken only the next sleeper on a
queue.

4.3BSD Architecture Manual PSI :6-13

1.3. Signals

1.3.1. Overview

The system defines a set of signals that may be delivered to a process. Signal delivery resembles
the occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current pro­
cess context is saved, and a new one is built. A process may specify the handler to which a signal is
delivered, or specify that the signal is to be blocked or ignored. A process may also specify that a
default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accompanied
by creation of a core image file, containing the current memory image of the process for use in post­
mortem debugging. A process may choose to have signals delivered on a special stack, so that sophis­
ticated software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the order in
which they are delivered to a process is implementation specific. Signal routines execute with the sig­
nal that caused their invocation blocked, but other signals may yet occur. Mechanisms are provided
whereby critical sections of code may protect themselves against the occurrence of specified signals.

1.3.2. Signal types

The signals defined by the system fall into one of five classes: hardware conditions, software
conditions, input/output notification, process control, or resource control. The set of signals is
defined in the file <signal.h>.

Hardware signals are derived from exceptional conditions which may occur during execution.
Such signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL for
illegal instruction execution, SIGSEGV for addresses outside the currently assigned area of memory,
and SIGBUS for accesses that violate memory protection constraints. Other, more cpu-specific
hardware signals exist, such as those for the various customer-reserved instructions on the VAX
(SIGIOT, SIGEMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt
signal; SIGQUIT for the more powerful quit signal, that normally causes a core image to be gen­
erated; SIGHUP and SIGTERM that cause graceful process termination, either because a user has
"hung up'', or by user or program request; and SIGKILL, a more powerful termination signal which a
process cannot catch or ignore. Programs may define their own asynchronous events using SIGUSRI
and SIGUSR2. Other software signals (SIGALRM, SIGVTALRM, SIGPROF) indicate the expiration
of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on a
descriptor, or when a non-blocking operation completes. A process may request to receive a SIGURG
signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group. The SIG­
STOP signal is a powerful stop signal, because it cannot be caught. Other stop signals SIGTSTP,
SIGTTIN, and SIGTTOU are used when a user request, input request, or output request respectively
is the reason for stopping the process. A SIGCONT signal is sent to a process when it is continued
from a stopped state. Processes may receive notification with a SIGCHLD signal when a child pro­
cess changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a process
nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been reached.

1.3.3. Signal handlers

A process has a handler associated with each signal. The handler controls the way the signal is
delivered. The call

PS1:6-14

#include <signal.h>

struct sigvec {
int
int
int

};

(*sv _handler)();
sv_mask;
sv_flags;

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

4.3BSD Architecture Manual

assigns interrupt handler address sv _handler to signal signo. Each handler address specifies either an
interrupt routine for the signal, that the signal is to be ignored, or that a default action (usually pro­
cess termination) is to occur if the signal occurs. The constants SIG_IGN and SIG_DEF used as
values for sv_handler cause ignoring or defaulting of a condition. The sv_mask value specifies the sig­
nal mask to be used when the handler is invoked; it implicitly includes the signal which invoked the
handler. Signal masks include one bit for each signal; the mask for a signal signo is provided by the
macro sigmask(signo), from <signal.h>. Sv_Jlags specifies whether system calls should be restarted if
the signal handler returns and whether the handler should operate on the normal run-time stack or a
special signal stack (see below). If osv is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it will be delivered. The process
of signal delivery adds the signal to be delivered and those signals specified in the associated signal
handler's sv_mask to a set of those masked for the process, saves the current process context, and
places the process in the context of the signal handling routine. The call is arranged so that if the sig­
nal handling routine exits normally the signal mask will be restored and the process will resume exe­
cution in the original context. If the process wishes to resume in a different context, then it must
arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for signals. It delays signals from being
delivered much as a raised hardware interrupt priority level delays hardware interrupts. Preventing
an interrupt from occurring by changing the handler is analogous to disabling a device from further
interrupts.

The signal handling routine sv _handler is called by a C call of the form

(*sv_handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

The signo gives the number of the signal that occurred, and the code, a word of information supplied
by the hardware. The scp parameter is a pointer to a machine-dependent structure containing the
information for restoring the context before the signal.

1.3.4. Sending signals

A process can send a signal to another process or group of processes with the calls:

kill(pid, signo)
int pid, signo;

killpgrp(pgrp, signo)
· int pgrp, signo;

Unless the process sending the signal is privileged, it must have the same effective user id as the pro­
cess receiving the signal.

Signals are also sent implicitly from a terminal device to the process group associated with the
terminal when certain input characters are typed.

4.3BSD Architecture Manual PSl:6-l 5

1.3.5. Protecting critical sections
To block a section of code against one or more signals, a sigblock call may be used to add a set

of signals to the existing mask, returning the old mask:

oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with sigsetmask,

oldmask = sigsetmask(mask);
result long oldmask; long mask;

The sigblock call can be used to read the current mask by specifying an empty mask.
It is possible to check conditions with some signals blocked, and then to pause waiting for a sig­

nal and restoring the mask, by using:

sigpause(mask);
long mask;

1.3.6. Signal stacks
Applications that maintain complex or fixed size stacks can use the call

struct sigstack {
caddr_t
int

};

sigstack(ss, oss)

ss_sp;
ss_onstack;

struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack based at ss_sp for delivery of signals. The value ss_onstack indi­
cates whether the process is currently on the signal stack, a notion maintained in software by the sys­
tem.

When a signal is to be delivered, the system checks whether the process is on a signal stack. If
not, then the process is switched to the signal stack for delivery, with the return from the signal
arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from the signal
stack that uses a different stack, a sigstack call should be used to reset the signal stack.

PSJ:6-16 4.3BSD Architecture Manual

1.4. Timers

1.4.1. Real time
The system's notion of the current Greenwich time and the current time zone is set and

returned by the call by the calls:

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/tirne.h> as:

struct timeval {
long
long

};

struct timezone {
int
int

};

tv_sec;
tv_usec;

tz_minuteswest;
tz_dsttime;

I* seconds since Jan I, 1970 */
I* and microseconds*/

I* of Greenwich */
I* type of dst correction to apply */

The precision of the system clock is hardware dependent. Earlier versions of UNIX contained only a
I-second resolution version of this call, which remains as a library routine:

time(tvsec)
result long *tvsec;

returning only the tv _sec field from the gettirneofday call.

1.4.2. Interval time
The system provides each process with three interval timers, defined in <sysltirne.h>:

#define ITIMER_REAL 0 I* real time intervals */
#define ITIMER_ VIRTUAL I /*virtual time intervals*/
#define ITIMER_PROF 2 /* user and system virtual time */

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to maintain
a wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the pro­
cess is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run­
ning on behalf of the process. It is designed to be used by processes to statistically profile their execu­
tion. A SIGPROF signal is delivered when it expires.

A timer value is defined by the itirnerval structure:

struct itimerval {
struct
struct

};

timeval it_interval; /* timer interval */
timeval it_ value; /*current value*/

4.3BSD Architecture Manual

and a timer is set or read by the call:

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval •value; result struct itimerval •ovalue;

PS1:6-17

The third argument to setitimer specifies an optional structure to receive the previous contents of the
interval timer. A timer can be disabled by specifying a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of its clock. This
clock resolution can be determined by loading a very small value into a timer and reading the timer
back to see what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using the
ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain because it
is not always possible to guarantee the automatic restart of system calls after receipt of a signal. The
profit call arranges for the kernel to begin gathering execution statistics for a process:

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

This begins sampling of the program counter, with statistics maintained in the user-provided buffer.

PS1:6-18 4.3BSD Architecture Manual

1.5. Descriptors

1.5.1. The reference table

Each process has access to resources through descriptors. Each descriptor is a handle allowing
the process to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level of
indirection, so that descriptors may be shared between processes. Each process has a descriptor refer­
ence table, containing pointers to the actual descriptors. The descriptors themselves thus have multi­
ple references, and are reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned by the getdta­
blesize call:

nds = getdtablesize();
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by small
integers; for example if there are 20 slots they are numbered 0 to 19.

1.5.2. Descriptor properties

Each descriptor has a logical set of properties maintained by the system and defined by its type.
Each type supports a set of operations; some operations, such as reading and writing, are common to
several abstractions, while others are unique. The generic operations applying to many of these types
are described in section 2.1. Naming contexts, files and directories are described in section 2.2. Sec­
tion 2.3 describes communications domains and sockets. Terminals and (structured and unstruc­
tured) devices are described in section 2.4.

1.5.3. Managing descriptor references

A duplicate of a descriptor reference may be made by doing

new= dup(old);
result int new; int old;

returning a copy of descriptor reference old indistinguishable from the original. The new chosen by
the system will be the smallest unused descriptor reference slot. A copy of a descriptor reference may
be made in a specific slot by doing

dup2(old, new);
int old, new;

The dup2 call causes the system to deallocate the descriptor reference current occupying slot new, if
any, replacing it with a reference to the same descriptor as old. This deallocation is also performed
by:

close(old);
int old;

1.5.4. Multiplexing requests

The system provides a standard way to do synchronous and asynchronous multiplexing of
operations.

Synchronous multiplexing is performed by using the select call to examine the state of multiple
descriptors simultaneously, and to wait for state changes on those descriptors. Sets of descriptors of
interest are specified as bit masks, as follows:

4.3BSD Architecture Manual

#include <sys/types.h>

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result fd_set *in, *out, *except;
struct timeval *tvp;

FD_ZERO(&fdset);
FD_SET(fd, &fdset);
FD_CLR(fd, &fdset);
FD_ISSET(fd, &fdset);
int fs; fs_set fdset;

PS1:6-19

The select call examines the descriptors specified by the sets in, out and except, replacing the specified
bit masks by the subsets that select true for input, output, and exceptional conditions respectively (nd
indicates the number of file descriptors specified by the bit masks). If any descriptors meet the fol­
lowing criteria, then the number of such descriptors is returned in nds and the bit masks are updated.
• A descriptor selects for input if an input oriented operation such as read or receive is possible,

or if a connection request may be accepted (see section 2.3.1.4).
• A descriptor selects for output if an output oriented operation such as write or send is possible,

or if an operation that was "in progress'', such as connection establishment, has completed (see
section 2.1.3).

• A descriptor selects for an exceptional condition if a condition that would cause a SIGURG sig­
nal to be generated exists (see section 1.3.2), or other device-specific events have occurred.

If none of the specified conditions is true, the operation waits for one of the conditions to arise,
blocking at most the amount of time specified by tvp. If tvp is given as 0, the select waits indefinitely.

Options affecting 1/0 on a descriptor may be read and set by the call:

dopt = fcntl(d, cmd, arg)
result int dopt; int d, cmd, arg;

I* interesting values for cmd */
#define F _SETFL 3
#define F _GETFL 4
#define F _SETOWN 5
#define F_GETOWN · 6

I* set descriptor options */
I* get descriptor options */
I* set descriptor owner (pid/pgrp) */
I* get descriptor owner (pid/pgrp) */

The F _SETFL cmd may be used to set a descriptor in non-blocking 1/0 mode and/or enable signaling
when 1/0 is possible. F _SETOWN may be used to specify a process or process group to be signaled
when using the latter mode of operation or when urgent indications arise. ·

Operations on non-blocking descriptors will either complete immediately, note an error
EWOULDBLOCK, partially complete an input or output operation returning a partial count, or
return an error EINPROGRESS noting that the requested operation is in progress. A descriptor
which has signalling enabled will cause the specified process and/or process group be signaled, with a
SIGIO for input, output, or in-progress operation complete, or a SIGURG for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system will accept only
as much data as there is buffer space for and return; when making a connection on a socket, the
operation may return indicating that the connection establishment is "in progress". The select facility
can be used to determine when further output is possible on the terminal, or when the connection
establishment attempt is complete.

PS1:6-20 4.3BSD Architecture Manual

l.S.S. Descriptor wrapping. t
A user process may build descriptors of a specified type by wrapping a communications channel

with a system supplied protocol translator:

new= wrap(old, proto)
result int new; int old; struct dprop *proto;

Operations on the descriptor old are then translated by the system provided protocol translator into
requests on the underlying object old in a way defined by the protocol. The protocols supported by
the kernel may vary from system to system and are described in the programmers manual.

Protocols may be based on communications multiplexing or a rights-passing style of handling
multiple requests made on the same object. For instance, a protocol for implementing a file abstrac­
tion may or may not include locally generated "read-ahead" requests. A protocol that provides for
read-ahead may provide higher performance but have a more difficult implementation.

Another example is the terminal driving facilities. Normally a terminal is associated with a
communications line, and the terminal type and standard terminal access protocol are wrapped
around a synchronous communications line and given to the user. If a virtual terminal is required,
the terminal driver can be wrapped around a communications link, the other end of which is held by
a virtual terminal protocol interpreter.

t The facilities described in this section are not included in 4.3BSD.

4.3BSD Architecture Manual PS1:6-21

1.6. Resource controls

1.6.1. Process priorities

The system gives CPU scheduling priority to processes that have not used CPU time recently.
This tends to favor interactive processes and processes that execute only for short periods. It is possi­
ble to determine the priority currently assigned to a process, process group, or the processes of a
specified user, or to alter this priority using the calls:

#define PRIO_PROCESS
#define PRIO_PGRP
#define PRIO_USER

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

0
I
2

I* process *I
!* process group *I
I* user id*/

The value prio is in the range -20 to 20. The default priority is O; lower priorities cause more favor­
able execution. The getpriority call returns the highest priority (lowest numerical value) enjoyed by
any of the specified processes. The setpriority call sets the priorities of all of the specified processes to
the specified value. Only the super-user may lower priorities.

1.6.2. Resource utilization

The resources used by a process are returned by a getrusage call, returning information in a
structure defined in <syslresource.h>:

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN

getrusage(who, rusage)
int who; result struct rusage *rusage;

struct rusage {
struct
struct
int
int
int
int
int
int
int
int
int
int
int
int
int
int

};

timeval ru_utime;
timeval ru_stime;
ru_maxrss;
ru_ixrss;
ru_idrss;
ru_isrss;
ru_minflt;
ru_majflt;
ru_nswap;
ru_inblock;
ru_oublock;
ru_msgsnd;
ru_msgrcv;
ru_nsignals;
ru_nvcsw;
ru_nivcsw;

I* usage by this process *I
-11* usage by all children *I

/* user time used */
!*system time used*/
I* maximum core resident set size: kbytes */
!* integral shared memory size (kbytes*sec) */
!*unshared data memory size*/
!*unshared stack memory size*/
I* page-reclaims *I
I* page faults */
!*swaps*/
!* block input operations */
!* block output operations *I
!* messages sent *I
I* messages received */
!* signals received */
I* voluntary context switches */
!* involuntary context switches */

The who parameter specifies whose resource usage is to be returned. The resources used by the
current process, or by all the terminated children of the current process may be requested.

PSI :6-22 4.3BSD Architecture Manual

1.6.3. Resource limits
The resources of a process for which limits are controlled by the kernel are defined in

<syslresource.h>, and controlled by the getrlimit and setrlimit calls:

#define RLIMIT_CPU 0 /* cpu time in milliseconds*/
#define RLIMIT_FSIZE 1 I* maximum file size*/
#define RLIMIT_DATA 2 /*maximum data segment size*/
#define RLIMIT_STACK 3 I* maximum stack segment size*/
#define RLIMIT_CORE 4 I* maximum core file size*/
#define RLIMIT _RSS 5 I* maximum resident set size */

#define RLIM_NLIMITS

#define RLIM_INFINITY

struct rlimit {
int
int

};

rlim_cur;
rlim_max;

getrlimit(resource, rip)

6

Ox7fffffff

I* current (soft) limit */
I* hard limit */

int resource; result struct rlimit *rip;

setrlimit(resource, rip)
int resource; struct rlimit *rip;

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur within
the range from 0 to rlim_max or (irreversibly) lower rlim_max.

4.3BSD Architecture Manual

1.7. System operation support

Unless noted otherwise, the calls in this section are permitted only to a privileged user.

1.7.1. Bootstrap operations

The call

mount(blkdev, dir, ronly);
char *blkdev, *dir; int ronly;

PS1:6-23

extends the UNIX name space. The mount call specifies a block device blkdev containing a UNIX file
system to be made available starting at dir. If ronly is set then the file system is read-only; writes to
the file system will not be permitted and access times will not be updated when files are referenced.
Dir is normally a name in the root directory.

The call

swapon(blkdev, size);
char *blkdev; int size;

specifies a device to be made available for paging and swapping.

1.7.2. Shutdown operations

The call

unmount(dir);
char *dir;

unmounts the file system mounted on dir. This call will succeed only if the file system is not
currently being used.

The call

sync();

schedules input/output to clean all system buffer caches. (This call does not require privileged status.)

The call

reboot(how)
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as·
RB_AUTOBOOT, or that the machine be halted with RB_HALT. These constants are defined in
<.syslreboot.h>.

1.7.3. Accounting

The system optionally keeps an accounting record in a file for each process that exits on the sys­
tem. The format of this record is beyond the scope of this document. The accounting may be
enabled to a file name by doing

acct(path);
char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting file.

PS1:6-24 4.3BSD Architecture Manual

2. System facilities

This section discusses the system facilities that are not considered part of the kernel.

The system ~bstractions described are:

Directory contexts

Files

A directory context is a position in the UNIX file system name space. Operations on files and
other named objects in a file system are always specified relative to such a context.

Files are used to store uninterpreted sequence of bytes on which random access reads and writes
may occur. Pages from files may also be mapped into process address space.t A directory may
be read as a file.

Communications domains
A communications domain represents an interprocess communications environment, such as the
communications facilities of the UNIX system, communications in the INTERNET, or the
resource sharing protocols and access rights of a resource sharing system on a local network.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a communications
domain. 'Sockets may be created in pairs, or given names and used to rendezvous with other
sockets in a communications domain, accepting connections from these sockets or exchanging
messages with them. These operations model a labeled or unlabeled communications graph,
and can be used in a wide variety of communications domains. Sockets can have different types
to provide different semantics of communication, increasing the flexibility of the model.

Terminals and other devices
Devices include terminals, providing input editing and interrupt generation and output flow
control and editing, magnetic tapes, disks and other peripherals. They often support the generic
read and write operations as well as a number of ioctls.

Processes
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in the 4.3 release.

4.3BSD Architecture Manual PS1:6-25

2.1. Generic operations

Many system abstractions support the operations read, write and ioctl. We describe the basics of
these common primitives here. Similarly, the mechanisms whereby normally synchronous operations
may occur in a non-blocking or asynchronous fashion are common to all system-defined abstractions
and are described here.

2.1.1. Read and write

The read and write system calls can be applied to communications channels, files, terminals and
devices. They have the form:

cc = read(fd, buf, nbytes);
result int cc; int fd; result caddr_t buf; int nbytes;

cc = write(fd, buf, nbytes);
result int cc; int fd; caddr_t buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at address
buf of size nbytes. The number of bytes transferred is returned in cc, which is -1 if a return occurred
before any data was transferred because of an error or use of non-blocking operations.

The write call transfers data from the buffer to the object defined by fd. Depending on the type
of fd, it is possible that the write call will accept some portion of the provided bytes; the user should
resubmit the other bytes in a later request in this case. Error returns because of interrupted or other­
wise incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array of
input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec {
caddr_t
int

};

iov_msg;
iov_len;

The calls using an array of descriptors are:

cc = readv(fd, iov, iovlen);

I* base of a component*/
/* length of a component */

result int cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

2.1.2. Input/output control

Control operations on an object are performed by the ioctl operation:

ioctl(fd, request, buffer);
int fd, request; caddr_t buffer;

This operation causes the specified request to be performed on the object fd. The request parameter
specifies whether the argument buffer is to be read, written, read and written, or is not needed, and
also the size of the buffer, as well as the request. Different descriptor types and subtypes within
descriptor types may use distinct ioctl requests. For example, operations on terminals control flushing
of input and output queues and setting of terminal parameters; operations on disks cause formatting
operations to occur; operations on tapes control tape positioning.

The names for basic control operations are defined in <syslioctl.h>.

PSI :6-26 4.JBSD Architecture Manual

2.1.3. Non-blocking and asynchronous operations
A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor

in non-blocking mode as described in section 1.5.4. Thereafter the read call will return a specific
EWOULDBLOCK error indication if there is no data to be read. The process may select the associ­
ated descriptor to determine when a read is possible.

Output attempted when a descriptor ca,n accept less than is requested will either accept some of
the provided data, returning a shorter than normal length, or return an error indicating that the
operation would block. More output can be performed as soon as a select call indicates the object is
writeable.

Operations other than data input or output may be performed on a descriptor in a non-blocking
fashion. These operations will return with a characteristic error indicating that they are in progress if
they cannot complete immediately. The descriptor may then be selected for write to find out when
the operation has been completed. When select indicates the descriptor is writeable, the operation
has completed. Depending on the nature of the descriptor and the operation, additional activity may
be started or the new state may be tested.

4.3BSD Architecture Manual PS1:6-27

2.2. File system

2.2.1. Overview

. The file system abstraction provides access to a hierarchical file system structure. The file sys­
tem contains directories (each of which may contain other sub-directories) as well as files and refer­
ences to other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related infor­
mation is present in a file. Files may be read and written in a random-access fashion. The user may
read the data in a directory as though it were an ordinary file to determine the names of the con­
tained files, but only the system may write into the directories. The file system stores only a small
amount of ownership, protection and usage information with a file.

2.2.2. Naming

The file system calls take path name arguments. These consist of a zero or more component file
names separated by "/" characters, where each file name is up to 255 ASCII characters excluding null
and"/".

Each process always has two naming contexts: one for the root directory of the file system and
one for the current working directory. These are used by the system in the filename translation pro­
cess. If a path name begins with a "/", it is called a full path name and interpreted relative to the
root directory context. If the path name does not begin with a "/" it is called a relative path name
and interpreted relative to the current directory context.

The system limits the total length of a path name to 1024 characters.

The file name " .. " in each directory refers to the parent directory of that directory. The parent
directory of the root of the file system is always that directory.

The calls

chdir(path);
char *path;

chroot(path)
char *path;

change the current working directory and root directory context of a process. Only the super-user can
change the root directory context of a process.

2.2.3. Creation and removal

The file system allows directories, files, special devices, and "portals" to be created and removed
from the file system.

2.2.3.1. Directory creation and removal

A directory is created with the mkdir system call:

mkdir(path, mode);
char *path; int mode;

where the mode is defined as for files (see below). Directories are removed with the rmdir system
call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.

PS1:6-28

2.2.3.2. File creation

Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char •path; int oflag, mode;

4.3BSD Architecture Manual

The path parameter specifies the name of the file to be created. The ojlag parameter must include
O_CREAT from below to cause the file to be created. Bits for ojlag are defined in <sys/file.h>:

#define O_RDONLY 000 I* open for reading*/
#define O_ WRONLY 001 /* open for writing•/
#define O_RDWR 002 /*open for read & write*/
#define O_NDELAY 004 /*non-blocking open*/
#define O_APPEND 010 /*append on each write*/
#define O_CREAT 01000 /*open with file create*/
#define O_TRUNC 02000 /*open with truncation*/
#define O_EXCL 04000 /*error on create if file exists•/

One ofO_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what types of
operations are desired to be performed on the open file. The operations will be checked against the
user's access rights to the file before allowing the open to succeed. Specifying O_APPEND causes
writes to automatically append to the file. The flag O_CREAT causes the file to be created if it does
not exist, owned by the current user and the group of the containing directory. The protection for the
new file is specified in mode. The file mode is used as a three digit octal number. Each digit encodes
read access as 4, write access as 2 and execute access as l, or'ed together. The 0700 bits describe
owner access, the 070 bits describe the access rights for processes in the same group as the file, and
the 07 bits describe the access rights for other processes.

If the open specifies to create the file with O_EXCL and the file already exists, then the open
will fail without affecting the file in any way. This provides a simple exclusive access facility. If the
file exists but is a symbolic link, the open will fail regardless of the existence of the file specified by
the link.

2.2.3.3. Creating references to devices
The file system allows entries which reference peripheral devices. Peripherals are distinguished

as block or character devices according by their ability to support block-oriented operations. Devices
are identified by their "major" and "minor" device numbers. The major device number determines
the kind of peripheral it is, while the minor device number indicates one of possibly many peripherals
of that kind. Structured devices have all operations performed internally in "block" quantities while
unstructured devices often have a number of special ioctl operations, and may have input and output
performed in varying units. The mknod call creates special entries:

mknod(path, mode, dev);
char •path; int mode, dev;

where mode is formed from the object type and access perm1ss1ons. The parameter dev is a
configuration dependent parameter used to identify specific character or block 1/0 devices.

2.2.3.4. Portal creationt
The call

fd = portal(name, server, param, dtype, protocol, domain, socktype)
result int fd; char •name, •server, *param; int dtype, protocol;
int domain, socktype;

t The portal call is not implemented in 4.3BSD.

4.3BSD Architecture Manual PS1:6-29

places a name in the file system name space that causes connection to a server process when the name
is used. The portal call returns an active portal in fd as though an access had occurred to activate an
inactive portal, as now described.

When an inactive portal is accessed, the system sets up a socket of the specified socktype in the
specified communications domain (see section 2.3), and creates the server process, giving it the
specified param as argument to help it identify the portal, and also giving it the newly created socket
as descriptor number 0. The accessor of the portal will create a socket in the same domain and con­
nect to the server. The user will then wrap the socket in the specified protocol to create an object of
the required descriptor type dtype and proceed with the operation which was in progress before the
portal was encountered.

While the server process holds the socket (which it received as fd from the portal call on descrip­
tor 0 at activation) further references will result in connections being made to the same socket.

2.2.3.5. File, device, and portal removal

A reference to a file, special device or portal may be removed with the unlink call,

unlink(path);
char *path;

The caller must have write access to the directory in which the file is located for this call to be suc­
cessful.

2.2.4. Reading and modifying file attributes

Detailed information about the attributes of a file may be obtained with the calls:

#include <sys/stat.h>

stat(path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

The stat structure includes the file type, protection, ownership, access times, size, and a count of hard
links. If the file is a symbolic link, then the status of the link itself (rather than the file the link refer­
ences) may be found using the /stat call:

lstat(path, stb);
char *path; result struct stat *stb;

Newly created files are assigned the user id of the process that created it and the group id of the
directory in which it was created. The ownership of a file may be changed by either of the calls

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it. These
levels are owner relative, group relative, and global (all users and groups). Each level of access has
separate indicators for read permission, write permission, and execute permission. The protection
bits associated with a file may be set by either of the calls:

PS1:6-30

chmod(path, mode);
char *path; int mode;

fchmod(fd, mode);
int fd, mode;

4.3BSD Architecture Manual

where mode is a value indicating the new protection of the file, as listed in section 2.2.3.2.
Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp)
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, to preserve relationships between the
times the file was modified.

2.2.S. Links and renaming

Links allow multiple names for a file to exist. Links exist independently of the file linked to.

Two types of links exist, hard links and symbolic links. A hard link is a reference counting
mechanism that allows a file to have multiple names within the same file system. Symbolic links
cause string substitution during the pathname interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target file will
always be accessible, even after its original directory entry is removed; no such guarantee exists for a
symbolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path2, to pathl:

link(path I, path2);
char *path I, *path2;

symlink(pathl, path2);
char *path!, *path2;

The unlink primitive may be used to remove either type of link.

If a file is a symbolic link, the "value" of the link may be read with the read/ink call,

Jen = readlink(path, buf, bufsize);
result int !en; result char *path, *buf; int bufsize;

This call returns, in buf, the null-terminated string substituted into pathnames passing through path.

Atomic renaming of file system resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same file system. If newname exists and is a direc­
tory, then it must be empty.

2.2.6. Extension and truncation
Files are created with zero length and may be extended simply by writing or appending to them.

While a file is open the system maintains a pointer into the file indicating the current location in the
file associated with the descriptor. This pointer may be moved about in the file in a random access
fashion. To set the current offset into a file, the /seek call may be used,

oldoffset = lseek(fd, offset, type);
result off_t oldoffset; int fd; off_t offset; int type;

where type is given in <sys/fi/e.h> as one of:

4.3BSD Architecture Manual PS1:6-3!

!* set absolute file offset */ #define L_SET
#define L_INCR
#define L_XTND

0
l
2

!* set file offset relative to current position */
!* set offset relative to end-of-file */

The call "lseek(fd, 0, L_INCR)" returns the current offset into the file.

Files may have "holes" in them. Holes are void areas in the linear extent of the file where data
has never been written. These may be created by seeking to a location in a file past the current end­
of-file and writing. Holes are treated by the system as zero valued bytes.

A file may be truncated with either of the calls:

truncate(path, length);
char *path; int length;

ftruncate(fd, length);
int fd, length;

reducing the size of the specified file to length bytes.

2.2.7. Checking accessibility

A process running with different real and effective user ids may interrogate the accessibility of a
file to the real user by using the access call:

accessible = access(path, how);
result int accessible; char *path; int how;

Here how is constructed by or'ing the following bits, defined in <sysl.file.h>:

#define F_OK
#define X_OK
#define W _OK
#define R_OK

0
I
2
4

!* file exists *I
I* file is executable *I
!* file is writable */
!* file is readable */

The presence or absence of advisory locks does not affect the result of access.

2.2.8. Locking

The file system provides basic facilities that allow cooperating processes to synchronize their
access to shared files. A process may place an advisory read or write lock on a file, so that other
cooperating processes may avoid interfering with the process' access. This simple mechanism pro­
vides locking with file granularity. More granular locking can be built using the IPC facilities to pro­
vide a lock manager. The system does not force processes to obey the locks; they are of an advisory
nature only.

Locking is performe? after an open call by applying the flock primitive,

flock(fd, how);
int fd, how;

where the how parameter is formed from bits defined in <sysl.file.h>:

#define LOCK_SH l /*shared lock*/
#define LOCK_EX 2 /*exclusive lock*/
#define LOCK_NB 4 /*don't block when locking*/
#define LOCK_ UN 8 /*unlock*/

Successive lock calls may be used to increase or decrease the level of locking. If an object is currently
locked by another process when a flock call is made, the caller will be blocked until the current lock
owner releases the lock; this may be avoided by including LOCK_NB in the how parameter. Specify­
ing LOCK_UN removes all locks associated with the descriptor. Advisory locks held by a process are
automatically deleted when the process terminates.

PS1:6-32 4.3BSD Architecture Manual

2.2.9. Disk quotas
As an optional facility, each file system may be requested to impose limits on a user's disk

usage. Two quantities are limited: the total amount of disk space which a user may allocate in a file
system and the total number of files a user may create in a file system. Quotas are expressed as hard
limits and soft limits. A hard limit is always imposed; if a user would exceed a hard limit, the opera­
tion which caused the resource request will fail. A soft limit results in the user receiving a warning
message, but with allocation succeeding. Facilities are provided to tum soft limits into hard limits if
a user has exceeded a soft limit for an unreasonable period of time.

To enable diskquotas on a file system the setquota call is used:

setquota(special, file)
char *special, *file;

where special refers to a structured device file where a mounted file system exists, and file refers to a
disk quota file (residing on the file system associated with special) from which user quotas should be
obtained. The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:

#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg; caddr_t addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command specific.
The file <sys/quota.h> contains definitions pertinent to the use of this call.

4.3BSD Architecture Manual PS1:6-33

2.3. Interprocess communications

2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains
The system provides access to an extensible set of communication domains. A communication

domain is identified by a manifest constant defined in the file <syslsocket.h>. Important standard
domains supported by the system are the "unix" domain, AF _UNIX, for communication within the
system, the "Internet" domain for communication in the DARPA Internet, AF_INET, and the "NS"
domain, AF _NS, for communication using the Xerox Network Systems protocols. Other domains
can be added to the system.

2.3.1.2. Socket types and protocols
Within a domain, communication takes place between communication endpoints known as

sockets. Each socket has the potential to exchange information with other sockets of an appropriate
type within the domain.

Each socket has an associated abstract type, which describes the semantics of communication
using that socket. Properties such as reliability, ordering, and prevention of duplication of messages
are determined by the type. The basic set of socket types is defined in <syslsocket.h>:

I* Standard socket types*/
#define SOCK_DGRAM 1 /* datagram */
#define SOCK_STREAM 2 /*virtual circuit*/
#define SOCK_RA W 3 /* raw socket */
#define SOCK_RDM 4 I* reliably-delivered message */
#define SOCK_SEQPACKET 5 /*sequenced packets*/

The SOCK_DGRAM type models the semantics of datagrams in network communication: messages
may be lost or duplicated and may arrive out-of-order. A datagram socket may send messages to and
receive messages from multiple peers. The SOCK_RDM type models the semantics of reliable
datagrams: messages arrive unduplicated and in-order, the sender is notified if messages are lost. The
send and receive operations (described below) generate reliable/unreliable datagrams. The
SOCK_STREAM type models connection-based virtual circuits: two-way byte streams with no record
boundaries. Connection setup is required before data communication may begin. The
SOCK_SEQPACKET type models a connection-based, full-duplex, reliable, sequenced packet
exchange; the sender is notified if messages are lost, and messages are never duplicated or presented
out-of-order. Users of the last two abstractions may use the facilities for out-of-band transmission to
send out-of-band data.

SOCK_RA W is used for unprocessed access to internal network layers and interfaces; it has no
specific semantics.

Other socket types can be defined.
Each socket may have a specific protocol associated with it. This protocol is used within the

domain to provide the semantics required by the socket type. Not all socket types are supported by
each domain; support depends on the existence and the implementation of a suitable protocol within
the domain. For example, within the "Internet" domain, the SOCK_DGRAM type may be imple­
mented by the UDP user datagram protocol, and the SOCK_STREAM type may be implemented by
the TCP transmission control protocol, while no standard protocols to provide SOCK_RDM or
SOCK_SEQPACKET sockets exist.

2.3.1.3. Socket creation, naming and service establishment
Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by the

socket call:

PS1:6-34

s = socket(domain, type, protocol);
result int s; int domain, type, protocol;

4.3BSD Architecture Manual

The socket domain and type are as described above, and are specified using the definitions from
<sys/socket.h>. The protocol may be given as 0, meaning any suitable protocol. One of several pos­
sible protocols may be selected using identifiers obtained from a library routine, getprotobynarne.

An unconnected socket descriptor of a connection-oriented type may yield a connected socket
descriptor in one of two ways: either by actively connecting to another socket, or by becoming associ­
ated with a name in the communications domain and accepting a connection from another socket.
Datagram sockets need not establish connections before use.

To accept connections or to receive datagrams, a socket must first have a binding to a name (or
address) within the communications domain. Such a binding may be established by a bind call:

bind(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Datagram sockets may have default bindings established when first sending data if not explicitly
bound earlier. In either case, a socket's bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

while the peer's name can be retrieved with getpeername:

getpeemame(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

Domains may support sockets with several names.

2.3.1.4. Accepting connections

Once a binding is made to a connection-oriented socket, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued awaiting
acceptance.

An accept call:

t = accept(s, name, anamelen);
result int t; int s; result struct sockaddr *name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s. If no
new connections are queued for acceptance, the call will wait for a connection unless non-blocking
1/0 has been enabled.

2.3.1.S. Making connections

An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Although datagram sockets do not establish connections, the connect call may be used with such sock­
ets to create an association with the foreign address. The address is recorded for use in future send
calls, which then need not supply destination addresses. Datagrams will be received only from that
peer, and asynchronous error reports may be received.

It is also possible to create connected pairs of sockets without using the domain's name space to
rendezvous; this is done with the socketpair callt:

t 4.3BSD supports socketpair creation only in the "unix" communication domain.

4.3BSD Architecture Manual

socketpair(domain, type, protocol, sv);
int domain, type, protocol; result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept and connect.
The call

pipe(pv)
result int pv[2];

PS1:6-35

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv(O] only writable and pv(l]
only readable.

2.3.1.6. Sending and receiving data
Messages may be sent from a socket by:

cc = sendto(s, buf, len, flags, to, tolen);
result int cc; int s; caddr_t buf; int Jen, flags; caddr_t to; int tolen;

if the socket is not connected or:

cc = send(s, buf, Jen, flags);
result int cc; int s; caddr_t buf; int Jen, flags;

ifthe socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr_t buf; int Jen, flags;
result caddr_t from; result int *fromlenaddr;

and

msglen = recv(s, buf, Jen, flags);
result int msglen; int s; result caddr_t buf; int !en, flags;

In the unconnected case, the parameters to and to/en specify the destination or source of the
message, while the from parameter stores the source of the message, and *fromlenaddr initially gives
the size of the from buffer and is updated to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of length !en bytes,
starting at address buf The flags specify peeking at a message without reading it or sending or receiv­
ing high-priority out-of-band messages, as follows:

#define MSG_PEEK
#define MSG_OOB

Ox!
Ox2

I* peek at incoming message*/
I* process out-of-band data */

2.3.1.7. Scatter/gather and exchanging access rights

It is possible scatter and gather data and to exchange access rights with messages. When either
of these operations is involved, the number of parameters to the call becomes large. Thus the system
defines a message header structure, in <sys/socket.h>, which can be used to conveniently contain the
parameters to the calls:

struct msghdr {
caddr_t

};

int
struct
int
caddr_t
int

msg_name;
msg_namelen;
iov *msg_iov;
msg_iovlen;
msg_accrights;
msg_accrightslen;

I* optional address */
I* size of address *I
I* scatter/gather array *I
I*# elements in msg_iov */
I* access rights sent/received */
I* size of msg_accrights *I

PSl:6-36 4.3BSD Architecture Manual

Here msg_name and msg_namelen specify the source or destination address if the socket is uncon­
nected; msg_name may be given as a null pointer if no names are desired or required. The msg_iov
and msg_iovlen describe the scatter/gather locations, as described in section 2.1.3. Access rights to be
sent along with the message are specified in msg_accrights, which has length msg_accrightslen. In the
"unix" domain these are an array of integer descriptors, taken from the sending process and dupli­
cated in the receiver.

This structure is used in the operations sendmsg and recvmsg:

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

2.3.1.8. Using read and write with sockets

The normal UNIX read and write calls may be applied to connected sockets and translated into
send and receive calls from or to a single area of memory and discarding any rights received. A pro­
cess may operate on a virtual circuit socket, a terminal or a file with blocking or non-blocking
input/output operations without distinguishing the descriptor type.

2.3.1.9. Shutting down halves of full-duplex connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read
from or write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the connection
down. If the underlying protocol supports unidirectional or bidirectional shutdown, this indication
will be passed to the peer. For example, a shutdown for writing might produce an end-of-file condi­
tion at the remote end.

2.3.1.10. Socket and protocol options

Sockets, and their underlying communication protocols, may support options. These options
may be used to manipulate implementation- or protocol-specific facilities. The getsockopt and set­
sockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen)
int s, level, optname; result caddr _t optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname; caddr _t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is specified
with optval and opt/en, it is interpreted by the software operating at the specified level. The level
SOL_SOCKET is reserved to indicate options maintained by the socket facilities. Other level values
indicate a particular protocol which is to act on the option request; these values are normally inter­
preted as a "protocol number".

2.3.2. UNIX domain

This section describes briefly the properties of the UNIX communications domain.

4.3BSD Architecture Manual PS1:6-37

2.3.2.1. Types of sockets

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities, while
SOCK_DGRAM provides (usually) reliable message-style communications.

2.3.2.2. Naming

Socket names are strings and may appear in the UNIX file system name space through portalst.

2.3.2.3. Access rights transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of service
within the system and allows user processes to be used in building system facilities.

2.3.3. INTERNET domain

This section describes briefly how the Internet domain is mapped to the model described in this
section. More information will be found in the document describing the network implementation in
4.3BSD.

2.3.3.1. Socket types and protocols

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by the UDP pro­
tocol. Each is layered atop the transport-level Internet Protocol (IP). The Internet Control Message
Protocol is implemented atop/beside IP and is accessible via a raw socket. The SOCK_SEQPACKET
has no direct Internet family analogue; a protocol based on one from the XEROX NS family and lay­
ered on top of IP could be implemented to fill this gap.

2.3.3.2. Socket naming

Sockets in the Internet domain have names composed of the 32 bit Internet address, and a 16
bit port number. Options may be used to provide IP source routing or security options. The 32-bit
address is composed of network and host parts; the network part is variable in size and is frequency
encoded. The host part may optionally be interpreted as a subnet field plus the host on subnet; this is
is enabled by setting a network address mask at boot time.

2.3.3.3. Access rights transmission

No access rights transmission facilities are provided in the Internet domain.

2.3.3.4. Raw access

The Internet domain allows the super-user access to the raw facilities of IP. These interfaces are
modeled as SOCK_RA W sockets. Each raw socket is associated with one IP protocol number, and
receives all traffic received for that protocol. This allows administrative and debugging functions to
occur, and enables user-level implementations of special-purpose protocols such as inter-gateway rout­
ing protocols.

t The 4.3BSD implementation of the UNIX domain embeds bound sockets in the UNIX file system name
space; this may change in future releases.

PSl:6-38 4.3BSD Architecture Manual

2.4. Terminals and Devices

2.4.l. Terminals
Terminals support read and write IIO operations, as well as a collection of terminal specific ioctl

operations, to control input character interpretation and editing, and output format and delays.

2.4.1.1. Terminal input
Terminals are handled according to the underlying communication characteristics such as baud

rate and required delays, and a set of software parameters.

2.4.1.1.1. Input modes
A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all input is

passed through to the reading process immediately and without interpretation. In cbreak mode, the
handler interprets input only by looking for characters that cause interrupts or output flow control; all
other characters are made available as in raw mode. In cooked mode, input is processed to provide
standard line-oriented local editing functions, and input is presented on a line-by-line basis.

2.4.1.1.2. Interrupt characters
Interrupt characters are interpreted by the terminal handler only in cbreak and cooked modes,

and cause a software interrupt to be sent to all processes in the process group associated with the ter­
minal. Interrupt characters exist to send SIGINT and SIGQUIT signals, and to stop a process group
with the SIGTSTP signal either immediately, or when all input up to the stop character has been
read.

2.4.1.1.3. Line editing
When the terminal is in cooked mode, editing of an input line is performed. Editing facilities

allow deletion of the previous character or word, or deletion of the current input line. In addition, a
special character may be used to reprint the current input line after some number of editing opera­
tions have been applied.

Certain other characters are interpreted specially when a process is in cooked mode. The end of
line character determines the end of an input record. The end of file character simulates an end of file
occurrence on terminal input. Flow control is provided by stop output and start output control char­
acters. Output may be flushed with the flush output character; and a literal character may be used to
force literal input of the immediately following character in the input line.

Input characters may be echoed to the terminal as they are received. Non-graphic ASCII input
characters may be echoed as a two-character printable representation, "'character."

2.4.1.2. Terminal output
On output, the terminal handler provides some simple formatting services. These include con­

verting the carriage return character to the two character return-linefeed sequence, inserting delays
after certain standard control characters, expanding tabs, and providing translations for upper-case
only terminals.

2.4.1.3. Terminal control operations
When a terminal is first opened it is initialized to a standard state and configured with a set of

standard control, editing, and interrupt characters. A process may alter this configuration with cer­
tain control operations, specifying parameters in a standard structure:t

t The control interface described here is an internal interface only in 4.3BSD. Future releases will probably
use a modified interface based on currently-proposed standards.

4.3BSD Architecture Manual

struct ttymode {
short
int
short
int

};

tt_ispeed;
tt_iflags;
tt_ospeed;
tt_oflags;

!* input speed */
!* input flags *I
!* output speed */
I* output flags */

and "special characters" are specified with the ttychars structure,

struct ttychars {
char
char
char
char
char
char
char
char
char
char
char
char
char
char

};

tc_erasec;
tc_killc;
tc_intrc;
tc_quitc;
tc_startc;
tc_stopc;
tc_eofc;
tc_brkc;
tc_suspc;
tc_dsuspc;
tc_rpmtc;
tc_flushc;
tc_werasc;
tc_lnextc;

2.4.1.4. Terminal hardware support

!* erase char *I
I* erase line */
I* interrupt *I
!*quit*/
I* start output */
I* stop output */
I* end-of-file */
I* input delimiter (like nl) *I
I* stop process signal */
I* delayed stop process signal *I
I* reprint line */
I* flush output (toggles) */
!*word erase*/
I* literal next character*/

PS1:6-39

The terminal handler allows a user to access basic hardware related functions; e.g. line speed,
modem control, parity, and stop bits. A special signal, SIGHUP, is automatically sent to processes in
a terminal's process group when a carrier transition is detected. This is normally associated with a
user hanging up on a modem controlled terminal line.

2.4.2. Structured devices
Structures devices are typified by disks and magnetic tapes, but may represent any random­

access device. The system performs read-modify-write type buffering actions on block devices to
allow them to be read and written in a totally random access fashion like ordinary files. File systems
are normally created in block devices.

2.4.3. Unstructured devices
Unstructured devices are those devices which do not support block structure. Familiar unstruc­

tured devices are raw communications lines (with no terminal handler), raster plotters, magnetic tape
and disks unfettered by buffering and permitting large block input/output and positioning and format­
ting commands.

PS1:6-40 4.3BSD Architecture Manual

2.5. Process and kernel descriptors

The status of the facilities in this section is still under discussion. The ptrace facility of earlier
UNIX systems remains in 4.3BSD. Planned enhancements would allow a descriptor-based process
control facility.

4.3BSD Architecture Manual

I. Summary of facilities

1. Kernel primitives

1.1. Process naming and protection

sethostid
gethostid
sethostname
gethostname
getpid
fork
exit
execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

1.2 Memory management

<sys/mman.h>
sbrk

1.3 Signals

sstkt
getpagesize
mmapt
msynct
munmapt
mprotectt
madviset
mincoret
msleept
mwakeupt

<signal.h>
sigvec
kill
killpgrp
sigblock
sigsetmask
sigpause
sigstack

1.4 Timing and statistics

<sys/time.h>
gettimeofday
settimeofday

t Not supported in 4.3BSD.

set UNIX host id
get UNIX host id
set UNIX host name
get UNIX host name
get process id
create new process
terminate a process
execute a different process
get user id
get effective user id
set real and effective user id's
get accounting group id
get effective accounting group id
get access group set
set real and effective group id's
set access group set
get process group
set process group

memory management definitions
change data section size
change stack section size
get memory page size
map pages of memory
flush modified mapped pages to filesystem
unmap memory
change protection of pages
give memory management advice
determine core residency of pages
sleep on a lock
wakeup process sleeping on a lock

signal definitions
set handler for signal
send signal to process
send signal to process group
block set of signals
restore set of blocked signals
wait for signals
set software stack for signals

time-related definitions
get current time and timezone
set current time and timezone

PS1:6-41

PS1:6-42

getitimer
setitimer
profil

1.5 Descriptors

getdtablesize
dup
dup2
close
select
fen ti
wrapt

1.6 Resource controls

<sys/resource.h>
getpriority
setpriority
getrusage
getrlimit
setrlimit

1.7 System operation support

mount
swapon
umount
sync
reboot
acct

2. System facilities

2.1 Generic operations

read
write
<sys/uio.h>
readv
writev
<sys/ioctl.h>
ioctl

2.2 File system

read an interval timer
get and set an interval timer
profile process

descriptor reference table size
duplicate descriptor ·
duplicate to specified index
close descriptor
multiplex input/output
control descriptor options
wrap descriptor with protocol

resource-related definitions
get process priority
set process priority
get resource usage
get resource limitations
set resource limitations

mount a device file system
add a swap device
umount a file system
flush system caches
reboot a machine
specify accounting file

read data
write data
scatter-gather related definitions
scattered data input
gathered data output
standard control operations
device control operation

4.3BSD Architecture Manual

Operations marked with a * exist in two forms: as shown, operating on a file name, and operat-
ing on a file descriptor, when the name is preceded with a "f'.

<sys/file.h> file system definitions
chdir change directory
chroot change root directory
mkdir make a directory
rmdir remove a directory
open open a new or existing file
mknod make a special file
portalt make a portal entry

t Not supported in 4.3BSD.

4.3BSD Architecture Manual

unlink
stat*
!stat
chown*
chmod*
utimes
link
symlink
readlink
rename
!seek
truncate*
access
flock

2.3 Communications

<sys/socket.h>
socket
bind
getsockname
listen
accept
connect
socketpair
send to
send
recvfrom
recv
sendmsg
recvmsg
shutdown
getsockopt
setsockopt

remove a link
return status for a file
returned status of link
change owner
change mode
change access/modify times
make a hard link
make a symbolic link
read contents of symbolic link
change name of file
reposition within file
truncate file
determine accessibility
lock a file

standard definitions
create socket
bind socket to name
get socket name
allow queuing of connections
accept a connection
connect to peer socket
create pair of connected sockets
send data to named socket
send data to connected socket
receive data on unconnected socket
receive data on connected socket
send gathered data and/or rights
receive scattered data and/or rights
partially close full-duplex connection
get socket option
set socket option

2.4 Terminals, block and character devices

2.5 Processes and kernel hooks

PS1:6-43

Introductory 4.3BSD IPC

An Introductory 4.3BSD
Interprocess Communication Tutorial

Stuart Sechrest

Computer Science Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

ABSTRACT

PS1:7-1

Berkeley UNIXt 4.3BSD offers several choices for interprocess communication. To aid
the programmer in developing programs which are comprised of cooperating processes, the
different choices are discussed and a series of example programs are presented. These pro­
grams demonstrate in a simple way the use of pipes, socketpairs, sockets and the use of
datagram and stream communication. The intent of this document is to present a few simple
example programs, not to describe the networking system in full.

1. Goals

Facilities for interprocess communication (IPC) and networking were a major addition
to UNIX in the Berkeley UNIX 4.2BSD release. These facilities required major additions
and some. changes to the system interface. The basic idea of this interface is to make IPC
similar to file 110. In UNIX a process has a set of 1/0 descriptors, from which one reads and
to which one writes. Descriptors may refer to normal files, to devices (including terminals),
or to communication channels. The use of a descriptor has three phases: its creation, its use
for reading and writing, and its destruction. By using descriptors to write files, rather than
simply naming the target file in the write call, one gains a surprising amount of flexibility.
Often, the program that creates a descriptor will be different from the program that uses the
descriptor. For example the shell can create a descriptor for the output of the 'ls' command
that will cause the listing to appear in a file rather than on a terminal. Pipes are another form
of descriptor that have been used in UNIX for some time. Pipes allow one-way data
transmission from one process to another; the two processes and the pipe must be set up by a
common ancestor.

The use of descriptors is not the only communication interface provided by UNIX. The
signal mechanism sends a tiny amount of information from one process to another. The sig­
naled process receives only the signal type, not the identity of the sender, and the number of
possible signals is small. The signal semantics limit the flexibility of the signaling mechanism
as a means of interprocess communication.

The identification of IPC with 1/0 is quite longstanding in UNIX and has proved quite
successful. At first, however, IPC was limited to processes communicating within a single
machine. With Berkeley UNIX 4.2BSD this expanded. to include IPC between machines.
This expansion has necessitated some change in the way that descriptors are created.

tUNIX is a trademark of AT&T Bell Laboratories.

PS1:7-2 Introductory 4.3BSD IPC

Additionally, new possibilities for the meaning of read and write have been admitted. Origi­
nally the meanings, or semantics, of these terms were fairly simple. When you wrote some­
thing it was delivered. When you read something, you were blocked until the data arrived.
Other possibilities exist, however. One can write without full assurance of delivery if one can
check later to catch occasional failures. Messages can be kept as discrete units or merged into
a stream. One can ask to read, but insist on not waiting if nothing is immediately available.
These new possibilities are allowed in the Berkeley UNIX IPC interface.

Thus Berkeley UNIX 4.3BSD offers several choices for IPC. This paper presents simple
examples that illustrate some of the choices. The reader is presumed to be familiar with the
C programming language [Kernighan & Ritchie 1978], but not necessarily with the system
calls of the UNIX system or with processes and interprocess communication. The paper
reviews the notion of a process and the types of communication that are supported by Berke­
ley UNIX 4.3BSD. A series of examples are presented that create processes that communi­
cate with one another. The programs show different ways of establishing channels of com­
munication. Finally, the calls that actually transfer data are reviewed. To clearly present how
communication can take place, the example programs have been cleared of anything that
might be construed as useful work. They can, therefore, serve as models for the programmer
trying to construct programs which are comprised of cooperating processes.

2. Processes

A program is both a sequenc,e of statements and a rough way of referring to the compu­
tation that occurs when the compiled statements are run. A process can be thought of as a
single line of control in a program. Most programs execute some statements, go through a
few loops, branch in various directions and then end. These are single process programs.
Programs can also have a point where control splits into two independent lines, an action
called forking. In UNIX these lines can never join again. A call to the system routine fork0,
causes a process to split in this way. The result of this call is that two independent processes
will be running, executing exactly the same code. Memory values will be the same for all
values set before the fork, but, subsequently, each version will be able to change only the
value of its own copy of each variable. Initially, the only difference between the two will be
the value returned by forkO. The parent will receive a process id for the child, the child will
receive a zero. Calls to forkO, therefore, typically precede, or are included in, an if-statement.

A process views the rest of the system through a private table of descriptors. The
descriptors can represent open files or sockets (sockets are communication objects that will be
discussed below). Descriptors are referred to by their index numbers in the table. The first
three descriptors are often known by special names, stdin, stdout and stderr. These are the
standard input, output and error. When a process forks, its descriptor table is copied to the
child. Thus, if the parent's standard input is being taken from a terminal (devices are also
treated as files in UNIX), the child's input will be taken from the same terminal. Whoever
reads first will get the input. If, before forking, the parent changes its standard input so· that
it is reading from a new file, the child will take its input from the new file. It is also possible
to take input from a socket, rather than from a file.

3. Pipes

Most users of UNIX know that they can pipe the output of a program "progl" to the
input of another, "prog2," by typing the command "progl I prog2." This is called "piping"
the output of one program to another because the mechanism used to transfer the output is
called a pipe. When the user types a command, the command is read by the shell, which
decides how to execute it. If the command is simple, for example, "progl," the shell forks a
process, which executes the program, progl, and then dies. The shell waits for this termina­
tion and then prompts for the next command. If the command is a compound command,
"progl I prog2," the shell creates two processes connected by a pipe. One process runs the

Introductory 4.3BSD IPC

program, progl, the other runs prog2. The pipe is an 1/0 mechanism with two ends, or sock­
ets. Data that is written into one socket can be read from the other.

Since a program specifies its input and output only by the descriptor table indices, which
appear as variables or constants, the input source and output destination can be changed
without changing the text of the program. It is in this way that the shell is able to set up
pipes. Before executing progl, the process can close whatever is at stdout and replace it with
one end of a pipe. Similarly, the process that will execute prog2 can substitute the opposite

#include <stdio.h>

#define DATA "Bright star, would I were steadfast as thou art • "

I*

PSI:7-3

* This program creates a pipe, then forks. The child communicates to the
* parent over the pipe. Notice that a pipe is a one-way communications
*device. I can write to the output socket (sockets[1], the second socket
* of the array returned by pipe<>> and read from the input socket
* (sockets[OJ>, but not vice versa.
*I

main()
{

}

int sockets[2], child;

/* Create a pipe */
if <pipe<sockets) < 0) {

}

perror<"opening stream socket pair">;
exit(10>;

if <<child = fork<>> -- -1>
perror<"fork">;

else if (child) {
char buf[1024];

I* This is still the parent. It reads the child's message. */
close<sockets[1l>;
if (read(sockets[Ol, buf, 1024) < 0)

perror<"reading message">;
printf("-->%s\n", buf>;
close(socketstOJ>;

} else {

}

/* This is the child. It writes a message to its parent. */
close(sockets[OJ>;
if <write(sockets[1], DATA, sizeofCDATA>> < O>

perror<"writing message">;
close(sockets[1J>;

Figure 1 Use of a pipe

PS1:7-4 Introductory 4.3BSD IPC

end of the pipe for stdin.

Let us now examine a program that creates a pipe for communication between its child
and itself (Figure 1). A pipe is created by a parent process, which then forks. When a process
forks, the parent's descriptor table is copied into the child's.

In Figure l, the parent process makes a call to the system routine pipe(). This routine
creates a pipe and places descriptors for the sockets for the two ends of the pipe in the
process's descriptor table. Pipe() is passed an array into which it places the index numbers of
the sockets it created. The two ends are not equivalent. The socket whose index is returned
in the low word of the array is opened for reading only, while the socket in the high end is
opened only for writing. This corresponds to the fact that the standard input is the first
descriptor of a process's descriptor table and the standard output is the second. After creating
the pipe, the parent creates the child with which it will share the pipe by callingfork(). Figure
2 illustrates the effect of a fork. The parent process's descriptor tabie points to both ends of
the pipe. After the fork, both parent's and child's descriptor tables point to the pipe. The
child can then use the pipe to send a message to the parent.

Just what is a pipe? It is a one-way communication mechanism, with one end opened
for reading and the other end for writing. Therefore, parent and child need to agree on which
way to tum the pipe, from parent to child or the other way around. Using the same pipe for
communication both from parent to child and from child to parent would be possible (since
both processes have references to both ends), but very complicated. If the parent and child
are to have a two-way conversation, the parent creates two pipes, one for use in each direc­
tion. (In accordance with their plans, both parent and child in the example above close the
socket that they will not use. It is not required that unused descriptors be closed, but it is
good practice.) A pipe is also a stream communication mechanism; that is, all messages sent
through the pipe are placed in order and reliably delivered. When the reader asks for a cer­
tain number of bytes from this stream, he is given as many bytes as are available, up to the
amount of the request. Note that these bytes may have come from the same call to write() or
from several calls to write() which were concatenated.

4. Socketpairs

Berkeley UNIX 4.3BSD provides a slight generalization of pipes. A pipe is a pair of
connected sockets for one-way stream communication. One may obtain a pair of connected
sockets for two-way stream communication by calling the routine socketpair(). The program
in Figure 3 calls socketpair() to create such a connection. The program uses the link for com­
munication in both directions. Since socketpairs are an extension of pipes, their use resem­
bles that of pipes. Figure 4 illustrates the result of a fork following a call to socketpair().

Socketpair() takes as arguments a specification of a domain, a style of communication,
and a protocol. These are the parameters shown in the example. Domains and protocols will
be discussed in the next section. Briefly, a domain is a space of names that may be bound to
sockets and implies certain other conventions. Currently, socketpairs have only been imple­
mented for one domain, called the UNIX domain. The UNIX domain uses UNIX path
names for naming sockets. It only allows communication between sockets on the same
machine.

Note that the header files <sys/socket.h> and <sys/types.h>. are required in this pro­
gram. The constants AF _UNIX and SOCK._STREAM are defined in <syslsocket.h>, which
in turn requires the file <sys/types.h> for some of its definitions.

S. Domains and Protocols

Pipes and socketpairs are a simple solution for communicating between a parent and
child or between child processes. What if we wanted to have processes that have no common
ancestor with whom to set up communication? Neither standard UNIX pipes nor socketpairs

Introductory 4.3BSD IPC PS1:7-5

parent

parent child

0

Figure 2 Sharing a pipe between parent and child

PS1:7-6 Introductory 4.JBSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>

#define DATA1 "In Xanadu, did Kublai Khan •.
#define DATA2 "A stately pleasure dome decree

"
"

I*
* This program creates a pair of connected sockets then forks and
* communicates over them. This is very similar to communication with pipes
* however, socketpairs are two-way communications objects. Therefore I can
* send messages in both directions.
*I

main()
{

}

int sockets[2], child;
char buf[1024J;

if CsocketpairCAF-UNIX, SOCK-STREAM, 0, sockets) < 0> {
perrorC"opening stream socket pair">;
exitC1>;

}

if CCchild = forkC>> == -1>
perrorC"fork">;

else if Cchild> {/*This is the parent. */
closeCsockets[OJ>;
if Cread(sockets[1], buf, 1024, 0> < 0>

perrorC"reading stream message">;
printfC"-->%s\n", buf);
if CwriteCsockets[1], DATA2, sizeofCDATA2>> < 0>

perrorC"writing stream message">;
closeCsocketsC1l>;

} else { /*This is the child. */

}

closeCsocketsC1l>;
if Cwritecs·ocketsCOl, DATA1, sizeofCDATA1)) < O>

perrorC"writing stream message">;
if Cread(sockets[Ol, buf, 1024, 0> < 0>

perrorC"reading stream message">;
printfC"-->%s\n", buf);
closecsocketsCOJ>;

Figure 3 Use of a socketpair

Introductory 4.3BSD IPC PS1:7-7

parent

O~------o ------}>

parent child

0 -(------o ------}>

Figure 4 Sharing a socketpair between parent and child

are the answer here, since both mechanisms require a common ancestor to set up the com­
munication. We would like to have two processes separately create sockets and then have
messages sent between them. This is often the case when providing or using a service in the
system. This is also the case when the communicating processes are on separate machines.
In Berkeley UNIX 4.3BSD one can create individual sockets, give them names and send mes­
sages between them.

Sockets created by different programs use names to refer to one another; names gen­
erally must be translated into addresses for use. The space from which an address is drawn is
referred to as a domain. There are several domains for sockets. Two that will be used in the
examples here are the UNIX domain (or AF_UNIX, for Address Format UNIX) and the
Internet domain (or AF _INET). UNIX domain IPC is an experimental facility in 4.2BSD
and 4.3BSD. In the UNIX domain, a socket is given a path name within the file system name
space. A file system node is created for the socket and other processes may then refer to the

PS1:7-8 Introductory 4.3BSD IPC

socket by giving the proper pathname. UNIX domain names, therefore, allow communica­
tion between any two processes that work in the same file system. The Internet domain is the
UNIX implementation of the DARPA Internet standard protocols IP/TCP/UDP. Addresses
in the Internet domain consist of a machine network address and an identifying number,
called a port. Internet domain names allow communication between machines.

Communication follows some particular "style." Currently, communication is either
through a stream or by datagram. Stream communication implies several things. Communi­
cation takes place across a connection between two sockets. The communication is reliable,
error-free, and, as in pipes, no message boundaries are kept. Reading from a stream may
result in reading the data sent from one or several calls to write() or only part of the data from
a single call, if there is not enough room for the entire message, or if not all the data from a
large message has been transferred. The protocol implementing such a style will retransmit
messages received with errors. It will also return error messages if one tries to send a message
after the connection has been broken. Datagram communication does not use connections.
Each message is addressed individually. If the address is correct, it will generally be received,
although this is not guaranteed. Often datagrams are used for requests that require a response
from the recipient. If no response arrives in a reasonable amount of time, the request is
repeated. The individual datagrams will be kept separate when they are read, that is, message
boundaries are preserved.

The difference in performance between the two styles of communication is generally less
important than the difference in semantics. The performance gain that one might find in
using datagrams must be weighed against the increased complexity of the program, which
must now concern itself with lost or out of order messages. If lost messages may simply be
ignored, the quantity of traffic may be a consideration. The expense of setting up a connection
is best justified by frequent use of the connection. Since the performance of a protocol
changes as it is tuned for different situations, it is best to seek the most up-to-date informa­
tion when making choices for a program in which performance is crucial.

A protocol is a set of rules, data formats and conventions that regulate the transfer of
data between participants in the communication. In general, there is one protocol for each
socket type (stream, datagram, etc.) within each domain. The code that implements a proto-
col keeps track of the names that are bound to sockets, sets up connections and transfers
data between sockets, perhaps sending the data across a network. This code also keeps track
of the names that are bound to sockets. It is possible for several protocols, differing only in
low level details, to implement the same style of communication within a particular domain.
Although it is possible to select which protocol should be used, for nearly all uses it is
sufficient to request the default protocol. This has been done in all of the example programs.

One specifies the domain, style and protocol of a socket when it is created. For exam­
ple, in Figure Sa the call to socket() causes the creation of a datagram socket with the default
protocol in the UNIX domain.

6. Datagrams in the UNIX Domain
Let us now look at two programs that create sockets separately. The programs in Fig­

ures Sa and Sb use datagram communication rather than a stre~. The structure used to
name UNIX domain sockets is defined in the file <syslun.h>. The definition has also been
included in the example for clarity.

Each program creates a socket with a call to socket(). These sockets are in the UNIX
domain. Once a name has been decided upon it is attached to a socket by the system call
bind(). The program in Figure Sa uses the name "socket", which it binds to its socket. This
name will appear in the working directory of the program. The routines in Figure Sb use its
socket only for sending messages. It does not create a name for the socket because no other
process has to refer to it.

Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

I*

PS1:7-9

* In the included file <sys/un.h> a sockaddr_un is defined as follows
* struct sockaddr_un {
* short sun_family;
* char sun_path[108J;
* };
*I

#include <stdio.h>

#define NAME "socket"

I*
* This program creates a UNIX domain datagram socket, binds a name to it,
* then reads from the socket.
*I

main()
{

}

int sock, Length;
struct sockaddr_un name;
char buf[1024];

/* Create socket from which to read. */
sock = socketCAF-UNIX, SOCK-OGRAM, 0);
if (sock < 0> {

}

perrorC"opening datagram socket">;
exitC1>;

/* Create name. */
name.sun_family =AF-UNIX;
strcpyCname.sun_path, NAME>;
if CbindCsock, &name, sizeofCstruct sockaddr_un>>> {

perrorC"binding name to datagram socket">;
exit C 1);

}

printfC"socket -->%s\n", NAME>;
/* Read from the socket */
if Cread(sock, buf, 1024) < 0)

perrorC"receiving datagram packet">;
printfC"-->%s\n", buf);
closeCsock>;
unlinkCNAME>;

Figure 5a Reading UNIX domain datagrams

PS1:7-10 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define DATA "The sea is calm tonight, the tide is full • • "

I*
* Here I send a datagram to a receiver whose name I get from the command
* line arguments. The form of the command line is udgramsend pathname
*I

main(argc, argv)
int argc;
char *argv[J;

{

}

int sock;
struct sockaddr_un name;

I* Create socket on which to send. *I
sock = socketCAF-UNIX, SOCK-DGRAM, O>;
if Csock < 0) {

}

perrorC"opening datagram socket">;
exitC1>;

I* Construct name of socket to send to. */
name.sun-family= AF-UNIX;
strcpyCname.sun_path, argv[1J>;
/* Send message. */
if Csendto(sock, DATA, sizeofCDATA>, 0,

&name, sizeof(struct sockaddr_un)) < 0) {
perrorC"sending datagram message">;

}

close(sock>;

Figure Sb Sending a UNIX domain datagrams

Names in the UNIX domain are path names. Like file path names they may be either
absolute (e.g. "/dev/imaginary") or relative (e.g. "socket"). Because these names are used to
allow processes to rendezvous, relative path names can pose difficulties and should be used
with care. When a name is bound into the name space, a file (inode) is allocated in the file
system. If the inode is not deallocated, the name will continue to exist even after the bound
socket is closed. This can cause subsequent runs of a program to find that a name is unavail­
able, and can cause directories to fill up with these objects. The names are removed by cal­
ling unlink() or using the rm(l) command. Names in the UNIX domain are only used for
rendezvous. They are not used for message delivery once a connection is established. There­
fore, in contrast with the Internet domain, unbound sockets need not be (and are not)
automatically given addresses when they are connected.

There is no established means of communicating names to interested parties. In the
example, the program in Figure Sb gets the name of the socket to which it will send its mes­
sage through its command line arguments. Once a line of communication has been created,
one can send the names of additional, perhaps new, sockets over the link. Facilities will have
to be built that will make the distribution of names less of a problem than it now is.

Introductory 4.3BSD IPC PS1:7-ll

7. Datagrams in the Internet Domain

The examples in Figure 6a and 6b are very close to the previous example except that the
socket is in the Internet domain. The structure of Internet domain addresses is defined in the
file <netinetlin.h>. Internet addresses specify a host address (a 32-bit number) and a delivery
slot, or port, on that machine. These ports are managed by the system routines that imple­
ment a particular protocol. Unlike UNIX domain names, Internet socket names are not
entered into the file system and, therefore, they do not have to be unlinked after the socket
has been closed. When a message must be sent between machines it is sent to the protocol
routine on the destination machine, which interprets the address to determine to which socket
the message should be delivered. Several different protocols may be active on the same
machine, but, in general, they will not communicate with one another. As a result, different
protocols are allowed to use the same port numbers. Thus, implicitly, an Internet address is a
triple including a protocol as well as the port and machine address. An association is a tem­
porary or permanent specification of a pair of communicating sockets. An association is thus
identified by the tuple <protocol, local machine address, local port, remote machine address,
remote port>. An association may be transient when using datagram sockets; the association
actually exists during a send operation.

The protocol for a socket is chosen when the socket is created. The local machine
address for a socket can be any valid ·network address of the machine, if it has more than one,
or it can be the wildcard value INADDR_ANY. The wildcard value is used in the program
in Figure 6a. If a machine has several network addresses, it is likely that messages sent to any
of the addresses should be deliverable to a socket. This will be the case if the wildcard value
has been chosen. Note that even if the wildcard value is chosen, a program sending messages
to the named socket must specify a valid network address. One can be willing to receive from
"anywhere," but one cannot send a message "anywhere." The program in Figure 6b is given
the destination host name as a command line argument. To determine a network address to
which it can send the message, it looks up the host address by the call to gethostbynameO.
The returned structure includes the host's network address, which is copied into the structure
specifying the destination of the message.

The port number can be thought of as the number of a mailbox, into which the protocol
places one's messages. Certain daemons, offering certain advertised services, have reserved or
"well-known" port numbers. These fall in the range from 1 to 1023. Higher numbers are
available to general users. Only servers need to ask for a particular number. The system will
assign an unused port number when an address is bound to a socket. This may happen when
an explicit bind call is made with a port number of 0, or when a connect or send is performed
on an unbound socket. Note that port numbers are not automatically reported back to the
user. After calling bindO, asking for port 0, one may call getsocknameO to discover what port
was actually assigned. The routine getsocknameO will not work for names in the UNIX
domain.

The format of the socket address is specified in part by standards within the Internet
domain. The specification includes the order of the bytes in the address. Because machines
differ in the internal representation they ordinarily use to represent integers, printing out the
port number as returned by getsocknameO may result in a misinterpretation. To print out the
number, it is necessary to use the routine ntohs() (for network to host: short) to convert the
number from the network representation to the host's representation. On some machines,
such as 68000-based machines, this is a null operation. On others, such as VAXes, this
results in a swapping of bytes. Another routine exists to convert a short integer from the host
format to the network format, called htonsO; similar routines exist for long integers. For
further information, refer to the entry for byteorder in section 3 of the manual.

PS1:7-12 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

/*
* In the included file <netinet/in.h> a sockaddr-in is defined as follows:
* struct sockaddr_in {
* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[8J;
* };
* * This program creates a datagram socket, binds a name to it, then reads
* from the socket.
*/

main()
{

}

int sock, length;
struct sockaddr_in name;
char buf[1024];

/* Create socket from which to read. */
sock = socketCAF-INET, SOCK-DGRAM, 0);
if (sock < 0> {

}

perrorC"opening datagram socket">;
exitC1>;

/* Create name with wildcards. */
name.sin-family= AF-INET;
name.sin_addr.s_addr = INADDR-ANY;
name.sin-port = O;
if CbindCsock, &name, sizeofCname))) {

perrorC"binding datagram socket">;
exitC1>;

}

I* Find assigned port value and print it out. */
length = sizeof(name>;
if Cgetsocknamecsock, &name, &length>> {

perrorC"getting socket name">;
exitC1>;

}

printf("Socket has port #%d\n", ntohsCname.sin_port>>;
/* Read from the socket */
if Cread(sock, buf, 1024) < 0)

perrorC"receiving datagram packet">;
printfC"-->%s\n", buf);
closecsock>;

Figure 6a Reading Internet domain datagrams

Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "The sea is calm tonight, the tide is full "

I*

PSl:7-13

* Here I send a datagram to a receiver whose name I get from the command
* line arguments. The form of the command line is dgramsend hostname
* portnumber
*I

main(argc, argv>
int argc;
char *argv[J;

{

}

int sock;
struct sockaddr_in name;
struct hostent *hp, *gethostbyname<>;

/* Create socket on which to send. */
sock= socketCAF-INET, SOCK-DGRAM, O>;
if <sock < 0) {

perror<"opening datagram socket">;
exit<1>;

}

I*
* Construct name, with no
* Getnostbyname() returns
* of the specified host.
* line.

wildcards, of the socket to send to.
a structure including the network address
The port number is taken from the command

*I
hp = gethostbyname(argv[1J>;
if <hp == 0) {

}

fprintf(stderr, "%s: unknown
exit<2>;

hostO, argv[1J>;

bcopy<hp->h-addr, &name.sin-addr, hp->h-length>;
name.sin-family = AF-INET;
name.sin-port = htons(atoi(argv[2J>>;
/* Send message. */
if (sendto(sock, DATA, sizeof(DATA), 0, &name, sizeof(name>> < O>

perror<"sending datagram message">;
close<sock>;

Figure 6b Sending an Internet domain datagram

8. Connections

To send data between stream sockets (having communication style SOCK_STREAM),
the sockets must be connected. Figures 7a and 7b show two programs that create such a con­
nection. The program in 7a is relatively simple. To initiate a connection, this program

PS1:7-14 Introductory 4.3BSD IPC

simply creates a stream socket, then calls connect(), specifying the address of the socket to
which it wishes its socket connected. Provided that the target socket exists and is prepared to
handle a connection, connection will be complete, and the program can begin to send mes­
sages. Messages will be delivered in order without message boundaries, as with pipes. The
connection is destroyed when either socket is closed (or soon thereafter). If a process persists
in sending messages after the connection is closed, a SIGPIPE signal is sent to the process by
the operating system. Unless explicit action is taken to handle the signal (see the manual
page for signal or sigvec), the process will terminate and the shell will print the message "bro­
ken pipe."

Forming a connection is asymmetrical; one process, such as the program in Figure 7a,
requests a connection with a particular socket, the other process accepts connection requests.
Before a connection can be accepted a socket must be created and an address bound to it.
This situation is illustrated in the top half of Figure 8. Process 2 has created a socket and
bound a port number to it. Process I has created an unnamed socket. The address bound to
process 2's socket is then made known to process I and, perhaps to several other potential
communicants as well. If there are several possible communicants, this one socket might
receive several requests for connections. As a result, a new socket is created for each connec­
tion. This new socket is the endpoint for communication within this process for this connec­
tion. A connection may be destroyed by closing the corresponding socket.

The program in Figure 7b is a rather trivial example of a server. It creates a socket to
which it binds a name, which it then advertises. (In this case it prints out the socket
number.) The program then calls listen() for this socket. Since several clients may attempt to
connect more or less simultaneously, a queue of pending connections is maintained in the sys­
tem address space. Listen() marks the socket as willing to accept connections and initializes
the queue. When a connection is requested, it is listed in the queue. If the queue is full, an
error status may be returned to the requester. The maximum length of this queue is specified
by the second argument of listen(); the maximum length is limited by the system. Once the
listen call has been completed, the program enters an infinite loop. On each pass through the
loop, a new connection is accepted and removed from the queue, and, hence, a new socket for
the connection is created. The bottom half of Figure 8 shows the result of Process I connect­
ing with the named socket of Process 2, and Process 2 accepting the connection. After the
connection is created, the service, in this case printing out the messages, is performed and the
connection socket closed. The accept() call will take a pending connection request from the
queue if one is available, or block waiting for a request. Messages are read from the connec­
tion socket. Reads from an active connection will normally block until data is available. The
number of bytes read is returned. When a connection is destroyed, the read call returns
immediately. The number of bytes returned will be zero.

The program in Figure 7c is a slight variation on the server in Figure 7b. It avoids
blocking when there are no pending connection requests by calling select() to check for pend­
ing requests before calling accept(). This strategy is useful when connections may be received
on more than one socket, or when data may arrive on other connected sockets before another
connection request.

The programs in Figures 9a and 9b show a program using stream communication in the
UNIX domain. Streams in the UNIX domain can be used for this sort of program in exactly
the same way as Internet domain streams, except for the form of the names and the restric­
tion of the connections to a single file system. There are some differences, however, in the
functionality of streams in the two domains, notably in the handling of out-of band data (dis­
cussed briefly below). These differences are beyond the scope of this paper.

Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Half a league, half a league . . "

I*

PS1:7-15

* This program creates a socket and initiates a connection with the socket
*given in the command line. One message is sent over the connection and
* then the socket is closed, ending the connection. The form of the command
* line is streamwrite hostname portnumber
*I

main(argc, argv)
int argc;
char *argv[];

{

}

int sock;
struct sockaddr_in server;
struct hostent *hp, *gethostbyname<>;
char buf[1024];

/* Create socket */
sock= socket(AF-INET, SOCK-STREAM, 0>;
if (sock < 0) {

}

perror("opening stream socket">;
exitC1>;

/*Connect socket using name specified by command line. */
server.sin_family = AF_INET;
hp= gethostbyname(argv[1l>;
if (hp == 0) {

}

fprintf(stderr, "%s: unknown hostO, argv[1l>;
exit<2>;

bcopyChp->h-addr, &server.sin_addr, hp->h_length);
server.sin-port= htons(atoi(argv[2l>>;

if (connect(sock, &server, sizeof(server>> < 0) {
perror("connecting stream socket">;
exitC1>;

}

if Cwrite(sock, DATA, sizeof(DATA>> < 0)
perror("writing on stream socket">;

close(sock>;

Figure 7a Initiating an Internet domain stream connection

PS1:7-16

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

I*

Introductory 4.JBSD IPC

* This program creates a socket and then begins an infinite loop. Each time
* through the loop it accepts a connection and prints out messages from it.
~When the connection breaks, or a termination message comes through, the
* program accepts a new connection.
*I

main()
{

int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024l;
int rval;
int i;

I* Create socket */
sock = socket(AF-INET, SOCK-STREAM, 0>;
if <sock < 0) {

}

perror<"opening stream socket">;
exitC1>;

/* Name socket using wildcards */
server.sin-family = AF-INET;
server.sin_addr.s_addr = INADDR-ANY;
server.sin-port = O;
if Cbind(sock, &server, sizeof(server>>> {

perrorC"binding stream socket">;
exitC1>;

}

/* Find out assigned port number and print it out */
length = sizeof(server>;
if Cgetsockname<sock, &server, &length>> {

perrorC"getting socket name">;
exitC1>;

}
printfC"Socket has port #%d\n", ntohsCserver.sin-port>>;

/* Start accepting connections */
listenCsock, 5>;
do {

msgsock = acceptCsock, 0, O>;
if Cmsgsock == -1>

perrorC"accept">;
else do {

bzeroCbuf, sizeof(buf>>;

Introductory 4.3BSD IPC

if CCrval = readCmsgsock, buf, 1024)) < 0)
perrorC"reading stream message">;

i = O;
if Crval == 0)

printfC"Ending connection\n">;
else

printfC"-->%s\n", buf);
} while Crval != O>;
close(msgsock>;

} while (TRUE);
/*

PS1:7-17

* Since this program has an infinite loop, the socket "sock" is
*never explicitly closed. However, all sockets will be closed
*automatically when a process is killed or terminates normally.
*/

}
Figure 7b Accepting an Internet domain stream connection

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

/*
* This program uses select() to check that someone is trying to connect
*before calling accept().
*/

main()
{

int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024];
int rval;
fd_set ready;
struct timeval to;

/* Create socket */
sock = socketCAF-INET, SOCK-STREAM, 0>;
if (sock < 0> {

}

perrorC"opening stream socket">;
exitC1>;

/*Name socket using wildcards */
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR-ANY;
server.sin_port = O;
if Cbind(sock, &server, sizeof(server))) {

PSl:7-18 Introductory 4.JBSD IPC

}

}

perrorC"binding stream socket">;
exitC1>;

/* Find out assigned port number and print it out */
length = sizeof<server>;
if Cgetsockname(sock, &server, &length>> {

perror("getting socket name">;
exitC1>;

}

printf("Socket has port #%d\n11 , ntohs<server.sin_port>>;

/* Start accepting connections */
listencsock, S>;
do {

FD-ZEROC&ready>;
FD-SET<sock, &ready>;
to.tv_sec = 5;
if CselectCsock + 1, &ready, 0, 0, &to> < 0> {

perror<"select">;
continue;

}

if CFD-ISSETCsock, &ready)) {
msgsock = acceptCsock, Cstruct sockaddr *)0, (int *>0>;
if Cmsgsock == -1>

perror<"accept">;
else do {

bzero(buf, sizeofCbuf>>;
if CCrval = read<msgsock, buf, 1024)) < O>

perror("reading stream message">;
else if (rval == 0>

printfC"Ending connection\n">;
else

printf<"-->%s\n11 , buf>;
} while Crval > 0>;
close<msgsock>;

} else
printfC"Do something else\n">;

} while <TRUE);

Figure 7c Using select() to check for pending connections

Introductory 4.3BSD IPC PS1:7-19

Process 1 Process 2

0

0
Process 1 Process 2

Figure 8 Establishing a stream connection

PS1:7-20 Introductory 4.JBSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define DATA "Half a league, half a league • "

I*
*This program connects to the socket named in the command line and sends a
* one line message to that socket. The form of the command line is
* ustreamwrite pathname
*I

mainCargc, argv)
int argc;
char *argv [];

{

}

int sock;
struct sockaddr_un server;
char buf[1024J;

I* Create socket */
sock = socketCAF-UNIX, SOCK-STREAM, 0);
if (sock < 0> {

}

perrorC"opening stream socket">;
exitC1>;

/* Connect socket using name specified by command line. */
server.sun_family = AF-UNIX;
strcpyCserver.sun_path, argv[1J>;

if Cconnect(sock, &server, sizeofCstruct sockaddr_un)) < 0) {
close(sock>;

}

perrorC"connecting stream socket">;
exitC1>;

if Cwrite(sock, DATA, sizeofCDATA)) < 0)
perrorC"writing on stream socket">;

Figure 9a Initiating a UNIX domain stream connection

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NAME "socket"

I*
* This program creates a socket in the UNIX domain and binds a name to it.
* After printing the socket's name it begins a loop. Each time through the
* loop it accepts a connection and prints out messages from it. When the
* connection breaks, or a termination message comes through, the program

Introductory 4.3BSD IPC PS1:7-21

* accepts a new connection.
*I

main()
{

}

int sock, msgsock, rval;
struct sockaddr_un server;
char buf[1024J;

/* Create socket */
sock = socket(AF-UNIX, SOCK_STREAM, 0>;
if <sock < 0> {

}

perror<"opening stream socket">;
exit(1);

/* Name socket using file system name */
server.sun_family =AF-UNIX;
strcpy(server.sun_path, NAME>;
if (bind(sock, &server, sizeof<struct sockaddr-un))) {

perror("binding stream socket">;
exit< 1);

}

printf("Socket has name %s\n", server.sun_path>;
/* Start accepting connections */
listen<sock, 5);
for c;; > {

}

I*

msgsock = accept(sock, 0, O>;
if (msgsock == -1)

perror("accept">;
else do {

bzero(buf, sizeof(buf));
if <<rval = read(msgsock, buf, 1024)) < 0)

perror<"reading stream message">;
else if <rval == O>

printf("Ending connection\n">;
else

printf<"-->%s\n", buf>;
} while (rval > O>;
close(msgsock>;

* The following statements are not executed, because they follow an
* infinite loop. However, most ordinary programs will not run
* forever. In the UNIX domain it is necessary to tell the file
* system that one is through using NAME. In most programs one uses
*the call unlink<> as below. Since the user will have to kill this
* program, it will be necessary to remove the name by a command from
* the shell.
*I

closeCsock>;
unlinkCNAME);

Figure 9b Accepting a UNIX domain stream connection

PS1:7-22 Introductory 4.3BSD IPC

9. Reads, Writes, Recvs, etc.

UNIX 4.3BSD has several system calls for reading and writing information. The sim­
plest calls are read(} and write(}. Write(} takes as arguments the index of a descriptor, a
pointer to a buffer containing the data and the size of the data. The descriptor may indicate
either a file or a connected socket. "Connected" can mean either a connected stream socket
(as described in Section 8) or a datagram socket for which a connect(} call has provided a
default destination (see the connect(} manual page). Read(} also takes a descriptor that indi­
cates either a file or a socket. Write(} requires a connected socket since no destination is
specified in the parameters of the system call. Read(} can be used for either a connected or an
unconnected socket. These calls are, therefore, quite flexible and may be used to write appli­
cations that require no assumptions about the source of their input or the destination of their
output. There are variations on read() and write(} that allow the source and destination of
the input and output to use several separate buffers, while retaining the flexibility to handle
both files and sockets. These are readv() and writev(), for read and write vector.

It is sometimes necessary to send high priority data over a connection that may have
unread low priority data at the other end. For example, a user interface process may be inter­
preting commands and sending them on to another process through a stream connection. The
user interface may have filled the stream with as yet unprocessed requests when the user types
a command to cancel all outstanding requests. Rather than have the high priority data wait
to be processed after the low priority data, it is possible to send it as out-ofband (OOB) data.
The notification of pending OOB data results in the generation of a SIGURG signal, if this
signal has been enabled (see the manual page for signal or sigvec). See [Leffier 1986] for a
more complete description of the OOB mechanism. There are a pair of calls similar to read
and write that allow options, including sending and receiving OOB information; these are
send(} and recv(}. These calls are used only with sockets; specifying a descriptor for a file will
result in the return of an error status. These calls also allow peeking at data in a stream.
That is, they allow a process to read data without removing the data from the stream. One
use of this facility is to read ahead in a stream to determine the size of the next item to be
read. When not using these options, these calls have the same functions as read(} and write().

To send datagrams, one must be allowed to specify the destination. The call sendto(}
takes a destination address as an argument and is therefore used for sending datagrams. The
call recvfrom() is often used to read datagrams, since this call returns the address of the
sender, if it is available, along with the data. If the identity of the sender does not matter,
one may use read(} or recv(}.

Finally, there are a pair of calls that allow the sending and receiving of messages from
multiple buffers, when the address of the recipient must be specified. These are sendmsg()
and recvmsg(}. These calls are actually quite general and have other uses, including, in the
UNIX domain, the transmission of a file descriptor from one process to another.

The various options for reading and writing are shown in Figure 10, together with their
parameters. The parameters for each system call reflect the differences in function of the
different calls. In the examples given in this paper, the calls read(} and write(} have been used
whenever possible.

10. Choices

This paper has presented examples of some of the forms of communication supported
by Berkeley UNIX 4.3BSD. These have been presented in an order chosen for ease of presen­
tation. It is useful to review these options emphasizing the factors that make each attractive.

Pipes have the advantage of portability, in that they are supported in all UNIX systems.
They also are relatively simple to use. Socketpairs share this simplicity and have the addi­
tional advantage of allowing bidirectional communication. The major shortcoming of these
mechanisms is that they require communicating processes to be descendants of a common

Introductory 4.3BSD IPC PS1:7-23

I*
*The variable descriptor may be the descriptor of either a file
* or of a socket.
*/

cc = read(descriptor, buf, nbytes)
int cc, descriptor; char *buf; int nbytes;

/*
* An iovec can include several source buffers.
*/

cc = readv(descriptor, iov, iovcnt)
int cc, descriptor; struct iovec *iov; int iovcnt;

cc = write(descriptor, buf, nbytes)
int cc, descriptor; char *buf; int nbytes;

cc = writev(descriptor, iovec, ioveclen>
int cc, descriptor; struct iovec *iovec; int ioveclen;

/*
*The variable ''sock'' must be the descriptor of a socket.
* Flags may include MSG_QQB and MSG_PEEK.
*/

cc = sendCsock, msg, Len, flags)
int cc, sock; char *msg; int Len, flags;

cc = sendto(sock, msg, Len, flags, to, tolen>
int cc, sock; char *msg; int Len, flags;
struct sockaddr *to; int tolen;

cc = sendmsg(sock, msg, flags)
int cc, sock; struct msghdr msg[l; int flags;

cc = recv(sock, buf, Len, flags)
int cc, sock; char *buf; int Len, flags;

cc = recvfrom(sock, buf, Len, flags, from, fromlen>
int cc, sock; char *buf; int Len, flags;
struct sockaddr *from; int *fromlen;

cc = recvmsg(sock, msg, flags)
int cc, socket; struct msghdr msg[]; int flags;

Figure I 0 Varieties of read and write commands

process. They do not allow intennachine communication.

The two communication domains, UNIX and Internet, allow processes with no common
ancestor to communicate. Of the two, only the Internet domain allows communication
between machines. This makes the Internet domain a necessary choice for processes running
on separate machines.

PS1:7-24 Introductory 4.3BSD IPC

The choice between datagrams and stream communication is best made by carefully
considering the semantic and performance requirements of the application. Streams can be
both advantageous and disadvantageous. One disadvantage is that a process is only allowed a
limited number of open streams, as there are usually only 64 entries available in the open
descriptor table. This can cause problems if a single server must talk with a large number of
clients. Another is that for delivering a short message the stream setup and teardown time can
be unnecessarily long. Weighed against this are the reliability built into the streams. This
will often be the deciding factor in favor of streams.

11. What to do Next

Many of the examples presented here can serve as models for multiprocess programs
and for programs distributed across several machines. In developing a new multiprocess pro­
gram, it is often easiest to first write the code to create the processes and communication
paths. After this code is debugged, the code specific to the application can be added.

An introduction to the UNIX system and programming using UNIX system calls can be
found in [Kernighan and Pike 1984]. Further documentation of the Berkeley UNIX 4.3BSD
IPC mechanisms can be found in [Leffler et al. 1986]. More detailed information about par­
ticular calls and protocols is provided in sections 2, 3 and 4 of the UNIX Programmer's
Manual [CSRG 1986]. In particular the following manual pages are relevant:

creating and naming sockets
establishing connections
transferring data
addresses
protocols

Acknowledgements

socket(2), bind(2)
listen(2), accept(2), connect(2)
read(2), write(2), send(2), recv(2)
inet(4F)
tcp(4P), udp(4P).

I would like to thank Sam Leffler and Mike Karels for their help in understand­
ing the IPC mechanisms and all the people whose comments have helped in writing
and improving this report.

This work was sponsored by the Defense Advanced Research Projects Agency
(DoD), ARPA Order No. 4031, monitored by the Naval Electronics Systems Com­
mand under contract No. N00039-C-0235. The views and conclusions contained in
this document are those of the author and should not be interpreted as representing
official policies, either expressed or implied, of the Defense Research Projects Agency
or of the US Government.

Introductory 4.3BSD IPC

References

B.W. Kernighan & R. Pike, 1984,
The UNIX Programming Environment.
Englewood Cliffs, N.J.: Prentice-Hall.

B.W. Kernighan & D.M. Ritchie, 1978,
The C Programming Language,
Englewood Cliffs, N.J.: Prentice-Hall.

S.J. Leffler, R.S. Fabry, W.N. Joy, P. Lapsley, S. Miller & C. Torek, 1986,
An Advanced 4.3BSD Interprocess Communication Tutorial.
Computer Systems Research Group,
Department of Electrical Engineering and Computer Science,
University of California, Berkeley.

Computer Systems Research Group, 1986,
UNIX Programmer's Manual, 4.3 Berkeley Software Distribution.
Computer Systems Research Group,
Department of Electrical Engineering and Computer Science,
University of California, Berkeley.

PS1:7-2S

Advanced 4.JBSD IPC Tutorial

An Advanced 4.JBSD Interprocess Communication Tutorial

Samuel J. Lejf/er

Robert S. Fabry

William N. Joy

Phil Lapsley

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

Steve Miller

Chris Torek

Heterogeneous Systems Laboratory
Department of Computer Science

University of Maryland, College Park
College Park, Maryland 20742

ABSTRACT

This document provides an introduction to the interprocess communication
facilities included in the 4.JBSD release of the UNIX* system.

It discusses the overall model for interprocess communication and introduces
the interprocess communication primitives which have been added to the system.
The majority of the document considers the use of these primitives in developing
applications. The reader is expected to be familiar with the C programming
language as all examples are written in C.

• UNIX is a Trademark of Bell Laboratories.

PSl:S-1

PSI :8-2 Advanced 4.3BSD IPC Tutorial

1. INTRODUCTION

One of the most important additions to UNIX in 4.2BSD was interprocess communication. These
facilities were the result of more than two years of discussion and research. The facilities provided in
4.2BSD incorporated many of the ideas from current research, while trying to maintain the UNIX
philosophy of simplicity and conciseness. The current release of Berkeley UNIX, 4.3BSD, completes
some of the IPC facilities and provides an upward-compatible interface. It is hoped that the interpro­
cess communication facilities included in 4.3BSD will establish a standard for UNIX. From the
response fo the design, it appears many organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior to the
4BSD facilities, the only standard mechanism which allowed two processes to communicate were
pipes (the mpx files which were part of Version 7 were experimental). Unfortunately, pipes are very
restrictive in that the two communicating processes must be related through a common ancestor.
Further, the semantics of pipes makes them almost impossible to maintain in a distributed environ­
ment.

Earlier attempts at extending the IPC facilities of UNIX have met with mixed reaction. The
majority of the problems have been related to the fact that these facilities have been tied to the
UNIX file system, either through naming or implementation. Consequently, the IPC facilities pro­
vided in 4.3BSD have been designed as a totally independent subsystem. The 4.3BSD IPC allows
processes to rendezvous in many ways. Processes may rendezvous through a UNIX file system-like
name space (a space where all names are path names) as well as through a network name space. In
fact, new name spaces may be added at a future time with only minor changes visible to users.
Further, the communication facilities have been extended to include more than the simple byte
stream provided by a pipe. These extensions have resulted in a completely new part of the system
which users will need time to familiarize themselves with. It is likely that as more use is made of
these facilities they will be refined; only time will tell.

This document provides a high-level description of the IPC facilities in 4.3BSD and their use.
It is designed to complement the manual pages for the IPC primitives by examples of their use. The
remainder of this document is organized in four sections. Section 2 introduces the !PC-related system
calls and the basic model of communication. Section 3 describes some of the supporting library rou­
tines users may find useful in constructing distributed applications. Section 4 is concerned with the
client/server model used in developing applications and includes examples of the two major types of
servers. Section 5 delves into advanced topics which sophisticated users are likely to encounter when
using the IPC facilities.

Advanced 4.3BSD IPC Tutorial PSl:S-3

2. BASICS

The basic building block for communication is the socket. A socket is an endpoint of communi­
cation to which a name may be bound. Each socket in use has a type and one or more associated
processes. Sockets exist within communication domains. A communication domain is an abstraction
introduced to bundle common properties of processes communicating through sockets. One such pro­
perty is the scheme used to name sockets. For example, in the UNIX communication domain sockets
are named with UNIX path names; e.g. a socket may be named "/dev/foo". Sockets normally
exchange data only with sockets in the same domain (it may be possible to cross domain boundaries,
but only if some translation process is performed). The 4.3BSD IPC facilities support three separate
communication domains: the UNIX domain, for on-system communication; the Internet domain,
which is used by processes which communicate using the the DARPA standard communication proto­
cols; and the NS domain, which is used by processes which communicate using the Xerox standard
communication protocols*. The underlying communication facilities provided by these domains have
a significant influence on the internal system implementation as well as the interface to socket facili­
ties available to a user. An example of the latter is that a socket "operating" in the UNIX domain
sees a subset of the error conditions which are possible when operating in the Internet (or NS)
domain.

2.1. Socket types
Sockets are typed according to the communication properties visible to a user. Processes are

presumed to communicate only between sockets of the same type, although there is nothing that
prevents communication between sockets of different types should the underlying communication
protocols support this.

Four types of sockets currently are available to a user. A stream socket provides for the bidirec­
tional, reliable, sequenced, and unduplicated flow of data without record boundaries. Aside from the
bidirectionality of data flow, a pair of connected stream sockets provides an interface nearly identical
to that of pi pest.

A datagram socket supports bidirectional flow of data which is not promised to be sequenced,
reliable, or unduplicated. That is, a process receiving messages on a datagram socket may find mes­
sages duplicated, and, possibly, in an order different from the order in which it was sent. An impor­
tant characteristic of a datagram socket is that record boundaries in data are preserved. Datagram
sockets closely model the facilities found in many contemporary packet switched networks such as the
Ethernet.

A raw socket provides users access to the underlying communication protocols which support
socket abstractions. These sockets are normally datagram oriented, though their exact characteristics
are dependent on the interface provided by the protocol. Raw sockets are not intended for the gen­
eral user; they have been provided mainly for those interested in developing new communication pro­
tocols, or for gaining access to some of the more esoteric facilities of an existing protocol. The use of
raw sockets is considered in section 5.

A sequenced packet socket is similar to a stream socket, with the exception that record boun­
daries are preserved. This interface is provided only as part of the NS socket abstraction, and is very
important in most serious NS applications. Sequenced-packet sockets allow the user to manipulate
the SPP or IDP headers on a packet or a group of packets either by writing a prototype header along
with whatever data is to be sent, or by specifying a default header to be used with all outgoing data,
and allows the user to receive the headers on incoming packets. The use of these options is con­
sidered in section 5.

• See Internet Transport Protocols, Xerox System Integration Standard (XSIS)028 I I 2 for more information.
This document is almost a necessity for one trying to write NS applications.
t In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been im­
plemented internally as simply a pair of connected stream sockets.

I

PS1:8-4 Advanced 4.3BSD IPC Tutorial

Another potential socket type which has interesting properties is the reliably delivered message
socket. The reliably delivered message socket has similar properties to a datagram socket, but with
reliable delivery. There is currently no support for this type of socket, but a reliably delivered mes­
sage protocol similar to Xerox's Packet Exchange Protocol (PEX) may be simulated at the user level.
More information on this topic can be found in section 5.

2.2. Socket creation
To create a socket the socket system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified type. A
particular protocol may also be requested. If the protocol is left unspecified (a value of 0), the system
will select an appropriate protocol from those protocols which comprise the communication domain
and which may be used to support the requested socket type. The user is returned a descriptor (a
small integer number) which may be used in later system calls which operate on sockets. The domain
is specified as one of the manifest constants defined in the file <sys/socket.h>. For the UNIX domain
the constant is AF_ UNIX*; for the Internet domain AF _INET; and for the NS domain, AF _NS. The
socket types are also defined in this file and one of SOCK_STREAM, SOCK_DGRAM, SOCK_RA W,
or SOCK_SEQPACKET must be specified. To create a stream socket in the Internet domain the fol­
lowing call might be used:

s = socket(AF _INET, SOCK_STREAM, O);

This call would result in a stream socket being created with the TCP protocol providing the underly­
ing communication support. To create a datagram socket for on-machine use the call might be:

s = socket(AF _UNIX, SOCK_DGRAM, 0);

The default protocol (used when the protocol argument to the socket call is 0) should be correct
for most every situation. However, it is possible to specify a protocol other than the default; this will
be covered in section 5.

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of
memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol (EPROTO­
NOSUPPORT), or a request for a type of socket for which there is no supporting protocol (EPROTO­
TYPE).

2.3. Binding local names

A socket is created without a name. Until a name is bound to a socket, processes have no way
to reference it and, consequently, no messages may be received on it. Communicating processes are
bound by an association. In the Internet and NS domains, an association is composed of local and
foreign addresses, and local and foreign ports, while in the UNIX domain, an association is composed
of local and foreign path names (the phrase "foreign pathname" means a pathname created by a
foreign process, not a pathname on a foreign system). In most domains, associations must be unique.
In the Internet domain there may never be duplicate <protocol, local address, local port, foreign
address, foreign port> tuples. UNIX domain sockets need not always be bound to a name, but when
bound there may never be duplicate <protocol, local pathname, foreign pathname> tuples. The path­
names may not refer to files already existing on the system in 4.3; the situation may change in future
releases.

The bind system call allows a process to specify half of an association, <local address, local
port> (or <local pathname>), while the connect and accept primitives are used to complete a socket's
association.

• The manifest constants are named AF_ whatever as they indicate the "address format" to use in interpret­
ing names.

Advanced 4.3BSD IPC Tutorial PS1:8-5

In the Internet domain, binding names to sockets can be fairly complex. Fortunately, it is usu­
ally not necessary to specifically bind an address and port number to a socket, because the connect
and send calls will automatically bind an appropriate address if they are used with an unbound
socket. The process of binding names to NS sockets is similar in most ways to that of binding names
to Internet sockets.

The bind system call is used as follows:

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting protocol(s).
Its interpretation may vary from communication domain to communication domain (this is one of
the properties which comprise the "domain"). As mentioned, in the Internet domain names contain
an Internet address and port number. NS domain names contain an NS address and port number.
In the UNIX domain, names contain a path name and a family, which is always AF _UNIX. If one
wanted to bind the name "/tmp/foo" to a UNIX domain socket, the following code would be used*:

#include <sys/un.h>

struct sockaddr_un addr;

strcpy(addr.sun_path, "/tmp/foo ");
addr.sun_family =AF _UNIX;
bind(s, (struct sockaddr *) &addr, strlen(addr.sun_path) +

sizeof (addr.sun_family));

Note that in determining the size of a UNIX domain address null bytes are not counted, which is
why strlen is used. In the current implementation of UNIX domain IPC under 4.3BSD, the file name
referred to in addr.sun_path is created as a socket in the system file space. The caller must, therefore,
have write permission in the directory where addr.sun_path is to reside, and this file should be deleted
by the caller when it is no longer needed. Future versions of 4BSD may not create this file.

In binding an Internet address things become more complicated. The actual call is similar,

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

but the selection of what to place in the address sin requires some discussion. We will come back to
the problem of formulating Internet addresses in section 3 when the library routines used in name
resolution are discussed.

Binding an NS address to a socket is even more difficult, especially since the Internet library
routines do not work with NS hostnames. The actual call is again similar:

#include <sys/types.h>
#include <netns/ns.h>

struct sockaddr_ns sns;

bind(s, (struct sockaddr *) &sns, sizeof (sns));

Again, discussion of what to place in a "struct sockaddr_ns" will be deferred to section 3.

• Note that, although the tendency here is to call the "addr" structure "sun", doing so would cause prob­
lems if the code were ever ported to a Sun workstation.

PS1:8-6 Advanced 4.3BSD IPC Tutorial

2.4. Connection establishment
Connection establishment is usually asymmetric, with one process a "client" and the other a

"server". The server, when willing to offer its advertised services, binds a socket to a well-known
address associated with the service and then passively "listens" on its socket. It is then possible for
an unrelated process to rendezvous with the server. The client requests services from the server by
initiating a "connection" to the server's socket. On the client side the connect call is used to initiate a
connection. Using the UNIX domain, this might appear as,

struct sockaddr_un server;

connect(s, (struct sockaddr *)&server, strlen(server.sun_path) +
sizeof (server.sun_family));

while in the Internet domain,

struct sockaddr_in server;

connect(s, (struct sockaddr *)&server, sizeof (server));

and in the NS domain,

struct sockaddr_ns server;

connect(s, (struct sockaddr *)&server, sizeof (server));

where server in the example above would contain either the UNIX pathname, Internet address and
port number, or NS address and port number of the server to which the client process wishes to
speak. If the client process's socket is unbound at the time of the connect call, the system will
automatically select and bind a name to the socket if necessary; c.f. section 5.4. This is the usual way
that local addresses are bound to a socket.

An error is returned if the connection was unsuccessful (any name automatically bound by the
system, however, remains). Otherwise, the socket is associated with the server and data transfer may
begin. Some of the more common errors returned when a connection attempt fails are:
ETIMEDOUT

After failing to establish a connection for a period of time, the system decided there was no
point in retrying the connection attempt any more. This usually occurs because the destination
host is down, or because problems in the network resulted in transmissions being lost.

ECONNREFUSED
The host refused service for some reason. This is usually due to a server process not being
present at the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client host by
the underlying communication services.

ENETUNREACHorEHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no route to
the network or host is present), or because of status information returned by intermediate gate­
ways or switching nodes. Many times the status returned is not sufficient to distinguish a net­
work being down from a host being down, in which case the system indicates the entire network
is unreachable.
For the server to receive a client's connection it must perform two steps after binding its socket.

The first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to the listen call specifies the maximum number of outstanding connections
which may be queued awaiting acceptance by the server process; this number may be limited by the

Advanced 4.3BSD IPC Tutorial PS1:8-7

system. Should a connection be requested while the queue is full, the connection will not be refused,
but rather the individual messages which comprise the request will be ignored. This gives a harried
server time to make room in its pending connection queue while the client retries the connection
request. Had the connection been returned with the ECONNREFUSED error, the client would be
unable to tell if the server was up or not. As it is now it is still possible to get the ETIMEDOUT
error back, though this is unlikely. The backlog figure supplied with the listen call is currently limited
by the system to a maximum of 5 pending connections on any one queue. This avoids the problem
of processes hogging system resources by setting an infinite backlog, then ignoring all connection
requests.

With a socket marked as listening, a server may accept a connection:

struct sockaddr_in from;

fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from, &fromlen);

(For the UNIX domain, from would be declared as a struct sockaddr _un, and for the NS domain,
from would be declared as a struct sockaddr _ns, but nothing different would need to be done as far as
from/en is concerned. In the examples which follow, only Internet routines will be discussed.) A new
descriptor is returned on receipt of a connection (along with a new socket). If the server wishes to
find out who its client is, it may supply a buffer for the client socket's name. The value-result param­
eter from/en is initialized by the server to indicate how much space is associated with from, then
modified on return to reflect the true size of the name. If the client's name is not of interest, the
second parameter may be a null pointer.

Accept normally blocks. That is, accept will not return until a connection is available or the sys­
tem call is interrupted by a signal to the process. Further, there is no way for a process to indicate it
will accept connections from only a specific individual, or individuals. It is up to the user process to
consider who the connection is from and close down the connection if it does not wish to speak to the
process. If the server process wants to accept connections on more than one socket, or wants to avoid
blocking on the accept call, there are alternatives; they will be considered in section 5.

2.5. Data transfer

With a connection established, data may begin to flow. To send and receive data there are a
number of possible calls. With the peer entity at each end of a connection anchored, a user can send
or receive a message without specifying the peer. As one might expect, in this case, then the normal
read and write system calls are usable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While send and recv are virtually identical to read and write, the extra flags argument is important.
The flags, defined in <syslsocket.h>, may be specified as a non-zero value if one or more of the fol­
lowing is required:

MSG_OOB
MSG_PEEK
MSG_DONTROUTE

send/receive out of band data
look at data without reading
send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately con­
sider. The option to have data sent without routing applied to the outgoing packets is currently used
only by the routing table management process, and is unlikely to be of interest to the casual user.
The ability to preview data is, however, of interest. When MSG_PEEK is specified with a recv call,

PS1:8-8 Advanced 4.3BSD IPC Tutorial

any data present is returned to the user, but treated as still "unread". That is, the next read or recv
call applied to the socket will return the data previously previewed.

2.6. Discarding sockets

Once a socket is no longer of interest, it may be discarded by applying a close to the descriptor,

close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a close
takes place, the system will continue to attempt to transfer the data. However, after a fairly long
period of time, if the data is still undelivered, it will be discarded. Should a user have no use for any
pending data, it may perform a shutdown on the socket prior to closing it. This call is of the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or 2
if no data is to be sent or received.

2. 7. Connectionless sockets

To this point we have been concerned mostly with sockets which follow a connection oriented
model. However, there is also support for connectionless interactions typical of the datagram facili­
ties found in contemporary packet switched networks. A datagram socket provides a symmetric inter­
face to data exchange. While processes are still likely to be client and server, there is no requirement
for connection establishment. Instead, each message includes the destination address.

Datagram sockets are created as before. If a particular local address is needed, the bind opera­
tion must precede the first data transmission. Otherwise, the system will set the local address and/or
port when data is first sent. To send data, the sendto primitive is used,

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen);

The s, buf, bujlen, and flags parameters are used as before. The to and to/en values are used to indi­
cate the address of the intended recipient of the message. When using an unreliable datagram inter­
face, it is unlikely that any errors will be reported to the sender. When information is present locally
to recognize a message that can not be delivered (for instance when a network is unreachable), the call
will return -1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive is provided:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once again, the from/en parameter is handled in a vitlue-result fashion, initially containing the size of
the from buffer, and modified on return to indicate the actual size of the address from which the
datagram was received.

In addition to the two calls mentioned above, datagram sockets may also use the connect call to
associate a socket with a specific destination address. In this case, any data sent on the socket will
automatically be addressed to the connected peer, and only data received from that peer will be
delivered to the user. Only one connected address is permitted for each socket at one time; a second
connect will change the destination address, and a connect to a null address (family AF _UNSPEC)
will disconnect. Connect requests on datagram sockets return immediately, as this simply results in

. the system recording the peer'.s address (as compared to a stream socket, where a connect request ini­
tiates establishment of an end to end connection). Accept and listen are not used with datagram sock­
ets.

While a datagram socket socket is connected, errors from recent send calls may be returned
asynchronously. These errors may be reported on subsequent operations on the socket, or a special
socket option used with getsockopt, SO_ERROR, may be used to interrogate the error status. A select
for reading or writing will return true when an error indication has been received. The next opera­
tion will return the error, and the error status is cleared. Other of the less important details of
datagram sockets are described in section 5.

Advanced 4.3BSD IPC Tutorial PS1:8-9

2.8. Input/Output multiplexing
One last facility often used in developing applications is the ability to multiplex i/o requests

among multiple sockets and/or files. This is done using the select call:

#include <sys/time.h>
#include <sys/types.h>

fd_set readmask, writemask, exceptmask;
struct timeval timeout;

select(nfds, &readmask, &writemask, &exceptmask, &timeout);

Select takes as arguments pointers to three sets, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and one for
which exceptional conditions are pending; out-of-band data is the only exceptional condition
currently implemented by the socket If the user is not interested in certain conditions (i.e., read,
write, or exceptions), the corresponding argument to the select should be a null pointer.

Each set is actually a structure containing an array of long integer bit masks; the size of the
array is set by the definition FD_SETSIZE. The array is be long enough to hold one bit for each of
FD_SETSIZE file descriptors.

The macros FD_SET(fd, &mask) and FD_CLR(fd, &mask) have been provided for adding and
removing file descriptor fd in the set mask. The set should be zeroed before use, and the macro
FD_ZERO(&mask) has been provided to clear the set mask. The parameter nfds in the select call
specifies the range of file descriptors (i.e. one plus the value of the largest descriptor) to be examined
in a set.

A timeout value may be specified if the selection is not to last more than a predetermined
period of time. If the fields in timeout are set to 0, the selection takes the form of a poll, returning
immediately. If the last parameter is a null pointer, the selection will block indefinitely*. Select nor­
mally returns the number of file descriptors selected; if the select call returns due to the timeout expir­
ing, then the value 0 is returned. If the select terminates because of an error or interruption, a -1 is
returned with the error number in errno, and with the file descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which file descriptors are ready to be
read from, written to, or have exceptional conditions pending. The status of a file descriptor in a
select mask may be tested with the FD _ISSET{f d, &mask) macro, which returns a non-zero value if f d
is a member of the set mask, and 0 if it is not.

To determine if there are connections waiting on a socket to be used with an accept call, select
can be used, followed by a FD_!SSET{fd, &mask) macro to check for read readiness on the appropri­
ate socket. If FD _!SSET returns a non-zero value, indicating permission to read, then a connection is
pending on the socket.

As an example, to read data from two sockets, sl and s2 as it is available from each and with a
one-second timeout, the following code might be used:

• To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received
by tbe caller, interrupting the system call.

PS1:8-10

#include <sys/time.h>
#include <sys/types.h>

fd_set read_template;
struct timeval wait;

for(;;) {
wait.tv_sec = l;
wait.tv_usec = O;

1• one second •/

FD_ZERO(&read_template);

FD_SET(sl, &read_template);
FD_SET(s2, &read_template);

Advanced 4.3BSD IPC Tutorial

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) 0, &wait);
if(nb <= 0) {

An error occu"ed during the select, or
the select timed out.

if (FD_ISSET(sl, &read_template)) {
Socket # 1 is ready to be read from.

if(FD_ISSET(s2, &read_template)) {
Socket #2 is ready to be read from.

In 4.2, the arguments to select were pointers to integers instead of pointers to fd_sets. This type
of call will still work as long as the number of file descriptors being examined is less than the number
of bits in an integer; however, the methods illustrated above should be used in all current programs.

Select provides a synchronous multiplexing scheme. Asynchronous notification of output com­
pletion, input availability, and exceptional conditions is possible through use of the SIGIO and
SIGURG signals described in section 5.

Advanced 4.3BSD IPC Tutorial PS1:8-ll

3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network
addresses when using the interprocess communication facilities in a distributed environment. To aid
in this task a number of routines have been added to the standard C run-time library. In this section
we will consider the new routines provided to manipulate network addresses. While the 4.3BSD net­
working facilities support both the DARPA standard Internet protocols and the Xerox NS protocols,
most of the routines presented in this section do not apply to the NS domain. Unless otherwise
stated, it should be assumed that the routines presented in this section do not apply to the NS
domain.

Locating a service on a remote host requires many levels of mapping before client and server
may communicate. A service is assigned a name which is intended for human consumption; e.g. "the
login server on host monet". This name, and the name of the peer host, must then be translated into
network addresses which are not necessarily suitable for human consumption. Finally, the address
must then used in locating a physical location and route to the service. The specifics of these three
mappings are likely to vary between network architectures. For instance, it is desirable for a network
to not require hosts to be named in such a way that their physical location is known by the client
host. Instead, underlying services in the network may discover the actual location of the host at the
time a client host wishes to communicate. This ability to have hosts named in a location indepen­
dent manner may induce overhead in connection establishment, as a discovery process must take
place, but allows a host to be physically mobile without requiring it to notify its clientele of its
current location.

Standard routines are provided for: mapping host names to network addresses, network names
to network numbers, protocol names to protocol numbers, and service names to port numbers and
the appropriate protocol to use in communicating with the server process. The file <netdb.h> must
be included when using any of these routines.

3.1. Host names
An Internet host name to address mapping is represented by the hostent structure:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; I* alias list *I
int h_addrtype; /*host address type (e.g., AF_INET) *I
int h_length; /* length of address */
char **h_addr_list; I* list of addresses, null terminated */

};

#define h_addr h_addr_list[O] I* first address, network byte order */

The routine gethostbyname(3N) takes an Internet host name and returns a hostent structure, while the
, routine gethostbyaddr(3N) maps Internet host addresses into a hostent structure.

The official name of the host and its public aliases are returned by these routines, along with the
· address type (family) and a null terminated list of variable length address. This list of addresses is

required because it is possible for a host to have many addresses, all having the same name. The
, h_addr definition is provided for backward compatibility, and is defined to be the first address in the

list of addresses in the hostent structure.
The database for these calls is provided either by the file /etc/hosts (hosts(S)), or by use of a

nameserver, named(8). Because of the differences in these databases and their access protocols, the
· information returned may differ. When using the host table version of gethostbyname, only one

address will be returned, but all listed aliases will be included. The nameserver version may return
·. alternate addresses, but will not provide any aliases other than one given as argument.

PSl:S-12 Advanced 4.3BSD IPC Tutorial

Unlike Internet names, NS names are always mapped into host addresses by the use of a stan­
dard NS Clearinghouse service, a distributed name and authentication server. The algorithms for
mapping NS names to addresses via a Clearinghouse are rather complicated, and the routines are not
part of the standard libraries. The user-contributed Courier (Xerox remote procedure call protocol)
compiler contains routines to accomplish this mapping; see the documentation and examples pro­
vided therein for more information. It is expected that almost all software that has to communicate
using NS will need to use the facilities of the Courier compiler.

An NS host address is represented by the following:

union ns_host {

};

u_char c_host[6];
u_short s_host[3];

union ns_net {
u_char
u_short

c_net[4];
s_net[2];

};

struct ns_addr {

};

union ns_net x_net;
union ns_host x_host;
u_short x_port;

The following code fragment inserts a known NS address into a ns_addr:

Advanced 4.3BSD IPC Tutorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>

u_long netnum;
struct sockaddr_ns dst;

bzero((char *)&dst, sizeof(dst));

!*
· * There is no convenient way to assign a long

* integer to a "union ns_net" at present; in
* the future, something will hopefully be provided,
* but this is the portable way to go for now.
* The network number below is the one for the NS net
* that the desired host (gyre) is on.
*I

netnum = htonl(2266);
dst.sns_addr.x_net = *(union ns_net *) &netnum;
dst.sns_family = AF _NS;

I*
*host 2.7.1.0.2a.18 == '"gyre:Computer Science:UotMaryland"'
*I

dst.sns_addr.x_host.c_host[O] = Ox02;
dst.sns_addr.x_host.c_host[l] = Ox07;
dst.sns_addr.x_host.c_host[2] = OxOl;
dst.sns_addr.x_host.c_host[3] = OxOO;
dst.sns_addr.x_host.c_host[4] = Ox2a;
dst.sns_addr.x_host.c_host[5] = Ox 18; ·
dst.sns_addr.x_port = htons(75);

3.2. Network names

PSl:S-13

As for host names, routines for mapping network names to numbers, and back, are provided.
These routines return a netent structure:

!*
* Assumption here is that a network number
* fits in 32 bits - probably a poor one.
*/

struct netent {
char
char
int
int

};

*n_name;
**n_aliases;
n_addrtype;
n_net;

I* official name of net */
I* alias list */
I* net address type*/
/* network number, host byte order */

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network counterparts
to the host routines described above. The routines extract their information from /etc/networks.

NS network numbers are determined either by asking your local Xerox Network Administrator
(and hardcoding the information into your code), or by querying the Clearinghouse for addresses.
The internetwork router is the only process that needs to manipulate network numbers on a regular
basis; if a process wishes to communicate with a machine, it should ask the Clearinghouse for that
machine's address (which will include the net number).

I

PSl:S-14 Advanced 4.3BSD IPC Tutorial

3.3. Protocol names

For protocols, which are defined in /etc/protocols, the protoent structure defines the protocol­
name mapping used with the routines getprotobyname(3N), getprotobynumber(3N), and
getprotoent(3N):

struct protoent {
char
char
int

);

*p_name;
**p_aliases;
p_proto;

I* official protocol name */
I* alias list * /
I* protocol number*/

In the NS domain, protocols are indicated by the "client type" field of a IDP header. No proto­
col database exists; see section 5 for more information.

3.4. Service names

Information regarding services is a bit more complicated. A service is expected to reside at a
specific "port" and employ a particular communication protocol. This view is consistent with the
Internet domain, but inconsistent with other network architectures. Further, a service may reside on
multiple ports. If this occurs, the higher level library routines will have to be bypassed or extended.
Services available are contained in the file /etc/services. A service mapping is described by the servent
structure,

struct servent {
char
char
int
char

};

*s_name;
**s_aliases;
s_port;
*s_proto;

I* official service name */
I* alias list *I
I* port number, network byte order*/
/* protocol to use */

The routine getservbyname(3N) maps service names to a servent structure by specifying a service
name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname("telnet", (char*) 0);

returns the service specification for a telnet server using any protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N) and
getservent(3N) are also provided. The getservbyport routine has an interface similar to that provided
by getservbyname, an optional protocol name may be specified to qualify lookups.

In the NS domain, services are handled by a central dispatcher provided as part of the Courier
remote procedure call facilities. Again, the reader is referred to the Courier compiler documentation
and to the Xerox standard* for further details.

3.5. Miscellaneous

With the support routines described above, an Internet application program should rarely have
to deal directly with addresses. This allows services to be developed as much as possible in a network
independent fashion. It is clear, however, that purging all network dependencies is very difficult. So
long as the user is required to supply network addresses when naming services and sockets there will
always some network dependency in a program. For example, the normal code included in client
programs, such as the remote login program, is of the form shown in Figure 1. (This example will be
considered in more detail in section 4.)

•Courier: The Remote Procedure Call Protocol, XSIS 038112.

Advanced 4.3BSD IPC Tutorial PSl:S-15

If we wanted to make the remote login program independent of the Internet protocols and
addressing scheme we would be forced to add a layer of routines which masked the network depen­
dent aspects from the mainstream login code. For the current facilities available in the system this
does not appear to be worthwhile.

Aside from the address-related data base routines, there are several other routines available in
the run-time library which are of interest to users. These are intended mostly to simplify manipula­
tion of names and addresses. Table I summarizes the routines for manipulating variable length byte
strings and handling byte swapping of network addresses and values.

Call Synopsis
bcmp(sl, s2, n) compare byte-strings; 0 if same, not 0 otherwise
bcopy(sl, s2, n) copy n bytes from sl to s2
bzero(base, n) zero-fill n bytes starting at base
htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

Table I. C run-time routines.
The byte swapping routines are provided because the operating system expects addresses to be

supplied in network order. On some architectures, such as the VAX, host byte ordering is different
than network byte ordering. Consequently, programs are sometimes required to byte swap quantities.
The library routines which return network addresses provide them in network order so that they may
simply be copied into the structures provided to the system. This implies users should encounter the
byte swapping problem only when interpreting network addresses. For example, if an Internet port is
to be printed out the following code would be required:

printf("port number %d\n", ntohs(sp->s_port));

On machines where unneeded these routines are defined as null macros.

I

PS1:8-16

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(argc, argv)
int argc;
char *argv[];

struct sockaddr_in server;
struct servent *sp;
struct hostent *hp;
int s;

sp = getservbyname("login", "tcp");
if (sp = = NULL) {

Advanced 4.3BSD IPC Tutorial

fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(l);

}
hp = gethostbyname(argv[l]);
if(hp ==NULL) {

}

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]);
exit(2);

bzero((char *)&server, sizeof (server));
bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;
s = socket(AF _INET, SOCK._STREAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3);

I* Connect does the bind() for us */

if (connect(s, (char *)&server, sizeof (server)) < 0) {
perror("rlogin: connect");
exit(5);

Figure 1. Remote login client code.

Advanced 4.3BSD IPC Tutorial PS1:8-l 7

4. CLIENT /SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the client/server
model. In this scheme client applications request services from a server process. This implies an
asymmetry in establishing communication between the client and server which has been examined in
section 2. In this section we will look more closely at the interactions between client and server, and
consider some of the problems in developing client and server applications.

The client and server require a well known set of conventions before service may be rendered
(and accepted). This set of conventions comprises a protocol which must be implemented at both
ends of a connection. Depending on the situation, the protocol may be symmetric or asymmetric. In
a symmetric protocol, either side may play the master or slave roles. In an asymmetric protocol, one
side is immutably recognized as the master, with the other as the slave. An example of a symmetric
protocol is the TELNET protocol used in the Internet for remote terminal emulation. An example of
an asymmetric protocol is the Internet file transfer protocol, FTP. No matter whether the specific
protocol used in obtaining a service is symmetric or asymmetric, when accessing a service there is a
"client process" and a "server process". We will first consider the properties of server processes, then
client processes.

A server process normally listens at a well known address for service requests. That is, the
server process remains dormant until a connection is requested by a client's connection to the server's
address. At such a time the server process "wakes up" and services the client, performing whatever
appropriate actions the client requests of it.

Alternative schemes which use a service server may be used to eliminate a flock of server
processes clogging the system while remaining dormant most of the time. For Internet servers in
4.3BSD, this scheme has been implemented via inetd, the so called "internet super-server." Inetd
listens at a variety of ports, determined at start-up by reading a configuration file. When a connection
is requested to a port on which inetd is listening, inetd executes the appropriate server program to
handle the client. With this method, clients are unaware that an intermediary such as inetd has
played any part in the connection. lnetd will be described in more detail in section 5.

A similar alternative scheme is used by most Xerox services. In general, the Courier dispatch
process (if used) accepts connections from processes requesting services of some sort or another. The
client processes request a particular <program number, version number, procedure number> triple.
If the dispatcher knows of such a program, it is started to handle the request; if not, an error is
reported to the client. In this way, only one port is required to service a large variety of different
requests. Again, the Courier facilities are not available without the use and installation of the Courier
compiler. The information presented in this section applies only to NS clients and services that do
not use Courier.

4.1. Servers

In 4.3BSD most servers are accessed at well known Internet addresses or UNIX domain names.
For example, the remote login server's main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname("login ·, "tcp");
if (sp = = NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(l);

The result of the getservbyname call is used in later portions of the code to define the Internet port at
which it listens for service requests (indicated by a connection).

PS1:8-18 Advanced 4.3BSD IPC Tutorial

main(argc, argv)
int argc;
char *argv[];

int f;
struct sockaddr_in from;
struct servent *sp;

sp = getservbyname("login", "tcp");
if (sp = = NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(!);

#ifndef DEBUG

#endif

I* Disassociate server from controlling terminal */

sin.sin_port = sp->s_port; I* Restricted port -- see section 5 *I

f = socket(AF _INET, SOCK._STREAM, 0);

if (bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

listen(f, 5);
for(;;) {

int g, !en = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len);
if (g < 0) {

}

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;

if (fork() = = 0) {
close(f);
doit(g, &from);

}
close(g);

Figure 2. Remote login server.

Advanced 4.3BSD IPC Tutorial

Step two is to disassociate the server from the controlling terminal of its invoker:

for (i = O; i < 3; + +i)
close(i);

open("/", O_RDONL Y);
dup2(0, I);
dup2(0, 2);

i = open("/dev/tty", O_RDWR);
if(i >= 0) {

ioctl(i, TIOCNOTTY, O);
close(i);

PS1:8-19

This step is important as the server will likely not want to receive signals delivered to the process
group of the controlling terminal. Note, however, that once a server has disassociated itself it can no
longer send reports of errors to a terminal, and must log errors via syslog.

Once a server has established a pristine environment, it creates a socket and begins accepting
service requests. The bind call is required to insure the server listens at its expected location. It
should be noted that the remote login server listens at a restricted port number, and must therefore be
run with a user-id of root. This concept of a "restricted port number" is 4BSD specific, and is
covered in section 5.

The main body of the loop is fairly simple:

for(;;) {
int g, !en = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &!en);
if (g < 0) {

}

if(errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;

if (fork() = = 0) { /* Child */
close(f);
doit(g, &from);

}
close(g); /* Parent */

An accept call blocks the server until a client requests service. This call could return a failure status if
the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5). Therefore, the
return value from accept is checked to insure a connection has actually been established, and an error
report is logged via syslog if an error has occurred.

With a connection in hand, the server then forks a child process and invokes the main body of
the remote login protocol processing. Note how the socket used by the parent for queuing connection
requests is closed in the child, while the socket created as a result of the accept is closed in the parent.
The address of the client is also handed the doit routine because it requires it in authenticating
clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the
separate, asymmetric roles of the client and server clearly in the code. The server is a passive-entity,
listening for client connections, while the client process is an active entity, initiating a connection

PS1:8-20 Advanced 4.3BSD IPC Tutorial

when invoked.
Let us consider more closely the steps taken by the client remote login process. As in the server

process, the first step is to locate the service definition for a remote login:

sp = getservbyname("login", "tcp");
if(sp ==NULL) {

fprintftstderr, "rlogin: tcp/login: unknown service\n");
exit(!);

Next the destination host is looked up with a gethostbyname call:

hp = gethostbyname(argv[l]);
if (hp == NULL) {

fprintftstderr, "rlogin: %s: unknown host\n", argv[l]);
exit(2);

With this accomplished, all that is required is to establish a connection to the server at the requested
host and start up the remote login protocol. The address buffer is cleared, then filled in with the
Internet address of the foreign host and the port number at which the login process resides on the
foreign host:

bzero((char *)&server, sizeof (server));
bcopy(hp->h_addr, (char*) &server.sin_addr, hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;

A socket is created, and a connection initiated. Note that connect implicitly performs a bind call,
since s is unbound.

s = socket(hp->h_addrtype, SOCK_STREAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3);

if (connect(s, (struct sockaddr *)&server, sizeof (server)) < 0) {
perror("rlogin: connect");
exit(4);

The details of the remote login protocol will not be considered here.

4.3. Connectionless servers

While connection-based services are the norm, some services are based on the use of datagram
sockets. One, in particular, is the "rwho" service which provides users with status information for
hosts oonnected to a local area network. This service, while predicated on the ability to broadcast
information to all hosts connected to a particular network, is of interest as an example usage of
datagram sockets.

A user on any machine running the rwho server may find out the current status of a machine
with the ruptime(l) program. The output generated is illustrated in Figure 3.

Status information for each host is periodically broadcast by rwho server processes on each
machine. The same server process also receives the status inforination and uses it to update a data­
base. This database is then interpreted to generate the status information for each host. Servers
operate autonomously, coupled only by the local network and its broadcast capabilities.

Advanced 4.3BSD IPC Tutorial PS1:8-21

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31
cad up 2+ 12:04, 8 users, load 4.67, 5.13, 4.59
calder up 10:10, 0 users, load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56
emie down 0:24
esvax down 17:04
ingres down 0:26
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50
merlin down 19+15:37
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12
mo net up 1+00:43, 2 users, load 0.22, 0.09, 0,07
oz down 16:09
statvax up 2+ 15:57, 3 users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must process each
message, whether or not using an rwho server. Unless such a service is sufficiently universal and is
frequently used, the expense of periodic broadcasts outweighs the simplicity.

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks per­
formed by the server. The first task is to act as a receiver of status information broadcast by other
hosts on the network. This job is carried out in the main loop of the program. Packets received at
the rwho port are interrogated to insure they've been sent by another rwho server process, then are
time stamped with their arrival time and used to update a file indicating the status of the host. When
a host has not been heard from for an extended period of time, the database interpretation routines
assume the host is down and indicate such on the status reports. This algorithm is prone to error as a
server may be down while a host is actually up, but serves our current needs.

The second task performed by the server is to supply information regarding the status of its
host. This involves periodically acquiring system status information, packaging it up in a message
and broadcasting it on the local network for other rwho servers to hear. The supply function is trig­
gered by a timer and runs off a signal. Locating the system status information is somewhat involved,
but uninteresting. Deciding where to transmit the resultant packet is somewhat problematical, how­
ever.

Status information must be broadcast on the local network. For networks which do not support
the notion of broadcast another scheme must be used to simulate or replace broadcasting. One possi­
bility is to enumerate the known neighbors (based on the status messages received from other rwho
servers). This, unfortunately, requires some bootstrapping information, for a server will have no idea
what machines are its neighbors until it receives status messages from them. Therefore, if all
machines on a net are freshly booted, no machine will have any known neighbors and thus never
receive, or send, any status information. This is the identical problem faced by the routing table
management process in propagating routing status information. The standard solution, unsatisfactory
as it may be, is to inform one or more servers of known neighbors and request that they always com­
municate with these neighbors. If each server has at least one neighbor supplied to it, status informa­
tion may then propagate through a neighbor to hosts which are not (possibly) directly neighbors. If
the server is able to support networks which provide a broadcast capability, as well as those which do
not, then networks with an arbitrary topology may share status information*.

* One must, however, be concerned about "loops". That is, if a host is connected to multiple networks, it

PSl:S-22 Advanced 4.3BSD IPC Tutorial

It is important that software operating in a distributed environment not have any site-dependent
information compiled into it. This would require a separate copy of the server at each host and make
maintenance a severe headache. 4.3BSD attempts to isolate host-specific information from applica­
tions by providing system calls which return the necessary information*. A mechanism exists, in the
form of an ioctl call, for finding the collection of networks to which a host is directly connected.
Further, a local network broadcasting mechanism has been implemented at the socket level. Combin­
ing these two features allows a process to broadcast on any directly connected local network which
supports the notion of broadcasting in a site independent manner. This allows 4.3BSD to solve the
problem of deciding how to propagate status information in the case of rwho, or more generally in
broadcasting: Such status information is broadcast to connected networks at the socket level, where
the connected networks have been obtained via the appropriate ioctl calls. The specifics of such
broadcastings are complex, however, and will be covered in section 5.

will receive status information from itself. This can lead to an endless, wasteful, exchange of information.
• An example of such a system call is the gethostname<.2) call which returns the host's "official" name.

Advanced 4.3BSD IPC Tutorial

main()
{

sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin_addr = inet_makeaddr(INADDR_ANY, net);
sin.sin_port = sp->s_port;

s = socket(AF _INET, SOCK_DGRAM, O);

on= l;
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on)) < 0) {

syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit(I);

}
bind(s, (struct sockaddr *) &sin, sizeof (sin));

signal(SIGALRM, onalrm);
onaJrm();
for(;;) {

struct whod wd;
int cc, whod, Jen = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0,
(struct sockaddr *)&from, &Jen);

if (cc<= 0) {

}

if (cc < 0 && ermo != EINTR)
syslog(LOG_ERR, "rwhod: recv: %m");

continue;

if (from.sin_port != sp->s_port) {
sysJog(LOG_ERR, "rwhod: %d: bad from port",

n tohs(from. sin_port));
continue;

if (!verify(wd.wd_hostname)) {

}

sysJog(LOG_ERR, "rwhod: malformed host name from %x",
ntohJ(from.sin_addr.s_addr));

continue;

(void) sprintf(path, "%s/whod.%s'', RWHODIR, wd.wd_hostname);
whod = open(path, O_WRONLY I O_CREAT I O_TRUNC, 0666);

(void) time(&wd.wd_recvtime);
(void) write(whod, (char *)&wd, cc);
(void) close(whod);

Figure 4. rwho server.

PS1:8-23

PSI:S-24 Advanced 4.3BSD IPC Tutorial

5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the IPC the mechanisms
already described will suffice in constructing distributed applications. However, others will find the
need to utilize some of the features which we consider in this section.

5.1. Out of band data
The stream socket abstraction includes the notion of "out of band" data. Out of band data is a

logically independent transmission channel associated with each pair of connected stream sockets.
Out of band data is delivered to the user independently of normal data. The abstraction defines that
the out of band data facilities must support the reliable delivery of at least one out of band message
at a time. This message may contain at least one byte of data, and at least one message may be pend­
ing delivery to the user at any one time. For communications protocols which support only in-band
signaling (i.e. the urgent data is delivered in sequence with the normal data), the system normally
extracts the data from the normal data stream and stores it separately. This allows users to choose
between receiving the urgent data in order and receiving it out of sequence without having to buffer
all the intervening data. It is passible to "peek" (via MSG_PEEK) at out of band data. If the socket
has a process group, a SIGURG signal is generated when the protocol is notified of its existence. A
process can set the process group or process id to be informed by the SIGURG signal via the
appropriate fcntl call, as described below for SIGIO. If multiple sockets may have out of band data
awaiting delivery, a select call for exceptional conditions may be used to determine those sockets with
such data pending. Neither the signal nor the select indicate the actual arrival of the out-of-band
data, but only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data stream to indicate the
point at which the out of band data was sent. The remote login and remote shell applications use this
facility to propagate signals between client and server processes. When a signal flushs any pending
output from the remote process(es), all data up to the mark in the data stream is discarded.

To send an out of band message the MSG_OOB flag is supplied to a send or sendto calls, while
to receive out of band data MSG_OOB should be indicated when performing a recvfrom or recv call.
To find out if the read pointer is currently pointing at the mark in the data stream, the SIOCAT­
MARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yes is a I on return, the next read will return data after the mark. Otherwise (assuming out of band
data has arrived), the next read will provide data sent by the client prior to transmission of the out of
band signal. The routine used in the remote login process to flush output on receipt of an interrupt
or quit signal is shown in Figure 5. It reads the normal data up to the mark (to discard it), then reads
the out-of-band byte.

A process may also read or peek at the out-of-band data without first reading up to the mark.
This is more difficult when the underlying protocol delivers the urgent data in-band with the normal
data, and only sends notification of its presence ahead of time (e.g., the TCP protocol used to imple­
ment streams in the Internet domain). With such protocols, the out-of-band byte may not yet have
arrived when a recv is done with the MSG_OOB flag. In that case, the call will return an error of
EWOULDBLOCK. Worse, there may be enough in-band data in the input buffer that normal flow
control prevents the peer from sending the urgent data until the buffer is cleared. The process must
then read enough of the queued data that the urgent data may be delivered. ·

Certain programs that use multiple bytes of urgent data and must handle multiple urgent signals
(e.g., telnet(IC)) need to retain the position of urgent data within the stream. This treatment is avail­
able as a socket-level option, SO_OOBINLINE; see setsockopt(2) for usage. With this option, the
position of urgent data (the "mark") is retained, but the urgent data immediately follows the mark
within the normal data stream returned without the MSG_OOB flag. Reception of multiple urgent
indications causes the mark to move, but no out-of-band data are lost.

Advanced 4.3BSD IPC Tutorial

#include <sys/ioctl.h>
#include <sys/file.h>

oob()
{

int out = FWRITE;
char waste[BUFSIZ], mark;

/* flush local terminal output */
ioctl(!, TIOCFLUSH, (char *)&out);
for(;;) {

if (ioctl(rem, SIOCATMARK, &mark) < 0) {
perror("ioctl");
break;

)
if (mark)

break;
(void) read(rem, waste, sizeof (waste));

)
if (recv(rem, &mark, l, MSG_OOB) < 0) {

perror("recv");

Figure 5. Flushing terminal 1/0 on receipt of out of band data.

5.2. Non-Blocking Sockets

PS1:8-25

It is occasionally convenient to make use of sockets which do not block; that is, 1/0 requests
which cannot complete immediately and would therefore cause the process to be suspended awaiting
completion are not executed, and an error code is returned. Once a socket has been created via the
socket call, it may be marked as non-blocking by Jent/ as follows:

#includ~ <fcntl.h>

int s;

s = socket(AF _INET, SOCK_STREAM, O);

if (fcntl(s, F _SETFL, FNDELA Y) < 0)
perror("fcntl F _SETFL, FNDELA Y");
exit(!);

When performing non-blocking 1/0 on sockets, one must be careful to check for the error
EWOULDBLOCK (stored in the global variable errno), which occurs when an operation would nor­
mally block, but the socket it was performed on is marked as non-blocking. In particular, accept, con­
nect, send, recv, read, and write can all return EWOULDBLOCK, and processes should be prepared to
deal with such return codes. If an operation such as a send cannot be done in its entirety, but partial
writes are sensible (for example, when using a stream socket), the data that can be sent immediately
will be processed, and the return value will indicate the amount actually sent.

PS1:8-26 Advanced 4.3BSD IPC Tutorial

S.3. Interrupt driven socket 1/0
The SIGIO signal allows a process to be notified via a signal when a socket (or more generally, a

file descriptor) has data waiting to be read. Use of the SIGIO facility requires three steps: First, the
process must set up a SIGIO signal handler by use of the signal or sigvee calls. Second, it must set
the process id or process group id which is to receive notification of pending input to its own process
id, or the process group id of its process group (note that the default process group of a socket is
group zero). This is accomplished by use of an fentl call. Third, it must enable asynchronous
notification of pending 1/0 requests with another Jent! call. Sample code to allow a given process to
receive information on pending 110 requests as they occur for a socket s is given in Figure 6. With
the addition of a handler for SIGURG, this code can also be used to prepare for receipt of SIGURG
signals.

#include <fcntl.h>

int io_handler();

signal(SIGIO, io_handler);

I* Set the process receiving SIGIO/SIGURG signals to us*/

if (fcntl(s, F _SETOWN, getpid()) < 0) (
perror("fcntl F _SETOWN"');
exit(l);

I* Allow receipt of asynchronous 1/0 signals */

if (fcntl(s, F _SETFL, FASYNC) < 0) (
perror("'fcntl F _SETFL, FASYNC"');
exit(l);

Figure 6. Use of asynchronous notification of 1/0 requests.

S.4. Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated process
number, just as is done for terminals. This value is initialized to zero, but may be redefined at a later
time with the F _SETOWN Jent!, such as was done in the code above for SIGIO. To set the socket's
process id for signals, positive arguments should be given to the fentl call. To set the socket's process
group for signals, negative arguments should be passed to fentl. Note that the process number indi­
cates either the associated process id or the associated process group; it is impossible to specify both
at the same time. A similar fentl, F _GETOWN, is available for determining the current process
number of a socket.

Another signal which is useful when constructing server processes is SIGCHLD. This signal is
delivered to a process when any child processes have changed state. Normally servers use the signal
to "reap" child processes that have exited without explicitly awaiting their termination or periodic
polling for exit status. For example, the remote login server loop shown in Figure 2 may be aug­
mented as shown in Figure 7.

If the parent server process fails to reap its children, a large number of "zombie" processes may
be created.

Advanced 4.3BSD IPC Tutorial

int reaper();

signal(SIGCHLD, reaper);
listen(f, 5);
for(;;) {

int g, Jen = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &!en,);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "'rlogind: accept: %m ");

continue;

#include <wait.h>
reaper()
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

Figure 7. Use of the SIGCHLD signal.

5.5. Pseudo terminals

PSl:S-27

Many programs will not function properly without a terminal for standard input and output.
Since sockets do not provide the semantics of terminals, it is often necessary to have a process com­
municating over the network do so through a pseudo-terminal. A pseudo- terminal is actually a pair
of devices, master and slave, which allow a process to serve as an active agent in communication
between processes and users. Data written on the slave side of a pseudo-terminal is supplied as input
to a process reading from the master side, while data written on the master side are processed as ter­
minal input for the slave. In this way, the process manipulating the master side of the pseudo­
terminal has control over the information read and written on the slave side as if it were manipulat­
ing the keyboard and reading ~he screen on a real terminal. The purpose of this abstraction is to
preserve terminal semantics over a network connection- that is, the slave side appears as a normal
terminal to any process reading from or writing to it.

For example, the remote login server uses pseudo-terminals for remote login sessions. A user
logging in to a machine across the network is provided a shell with a slave pseudo-terminal as stan­
dard input, output, and error. The server process then handles the communication between the pro­
grams invoked by the remote shell and the user's local client process. When a user sends a character
that generates an interrupt on the remote machine that flushes terminal output, the pseudo-terminal
generates a control message for the server process. The server then sends an out of band message to
the client process to signal a flush of data at the real terminal and on the intervening data buffered in
the network.

Under 4.3BSD, the name of the slave side of a pseudo-terminal is of the form ldev/ttyxy, where
x is a single letter starting at 'p' and continuing to 't'. y is a hexadecimal digit (i.e., a single character
in the range 0 through 9 or 'a' through 'f). The master side of a pseudo-terminal is /devlptyxy, where
x and y correspond to the slave side of the pseudo-terminal.

!, i
i ••

PS1:8-28 Advanced 4.3BSD IPC Tutorial

In general, the method of obtaining a pair of master and slave pseudo-terminals is to find a
pseudo-terminal which is not currently in use. The master half of a pseudo-terminal is a single-open
device; thus, each master may be opened in turn until an open succeeds. The slave side of the
pseudo-terminal is then opened, and is set to the proper terminal modes if necessary. The process
then forks; the child closes the master side of the pseudo-terminal, and execs the appropriate program.
Meanwhile, the parent closes the slave side of the pseudo-terminal and begins reading and writing
from the master side. Sample code making use of pseudo-terminals is given in Figure 8; this code
assumes that a connection on a socket s exists, connected to a peer who wants a service of some kind,
and that the process has disassociated itself from any previous controlling terminal.

5.6. Selecting specific protocols

If the third argument to the socket call is 0, socket will select a default protocol to use with the
returned socket of the type requested. The default protocol is usually correct, and alternate choices
are not usually available. However, when using "raw" sockets to communicate directly with lower­
level protocols or hardware interfaces, the protocol argument may be important for setting up demul­
tiplexing. For example, raw sockets in the Internet family may be used to implement a new protocol
above IP, and the socket will receive packets only for the protocol specified. To obtain a particular
protocol one determines the protocol number as defined within the communication domain. For the
Internet domain one may use one of the library routines discussed in section 3, such as getproto­
byname:

Advanced 4.3BSD IPC Tutorial

gotpty = O;
for (c = 'p'; !gotpty && c <= 's'; c++) {

line = "/dev/ptyXX";
line[sizeof("/dev/pty")-1] = c;
line[sizeof("/dev/ptyp")-1] = 'O';

}

if (stat(line, &statbut) < 0)
break;

for (i = O; i < 16; i++) {
line[sizeof(" /dev/ptyp")-1] = "0123456789abcdef'[i];
master= open(line, O_RDWR);
if (master > 0) {

gotpty = 1;
break;

if (!gotpty) {
syslog(LOG_ERR, "All network ports in use");
exit(l);

line[sizeof("/dev/")-1] = 't';
slave = open(line, O_RDWR); /* slave is now slave side */
if (slave < 0) {

syslog(LOG_ERR, "Cannot open slave pty %s", line);
exit(l);

ioctl(slave, TIOCGETP, &b); /*Set slave tty modes*/
b.sg_flags = CRMODIXTABSIANYP;
ioctl(slave, TIOCSETP, &b);

i =fork();
if (i < 0) {

syslog(LOG_ERR, "fork: %m");
exit(l);

) else if (i) { /* Parent */
close(slave);

) else { /* Child */
(void) close(s);
(void) close(master);
dup2(slave, O);
dup2(slave, l);
dup2(slave, 2);
if (slave > 2)

(void) close(slave);

Figure 8. Creation and use of a pseudo terminal

PS1:8-29

PS1:8-30

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

pp = getprotobyname("newtcp");
s = socket(AF _INET, SOCK_STREAM, pp->p_proto);

Advanced 4.3BSD IPC Tutorial

This would result in a socket s using a stream based connection, but with protocol type of "newtcp"
instead of the default "tcp."

In the NS domain, the available socket protocols are defined in <netnslns.h>. To create a raw
socket for Xerox Error Protocol messages, one might use:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>

s = socket(AF _NS, SOCK_RA W, NSPROTO_ERROR);

5.7. Address binding
As was mentioned in section 2, binding addresses to sockets in the Internet and NS domains can

be fairly complex. As a brief reminder, these associations are composed of local and foreign
addresses, and local and foreign ports. Port numbers are allocated out of separate spaces, one for
each system and one for each domain on that system. Through the bind system call, a process may
specify half of an association, the <local address, local port> part, while the connect and accept primi­
tives are used to complete a socket's association by specifying the <foreign address, foreign port>
part. Since the association is created in two steps the association uniqueness requirement indicated
previously could be violated unless care is taken. Further, it is unrealistic to expect user programs to
always know proper values to use for the local address and local port since a host may reside on mul­
tiple networks and the set of allocated port numbers is not directly accessible to a user.

To simplify local address binding in the Internet domain the notion of a "wildcard" address has
been provided. When an address is specified as INADDR_ANY (a manifest constant defined in
<netinet/in.h>), the system interprets the address as "any valid address". For example, to bind a
specific port number to a socket, but leave the local address unspecified, the following code might be
used:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket(AF _INET, SOCK_STREAM, 0);
sin.sin_family = AF _INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port number,
and sent to any of the possible addresses assigned to a host. For example, if a host has addresses
128.32.0.4 and 10.0.0.78, and a socket is bound as above, the process will be able to accept connec­
tion requests which are addressed to 128.32.0.4 or 10.0.0. 78. If a server process wished to only allow
hosts on a given network connect to it, it would bind the address of the host on the appropriate net­
work.

Advanced 4.3BSD IPC Tutorial PS1:8-31

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the
system will select an appropriate port number for it. This shortcut will work both in the Internet and
NS domains. For example, to bind a specific local address to a socket, but to leave the local port
number unspecified:

hp = gethostbyname(hostname);
if (hp = = NULL) (

}
bcopy(hp->h_addr, (char*) sin.sin_addr, hp->h_length);
sin.sin_port = htons(O);
bind(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based on two criteria. The first is that on 4BSD systems,
Internet ports below IPPORT_RESERVED (1024) (for the Xerox domain, 0 through 3000) are
reserved for privileged users (i.e., the super user); Internet ports above IPPORT_USERRESERVED
(50000) are reserved for non-privileged servers. The second is that the port number is not currently
bound to some other socket. In order to find a free Internet port number in the privileged range the
rresvport library routine may be used as follows to return a stream socket in with a privileged port
number:

int !port= IPPORT_RESERVED - I;
int s;
s = rresvport(&lport);
if (s < 0) (

if(ermo == EAGAIN)
fprintf(stderr, ··socket: all ports in use\n");

else
perror('"rresvport: socket");

The restriction on allocating ports was done to allow processes executing in a "secure" environment
to perform authentication based on the originating address and port number. For example, the rlo­
gin(I) command allows users to log in across a network without being asked for a password, if two
conditions hold: First, the name of the system the user is logging in from is in the file /etc/hosts.equiv
on the system he is logging in to (or the system name and the user name are in the user's .rhosts file
in the user's home directory), and second, that the user's rlogin process is coming from a privileged
port on t.he machine from which he is logging. The port number and network address of the machine
from which the user is logging in can be determined either by the from result of the accept call, or
from the getpeername call.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an
application. This is because associations are created in a two step process. For example, the Internet
file transfer protocol, FTP, specifies that data connections must always originate from the same local
port. However, duplicate associations are avoided by connecting to different foreign ports. In this
situation the system would disallow binding the same local address and port number to a socket if a
previous data connection's socket still existed. To override the default port selection algorithm, an
option call must be performed prior to address binding:

int on = 1;

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
bind(s, (struct sockaddr *) &sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not violate
the uniqueness requirement as the system still checks at connect time to be sure any other sockets

I

PS1:8-32 Advanced 4.3BSD IPC Tutorial

with the same local address and port do not have the same foreign address and port. If the associa­
tion already exists, the error EADDRINUSE is returned.

5.8. Broadcasting and determining network configuration
By using a datagram socket, it is possible to send broadcast packets on many networks sup­

ported by the .system. The network itself inust support broadcast; the system provides no simulation
of broadcast in software. Broadcast messages can place a high load on a network since they force
every host on the network to service them. Consequently,. the ability to send broadcast packets has
been limited to sockets which are explicitly marked as allowing broadcasting. Broadcast is typically
used for one of two reasons: it is desired to find a resource on a local network without prior
knowledge of its address, or important functions such as routing require that information be sent to
all accessible neighbors.

or

To send a broadcast message, a datagram socket should be created:

s = socket(AF _INET, SOCK_DGRAM, O);

s = socket(AF _NS, SOCK._DGRAM, O);

The socket is marked as allowing broadcasting,

int on = 1;

setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on));

and at least a port number should be bound to the socket:

sin.sin_family = AF _INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr •) &sin, sizeof (sin));

or, for the NS domain,

sns.sns_family = AF _NS;
netnum = htonl(net);
sns.sns_addr.x_net = •(union ns_net •) &netnum; t• insert net number •/
sns.sns_addr.x_port = htons(MYPORT);
bind(s, (struct sockaddr •) &sns, sizeof (sns));

The destination address of the message to be broadcast depends on the network(s) on which the mes­
sage is to be broadcast. The Internet domain supports a shorthand notation for broadcast on the
local network, the address INADDR_BROADCAST (defined in <netinetlin.h>. To determine ·the list
of addresses for all reachable neighbors requires knowledge of the networks to which the host is con­
nected. Since this information should be obtained in a host-independent fashion and may be impos­
sible to derive, 4.3BSD provides a method of retrieving this information from the system data struc­
tures. The SIOCGIFCONF ioctl call returns the interface configuration of a host in the form of a sin­
gle ifconf structure; this structure contains a "data area" which is made up of an array of of ifreq
structures, one for each network interface to which the host is connected. These structures are
defined in <netlif.h> as follows:

Advanced 4.3BSD IPC Tutorial

struct ifconf (

};

int ifc_len;
union (

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;

PSI :8-33

/* size of associated buffer */

/* buffer address *I #define ifc_buf ifc_ifcu.ifcu_buf
#define ifc_req ifc_ifcu.ifcu_req I* array of structures returned */

#define IFNAMSIZ 16

struct ifreq (

};

char ifr_name[IFNAMSIZ];
union (

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
caddr_t ifru_data;

} ifr_ifru;

I* if name, e.g. "enO" */

#define
#define
#define
#define
#define

ifr_addr
ifr_dstaddr
ifr _broadaddr
ifr_flags
ifr_data

ifr _ifru.ifru_addr
ifr_ifru.ifru_dstaddr
ifr _ifru.ifru_broadaddr
ifr_ifru.ifru_flags
ifr_ifru.ifru_data

I* address *I
I* other end of p-to-p link */
I* broadcast address *I
I* flags */
I* for use by interface */

The actual call which obtains the interface configuration is

struct ifconf ifc;
char buflBUFSIZ];

ifc.ifc_len = sizeof (buf);
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONF, (char*) &ifc) < 0) (

After this call buf will contain one ifreq structure for each network to which the host is connected,
and ifc.ifc_len will have been modified to reflect the number of bytes used by the ifreq structures.

For each structure there exists a set of "interface flags" which tell whether the network
corresponding to that interface is up or down, point to point or broadcast, etc. The SIOCGIFFLAGS
ioctl retrieves these flags for an interface specified by an ifreq structure as follows:

I

PSI:S-34

struct ifreq •ifr;

ifr = ifc.ifc_req;

for (n = ifc.ifc_len I sizeof (struct ifreq); --n >= O; ifr+ +) { ,.
•We must be careful that we don't use an interface

Advanced 4.3BSD IPC Tutorial

• devoted to an address family other than those intended;
• if we were interested in NS interfaces, the
• AF _INET would be AF _NS . . ,

if (ifr->ifr_addr.sa_family != AF _INET)
continue;

if (ioctl(s, SIOCGIFFLAGS, (char*) ifr) < 0) {

} ,.
• Skip boring cases . . ,

if ((ifr->ifr_flags & IFF _UP) = = 0 11
(ifr->ifr_flags & IFF _LOOPBACK) 11
(ifr->ifr_flags & (IFF _BROADCAST I IFF _POINTTOPOINT)) = = 0)

continue;

Once the flags have been obtained, the broadcast address must be obtained. In the case of
broadcast networks this is done via the SIOCGIFBRDADDR ioctl, while for point-to-point networks
the address of the destination host is obtained with SIOCGIFDSTADDR.

struct sockaddr dst;

if (ifr->ifr_flags & IFF _POINTTOPOINT) {
if (ioctl(s, SIOCGIFDSTADDR, (char*) ifr) < 0) {

}
bcopy((char *) ifr->ifr_dstaddr, (char *) &dst, sizeof (ifr->ifr_dstaddr));

} else if (ifr->ifr_flags & IFF _BROADCAST) {
if (ioctl(s, SIOCGIFBRDADDR, (char*) ifr) < 0) {

}
bcopy((char *) ifr->ifr_broadaddr, (char *) &dst, sizeof (ifr->ifr_broadaddr));

After the appropriate ioctrs have obtained the broadcast or destination address (now in dst), the
sendto call may be used:

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst));

In the above loop one sendto occurs for every interface to which the host is connected that supports
the notion of broadcast or point-to-point addressing. If a process only wished to send broadcast mes­
sages on a given network, code similar to that outlined above would be used, but the loop would need
to find the correct destination address.

Received broadcast messages contain the senders address and port, as datagram sockets are
bound before a message is allowed to go out.

Advanced 4.3BSD IPC Tutorial PS1:8-35

5.9. Socket Options
It is possible to set and get a number of options on sockets via the setsockopt and getsockopt sys­

tem calls. These options include such things as marking a socket for broadcasting, not to route, to
linger on close, etc. The general forms of the calls are:

setsockopt(s, level, optname, optval, optlen);

and

getsockopt(s, level, optname, optval, optlen);

The parameters to the calls are as follows: s is the socket on which the option is to be applied.
Level specifies the protocol layer on which the option is to be applied; in most cases this is the
"socket level", indicated by the symbolic constant SOL_SOCKET, defined in <sys/socket.h>. The
actual option is specified in optname, and is a symbolic constant also defined in <syslsocket.h>.
Optval and Opt/en point to the value of the option (in most cases, whether the option is to be turned
on or off), and the length of the value of the option, respectively. For getsockopt, opt/en is a value­
result parameter, initially set to the size of the storage area pointed to by optval, and modified upon
return to indicate the actual amount of storage used.

An example should help clarify things. It is sometimes useful to determine the type (e.g.,
stream, datagram, etc.) of an existing socket; programs under inetd (described below) may need to
perform this task. This can be accomplished as follows via the SO_ TYPE socket option and the get­
sockopt call:

#include <sys/types.h>
#include <sys/socket.h>

int type, size;

size = sizeof (int);

if(getsockopt(s, SOL_SOCKET, SO_TYPE, (char*) &type, &size)< 0) {

After the getsockopt call, type will be set to the value of the socket type, as defined in <sys/socket.h>.
If, for example, the socket were a datagram socket, type would have the value corresponding to
SOCK._DGRAM.

5.10. NS Packet Sequences

The semantics of NS connections demand that the user both be able to look inside the network
header associated with any incoming packet and be able to specify what should go in certain fields of
an outgoing packet. Using different calls to setsockopt, it is possible to indicate whether prototype
headers will be associated by the user with each outgoing packet (SO_HEADERS_ON_OUTPUT), to
indicate whether the headers received by the system should be delivered to the user
(SO_HEADERS_ON_INPUT), or to indicate default information that should be associated with all
outgoing packets on a given socket (SO_DEFAULT_HEADERS).

The contents of a SPP header (minus the IDP header) are:

I

I

I

PSl:S-36

struct sphdr {
u_char sp_cc;

#define SP _SP Ox80
#define SP _SA Ox40
#define SP _OB Ox20
#define SP_EM: Ox!O

};

u_char sp_dt;
u_short sp_sid;
u_short sp_did;
u_short sp_seq;
u_short sp_ack;
u_short sp_alo;

Advanced 4.3BSD IPC Tutorial

I* connection control */
I* system packet *I
/* send acknowledgement */
I* attention (out of band data) */
I* end of message */
I* datastream type *I
I* source connection identifier */
I* destination connection identifier */
I* sequence number */
I* acknowledge number */
I* allocation number*/

Here, the items of interest are the datastream type and the connection control fields. The semantics of
the datastream type are defined by the application(s) in question; the value of this field is, by default,
zero, but it can be used to indicate things such as Xerox's Bulk Data Transfer Protocol (in which case
it is set to one). The connection control field is a mask of the flags defined just below it. The user
may set or clear the end-of-message bit to indicate that a given message is the last of a given sub­
stream type, or may set/clear the attention bit as an alternate way to indicate that a packet should be
sent out-of-band. As an example, to associate prototype headers with outgoing SPP packets, consider:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

struct sockaddr_ns sns, to;
int s, on = I;
struct databuf {

struct sphdr proto_spp; /*prototype header*/
char buf[534]; .. · I* max. possible data by Xerox std. */

} buf;

s = socket(AF_NS, SOCK_SEQPACKET, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &on, sizeof(on));

buf.proto_spp.sp_dt = I; I* bulk data*/
buf.proto_spp.sp_cc = SP _EM:; /* end-of-message */
strcpy(buf.buf, "hello world\n");
sendto(s, (char*) &buf, sizeof(struct sphdr) + strlen("hello world\n"),

(struct sockaddr *) &to, sizeof(to));

Note that one must be careful when writing headers; if the prototype header is not written with the
data with which it is to be associated, the kernel will treat the first few bytes of the data as the header,
with unpredictable results. To turn off the above association, and to indicate that packet headers
received by the system should be passed up to the user, one might use:

Advanced 4.3BSD IPC Tutorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

struct sockaddr sns;
int s, on = 1, off = O;

s = socket(AF _NS, SOCK_SEQPACKET, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &off, sizeof(ofl));
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_INPUT, &on, sizeof(on));

PSl:S-37

Output is handled somewhat differently in the IDP world. The header of an IDP-level packet
looks like:

struct idp {
u_short
u_short
u_char
u_char

};

struct ns_addr
struct ns_addr

idp_sum;
idp_len;
idp_tc;
idp_pt;
idp_dna;
idp_sna;

I* Checksum*/
I* Length, in bytes, including header */
I* Transport Control (i.e., hop count) */
I* Packet Type (i.e., level 2 protocol) */
I* Destination Network Address */
I* Source Network Address*/

The primary field of interest in an IDP header is the packet type field. The standard values for this
field are (as defined in <netnslns.h>):

#define NSPROTO_RI I /*Routing Information*/
#define NSPROTO_ECHO 2 /* Echo Protocol */
#define NSPROTO_ERROR 3 /* Error Protocol */
#define NSPROTO_PE 4 /*Packet Exchange*/
#define NSPROTO_SPP 5 I* Sequenced Packet*/

For SPP connections, the contents of this field are automatically set to NSPROTO_SPP; for IDP
packets, this value defaults to zero, which means "unknown".

Setting the value of that field with SO_DEFAULT_HEADERS is easy:

l~;

PS1:8-38

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/idp.h>

struct sockaddr sns;
struct idp proto_idp;
int s, on = I;

I* prototype header*/

s = socket(AF _NS, SOCK_DGRAM, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));
proto_idp.idp_pt = NSPROTO_PE; ·I* packet exchange*/

Advanced 4.3BSD IPC Tutorial

setsockopt(s, NSPROTO_IDP, SO_DEFAULT_HEADERS, (char*) &proto_idp,
sizeof(proto_idp));

Using SO_HEADERS_ON_OUTPUT is somewhat more difficult. When
SO_HEADERS_ON_OUTPUT is turned on for an IDP socket, the socket becomes (for all intents
and purposes) a raw socket. In this case, all the fields of the prototype header (except the length and
checksum fields, which are computed by the kernel) must be filled in correctly in order for the socket
to send and receive data in a sensible manner. To be more specific, the source address must be set to
that of the host sending the data; the destination address must be set to that of the host for whom the
data is intended; the packet type must be set to whatever value is desired; and the hopcount must be
set to some reasonable value (almost always zero). It should also be noted that simply sending data
using write will not work unless a connect or sendto call is used, in spite of the fact that it is the desti­
nation address in the prototype header that is used, not the one given in either of those calls. For
almost all IDP applications, using SO_DEFAULT_HEADERS is easier and more desirable than writ­
ing headers.

5.11. Three-way Handshake

The semantics of SPP connections indicates tl~at a three-way handshake, involving changes in
the datastream type, should - but is not absolutely required to - take place before a SPP connection
is closed. Almost all SPP connections are "well-behaved" in this manner; when communicating with
any process, it is best to assume that the three-way handshake is required unless it is known for cer­
tain that it is not required. In a three-way close, the closing process indicates that it wishes to close
the connection by sending a zero-length packet with end-of-message set and with datastream type 254.
The other side of the connection indicates that it is OK to close by sending a zero-length packet with
end-of-message set and datastream type 255. Finally, the closing process replies with a zero-length
packet with substream type 255; at this point, the connection is considered closed. The following
code fragments are simplified examples of how one might handle this three-way handshake at the user
level; in the future, support for this type of close will probably be provided as part of the C library or
as part of the kernel. The first code fragment below illustrates how a process might handle three-way
handshake if it sees that the process it is communicating with wants to close the connection:

Advanced 4.3BSD IPC Tutorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

#ifndef SPPSST _END
#define SPPSST_END 254
#define SPPSST_ENDREPLY 255
#endif
struct sphdr proto_sp;
int s;

read(s, buf, BUFSIZE);
if (((struct sphdr *)buf)->sp_dt = = SPPSST _END) {

I*
* SPPSST _END indicates that the other side wants to
*close.
*I

proto_sp.sp_dt = SPPSST_ENDREPLY;
proto_sp.sp_cc = SP _EM;
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,

sizeof(proto_sp));
write(s, buf, O);
I*
* Write a zero-length packet with datastream type = SPPSST _ENDREPL Y
* to indicate that the close is OK with us. The packet that we
*don't see (because we don't look for it) is another packet
*from the other side of the connection, with SPPSST_ENDREPLY
* on it it, too. Once that packet is sent, the connection is
* considered closed; note that we really ought to retransmit
*the close for some time if we do not get a reply.
*I

close(s);

PSl:S-39

To indicate to another process that we would like to close the connection, the following code would
suffice:

PS1:8-40

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

#ifndef SPPSST _END
#define SPPSST _END 254
#define SPPSST_ENDREPLY 255
#endif
struct sphdr proto_sp;
int s;

proto_sp.sp_dt = SPPSST_END;
proto_sp.sp_cc = SP _EM;

Advanced 4.3BSD IPC Tutorial

setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,
sizeof(proto_sp));

write(s, buf, 0); /* send the end request */
proto_sp.sp_dt = SPPSST_ENDREPLY;
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,

sizeof(proto_sp));
I*
*We assume (perhaps unwisely)
* that the other side will send the
* ENDREPL Y, so we'll just send our final ENDREPL Y
* as if we'd seen theirs already.
*I

write(s, buf, 0);
close(s);

5.12. Packet Exchange
The Xerox standard protocols include a protocol that is both reliable and datagram-oriented.

This protocol is known as Packet Exchange (PEX or PE) and, like SPP, is layered on top of IDP.
PEX is important for a number of things: Courier remote procedure calls may be expedited through
the use of PEX, and many Xerox servers are located by doing a PEX "BroadcastForServers" opera­
tion. Although there is no implementation of PEX in the kernel, it may be simulated at the user level
with some clever coding and the use of one peculiar getsockopt. A PEX packet looks like:

I*
* The packet-exchange header shown here is not defined
* as part of any of the system include files.
*I

struct pex {
struct idp
u_short
u_short

};

p_idp;
ph_id[2];
ph_client;

I* idp header */
I* unique transaction ID for pex */
I* client type field for pex */

The ph_id field is used to hold a "unique id" that is used in duplicate suppression; the ph_client field
indicates the PEX client type (similar to the packet type field in the IDP header). PEX reliability
stems from the fact that it is an idempotent ("I send a packet to you, you send a packet to me") pro­
tocol. Processes on each side of the connection may use the unique id to determine if they have seen
a given packet before (the unique id field differs on each packet sent) so that duplicates may be
detected, and to indicate which message a given packet is in response to. If a packet with a given

Advanced 4.3BSD IPC Tutorial PSl:S-41

unique id is sent and no response is received in a given amount of time, the packet is retransmitted
until it is decided that no response will ever be received. To simulate PEX, one must be able to gen­
erate unique ids -- something that is hard to do at the user level with any real guarantee that the id is
really unique. Therefore, a means (via getsockopt) has been provided for getting unique ids from the
kernel. The following code fragment indicates how to get a unique id:

long uniqueid;
int s, idsize = sizeof(uniqueid);

s = socket(AF _NS, SOCK_DGRAM, O);

/* get id from the kernel - only on IDP sockets */
getsockopt(s, NSPROTO_PE, SO_SEQNO, (char *)&uniqueid, &idsize);

The retransmission and duplicate suppression code required to simulate PEX fully is left as an exer­
cise for the reader.

5.13. Inetd
One of the daemons provided with 4.3BSD is inetd, the so called "internet super-server." lnetd

is invoked at boot time, and determines from the file /etclinetd.conf the servers for which it is to
listen. Once this information has been read and a pristine environment created, inetd proceeds to
create one socket for each service it is to listen for, binding the appropriate port number to each
socket.

lnetd then performs a select on all these sockets for read availability, waiting for somebody wish­
ing a connection to the service corresponding to that socket. Inetd then performs an accept on the
socket in question, forks, dups the new socket to file descriptors 0 and I (stdin and stdout), closes
other open file descriptors, and execs the appropriate server.

Servers making use of inetd are considerably simplified, as inetd takes care of the majority of the
IPC work required in establishing a connection. The server invoked by inetd expects the socket con­
nected to its client on file descriptors 0 and I, and may immediately perform any operations such as
read, write, send, or recv. Indeed, servers may use buffered 1/0 as provided by the "stdio" conven­
tions, as long as as they remember to use fflush when appropriate.

One call which may be of interest to individuals writing servers under inetd is the getpeername
call, which returns the address of the peer (process) connected on the other end of the socket. For
example, to log the Internet address in "dot notation" (e.g., "128.32.0.4") of a client connected to a
server under inetd, the following code might be used:

struct sockaddr_in name;
int namelen = sizeof (name);

if (getpeername(O, (struct sockaddr *)&name, &namelen) < 0) {
syslog(LOG_ERR, "getpeername: %m");

· exit(!);
) else

syslog(LOG_INFO, "Connection from %s'', inet_ntoa(name.sin_addr));

, While the getpeername call is especially useful when writing programs to run with inetd, it can be
used under other circumstances. Be warned, however, that getpeername will fail on UNIX domain
sockets.

Lint, a C Program Checker

Lint, a C Program Checker

S. C. Johnson

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lint is a command which examines C source programs, detecting a number of
bugs and obscurities. It enforces the type rules of C more strictly than the C com­
pilers. It may also be used to enforce a number of portability restrictions involved
in moving programs between different machines and/or operating systems. Another
option detects a number of wasteful, or error prone, constructions which neverthe­
less are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them for
consistency.

The separation of function between lint and the C compilers has both histori­
cal and practical rationale. The compilers turn C programs into executable files
rapidly and efficiently. This is possible in part because the compilers do not do
sophisticated type checking, especially between separately compiled programs. Lint
takes a more global, leisurely view of the program, looking much more carefully at
the compatibilities.

This document discusses the use of lint, gives an overview of the implementa­
tion, and gives some hints on the writing of machine independent C code.

Introduction and Usage

PS1:9-l

Suppose there are two C' source files, filel.c and file2.c, which are ordinarily compiled and
loaded together. Then the command

lint file l.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practical rea­
sons) enforce them. The command

lint -p file l.c file2.c

will produce, in addition to the above messages, additional messages which relate to the portability of
the programs to other operating systems and machines. Replacing the -p by -h will produce messages
about various error-prone or wasteful constructions which, strictly speaking, are not bugs. Saying -hp
gets the whole works.

The next several sections describe the major messages; the document closes with sections dis­
cussing the implementation and giving suggestions for writing portable C. An appendix gives a sum­
mary of the lint options.

A Word About Philosophy
Many of the facts which lint needs may be impossible to discover. For example, whether a

given function in a program ever gets called may depend on the input data. Deciding whether exit is
ever called is equivalent to solving the famous "halting problem," known to be recursively

PS1:9-2 Lint, a C Program Checker

undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it can
never be called. If a function is mentioned, lint assumes it can be called; this is not necessarily so,
but in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form "xxx might
. be a bug" are easy to generate, but are acceptable only in proportion to· the fraction of real bugs they
uncover. If this fraction of real bugs is too small, the messages lose their credibility and serve merely
to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages which lint
produces.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions
may become unused; it is not uncommon for external variables, or even entire functions, to become
unnecessary, and yet not be removed from the source. These "errors of commission" rarely cause
working programs to fail, but they are a source of inefficiency, and make programs harder to under­
stand and change. Moreover, information .about such unused variables and functions can occasion­
ally serve to disci>ver bugs; if a function does a necessary job, and is never called, something is wrong!

Lint complains about variables and functions which are defined but not otherwise mentioned.
An exception is variables which are declared through explicit extern statements but are never refer­
enced; thus the statement

extern float sin();

will evoke no comment if sin is never used. Note that this agrees· with the semantics of the C com­
piler. In some cases, these unused external declarations might be of some interest; they can be
discovered by adding the -x flag to the lint invocation .

. Certain styles of programming require· many functions to be written with similar interfaces; fre­
quently, some of the arguments may be unused in many of the calls. The -v option is available to
suppress the printing of complaints about unused arguments. When -v is in effect, no messages are
produced about unused arguments except for those arguments which are unused and also declared as
register arguments; this can be considered an active (and preventable) waste of the register resources
of the machine.

There is one case where information about unused, or undefined, varia"les is more distracting
than helpful. This is when lint is applied to some, but not all, files out of a collection which are to be
loaded together. In this case, many of the functions and variables defined may not be used, and, con­
versely, many functions and variables defined elsewhere may be used. The -u flag may be used to
suppress the spurious messages which might otherwise appear.

Set/Used Information

Lint attempts to detect cases where a variable is used before it is set. This is very difficult to do
well; many algorithms take a good deal of time and space, and still produce messages about perfectly
valid programs. Lint detects local variables (automatic and register storage classes) whose first use
appears physically earlier in the input file than the first assignment to the variable. It assumes that
taking the address of a variable constitutes a "use," since the actual use may occur at any later time,
in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very sim­
ple and quick to implement, since the true flow of control need not be discovered. It does mean that
lint can complain about some programs which are legal, but these programs would probably be con­
sidered bad on stylistic grounds (e.g. might contain at least two goto's). Because static and external
variables are initialized to 0, no meaningful information can be discovered about their uses. The
algorithm deals correctly, however, with initialized automatic variables, and variables which are used
in the expression which first sets them.

Lint, a C Program Checker PS1:9-3

The set/used information also permits recognition of those local variables which are set and
never used; these form a frequent source of inefficiencies, and may also be symptomatic of bugs.

Flow of Control
Lint attempts to detect unreachable portions of the programs which it processes. It will com­

plain about unlabeled statements immediately following goto, break, continue, or return statements.
An attempt is made to detect loops which can never be left at the bottom, detecting the special cases
while(I) and for(;;) as infinite loops. Lint also complains about loops which cannot be entered at
the top; some valid programs may have such loops, but at best they are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to exit may cause unreachable
code which lint does not detect; the most serious effects of this are in the determination of returned
function values (see the next section).

One form of unreachable statement is not usually complained about by lint; a break statement
that cannot be reached causes no message. Programs generated by yacc ,2 and especially lex ,3 may
have literally hundreds of unreachable break statements. The -0 flag in the C compiler will often
eliminate the resulting object code inefficiency. Thus, these unreached statements are of little impor­
tance, there is typically nothing the user can do about them, and the resulting messages would clutter
up the lint output. If these messages are desired, lint can be invoked with the -b option.

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly use
function "values" which have never been returned. Lint addresses this problem in a number of ways.

and

Locally, within a function definition, the appearance of both

return(expr);

return ;

statements is cause for alarm; lint will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of control
reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a) return (3);
g();
}

Notice that, if a tests false, f will call g and then return with no defined return value; this will trigger a
complaint from lint. If g, like exit, never returns, the message will still be produced when in fact
nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also accounts
for a substantial fraction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is some­
times, or always, unused. When the value is always unused, it may constitute an inefficiency in the
function definition. When the value is sometimes unused, it may represent bad style (e.g., not testing
for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of occasions
in "working" programs; the desired function value just happened to have been computed in the func­
tion return register!

PS1:9-4 Lint, a C Program Checker

Type Checking
Lint enforces the type checking rules of C more strictly than the compilers do. The additional

checking is in four major areas: across certain binary operators and implied assignments, at the struc­
ture selection operators, between the definition and uses of functions, and in the use of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional (? :), and relational operators have this property; the argu­
ment of a retnrn statement, and expressions used in initialization also suffer similar conversions. In
these operations, char, short, int, long, unsigned, float, and double types may be freely intermixed.
The types of pointers must agree exactly, except that arrays of x's can, of course, be intermixed with
pointers to x's.

The type checking rules also require that, in structure references, the left operand of the -> be a
pointer to structure, the left operand of the . be a structure, and the right operand of these operators
be a member of the structure implied by the left operand. Similar checking is done for references to
unions.

Strict rules apply to function argument and return value matching. The types float and double
may be freely matched, as may the types char, short, int, and unsigned. Also, pointers can be
matched with the associated arrays. Aside from this, all actual arguments must agree in type with
their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not mixed with
other types, or other enumerations, and that the only operations applied are=, initialization, ==,I=,
and function arguments and return values.

Type Casts
The type cast feature in C was introduced largely as an aid to producing more portable pro­

grams. Consider the assignment

p = 1;

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p = (char •)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer obvi­
ously had a strong motivation for doing this, and has clearly signaled his intentions. It seems harsh
for lint to continue to complain about this. On the other hand, if this code is moved to another
machine, such code should be looked at carefully. The -c flag controls the printing of comments
about casts. When -c is in effect, casts are treated as though they were assignments subject to com­
plaint; otherwise, all legal casts are passed without comment, no matter how strange the type mixing
seems to be.

Nonportable Character Use
On the PDP-11, characters are signed quantities, with a range from -128 to 127. On most of

the other C implementations, characters take on only positive values. Thus, lint will flag certain
comparisons and assignments as being illegal or nonportable. For example, the fragment

char c;

if((c = get cha~()) < 0)

works on the PDP-11, but will fail on machines where characters always take on positive values. The
real solution is to declare c an integer, since getchar is actually returning integer values. In any case,
lint will say "nonportable character comparison".

A similar issue arises with bitfields; when assignments of constant values are made to bitftelds,
the field may be too small to hold the value. This is especially true because on some machines
bitfields are considered as signed quantities. While it may seem unintuitive to consider that a two bit

Lint, a C Program Checker PS1:9-5

field declared of type int cannot hold the value 3, the problem disappears if the bitfield is declared to
have type unsigned.

Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which loses accuracy. This may happen
in programs which have been incompletely converted to use typedefs. When a typedef variable is
changed from int to long, the program can stop working because some intermediate results may be
assigned to ints, losing accuracy. Since there are a number of legitimate reasons for assigning longs to
ints, the detection of these assignments is enabled by the -a flag.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the messages
hopefully encourage better code quality, clearer style, and may even point out bugs. The -h flag is
used to enable these checks. For example, in the statement

•P++;

the • does nothing; this provokes the message "null effect" from lint. The program fragment

unsigned x;
if(x<O) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test

if(x>O) ...

is equivalent to

if(x != 0)

which may not be the intended action. Lint will say "degenerate unsigned comparison" in these
cases. If one says

if(1 != 0)

lint will report "constant in conditional context", since the comparison of 1 with 0 gives a constant
result.

Another construction detected by lint involves operator precedence. Bugs which arise from
misunderstandings about the precedence of operators can be accentuated by spacing and formatting,
making such bugs extremely hard to find. For example, the statements

if(x&077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions, and
lint encourages this by an appropriate message.

Finally, when the -h flag is in force lint complains about variables which are redeclared in inner
blocks in a way that conflicts with their use in outer blocks. This is legal, but is considered by many
(including the author) to be bad style, usually unnecessary, and frequently a bug.

Ancient History

There are several forms of older syntax which are being officially discouraged. These fall into
two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...)could cause ambiguous expressions,
such as

PS1:9-6

a =-1;

which could be taken as either

a=- I;

or

a = -1 ;

Lint, a C Program Checker

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro substitu­
tion. The newer, and preferred operators (+=, -=, etc.) have no such ambiguities. To spur the
abandonment of the older forms, lint complains about these old fashioned operators.

A similar issue arises with initialization. The older language allowed

int x I ;

to initialize x to I. This also caused syntactic difficulties: for example,

int x (-1) ;

looks somewhat like the beginning of a function declaration:

int x (y) { ...

and the compiler must read a fair ways past x in order to sure what the declaration really is.. Again,
the problem is even more perplexing when the initializer involves a macro. The current syntax places
an equals sign between the variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others, due
entirely to alignment restrictions. For example, on the PDP-I I, it is reasonable to assign integer
pointers to double pointers, since double precision values may begin on any integer boundary. On
the Honeywell 6000, double precision values must begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where pointers are assigned to other pointers, and
such alignment problems might arise. The message "possible pointer alignment problem" results
from this situation whenever either the -p or -h flags are in effect.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly
machine dependent. For example, on machines (like the PDP-11) in which the stack runs backwards,
function arguments will probably be best evaluated from right-to-left; on machines with a stack run­
ning forward, left-to-right seems most attractive. Function calls embedded as arguments of other
functions may or may not be treated similarly to ordinary arguments. Similar issues arise with other
operators which have side effects, such as the assignment operators and the increment and decrement
operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the C
language leaves the order of evaluation of complicated ex')ressions up to the local compiler, and, in
fact, the various C compilers have considerable differences in the order in which they will evaluate
complicated expressions. In particular, if any variable is changed by a side effect, and also used else­
where in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For exam­
ple, the statement

a[i] = b[i++] ;

Lint, a C Program Checker PS1:9-7

will draw the complaint:

warning: i evaluation order undefined

Implementation
Lint consists of two programs and a driver. The first program is a version of the Portable C

Compiler4• 5 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C compilers.
This compiler does lexical and syntax analysis on the input text, constructs and maintains symbol
tables, and builds trees for expressions. Instead of writing an intermediate file which is passed to a
code generator, as the other compilers do, lint produces an intermediate file which consists of lines of
ascii text. Each line contains an external variable name, an encoding of the context in which it was
seen (use, definition, declaration, etc.), a type specifier, and a source file name and line number. The
information about variables local to a function or file is collected by accessing the symbol table, and
examining the expression trees.

Comments about local problems are produced as detected. The information about external
names is collected onto an intermediate file. After all the source files and library descriptions have
been collected, the intermediate file is sorted to bring all information collected about a given external
name together. The second, rather small, program then reads the lines from the intermediate file and
compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available to both
passes of lint.

Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host operat­
ing system. This means that the implementation of C tends to follow local conventions rather than
adhere strictly to UNIXt system conventions. Despite these differences, many C programs have been
successfully moved to GCOS and the various IBM installations with little effort. This section
describes some of the differences between the implementations, and discusses the lint features which
encourage portability.

Uninitialized external variables are treated differently in different implementations of C. Sup­
pose two files both contain a declaration without initialization, such as

int a;

outside of any function. The UNIX loader will resolve these declarations, and cause only a single
word of storage to be set aside for a. Under the GCOS and IBM implementations, this is not feasible
(for various stupid reasons!) so each such declaration causes a word of storage to be set aside and
called a. When loading or library editing takes place, this causes fatal conflicts which prevent the
proper operation of the program. If lint is invoked with the -p flag, it will detect such multiple
definitions.

A related difficulty comes from the amount of information retained about external names during
the loading process. On the UNIX system, externally known names have seven significant characters,
with the uppernower case distinction kept. On the IBM systems, there are eight significant characters,
but the case distinction is lost. On GCOS, there are only six characters, of a single case. This leads
to situations where programs run on the UNIX system, but encounter loader problems on the IBM or
GCOS systems. Lint -p causes all external symbols to be mapped to one case and truncated to six
characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX system
are eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on GCOS. More­
over, character strings go from high to low bit positions ("left to right") on GCOS and IBM, and low
to high ("right to left") on the PDP-11. This means that code attempting to construct strings out of

t UNIX is a trademark of AT&T Bell Laboratories.

PS1:9-8 Lint, a C Program Checker

character constants, or attempting to use characters as indices into arrays, must be looked at with
great suspicion. Lint is of little help here, except to flag multi-character character constants.

Of course, the word sizes are different! This causes less trouble than might be expected, at least
when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36 bits). The
main problems are likely to arise in shifting or masking. C now supports a bit-field facility, which
can be used to write much of this code in a reasonably portable way. Frequently, portability of such
code can be enhanced by slight rearrangements in coding style. Many of the incompatibilities seem
to have the flavor of writing

x &= 0177700;

to clear the low order six bits of x. This suffices on the PDP-11, but fails badly on GCOS and IBM.
If the bit field feature cannot be used, the same effect can be obtained by writing

x &= - 077;

which will work on all these machines.
The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other

machines. To obtain a logical shift on all machines, the left operand can be typed unsigned. Charac­
ters are considered signed integers on the PDP-11, and unsigned on the other machines. This per­
sistence of the sign bit may be reasonably considered a bug in the PDP-11 hardware which has
infiltrated itself into the C language. If there were a good way to discover the programs which would
be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in fact is.
The issues involved here are rarely subtle or mysterious, at least to the implementor of the program,
although they can involve some work to straighten out. The most serious bar to the portability of
UNIX system utilities has been the inability to mimic essential UNIX system functions on the other
systems. The inability to seek to a random character position in a text file, or to establish a pipe
between processes, has involved far more rewriting and debugging than any of the differences in C
compilers. On the other hand, lint has been very helpful in moving the UNIX operating system and
associated utility programs to other machines.

Shutting Lint Up
There are occasions when the programmer is smarter than lint. There may be valid reasons for

"illegal" type casts, functions with a variable number of arguments, etc. Moreover, as specified
above, the flow of control information produced by lint often has blind spots, causing occasional
spurious messages about perfectly reasonable programs. Thus, some way of communicating with lint,
typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would require
current and old compilers to recognize these keywords, if only to ignore them. This has both philo­
sophical and practical problems. New preprocessor syntax suffers from similar problems.

What was finally done was to cause a number of words to be recognized by lint when they were
embedded in comments. This required minimal preprocessor changes; the preprocessor just had to
agree to pass comments through to its output, instead of deleting them as had been previously done.
Thus, lint directives are invisible to the compilers, and the effect on systems with the older preproces­
sors is merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular place in the pro­
gram cannot be reached, but this is not apparent to lint, this can be asserted by the directive

I* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is desired to tum off strict type checking for
the next expression, the directive

I* NOSTRICT */

Lint, a C Program Checker PS1:9-9

can be used; the situation reverts to the previous default after the next expression. The -v flag can be
turned on for one function by the directive

I* ARGSUSED */

Complaints about variable number of arguments in calls to a function can be turned off by the direc­
tive

I* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first several arguments,
and leave the later arguments unchecked. This can be done by following the V ARARGS keyword
immediately with a digit giving the number of arguments which should be checked; thus,

I* VARARGS2 */

will cause the first two arguments to be checked, the others unchecked. Finally, the directive

I* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file; this topic is worth a section by
itself.

Library Declaration Files
Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin with
the directive

I* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these definitions
are the declaration of the function return type, whether the dummy function returns a value, and the
number and types of arguments to the function. The V ARARGS and ARGSUSED directives can be
used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only difference is
that functions which are defined on a library file, but are not used on a source file, draw no com­
plaints. Lint does not simulate a full library search algorithm, and complains if the source files con­
tain a redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which contains
descriptions of the programs which are normally loaded when a C program is run. When the -p flag
is in effect, another file is checked containing descriptions of the standard 1/0 library routines which
are expected to be portable across various machines. The -n flag can be used to suppress all library
checking.

Bugs, etc.
Lint was a difficult program to write, partially because it is closely connected with matters of

programming style, and partially because users usually don't notice bugs which cause lint to miss
errors which it should have caught. (By contrast, if lint incorrectly complains about something that is
correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays is
rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up structure
and union declarations across files. Some stricter checking of the use of the typedef is clearly desir­
able, but what checking is appropriate, and how to carry it out, is still to be determined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for a
special version of the preprocessor to be constructed which checks for things such as unused macro

PS1:9-!0 Lint, a C Program Checker

definitions, macro arguments which have side effects which are not expanded at all, or are expanded
more than once, etc.

The central problem with lint is the packaging of the information which it collects. There are
many options which serve only to tum off, or slightly modify, certain features. There are pressures to
add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good one. The
compiler concentrates on quickly and accurately turning the program text into bits which can be run;
lint concentrates on issues of portability, style, and efficiency. Lint can afford to be wrong, since
incorrectness and over-conservatism are merely annoying, not fatal. The compiler can be fast since it
knows that lint will cover its flanks. Finally, the programmer can concentrate at one stage of the pro­
gramming process solely on the algorithms, data structures, and correctness of the program, and then
later retrofit, with the aid of lint, the desirable properties of universality and portability.

References

I. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey, 1978.

2. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Comp. Sci. Tech. Rep. No. 32, Bell
Laboratories, Murray Hill, New Jersey, July 1975. Reprinted as PS1:15 in UNIX Programmer's
Manual, Usenix Association, (1986).

3. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39, Bell Labora­
tories, Murray Hill, New Jersey, October 1975. Reprinted as PS1:16 in UNIX Programmer's
Manual, Usenix Association, (1986).

4. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C Programs and
the UNIX System," Bell Sys. Tech. J., vol. 57, no. 6, pp. 2021-2048, 1978.

5. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on Principles
of Programming Languages, pp. 97-104, January 1978.

Lint, a C Program Checker PS1:9-11

Appendix: Current Lint Options
The command currently has the form

lint [-options] files ... library-descriptors ...

The options are

h Perform heuristic checks

p Perform portability checks
v Don't report unused arguments

u Don't report unused or undefined externals

b Report unreachable break statements.

x Report unused external declarations
a Report assignments of long to int or shorter.

c Complain about questionable casts

n No library checking is done

s Same as h (for historical reasons)

A Tutorial Introduction to ADB

A Tutorial Introduction to ADB

J. F. Maranzano

S. R. Bourne

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

PSl:l0-1

Debugging tools generally provide a wealth of information about the inner
workings of programs. These tools have been available on UNIXt to allow users to
examine "core" files that result from aborted programs. A new debugging program,
ADB, provides enhanced capabilities to examine "core" and other program files in a
variety of formats, run programs with embedded breakpoints and patch files.

ADB is an indispensable but complex tool for debugging crashed systems
and/or programs. This document provides an introduction to ADB with examples of
its use. It explains the various formatting options, techniques for debugging C pro­
grams, examples of printing file system information and patching.

1. Introduction

ADB is a new debugging program that is available on UNIX. It provides capabilities to look at
"core" files resulting from aborted programs, print output in a variety of formats, patch files, and run
programs with embedded breakpoints. This document provides examples of the more useful features
of ADB. The reader is expected to be familiar with the basic commands on UNIX with the C
language, and with References l, 2 and 3.

2. A Quick Survey

2.1. Invocation

ADB is invoked as:

adb objfile corefile

where obi.file is an executable UNIX file and core.file is a core image Ii.le. Many times this will look
like:

adb a.out core

or more simply:

adb

where the defaults are a.out and core respectively. The filename minus (-) means ignore this argu­
ment as in:

adb- core

t UNIX is a trademark of AT&T Bell Laboratories.

PSl:l0..2 A Tutorial Introduction to ADD

ADD has requests for examining locations in either file. The ? request examines the contents of
obifi/e, the I request examines the corefile. The general form of these requests is:

address ? format

or

address I format

2.2. CUrrent Address

ADD maintains a current address, called dot, similar in function to the current pointer in the
UNIX editor. When an address is entered, the current address is set to that location, so that:

0126?1

sets dot to octal 126 and prints the instruction at that address. The request:

.,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item
printed. · When used with the ? or I requests, the current address can be advanced by typing newline;
it can be decremented by typing A.

Addresses are represented by expressfons. Expressions are made up from decimal, octal, and
hexadecimal integers, and symbols from the program under test. These may be combined with the
operators +, -, •, 'Ill (integer division), & (bitwise and), I (bitwise inclusive or), # (round up to the
next multiple), and • (not). (All arithmetic within ADD is 32 bits.) When typing a symbolic address
for a C program, the user can type name or _name; ADD will ·recognize both forms.

2.3. Formats
To print data, a user specifies a collection of letters and characters that describe the format of

the printout. Formats are "remembered" in the sense that typing a request without one will cause the
new printout to appear in the previous format. The following are the most commonly used format
letters.

b one byte in octal
c one byte as a character
o one word in octal
d one word in decimal
r two words in floating point
i PDP 11 instruction
Ii a null terminated character string
a the value or dot
u one word as unsigned integer
n print a newline
r print a blank space

backup dot

(Format letters are also available for "long" values, for example, 'D' for long decimal, and 'F' for dou­
ble floating point.) For other formats see the ADD manual.

2.4. General Request Meanings

The general form of a request is:

address,count command modifier

which sets 'dot' to address and executes the command count times.

The following table illustrates some general ADD command meanings:

A Tutorial Introduction to ADB

Command Meaning
? Print contents from a.out file
I Print contents from core file

Print value of "dot"
Breakpoint control

$ Miscellaneous requests
Request separator
Escape to shell

PSl:I0-3

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q or $Q
(or cntl-D) must be used to exit from ADB.

3. Debugging C Programs

3.1. Debugging A Core Image

Consider the C program in Figure I. The program is used to illustrate a common error made by
C programmers. The object of the program is to change the lower case "t" to upper case in the string
pointed to by charp and then write the character string to the file indicated by argument I. The bug
shown is that the character "T" is stored in the pointer charp instead of the string pointed to by charp.
Executing the program produces a core file because of an out of bounds memory reference.

ADB is invoked by:

adb a.out core

The first debugging request:

$c

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one function
(main) was called and the arguments argc and argv have octal values 02 and 0177762 respectively.
Both of these values look reasonable; 02 = two arguments, 0177762 = address on stack of parameter
vector.
The next request:

$C

is used to give a C backtrace plus an interpretation of all the local variables in each function and their
values in octal. The value of the variable cc looks incorrect since cc was declared as a character.

The next request:

$r

prints out the registers including the program counter and an interpretation of the instruction at that
location.

The request:

$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the a.out file is referenced by ?
whereas the map for core file is referenced by /. Furthermore, a good rule of thumb is to use ? for
instructions and I for data when looking at programs. To print out information about the maps type:

$m

This produces a report of the contents of the maps. More about these maps later.

In our example, it is useful to see the contents of the string pointed to by charp. This is done
by:

PSl:I0-4 A Tutorial Introduction to ADB

*charp/s

which says use charp as a pointer in the core file and print the information as a character string. This
printout clearly shows that the character buffer was incorrectly overwritten and helps identify the
error. Printing the locations around charp shows that the buffer is unchanged but that the pointer is
destroyed. Using ADB similarly, we could print information about the arguments to a function. The
request:

main.argc/d

prints the decimal core image value of the argument argc in the function main.
The request:

*main.argv,3/o

prints the octal values of the three consecutive cells pointed to by argv in the function main. Note
that these values are the addresses of the arguments to main. Therefore:

0177770/s

prints the ASCII value of the first argument. Another way to print this value would have been

*"Is

The " means ditto which remembers the last address typed, in this case main.argc ; the * instructs
ADB to use the address field of the core file as a pointer.

The request:

.=o

prints the current address (not its contents) in octal which has been set to the address of the first argu­
ment. The current address, dot, is used by ADB to "remember" its current location. It allows the
user to reference locations relative to the current address, for example:

.-10/d

3.2. Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions f, g, and h until
the stack is exhausted and a core image is produced.

Again you can enter the debugger via:

adb

which assumes the names a.out and core for the executable file and core image file respectively. The
request:

$c

will fill a page of backtrace references to f, g, and h. Figure 4 shows an abbreviated list (typing DEL
will terminate the output and bring you back to ADB request level).

The request:

,S$C

prints the five most recent activations.

Notice that each function (f,g,h) has a counter of the number of times it was called.

The request:

fcnt/d

prints the decimal value of the counter for the function f Similarly gent and hcnt could be printed.
To print the value of an automatic variable, for example the decimal value of x in the last call of the

A Tutorial Introduction to ADB PSl:l0-5

function h, type:

h.xld

It is currently not possible in the exported version to print stack frames other than the most recent
activation of a function. Therefore, a user can print everything with $C or the occurrence of a vari­
able in the most recent call of a function. It is possible with the $C request, however, to print the
stack frame starting at some address as address$C.

3.3. Setting Breakpoints
Consider the C program in Figure 5. This program, which changes tabs into blanks, is adapted

from Software Tools by Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see Figure 6a) by:

adb a.out-

Breakpoints are set in the program as:

The requests:

address:b (request)

settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not generate statement labels. Therefore it is
currently not possible to plant breakpoints at locations other than function entry points without a
knowledge of the code generated by the C compiler. The above addresses are entered as symbol+4 so
that they will appear in any C backtrace since the first instruction of each function is a call to the C
save routine (csv). Note that some of the functions are from the C library.

To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is bypassed count -1 times before causing a stop.
The command field indicates the ADB requests to be executed each time the breakpoint is encoun­
tered. In our example no command fields are present.

By displaying the original instructions at the function settab we see that the breakpoint is set
after the jsr to the C save routine. We can display the instructions using the ADB request:

settab,S?ia

This request displays five instructions starting at settab with the addresses of each location displayed.
Another variation is:

settab,S?i

which displays the instructions with only the starting address.
Notice that we accessed the addresses from the a.out file with the ? command. In general when

asking for a printout of multiple items, ADB will advance the current address the number of bytes
necessary to satisfy the request; in the above example five instructions were displayed and the current
address was advanced 18 (decimal) bytes.

To run the program one simply types:

:r

To delete a breakpoint, for instance the entry to the function settab, one types:

settab+4:d

PSl:l0-6 A Tutorial Introduction to ADB

To continue execution of the program from the breakpoint type:

:c

Once the program has stopped (in this case at the breakpoint for /open), ADB requests can be
used to display the contents of memory. For example:

$C

to display a stack trace, or:

tabs,3/8o

to print three lines of 8 locations each from the array called tabs. By this time (at location /open) in
the C program, settab has been called and should have set a one in every eighth location of tabs.

3.4. Advanced Breakpoint Usage

We continue execution of the program with:

:c

See Figure 6b. Getc is called three times and the contents of the variable c in the function main are
displayed each time. The single character on the left hand edge is the output from the C program.
On the third occurrence of getc the program stops. We can look at the full buffer of characters by
typing:

ibuf+6/20c

When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data.

Several breakpoints of tabpos will occur until the program has changed the tab into equivalent
blanks. Since we feel that tabpos is working, we can remove the breakpoint at that location by:

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after ADB prints the message

a.out:mnning

The UNIX quit and interrupt signals act on ADB itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and control is returned
to ADB. The signal is saved by ADB and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed on to
the test program if:

:c 0

is typed.

Now let us reset the breakpoint at settab and display the instructions located there when we
reach the breakpoint. This is accomplished by:

settab+4:b settab,S?ia "'

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only stop

• Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX) these

A Tutorial Introduction to ADB

after the third occurrence by typing:

getc+4,3:b main.c?C *

PSl:I0-7

This request will print the local variable c in the function main at each occurrence of the breakpoint.
The semicolon is used to separate multiple ADB requests on a single line.

Warning: setting a breakpoint causes the value of dot to be changed; executing the program
under ADB does not change dot. Therefore:

settab+4:b .,5?ia
fopen+4:b

will print the last thing dot was set to (in the example fopen+4) not the current location (settab+4) at
which the program is executing.

A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab+4:b settab,5?ia; ptab/o *
could be entered after typing the above requests.

Now the display of breakpoints:

$b

shows the above request for the settab breakpoint. When the breakpoint at settab is encountered the
ADB requests are executed. Note that the location at settab+4 has been changed to plant the break­
point; all the other locations match their original value.

Using the functions, f, g and h shown in Figure 3, we can follow the execution of each function
by planting non-stopping breakpoints. We call ADB with the executable program of Figure 3 as fol­
lows:

adb ex3 -

Suppose we enter the following breakpoints:

h+4:b hcnt/d; h.hi/; h.hr/
g+4:b gcnt/d; g.gi/; g.gr/
f+4:b fcnt/d; f.fi/; f.fr/
:r

Each request line indicates that the variables are printed in decimal (by the specification d). Since the
format is not changed, the d can be left off all but the first request.

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint line are
not examined until the program under test is run. That means any errors in those ADB requests is
not detected until run time. At the location of the error ADB stops running the program.

The second point is the way ADB handles register variables. ADB uses the symbol table to
address variables. Register variables, like f fr above, have pointers to uninitialized places on the
stack. Therefore the message "symbol not found".

Another way of getting at the data in this example is to print the variables used in the call as:

f+4:b fcnt/d; f.a/; f.b/; f.fi/
g+4:b gcnt/d; g.p/; g.q/; g.gi/
:c

statements must be written as:
settab+4:b settab,S?ia;O
getc+4,3:b main.c?C;O
settab+4:b settab,S?ia; ptab/o;O

Note tbat ;O will set dot to zero and stop at the breakpoint.

PSI:I0-8 A Tutorial Introduction to ADB

The operator I was used instead of ? to read values from the core file. The output for each function,
as shown in Figure 7, has the same format. For the function f, for example, it shows the name and
value of the external variable Jent. It also shows the address on the stack and value of the variables a,
b andfi.

Notice that the addresses on the stack will continue to decrease until no address space is left for
program execution at which time (after many pages of output) the program under test aborts. A
display with names would be produced by requests like the following:

f+4:b fcnt/d; f,a/"a="d; f.bl"b="d; f.fil"fi="d

In this format the quoted string is printed literally and the d produces a decimal display of the vari-
ables. The results are shown in Figure 7. ·

3.5. Other Breakpoint Facilities

• Arguments and change of standard input and output are passed to a program as:

:r argl arg2 ... <infile >outfile

This request kills any existing program under test and starts the a.out afresh.

• The program being debugged can be single stepped by:

:s

If necessary, this request will start up the program being debugged and stop after executing the
first instruction.

• ADB allows a program to be entered at a specific address by typing:

address:r

• The count field can be used to skip the first n breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first n breakpoints when continuing a program.

• A program can be continued at an address different from the breakpoint by:

address:c

• The program being debugged runs as a separate process and can be killed by:

:k

4. Maps

UNIX supports several executable file formats. These are used to tell the loader how to load
the program file. File type 407 is the most common and is generated by a C compiler invocation
such as cc pgm.c. A 410 file is produced by a C compiler command of the form cc -n pgm.c, whereas
a 411 file is produced by cc -i pgm.c. ADB interprets these different file formats and provides access
to the different segments through a set of maps (see Figure 8). To print the maps type:

$m

In 407 files, both text (instructions) and data are intermixed. This makes it impossible for ADB
to differentiate data from instructions and some of the printed symbolic addresses look incorrect; for
example, printing data addresses as offsets from routines.

A Tutorial Introduction to ADB PSl:l0-9

In 410 files (shared text), the instructions are separated from data and ?* accesses the data part
of the a.out file. The ?* request tells ADB to use the second part of the map in the a.out file. Access­
ing data in the core file shows the data after it was modified by the execution of the program. Notice
also that the data segment may have grown during program execution.

In 411 files (separated I & D space), the instructions and data are also separated. However, in
this case, since data is mapped through a separate set of segmentation registers, the base of the data
segment is also relative to address zero. In this case since the addresses overlap it is necessary to use
the ?* operator to access the data space of the a.out file. In both 410 and 411 files the corresponding
core file does not contain the program text.

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411 respec­
tively. The b, e, and f fields are used by ADB to map addresses into file addresses. The "fl" field is
the length of the header at the beginning of the file (020 bytes for an a. out file and 02000 bytes for a
core file). The "f2" field is the displacement from the beginning of the file to the data. For a 407 file
with mixed text and data this is the same as the length of the header; for 410 and 411 files this is the
length of the header plus the size of the text portion.

The "b" and "e" fields are the starting and ending locations for a segment. Given an address, A,
the location in the file (either a.out or core) is calculated as:

bl:s;A:s;et ~ file address = (A-bl)+fl
b2:s;A:s;e2 ~ file address = (A-b2)+f2

A user can access locations by using the ADB defined variables. The $v request prints the variables
initialized by ADB:

b base address of data segment
d length of the data segment
s length of the stack
t length of the text
m execution type (407,410,411)

In Figure 9 those variables not present are zero. Use can be made of these variables by expres­
sions such as:

<b

in the address field. Similarly the value of the variable can be changed by an assignment request such
as:

02000>b

that sets b to octal 2000. These variables are useful to know if the file under examination is an exe­
cutable or core image file.

ADB reads the header of the core image file to find the values for these variables. If the second
file specified does not seem to be a core file, or if it is missing then the header of the executable file is
used instead.

5. Advanced Usage

It is possible with ADB to combine formatting requests to provide elaborate displays. Below are
several examples.

5.1. Formatted dump

The line:

<b,-1/4o4"8Cn

prints 4 octal words followed by their ASCII interpretation from the data space of the core image file.
Broken down, the various request pieces mean:

PSl:I0-10

<b

<b,-1

A Tutorial Introduction to ADB

The base address of the data segment.

P_rint from the base address to the end of file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition (like
end of file) is detected.

The format 4o4'8Cn is broken down as follows:

4o Print 4 octal locations.

4' Backup the current address 4 locations (to the original start of the field).

SC Print 8 consecutive characters using an escape convention; each character
in the range 0 to 037 is printed as @ followed by the corresponding charac­
ter in the range 0140 to 0177. An@ is printed as@@.

n Print a newline.

The request:

<b,<d/4o4'8Cn

could have been used instead to allow the printing to stop at the end of the data segment (<d pro­
vides the data segment size in bytes).

The formatting requests can be combined with ADB's ability to read in a script to produce a
core image dump script. ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of such a script is:

120$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
0$s
=3n"Data Segment"
<b,-1/Sona

The request 120$w sets the width of the output to 120 characters (normally, the width is 80
characters). ADB attempts to print addresses as:

symbol + offset

The request 4095$s increases the maximum permissible offset to the nearest symbolic address from
255 (default) to 4095. The request = can be used to print literal strings. Thus, headings are provided
in this dump program with requests of the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The request $v prints all non-zero ADB variables
(see Figure 8). The request 0$s sets the maximum offset for symbol matches to zero thus suppressing

A Tutorial Introduction to ADB PSl:l0-11

the printing of symbolic labels in favor of octal values. Note that this is only done for the printing of
the data segment. The request:

<b,-1/Sona

prints a dump from the base of the data segment to the end of file with an octal address field and
eight octal numbers per line.

Figure 11 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump

As another illustration (Figure 12) consider a set of requests to dump the contents of a directory
(which is made up of an integer inumber followed by a 14 character name):

adb dir -
=n8t"Inum"8f'Name"
0,-1? u8tl4cn

In this example, the u prints the inumber as an unsigned decimal integer, the St means that ADB will
space to the next multiple of 8 on the output line, and the 14c prints the 14 character file name.

5.3. Hist Dump
Similarly the contents of the ilist of a file system, (e.g. /dev/src, on UNIX systems distributed by

the UNIX Support Group; see UNIX Programmer's Manual Section V) could be dumped with the
following set of requests:

adb /dev/src -
02000>b
?m <b
<b,-l?"flags"8ton"links,uid,gid"8t3bn",size"8tbrdn"addr"8t8un"times"8t2Y2na

In this example the value of the base for the map was changed to 02000 (by saying ?m<b) since that
is the start of an ilist within a file system. An artifice (brd above) was used to print the 24 bit size
field as a byte, a space, and a decimal integer. The last access time and last modify time are printed
with the 2Y operator. Figure 12 shows portions of these requests as applied to a directory and file
system.

5.4. Converting values

ADB may be used to convert values from one representation to another. For example:

072 = odx

will print

072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is remem­
bered so that typing subsequent numbers will print them in the given formats. Character values may
be converted similarly, for example:

'a'= co

prints

a 0141

It may also be used to evaluate expressions but be warned that all binary operators have the same
precedence which is lower than that for unary operators.

PSl_:l0-12 A Tutorial Introduction to ADB

6. Patching

Patching files with ADB is accomplished with the write, w or W, request (which is not like the
ed editor write command). This is often used in conjunction with the locate, l or L request. In gen­
eral, the request syntax for l and w are similar as follows:

?l value

The request l is used to match on two bytes, L is used for four bytes. The request w is used to write
two bytes, whereas W writes four bytes. The value field in either locate or write requests is an expres­
sion. Therefore, decimal and octal numbers, or character strings are supported.

In order to modify a file, ADB must be called as:

adb -w filel file2 ·

When called with this option, file I and file2 are created if necessary and opened for both reading and
writing.

For example, consider the C program shown in Figure 10. We can change the word "'This'" to
"The " in the executable file for this program, ex7, by using the following requests:

adb -w ex7 -
?l 'Th'
?W 'The'

The request ?l ~tarts at dot and stops at the first match of "Th" having set dot to the address of the
location-found~ Note the use of? to write to the a.out file. The form ?* would have been used for a

--------411 file.

More frequently the request will be typed as:

?l 'Th'; ?s

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB request
will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility, consider a C program that has an
internal logic flag. The flag could be set by the user through ADB and the program run. For exam­
ple:

adb a.out­
:s argl arg2
flag/w 1
:c

The :s request is normally used to single step through a process or start a process in single step mode.
In this case it starts a.out as a subprocess with arguments argl and arg2. If there is a subprocess run­
ning ADB writes to it rather than to the file so the w request causes flag to be changed in the memory
of the subprocess.

7. Anomalies

Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the C save routine. Putting breakpoints at
the entry point to routines means that the function appears not to have been called when the
breakpoint occurs.

2. When printing addresses, ADB uses either text or data symbols from the a.out file. This some­
times causes unexpected symbol names to be printed with data (e.g. savr5+022). This does not
happen if? is used for text (instructions) and I for data.

3. ADB cannot handle C register variables in the most recently activated function.

A Tutorial Introduction to ADB PSl:I0-13

8. Acknowleclgements
The authors are grateful for the thoughtful comments on how to organize this document from R.

B. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes necessary to
accommodate tracing within ADB. He also participated iti discussions during the writing of ADB.
His earlier work with DB and CDB led to many of the features found in ADB.

9. References

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," CACM, July, 1974.

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

3. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual - 7th Edition, 1978.
4. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

PSl:I0-14

Figure 1: C program with pointer bug

struct buf (
int tildes;
int nleft;
char *nextp;
char buffl 512];
}bb; .

struct buf *obuf;

char *charp "this is a sentence.";

main(argc,argv)
int argc;
char **argv;
{

char cc;

if{argc < 2) {
printf{"lnput file missing\n ");
exit(8);

if{(fcreat(argv[l],obuf)) < 0){

}

printft"%s : not found\n", argv[I]);
exit(8);

charp = T;
printf{"debug I %s\n",charp);

while(cc= *charp+ +)
putc(cc,obuf);

ffiush(obuf);

A Tutorial Introduction to ADB

A Tutorial Introduction to ADB

Figure 2: ADD output for C program of Figure 1

adb a.out core
$c
"main(02,0177762)
$C
·main(02,0l 77762)

argc: 02
argv: 0177762
cc: 02124

$r
ps 0170010
pc 0204 ·main+OlS2
sp 0177740
rs 0177752
r4 01
r3 0
r2 0
rl 0
rO 0124
"main+OIS2: mov _obuf,(sp)
$e
savr5: 0
_obuf: 0
_charp: 0124
_errno: 0
_fout: 0
$m
text map 'exl'
bl= 0 el = 02360
b2 = 0 e2 = 02360
data map 'core I'
bl= 0 el = 03500
b2 = 0175400 e2 = 0200000

PSl:I0-15

fl = 020
f2 = 020

fl = 02000
f2 = 05500

*charp/s
0124: TTTTTTTTTI I II III I II I I 1111 I IIII III I II I II I ILx Nh@x &_

charp/s
_charp: T

_charp+02: this is a sentence.

_charp+026: Input file missing
main.argc/d
0177756: 2
*main.argv/3o
0177762: 017777001777760177777
0177770/s
0177770: a.out
*main.argv/3o
0177762: 017777001777760177777
*"Is
0177770: a.out
.=O

0177770
.-10/d

0177756: 2
$q

PSl:l0-16

Fipre 3: Multiple function C program for stack trace illuslradon

int fcnt,gcnt,hcnt;
h(x,y)
{

g(p,q)
{

f(a,b)
{

mainO
{

int hi; register int hr;
hi• x+l;
hr• x-y+l;
bent++;
hj:
f(hr,hi);

int gi; register int gr;
gi = q-p;
gr" q-p+l;
gent++;
gj:
h(gr,gi);

int Ii; register int fr;
Ii= a+2*b;
fr= a+b;
fcnt++;
fj:
g(fr,li);

f(l,l);

A Tutorial Introduction to ADB

A Tutorial Introduction to ADB PSl:l0-17

Figure 4: ADD output for C program of Figure 3

adb
$c
11(04452,04451)
"g(04453,0l l 124)
"f(02,04451)
11(04450,04447)
"g(0445l,Ol1120)
"f(02,04447)
11(04446,04445)
"g(04447,0l l l 14)
"f(02,04445)
11(04444,04443)
HIT DEL KEY
adb
,5$C
11(04452,04451)

x: 04452
y: 04451
hi:

"g(04453,01l124)
p: 04453
q: 011124
gi: 04451
gr:

"f(02,0445 l)
a: 02
b: 04451
fi: 011124
fr: 04453

11(04450,0444 7)
x: 04450
y: 04447
hi: 04451
hr: 02

"g(0445l,O11120)
p: 04451
q: 011120
gi: 04447
gr: 04450

fcnt/d
_fcnt: 1173
gcnt/d
_gent: 1173
hcnt/d
_bent: 1172
b.xld
022004: 2346
$q

PSl:l0-18

Figure S: C program to decode tabs

#define MAXLINE 80
#define YES 1
#define NO 0
#define T ABSP 8

char input[] "data";
char ibuf1518];
int tabs[MAXLINE);

main()
{

int col, *ptab;
char c;

ptab =tabs;
settab(ptab); /*Set initial tab stops */
col= 1;
if(fopen(input,ibuf) < 0) {

}

printq"%s: not found\n",input);
exit(8);

while((c = getc(ibuf)) != -1) {
switch(c) {

case '\t': I* TAB*/
while(tabpos(col) != YES) {

A Tutorial Introduction to ADB

putchar(' '); I* put BLANK */

}
break;

col++;

case '\n':/*NEWLINE */
putchar('\n');
col= 1;

default:
break;

putchar(c);
col++;

I* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;
{

if(col > MAXLINE)
retum(YES);

else
retum(tabs[col]);

I* Settab - Set initial tab stops */
settab(tabp)
int *tabp;
{

inti;

for(i = O; i<= MAXLINE; i++)
(i%TABSP)? (tabs[i] = NO): (tabs[i) = YES);

A Tutorial Introduction to ADB

Figure 6a: ADD output for C program of Figure 5

adb a.out -
settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b
$b
breakpoints
count bkpt
1 "tabpos+04
1 _getc+04
1 _fopen+04
1 "settab+04
settab,S?ia
"settab: jsr -settab+04: tst -settab+06: cir

· "settab+012: cmp
·settab+020: bit
"settab+022:
settab,S?i
"settab: jsr

tst
cir
cmp
bit

:r
a.out: running

command

r5,csv
-{sp)
O 177770{r5)
$0120,0177770{r5)
"settab+076

r5,csv
-{sp)
0177770{r5)
$0120,0177770{r5)
"settab+076

breakpoint "settab+04: tst -{sp)
settab+4:d
:c
a.out: running
breakpoint _fopen+04: mov 04(r5),nulstr+012
$C
_fopen{02302,024 72)
·main{Ol,0177770)

col: 01
c: 0
ptab: 03500

tabs,3/So
03500: 01 0 0 0 0 0

01 0 0 0 0 0
01 0 0 0 0 0

PSl:l0-19

0 0
0 0
0 0

PSl:I0-20

Figure 6b: ADB output for C program of Figure 5

:c
a.out: running
breakpoint _getc+04: mov
ibuf+6/20c
__ cleanu+0202: This is
:c
a.out: running
breakpoint -tabpos+04: cmp
tabpos+4:d
settab+4:b settab,S?ia
settab+4:b settab,S?ia; 0
getc+4,3:b main.c?C; 0
settab+4:b settab,S?ia; ptab/o; 0
$b
breakpoints
count bkpt
I -tabpos+04
3 _getc+04
I _fopen+04

command

main.c?C;O

04(r5),rl

a test of

$0120,04(r5)

I "settab+04
"settab:
"settab+04:
"settab+06:
"settab+012:
"settab+020:
"settab+022:
0177766:
0177744:

jsr
bpt
cir
cmp
bit

settab,5?ia;ptab?o;O
r5,csv

T0177744:
h0177744:
i0177744:
sOl 77744:

0177770
@'
T
h

0177770(r5)
$0120,0177770(r5)
"settab + 07 6

A Tutorial Introduction to ADB

A Tutorial Introduction to ADB

Figure 7: ADB output for C program with breakpoints
adb ex3 -
h+4:b hent/d; h.hl/; h.hr/
g+4:b gent/cl; g.gl/; g.gr/
f+4:b fent/d; Ui/; Ur/
:r
ex3: running
_fcnt: 0
0177732: 214
symbol not found
f+4:b fent/d; f.a/; f,b/; f,6/
g+4:b gent/cl; g.p/; g.q/; g.gl/
h+4:b hcnt/d; h.x/; b.y/; b.hl/
:c
ex3: running
_fcnt: 0
0177746: I
0177750: I
0177732: 214
__gent: O
0177726: 2
0177730: 3
0177712: 214
_bent: O
0177706: 2
0177710: 1
0177672: 214
_fcnt: 1
0177666: 2
0177670: 3
0177652: 214
__gent: 1
0177646: 5
0177650: 8
0177632: 214
HITDEL
r+4:b fcnt/d; f.a/"a • "d; f.b/"h a "cl; f.fi/"ll - "d
g+4:b acntld; g.pl"p • "cl; g.q/"q = "cl; 11-gll"gl - "d
b+4:b bent/cl; h.x/"x • "d; h.y/"h • "d; h.hl/"hl • "d
:r
ex3: running
_fcnt: 0
0177746: a = I
0177750: b = I
0177732: fi - 214
__gent: 0
0177726: p = 2
0177730: q - 3
0177712: gi - 214
_bent: 0
0177706: x - 2
0177710: y • 1
0177672: hi= 214
_fcnt: 1
0177666: a• 2
0177670: b - 3
0177652: fi - 214
HITDEL
$q

PSl:I0-21

PSl:l0-22 A Tutorial Introduction to ADB

Figure 8: ADB address maps

407 files

a.out hdr

1--1---
core hdr

----1----
0

410 files (shared text)

a.out hdr

text+ data

text+data

------·······I
D S

text

1--1-------------
core hdr data stack

I ----1--------······1------1
B D S E

411 files (separated I and D space)

a.out text

stack

data

data

0

I
E

hdr

1--1 --------- ------1-----------1
core hdr data stack

---1--------······1------1
0 D S E

The following adb variables are set.

407 410 411

b base of data 0 B 0
d length of data D D-B D

length of stack s s s
length of text 0 T T

A Tutorial Introduction to ADB

Figure 9: ADB output for maps

adb map407 core407
$m
text map
bl= 0
b2 = 0
data map
bl= 0

'map407'
el
e2

'core407'
el
e2 b2 = 0175400

$v
variables
d = 0300
m = 0407
s = 02400
$q

adb map410 core410
$m
text map 'map410'
bl = 0 el
b2 = 020000 e2
data map 'core410'
bl = 020000 el
b2 = 0175400 e2
$v
variables
b = 020000
d = 0200
m = 0410
s = 02400
t = 0200
$q

adb map411 core411
$m
text map
bl= 0
b2 = 0
data map
bl= 0

'map411'
el
e2

'core411'
el
e2 b2 = 0175400

$v
variables
d = 0200
m = 0411
s = 02400
t = 0200
$q

= 0256
= 0256

= 0300
= 0200000

fl= 020
t2 = 020

fl = 02000
t2 = 02300

= 0200 fl = 020
= 020116 f2 = 0220

= 020200 fl = 02000
= 0200000 f2 = 02200

= 0200
= 0116

= 0200
= 0200000

fl = 020
f2 = 0220

fl= 02000
f2 = 02200

PSl:l0-23

PSl:l0-24

Flpre 10: Simple C program for Illustrating formatting and patching

char
int
int
long
float
char
mainO
{

strl[] "This is a character string";
one l;
number 456;
lnum 1234;
fpt 1.25;
str2[] "This is the second character string";

one= 2;

A Tutorial Introduction to ADB

A Tutorial Introduction to ADB

Figure 11: ADD output illustrating fancy formats

adb map410 core410
<b,-1/8ona
020000: 0 064124 071551 064440 020163

_strl +016:061541 062564 020162 072163 064562

_number:

020141

063556

064143071141

0 02

_number: 0710 0 02322 040240 0 064124 071551 064440

_str2+06: 020163 064164 020145 062563 067543 062156 061440060550

_str2+026:060562 072143 071145 071440 071164 067151 0147 0

savr5+02: 0 0 0 0 0 0 0 0

<b,20/4o4"8Cn
020000: 0 064124 071551 064440 @'@'This i

020163 020141 064143 071141 s a char
061541 062564 020162 072163 acter st
064562 063556 0 02 ring@'@'@b@'

_number: 0710 0 02322 040240 H@a@'@'R@d@@
0 064124 071551 064440 @'@'This i
020163 064164 020145 062563 s these
067543 062156 061440 060550 cond cha
060562 072143 071145 071440 racter s
071164 067151 0147 0 tring@'@'@'
0 0 0 0 @'@'@'@'@'@'@'@'
0 0 0 0 @'@'@'@'@'@'@'@'

data address not found
<b,20/ 4o4"8t8cna
020000: 0 064124

020141
062564
063556

_strl +06: 020163
_strl +016:061541
_strl +026:064562
_number:

071551
064143
020162
0 02

064440
071141
072163

ring

_number: 0710 0 02322 040240 HR
_fpt+02: 0 064124 071551 064440
_str2+06: 020163 064164 020145 062563
_str2+016:067543 062156 061440 060550
_str2+026:060562 072143 071145 071440
_str2+036:071164 067151 0147 0 tring
savr5+02: 0 0 0 0
savr5+012: 0 0 0 0
data address not found
<b,10/2b8f'2cn
020000: 0 0

_strl: 0124 0150
0151 0163
040 0151
0163 040
0141 040
0143 0150
0141 0162
0141 0143
0164 0145

$Q

Th
is

s
a
ch
ar
ac
te

This i
s a char
acter st

This i
s these
cond cha
racter

PSl:l0-25

PSl:I0-26

Flpre 12: Directory and !node dumps
adbdir-
=nt"Iude"t"Name"
O,-l?utl4cn

I node Name
O: 6S2 .

82 ..
S971 cap.c
S323cap
0 pp

adb /dn/src -
02000>b
?m<b
new map '/dev/src·
bl = 02000 el · • 0100000000 fl • O
b2•0 e2 =0 f2=0
Sv
variables
b. 02000
<b,-l?"flap"Bton"Unks,uld,gid"Bt3bn"1ize"Btbrdn"aclclr"Bt8un"dmes"Bt2Y2na
02000: Oags 07314S .

links,uid,gid 0163 0164 0141
size 0162 103S6

A Tutorial Introduction to ADB

addr 28770 8236 2S9S6 27766 2S4SS 8236 25956 25206
timesl976 Feb S 08:34:56 1975 Dec 28 10:55:15

02040: Bags 02455S
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 2Sl30 15216 26890 29806 10784
timesl976 Aus 17 12:16:Sl 1976 Aug 17 12:16:SI

02100: Bags OSl73
links,uid,gid 011 0162 0145
size 0147 29S45
addr 2S972 8306 28265 8308 2S642 15216 2314 25970
times1977 Apr 2 08:58:01 1977 Feb S 10:21:44

A Tutorial Introduction to ADB PSl:I0-27

ADD Summary

Command Summary
a) formatted printing

? format print from a.out file according to format
I format print from core file according to format
= format print the value of dot

?w expr write expression into a.out file

/w expr write expression into core file

?I expr locate expression in a.out file
b) breakpoint and program control

:b set breakpoint at dot
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r run a.out file under ADB control
:s single step

c) miscellaneous printing
Sb print current breakpoints
Sc C stack trace
Se external variables
Sf floating registers
Sm print ADB segment maps
Sq exit from ADB
Sr general registers
Ss set offset for symbol match
Sv print ADB variables
Sw set output line width

d) calling the shell
call shell to read rest of line

e) assignment to variables

>name assign dot to variable or register name

Format Summary

a the value of dot
b one byte in octal
c one byte as a character
d one word in decimal
f two words in floating point

PDP 11 instruction
o one word in octal
n print a newline
r print a blank space
s a null terminated character string
nt move to next n space tab
u one word as unsigned integer
x hexadecimal
Y date

backup dot
print string

Expression Summary
a) expression components
decimal integer e.g. 2S6
octal Integer e.g. 0277
hexadecimal e.g. #ff
symbols e.g. flag _main main.argc
variables e.g. <b
registen e.g. <pc <rO
(expression) expression grouping

b) dyadic operators

+ add
subtract

* multiply
% integer division
& bitwise and
I bitwise or
round up to the next multiple

c) monadic operators

not
* contents of location

integer negate

Debugging with dbx

Introduction

Debugging with dbx

Bill Tuthill

Sun Microsystems, Inc.
2550 Garcia Avenue

Kevin J. Dunlap

Computer Systems Research Group
University of California

Berkeley, CA 94720

PSl:l 1-1

This short paper discusses dbx, a symbolic debugger that is vastly superior to adb. It may be as
good as the debuggers you remember from those non- UNIXt systems you worked on before. The
advantage of symbolic debuggers is that they allow you to work with the same names (symbols) as in
your source code.

Like adb, dbx is interactive and line-oriented, but dbx is a source-level rather than an
assembly-level debugger. It allows you to determine where a program crashed, to view the values of
variables and expressions, to set breakpoints in the code, and to run and trace a program. Source
code may be in C, Fortran, or Pascal.

Mark Linton wrote dbx as his master's thesis at UC Berkeley. Along with Eric Schmidt's Berk­
net, dbx is among the most successful master's theses done on UNIX. Since dbx required changes to
the symbol tables generated by the various compilers, you need to compile programs for debugging
with the -g flag. For example, C programs should be compiled as follows:

% cc -g program.c -o program

Programs compiled with the -g option have good symbol tables, while programs compiled without -g
have old-style symbol tables intended for adb. Stripped programs have no symbol tables at all.
Invoke the debugger as follows, where program is the pathname of the executable file that dumped
core:

% dbx program

The core image should be in the working directory; if it isn't, specify its pathname in the argument
after the program name. Among the great advances of dbx is that it has a help facility; type the help
request to see a list of possible requests. You can obtain help on any dbx request by giving its name
as an argument to help.

t UNIX is a trademark of AT&T Bell Laboratories.

PSI:ll-2 Debugging with dbx

Examining Core Dumps
Much of the time, programmers use dbx to find out why a program dumped core. As an exam­

ple, consider the following program dumpcore.c, which dereferences a NULL pointer. This is a legal
operation on VAX/UNIX, but not on V AXNMS or on MC68000-based UNIX systems, on one of
which this example was run:

#include <stdio.h>

#define LIMIT 5

ma inO
{

/* print messages and die */

int i;

for Ci = 1; i <= 10 ; i++) {
printf("Goodbye world! C%d)\n", i>;
dumpcore(i);

}

exi t<O>;
}

int *ip;

dumpcoreCLim)
int Lim;

/* dereference NULL pointer */

{

}

if Clim >= LIMIT)
*ip = Lim;

The program core dumps because of a segmentation violation or memory fault - on most machines it
is illegal to assign to address zero. Once the program has produced a core dump, here's how you can
find out why the program died:

% dbx dumpcore
dbx version 3.17 of 4/24/86 15:04 (monet.Berkeley.EDU).
Type 'help' for help.
reading symbolic information ...
(using memory image in core]
(dbx) where
dumpcore.dumpcore(lim = 5), line 22 in "dumpcore.c"
main(Oxl, Ox7fffe904, Ox7fffe90c), line 11 in "dumpcore.c"

The where request yields a stack trace. As you can see, the dumpcore(} routine was called from line
11 of the program, with the argument lim equal to 5. You can look at the dumpcore(} procedure by
invoking the list request as follows:

(dbx) L ht dumpcore
18 dumpcore(lim)
19 int lim;

!*dereference NULL pointer*/

20 {
21
22

if (lim > = LIMIT)
*ip = lim;

23

We immediately suspect that the program's failure had something to do with *ip, so we use the print
request to retrieve the value of the pointer and what it points to:

Debugging with dbx

(dbx) print *ip
reference through nil pointer
(dbx) pr int ip
(nil)

PSl:ll-3

This tells us the program has dereferenced a null pointer. It is possible to run the program again
from inside the debugger. The first line tells you name of the running program, and successive lines
give output from the program:

(dbx) run
Goodbye world! (l)
Goodbye world! (2)
Goodbye world! (3)
Goodbye world! (4)
Goodbye world! (5)

Bus error in dumpcore.dumpcore at line 22
22 *ip =Jim;

(dbx) quit

In this example the program dies with a Bus error at line 22. This method of running the program
does not produce a core dump, but the where request will still behave properly, because the debugger
is in the same state as if it had just read the core file.

Setting Breakpoints
With dbx you can set breakpoints before each line of a program, not just at function and pro­

cedure boundaries, as with adb. The stop request sets a breakpoint. After setting a breakpoint, use
the run request to execute the program. The cont request continues execution from the current stop­
ping point until the program finishes or another breakpoint is encountered. The step request executes
one source statement, following any function calls. The next request executes one source statement,
but does not stop inside any function calls. The status request lists active breakpoints, while the
delete request removes them if required.

The stop request can take a conditional expression to avoid needless single-stepping. We will
use a conditional in our example to make things simpler. Of course you can use print and list
requests at any time during statement stepping if you want to print the value of variables or list lines
of source code. This sample session shows a mixture of requests as we verify that the program fails
when it tries to assign to *ip:

PSl:l 1-4

(dbx) stop at 10 ;f < i == 5>
[1] if i - 5 { stop } at 10
(dbx) run
Goodbye world! (1)
Goodbye world! (2)
Goodbye world! (3)
Goodbye world! (4)
[1] stopped in main at line 10

10 printf("Goodbye world! ('lfld)\n", i);
(dbx) next
Goodbye world! (5)
stopped in main at line 11

11 dumpcore(i);
(dbx) step
stopped in dumpcore at line 21

21 if(lim >=LIMIT)
(dbx) step
stopped in dumpcore at line 22

22 *ip = lim;
(dbx) step
Bus error in dumpcore.dumpcore at line 22

22 *ip = lim;

Debugging with dbx

Running the program with breakpoints assures us that our intuition was correct. We shouldn't be
assigning anything to a null pointer - ip should have been initialized to point at an object of the
proper type. To exit from the debugger, use the quit request.

It is possible to set variables from inside dbx. The previous breakpoint session, for example,
could have gone like this:

% dbx dumpcore
dbx version 3.17 of 4124186 15:04 (monet.Berkeley.EDU).
Type 'help' for help.
reading symbolic information ...
[using memory image in core]
(dbx) stop at 10
[1] stop at 10
(dbx) run
Running: dumpcore
stopped in main at line 10

10 printf("Goodbye world! ('lfld)\n ·, i);
(dbx) assign i = 5
(dbx) next
Goodbye world! (5)
stopped in main at line 11

11 dumpcore(i);
(dbx) next
Bus error in dumpcore.dumpcore at line 22

22 *ip = lim;

It is often useful to assign new values to variables to draw conclusions about alternative conditions.
We can't fix the bug in this program, however, because there is no declared variable to which ip
should point.

Debugging with dbx PSl:ll-5

Conclusion
Expressions in dbx are similar to those in C, except that there is a distinction between I

(floating-point division) and div (integer division), as in Pascal. The table on the following page
shows dbx requests organized by function:

Like adb, dbx can disassemble object code. It can also examine object files and print output in
various formats; but dbx requires the proper symbol tables, so adb is more useful to examine arbi­
trary binary files. The most important thing adb can do that dbx cannot is to patch binary files -
dbx has no write option. Despite these shortcomings, dbx is much easier to use than adb, so it con­
tributes much more to individual programmer productivity.

Acknowledgements
Material presented in this document was first presented in "C Advisor", Unix Review 4, 1, pp

78-85. The Regents of the University California expresses their gratitude to Unix Review for allow­
ing them to reprint this document.

This document is a good starting point for a more thorough tutorial. Those with the ambition
to expand on this document are encouraged to contact the Computer Systems Research Group at
"4bsd-ideas@Berkeley.Edu."

PSl:l l-6 Debugging with dbx

Groups of dbx Requests
execution and tracing

run execute object file
cont continue execution from where it stopped
trace display tracing information at specified place
stop stop execution at specified place
status display active trace and stop requests
delete delete specific trace or stop requests
catch start trapping specified signals
;gnore stop trapping specified signals
step execute the next source line, stepping into functions
next execute the next source line, even if it's a function

displaying data
prfot print the value of an expression
what;s print the declaration of a given identifier or type
whfoh print outer block associated with identifier
where;s print all symbols matching identifier
ass;gn set the value of a variable

}Unction and procedure handling
where display active procedures and functions on stack
down move down the stack towards stopping point
up move up the stack towards main
call call the named function or procedure
dump display names and values of all local variables

accessing source files and directories
edH invoke an editor on current source file
fHe change current source file
func change the current function or procedure
Ust display lines of source code
use set directory list to search for source files
/ ... / search down in file to match regular expression
? ••• ? search up in file to match regular expression

miscellaneous commands
sh pass command line to the shell
al ;as change dbx command name
help explain commands
source read commands from external file
quH exit the debugger

Make - A Program for Maintaining Computer Programs

Make - A Program for Maintaining Computer Programs

S. I. Feldman

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

PS1:12-l

In a programming project, it is easy to lose track of which files need to be
reprocessed or recompiled after a change is made in some part of the source. Make
provides a simple mechanism for maintaining up-to-date versions of programs that
result from many operations on a number of files. It is possible to tell Make the
sequence of commands that create certain files, and the list of files that require other
files to be current before the operations can be done. Whenever a change is made in
any part of the program, the Make command will create the proper files simply,
correctly, and with a minimum amount of effort.

The basic operation of Make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up to date,
and then create the target if it has not been modified since its generators were. The
description file really defines the graph of dependencies; Make does a depth-first
search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to
encapsulate commands in a single file for convenient administration.

Revised April, 1986

Introduction

It is common practice to divide large programs into smaller, more manageable pieces. The
pieces may require quite different treatments: some may need to be run through a macro processor,
some may need to be processed by a sophisticated program generator (e.g., Yacc[!] or Lex[2]). The
outputs of these generators may then have to be compiled with special options and with certain
definitions and declarations. The code resulting from these transformations may then need to be
loaded together with certain libraries under the control of special options. Related maintenance
activities involve running complicated test scripts and installing validated modules. Unfortunately, it
is very easy for a programmer to forget which files depend on which others, which files have been
modified recently, and the exact sequence of operations needed to make or exercise a new version of
the program. After a long editing session, one may easily lose track of which files have been changed
and which object modules are still valid, since a change to a declaration can obsolete a dozen other
files. Forgetting to compile a routine that has been changed or that uses changed declarations will
result in a program that will not work, and a bug that can be very hard to track down. On the other
hand, recompiling everything in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program development
and maintenance. If the information on inter-file dependences and command sequences is stored in a
file, the simple command

make

PS1:12-2 Make - A Program for Maintaining Computer Programs

is frequently sufficient to update the interesting files, regardless of the number that have been edited
since the last "make". In most cases, the description file is easy to write and changes infrequently. It
is usually easier to type the make command than to issue even one of the needed operations, so the
typical cycle of program development operations becomes

think - edit - make - test ...

Make is most useful for medium-sized programming projects; it does not solve the problems of
maintaining multiple source versions or of describing huge programs. Make was designed for use on
Unix, but a version runs on GCOS.

Basic Features
The basic operation of make is to update a target file by ensuring that all of the files on which it

depends exist and are up to date, then creating the target if it has not been modified since its depen­
dents were. Make does a depth-first search of the graph of dependences. The operation of the com­
mand depends on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is made by compiling
and loading three C-Ianguage files x.c, y.c, and z.c with the IS library. By convention, the output of
the C compilatfons will be found in files named x.o, y.o, and z.o. Assume that the files x.c and y.c
share some declarations in a file named defs, but that z.c does not. That is, x.c and y.c have the line

#include "defs"

The following text describes the relationships and operations:

prog : x.o y.o z.o
cc x.o y.o z.o -IS -o prog

x.o y.o : defs

If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes had been made to any of the
four source files x.c, y.c, z.c, or defs.

Make operates using three sources of information: a user-supplied description file (as above), file
names and "last-modified" times from the file system, and built-in rules to bridge some of the gaps.
In our example, the first line says that prog depends on three ".o" files. Once these object files are
current, the second line describes how to load them to create prog. The third line says that x.o and
y.o depend on the file defs. From the file system, make discovers that there are three ".c" files
corresponding to the needed ".o" files, and uses built-in information on how to generate an object
from a source file (i.e., issue a "cc -c" command).

The following long-winded description file is equivalent to the one above, but takes no advan­
tage of make's innate knowledge:

prog : x.o y.o z.o
cc x.o y.o z.o -IS -o prog

x.o : x.c defs
cc -c x.c

y.o : y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made, all of the
files would be current, and the command

Make - A Program for Maintaining Computer Programs PS1:12-3

make

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.c (but
not z.c) would be recompiled, and then prog would be created from the new ".o" files. If only the file
y.c had changed, only it would be recompiled, but it would still be necessary to reload prog.

If no target.name is given on the make command line, the first target mentioned in the descrip­
tion is created; otherwise the specified targets are made. The command

make x.o

would recompile x.o if x.c or defs had changed.
If the file exists after the commands are executed, its time of last modification is used in further

decisions; otherwise the current time is used. It is often quite useful to include rules with mnemonic
names and commands that do not actually produce a file with that name. These entries can take
advantage of make's ability to generate files and substitute macros. Thus, an entry "save" might be
included to copy a certain set of files, or an entry "cleanup" might be used to throw away unneeded
intermediate files. In other cases one may maintain a zero-length file purely to keep track of the time
at which certain actions were performed. This technique is useful for maintaining remote archives
and listings.

Make has a simple macro mechanism for substituting in dependency lines and command
strings. Macros are defined by command arguments or description file lines with embedded equal
signs. A macro is invoked by preceding the name by a dollar sign; macro names longer than one
character must be parenthesized. The name of the macro is either the single character after the dollar
sign or a name inside parentheses. The following are valid macro invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned values
during input, as shown below. Four special macros change values during the execution of the com­
mand:$•,$@,$?, and$<. They will be discussed later. The following fragment shows the use:

OBJECTS = x.o y.o z.o
LIBES =-IS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -o prog

The command

make

loads the three object files with the IS library. The command

make "LIBES= -ll -IS"

loads them with both the Lex ("-ll") and the Standard ("-IS") libraries, since macro definitions on
the command line override definitions in the description. (It is necessary to quote arguments with
embedded blanks in UNIXt commands.)

The following sections detail the form of description files and the command line, and discuss
options and built-in rules in more detail.

t UNIX is a trademark of AT&T Bell Laboratories.

PS1:12-4 Make - A Program for Maintaining Computer Programs

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency informa­
tion, and executable commands. There is also a comment convention: all characters after a sharp (#)
are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp are totally ignored. If
a non-comment line is too long, it can be continued using a backslash. If the last character of a line
is a backslash, the backslash, newline, and following blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The
name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is
assigned the string of characters following the equal sign (leading blanks and tabs are stripped.) The
following are valid macro definitions:

2 = xyz
abc = -II -Iy -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has the null
string as value. Macro definitions may also appear on the make command line (see below).

Other lines give information about target files. The general form of an entry is:

target! [target2 ...] :[:] [dependent! ...] [; commands] [# ...]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits, periods,
and slashes. (Shell metacharacters "•" and "?" are expanded.) A command is any string of characters
not including a sharp (except in quotes) or newline. Commands may appear either after a semicolon
on a dependency line or on lines beginning with a tab immediately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear on
more than one dependency line, but all of those lines must be of the same (single or double colon)
type.
I. For the usual single-colon case, at most one of these dependency lines may have a command

sequence associated with it. If the target is out of date with any of the dependents on any of the
lines, and a command sequence is specified (even a null one following a semicolon or tab), it is
executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency line; if
the target is out of date with any of the files on a particular line, the associated commands are
executed. A built-in rule may also be executed. This detailed form is of particular value in
updating archive-type files.
If a target must be created, the sequence of commands is executed. Normally, each command

line is printed and then passed to a separate invocation of the Shell after substituting for macros.
(The printing is suppressed in silent mode or if the command line begins with an @ sign). Make nor­
mally stops if any command signals an error by returning a non-zero error code. (Errors are ignored
if the "-i" flags has been specified on the make command line, if the fake target name ".IGNORE"
appears in the description file, or if the command string in the description file begins with a hyphen.
Some UNIX commands return meaningless status). Because each command line is passed to a
separate invocation of the Shell, care must be taken with certain commands (e.g., cd and Shell control
commands) that have meaning only within a single Shell process; the results are forgotten before the
next line is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to be
"made". $? is set to the string of names that were found to be younger than the target. If the com­
mand was generated by an implicit rule (see below), $< is the name of the related file that caused the
action, and$• is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the com­
mands associated with the name ".DEFAULT" are used. If there is no such name, make prints a

Make - A Program for Maintaining Computer Programs PS1:12-5

message and stops.

Command Usage

The make command takes four kinds of arguments: macro definitions, flags, description file
names, and target file names.

make [flags] [macro definitions] [targets]

The following summary of the operation of the command explains how these arguments are inter­
preted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and
the assignments made. Command-line macros override corresponding definitions found in the
description files.

Next, the flag arguments are examined. The permissible flags are

-i Ignore error codes returned by invoked commands. This mode is entered if the fake target
name ".IGNORE" appears in the description file.

-s Silent mode. Do not print command lines before executing. This mode is also entered if the
fake target name ".SILENT" appears in the description file.

-r Do not use the built-in rules.
-n No execute mode. Print commands, but do not execute them. Even lines beginning with an

"@" sign are printed.

-t Touch the target files (causing them to be up to date) rather than issue the usual commands.

-q Question. The make command returns a zero or non-zero status code depending on whether
the target file is or is not up to date.

-p Print out the complete set of macro definitions and target descriptions

-d Debug mode. Print out detailed information on files and times examined.

-f Description file name. The next argument is assumed to be the name of a description file. A
file name of"-" denotes the standard input. If there are no "-f" arguments, the file named
makefile or Makefile in the current directory is read. The contents of the description files over­
ride the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they are
done in left to right order. If there are no such arguments, the first name in the description files that
does not begin with a period is "made".

Implicit Rules
The make program uses a table of interesting suffixes and a set of transformation rules to supply

default dependency information and implied commands. (The Appendix describes these tables and
means of overriding them.) The default suffix list is:

.o

.c

.e

.r

.f

.s

.y

.yr

.ye

.l

Object file
C source file
Efl source file
Ratfor source file
Fortran source file
Assembler source file
Y acc-C source grammar
Yacc-Ratfor source grammar
Yacc-Ell source grammar
Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths

PS1:12-6 Make - A Program for Maintaining Computer Programs

connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is named in
the description.

.o

A
.y.l

If the file x.o were needed and there were an x.c in the description or directory, it would be
compiled. If there were also an x./, that grammar would be run through Lex before compiling the
result. However, if there were no x.c but there were an x./, make would discard the intermediate C
language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag argu­
ments with which they are invoked by knowing the macro names used. The compiler names are the
macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the "newcc" command to be used instead of the usual C compiler. The macros CFLAGS,
RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued with
optional flags. Thus,

make "CFLAGS= -0"

causes the optimizing C compiler to be used.
Another special macro is 'VPATH'. The "VPATH" macro should be set to a list of directories

separated by colons. When make searches for a file as a result of a dependency relation, it will first
search the current directory and then each of the directories on the "VPATH" list. If the file is
found, the actual path to the file will be used, rather than just the filename. If "VPATH" is not
defined, then only the current directory is searched. Note that "VPATH" is intended to act like the
System V "VPATH" support, but there is no guarantee that it functions identically.

One use for "VPATH" is when one has several programs that compile from the same source.
The source can be kept in one directory and each set of object files (along with a separate would be in
a separate subdirectory. The "VPATH" macro would point to the source directory in this case.

Example
As an example of the use of make, we will present the description file used to maintain the

make command itself. The code for make is spread over a number of C source files and a Yacc
grammar. The description file contains:

Make - A Program for Maintaining Computer Programs PS1:12-7

Description file for the Make command

P = und -3 I opr -r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.a main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -IS
LINT = lint -p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
size make

$(OBJECTS): defs
gram.o: lex.c
cleanup:

-rm * .o gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES)# print recently changed files
pr$? I $P

test:

touch print

make -dp I grep -v TIME >lzap
/usr/bin/make -dp I grep -v TIME >2zap
di ff 1 zap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from typing
the simple command

make

in a directory containing only the source and description file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file, make
found them using its suffix rules and issued the needed commands. The string of digits results from
the "size make" command; the printing of the command line itself was suppressed by an @ sign. The

PSI:l2-8 Make - A Program for Maintaining Computer Programs

@ sign on the size command in the description file suppressed the printing of the command, so only
the sizes are written.

The last few entries in the description file are useful maintenance sequences. The "print" entry
prints only the files that have been changed since the last "make print" command. A zero-length file
print is maintained to keep track of the time of the printing; the $? macro in the command line then
picks up only the names of the files changed since print was touched. The printed output can be sent
to a different printer or to a file by changing the definition of the P macro:

make print "P = opr -sp"
or

make print "P= cat >zap"

Suggestions and Warnings

The most common difficulties arise from make's specific meaning of dependency. If file x.c has
a "#include "defs"" line, then the object file x.o depends on deft; the source file x.c does not. (If deft
is changed, it is not necessary to do anything to the file x.c, while it is necessary to recreate x.o.)

To discover what make would do, the "-n" option is very useful. The command

make-n

orders make to print out the commands it would issue without actually taking the time to execute
them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition to an
include file), the "-t" (touch) option can save a lot of time: instead of issuing a large number of
superfluous recompilations, make updates the modification times on the affected file. Thus, the com­
mand

make -ts

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary, since this
mode of operation subverts the intention of make and destroys all memory of the previous relation­
ships.

The debugging flag ("-d") causes make to print out a very detailed description of what it is
doing, including the file times. The output is verbose, and recommended only as a last resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance con­
trol. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs during
development of make.

References

l. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler", Bell Laboratories Computing Science
Technical Report #32, July 1978.

2. M. E. Lesk, "Lex - A Lexical Analyzer Generator", Computing Science Technical Report #39,
October 1975.

Make - A Program for Maintaining Computer Programs PS1:12-9

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an inter­
nal table that has the form of a description file. If the "-r" flag is used, this table is not used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make looks for a
file with any of the suffixes on the list. If such a file exists, and if there is a transformation rule for
that combination, make acts as described earlier. The transformation rule names are the concatena­
tion of the two suffixes. The name of the rule to transform a ".r" file to a ".o" file is thus ".r.o". If
the rule is present and no explicit command sequence has been given in the user's description files,
the command sequence for the rule ".r.o" is used. If a command is generated by using one of these
suffixing rules, the macro $• is given the value of the stem (everything but the suffix) of the name of
the file to be made, and the macro $< is the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first name
that is formed that has both a file and a rule associated with it is used. If new names are to be
appended, the user can just add an entry for ".SUFFIXES" in his own description file; the depen­
dents will be added to the usual list. A ".SUFFIXES" line without any dependents deletes the
current list. (It is necessary to clear the current list if the order of names is to be changed).

The following is an excerpt from the default rules file:

.SUFFIXES : .o .c .e .r .f .y .yr .ye .I .s
YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as-
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o:

$(CC) $(CFLAGS) -c $<
.e.o .r.b .f.o :

.s.o:

.y.o:

.y.c:

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

$(AS) -o $@ $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

Introduction to RCS

An Introduction to the Revision Control System

Walter F. Tichy

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

ABSTRACT

PS1:13-l

The Revision Control System (RCS) manages software libraries. It greatly
increases programmer productivity by centralizing and cataloging changes to a
software project. This document describes the benefits of using a source code con­
trol system. It then gives a tutorial introduction to the use of RCS.

Functions of RCS

The Revision Control System (RCS) manages multiple revisions of text files. RCS automates
the storing, retrieval, logging, identification, and merging of revisions. RCS is useful for text that is
revised frequently, for example programs, documentation, graphics, papers, form letters, etc. It
greatly increases programmer productivity by providing the following functions.
1. RCS stores and retrieves multiple revisions of program and other text. Thus, one can maintain

one or more releases while developing the next release, with a minimum of space overhead.
Changes no longer destroy the original -- previous revisions remain accessible.
a. Maintains each module as a tree of revisions.
b. Project libraries can be organized centrally, decentralized, or any way you like.
c. RCS works for any type of text: programs, documentation, memos, papers, graphics, VLSI

layouts, form letters, etc.
2. RCS maintains a complete history of changes. Thus, one can find out what happened to a

module easily and quickly, without having to compare source listings or having to track down
colleagues.
a. RCS performs automatic record keeping.
b. RCS logs all changes automatically.
c. RCS guarantees project continuity.

3. RCS manages multiple lines of development.
4. RCS can merge multiple lines of development. Thus, when several parallel lines of development

must be consolidated into one line, the merging of changes is automatic.
5. RCS flags coding conflicts. If two or more lines of development modify the same section of

code, RCS can alert programmers about overlapping changes.
6. RCS resolves access conflicts. When two or more programmers wish to modify the same revi­

sion, RCS alerts the programmers and makes sure that one change will not wipe out the other
one.

7. RCS provides high-level retrieval functions. Revisions can be retrieved according to ranges of
revision numbers, symbolic names, dates, authors, and states.

8. RCS provides release and configuration control. Revisions can be marked as released, stable,
experimental, etc. Configurations of modules can be described simply and directly.

PS1:13-2 Introduction to RCS

9. RCS performs automatic identification of modules with name, revision number, creation time,
author, etc. Thus, it is always possible to determine which revisions of which modules make up
a given configuration.

10. Provides high-level management visibility. Thus, it is easy to track the status of a software pro­
ject.

a. RCS provides a complete change history.

b. RCS records who did what when to which revision of which module.

11. RCS is fully compatible with existing software development tools. RCS is unobtrusive -- its
interface to the file system is such that all your existing software tools can be used as before.

12. RCS' basic user interface is extremely simple. The novice only needs to learn two commands. Its
more sophisticated features have been tuned towards advanced software development environ­
ments and the experienced software professional.

13. RCS simplifies software distribution if customers also maintain sources with RCS. This tech­
nique assures proper identification of versions and configurations, and tracking of customer
changes. Customer changes can be merged into distributed versions locally or by the develop­
ment group.

14. RCS needs little extra space for the revisions (only the differences). If intermediate revisions are
deleted, the corresponding differences are compressed into the shortest possible form.

Getting Started with RCS

Suppose you have a file f.c that you wish to put under control of RCS. Invoke the checkin com­
mand:

ci f.c

This command creates f.c,v, stores f.c into it as revision 1.1, and deletes f.c. It also asks you for a
description. The description should be a synopsis of the contents of the file. All later checkin com­
mands will ask you for a log entry, which should summarize the changes that you made.

Files ending in ,v are called RCS files ("v" stands for "versions"), the others are called working
files. To get back the working file f.c in the previous example, use the checkout command:

co f.c

This command extracts the latest revision from f.c,v and writes it into f.c. You can now edit f.c and
check it in back in by invoking:

ci f.c

Ci increments the revision number properly. If ci complains with the message

ci error: no lock set by <your login>

then your system administrator has decided to create all RCS files with the locking attribute set to
"strict". With strict locking, you you must lock the revision during the previous checkout. Thus, your
last checkout should have been

co -1 f.c

Locking assures that you, and only you, can check in the next update, and avoids nasty problems if
several people work on the same file. Of course, it is too late now to do the checkout with locking,
because you probably modified f.c already, and a second checkout would overwrite your changes.
Instead, invoke

res -1 f.c

. This command will lock the latest revision for you, unless somebody else got ahead of you already. If
someone else has the lock you will have to negotiate your changes with them.

l

Introduction to RCS PS1:13-3

If your RCS file is private, i.e., if you are the only person who is going to deposit revisions into
it, strict locking is not needed and you can tum it off. If strict locking is turned off, the owner off the
RCS file need not have a lock for checkin; all others still do. Turning strict locking off and on is done
with the commands:

res -U f.c and res -L f.c

You can set the locking to strict or non-strict on every RCS file.

If you do not want to clutter your working directory with RCS files, create a subdirectory called
RCS in your working directory, and move all your RCS files there. RCS commands will look first into
that directory to find needed files. All the commands discussed above will still work, without any
change*.

To avoid the deletion of the working file during checkin (should you want to continue editing),
invoke

ci -1 f.c

This command checks in f.c as usual, but performs an additional checkout with locking. Thus, it
saves you one checkout operation. There is also an option -u for ci that does a checkin followed by a
checkout without locking. This is useful if you want to compile the file after the checkin. Both
options also update the identification markers in your file (see below).

You can give ci the number you want assigned to a checked in revision. Assume all your revi­
sions were numbered 1.1, 1.2, 1.3, etc., and you would like to start release 2. The command

ci -r2 f.c or ci -r2. l f.c

assigns the number 2.1 to the new revision. From then on, ci will number the subsequent revisions
with 2.2, 2.3, etc. The corresponding co commands

co -r2 f.c and co -r2. l f.c

retrieve the latest revision numbered 2.x and the revision 2.1, respectively. Co without a revision
number selects the latest revision on the "trunk", i.e., the highest revision with a number consisting of
2 fields. Numbers with more than 2 fields are needed for branches. For example, to start a branch at
revision 1.3, invoke

ci -rl.3.1 f.c

This command starts a branch numbered 1 at revision 1.3, and assigns the number 1.3.1.1 to the new
revision. For more information about branches, see rcsfilef..5).

Automatic Identification
RCS can put special strings for identification into your source and object code. To obtain such

identification, place the marker

$Header$

into your text, for instance inside a comment. RCS will replace this marker with a string of the form

$Header: filename revisionnumber date time author state $

You never need to touch this string, because RCS keeps it up to date automatically. To propagate the
marker into your object code, simply put it into a literal character string. In. C, this is done as follows:

static char rcsid[] = "$Header$";

The command ident extracts such markers from any file, even object code. Thus, ident helps you to

*Pairs of RCS and working files can really be specified in 3 ways: a) both are given, b) only the working file
is given, c) only the RCS file is given. Both files may have arbitrary path prefixes; RCS commands pair
them up intelligently.

PS1:13-4 Introduction to RCS

find out which revisions of which modules were used in a given program.

You may also find it useful to put the marker

Log

into your text, inside a comment. This marker accumulates the log messages that are requested during
checkin. Thus, you can maintain the complete history of your file directly inside it. There are several
additional identification markers; see co (1) for details.

How to combine MAKE and RCS
If your RCS files are in the same directory as your working files, you can put a default rule into

your makefile. Do not use a rule of the form .c, v.c, because such a rule keeps a copy of every working
file checked out, even those you are not working on. Instead, use this:

.SUFFIXES: .c, v

.c,v.o:
co-q s•.c
cc $(CFLAGS) -c $• .c
rm ·f$*.c

prog: fl .o fl.o .•...
cc fl .o fl.o -o prog

This rule has the following effect. If a file f.c does not exist, and f.o is older than f.c, v, MAKE checks
out f.c, compiles f.c into f.o, and then deletes f.c. From then on, MAKE will use f.o until you change
f.c,v.

If f.c exists (presumably because you are working on it), the default rule .c.o takes precedence,
and f.c is compiled into f.o, but not deleted.

If you keep your RCS file in the directory ,/RCS, all this will not work and you have to write
explicit checkout rules for every file, like

fl.c: RCS/fl.c,v; co -q fl.c

Unfortunately, these rules do not have the property of removing unneeded .c-files.

Additiolllll Information on RCS
If you want to know more about RCS, for example how to work with a tree of revisions and

how to use symbolic revision numbers, read the following paper:

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept. 1982.

Taking a look at the manual page RCSFILE(S) should also help to understand the revision tree
permitted by RCS.

CI (I) Introduction to RCS PSl:13-5

NAME
ci - check in RCS revisions

SYNOPSIS
ci [options) file ...

DESCRIPTION
Ci stores new revisions into RCS files. Each file name ending in ',v' is taken to be an RCS
file, all others are assumed to be working files containing new revisions. Ci deposits the con­
tents of each working file into the corresponding RCS file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example section
of co(!)).

!) Both the RCS file and the working file are given. The RCS file name is of the form
pathl/workfile,v and the working file name is of the form path2/workfile, where pathl/ and
path21 are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is assumed to be in the current directory
and its name is derived from the name of the RCS file by removing pathll and the suffix ',v'.

3) Only the working file is given. Then the name of the RCS file is derived from the name of
the working file by removing path2/ and appending the suffix ',v'.

If the RCS file is omitted or specified without a path, then ci looks for the RCS file first in the
directory ./RCS and then in the current directory.

For ci to work, the caller's login must be on the access list, except if the access list is empty or
the caller is the superuser or the owner of the file. To append a new revision to an existing
branch, the tip revision on that branch must be locked by the caller. Otherwise, only a new
branch can be created. This restriction is not enforced for the owner of the file, unless locking
is set to strict (see res (!)). A lock held by someone else may be broken with the res com­
mand.

Normally, ci checks whether the revision to be deposited is different from the preceding one.
If it is not different, ci either aborts the deposit (if -q is given) or asks whether to abort (if -q
is omitted). A deposit can be forced with the -f option.

For each revision deposited, ci prompts for a log message. The log message should summar­
ize the change and must be terminated with a line containing a single '.' or a control-D. If
several files are checked in, ci asks whether to reuse the previous log message. If the std.
input is not a terminal, ci suppresses the prompt and uses the same log message for all files.
See also -m.

The number of the deposited revision can be given by any of the options -r, -f, -k, -1, -u, or -q
(see -r).

If the RCS file does not exist, ci creates it and deposits the contents of the working file as the
initial revision (default number: I.I). The access list is initialized to empty. Instead of the
log message, ci requests descriptive text (see -t below).

-r[rev] assigns the revision number rev to the checked-in revision, releases the correspond­
ing lock, and deletes the working file. This is also the default.

If rev is omitted, ci derives the new revision number from the caller's last lock. If
the caller has locked the tip revision of a branch, the new w:ision is appended to
that branch. The new revision number is obtained by incrementing the tip revision
number. If the caller locked a non-tip revision, a new branch is started at that
revision by incrementing the highest branch number at that revision. The default
initial branch and level numbers are I. If the caller holds no lock, but he is the
owner of the file and locking is not set to strict, then the revision is appended to
the

PS!:l3-6 Introduction to RCS Cl(!)

trunk.

If rev indicates a revision number, it must be higher than the latest one on the
branch to which rev belongs, or must start a new branch.

If rev indicates a branch instead of a revision, the new revision is appended to that
branch. The level number is obtained by incrementing the tip revision number of
that branch. If rev indicates a non-existing branch, that branch is created with the
initial revision numbered rev.l.

Exception: On the trunk, revisions can be appended to the end, but not inserted.

-f[rev] forces a deposit; the new revision is deposited even it is not different from the
preceding one.

-k[rev] searches the working file for keyword values to determine its revision number,
creation date, author, and state (see co (1)), and assigns these values to the depo­
sited revision, rather than computing them locally. A revision number given by a
command option overrides the number in the working file. This option is useful
for software distribution. A revision that is sent to several sites should be checked
in with the -k option at these sites to preserve its original number, date, author,
and state.

-l[rev] works like -r, except it performs an additional co -I for the deposited revision.
Thus, the deposited revision is immediately checked out again and locked. This is
useful for saving a revision although one wants to continue editing it after the
checkin.

-u[rev] works like -1, except that the deposited revision is not locked. This is useful if one
wants to process (e.g., compile) the revision immediately after checkin.

-q[rev] quiet mode; diagnostic output is not printed. A revision that is not different from
the preceding one is not deposited, unless -f is given.

-mmsg uses the string msg as the log message for all revisions checked in.

-nname assigns the symbolic name name to the number of the checked-in revision. Ci
prints an error message if name is already assigned to another number.

-Nname same as -n, except that it overrides a previous assignment of name.

-sstate sets the state of the checked-in revision to the identifier state. The default is Exp.

-t[tx(/ile] writes descriptive text into the RCS file (deletes the existing text). If tx(/ile is omit-

DIAGNOSTICS

ted, ci prompts the user for text supplied from the std. input, terminated with a
line containing a single '.' or control-D. Otherwise, the descriptive text is copied
from the file tx(/ile. During initialization, descriptive text is requested even if -t is
not given. The prompt is suppressed if std. input is not a terminal.

For each revision, ci prints the RCS file, the working file, and the number of both the depo­
sited and the preceding revision. The exit status always refers to the last file checked in, and
is 0 if the operation was successful, 1 otherwise.

FILE MODES
An RCS file created by ci inherits the read and execute permissions from the working file. If
the RCS file exists already, ci preserves its read and execute permissions. Ci always turns off
all write permissions of RCS files.

Cl(l)

FILES

Introduction to RCS PSl:13-7

The caller of the command must have read/write permission for the directories containing the
RCS file and the working file, and read permission for the RCS file itself. A number of tem­
porary files are created. A semaphore file is created in the directory containing the RCS file.
Ci always creates a new RCS file and unlinks the old one. This strategy makes links to RCS
files useless.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 .
Copyright e 1982 by Walter F. Tichy.

SEE ALSO

BUGS

co (I), ident(l), res (I), rcsdiff (I), rcsintro (I), rcsmerge (I), rlog (I), rcsfile (5), sccstorcs (8).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System,· in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

PS1:13-8 Introduction to RCS CO(!)

NAME
co - check out RCS revisions

SYNOPSIS
co [options] file ...

DESCRIPTION
Co retrieves revisions from RCS files. Each file name ending in ',v' is taken to be an RCS
file. All other files are assumed to be working files. Co retrieves a revision from each RCS
file and stores it into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example section).

I) Both the RCS file and the working file are given. The RCS file name is of the form
pathllworkfile,v and the working file name is of the form path2/workfi/e, where pathll and
path2/ are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is created in the current directory and its
name is derived from the name of the RCS file by removing pathll and the suffix ',v'.

3) Only the working file is given. Then the name of the RCS file is derived from the name of
the working file by removing path21 and appending the suffix ', v'.

If the RCS file is omitted or specified without a path, then co looks for the RCS file first in the
directory ./RCS and then in the current directory.

Revisions of an RCS file may be checked out locked or unlocked. Locking a revision prevents
overlapping updates. A revision checked out for reading or processing (e.g., compiling) need
not be locked. A revision checked out for editing and later checkin must normally be locked.
Locking a revision currently locked by another user fails. (A lock may be broken with the res
(I) command.) Co with locking requires the caller to be on the access list of the RCS file,
unless he is the owner of the file or the superuser, or the access list is empty. Co without
locking is not subject to accesslist restrictions.

A revision is selected by number, checkin date/time, author, or state. If none of these options
are specified, the latest revision on the trunk is retrieved. When the options are applied in
combination, the latest revision that satisfies all of them is retrieved. The options for
date/time, author, and state retrieve a revision on the selected branch. The selected branch is
either derived from the revision number (if given), or is the highest branch on the trunk. A
revision number may be attached to one of the options -1, -p, -q, or -r.

A co command applied to an RCS file with no revisions creates a zero-length file. Co always
performs keyword substitution (see below).

-l[rev] locks the checked out revision for ihe caller. If omitted, the checked out revision
is not locked. See option -r for handling of the revision number rev.

-p[rev]

-q[rev]

-ddate

prints the retrieved revision on the std. output rather than storing it in the work­
ing file. This option is useful when co is part of a pipe.

quiet mode; diagnostics are not printed.

retrieves the latest revision on the selected branch whose checkin date/time is less
than or equal to date. The date and time may be given in free format and are
converted to local time. Examples of formats for date".

22-Apri/-1982, 17:20-CDT,
2:25 AM, Dec. 29, 1983,
Tue-PDT, 1981, 4pm Jul 21 (free format),
Fri, April 16 15:52:25 EST 1982 (output of ctime).

Most fields in the date and time may be defaulted. Co determines the defaults in
the

CO(l) Introduction to RCS PS1:13-9

order year, month, day, hour, minute, and second (most to least significant). At
least one of these fields must be provided. For omitted fields that are of higher
significance than the highest provided field, the current values are assumed. For
all other omitted fields, the lowest possible values are assumed. For example, the
date "20, 10:30" defaults to 10:30:00 of the 20th of the current month and current
year. The date/time must be quoted if it contains spaces.

-r[rev] retrieves the latest revision whose number is less than or equal to rev. If rev indi­
cates a branch rather than a revision, the latest revision on that branch is
retrieved. Rev is composed of one or more numeric or symbolic fields separated
by '.'. The numeric equivalent of a symbolic field is specified with the -n option of
the commands ci and res.

-sstate retrieves the latest revision on the selected branch whose state is set to state.

-w[login] retrieves the latest revision on the selected branch which was checked in by the
user with login name login. If the argument login is omitted, the caller's login is
assumed.

-jjoinlist generates a new revision which is the join of the revisions on joinlist. Joinlist is a
comma-separated list of pairs of the form rev2:rev3, where rev2 and rev3 are (sym­
bolic or numeric) revision numbers. For the initial such pair, revl denotes the
revision selected by the options -1, ... , -w. For all other pairs, revl denotes the
revision generated by the previous pair. (Thus, the output of one join becomes the
input to the next.)

For each pair, co joins revisions revl and rev3 with respect to rev2. This means
that all changes that transform rev2 into revl are applied to a copy of rev3. This
is particularly useful if revl and rev3 are the ends of two branches that have rev2
as a common ancestor. If revl < rev2 < rev3 on the same branch, joining gen­
erates a new revision which is like rev3, but with all changes that lead from rev!
to rev2 undone. If changes from rev2 to revl overlap with changes from rev2 to
rev3, co prints a warning and includes the overlapping sections, delimited by the
lines<<<<<<< rev!, =======,and>>>>>>> rev3.

For the initial pair, rev2 may be omitted. The default is the common ancestor. If
any of the arguments indicate branches, the latest revisions on those branches are
assumed. If the option -1 is present, the initial revl is locked.

KEYWORD SUBSTITUTION
Strings of the form $keyword$ and $keyword: ... $ embedded in the text are replaced with
strings of the form $keyword: value$, where keyword and value are pairs listed below. Key­
words may be embedded in literal strings or comments to identify a revision.

Initially, the user enters strings of the form $keyword$. On checkout, co replaces these strings
with strings of the form $keyword: value $. If a revision containing strings of the latter form is
checked back in, the value fields will be replaced during the next checkout. Thus, the key­
word values are automatically updated on checkout.

Keywords and their corresponding values:

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time the revision was checked in.

$Header$

$Locker$

A standard header containing the RCS file name, the revision number, the date,
the author, and the state.

The login name of the user who locked the revision (empty if not locked).

PS1:13-10 Introduction to RCS CO(!)

Log

$Revision$

$Source$

$State$

The log message supplied during checkin, preceded by a header containing the
RCS file name, the revision number, the author, and the date. Existing log
messages are NOT replaced. Instead, the new log message is inserted after
$Log: ... $. This is useful for accumulating a complete change log in a source file.

The revision number assigned to the revision.

The full pathname of the RCS file.

The state assigned to the revision with res -s or ci -s.

DIAGNOSTICS
The RCS file name, the working file name, and the revision number retrieved are written to
the diagnostic output. The exit status always refers to the last file checked out, and is 0 if the
operation was successful, 1 otherwise.

EXAMPLES
Suppose the current directory contains a subdirectory 'RCS' with an RCS file 'io.c,v'. Then all
of the following commands retrieve the latest revision from 'RCS/io.c,v' and store it into
'io.c'.

co io.c; co RCS/io.c,v; co io.c,v;
co io.c RCS/io.c,v; co io.c io.c,v;
co RCS/io.c,v io.c; co io.c,v io.c;

FILE MODES

FILES

The working file inherits the read and execute permissions from the RCS file. In addition, the
owner write permission is turned on, unless the file is checked out unlocked and locking is set
to strict (see res (1)).

If a file with the name of the working file exists already and has write permission, co aborts
the checkout if -q is given, or asks whether to abort if -q is not given. If the existing working
file is not writable, it is deleted before the checkout.

The caller of the command must have write permission in the working directory, read permis­
sion for the RCS file, and either read permission (for reading) or read/write permission (for
locking) in the directory which contains the RCS file.

A number of temporary files are created. A semaphore file is created in the directory of the
RCS file to prevent simultaneous update.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3. 1 ; Release Date: 83/04/04 .
Copyright© 1982 by Walter F. Tichy.

SEE ALSO
ci (1), ident(l), res (1), rcsdiff(l), rcsintro (1), rcsmerge (!), rlog (!), rcsfile (5), sccstorcs (8).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

LIMITATIONS

BUGS

The option -d gets confused in some circumstances, and accepts no date before 1970. There
is no way to suppress the expansion of keywords, except by writing them differently. In nroff
and troff, this is done by embedding the null-character '\&' into the keyword.

The option -j does not work for files that contain lines with a single '.'.

IDENT(l) Introduction to RCS PS1:13-l l

NAME
ident - identify files

SYNOPSIS
ident file ...

DESCRIPTION
!dent searches the named files for all occurrences of the pattern $keyword: ... $, where keyword
is one of

Author
Date
Header
Locker
Log
Revision
Source
State

These patterns are normally inserted automatically by the RCS command co (I), but can also
be inserted manually.

!dent works on text files as well as object files. For example, if the C program in file f.c con­
tains

char rcsid[] = "$Header: Header information$";

and f.c is compiled into f.o, then the command

ident f.c f.o

will print

f.c:
$Header: Header information $

f.o:
$Header: Header information $

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0; Release Date: 82/12/04.
Copyright © 1982 by Walter F. Tichy.

~ SEE ALSO

BUGS

ci (l), co (l), res (l), rcsdiff(l), rcsintro (1), rcsmerge (l), rlog (l), rcsfile (5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System,· in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

PSI: 13-12 Introduction to RCS MERGE(!)

NAME
merge - three-way file merge

SYNOPSIS
merge [-p] file I file2 file3

DESCRIPTION
Merge incorporates all changes that lead from file2 to file3 into filel. The result goes to std.
output if -p is present, into filel otherwise. Merge is useful for combining separate changes to
an original. Suppose file2 is the original, and both file 1 and file3 are modifications of fi/e2.
Then merge combines both changes.

An overlap occurs if both fi/el and file3 have changes in a common segment of lines. Merge
prints how many overlaps occurred, and includes both alternatives in the result. The alterna­
tives are delimited as follows:

<<<<<<< file!
lines in file I

lines in file3
>>>>>>> file3

If there are overlaps, the user should edit the result and delete one of the alternatives.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 82/11/25 .
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
diff3 (I), dilf (1), rcsmerge (1), co (1).

RCS(1) Introduction to RCS PS1:13-13

NAME
res - change RCS file attributes

SYNOPSIS
res [options] file ...

DESCRIPTION
Res creates new RCS files or changes attributes of existing ones. An RCS file contains multi­
ple revisions of text, an access list, a change log, descriptive text, and some control attributes.
For res to work, the caller's login name must be on the access list, except if the access list is
empty, the caller is the owner of the file or the superuser, or the -i option is present.

Files ending in ',v' are RCS files, all others are working files. If a working file is given, res tries
to find the corresponding RCS file first in directory ./RCS and then in the current directory,
as explained in co (l).

-i creates and initializes a new RCS file, but does not deposit any revision. If the
RCS file has no path prefix, res tries to place it first into the subdirectory ./RCS,
and then into the current directory. If the RCS file already exists, an error mes­
sage is printed.

-alogins appends the login names appearing in the comma-separated list logins to the
access list of the RCS file.

-Aoldfile appends the access list of oldfile to the access list of the RCS file.

-e[logins] erases the login names appearing in the comma-separated list logins from the
access list of the RCS file. If logins is omitted, the entire access list is erased.

-cstring sets the comment leader to string. The comment leader is printed before every log
message line generated by the keyword Log during checkout (see co). This is
useful for programming languages without multi-line comments. During res -i or
initial ci, the comment leader is guessed from the suffix of the working file.

-1[rev] locks the revision with number rev. If a branch is given, the latest revision on
that branch is locked. If rev is omitted, the latest revision on the trunk is locked.
Locking prevents overlapping changes. A lock is removed with ci or res -u (see
below).

-u[rev] unlocks the revision with number rev. If a branch is given, the latest revision on
that branch is unlocked. If rev is omitted, the latest lock held by the caller is
removed. Normally, only the locker of a revision may unlock it. Somebody else
unlocking a revision breaks the lock. This causes a mail message to be sent to the
original locker. The message contains a commentary solicited from the breaker.
The commentary is terminated with a line containing a single'.' or control-D.

-L sets locking to strict. Strict locking means that the owner of an RCS file is not
exempt from locking for checkin. This option should be used for files that are
shared.

-U sets locking to non-strict. Non-strict locking means that the owner of a file need
not lock a revision for checkin. This option should NOT be used for files that are
shared. The default (-L or -U) is determined by your system administrator.

-nname[:rev]
associates the symbolic name name with the branch or revision rev. Res prints an
error message if name is already associated with another number. If rev is omit­
ted, the symbolic name is deleted.

-Nname[:rev]
same as -n, except that it overrides a previous assignment of name.

PS1:13-14 Introduction to RCS RCS(1)

-orange deletes ("outdates") the revisions given by range. A range consisting of a single
revision number means that revision. A range consisting of a branch number
means the latest revision on that branch. A range of the form revl-rev2 means
revisions revl to rev2 on the same branch, -rev means from the beginning of the
branch containing rev up to and including rev, and rev- means from revision rev
to the end of the branch containing rev. None of the outdated revisions may have
branches or locks.

-q quiet mode; diagnostics are not printed.

-sstate[:rev]
sets the state attribute of the revision rev to state. If rev is omitted, the latest revi­
sion on the trunk is assumed; If rev is a branch number, the latest revision on that
branch is assumed. Any identifier is acceptable for state. A useful set of states is
Exp (for experimental), Stab (for stable), and Rel (for released). By default, ci sets
the state of a revision to Exp.

-t[t.x(/ile] writes descriptive text into the RCS file (deletes the existing text). If tx(/ile is
omitted, res prompts the user for text supplied from the std. input, terminated
with a line containing a single '.' or control-D. Otherwise, the descriptive text is
copied from the file txtfile. If the -i option is present, descriptive text is requested
even if -t is not given. The prompt is suppressed if the std. input is not a termi­
nal.

DIAGNOSTICS

FILES

The RCS file name and the revisions outdated are written to the diagnostic output. The exit
status always refers to the last RCS file operated upon, and is 0 if the operation was success­
ful, 1 otherwise.

The caller of the command must have read/write permission for the directory containing the
RCS file and read permission for the RCS file itself. Res creates a semaphore file in the same
directory as the RCS file to prevent simultaneous update. For changes, res always creates a
new file. On successful completion, res deletes the old one and renames the new one. This
strategy makes links to RCS files useless.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.1 ; Release Date: 83/04/04.
Copyright" 1982 by Walter F. Tichy.

SEE ALSO
co (1), ci (1), ident(l), rcsdiff (1), rcsintro (1), rcsmerge (1), rlog (1), rcsfile (5), sccstorcs (8).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

RCSDIFF(l) Introduction to RCS PS1:13-15

NAME
rcsdiff - compare RCS revisions

SYNOPSIS
rcscWf [-b] [-cefhn] [-rrev 1] [-rrev 2] file ...

DFSCRIPI10N
Rcsdiff runs di.ff(i) to compare two revisions of each RCS file given. A file name ending in
',v' is an RCS file name, otherwise a working file name. Rcsdijf derives the working file name
from the RCS file name and vice versa, as explained in co (1). Pairs consisting of both an
RCS and a working file name may also be specified.

The options -b, -c, -e, -f, and -h have the same effect as described in di.ff (I); option -n gen­
erates an edit script of the format used by RCS.

If both revl and rev2 are omitted, rcsdiff compares the latest revision on the trunk with the
contents of the corresponding working file. This is useful for determining what you changed
since the last checkin.

If revl is given, but rev2 is omitted, rcsdiff compares revision revl of the RCS file with the
contents·ofthe corresponding working file.

If both revl and rev2 are given, rcsdi.ff compares revisions revl and rev2 of the RCS file.

Both revl and rev2 may be given numerically or symbolically.

EXAMPLES
The command

rcsdiff f.c

runs di.ff on the latest trunk revision of RCS file f.c, v and the contents of working file f.c.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0; Release Date: 83/01/15.
Copyright 0 1982 by Walter F. Tichy.

SEEMS<>
ci (1), co (1), diff (1), ident (1), res (1), rcsintro (1), rcsmerge (1), rlog (1), rcsfile (5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System,· in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

PSl:IJ-16 Introduction to RCS RCSFILE(S)

NAME
rcsfile - format of RCS file

DESCRIPTION
An RCS file is an ASCII file. Its contents is described by the grammar below. The text is free
format, i.e., spaces, tabs and new lines have no significance except in strings. Strings are
enclosed by·'@'. If a string contains a '@', it must be doubled.

The meta syntax uses the following conventions: 'I' (bar) separates alternatives; '{' and '}'
enclose optinal phrases; '{'and'}•' enclose phrases that may be repeated zero or more times;
'{' and '}+' enclose phrases that must appear at least once and may be repeated; '<' and '>'
enclose nonterminals.

<rcstext> ::= <admin> {<delta>}• <desc> {<deltatext> }•

<admin> ::= head {<num>};
access {<id>}•;
symbols {<id>: <num>}•;
locks {<id> : <num> }•;
comment {<string>};

<delta> <num>
date <num>;
author <id>;
state {<id>};
branches {<num>}•;
next {<num>};

<desc> desc <string>

<deltatext> ::= <num>
log <string>
text <string>

<num> .. - {<digit>{.}}+

<digit> .. - 0 I I I ... I 9

<id> ::= <letter>{ <idchar> }•

<letter> · .. - AIB1 ... IZlalbl ... 1z

<idchar> .. - Any printing ASCII character except space,
tab, carriage return, new line, and <special>.

<special> ::= ;1:1.1@

<string> .. - @{any ASCII character, with'@' doubled}•@

Identifiers are case sensitive. Keywords are in lower case only. The sets of keywords and
identifiers may overlap.

RCSFILE(5) Introduction to RCS PS1:13-17

The <delta> nodes form a tree. All nodes whose numbers consist of a single pair (e.g., 2.3,
2.1, 1.3, etc.) are on the "trunk", and are linked through the "next" field in order of decreasing
numbers. The '"head" field in the <admin> node points to the head of that sequence (i.e., con­
tains the highest pair).

All <delta> nodes whose numbers consist of 2n fields (n~2) (e.g., 3.1.1.1, 2.1.2.2, etc.) are
linked as follows. All nodes whose first (2n)-1 number fields are identical are linked through
the "next" field in order of increasing numbers. For each such sequence, the <delta> node
whose number is identical to the first 2(n-1) number fields of the deltas on that sequence is
called the branchpoint. The "branches" field of a node contains a list of the numbers of the
first nodes of all sequences for which it is a branchpoint. This list is ordered in increasing
numbers.

Example:

IDENTIFICATION

I \
l \

I \
11.2.1.3\

I
I

I \
I \

I \
/1.2.1.1\

I \
I \

I \
/1.3.1.1\

I
I
I
I \

Head
I
I
v

2.1

v

---------\
I. 3 I

I
I \

\ I
I

I \
I \

I \
/1.2.2.2\

I \
I \

I \
/l .2.2.1. l .1\

I I
I I

I \ I
I \ I

I \-----------
11.2.2.1\

I I I
I v I
I --------- I
I \ 1.2 I I
----------------------\ !---------

\ I
\ I
I
I
v

\ I. I I
\ I
\ I
\ I

Fig. I: A revision tree

Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0; Release Date: 82/11/18.

PS1:13-18 Introduction to RCS RCSFILE(5)

Copyright f> 1982 by Walter F. Tichy.

SEE ALSO
ci (I), co (I), ident (!),res (I), rcsdiff(l), rcsintro (I), rcsmerge (I), rlog (I), sccstorcs (8).

RCSMERGE (l) Introduction to RCS PSl:l3-19

NAME
rcsmerge - merge RCS revisions

SYNOPSIS
rcsmerge -rrev 1 [-rrev2] [-p] file

DESCRIPTION
Rcsmerge incorporates the changes between revl and rev2 of an RCS file into the correspond­
ing working file. If -p is given, the result is printed on the std. output, otherwise the result
overwrites the working file.

A file name ending in ', v' is an RCS file name, otherwise a working file name. Merge derives
the working file name from the RCS file name and vice versa, as explained in co (1). A pair
consisting of both an RCS and a working file name may also be specified.

Revl may not be omitted. If rev2 is omitted, the latest revision on the trunk is assumed. Both
revl and rev2 may be given numerically or symbolically.

Rcsmerge prints a warning if there are overlaps, and delimits the overlapping regions as
explained in co -j. The command is useful for incorporating changes into a checked-out revi­
sion.

EXAMPLES
Suppose you have released revision 2.8 of f.c. Assume furthermore that you just completed
revision 3.4, when you receive updates to release 2.8 from someone else. To combine the
updates to 2.8 and your changes between 2.8 and 3.4, put the updates to 2.8 into file f.c and
execute

rcsmerge -p -r2.8 -r3.4 f.c >f.merged.c

Then examine f.merged.c. Alternatively, if you want to save the updates to 2.8 in the RCS
file, check them in as revision 2.8.1.1 and execute co -j:

ci -r2.8.1. l f.c
co -r3.4 -j2.8:2.8. l .1 f.c

As another example, the following command undoes the changes between revision 2.4 and 2.8
in your currently checked out revision in f.c.

rcsmerge -r2.8 -r2.4 f.c

Note the order of the arguments, and that f.c will be overwritten.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0; Release Date: 83/01/15.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO

BUGS

ci (1), co (1), merge (1), ident (1), res (1), rcsdiff (1), rlog (1), rcsfile (5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

Rcsmerge does not work for files that contain lines with a single'.'.

PS1:13-20 Introduction to RCS RLOG(l)

NAME
rlog - print log messages and other information about RCS files

SYNOPSIS
rlog [options] file ...

DESCRIPTION
Rlog prints information about RCS files. Files ending in ',v' are RCS files, all others are
working files. If a working file is given, rlog tries to find the corresponding RCS file first in
directory ./RCS and then in the current directory, as explained in co (1).

Rlog prints the following information for each RCS file: RCS file name, working file name,
head (i.e., the number of the latest revision on the trunk), access list, locks, symbolic names,
suffix, total number of revisions, number of revisions selected for printing, and descriptive
text. This is followed by entries for the selected revisions in reverse chronological order for
each branch. For each revision, rlog prints revision number, author, date/time, state, number
of lines added/deleted (with respect to the previous revision), locker of the revision (if any),
and log message. Without options, rlog prints complete information. The options below res­
trict this output.

-L ignores RCS files that have no locks set; convenient in combination with -R, -h, or
-1.

-R only prints the name of the RCS file; convenient for translating a working file
name into an RCS file name.

-h prints only RCS file name, working file name, head, access list, locks, symbolic
names, and suffix.

-t prints the same as -h, plus the descriptive text.

-ddates prints information about revisions with a checkin date/time in the ranges given by
the semicolon-separated list of dates. A range of the form dl<d2 or d2>dl selects
the revisions that were deposited between dl and d2, (inclusive). A range of the
form <d or d> selects all revisions dated d or earlier. A range of the form d< or
>d selects all revisions dated d or later. A range of the form d selects the single,
latest revision dated d or earlier. The date/time strings d, dl, and d2 are in the
free format explained in co (1). Quoting is normally necessary, especially for< and
>.Note that the separator is a semicolon.

-l[lockers] prints information about locked revisions. If the comma-separated list lockers of
login names is given, only the revisions locked by the given login names are
printed. If the list is omitted, all locked revisions are printed.

-rrevisions
prints information about revisions given in the comma-separated list revisions of
revisions and ranges. A range revl-rev2 means revisions revl to rev2 on the same
branch, -rev means revisions from the beginning of the branch up to and including
rev, and rev- means revisions starting with rev to the end of the branch containing
rev. An argument that is a branch means all revisions on that branch. A range of
branches means all revisions on the branches in that range.

-sstates prints information about revisions whose state attributes match one of the states
given in the comma-separated list states.

-w[logins] prints information about revisions checked in by users with login names appearing
in the comma-separated list logins. If logins is omitted, the user's login is
assumed.

RLOG(l) Introduction to RCS PS1:13-21

Rlog prints the intersection of the revisions selected with the options -d, -1, -s, -w, intersected
with the union of the revisions selected by -b and -r.

EXAMPLES
rlog -L -R RCS/•,v
rlog -L -h RCS/•,v
rlog -L -I RCS/•,v
rlog RCS/•,v

The first command prints the names of all RCS files in the subdirectory 'RCS' which have
locks. The second command prints the headers of those files, and the third prints the headers
plus the log messages of the locked revisions. The last command prints complete informa­
tion.

DIAGNOSTICS
The exit status always refers to the last RCS file operated upon, and is 0 if the operation was
successful, 1 otherwise.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.2 ; Release Date: 83/05/11 .
Copyright© 1982 by Walter F. Tichy.

SEE AISO
ci (1), co (1), ident(l), res (1), rcsdiff (1), rcsintro (1), rcsmerge (1), rcsfile (5), sccstorcs (8).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

PSl:13-22 Introduction to RCS SCCSTORCS (8)

NAME
sccstorcs - build RCS file from SCCS file

SYNOPSIS
sccstorcs [-t) [-v) s.file ...

DF.sCRIPTION

FILFS

Sccstorcs builds an RCS file from each SCCS file argument. The deltas and comments for
each delta are preserved and installed into the new RCS file in order. Also preserved are the
user access list and descriptive text, if any, from the SCCS file. ·

The following flags are meaningful:

-t Trace only. Prints detailed information about the SCCS file and lists the commands
that would be executed to produce the RCS file. No commands are actually executed
and no RCS file is made.

-v Verbose. Prints each command that is run while it is building the RCS file.

For each s.somefile, Sccstorcs writes the files somefile and somefile, v which should not already
exist. Sccstorcs will abort, rather than overwrite those files if they do exist.

SEE Al.SO
ci (I), co (1), res (1).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System,· in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

DIAGNOSTICS

BUGS

All diagnostics are written to stderr. Non-zero exit status on error.

Sccstorcs does not preserve all SCCS options specified in the SCCS file. Most notably, it does
not preserve removed deltas, MR numbers, and cutoff points.

AUTHOR
Ken Greer

Copyright 0 1983 by Kenneth L. Greer

An Introduction to the
Source Code . Control System

Eric Allman
Project Ingres

University of California at Berkeley

This document gives a quick introduction to using the Source Code Control System
(SCCS). The presentation is geared to programmers who are more concerned with what to do
to get a task done rather than how it works; for this reason some of the examples are not well
explained. For details of what the magic options do, see the section on "Further Informa­
tion".

This is a working document. Please send any comments or suggestions to
eric@Berkeley.Edu.

1. Introduction
SCCS is a source management system. Such a system maintains a record of versions of a

system; a record is kept with each set of changes of what the changes are, why they were
made, and who made them and when. Old versions can be recovered, and different versions
can be maintained simultaneously. In projects with more than one person, SCCS will insure
that two people are not editing the same file at the same time.

All versions of your program, plus the log and other information, is kept in a file called
the "s-file". There are three major operations that can be performed on the s-file:
(1) Get a file for compilation (not for editing). This operation retrieves a version of the

file from the s-file. By default, the latest version is retrieved. This file is intended for
compilation, printing, or whatever; it is specifically NOT intended to be edited or
changed in any way; any changes made to a file retrieved in this way will probably be
lost.

(2) Get a file for editing. This operation also retrieves a version of the file from the s-file,
but this file is intended to be edited and then incorporated back into the s-file. Only
one person may be editing a file at one time.

(3) Merge a file back into the s-file. This is the companion operation to (2). A new ver­
sion number is assigned, and comments are saved explaining why this change was
made.

2. Learning the Lingo
There are a number of terms that are worth learning before we go any farther.

This is version 1.21 ofthis document. It was last modilied on 12/5/80.

PS1:14-l An Introdnction to the Source Code Control System

An Introduction to the Source Code Control System PS1:14-2

2.1. S-file

The s-file is a single file that holds all the different versions of your file. The s-file is
stored in differential format; i.e., only the differences between versions are stored, rather than
the entire text of the new version. This saves disk space and allows selective changes to be
removed later. Also included in the s-file is some header information for each version,
including the comments given by the person who created the version explaining why the
changes were made.

2.2. Deltas

Each set of changes to the s-file (which is approximately [but not exactly!] equivalent to
a version of the file) is called a delta. Although technically a delta only includes the changes
made, in practice it is usual for each delta to be made with respect to all the deltas that have
occurred before1• However, it is possible to get a version of the file that has selected deltas
removed out of the middle of the list of changes - equivalent to removing your changes later.

2.3. SID's (or, version numbers)

A SID (SCCS Id) is a number that represents a delta. This is normally a two-part
number consisting of a "release" number and a "level" number. Normally the release
number stays the same, however, it is possible to move into a new release if some major
change is being made.

Since all past deltas are normally applied, the SID of the final delta applied can be used
to represent a version number of the file as a whole.

2.4. Id keywords

When you get a version of a file with intent to compile and install it (i.e., something
other than edit it), some special keywords are expanded inline by SCCS. These Id Keywords
can be used to include the current version number or other information into the file. All id
keywords are of the form 8/ox%, where x is an upper case letter. For example, %1% is the SID
of the latest delta applied, %W% includes the module name, SID, and a mark that makes it
findable by a program, and %G% is the date of the latest delta applied. There are many oth­
ers, most of which are of dubious usefulness.

When you get a file for editing, the id keywords are not expanded; this is so that after
you put them back in to the s-file, they will be expanded automatically on each new version.
But notice: if you were to get them expanded accidently, then your file would appear to be the
same version forever more, which would of course defeat the purpose. Also, if you should
install a version of the program without expanding the id keywords, it will be impossible to
tell what version it is (since all it will have is "%W%" or whatever).

3. Creating SCCS Files

To put source files into SCCS format, run the following shell script from csh:

mkdir secs save
foreach i (*.[ch])

end

secs admin -i$i $i
mv $i save/$i

'This matches normal usage, where the previous changes are not saved at all, s"o all changes are automatically
based on all other changes that have happened through history.

PS1:14-3 An Introduction to the Source Code Control System

This will put the named files into s-files in the subdirectory "SCCS" The files will be removed
from the current directory and hidden away in the directory "save'', so the next thing you will
probably want to do is to get all the files (described below). When you are convinced that
SCCS has correctly created the s-files, you should remove the directory "save".

If you want to have id keywords in the files, it is best to put them in before you create
the s-files. If you do not, admin will print "No Id Keywords (cm7)", which is a warning mes­
sage only.

4. Getting Files for Compilation

To get a copy of the latest version of a file, run

SCCS get prog.c

SCCS will respond:

1.1
87 lines

meaning that version I. I was retrieved2 and that it has 87 lines. The file prog.c will be
created in the current directory. The file will be read-only to remind you that you are not
supposed to change it.

This copy of the file should not be changed, since SCCS is unable to merge the changes
back into the s-file. If you do make changes, they will be lost the next time someone does a
get.

5. Changing Files (or, Creating Deltas)

5.1. Getting a copy to edit

To edit a source file, you must first get it, requesting permission to edit it3:

SCCS edit prog.c

The response will be the same as with get except that it will also say:

New delta 1.2

You then edit it, using a standard text editor:

vi prog.c

5.2. Merging the changes back into the s-file

When the desired changes are made, you can put your changes into the SCCS file using
the delta command:

secs delta prog.c

Delta will prompt you for "comments?" before it merges the changes in. At this prompt
you should type a one-line description of what the changes mean (more lines can be entered

'Actually, the SID of the final delta applied was I.I.

'The "edit" command is equivalent to using the -e flag to get, as:

secs get -e prog.c

Keep this in mind when reading other documentation.

An Introduction to the Source Code Control System PS1:14-4

by ending each line except the last with a backslash4). Delta will then type:

1.2
5 inserted
3 deleted
84 unchanged

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84
lines unchanged5• The prog.c file will be removed; it can be retrieved using get.

S.3. When to make deltas

It is probably unwise to make a delta before every recompilation or test; otherwise, you
tend to get a lot of deltas with comments like "fixed compilation problem in previous delta"
or "fixed botch in 1.3". However, it is very important to delta everything before installing a
module for general use. A good technique is to edit the files you need, make all necessary
changes and tests, compiling and editing as often as necessary without making deltas. When
you are satisfied that you have a working version, delta everything being edited, re-get them,
and recompile everything.

S.4. What's going on: the info command

To find out what files where being edited, you can use:

SCCS info

to print out all the files being edited and other information such as the name of the user who
did the edit. Also, the command:

secs check
is nearly equivalent to the info command, except that it is silent if nothing is being edited,
and returns non-zero exit status if anything is being edited; it can be used in an "install"
entry in a makefile to abort the install if anything has not been properly deltaed.

If you know that everything being edited should be deltaed, you can use:

secs delta 'secs telf

The tell command is similar to info except that only the names of files being edited are out­
put, one per line.

All of these commands take a -b flag to ignore "branches" (alternate versions, described
later) and the -u flag to only give files being edited by you. The -u flag takes an optional user
argument, giving only files being edited by that user. For example,

secs info -ujohn

gives a listing of files being edited by john.

S.S. ID keywords

Id keywords can be inserted into your file that will be expanded automatically by get.
For example, a line such as:

static char Sccsld[] = "%W%\t%G%";

will be replaced with something like:

•yes, this is a stupid default.

'Changes to a line are counted as a line deleted and a line inserted.

PS1:14-5 An Introduction to the Source Code Control System

static char Sccsid[J = "@(#)prog.c 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was created. The
string "@(#)" is a special string which signals the beginning of an SCCS Id keyword.

5.5.1. The what command

To find out what yersion of a program is being run, use:

sccs what prog.c /usr/bin/prog

which will print all strings it finds that begin with "@(#)". This works on all types of files,
including binaries and libraries. For example, the above command will output something
like:

prog.c:
prog.c 1.2

/usr/bin/prog:
prog.c 1.1

08/29/80

02105179

From this I can see that the source that I have in prog.c will not compile into the same ver­
sion as the binary in /usr/bin/prog.

5.5.2. Where to put id keywords

ID keywords can be inserted anywhere, including in comments, but Id Keywords that
are compiled into the object module are especially useful, since it lets you find out what ver­
sion of the object is being run, as well as the source. However, there is a cost: data space is
used up to store the keywords, and on small address space machines this may be prohibitive.

When you put id keywords into header files, it is important that you assign them to
different variables. For example, you might use:

static char AccessSid[J = "%W% %G%";

in the file access.h and:

static char OpsysSid(] = "%W% %G%";

in the file opsys.h. Otherwise, you will get compilation errors because "Sccsid" is redefined.
The problem with this is that if the header file is included by many modules that are loaded
together, the version number of that header file is included in the object module many times;
you may find it more to your taste to put id keywords in header files in comments.

5.6. Keeping SID's consistent across files

With some care, it is possible to keep the SID's consistent in multi-file systems. The
trick here is to always edit all files at once. The changes can then be made to whatever files
are necessary and then all files (even those not changed) are redeltaed. This can be done
fairly easily by just specifying the name of the directory that the secs files are in:

sccs edit SCCS

which will edit all files in that directory. To make the delta, use:

secs delta SCCS

You will be prompted for comments only once.

5.7. Creating new releases

When you want to create a new release of a program, you can specify the release number
you want to create on the edit command. For example:

An Introduction to the Source Code Control System PS1:14-6

secs edit -r2 prog.c

will cause the next delta to be in release two (that is, it will be numbered 2.1). Future deltas
will automatically be in release two. To change the release number of an entire system, use:

secs edit -r2 SCCS

6. Restoring Old Versions

6.1. Reverting to old versions

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But this
introduced a bug, so you made a delta 1.4 to correct it. But 1.4 was still buggy, and you
decided you wanted to go back to the old version. You could revert to delta 1.2 by choosing
the SID in a get:

secs get -r 1.2 prog.c

This will produce a version of prog.c that is delta 1.2 that can be reinstalled so that work can
proceed.

In some cases you don't know what the SID of the delta you want is. However, you can
revert to the version of the program that was running as of a certain date by using the -c
(cutoff) flag. For example,

secs get -c800722120000 prog.c

will retrieve whatever version was current as of July 22, 1980 at 12:00 noon. Trailing com­
ponents can be stripped off (defaulting to their highest legal value), and punctuation can be
inserted in the obvious places; for example, the above line could be equivalently stated:

secs get -c"S0/07/22 12:00:00" prog.c

6.2. Selectively deleting old deltas

Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3
should be removed. You could do this by excluding delta 1.3:

secs edit -x 1.3 prog.c

When delta 1.5 is made, it will include the changes made in delta 1.4, but will exclude the
changes made in delta 1.3. You can exclude a range of deltas using a dash. For example, if
you want to get rid of 1.3 and 1.4 you can use:

secs edit -xl.3-1.4 prog.c

which will exclude all deltas from 1.3 to 1.4. Alternatively,

secs edit -x 1.3-1 prog.c

will exclude a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using -x (or -i; see below) there will be conflicts between versions;
for example, it may be necessary to both include and delete a particular line. If this happens,
SCCS always prints out a message telling the range of lines effected; these lines should then be
examined very carefully to see if the version SCCS got is ok.

Since each delta (in the sense of "a set of changes") can be excluded at will, that this
makes it most useful to put each semantically distinct change into its own delta.

7. Auditing Changes

PS1:14-7 An Introduction to the Source Code Control System

7.1. The prt command

When you created a delta, you presumably gave a reason for the delta to the "com­
ments?" prompt. To print out these comments later, use:

secs prt prog.c

This will produce a report for each delta of the SID, time and date of creation, user who
created the delta, number of lines inserted, deleted, and unchanged, and the comments associ­
ated with the delta. For example, the output of the above command might be:

D 1.2 80/08/29 12:35:31 bill 2 I 00005/00003/00084
removed "-q" option

D I. I 79/02/05 00: 19:31 eric I 0 00087100000100000
date and time created 80/06/10 00:19:31 by eric

7 .2. Finding why lines were inserted

To find out why you inserted lines, you can get a copy of the file with each line preceded
by the SID that created it: ·

secs get -m prog.c

You can then find out what this delta did by printing the comments using prt.

To find out what lines are associated with a particular delta (e.g., 1.3), use:

secs get -m -p prog.c I grep -1.3·

The -p flag causes secs to output the generated source to the standard output rather than to
a file.

7.3. Finding what changes you have made

When you are editing a file, you can find out what changes you have made using:

secs diffs prog.c

Most of the "diff'' flags can be used. To pass the -c flag, use -C.

To compare two versions that are in deltas, use:

secs sccsdiff -rl.3 -rl.6 prog.c

to see the differences between delta 1.3 and delta 1.6.

8. Shorthand Notations

There are several sequences of commands that get executed frequently. Secs tries to
make it easy to do these.

8.1. Delget

A frequent requirement is to make a delta of some file and then get that file. This can
be done by using:

secs delget prog.c

which is entirely equivalent to using:

secs delta prog.c
SCCS get prog.c

The "deledit" command is equivalent to "delget" except that the "edit" command is used
instead of the "get" command.

An Introduction to the Source Code Control System PS1:14-8

8.2. Fix

Frequently, there are small bugs in deltas, e.g., compilation errors, for which there is no
reason to maintain an audit trail. To replace a delta, use:

secs fix -rl.4 prog.c

This will get a copy of delta 1.4 of prog.c for you to edit and then delete delta 1.4 from the
SCCS file. When you do a delta of prog.c, it will be delta 1.4 again. The -r flag must be
specified, and the delta that is specified must be a leaf delta, i.e., no other deltas may have
been made subsequent to the creation of that delta.

8.3. Unedit

If you found you edited a file that you did not want to edit, you can back out by using:

secs unedit prog.c

8.4. The -d flag

If you are working on a project where the SCCS code is in a directory somewhere, you
may be able to simplify things by using a shell alias. For example, the alias:

alias syssccs secs -d/usr/src

will allow you to issue commands such as:

syssccs edit cmd/who.c

which will look for the file "/usr/src/cmd/SCCS/who.c". The file "who.c" will always be
created in your current directory regardless of the value of the -d flag.

9. Using SCCS on a Project

Working on a project with several people has its own set of special problems. The main
problem occurs when two people modify a file at the same time. SCCS prevents this by lock­
ing an s-file while it is being edited.

As a result, files should not be reserved for editing unless they are actually being edited
at the time, since this will prevent other people on the project from making necessary
changes. For example, a good scenario for working might be:

sccs edit a.c g.c t.c
vi a.c g.c t.c
do testing of the (experimental) version
sccs delget a.c g.c t.c
SCCS info
should respond "Nothing being edited"
make install

As a general rule, all source files should be deltaed before installing the program for gen­
eral use. This will insure that it is possible to restore any version in use at any time.

10. Saving Yourself

10.1. Recovering a munged edit file

Sometimes you may find that you have destroyed or trashed a file that you were trying

PS1:14-9 An Introduction to the Source Code Control System

to edit6. Unfortunately, you can't just remove it and re-edit it; SCCS keeps track of the fact
that someone is trying to edit it, so it won't let you do it again. Neither can you just get it
using get, since that would expand the Id keywords. Instead, you can say:

SCCS get -k prog.c

This will not expand the Id keywords, so it is safe to do a delta with it.

Alternately, you can unedit and edit the file.

10.2. Restoring the s-file

In particularly bad circumstances, the SCCS file itself may get munged. The most com­
mon way this happens is that it gets edited. Since SCCS keeps a checksum, you will get errors
every time you read the file. To fix this checksum, use:

sccs admin -z prog.c

11. Using the Admin Command

There are a number of parameters that can be set using the admin command. The most
interesting of these are flags. Flags can be added by using the -f flag. For example:

sccs admin -fdl prog.c

sets the "d" flag to the value "l ". This flag can be deleted by using:

sccs admin -dd prog.c

The most useful flags are:

b Allow branches to be made using the -b flag to edit.

dSID Default SID to be used on a get or edit. If this is just a release number it constrains
the version to a particular release only.

Give a fatal error if there are no Id Keywords in a file. This is useful to guarantee
that a version of the file does not get merged into the s-file that has the Id Keywords
inserted as constants instead of internal forms.

y The "type" of the module. Actually, the value of this flag is unused by SCCS except
that it replaces the % Y% keyword.

The -tfile flag can be used to store descriptive text from file. This descriptive text might
be the documentation or a design and implementation document. Using the -t flag insures
that if the SCCS file is sent, the documentation will be sent also. If file is omitted, the descrip­
tive text is deleted. To see the descriptive text, use "prt -t".

The admin command can be used safely any number of times on files. A file need not
be gotten for admin to work.

12. Maintaining Different Versions (Branches)

Sometimes it is convenient to maintain an experimental version of a program for an
extended period while normal maintenance continues on the version in production. This can
be done using a "branch." Normally deltas continue in a straight line, each depending on the
delta before. Creating a branch "forks off" a version of the program.

The ability to create branches must be enabled in advance using:

sccs admin -fb prog.c

The -fb flag can be specified when the SCCS file is first created.

60r given up and decided to start over.

An Introduction to the Source Code Control System

12.1. Creating a branch

To create a branch, use:

secs edit -b prog.c

PS1:14-10

This will create a branch with (for example) SID 1.5.1.1. The deltas for this version will be
numbered 1.5.1.n.

12.2. Getting from a branch

Deltas in a branch are normally not included when you do a get. To get these versions,
you will have to say:

secs get -rl.5.1 prog.c

12.3. Merging a branch back into the main trunk

At some point you will have finished the experiment, and if it was successful you will
want to incorporate it into the release version. But in the meantime someone may have
created a delta 1.6 that you don't want to lose. The commands:

secs edit -il.5.1.1-1.5.1 prog.c
secs delta prog.c

will merge all of your changes into the release system. If some of the changes conflict, get will
print an error; the generated result should be carefully examined before the delta is made.

12.4. A more detailed example

The following technique might be used to maintain a different version of a program.
First, create a directory to contain the new version:

mkdir . ./newxyz
cd . ./newxyz

Edit a copy of the program on a branch:

secs -d . ./xyz edit prog.c

When using the old version, be sure to use the -b flag to info, check, tell, and clean to avoid
confusion. For example, use:

secs info -b

when in the directory "xyz".

If you want to save a copy of the program (still on the branch) back in the s-file, you can
use:

secs -d . ./xyz deledit prog.c

which will do a delta on the branch and reedit it for you.

When the experiment is complete, merge it back into the s-file using delta:

secs -d . ./xyz delta prog.c

At this point you must decide whether this version should be merged back into the trunk (i.e.
the default version), which may have undergone changes. If so, it can be merged using the -i
flag to edit as described above.

12.S. A warning

Branches should be kept to a minimum. After the first branch from the trunk, SID's are
assigned rather haphazardly, and the structure gets complex fast.

PS1:14-ll An Introduction to the Source Co~e Control System

13. Using SCCS with Make

SCCS and make can be made to work together with a little care. A few sample makefiles
for common applications are shown.

There are a few basic entries that every makefile ought to have. These are:

a.out

install

sources

clean

print

(or whatever the makefile generates.) This entry regenerates whatever this
makefile is supposed to regenerate. If the makefile regenerates many things,
this should be called "all" and should in turn have dependencies on every­
thing the makefile can generate.

Moves the objects to the final resting place, doing any special chmod's or
ranlib's as appropriate.

Creates all the source files from SCCS files.

Removes all files from the current directory that can be regenerated from
SCCS files.

Prints the contents of the directory.

The examples shown below are only partial examples, and may omit some of these entries
when they are deemed to be obvious.

The clean entry should not remove files that can be regenerated from the SCCS files. It
is sufficiently important to have the source files around at all times that the only time they
should be removed is when the directory is being mothballed. To do this, the command:

SCCS clean

can be used. This will remove all files for which an s-file exists, but which is not being edited.

13.1. To maintain single programs

Frequently there are directories with several largely unrelated programs (such as simple
commands). These can be put into a single makefile:

LDFLAGS= -i -s

prog: prog.o
$(CC) $(LDFLAGS) -o prog prog.o

prog.o: prog.c prog.h

example: example.a
$(CC) $(LDFLAGS) -o example example.a

example.a: example.c

.DEFAULT:
SCCS get $<

The trick here is that the .DEFAULT rule is called every time something is needed that does
not exist, and no other rule exists to make it. The explicit dependency of the .o file on the .c
file is important. Another way of doing the same thing is:

An Introduction to the Source Code Control System

SRCS= prog.c prog.h example.c

LDFLAGS= -i -s

prog: prog.o
$(CC) $(LDFLAGS) -o prog prog.o

prog.o: prog.h

example: example.o
$(CC) $(LDFLAGS) -o example example.o

sources: $(SRCS)
$(SRCS):

SCCS get$@

PS1:14-12

There are a couple of advantages to this approach: (1) the explicit dependencies of the .o on
the .c files are not needed, (2) there is an entry called "sources" so if you want to get all the
sources you can just say "make sources", and (3) the makefile is less likely to do confusing
things since it won't try to get things that do not exist.

13.2. To maintain a library

Libraries that are largely static are best updated using explicit commands, since make
doesn't know about updating them properly. However, libraries that are in the process of
being developed can be handled quite adequately. The problem is that the .o files have to be
kept out of the library as well as in the library.

configuration information
OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.c d.s x.h y.h z.h
TARG= /usr/lib

#programs
GET= secs get
REL=
AR= -ar
RANLIB= ranlib

lib.a: $(0BJS)
$(AR) rvu lib.a $(0BJS)
$(RANLIB) lib.a

install: lib.a
SCCS check
cp lib.a $(TARG)/lib.a
$(RANLIB) $(TARG)/lib.a

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@

print: sources
pr *.h *.[cs]

clean:
rm -f *.o
rm -f core a.out $(LIB)

The "$(REL)" in the get can be used to get old versions easily; for example:

make b.o REL=-rl .3

PS1:14-13 An Introduction to the Source Code Control System

The install entry includes the line "secs check" before anything else. This guarantees
that all the s-files are up to date (i.e., nothing is being edited), and will abort the make if this
condition is not met.

13.3. To maintain a large program

OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.y d.s x.h y.h z.h

GET= secs get
REL=

a.out: $(0BJS)
$(CC) $(LDFLAGS) $(0BJS) $(LIBS)

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@

(The print and clean entries are identical to the previous case.) This makefile requires copies
of the source and object files to be kept during development. It is probably also wise to
include lines of the form:

a.o: x.h y.h
b.o: z.h
c.o: x.h y.h z.h
z.h: x.h

so that modules will be recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find in some
makefiles lines like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

#include "x.h"

in order to bring the mod date of z.h in line with the mod date of x.h. When you have a
makefile such as above, the touch command can be removed completely; the equivalent effect
will be achieved by doing an automatic get on z.h.

14. Further Information

The SCCS/PWB User's Manual gives a deeper description of how to use SCCS. Of par­
ticular interest are the numbering of branches, the I-file, which gives a description of what del­
tas were used on a get, and certain other SCCS commands.

The SCCS manual pages are a good last resort. These should be read by software
managers and by people who want to know everything about everything.

Both of these documents were written without the sccs front end in mind, so most of the
examples are slightly different from those in this document.

An Introduction to the Source Code Control System PS1:14-14

Quick Reference

1. Commands

The following commands should all be preceded with "secs". This list is not exhaustive;
for more options see Further Information.

get Gets files for compilation (not for editing). Id keywords are expanded.

-rS/D Version to get.

-p Send to standard output rather than to the actual file.

-k Don't expand id keywords.

-ilist List of deltas to include.

-x/ist List of deltas to exclude.

-m Precede each line with SID of creating delta.

-cdate Don't apply any deltas created after date.

edit Gets files for editing. Id keywords are not expanded. Should be matched with a
delta command.

delta

unedit

prt

info

check

tell

clean

what

-rSID Same as get. If SID specifies a release that does not yet exist, the highest
numbered delta is retrieved and the new delta is numbered with SID.

-b Create a branch.

-ilist Same as get.

-xlist Same as get.

Merge a file gotten using edit back into the s-file. Collect comments about why this
delta was made.

Remove a file that has been edited previously without merging the changes into the
s-file.

Produce a report of changes.

-t Print the descriptive text.

-e Print (nearly) everything.

Give a list of all files being edited.

-b Ignore branches.

-u[user]
Ignore files not being edited by user.

Same as info, except that nothing is printed if nothing is being edited and exit status
is returned.

Same as info, except that one line is produced per file being edited containing only
the file name.

Remove all files that can be regenerated from the s-file.

Find and print id keywords.

admin . Create or set parameters on s-files.

-ifile Create, using file as the initial contents.

-z Rebuild the checksum in case the file has been trashed.

PS1:14-15 An Introduction to the Source Code Control System

-fjlag Turn on the flag.

-dflag Tum off (delete) the flag.

-tfile Replace the descriptive text in the s-file with the contents of file. If file is
omitted, the text is deleted. Useful for storing documentation or "design &
implementation" documents to insure they get distributed with the s-file.

Useful flags are:

b Allow branches to be made using the -b flag to edit.
dSID Default SID to be used on a get or edit.

Cause "No Id Keywords" error message to be a fatal error rather than a
warning.

t The module "type"; the value of this flag replaces the %Y% keyword.

fix Remove a delta and reedit it.

delget Do a delta followed by a get.
deledit Do a delta followed by an edit.

2. Id Keywords

%Z% Expands to "@(#)" for the what command to find.

%M% The current module name, e.g., "prog.c".

%1% The highest SID applied.

%W% A shorthand for "%Z%%M% <tab> %1%".

%G% The date of the delta corresponding to the "%1%" keyword.

%R% The current release number, i.e., the first component of the "%1%" keyword.

%Y% Replaced by the value of the t flag (set by admin).

Yacc: Yet Another Compiler-Compiler

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

PSl:IS-1

Computer program input generally has some structure; in fact, every computer
program that does input can be thought of as defining an "input language" which it
accepts. An input language may be as complex as a programming language, or as
simple as a sequence of numbers. Unfortunately, usual input facilities are limited,
difficult to use, and often are lax about checking their inputs for validity.

Y ace provides a general tool for describing the input to a computer program.
The Yacc user specifies the structures of his input, together with code to be invoked
as each such structure is recognized. Yacc turns such a specification into a subrou­
tine that handles the input process; frequently, it is convenient and appropriate to
have most of the flow of control in the user's application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return
the next basic input item. Thus, the user can specify his input in terms of individual
input characters, or in terms of higher level constructs such as names and numbers.
The user-supplied routine may also handle idiomatic features such as comment and
continuation conventions,. which typically defy easy grammatical specification.

Y ace is written in portable C. The class of specifications accepted is a very
general one: LALR(I) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been
used for less conventional languages, including a phototypesetter language, several
desk calculator languages, a document retrieval system, and a Fortran debugging sys­
tem.

0: Introduction

Y ace provides a general tool for imposing structure on the input to a computer program. The
Yacc user prepares a specification of the input process; this includes rules describing the input struc­
ture, code to be invoked when these rules are recognized, and a low-level routine to do the basic
input. Y ace then generates a function to control the input process. This function, called a parser,
calls the user-supplied low-level input routine (the lexical analyzer) to pick up the basic items (called
tokens) from the input stream. These tokens are organized according to the input structure rules,
called grammar rules ; when one of these rules has been recognized, then user code supplied for this
rule, an action, is invoked; actions have the ability to return values and make use of the values of
other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C as
well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structure and gives it a name. For example, one grammar rule might be

date : month name day ·; year ;

PS1:15-2 Y ace: Yet Another Compiler-Compiler

Here, date, month name, day, and year represent structures of interest in the input process; presum­
ably, month name~ day, and year are defined elsewhere. The comma "," is enclosed in single quotes;
this implies that the comma is to appear literally in the input. The colon and semicolon merely serve
as punctuation in the rule, and have no significance in controlling the input. Thus, with proper
definitions, the input

July 4, 1776

might be matched by the above rule.
An important part of the input process is carried out by the lexical analyzer. This user routine

reads the input stream, recognizing the lower level structures, and communicates these tokens to the
parser. For historical reasons, a structure recognized by the lexical analyzer is called a terminal sym­
bol, while the structure recognized by the parser is called a nonterminal symbol. To avoid confusion,
terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month name T 'a' 'n'
month - name : F 'e' b' ;

month_name : 'D"e"c' ;

might be used in the above example. The lexical analyzer would only need to recognize individual
letters, and month name would be a nonterminal symbol. Such low-level rules tend to waste time
and space, and may complicate the specification beyond Yacc's ability .to deal with it. Usually, the
lexical analyzer would recognize the month names, and return an indication that a month name was
seen; in this case, month_ name would be a token. -

Literal characters such as"," must also be passed through the lexical analyzer, and are also con­
sidered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule

date : month '/' day '/' year ;

allowing

7 I 4 I 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort, and little
danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as
early as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the bad data can usually be quickly found.
Error handling, provided as part of the input specifications, permits the reentry of bad data, or the
continuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For example,
the specifications may be self contradictory, or they may require a more powerful recognition
mechanism than that available to Yacc. The former cases represent design errors; the latter cases can
often be corrected by making the lexical analyzer more powerful, or by rewriting some of the gram­
mar rules. While Yacc cannot handle all possible specifications, its power compares favorably with
similar systems; moreover, the constructions which are difficult for Yacc to handle are also frequently
difficult for human beings to handle. Some users have reported that the discipline of formulating
valid Y ace specifications for their input revealed errors of conception or design early in the program

Yacc: Yet Another Compiler-Compiler PSl:IS-3

development.

The theory underlying Y ace has been described elsewhere. 2, 3, 4 Y ace has been extensively used
in numerous practical applications, including lint ,5 the Portable C Compiler,6 and a system for
typesetting mathematics. 7

The next several sections describe the basic process of preparing a Yacc specification; Section I
describes the preparation of grammar rules, Section 2 the preparation of the user supplied actions
associated with these rules, and Section 3 the preparation of lexical analyzers. Section 4 describes the
operation of the parser. Section 5 discusses various reasons why Yacc may be unable to produce a
parser from a specification, and what to do about it. Section 6 describes a simple mechanism for
handling operator precedences in arithmetic expressions. Section 7 discusses error detection and
recovery. Section 8 discusses the operating environment and special features of the parsers Yacc pro­
duces. Section 9 gives some suggestions which should improve the style and efficiency of the
specifications. Section I 0 discusses some advanced topics, and Section 11 gives acknowledgements.
Appendix A has a brief example, and Appendix B gives a summary of the Yacc input syntax. Appen­
dix C gives an example using some of the more advanced features of Yacc, and, finally, Appendix D
describes mechanisms and syntax no longer actively supported, but provided for historical continuity
with older versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared
as such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexical
analyzer as part of the specification file; it may be useful to include other programs as well. Thus,
every specification file consists of three sections: the declarations, (grammar) rules, and programs.
The sections are separated by double percent "%%" marks. (The percent "%" is generally used in
Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second%% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi­
character reserved symbols. Comments may appear wherever a name is legal; they are enclosed in /•
... •I, as in C and PUI.

The rules section is made up of one or more grammar rules. A grammar rule has the form:

A: BODY;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Y ace punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ". ", underscore " ", and
non-initial digits. Upper and lower case letters are distinct. The names used in the body of ii gram­
mar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes "~'. As in C, the backslash "\" is an
escape character within literals, and all the C escapes are recognized. Thus

PS1:15-4 Yacc: Yet Another Compiler-Compiler

\n' newline
\r' return
\" single quote ""'
\ \' backslash "\"
\t' tab
\b' backspace
\f form feed
\xxx'"xxx" in octal

For a number of technical reasons, the NUL character (\O' or 0) should never be used in grammar
rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can be used
to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be dropped
before a vertical bar. Thus the grammar rules

A BCD
A EF
A G ;

can be given to Yacc as

A BCD
E F
G

It is not necessary that all grammar rules with the same left side appear together in the grammar rules
section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

empty: ;

Names representing tokens must be declared; this is most simply done by writing

%token name! name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name not
defined in the declarations section is assumed to represent a nonterminal symbol. Every nonterminal
symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance. The
parser is designed to recognize the start symbol; thus, this symbol represents the largest, most general
structure described by the grammar rules. By default, the start symbol is taken to be the left hand
side of the first grammar rule in the rules section. It is possible, and in fact desirable, to declare the
start symbol explicitly in the declarations section using the %start keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If the
tokens up to, but not including, the endmarker form a structure which matches the start symbol, the
parser function returns to its caller after the endmarker is seen; it accepts the input. If the endmarker
is seen· in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see
section 3, below. Usually the endmarker represents some reasonably obvious 1/0 status, such as
"end-of-file" or "end-of-record".

Y ace: Yet Another Compiler-Compiler PS1:15-5

2: Actions
With each grammar rule, the user may associate actions to be performed each time the rule is

recognized in the input process. These actions may return values, and may obtain the values returned
by previous actions. Moreover, the lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms,
and alter external vectors and variables. An action is specified by one or more statements, enclosed
in curly braces"{" and"}". For example,

and

A '('B')'

XXX:

{ hello(1, "abc");

yyy zzz
{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are
altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For exam­
ple, an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may use
the pseudo-variables $1, $2, ... , which refer to the values returned by the components of the right
side of a rule, reading from left to right. Thus, if the rule is

A BCD ;

for example, then $2 has the value returned by C, and $3 the value returned by D.
As a more concrete example, consider the rule

expr : '(' expr)' ;

The value returned by this rule is usually the value of the expr in parentheses. This can be indicated
by

expr: '(' expr ')' { $$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules of
the form

A B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable
to get control before a rule is fully parsed. Y ace permits an action to be written in the middle of a
rule as well as at the end. This rule is assumed to return a value, accessible through the usual
mechanism by the actions to the right of it. In tum, it may access the values returned by the symbols
to its left. Thus, in the rule

A B
{ $$ = 1; }

c
{ x = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.

PSl:lS-6 Yacc: Yet Another Compiler-Compiler

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new non­
terminal symbol name, and a new rule matching this name to the empty string. The interior action is
the action triggered off by recognizing this added rule. Yacc actually treats the above· example as if it
had been written:

$ACT I• empty •I
{ $$ = l; }

A B $ACT C
{ x = $2; y = $3; }

In many applications, output is not done directly by the actions; rather, a data structure, such as
a parse tree, is constructed in memory, and transformations are applied to it before output is gen­
erated. Parse trees are particularly easy to construct, given routines to build and maintain the tree
structure desired. For example, suppose there is a C function node, written so that the call

node(L, nl, n2)

creates a node with label L, and descendants n 1 and n2, and returns the index of the newly created
node. Then parse tree can be built by supplying actions such as:

expr: expr '+' expr
{ $$=node('+', $1, $3); }

in the specification.

The user may define other variables to be used by the actions. Declarations and definitions can
appear in the declarations section, enclosed in the marks "%(" and "%}". These declarations and
definitions have global scope, so they are known to the action statements and the lexical analyzer.
For example,

%{ int variable = O; % }

could be placed in the declarations section, making variable accessible to all of the actions. The Yacc
parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be found
in Section I 0.

3: Lexical Analysis
The user must supply a lexical analyzer to read the input stream and communicate tokens (with

values, if desired) to the parser. The lexical analyzer is an integer-valued function called yylex. The
function returns an integer, the token number, representing the kind of token read. If there is a value
associated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order for communica­
tion between them to take place. The numbers may be chosen by Yacc, or chosen by the user. In
either case, the "# define" mechanism of C is used to allow the lexical analyzer to return these
numbers symbolically. For example, suppose that the token name DIGIT has been defined in the
declarations section of the Yacc specification file. The relevant portion of the lexical analyzer might
look like:

Yacc: Yet Another Compiler-Compiler

yylex(){
extern int yylval;
int c;

c = getchar();

switch(c) {

case 'O':
case T:

case '9':
yylval = c-'O';
return(DIGIT);

PSI: 15-7

The intent is to return a token number of DIGIT, and a value equal to the numerical value of
the digit. Provided that the lexical analyzer code is placed in the programs section of the
specification file, the identifier DIGIT will be defined as the token number associated with the token
DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to
avoid using any token names in the grammar that are reserved or significant in C or the parser; for
example, the use of token names if or while will almost certainly cause severe difficulties when the
lexical analyzer is compiled. The token name error is reserved for error handling, and should not be
used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the default
situation, the numbers are chosen by Yacc. The default token number for a literal character is the
numerical value of the character in the local character set. Other names are assigned token numbers
starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name
or literal in the declarations section can be immediately followed by a nonnegative integer. This
integer is taken to be the token number of the name or literal. Names and literals not defined by this
mechanism retain their default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return 0 or
negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by Mike
Lesk. 8 These lexical analyzers are designed to work in close harmony with Y ace parsers. The
specifications for these lexical analyzers use regular expressions instead of grammar rules. Lex can be
easily used to produce quite complicated lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any theoretical framework, and whose lexical analyzers must be crafted
by hand.

4: How the Parser Works

Y ace turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex, and will
not be discussed here (see the references for more information). The parser itself, however, is rela­
tively simple, and understanding how it works, while not strictly necessary, will nevertheless make
treatment of error recovery and ambiguities much more comprehensible.

PS1:15-8 Y ace: Yet Another Compiler-Compiler

The parser produced by Yacc consists of a finite state machine with a stack. The parser is also
capable of reading and remembering the next input token (called the lookahead token). The current
state is always the one on the top of the stack. The states of the finite state machine are given small
integer labels; initially, the machine is in state 0, the stack contains only state 0, and no lookahead
token has been read.

The machine bas only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows:
I. Based on its current state, the parser decides whether it needs a lookahead token to decide what

action should be done; if it needs one, and does not have one, it calls yylex to obtain the next
token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next action,
and carries it out. This may result in states being pushed onto the stack, or popped off of the
stack, and in the lookahead token being processed or left alone.
The shift action is the most common action the parser takes. Whenever a shift action is taken,

there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on the
stack, and state 34 becomes the current state (on the top of the stack). The lookahead token is
cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropri­
ate when the parser has seen the right band side of a grammar rule, and is prepared to announce that
it bas seen an instance of the rule, replacing the right band side by the left hand side. It may be
necessary to consult the lookahead token to decide whether to reduce, but usually it is not; in fact, the
default action (represented by a".") is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also given
small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.
Suppose the rule being reduced is

A x y z

The reduce action depends on the left band symbol (A in this case), and the number of symbols on
the right band side (three in this case). To reduce, first pop off the top three states from the stack (In
general, the number of states popped equals the number of symbols on the right side of the rule). In
effect, these states were the ones put on the stack while recognizing x, y, and z, and no longer serve
any useful purpose. After popping these states, a state is uncovered which was the state the parser
was in before beginning to process the rule. Using this uncovered state, and the symbol on the left
side of the rule, perform what is in effect a shift of A. A new state is obtained, pushed onto the stack,
and parsing continues. There are significant differences between the processing of the left hand sym­
bol and an ordinary shift of a token, however, so this action is called a goto action. In particular, the
lookahead token is cleared by a shift, and is not affected by a goto. In any case, the uncovered state
contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.
In effect, the reduce action "turns back the clock" in the parse, popping the states off the stack

to go back to the state where the right hand side of the rule was first seen. The pai:Ser then behaves

Yacc: Yet Another Compiler-Compiler PS1:15-9

as if it had seen the left side at that time. If the right hand side of the rule is empty, no states are
popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When
a rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In addition
to the stack holding the states, another stack, running in parallel with it, holds the values returned
from the lexical analyzer and the actions. When a shift takes place, the external variable yylval is
copied onto the value stack. After the return from the user code, the reduction is carried out. When
the goto action is done, the external variable yyval is copied onto the value stack. The pseudo­
variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates that
the entire input has been seen and that it matches the specification. This action appears only when
the lookahead token is the endmarker, and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no longer continue parsing
according to the specification. The input tokens it has seen, together with the lookahead token, can­
not be followed by anything that would result in a legal input. The parser reports an error, and
attempts to recover the situation and resume parsing: the error recovery (as opposed to the detection
of error) will be covered in Section 7. ·

It is time for an example! Consider the specification

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place: DELL

When Yacc is invoked with the -v option, a file called y.output is produced, with a human­
readable description of the parser. The y.output file corresponding to the above grammar (with some
statistics stripped off the end) is:

PSl:lS-10

state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_ $end

$end accept
. error

state 2
rhyme : sound _place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (I)

reduce 1

state 5
place : DELL (3)

reduce 3

state 6
sound DING DONG_ (2)

. reduce 2

Yacc: Yet Another Compiler-Compiler

Notice that, in addition to the actions for each state, there is a description of the parsing rules being
processed in each state. The character is used to indicate what has been seen, and what is yet to
come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.
Initially, the current state is state 0. The parser needs to refer to the input in order to decide

between the actions available in state 0, so the first token, DING, is read, becoming the lookahead
token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the stack, and the loo­
kahead token is cleared. State 3 becomes the current state. The next token, DONG, is read,

Yacc: Yet Another Compiler-Compiler PSI: 15-11

becoming the lookahead token. The action in state 3 on the token DONG is "shift 6", so state 6 is
pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state 6,
without even consulting the lookahead, the parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the stack,
uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is pushed
onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5, the
only action is to reduce by rule 3. This has one symbol on the right hand side, so one state, 5, is
popped off, and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3, is state 4.
Now,-the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule I. There are two
symbols on the right, so the top two states are popped off, uncovering state 0 again. In state 0, there
is a goto on rhyme causing the parser to enter state I. In state I, the input is read; the endmarker is
obtained, indicated by "$end" in the y.output file. The action in state I when the endmarker is seen
is to accept, successfully ending the parse.

The reader is urged ·to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more com­
plicated contexts.

5: Ambiguity and Conflicts
A set of grammar rules is ambiguous if there is some input string that can be structured in two

or more different ways. For example, the grammar rule

expr: expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put two
other expressions together with a minus sign between them. Unfortunately, this grammar rule does
not completely specify the way that all complex inputs should be structured. For example, if the
input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).
Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to con­

sider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by applying this
rule; after applying the rule; the input is reduced to expr(the left side of the rule). The parser would
then read the final part of the input:

PSl:l5-12 Yacc: Yet Another Compiler-Compiler

- expr

and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpretation.
Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between them.
This is called a shift I reduce conflict. It may also happen that the parser has a choice of two legal
reductions; this is called a reduce I reduce conflict. Note that there are never any "Shift/shift"
conflicts.

When there are shift/reduce or reduce/reduce conflicts, Y ace still produces a parser. It does this
by selecting one of the valid steps wherever it has a choice. A rule describing which choice to make
in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:
I. In a shift/reduce conflict, the default is to do the shift.
2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the input

sequence).
Rule I implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2

gives the user rather crude control over the behavior of the parser in this situation, but reduce/reduce
conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while
consistent, require a more complex parser than Yacc can construct. The use of actions within rules
can also cause conflicts, if the action must be done before the parser can be sure which rule is being
recognized. In these cases, the application of disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, Y ace always reports the number of shift/reduce and reduce/reduce
conflicts resolved by Rule I and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it is
also possible to rewrite the grammar rules so that the same inputs are read but there are no conflicts.
For this reason, most previous parser generators have considered conflicts to be fatal errors. Our
experience has suggested that this rewriting is somewhat unnatural, and produces slower parsers; thus,
Yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a programming
language involving an "if-then-else" construction:

stat IF '(' cond)' stat
IF '(' cond)' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional (logical)
expressions, and stat is a nonterminal symbol describing statements. The first rule will be called the
simple-if rule, and the second the if-else rule.

Yacc: Yet Another Compiler-Compiler

These two rules form an ambiguous construction, since input of the form

IF (CI) IF (C2) S 1 ELSE S2

can be structured according to these rules in two ways:

or

IF (Cl) {
IF(C2)Sl
}

ELSE S2

IF (Cl) {
IF (C2) SI
ELSE S2
}

PSl:IS-13

The second interpretation is the one given in most programming languages having this construct.
Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example, consider the
situation where the parser has seen

IF (Cl) IF (C2) SI

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if-else rule. This leads •to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (Cl) IF (C2) SI ELSE S2

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of the
input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The application
of disambiguating rule I tells the parser to shift in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol, ELSE, and
particular inputs already seen, such as

IF (Cl) IF (C2) SI

In general, there may be many conflicts, and each one will be associated with an input symbol and a
set of previously read inputs. The previously read inputs are characterized by the state of the parser.

The conflict messages of Yacc are best understood by examining the verbose (-v) option output
file. For example, the output corresponding to the above conflict state might be:

PS1:15-14 Yacc: Yet Another Compiler-Compiler

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat_ (18)
stat IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state descrip­
tion follows, giving the grammar rules active in the state, and the parser actions. Recall that the
underline marks the portion of the grammar rules which has been seen. Thus in the example, in state
23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible things. If
the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as part of its
description, the 'line

stat : IF (cond) stat ELSE_ stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action, described
by".", is to be done ifthe input symbol is not mentioned explicitly in the above actions; thus, in this
case, if the input symbol is not ELSE, the parser reduces by grammar rule 18:

stat : IF '(" cond J stat

Once again, notice that the numbers following "shift" commands refer to other states, while the
numbers. following "reduce" commands refer to grammar rule numbers. In they.output file, the rule
numbers are printed after those rules which can be reduced. In most one states, there will be at most
reduce action possible in the state, and this will be the default command. The user who encounters
unexpected shift/reduce conflicts will probably want to look at the verbose output to decide whether
the default actions are appropriate. In really tough cases, the user might need to know more about
the behavior and construction of the parser than can be covered here. In this case, one of the theoret­
ical references2, 3, 4 might be consulted; the services of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used constructions
for arithmetic expressions can be naturally described by the notion of precedence levels for operators,
together with information about left or right associativity. It turns out that ambiguous grammars
with appropriate disambiguating rules can be used to create parsers that are faster and easier to write
than parsers constructed from unambiguous grammars. The basic notion is to write grammar rules of
the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many pars­
ing conflicts. As disambiguating rules, the user specifies the precedence, or binding strength, of all the
operators, and the associativity of the binary operators. This information is sufficient to allow Yacc
to resolve the parsing conflicts in accordance with these rules, and construct a parser that realizes the
desired precedences and associativities.

Yacc: Yet Another Compiler-Compiler PSl:lS-15

The precedences and associativities are attached to tokens in the declarations section. This is
done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc, followed by a
list of tokens. All of the tokens on the same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or binding strength. Thus,

%left ·+· ·-·
%left '* '(

describes the precedence and associativity of the four arithmetic operators. Plus and minus. are left
associative, and have lower precedence than star and slash, which are also left associative. The key­
word %right is used to describe right associative operators, and the keyword %nonassoc is used to
describe operators, like the operator .LT. in Fortran, that may not associate with themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in Yacc.
As an example of the behavior of these declarations, the description

%right '='
%left '+' ·-·
%left '* ·r
%%

expr: ex pr '=' expr
I ex pr '+' expr
I ex pr '-' expr
I ex pr '* expr
I expr '(expr
I NAME

might be used to structure the input

a = b = c•d - e - f•g

as follows:

a = (b = (((c•d)-e) - (f•g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Sometimes a
unary operator and a binary operator have the same symbolic representation, but different pre­
cedences. An example is unary and binary ·-·; unary minus may be given the same strength as multi­
plication, or even higher, while binary minus has a lower strength than multiplication. The keyword,
%prec, changes the precedence level associated with a particular grammar rule. %prec appears
immediately after the body of the grammar rule, before the action or closing semicolon, and is fol­
lowed by a token name or literal. It causes the precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary ininus have the same precedence as
multiplication the rules might resemble:

PS1:15-16 Yacc: Yet Another Compiler-Compiler

%left '+' '-'
%left '* '/'
%%

expr: ex pr '+' expr
I ex pr '-' expr
I ex pr '* expr
I expr '/' expr
I '-' expr %prec '* I NAME

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by %token
as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise
to disambiguating rules. Formally, the rules work as follows:
I. The precedences and associativities are recorded for those tokens and literals that have them.
2. A precedence and associativity is associated with each grammar rule; it is the precedence and

associativity of the last token or literal in the body of the rule. If the %prec construction is
used, it overrides this default. Some grammar rules may have no precedence and associativity
associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input
symbol or the grammar rule has no precedence and associativity, then the two disambiguating
rules given at the beginning of the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have pre­
cedence and associativity associated with them, then the conflict is resolved in favor of the
action (shift or reduce) associated with the higher precedence. If the precedences are the same,
then the associativity is used; left associative implies reduce, right associative implies shift, and
nonassociating implies error.
Conflicts resolved by precedence are not counted in the number of shift/reduce and

reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre­
cedences may disguise errors in the input grammar; it is a good idea to be sparing with precedences,
and use them in an essentially "cookbook" fashion, until some experience has been gained. The
y.output file is very useful in deciding whether the parser is actually doing what was intended.

7: Error Handling
Error handling is an extremely difficult area, and many of the problems are semantic ones.

When an error is found, for example, it may be necessary to reclaim parse tree storage, delete or alter
symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to con­
tinue scanning the input to find further syntax errors. This leads to the problem of getting the parser
"restarted" after an error. A general class of algorithms to do this involves discarding a number of
tokens from the input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably gen­
eral, feature. The token name "error" is reserved for error handling. This name can be used in
grammar rules; in effect, it suggests places where errors are expected, and recovery might take place.
The parser pops its stack until it enters a state where the token "error" is legal. It then behaves as if
the token "error" were the current lookahead token, and performs the action encountered. The loo­
kahead token is then reset to the token that caused the error. If no special error rules have been
specified, the processing halts when an error is detected.

Y ace: Yet Another Compiler-Compiler PS1:15-17

In order to prevent a cascade of error messages, the parser, after detecting an error, remains in
error state until three tokens have been successfully read and shifted. If an error is detected when the
parser is already in error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement in
which the error was seen. More precisely, the parser will scan ahead, looking for three tokens that
might legally follow a statement, and start processing at the first of these; if the beginnings of state­
ments are not sufficiently distinctive, it may make a false start in the middle of a statement, and end
up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize
tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier are
rules such as

stat : error ';'

Here, when there is an error, the parser attempts to skip over the statement, but will do so by skip­
ping to the next ';'. All tokens after the error and before the next ';' cannot be shifted, and are dis­
carded. When the ';' is seen, this rule will be reduced, and any "cleanup" action associated with it
performed.

Another form of error rule arises in interactive applications, where it may be desirable to permit
a line to be reentered after an error. A possible error rule might be

input: error \n' { printf("Reenter last line: •);) input
{ $$ = $4;)

There is one potential difficulty with this approach; the parser must correctly process three input
tokens before it admits that it has correctly resynchronized after the error. If the reentered line con­
tains an error in the first two tokens, the parser deletes the offending tokens, and gives no message;
this is clearly unacceptable. For this reason, there is a mechanism that can be used to force the parser
to believe that an error has been fully recovered from. The statement

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input: error \n'
{

input
{

yyerrok;
printf("Reenter last line: ");

$$ = $4;)

As mentioned above, the token seen immediately after the "error" symbol is the input token at
which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery
action might take upon itself the job of finding the correct place to resume input. In this case, the
previous lookahead token must be cleared. The statement

yyclearin;

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the user, that attempted to advance the input to
the beginning of the next valid statement. After this routine was called, the next token returned by
yylex would presumably be the first token in a legal statement; the old, illegal token must be dis­
carded, and the error state reset. This could be done by a rule like

PSI:IS-18

stat error
{ resynch();

yyerrok;
yyclearin;

Y ace: Yet Another Compiler-Compiler

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of
the parser from many errors; moreover, the user can get control to deal with the error actions
required by other portions of the program.

8: ne Yacc EnYironment
When the user inputs a specification to Yacc, the output is a file of C programs, called y.tab.c

on most systems (due to local file system conventions, the names may differ from installation to
installation). The function produced by Yacc is called yyparse; it is an integer valued function.
When it is called, it in tum repeatedly calls yylex, the lexical analyzer supplied by the user (see Sec­
tion 3) to obtain input tokens. Eventually, either an error is detected, in which case (if no error
recovery is possible) yyparse returns the value I, or the lexical analyzer returns the endmarker token
and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain a
working program. For example, as with every C program, a program called main must be defined,
that eventually calls yyparse. In addition, a routine called yyerror prints a message when a syntax
error is detected.

These two routines must be- supplied in one form or another by the user. To ease the initial
effort of using Yacc, a library has been provided with default versions of main and yyerror. The
name of this library is system dependent; on many systems the library is accessed by a -ly argument
to the loader. To show the triviality of these default programs, the source is given below:

and

main(){
return(yyparse());
}

include <stdio.h>

yyerror(s) char •s; {
fprintf(stderr, "'l&s\n ·, s);
}

The argument to yyerror is a string containing an error message, usually the string "syntax error".
The average application will want to do better than this. Ordinarily, the program should keep track
of the input line number, and print it along with the message when a syntax error is detected. The
external integer variable yychar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since the main program is prob­
ably supplied by the user (to read arguments, etc.) the Yacc library is useful only in small projects, or
in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value, the
parser will output a verbose description of its actions, including a discussion of which input symbols
have been read, and what the parser actions are. Depending on the operating environment, it may be
possible to set this variable by using a debugging system.

9: Hints for Preparing Specifications
This section contains miscellaneous hints on preparing efficient, easy to change, and clear

specifications. The individual subsections are more or less independent.

Yacc: Yet Another Compiler-Compiler PS1:15-19

Input Style
It is difficult to provide rules with substantial actions and still have a readable specification file.

The following style hints owe much to Brian Kernighan.
a. Use all capital letters for token names, all lower case letters for nonterminal names. This rule

comes under the heading of "knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed without an
automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once, and let
all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on a
separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.
The example in Appendix A is written following this style, as are the examples in the text of this

paper (where space permits). The user must make up his own mind about these stylistic questions;
the central problem, however, is to make the rules visible through the morass of action code.

Left Recursion
The algorithm used by the Yacc parser encourages so called "left recursive" grammar rules:

rules of the form

name: name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list item
list ·; item

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule will be
reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left. More
seriously, an internal stack in the parser would be in danger of overflowing if a very long sequence
were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so, con­
sider writing the sequence specification with an empty rule:

seq /• empty •/
seq item

Once again, the first rule would always be reduced exactly once, before the first item was read, and
then the second rule would be reduced once for each item read. Permitting empty sequences often
leads to increased generality. However, conflicts might arise if Yacc is asked to decide which empty
sequence it has seen, when it hasn't seen enough to know!

PSl:IS-20 Yacc: Yet Another Compiler-Compiler

Lexical Tie-ins
Some lexical decisions depend on context. For example, the lexical analyzer might want to

delete blanks normally, but not within quoted strings. Or names might be entered into a symbol table
in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declarations, fol­
lowed by 0 or more statements. Consider:

%{
int dflag;

%}
other declarations ...

prog: decls stats

decls: I• empty•/
{ dflag = I;

decls declaration

stats : I• empty•/
{ dfl.ag = O;

stats statement

... other rules ...

The flag dflag is now 0 when reading statements, and I when reading declarations, except for the first
token in the first statement. This token must be seen by the parser before it can tell that the declara­
tion section has ended and the statements have begun. In many cases, this single token exception
does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless, it
represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words
Some programming languages permit the user to use words like "ir', which are normally

reserved, as label or variable names, provided that such use does not conflict with the legal use of
these names in the programming language. This is extremely bard to do in the framework of Yacc; it
is difficult to pass information to the lexical analyzer telling it "this instance of 'ir is a keyword, and
that instance is a variable". The user can make a stab at it, using the mechanism described in the last
subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the
keywords be reserved ; that is, be forbidden for use as variable names. There are powerful stylistic
reasons for preferring this, anyway.

10: Advanced Topics
This section discusses a number of advanced features of Yacc.

Yacc: Yet Another Compiler-Compiler PSI: 15-21

Simulating _Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros YY AC­
CEPT and YYERROR. YY ACCEPT causes yyparse to return the value O; YYERROR causes the
parser to behave as if the current input symbol had been a syntax error; yyerror is called, and error
recovery takes place. These mechanisms can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The mechan­
ism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this case the
digit may be 0 or negative. Consider

sent adj noun verb adj noun

adj

noun:

{ look at the sentence ...

THE
YOUNG

DOG
{

CRONE
{

$$=THE; }
$$=YOUNG;

$$=DOG; }

if($0 = = YOUNG){
printf("what?\n");
}

$$=CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was not
YOUNG. Obviously, this is only possible when a great deal is known about what might precede the
symbol noun in the input. There is also a distinctly unstructured flavor about this. Nevertheless, at
times this mechanism will save a great deal of trouble, especially when a few combinations are to be
excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Y ace can also
support values of other types, including structures. In addition, Yacc keeps track of the types, and
inserts appropriate union member names so that the resulting parser will be strictly type checked.
The Yacc value stack (see Section 4) is declared to be a union of the various types of values desired.
The user declares the union, and associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through a $$ or $n construction, Yacc will
automatically insert the appropriate union name, so that no unwanted conversions will take place. In
addition, type checking commands such as Lint 5 will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining the
union; this must be done by the user since other programs, notably the lexical analyzer, must know
about the union member names. Second, there is a way of associating a union member name with
tokens and nonterminals. Finally, there is a mechanism for describing the type of those few values
where Y ace can not easily determine the type.

To declare the union, the user includes in the declaration section:

PSl:lS-22 Yacc: Yet Another Compiler-Compiler

%union {
body of union ...
}

This declares the Yacc value stack, and the external variables yy/val and yyval, to have type equal to
this union. If Yacc was invoked with the -d option, the union declaration is copied onto the y.tab.h
file. Alternatively, the union may be declared in a header file, and a typedef used to define the vari­
able YYSTYPE to represent this union. Thus, the header file might also have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of%{ and%).
Once YYSTYPE is defined, the union member names must be associated with the various ter­

minal and nonterminal names. The construction

<name>

is used to indic~te a union member name. If this follows one of the keywords %token, %left, %right,
and %nonassoc, the union member name is associated with the tokens listed. Thus, saying

%left <optype> '+' ·-·
will cause any reference to values returned by these two tokens to be tagged with the union member
name optype. Another keyword, %type, is used similarly to associate union member names with non­
terminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action
within a rule, the value returned by this action has no a priori type. Similarly, reference to left con­
text values (such as $0 - see the previous subsection) leaves Yacc with no easy way of knowing the
type. In this case, a type can be imposed on the reference by inserting a union member name,
between < and >, immediately after the first $. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>0); }

This syntax has little to recommend it, but the situation arises rarely.
A sample specification is given in Appendix C. The facilities in this subsection are not triggered

until they are used: in particular, the use of %type will tum on these mechanisms. When they are
used, there is a fairly strict level of checking. For example, use of $n or $$ to refer to something with
no defined type is diagnosed. If these facilities are not triggered, the Yacc value stack is used to hold
int's, as was true historically.

11: Acknowledgements
Yacc owes much to a most stimulating collection of users, who have goaded me beyond my

inclination, and frequently beyond my ability, in their endless search for "one more feature". Their
irritating unwillingness to learn how to do things my way has usually led to my doing things their
way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger, S. I. Feldman, C.
Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the current version of Yacc.
C. B. Haley contributed to the error recovery algorithm. D. M. Ritchie, B. W. Kernighan, and M. 0.
Harris helped translate this document into English. Al Aho also deserves special credit for bringing
the mountain to Mohammed, and other favors.

Yacc: Yet Another Compiler-Compiler PSI: 15-23

References

I. B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice-Hall, Englewood
Cliffs, New Jersey, 1978.

2. A. V. Aho and S. C. Johnson, "LR Parsing," Comp. Surveys, vol. 6, no. 2, pp. 99-124, June
1974.

3. A. V. Aho, S: C. Johnson, and 'J. D. Ullman, "Deterministic Parsing of Ambiguous Grammars,"
Comm. Assoc. Comp. Mach., vol. 18, no. 8, pp. 441-452, August 1975.

4. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading, Mass.,
1977.

5. S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65, 1978. Reprinted
as PS1:9 in UNIX Programmer's Manual, Usenix Association, (1986).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on Principles
of Programming Languages, pp. 97-104, January 1978.

7. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. Assoc.
Comp. Mach., vol. 18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey, March 1975.
Reprinted as USD:26 in UNIX User's Manual, Usenix Association, (1986).

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39, Bell Labora­
tories, Murray Hill, New Jersey, October 1975. Reprinted as PS1:16 in UNIX Programmer's
Manual, Usenix Association, (1986).

PSl:IS-24 Y ace: Yet Another Compiler-Compiler

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk calcula­
tor has 26 registers, labeled "a" through "z", and accepts arithmetic expressions made up of the
operators +, -, •, I, % (mod operator), & (bitwise and), I (bitwise or), and assignment. If an expres­
sion at the top level is an assignment, the value is not printed; otherwise it is. As in C, an integer
that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing how
precedences and ambiguities are used, and demonstrating simple error recovery. The major
oversimplifications are that the lexical analysis phase is much simpler than for most applications, and
the output is produced immediately, line by line. Note the way that decimal and octal integers are
read in by the grammar rules; This job is probably better done by the lexical analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left 1'
%left '&'
%left '+' ·-·
%left '•' 'r '%'
%left UMINUS I• supplies precedence ior unary minus •/

%% I• beginning of rules section •/

list

stat

ex pr

I• empty •/
list stat \n'
list error \n'

{ yyerrok; }

ex pr
{ printf("%d\n ·, $1); }

LETTER '=' expr
{ regs[$1] = $3; }

'(' expr ')'
{ $$ $2; }

expr '+' expr
{ $$ $1 + $3; }

expr '-' expr
{ '$$ $1 - $3; }

expr '•' expr
{ $$ $1 • $3; }

Yacc: Yet Another Compiler-Compiler

expr '/' expr
{

expr '%' expr
{

expr '&' expr
{

expr 1' expr

$$

$$

$$

$1 I $3; }

$1 % $3;

$1 & $3; }

{ $$ $1 I $3;

number:

·-· expr
{

LETTER
{

number

DIGIT

%prec UMINUS
$$ - $2; }

$$ = regs[$ I];

{ $$ = $1; base = ($1 = =0) ? 8 10; }
number DIGIT

{ $$ = base• $1 + $2; }

%% I• start of programs •I

yylex() { /• lexical analysis routine •I
I• returns LETTER for a lower case letter, yylval = 0 through 25 •I
I• return DIGIT for a digit, yylval = 0 through 9 •I
I• all other characters are returned immediately •I

int c;

while((c=getchar()) = = ") {/• skip blanks •/ }

I• c is now nonblank •I

if(islower(c)) {
yylval = c - 'a';
return (LETTER);
}

if(isdigit(c)) {
yylval = c - 'O';
return(DIGIT);
}

return(c);
}

PS1:15-25

PS1:15-26 Yacc: Yet Another Compiler-Compiler

Appendix B: Yacc Input Syntax
This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context

dependencies, etc., are not considered. Ironically, the Yacc input specification language is most
naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a rule,
immediately following an action. If this identifier is followed by a colon, it is the start of the next
rule; otherwise it is a continuation of the current rule, which just happens to have an action embed­
ded in it. As implemented, the lexical analyzer looks ahead after seeing an identifier, and decide
whether the next token (skipping blanks, newlines, comments, etc.) is a colon. If so, it returns the
token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are also
returned as IDENTIFIERS, but never as part of C_IDENTIFIERs.

%token
%token
%token

I• grammar for the input to Yacc •/

I• basic entities
IDENTIFIER
C_IDENTIFIER
NUMBER

•I
I• includes identifiers and literals •/
I• identifier (but not literal) followed by colon

I• [0-9]+ •I

I• reserved words: %type => TYPE, %left => LEFT, etc. •I

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK I• the %% mark •/
%token LCURL I• the %(mark •/
%token RCURL I• the %} mark •I

I• ascii character literals stand for themselves •/

%start spec

%%

spec

tail

defs

def

rword

defs MARK rules tail

MARK { In this action, eat up the rest of the file
I• empty: the second MARK is optional •/

I• empty •I
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL (Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NON ASSOC

Yacc: Yet Another Compiler-Compiler

tag

nlist

nmno

rules

rule

rbody

act

prec

TYPE

I• empty: union tag is optional •I
'<' IDENTIFIER '>'

nmno
nlist nmno
nlist ',' nmno

IDENTIFIER /• NOTE: literal illegal with %type •I
IDENTIFIER NUMBER /• NOTE: illegal with %type •I

I* rules section •I

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
'I' rbody prec

I• empty •I
rbody IDENTIFIER
rbody act

'{' { Copy action, translate $$, etc. } '}'

I• empty •/
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

PS1:15-27

PS1:15-28 Yacc: Yet Another Compiler-Compiler

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features discussed in
Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator that
does floating point interval arithmetic. The calculator understands floating point constants, the arith­
metic operations +, -, *• I, unary -, and = (assignment), and has 26 floating point variables, "a"
through "z". Moreover, it also understands intervals, written

(x' y)

where x is less than or equal to y. There are 26 interval valued variables "A" through "Z" that may
also be used. The usage is similar to that in Appendix A; assignments return no value, and print
nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are represented
by a structure, consisting of the left and right endpoint values, stored as double's. This structure is
given a type name, INTERVAL, by using typedef. The Yacc value stack can also contain floating
point scalars, and integers (used to index into the arrays holding the variable values). Notice that this
entire strategy depends strongly on being able to assign structures and unions in C. In fact, many of
the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an interval
containing 0, and an interval presented in the wrong order. In effect, the error recovery mechanism
of Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate expressions.
Note that a scalar can be automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run through Yacc: 18
Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 ' 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this fact
is not known until the "," is read; by this time, 2.5 is finished, and the parser cannot go back and
change its mind. More generally, it might be necessary to look ahead an arbitrary number of tokens
to decide whether to convert a scalar to an interval. This problem is evaded by having two rules for
each binary interval valued operator: one when the left operand is a scalar, and one when the left
operand is an interval. In the second case, the right operand must be an interval, so the conversion
will be applied automatically. Despite this evasion, there are still many cases where the conversion
may be applied or not, leading to the above conflicts. They are resolved by listing the rules that yield
scalars first in the specification file; in this way, the conflicts will be resolved in the direction of keep­
ing scalar valued expressions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there were
many kinds of expression types, instead of just two, the number of rules needed would increase
dramatically, and the conflicts even more dramatically. Thus, while this example is instructive, it is
better practice in a more normal programming language environment to keep the type information as
part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating
point constants. The C library routine atof is used to do the actuai conversion from a character
string to a double precision value. If the lexical analyzer detects an error, it responds by returning a
token that is illegal in the grammar, provoking a syntax error in the parser, and thence error recovery.

Y ace: Yet Another Compiler-Compiler

%(

include <stdio.h>
include <ctype.h>

typedef struct interval
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];
INTERVAL vreg[26];

%}

%start lines

%union
int ival;
double dval;
INTERVAL vval;
}

%token <ival> DREG VREG I• indices into dreg, vreg arrays •I

%token <dval> CONST I• floating point constant •I

%type <dval> dexp /• expression •/

%type <vval> vexp /• interval expression •/

I• precedence information about the operators •I

%left'+' ·-·
%left'* '/'
%left UMINUS I• precedence for unary minus •/

%%

lines :
I

I• empty •I
lines line

line dexp \n'
(printf("%1 S.8f\n", $1); }

vexp \n'
(printf("(%IS.Sf , %15.Sf)\n", $1.lo, $1.hi); }

DREG '=' dexp \n'
(dreg($1] = $3; }

VREG '=' vexp \n'

PSl:lS-29

PS1:15-30

{ vreg[$1) $3; }
error \n'

{ yyerrok;

dexp: CONST
I DREG

{ $$ = dreg[$!); }
dexp '+' dexp

{ $$ = $1 + $3; }
dexp ·-· dexp

{ $$ = $1 - $3; }
dexp '* dexp

{ $$ = $1 • $3; }
dexp ·r dexp

{ $$ = $1 I $3; }
'-' dexp %prec UMINUS

{ $$ - $2; }
'(' dexp)'

{ $$ = $2; }

vexp: dexp
{ $$.hi = $$.lo $1; }

'(' dexp ·; dexp)'
{
$$.lo = $2;
$$.hi = $4;
if($$.lo > $$.hi){

}
VREG

printf("interval out of order\n");
YYERROR;
}

{ $$ = vreg[$1]; }
vexp '+' vexp

{ $$.hi = $1.hi + $3.hi;
$$.lo = $1.Io + $3.lo;

dexp '+' vexp
{ $$.hi = $1 + $3.hi;

$$.lo = $1 + $3.lo; }
vexp ·-· vexp

{ $$.hi = $1.hi - $3.lo;
$$.lo = $I.lo - $3.hi;

dexp ·-· vexp
{ $$.hi = $1 - $3.lo;

$$.lo = $1 - $3.hi; }
vexp '* vexp

{ $$ = vmul($I.lo, $1.hi, $3);
dexp '* vexp

{ $$ = vmul($1, $1, $3); }
vexp T vexp

{ if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3); }

Yacc: Yet Another Compiler-Compiler

Y ace: Yet Another Compiler-Compiler

%%

dexp '/' vexp
(if(dcheck($3)) YYERROR;

'-' vexp
(

'(' vexp
(

$$ = vdiv($1, $1, $3); }
%prec UMINUS
$$.hi = -$2.lo; $$.lo = -$2.hi;

)'
$$ = $2; }

define BSZ 50 I• buffer size for floating point numbers •/

I• lexical analysis •/

yylex()(
register c;

while((c=getchar()) == '')(/• skip over blanks •/ }

if(isupper(c))(
yylval.ival = c - 'A';
return(VREG);
}

if(islower(c))(
yylval.ival = c - 'a';
return(DREG);
}

if(isdigit(c) II C= ='.')(
I• gobble up digits, points, exponents •/

char buf[BSZ+ l], •cp = buf;
int dot = 0, exp = O;

for(; (cp-buf)<BSZ ; ++cp,c=getchar())(

•cp = c;
if(isdigit(c)) continue;
if(c == '.')(

if(dot++ II exp) return('.'); I• will cause syntax error •/
continue;
}

if(c == 'e')(
if(exp++) return('e'); /• will cause syntax error •/
continue;
}

I• end of number •/
break;
}

•cp = \0';
if((cp-buf) >= BSZ) printf("constant too long: truncated\n");

PS1:15-31

PS1:15-32 Yacc: Yet Another Compiler-Compiler

else ungetc(c, st din); I* push back last char read •/
yylval.dval = atof(buf);
return(CONST);
}

return(c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
I• returns the smallest interval containing a, b, c, and d •I
I• used by •, I routines •/
INTERVAL v;

if(a>b) { v.hi = a; v.lo b; }
else { v.hi = b; v.lo = a;

if(C>d
if(
if(
}

else {

) (
c>v.hi) v.hi
d<v.lo) v.lo

c·
' d;

if(d>v.hi) v.hi = d;
if(c<v.lo) v.lo = c;
}

return(v);
}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v;
return(hilo(a•v.hi, a•v.lo, b•v.hi, b•v.lo));
}

dcheck(v) INTERVAL v; {
if(v.hi >= 0. && v.lo <= 0.)(

printf("divisor interval contains 0.\n");
return(1);
}

return(0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v;
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

Yacc: Yet Another Compiler-Compiler PSl:IS-33

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical continuity,
but, for various reasons, are not encouraged.

I. Literals may also be delimited by double quotes""".

2. Literals may be more than one character long. If all the characters are alphabetic, numeric, or ,
the type number of the literal is defined, just as if the literal did not have the quotes around it.
Otherwise, it is difficult to find the value for such literals.
The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it sug­
gests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \ \ is the same as %%,
\left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

=(... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %(and%} used to be permitted at the head of the rules section, as well as in
the declaration section.

Lex - A Lexical Analyzer Generator PS1:16-1

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lex helps write programs whose control flow is directed by instances of regular
expressions in the input stream. It is well suited for editor-script type transforma­
tions and for segmenting input in preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program frag­
ments. The table is translated to a program which reads an input stream, copying it
to an output stream and partitioning the input into strings which match the given
expressions. As each such string is recognized the corresponding program fragment
is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are
executed in the order in which the corresponding regular expressions occur in the
input stream.

The lexical analysis programs written with Lex accept ambiguous specifications
and choose the longest match possible at each input point. If necessary, substantial
lookahead is performed on the input, but the input stream will be backed up to the
end of the current partition, so that the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language which can be
translated automatically to portable Fortran. It is available on the PDP-I I UNIX,
Honeywell GCOS, and IBM OS systems. This manual, however, will only discuss
generating analyzers in C on the UNIX system, which is the only supported form of
Lex under UNIX Version 7. Lex is designed to simplify interfacing with Yacc, for
those with access to this compiler-compiler system.

1. Introduction.

Lex is a program generator designed for
lexical processing of character input streams.
It accepts a high-level, problem oriented
specification for character string matching, and
produces a program in a general purpose
language which recognizes regular expressions.
The regular expressions are specified by the
user in the source specifications given to Lex.
The Lex written code recognizes these expres­
sions in an input stream and partitions the
input stream into strings matching the expres­
sions. At the boundaries between strings pro­
gram sections provided by the user are exe­
cuted. The Lex source. file associates the regu­
lar expressions and the program fragments. As

each expression appears in the input to the pro­
gram written by Lex, the corresponding frag­
ment is executed.

The user supplies the additional code
beyond expression matching needed to com­
plete his tasks, possibly including code written
by other generators. The program that recog­
nizes the expressions is generated in the general
purpose programming language employed for
the user's program fragments. Thus, a high
level expression language is provided to write
the string expressions to be matched while the
user's freedom to write actions is unimpaired.
This avoids forcing the user who wishes to use
a string manipulation language for input
analysis to write processing programs in the

PS1:16-2

same and often inappropriate string handling
language.

Lex is not a complete language, but rather
a generator representing a new language feature
which can be added to different programming
languages, called "host languages." Just as gen­
eral purpose languages can produce code to run
on different computer hardware, Lex can write
code in different host languages. The host
language is used for the output code generated
by Lex and also for the program fragments
added by the user. Compatible run-time
libraries for the different host languages are
also provided. This makes Lex adaptable to
different environments and different users.
Each application may be directed to the combi­
nation of hardware and host language appropri­
ate to the task, the user's background, and the
properties of local implementations. At
present, the only supported host language is C,
although Fortran (in the form of Ratfor [2] has
been available in the past. Lex itself exists on
UNIX, GCOS, and OS/370; but the code gen­
erated by Lex may be taken anywhere the
appropriate compilers exist.

Lex turns the user's expressions and
actions (called source in this memo) into the
host general-purpose language; the generated
program is named yylex. The yylex program
will recognize expressions in a stream (called
input in this memo) and perform the specified
actions for each expression as it is detected.
See Figure I.

Source -+ ~ -+ yylex

Input -+ I yylex I - Output

An overview of Lex
Figure I

For a trivial example, consider a program
to delete from the input all blanks or tabs at
the ends of lines.

%%
[\t]+$;

is all that is required. The program contains a
%% delimiter to mark the beginning of the
rules, and one rule. This rule contains a regu­
lar expression which matches one or more
instances of the characters blank or tab (written
\t for visibility, in accordance with the C
language convention) just prior to the end of a
line. The brackets indicate the character class

Lex - A Lexical Analyzer Generator

made of blank and tab; the + indicates "one or
more ... "; and the $ indicates "end of line," as
in QED. No action is specified, so the program
generated by Lex (yylex) will ignore these char­
acters. Everything else will be copied. To
change any remaining string of blanks or tabs
to a single blank, add another rule:

%%
[\t]+$
[\t]+ printf("' ");

The finite automaton generated for this source
will scan for both rules at once, observing at
the termination of the string of blanks or tabs
whether or not there is a newline character,
and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the
end of lines, and the second rule all remaining
strings of blanks or tabs.

Lex can be used alone for simple transfor­
mations, or for analysis and statistics gathering
on a lexical level. Lex can also be used with a
parser generator to perform the lexical analysis
phase; it is particularly easy to interface Lex
and Yacc [3]. Lex programs recognize only
regular expressions; Yacc writes parsers that
accept a large class of context free grammars,
but require a lower level analyzer to recognize
input tokens. Thus, a combination of Lex and
Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is
used to partition the input stream, and the
parser generator assigns structure to the result~
ing pieces. The flow of control in such a case
(which might be the first half of a compiler, for
example) is shown in Figure 2. Additional pro­
grams, written by other generators or by hand,
can be added easily to programs written by
Lex.

lexical grammar
rules rules

t t
Lex Yacc

t
Input-+ ~ - yyparse -+ Parsed input

Lex with Yacc
Figure 2

Yacc users will realize that the name yylex is
what Yacc expects its lexical analyzer to be
named, so that the use of this name by Lex
simplifies interfacing.

Lex generates a deterministic finite auto­
maton from the regular expressions in the
source [4]. The automaton is interpreted,

Lex - A Lexical Analyzer Generator

rather than compiled, in order to save space.
The result is still a fast analyzer. In particular,
the time taken by a Lex program to recognize
and partition an input stream is proportional
to the length of the input. The number of Lex
rules or the complexity of the rules is not
important in determining speed, unless rules
which include forward context require a
significant amount of rescanning. What does
increase with the number and complexity of
rules is the size of the finite automaton, and
therefore the size of the program generated by
Lex.

In the program written by Lex, the user's
fragments (representing the actions to be per­
formed as each regular expression is found) are
gathered as cases of a switch. The automaton
interpreter directs the control flow. Opportun­
ity is provided for the user to insert either
declarations or additional statements in the
routine containing the actions, or to add sub­
routines outside this action routine.

Lex is not limited to source which can be
interpreted on the basis of one character look­
ahead. For example, if there are two rules, one
looking for ab and another for abcdefg, and
the input stream is abcdefh, Lex will recognize
ab and leave the input pointer just before ed . .
. Such backup is more costly than the process­
ing of simpler languages.

2. Lex Source.

The general format of Lex source is:
{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines
are often omitted. The second %% is optional,
but the first is required to mark the beginning
of the rules. The absolute minimum Lex pro­
gram is thus

%%
(no definitions, no rules) which translates into
a program which copies the input to the output
unchanged.

In the outline of Lex programs shown
above, the rules represent the user's control
decisions; they are a table, in which the left
column contains regular expressions (see sec­
tion 3) and the right column contains actions,
program fragments to be executed when the

PSl:16-3

expressions are recognized. Thus an individual
rule might appear

integer printf('"found keyword INT");
to look for the string integer in the input
stream and print the message "found keyword
INT" whenever it appears. In this example the
host procedural language is C and the C library
function print! is used to print the string. The
end of the expression is indicated by the first
blank or tab character. If the action is merely
a single C expression, it can just be given on
the right side of the line; if it is compound, or
takes more than a line, it should be enclosed in
braces. As a slightly more useful example, sup­
pose it is desired to change a number of words
from British to American spelling. Lex rules
such as

colour printf("'color");
mechanise printf("mechanize");
petrol printf("'gas"');

would be a start. These rules are not quite
enough, since the word petroleum would
become gaseum ; a way of dealing with this will
be described later.

3. Lex Regular Expressions.
The definitions of regular expressions are

very similar to those in QED [S]. A regular
expression specifies a set of strings to be
matched. It contains text characters (which
match the corresponding characters in the
strings being compared) and operator charac­
ters (which specify repetitions, choices, and
other features). The letters of the alphabet and
the digits are always text characters; thus the
regular expression

integer
matches the string integer wherever it appears
and the expression

a57D
looks for the string a57D.

Operators. The operator characters are
°'\[)A-?.•+!()$/{}%<>

and if they are to be used as text characters, an
escape should be used. The quotation mark
operator (") indicates that whatever is con­
tained between a pair of quotes is to be taken
as text characters. Thus

xyz"++"'
matches the string xyz+ + when it appears.
Note that a part of a string may be quoted. It
is harmless but unnecessary to quote an ordi­
nary text character; the expression

"'xyz++"'

PS1:16-4

is the same as the one above. Thus by quoting
every non-alphanumeric character being used
as a text character, the user can avoid
remembering the list above of current operator
characters, and is safe should further exten­
sions to Lex lengthen the list.

An operator character may also be turned
into a text character by preceding it with \ as
in

xyz\+\+
which is another, less readable, equivalent of
the above expressions. Another use of the
quoting mechanism is to get a blank into an
expression; normally, as explained above,
blanks or tabs end a rule. Any blank character
not contained within [] (see below) must be
quoted. Several normal C escapes with \ are
recognized: \n is newline, \t is tab, and \b is
backspace. To enter \ itself, use \ \. Since
newline is illegal in an expression, \n must be
used; it is not required to escape tab and back­
space. Every character but blank, tab, newline
and the list above is always a text character.

Character classes. Classes of characters
can be specified using the operator pair []. The
construction [abcj matches a single character,
which may be a, b, or c. Within square
brackets, most operator meanings are ignored.
Only three characters are special: these are \ -
and •. The - character indicates ranges. For
example,

[a-z0-9<>_]
indicates the character class containing all the
lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either
order. Using - between any pair of characters
which are not both upper case letters, both
lower case letters, or both digits is implementa­
tion dependent and will get a warning message.
(E.g., [0-z] in ASCII is many more characters
than it is in EBCDIC). If it is desired to
include the character - in a character class, it
should be first or last; thus

[-+0-9]
matches all the digits and the two signs.

In character classes, the • operator must
appear as the first character after the left
bracket; it indicates that the resulting string is
to be complemented with respect to the com­
puter character set. Thus

['abc]
matches all characters except a, b, or c, includ­
ing all special or control characters; or

ra-zA-Z]

Lex - A Lexical Analyzer Generator

is any character which is not a letter. The \
character provides the usual escapes within
character class brackets.

Arbitrary character. To match almost
any character, the operator character

is the class of all characters except newline.
Escaping into octal is possible although non­
portable:

[\40-\176]
matches all printable characters in the ASCII
character set, from octal 40 (blank) to octal 176
(tilde).

Optional expressions. The operator ?
indicates an optional element of an expression.
Thus

ab?c
matches either ac or abc.

Repeated expressions. Repetitions of
classes are indicated by the operators • and + .

a•
is any number of consecutive a characters,
including zero; while

a+
is one or more instances of a. For example,

[a-z]+
is all strings of lower case letters. And

[A-Za-z][A-Za-z0-9]•
indicates all alphanumeric strings with a lead­
ing alphabetic character. This is a typical
expression for recognizing identifiers in com­
puter languages.

Alternation and Grouping. The operator
I indicates alternation:

(ab I cd)
matches either ab or ed. Note that parentheses
are used for grouping, although they are not
necessary on the outside level;

ab I cd
would have sufficed. Parentheses can be used
for more complex expressions:

(ab I cd+)?(ef)•
matches such strings as abefef, efefef, cdef, or
cddd ; but not abc, abed, or abcdef.

Context sensitivity. Lex will recognize a
small amount of surrounding context. The two
simplest operators for this are • and $. If the
first character of an expression is • , the expres­
sion will only be matched at the beginning of a
line (after a newline character, or at the begin­
ning of the input stream). This can never
conflict with the other meaning of ·, comple­
mentation of character classes, since that only

Lex - A Lexical Analyzer Generator

applies within the [] operators. If the very last
character is $, the expression will only be
matched at the end of a line (when immedi­
ately followed by newline). The latter operator
is a special case of the I operator character,
which indicates trailing context. The expres-
sion

ab/cd
matches the string ab, but only if followed by
ed. Thus

ab$
is the same as

ab/\n
Left context is handled in Lex by start condi­
tions as explained in section 10. If a rule is
only to be executed when the Lex automaton
interpreter is in start condition x, the rule
should be prefixed by

<X>
using the angle bracket operator characters. If
we considered "being at the beginning of a
line" to be start condition ONE, then the •
operator would be equivalent to

<ONE>
Start conditions are explained more fully later.

Repetitions and Definitions. The opera­
tors {} specify either repetitions (if they enclose
numbers) or definition expansion (if they
enclose a name). For example

{digit}
looks for a predefined string named digit and
inserts it at that point in the expression. The
definitions are given in the first part of the Lex
input, before the rules. In contrast,

a{ 1,5}
looks for 1 to 5 occurrences of a .

Finally, initial % is special, being the
separator for Lex source segments.

4. Lex Actions.

When an expression written as above is
matched, Lex executes the corresponding
action. This section describes some features of
Lex which aid in writing actions. Note that
there is a default action, which consists of
copying the input to the output. This is per­
formed on all strings not otherwise matched.
Thus the Lex user who wishes to absorb the
entire input, without producing any output,
must provide rules to match everything. When
Lex is being used with Yacc, this is the normal
situation. One may consider that actions are
what is done instead of copying the input to
the output; thus, in general, a rule which

PS1:16-5

merely copies can be omitted. Also, a charac­
ter combination which is omitted from the
rules and which appears as input is likely to be
printed on the output, thus calling attention to
the gap in the rules.

One of the simplest things that can be
done is to ignore the input. Specifying a C
null statement, ; as an action causes this result.
A frequent rule is

[\t\n]
which causes the three spacing characters
(blank, tab, and newline) to be ignored.

Another easy way to avoid writing actions
is the action character I , which indicates that
the action for this rule is the action for the next
rule. The previous example could also have
been written

"\t"
"\n"

with the same result, although in different style.
The quotes around \n and \t are not required.

In more complex actions, the user will
often want to know the actual text that
matched some expression like [a-z]+. Lex
leaves this text in an external character array
named yytext. Thus, to print the name found,
a rule like

[a-z]+ printfC'O/os", yytext);
will print the string in yytext. The C function
printf accepts a format argument and data to
be printed; in this case, the format is "print
string" (% indicating data conversion, and s
indicating string type), and the data are the
characters in yytext. So this just places the
matched string on the output. This action is so
common that it may be written as ECHO:

[a-z]+ ECHO;
is the same as the above. Since the default
action is just to print the characters found, one
might ask why give a rule, like this one, which
merely specifies the default action? Such rules
are often required to avoid matching some
other rule which is not desired. For example,
if there is a rule which matches read it will
normally match the instances of read con­
tained in bread or readjust; to avoid this, a
rule of the form [a-zj+ is needed. This is
explained further below.

Sometimes it is more convenient to know
the end of what has been found; hence Lex also
provides a count yyleng of the number of char­
acters matched. To count both the number of

PS1:16-6

words and the number of characters in words
in the input, the user might write

[a-zA-Z]+ {words++; chars += yyleng;)
which accumulates in chars the number of
characters in the words recognized. The last
character in the string matched can be accessed
by

yytext[yyleng-1]
Occasionally, a Lex action may decide

that a rule has not recognized the correct span
of characters. Two routines are provided to
aid with this situation. First, yymore() can be
called to indicate that the next input expression
recognized is to be tacked on to the end of this
input. Normally, the next input string would
overwrite the current entry in yytext. Second,
yy/ess (n) may be called to indicate that not all
the characters matched by the currently suc­
cessful expression are wanted right now. The
argument n indicates the number of characters
in yytext to be retained. Further characters
previously matched are returned to the input.
This provides the same sort of lookahead
offered by the I operator, but in a different
form.

Example: Consider a language which
defines a string as a set of characters between
quotation (") marks, and provides that to
include a " in a string it must be preceded by a
\. The regular expression which matches that
is somewhat confusing, so that it might be
preferable to write

\T"J• {
if (yytext[yyleng-1] = = '\ \'}

yymore();
else

... normal user processing
)

which will, when faced with a string such as
"abc\" def" first match the five characters
"abc\ ; then the call to yymore() will cause the
next part of the string, "def, to be tacked on
the end. Note that the final quote terminating
the string should be picked up in the code
labeled "normal processing".

The function yy/ess() might be used to
reprocess text in various circumstances. Con­
sider the C problem of distinguishing the ambi­
guity of "=-a". Suppose it is desired to treat
this as "=- a" but print a message. A rule
might be

=-[a-zA-Z] {
printf{"Op (=-) ambiguous\n");
yyless{yyleng-1);

Lex - A Lexical Analyzer Generator

... action for = - ...
)

which prints a message, returns the letter after
the operator to the input stream, and treats the
operator as "=-". Alternatively it might be
desired to treat this as "= -a". To do this,
just return the minus sign as well as the letter
to the input:

=-[a-zA-Z] {
printf("Op (=-) ambiguous\n");
yyless(yyleng-2);
... action for = ...
)

will perform the other interpretation. Note
that the expressions for the two cases might
more easily be written

= -/[A-Za-z]
in the first case and

=/-[A-Za-z]
in the second; no backup would be required in
the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity.
The possibility of "=-3'', however, makes

=-/[" \t\n]
a still better rule.

In addition to these routines, Lex also
permits access to the 1/0 routines it uses. They
are:
1) input() which returns the next input char­

acter;
2) output(c) which writes the character c on

the output; and
3) unput(c) pushes the character c back onto

the input stream to be read later by
input().

By default these routines are provided as
macro definitions, but the user can override
them and supply private versions. These rou­
tines define the relationship between external
files and internal characters, and must all be
retained or modified consistently. They may
be redefined, to cause input or output to be
transmitted to or from strange places, including
other programs or internal memory; but the
character set used must be consistent in all rou­
tines; a value of zero returned by input must
mean end of file; and the relationship between
unput and input must be retained or the Lex
lookahead will not work. Lex does not look
ahead at all if it does not have to, but every
rule ending in + • ? or $ or containing I
implies lookahead. Lookahead is also neces­
sary to match an expression that is a prefix of
another expression. See below for a discussion

Lex - A Lexical Analyzer Generator

of the character set used by Lex. The standard
Lex library imposes a 100 character limit on
backup.

Another Lex library routine that the user
will sometimes want to redefine is yywrap()
which is called whenever Lex reaches an end­
of-file. If yywrap returns a 1, Lex continues
with the normal wrapup on end of input.
Sometimes, however, it is convenient to
arrange for more input to arrive from a new
source. In this case, the user should provide a
yywrap which arranges for new input and
returns 0. This instructs Lex to continue pro­
cessing. The default yywrap always returns l.

This routine is also a convenient place to
print tables, summaries, etc. at the end of a
program. Note that it is not possible to write a
normal rule which recognizes end-of-file; the
only access to this condition is through yywrap.
In fact, unless a private version of input() is
supplied a file containing nulls cannot be han­
dled, since a value of 0 returned by input is
taken to be end-of-file.
5. Ambiguous Source Rules.

Lex can handle ambiguous specifications.
When more than one expression can match the
current input, Lex chooses as follows:
1) The longest match is preferred.
2) Among rules which matched the same

number of characters, the rule given first
is preferred.

Thus, suppose the rules
integer keyword action ... ;
[a-z]+ identifier action ... ;

to be given in that order. If the input is
integers, it is taken as an identifier, because
[a-zj+ matches 8 characters while integer
matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule
is selected because it was given first. Anything
shorter (e.g. int) will not match the expression
integer and so the identifier interpretation is
used.

The principle of preferring the longest
match makes rules containing expressions like
.• dangerous. For example,

might seem a good way of recognizing a string
in single quotes. But it is an invitation for the
program to read far ahead, looking for a dis­
tant single quote. Presented with the input

'first' quoted string here, 'second' here

PS1:16-7

the above expression will match
'first' quoted string here, 'second'

which is probably not what was wanted. A
better rule is of the form

'['"'\n]•'
which, on the above input, will stop after 'firs(.
The consequences of errors like this are miti­
gated by the fact that the . operator will not
match newline. Thus expressions like .• stop
on the current line. Don't try to defeat this
with expressions like {.\nj+ or equivalents; the
Lex generated program will try to read the
entire input file, causing internal buffer
overflows.

Note that Lex is normally partitioning the
input stream, not searching for all possible
matches of each expression. This means that
each character is accounted for once and only
once. For example, suppose it is desired to
count occurrences of both she and he in an
input text. Some Lex rules to do this might be

she s++;
he h++;
\n I

where the last two rules ignore everything
besides he and she. Remember that . does not
include newline. Since she includes he, Lex
will normally not recognize the instances of he
included in she, since once it has passed a she
those characters are gone.

Sometimes the user would like to override
this choice. The action REJECT means "go do
the next alternative." It causes whatever rule
was second choice after the current rule to be
executed. The position of the input pointer is
adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

' these rules are one way of changing the previ-
ous example to do just that. After counting
each expression, it is rejected; whenever
appropriate, the other expression will then be
counted. In this example, of course, the user
could note that she includes he but not vice
versa, and omit the REJECT action on he; in
other cases, however, it would not be possible a
priori to tell which input characters were in
both classes.

Consider the two rules
a[bc]+ { ... ;REJECT;}

PS1:16-8

a[cd]+ (... ; REJECT;}
If the input is ab, only the first rule matches,
and on ad only the second matches. The input
string accb matches the first rule for four char­
acters and then the second rule for three char­
acters. In contrast, the input aced agrees with
the second rule for four characters and then the
first rule for three.

In general, REJECT is useful whenever
the purpose of Lex is not to partition the input
stream but to detect all examples of some items
in the input, and the instances of these items
may overlap or include each other. Suppose a
digram table of the input is desired; normally
the digrams overlap, that is the word the is
considered to contain both th and he. Assum­
ing a two-dimensional array named digram to
be incremented, the appropriate source is

%%
[a-z][a-z] (

\n

digram[yytext[OJ][yytext[l]J + +;
REJECT;
}

where the REJECT is necessary to pick up a
letter pair beginning at every character, rather
than at every other character.

6. Lex Source Definitions.

Remember the format of the Lex source:
(definitions}
%%
(rules}
%%
(user routines}

So far only the rules have been described. The
user needs additional options, though, to define
variables for use in his program and for use by
Lex. These can go either in the definitions sec­
tion or in the rules section.

Remember that Lex is turning the rules
into a program. Any source not intercepted by
Lex is copied into the generated program.
There are three classes of such things.

l) Any line which is not part of a Lex rule
or action which begins with a blank or
tab is copied into the Lex generated pro­
gram. Such source input prior to the first
%% delimiter will be external to any func­
tion in the code; if it appears immediately
after the first %%, it appears in an
appropriate place for declarations in the

Lex - A Lexical Analyzer Generator

function written by Lex which contains
the actions. This material must look like
program fragments, and should precede
the first Lex rule.

As a side effect of the above, lines which
begin with a blank or tab, and which con­
tain a comment, are passed through to the
generated program. This can be used to
include comments in either the Lex
source or the generated code. The com­
ments should follow the host language
convention.

2) Anything included between lines contain­
ing only %{ and % } is copied out as
above. The delimiters are discarded.
This format permits entering text like
preprocessor statements that must begin
in column l, or copying lines that do not
look like programs.

3) Anything after the third %% delimiter,
regardless of formats, etc., is copied out
after the Lex output.

Definitions intended for Lex are given
before the first %% delimiter. Any line in this
section not contained between%{ and%}, and
begining in column l, is assumed to define Lex
substitution strings. The format of such lines

name translation
and it causes the string given as a translation to
be associated with the name. The name and
translation must be separated by at least one
blank or tab, and the name must begin with a
letter. The translation can then be called out
by the {name} syntax in a rule. Using (D} for
the digits and {E} for an exponent field, for
example, might abbreviate rules to recognize
numbers:

D
E
%%
{D}+
{D}+"."{D}*({E})?
{D}*"·" {D}+({E})?
{D}+{E}

[0-9]
[DEde][-+]?{D}+

printf("integer");
I
I

Note the first two rules for real numbers; both
require a decimal point and contain an
optional exponent field, but the first requires at
least one digit before the decimal point and the
second requires at least one digit after the
decimal point. To correctly handle the prob­
lem posed by a Fortran 'expression such as
35.EQ.I, which does not contain a real

Lex - A Lexical Analyzer Generator

number, a context-sensitive rule such as
[0-9]+/"."EQ printf("integer");

could be used in addition to the normal rule
for integers.

The definitions section may also contain
other commands, including the selection of a
host language, a character set table, a list of
start conditions, or adjustments to the default
size of arrays within Lex itself for larger source
programs. These possibilities are discussed
below under "Summary of Source Format,"
section 12.

7. Usage.

There are two steps in compiling a Lex
source program. First, the Lex source must be
turned into a generated program in the host
general purpose language. Then this program
must be compiled and loaded, usually with a
library of Lex subroutines. The generated pro­
gram is on a file named lex.yy.c. The 110
library is defined in terms of the C standard
library [6].

The C programs generated by Lex are
slightly different on OS/3 70, because the OS
compiler is less powerful than the UNIX or
GCOS compilers, and does less at compile
time. C programs generated on GCOS and
UNIX are the same.

UNIX. The library is accessed by the
loader flag -ll. So an appropriate set of com­
mands is

lex source cc lex.yy.c -ll
The resulting program is placed on the usual
file a.out for later execution. To use Lex with
Yacc see below. Although the default Lex 110
routines use the C standard library, the Lex
automata themselves do not do so; if private
versions of input, output and unput are given,
the library can be avoided.

8. Lex and Yacc.

If you want to use Lex with Yacc, note
that what Lex writes is a program named
yylex(), the name required by Y ace for its
analyzer. Normally, the default main program
on the Lex library calls this routine, but if Y ace
is loaded, and its main program is used, Yacc
will call yylex(). In this case each Lex rule
should end with

return(token);
where the appropriate token value is returned.
An easy way to get access to Yacc's names for
tokens is to compile the Lex output file as part

PS1:16-9

of the Y ace output file by placing the line
include "lex.yy.c"

in the last section of Yacc input. Supposing
the grammar to be named "good" and the lexi­
cal rules to be named "better" the UNIX com­
mand sequence can just be:

yacc good
lex better
cc y. tab.c -ly -ll

The Yacc library (-ly) should be loaded before
the Lex library, to obtain a main program
which invokes the Yacc parser. The genera­
tions of Lex and Yacc programs can be done in
either order.

9. Examples.

As a trivial problem, consider copying an
input file while adding 3 to every positive
number divisible by 7. Here is a suitable Lex
source program

%%
int k;

[0-9]+ {
k = atoi(yytext);
if(k%7 == 0)

printf("%d", k+3);
else

printf("%d" ,k);
}

to do just that. The rule [0-9]+ recognizes
strings of digits; atoi converts the digits to
binary and stores the result in k. The operator
% (remainder) is used to check whether k is
divisible by 7; if it is, it is incremented by 3 as
it is written out. It may be objected that this
program will alter such input items as 49.63 or
X7. Furthermore, it increments the absolute
value of all negative numbers divisible by 7.
To avoid this, just add a few more rules after
the active one, as here:
%%

int k;
-?[0-9]+ {

k = atoi(yytext);
printf("%d",

k%7 == 0? k+3: k);
}

-?[0-9.]+ ECHO;
[A-Za-z][A-Za-z0-9]+ ECHO;
Numerical strings containing a "." or preceded
by a letter will be picked up by one of the last
two rules, and not changed. The if-else has
been replaced by a C conditional expression to
save space; the form a?b:c means "if a then b

PS1:16-10

else c".
For an example of statistics gathering,

here is a program which histograms the lengths
of words, where a word is defined as a string of
letters.

%%
[a-z]+

\n
%%
yywrap()
{
inti;

int lengs[lOO);

lengs[yyleng] + +;
I

printf("Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs[i] > 0)
printf("%5d%1 Od\n" ,i,lengs[i]);

return(!);
}

This program accumulates the histogram, while
producing no output. At the end of the input
it prints the table. The final statement
return(J); indicates that Lex is to perform
wrapup. If yywrap returns zero (false) it
implies that further input is available and the
program is to continue reading and processing.
To provide a yywrap that never returns true
causes an infinite loop.

As a larger example, here are some parts
of a program written by N. L. Schryer to con­
vert double precision Fortran to single preci­
sion Fortran. Because Fortran does not distin­
guish upper and lower case letters, this routine
begins by defining a set of classes including
both cases of each letter:

a [aA)
b [bB)
c [cC]

z [zZ)
An additional class recognizes white space:

w [\t]*
The first rule changes "double precision" to
"real", or "DOUBLE PRECISION" to
"REAL".

Lex - A Lexical Analyzer Generator

to avoid confusing them with constants:
TO) ECHO;

In the regular expression, the quotes surround
the blanks. It is interpreted as "beginning of
line, then five blanks, then anything but blank
or zero." Note the two different meanings of A.

There follow some rules to change double pre­
cision constants to ordinary floating constants.
[0-9)+(W}(d}{W}[+-)?{W}[0-9)+ I
[0-9)+ {W} "." {W} { d}{W}[+-]?{W}[0-9)+
"." (W}[0-9)+ {W} { d}{W}[+-]?{W}[0-9)+

I* convert constants *'
for(p=yytext; *P != O; p++)

{
if(*P == 'd' II *P == 'D')

*P=+ 'e'- 'd';
ECHO;
}

After the floating point constant is recognized
it is scanned by the for loop to find the letter d
or D. The program than adds 'e'-' d, which
converts it to the next letter of the alphabet.
The modified constant, now single-precision, is
written out again. There follow a series of
names which must be respelled to remove their
initial d. By using the array yytext the same
action suffices for all the names (only a sample
of a rather long list is given here).

(d}{s}{i}{n} I
{d}{c}{o}(s} I
{d}{s}{q}{r}{t} I
(d}{a}{t}{a}{n} I

{ d}(f}{l}{ o }{a}{t} printf("%s" ,yytext+ !);
Another list of names must have initial d
changed to initial a:

{d}{l}{o}{g}
{d}{l}{o}{g}lO
{ d}{m}{i}{n} I
{d}{m}{a}{x} 1

I
I
I
{
yytext[O) =+'a' - 'd';
ECHO;
}

And one routine must have initial d changed to
initial r:

(d}l{m}{a}{c}{h} (yytext[O) =+ 'r' - 'd';

{ d} { o} {u} {b} {l} { e} {W} {p} {r} { e }{ c}{i} {s} {i} { o }{n} {
printf(yytext[O]= ='d'? "real"' : "REAL'')" . . . } ' To _avoid such nai;iies as dsmx bemg detected

Care is taken throughout this program to as mstances of ~sm, _some final rules pick up
preserve the case (upper or lower) of the origi- l~n?er words as 1dent1fiers and copy some sur-
nal program. The conditional operator is used vivmg characters:
to select the ~roper f~rm ~f the key~or_d. .The !~..=-;1:-z)[A-Za-z0-9]•
next rule copies contmuation card md1cat1ons

Lex - A Lexical Analyzer Generator

\n I
ECHO;

Note that this program is not complete; it does
not deal with the spacing problems in Fortran
or with the use of keywords as identifiers.
10. Left Context Sensitivity.

Sometimes it is desirable to have several
sets of lexical rules to be applied at different
times in the input. For example, a compiler
preprocessor might distinguish preprocessor
statements and analyze them differently from
ordinary statements. This requires sensitivity
to prior ·context, and there are several ways of
handling such problems. The A operator, for
example, is a prior context operator, recogniz­
ing immediately preceding left context just as $
recognizes immediately following right context.
Adjacent left context could be extended, to
produce a facility similar to that for adjacent
right context, but it is unlikely to be as useful,
since often the relevant left context appeared
some time earlier, such as at the beginning of a
line.

This section describes three means of
dealing with different environments: a simple
use of flags, when only a few rules change from
one environment to another, the use of start
conditions on rules, and the possibility of mak­
ing multiple lexical analyzers all run together.
In each case, there are rules which recognize
the need to change the environment in which
the following input text is analyzed, and set
some parameter to reflect the change. This
may be a flag explicitly tested by the user's
action code; such a flag is the simplest way of
dealing with the problem, since Lex is not
involved at all. It may be more convenient,
however, to have Lex remember the flags as
initial conditions on the rules. Any rule may
be associated with a start condition. It will
only be recognized when Lex is in that start
condition. The current start condition may be
changed at any time. Finally, if the sets of
rules for the different environments are very
dissimilar, clarity may be best achieved by
writing several distinct lexical analyzers, and
switching from one to another as desired.

Consider the following problem: copy the
input to the output, changing the word magic
to first on every line which began with the
letter a, changing magic to second on every line
which began with the letter b, and changing
magic to third on every line which began with
the letter c. All other words and all other lines

PS1:16-l l

are left unchanged.

These rules are so simple that the easiest
way to do this job is with a flag:

int flag;
%%
Aa {flag = 'a'; ECHO;}
Ab {flag = 'b'; ECHO;}
Ac {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
{
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start
conditions, each start condition must be intro­
duced to Lex in the definitions section with a
line reading

%Start name I name2 ...
where the conditions may be named in any
order. The word Start may be abbreviated to s
or S. The conditions may be referenced at the
head of a rule with the <> brackets:

<name I >expression
is a rule which is only recognized when Lex is
in the start condition namel. To enter a start
condition, execute the action statement

BEGIN name!;
which changes the start condition to name].
To resume the normal state,

BEGIN O;
resets the initial condition of the Lex automa­
ton interpreter. A rule may be active in several
start conditions:

<name l ,name2,name3>
is a legal prefix. Any rule not beginning with
the <> prefix operator is always active.

The same example as before can be writ-
ten:
%START AA BB CC
%%
Aa {ECHO; BEGIN AA;}
Ab {ECHO; BEGIN BB;}
Ac {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA> magic printf("first");
<BB> magic printf("second");
<CC> magic printf("third");

where the logic is exactly the same as in the

PS1:16-12

previous method of handling the problem, but
Lex does the work rather than the user's code.

11. Character Set.

The programs generated by Lex handle
character 1/0 only through the routines input,
output, and unput. Thus the character
representation provided in these routines is
accepted by Lex and employed to return values
in yytext. For internal use a character is
represented as a small integer which, if the
standard library is used, has a value equal to
the integer value of the bit pattern representing
the character on the host computer. Normally,
the letter a is represented as the same form as
the character constant 'd. If this interpretation
is changed, by providing 1/0 routines which
translate the characters, Lex must be told about
it, by giving a translation table. This table
must be in the definitions section, and must be
bracketed by lines containing only "%T". The
table contains lines of the form

{integer} {character string}
which indicate the value associated with each
character. Thus the next example

%T
I Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 I

39 9
%T

Sample character table.
maps the lower and upper case letters together
into the integers I through 26, newline into 27,
+ and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a
table is supplied, every character that is to
appear either in the rules or in any valid input
must be included in the table. No character
may be assigned the number 0, and no charac­
ter may be assigned a bigger number than the
size of the hardware character set.

Lex - A Lexical Analyzer Generator

12. Summary of Source Format.

The general form of a Lex source file is:
(definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination
of

I) Definitions, in the form "name space
translation".

2) Included code, in the form "space code".

3) Included code, in the form
%{
code
%}

4) Start conditions, given in the form
%S name I name2 ...

5) Character set tables, in the form
%T
number space character-string

%T
6) Changes to internal array sizes, in the

form
%x nnn

where nnn is a decimal integer represent­
ing an array size and x selects the param­
eter as follows:

Letter
p
n
e

Parameter
positions
states
tree nodes

a transitions
k packed character classes
o output array size

Lines in the rules section have the form
"expression action" where the action may be
continued on succeeding lines by using braces
to delimit it.

Regular expressions in Lex use the follow­
ing operators:
x the character "x"
"x" an "x", even if x is an operator.
\x an "x", even if x is an operator.
[xy] the character x or y.
[x-z] the characters x, y or z.
1·x1 any character but x.

·x
<y>x
x$

any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.

x? an optional x.

Lex - A Lexical Analyzer Generator

X*
x+
xly
(x)
x/y
{xx}

0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the
definitions section.

x{m,n} m through n occurrences of x

13. Caveats and Bugs.

There are pathological expressions which
produce exponential growth of the tables when
converted to deterministic machines; for­
tunately, they are rare.

REJECT does not rescan the input;
instead it remembers the results of the previous
scan. This means that if a rule with trailing
context is found, and REJECT executed, the
user must not have used unput to change the
characters forthcoming from the input stream.
This is the only restriction on the user's ability
to manipulate the not-yet-processed input.

14. Acknowledgments.

As should be obvious from the above, the
outside of Lex is patterned on Yacc and the
inside on Aho's string matching routines.
Therefore, both S. C. Johnson and A. V. Aho
are really originators of much of Lex, as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex
was designed, written, and debugged by Eric
Schmidt.

15. References.

I. B. W. Kernighan and D. M. Ritchie, The
C Programming Language, Prentice-Hall,
N. J. (1978).

2. B. W. Kernighan, Ratfor: A Preprocessor
for a Rational Fortran, Software - Prac­
tice and Experience, 5, pp. 395-496
(1975).

3. S. C. Johnson, Yacc: Yet Another Com­
piler Compiler, Computing Science
Technical Report No. 32, 1975, Bell
Laboratories, Murray Hill, NJ 07974.

4. A. V. Aho and M. J. Corasick, Efficient
String Matching: An Aid to Bibliographic
Search, Comm. ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K.
L. Thompson, QED Text Editor, Com­
puting Science Technical Report No. 5,

6.

PS1:16-13

1972, Bell Laboratories, Murray Hill, NJ
07974.

D. M. Ritchie, private communication.
See also M. E. Lesk, The Portable C
Library, Computing Science Technical
Report No. 31, Bell Laboratories, Murray
Hill, NJ 07974.

The M4 Macro Processor PSl:l7-I

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

· M4 is a macro processor available on UNIXt and GCOS. Its primary use has
been as a front end for Ratfor for those cases where parameterless macros are not
adequately powerful. It has also been used for languages as disparate as C and
Cobol. M4 is particularly suited for functional languages like Fortran PL/I and C
since macros are specified in a functional notation. '

M4 provides features seldom found even in much larger macro processors,
including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This p~per is a user's manual for M4.

Introduction

A macro processor is a useful way to
enhance a programming language, to make it
more palatable or more readable, or to tailor it
to a particular application. The #define state­
ment in C and the analogous define in Ratfor
are examples of the basic facility provided by
any macro processor - replacement of text by
other text.

The M4 macro processor is an extension
of a macro processor called M3 which was
written by D. M. Ritchie for the AP-3 mini­
computer; M3 was in turn based on a macro
processor implemented for [I]. Readers
unfamiliar with the basic ideas of macro pro­
cessing may wish to read some of the discus­
sion there.

t UNIX is a trademark of AT&T Bell Laboratories.

M4 is a suitable front end for Ratfor and
C, and has also been used successfully with
Cobol. Besides the straightforward replace­
ment of one string of text by another, it pro­
vides macros with arguments, conditional
macro expansion, arithmetic, file manipulation,
and some specialized string processing func­
tions.

The basic operation of M4 is to copy its
input to its output. As the input is read, how­
ever, each alphanumeric "token" (that is, string
of letters and digits) is checked. If it is the
name of a macro, then the name of the macro
is replaced by its defining text, and the result­
ing string is pushed back onto the input to be
rescanned. Macros may be called with argu­
ments, in which case the arguments are col­
lected and substituted into the right places in
the defining text before it is rescanned.

PS1:17-2

M4 provides a collection of about twenty
built-in macros which perform various useful
operations; in addition, the user can define new
macros. Built-ins and user-defined macros
work exactly the same way; except that some of
the built-in macros have side effects on the
state of the process.

Usage
On UNIX, use

m4 [files)

Each argument file is processed in order; if
there are no arguments, or if an argument is
'-', the standard input is read at that point.
The processed ·text is written on the standard
output, which may be captured for subsequent
processing with

m4 [files) >outputfile

On GCOS, usage is identical, but the program
is called ./m4.

Defining Macros
The primary built-in function of M4 is

define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as stuff.
All subsequent occurrences of name will be
replaced by stuff. name must be alphanumeric
and must begin with a letter (the underscore
counts as a letter). stuff is any text that con-::
tains balanced parentheses; it may stretch over
multiple lines.

Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be I 00, and uses this "symbolic
constant" in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define has
arguments. If a macro or built-in name is not
followed immediately by '(', it is assumed to
have no arguments. This is the situation for N
above; it is actually a macro with no argu­
ments, and thus when it is used there need be
no (...) following it.

You should also notice that a macro
name is only recognized as such if it appears

The M4 Macro Processor

surrounded by non-alphanumerics. For exam­
ple, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the
defined macro N, even though it contains a lot
of N's.

Things may be defined in terms of other
things. For example,

define(N, 100)
define(M, N)

defines both Mand N to be 100.
What happens if N is redefined? Or, to

say it another way, is M defined as N or as
100? In M4, the latter is true - M is 100, so
even if N subsequently changes, M does not.

This behavior arises because M4 expands
macro names into their defining text as soon as
it possibly can. Here, that means that when
the string N is seen as the arguments of define
are being collected, it is immediately replaced
by 100; it's just as if you had said

define(M, 100)

in the first place.
If this isn't what you rea!ly want, there

are two ways out of it. The first, which is
specific to this situation, is to interchange the
order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when
you ask for M later, you'll always get the value
of N at that time (because the M will be
replaced by N which will be replaced by 100).

Quoting

The more general solution is to delay the
expansion of the arguments of define by quot­
ing them. Any text surrounded by the single
quotes' and· is not expanded immediately, but
has the quotes stripped off. If you say

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the
argument is being collected, qut they have
served their purpose, and M is defined as the
string N, not 100. The general rule is that M4

The M4 Macro Processor

always strips off one level of single quotes
whenever it evaluates something. This is true
even outside of macros. If you want the word
define to appear in the output, you have to
quote it in the input, as in

'define' = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen; that
is, it is replaced by 100, so it's as if you had
written

define(lOO, 200)

This statement is ignored by M4, since you can
only define things that look like names, but it
obviously doesn't have the effect you wanted.
To really redefine N, you must delay the
evaluation by quoting:

define(N, 100)

define(N', 200)

In M4, it is often wise to quote the first argu­
ment of a macro.

If' and ' are not convenient for some rea­
son, the quote characters can be changed with
the built-in changequote:

changequote([,))

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

changequote

There are two additional built-ins related
to define. undefine removes the definition of
some macro or built-in:

undefine(N')

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can be
removed with undefine, as in

undefine(define')

but once you remove one, you can never get it
back.

PSl:l 7-3

The built-in ifdef provides a way to deter­
mine if a macro is currently defined. In partic­
ular, M4 has pre-defined the names unix and
gcos on the corresponding systems, so you can
tell which one you're using:

ifdef(unix', 'define(wordsize,16)')
ifdef(gcos', 'define(wordsize,36)')

makes a definition appropriate for the particu­
lar machine. Don't forget the quotes!

ifdef actually permits three arguments; if
the name is undefined, the value of if def is then
the third argument, as in

ifdef(unix', on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User-defined
macros may also have arguments, so different
invocations can have different results. Within
the replacement text for a macro (the second
argument of its define) any occurrence of $n
will be replaced by the nth argument when the
macro is actually used. Thus, the macro bump,
defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump(x)

is

x=x+l

A macro can have as many arguments as
you want, but only the first nine are accessible,
through $1 to $9. (The macro name itself is
$0, although that is less commonly used.) Argu­
ments that are not supplied are replaced by
null strings, so we can define a macro cat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding
arguments were provided.

PSl:l 7-4

Leading unquoted blanks, tabs, or new­
lines that occur during argument collection are
discarded. All other white space is retained.
Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but
parentheses are counted properly, so a comma
"protected" by parentheses does not terminate
an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma or
parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The sim­
plest is incr, which increments its numeric
argument by I. Thus to handle the common
programming situation where you want a vari­
able to be defined as "one more than N", write

define(N, 100)
define(Nl, 'incr(N)')

Then Nl is defined as one more than the
current value of N.

The more general mechanism for arith­
metic is a built-in called eval, which is capable
of arbitrary arithmetic on integers. It provides
the operators (in decreasing order of pre­
cedence)

unary+ and -
** or· (exponentiation)
* I % (modulus)
+ -
== != < <= > >=

(not)
& or && (logical and)
I or II (logical or)

Parentheses may be used to group operations
where needed. All the operands of an expres­
sion given to eval must ultimately be numeric.
The numeric value of a true relation (like I >0)
is I, arid false is 0. The precision in eval is 32
bits on UNIX and 36 bits on GCOS.

As a simple example, suppose we want M
to be 2**N+l. Then

The M4 Macro Processor

define(N, 3)
define(M, ·eval(2**N + l)')

As a matter of principle, it is advisable to
quote the defining text for a macro unless it is
very simple indeed (say just a number); it usu­
ally gives the result you want, and is a good
habit to get into.

File Manipulation

You can include a new file in the input at
any time by the built-in function include:

include(filename)

inserts the contents of filename in place of the
include command. The contents of the file is
often a set of definitions. The value of include
(that is, its replacement text) is the contents of
the file; this can be captured in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some con­
trol over this situation, the alternate form sin­
clude can be used; sinclude ("silent include")
says nothing and continues if it can't access the
file.

It is also possible to divert the output of
M4 to temporary files during processing, and
output the collected material upon command.
M4 maintains nine of these diversions, num­
bered I through 9. If you say

divert(n)

all subsequent output is put onto the end of a
temporary file referred to as n. Diverting to
this file is stopped by another divert command;
in particular, divert or divert(O) resumes the
normal output process.

Diverted text is normally output all at
once at the end of processing, with the diver­
sions output in numeric order. It is possible,
however, to bring back diversions at any time,
that is, to append them to the current diver­
sion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back the
selected diversions in the order given. The act
of undi verting discards the diverted stuff, as
does diverting into a diversion whose number
is not between 0 and 9 inclusive.

The value of undivert is not the diverted
stuff. Furthermore, the diverted material is not

The M4 Macro Processor

rescanned for macros.
The built-in divnum returns the number

of the currently active diversion. This is zero
during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in. For
example,

syscmd(date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a sub­
sequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system function
mktemp: a string of XXXXX in the argument
is replaced by the process id of the current pro­
cess.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these arn
identical, ifelse returns the string c; otherwise it
returns d. Thus we might define a macro called
compare which compares two strings and
returns "yes" or "no" if they are the same or
different.

define(compare, 'ifelse($1, $2, yes, no))

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form of
multi-way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is
c. Otherwise, if d is the same as e, the result is
f. Otherwise the result is g. If the final argu­
ment is omitted, the result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

PS1:17-5

String Manipulation

The built-in Jen returns the length of the
string that makes up its argument. Thus

len(abcdet)

is 6, and len((a,b)) is 5.

The built-in substr can be used to pro­
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the ith
position (origin zero), and is n characters long.
If n is omitted, the rest of the string is
returned, so

substr(now is the time·, 1)

is

ow is the time

If i or n are out of range, various sensible
things happen.

index(sl, s2) returns the index (position)
in sl where the string s2 occurs, or -1 if it
doesn't occur. As with substr, the origin for
strings is 0.

The built-in translit performs character
transliteration.

translit(s, f, t)

modifies s by replacing any character found in f
by the corresponding character oft. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits.
If t is shorter than f, characters which don't
have an entry in t are deleted; as a limiting
case, if t is not present at all, characters from f
are deleted from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which
deletes all characters that follow it up to and
including the next newline; it is useful mainly
for throwing away empty lines that otherwise
tend to clutter up M4 output. For example, if
you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part
of the definition, so it is copied into the output,
where it may not be wanted. If you add dnl to
each of these lines, the newlines will disappear.

PSl:l 7-6

Another way to achieve this, due to J. E.
Weythman, is

divert(-1)
define(...)

divert

Printing
The built-in errprint writes its arguments

out on the standard error file. Thus you can
say

errprint('fatal error')

dumpdef is a debugging aid which dumps
the current definitions of defined terms. If
there are no arguments, you get everything;
otherwise you get the ones you name as argu­
ments. Don't forget to quote the names!

Summary of Built-ins
Each entry is preceded by the page

number where it is described.

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef(name', 'name', ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdef(name', this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(sl, s2)
5 len(string)
4 maketemp(.. .XXXXX ...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine(name')
4 undivert(number,number, ...)

Acknowledgements
We are indebted to Rick Becker, John

Chambers, Doug Mcilroy, and especially Jim
Weythman, whose pioneering use of M4 has
led to several valuable improvements. We are
also deeply grateful to Weythman for several
substantial contributions to the code.

The M4 Macro Processor

References

[l] B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, Inc.,
1976.

Screen Updating and Cursor Movement Optimization:
A Library Package

Kenneth C. R. C. Arnold

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

This document describes a package of C library functions which allow the user to:

• update a screen with reasonable optimization,

• get input from the terminal in a screen-oriented fashion, and

• independent from the above, move the cursor optimally from one point to another.

These routines all use the termcap(S) database to describe the capabilities of the ter­
minal.

Acknowledgements

This package would not exist without the work of Bill Joy, who, in writing his editor,
created the capability to generally describe terminals, wrote the routines which read this data­
base, and, most importantly, those which implement optimal cursor movement, which rou­
tines I have simply lifted nearly intact. Doug Merritt and Kurt Shoens also were extremely
important, as were both willing to waste time listening to me rant and rave. The help and/or
support of Ken Abrams, Alan Char, Mark Horton, and Joe Kalash, was, and is, also greatly
appreciated.

Revised 16 April 1986

PS1:18-2 Screen Package

Contents

1 Overview 3
1.1 Terminology (or, Words You Can Say to Sound Brilliant) 3
1.2 Compiling Things 3
1.3 Screen Updating .. 3
1.4 Naming Conventions .. 4

2 Variables 5
3 Usage... 5

3.1 Starting up ... 5
3.2 The Nitty-Gritty .. 5

3.2.1 Output .. 5
3.2.2 Input .. 6
3.2.3 Miscellaneous .. 6

3.3 Finishing up .. 6
4 Cursor Motion Optimization: Standing Alone .. 6

4.1 Terminal Information ... 7
4.2 Movement Optimizations, or, Getting Over Yonder 7

5 The Functions 8
5.1 Output Functions .. 8
5.2 Input Functions ... 12
5.3 Miscellaneous Functions ... 13
5 .4 Details I 7

Appendixes

Appendix A 18
I Capabilities from termcap 18

1.1 Disclaimer 18
1.2 Overview 18
1.3 Variables Set By setterm() .. 18
1.4 Variables Set By gettmode() ... 19

Appendix B 20
I The WINDOW structure .. 20
Appendix C 22
I Examples ,.. 22
2 Screen Updating ... 22

2.1 Twinkle 22
2.2 Life .. 24

3 Motion optimization .. 27
3.1 Twinkle.. 27

The M4 Macro Processor PSl:l 7-1

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

· M4 is a macro processor available on UNIXt and GCOS. Its primary use has
been as a front end for Ratfor for those cases where parameterless macros are not
adequately powerful. It has also been used for languages as disparate as C and
Cobol. M4 is particularly suited for functional languages like Fortran, PL/I and C
since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro processors,
including

• arguments

• con di ti on testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This p~per is a user's manual for M4.

Introduction

A macro processor is a useful way to
enhance a programming language, to make it
more palatable or more readable, or to tailor it
to a particular application. The #define state­
ment in C and the analogous define in Ratfor
are examples of the basic facility provided by
any macro processor - replacement of text by
other text.

The M4 macro processor is an extension
of a macro processor called M3 which was
written by D. M. Ritchie for the AP-3 mini­
computer; M3 was in turn based on a macro
processor implemented for [!]. Readers
unfamiliar with the basic ideas of macro pro­
cessing may wish to read some of the discus­
sion there.

t UNIX is a trademark of AT&T Bell Laboratories.

M4 is a suitable front end for Ratfor and
C, and has also been used successfully with
Cobol. Besides the straightforward replace­
ment of one string of text by another, it pro­
vides macros with arguments, conditional
macro expansion, arithmetic, file manipulation,
and some specialized string processing func­
tions.

The basic operation of M4 is to copy its
input to its output. As the input is read, how­
ever, each alphanumeric "token" (that is, string
of letters and digits) is checked. If it is the
name of a macro, then the name of the macro
is replaced by its defining text, and the result­
ing string is pushed back onto the input to be
rescanned. Macros may be called with argu­
ments, in which case the arguments are col­
lected and substituted into the right places in
the defining text before it is rescanned.

PS1:17-2

M4 provides a collection of about twenty
built-in macros which perform various useful
operations; in addition, the user can define new
macros. Built-ins and user-defined macros
work exactly the same way; except that some of
the built-in macros have side effects on the
state of the process.

Usage
On UNIX, use

m4 (files)

Each argument file is processed in order; if
there are no arguments, or if an argument is
·-', the standard input is read at that point.
The processed text is written on the standard
output, which may be captured for subsequent
processing with

m4 (files] >outputfile

On GCOS, usage is identical, but the program
is called ./m4.

Defining Macros
The primary built-in function of M4 is

define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as stuff.
All subsequent occurrences of name will be
replaced by stuff. name must be alphanumeric
and must begin with a letter (the underscore _
counts as a letter). stuff is any text that con­
tains balanced parentheses; it may stretch over
multiple lines.

Thus, as a typical example,

define(N, 100)

if(i > N)

defines N to be 100, and uses this ""symbolic
constant" in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define has
arguments. If a macro or built-in name is not
followed immediately by "(', it is assumed to
have no arguments. This is the situation for N
above; it is actually a macro with no argu­
ments, and thus when it is used there need be
no (...) following it.

You should also notice that a macro
name is only recognized as such if it appears

The M4 Macro Processor

surrounded by non-alphanumerics. For exam­
ple, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the
defined macro N, even though it contains a lot
of N's.

Things may be defined in terms of other
things. For example,

define(N, 100)
define(M, N)

defines both M and N to be I 00.
What happens if N is redefined? Or, to

say it another way, is M defined as N or as
100? In M4, the latter is true - M is 100, so
even if N subsequently changes, M does not.

This behavior arises because M4 expands
macro names into their defining text as soon as
it possibly can. Here, that means that when
the string N is seen as the arguments of define
are being collected, it is immediately replaced
by 100; it's just as if you had said

define(M, 100)

in the first place.
If this isn't what you really want, there

are two ways out of it. The first, which is
specific to this situation, is to interchange the
order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when
you ask for M later, you'll always get the value
of N at that time (because the M will be
replaced by N which will be replaced by 100).

Quoting

The more general solution is to delay the
expansion of the arguments of define by quot­
ing them. Any text surrounded by the single
quotes · and · is not expanded immediately, but
has the quotes stripped off. If you say

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the
argument is being collected, qut they have
served their purpose, and M is defined as the
string N, not 100. The general rule is that M4

The M4 Macro Processor

always strips off one level of single quotes
whenever it evaluates something. This is true
even outside of macros. If you want the word
define to appear in the output, you have to
quote it in the input, as in

'define· = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen; that
is, it is replaced by I 00, so it's as if you had
written

define(IOO, 200)

This statement is ignored by M4, since you can
only define things that look like names, but it
obviously doesn't have the effect you wanted.
To really redefine N, you must delay the
evaluation by quoting:

define(N, 100)

definefN·, 200)

In M4, it is often wise to quote the first argu­
ment of a macro.

If' and' are not convenient for some rea­
son, the quote characters can be changed with
the built-in changequote:

changequote([,))

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

changequote

There are two additional built-ins related
to define. undefine removes the definition of
some macro or built-in:

undefinefN)

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can be
removed with undefine, as in

undefinefdefine)

but once you remove one, you can never get it
back.

PS1:17-3

The built-in ifdef provides a way to deter­
mine if a macro is currently defined. In partic­
ular, M4 has pre-defined the names unix and
gcos on the corresponding systems, so you can
tell which one you're using:

ifdeffunix', 'define(wordslze,16)')
ifdef('gcos·, 'define(wordsize,36)')

makes a definition appropriate for the particu­
lar machine. Don't forget the quotes!

ifdef actually permits three arguments; if
the name is undefined, the value of ifdef is then
the third argument, as in

ifdef('unix·, on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User-defined
macros may also have arguments, so different
invocations can have different results. Within
the replacement text for a macro (the second
argument of its define) any occurrence of $n
will be replaced by the nth argument when the
macro is actually used. Thus, the macro bump,
defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by l:

bump(x)

is

x=x+l

A macro can have as many arguments as
you want, but only the first nine are accessible,
through $1 to $9. (The macro name itself is
$0, although that is less commonly used.) Argu­
ments that are not supplied are replaced by
null strings, so we can define a macro cat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat{x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding
arguments were provided.

PSI:l 7-4

Leading unquoted blanks, tabs, or new­
lines that occur during argument collection are
discarded. All other white space is retained.
Thus

define(a, b c)

defines a to be b c.
Arguments are separated by commas, but

parentheses are counted properly, so a comma
"protected" by parentheses does not terminate
an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma or
parenthesis can be inserted by quoting it.

Arithmetic Built-ins
M4 provides two built-in functions for

doing arithmetic on integers (only). The sim­
plest is incr, which increments its numeric
argument by 1. Thus to handle the common
programming situation where you want a vari­
able to be defined as "one more than N", write

define(N, 100)
define(Nl, 'incr(N)J

Then Nl is defined as one more than the
current value of N.

The more general mechanism for arith­
metic is a built-in called eval, which is capable
of arbitrary arithmetic on integers. It provides
the operators (in decreasing order of pre­
cedence)

unary+ and -
** or ~ (exponentiation)
* I % (modulus)
+ -
== != < <= > >=
! (not)
& or && (logical and)
I or II (logical or)

Parentheses may be used to group operations
where needed. All the operands of an expres­
sion given to eval must ultimately be numeric.
The numeric value of a true relation (like 1 >0)
is 1, arid false is 0. The precision in eval is 32
bits on UNIX and 36 bits on GCOS.

As a simple example, suppose we want M
to be 2uN+l. Then

The M4 Macro Processor

define(N, 3)
define(M, 'eval(2uN + l)J

As a matter of principle, it is advisable to
quote the defining text for a macro unless it is
very simple indeed (say just a number); it usu­
ally gives the result you want, and is a good
habit to get into.

File Manipulation

You can include a new file in the input at
any time by the built-in function include:

include(filename)

inserts the contents of filename in place of the
include command. The contents of the file is
often a set of definitions. The value of include
(that is, its replacement text) is the contents of
the file; this can be captured in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some con­
trol over this situation, the alternate form sin­
clude can be used; sinclude ("silent include")
says nothing and continues if it can't access the
file.

It is also possible to divert the output of
M4 to temporary files during processing, and
output the collected material upon command.
M4 maintains nine of these diversions, num­
bered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of a
temporary file referred to as n. Diverting to
this file is stopped by another divert command;
in particular, divert or divert(O) resumes the
normal output process.

Diverted text is normally output all at
once at the end of processing, with the diver­
sions output in numeric order. It is possible,
however, to bring back diversions at any time,
that is, to append them to the current diver­
sion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back the
selected diversions in the order given. The act
of undiverting discards the diverted stuff, as
does diverting into a diversion whose number
is not between 0 and 9 inclusive.

The value of undivert is not the diverted
stuff. Furthermore, the diverted material is not

The M4 Macro Processor

rescanned for macros.

The built-in divnum returns the number
of the currently active diversion. This is zero
during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in. For
example,

syscmd(date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a sub­
sequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system function
mktemp: a string of XXXXX in the argument
is replaced by the process id of the current pro­
cess.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these are
identical, ifelse returns the string c; otherwise it
returns d. Thus we might define a macro called
compare which compares two strings and
returns "yes" or "no" if they are the same or
different.

define(compare, 'ifelse($1, $2, yes, non

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form of
multi-way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is
c. Otherwise, if d is the same as e, the result is
f. Otherwise the result is g. If the final argu­
ment is omitted, the result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

PS1:17-5

String Manipulation

The built-in Jen returns the length of the
string that makes up its argument. Thus

len(abcdel)

is 6, and len((a,b)) is 5.

The built-in substr can be used to pro­
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the ith
position (origin zero), and is n characters long.
If n is omitted, the rest of the string is
returned, so

substr('now is the time', I)

is

ow is the time

If i or n are out of range, various sensible
things happen.

index(sl, s2) returns the index (position)
in sl where the string s2 occurs, or -1 if it
doesn't occur. As with substr, the origin for
strings is 0.

The built-in translit performs character
transliteration.

translit(s, f, t)

modifies s by replacing any character found in f
by the corresponding character of t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits.
If t is shorter than f, characters which don't
have an entry in t are deleted; as a limiting
case, if t is not present at all, characters from f
are deleted from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which
deletes all characters that follow it up to and
including the next newline; it is useful mainly
for throwing away empty lines that otherwise
tend to clutter up M4 output. For example, if
you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part
of the definition, so it is copied into the output,
where it may not be wanted. If you add dnl to
each of these lines, the newlines will disappear.

PSI:17-6

Another way to achieve this, due to J. E.
Weythman, is

divert(-1)
define(...)

divert

Printing
The built-in errprint writes its arguments

out on the standard error file. Thus you can
say

errprint('fatal error')

dumpdef is a debugging aid which dumps
the current definitions of defined terms. If
there are no arguments, you get everything;
otherwise you get the ones you name as argu­
ments. Don't forget to quote the names!

Summary of Built-ins
Each entry is preceded by the page

number where it is described.

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef(name', 'name', ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdef(name', this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(sl, s2)
5 len(string)
4 maketemp(.. .XXXXX ...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine(name')
4 undivert(number,number, ...)

Acknowledgements
We are indebted to Rick Becker, John

Chambers, Doug Mcllroy, and especially Jim
Weythman, whose pioneering use of M4 has
led to several valuable improvements. We are
also deeply grateful to Weythman for several
substantial contributions to the code.

The M4 Macro Processor

References

[I] B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, Inc.,
1976.

Screen Updating and Cursor Movement Optimization:
A Library Package

Kenneth C. R. C. Arnold

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes a package of C library functions which allow the user to:

• update a screen with reasonable optimization,

• get input from the terminal in a screen-oriented fashion, and

• independent from the above, move the cursor optimally from one point to another.

These routines all use the termcap(5) database to describe the capabilities of the ter­
minal.

Acknowledgements

This package would not exist without the work of Bill Joy, who, in writing his editor,
created the capability to generally describe terminals, wrote the routines which read this data­
base, and, most importantly, those which implement optimal cursor movement, which rou­
tines I have simply lifted nearly intact. Doug Merritt and Kurt Shoens also were extremely
important, as were both willing to waste time listening to me rant and rave. The help and/or
support of Ken Abrams, Alan Char, Mark Horton, and Joe Kalash, was, and is, also greatly
appreciated.

Revised 16 April 1986

PS1:18-2 Screen Package

Contents

I Overview 3
1.1 Terminology (or, Words You Can Say to Sound Brilliant) 3
1.2 Compiling Things 3
1.3 Screen Updating.. 3
1.4 Naming Conventions .. 4

2 Variables 5
3 Usage... 5

3.1 Starting up ... 5
3.2 The Nitty-Gritty .. 5

3.2. I Output .. 5
3.2.2 Input .. 6
3.2.3 Miscellaneous .. 6

3.3 Finishing up .. 6
4 Cursor Motion Optimization: Standing Alone 6

4.1 Terminal Information ... 7
4.2 Movement Optimizations, or, Getting Over Yonder 7

5 The Functions 8
5.1 Output Functions .. 8
5.2 Input Functions ... 12
5. 3 Miscellaneous Functions 13
5.4 Details ... 17

Appendix.es

Appendix A 18
I Capabilities from termcap .. 18

1.1 Disclaimer 18
1.2 Overview ... 18
1.3 Variables Set By setterm() .. 18
1.4 Variables Set By gettmode() ... 19

Appendix B 20

I The WINDOW structure .. 20

Appendix C .. 22
1 Examples ... 22
2 Screen Updating ... 22

2.1 Twinkle 22
2.2 Life .. 24

3 Motion optimization .. 27
3.1 Twinkle.. 27

Screen Package PS1:18-3

1. Overview
In making available the generalized terminal descriptions in termcap(5), much informa­

tion was made available to the programmer, but little work was taken out of one's hands.
The purpose of this package is to allow the C programmer to do the most common type of
terminal dependent functions, those of movement optimization and optimal screen updating,
without doing any of the dirty work, and (hopefully) with nearly as much ease as is necessary
to simply print or read things.

The package is split into three parts: (1) Screen updating; (2) Screen updating with user
input; and (3) Cursor motion optimization.

It is possible to use the motion optimization without using either of the other two, and
screen updating and input can be done without any programmer knowledge of the motion op­
timization, or indeed the database itself.

1.1. Terminology (or, Words You Can Say to Sound Brilliant)

In this document, the following terminology is kept to with reasonable consistency:

window: An internal representation containing an image of what a section of the terminal
screen may look like at some point in time. This subsection can either encompass the
entire terminal screen, or any smaller portion down to a single character within that
screen.

ll!mlinal: Sometimes called terminal :rt:tten. The package's idea of what the terminal's screen
currently looks like, i.e., what the user sees now. This is a special screen:

:rt:tten: This is a subset of windows which are as large as the terminal screen, i.e., they start at
the upper left hand comer and encompass the lower right hand comer. One of these,
stdscr, is automatically provided for the programmer.

1.2. Compiling Things

In order to use the library, it is necessary to have certain types and variables defined.
Therefore, the programmer must have a line:

#include <curses.h>

at the top of the program source. The header file <curses.h> needs to include <sgtty.h>, so
the one should not do so oneself1• Also, compilations should have the following form:

cc [flags] file ... -)curses -)termcap

1.3. Screen Updating

In order to update the screen optimally, it is necessary for the routines to know what the
screen currently looks like and what the programmer wants it to look like next. For this pur­
pose, a data type (structure) named WINDOW is defined which describes a window image to
the routines, including its starting position on the screen (the (y, x) co-ordinates of the upper
left hand comer) and its size. One of these (called curscr for current screen) is a screen image
of what the terminal currently looks like. Another screen (called stdscr, for standard screen) is
provided by default to make changes on.

1 The screen package also uses the Standard I/O library, so <curses.h> includes <stdio.h>. It is redundant (but
harmless) for the programmer to do it, too.

PS1:18-4 Screen Package

A window is a purely internal representation. It is used to build and store a potential
image of a portion of the terminal. It doesn't bear any necessary relation to what is really on
the terminal screen. It is more like an array of characters on which to make changes.

When one has a window which describes what some part the terminal should look like,
the routine refresh() (or wrefresh() if the window is not stdscr) is called. refresh() makes the
terminal, in the area covered by the window, look like that window. Note, therefore, that
changing something on a window does not change the terminal. Actual updates to the termi­
nal screen are made only by calling refresh() or wrefresh(). This allows the programmer to
maintain several different ideas of what a portion of the terminal screen should look like.
Also, changes can be made to windows in any order, without regard to motion efficiency.
Then, at will, the programmer can effectively say "make it look like this", and let the package
worry about the best way to do this.

1.4. Naming Conventions

As hinted above, the routines can use several windows, but two are automatically given:
curscr, which knows what the terminal looks like, and stdscr, which is what the programmer
wants the terminal to look like next. The user should never really access cursc'r directly.
Changes should be made to the appropriate screen, and then the routine refresh() (or
wrefresh()) should be called.

Many functions are set up to deal with stdscr as a default screen. For example, to add a
character to stdscr, one calls addch() with the desired character. If a different window is to be
used, the routine waddch() (for window-specific addch()) is provided2• This convention of
prepending function names with a "w" when they are to be applied to specific windows is
consistent. The only routines which do not do this are those to which a window must always
be specified.

In order to move the current (y, x) co-ordinates from one point to another, the routines
move() and wmove() are provided. However, it is often desirable to first move and then per­
form some I/O operation. In order to avoid clumsyness, most I/O routines can be preceded
by the prefix "mv" and the desired (y, x) co-ordinates then can be added to the arguments to
the function. For example, the calls

move(y, x);
addch(ch);

can be replaced by

mvaddch(y, x, ch);

and
wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If
such pointers are need, they are always the first parameters passed.

2 Actually, addch() is really a "#define" macro with arguments, as are most of the "functions" which deal with
stdscr as a default.

Screen Package PS1:18-S

2. Variables

Many variables which are used to describe the terminal environment are available to the
programmer. They are:

type name
WINDOW * curscr
WINDOW * stdscr
char * Def_ term
bool My_ term

char*
int
int
int
int

ttytype
LINES
COLS
ERR
OK

description
current version of the screen (terminal screen).
standard screen. Most updates are usually done here.
default terminal type if type cannot be determined
use the terminal specification in Def term as termi­
nal, irrelevant of real terminal type -
full name of the current terminal.
number of lines on the terminal
number of columns on the terminal
error flag returned by routines on a fail.
error flag returned by routines when things go right.

There are also several "#define" constants and types which are of general usefulness:

reg
boo!
TRUE
FALSE

3. Usage

storage class "register" (e.g., reg int i;)
boolean type, actually a "char" (e.g., boo/ doneit;)
boolean "true" flag (1).
boolean "false" flag (0).

This is a description of how to actually use the screen package. In it, we assume all up­
dating, reading, etc. is applied to stdscr. All instructions will work on any window, with
changing the function name and parameters as mentioned above.

3.1. Starting up

In order to use the screen package, the routines must know about terminal characteris­
tics, and the space for curscr and stdscr must be allocated. These functions are performed by
initscr(). Since it must allocate space for the windows, it can overflow core when attempting
to do so. On this rather rare occasion, initscr() returns ERR. initscr() must always be called
before any of the routines which affect windows are used. If it is not, the program will core
dump as soon as either curscr or stdscr are referenced. However, it is usually best to wait to
call it until after you are sure you will need it, like after checking for startup errors. Terminal
status changing routines like nl() and cbreak() should be called after initscr().

Now that the screen windows have been allocated, you can set them up for the run. If
you want to, say, allow the window to scroll, use scrollok(). If you want the cursor to be left
after the last change, use leaveok(). If this isn't done, refresh() will move the cursor to the
window's current (y, x) co-ordinates after updating it. New windows of your own can be
created, too, by using the functions newwin() and subwin(). de/win() will allow you to get rid
of old windows. If you wish to change the official size of the terminal by hand, just set the
variables LINES and COLS to be what you want, and then call initscr(). This is best done be­
fore, but can be done either before or after, the first call to initscr(), as it will always delete
any existing stdscr and/or curscr before creating new ones.

3.2. The Nitty-Gritty

3.2.1. Output

Now that we have set things up, we will want to actually update the terminal. The basic
functions used to change what will go on a window are addch() and move(). addch() adds a

PS1:18-6 Screen Package

character at the current (y, x) co-ordinates, returning ERR if it would cause the window to
illegally scroll, i.e., printing a character in the lower right-hand comer of a terminal which au­
tomatically scrolls if scrolling is not allowed. move() changes the current (y, x) co-ordinates to
whatever you want them to be. It returns ERR if you try to move off the window when scrol­
ling is not allowed. As mentioned above, you can combine the two into mvaddch() to do both
things in one fell swoop.

The other output functions, such as addstr() and printw(), all call addch() to add charac­
ters to the window.

After you have put on the window what you want there, when you want the portion of
the terminal covered by the window to be made to look like it, you must call refresh(). In
order to optimize finding changes, refresh() assumes that any part of the window not changed
since the last refresh() of that window has not been changed on the terminal, i.e., that you
have not refreshed a portion of the terminal with an overlapping window. If this is not the
case, the routines touchwin(), touchline(), and touchover/ap() are provided to make it look like
a desired part of window has been changed, thus forcing refresh() check that whole subsection
of the terminal for changes. ·

If you call wrefresh() with curscr, it will make the screen look like curscr thinks it looks
like. This is useful for implementing a command which would redraw the screen in case it get
messed up.

3.2.2. Input

Input is essentially a mirror image of output. The complementary function to addch() is
getch() which, if echo is set, will call addch() to echo the character. Since the screen package
needs to know what is on the terminal at all times, if characters are to be echoed, the tty must
be in raw or cbreak mode. If it is not, getch() sets it to be cbreak, and then reads in the char­
acter.

3.2.3. Miscellaneous

All sorts of fun functions exists for maintaining and changing information about the
windows. For the most part, the descriptions in section 5:4. should suffice.

3.3. Finishing up

In order to do certain optimizations, and, on some terminals, to work at all, some things
must be done before the screen routines start up. These functions are performed in
getttmode() and setterm(), which are called by initscr(). In order to clean up after the routines,
the routine endwin() is provided. It restores tty modes to what they were when initscr() was
first called. Thus, anytime after the call to initscr, endwin() should be called before exiting.

4. Cursor Motion Optimization: Standing Alone

It is possible to use the cursor optimization functions of this screen package without the
overhead and additional size of the screen updating functions. The screen updating functions
are designed for uses where parts of the screen are changed, but the overall image remains the
same. This includes such programs as rogue and vi3. Certain other programs will find it
difficult to use these functions in this manner without considerable unnecessary program over­
head. For such applications, such as some "crt hacks"4 and optimizing more(l)-type pro-

3 rogue actually uses these functions, vi does not.
4 Graphics programs designed to run on character.oriented terminals. I could name many, but they come and

go, so the list would be quickly out of date. Recently, there have been programs such as rain, rocket, and gun.

Screen Package PS1:18-7

grams, all that is needed is the motion optimizations. This, therefore, is a description of what
some of what goes on at the lower levels of this screen package. The descriptions assume a
certain amount of familiarity with programming problems and some finer points of C. None
of it is terribly difficult, but you should be forewarned.

4.1. Terminal Information

In order to use a terminal's features to the best of a program's abilities, it must first
know what they are5. The termcap(5) database describes these, but a certain amount of
decoding is necessary, and there are, of course, both efficient and inefficient ways of reading
them in. The algorithm that the uses is taken from vi and is hideously efficient. It reads
them in a tight loop into a set of variables whose names are two uppercase letters with some
mnemonic value. For example, HO is a string which moves the cursor to the "home" posi­
tion6. As there are two types of variables involving ttys, there are two routines. The first,
gettmode(}, sets some variables based upon the tty modes accessed by gtty(2) and stty(2) The
second, setterm(), a larger task by reading in the descriptions from the termcap(5) database.
This is the way these routines are used by initscr():

if (isatty(O)) {
gettmode();
if ((sp=getenv("TERM")) != NULL)

setterm(sp);
else

setterm(Def _term);
}
else

setterm(Def term);
puts(TI); -

=puts(VS);

is atty() checks to see if file descriptor 0 is a terminai7. If it is, gettmode() sets the termi­
nal description modes from a gtty(2) getenv() is then called to get the name of the terminal,
and that value (if there is one) is passed to setterm(), which reads in the variables from
termcap(5) associated with that terminal. (getenv() returns a pointer to a string containing the
name of the terminal, which we save in the character pointer sp.) If isatty() returns false, the
default terminal Def term is used. The TI and VS sequences initialize the terminal (puts()
is a macro which uses tputs() (see termcap(3)) and _putchar() to put out a string). endwin()
undoes these things.

4.2. Movement Optimizations, or, Getting Over Yonder

Now that we have all this useful information, it would be nice to do something with it8•

The most difficult thing to do properly is motion optimization. When you consider how
many different features various terminals have (tabs, backtabs, non-destructive space, home

' If this comes as any surprise to you, there's this tower in Paris they're thinking of junking that I can let you
have for a song.

' These names are identical to those variables used in the tenncap(S) database to describe each capability. See
Appendix A for a complete list of those read, and the tenncap(S) manual page for a full description.

7 isatty() is defined in the default C library function routines. It does a gtty(2) on the descriptor and checks the
return value.

8 Actually, it can be emotionally fulfilling just to get the information. This is usually only true, however, if you
have the social life of a kumquat.

PS1:18-8 Screen Package

sequences, absolute tabs,) you can see that deciding how to get from here to there can be a
decidedly non-trivial task. The editor vi uses many of these features, and the routines it uses
to do this take up many pages of code. Fortunately, I was able to liberate them with the
author's permission, and use them here.

After using gettmode() and setterm() to get the terminal descriptions, the function
mvcur() deals with this task. It usage is simple: you simply tell it where you are now and
where you want to go. For example

mvcur(O, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, 0) to the middle of the screen. If you wish
to force absolute addressing, you can use the function tgoto() from the termlib(7) routines, or
you can tell mvcur() that you are impossibly far away, like Cleveland. For example, to abso­
lutely address the lower left hand comer of the screen from anywhere just claim that you are
in the upper right hand comer:

mvcur(O, COLS-I, LINES-I, 0)

5. The Functions

In the following definitions, "t" means that the "function" is really a "#define" macro
with arguments. This means that it will not show up in stack traces in the debugger, or, in
the case of such functions as addch(), it will show up as it's "w" counterpart. The arguments
are given to show the order and type of each. Their names are not mandatory, just sugges­
tive.

5.1. Output Functions

addch(ch) t
char ch;

waddch(win, ch)
WINDOW *win;
char ch;

Add the character ch on the window at the current (y, x) co-ordinates. If the character is
a newline (\n) the line will be cleared to the end, and the current (y, x) co-ordinates will
be changed to the beginning off the next line if newline mapping is on, or to the next
line at the same x co-ordinate if it is off. A return (\r) will move to the beginning of
the line on the window. Tabs (\t) will be expanded into spaces in the normal tabstop
positions of every eight characters. This returns ERR if it would cause the screen to
scroll illegally.

addstr(str) t
char *str;

waddstr(win, str)
WINDOW *win;
char *str;

Add the string pointed to by str on the window at the current (y, x) co-ordinates. This
returns ERR if it would cause the screen to scroll illegally. In this case, it will put on as
much as it can.

Screen Package

box(win, vert, hor)
WINDOW *win;
char vert, hor;

PS1:18-9

Draws a box around the window using vert as the character for drawing the vertical
sides, and hor for drawing the horizontal lines. If scrolling is not allowed, and the win­
dow encompasses the lower right-hand corner of the terminal, the comers are left blank
to avoid a scroll.

clearO t

wclear(win)
WINDOW *win;

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will
cause a clear-screen sequence to be sent on the next refresh() call. This also moves the
current (y, x) co-ordinates to (0, 0).

clearok(scr, booll) t
WINDOW *scr;
boo/ boolf;

Sets the clear flag for the screen scr. If boolfis TRUE, this will force a clear-screen to be
printed on the next refresh(), or stop it from doing so if boolf is FALSE. This only
works on screens, and, unlike clear(), does not alter the contents of the screen. If scr is
curscr, the next refresh() call will cause a clear-screen, even if the window passed to re­
fresh() is not a screen.

clrtobotO t

wclrtobot(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does
not force a clear-screen sequence on the next refresh under any circumstances. This has
no associated "mv" command.

clrtoeoIO t

wclrtoeol(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This
has no associated "mv" command.

delchO

wdelch(win)

PS1:18-10 Screen Package

WINDOW *win;
Delete the character at the current (y, x) co-ordinates. Each character after it on the line
shifts to the left, and the last character becomes blank.

deletelnO

wdeleteln(win)
WINDOW *win;

Delete the current line. Every line below the current one will move up, and the bottom
line will become blank. The current (y, x) co-ordinates will remain unchanged.

eraseO t

werase(win)
WINDOW *win;

Erases the window to blanks without setting the clear flag. This is analagous to clear(),
except that it never causes a clear-screen sequence to be generated on a refresh(). This
has no associated "mv" command.

flushok(win, boolf) t
WINDOW *win;
boot boolf;

Normally, refresh() fflush()'s stdout when it is finished. j[ushok() allows you to control
this. if boolf is TRUE (i.e., non-zero) it will do the jflush(); if it is FALSE. it will not.

idlok(win, boo If)
WINDOW *win;
boot boolf;

Reserved for future use. This will eventually signal to refresh() that it is all right to use
the insert and delete line sequences when updating the window.

insch(c)
char c;

winsch(win, c)
WINDOW *win;
char c;

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right, and
the last character disappears. This returns ERR if it would cause the screen to scroll
illegally.

insertlnO

Screen Package

winsertln(win)
WINDOW *win;

PS1:18-11

Insert a line above the current one. Every line below the current line will be shifted
down, and the bottom line will disappear. The current line will become blank, and the
current (y, x) co-ordinates will remain unchanged.

move(y, x) t
int y, x;

wmove(win, y, x)
WINDOW *win;
int y, x;

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it
would cause the screen to scroll illegally.

overlay(winl, win2)
WINDOW *winl, *win2;

Overlay winl on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done non-destructively, i.e., blanks on winl
leave the contents of the space on win2 untouched.

overwrite(winl, win2)
WINDOW *winl, *win2;

Overwrite winl on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done destructively, i.e., blanks on winl become
blank on win2.

printw(fmt, argl, arg2, .••)
char *fmt;

wprintw(win, fmt, argl, arg2, •••)
WINDOW *win;
char *fmt;

Performs a print/() on the window starting at the current (y, x) co-ordinates. It uses
addstr() to add the string on the window. It is often advisable to use the field width op­
tions of print/() to avoid leaving things on the window from earlier calls. This returns
ERR if it would cause the screen to scroll illegally.

refresbO t

wrefresb(win)
WINDOW *win;

Synchronize the terminal screen with the desired window. If the window is not a screen,
only that part covered by it is updated. This returns ERR if it would cause the screen to

PS1:18-12 Screen Package

scroll illegally. In this case, it will update whatever it can without causing the scroll.

As a special case, if wrefresh() is called with the window curscr the screen is cleared and
repainted as it is currently. This is very useful for allowing the redrawing of the screen
when the user has garbage dumped on his terminal.

standout() t

wstandout(win)
WINDOW "'win;

standendO t

wstandend(win)
WINDOW *win;

Start and stop putting characters onto win in standout mode. standout() causes any
characters added to the window to be put in standout mode on the terminal (if it has
that capability). standend() stops this. The sequences SO and SE (or US and UE if they
are not defined) are used (see Appendix A).

5.2. Input Flinctions

cbreakO t

nocbreakO t

crmodeO t

nocrmodeO t
Set or unset the terminal to/from cbreak mode. The misnamed macros crmode() and no­
crmode() are retained for backwards compatibility with ealier versions of the library.

echoO t

noechoO t
Sets the terminal to echo or not echo characters.

getchO t

wgetch(win)
WINDOW *win;

Gets a character from the terminal and (if necessary) echos it on the window. This re­
turns ERR if it would cause the screen to scroll illegally. Otherwise, the character gotten
is returned. If noecho has been set, then the window is left unaltered. In order to retain
control of the terminal, it is necessary to have one of noecho, cbreak, or rawmode set. If
you do not set one, whatever routine you call to read characters will set cbreak for you,

Screen Package

and then reset to the original mode when finished.

getstr(str) t
char •str;

wgetstr(win, str)
WINDOW *win;
char •str;

PS1:18-13

Get a string through the window and put it in the location pointed to by str, which is as­
sumed to be large enough to handle it. It sets tty modes if necessary, and then calls
getch(} (or wgetch(win)) to get the characters needed to fill in the string until a newline or
EOF is encountered. The newline stripped off the string. This returns ERR if it would
cause the screen to scroll illegally.

putchar(c)
char c;

Put out a character using the putchar(} macro. This function is used to output every
character that curses generates. Thus, it can be redefined by the user who wants to do
non-standard things with the output. It is named with an initial "-~· because it usually
should be invisible to the programmer.

rawO t

norawO t

Set or unset the terminal to/from raw mode. On version 7 UNIX9 this also turns of new­
line mapping (see n/(}).

sclinw(fmt, argl, arg2, ...)
char •fmt;

wscanw(win, fmt, argl, arg2, ...)
WINDOW *win;
char •fmt;

Perform a scan/() through the window using fmt. It does this using consecutive getch(}'s
(or wgetch(win)'s). This returns ERR ifit would cause the screen to scroll illegally.

S.3. Miscellaneous Functions

baudrateO t
Returns the output baud rate of the terminal. This is a system dependent constant
(defined in <sys/tty.h> on BSD systems, which is included by <curses.h>).

9 UNIX is a trademark of Bell Laboratories.

PS1:18-14

delwin(win)
WINDOW *win;

Screen Package

Deletes the window from existence. All resources are freed for future use by calloc(3).
If a window has a subwinO allocated window inside of it, deleting the outer window the
subwindow is not affected, even though this does invalidate it. Therefore, subwindows
should be deleted before their outer windows are.

endWinO
Finish up window routines before exit. This restores the terminal to the state it was be­
fore initscr() (or gettmodeO and settermO) was called. It should always be called before
exiting. It does not exit. This is especially useful for resetting tty stats when trapping
rubouts via signa1(2).

erasecbar() t
Returns the erase character for the terminal, i.e., the character used by the user to erase
a single character from the input.

char•
getcap(str)
char •str;

Return a pointer to the termcap capability described by str (see termcap(5) for details).

getyx(Win, y, x) t
WINDOW *win;
int y, x;

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a macro,
not a function, you do not pass the address of y and x.

inchO t

Winch(win) t
WINDOW *win;

Returns the character at the current on the given window. This does not make any
changes to the window.

initscrO
Initialize the screen routines. This must be called before any of the screen routines are
used. It initializes the terminal-type data and such, and without it none of the routines
can operate. If standard input is not a tty, it sets the specifications to the terminal
whose name is pointed to by Def term (initialy "dumb"). If the boolean My term is
true, Def term is always used. If the system supports the TIOCGWINSZ ioctl(2) call, it
is used to get the number of lines and columns for the terminal, otherwise it is taken

Screen Package PSl:IS-15

from the termcap description.

killchar() t

Returns the line kill character for the terminal, i.e., the character used by the user to
erase an entire line from the input.

leaveok(win, boolf) t
WINDOW *win;
boo/ boo/f;

Sets the boolean flag for leaving the cursor after the last change. If boolf is TRUE, the
cursor will be left after the last update on the terminal, and the current (y, x) co­
ordinates for win will be changed accordingly. If it is•FALSE, it will be moved to the
current (y, x) co-ordinates. This flag (initialy FALSE) retains its value until changed by
the user.

longname(termbuf, name)
char *termbuf. *name;

fullname(termbuf, name)
char *termbuf. *name;

longname() fills in name with the long name of the terminal described by the termcap en­
try in termbuf It is generally of little use, but is nice for telling the user in a readable
format what terminal we think he has. This is available in the global variable ttytype.
termbuf is usually set via the termlib routine tgetent(). Jul/name() is the same as /ong­
name(), except that it gives the fullest name given in the entry, which can be quite ver­
bose.

mvwin(win, y, x)
WINDOW *win;
int y, x;

Move the home position of the window win from its current starting coordinates to
(y, x). If that would put part or all of the window off the edge of the terminal screen,
mvwin() returns ERR and does not change anything. For subwindows, mvwin() also re­
turns ERR if you attempt to move it off its main window. If you move a main window,
all subwindows are moved along with it.

WINDOW*
newwin(lines, cols, begin y, begin x)
int lines, cols, beyin _y, beyin _ x;

Create a new window with lines lines and cols columns starting at position
(begin y, begin x). If either lines or cols is 0 (zero), that dimension will be set to
(LINES - begin - y) or (COLS - begin x) respectively. Thus, to get a new window of di­
mensions LINES x COLS, use newwin(O, 0, 0, 0).

PS1:18-16 Screen Package

nl() t

nonl() t
Set or unset the terminal to/from nl mode, i.e., start/stop the system from mapping
<RETURN> to <LINE-FEED>. If the mapping is not done, refresh() can do more op­
timization, so it is recommended, but not required, to turn it off.

scrollok(win, boo If) t
WINDOW *win;
boot boolf;

Set the scroll flag for the given window. If boolf is FALSE, scrolling is not allowed.
This is its default setting.

touchline(win, y, startx, endx)
WINDOW *win;
int y, startx, endx;

This function performs a function similar to touchwin() on a single line. It marks the
first change for the given line to be startx, if it is before the current first change mark,
and the last change mark is set to be endx if it is currently less than endx.

touchoverlap(winl, win2)
WINDOW *winl, *win2;

Touch the window win2 in the area which overlaps with winl. If they do not overlap,
no 'changes are made.

touchwin(win)
WINDOW *win;

Make it appear that the every location on the window has been changed. This is usually
only needed for refreshes with overlapping windows.

WINDOW*
subwin(win, lines, cols, begin y, begin x)
WINDOW *win; - -
int lines, cols, begin_y, begin_x;

Create a new window with lines Jines and cols columns starting at pos1tton
(begin y, begin x) inside the window win. This means that any change made to either
window iii. the- area covered by the subwindow will be made on both windows.
begin y, begin x are specified relative to the overall screen, not the relative (0, 0) of
win. If either Tines or cols is 0 (zero), that dimension will be set to (LINES - begin y)
or (COLS- begin_x) respectively. -

unctrl(ch) t
char ch;

Screen Package PS1:18-17

This is actually a debug function for the library, but it is of general usefulness. It re­
turns a string which is a representation of ch. Control characters become their upper­
case equivalents preceded by a Other letters stay just as they are. To use unctrl(),
you may have to have #include <unctrl.h> in your file.

5.4. Details

gettmode()

Get the tty stats. This is normally called by initscr().

mvcur(lasty, lastx, newy, newx)
int /asty, /astx, newy, newx;

Moves the terminal's cursor from (lasty, /astx) to (newy, newx) in an approximation of
optimal fashion. This· routine uses the functions borrowed from ex version 2.6. It is
possible to use this optimization without the benefit of the screen routines. With the
screen routines, this should not be called by the user. move() and refresh() should be
used to move the cursor position, so that the routines know what's going on.

scroll(win)
WINDOW *win;

Scroll the window upward one line. This is normally not used by the user.

savetty() t

resetty() t
savetty() saves the current tty characteristic flags. resetty() restores them to what savetty()
stored. These functions are performed automatically by initscr() and endwin().

setterm(name)
char *name;

tstp()

Set the terminal characteristics to be those of the terminal named name, getting the ter­
minal size from the TIOCGWINSZ ioct/(2) if it exists, otherwise from the environment.
This is normally called by initscr().

If the new tty(4) driver is in use, this function will save the current tty state and then
put the process to sleep. When the process gets restarted, it restores the tty state and
then calls wrefresh(curscr) to redraw the screen. initscr() sets the signal SIGTSTP to trap
to this routine.

PS1:18-18 Screen Package Appendix A

I. Capabilities from termcap

1.1. Disclaimer

The description of tenninals is a difficult business, and we only attempt to summarize
the capabilities here: for a full description see termcap(5).

1.2. Overview

Capabilities from termcap are of three kinds: string valued options, numeric valued op­
tions, and boolean options. The string valued options are the most complicated, since they
may include padding information, which we describe now.

Intelligent tenninals often require padding on intelligent operations at high (and some­
times even low) speed. This is specified by a number before the string in the capability, and
has meaning for the capabilities which have a P at the front of their comment. This nonnally
is a number of milliseconds to pad the operation. In the current system which has no true
programmable delays, we do this by sending a sequence of pad characters (normally nulls, but
can be changed (specified by PC)). In some cases, the pad is better computed as some
number of milliseconds times the number of affected lines (to the bottom of the screen usual­
ly, except when terminals have insert modes which will shift several lines.) This is specified
as, i e.g. , 12*. before the capability, to say 12 milliseconds per affected whatever (currently
always line). Capabilities where this makes sense say P*.

1.3. Variables Set By settermO

Type Name
char• AL
boo! AM
char• BC
boo! BS
char• BT
boo! CA
char* CD
char* CE
char* CL
char• CM
char• DC
char• DL
char• DM
char* DO
char* ED
boo! EO
char"' EI
char* HO
boo! HZ
char* IC
boo! IN
char* IM
char* IP

variables set by setterm()

Pad Description
P* Add new blank Line

Automatic Margins
Back Cursor movement
BackSpace works

P Back Tab
Cursor Addressable

P* Clear to end of Display
P Clear to End of line
P* Clear screen
P Cursor Motion
P* Delete Character
P* Delete Line sequence

Delete Mode (enter)
DOwn line sequence
End Delete mode
can Erase Overstrikes with ' '
End Insert mode
HOme cursor
HaZeltine - braindamage

P Insert Character
Insert-Null blessing
enter Insert Mode (IC usually set, too)

P* Pad after char Inserted using IM+ IE

Screen Package Appendix A

Type Name
char* LL
char* MA
boo! MI
boo! NC
char* ND
boo! OS
char PC
char* SE
char* SF
char* so
char* SR
char* TA
char* TE
char* Tl
char* UC
char* UE
boo! UL
char* UP
char* us
char* VB
char* VE
char* vs
boo! XN

variables set by setterm()

Pad Description
quick to Last Line, column 0
ctrl character MAp for cmd mode
can Move in Insert mode
No Cr: \r sends \r\n then eats \n
Non-Destructive space
OverStrike works
Pad Character
Standout End (may leave space)

P Scroll Forwards
Stand Out begin (may leave space)

P Scroll in Reverse
P TAb (not ·I or with padding)

Terminal address enable Ending sequence
Terminal address enable Initialization
Underline a single Character
Underline Ending sequence
UnderLining works even though !OS
UPline
Underline Starting sequence
Visible Bell
Visual End sequence
Visual Start sequence
a Newline gets eaten after wrap

Names starting with X are reserved for severely nauseous glitches

PS1:18-19

For purposes of standout(), if SG() is not 0, SO() is set to NULL(), and if UGO is not 0(),
US() is set to NULL(). If, after this, SO() is NULL(), and US() is not, SO() is set to be US(),
and SE() is set to be UE().

1.4. Variables Set By gettmodeO

variables set by gettmode()

type name
boo! NONL
boo! GT
boo! UPPERCASE

description
Tenn can't hack linefeeds doing a CR
Gtty indicates Tabs
Terminal generates only uppercase letters

PS1:18-20 Screen Package Appendix B

1. ne WINDOW structure

The WINDOW structure is defined as follows:

I•
• Copyright (c) 1980 Regents of the University of California.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution .
•
•
•I

@(#)win_ st.c 6.1 (Berkeley) 4124186";

#define

struct win st {
- short

short
short
short
short
bool
bool
bool
char
short
short

WINDOWstruct win st

_cury, _curx;
maxy, maxx;

-begy, begx;
-flags; -
-ch off;
- clear;
-leave;

scroll;
.. y·
• fi~tch;
•)astch;

struct win_ st • _ nextp, •_orig;
};

#define
#define
#define
#define
#define
#define
#define
#define

END LINE
FULL WIN

-SCROLLWIN
FLUSH

-FULLLINE
IDLINE
STANDOUT

_NOCHANGE

001
002
004
010
020
040
0200
-1

_cury and _curx are the current (y, x) co-ordinates for the window. New characters ad­
ded to the screen are added at this point. maxy and maxx are the maximum values al­
lowed for (cury, curx). begy and begx -are the starting (y, x) co-ordinates on the termi­
nal for the window, i.e., the window's-home. _cury, _curx, _maxy, and _maxx are meas­
ured relative to (_begy, _begx), not the terminal's home.

_clear tells if a clear-screen sequence is to be generated on the next refresh() call. This is
orily meaningful for screens. The initial clear-screen for the first refresh() call is generated by
initially setting clear to be TRUE for curscr, which always generates a clear-screen if set, ir­
relevant of the dimensions of the window involved. leave is TRUE if the current (y, x) co­
ordinates and the cursor are to be left after the last character changed on the terminal, or not
moved if there is no change. _scroll is TRUE if scrolling is allowed.

10 All variables not normally accessed directly by the user are named with an initial "_" to avoid conflicts with
the user's variables.

Screen Package Appendix B

_y is a pointer to an array of lines which describe the terminal. Thus:
_y[i]

is a pointer to the ith line, and
_y[i]U]

is thejth character on the ith line. _flags can have one or more values or'd into it.

PS1:18-21

For windows that are not subwindows, orig is NULL . For subwindows, it points to
the main window to which the window is subsidiary. nextp is a pointer in a circularly
linked list of all the windows which are subwindows of the same main window, plus the main
window itself.

_jirstch and _ lastch are mal/oc()ed arrays which contain the index of the first and last
changed characters on the line. _ch_ off is the x offset for the window in the _jirstch and

lastch arrays for this window. For main windows, this is always 0; for subwindows it is the
difference between the starting point of the main window and that of the subindow, so that
change markers can be set relative to the main window. This makes these markers global in
scope.

All subwindows share the appropriate portions of _y, _firstch, _lastch, and _insdel with
their main window.

ENDLINE says that the end of the line for this window is also the end of a screen.
FULLWIN says that this window is a screen. SCROLLWIN indicates that the last char­

acter of this screen is at the lower right-hand corner of the terminal; i.e., if a character was
put there, the terminal would scroll. FULLLINE says that the width of a line is the same
as the width of the terminal. If _FLUSH is set, it says that fflush(stdout) should be called at
the end of each refresh() _STANDOUT says that all characters added to the screen are in
standout mode. _INSDEL is reserved for future use, and is set by idlok(). _jirstch is set to
_NOCHANGE for lines on which there has been no change since the last refresh().

PSl:lS-22 Screen Package Appendix C

l. Examples

Here we present a few examples of how to use the package. They attempt to be
representative, though not comprehensive.

2. Screen Updating

The following examples are intended to demonstrate the basic structure of a program us­
ing the screen updating sections of the package. Several of the programs require Calculational
sections which are irrelevant of to the example, and are therefore usually not included. It is
hoped that the data structure definitions give enough of an idea to allow understanding of
what the relevant portions do. The rest is left as an exercise to the reader, and will not be on
the final.

2.1. Twinkle

This is a moderately simple program which prints pretty patterns on the screen that
might even hold your interest for 30 seconds or more. It switches between patterns of aster­
isks, putting them on one by one in random order, and then taking them off in the same
fashion. It is more efficient to write this using only the motion optimization, as is demon­
strated below.

I•
• Copyright (c) 1980 Regents of the University of California.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution.
•I

#ifndef lint
static char sccsid[] = "@(#)twinldel.c
#endif not lint

#include
#include

I•

<curses.h>
<signal.h>

6.1 (Berkeley} 4124186";

• the idea for this program was a product of the imagination of
• Kurt Schoens. Not responsible for minds lost or stolen.
•I

NCOLS 80
NUNES 24

#define
#define
#define MAXPATTERNS 4

typedef struct {

} LOCS;

LOCS

Int

Int y, x;

Layout[NCOLS • NUNES];

Pattern,
Numstars;

char •getenv(};

int die(};

I• cu"ent board layout •I

I• current pattern number •I
I• number of stars in pattern •I

Screen Package Appendix C

main()
(

PS1:18-23

srand(getpid()); I• initialize random sequence •I

I•

initscr();
signal(SIGINT, die);
noecho();
non!();
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

for (;;) (
make board();
puton('•');
puton(' ');

I• make the board setup •I
I• put on '*s •I
I• cover up with ''s •I

* On program exit, move the cursor to the lower left corner by
* direct addressing, since current location is not guaranteed.
* We lie and say we used to be at the upper right corner to guarantee
* absolute addressing.
•I

die()
(

I•

signal(SIGINT, SIG IGN);
mvcur(O, COLS - !~LINES - I, O);
end win();
exit(O);

*Make the current board setup. It picks a random pattern and
* calls ison() to determine if the character is on that pattern
*or not.
•I

make board()
{

reg int
reg LOCS

y, x;
•Ip;

Pattern= rand()% MAXPATTERNS;
Ip= Layout;
for (y = O; y < NLINES; y++)

for (x = O; x < NCOLS; x++)
if (ison(y, x)) (

}
Numstars = Ip - Layout;

lp->y = y;
lp->x = x;
Ip++;

PS1:18-24 Screen Package Appendix C

I•
•Return TRUE if (y, x) is on the current pattern.
•I

ison(y, x)
reg int y, x; {

puton(ch)
reg char
{

2.2. Life

switch (Pattern) {
case 0: I• alternating lines •I

return !(y & 01);
case 1:

case 2:

case 3:

}

I• box •I
if(x >=LINES && y >= NCOLS)

return FALSE;
if (y < 3 11 y >= NUNES - 3)

return TRUE;
return (x < 3 11 x >= NCOLS - 3);

I• holy pattern! •I
return ((x + y) & 01);

I• bar across center •I
return (y >= 9 && y <= 15);

I• NOTREACHED •I

regLOCS
reg int
reg LOCS
LOCS

ch;

•Ip;
r;
•end;
temp;

end = &Layout[Numstars];
for (Ip = Layout; Ip < end; Ip++) {

r =rand()% Numstars;
temp= •Ip;
•Ip = Layout[r];
Layout[r] = temp;

for (Ip= Layout; Ip< end; Ip++) {
mvaddch(lp->y, lp->x, ch);
refresh();

This program fragment models the famous computer pattern game of life (Scientific
American, May, 1974). The calculational routines create a linked list of structures defining
where each piece is. Nothing here claims to be optimal, merely demonstrative. This code,
however, is a very good place to use the screen updating routines, as it allows them to worry

Screen Package Appendix C PS1:18-2S

about what the last position looked like, so you don't have to. It also demonstrates some of
the input routines.

I•
* Copyright (c) 1980 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
•I

#ifndef lint
static char sccsid[] = "@(#)life.c
#endif not lint

#include
#include

I•

<curses.h>
<signal.h>

6.1 (Berkeley) 4123/86";

* Run a life game. This is a demonstration program for
*the Screen Updating section of the -/curses cursor package.
•I

typedef struct 1st_ st {
int
struct !st_ st

} LIST;

y, x;
•next, •last;

I• linked list element •I
I• (y, x) position of piece •I
I• doubly linked •I

LIST •Head; I• head of linked list •I

int die();

main(ac, av)
int ac;
char •av[];
{

I•

evalargs(ac, av);

initscr();
signal(SIGINT, die);
cbreak();
noecho();
nonl();

gets tart();
for(;;) {

prboard();
update();

* This is the routine which is called when rubout is hit.
* It resets the tty stats to their original values. This
* is the normal way of leaving the program.
•I

I• evaluate arguments •I

I• initialize screen package •I
I• set to restore tty stats •I
I• set for char-by-char •I
I•
I• for optimization •I

I• get starting position •I

I• print out current board •I
I• update board position •I

PS1:18-26 Screen Package Appendix C

die()
{

I•

signal(SIGINT, SIG IGN);
mvcur(O, COLS - !~LINES - I, 0);
end win();
exit(O);

• Get the starting position from the user. They keys u, i, o, j, l,
• m, ,, and . are used for moving their relative directions from the

I• ignore rubouts •I
I• go to bottom of screen •I
I• set terminal to good state •

• k key. Thus, u move diagonally up to the left, , moves directly down,
• etc. x places a piece at the current position, • " takes it away.
• The input can also be from a file. The list is built after the
• board setup is ready.
•I

getstart()
{

reg char
reg int
auto char

c;
x, y;
buq!OO];

box(stdscr, r. '_);
move(!, I);

I• box in the screen •I
I• move to upper left corner •I

for(;;) {
refresh();
if((c = getch()) == 'q)

break;
switch (c) {

case 'u':
case I':
case 'o':
case r:
case 1':
case 'm':
case·;:
case·::

case 'f:

adjustyx(c);
break;

I• print current position •I

mvaddstr(O, 0, "File name: ");
getstr(buf);

case 'x':

case'':

readfile(buf);
break;

addch(X);
break;

addch(');
break;

Screen Package Appendix C

if (Head ! = NULL)
dellist(Head);

Head = malloc(sizeof (LIST));

I•

PS1:18-27

I• start new list •I

• loop through the screen looking for 'xs, and add a list

I•

• element for each one
•I

for (y = I; y <LINES - I; y++)
for (x = I; x <COLS - I; x++) {

move(y, x);
if (inch() = = 'x)

addlist(y, x);

• Print out the current board position from the linked list
•I

prboard() {

reg LIST

erase();
box(stdscr, r, '_);
I•

I• clear out last position •I
I• box in the screen •I

* go through the list adding each piece to the newly
* blank board
•I

for (hp = Head; hp; hp = hp->next)
mvaddch(hp->y, hp->x, X);

refresh();

3. Motion optimization

The following example shows how motion optimization is written on its own. Programs
which flit from one place to another without regard for what is already there usually do not
need the overhead of both space and time associated with screen updating. They should in·
stead use motion optimization.

3.1. Twinkle

The twinkle program is a good candidate for simple motion optimization. Here is how
it could be written (only the routines that have been changed are shown):

I•
*Copyright (c) 1980 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
•I

#ifndef lint

PS1:18-28

static char sccsid[] = "@(#)twinkle2.c
#endif not lint

extern int

main()
{

_putchar();

reg char

srand(getpid());

if (isatty(O)) {
gettmode();

}

if ((sp = getenv("TERM")) != NULL)
setterm(sp);

signal(SIGINT, die);

else {

Screen Package Appendix C

6.1 (Berkeley) 4/24/86";

I• initialize random sequence •I

printf("'Need a terminal on %d\n", tty ch);
exit(l); - -

puton{ch)

}
puts(TI);

=puts(VS);

noecho();
non!();
tputs(CL, NUNES, putchar);
for(;;) (-

make board();
puton('•);
puton(');

char ch;
(

reg LOCS
reg int
reg LOCS
LOCS
static int

•Ip;
r;
•end;
temp;
lasty, lastx;

end = &Layout[Numstars];
for (Ip = Layout; Ip < end; Ip++) {

r =rand()% Numstars;
temp= •Ip;
•Ip = Layout[r];
Layout[r] = temp;

for (Ip = Layout; Ip < end; Ip++)

I• make the board setup •I
I• put on '*s •I
I• cover up with ' 's •I

Screen Package Appendix C PS1:18-29

I• prevent scrolling •I
if(!AM 11 (lp->y < NLINES - I 11 lp->x < NCOLS - I)) {

mvcur(lasty, lastx, lp->y, lp->x);
putchar(ch);
lasty = lp->y;
if ((lastx = lp->x + 1) >= NCOLS)

if(AM) {

}
else

lastx = O;
lasty++;

lastx = NCOLS - 1;

NOTES

NOTES

NOTES

NOTES

URM

USO
USD:l
USD:2
USD:3
USD:4
USD:S
USD:6
USD:7
USD:8
USD:9
USD:IO
USD:ll
USD:12
USD:13
USD:14
USD:15
USD:16
USD:17
USD:18
USD:19
USD:20
USD:21
USD:22
USD:23
USD:24
USD:25
USD:26
USD:27
USD:28
USD:29
USD:30
USD:31
USD:32
USD:33
USD:34

PRM

PS!
PSI:!
PS1:2
PS1:3
PS1:4
PS1:5

UNIX Documents

User Reference Manual
man section 1 (commands)
man section 6 (games)
man section 7 (miscellaneous)
User Supplementary Documents
Unix for Beginners
Learn - Computer-Aided Instruction
Introduction to the UNIX Shell
Introduction to the C shell
DC - Interactive Desk Calculator
BC - Arbitrary Precision D.esk-Calculator
Mail Reference Manual
MH Message Handling System
How to Read the Network News
How to Use USENET Effectively
Notesfile Reference Manual
Tutorial Introduction to "ed"
Advanced Editing on Unix
Edit: A Tutorial
Introduction to Display Editing with Vi
Ex Reference Manual (Version 3.7)
Jove Manual for UNIX Users
SEO - A Non-interactive Text Editor
A WK - Pattern Scanning/Processing Language
Using the -ms Macros with Troff and Nroff
Revised Version of -ms
Writing Papers with nroff using -me
-me Reference Manual
NROFF/TROFF User's Manual
TROFF Tutorial
Typesetting Mathematics (eqn)
Typesetting Mathematics - User's Guide
Tb! - A Program to Format Tables
Refer - A Bibliography System
Some Applications of Inverted Indexes ...
BIB - Bibliography Formatting Program
Writing Tools - STYLE and DICTION
A Guide to the Dungeons of Doom
Star Trek

Programmer Reference Manual
man sections 2 (system calls)
man sections 3 (library routines)
man sections 4 (devices, special files)
man sections 5 (file formats)
Programmer Supplementary Docs, part 1
C Language - Reference Manual
Fortran 77
f77 1/0 Library
Berkeley Pascal User's Manual
Vax Assembler Reference Manual

PS1:6
PS1:7
PS1:8
PS1:9
PSl:IO
PSl:ll
PS1:12
PS1:13
PS1:14
PS1:15
PS1:16
PS1:17
PS1:18

PS2
PS2:1
PS2:2
PS2:3
PS2:4
PS2:5
PS2:6
PS2:7
PS2:8
PS2:9
PS2:10

SMM

SMM:l
SMM:2
SMM:3
SMM:4
SMM:S
SMM:6
SMM:7
SMM:S
SMM:9
SMM:lO
SMM:ll
SMM:12
SMM:13
SMM:14
SMM:15
SMM:16
SMM:17
SMM:18
SMM:19
SMM:20
SMM:21
SMM:22

Berkeley Software Architecture Manual (4.3 Edition)
Introductory 4.3BSD Interprocess Communication
Advanced 4.3BSD Interprocess Communication
Lint, AC Program Checker
ADB Tutorial
Debugging with dbx
Make
Revision Control System (RCS)
Source Code Control System (SCCS)
YACC: Yet Another Compiler-Compiler
LEX - A Lexical Analyzer Generator
M4 Macro Processor
curses library

Programmer Supplementary Documents, part 2
The Unix Time-Sharing System
UNIX 32/V - Summary
Unix Programming - Second Edition
Unix Implementation
The Unix 1/0 System
Programming Language EFL
Berkeley FP User's Manual
Ratfor - Preprocessor for Rational FORTRAN
The FRANZ LISP Manual
Ingres (Version 8) Reference Manual

System Manager's Manual
man section 8 (system administration)
Installing and Operating 4.3BSD
Building 4.3BSD Systems with Config
Using ADB to Debug the Kernel
Disc Quotas
Fsck - File System Check Program
Line Printer Spooler Manual
Sendmail Installation and Operation
Timed Installation and Operation
UUCP Implementation Description
USENET Version B Installation
Name Server Operations Guide
Bug Fixes and Changes in 4.3BSD
Changes to the Kernel in 4.3BSD
A Fast File System for UNIX
4.3BSD Networking Implementation Notes
Sendmail - An Internetwork Mail Router
On the Security of UNIX
Password Security - A Case History
A Tour Through the Portable C Compiler
Writing NROFF Terminal Descriptions
A Dial-Up Network of UNIX Systems
Berkeley Time Synchronization Protocol

