I

S.G. 1219 (M)6.1

SECTION 6 - ARITHMETIC SECTION

6.1. X-D' ADDER

6.1-1. OBJECTIVES

To present the detailed theory of operation involved in the X-D' adder.

6.1-2, INTRODUCTION

The X-D' adder is used in most addition, subtraction, multiplication, and division
operations as well as in many other operations where it is used simply as a trans-
mission path,

6.1-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-4b(3).

b. UNILVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.1-4., INFORMATION

a. General Description. The X-D' adder is 18 bit positions in length.
The outputs of the X and D registers are hard-wired to the adder. The logic is so
arranged that the adder actually performs the subtraction of X-D'. The adder's
output can be taken to AU, AL, P, S1, and Z1 registers.

The adder is of the end-around borrow type., When a borrow is needed from bheyond
bit position 217, it is taken end-around from bit position 200, In this sheet, a
borrow being subtracted from a bit position is described as being applied to that
bit position. Borrow and borrow request have the same meaning.

b. Adder Theory.

1. Half-Subtract Method of Subtraction. The X-D' adder employs the
half-subtract method of subtraction. Refer to table 6.1-1 for the truth table de-
scription of half-subtraction.

The half-subtract is formulated by subtracting each bit position without considering
borrows. Each bit position half-subtract is entirely independent of other bit posi-
tions.

After the half subtract for each bit position is produced, borrows are considered.
If no borrow is applied to a bit position, the adder output is the half-subtract
(HS). If a borrow is applied, the adder outputs the complement of the half-sub-
tract (HS'). Refer to figure 6.1-1 for an example of the half-subtract method of
subtraction with end-around borrow.

S.G.1219 (M6.1

TABLE 6.1-1, HALF-SUBTRACT TRUTH TABLE

ADDER INPUTS | HALF SUBTRACT
00 0
01 1
10 1
11 0
BIT POSITIONS 17 16 15 14 13 12 Il 1009 08 07 06 05 04 03 02 Ol 0O
o1 o | o1l o1l o O 1 1 o o0 1 ©
-0 I 1 1 00 O0OOO 1 I OoOO 1 0O 1 0 O
HALF SUBTRACT =0 O | O O | O O | 1 & 1 1 1 0o o 1t ©
OUTPUT TERM = HS' HS'HS HS HS HS HS HSHS'HS' HS HS HS'HS HS HS HS' HS'
BINARY QUTPUT = | | I 0 O | O 0 0 o0 | | O I O O ©O |

Figure 6.1-1. Example of Half-Subtract Method of Subtraction

The result produced is the same as can be obtained by the normal pencil and paper
method., A summation of the borrow conditions in this example is as follows:

a) A borrow is applied to bit position 05 from bit position 04,

b) A borrow is applied to- bit positions 08 and 09 from bit posi-
tion 07,

¢) A borrow is applied to bit positions 17 and 16 and end-around
to 01 and 00 from bit position 15.

Hereafter, the term stage is used in place of bit position.

2. Generation of a Borrow Request. There is only one bit configuration
which will generate a request for a borrow, referred to simply as a borrow. A bor-
row is generated if, in the same stage, X is 09 and D' is 1. The number of stages
affected by this borrow is dependent upon the configurations of the more significant

stages.

3. Borrow Enable. There is only one bit configuration which will satis-
fy or absorb a borrow. If a borrow is applied to it, the bit inputs can supply the
required 12 without propagating the borrow request to the next higher stage. A
borrow enable condition exists if, in the same stage, X is 1o and D' is 0o. In

S.6.1219 (M6.1

this condition, a borrow will affect only this stage and will not be transmitted to
nigher stages.

¢. Detailed Analysis.

1. Adder Logic Technique.

a) Formulation of HS and HS'. Each adder stage has logic circuitry
which produces the half subtract and its complement, Refer to figure 6.1-2 for an
example using stage 00.

In this example 10A00 can be considered to test Xpp and D'pp for the two possible
configurations resulting in HS = 19. With the use of 11A00, high levels for both
HS = 19 and HS' = 1p are available.

b) Application of Borrow., Either the HS or HS' result is outputted
from the adder depending upon the application of borrows to the particular stage.
If no borrow is applied, HS is the final result. If a borrow is applied, HS' is the
final result. Refer to figure 6.1-3 for an example,

If no borrow is applied to stage 00, 13A00 is a high level input and 12A00 is a low
level input. This condition allows the adder output to be determined by input
10A00. 14A00 will output a low level if HSpp = 1lo.

In this example, the output is taken to AL, AL is initially cleared to O's. Then
the Adder —>AL signal occurs. ALgp is set to 1o only if 14A00 outputs a low level
which represents the adder output of 19.

If a borrow is applied to stage 00, 12400 is a high level input and 13A00 is a low
level input. This condition allows the adder output to be determined by input
11A00. 14A00 will output a low level if HS'gp = 1o.

2. Adder Layout. The X-D' adder is divided into three sections com-
prised of stages 05-00, 11-06, and 17-12., Each section has circuitry to sense bor-
rows applied from other sections. Refer to figure 6.1-4 for a block diagram illus-
trating the section interconnection, Inter-section borrow requests are discussed
later in this sheet,

Each stage of the adder senses borrows generated by the less significant stages in
the section and the enable conditions of these bits in order to detect borrows which
might affect its own output.

So as to speed the borrow propagation time, each 6~stage section is further separa-
ted into two groups.

3. Individual Stage.

a) Stage 00, Refer to figures 6.,1-2, 6.1-3, and logic diagrams,
figure 9-94. Review the operation of this stage as described previously. A borrow
applied to this stage is always an end-around borrow,

b) Stage 01. Refer to figure 6.1-5 and logic diagrams, figure
9-94, The only difference from stage 00 is the borrow sensing logic. 12A01 out-
puts a high level if a borrow is applied. There are only two possible conditions
which can apply a borrow to this stage. Refer to table 6.1-2 for these conditions,

6.1-3

S.6.1219 (M6.1

H=HSgp = I H=>HSy, = Ip
H=:>HSOO:|2
00D00, O1X00
L2D00=12 L=>Xpo= l2
00X00 01D00
L::’XOO:OZ —' -
L DOO 02

Figure 6.1-2, X-D' Adder HS and HS' Logic, Stage 00

M

OXA0O0

H => CLEAR AL

L => ADDER —> AL

ALggo FLIP-FLOP

ITAOO
M :kasloo = |2

L=>(X—D')OO = s

12A00

10A00
H=> HSOO = l‘2

13A00

H =>NO-END AROUND BORROW

H => END AROUND BORROW

Figure:6f 1-3.. X-D' Adder Qutput Logic, Stage 00 ;-

S.6.1219 (M6.1
NO ENABLES NO ENABLES NO ENABLES
SECTION SECTION SECTION
17 —-12 I —06 05 -00
BRW REQ BRW REQ BRW REQ
BRW BRW BRW
L
*—|——
o &
L 4 -9
& g
s .
Figure 6.1-4. X-D' Adder Inter-Section Block Diagram

6.1-6

S.G.1219 (M6, |

= (x-0D") = |

‘- 2
14A0|
H=> NO BRW —> 0|
[
H = BRW —> 0|
H=> Hsy =1, H=> Hsq = Iy
BOTH L=>BRW —>0]|
: 0 12A0l FROM EAB
BOTH L=> (—l) = BRW
REQ FROM 00\(\(‘\
l1AOI /
13A00
L=> EAB
l0AOO
0 l
L= HSp= 0, =(—9 OR —_l_)
10AOI
[1AOO
Z 01X0l =1, = (—? OR [o)
~ L= HSyy=1l, =\-1 OR -0
L= XOI —12
oipol
L= DIO[T-OZ
00D0OO
00 X0l
. L= Dyp= Iy
0000
L=D0g, =1,
Figure 6.1-5. X-D' Adder, Stage Ol

S.G.1219 (M6, 1

TABLE 6.1-2, X-D' ADDER, BORROWS APPLIED TO STAGE O1

CONDITIONS INPUT LEVELS TO 12A01
Brw Req from 00 00D0O0 & 11A00 = L's
No enable & no Brw 10A00 & 13A00 = L's
Req in 00, EAB

c) Stage 02. Refer to figure 6.1-6 and logic diagrams, figure
9-94, 12A02 outputs a high level if a borrow is applied. There are only three
possible conditions which can apply a borrow to this stage. Refer to table 6.1-3
for these conditions,

TABLE 6,1-3. X-D' ADDER, BORROWS APPLIED TO STAGE 02

CONDITIONS INPUT LEVELS TO 12A02
Brw Reg from 01 00D01 & 11401 = L's
No Enable & no 11A00, 00DOO, & 10A01 = L's
Brw Req in 01,
Brw Req from 00
No Enable & no 10A01, 10A00, & 13A00 = L's
Brw Req in 01 &
00, EAB

d) Stage 03. Each 6-stage section is separated into two groups, as
mentioned previously. The three stages discussed above comprise one group. Stage
03 is the start of the second three-stage group. So as to speed the borrow request
propagation, the stage 03 borrow request detection logic is directly fed by the X
and D register flip-flops for stages 02 through 00, Refer to figure 6.1-7 and logic
diagrams, figure 9-91,for a portion of the stage 03 logic.

This logic simply provides stage 03 with the borrow request and enable status of
stages 02 through 00. 20A00 determines if any of these lower three stages has an
enable condition which would satisfy and stop a borrow request. An enable condition
exists if X is 1o and D' is O2 in the same stage. If all input OR gates to 20400
are satisfied, each of the stages contains no enable, 21A00 passes this information
to the remainder of the stage 03 logic.

30A00 is used to detect borrows applied to stage 03 from within stages 02 through
00. Refer to table 6.1-4 for these borrow conditions.

5.6.1219 (M6, 1

L=>(X-D"lgp = Ip

14702

H => NO BRW —> 02

1tao2

H=> HSp, =1y

H = BRW —>02

ALL L= BRW—> 02 FROM 0O

|0AQ2
H = HSpp =1l

ALL L= BRW —> 02 FROM EAB
BOTH L= BRW —> 02 FROM Ol —»

loAol (9)
L= HS; =0,=\-0 OR -]

00000
. L= Dgp =!p

0
BOTH L:(—l_)= BRW REQ FROM 00
{1AOO

L= HS55 =1y

11AOI 3
L= HSOI =]

2 0
&BOTH L=><-I_) = BRW REQ FROM Ol

OOD?I

J

Figure 6.1-6. X-D' Adder, Stage 02
6.1-9

S.6.121

9 (M6.1

H=> BRW —> 03 FROM 02 —-00

H = NO ENABLES I[N 02-00

30A00 21A00
L => NO ENABLES iN 02-00
00D00
L=> Dpp=!
0072 | BoTH L=> BRW REQ
00X00 FROM 00
L= Xopo=02
10A02
0 l 20400
L= HSq, =02=(—o OR —_1)
00DOI m (\
t _ P
L= Dy, =1y h
BOTH L=> BRW REQ
00XO0l FROM Ol OIDQO
L= X5, =0, H= Dy =15
EITHER H =
0IX00 NO ENABLE
H=> Xon=0 IN 00
00=02
oopo2)
L=>Dg, =1, 01DOI
H= Dbl =1,

>BOTH L = BRW REQ FROM 02 EITHER H=> NO

00X02 01X01 ENABLE IN Ol
0ID02
H= Dg, =1,
EITHER H=> NO
oIX02 ENABLE IN 02
H=> Xq;=0,

6.1-10

Figure 6,1-7.

X-D' Adder, Stage 03 Preliminary

Borrow Request Detection Logic

S.6.1219 (M)6.1

TABLE 6.1-4. X-D' ADDER, BORROWS APPLIED TO STAGE 03 FROM 02-00

CONDITIONS INPUT LEVELS TO 30400
Brw Req from 02 00X02 & 00D02 = L's
No enable & no 00X01, 00DO1, & 10A02 = L's
Brw Req in 02,
Brw Req from 01
No Enables in 02-00, 00X00, 00DO0O, & 20A00 = L's
Brw Req in 00

Refer to figure 6.1-8 and logic diagrams, figure 9-94,

12A03 receives the outputs of 12A00 and 30A00 discussed above. If a borrow is ap-
plied to stage 03, 12A03 outputs a low level. There are two conditions which can
create this borrow. Input 30A00 satisfies 12A03 if a borrow is generated within
stages 02 through OO0 and is propagated from this group.

Input 12A00 applies a borrow to this stage if there is an end-around borrow which
cannot be satisfied within stages 02 through 00. 21A00 inputs a high level to en-
able the borrow propagation to stage 03,

e) Stages 17-04. The logic for these stages is similar to that
described above. Refer to logic diagrams, figures 9-91 through 9-96 for the logic
concerning these stages. Inter-section borrows are discussed later in this sheet.

4. Generation of Inter-Section Borrow and Enable Signals. Section 05-
00 is used for an example. Refer to figure 6.1-9 and logic diagrams, figure 9-91.

The logical functions of 30A03, 20A03, and 21A03 are the same as for 30A00, 20A00,
and 21A00 described previously. Only the stage numbers are different. Therefore,
22A00 outputs a low level if there are no enables in this section (05-00). This
signal indicates to other sections that if a borrow should be applied to section 05-
00, it would not be satisfied and would be propagated to the next higher section.

31A00 outputs a low level to indicate that a borrow request is generated in section
05-00 and is not satisfied within this section. Therefore, this low level would
apply a borrow to the next higher section. Refer to table 6.1-5 for the borrow
generating conditions,

TABLE 6.1-5. X-D' ADDER, BORROW REQUESTS FROM SECTION 05-00

CONDITIONS INPUT LEVELS TO 31A00
Brw Req from 05-03 30A03 = H

No Enables in 05-03, 30400 & 21A03 = H's
Brw Req from 02-00

6.1-11

S.G.1219 (M6,1

6.1-12

L3> (X—D)O3= 12

14A03

"‘1 H=> BRW —> 03

|0A03
H=> HSpz =1,

H=> NO BRW —>03

i1AO3
H=> HS ., =

BOTH H => BRW —> 03
FROM EAB< T

[2A00

30A00
H= BRW—> 03 FROM 02-00

2l1A00
H => NO ENABLES [N 02-00

Figure 6.1-8. X-D' Adder, Stage 03 Final Portion

S.G.1219 (M6.1

L= BRW REQ —> OTHER L= NO ENABLES IN 05-00
SECTIONS FROM 05 —00 »

31A00 22A00

BOTH H=> BRW—>OTHER

- ‘7SECTIONS FROM 02-00
21A00

—9

‘f / H= NO ENABLES IN 02—00

21A03
H=> NO ENABLES IN 05-03

30A00
H == BRW REQ FROM 02-00

30A03
H=> BRW REQ FROM 05—03

Figure 6.1-9. X-D' Adder, Inter-Section Borrow
Request and Enable Generation

6.1-13

S.6.1219 (M)6.1

The other two sections generate these same borrow request and enable signals in the
same manner, Section 17-12 considers two additional factors in developing these
outputs. This section is affected by the status of the Inhibit EAB and Insert EAB
flip-flops. If the Insert EAB flip-flop is set, a simulated borrow request is gen-
erated by section 17-12, If the Inhibit EAB flip-flop is set, a borrow request
(other than the simulated request) from section 17-12 is inhibited. Also, this
section is forced to indicate that it contains an enable condition. This simulated
enable causes a borrow which is applied to this section from either section 11-06 or
section 05-00 to be satisfied. Thus, an end-around borrow is inhibited.

Refer to logic diagrams, figure 9-93 for the effect of the Inhibit EAB and Insert
EAB flip-flops.

22A12 outputs a low level if there are no enables in section 17-12 and the Inhibit
EAB flip-flop is clear. 31A12 outputs a low level if there is a borrow request
from section 17-12 and the Inhibit EAB flip-flop is clear or if the Insert EAB
flip-flop is set.

Refer to logic diagrams, figufe 9-92 for the borrow request and enable signals gen-
eration logic for section 11-06,

5. Detection of Inter-Section Borrow Requests. FEach section evaluates
the status of the other sections to determine whether there is a borrow applied to
it. A borrow is applied to a section only if there are no enable conditions exist-
ing between that section and the section which generated the borrow request. Refer
to figure 6.1-4 for a review of the section interconnection,

Refer to figure 6.1-10 and logic diagrams, figures 9-94 through 9-96 for the inter-
section borrow request detection logic.

Each gate shown in figure 6.1-10 senses three conditions which can apply a borrow
to its section., Refer to table 6.1-6, 6.1-7 and 6.1-8 for these conditions.

6.1-5. SUMMARY

The X-D' adder is an 18-bit, end-around borrow adder. It is separated into three
sections so as to speed the borrow request signal propagation. The X and D regis-
ters are hard-wired inputs to the adder logic. The adder's result is not used until
the desired values have been entered into X and D and enough time has expired to al-
low propagation of any borrows.

6.1-14

S.G.1219 (M6.1

H=> BRW —> SECTION 05-00 (EAB)

22A06 L=> NO ENABLES I[N Il—06
3lA00 L => BRW REQ FROM 05-00
22A12 L=> (NO ENABLES IN |7—12) (INHIB EAB FF CLEAR)

3lA06 L=> BRW REQ FROM 1I-06

31A12 L=> (BRW REQ FROM |7-12)-(INHIB EAB FF CLEAR)+(INSERT EAB FF SET)

H=> BRW —> SECTION [I—06

22A12 L=> (NO ENABLES lN'l7—l2)'(INHlB EAB FF CLEAR)
31A06 L= BRW REQ FROM II—06
22A00 L=> NO ENABLES IN 05-00

3lAl2 L=> (BRW REQ FROM I7-12) (INHIB EAB FF CLEAR)+(INSERT EAB FF SET)

3|A00 L=> BRW REQ FROM 05-00

H=> BRW —> SECTION I[7—I2

I2A12

22A00 L= NO ENABLES IN 05-00
3lAl2 L=> (BRW REQ FROM 17—12)-(INHIB EAB FF CLEAR)+(NSERT EAB FF SET)
22A06 L= NO ENABLES IN [I—-06

3lA00 L= BRW REQ FROM 05-00

31A06 L= BRW REQ FROM II—06

Figure 6.1-10. X-D' Adder, Inter-Section Borrow Request Detection
6.1-15

S.G.1219 (M6.1

TABLE 6.1-6. X-D' ADDER, INTER-SECTION BORROWS APPLIED
TO SECTION 05-00

SECTION 17-12 SECTION 11-06 SECTION 05-00 INPUT LEVELS TO 12A00

Brw Req 31A12 = L

No Enables Brw Req ' 31406 & 22A12 = L's

No Enables No Enables Brw Req 22A12, 31A00, & 20A06=1L's

TABLE 6.1-7. X-D' ADDER, INTER-SECTION BORROWS APPLIED
TO SECTION 11-06

SECTION 17-12 SECTION 11-06 SECTION 05-00 INPUT LEVELS TO 12A06
Brw Req 31A00 = L
Brw Req _ . No Enables 31A12 & 22A00 = L's
No Enables Brw Req No Enables 22A00, 31A06, & 22A12=L's

TABLE 6.1-8. X-D' ADDER, INTER-SECTION BORROWS APPLIED
TO SECTION 17-12

SECTION 17-12 SECTION 11-06 SECTION 05-00 INPUT LEVELS TO 12A12
Brw Req 31A06 = L
No Enables Brw Req 31A00 & 22A06 = L's
Brw Req No Enables No Enables 22406, 31A12, & 22A00=1L's

6.1-16

6.1-6.

S.6.1219 (M)6.1

NAME :

STUDY QUESTIONS

a.

Given: AL{ = 612160
SR = 010109
instruction = 141000
content of address 21000 = 161307

In

Refer to logic diagrams, figures 9-91 through 9-96. Give the output
logic levels for the following gates which exist during the time that
the X-D' adder is used in the execution of the above instruction to
add AL + Y.

31A00 = 31A12 =
22A00 = 22A12 =
31A06 = 12A00 =
22A06 = 12A06 =

12A12 =

Given conditions same as above.

At the completion of the instruction, the final content of AL is
773463g. Refer to logic diagrams, figure 9-94. Assume each of the
following malfunctions to occur individually. Determine whether each
malfunction would cause the erroneous AL result. Indicate your an-
swers by writing "yes" or '"no" beside each malfunction condition.

Grounded Output Constant Low Level Output
12A00 12A00
10A02 10A02
11A02 11A02
12A02 12A02
13A02 13402
14A02 14A02

6.1-17

$.6.1219 (M)6.1

Refer to logic diagrams, figures 9-94 and 9-96. -

Given: 12A00
12A12
14A15

bit positions

X

D

There are no malfunctions.

output is a low level.
output is a high level.
output is a low level.

21(216 215 214
- ? 1 0 ?
= 2 0 0 ?

Use the above information to determine the

binary contents of X and D bit positions 217 and 214, Indicate your

results below.

X =

Notice that D, rather than D', is referenced.

17
X =

14

D7 =

D =

14

N
9
13 21_
0 1
1 0
AN
e

N

S.G.1219 (M)6.2

SECTION 6 - ARITHMETIC SECTION

6.2, INSTRUCTION EXECUTION OF SKPODD, SKPEVN AND PARITY EVALUATOR

6.2-1, OBJECTIVES

To present the detailed theory of operation involved in the execution of the parity
instructions and the parity evaluator.

6.2-2. INTRODUCTION

Parity refers to the number of 1lo's, thus, every word has either odd or even parity.
The parity evaluation function of the 1219 is useful in determining whether a data
word has lost or gained a lo.

6.2-3. REFERENCES

UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.2-4., INFORMATION

a. SKPODD, SKPEVN Instructions.

1., General Description.

a) Instruction Interpretation.

1) SKPODD, f = 50:54. This instruction formulates the logical
product (AND function) of AU - AL. The parity of their result is evaluated and
causes a program skip of the next sequential instruction if the parity is odd. The
contents of AU and AL are not disturbed.

2) SKPEVN, f = 50:55. Except for the effect of the parity
evaluation, this instruction is the same as f = 50:54. A program skip is per-
formed if the parity is even,

b) Execution Sequence (I). All operations are performed within
the I-sequence. Only the one memory reference to obtain the instruction is neces-
sary.

2. Detailed Analysis.

a) Data Flow Block Diagram. Refer to figure 6.2-1 for a block dia-
gram description of the execution of f = 50:54, 50:55,

Most of the I-sequence operations are as previously described. If necessary, refer
to study guide sheet number 5.4 for a detailed analysis.

§.G.1219 (M6.2

T2.2 —l

ADV P SEQ

WRITE
st=p e
L R I T |
MAIN g sl : P .
e e MEMORY |
READ
)T
v T2.1-T3.1)z
C Z SEL) / °
"y o~ N
Z SElj-e | EAB INHIBITED A’SEEDR
| TL4-T2.3
F | f
f= 50:54, 50155 | X
| X 1S CLEARED TO 0'S
L AT TI.3
AU
ThI=T2.1
A
(ARITH SEL)4— AL
ARITH SEL = AU AL
TO PARITY EVALUATOR
TI.3 CLEAR PARITY FF
TI.4 SET PARITY FF IF ARITH SEL
HAS ODD PARITY T3.4
A
l———-——-————————-| D D=P;+!
| T4.] CLEAR P
\ 4
T4.2 | X-D' EAB INHIBITED
| e =P, +2 P ADDER | T3.4-T43
|]
' |[F PARITY CONDITION SATISFIED™®
l -] X X CLEARED TO 0'S AT T3.3

NOTE: * SKIP IF:
(f

Figure

6.2-2

{(f =50:54)"
=50:55)"

6.2-1,

(PARITY FF SET)
(PARITY FF CLEAR)

I-Sequence Data Flow for f = 50:54,

50:55

l
I
|
|
I
I
|
|
|

e e

/

S.6.1219 (M)6.2

During the set time of the T14 flip-flop (T1.1-T2.1) both AU and AL are applied to
arithmetic-select which formulates their logical product. The Parity flip-flop is
used to record the parity of this result. This flip-flop affects only the £ =50:54,
50:55 skip evaluation.

The X-D' adder is used to increment P by +1 a second time just as is done by the
advance-P subsequence, If P receives the result of this second incrementation, the
next sequential instruction will be skipped.

As discussed in a later sheet, the instruction could be obtained from bootstrap or
control memory.

b) Essential Commands. Refer to table 6.2-1 for a sequential list
of essential I-sequence events, Develop these commands by referring to the proper
enable pages in the logic diagrams, The parity evaluator is presented later in
this sheet.

b. Parity Evaluator.

1. General Description. The parity evaluator has hard-wired inputs
from arithmetic-select, The parity logic is comprised of several stages. The ini-
tial stages separate the arithmetic-select inputs into groups of two bits each. The
parity indications from these groups are then combined into sections of three groups
each. Total parity is then evaluated from the combination of the three sections,
Refer to figure 6.2-2 for an example,

ARITH SEL (AU.AL) = Ol 10 00 OO ! {1l Ol It 11
(BINARY) VVVVVVVVYV
0 0O E E E E O E E = GROUP PARITY
. — \ —
E E 0 = SECTION PARITY
N —)

ODD TOTAL PARITY

NOTES: "E" MEANS EVEN.
"0" MEANS 0DD.

Figure 6.2-2, Parity Evaluation Example

2. Detailed Analysis.

a) Group Parity. Each group is comprised of two bits. Bits 1 and
0 are used for an example. Refer to figure 6.2-3 and logic diagrams, figure 9-101,

15X00 tests bits 1 and O of arithmetic-select for the two possible even parity con-
ditions., Refer to table 6.2-2 for the four possible configurations of these bits,

6.2-3

S.G.1219 (M6.2

TABLE 6.2-1. I SEQUENCE ESSENTIAL COMMANDS FOR f = 50:54, 50:55
TIME NOTATION -COMMANDS

T4.4 Clear S1

T1.1 P —=>51, Init Memory, *set Incr P ff, AU-—>Arith Sel,
AL —> Arith Sel

T1.3 *Clear D, *clear X, clear Zl, clear F, *set OXL1ll ff,
clear Parity ff '

T1.4 *Pp —>Dp, *Py —>Dy, *set Inhib EAB ff, set Parity ff
if Arith Sel = odd parity

T2.1 *Clear P, Z1—>Z Sel, *clear Incr P ff, drop AU Arith
Sel, drop AL—=Arith Sel

T2.2 *Adder —>P

T2.3 *Clear OXL1l ff, *clear Inhib EAB ff

12.4 Z Selyjj_¢ —>F, set OXFO6 ff

T3.1 Drop Z1 —=>Z Sel

T3.3 Clear D:, clear X

13.4 Py —>D;, Py —>Dy, set Inhib EAB ff

T4.1 Clear P if skip satisfied®*

T4.2 Adder —>P if skip satisfied*#*

T4.3 Clear Inhib EAB ff

* These events are concerned with or are controlled by the advance-P subsequence,

*% Skip condition is satisfied if: (f

6.2-4

50:54) - (Parity ff set)
50:55) -+ (Parity ff clear)

I

(f

AN

5.G.1219 (M)6.2

TABLE 6.2-2. PARITY EVALUATOR, GROUP 1 & O CONDITIONS
1 GROUP 15X00
2 PARITY OUTPUT
0 Even H
0 0dd L
1 0dd L
1 Even H

The logic for the other groups is the same except for the bits being sensed,

bits). Section 5-0 is used for an example,

grams, figure

b) Section Parity,

9-101.

Each section is comprised of three groups (six

Refer to figure 6.2-3 and logic dia-

18X00, 17X00, and 17X04 test the parity conditions of the three groups (5,4; 3,2;

and 1,0). Refer to table 6.2-3 for the eight possible parity configurations.

TABLE 6.2-3, PARITY EVALUATOR, SECTION 5-0 CONDITIONS

GROUPS SECTION OUTPUT LEVELS
5,4 3,2 1,0 PARTITY 17X04 17X00 18X00
0dd 0dd 0dd 0dd L L H
0dd 0dd Even Even L H L
0dd Even 0dd Even L H L
0dd Even Even 0dd L L H
Even | 0dd 0dd Even L H L
Even | 0dd Even 0dd L L H
Even Even 0dd 0dd L L H
Even | Even Even Even H L L

The logic for the other sections is the same except for the bits being sensed.

three sections,

¢) Total Parity.

Total parity is the combined evaluation of the

Refer to figure 6.2-4 and logic diagrams, figure 9-101.

S.G. 1219 (M6.2

BOTH L = 0ODD 5-0 L=> EVEN 5-0
r—&-\ —_—
/
17X 00
L=> EVEN [,0
o
16X00 Y
L=> 0ODD 1,0
H=> EVEN |,0
I5X04
L=> 0ODD 5,4
I5X00
f6X02
L=> EVEN 3,2 (’\
15X02
*
L=> 0DD 3,2 13X00 ~
L=> ASgo=1,
13x01*
16X02 L=> Asy =1,
L=2» EVEN 5,4
14X00*
L=> AS,,=0,
14x01¥®
L=> ASy =0,
NOTES: *INPUTS LABELED "“AS" ARE FROM ARITHMETIC SELECT.

"EVEN 1,0" MEANS EVEN PARITY IN 2! aND 29 OF ARITHMETIC SELECT. —

Figure 6.2-3. Parity Evaluator, Section 5-0
6.2-6

5.6.1219 (M)6.2

The gates shown in figure 6.2-4 test the parity conditions of the three groups for

the four possible odd parity configurations.

possible parity configurations.

Refer to table 6.2-4 for the eight

TABLE 6.2-4, PARITY EVALUATOR, TOTAL PARITY CONDITIONS
SECTIONS TOTAL OUTPUT LEVELS

17-12 | 11-6 5-0 PARITY 19X00 19X04 16X08 19X12 20X00
0dd 0dd 0dd " 0dd H L L L L
0dd 0dd Even Even L L L L H
0dd Even 0dd Even L L L L H
0dd Even Even 0dd L L L H L
Even 0dd 0dd Even L L L L H
Even 0dd Even 0dd L L H L L
Even Even 0dd 0dd L H L L L
Even Even Even Even L L L L H
6.2-5. SUMMARY

The output of 20X00 is the total parity indication of arithmetic-select (AU . AL).
The Parity flip-flop is cleared at T1.3 time of the I-sequence and is set at Tl.4
The state ofthis flip-flop only affects the execution

time if total parity is odd.

of the £ = 50:54, 50:55 instructions to condition the program skip.

S.G. 1219 (M)6.2

L => ARITH SEL = ODD PARITY

[
fsxi2 {9X08 19X04 19X00
-9) J
[4
f
| &
LITXOG |7X|O} 18X12 17X00 17X04
Y L= EVEN [7-12
BOTH L=> ODD iI—6 BOTH L = 0ODD 5-0
18X06
L=> EVEN |I—6
[8X00
L=> EVEN 5-0
17X16
. BOTH L= 0DD I7—12
— [7XI]2

Figure 6.2-4. Parity Evaluator, Final Stage
6.2-6

7N

6.2-6. STUDY QUESTIONS

a,

Given: AU = 461367
AL = 763752
instruction = 505400

Refer to logic diagrams, figure 9-101.

NAME:

S.6.1219 (M6.2

Give the output logic levels

for the following gates which exist at Tl.4 time during the I-sequence

of the above instruction.

15X00

[y

15X02

15X04

Il

17X00

I

17X04

I

18X00

1

17X06

17X10

i

Given conditions same as above.

When the instruction is executed, a program skip is performed,

to logic diagrams, figure 9-101.

occurring individually, would cause the erroneous program skip.

18X06 =
17X12 =
17X16 =
18X12 =
19X00 =
19X04 =
19X08 =
19X12 =

20X00 =

Refer

Determine whethexr each malfunction,

Indi-

cate your answers by writing "yes" or "no" beside each malfunction

condition,

Grounded Output

15X00

16X02

16X04

16X00

17X04

17X10

18X12

19X00

Constant Low Level Output

15X00
16X02
16X04
16X00
17X04
17X10
18X12

19X00

it

JEsom—

i,

5.G.1219 (M6.3

SECTION 6 - ARITHMETIC SECTION
6.3. INSTRUCTION EXECUTION OF RSHAU, RSHAL, RSHA, LSHAU, LSHAL, LSHA

6.3-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of instruc-
tions with f = 50:41-43, 50:45-47.

6.3-2, INTRODUCTION

These instructions perform either right shifts or left shifts of the content of AU,
AL, or AU and AL together. ’

6.3-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4c(2) and 4-7,
table 4-11,

b, UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.3-4. INFORMATION

a. General Description,

1. Instruction Interpretation.

a) RSHAU, f = 50:41, This instruction right shifts with sign ex-
tension, the content of AU, the number of places specified by the six least signi-
ficant bits (k) of the instruction word. The AU bit positions vacated are filled
with the sign bit of the original value., Those bits shifted beyond AU17 are lost,

b) RSHAL,f = 50:42. Except for the value shifted, this instruc-
tion is the same as f = 50:41. The content of AL is right shifted with sign ex-
tension,

c) RSHA, f = 50:43. Except for the value shifted, this instruc-
tion 1s the same as f = 50:41. The combined content of AU and AL is right shifted
with sign extension. AU is the more significant value. ' Those bits shifted beyond
AU;7 enter the left end of AL. The AU bits positions vacated are filled with the
sign bit of the original AU value. Those bits shifted beyond ALOO are lost.

d) LSHAU, f = 50:45. This instruction circularly left shifts the
content of AU the number of places specified by the six least significant bits (k)
of the instruction word. Those bits shifted beyond AU35 enter the right end of AU,

e) LSHAL, f = 50:46. Except for the value shifted, this instruc-
tion is the same as f = 50:45, The content of AL is circularly left shifted,
These bits shifted beyond ALl7 enter the right end of AL.

6.3-1

$.6.1219 (M6.3

f) LSHA, f = 50:47. Except for the value shifted, this instruc-
tion is the same as f = 50:45. The combined content of AU and AL is circularly
left shifted. Those bits shifted beyond ALj7 enter the right end of AU. Those
bits shifted beyond AU35 enter the right end of AL,

2. Execution Sequences.

a) I-Sequence. During the I-sequence which obtains the instruc-
tion from memory, the shift count (k) is placed in KO.

b) Shift Sequence. The shift sequence uses a special timing which
runs parallel to main timing and causes the shifting according to the shift count in
KO.

b. Detailed Analysis.

1. I-Sequence. Most of the I-sequence operations are as previously de-
scribed. If necessary, refer to study guide sheet number 5.4 for a detailed de-
scription.

KO receives the six least significant bits of the instruction word from Z-select.
This value is the shift count. The function code in F determines the type of shift.
The actual shifting is performed by the shift sequence which is initiated during the
I-sequence. A detailed analysis of the shift sequence operations is presented later
in this sheet,

2. Effect of Hold Flip-Flops. As isdeveloped later in this sheet, the Hold
I and Hold 2 flip-flops are set during the shifting operation. These flip-flops
keep the machine in the I-sequence and prevent the reading of the next instruction
until the shift operation is completed. Refer to logic diagrams, figure 9-28 for
“the Hold 1 and Hold 2 flip-flops.

These flip-flops both have outputs to the logic on figure 9-14., This logic supplies
timing and enables for the I-sequence operations necessary to obtain next instruc-
tion, When the Hold flip-flops are set, their high level outputs disable these I-
sequence operations. Among the events which are prevented are initiate-memory,
advance-P subsequence, clear-F, Z-select F, clear-KO, and Z-select KO. Refer
to the proper enable pages in the logic diagrams to develop the disable function of
these events,

As long as the Hold flip-flops are set, the shift function code and the remaining
shift count are retained in F and KO, respectively.

During the execution of a shift instruction, the F register indicates a shift func-
tion code which does not require any main timing sequence other than the I-sequence,
Therefore, as the shifts are being performed, the I-sequence flip-flop is set for
each main timing cycle. Refer to logic diagrams, figure 9-12 to develop the setting
of the I-sequence flip-flop for each main timing cycle as long as F specifies f =
50:41-43, 50:45-47,

3. Shift Sequence.

a) Timing.

6.3-2

~

S.G.1219 (M6.3

b) Shifting Operations,

1) Essential Commands. The commands which shift AU and AL by
means of X and W, respectively, are enabled by the OXLOO and OXLOl Shift Sequence
flip-flops and are timed by the master clock phases. Refer to table 6.3-4 for a
sequential list of essential shift sequence events. Develop these commands by re-
ferring to the proper enable pages in the logic diagrams.

TABLE 6.3-1. I AND SHIFT SEQUENCE ESSENTIAL COMMANDS
WITH INITIAL SHIFT COUNT = O

TIME NOTATION COMMANDS
I SEQUENCE
T1.4 Clear KO
T2.3 Clear OXLOO ff
T2.4 Z Sel5_0—+>]KO (KO = 0)
T3.4 Set Hold 1 ff, clear Scale Factor ff (1XL.0O)
T4.1 Set OXLOl1 ff
T4.3 Set OXLO2 ff, set Hold 2 ff
. T1.1 Set Clear Hold ff, clear OXLO1 ff
T1.3 Clear OXLOZ ff
T4.2 Clear Hold 1 ff, clear Clear Hold ff
I-SEQUENCE FOR NEXT INSTRUCTION
T1.3 Clear Hold 2 ff

2) Data Flow Block Diagram. Refer to figure 6.3-2 for a block
diagram description of the shift sequence operations.

These diagrams illustrate the data flow for a one place shift for each of the shift
function codes. One such flow of data can occur per master clock cycle. This data
flow is continually repeated until the Shift Sequenoe flip-flops are cleared at the
termination of the shift count.

6.3-5

S$.G.1219 (M)6.3

TABLE 6.3-2,

I AND SHIFT SEQUENCE ESSENTIAL COMMANDS
WITH INITCAL SHIFT .COUNT # 0

TIME NOTATION COMMANDS
1 SEQUENCE

T1.4 Clear KO
T2.3 Clear 0XLOO £f gk Ug}';p
T2.4 Z Sels_o—>K0"’ , SO o™
T3.4 Set Hold 1 ff, clear Scale Factor i (1X100) - H satF7
T4.1 Set OXTL.01 ff
T4.2 Clear K1
T4.3 Set 0XL0O0 ff, set Hold 2 ff, KO-1—>K1, *clear X, *clear W
T4.4 Clear KO, *shift A~—>»X/W
T1.1 K1—KO0, *clear A .
T1.2 Clear K1, *X/W—>A
T1.3 KO0-1—>Kl, *clear X, *clear W
T1.4 Clear KO, *shift A— X/W
T2.1 K1-3 KO0, *clear A
T2.2 Clear K1, *X/W—>A

I

| (continue until K1 = 0)

|
T)&,S K0-1—K1 (K1 =0), *clear X, *clear W
TX.4 Clear KO, *shift A—>X/W
TX.1 K1->KO0 (KO = 0), set Clear-Hold ff, *clear A
TX.2 Clear K1, *X/W—>A (A¢)
TX.3 KO0-1—>K1, clear 0XLO0O ff, set 0XLO02 ff, *clear X, *clear W
TX.4 *Shift A—>X/W (not used)
TX.1 Clear 0XL01 ff
TX.3 Clear 0XL.02 ff

|

next T4.2 Clear Hold 1 ff, clear Clear-Hold ff
I SEQUENCE FOR NEXT INSTRUCTION

T1.3 Clear Hold 2 ff

*These events pertain to the actual shifting of AU and AL and are discussed later in this sheet.

6.3-6

S.6.1219 (M6.3

AU AL AU - AL

35 RI 17 RI 35 RI RI

|8
17 ga 17 @4 |7 ga 17 g4
A
X W X w
v 92 v 22 v 22 g2
AU AL AU AL
a. RSHAU, b. RSHAL, C. RSHA,

f =50:41 f=50:42 f=50:43

AU AL AU AL

35 L;// 17 L;// 35 lJ/// 7l L
g4 // 4 00 ga // 4+ 00 ga // $ oo ga // 00

X W X w
¢ 22 g2 @2 ¢ P2
AU AL AU - AL
d. LSHAU, e. LSHAL, f. LSHA,
f=50:45 f=50:46 f= 50:47
Figure 6.3-2. Shift Sequence Data Flow, One Place Shift

S.G.1219 (M)6.3

TABLE 6.3-3. EXECUTION TIME OF f = 50:41-43, 50:45-47

NUMBER OF MAIN EXECUTION
SHIFT COUNTlo TMG. CYCLES (I SEQ.) TIME (ps)
0 through 4 2 4
S5 through 8 3 6
9 through 12 4 . 8
13 through 16 5 10
17 through 20 6 12
21 through 24 7 14
25 through 28 8 16
29 through 32 9 18
33 through 36 . 10 20
37 through 40 11 22
41 through 44 12 24
45 through 48 13 28
49 through 52 14 : 30
53 through 56 15 32
57 through 60 16 34
61 through 63 17 36

6.3-5. SUMMARY
The £ = 50:41 — 50:43, 50:45 — 50:47 instructions are format 2 and use the value

k. The k value is available in KO after T2.4 time of the I-sequence. The shift
sequence is required to complete the executions ofthese instructions.

6.3-8

S.G.1219 (M6.3

TABLE 6.3-4, SHEIFT SEQUENCE ESSENTIAL COMMANDS

TIME £=50: 41 42 43 45 46 47

0XL01 ff set-@3 Clear X, clear W X X | X X X X

0XLO1 ff set-04 AURL—X b:¢ X X

*Set Xqq=1 if AUgg=1
(AU35—>X17) X X X

ALR1—>W X X X

*Set W17=1 if AU18=1

AUL1—>X X X X

*Set XO =1 if AUqe=1
N 0 35
(AUg5—>Xy0) X

*Set Xgp=1 if ALq7=1
(AL17—>Xq0) X | X

ALL1—>W X X X

*Set W00:1 if AU35=1
(AU35—)W00) . X X

*Set Wog=1 if ALy =1

0XL00 ff set-@1 Clear AU X

Clear AL X

0XLO00 ff set-@2 X—>AU X

ST B
»
MoE M| MM

*FW—>AL X X

*These commands are enabled by gates 31W00, 31W17, 31X00, and 31X17 in the logic diagrams,
figure 9-33, and are timed by the AUR1—>X, ARL1—>W, AUL1—X, and ALL1->W commands.

**The transmission of bit 00 for the W—AL command is through gate 83A00 in the logic diagrams,

figure 9-33.

)

6.3-9

S.6.1219 (M)6.3

~ NAME
g 6.3-6. STODY QUESTIONS
a. Given: 31X17 grbunded output (logfé’aiagréms, figure 9-33)
instructfion = 504303 .~ . ..,
© lagp = 430012 T
AL; = 234756 o

1. For the giv@n conditions, draw below the block diagram of data flow
for a l-plage shift like those in figure 6.3-2 of this sheet.

5 What are the contents of AU and AL at the completion of the given
instructiont considering the malfunction?

AUf: ALf:

6.3-11

SG#1R%9 63

6.3-12

b.

Given: 10F42“grounded output (logic diagram

1.

instruction = 504303
AU; = 430012
’ALi = 534756

For the given conditions, draw helow the
for a l-place shift like those in figure

What are the contents of AU and AL at the!
instruction considering the malfunction?

k.

AU, = AL, =

s, figure 9-47)

*hlock diagram of data flow
6.3-2 of this sheet.

‘completion of the given

4

f f

- 8.6.1219 (M)6.3

NAME :

¢c. Given: 11F45 grounded output (logic diagrams, figure 9-47)
instruction = 504503
AUi = 430012

1. For the givén conditions, draw below the block diagram of data flow
for a l-place shift like those in figure 6.3-2 of this sheet.

2. What is the content of AU at the completion of the given instruc-
tion considering the malfunction?

AUf =

6.3-13

S.G.1219 (M6.4

SECTION 6 - ARITHMETIC SECTION

6.4. KO-1 ADDER

6.4-1. OBJECTIVES

To present the detailed theory of operation involved in the KO-1 adder.

6.4-2. INTRODUCTION

The KO-1 adder is used to control the number of repeated operatlons used in
shifting, scaling, multiplication, and division.

6.4-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-2e(3).

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.4-4. INFORMATION

a. General Description. The KO-1 adder is a 6-bit open-ended adder which
continually subtracts 1 from the content of the KO register. The output of the
adder is taken to the K1 register. The decremented value is then taken back to KO.
Refer to figure 6.4-1 for a data flow block diagram of the K-counter configuration.

KO

KO—1
ADDER

Kl

Figure 6.4-1. K Counter Block Diagram
6.4-1

S.G6.1219 (M)6.4

Certain repeating type operations are controlled by the counter. KO is initially
set to a specific count. Each time KO receives the new decremented value, one of
the repeating operations is performed. When KO holds the value of all O's, the
controlled operations are terminated.

b. Detailed Analysis

1. Effect of Borrow Request. If a request for a borrow is applied to
a bit position of KO, the result of this subtraction produces the complement of
the bit. Refer to figure 6.4-2 for examples.

0 0 KO BIT
- -1 BORROW REQUEST APPLIED TO KO BIT
0] RESULT (I'S COMPLEMENT OF KO BIT)

Figure 6.4-2. KO-1 Adder Borrow Examples

2. Adder Stage 00. Refer to logic diagrams, figure 9-37 for the
adder logic.

The subtraction of KO-1 always affects KOpg to produce its complement. This
complemented value is outputted by inverter 02KOO and is placed in Klpp during
the "KO-1—> K1" command.

3. Generation of Borrow Requests. If a borrow request is applied to
a particular bit position, the complement of that bit is the result. If that same
KO bit position contains 02, the borrow request is propagated to the next higher
bit because the 02 cannot supply the lo that the borrow requires. All borrow
requests originate from the subtraction of KOyp - 1. A borrow request is applied
to a particular bit position if all of the less significant KO bit positions
contain O's. Refer to table 6.4-1 for the conditions necessary to apply borrow
requests to the KO bits.

TABLE 6.4-1. KO-1 ADDER BORROW REQUEST CONDITIONS

. KO bit positions
Borrows Applied 04 03 02 01 00
Brw —» 01 0o
Brw —=. 02 Oé 02
Brw —>03 O | 02 | 02
Brw —» 04 09 (0))) 09 0o
Brw —» 05 09 02 092 09 09
NOTE: "Brw-—->XX" means a borrow request is being applied to bit position XX.

6.4-2

S$.6.1219 (M6.4

Adder bits 05 through 01 have logic which tests all of the less significant KO
bits for the binary configurations described above. If a borrow request is
applied, the complement of the KO bit is the adder output as was shown for bit 00.
Refer to figure 6.4-3 for the adder request logic. This is a porlion of that
shown in the logic diagrams, figure 9-37.

Gate 08KOO is used to test KO for all O's. This cbndition.terminates the oper-
ation being controlled by the K-counter.)

6.4-5. SUMMARY

The K-counter is comprised of KO and K1 registers and the KO-1 adder. KO is

hard-wired to the adder input. The adder is 6 bits in length, and is of the open-
ended type. It can only output to KI. ‘

6.4-3

V-9

H=> KO =0'S L=> BRW—> 05 L= BRW—>04 L=>NO BRW—>03 L=> BRW—> 02 L=> BRW—> 0l

08KO00 L =>NO BRW—>05 L=>NO BRW —>04 | L=> BRW —> 03 L=> NO BRW —> 02 L=> NO BRW=> O
L=> K0,_,=0's
/]
07KOO
00KO5
L=> KOgs = 0,
0IK0O
=
L=> Koy =1,
06K 05
0
L=> BRW —> 03 H=> BRW—> 02
00KO03 01K02 00KO00
L=>K0y3=0, H=>KQ,, =0, L=> KOy~ O,
00KOI
ALL L=> Ko, =0's L=> KOq, =0,

/ 00KO0O
L=>

KOG =0, (BRW —>01)

NOTES: "BRW —> OX" MEANS A BORROW REQUEST IS BEING APPLIED TO BIT POSITION OX.
GATE OBKOO IS NOT ACTUALLY PART OF THE REQUEST LOGIC.

Figure 6.4-3. KO-1 Adder Borrow Request Generation Logic

C < (

S’

P'OM) 6121°9°S

N

S.6.1219 (M6.3

1) Initial Shift Count = O, If the shift count specified in
the six least significant bits of the instruction word equals O, no shifts are to
be performed. The shift sequence is initiated but is terminated before it can ef-
fect any shifting.

Refer to table 6.3-1 for a sequential list of essential I and shift sequence con-
trol events., Develop these commands by referring to the proper enable pages in the
logic diagrams. The commands shown are in addition to the normal I-sequence com-
mands .,

As shown, no shifting is performed. Two main timing cycles of the I-sequence are
used before the Hold flip-flops are cleared. With the initial shift count equal
to O, the instruction execution time is 4 microseconds.

2) Initial Shift Count # 0. If the shift count specified in
the six least significant bits of the instruction word does not equal O, one or
more shifts are performed. The shift sequence is initiated and remains active un-
til the shifting is completed at which time it is terminated,

The shift commands involving AU and AL are generated by the combination of the shift
sequence flip-flops (OXLOO and OXLOl) being set and the occurrence of clock phases,
0XLOO and OXLOl are set for the entire shifting operation. Theclock phases alone
provide the timing for the operation. For each cycle of the master clock, a shift
of one place is executed,

KO, K1, and KO-1 adder are used to control the number of shifts by determining the
number of clock cycles during which the shift sequence flip-flops will remain set.
The shift count which is held in KO and K1 is decremented by 1 during each master
clock cycle. When KO reaches the count of O, the Shift Sequence flip-flops are
cleared and the AU and AL shift commands are disabled. The KO-1 adder is analyzed
in a later sheet, :

Refer to figure 6.3-1 for a simplified logic diagram of the shift sequence. Devel-
op the events chart from the logic shown.

Refer to table 6.3-2 for a sequential list of essential I and shift sequence control
events, Develop these commands by referring to the proper enable pages in the logic
diagrams, The commands shown are in addition to the normal sequence commands.

As shown, shifting is performed until K1 = O which causes the clearing of the

OXLOO and OXLO1l flip-flops after the last shift. Flip-flop OXLOZ is set and cleared
at the termination but is not used., The Hold 1 flip-flop is not cleared until T4.2
time of the main timing cycle during which the last shift occurred. The next main
timing cycle is also under I-sequence control but is able to read-up the next in-
struction in the program. The last Hold flip-flop (2) is cleared at T1.3 time of
the next instruction's I-sequence.

With the shift sequence active, each master clock cycle performs a one-place shift,
Therefore, a maximum of four shifts can be performed during one main timing cycle
which has a duration of two microseconds, Including the two microsecond I-sequence
which reads-up the shift instruction, a shift instruction with a shift count from

1 through 4 has an execution time of four microseconds. Refer to table 6.3-3 for a
complete list of shift count values with the corresponding instruction execution
times.

6.3-3

S.6.1219 (M6.3

*SHIFT A —> X/W

08KOO

g2
*X/W—> A I O9NI5 L=> CLEAR Kl
o
B3
ISN15 L=> KO - —>Ki
g4 [
09N (4 L=> CLEAR KO
08N14 Y=
@ A
@1 e
I9N14 L=> Kl —> KO
c 0 a1 c o
0XLOO oXLO!
L
14100 [s | S _/~e
11LO3
CONSTANT L
FOR SHIFTS 11LO]

H= KO =0

@1
g2
B3
g4
@i
g2
I
z3
da
@
g2
@3

24
@l

L=> INITIATE SHIFT SEQUENCE

SEQUENCE OF EVENTS (KO; # 0)

SET OXLO! FF (INITIATE SHIFT SEQUENCE)
CLEAR KI

SET OXLOO FF, KO—!—> KI|,*CLEAR X 8 W
CLEAR KO, ™ SHIFT A—> X/W

Kl —>KO, *CLEAR A

CLEAR KI, *X/W —> A

; (CONTINUE UNTIL KI=0)

KO—[—> K| (Kl =0),*CLEAR X & W

CLEAR KO, *SHIFT A —> X/W

Kl —> KO (KO = 0),*CLEAR A

CLEAR K| (NOT USED), *X/W—> A (A;)
CLEAR OXLOO FF, KO-I—> K| (NOT USED),
¥CLEAR X & W (NOT USED)

*SHIFT A —> X/W (NOT USED)

CLEAR OXLOl FF

NOTE: * THESE EVENTS PERTAIN TO THE ACTUAL SHIFTING OF AU AND AL AND ARE

DISCUSSED LATER

6.3-4

IN THIS SHEET,

Figure 6.3-1. Shift Sequence Simplified Logic

8.6.1219 (6.4

: NAME :

') 6.4-6. STUDY QUESTIONS

a. Given: instruckion - 504605
06K03 grounded output (logic diagrams, figure 9-37)

Considering thegabove malfunction, describe the effect upon the
~execution of the given instruction. Fully explain your reasoning.

6.4-5

S

S.6.1219 (M6.5

SECTION 6 - ARITHMETIC SECTION
6.5. INSTRUCTION EXECUTION OF SF

6.5-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of the
instruction with f = 50:44.

6.5-2. INTRODUCTION

This instruction normalizes the combined contents of AU and AL,

6.5-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4c(4) and 4-7,
tables 4-11 and 4-14.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.5-4. INFORMATION

a. General Description

1. Instruction Interpretation. This instruction, SR, circularly left
shlfts the combined content of AU and AL. AU is the more significant portion,.
Left shifts are performed until AU35 # AU34 or until the maximum shift count
specified in the six least significant bits of the instruction word has expired.
This shift count dictates the maximum number of places that AU and AL can be
shifted during the normalize operation. When shifting stops, the difference between
the specified maximum shift count and the actual shift count is stored in control
memory at the address 00017g. The original content of this memory address is
destroyed.

2. Execution Sequences.

a) I-Sequence. During the I-sequence which obtains the instruction
from memory, the maximum shift count is placed in KO.

b) Scale Sequence. The scale sequence uses a special timing chain
which runs in parallel to main timing and controls the actual normalize operation.

6.5-1

S.G.1219 (M)6.5

c) W-Sequence. The W-sequence is active throughout the normalize
operation but is only effective at the completion of the operation in storing the
difference between the maximum shift count specified and the actual shift count.

b. Detailed Analysis.

1. I-Sequence. The I-sequence operations are as previously described.
If necessary, refer to study guide sheet number 5.4 for a detailed description.
At the end of the I-sequence, KO contains the six least significant bits of the
instruction word which specifies the maximum shift count allowed.

2. Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are
set during the scale operation to prevent the normal W-sequence operations which
store KO in control memory. These flip-flops prevent the setting of the final
W-sequence flip-flop (lower bank). When the Hold flip-flops are cleared, the W-
sequence is allowed to store KO. .

3. W and Scale Sequences.

a) Data Flow Block Diagram.

1) Prior to Scale Termination. Refer to figure 6.5-1 for a
block diagram description of one step of the scale operation,

During each master clock cycle with the scale sequence .active, AU and AL are
circularly left shifted one place as a 36 bit register. The count in KO is
decremented by 1. When the scale sequence detects AU35 # AU34 or KO = 0, the
shift operation is terminated.

2) Scale Termination (KO Storage). Refer to figure 6.5-2
for a block diagram description of the KO storage operations.

When the scale sequence is terminated, the W-sequence stores KO in control memory
at the address 00017g. KO still contains its value which existed at the scale
termination. This value is the difference between the maximum shift count allowed
(KOi) and the actual number of shifts executed by the scale sequence.

b) Essential Commands.

1) Aborted Scale Sequence. If the maximum shift count
specified by the instruction equals O or if the initial value in AU is such that
AU35 # AUg4q, no shifting of AU and AL is to be performed. The scale sequence is
disabled.

Refer to tables 6.5-1 and 6.5-2 for sequential lists of essential I, W, and scale
sequence events. Develop these commands by referring to the proper enable pages
in the logic diagrams.

2) Normal Scale Sequence Prior to Termination. Refer to
table 6.5-3 for a sequential list of essential I, W, and scale sequence events.
Develop these commands by referring to the proper enable pages in the logic diagrams.

6.5-2

$.6.1219 (M)6.5

The scale sequence commands which left shift AU and AL and decrement KO occur
continuously until the scale sequence flip-flops OXLOO and OXLOl are cleared.

3) Scale Sequence Termination. Termination operations are
initiated when either AUgy, # AUgq or K1 = 0. Refer to tables 6.5-4 and 6.5-5 for
sequential lists of W and scale sequence events. Develop these commands by
referring to the proper enable pages in the logic diagrams.

4) W-Sequence Storage of KO, At the termination or abortion
of the scale sequence, the Hold 1 and Hold 2 flip-flops are cleared which allows
the W-sequence to perform the storage of KO in control memory at the address

00017g. Refer to table 6.5-6 for a sequential list of essential W-sequence events.

Develop these commands by referring to the proper enable pages in the logic
diagrams.

6.5-5. SUMMARY

The SF instruction is format 2 and uses the value k. The k value is available in
KO after T2.4 time of the I-sequence. The scale and W-sequences are required to
complete the execution of this instruction, R : ‘

(@2

S.6.1219 (M)6.5

6.5-4

AU AL
35 Ll 17 Ll
g4 00 ga \ 00
X w
¢2‘ B2
AU AL
Figure 6.5-1. Scale Sequence, One Place Shift

KO

KO -1
ADDER

@1

KO

$.G.1219 (M6.5

17
J T4.3
'SPEC INT
TRAN REG
W SEQUENCE OF SCALE TERMINATION
W SEQUENCE TO STORE KO
KO KO = (MAX. SHIFT COUNT) MINUS
(ACTUAL SHIFT COUNT)
L oTii-Ten 03-0\
(: ARITH SEL ﬁj)
; T
* : . A\
| — S|
, si je— ~00
STORE SEL
A\
T a4 : T2.1
: y
*
READ
R CONTROL
zl z0 ¥ memoRry [* S0
l k) SO = 000I7
WRITE

NOTES: ®*ARITH SEL —> STORE SEL OCCURS DURING THE ENTIRE W SEQUENCE.
*¥%7| —> 70 IS TIMED BY CONTROL MEMORY TIMING,

Figure 6.5-2. Final Scale W and Last W Sequence Data Flow

S$.6.1219 (M6.5

TABLE 6.5-1. I, W, AND SCALE SEQUENCE ESSENTIAL COMMANDS
WITH MAXIMUM- SHIFT COUNT ALLOWED = 0%*

TIME NOTATION COMMANDS
I SEQUENCE
T1.4 Clear KO
T2.3 Clear OXLOO ff
T2.4 Z Sels_o—>K0 (KO = 0)
T3.4 Set Hold 1 ff, clear Scale Factor ff (1XL.00)
T4.1 Set OXLO1l ff
T4.3 Set O0XLO2 ff, set Hold 2 ff
W SEQUENCE
T1.1 Set Clear Hold ff, clear OXLOL ff
T1.3 Clear OXLO2 ff
T4 .1 **Clear Spec Int Trans Reg.
T4 .2 Clear Hold 1 ff, clear Clear-Hold ff
T4.3 | *#*Set Spec Int Trans Reg. = 17¢
W SEQUENCE' TO STORE KO
T1.3 Clear Hold 2 ff

* The W-sequence events which store KO are not shown.

*% These commands pertain to the events which store KO and are

6.5-6

discussed later in this sheet.

TABLE 6.5-2.

- I;- W, AND SCALE SEQUENCE ESSENTIAL COMMANDS WITH

S.G{1219 (M6,

AU3s; # AUsyj

5

TIME NOTATION

COMMANDS

T1.3
T1.4
T2.3
T2.4
T3.1
T3.4
T4.1
T4.2

T4.3

T1.3

I SEQUENCE

Clear F

Clear KO

Clear OXLOO ff

Z Selyy g —>F, set OXFO6 £f, Z Sels —> K0
Set Clear Hold ££2 :

Set Hold 1 £f, clear Scale Factor flw(1XLOOl

Clear Spec Int Trans Reg - |
Clear Hold 1 ff clear Clear Hold ff

*##Set Spec Int Trans Reg = 178

W_SEQUENCE TO STORE KO

Clear Hold 2 ff

*The W-sequence events which store KO are not shown.

“**These commands pertain to the events which store, KO and are discussed
later in this sheet.

S.G.1219 (M6.5

TABLE 6.5-3.

I, W, AND SCALE SEQUENCE ESSENTIAL COMMANDS WITH MAXIMUM
SHIFT COUNT ALLOWED # O AND Algg; = Algyy

TIME NOTATION

COMMANDS

Tl.4
T2.3
T2.4
T3.4
T4.1
T4.2
T4.3

T4.4

T1.1
T1.2
T1.3
T1.4
T2.1

T2.2

I SEQUENCE

Clear KO

Clear OXLOO ff

Z Sels_o—= KO

Set Hold 1 ff, clear Scale Factor ff (1XL0OO)

Set OXLOl ff

Clear Kl

Set OXLOO ff, set Hold 2 ff, KO-1—>Kl, clear X, clear W

Clear KO, AULL —>X, ALLl —»W, *AUs5—>Wpo, *AL;7 = Xgp

FIRST W SEQUENCE

K1 —> KO, clear AU, clear AL
Clear K1, X—> AU, **W —> AL
KO-1 —> K1, clear X, clear W
Clear KO, AULl —>X, ALLL —>W, *AUss —>Wgq, *ALj7 —>Xgp
K1 — KO, clear AU, clear AL

Clear K1, X —>AU, **W —>AL

(continue until K1 = 0O or AUgy # AU33)

*These commands are enabled by gate 31WO0 and 31X00 in the logic diagrams,
figure 9-33, and are timed by the AUL1 — X and ALL1 —>W commands.

**The transmission of bit 00 for the W —>AL commands is through gate 83A00
in the logic diagrams, figure 9-33,

6.5-8

~~

TABLE 6.5-4.

$.6.1219 (N6.5

TERMINATION OF SCALE SEQUENCE BY K1 = O(W SEQUENCE)* .

TIME NOTATION

. COMMANDS

TX.3
IX. 4
X. 1
TX.2
TX.3
TX.4
TX. 1

TX.3

next T4.2

T1.3

W _SEQUENCE
KO-1 —=> Kl (K1 = 0), Clear X, Clear W

Clear KO, AULL —>X, ALLL —>W, **AU35 ~> Wyg, **ALj7 —> X,
KI —>KO (KO = 0), set Clear Hold ff, clear AU, clear AL
Clear K1, X —> AU, ***W —> AL

KO-1 —» K1, clear OXLOO ff, set OXLO2 ff, clear X, clear W
AULL —> X, ALLl ~> W, #AUgs = Wy, **AL) - >X00 (not used)
Clear OXLOl ff

Clear OXLO2 ff
Clear Hold 1 ff, clear Clear-Hold ff

W SEQUENCE TO STORE KO

Clear Hold 2 ff

*The W-sequence events which store KO are not shown.

“*These commands are enabled by gates 31W00 and 31X00 in the logic
diagrams, figure 9-33, and are timed by the AULl —>X, and ALLlL —>W

commands.

***The transmission of bit 00 for the W-—>AL command is through gate
83A00 in the logic diagrams, figure 9-33.

6.5-9

S$.6.1219 (M6.5

TABLE 6.5-5. TERMINATION OF SCALE SEQUENCE BY AU, # AUsq (W SEQUENCE)®

TIME NOTATION : COMMANDS
W SEQUENCE
TX.3 KO-1 —>K1
TX. 4 Clear KO, AULL —>X, ALLL —>W, **AUss —>Wgo, **AL17->Xq
TX.1 K1 — KO, clear AU, clear AL
TX. 2 Clear K1, X —>AU (AUgy # AUg3), ***W —>AL
TX.3 KO-1 — K1
TX.4 Set Scale Factor ff (1XLOO)
TX.1 K1 — KO
TX. 2 Clear K1, X—> AU (AUsg # AUgy), **%W —> AL
TX.3 KO-1 —> K1, clear OXLOO ff, set OXLO2 ff
TX.4 AUL1 — X, ALL1 —=>W, AU35 —%>WOO, **AL17 %>XOO (not used)
TX.1 Clear OXLOl ff, set Clear Hold ff
TX.3 Clear OXL02 ff
next T4.2 Clear Hold 1 ff, clear Clear-Hold ff
W _SEQUENCE TO STORE KO
T1.3 Clear Hold 2 ff

“The W-sequence events which store KO are not shown.
**These commands are enabled by gates 31W00 and 31X00 in the logic
diagrams, figure 9-33, and are timed by the AULl —>X, and ALLl —>W
commands,

“*The transmission of bit 00 for the W —>AL command is through gate
83A00 in the logic diagrams, figure 9-33.

6.5-10

S.G. 1219 (M6.5

TABLE 6.5-6, FINAL SCALE W AND LAST W SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION COMMANDS

W _SEQUENCE OF SCALE TERMINATION

T4.1 Clear special interrupt translator Reg
T4,2 Clear Hold 1 ff

T4.3 Set Spec Int Trans Reg = 178

T4.4 Clear S1

W SEQUENCE TO STORE KO

T1.1 Spec Int Trans RegOS—Ol_e)SlOB—Ol' 1 %>SlOO, KO =>Arith Sel*
T1.3 ' Clear Hold 2 ff, clear Zl1

T1.4 Disable CM —=>Z0, Store Sel —> Z1%¥%

T2.1 S1 —=> SO, drop KO —>Arith Sel

T2.4 Drop disable CM — Z0

*Arith Sel —> Store Sel occurs during the entire W-sequence.

*#%21 —>70 is timed by control memory timing.

BB Rl 10T vt s sty e

G

b

e e e b e At e

S.6.1219 (M6.6

SECTION 6 - ARITHMETIC SECTION
6.6. INSTRUCTION EXECUTION OF MULAL, MULALB

6.6-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of instruc-
tions with f = 24, 25,

6.6-2, INTRODUCTION

These instructions multiply the content of AL by the content of memory.

6.6-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4c(1)(c) and 4-T,
tables 4-11 and 4-12.

b. UNLVAC 1219 Technical Manual, Volume IT, Section 9 (logic diagrams).

6.6-4, INFORMATION

a. General Description.

1. Instruction Interpretation,

a) MULAL, f = 24, This instruction multiplies the content of AL
by the operand Y. Y is obtained from memory at the address Up if SR is inactive or
Ugg if SR is active. The final product is double length and appears in AU and AL,
AU contains the more significant bits.

b) MULALB, f = 25. Except for the address of Y, this instruction
is the same as f = 24. The address of Y is either Up + B or Ugg + B, depending up-
on the activeness of SR. The B register is specified by ICR.

2. Execution Sequences,

a) I-Sequence., During the I-sequence which obtains the instruc-
tion from memory, the address of the operand is formulated from U, P, SR, and B.

b) Rl-Sequence. The Rl-sequence uses a memory reference to obtain
the operand Y.

c¢) Multiply Sequence. The multiply sequence uses a special timing
chain which runs in parallel to main timing and controls the actual multiplication.

6.6-1

S$.G.1219 (M6.6

3. Multiplication Procedure.

a) Pencil and Paper Method. Multiplication with the binary number
system is quite simple since during each multiplication step the multiplicand is
multiplied by either 1, or Os. The multiplication by 1o is performed by adding the
multiplicand to the partial product. Multiplying by Oo simply adds O to the partial
product, Refer to figure 6.6-1 for a 4-bit example of the normal "pencil and paper"
method.

010l MULTIPLICAND
x 001! MULTIPLIER
Gobe
0
0000 PARTIAL PRODUCTS
0000
000T 1Tl PRODUCT

Figure 6.6-1. Example of Binary Multiplication, Pencil and Paper Method

b) 1219 Computer Method. 1In the 1219, the procedure is basically
the same as described above. However, the result of each multiplication step is
added to the previous partial product immediately instead of adding all of the par-
tial products together at the end. -

Also, as each new partial product is formulated, it is shifted right one place,
Refer to figure 6.6-2 for the same numerical example using the 1219 Computer method.

In each step, either the multiplicand Y or +0 is added to the partial product in AU
depending upon the value of ALgg. If ALpp = 12, it specifies 1 x Y which is ac-
complished by adding Y to the previous partial product.

As the process continues, the multiplier is shifted out of AL and the lower half of
the product is shifted into AL, The final product is the content of AU and AL to-
gether,

b. Detailed Analysis.

1. I-Sequence, Most of the I[-sequence operations are as previously
described. If necessary, refer to study guide sheet number 5.4 for a detailed de-
scription, At the end of the I-sequence, the X-D' adder is outputting the address of
the operand,

In addition to the normal operations, the Y Neg and A Neg flip-flops are cleared at
T4.2 time. These flip-flops are shown in the logic diagrams, figure 9-33.

2. Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are set
during the multiply operation to prevent the reading of the next instruction and the
clearing of the multiply function code from F. The effect of these flip-flops 1is
the same as described for the shift instructions in information sheet number 6.3.
Since the Hold flip-flops are set during the Rl-sequence, the Rl-sequence remains
active during the multiplication.

6.6-2

—

'

$.6.1219 (M6.6

AU AL
+010|
010l
AU 8 AL RIGHT SHIFT ONE PLACE
y= 0010 1001
+0101 Ll xvY
o111
\ AU 8 AL RIGHT SHIFT ONE PLACE
0011 1100
+0000 L0 x Y
001 |
AU & AL RIGHT SHIFT ONE PLACE
000/ (110
+ 0000 —»0 x v
0001
AU 8 AL RIGHT SHIFT ONE PLACE
0000 RN

AU 8 AL = PRODUCT

Figure 6.6-2, Example of Binary Multiplication, 1219 Computer Method

3. R1 and Multiply Sequences.

a) Data Flow Block Diagram.

1) Prior to Multiply Termination, Refer to figure 6.6-3 for a
block diagram description of the execution of f = 24, 25, prior to the multiplica-
tion termination.

The Rl-sequence uses a memory reference to obtain the operand Y. This is the mul-
tiplicand. D receives either Y or its complement at T2.4 time, If Y is negative
it appears complemented in D in 1ts positive form. This 1s part of the initial
sign connection operation which makes both the multiplicand and the multiplier
positive numbers before the multiplication operation. At the completion of the
multiply, the result is, if necessary, made negative according to the signs of the
original multiplicand and multiplier,

The multipler in AL is also made positive by complementing at T2.2 time if its
initial value 1S negative,

6.6-3

S.G.1219 (M6.6

The actual multiplication of D x AL is effected by the multiplication sequence
which runs in parallel with the Rl-sequence. The 36-bit value in AU and AL is
right shifted one place into X and W, respectively, at T2.4 time., The Multiplier
Store flip-flop is used to record to value of ALgp which is the multiplier bit to
be examined. If ALgp = 12, + the multiplicand in D is added to the partial pro-
duct in X (O's initially) and placed in AU at T3.2 time, If ALgp = 02, nothing is
added to the partial product in X and the unchanged value is placed in AU.

During each multiplication step, AU and AL are right shifted one place and either
the multiplicand or nothing is added to the partial product depending upon the cur-
rent multiplier bit (ALgg). The number of steps is controlled by KO, K1, and the
KO-1 adder. KO is initially set to 1910 and is decremented during each multipli-
cation step. When it contains O, the operation is terminated. The resulting 19;0
right shifts of AU and AL will have shifted the multiplier out of AL and properly
positioned the final product in AU and AL.

As discussed in a later sheet, the operand could be obtained from bootstrap or con-
trol memory.

2) Multiply Termination (Final Sign Correction). When KO = O,
the multiplication operation is terminated and AU and AL contain the final product.
If the original signs of Y (multiplicand) and AL (multiplier) were unlike, the pro-
duct must be made negative. Since both Y and AL were made positive prior to the
multiplication, the product should be also positive. The product is left positive
if both Y{ and AL; had like signs. If the original signs are unlike, AU and AL are
complemented to yield a negative product. Refer to figure 6.6-4 for a block dia-
gram description of the final sign correction operation which occurs at the comple-
tion of the multiplication operation.

b) Essential Commands. The commands which effect the multiplica-
tion operations are enabled by the OXLOO and OXLOl Multiply Sequence flip-flops and
are timed by the master clock phases. '

Refer to table 6.6-1 for a sequential list of essential R1, next I, and multiply
sequence events. Develop these commands by referring to the proper enable pages
in the logic diagrams.

6.6-5. SUMMARY
The MULAL and MULALB instructions use the Up or Ugp which is formulated in D during

the I-sequence. The Rl and multiply sequences and the first portion of the next I-
sequence are required to complete the executions of these instructions.

6.6-4

C)

~

§.G6.1219 (M6.6

X~-D'
WRITE ADDER
I
Y T Sl ,
. MAIN 5| =24, Up OR Ugg
READ MEMORY f =125 Up +Byog OR Ugg+ BygR
AL
TI—T2.l
' .
(ARITH SEL)
Ti.4 | ARITH SeL'
T2 =T3.1 0
(Z SEL)ZSEL=Y l
X—D
ADDER
IREARS EN T ,
X CLEARED TO x TI.3 SET A NEG FF
ARITH SEL 0S AT Ti1.3 IF AL NEG
ARITH SEL IF Y POS
ARITH SEL IF Y NEG:}SENSED FROM Z SEL .
T2.4 SET Y NEG FF IF Y M 122 B
NEG (SENSED FROM Z SEL) j IF A NEG FF SET -
AL= MULTIPLIER
AU CLEARED |TZJCLEAR AL |
AT T2.1 AU lAL
T2.4 SET MULT.
-— — — _ =~——J B
RI I8 .]—’oo\ STORE FF IF Algg=!
7 T2.4
T2.4 T2.4
v
x—D'
D ADDER X w
D= MULTIPLICAND ONE MULTIFLICA =
ADDER = X + IF MULT. STORE TION STEP
MULTIPLICAND FF CLEAR
IF MULT. STORE FF SET T3.2 , T3.2
o
AU = PARTIAL PRODUCT AU AL

(CONTINUES UNTIL KO =0}

Figure 6,6-3.

R1 and Multiply Sequence Data Flow

00
I o 12.4 SET MULTIPLIER

STORE FF IF ALyn=1

6.6-5

S.G.1219 (M)6.6

AU & AL = PRODUCT

AU AL
4 T2.0-T3.
(ARITH SEL }
ARITH SEL'
T2.4 '
«— SET X = 1'S: ARITH SEL—> X
D 8 ARITH SEL'—>X IF

AU 8 AL#O0'S

X—D0'
ADDER

T2.4

X

X CLEARED TO 0'S AT T2.3

r— IF Y; &8 AL; B

| T3.2 UNLIKE SIGNS | | T3.1- T4l
| AU T3.l CLEAR AU | —{ ARITH SEL)
RITH SEL'
L_-——.—*———'_—__—J T3.4‘A
SET X = 'St ——— D
ARITH SEL—>X &
ARITH SEL' —> X l
IF AU 8 AL #0's D'
ADDER
T3.4 T
> X
IF OXLO6 FF SET ‘ T4.2§|

C)

(Y; 8 Aj UNLIKE SIGNS)

Figure 6.6-4. Multiply Final Sign Correction Data Flow
6.6-6

S.6.1219 (M6.6

TABLE 6.6-1. R1, MULTIPLY AND NEXT I-SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION COMMANDS

R1 SEQUENCE

T4.4 Clear S1

T1.1 AL—>Arith Sel, Adder ->S1, Init Memory

T1.3 Set A Neg ff if AL neg, clear D, clear X, clear Z1

T1.4 Arith Sel'—>D, clear KO, clear Scale Factor ff (1XL00)

T2.1 Clear AU, clear AL if A Neg ff set, set KO = 1910, set 0XL.01 ff, Z1>7Z
Sel, Z Sel —> Arith Sel, drop AL—>Arith Sel

T2.2 Adder—>AL if A Neg ff set, Clear K1

T2.3 Clear D, set 0XLO0O ff, clear X, clear W, clear Mult, Store ff, KO-1—>K1

T2.4 Set Y Neg ff if ¥ neg *, Arith Sel-» D if Y pos*, Arith Sel'—>D if Y neg*,

clear KO, AUR1—>X, ALRI—>W
***AUlB—)er?, set Mult. Store ff if ALOO =1

T3.1 K1—K0 (KO =18), clear AL, clear AU

T3.2 Set Hold 1 ff, **W->AL, Adder =AU if Mult. Store ff set
X—>»AU if Mult. Store ff clear, clear K1

T3.3 Set Hold 2 ff, KO-1-—>K1, clear X, clear W

(continues until KO = 0)

T1.1 ! Clear AL, clear AU, KI—>K0 (KO = 0)

T1.2 W—>AL, Adder =AU if Mult, Store ff set
X-—>AU if Mult, Store ff clear, clear K1

T1.3 Set 0X1.02 ff, clear 0XLOO ff, KO-1—>K1
clear X, clear W, clear Mult. Store ff

T1.4 AUR1—>X, ALR1> W, ***AU18—> Wqn, set Mult. Store ff if ALgg =1

T2.1 Clear 0XLO01 ff, set 0XL03 ff, AU—>Arith Sel, set Clear-Hold ff

T2.3 Set 0X1.04 ff, clear 0XL02 ff, clear D, clear X

T2.4 Arith Sel'—»D, Arith Sel-»X & Arith Sel'—»X if AU & AL £0's
(Set X =1's)

T3.1 Set 0XL05 ff, if Y; & AL, unlike signs, clear 0XLO03 {f, ***¥*AL—>Arith
Sel, drop AU->Arith Sel, clear AU if Y; & AI..i unlike signs

T3.2 . Adder —AU if Y; & AL, unlike signs

T3.3 **k*xset OXLO6 ff, clear 0X1.04 ff, **** clear D

T3.4 *RkxArith Sel'—» D, Arith Sel—»X & Arith Sel'-» X if AU & AL #0's
(Set X =1's))

T4.1 Clear 0XL05 ff, clear AL if 0X1.06 ff set, drop AL—>Arith Sel

T4.2 Adder—>AL if 0XLO06 ff set, clear Hold 1 ff, clear Clear-Hold ff

T4.3 Clear 0XL06 ff

I-SEQUENCE OF NEXT INSTRUCTION

T1.3 ‘ Clear Hold 2 ff

*Sign of Y is sensed from Z select.

**The transmission of bit 00 for the W »>AL command is through gate 83A00 in the logic diagrams,
figure 9-33.

***¥AU g W, - data flow is through gate 31W17 in the logic diagrams, figure 9-33, and is enabled
by the AL&Z—-)W command.

****These events occur only if the 0XL05 ff is set to perform final sign correction. 6.6-T

S.6.1219 (M)6.7

SECTION 6 - ARITHMETIC SECTION

6.7. INSTRUCTION EXECUTION OF DIVA, DIVAB

6.7-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of instruc-
tions with f = 26, 27,

6.7-2. INTRODUCTION

These instructions divide the combined content of AU and AL by the content of
memory.

6.7-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4c(1)(d) and 4-7,
tables 4-11 and 4-12.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.7-4. INFORMATION

a. General Description,

1. Instruction Interpretation.

a) DIVA, £ = 26. This instruction divides the 36-bit value in AU
and AL by the operand Y. AU contains the more significant bits. The origin of Y
is memory at the address Up if SR is inactive or Uggp if SR is active. The quotient
appears in AL and the remainder is held in AU. The sign of the remainder is the
same as the dividend (AU and AL).

b) DIVAB, f = 27. Except for the address of Y, this instruction
is the same as f = 26. The address of Y is either Up + B or Uggr + B depending upon
the activeness of SR, The B register is specified by ICR.-

2. Execution Sequences.

a) I-Sequence., During the I-sequence which obtains the instruction
from memory, the address of the operand is formulated from U, P, SR, and B.

b) Rl-Sequence, The Rl-sequence uses a memory reference to obtain
the operand Y. ' '

c) Divide Sequence. The divide sequence uses a special timing
chain which runs in parallel to main timing and controls the actual division.

S.G.1219 (M)6.7

3. Division Procedure,

a) Pencil and Paper Method. Division with the binary number sys-
tem is quite simple since each division step produces a quotient bit of either 1
or Op. During the division step, the divisor is compared with the partial dividend.
If it is less than or equal to the partial dividend, a 12 is set in the correspond-
ing quotient bit position and the divisor is subtracted from the partial dividend.
If the division cannot be performed (partial dividend less than the divisor), a Oo
is set in the quotient bit and O's are subtracted from the partial dividend which
does not alter itsvalue., Refer to figure 6.7-1 for an example of the normal "pen-
cil and paper" method,
00110 = QUOTIENT
DIVISOR = 010! /885800] O = DIVIDEND
00100 = PARTIAL DIVIDENDS
—0000
01000 ¢————
—-010l
00! | | =—
— 010l
00100 #——
- 0000
0100 = REMAINDER
Figure 6.7-1, Example of Binary Division, Pencil and Paper Method /

b) 1219 Computer Method. 1In the 1219, the procedure is basically the
same as described above. However, instead of right shifting the divisor when sub-
tracting from the partial dividend, the partial dividend is shifted left. Also an
initial left shift of the dividend is performed. The most significant bit of the
dividend which is shifted out is Op because the dividend in AU and AL is made posi-
tive prior to the division operation., As the dividend is left shifted out of AL
and into AU, the quotient is shifted into AL, Refer to figure 6.7-2 for the same
numerical example using the 1219 Computer method,

b. Detailed Analysis,

1. I-Sequence. Most of the I-sequence operations are as previously
described. If necessary, refer to study guide sheet number 5.4 for a detailed de-
scription. At the end of the I-sequence, the X-D' adder is outputting the address
of the operand.

In addition to the normal I-sequence operations, the Y Neg and A Neg flip-flops are
cleared at T4.2 time. These flip-flops are shown in the logic diagrams, figure 9-33.

2., Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are set
during the divide operation to prevent the reading of the next instruction and the
clearing of the divide function code from F. The effect of these flip-flops is the
same as described in the shift instructions in information sheet number 6.3. Since _/
the Hold flip-flops are set during the Rl-sequence, the Rl-sequence remains active
during the division,

6.7-2

$.6.1219 (M6.7

Y
0I01= DIVISOR 0010 0010 = DIVIDEND
/ J AU 8 AL LEFT SHIFT ONE PLACE
0100 PARTIAL DIVIDEND <Y

| 0
0
0100 AU 8 AL LEFT SHIFT ONE PLACE
| o!o 100 | PARTIAL DIVIDEND 2 Y
Y=-0l01|
0011 AU 8 AL LEFT SHIFT ONE PLACE

\

i

ol 001 | PARTIAL DIVIDEND 2 Y
y=-0l0l \
oou/o AU 8 AL LEFT SHIFT ONE PLACE
0100 ouo = QUOTIENT
—0000 X ___PARTIAL DIVIDEND <Y

0100 = REMAINDER

Figure 6.7-2. Example of Binary Division, 1219 Computer Method

3. Rl and Divide Sequences,

a) Data Flow Block Diagram.

1) Prior to Divide Termination. Refer to figure 6.7-3 for a
block diagram description of the execution of f = 26, 27 prior to the division
termination,

The Rl-sequence uses a memory reference to obtain the operand Y. This is the di-
visor., D receives either Y or its complement at T2.4 time, The X-D' adder is used
to subtract X- divisor. The divisor 1s made positive as it appears presented to

the adder. Therefore, if Y is positive, D receives Y' which means D' = Y; and the
adder outputs X-Dt, If Y is negative, D receives Y; and the adder output is X -
Y'. 1In this case, the adder uses the operand in its complemented form which would

cause it to become a positive value,

The dividend is also made positive prior to the division operation. The more sig-

nificant half in AU is complemented at T2.2 time if AU; is negative. The lower half
of the dividend is not actually made positive in AL, but it is complemented if nec-
essary as it is shifted into AU via X one bit at a time.

The actual division of AUAL + D' is effected by the divide sequence which runs in
parallel with the Rl-sequence., The 36-bit value in AU and AL is left shifted one
place into X and W, respctively, at T2.4 time., The value in X (partial dividend)

is compared with D' (divisor). If X is greater than or equal to D', the division

of this step can occur and is indic¢ated by the absence of an end-around borrow (EAB).
The divisor is then subtracted from the partial dividend and their difference is
placed in AU. ALpp is set to 1o in this case which is the quotient bit value for
this division step.

If X is less than D' as indicated by an end-around borrow, the division cannot occur.

0's are subtracted from the partial dividend and it is transferred unaltered from X
to AU. In this case, nothing is set in ALOO' and it remains a 0,.

6.7-3

S.6.1219 (M6.7

During each division step, the operations described above occur. The number of
steps is controlled by KO, K1, and the KO-1 adder. KO is initially set to 18p¢
and is decremented by a -1 during each division step. When it contains O, the
operation is terminated. The resulting 1870 left shifts of AU and AL will have
shifted the dividend out and properly positioned the quotient in AL. The remain-
der is the result of the operation with the last partial dividend and appears in
AU.

As discussed in a later sheet, the operand could be obtained from bootstrap or con-
trol memory.

2) Divide Termination (Final Sign Correction). When KO = O,
the division operation is terminated. AL containsthe quotient. AU contains the
remainder. If the original signs of Y (divisor) and AUAL (dividend) were unlike,
the quotient must be made negative. Since both Y and AUAL were made positive prior
to the division, the quotient should be also positive. - The quotient is left posi-
tive i1f both Yj and AUAL; had like signs. If the original signs were unlike, AL is
complemented to yield a negative quotient. The sign of the remainder in AU is ad-
justed by complementing if necessary to make it the same as AUAL;. Refer to figure
6.7-4 for a block diagram description of the final sign correction operation which
occurs at the completion of the division operation,

b) Essential Commands. The commands which effect the division op-
erations are enabled by the OXLOO and OXLOl Divide Sequence flip-flops and are
timed by the master clock phases,

Refer to table 6.7-1 for a sequential list of essential R1, next I, and divide
sequence events., Develop these commands by referring to the proper enable pages
in the logic diagrams,

When the divisor and the first partial dividend are compared at T3.2 time, Algg is
set to 1o if the division can be done (EAB). This bit position is the most signi-
ficant bit position of the quotient; and, if set, causes the quotient to be a nega-
tive value prior to final sign correction. Since both the divisor and dividend are
made positive prior to the division, the quotient should be also positive. There-
fore, 1f the first division can be done, there is an error due to the size of the
original numbers. This error condition is recorded by the Overflow flip-flop, which
is set during the first divisor and dividend comparison if there is no end around
borrow, The condition of this flip-flop can be later sensed by an f = 50:52, 50:53
instruction,

6.7-5, SUMMARY
The DIVA and DIVAB instructions use the value Up or Ugg which is formulated in D

during the I-sequence., The Rl and divide sequences and the first portion of the
next I-sequence are required to complete the executions of these instructions,

6.7-4

S.G.1219 (M6.7

x—n'
ADDER
WRITE
l 3T
Sht
L wemory [<] S (= 26 Up OF Ysg
READ f= 27, Up + Bog OR Ugg + Bicr
AU
§ TLI=T2l
C ARITH SEL)
ARITH SEL'
T4
T2.1-T3.1 D
A
Z SEL) Z SEL=Y !
0D TI.3 SET A NEG FF IF AU NEG
' ADDER T2.4 SET Y NEG FF IF Y NEG
Lrea-T3. ¥ (SENSED FROM Z SEL)
X

{ ARITH SEL >

ARITH SEL' IF Y

X CLEARED TO 0'S AT TI.3

POS, ARITH SEL IF ———|=_————
Y NEG (SENSED l—lr A T2.2 | T2.| CLEAR AU |
FROM Z SEL) | NEG FF
| seT AU | AL
L =] 17 LI W
LI /AL 7 IF A NEG FF CLEAR
AL|7 IF A NEG FF SET
D' = DIVISOR ¢ T24 T2.4 00 T2.4
D —> X=0' e—| X X = PARTIAL W
ADDER DIVIDEND ONE
, DIVISION
= . STEP
ﬁD&EVFTSORX IF EAB (Xx<D")
— / Wi7—017 > ALz | l2 IF EAB
IF EAB (X2D) \\\\(Xzo)
g 732 T3.2 l 00
T3.2 SET OVERFLOW FF J
IF EAB (x>D" AU AL

(CONTINUES UNTIL KO =0)

Figure 6.7-3.

R1 and Divide Sequence Data Flow

6.7-

(7]

S.G.1219 (M)6.7

6.7-6

AU

A

Tl i=T2.

CAR]TH SEL)

T, 4

X-D

ARITH SEL'

ADDER

X CLEARED TO 0'S
AT TI,3

(AU;

NOTE:

IF A NEG

ff SET

— — —

AU = REMAINDER

AL = QUOTIENT

NEG)

T2.1

SIGN OF AUt = SIGN OF AU;

lie oxLos ff seT
lv, 8 aU; UNLIKE

Figure 6.7-4,

: SIGNS)
L
NOTE:

AL

T2.1-T3,1
(ARITH SEL)
ARITH SEL
T2.4
D
X—D'
ADDER
X
X = 0'S
T3.2

SIGN OF AL f = NEGATIVE IF SIGNS OF
AL; AND Y ARE UNLIKE

Divide Final Sign Correction Data Flow

$.6.1219 (M6.7

TABLE 6.7-1. R1, DIVIDE, AND NEXT I SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION COMMANDS

R1 SEQUENCE

T4.4 Clear S1

T1.1 AU —>Arith Sel, Adder —>S1, Init Memory

T1.3 Set A Neg ff if AU neg, clear D, clear X, clear Z1

T1.4 Arith Sel'>D, clear KO, clear Scale Factor ff (1XL00)

T2.1 Clear AU if A Neg ff set, set KO =181, set 0XLO01 ff, Z1-> Z Sel,
' Z Sel—>Arith Sel, drop AU—>Arith Sel

T2.2 Adder—>AUif A Neg ff set, clear K1

T2.3 Set 0XL.00 ff, KO-1—>K1, clear D, clear X, clear W

T2.4 Arith Sel'—>D if Y pos*, Arith Sel—=>D if Y neg*, clear KO,

set Y Neg ff if Y neg*, AUL1—=>X, ALL1->W,
**ALyn =X if A Neg ff clear, **AL17—>Xpg if A Neg ff set

T3.1 K1—>KO, clear AU, clear AL, drop Z1— Z Sel, drop Z Sel—> Arith Sel
T3.2 Set Hold 1 f, Wy7_91—>AL17_01, ¥***13—>ALqq if EAB,

X—>AU if EAB, Adder—> AU if EAB, clear K1, set Overflow ff if EAB
'I[.‘3.3 Set Hold 2 1f, KO-1—K1, clear X, clear W

! (continues until KO = 0)

4‘4.1 Clear AU, clear AL, K1—=>KO (K0 =0)

T4.2 Wy7.01~> AL17_01, ***13—>ALqQ if EAB, X—>AU if EAB,
Adder—>AU if EAB, clear K1

T4.3 Set 0XL.02 ff, clear 0XLOO ff, KO-1—>K1, clear X, clear W

T4.4 AUL1—>X, ALL1—>W, **AL' 7—>Xq, if A Neg ff clear,
**AL1p—>Xqq if A Neg ff set

T1.1 Clear 0XLO1 ff, set 0XLO03 ff, AU—>Arith Sel, set Clear Hold ff

T1.3 Set 0XL.04 ff, clear 0XLO2 ff, clear D, clear X

T1.4 Arith Sel*>D

T2.1 Set OXL.05 ff if Y, & AUj unlike signs, clear 0XLO03 ff,
***AL —>Arith éel, drop AU—>Arith Sel, Clear AU if A Neg ff set

T2.2 Adder—>AU if A Neg ff set

T2.3 **¥kkget 0XL.06 ff, clear 0X1.04 ff, ****clear D

T2.4 **x*Arith Sel'—>D

T3.1 Clear OXLO0S5 ff, clear AL if 0XLO06 ff set, drop AL—>Arith Sel

T3.2 Adder —»AL if 0XL06 ff set

T3.3 Clear 0XLO06 ff

T4.2 Clear Hold 1 ff, clear Clear-Hold ff

I-SEQUENCE OF NEXT INSTRUCTION

T1.3 Clear Hola 2 ff

*Sign of Y is sensed from Z-Select.

**AL17 —>Xgp and AL'y1q7 > X data flow is through gate 31X00 in the logic diagrams, figure 9-33,
and is enabled by the AUL1—>X command.

***19—>» ALg data flow is through gate 83A00 in the logic diagrams, figure 9-33, and is enabled by
the W—AL command.

**+*Thege events occur only if the 0XL05 ff is set to perform final sign correction. 6.7-T7

<

\wm

N e

