
/~

S. G. l2 19 (M) 6. 1

SECTION 6 - ARITHMETIC SECTION

6.1. X-O' ADDER

6.1-1. OBJECTIVES

To present the detailed theory of operation involved in the X-O' adder.

6.1-2. INTRODUCTION

The X-O' adder is used in most addition, subtraction, multiplication, and division
operations as well as in many other operations where it is used simply as a trans­
mission path.

6.1-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-412.(3).

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.1-4. INFORMATION

a. General Description. The X-D' adder is 18 bit positions in length.
The outputs of the X and D registers are hard-wired to the adder. The logic is so
arranged that the adder actually performs the subtraction of X-O'. The adder's
output can be taken to AU, AL, P, Sl, and Zl registers.

The adder is of the end-around borrow type. When a borrow is needed from beyond
bit position 217 , it is taken end-around from bit position 200. In this sheet, a
borrow being subtracted from a bit position is described as being applied to that
bit position. Borrow and borrow request have the same meaning.

b. Adder Theory.

1. Half-Subtract Method of Subtraction. The X-O' adder employs the
half-subtract method of subtraction. Refer to table 6.1-1 for the truth table de­
scription of half-subtraction.

The half-subtract is formulated by subtracting each bit position without considering
borrows. Each bit position half-subtract is entirely independent of other bit posi­
tions.

After the half subtract for each bit posItIon is produced, borrows are considered.
If no borrow is applied to a bit position, the adder output is the half-subtract
(HS). If a borrow is applied, the adder outputs the complement of the half-sub­
tract (HS'). Refer to figure 6.1-1 for an example of the half-subtract method of
subtraction with end-around borrow.

6.1-1

S.G.1219 (M)6.1

TABLE 6.1-1. HALF-SUBTRACT TRUTH TABLE

ADDER INPUTS HALF SUBTRACT

00 0

01 1

10 1

11 0

BIT POSITIONS 17 16 15 14 13 12 /I 10 09 08 07 06 05 04 03 02 01 00

0 0 0 0 a 0 0 0 0 0

-0 0 0 0 0 0 0 0 0 0 0

HALF SUBTRACT = 0 0 0 0 0 0 0 0 0

OUTPUT TERM = HS' HS' HS HS HS HS H S H S HS' H SI H S H S HS' H S HS HS H Sl H SI

BINARY OUTPUT = 0 0 0 0 0 0 0 0 0 0

Fi gu re 6. 1-1 . Example of Half-Subtract Method of Subtraction

The result produced is the same as can be obtained by the normal pencil and paper
method. A summation of the borrow conditions in this example is as follows:

a) A borrow is applied to bit position 05 from bit position 04.

b) A borrow is applied to· bi t posi tions 08 and 09 from bi t posi-
tion 07.

c) A borrow is applied to bit positions 17 and 16 and end-around
to 01 and 00 from bit position 15.

Hereafter, the term stage is used in place of bit position.

2. Generation of a Borrow Request. There is only one bit configuration
which will generate a request for a borrow, referred to simply as a borrow. A bor­
row is generated if, in the same stage, X is 02 and D' is 12 , The number of stages
affected by this borrow is dependent upon the configurations of the more Significant
stages.

3. Borrow Enable. There is only one bit configuration which will satis-

--,

~l

fy or absorb a borrow. If a borrow is applied to it, the bit inputs can supply the \.J'
required 12 without propagating the borroN request to the next higher stage. A
borrow enable condition exists if, in the same stage, X is 12 and D' is 02. In

6.1-2

S. G. 1219 (M)6.1

this concli ti01l
1

a bOl'row will affect only this stage and will not be transrni tted to
ni gher stage s .

c. Detailed Analysis.

1. Adder Logic Technigue.

a) Formulation of HS and HS'. Each adder stage has logic circuitry
which produces the half subtract and its complement. Refer to figure 6.1-2 for an
example using stage 00.

In this example 10AOO can be considered to test Xoo and D'OO for the two possible
configurations resulting in HS = 12. With the use of IlAOO, high levels for both
HS = 12 and HS' = 12 are available.

b) Application of Borrow. Either the HS or HS' result is outputted
from the adder depending upon the application of borrows to the particular stage.
If no borrow is applied, HS is the final result. If a borrow is applied, HS' is the
final result. Refer to figure 6.1-3 for an example.

If no borrow is applied to stage 00, 13AOO is a high level input and 12AOO is a low
level input. This condition allows the adder output to be determined by input
10AOO. 14AOO will output a low level if HSOO = 12.

In this example, the output is taken to AL. AL is initially cleared to O's. Then
the Adder ~AL signal occurs. ALOO is set to 12 only if 14AOO outputs a low level
which represents the adder output of 12.

Ii a borrOl,1T is applied to stage 00, 12AOO is a high level input and 13AOO is a low
level input. This condition allows the adder output to be determined by input
llAOO. 14AOO will output a low level if HS'OO = 12.

2. Adder Layouto The X-D' adder is divided into three sections com­
prised of stages 05-00, 11-06, and 17-12. Each section has circuitry to sense bor­
rows applied frDm other sections. Refer to figure 6.1-4 for a block diagram illus­
trating the section interconnection. Inter-section borrow requests are discussed
later in this sheet.

Each stage of the adder senses borrows generated by the less significant stages in
the section and the enable conditions of these bits in order to detect borrows which
might affect its own output.

So as to speed the borrow propagation time, each 6-stage section is further separa­
ted into two groups.

3. Individual Stage.

a) Stage 00. Refer to figures 6.1-2, 6.1-3, and logic diagrams,
figure 9-94. Review the operation of this stage as described previously. A borrow
applied to this stage is always an end-around borrow.

b) Stage 01. Refer to figure 6.1-5 and logic diagrams, figure
9-94. The only difference from stage 00 is the borrow sensing logic. 12AOl out­
puts a high level if a borrow is applied. There are only two possible conditions
which can apply a borrow to this stage. Refer to table 6 0 1-2 for these conditions.

6.1-3

S. G. 1219 (M) 6. 1

OOXOO

L~XOO =02

H ~ HS~o :: 12

OIXOO

L~ XOO = 12

01000

L~D' =0
00 2

Figure 6.1-2. X-D' Adder HS and HS' Logic, Stage 00

6.1-4

S. G.' IQ,19 ,eM) 6,. L

o
OXAOO ~LGO FUP-FLOP

s

H ~ CLEAR AL

L ==:> ADDER ~.A L

12AOO
H ==;> END AROUND BORROW

IOAOO

H=> HSOO = '2

13AOO

H ~'NO·'END A ROUND BORROW

IIA,OO

'H HSIOO = '1 2

Fi.gure: 6.1.,..3,~,~ X:-D' Adder 9·u,tp.ut ,Lo,gic" .Stage 0.0, I

601-~

S. G. 1219 (M) 6 . 1

NO ENABLES NO ENABLES NO ENABLES

SECTION SECTION SECTION
17 -12 11-06 05 -00

{ ~ ~

BRW REQ BRW REQ BRW REQ

BRW BRW BRW

U , r
"

'r ., 'r

Figure 6.1-4. X-D' Adder Inter-Section Block Diagram

6.1-6

L ~ (X - D')01 = 12

H ~ NO BRW -----701

H ~ BRW~OI

01001

BOTH L~ (-~) = BRW

REQ FROM OO~

L~ 0101=02

S.C.12L9 (M)6.1

BOTH L~BRW~OI

/ FROM EA8

13AOO

L~ EAB

[OAOO

L9 HSOO=02 =(-~ OR -1)

IIAOO

L ~ HSOO = 12 = (-J. OR -k)

Figure 6.1-5. X-D' Adder, Stage 01

6.1-7

S . G. 12 1 9 (M) 6. 1

TABLE 6.1-2. X-D' ADDER, BORROWS APPLIED TO STAGE 01

CONDITIONS INPUT LEVELS TO 12AOI

Brw Req from 00 00000 & llAOO = L's

No enable & no Brw 10AOO & 13AOO = L's
Req in 00, EAB

c) Stage 02. Refer to figure 6.1-6 and logic diagrams, figure
9-94. 12A02 outputs a high level if a borrow is applied. There are only three
possible conditions which can apply a borrow to this stage. Refer to table 6.1-3
for these conditions.

TABLE 6.1-3. X-D' ADDER, BORROWS APPLIED TO STAGE 02

CONDITIONS INPUT LEVELS TO 12A02

Brw Reg from 01 00001 & llAOl = L's

No Enable & no llAOO, 00000, & 10AOl = L's
Brw Req in 01,
Brw Req from 00

No Enable & no 10AOl, 10AOO, & 13AOO = L's
Brw Req in 01 &
00, EAB

d) Stage 03. Each 6-stage section is separated into two groups, as
mentioned previously. The three stages discussed above comprise one group. Stage
03 is the start of the second three-stage group. So as to speed the borrow request
propagation, the stage 03 borrow request detection logic is directly fed by the X
and D register flip-flops for stages oi through 00. Refer to figure 6.1-7 and logic
diagrams, figure 9-91,for a portion of the stage 03 logic.

This logic simply provides stage 03 with the borrow request and enable status of
stages 02 through 00. 20AOO determines if any of these lower three stages has an
enable condition which would satisfy and stop a borrow request. An enable condition
exists if X is 12 and D' is 02 in the same stage. If all input OR gates to 20AOO
are satisfied, each of the stages contains no enable. 21AOO passes this information
to the remainder of the stage 03 logic.

30AOO is used to detect borrows applied to stage 03 from within stages 02 through
00. Refer to table 6.1-4 for these borrow conditions.

6.1-8

,~,

H ~ NO BRW --? 02

1\ A02

H ~ BRW ----702

IOA02

H ~ HS02=1 2

BOTH L =;> BRW ~ 02 FROM 01 ---.

S . G. 12 1 9 (M) 6 . 1

L~ BRW ~ 02 FROM 00

~ALL L ~ BRW ----;. 02 FROM EAB

13AOO

L='> EAB

10AOO (0 1)
L=;> HSOO =02 = -Q OR -1

10AOI (0 I)
L ~ HS 01 = O2 = - Q OR - 1

00000

L ~ 0
1

00 =1 2

IIAOO
BOTH L =;>(-~) = BRW REQ FROM 00

L =;> HSOO =12

BOTH L ~(-l) = BRW REQ FROM 01

Figure 6.1-6. X-D' Adder, Stage 02

6.1-9

S.G.1219 (fV1)6.1

6.1-10

H::::;> BRW ~ 03 FROM 02 -00

BOTH L => BRW REQ
FROM 00

IOA02 (0 I)
L=> HS02 =02 = -Q OR -1

BOTH L => BRW REQ
FROM 01

BOTH L => BRW REQ FROM 02

H ~ NO ENABLES IN 02 -00

L=> NO ENABLES IN 02-00

EITHER H ~
H~I~b~ =12}

OIXOO NO ENABLE
IN 00

H ~ XOO=02

EITHER H ~ NO
ENABLE IN 01

EITHER H => NO
ENABLE IN 02

Figure 6.1-7. X-D' Adder, Stage 03 Preliminary
Borrow Request Detection Logic

S. G.1219 (M)6.1

TABLE 6.1-4. X-D' ADDER, BORROWS APPLIED TO STAGE 03 FROM 02-00

CONDITIONS INPUT LEVELS TO 30AOO

Brw Req from 02 00X02 & 00D02 = L's

No enable & no 00X01, 00D01, & 10A02 = L's
Brw Re q in 02,
Brw Req from 01

No Enables in 02-00, OOXOO, OODOO, & 20AOO = L's
Brw Req in 00

Refer to figure 6.1-8 and logic diagrams, figure 9-94.

12A03 receives the outputs of 12AOO and 30AOO discussed above. If a borrow is ap­
plied to stage 03, 12A03 outputs a low level. There are two conditions which can
create this borrow. Input 30AOO satisfies 12A03 if a borrow is generated within
stages 02 through 00 and is propagated from this group.

Input 12AOO applies a borrow to this stage if there is an end-around borrow which
cannot be satisfied within stages 02 through 00. 21AOO inputs a high level to en­
able the borrow propagation to stage 03.

e) Stages 17-04. The logic for these stages is similar to that
described above. Refer to logic diagrams, figures 9-91 through 9-96 for the logic
concerning these stages. Inter-section borrows are discussed later in this sheet.

4. Generation of Inter-Section Borrow and Enable Signals. Section 05-
00 is used for an example. Refer to figure 6.1-9 and logic diagrams, figure 9-91.

The logical functions of 30A03, 20A03, and 21A03 are the same as for 30AOO, 20A00
1

and 21AOO described previously. Only the stage numbers are different. Therefore,
22AOO outputs a low level if there are no enables in this section (05-00). This
signal indicates to other sections that if a borrow should be applied to section 05-
00, it would not be satisfied and would be propagated to the next higher section.

31AOO outputs a low level to indicate that a borrow request is generated in section
05-00 and is not satisfied within this section. Therefore, this low level would
apply a borrow to the next higher section. Refer to table 6.1-5 for the borrow
generating conditions.

TABLE 6.1-5. X-D' ADDER, BORROW REQUESTS FROM SECTION 05-00

CONDITIONS INPUT LEVELS TO 31AOO

Brw Req from 05-03 30A03 = H

No Enables in 05-03, 30AOO & 21A03 = H's
Brw Req from 02-00

6.1-11

S. G. 1219 (M)6.1

H ~ BRW ~ 03

H~ NO BRW ----:.03

IIA03

H::;> HS~3 = 12

BOTH

30AOO

H ~ BRW ~ 03 FROM 02 -00

21AOO

H ::::> NO ENABLES 1 N 02 - 00

Figure 6.1-8. X-D' Adder, Stage 03 Final Portion

6.1-12

S.G.1219 (M)6.1

L~ BRW REQ ~ OTHER
SECTIONS FROM 05 -00

30AOO

H ~ BRW REQ FROM 02-00

30A03
H => BRW REQ FROM 05 -03

L ~ NO ENABLES IN 05-00

22AOO

21AOO

H ~ NO ENABLES IN 02-00

21A03

H ~ NO ENABLES IN 05 - 03

Figure 6.1-9. X-D' Adder, Inter-Section Borrow
Request and Enable Generation

6. 1-13

S.G.1219 (M)6.1

The other two sections generate these same borrow request and enable signals in the
same manner. Section 17-12 considers two additional factors in developing these
outputs. This section is affected by the status of the Inhibit EAB and Insert EAB
flip-flops. If the Insert ·EAB flip-flop is set, a simulated borrow request is gen­
era ted by secti on 17-12. If the Inhibi t EAB fli p-flop is set, a borrol,1! request
(other than the simulated request) from section 17-12 is inhibited. Also, this
section is forced to indicate that it contains an enable condition. This simulated
enable causes a borrow which is applied to this section from either section 11-06 or
section 05-00 to be satisfied. Thus, an end-around borrow is inhibited.

Refer to logic diagrams, figure 9-93 for the effect of the Inhibit EAB and Insert
EAB flip-flops.

22A12 outputs a low level if there are no enables in section 17-12 and the Inhibit
EAB flip-flop is clear. 31A12 outputs a low level if there is a borrow request
from section 17-12 and the Inhibit EAB flip-flop is clear or if the Insert EAB
flip-flop is set.

Refer to logic diagrams, figure 9-92 for the borrow request and enable signals gen­
eration logic for section 11-06.

5. Detection of Inter-Section Borrow Requests. Each section evaluates
the status of the other sections to determine whether there is a borrow applied to
it. A borrow is applied to a section only if there are no enable conditions exist­
ing between that section and the section which generated the borrow request. Refer
to figure 6.1-4 for a review of the section interconnection.

Refer to figure 6.1-10 and logic diagrams, figures 9-94 through 9-96 for the inter­
section borrow request detection logic.

Each gate shown in figure 6.1-10 senses three conditions which can apply a borrow
to its section. Refer to table 6.1-6, 6.1-7 and 6.1-8 for these conditions.

6.1-5. SUMMARY

The X-D' adder is an 18-bit, end-around borrow adder. It is separated into three
sections so as to speed the borrow request signal propagation. The X and D regis­
ters are hard-wired inputs to the adder logic. The adder's result is not used until
the desired values have been entered into X and D and enough time has expired to al­
low propagation of any borrows.

6. 1-14

S. G. 1219 (M) 6. 1

H =;> BRW -----7 SECTION 05- 00 (EAB)

22A06 L~ NO ENABLES IN It - 06

31 AOO L ~ BRW REQ FROM 05-00

22A 12 L ~ (NO ENABLES IN 17 -12) . (IN H IB EAB FF CLEAR)

31 A06 L ~ BRW REQ FROM 11- 06

31AI2 L=> (BRW REQ FROM 17-12)·(INHIB EAB FF CLEAR)+(INSERT EAB FFSET)

H => BRW -7 SECTION 11-06

22AI2 L==> (NO ENABLES IN 17-12)'(INHIB EAB FF CLEAR)

3tA06 L~ BRW REQ FROM 11-06

22AOO L~ NO ENABLES IN 05-00

31AI2 L~ (BRW REQ FROM 17-12)'(INHIB EAB FF CLEAR)+(INSERT EAB FF SET)

31AOO L~ BRW REQ FROM 05-00

H => BRW ~ SECTION 17 -12

22AOO L ~ NO ENABLES IN 05 -00

31Al2 L~ (BRW REQ FROM 17-12)·(INHIB EAB FF CLEAR)+(\NSERT EAB FFSET)

22A06 L~ NO ENABLES IN 11- 06

31AOO L=;> BRW REO FROM 05-00

31A06 L~ BRW REO FROM 11-06

Figure 6.1-10. X-D' Adder, Inter-Section Borrow Request Detection

6.1-1~

S. G. 1219 (M) 6 . 1

TABLE 6 0 1-6. X-D' ADDER, INTER-SECTION BORROWS APPLIED
TO SECTION 05-00

SECTION 17-12 SECTION 11-06 SECTION 05-00 INPUT LEVELS TO

Brw Req 31A12 = L

No Enables Brw Req 31A06 & 22A12 =

12AOO

L's

No Enables No Enables Brw Req 22A12, 31AOO, & 20A06 = L' s

TABLE 6.1-7. X-D' ADDER, INTER-SECTION BORROWS APPLIED
TO SECTION 11-06

SECTION 17-12 SECTION 11-06 SECTION 05-00 INPUT LEVELS TO

Brw Req 31AOO = L

Brw Req No Enables 31A12 & 22AOO =

12A06

L's

No Enables Brw Req No Enables 22AOO, 31A06, & 22A12 = L' s

TABLE 6.1-8. X-D' ADDER, INTER-SECTION BORROWS APPLIED
TO SECTION 17-12

SECTION 17-12 SECTION 11-06 SECTION 05-00 INPUT LEVELS TO

Brw Req 31A06 = L

No Enables Brw Req 31AOO & 22A06 =

12A12

L's

Brw Req No Enables No Enables 22A06, 31A12, & 22AOO=L's

6. 1-16

6.1-6.

S.G.1~19 (M)6.1

NAME:
STUDY QUESTIONS

a. Given: ALi = 612160

b.

SR = 010102
instruction = 141000
content of address 21000 = 161307

Refer to logic diagrams I figures 9-91 through 9-96. Give the output
logic levels for the following gates which exist during the time that
the X-D' adder is used in the execution of the above instruction to
add AL + Y.

31AOO = 31A12 =
22AOO = 22A12 =

31A06 = 12AOO =
22A06 = 12A06 =

12A12 =
Given conditions same as above.

At the completion of the instruction , the final content of AL is
7734638' Refer to logic diagrams I figure 9-94. Assume each of the
following malfunctions to occur individually. Determine whether each
malfunction would cause the erroneous AL result. Indicate your an­
swers by writing "yes" or TlnoTI beside each malfunction condition.

Grounded Output Cons tan t Low Level Output

12AOO 12AOO

lOA02 lOA02

llA02 llA02

12A02 12A02

13A02 13A02

14A02 14A02

6.1-17

~.G.12l9 (M)6.l

c.

6.1-18.

Refer to logic diagrams, fi gures 9-94 and 9-96.

Given: l2AOO output is a low level.
l2A12 output is a high level.
14A15 output is a low level.

bit positions 217 216 2
15 214 2

13 212

X = ? I 0 ? 0 1

D = ? 0 0 ? 1 0

There are no malfunctions. Use the above information to determine the
binary contents of X and D bit positions 217 and 214. Indicate your
results below. Notice that D, rather than D', is referenced.

Xl7 =

X14 =

D17 =

D14 =

-~-

S. G. 1219 (M) 6.2

SECTION 6 - ARITHMETIC SECTION

6.2. INSTRUCTION EXECUTION OF SKPODD, SKPEVN AND PARITY EVALUATOR

6.2-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of the parity
instructions and the parity evaluator.

6.2-2. INTRODUCTION

Parity refers to the number of 12's, thus, every word has either odd or even parity.
The parity evaluation function of the 1219 is useful in determining whether a data
word has lost or gained a 12.

6.2-3. REFERENCES

UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

r~ 6.2-4. INFORMATION

a. SKPODD, SKPEVN Instructions.

1. General Description.

a) Instruction Interpretation.

1) SKPODD, f = 50:54. This instruction formulates the logical
product (AND function) of AU . AL. The parity of their result is evaluated and
causes a program skip of the next sequential instruction if the parity is odd. The
contents of AU and AL are not disturbed.

2) SKPEVN, f = 50:55. Except for the effect of the parity
evaluation, this instruction is the same as f = 50:54. A program skip is per­
formed if the parity is even.

the I-sequence.
sary.

2.

b) Execution Sequence (I). All operations are performed within
Only the one memory reference to obtain the instruction is neces-

Detailed Analysis.

a) Data Flow Block Diagram. Refer to figure 6.2-1 for a block dia­
gram description of the execution of f = 50:54, 50:55.

Most of the I-sequence operations are as previously described. If necessary, refer
to study guide sheet number 5.4 for a detailed analysis.

S . G. 12 1 9 (M) 6 . 2

WRITE

l • MAIN I ZI - MEMORY
READ

1 T2.1 -T3.1

Z SEL

Z SE L II - 6
T2.4

F

f= 50:54,50:55

AU

TI.I-T2.1

r ARITH SEL -- 1
ARITH SEL = AU • AL

TO PARITY EVALUATOR

TI.3 CLEAR PARITY FF
TI.4 SET PARITY FF IF ARITH SEL

HAS ODD PARITY

I
I T4.1 CLEAR P

- -1
I T4.2 I Pf = Pi +2 P

I IF PA R ITY CON DITION SATI S FI ED *'
L __ _J

ALI

NOTE: * SKIP IF: (f = 50: 54)' (PARITY FF SET)
(f = 50: 55) . (PARITY FF CLEAR)

SI = P i

I
- - - l TI.I T2.2

~ SI -- -. P ~

I I I
) .~ TI.4 I

/ I
/ D ADV P SEQ I /

(EAB INHIBITED
• X-D

I

I TI.4-T2.3 ADDER

I t
I X

I X IS CLEARED T o OIS

L AT TI.3

T3.4

D

X-D'
ADDER

x

D = Pi + I

EAB INHIBITED
T3.4 - T4.3

X CLEARED TO OIS AT T3.3

I
I
I
I
I

J

Figure 6.2-1. I-Sequence Data Flow for f = 50:54, 50:55

6.2-2

'J

During the set time of the T14 flip-flop (Tl.1-T2.1) both
arithmetic-select which formulates their logical product.
used to record the parity of this result. This flip-flop
50:55 skip evaluation.

S.G.1219 (M)6.2

AU and AL are applied to
The Parity flip-flop is

affects only the f = 50: 54,

The X-D' adder is used to increment P by +1 a second time just as is done by the
advance-P subsequence. If P receives the result of this second incrementation, the
next sequential instruction will be skipped.

As discussed in a later sheet, the instruction could be obtained from bootstrap or
control memory.

b) Essential Commands. Refer to table 6.2-1 for a sequent{al list
of essential I-sequence events. Develop these commands by referring to the proper
enable pages in the logic diagrams. The parity evaluator is presented later in
this sheet.

b. Parity Evaluator.

1. General Description. The parity evaluator has hard-wired inputs
from arithmetic-select. The parity logic is comprised of several stages. The ini­
tial stages separate the arithmetic-select inputs into groups of two bits each. The
parity indications from these groups are then combined into sections of three groups
each. Total parity is then evaluated from the combination of the three sections.
Refer to figure 6 0 2-2 for an example.

ARlTH SEL (AU. AL) 01 10 00 00 II II 01 II II
(BINARY) V V V V V V.V V V

0 0 E E E E 0 E E GROUP PARITY
~\ 'T J '---y---J

E E 0 = SECTION PAR ITY
\. J

T
ODD TOTAL PARITY

NOTES: liE II MEANS EVEN.

Figure 6.2-2. Parity Evaluation Example

2. Detailed Analysis.

a) Group Parity. Each group is comprised of two bits, Bits 1 and
o are used for an example. Refer to figure 6.2-3 and logic diagrams, figure 9-101.

15XOO tests bits 1 and 0 of arithmetic-select for the two possible even parity con­
ditions. Refer to table 6.2-2 for the four possible configurations of these bits.

S.G.1219 (M)6.2

TABLE 6.2-1. I SEQUENCE ESSENTIAL COMMANDS FOR f = 50:54, 50:55

TIME NOTATION

T4.4

Tl.l

T1. 3

T1. 4

T2.1

T2.2

T2.3

T2.4

T3.1

T3.3

T3.4

T4.1

T4.2

T4.3

COMMANDS

Clear Sl

P ~Sl, Ini t Memory, ~~set Incr P ff, AU ~ Ari th Sell
AL ~ Ari th Sel

*Clear D, *clear X, clear Zl, clear F, *set OXLll ff,
clear Parity ff

~:~PL ~ DL, ~:~Pu ~ DU, ~:~set Inhib EAB ff, set Pari ty ff
if Arith Sel = odd parity

~:~Clear P, Zl ~ Z Sell ~:~clear Incr P ff, drop AU Ari th
Sell drop AL---;;.Ari th Sel

*Clear OXLll ff, *clear Inhib EAB ff

Drop Zl ~Z Sel

Clear D~ clear X

Clear P if skip satisfied**

Adder ~P if skip satisfied~:~*

Clear Inhib EAB ff

* These events are concerned with or are controlled by the advance-P subsequence.

** Skip condition is satisfied if:

6.2-4

(f = 50:54) . (Parity ff set)
(f = 50: 55) . (Par it Y ff c 1 e ar)

S.G.1219 (M)6.2

TABLE 6.2-2. PARITY EVALUATOR, GROUP 1 & 0 CONDITIONS

21 2
0

GROUP 15XOO
PARITY OUTPUT

0 0 Even H

0 1 Odd L

1 0 Odd L

1 1 Even H

The logic for the other groups is the same except for the bits being sensed.

b) Section Parity. Each section is comprised of three groups (six
bits). Section 5-0 is used for an example. Refer to figure 6.2-3 and logic dia­
grams, figure 9-101.

18XOO, 17XOO, and 17X04 test the parity conditions of the three groups (5,4; 3,2;
and 1,0). Refer to table 6.2-3 for the eight possible parity configurations.

TABLE 6.2-3. PARITY EVALUATOR, SECTION 5-0 CONDITIONS

GROUPS SECTION OUTPUT LEVELS

5,4 3,2 1,0 PARITY 17X04 17XOO 18XOO

Odd Odd Odd Odd L L H

Odd Odd Even Even L H L

Odd Even Odd Even L H L

Odd Even Even Odd L L H

Even Odd Odd Even. L H L

Even Odd Even Odd L L H

Even Even Odd Odd L L H

Even Even Even Even H L L

The logic for the other sections is the same except for the bits being sensed.

c) Total Parityo Total parity is the combined evaluation of the
three sections. Refer to figure 6.2-4 and logic diagrams, figure 9-101.

S. G. 1 ~ 19 (M) 6 . 2

6.2-6

BOTH L ~ ODD 5-0

~

15X04

L~ ODD 5,4

16X02

L~ EVEN 3,2

15X02

L~ ODD 3,2

16X02

L ==> EVEN 5,4

L~ EVEN 1,0

L ~ ODD 1,0

L => EVEN 5-0

13XOO*

L =?> AS OO = 12

13XOI*

L=?> AS OI =1 2

14XOO*

L~ AS
OO

= O
2

14XOI*

L =;> AS OI = O2

NOTES: * I NPUTS LABELED "AS" ARE FROM ARITH M ETIC SELECT.

"EVEN 1,0" MEANS EVEN· PARITY IN 21 AND 20 OF ARITHMETIC SELECT.

Figure 6.2-3. Parity Evaluator, Section 5-0

S.G.1219 (M)6.2

The gates shown in figure 6.2-4 test the parity conditions of the three groups for
the four possible odd parity configurations. Refer to table 6.2-4 for the eight
possible parity configurations.

TABLE 6.2-4. PARITY EVALUATOR, TOTAL PARITY CONDITIONS

SECTIONS TOTAL OUTPUT LEVELS

17-12 11-6 5-0 PARITY 19XOO 19X04 19X08 19X12 20XOO

Odd Odd Odd' Odd H L L L L

Odd Odd Even Even L L L L H

Odd Even Odd Even L L L L H

Odd Even Even Odd L L L H L

Even Odd Odd Even L L L L H

Even Odd Even Odd L L H L L

Even Even Odd Odd L H L L L

Even Even Even Even L L L L H

6.2-5. SUMMARY

The output of 20XOO is the total parity indication of arithmetic-select (AU. AL).
The Parity flip-flop is cleared at Tl.3 time of the I-sequence and is set at Tl.4
time if total parity is odd. The state of this flip-flop only affects the execution
of the f = 50:54, 50:55 instructions to condition the program skip.

S.G.l~19 (M)6.2

L ~ ARITH SEL = ODD PARITY

20XOO

("r-Il
--------------------------~ ~------------------------~

19XI2 19X08 19X04 19XOO

L L L L L L L L L L L L L L ~ L L 4
------------~~~+-~------------~ ~----------~~~~---

y
17XI0

)

80TH L =;:. ODD II - 6

18X06

L~ EVEN 11-6

18XOO
L=;;> EVEN 5-0

17XI6 }
BOTH L =;> ODD 17-12

""---- I 7 X I 2

18XI2

L~ EVEN 17-12

Figure 6.2-4. Parity Evaluator, Final Stage

6.2-8

17XOO 17X04
"---v"--)

BOTH L ~ ODD 5-0

/--, .. ,

S.G.1219 (M)6.2

NAME:

6.2-6. STUDY QUESTIONS

a. Given: AU = 461367

b.

AL = 763752
instruction = 505400

Refer to logic diagrams, figure 9-101. Give the output logic levels
for the follovJing gates which exist at T1.4 time during the I-sequence
of the above instruction.

15XOO -= 18X06 =

15X02 = 17X12 =
15X04 = 17X16 =
17XOO = 18X12 =
17X04 = 19XOO =
18XOO = 19X04 =
17X06 = 19X08 =
17X10 = 19X12 =

20XOO =
Given conditions same as above.

When the instruction is executed, a program skip is performed. Refer
to logic diagrams, figure 9-101. Determine whether each malfunction,
occurring individually, would cause the erroneous program skip. Indi­
cate your answers by writing "yes" or "no" beside each malfunction
condition.

Grounded Output Constant Low Level Output

15XOO 15XOO

16X02 16X02

16X04 16X04

16XOO 16XOO

17X04 17X04

17XIO 17XIO

18X12 18X12

19XOO 19XOO

6.:2-9

.: ,

t

l
I
I

!
i

t

t ,
;
1

i
~

1
;
t
I
I

t

I
t,
. t

I·

i
1
I

t
j
1

"
. :,': ~"
. ,l

i

. : .. '"

S.G.1219 (lYI)6.3

SECTION 6 - ARITHMETIC SECTION

6.3. INSTRUCTION EXECUTION OF RSHAU, RSHAL, RSHA, LSHAU, LSHAL, LSHA

6.3-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 50:41-43, 50:45-47.

6.3-2. INTRODUCTION

These instructions perform either right shifts or left shifts of the content of AU,
AL, or AU and AL together.

6.3-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4c(2) and 4-7,
table 4-11.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.3-4. INFORMATION

a. General Description.

1. Instruction Interpretation.

a) RSHAU, f = 50:41. This instruction right shifts with sign ex­
tension, the content of AU, the number of places specified by the six least signi­
ficant bits (k) of the instruction word. The AU bit positions vacated are filled
with the sign bit of the original value. Those bits shifted beyond AU

17
are lost.

b) RSHAL,f = 50:42. Except for the value shifted, this instruc­
tion is the same as f = 50:41. The content of AL is right shifted with sign ex­
tension.

c) RSHA, f = 50:43. Except for the value shifted, this instruc­
tion is the same as f = 50:41. The combined content of AU and AL is right shifted
with sign extension. AU is the more significant value .. Those bits shifted beyond
AU17 enter the left end of AL. The AU bits positions vacated are filled with the
sign bit of the original AU value. Those bits shifted beyond ALOO are lost.

d) LSHAU, f = 50:45. This instruction circularly left shifts the
content of AU the number of places specified by the six least significant bits (k)
of the instruction word. Those bits shifted beyond AU35 enter the right end of AU.

,~\ e) LSHAL, f = 50:46. Except for the value shifted, this instruc-
tion is the same as f = 50:45. The content of AL is circularly left shifted.
These bits shifted beyond AL17 enter the right end of AL.

6.3-1

S. G. 1219 (M) 6.3

f) LSHA, f = 50:47. Except for the value shifted, this instruc­
tion is the same as f = 50:45. The combined content of AU and AL is circularly
left shifted. Those bits shifted beyond AL17 enter the right end of AU. Those
bits shifted beyond AU35 enter the right end of AL.

2. Execution Sequences.

a) I-Sequence. During the I-sequence which obtains the instruc­
tion from memory, the shift count (k) is placed in KO.

b) Shift Sequence. The shift sequence uses a special timing which
runs parallel to main timing and causes the shifting according to the shift count in
KO.

b. Detailed Analysis.

1. I-Sequence. Most of the I-sequence operations are as previously dp.­
scribed. If necessary, refer to study guide sheet number 5.4 for a detailed de­
scription.

KO receives the six least significant bits of the instruction word from Z-select.
This value is the shift count. The function code in F determines the type of shift.
The actual shifting is performed by the shift sequence which is initiated during the
I-sequence. A detailed' analySis of the shift sequence operations is presented later
in this sheet.

2. Effect of Hold Flip-Flops. As is developed later in this sheet, the Hold
I and Hold 2 flip-flops are set during the shifting operation. These flip-flops ~
keep the machine in the I-sequence and prevent the reading of the next instruction
until the shift operation is completed. Refer to logic diagrams, figure 9-28 for

. the Hold I and Hold 2 flip-flops.

These flip-flops both have outputs to the logic on figure 9-14. This logic supplies
timing and enables for the I-sequence operations necessary to obtain next instruc­
tion. When the Hold flip-flops are set, their high level outputs disable these 1-
sequence operations. Among the events which are prevented are ini tiate-memory,
advance-P subsequence, clear-F, Z-select F, clear-KO, and Z-select KO. Refer
to the proper enable pages in the logic diagrams to develop the disable function of
these events.

As long as the Hold flip-flops are set, the shift function code and the remaining
shift count are retained in F and KO, respectively.

During the execution of a shift instruction, the F register indicates a shift func­
tion code which does not require any main timing sequence other than the I-sequence.
Therefore, as the shifts are being performed, the I-sequence flip-flop is set for
each main timing cycle. Refer to logic diagrams, figure 9-12 to develop the setting
of the .I-sequence flip-flop for each main timing cycle as long as F specifies f =
50:41-43, 50:45-47.

3. Shift Sequence.

a) Timing.

6.3-2

.~

S. G. 1219 (M) 6 .3

b) Shifting Operations.

1) Essential Commands. The commands which shift AU and AL by
means of X and WI respectivelYI are enabled by the OiLOO and OXLOl Shift Sequence
flip-flops and are timed by the master clock phases. Refer to table 6.3-4 for a
sequential list of essential shift sequence events. Develop these commands by re­
ferring to the proper enable pages in the logic diagrams.

TABLE 6.3-1. I AND SHIFT SEQUENCE ESSENTIAL COMMANDS
WITH INITIAL SHIFT COUNT = 0

TIME NOTATION COMMANDS

I SEQUENCE

T1. 4 Clear KO

T2.3 Clear OXLOO ff

T2.4 Z Se1
5

_
0
~ KO (KO = 0)

T3.4 Set Hold 1 ffl clear Scale Factor ff (lXLOO)

T4.1 Set OXLOI ff

T4.3 Set OXL02 ffl set Hold 2 ff

TI.I Set Clear Hold ffl clear OXLOI ff

T103 Clear OXL02 ff

T4.2 Clear Hold 1 ffl clear Clear Hold ff

I-SEQUENCE FOR NEXT INSTRUCTION

T1. 3 Clear Hold 2 ff

2) Data Flow Block Diagram. Refer to figure 6.3-2 for a block
diagram description of the shift sequence operations.

These diagrams illustrate the data flow for a one place shift for each of the shift
function codes. One such flow of data can occur per master clock cycle. This data
flow is continually repeated until the Shift Sequence flip-flops are cleared at the
termination of the shift count.

6.3-5

S.G.1219 (M)6.3

TABLE 6.3-2. I AND SHIFT SEQUENCE ESSENTIAL COMMANDS
WITH INIT[AL 811FT ·COUNT 1 a

TIME NOTATION COMMANDS

I SEQUENCE

T1.4 Clear KO

T2.3 ~1'''' Clear OXLOO ff ~ IJ /f)
..,Jc~ ('ft

T2.4 Z Sel5_0~KO/'
~G()rrl ",PI.

5 cO
"IO\.D ff I~

T3.4 Set Hold 1 ff, clear Scale Factor ff (lXLOO) - stll

T4.1 Set OXLOl ff

T4.2 Clear Kl

T4.3 Set OXLOO ff, set Hold 2 ff, KO-l~Kl, *clear X, *clear W

T4.4 Clear KO, *shift A-+X/W

T1.1 Kl~KO, *clear A

T1.2 Clear Kl, *X/W ~A

T1.3 KO-l~Kl, *clear X, *clear W

T1.4 Clear KO, *shift A-+X/W

T2.1 Kl-+KO, *clear A

T2.2 Clear Kl, *X/W ~ A
I
I
I (continue until Kl = 0)
I
I
I

TX.3 KO-l~Kl (Kl = 0), *clear X, *clear W

TX.4 Clear KO, *shift A-+X/W

TX.l Kl~KO (KO = 0), set Clear-Hold ff, *clear A

TX.2 Clear Kl, *X/W~ A (Af)

TX.3 KO-l ~ Kl, clear OXLOO ff, set OXL02 ff, *clear X, *clear W

TX.4 *Shift A~X/W (not used)

TX.l Clear OXLOl ff

TX.3 Clear OXL02 ff
I
I

next T4.2 Clear Hold 1 ff, clear- Clear- Hold ff

I SEQUENCE FOR NEXT INSTRUCTION

T1.3 Clear Hold 2 ff

*These events pertain to the actual shifting of AU and AL and are discussed later in this sheet.

6.3-6

S. G. 1219 (M) 6.3

AU AL AU AL

35 17 35

17 (04 17 17 17

x w x w

AL AU AL

O. RSHAU, b. RSHAL, C. RSHA,

f = 50:41 f= 50:42 f = 50: 43

(',

AU AL

35 17

04 00
,...........~---L,

04 00
r--oL-_-.I...,

x w x w

AU AL AU AL

d. LSHAU, e. LSHAL, f. LSHA,

f = 50: 45 f = 50: 46 f= 50:47

Figure 6.3-2. Shift Sequence Data Flow, One Place Shift

6.3-7

S. G. 1219 (M) 6.3

TABLE 6.3-3. EXECUTION TIME OF f = 50:41-43, 50:45-47

NUMBER OF MAIN EXECUTION
SHIFT COUNT

IO TMG. CYCLES (I SEQ.) TIME (f-Ls)

0 through 4 2 4

5 through 8 3 6

9 through 12 4 8

13 through 16 5 10

17 through 20 6 12

21 through 24 7 14

25 through 28 8 16

29 through 32 9 18

33 through 36 10 20

37 through 40 11 22

41 through 44 12 24

45 through 48 13 28

49 through 52 14 30

53 through 56 15 32

57 through 60 16 34

61 through 63 17 36

6.3-5. SUMMARY

The f = 50:41 -- 50:43, 50:45 -- 50:47 instructions are format 2 and use the value
k. The k value is available in KO after T2.4 time of the I-sequence. The shift
sequence is required to complete the executions of these instructions.

6.3-8

S.G.1219 (M)6.3

TABLE 6.3-4. SHIFT SEQUENCE ESSENTIAL COMMANDS

TIME f=50: 41 42 43 45 46

OXLOI ff set·~3 Clear X, clear W X X X X X

OXLO! ff set'~4 AUR1~X X X X

*Set X17=1 if AU35 =1
(AU35~X17) X X X

ALRl~W X X X

*Set W17 =1 if AU18 =1
(AU18~W17) X X

*Set W17=! if AL17=1
(AL17~W17) X

AULl~X X X

*Set XeO=l if AU35 =1
(AU35~XoO) X

*Set XeO=l if AL17=1
(AL17---+XoOl X

ALLl~W X X

*Set WOO=l if AU35 =1
(AU35---+WOO) X

*Set WOO=! if AL17=1
(AL17~WOO) X

OXLOO ff set·~l Clear AU X X X

Clear AL X X X

OXLOO ff set'~2 X~AU X X X

**W~AL X X X

*These commands are enabled by gates 3lWOO, 3lW17, 31XOO, and 3lX17 in the logic diagrams,
figure 9-33, and are timed by the AURl~X, ARLl~W, AULl~X, and ALLl~W commands.

**The transmission of bit 00 for the W~AL command is through gate 83AOO in the logic diagrams,
figure 9-33.

47

X

X

X

X

X

X

X

X

X

6.3-Q

0·'

l.;'. , ~

'-' ---' --~---------~----~---- -

6.3-6.

n

n

!
i
j

S .. G. 12 1 9 '(;M}6 . 3
{
I

:t
t

NAME:
"f"·' t" .

. ' .

STUDY QUESTIONS 1
f

a. Given: 31.X17 gltou .. n .. ded .o.ut.p.u.t.' Clogtc 'diagT~ms, figure 9-33)
instruc'nn = .504303 .

.: Atii~' :4·30b12 .. : ,." ~'.

. iA'L{ = 234756 .

1. For the giv~n conditions, draw below the block diagram of data flow
for a I-pla~e shift like those in figure 6.3-2 of this sheet.

"

2. What are th~ contents of AU and AL at the completion of the given
instructio~ considering the malfunction? , . .. 1 ..

AUf = ~ __________ __ ALf = --------------

. 6.3-;-11

b.

6.3--12

I
t

'Gi vem: lOF42 'grounded output Clogi c
instruction = 504303

diagram~, fi gure 9-47)

1.

AUi = 430012
ALi = 534756

. ,
i
1 ,

For the gi ven condi tions I draw below the tblock ,diagram of data flow
for a I-place shift like thos,e in ~iguLe !6.3-2 of this sheet.

2. What are the contents of AU and AL a t the completion of the gi ven
instruction considering the malfunction?

AUf = _____ _ ALf = ----+---------

/ -

JU';·~·~

.---_._-------------------_-....1....._---------------"'-_--....:.._--'---.:.;;.;:.

c.

n

S.G.1219 (M)6.3

NAME:

Gi ven: IlF45 giounded output (logic diagrams, figure 9-47)
instruction = 504503

1.

2.

lAU. = 430012
i 1
r

For the giv~n ~onditions, draw below the block diagram of data flow
1 for a I-plafe shift like those in figure 6.3-2 of thas sheet.

What is tha content of AU at the completion of the given instruc­
ti on con s idtering the rna lfuncti on?

AU = f ~-----------------

6 .. 3-13

I
t
~

!
!

o·

0·-

S. G. 1219 (M) 6 .4

SECTION 6 - ARITHMETIC SECTION

6.4. KO-l ADDER

6.4-1. OBJECTIVES

To present the detailed theory of operation involved in the KO-l adder.

6.4-2. INTRODUCTION

The KO-l adder is used to control the number of repeated operations used in
shifting, scaling, multiplication, and division.

6.4-3. REFERENCES

a. UNIVAC 1219 Technical Manual. Volume I, Paragraph 4-2~(3).

b. UNIVAC 1219 Technical Manual. Volume II, Section 9 (logic diagrams).

6.4-4. INFORMATION

Q. General Description. The KO-l adder is a 6-bit open-ended adder which
continually subtracts 1 from the content of the KO register. The output of the
adder is taken to the Kl register. The decremented value is then taken back to KO.
Refer to figure 6.4-1 for a data flow block diagram of the K-counter configuration.

2.

Figure 6.4-1. K Counter Block Diagram

6.4-1

S.G.12l9 (M)6.4

Certain repeating type operations are controlled by the counter. KO is initially
set to a specific count. Each time KO receives the new decremented value, one of
the repeating operations is performed. When KO holds the value of all O's, the
controlled operations are terminated.

b. Detailed Analysis

1. Effect of Borrow Request. If a request for a borrow is applied to
a bit position of KO, the result of this subtraction produces the complement of
the bit. Refer to figure 6.4-2 for examples.

adder logic.

o
-I
o

o KO BIT
-I BORROW REQUEST APPLIED TO KO BIT

I RESULT (lIS COMPLEM ENT OF KO BIT)

Figure 6.4-2. KO-l Adder Borrow Examples

2. Adder Stage 00. Refer to logic diagrams, figure 9-37 for the

The subtraction of KO-l always affects KOOO to produce its complement. This
complemented value is outputted by inverter 02KOO and is placed in Klao during
the tlKO-l ~ KI" command.

3. Generation of Borrow Requests. If a borrow request is applied to
a particular bit position, the complement of that bit is the result. If that same
KO bit position contains 02, the borrow request is propagated to the next higher
bit because the 02 cannot supply the 12 that the borrow requires. All borrow
requests originate from the subtraction of KOoO - 1. A borrow request is applied
to a particular bit position if all of the less significant KO bit positions
contain O's. Refer to table 6.4-1 for the conditions necessary to apply borrow
requests to tne KO bits.

TABLE 6.4-1. KO-l ADDER BORROW REQUEST CONDITIONS

KO bit positions

Borrows Applied 04 03 02 01 00

Brw ~Ol °2
Brw~.02

°2 02

Brw~03 °2 °2 °2
Brw~04 °2 02 02 °2
Brw --;. 05 02 02 02 O2 02

NOTE: "Brw~XX" means a borrow request is being applied to bit position XX.

6.4-2

S.G.1219 (M)6.4

Adder bits 05 through 01 have logic which tests all of the less significant KO
bits for the binary configurations described above. If a borrow request is
applied, the complement of the KO bit is the adder output as was shown for bit 00.
Refer to figure 6.4-3 for the adder request logic. This is a ~orLlon of that
shown in the logic diagrams, figure 9-37.

Gate 08KOO is used to test KO for all O's. This condition terminates the oper­
ation being controlled by the K-counter.

6.4-5. SUMMARY

The K-counter is comprised of KO and Kl registers and the KO-l adder. KO is
hard-wired to the adder input. The adder is 6 bits in length, and is of the open­
ended type. It can only output to Kl.

6.4-3

0" H~ KO=O'S L~BRW~05 L~BRW~04 L:::;';> NO BRW~03 L~ BRW~ 02 L=> BRW~ 01
J:::..

I
J:::..

L ==> NO BRW-----705 L=> NO BRW ~04 L =;!> BRW -----? 03 L=> NO BRW ~ 02

L =;!> K04 _0 = O'S

00K05
I

L=> K005 = O2

06K03

L~ BRW -7 03 H~ BRW-702

00K04

00K03

00K02

OOKOI

.00K03

L~ K003 =02

ALL L ~ K0
4

_
1
= O·S

/looKoo
4 =;> KO =02 (BRW ~Ol) 00

.01K02

H => K002=02

NOTES: " BRW ~ OX" MEANS A BORROW REQUEST IS BEING APPLIED TO BIT POSITION OX.
GATE 08KOO IS NOT ACTUALLY PART OF THE REQUEST LOGIC.

Figure 6.4-3. KO-l Adder Borrow Request Generation Logic

((i

OOKOO

L=>KOoo= O2

.OOKOI

L:::;';> KO
OI

=0
2

L"=> NO BRW~ 0 I

OIKOO

-I L~ KO
OO

- 2

c

C/)

GJ

..........
N
f--'

....0

e
0"

J:::..

------ ---------~- ---- ----------------

,f"".-

S.G.1219 (M)6.3

1) Initial Shift Count = O. If the shift count specified in
the six least significant bi ts of the instruction word equals 0, no shifts are to
be performed. The shift sequence is initiated but is terminated before it can ef­
fect any shifting.

Refer to table 6.3-1 for a sequential list of essential I and shift sequence con­
trol events. Develop these commands by referring to the proper enable pages in the
logic diagrams. The commands shown are in addition to the normal I-sequence com­
mands.

As shown, no shifting is performed. Two main timing cycles of the I-sequence are
used before the Hold flip-flops are cleared. With the initial shift count equal
to 0, the instruction execution time is 4 microseconds.

2) Initial Shift Count ~ O. If the shift count specified in
the six least significant bits of the instruction word does not equal 0, one or
more shifts are performed. The shift sequence is initiated and remains active un­
til the shifting is completed at which time it is terminated.

The shift commands involving AU and AL are generated by the combination of the shift
sequence flip-flops (OXLOO and OXLOl) being set and the occurrence of clock phases.
OXLOO and OXLOI are set for the entire shifting operation. The clock phases alone
provide the timing for the operation. For each cycle of the master clock, a shift
of one place is executed.

KO, Kl, and KO-l adder are used to control the number of shifts by determining the
number of clock cycles during which the shift sequence flip-flops will remain set.
The shift count which is held in KO and KI is decremented by 1 during each master
clock cycle. When KO reaches the count of 0, the Shift Sequence flip-flops are
cleared and the AU and AL shift commands are disabled. The KO-l adder is analyzed
in a later sheet.

Refer to figure 6.3-1 for a simplified logic diagram of the shift sequence. Devel­
op the events chart from the logic shown.

Refer to table 6.3-2 for a sequential list of essential I and shift sequence control
events. Develop these commands by referring to the proper enable pages in the logic
diagrams. The commands shown are in addition to the normal sequence commands.

As shown, shifting is performed until Kl = 0 which causes the clearing of the
OXLOO and OXLOI flip-flops after the last shift. Flip-flop OXL02 is set and cleared
at the termination but is not used. The Hold 1 flip-flop is not cleared until T4.2
time of the main timing cycle during which the last shift occurred. The next main
timing cycle is also under I-sequence control but is able to read-up the next in­
struct~on in the program. The last Hold flip-flop (2) is cleared at Tl.3 time of
the next instruction's I-sequence.

With the shift sequence active, each master clock cycle performs a one-place shift.
Therefore, a maximum of four shifts can be performed during one main timing cycle
which has a duration of two microseconds. Including the two microsecond I-sequence
which reads-up the shift instruction, a shift instruction with a shift count from
I through 4 has an execution time of four microseconds. Refer to table 6.3-3 for a
complete list of shift count values with the corresponding instruction execution
times.

6.3-3

S. G. 1219 (M) 6.3

*x/w~ A
[----02

L

*SHIFT A ~ X/W {

08KOO

H ~ KO = 0

01

IlL03
CONSTANT L
FOR SHIFTS IILOI

L~ INITIATE SHIFT SEQUENCE

SEQUENCE OF EVENTS (KOj =f; 0)

01 SET OXLOI FF (INITIATE SHIFT SEQUENCE)

02 CLEAR K I
03 SET OXLOO FF, KO -I ---7 K I, *CLEAR X B W

04 CLEAR KO, * SHIFT A -7 x/w
01 K I -------? KO, * CLEAR A

02 CLEAR KI, *X/W ~ A

: (CONTINUE UNTIL KI = 0)

03 KO-I ~ KI (KI =O),*CLEAR X B W

¢4 CLEAR KO, *SHI FT A ~ X/W

¢ I KI ~ KO (KO = O),*CLEAR A

~2 CLEAR KI (NOT USED), *X/W~ A (Af)

¢3 CLEAR OXLOO FF, KO-I ~ KI (NOT USED),

*CLEAR X a W (NOT USED)

¢ 4 * S H I FT A ~ X / W (N OT USE D)

(}'I CLEAR OXLOI FF

L =:> CLEAR K I

L ~ KO -1----"7KI

L ==> CLEAR KO

L~ KI ~ KO

NOTE: *THESE EVENTS PERTAIN TO THE ACTUAL SHIFTING OF AU AND AL AND ARE
DISCUSSED LATER IN THIS SHEET,

Figure 6.3-1. Shift Sequence Simplified Logic

6.3-4

6.4-6.

n

n

Sl. G. 1219 eM) 6 .4

NAME:
STUDY QUESTIONS

a. Given: instruc~ion - 504605
06K03 gtounded output (logic diagrarns~ figure 9-37)

Cons ideri n g the~ above rna lfunct i on I des cribe the effect ulPon the
execution of th~ given instr~ction. Fully explain your Teasoning.

6.4-5

.,
"

i-
t ..

. ~. -.--

S. G. 1219 (M) 6 . 5

SECTION 6 - ARITHMETIC SECTION

6.5. INSTRUCTION EXECUTION OF SF

6.5-1. OBJECTIVES

To present the detillled theory of operation involved in the execution of the
instruction with f = 50:44.

6.5-2. INTRODUCTION

This instruction normalizes the combined contents of AU and AL~

6.5-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4~(4) and 4-7,
tables 4-11 and 4-14.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6.5-4. INFORMATION

a . Ge n era 1 Des c rip t ion

1. Instruction Interpretation. This instr~ction, SRI circularly left
shifts the combined content of AU and AL. AU is the more significant portion.
Left shifts are performed until AU35 t AU34 or until the maximum shift count
specified in the six least significant bits of the instruction word has expired.
This shift count dictates the maximum number of places that AU and AL can be
shifted during the normalize operation. When shifting stops, the difference between
the specified maximum shift count and the actual shift count is stored in control
memory at the address 00017 8, The original content of this memory address is
destroyed.

2. Execu t i on Sequen ce s.

a) I-Sequence. During the I-sequence which obtains the instruction
from memory, the maximum shift count is placed in KO.

b) Scale Sequence. The scale sequence uses a special timing chain
which runs in parallel to main timing and controls the actual normalize operation.

6.5-1

S.G.1219 (M)6.5

c) W-Sequence. The W-sequence is active throughout the normalize
operation but is only effective at the completion of the operation in storing the
difference between the maximum shift count specified and the actual shift count.

b. Detailed Analysis.

1. I-Sequence. The I-sequence operations are as previously described.
If necessary, refer to study guide sheet number 5.4 for a detailed description.
At the end of the I-sequence, KO contains the six least significant bits of the
instruction word which specifies the maximum shift count allowed.

2. Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are
set during the scale operation to prevent the normal W-sequence operations which
store KO in control memory. These flip-flops prevent the setting of the final
W-sequence flip-flop (lower bank). When the Hold flip-flops are cleared, the W­
sequence is allowed to store KO.

3. Wand Scale Sequences.

a) Data Flow Block Diagram.

1) Prior to Scale Ter~ination. Refer to figure 6~5-1 for a
block diagram description of one step of the scale operation.

During each master clock cycle with the scale sequence .active, AU and AL are
circularly left shifted one place as a 36 bit register. The count in KO is
decremented by 1. When the scale sequence detects AU35 # AU34 or KO = 0, the
shift operation is terminated.

2) Scale Termination (KO Storage). Refer to figure 6.5-2
for a block diagram description of the KO storage operations.

When the scale sequence is terminated, the W-sequence stores KO in control memory
at the address 00017 8, KO still contains its value which existed at the scale
termination. This value is the difference between the maximum shift count allowed
(KO i) and the actual number of shifts executed by the scale sequence.

b) Essential Commands.

1) Aborted Scale Sequence. If the maximum shift count
specified by the instruction equals 0 or if the initial value in AU is such that
AU35 # AU34, no shifting of AU and AL is to be performed. The scale sequence is
disabled.

Refer to tables 6.5-1 and 6.5-2 for sequential lists of essential I, W, and scale
sequence events. Develop these commands by referring to the proper enable pages
in the logic diagrams.

2) Normal Scale Sequence Prior to Termination. Refer to
table 6.5-3 for a sequential list of essential I, W, and scale sequence events.
Develop these commands by referring to the proper enable pages in the logic diagrams.

6.5-2

I~

S.G.1219 (M)6.5

The scale sequence commands which left shift AU and AL and decrement KO occur
continuously until the scale sequence flip-flops OXLOO and OXLOl are cleared.

3) Scale Sequence Termination. Termination operations are
initiated when either AU34 # AU33 or Kl = O. Refer to tables 6.5-4 and 6.5-5 for
sequential lists of Wand scale sequence events. Develop these commands by
referring to the proper enable pages in the logic diagrams.

4) W-Sequence Storage of KO. At the termination or abortion
of the scale sequence, the Hold 1 and Hold 2 flip-flops are cleared which allows
the W-sequence to perform the storage of KO in control memory at the address
000178. Refer to table 6.5-6 for a sequential list of essential W-sequence events.
Develop these commands by referring to the proper enable pages in the logic
diagrams.

6.5-5. SUMMARY

The SF instruction is format 2 and uses the value k. The k value is available in
KO after T2.4 time of the I-sequence. The scale and W-sequences are required to
complete the execution of this instruction.

6.5-3

S.G.12l9 (M)6.5

KO

AU AL

35 III 17 /LI
KI

¢4 ! 00 ¢4 00

X w
\..J

01

KO

¢2 ¢2 ,~

AU AL

Figure 6.5-1. Scale Sequence, One Place Shift

6.5-4

S.G.1219 (M)6.S

W SEQUENCE OF SCALE TERMIN ATION

W SEQUENCE TO STORE KO

KO = (MAX. SHIFT COUNT) MINUS
(ACTUAL SHIFT COUNT)

TI.I-T2.1

READ
CONTROL

ZI ZO
MEMORY-

WRITE

T4.3

. SPEC INT

TRAN REG

03-01

TI.l

SI

T2.1

SO

SO = 00017

NOTES: *ARITH SEL ~ STORE SEL OCCURS DURING THE ENTIRE W SEQUENCE.

**ZI ~ ZO IS TIMED BY CONTROL MEMORY TIMING.

Figure 6.5-2. Final Scale Wand Last W Sequence Data Flow

I ~SIOO

0.5-::1

S . G. 12 1 9 (M) 6 . 5

TABLE 6.5-1. I, W, AND SCALE SEQUENCE ESSENTIAL COMMANDS
WITH MAXIMUM· SHIFT COUNT ALLOWED = 0*

- '-

TIME NOTATION COMMANDS

6.5-6

I SEQUENCE

Tl.4 Clear KO

T2.3 Clear OXLOO ff

T2.4 Z Se15_0 ---;'KO (KO = 0)

T3.4 Set Hold 1 ff, clear Scale Factor ff (lXLOO)

T4.1 Set OXLOI ff

T4.3 Set OXL02 ff, set Hold 2 ff

W SEQUENCE

Tl.l Set Clear Hold ff, clear OXLOI ff

Tl.3 Clear OXL02 ff

T4.1 **Clear Spec Int Trans Reg.

T4.2 Clear Hold 1 ff, clear Clear-Hold ff

T4.3 **Set Spec Int Trans Reg. = 178

W SEQUENCE'TO STORE KO

Tl.3 Clear Hold 2 ff

* The W-sequence events which store KO are not shown.

** These commands pertain to the events which store KO and are
discussed later in this sheet.

TIME

S . G: 12 1 9 (M).6. 5

TABLE 6.5-2. ·I~ ~I AND SCALE SEQUENCE ESSENTIAL COMMANDS WITH. AU35i j AU
34i

NOTATION .. " COMMANDS

I SEQUENCE ...

T1.3 Clear F

T1.4 Clear KO

T2.3 Clear OXLOO ff ,

T2.4 Z Sel11-6 --;. F, set OXF06 ff,· Z Se15_0 ~~O
. :,",

T3.1 Set Clear Hold ff t

. , "': .

T3.4 Set Hold 1 ff, clear Scale Factor ff (lXLOO)
. , ,

T4.1 ~:<~:<Cl ear Spec Int Trans Reg
" .

,- I

T4.2 Clear Hold 1 ff, clear Clear-Hold ff
"

T4.3 ~:n:<Set Spec Int Trans Reg = 178
!

W SEQUENCE TO STORE KO
. ,

T1.3 Clear Hold 2 ff
. , :

!

*The W-sequence events which store KOare not shown~ i

~:<~:<These commands pertain to the events~ which store; KO and are discus:sed
later in this sheet.

0.5-7

S, G, 1219 (M) 6, 5

TABLE 6,5-3. I, W, AND SCALE SEQUENCE ESSENTIAL COMMANDS WITH MAXIMUM
SHIFT COUNT ALLOWED # 0 AND AU35i = AU34i

TIME NOTATION COMMANDS

6.5-8

I SEQUENCE

Tl.4 Clear KO

T2.3 Clear OXLOO ff

T2.4 Z Se15_0 ~ KO

T3.4 Set Hold 1 ff, clear Scale Factor ff (lXLOO)

T4.1 Set OXLOl ff

T4.2 Clear Kl

T4.3 Set OXLOO ff, set H~ld 2 ff, KO-l --:. Kl, clear X, clear W

T4.4

FIRST W SEQUENCE

T1.1 Kl ~ KO, clear AU, clear AL

Tl.2 Clear Kl, X ~ AU, ~:~~:~W ~ AL

Tl.3 KO-l ~ Kl, clear XI clear' W

Tl.4

T2.1 Kl ~ KO, clear AU, clear AL

T2.2 Clear KI, X ~ AU, ~:~~:~W ~ AL

(continue until Kl = 0 or AU34 ~ AU33)

*These commands are enabled by gate 3IWOO and 31XOO in the logic diagrams,
figure 9-33, and are timed by the AULl ~ X and ALLl ~ W commands.

~:~~:~The transmission of bi t 00 for the W ~AL commands is through gate 83AOO
in the logic diagrams, figure 9-33.

,~

S . G. 12 1 9 e M) 6 . 5

TABLE 6.5-4. TERMINATION OF SCALE SEQUENCE BY Kl = oew SEQUENCE)*

TIME NOTATION .COM\1ANDS

next

W SEQUENCE

TX.3 KO-l~Kl (Kl = 0), Clear X, Clear W

TX.4

TX.l

Clear KO, AULI ~X, ALLI ~ W, ;:~;:~AU35 ~ WOO, ~:~~:~AL17 ~ XOO

Kl ~ KO (KO = 0), set Clear Hold ff, clear AU, clear AL

TX.2

TX.3 KO-l ~ Kl, clear OXLOO ff, set OXL02 ff, clear X, cl ear W

TX.4 AULl ~ X ALLl ~ W ~:~~:~AU ~ W ~:~~:~AL ~XOO (not used) , '35 00' 17

TX.l Clear OXLOI ff

TX.3 Clear OXL02 ff

T4.2 Clear Hold 1 ff, clear Clear-Hold ff

W SEQUENCE TO STORE KO

Tl.3 Clear Hold 2 ff

*The W-sequence events which store KO are not shown.

**These commands are enabled by gates 31WOO and 31XOO in the logic
diagrams, figure 9-33, and are timed by the AULI ~X, and ALLl ~ W
commands.

~:~~:~~:~The transmission of bi t 00 for the W ~AL command is through gate
83AOO in the logic diagrams, figure 9-33.

6.5-q

S . G. 12 1 9 (M) 6 . 5

TABLE 6.5-5. TERMINATION OF SCALE SEQUENCE BY AU34 # AU33 (W SEQUENCE)*

TIME NOTATION COMMANDS

next

TX.3

TX.4

TX.l

TX.2

TX.3

TX.4

TX.l

TX.2

TX.3

TX.4

TX.l

TX.3

T4.2

Tl.3

W SEQUENCE

KO-l ~Kl

Kl ~KO, clear AU, clear AL

Clear Kl, X -::. AU (AU34 # AU33), ~:~~:n~w ~ AL

KO-l ~ Kl

Set Scale Factor ff (lXLOO)

Kl ~KO

Clear Kl, X~ AU (AU35 -:f AU34), ~:~~:~~:~W ~AL

KO-l ~ Kl, clear OXLOO ff, set OXL02 ff

AULI ~X, ALLI ~W, AU35 ~WOO' ~:~~:~AL17 ~XOO (not used)

Clear OXLOI ff, set Clear Hold ff

Clear OXL02 ff

Clear Hold 1 ff, clear Clear-Hold ff

W SEQUENCE TO STORE KO

Clear Hold 2 ff

*The W-sequence events which store KO are not shown.

**These commands are enabled by gates 31WOO and 31XOO in the logic
diagrams, figure 9-33, and are timed by the AULI ~X, and ALLI ~W
commands.

~:~~:~~:~The transmission of bit 00 for the W --;:.AL command is through gate
83AOO in the logic diagrams, figure 9-33.

6.5-10

S.G.1219 (M)6.5

TABLE 6.5-6. FINAL SCALE W AND LAST W SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION COMMANDS

T4.1

T4.2

T4.3

T4.4

W SEQUENCE OF SCALE rERMINATION

Clear special interrupt translator Reg

Clear Hold 1 ff

Set Spec Int Trans Reg = 178

Clear Sl

W SEQUENCE TO STORE KO

Tl.l

T1. 3

T1. 4

T2.1

T2.4

Spec Int Trans Reg03_01--;:.Sl03_011 1 ~SlOO' KO ~Ari th Sel~:~

Clear Hold 2 ff, clear Zl

Di sable CM ~ ZO, Store Sel ~ Zl~:~~:~

Sl--? SO, drop KO ~ Ari th Sel

Drop di sable eM ~ 20

~:~Arith Sel ~ Store Sel occurs during the entire W-sequence.

~:~~:~Zl ~ ZO is timed by control memory timi ng.

0.5-11

,'/

1

1
u

!

S.G.1219 (M)6.6

SECTION 6 - ARITHMETIC SECTION

6.6. INSTRUCTION EXECUTION OF MULAL, MULALB

6.6-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 24, 25.

6.6-2. INTRODUCTION

These instructions multiply the content of AL by the content of memory.

6.6-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4~(1)(~) and 4-7,
tables 4-11 and 4-12.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6 0 6-4. INFORMATION

a. General Description.

1. Instruction Interpretation.

a) MULAL, f = 24. This instruction multiplies the content of AL
by the operand Y. Y is obtained from memory at the address Up if SR is inactive or
USR if~SR is active. The final product is double length and appears in AU and AL.
AU contains the more significant bits.

b) MULALB, f = 25. Except for the address of Y, this instruction
is the same as f = 24. The address of Y is either Up + B or USR + B, depending up­
on the activeness of SR. The B register is specified by ICR.

2. Execution sequences.

a) I-Sequence. During the I-sequence which obtains the instruc­
tion from memory, the address of the operand is formulated from U, P, SRI and Bo

b) RI-Seguence. The Rl-sequence uses a memory reference to obtain
the operand Y.

c) Multiply Sequence. The multiply sequence uses a special timing
/~. chain INhich runS in parallel to main timing and controls the actual multiplication.

6.6-1

S.G.1219 CM)6.6

3 . Mu 1 tip 1 i cat ion Pr 0 c e d u r e .

a) Pencil and Paper Method. Multiplication with the binary number
system is quite simple since during each multiplication step the multiplicand is
multiplied by either 12 or 02' The multiplication by 12 is performed by adding the
multiplicand to the partial product. Multiplying by 02 simply adds 0 to the partial
product. Refer to figure 6.6-1 for a 4-bit example of the normal '''pencil and paperll
method.

0101 MULTIPLICAND
x 00 II MULTIPLIER

0101 } 0101 PARTIAL PRODUCTS
0000

0000
0001111 PRODUCT

Figure 6.6-1. Example of Binary Multiplication, Pencil and Paper Method

b) 1219 Computer Method. In the 1219" the procedure is basically
the same as described above. However, the result of each multiplication step is
added to the previous partial product immediately instead of adding all of the par­
tial products together at the end.

Also, as each new partial product is formulated, it is shifted right one place.
Refer to figure 6.6-2 for the same numerical example using the 1219 Computer method.

In each step, either the multiplicand Y or +0 is added to the partial product in AU
depending upon the value of AGoO. If ALOO = 12, it specifies 1 x Y which is ac­
complished by adding Y to the previous partial product.

As the process continues, the multiplier is shifted out of AL and the lower half of
the product is shifted into AL. The final product is the content of AU and AL to­
gether.

b. Detailed Analysis.

1. I-Sequence. Most of the I-sequence operations are as previously
described. If necessary, refer to study guide sheet number 5.4 for a detailed de­
scription. At the end of the I-sequence, the X-D' adder is outputting the address of
the operand.

In addition to the normal operations, the Y Neg and A Neg flip-flops are cleared at
T4.2 time. These flip-flops are shown in the logic diagrams, figure 9-33.

2. Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are set
during the multiply operation to prevent the reading of the next instruction and the
clearing of the multiply function code from F. The effect of these flip-flops is
the same as described for the shift instructions in information sheet number 6.3.
Since the Hold flip-flops are set during the Rl-sequence, the Rl-sequence remains
active during the multiplication.

6.6-2

,~

('

~\

AU

MULTI PLICAND = Y = 0000
+0 I a I

0101

\
_ 00 10

Y-+ OIOI

00 II
+0000

001 I

\
0001

+ 0000
0001

\
0000

AU B AL = PRODUCT

S.G.1219 (M)6.6

AL

0011 = MULTIPLIER

L...I x Y

AU B AL RIGHT SHIFT ONE PLACE

1001

L-.I x Y

AU B AL RIGHT SHIFT ONE PLACE

x Y

AU B AL RIGHT SHIFT ONE PLACE

x Y

AU B AL RIGHT SHIFT ONE PLACE

I I r I

Figure 6.6-2. Example of Binary Multiplication, 1219 Computer Method

3. Rl and Multiply Sequences.

a) Data Flow Block Diagram.

1) Prior to Multiply Termination. Refer to figure 6.6-3 for a
block diagram description of the execution of f = 24, 25, prior to the multiplica­
tion termination.

The Rl-sequence uses a memory reference to obtain the operand Y. This is the mul­
tiplicand. D receives either Y or its complement at T2.4 time. If Y is negative
it appears complemented in D in its positive form. This is part of the initial
sign connection operation which makes both the multiplicand and the multiplier
positive numbers before the multiplication operation. At the completion of the
multiply, the result is, if necessary, made negative according to the signs of the
original multiplicand and multiplier.

The multipler in AL is also made positive by complementing at T2.2 time if its
initial value is negative.

6.6-3

S. G. 12 19 (!VI) 6 . 6

The actual multiplication of D x AL is effected by the multiplication sequence
which runs in parallel with the HI-sequence. The 36-bit value in AU and AL is
right shifted one place into X and W, respectively, at T2.4 time. The Multiplier
Store flip-flop is used to record to value of ALOO which is the trlultiplier bit to
be examined. If ALOO = 12, . the multiplicand in D is added to the partial pro­
duct in X (O's initially) and placed in AU at T3.2 time. If ALOO = 02, nothing is
added to the partial product in X and the unchanged value is placed in AU.

During each multiplication step, AU and AL are right shifted one place and either
the multiplicand or nothing is added to the partial product depending upon the cur­
rent multiplier bit (ALOO). The number of steps is controlled by K0 1 Kl, and the
KO-l adder. KO is initially set to 1910 and is decremented during each multipli­
cation step. When it contains 0, the operation is terminated. The resulting 1910
right shifts of AU and AL will have shifted the multiplier out of AL and properly
positioned the final product in AU and AL.

As discussed in a later sheet 1 the operand could be obtained from bootstrap or con­
trol memory.

2) Multiply Termination (Final Sign Correction). When KO = 0,
the multiplication operation is terminated and AU and AL contain the final product.
If the original signs of Y (multiplicand) and AL (multiplier) were unlike, the pro­
duct must be made negative. Since both Y and AL were made positive prior to the
multiplication, the product should be also positive. The product is left positive
if both Yi and ALi had like signs. If the original signs are unlike, AU and AL are
complemented to yield a negative product. Hefer to figure 6.6-4 for a block dia­
gram description of the final sign correction operation which occurs at the comple­
tion of the multiplication operation.

b) Essential Commands. The commands which effect the multiplica­
tion operations are enabled by the OXLOO and OXLOI Multiply Sequence flip-flops and
are timed by the m aster clock phases.

Hefer to table 6.6-1 for a sequential list of essential HI, next I, and multiply
sequence events. Develop these commands by referring to the proper enable pages
in the logic diagrams.

6.6-5. SUMMARY

The MULAL and MULALB instructions use the Up or USH which is formulated in D during
the I-sequence. The HI and multiply sequences and the first portion of the next I~

sequence are required to complete the executions of these instructions.

6.6-4

ZI

T2.!-T3.1

Z SEL

T2.!-T3.!

ARITH SEL

WRITE

READ

Z SEL = Y

MAIN
MEMORY f+--

X CLEARED TO
O'SATTI.3

X-D'
ADDER

r------It'--T_I.-"I S ! :

S . G. 12 1 9 (M) 6 . 6

SI
f = 24, Up OR USR
f = 25, Up + BICR OR USR + BICR

AL

1 TI.I-T2.1

ARITH SEL

TI.41 ARITH SEL'

D

X-D'
ADDER

x TI.3 SET A NEG FF
IF AL NEG

ARITH SEL IF Y POS}
ARITH SE~ IF Y NEG SENSED FROM Z SEL

D

T2.4 SET Y NEG FF IF Y
NEG (SENSED FROM Z SEL)

AU CLEARED
AT T2_1

T2.4

X-D'
ADDER

AU

RI

X

D= MULTI PLICAND
ADDER = X +
MULTIPLICAND

r-------l
IIF A NEG FF SET T2.2

I AL= MULTIPLIER
I T2.1 CLEAR AL I
I AL
~ ______ J T2.4 SET MULT.

18 RI 00 STORE FF IF ALOO= I

17

T2.4
T2.4

W

IF MULT. STORE
FF CLEAR

ONE MU LTI PLlCA­
>- TION STEP

/
/~

IF MUL T. STORE FF SET ! T3.2
"'-'---.......J..,

T3.2

AU = PARTIAL PRODUCT AU AL

----~OO

(CONTINUES UNTIL KO =0)

Figure 6.6-3. Rl and Multiply Sequence Data Flow

T2,4 SET MULTI PLI ER
STORE FF IF ALOO= I

6.6-5

S.G.1219 (M'6.6

AU B AL = PRODUCT

AU

T2.I-T3.1

ARITH SEL

ARITH SELl

.--- SET X = liS! ARITH SEL~ X

ex ARITH SELl ~X IF

X-DI
ADDER

.------11------. T2.4

AU ex AL =f:. OIS

X CLEARED TO O'S AT T2.3

r - - - - -IF~1 -; AL,,~-I
I T3.2 I UNLIKE SIGNS I
I AU T3.1 CLEAR AU I
L __________ --1

SET X = liS: - __ ---.... ..
ARITH SEL ~ X B
ARITH SELl ~ X
IFAUBAL=f:.O'S

-{

T3.4

AL

T3. 1- T4.1

ARITH SEL

ARITH SELl
T3.4

D

X-DI
ADDER

-- X

~F--:XL06~~E~ - - - - -T4.2 l ,
I (Yj 8 Aj UNLIKE SIGNS) I
I AL I
L T4.1 CLEAR AL
------- J

Figure 6.6-4. Multiply Final Sign Correction Data Flow

6.6-6

/""'\ ..

\.J

. ~\

S. G. 12 19 (M) 6 . 6

TABLE 6.6-1. R1, MULTIPLY AND NEXT I-SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION

T4.4

T1.1

T1.3

T1.4

T2.1

T2.2

T2.3

T2.4

T3.1

T3.2

T3.3

T1.1

T1.2

T1.3

T1.4

T2.1

T2.3

T2.4

T3.1

T3.2

T3.3

T3.4

T4.1

T4.2

T4.3

T1.3

.'

*Sign of Y is sensed from Z select .

COMMANDS

R1SEQUENCE

Clear S1

AL--+ Arith Sel, Adder ~S1, Init Memory

Set A Neg ff if AL neg, clear D, clear X, clear Z1

Arith Sell-+D, clear KO, clear Scale Factor ff (1XLOO)

Clear AU, clear AL if A Neg if set, set KO = 1910 , set OXL01 ff, Z1-+ Z

Sel, Z Sel --+ Arith Sel, drop AL--+ Arith Sel

Adder~AL if A Neg ff set, Clear K1

Clear D, set OXLOO ff, clear X, clear W, clear Mult. Store ff, KO-1-+K1

Set Y Neg ff if ~ neg *, Arith Sel--+D if Y pas*, Arith Sel'~D if Y neg*,
clear KO, A UR1--+ X, ALR1--+ W
***AU18~W17' set Mult. Store ff if ALOO = 1

K1--+~0 (KO = 18), clear AL, clear AU

Set Hold 1 ff, **W~AL, Adder-+AU·if Mult. Store ff set
X-+ AU if Mult. Store ff clear, clear K1

Set Hold 2 ff, KO-1 ~K1, clear X, clear W

(continues until KO = 0)

Clear AL, clear AU, K1-+KO (KO = 0)

W-+AL, Adder-+AU if Mult. Store ff set
X-+AU if Mult. Store ff clear, clear K1

Set OXL02 ff, clear OXLOO ff, KO-1-+K1
clear X, clear W, clear Mult. Store ff

AUR1~X, ALR1--+W, ***AU18-+W17 , set Mult. Store ff if.ALOO = 1

Clear OXL01 ff, set OXL03 ff, AU -+ Arith Sel, set Clear-Hold ff

Set OXL04 ff, clear OXL02 ff, clear D, clear X

Arith Sell~D, Arith Sel-+X & Arith Sell--+X if AU & AL f OIS
(Set X = lis)

Set OXL05 ff, if Yi & ALi unlike signs, clear OXL03 ff, ****AL-+Arith
Sel, drop A~~Arith Sel, clear AU if Yi & ALi unlike signs

Adder ~A U if Y i & ALi unlike signs

****set OXL06 ff, clear OXL04 ff, **** clear D

****Arith Sel'-+D, Arith Sel-+X & Arith Sel l -+ X if AU & AL f OIS
(SetX=l l s)

Clear OXL05 ff, clear AL if OXL06 ff set, drop AL--+Arith Sel

Adder-+ AL if OXL06 ff set, clear Hold 1 ff, clear Clear-Hold ff

Clear OXL06 ff

I-SEQUENCE OF NEXT INSTRUCTION

Clear Hold 2 ff

**The transmission of bit 00 for the W ~ AL command is through gate 83AOO in the logic diagrams,
figure 9-33.

***AUHf"+W17 data flow is through gate 31W17 in the logic diagrams, figure 9-33, and is enabled
by the ALR1-+W command.

****These events occur only if the OXL05 ff is set to perform final sign correction. 6.6-7

., ~

r

o

l .,.
i ." .

1

S.G.1219 (M)6.7

SECTION 6 - ARITHMETIC SECTION

6.7. INSTRUCTION EXECUTION OF DIVA, DIVAB

6.7-1. OBJECTIVES

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 26, 27.

6.7-2. INTRODUCTION

These instructions divide the combined content of AU and AL by,the content of
memory.

6.7-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-4~(1)(i) and 4-7,
tables 4-11 and 4-12.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

6 0 7-4. INFORMATION

a. General Description.

1. Instruction Interpretation.

a) DIVA, f = 26. This instruction divides the 36-bit value in AU
and AL by the operand Y. AU contains the more significant bits. The origin of Y
is memory at the address Up if SR is inactive or USR if SR is active. The quotient
appears in AL and the remainder is held in AU. The sign of the remainder is the
same as the dividend (AU and AL).

b) DIVAB, f = 27. Except for the address of Y, this instruction
is the same as f = 26. The address of Y is either Up + B or USR + B depending upon
the activeness of SR. The B register is specified by ICR.·

2. Execution Sequences.

a) I-Sequence. During the I-sequence which obtains the instruction
from memory, the address of the operand is formulated from U, P, SRI and B.

b) RI-Sequence. The Rl-sequence uses a memory reference to obtain
the operand Y.

c) Divide Sequence. The divide sequence uses a special timing
chain which runs in parallel to main timing and controls the actual division.

6.7-1

S.G.1219 (M)6.7

3. Division Procedure.

a) Pencil and Paper Method. Division with the binary number sys­
tem is quite simple since each division step produces a quotient bit of either 12
or 02' During the division step, the divisor is compared with the partial dividendo
If it is less than or equal to the partial dividend, a 12 is set in the correspond­
ing quotient bit position and the divisor is subtracted from the partial dividendo
If the division cannot be performed (partial dividend less than the divisor), a 02
is set in the quotient bit and O's are subtracted from the partial dividend which
does not al ter its value. Refer to figure 6.7-1 for an example of the normal "pen­
cil and paper" method.

00110 = QUOTIENT

DIVISOR = 010 I /00 1000 10 DIV I D END
-0000

00 100 .. PARTIAL DIVIDENDS
-0000

o I 0 a 0 ... _f--------t

-0 I 0 I
00 I I I 4_----4

-0 101
00 I 00 4_1---~
-0000

a I 00 = REMAINDER

Figure 6.7-1. Example of Binary Division, Pencil and Paper Method

b) 1219 Computer Method. In the 1219, 'the procedure is basically the
same as described above. However, instead of right shifting the divisor when sub­
tracting from the partial dividend, the partial dividend is shifted left. Also an
initial left shift of the dividend is performed. The most significant bit of the
dividend which is shifted out is 02 because the dividend in AU and AL is made posi­
tive prior to the division operation. As the dividend is left shifted out of AL
and into AU, the quotient is shifted into AL. Refer to figure 6 0 7-2 for the same
numerical example using the 1219 Computer method.

b. Detailed Analysis.

10 I-Sequence. Most of the I-sequence operations are as previously
described. If necessary, refer to study guide sheet number 5.4 for a'detailed de­
scription. At the end of the I-sequence, the X-D' adder is outputting the address
of the operand.

In addition to the normal I-sequence operations, the Y Neg and A Neg flip-flops are
cleared at T4.2 time. These flip-flops are shown in the logic diagrams, figure 9-'33.

2. Effect of Hold Flip-Flops. The Hold 1 and Hold 2 flip-flops are set
during the divide operation to prevent the reading of the next instruction and the
clearing of the divide function code from F. The effect of these flip-flops is the
same as described in the shift instructions in information sheet number 6.3. Since
the Hold flip-flops are set during the Rl-sequence, the Rl-sequence remains active
during the division.

6.7-2

---_._----- --------

S. G. 12 19 (M) 6 . 7

y AU AL

0101 = DIVISOR 0010 ~0010 = DIVIDEND
J ~ 'AU B AL LEFT SHIFT ONE PLACE

0100 OIOOVPARTIAL DIVIDEND < Y

-~~~~ j AU B AL LEFT SHIFT ONE PLACE

DIVI DEND ~ Y

00,1 j AU B AL LEFT SHIFT ONE PLACE

y=-8:b: /OOjIIVPARTIAL DIVIDEND~Y
0010/ AU B AL LEFT SHIFT ONE PLACE

Olia 0110 = QUOTIENT
-0000 '--PARTIAL DIVIDEND < Y

0100 = REMAINDER

Figure 6.7-2. Example of Binary Division, 1219 Computer Method

3. Rl and Divide Sequences.

a) Data Flow Block Diagram.

1) Prior to Divide Termination. Refer to figure 6.7-3 for a
block diagram description of the execution of f = 26, 27 prior to the divIsion
termination.

The Rl-sequence uses a memory reference to obtain the operand Y. This is the di­
visor. D receives either Y or its complement at T2.4 time. The X-D' adder is used
to subtract X- divisor. The divisor is made positive as it appears presented to
the adder. Therefore, if Y is positive, D receives Y' which means D' = Y; and the
adder outputs X-Dt. If Y is negative, D receives Y; and the adder output is X -
Y'. In this case, the adder uses the operand in its complemented form which would
cause it to become a positive value.

The dividend is also made positive prior to the division operation. The more sig­
nificant half in AU is complemented at T2.2 time if AUi is negative o The Im,ver half
of the dividend is not actually made positive in AL, but it is complemented if nec­
essary as it is shifted into AU via X one bit at a time.

The actual division of AUAL -7- D' is effected by the divide sequence which runs in
parallel with the Rl-sequence. The 36-bit value in AU and AL is left shifted one
place into X and W, respctively, at T2.4 time. The value in X (partial dividend)
is compared with D' (divisorL If X is greater than or equal to D', the division
of this step can occur and is indicated by the absence of an end-around borro,~ (EAB).
The divisor is then subtracted from the partial dividend and their difference is
placed in AU. ALOO is set to 12 in this case which is the quotient bit value for
this division step.

If X is less than D' as indicated by an end-around borrow, the division cannot occur.
a's are subtracted from the partial dividend and it is transferred unaltered from X
to AU. In this case, nothing is set in ALOO ' and it remains a O2 ,

6.7-3

S.G.1219 (M)6.7

During each division step, the operations described above occur. The number of
steps is controlled by KO, Kl, and the KO-l adder. KO is initially set to 1810
and is decremented by a -1 during each division step. When it contains 0, the
operation is terminated. T.he resul ting 1810 left shifts of AU and AL will have
shifted the dividend out and properly positioned the quotient in AL. The remain­
der is the result of the operation with the last partial dividend and appears in
AU.

As discussed in a later sheet, the operand could be obtained from bootstrap or con­
trol memory.

2) Divide Termination (Final Sign Correction). When KO = 0,
the division operation is terminated. AL contains the quotient. AU contains the
remainder. If the original signs of Y (divisor) and AUAL (dividend) were unlike,
the quotient must be made negative. Since both Y and AUAL were made posi tive prior
to the division, the quotient should be also positive. The quotient is left posi­
tive if both Yi and AUALi had like signs. If the original signs were unlike, AL is
complemented to yield a negative quotient. The sign of the remainder in AU is ad­
justed by complementing if necessary to make it the same as AUALi. Refer to figure
6.7-4 for a block diagram description of the final sign correction operation which
occurs at the completion of the division operation.

b) Essential Commands. The commands which effect the division op­
erations are enabled by' the OXLOO and OXLOI Divide Sequence flip-flops and are
timed by the master clock phases.

Refer to table 6.7-1 for a sequential list of essential HI, next I, and divide
sequence events. Develop these commands by referring to the proper enable pages
in the logic diagrams.

When the divisor and the first partial dividend are compared at T3.2 time, ALOO is
set to 12 if the division can be done (EAS). This bit position is the most signi­
ficant bIt p osition of the quotient; and, if set, causes the quotient to be a nega­
tive value prior to final sign correction. Since both the divisor and dividend are
made positive prior to the division, the quotient should be also positive. There­
fore, if the first division can be done, there is an error due to the size of the
original numbers. This error condition is recorded by the Overflow flip-flop, which
is set during the first divisor and dividend comparison if there is no end around
borrow. The condition of this flip-flop can be later sensed by ~n f = 50:52, 50:53
instruction.

6.7-5. SUMMARY

The DIVA and DIVAS instructions use the value Up or USH which is formulated in D
during the I-sequence. The RI and divide sequences and the first portion of the
next I-sequence are required to complete th~ executions of these instructions.

6.7-4

-------- ._------ -... _._--_._ .. _. ~- .-.~--~---------

WRITE

I
zt -

READ

MAIN ~
MEMORY

X-Ol

ADDER

TI.I
.----'L...----, S I :

S I f = 26, Up OR USR

S.G.1219 CM)6.7

f = 27, Up + 81 C R 0 R Us R + 8 1 C R

AU

TI.I-T2.1

ARITH SEl

ARITH SELl

TI.4

T2.I-T3.1 D
1~

Z SEL Z SEL = Y

T2.I-T3.1

X-D
1

ADDER

t

TI.3 SET A NEG FF IF AU NEG

T2.4 SET Y NEG FF IF Y NEG
(SENSED FROM Z SEL)

ARITH SEL x

X CLEARED TO OIS AT TI.3
ARITH SELl IF Y
POS, ARITH SEL IF
Y NEG (SENSED
FROM Z SEL)

0
1

= DIVISOR,

D

T2.4

H

1--- --------,
IF A T2.2 ~ T2. I CLEAR AU I

I NEG FF
I SET AU I
L ____ . ____ ---1

T2.4

X-D
I

~ ADDER

ADDER = X
- DIVISOR

LI

X

A L 17 I FAN E G FF C LEA R

AL 171 IF A NEG FF SET

JI'
00

X= PARTIAL
DIVI DENO

IF EAB ex < DI)

~ /
IF EAB (X ~ 0

1
)

T3.2

17

T3.2

AL

LI

T2.4

W

12 IF EAB
(x ~ 0

1
)

• 00
T3.2 SET OVERFLOW FF

IF EAB ex ~ 0
1

)

,..--_ _...,
AU AL

(CONTINUES UNTIL KO =0)

Figure 6.7-3. Rl and Divide Sequence Data Flow

ONE
DIVISION
STEP

6.7-5

S. G. 12 19 (M) 6 . 7

6.7-6

AU AU = REMAINDER AL = QUOTIENT I A L

TI,I-T2.,

ARITH SEL

ARITH SELl

X-DI

ADDER

x

X CLEARED TO OIS

AT TI, 3

I~F ~ NEG ~f S~
I (AU. NEG)
I I AU

I
I

T2.2

T2. I CLEAR AU

NOTE; SIGN OF AUf = SIGN OF AUj

I~ OXL06 f~E~
I (y. 8 AU· UNLIKE

I SiGNS) I

I

T2.1 -T3.1

ARITH SEL

ARITH SE L
T2 . .4 ,

D

t
X-DI

ADDER

t
X

X = OIS

•• T3. 2

AL T3.1 C LEA R A L

I
I
I

_I __ J
NOTE: SIGN OF ALf = NEGATIVE IF SIGNS OF

ALj AND Y ARE UNLIKE

Figure 6.7-4. Divide Final Sign Correction Data Flow'

S. G. 1219 (M)6.7

TABLE 6.7-1. Rl, DIVIDE, AND NEXT I SEQUENCE ESSENTIAL COMMANDS

TIME NOTATION COMMANDS

R1SEQUENCE

T4.4 Clear Sl

T1.1 AU-+Arith Sel, Adder-+S1, Init Memory

T1.3 Set A Neg ff if AU neg, clear D, clear X, clear Zl

T1.4 Arith Self~D, clear KO, clear Scale Factor ff (lXLOO)

T2.1 Clear AU if A Neg ff set, set KO = 1810, set OXL01 ff, Zl~ Z Sel,
Z Sel~Arith Sel, drop AU-+Arith Sel

T2.2 Adder-+AUif A Neg ff set, clear K1

T2.3 Set OXLOO ff, KO-1~K1, clear D, clear X, clear W

T2.4 Arith Sel ' -+D if Y pas*, Arith Sel-+D if Y neg*, clear KO,
set Y Neg ff if Y neg*, AUL1 ~X, ALL1~W,
**AL17-+XoO if A Neg ff clear, **AL17-+XoO if A Neg ff set

T3.1 Kl-+ KO, clear AU, clear AL, drop Zl-+ Z Sel, drop Z Sel-+ Arith Sel

T3.2 Set Hold 1 ff, W17-01~AL17-01, ***12~ALOO if EAB,
--

X~AU if EAB, Adder-+AU if EAB, clear K1, set Overflow ff if EAB

T3.3 Set Hold 2 ff, KO-1~K1, clear X, clear W
(

I
(continues until KO = 0) I

I

T4.1 Clear AU, clear AL, K1-+KO (KO = 0)

T4.2 W17_01~AL17-01' ***12~ALOO if EAB, X-+AU if EAB,

Adder-+ A U if EAB, clear K1

T4.3 Set OXL02 ff, clear OXLOO ff, KO-1-+K1, clear X, clear W

T4.4 AULl-+X, ALL1-+W, **ALf17~XoO if A Neg ff clear,
**AL17~XOO if A Neg ff set

T1.1 Clear OXL01 ff, set OXL03 ff, AU~Arith Sel, set Clear Hold ff

T1.3 Set OXL04 ff, clear OXL02 ff, clear D, clear X

T1.4 Arith Sel~D

T2.1 Set OXL05 ff if y. & AUi unlike signs, clear OXL03 ff,
****AL~Arith Sel, drop AU~Arith Sel, Clear AU if A Neg ff set

T2.2 Adder-+AU if A Neg ff set

T2.3 ****set OXL06 ff, clear OXL04 ff, ****clear D

T2.4 ****Arith Sel'~D

T3.1 Clear OXL05 ff, clear AL if OXL06 ff set, drop AL-+Arith Sel

T3.2 Adder ~L if OXL06 ff set

T3.3 Clear OXL06 ff

T4.2 Clear Hold 1 ff, clear Clear-Hold ff

I-SEQUENCE OF NEXT INSTRUCTION

T1.3 Clear Hold 2 ff

*Sign of Y is sensed from Z-Select.

**AL17 -+XoO and ALf17~XoO data flow is through gate 31XOO in the logic diagrams, figure 9-33,
and is enabled by the A ULI ~ X command.

***12~ALOO data flow is through gate 83AOO in the logic diagrams, figure 9-33, and is enabled by
the W -+AL command.

****These events occur only if the OXL05 ff is set to perform final sign correction. 6.7-7

·1
1

,
'I

... 'T

t
$
t' f

'

t ':
;"" ",'
t
r
i

u~-·

. ;

~, '.

