
- BILL F"LANAGAN

1219 COMPUTER

MAINTENANCE

STUDENT STUDY GUIDE

13 JANUARY 1967

PX 3814-0-1

Prepared by: Defense Systems Training

!::!N~E!Y ~~ I DEFENSE SYSTEMS DIVISION

@) 1967 - SPERRY RAND CORPORATION

- /

9
/

i
J

~-"~""'~;';-'"':~"'.p#

S.G.1219 (M) Effective Pages

LIST OF EFFECTIVE PAGES

PAGE CHANGE IN PAGE
NUMBER EFFECT NUMBER

Title Original 5.24-1 thru 5.24-6
ii thru viii Original 5.25-1 thru 5.25-6
1. 1-1 thru 1. 1-2 Original 5.26-1 thru 5.26-4
2.1-1 thru 2.1-6 Original 6.1-1 thru 6.1-18
3.1-1 thru 3.1-2 Original 6.2-1 thru 6.2-10
3.2-1 thru 3.2-2 Original 6.3-1 thru 6.3-14
3.3-1 thru 3.3-10 Original 6.4-1 thru 6.4-6
4.1-1 thru 4.1-10 Original 6.5-1 thru 6.5-12
5.1-1 thru 5.1-8 Original 6.6-1 thru 6.6-8
5.2-1 thru 5.2-12 Original 6.7-1 thru 6.7-8
5.3-1 thru 5.3-6 Original 7.1-1 thru 7.1-14
5.4-1 thru 5.4-8 Original 7.2-1 thru 7.2-14
5.5-1 thru 5.5-4 Original 7.3-1 thru 7.3-6
5.6-1 thru 5.6-6 Original 7.4-1 thru 7.4-12
5.7-1 thru 5.7-6 Original 7.5-1 thru 7.5-4
5.8-1 thru 5.8-6 Original 7.6-1 thru 7.6-8
5.9-1 thru 5.9-6 Original 8.1-1 thru 8.1-14
5.10-1 thru 5.10-4 Original 8.2-1 thru 8.2-4
5.11-1 thru 5.11-6 Original 8.3-1 thru 8.3-4
5.12-1 thru 5.12-8 Original 8.4-1 thru 8.4-20
5.13-1 thru 5.13-6 Original 8.5-1 thru 8.5-18
5.14-1 thru 5. 14-6 Original 8.6-1 thru 8.6-24
5.15-1 thru 5.15-10 Original 8.7-1 thru 8.7-6
5.16-1 thru 5.16-6 Original 8.8-1 thru 8.8-10
5.17-1 thru 5.17-6 Original 8.9-1 thru 8.9-6
5.18-1 thru 5.18-4 Original 8. 10-1 thru 8.10-6
5.19-1 thru 5.19-8 Original 8.11-1 thru 8.11-6
5.20-1 thru 5.20-4 , Original 8.12-1 thru 8.12-12
5.21-1 thru 5.21-4 Original 8.13-1 thru 8.13-4
5.22-1 thru 5.22-4 Original 8.14-1 thru 8.14-6
5.23-1 thru 5.23-6 Original

,.-.

ii

;
T

CHANGE IN
EFFECT

Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original

!
(

(

,~ ,. ;,

"""" ,'~

S.G.1219 (M) Front Matter

PREFACE

The purpose of this study guide is to provide a text for study of the maintenance
of the UNIVAC~1219 computer. The information herein supplements that which is
presented in class and that contained in the UNIVACQY1219 Technical Manual.

Training on the UNIVAC 1219 computer is necessarily complemented by operation de­
scriptions, charts, block diagrams, simplified logic diagrams, and study questions.­
In this study guide most of these training aids are available for reference in the
sequential order of course development. The use of this information is determined
by the instructor.

Each section contains a list of references which are portions of the UNIVAC 1219
Technical Manual, PX 3316. If no reference is made to this material within the
study guide text, the student should read the information at the completion of the
study guide section.

@D- Registered Trademark of Sperry Rand Corporation

iii

~

S. G. 12P) (M) FHONT MATTER

OUTLINE OF CONTENTS

SECTION 1 - GENERAL INTRODUCTION

1.1 General Description

SECTION 2 - PROGRAMING

2.1 Instruction Words

SECTION 3 - OPERATION

3.1 Controls and Indicators
3.2 Manual Instruction Execution
3.3 Utility Package I

SECTION 4 - LOGIC INTRODUCTION

4.1 Logit Circuits, Symbology, and Component Notation

5.1
5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12
5.13

5.14
5.15
5.16
5.17
5.18
5.19

5.20
5.21
5.22
5.23
5.24
5.25
5.26

SECTION 5 - CONTROL SECTION

Master Clock, Mode Control, Phase Step Mode, Phase Repeat
Main Timing, Instruction Sequencer, Operation Step Mode,

Sequence Step, and Stop Operations
Instruction Execution Techniques
I Sequence
Function Code Translator
Instruction Execution of STOP
Instruction Execution of ENTALK, ADDALK
Instruction Execution of ENTICR, ENTSR
Instruction Execution of ENTBK, ENTBKB
Instruction Execution of ENTB, ENTBB
Instruction Execution of ENTAU, ENTAUB, ENTAL, ENTALB, ADDAL,

ADDALB, SUBAL, SUBAI~

Instruction Execution of ADDA, ADDAB, SUBA, SUBAB
Instruction Execution of CL, CLB, STRB, STRBB, STRAL, STRALB, STRAU,

STRAUB
Instruction Execution of STRICR, STRADR, STRSR
Instruction Execution of SLSU, SLSUB, SLSET, SLCL, SLCP
Instruction Execution of CPAL, CPAU, CPA
Instruction Execution of CMAL, CMALB, CMSK, CMSKB
Instruction Execution of RND
Instruction Execution of JP, JPB, JPAUZ, JPALZ, JPAUNZ, JPA[~Z, JPAUP,

JPALP, JPAUNG, JPALNG
Instruction Execution of IJPEI, IJP
Instruction Execution of RJP
Instruction Execution of IRJP, IRJPB
Instruction Execution of SKP, SKPNBO, SKPOV, SKPNOV
Instruction Execution of BSK
Instruction Execution of ISK
Instruction Execution of BJP

v

S. G. 1219 (M) FRONT MATT ER

6.1
6.2
6.3
6.4
6.5
6.6
6.7

X-D' Adder
Instruction
Instruction
KO-1 Adder
Instruction
Instruction
Instruction

SECTION 6 - ARITHMETIC SECTION

Execution of SKPODD, SKPEVN and Parity Evaluator
Execution of RSHAU, RSHAL, RSHA, LSHAU, LSHAL, LSHA

Execution of SF
Execution of MULAL, MULALB
Execution of DIVA, DIVAB

SECTION 7 - MEMORY SECTION

7.1 General Description of Main Memory
7.2 Main Memory Internal Operation
7.3 General Description of Control Memory
7.4 Control Memory Internal Operation
7.5 General Description of Bootstrap Memory
7.6 Bootstrap Memory Internal Operation

8,1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

8.12

8.13
8.14

vi

SECTION 8 - INPUT/OUTPUT SECTION

General Description
Instruction Execution of SIN, SOUT, SEXF, INSTP, OUTSTP, EXFSTP
Instruction Execution of IN, OUT, EXF
Signal Detection and Selection
Input Data Request Operations
Output Data and External Function Request Operations
Continuous Data Mode Operations
Instruction Execution of OUTOV, EXFOV
Instruction Execution of SKPIIN, SKPOIN, SKPFIN, SKPNR, SRSM
External Interrupt Request Operations
Real Time Clock Request Operations, Generation of RTC Monitor and

Overflow Interrupt and Instruction Execution of RTC
Instruction Execution of RIL, EXL, SIL, SXL, WTFI, and Special and

Monitor Interrupt Operations
Inter-Computer Operations
B Network Adder

INPUT/OUTPUT CHANNELS

0,2,4,6 1,3,5,1 10,12,14,16 11,13,15,11

rrrr
Ce Co Ce Co

~ 1 t -,
~----~--~-----~----~----;---~

STORE SEL)- ZI
MAIN

~ MEMORY I+-

f

S. G. 1219 (M) Block Diauram

INPUT/OUTPUT SIGNALS

r

SPEC I NT f+- 118
TRANS

51 ~ P

,

I/O
PRIORITY

BOOT f+-­
MEMORY

1

F

AL

w

Z SEL
ZO

B

~ B

~ CONTROL ~
MEMORY

~+I

NETWORK ~-I

-
KO

AR I TH SE L AJ ___ -----,
.~

x

X-D'
ADDER

1
o

- AU

KO- I I
ADDER

1
KI

1219 Computer Block Diagram

SO

ICR

SR

I/O
TRANS

~,.

vii

S.G,1219 (M)1.l

SECTION 1 - GENERAL INTRODUCTION

1.1. GENERAL DESCRIPTION

1.1-1. OBJECTIVES

To present the general characteristics and descriptions of the computer sections
and features of those sections.

1.1-2. INTRODUCTION

None.

1.1-3. REFERENCES

UNIVAC 1219 Technical Manual, Volume I, Section I.

1.1-4. INFORMATION

UNIVAC 1219 Technical Manyal, Volume I, Section 1.

1.1-5. SUMMARY

None.

1.1-1

S. G. 1219 (M) 2. 1

SECTION 2 - PROGRAMING

2.1. INSTRUCTION WORDS

2.1-1. OBJECTIVES

To present the instruction word format, interpretation of its designators, defini­
tion of terms specified by the instruction, and description of the instruction
repertoire.

2.1-2. INTRODUCTION

The instruction word controls the machine operations to perform a predetermined
function according to its bit configuration. There are 10210 different instruc­
tions.

2.1-3. REFERENCES

UNIVAC 1219 Technical Manual, Volume I, Paragraphs 3-6~, ~, and~.

2.1-4. INFORMATION

a. General Description. The instruction word is an 18-bit number which
controls the computer operations to achieve some predetermined function. This
function could be an arithmetic type such as addition or subtraction, a logical
type such as logical multiplication (AND function), or a data transfer operation
causing a binary word to be brought from memory and placed into a register. The
operation to be performed is specified by the bit configuration (coding) of the
instruction word.

An over-all computer operation such as navigation, target position prediction, etc.,
is performed by the sequential execution of selected instructions. This arrangement
of instructions is referred to as a program. The instructions are stored in memory
along with 18-bit data words. There are no restrictions imposed on the bit con­
figuration of a data word and it may therefore be identical in content to an
instruction word. Distinction between these word types is possible, however, be­
cause the addresses of the memory locations containing the instructions are kept
track of in the P register. When a word is extracted from memory, the computer can
distinguish an instruction from data because the time during which the instruction
is obtained is different from that involving data word extraction from memory, and
because the instruction is placed in a special register.

The memory origin of the instructions executed are controlled such that they are
obtained from memory at sequential addresses. The addresses are formulated by
incrementing the content of P by +1 after each instruction is obtained. Therefore,
as an instruction is being executed, P holds the address of the next instruction.

~.l-l

S.G.12l9 (M)2.1

b . Form at 1 Ins t r u c t ion s .

1. Instruction Word ConfiQuration. The format 1 instructions are
identified by the 6 most significant binary bits of the word forming an octal code
of other than 50S. These octal digits comprise the function code (also referred
to as the f designator). Refer to figure 2.1-1 for the format 1 configuration.

BIT POSITIONS 17 ------- 12 II ----------------- 0
l) \)

y y

f U

NOTE: f CAN HAVE ANY VALUE OTHER THAN 50S

Figure 2.1-1. Format 1 Instruction Word Configuration

The function code specifies the operation to be performed. The lower 12 bits (U)
are used as determined by the function code. If the operation requires a memory
reference, U formulates a portion of the memory address. In other cases, U may
be the actual number handled by the instruction. Regardless of the origin of this
number (memory or U), the number is referred to as the operand.

2. Even-Numbered Function Codes or f >50S Instructions.

a) Use of U as a Constant. There are only four format 1 instruc­
tions which use the U portion as the operand (also referred to as constant). These
function codes are f = 36, 37, 70, 71S. In order to provide an IS-bit operand
value, these instructions extend the sign of U (Ull) into the upper 6 bits. This
value, referred to as XU, is formulated in a register separate from that which
holds the function code. Refer to figure 2.1-2 for the XU configuration.

BIT POSITIONS 17 ------- 12 II -----------------0
l) \.. J

Y T
U U

(SIGN BIT OF U) (12 LSB'S OF INSTRUCTION WORD)

Figure 2.1-2. XU Configuration for f = 36, 37, 70, 71

As an example of the use of XU, consider the instruction word 704065S. The function
code of 70 (ENTALK) places the constant XU in the AL register. The initial AL con­
tent would be cleared and the XU value of 774065S would be placed in AL. No memory
reference other than that necessary to obtain the instruction word is required.

2.1-2

S.G.1219 (M)2.1

b) Use of U as an Address. All format 1 instructions other than
f = 36, 37, 70, 71 require a memory reference either to obtain an operand or to
store a value into memory. U is used as the 12 least significant bits of the
address. Sixteen bits are necessary to allow addressiny for the complete 65,53610-
word memory. The upper 4 bits are supplied from either the P register (P15-12) or
the special register (SR4,2-0). The resulting address is referred to as either Up
or USR depending upon which is used. The origin of these 4 bits is determined by
the function code and SR3. SR3 is considered to be the SR active bit. If SR is
inactive (SR3 = 02), SR is not used. Refer to table 2.1-1 for the conditions
necessary to use Up and USR.

TABLE 2.1-1. Up AND USR CONDITIONS

CONDITIONS. RESULTING ADDRES&:~

(SR3 = 02) or (f = 30, 31, U = 15--12 11 0
34, 35, 51-67, p~ \. J

".

72-76 P15-12 U

(SR3 = 12) & (f = 01-27, 32, U = 15-12 11 0
SR ~ \.. J 33, 40-47 T

SR4 ,2-0 U

* If interrupt sequence is in effect, upper 4 bits of address are O's.
Address = 15--12 11 0

\. y J \. T J

0' s U

All format 1 instructions other than those listed in Table 2.1-1 use XU as a
constant. The interrupt sequence is discussed in a later sheet.

There are instructions which can be used to change the contents of SR to any con­
figuration. SR3 is not considered as an address bit; its only use is to specify
the activeness of SR.

If P15-12 is used, the address used by the instruction will be in the same area of
memory from which the instruction word itself is obtained. Realize that the in­
struction is obtained from the address held by P. P is advanced to the address
of the next instruction while the instruction is being brought from memory. During
the instruction execution, P holds the address from which the current instruction
was obtained plus one. If the current instruction was extracted from address
0177778 which is in bank 1, the upper 4 bits of Up will be 00102 which will refer­
ence bank 2. Thus. care must be taken in executing instructions from the last
address of a bank.

3. Odd Numbered Function Codes and f < 506 Instructions. For instruc­
tions with odd-numbered function codes less than 508, the XU, Up, or USR value is

~~ modified. These function codes require the addition of one of the control memory B
(index) registers to the address or constant formed with U (Up, USR, or XU), The B
register to be used is specified by the 3-bit index control register (fCR). There
are instructions which can be used to change the contents of ICR. ICR controls all

2. 1-3

S.G.1219 (M)2.1

instruction references to a B register. The modifications of Up + B, USR + B, and
XU + B are performed in an end-around-carry manner.

c. Format 2 Instructions. The format 2 instructions are identified by the
6 most significant binary bits of the word forming the octal code of 50S' Refer to
figure 2.1-3 for the format 2 configuration.

BIT POSITIONS 17 -------12 II ------- 6 5 -------_0
\. Jl .J\. J

T Y --------Y--------
f = 50S m k

Figure 2.1-3. Format 2 Instruction Word Configuration

For these instructions, f only indicates the format 2 configuration. The m desig­
nator is the effective function code (sometimes referred to as minor function code).
It specifies the operation to be performed and is often referred to as f. The m
designator is placed in the same register as is f for format 1 instructions. The
machine is able to determine which designator this register holds by inspecting
the format 2 flip-flop. This flip-flop is set if the upper 6 bits of the instruc­
tion word indicate format 2 (50S).

The remaining 6 bits comprise the k designator. The use of k is determined by m.
Most of the format 2 instructions are of the input/output type, and k indicates the
I/O channel number to be affected. In other cases, k represents a shift count and
a value (constant) to be placed in ICR or SR. None of the format 2 instructions
use any of the instruction bits to form a memory address.

d. Fault Function Codes. There are three format 1 function codes which
cause -an instruction fault condition. These are f = 00, 01, and 77S' This fault
condition interrupts the program and jumps the program to either address 00000
(control memory) or address 00500S (bootstrap) depending upon the position of the
AUTOMATIC RECOVERY switch. This switch and its effect are discussed in a later
sheet. There are other instructions which are illegal; however, they do not cause
the fault interrupt condition.

e. Repertoire of Instructions (non-I/O Type). There are 3 basic groups
of instructions. Some instructions require an operand from memory. Others store
the contents of AU, AL, or B into memory. The remaining instructions do not use
memory. Refer to table 2.1-2 for a listing of the non-I/O instructions. The
important feature of this table shows the use of XU, Up, USR, k and B modification.

Refer to the UNIVAC 1219 Technical Manual, paragraph 3-6~ for a more exact de­
scription of the instructions. The input/output instructions are discussed in
later sheets.

2.1-4

5.G.1219 (M)2.1

TABLE 2.1-2. 1219 COMPUTER REPERTOIRE OF INSTRUCTIONR (NON-lIO)

ENTER (Mem Register) SUBTRACT (Reg - Mem Reg) COMPARE (Reg &I Mem)

10 ENTAU Address = Up, 16 SUBAL Address = Up, 02 CMAL Address =
11 *ENTAUB USR. Up+B, or 17 *SUBALB USR. Up+B, 03 *CMALB Up. USR'

12 ENTAL USR+B 22 SUBA or USR+B 06 CMSK Up + B, or

13 *ENTALB 23 *SUBAB 07 *CMSKB USR + B

32 ENTB

33 *ENTBB SELECTIVE (logical operation SKIP
with Reg &I Mem)

ENTER (non-memory)
04 SLSU } Address = Up, 56 BSK } Mem used,

36 ENTBK (XU-+B) 05 *SLSUB USR ' Up + B, 57 ISK Address =
Up

37 *ENTBKB (XU+B-+B) 51 S~ET} or USR + B 50:50 SKP k = con-

70 ENTALK (XU--+AL) 52 SLCL Address = Up sole skip
key

50:72 ENTlCR (k-+ ICR) 53 SLCP 50:51 SKPNBO

50:73 ENTSR (k-.SR) COMPLEMENT (Reg, no Mem) 50:52 SKPOV

STORE (registr-+Mem) 50:61 CPAL 50:53 SKPNCV k not used

40 CL } O's -+Mem at 50:62 CPAU k not used 50:54 SKPODD

41 *CLB Address Up,
50:63 CPA 50:55 SKPEVN

42 STRB USR' Up + B, or ROUND (Reg, no Mem) DIRECT JUMP

43 *STRBB USR+B 50:60 RND k not used 34 JP } Jump ad-
44 STRAL ~torrle ~d- *JPB dress = Up

*STRALB >-

res = p,
MULTIPLY &I DIVIDE (Reg &I Mem) 35

45 USR' Up + B,
... or Up + B

60 JPAUZ
46 STRAU or USR + B 24 MULAL

61 JPALZ
47 *STRAUB~ 25 *MULALB Address = Up,

USR ' Up + B
62 JPAUNZ

72 STRIeR] Storage ad- 26 DIVA
63 JPALNZ or U

SR
+ B jump ad-

74 STRADR dress = Up 27 *DIVAB
64 JPAUP ~dress = Up

75 STRSR
SHIFT &I SCALE FACTOR (no Mem) 65 JPALP

ADD (Reg + M€m~register)
50:41 RSHAU 66 JPAUNG

14 ADDAL Address = UP' 50:42 RSHAL 67 JPALNG

15 *ADDALB USR. Up + B, or 50:43 RSHA k = shift count 73 BJP -
20 ADDA USR + B 50:44 **SF INDIRECT JUM P

21 *ADDAB 50:45 LSHAU
54 IJPEI jump ad-

ADD (AL + XU ... AL) 50:46 LSHAL 55 IJP
dress in mem
at address

71 ADDALK no memory 50:47 LSHA Up

DIRECT RETURN JUMP

76 RJP jump ad-
dress = Up +l

NOTES: *Odd function codes less than 50S add BICR to U value. INDIRECT RETURN JUMP

"Scale factor instruction (f = 50:44) stores a shift count in a fixed 30 IRJP jump add. =
memory location.

31 *IRJPB NO.+1 at Up
or Up + B

STOP

50:56 STOP k = console
stop key

2.1-5

S.G.1219 (M)2.1

2.1-5. SUMMARY

There are 2 basic instruction types, Format 1 and Format 2. Format 1 instructions
(f ~ 50S) use the lower 12 bits (U) either as an address (Up or USR) or an operand
(constant, XU). Some Format I instructions specify modification of the value
formed with U by the addition of BIeR.

Format 2 instructions (f = 50S) use the m designator as the actual function code.
The lower 6 bits (k) is used as a constant.

2.1-6

S.G.1219 (M)3.1

SECTION 3 - OPERATION

3.1. CONTROLS AND INDICATORS

3.1-1. OBJECTIVES

To present the general description of the controls and indicators, their functions,
and their uses.

3.1-2. INTRODUCTION

Although the computer is basically automatic, there are provisions for control of
the computer. Indicators provide a means of monitoring the operations. Switches
are used to control a part or all of the computer operation, to provide jump and
stop conditions, and to govern the speed of operation for maintenance purposes.
There are also pushbutton/indicators which monitor and allow,the manual setting
of flip-flops, and pushbuttons with which an entire register can be cleared.

3.1-3. REFERENCES

UNIVAC 1219 Technical Manual, Volume I, Paragraphs 3-1 and 3-2.

3.1-4. INFORMATION

Refer to the UNIVAC 1219 Technical Manual, Volume I, paragraphs 3-1 and 3-2 for
the general description of controls and indicators.

3.1-5. SUMMARY

None.

3.1-1

S,G,1219 (M)3.1

SECTION 3 - OPERATION

3.2. MANUAL INSTRUCTION EXECUTION

3,2-1. OBJECTIVES

To present the operating procedures involved with the manual execution of an
instruction.

3,2-2. INTRODUCTION

For program loading, program debugging, and for maintenance purposes, control of
the computer can be effected to cause the computer to execute one instruction
which has been loaded into the F register.

3.2-3. REFERENCES

UNIVAC 1219 Technical Manual, Volume I, Paragraphs 3-3~ and Q.

3.2-4. INFORMATION

a. General Description. Through the use of the function repeat operation
in conjunction with the operation step mode, the operator can execute one in-

'struction repeatedly at a manually controlled rate. The function code portion
of the instruction must be set in F, and the address used by the instruction must
be set in P. Each depression of the START STEP/RESTART switch causes one execution
of the instruction. During each execution, P is incremented by +1 so as to create
sequentially increasing addresses to be used by the instruction.

b. Operating Procedures. Refer to the UNIVAC 1219 Technical Manual,
Volume I, paragraphs 3-3~ and Q. These paragraphs describe the procedures for
manually executing the ENTAL (f = 12) and STRAL (f = 44) instructions. These
instructions provide for reading from memory and writing into memory operations.

The procedures described in the above reference can be modified to allow the
internal, low-speed restart oscillator to effect the stepping action. If the
START STEP/RESTART switch is placed in the up (locked) position instead of the
momentary down (spring loaded) position, each pulse from the restart oscillator
causes the instruction to be executed once and thus simulates one manual depression
of the switch. The rate of executions can be governed by the RESTART SPEED CONTROL
potentiometer which varies the frequency of the oscillator from 2 to 200 pulses per
second.

,,----, 3.2-5. SUMMARY

None.

3.2-1

S,G.1219 (M)3.3

SECTION 3 - OPERATION

3.3. UTILITY PACKAGE I

3.3-1. OBJECTIVES

To present the capabilities and use of the Utility Package I service routines.

3.3-2. INTRODUCTION

Utility Package I contains operator service routines used to perform memory loads
and dumps in various formats and to change the contents of memory locations by
computer panel control.

3.3-3. REFERENCES

None.

3.3-4. INFORMATION

a. General Description. Operator service routines are those routines
which perform handling service to the user; however, they do not become integrated
into his program. Utility Package (UPAK) I is a paper tape utility package which
loads assembled program tapes and makes memory dumps on paper tapes. The package
provides other console conveniences which are inspect-and-change memory cell
contents and store constant into memory.

UPAK I is a collection of seven subroutines punched on paper tape in relocatable
bioctal format. These subroutines provide paper tape input/output functions and
examination and alteration of memory for program debugging. The following is a
listing of the UPAK I subroutines.

1. Load Absolute Flexowriter/Field Data/ASCII Code)!' fyl ,c' S r r'(:.': (t-O"::'

2. Load Absolute Bioctal Code

3. Load Relocatable Bioctal Code):~*

4. Dump Absolute Flexowriter/Field Data/ASCII Code*

5. Dump Absolute Bioctal Code

*This type of code is determined by the type of paper tape punch (Flexowriter,
1232 1/0 Console (field data), or 1532 I/O Console (ASCII) that the particular
UPAK I specifies.

**Relocatable (relative) bioctal code is generated by the TRIM Assemblers.

3.3-1

S.G.1219 (M)3.3

6. Inspect and Change

7. Store Constant in Memory

UPAK I may be loaded anywhere in computer memory above address OlOOOS with the
single restriction that the entire package must be contained within a single
memory bank. The paper tape load and dump routines are operable under program or
manual control; the inspect-and-change and store-constant-in-memory functions are
operable from the computer control panel only.

UPAK I has been designed for computers with a maximum of 32,76S storage locations.
For this reason, the dump and load subroutines (with the exception of load
relocatable bioctal code) cannot be used to either load or dump a tape above
address 77777S. Those installations possessing larger than a 32,76S-10cation com­
puter should use UPAKM for the full addressing capability.

UPAK I occupies 1,031S memory locations, exclusive of addresses 00540S through
00777S which are used by the UPAK I loader. Entrance addresses to the seven
subroutines are assigned relative to the UPAK I base address. The base address
is specified by the operator prior to loading UPAK I. This operation is discussed
later in this sheet. Refer to table 3.3-1 for the subroutine starting addresses.

TABLE 3.3-1. UPAK I SUBROUTINE ENTRANCE ADDRESSES

ADDRESS SUBROUTINE ENTRANCE

Base*+ 0 Program entrance to paper tape load**

Base + 2 Program entrance to dump absolute Flexowriter/field

Base + 4 Program entrance to dump absolute bioctal code

Base + 6 Manual entrance to paper tape load*:{~

Base + 7 Manual entrance to dump absolute Flexowriter/field

Base + lOS Manual entrance to dump absolute bioctal code

Base + lIS Manual entrance to inspect and change

Base + 12S Manual entrance to store constant in memory

NOTES: ~~Base refers to the base address of UPAK I in memory.
**These paper tape operations are for all formats:

Absolute Flexowriter/field data/ASCII
Absolute bioctal
Relocatable (relative) bioctal

data/ASCII code

data/ASCII code

UPAK I subroutines use the currently active B register, but they store and restore
its original value. Subroutines entered under program control also store and
restore the Special Register (SR) value used by the program.

3.3-2

S.G.1219 (M)3.3

b. Description of Subroutines and Formats
I ~ .~~ ", l -:. .~'

;, ' of. ' ",,.' -

1. Load Absolute Flexowriter/Field Data/ASCII Code. A particular
UPAK I can accept one of these three codes, depending on the Ly~e uf UPAK I.

Refer to figure 3.3-1 for the input tape format.

A carriage return followed by either an 8 or an 88 and another carriage return
activates the load subroutine. A single 8 indicates the input tape has no check­
sum; an 88 indicates that the input tape has a checksum. The subroutine ignores
any data which may precede either of these two combinations. Each computer
instruction word on tape is preceded by a five-digit address which need not be in
sequential order; all five digits must be present. The next six digits constitute
the instruction word to be loaded; all six digits must be present. The load sub­
routine, in effect, accumulates the first 11 octal digits following a carriage
return as address and instruction, and ignores all other character codes including
notes. A carriage return signals the end of the instruction. If less than 11
octal digits are accumulated, the instruction will not be loaded. A final carriage
return followed by a double period (..) terminates the load and if required, initi­
ates a check verification.

When the checksum verification is correct, the load terminates with AU and AL
both containing O's. When it is incorrect, the load subroutine terminates with
AU = computed checksum and AL= tape checksum.

If Skip Key 1 is set, the load subroutine will perform a checksum verification
without loading the tape into memory.

No Checksum

~:~ 8
~~ AAAAA 111111
~:~ AAAAA 111111
~:~ AAAAA I I I I I I

~:~ AAAAA I I I I I I
.f_ -.-

Checksum

~:~88

~:~ AAAAA I I I I I I
~~ AAAAA I I I I I I
~:~ AAAAA I I I I I I

* AAAAA I I I I I I

~:~CCCCCC

NOTES: ~:~ indicates carriage return. For 1232 and 1532 I/O Consoles (field data
and ASCII codes, respectively), line feed is required after carriage
return.

A indicates octal character address digit.
I indicates octal character instruction or constant digit.
C indicates octal character checksum digit.

Figure 3.3-1. Flexowriter/Field Data/ASCII Code Format for Input via UPAK I
As It Appears Printed When Punched on Tape

3.3-3

S.G.1219 (M)3.3

When the checksum verification is correct, the load terminates with AU and AL both
containing O's. When it is incorrect, the load subroutine terminates with AU =
computed checksum and AL = tape checksum.

If Skip Key 1 is set, the load subroutine will perform a checksum verification
without loading the tape into memory.

2. Load Absolute Bioctal Code. Refer to figure 3.3-2 for the input
t ape forma t.

The absolute bioctal tape must begin with a 76 (code for absolute bioctal tape).
Immediately after the 76 code are the initial and final addresses consisting of
five digits each. Six-digit instruction words follow without further addressing,
and the tape is terminated by a six-digit checksum.

If Skip Key 1 is set, the absolute bioctal load subroutine will perform a checksum
verification without loading the tape into memory.

3.3-4

CODE ON TAPE

76

:]7
::4}. \
FF.

MEANING

CODE FOR ABSOLUTE BIOCTAL TAPE

INITIAL ADDRESS

FINAL ADDRESS

X
xxx } _____ ..
----I sf INSTRUCTION WORD OR CONSTANT

XX
I

I
I

xx

xx "'''~-------LAST INSTRUCTION WORD OR CONSTANT

xx

CC

CC "'~~------------CHECKSUM

CC

Figure 3.3-2. Absolute Bioctal Code Format for Input via UPAK I
As It Appears On Punched Tape

S.G.1219 (M)3.3

3. Load Relocatable (Relative) Bioctal Code. Refer to figure 3.3-3
for the input tape format. The relocatable bioctal tape must begin with a 75
(code for relocatable bioctal tape). The entire program must be relative to base
zero. Six-digit instructions follow the 75 code without addressing. Each in­
struction is preceded by a one-digit code which specifies to the subroutine how
to modify the instruction for storage. The tape is terminated by a six-digit
checksum preceded by a code of 7. The computer operator specifies the load base
address in AU; the load subroutine then uses this information to accomplish the
tape load. The tape can be loaded anywhere in computer memory.

Refer to table 3.3-2 for the interpretations of the modification code.

This tape format is generated by the TRIM assemblers. If Skip Key 1 is set, the
relocatable bioctal load subroutine will perform a checksum verification without
loading the tape into memory.

CODE ON TAPE MEANING

75

xx
I
I
I

XX

CODE FOR RELOCATABLE BIOCTAL TAPE

- MODIFICATION CODE FOR I sf INSTRUCTION

4---3~----- I sf INSTRUCTION WORD OR CONSTANT

4--------- MODIFICATION CODE FOR 2nd INSTRUCTION
I

.... _---lI _____ 2 nd INSTRUCTION WORD OR CONSTANT

X7 1--------- MODIFICATION CODE OF 7 INDICATES END WITH
CHECKSUM FOLLOWING

CC

CC 4.------- CHECKSUM

CC

Figure 3.3-3. Relocatable Bioctal Code Format For [nput via UPAK I
As It Appears On Punched Tape

3.3-5

S.G.1219 (M)3.3

TABLE 3.3-2. RELOCATABLE BIOCTAL MODIFICATION CODE INTERPRETATION

CODE MEANING

o

1

2

3

No modification of following instruction word or constant.

Add base address to bits 11-0 of following instruction word or
constant.

No modification of following instruction word or constant.

Add base address to bits 14-0 of following instruction word or
constant.

4 Add to current load address the following constant (creates a
break in the storage addresses; i.e., the next instruction will
be stored at the current address plus the constant following
the 4 code).

5,6 Not used.

7 Following is checksum.

4. Dump Absolute Flexowriter/Field Data/ASCII Code. Depending on the
type of UPAK I, the dump is in one of these three codes. The dump is initiated
manually at the computer or under program control for output on punched paper tape.
The 88 format (with checksum at the end) is the only one dumped. The output tape
includes both the addresses and the contents of memory location being dumped. The
format is that shown in figure 3.3-1.

5. Dump Absolyte Bioctal Code. The absolute bioctal dump is initiated
manually at the computer or under program control. The output on punched paper tape
is the 76 code followed by the initial and final addresses, the contents of the in­
clusive memory locations, and the checksum. The format is that shown in figure
3.3-2. If more than one program area is dumped successively on the same tape, the
format for each such area is as just described.

6. Inspect and Change. The inspect-and-change subroutine causes the
contents of the memory location specified in AU to be displayed in AL. The content
of AL may then be changed manually. The content of AL is then returned to the
memory address from which it was taken. The inspection address must only be
entered the first time since the content of AU is incremented by 1, and the content
of the next sequential address is brought into AL with each successive performance
of the inspect-and-change function. If the operator wishes to inspect the content
of some addresses other than the next sequential address, he may do so by setting
the new address in AU before returning AL into memory.

7. Store Constant in Memory. The store-constant-in-memory function
permits the operator to load a specified area of memory with a value manually
entered into AU. If AU = 0, the area is cleared.

c. Operating Procedures.

I. Loading UPAK I. UPAK I is provided on punched paper tape. The tape
is subdivided into 2 parts, the loader which is in absolute bioctal format and
3.3-6

S.G.1219 (M)3.3

UPAK I which is in relocatable bioctal format. The loader itself performs a re­
locatable bioctal load which loads UPAK I. The loader is brought into memory by
bootstrap. UPAK I loading procedure is as follows.

STEP 1. Place UPAK I tape in reader.

STEP 2. Master clear computer.

STEP 3. Press LOAD button to activate paper tape bootstrap.

STEP 4. Start computer (depress START STEP/RESTART switch).
AU and AL should contain O's.

STEP 5. Set AU to the desired UPAK I base address.

STEP 6. Start computer (depress START STEP/RESTART switch).
The computer will stop after UPAK I is in memory.
AU and AL should contain O's.

After UPAK I has been loaded into memory, addresses 005408 through 007778, which
are occupied by the loader for UPAK I, are available for other use. It should be
noted, however, that any subsequent loading of UPAK I will use these addresses to
accomplish the load.

2. Error Detection. Automatic checksum verification by the paper
tape load subroutines is the only error detection performed by UPAK I. If the
tape checksum and the checksum formulated from the loaded information agree,
the computer will perform a normal stop with AU and AL both containing O's. If
they do not agree, the computer will stop with AU = computed checksum and AL= tape
checksum.

Checksum verification is also performed on the loader for UPAK I. Immediately
after this loader has been inputted, control is given to a temporary checksum
verification subroutine which is part of the inputted loader. This subroutine
verifies the bioctal entry of the. loader.

3. Use of UPAK I. Paragraphs 3.3-4c3a) through 3.3-4c3e) list the
procedures of operation for the UPAK I subroutines. These procedures assume UPAK I
to be in memory.

a) Paper Tape Load (All Formats).

1) Manual Initiation.

STEP 1. Place tape in reader.

STEP 2. Set P to UPAK I base address +6.

Step 3. Set Skip Key 1 if checksum verification only is
required.

Step 4. For relocatable bioctal load only, set starting
address in AU. (Not required if Skip Key 1 is
set.)

Step 5. Start computer. (Depress START STEP/RESTART
switch.), Computer will stop after load. AU and
AL should contain O's. Successive tapes may be
loaded without resetting P.

3.3-7

S.G.1219 (M)3.3

3.3-8

2) Program Initiation.

STEP I. Place tape in reader.

STEP 2. For relocatable bioctal load ~, enter AU with
starting address.

STEP 3. Execute a return jump or indirect return jump to
UPAK I base address.

b) Dump Absolute Flexowriter/Field Data/ASCII Code.

1) Manual Initiation.

STEP 1. Set P to UPAK I base address +7.

STEP 2. Set AU to first address to be dumped.

STEP 3. Set AL to last address to be dumped.

STEP 4. Start computer. (Depress START STEP/RESTART
switch.) Computer will stop after dump.
Successive dumps may be performed by starting at
Step 2.

2) Program Initiation.

STEP 1. Enter AU with first address to be dumped.

STEP 2. Enter AL with last address to be dumped.

STEP 3. Execute a return jump or indirect return jump to
UPAK I base address +2.

c) Dump Absolute Bioctal Code.

1) Manual Initiation.

STEP 1. Set P to UPAK I base address +108'

STEP 2. Set AU to first address to be dumped.

STEP 3. Set AL to last address to be dumped.

STEP 4. Start computer. (Depress START STEP/RESTART
switch.) Computer will stop after dump. Succes­
sive dumps may be performed by starting at Step 2.

2) Program Initiation.

STEP 1. Enter AU with first address to be dumped.

STEP 2. Enter AL with las~ address to be dumped.

STEP 3. Execute a return jump or indirect return jump to
UPAK I base address +4.

3.3-5. SUMMARY

None.

d) Inspect and Change (Manual Initiation Only).

STEP 1. Set P to UPAK I base address +11
8

,

STEP 2. Set AU to desired memory address.

S.G.12l9 (M)3.3

STEP 3. Start computer. (Depress START STEP/RESTART switch.)
Computer will stop with the address in AU and its
contents in AL. The address in AU and/or the contents
in AL may now be changed.

STEP 4. Start computer. (Depress START STEP/RESTART switch.)

If contents only were altered, they will be stored
at the original address and computer will stop with
the next sequential address in AU and its contents in
AL.

If the address only was changed, the contents of AL
will be restored to their proper memory location and
computer will stop with the new address in AU and
its contents in AL.

If both the address in AU and its contents in AL were
changed, the contents of AL will be stored at the
original address and computer will stop with the new
address in AU and its contents in AL.

Any number of such sequences may be executed starting
with Step 4.

e) Store Constant in Memory_(Manual Initiation Only).

STEP 1. Set P to UPAK I base address +128 .

STEP 2. Set first storage address in AU.

STEP 3. Set last storage address in AL.

STEP 4. Start computer. (Depress START STEP/RESTART switch.)
UPAK I will record these addresses and computer will
stop with AU cleared.

STEP 5. Set desired constant in AU.

STEP 6. Start computer. (Depress START STEP/RESTART switch.)
UPAK I will store the contents of AU at successive
memory locations within, and including, the limits
established in Steps 2 and 3. Additional entrances
may be made starting at Step 2.

3.3-9

S.G.1219 (M)4.1

SECTION 4 - LOGIC INTRODUCTION

4.1. LOGIC CIRCUITS, SYMBOLOGY, AND COMPONENT NOTATION

4.1-1. OBJECTIVES

To present the logic symbology of the 1219, a brief analysis of electronic logic
gate operation, and use of the logic notation.

4.1-2. INTRODUCTION

The electronic diagrams for the 1219 use logic symbols for each circuit. The
student needs only to be able to interpret the logical function indicated by each
symbol. With the exception of some of the memory circuitry, all circuitry will be
discussed in its symbol form after this sheet.

4.1-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Section 8.

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

4.1-4. INFORMATION

a. Logic Levels. The two internal logic vOltage levels are referred to
as high (H) and low (L). The high level is 0 volts, ground. The low level is
-4.5 volts. Except for the memory section, all decision-making gates operate with
these levels. If a low level is needed to satisfy a particular logical function,
a flag is drawn on the input line. If a high level is needed, there is no flag.

In the same manner, the output of the logical function indicates the logic level
present if the function is satisfied. The presence of the flag on the output lead
implies a low level exists if the function is satisfied. No flag indicates a high
level. Refer to figure 4.1-1 for the flag notation.

b. AND Function.

1. General Description. The AND logical function is performed by a
circuit referred to as an AND gate. This gate is identified by a special symbol.
To satisfy an AND gate, all of the inputs must be present at the indicated levels
(flag notation). When the gate is satisfied, the indicated output level is present.
Refer to figure 4 1-2 for the four basic AND configurations and truth tables.

These examples only use two inputs. There can be many more inputs. Regardless of
~, the number of inputs, they must all be at the indicated level to satisfy the AND

gate.

4.1-1

S.G.1219 (M)4.1

NO FLAG:

H OUTPUT IF

FUNCTION SATISFIED

OUTPUTS --... /
INPUTS •

LOGICAL
FUNCTION

H INPUT NEEDED

LOGICAL
FUNCTION

TO SATISFY FUNCTION

FLAG:

L OUTPUT IF

FUNCTION SATISFI ED

LOGICAL
FUNCTION

FLAG:

~
LOGICAL
FUNCTION

L INPUT NEEDED
TO SATISFY FUNCTION

Figure 4.1-1. Illustration of Flag Level Notation

2. Detailed Analysis. AND gate c of figure 4.1-2 is used for an
example. Refer to figure 4.1-3 for the schematic.

Current flows from the -IS volt supply through the 2.2k, 470 ohm, and S.6k re­
sistors to the +lS volt supply. A VOltage of the polarity shown is developed
across the 470 ohm resistor. If both inputs A and B are at low levels, the voltage
applied to the transistor base with respective to ground (emitter) is negative
which forward biases the transistor. As a result, current flows from the -4.S volt
supply through the collector to emitter to ground. In this condition, the output
is at ground level due to the low internal resistance of the collector to emitter
path.

If either the A or the B input (or both) is at a high level (ground), current flows
from the -IS volt supply through the 2.2k resistor and input diode. Because of the
low internal resistance of the input diode, an effective ground level is present on
the left side of the 470 ohm resistor. The VOltage drop across this resistor (of
the polarity shown) then becomes the transistor bias which cuts off the transistor.
Depending upon the load, approximately -4.S volts is present at the output.

c. OR Function.

1. General Description. The OR logic function is performed by a circuit
referred to as an OR gate. This gate is identified by a special symbol. To satis­
fy an OR gate, at least one of the inputs must be present at the indicated level.
When the gate is satisfied, the indicated output level is present. An OR gate can
be drawn as an equivalent AND gate. Refer to figure 4.l-4for the four basic
configurations, truth tables, and equivalent AND gates.

4.1-2

NO FLAG:
H OUTPUT IF - __ ____

SATISFIED

NO FLAGS: /

ALL H INPUTS
REQUIRED TO SATISFY

o. HIGH INPUTS, HIGH OUTPUT

FLAG:
L OUTPUT IF­
SATISFIED

AND

b

a b

NO FLAGS: ~

ALL H INPUTS ~
REQUIRED TO SATISFY

b. HIGH INPUTS, LOW OUTPUT

NO FLAG:

a

FLAGS:
ALL L INPUTS
REQUIRED TO SATISFY

C. LOW INPUTS, HIGH OUTPUT

FLAG:
L OUTPUT IF

SATISFIED

FLAGS:
ALL L INPUTS
REQUIRED TO SATISFY

d. LOW INPUTS, LOW OUTPUT

INPUTS

a b

L L

L H

H L

H H

INPUTS

a b

L L

L H

H L
H H

INPUTS

a b

L L

L H

H L

H H

INPUTS

a b

L L
L H

H L

H H

Figure 4.1-2. Basic AND Gates

S.G.1219 (M)4.1

OUTPUT

c
L

L

L

H

OUTPUT

c

H

H

H

L

OUTPUT

c
H

L

L

L

OUTPUT

c

L
H

H
H

4. 1-3

S.G.1219 (M)4.1

a

INPUTS

b

+ 15V -4.5V

-15V

O. SCHEMATIC

c
OUTPUT

Figure 4.1-3. Low Inputs, High Output AND Gate

c

b. LOGIC SYMBOL

These examples use only two inputs; there can, however, be many more inputs.
Regardless of the number of inputs, at least one of them must be at the indicated
level to satisfy the OR gate.

2. Detailed Analysis. OR gate c of figure 4.1-4 is used for an
example. Refer to figure 4.1-5 for the schematic.

Current flows from the -15 volt supplies through the 470 ohm resistor to the +15
volt supply. A voltage of the polarity shown is developed across the 470 ohm
resistor. If both inputs A and B are at high levels (ground), current flows from
the - 15 v 0 Its up P 1 i est h r 0 ugh the 2. 4 k res i s tor san d the i n put d i 0 des. Th i s
ground level is applied to the left side of the 470 ohm resistor which causes its
voltage drop to be the transistor bias (base to emitter). The transistor is cut
off and the -4.5 volt supply is felt as the output.

If either input is at a low level, that low level is applied to the left side of
the 470 ohm resistor. If a ground is applied to the other input, its coupling
diode to the 470 ohm resistor is reverse biased and cut off. The resulting
negative voltage applied to the transistor forward biases it to cause collector­
to-emitter current flow from the -4.5 volt supply. The output is a ground level
because of the relatively low internal resistance of the transistor.

d. AND/OR Combination Function. AND and OR circuits can be combined into
one gate. Refer to figure 4.1-6 for an example.

4. 1-4

NO FLAG:
H OUTPUT IF -~ __ ___

SATISFIED

NO FLAGS:
/

0

ANY H INPUT
REQUIRED TO SATISFY

O. HIGH INPUTS, HIGH OUTPUT

FLAG:
L OUTPUT IF __
SATISFIED

NO FLAGS:

ANY H INPUT
REQUIRED TO SATISFY

b. HIGH INPUTS, LOW OUTPUT

NO FLAG:
H OUTPUT IF - ___ a..

SATISFIED

a
FLAGS: ../
ANY L INPUT ~
REQU IRED TO SATISFY

c. LOW INPUTS, HIGH OUTPUT

FLAG:
L OUTPUT IF -~ __ II

SATISFIED

FLAGS:
ANY L INPUT
REQUIRED TO SATISFY

d LOW INPUTS, LOW OUTPUT

b

INPUTS

a b

L L

L H

H L

H H

INPUTS

a b

L L

L H

H L

H H

INPUTS

a b

L L

L H

H L

H H

INPUTS

a b

L L
L H
H L

H H

Figure 4.1-4. Basic OR Gates

OUTPUT

c
L

H

H

H

OUTPUT

c

H

L

L

L

OUTPUT

c

H

H

H

L

OUTPUT

c
L
L

L

H

S.G.1219 (M)4.1

a b

EQUIVALENT
GATE

EQUIVALENT
GATE

b

EQU IVALENT
GATE

a b

EQUIVALENT
GATE

4.1-5

S.G.1219 (M)4.1

a

INPUTS

b

+15V

-15V

O. SCHEMATIC

-4.5V

c
OUTPUT

Figure 4.1-5. Low Inputs, High Output OR Gate

NO FLAG: FLAG:
__ ---- H OUTPUT IF

SATISFIED

a b

b. LOG IC SYMBOL

o. OR OUTPUT FUNCTION b. EQUIVALENT AND OUTPUT FUNCTION

Figure 4.1-6. AND/OR Combination Gate

4. 1-6

S. G. 1219 (M) 4. I

Both logic symbols represent the same circuits. Circuit A performs an OR function
of the AND gate inputs. That is, only one input AND gate must be satisfied (both
inputs at low levels) to satisfy the OR function and produce that high level out­
put.

Circuit B performs the same logical operation as circuit A; however, if B is
satisfied (low level output), A is not satisfied (low level output). In circuit B,
the input gates are represented as OR functions. All input OR gates must be
satisfied (one input at high level for each gate) to satisfy the output AND func­
tion.

The input AND/OR gates are comprised of diode circuitry.

e. Flip-Flop. The flip-flop is a bistable device. Its two stable states
are referred to as set and clear. Flip-flops can be used as temporary storage
elements since they can retain either of these states. The set/clear condition
represents the information stored. Several flip-flops (register) can be used to
hold a complete binary word. Refer to figure 4.1-7 for an example.

There are several variations concerning the set and clear inputs. If the clear
input is flagged, a low level would be required to clear. The clear input may alio
have an AND gate such that the coincidence of several conditions may be necessary
to perform the clearing. If the flip-flop is to hold a binary bit, it is usally
cleared first (cleared state represents 02) and then set (set state represents 12).
The output conditions for the two states hold true for any flip-flop, regardless
of the set and clear input configuration. The 1 side output lead is always
flagged to indicate a low level when set.

o SIDE~

CLEAR INPUT

NO FLAG:

o

C

H INPUT CLEARS
FLIP - FLOP

FLAG NOTES L OUTPUT

OUTPUT ,., r OF\ IF SET
STATE 0 SIDE I

FLI P -FLOP

S

SET H

CLEAR L

..----- I SIDE

- SET INPUT.
EITHER AND SATISFIED
SETS FLIP-FLOP

Figure 4.1-7. Flip-Flop

'"\
SIDE

L

H

4.1-7

S.G.1219 (M)4.1

f. Component NotatiQn. Each circuit has a unique reference number. The
printed circuit card type number and card location within the machine also is
noted. Refer to figure 4.1-8 for an example.

In most cases, the unique circuit number identifies the logic group with which
the circuit is associated. In this example, the letter A indicates probable
association with either the AU or AL register. If it does pertain to a selector
or register (i.e., a device with which the gate might be associated with one
particular bit position), the last two digits of the unique number indicate the
bit position. Since AU is numbered with bit positions 235 through 218 , this gate
in all probability, pertains to ALoo.

The unique circuit number for a flip-flop is slightly different. Refer to
figure 4.1-9 for an example.

All flip-flops have the "X" in their unique terms. In this example, the 1 and 0
sides are referred to by the terms OlAOO and OOAOO, respectively. This particular
flip-flop is stage 20 of the AL register.

Refer to UNIVAC 1219 Technical Manual, Volume I, Section 8-3 through 8-5 and
logic diagrams, figure 9-1.

TEST POINT
ON FRONT OF
SAME CHASSIS
HOLDING CIRCUIT

TEST POINT
__ ----.. -- 3M4

LOCATION ON CHASSIS:
3 - TEST BLOCK NUMBER
M4 - COORDINATES ON BLOCK

~UNIQUE CIRCUIT NUMBER

02AOO ,
2060".~I---CIRCUIT CARD NUMBER,
4JI2H~PREFIXED BY 700

CARD LOCATION:
4 - CHASSIS NUMBER
JI2H - JACK LOCATED AT COORDI­

NATES 12H IN CHASSIS

Figure 4.1-8. Logic Gate Notation

4. 1-8

S. G. 1219 (M) 4. 1

I (, OXAOO ".--~UNIQUE CIRCUIT NUMBER
CIRCUIT CARD NUMBER - ir---~~ 2000 X = 0 OR I DEPENDING ON
CARD LOCATION NUMBER ~ 4JI21 WHICH SIDE OF FLIP-FLOP

s REFERENCED

Figure 4.1-9. Flip-Flop Notation

4.1-5. SUMMARY

All circuitry is analyzed in the logic symbol form. The three basic circuits
are the AND gate, the OR gate, and the flip-flop. Each logic symbol has a unique
circuit number, circuit card type, and physical location code.

4. 1-9

S.G.1219 (M)5.1

SECTION 5 - CONTROL SECTION

5.1. MASTER CLOCK, MODE CONTROL, PHASE STEP MODE, PHASE REPEAT

5.1-1. OBJECTIVES

To present the detailed theory of operation involved in the master clock, mode
control, phase step mode, and phase repeat.

5.1-2. INTRODUCTION

The master clock is the source of all computer timing. Phase step mode and phase
repeat allow the operation of the clock to be manually controlled for maintenance
purposes. One of four modes can be manually selected to effect the desired
operations.

5.1-3. REFERENCES

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-2~(5) and 4-2Q(1),
(2) and (4).

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams).

5.1-4. INFORMATION

a. Master Clock.

1.
transfers, etc.
determined time
timing source.
master clock is
square wave.

General Description. In order to effect the necessary data
under the strict assurance that they will be executed with a pre­
relationship to other operations, the computer utilizes a common
This source is the master clock. The basic component of the
a free-running delay line oscillator which produces a symmetrical

The master clock output consists of four signals, referred to as phases. Each
phase is enabled by one alternation of the delay line oscillator. These four
phase outputs, represented by 01, 02, 03, and 04, provide timing to all computer
operations. Clock cycle time (all four phases) is 500 nanoseconds.

2. Detailed Analysis. This analysis is of the clock operation when
running at normal high speed. Manual control of the clock is described later in
this sheet. Refer to logic diagrams, figure 9-4.

The basic component of the master clock is the oscillator comprised of the three
delay lines shown. The oscillator will run freely if 24J06 outputs a constant
high level. Except during phase mode, this high level exists because of the pin 5
input to 24J06.

5. 1-1

S.G.l2l9 (M)5.l

If both inputs to 010001 are high levels, a low level is applied to the series
of delay lines. One of the 010001 inputs is taken from a tap of delay 03DYOl
such that after some time period, this input will become a low level. The result­
ing high level applied to the delay lines will eventually appear at the input to
010001 and cause its output to again go to a low level. This continuous action
causes symmetrical square wave signals to appear at the delay line taps and at
the output of 01D001.

Because of the inherent circuit delay of 010001, each square wave alternation has
a duration of approximately 125 nanoseconds. Each alternation is used to gener­
ate one clock phase. Thus, it requires two oscillator cycles to complete the 4-
phase clock cycle.

Outputs of the square wave oscillator are used to develop the outputs of 63C13
and 63C24. A low level from 63C13 enables 01 and 03. A low level from 63C24
enables 02 and 04. These low levels occur alternately. Other enables for 0
generation are from flip-flops 7XC24 and 7XC13. These flip-flops change their
set/clear configuration on every alternation of the square wave oscillator. The
third set of enables for 0 generation are from 21J06, 21J07, 21J08, and 2lJ09.
Their outputs are constant low levels if the Phase Mode is not in effect. The
output of 7lC14 is discussed later in this sheet. Refer to table 5.1-1 for a
description of clock phase generation.

5.1-1. NORMAL MASTER CLOCK OPERATION

63C13 63C24 7XC24 ff 7XC13 ff Generated 0

L H Set Clear 01

H L Set Set 02

L H Clear Set 03

H L Clear Clear 04

L H Set Clear 01

Refer to the UNIVAC 1219 Technical Manual, Volume I, Section 4, figures 4-5 and
4-6 for a more exact timing description of the master clock operation.

For marginal check conditions, the pulse width of the phases can be varied with
the CLOCK switches shown in logic diagrams, figure 9-4.

b. Mode Control.

1. General Description. One of four modes can be manually selected by
depressing the corresponding mode indicator/switch. These modes are run, operation
and phase step, and load. The phase step mode is the only one which affects the
master clock so as to allow manual control of phase generation. Otherwise, the
clock runs at normal speed. The use of the other three modes is discussed in
later sheets.

2. Detailed Analysis. Refer to the UNIVAC 1219 Technical Manual,
Volume I, Section 4, figure 4-3 and logic diagrams, figure 9-3.

5.1-2

S • G. 12 1 9 (M) 5 • 1

The computer can be in one of the four modes shown. The desired mode is initiated
by depressing the associated mode button. This action grounds the output of the
corresponding OOJO- gate to enable that mode. The mode gates are cross-coupled
such that once a mode is manually selected it will be held in control after the
mode button is released. The computer itself can initiate some of these modes
by other inputs to these control gates.

c. Phase Step Mode Without Phase Repeat.

1. General Description. The generation of the clock phases can be
manually controlled such that each depression of the START STEP/RESTART switch
will produce one phase. Each manipulation of this switch will produce the next
phase. The produced phase occurs once and has its normal pulse width.

The sequence of events for manual phase generation is as follows.

STEP 1. Depress PHASE STEP MODE button.

STEP 2. Depress MANUAL CLEAR PHASE button.

STEP 3. Depress one PHASE button (first phase desired).

STEP 4. Depress START STEP/RESTART switch for each phase desired.

With the START STEP/RESTART switch in the locked up position, phase generation is
controlled by the low-speed oscillator. This is an internal oscillator whose
frequency can be varied from approximately 2 to 200 pps by the RESTART SPEED
CONTROL potentiometer. Each oscillator cycle produces the next clock phase, thus
simulating repeated depressions of the START STEP/RESTART switch.

2. Detailed Analysis.

a) START STEP/RESTART Switch Logic. Refer to figure 5.1-1 and
logic diagrams, figure 9-3.

Remote control logic is not shown in figure 5.1-1 and the signal labels assume
local control. The START STEP/RESTART switch is shown in the neutral position.
The up position is locked and the down position is spring loaded to return to
neutral when the switch is released.

In order to better describe the logic operation with signal labels, the output of
the low speed oscillator is referred to as "LS pulse" when at a high level. This
output is only used with the switch in the locked up position.

The purpose of the start flip-flop is to allow the switch to be honored only once
for each depression or for each LS pulse when the switch is in the up position.

Develop and verify each of the signal labels shown in figure 5.1-1.

Refer to the output labels for both output gates of this logic group (23JIO and
35J 10). Notice that the occurrence of the LS pulse with the swi tch in the up posi tion
has the same effect as does the switch being depressed. Also, the absence of this
signal (LS pulse) with the switch in the up position has the same effect as does
the switch being returned to the neutral position. Therefore, the up position

5. 1-3

S.G.1219 (M)5.1

L ~ PHASE MODE • PHASE RPT +
START FF SET· STEP t +
START FF SET • STEP t · LS
PULSE

L::;> STEP 1'. LS PULSE + NEUTRAL

30J 06 --l-41li.....--' '------------~I___a
H ~ PHASE MODE

• PH AS E RPT ,..0--------,

C

0lJ02
L => PHASE MODE

71CI4

START FF
2XJI0

L ::;'> SPEC 04

IOJI3
L => LOCAL

S
BOTH L ~ STEP ~ •
LS PULSE + NEUTRAL ...--

L~ STEP~

H ::;'> STEP t + NEUTRAL

L::;> STEP", + NEUTRAL + STEP t .
LS PULSE

H ~ STEP + • LS PULSE

L ::;> STEP t
LOW SPEED

OSC.

H ~ STEP-+
~-..... + NEUTRAL

H ~ STEP t '-----t--~O

NOTE:

"STEP ~ II, "NEUTRAL", AND "STEP t II

REFER TO THE START STEP /RESTART SWITCH
IN LOCKED UP, NEUTRAL, AND MOMENTARY
DOWN POSITIONS, RESPECTIVELY.

H :;> STEP -+

\

Figure 5.1-1. START STEP/RESTART Switch Logic

5. 1-4

-4.5V

I
RESTART

NEUTRAL

START STEP

S.G.1219 (M)5.1

enables the low-speed oscillator to continually simulate the START STEP/RESTART
switch being depressed and released to neutral.

b) Phase Generation. Refer to logic diagrams, figures 9-3 and 9-4.

With the phase step mode in effect, the generation of a particular phase is de­
pendent upon the corresponding IXJO- flip-flop. Each time that the START STEP/
RESTART switch is released to the neutral position from being depressed or during
LS pulse with this switch in the locked up position, the IXJO- flip-flop which was
set is cleared and the next lXJO- flip-flop is set to enable generation of the next
phase.

Refer to table 5.1-3 for the sequence of events for the phase step mode. This
operation is described for repeated depression and releasing of the START STEP/
RESTART switch. The events are the same for the up position of this switch except
those events caused by depression of the switch are caused by the LS pulse and
those events caused by releasing the switch to neutral are caused by LS pulse.

d. Phase Step Mode With Phase Repeat.

1. General Description. Phase repeat can only be achieved with the
phase step mode in control. With the PHASE REPEAT switch on (up position), the
manually selected phase will be continually generated at its normal rate. The
START STEP/RESTART switch is not effective. The selection of a phase or combi­
nation of phases require the manipulation of the MANUAL PHASE CLEAR and PHASE
buttons.

2. Detailed Analysis. Refer to logic diagrams, figures 9-3 and 9-4.

During the phase repeat operation, the clock oscillator is continually running.
24J06 has a constant low level input from 23JIO.

30J06 outputs a constant high level to disable 32J06. Thus, none of the OXJO­
flip-flops can change state automatically. Likewise, none of the lXJO- flip-flops
change state. To select a phase or a combination of phases to be generated, the
OXJO- flip-flops must be cleared by the MANUAL PHASE CLEAR switch. The desired
phases can be selected by depressing the associated indicator/switches which set
the corresponding OXJO- flip-flops. The proper IXJO- flip-flops are immediately
set to enable phase generation.

5.1-5. SUMMARY

The master clock is a four-phase timing source. It is free running if the phase
step mode is not in effect. With the phase step mode (non-phase repeat) in effect
phase generation is manually or low-speed-oscillator controlled as determined by
the START STEP/RESTART switch. With phase-repeat and phase-step modes, the clock
is free running. However, phase generation is selected by the PHASE indicator/
switches.

5.1-5

S.C.1219 (M)5.1

TABLE 5.1-3. PHASE STEP MODE SEQUENCE OF EVENTS WITHOUT PHASE REPEAT
(Initially not in phase mode, clock running)

SWITCH ACTION PHASE FLIP-FLOPS

lXJ06 lXJ07 lXJ08 lXJ'09 OXJ06 OXJ07 OXJ08 OXJt)9 24J06

STEP NEUTRAL •• •• H

•• •• •• •• •• •• • • •• H , .. •• .. •• H

• H

Depress PHASE •• LI

MODE

Depress MAN Clr
2

Clr
2

Clr
2

Clr
2

Clr
l

Clr
l Clr

l
Clr

l Ll

CLR PHASE

Depress 111 Set
2

Clr
2

Clr2
Clr

2 Setl Clr
l Clr

l
Clr

l Ll

Depress STEP Set
2

cli Clr2 Clr2 Set
l

Clr
l

Clr
l

Clr
l ~l

Set
2

Clr
2

Clr
2

Clr
2

Set
l Clr

l
Clr

l
Clr

l HI

Set
2

Clr
2

Clr2
Clr

2 Clr2 Set
2 Clr

l
Clr

l HI

Set
2

Clr2 Clr
2 Clr2 Clr2 Set2 Clr

l
Clr

l HI

STEP neutral Clr
l

Set
l Clr2 Clr

2 Clr2 Set2
Clr

l
Clr l Ll

Clr
l

Set
l

Clr
2

Clr
2

Clr
2 Set2 Clrl Clr

l Ll

Depress STEP Clr
l

Set
1

Clr
2

Clr
2 Clr2 Set

2 Clr
l

Clr
l HI

Clr
l

Set
1

Clr
2

Clr
2

Clr
2

Set
2

Clr
l

Clr
l HI

Clr
l

Set
l

Clr
2

Clr
2

Clr
2

Clr
2

Set
2

Clr
l HI

Clr
l

Set
l

Clr
2

Clr
2

Clr
2

Clr
2

Set
2

Clr
l HI

STEP neutral Clr
l

Clr
l

Set
1

Clr
2

Clr
2

Clr
2 Set

2
Clr

l Ll

Clr
l

Clr
l

Set
l

Clr
2

Clr
2

cli Set
2

Clr
l LI

Depress STE P Clr
l

Clr
l

Set
l

Clr
2

Clr
2

Clr
2

Set
2

Clr
l HI

Clr
l

Clr
l

Set
1

Clr
2

Clr
2

Clr
2

Set
2

Clr
l HI

Clr
l

Clr
l

Setl Clr
2

Clr
2

Clr
2

Clr
2

Set
2 HI

Clr
l

Clr
l

Set
l

Clr
2

Clr
2

Clr
2

Clr
2

Set
2 HI

STEP neutral Clr
l

Clr
l

Clr
l

Set
1

Clr
2

Clr
2

Clr2 Set
2 Ll

Clr
l

Clr
l

Clr
l Setl Clr2 Clr

2
Clr

2
Set

2 LI

Depress STE P Clr
l

Clr
l

Clr
l

Set
l

Clr
2

Clr
2

Clr
2

Set
2 HI

Clr
l

Clr l
Clr

l
Set

l Set2
Clr

2
Clr

2
Clr

2 HI

Clr
l

Clr
l

Clr
l

Set
l

Set
2

Clr
2

Clr
2

Clr
2 HI

STE P neutral Set
1 • Clrl

Clr
l

Clr
l

Set2 Clr
2 Clr

2
Clr

2 Ll

Set
l

Clr
l

Clr
l

Clr
l

Set2 Clr
2 Clr

2
Clr

2 LI

Depress STEP Set
l

Clr
l

Clr
l

Clr
l

Set
2

Clr
2

Clr
2

Clr
2 HI

Setl Clr
l

Clr
l

Clr
l

Set2
Clr

2
Clr

2
Clr

2 HI

Set
l

elr
l

Clr
l Clr! Clr

2
Set

2 Clr
2

Clr
2 HI

Set I Clr
l

Cir
l

Clr
l

Clr
2

Set
2 Clr

2
Clr

2 HI

STEP neutral Clr
l

Set
l

Clr
l

Clr
l Glr2 Set

2
Clr

2
Clr2 Ll

NOTES: • "Spec 1M" refers to the low level output of gate 7lCl4 .

•• Phaae flip-flopa are not used if not in Phaae Mode. Their states are not necessarily known.

"STEP" refers to the START STEP/RESTART awitch.

Numbers shown in liatinga indicates the aequence of event. for the particular time period.

5.1-6

Start ff Clock

Set III

Set ~2

Set 113

Set 114, Spec 114·

Set Stop clock
2

Set stop clock
2

Set Stop clock
2

Set En clodc
2

Set 111

Clr
2 Spec !I4*1

Clr
2

Setl Stop clOCk
2

Set
l

Stop clOCk
2

Setl En cloCk
2

Set
l

112

Clr2 Spec !I4.1

Clr
2

Set
l

stop cloCk
2

Set
l stop clock

2

Set
l

En clock
2

Set
l

113

Clr2 Spec ~.l

Clr
2

Set 1 Stop clock
2

Set
l stop clock

2

Setl En cloCk
2

Clr
2 1M, Spec ~4*1

Clr
2

Set
l

stop clock
2

Set I stop clock
2

Set
1

En clock
2

Set
l

III

Clr
2

Spec IM·I

Clr2

Setl Stop Clock
2

S.G.1219 (M)5.1

NAME:

5.1-6. STUDY QUESTIONS

a. Refer to logic diagrams, figure 9-4.

What is the approximate time duration the 7XC24 flip-flop is set when
the clock oscillator is free running?

___________________ nanoseconds

b. Given: 35JIO grounded output (logic diagrams, figure 9-3).

Considering this malfunction, explain its effect upon the following
operating modes.

1. Free running clock (non-phase step).

2. Phase step mode (not phase repeat).

c. Given: 03J02 grounded output (logic diagrams, figure 9-3).

Considering this malfunction, explain its effect upon phase step mode
operation (non-phase repeat).

5.1-7

S . G. 12 19 (M) 5 . 2

SECTION 5 - CONTROL SECTION

5.2. MAIN TIMING, INSTRUCTION SEQUENCER, OPERATION STEP MODE, SEQUENCE STEP,
AND STOP OPERATIONS

5.2-1. OBJECTIVES

To present the detailed theory of operation involved in the timing logic which is
controlled by the master clock.

5.2-2. INTRODUCTION

Main timing is derived from a series of flip-flops.
flop timing chain is controlled by the master clock.
comprises a main timing cycle. Each of these cycles
which specifies the basic operation performed during
ing can be interrupted and manually controlled.

5.2-3. REFERENCES

The progression of this flip­
Each time through the chain

is under control of a sequence
that cycle. Computer sequenc-

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-2s (2), 4-2b(3), and
4-2~(4) and (5).

b. UNIVAC 1219 Technical Manya~, Volume II, Section 9 (logic diagrams).

5.2-4. INFORMATION

a. General Description. In order to effectively expand the clock phase
outputs, a group of 16 flip-flops, referred to as the main timing chain, is used.
These flip-flops change their set/clear configuration on every clock phase. There
are 16 individual configurations that occur during four 4-phase clock cycles.
These four clock cycles comprise one main timing cycle. The flip-flops are ar­
ranged sequentially, such that each clock phase sets the next sequential flip-flop
and clears some previously set flip-flop. Each flip-flop is set for the duration
of one 4-phase clock cycle. The timing flip-flops are numbered according. to the
setting sequence. When the last flip-flop is set, it enables the setting of the
first flip-flop on the next clock phase for recycling.

The necessary sequence of events to execute an operation is timed by the combination
of the timing chain flip-flop outputs and the clock phases. Then, as each sequen­
tial flip-flop is set, a new step (data transfer to a register, etc.) may be per­
formed as a part of an instruction execution. As discussed in later sheets. more
than one timing chain cycle may be necessary to complete the execution. For
example, one cycle could be used to obtain an instruction from memory; and the next
cycle could execute that instruction.

b. Detailed Analysis. Refer to logic diagrams, figures 9-8 through 9-11.

5.2-1

S.G.1219 (M)5.2

The main timing flip-flops are arranged in four groups. Each group specifies one
master clock cycle. Main timing will continue to cycle if 03Tll, the setting
gate for the T12 flip-flop, is enabled. This discussion assumes the timing cycle
to be constantly reoccurring. Refer to table 5.2-1 for the flip-flop settillg/
clearing sequence. The time notations are discussed later in this sheet.

TABLE 5.2-1. MAIN TIMING

CLOCK PHASE FLIP-FLOP ACTION TIME NOTATION

02 Set TIl

03 Set T12

04 Set T13

01 Set T14 T1. 1

02 Set T21; clear TIl T1. 2

03 Set T22; clear T12 T1. 3

04 Set T23; clear T13 T1.4

01 Set T24, clear T14 T2. 1

02 Set T31, clear T21 T2.2

03 Set T32, clear 1'22 T2.3

04 Set T33, clear T23 T2.4

01 Set T34, clear T24 T3.1

02 Set T41, clear T31 T3.2

03 Set T42, clear T32 T3.3

04 Set T43, clear T33 T3.4

01 Set T44, clear T34 T4.1

02 Set TIl, clear T41 T4.2

03 Set T12, clear T42 T4.3

04 Set T13, clear T43 T4.4

01 Set T14, clear T44 T1. 1

NOTES: Timing continues as long as recycle (setting T12) is enabled.
T52 flip-flop is not shown.

5.2-2

S.G.12l9 (M)5.2

The T52 flip-flop is set for only two special operations and is discussed in a
later sheet.

The time notation specifies the current clock cycle of the main timing cycle (one
of four) and the current clock phase. For example, Tl.2 time exists during 02 in
the first complete four-phase clock cycle after the setting of TIl. Since four
clock cycles occur for each main timing cycle, the main timing cycle is two micro­
seconds in duration.

Refer to the UNIVAC 1219 Technical Manual, Volume I, Section 4, figure 4-4 for a
waveform timing diagram of the main timing cycle.

The main timing cycle duration is directly associated with the two-microsecond
main memory cycle. Each time that a main memory reference is needed to obtain a
word or store a word, a main timing cycle is required to control the transfer of
data to and from memory.

c. Instruction Sequencer.

1. General Description.

a) Purpose of Sequences. During the execution of an instruction,
the main timing cycle is always under control of a sequence (I, RI, R2, or W for
non-I/O instructions). These sequences determine the use of the timing signals
which may be taken from the main timing chain flip-flops. Different sequences
in control will cause different operations to be performed. In special cases,
two sequences run in parallel. The instruction itself selects (via the function
code translator) the sequences to be used. The number of sequences used deter­
mines the instruction execution time.

b) ·Sequence Types.

1) I Sequence. This sequence is used when the computer is
ready to execute a new instruction. This new instruction is obtained from memory
at the address specified by the program. If required, B mOdification is performed.
The necessary value of Up, USR, or XU is formulated.

Many instructions require only the I sequence and are therefore executed in only
two microseconds. For these instructions, special additional I sequence operations
are performed.

2) Rl Sequence. This sequence obtains an operand (value to
be operated on) from memory at the address specified in the instruction. Some
instructions are completed by the Rl sequence.

3) R2 Sequence. This sequence is only used by f = 20-23
instructions. A second operand is obtained from memory.

4) W Sequence. This sequence performs storage of values into
memory at the address specified in the instruction.

2. Detailed Analysis. Each sequence effects control by two flip-flops
which may be referred to as initial and final; e.g., I sequencei and I sequencef.
When set they cause the execution of their designated operations as timed by main
timing and master clock.

5.2-3

S.G.l2l9 (M)5.2

Refer to logic diagrams, figures 9-12 and 9-13.

Except for the I/O sequence flip-flops, the upper rank contains the initial
sequence flip-flops and the lower rank contains the sequence final fli~-[lo~s.
Notice that of the sequences listed above, the initial sequence flip-flops are
cleared at T4.l time and are enabled to be set at T4.2 time. The final flip-flops
are cleared at 12.1 time and are enabled to be set at T2.2 time.

The final flip-flop set at T2.2 time corresponds to the initial flip-flop which
has been set at T4.2 time. The setting of the initial flip-flops is determined
by the instruction and its use of the main timing cycle. Refer to table 5.2-2
for the conditions to set the initial sequence flip-flops.

TABLE 5.2-2. INITIAL SEQUENCE FLIP-FLOP SETTING CONDITIONS (NON-I/O)

I. ff setting Int. ff
1 1

or (Inti ff set + Wait Seq ff clear) (not setting Waiti' Wi,
and Rli ff's)

Rli ff If ff set format 1 f = 02-33, 50-57

or Rl f ff set R2f ff clear . f = 20-23

R2i ff Rlf ff set . R2 f ff clear . f = 20-23

W· ff If ff set . f = 50:44 1

or If ff set format 1 f = 40-47, 72, 74-76

or Rlf ff set f = 30, 31, 57, 76

NOTE: Setting time is T4.2

Each main timing cycle is under control of a sequence. The initial sequence flip­
flops change (advance) their configuration once every main timing cycle. The
final flip-flops follow the initial flip-flops. Each sequence, therefore, has a
duration of one main timing cycle (two microseconds). Refer to figure 5.2-1 for
an example of the sequencing operation.

The detailed descriptions of operations performed during the sequences are pre­
sented in later sheets concerned with individual instruction executions.

d. Operation Step Mode and Seqyence Step.

1. General Description. The operation step mode can only be manually
initiated. This mode is put into effect and other modes are disabled by depressing
the OPERATION STEP MODE indicator/switch. Without sequence step operation, each
depression of the START STEP/RESTART switch causes the next instruction to be
executed and then the computer stops. The stop is accomplished by stopping the
main timing chain after the next I-sequence. Therefore, one instruction is

5.2-4

U1

l'-'
I

U1

T4.2

'i
SET

Ii FF

PROGRAM

ADDRESS INSTRUCTION

101000 ENTAU C (001000) --+ AU (4fLS) 006000

006001 462000 STRAU AU ~ MEMORY AT 002000 (4I-'S)

1
TI.l

CLEAR
I. FF

I

~

CLEAR
If FF

T2.2 I T4.2 IT2.2

SET
If FF

T4.1 I TI.I T2.1

SET I
Rli FF I

I

,
SET
Rlf FF

I I

CLEAR
RI. FF

I

T4.2

T4.11

SET
Ii FF

TI.l

CLEAR
Rl f FF

T2.2

T2.1

~

SET
If FF

CLEAR
l·FF

I

T4.2

T4.1

SET
Wi FF

TI.l

CLEAR
If FF

T2.2

T2.1

It

SET
Wf FF

CLEAR
W. FF

I

T4.1 TI.l

\ 1\ J\ ,\ 1

I I SE;UENCE I RI SE~UENCE I I SE;UENCE W SE;UENCE I
I I I I
I OBTAIN ENTAU INSTRUC - I C<OOIOOO) --+ AU I OBTAIN STRAU INSTRUC- AU ~ MEMORY AT I

TION FROM MEMORY AT nON FROM MEMORY AT 002000

I 006000 I I 006001 I
I I I I
I.. 21'S i" 21'S ,,10; 21'S +. 21'S ~

CLEAR
Wf FF

T2.1

NOTE: OTHER SEQUENCES ARE IN CONTROL PRIOR TO AND AFTER THE EXECUTIONS OF THE ABOVE INSTRUCTIONS BUT
ARE NOT SHOWN.

Figure 5.2-1. Example of Sequencing .Operation

en

~

......
[\.)
......
...0

:s:
'-'
CJ1

l'-'

S.G.l2l9 (M)5.2

executed and the following one is read from memory. The sequence indicators will
specify the sequence following the I-sequence which will be executed upon the next
switch depression.

Refer to figure 5.2-2 for an example of the operation step mode. This is the same
example considered in figure 5.2-1 which shows the uninterrupted sequencing oper­
ation.

If the STOP/SEQUENCE STEP switch is in the locked up posItIon, sequence step
operation is performed. Each depression of the START STEP/RESTART switch causes
the next sequence to be executed. With this operation, the results of each
sequence of an instruction may be observed.

Automatic stepping can be achieved by placing the START STEP/RESTART switch in the
locked up position. As was described for phase stepping, this switch position
allows the low-speed oscillator to simulate continual depressing and releasing to
neutral the START STEP/RESTART switch.

2. Detailed Analysis.

a) Instruction Stepping (not Sequence Step). Refer to figure
5.2-2 and logic diagrams, figure 9-3.

The STOP/SEQUENCE STEP switch is in the neutral position. Remote control logic
is not shown in figure 5.2-3 and the signal labels assume local control. Verify
each of the labels in figure 5.2-3. If necessary, refer to study guide sheet
No. 5.1, figure 5.1-1 to develop the labels which refer to the START STEP/RESTART
switch.

PROGRAM

ADDRESS INSTRUCTION

006000 = 101000

00600 I = 462000

ENTAU INSTRUCTION

A. r
I SEQ RI

I , I
t

OP STEP MODE STEP
INITIATED

ENTAU (I 8 RI SEQUENCES, 4fLS 1
STRAU (I a W SEQUENCES,4J.LSl

STRAU INSTRUCTION

, r A.
\ I

SEQ r SEQ W SEQ

I t I I
t STEP • ~ STEP

NEUTRAL

NEXT INSTRUCTION

A.

1 SEQ I,
STEP
NEUTRAL

NOTE: " STEP ~ II AND "NEUTRAL" REFER TO THE START STEP/RESTART SWITCH IN THE

NEUTRAL AND MOMENTARY DOWN POSITIONS. RESPECTIVELY.

Figure 5.2-2. Example of Operation Step Mode ~ithout Sequence Step

5.2-6

I

t STEP t

S.G.1219 (M)5.2

Stopping is effected by the clearing of the run 1 flip-flop which prevents the
setting of the T12 flip-flop via 07JIO. Therefore, main timing stops. The run I
flip-flop is cleared by 24JIO via 25JIO. Notice that 24JIO is satisfied during
the I-sequence if the Bl and B2 sequences are not running in parallel. The Bl and
B2 sequences are used for certain I/O instructions and are described in a later
sheet. The run 1 flip-flop, then, is cleared at T4.1 time of the I-sequence.

The computer remains stopped until the run 1 flip-flop is again set. The setting
is accomplished by manipulation of the START STEP/RESTART switch via 23JIO. The
START flip-flop prevents more than one step operation for each depression of this
switch. Refer to table 5.2-3 for the sequence of events.

With the START STEP/RESTART switch in the locked up position, depressing and
releasing to neutral of this switch are simulated by LS pulse and LS pulse, re­
spectively. This can be seen by examining the inputs to 23JIO and the set side
of the Start flip-flop as shown in figure 5.2-3.

b) Sequence Step. Refer to figure 5.2-3.

With the STOP/SEQUENCE STEP switch in the locked up position, which selects
sequence step operation, 24JIO is constantly enabled. Therefore, the run I flip­
flop is cleared at every T4.1 time to effect a sequence stop. Operations are
similar to those for operation step previously described. Main timing is stopped
after the setting of the TIl flip-flop and is not restarted until manipulation of
the START STEP/RESTART switch.

e. Stop Operations.

I. General Description. The disadvantage in stopping the computer
by means of the operation step mode is that main timing is stopped and not, only
the program but also any current I/O operations stop. Other program stops can
be effected without affecting main timing. Depressing the STOP/SEQUENCE STEP
switch causes a program stop at the completion of the current sequence. Execution
of the f = 50:56 instruction also causes a program stop if the stop condition is
satisfied. This instruction is described in more detail in a later sheet.

With either of these two methods, the program stop is effected by disabling the
control of the sequences. No operation is performed without sequence control.
The I/O sequences are not disabled and main timing continues unaffected, thus
allowing I/O operations. The computer mode is not altered.

Once stopped, manipulation of the START STEP/RESTART switch will effect restart
and the computer will continue operation in the same mode which had control prior
to the stop.

2. Detailed Analysis. (Refer to figure 5.2-3).

25JIO is used to clear the Run I flip-flop. This gate is enabled by depressing
the STOP/SEQUENCE STEP switch or by any of the stop flip-flops being set. One
or more of these flip-flops are set if the f = 50:56 instruction stop condition
is satisfied.

5.2-7

S.G.1219 (M)5.2

TABLE 5.2-3. OPERATION STEP MODE SEQUENCE OF EVENTS WITHOUT SEQUENCE STEP
(INITIALLY IN RUN MODE, COMPUTER RUNNING)

23.1 10
SWITCH ACTION TIME NOTATION START FF RUN 1 FF OUTPUT OTHER CONDITIONS

Set Set H

Depress OP STEP MODE Set Set H

1'2.2 Set Set H Set I seqf ff

T4.1 Set Clear H Clear I seq. ff
1

T4.2 Set Clear H Set next seqi
ff, set TIl ff

03 Set Clear H Cannot set T12
ff (stop main
timing)

Depress STEP Set Clear L

Next 02 Set Set L

03 Set Set L Set T12 ff
(enable main
timing)

04, Spec 04 Clear Set H Set 113 ff

Clear Set H

Clear Set H

T2.2 Clear Set H Set I seqf ff

T4.1 Clear Clear H Clear I seqi ff
Set next seqi ff
Set TIl ff

03 Clear Clear H Cannot set T12
ff (stop main
timing)

STEP neutral Set Clear H

NOTE: "STEP" refers to the START STEP/RESTART switch.

5.2-8

S. G. 1219 (M) 5.2

o H ::;> DISABLE SEQt *
TI2 FF

c s o H => DISABLE SEQ i *

RUN 2 FF

c S

MAIN TIMING
CHAIN

H ::;> TI3 FF SET

o
Til FF

C s

07J 10

o
RUN I FF

C S

L ~ (START FF SET) •

(STEP t + STEP tf\ •
LS PULSE)

L => OP STEP
MODE

H => ANY STOP FF
SET (t = 50: 56
STOP SATISFIED)

H =;> STEP~
~~~a-----------~ 

STEP 

NEU~:::t 
UP 

SEQ 
STEP 

L ~ OP STEP 
MODE 

L=> I SEQf FF 
SET 

L::;> Bli + B2i 

FF SET 

NOTES: * ALL SEQUENCES DISABLED EXCEPT I/O . 

H~ STEP ~ 

H ~ STEP ~ • LS PULSE 

o 
START FF 

c S 

BOTH L::;> STEP'" • 
LS PULSE + NEUTRAL 

L => SPEC ~4 

.. STEP"''', .. NEUTRAL", AND "STEP ~" REFER TO THE START STEP/RESTART SWITCH IN 
LOCKED UP, NEUTRAL, AND MOMENTARY DOWN POSITIONS, RESPECTIVELY. 

Figure 5.2-3. Operation Step, Sequence Step, and Stop Logic 

5.2-9 



S.G.12l9 (M)5.2 

Notice that main tImIng is not stopped unless the operation step mode is in control. 
The Run 2 flip-flop follows the state of the Run 1 flip-flop at TI.2 time. When 
both Run flip-flops are clear, all sequence control is disabled except for the I/O 
sequences. Refer to logic diagrams, figure 9-3 to follow the outputs of the Run 
flip-flops to verify their sequence disable function. 

As discussed in a later sheet, the timing for the f = 50:56 instruction is such 
that the program stop which it causes occurs at the beginning of the I-sequence. 
If restarted, the computer would read from memory the instruction which followed 
the stop instruction and then execute it. 

Notice that the manual stop is not timed by a sequence. If the STOP/SEQUENCE STEP 
switch is depressed, the stop occurs at the completion of the current sequence. 

5.2-5. SUMMARY 

The main timing cycle is two microseconds in duration and is created by a chain of 
16 flip-flops. Four master clock cycles are necessary to complete the main timing 
cycle of two microseconds. Recycling of main timing is automatic. All computer 
operations are controlled by this cycle. 

Each main timing cycle is under control of a sequence which determines how the 
cycle is used in performing part of the current instruction. Manual control of 
the main timing cycle and/or sequences can be effected by use of the operation 
step mode, sequence step operation, and programed or manual stop conditions. 

5.2-10 



S.G.1219 (M)5.2 

NAME: 

5.2-6. STUDY QUESTIONS 

a. Refer to logic diagrams, figure 9-24. In the space provided below, 
draw the waveform of the output of 31T31. Start the waveform at Tl.l time and 
continue it for six microseconds. Indicate the proper time notation (such as 
Tl.l) at each point where the wave form level changes. Assume no signal rise and 
fall times. 

H (Ov) ----

L (-4.5v) 

Time Notation '" TI.l 
~ 

T1. 1 
~ 

Tl. 1 '" Tl.1 

b. Given: 25JIO constant low level output (logic diagrams, figure 9-3). 

Describe the effect that this malfunction would have upon the 
operation step mode with STOP/SEQUENCE STEP switch in the neutral 
position. 

5.2-11 





S.G.1219 (M)5.3 

SECTION 5 - CONTROL 

5.3. INSTRUCTION EXECUTION TECHNIQUES 

5.3-1. OBJECTIVES 

To present the general techniques employed for instruction execution. 

5.3-2. INTRODUCTION 

As each instruction is obtained, it is translated and executed. The execution is 
effected by data transfers among the various registers and memory locations. 
These transfers are performed in a predetermined sequence as controlled by the 
four-phase clock, main timing cycle, and timing sequences (I, Rl, R2, W, Bl, and B2). 

5.3-3. REFERENCES 

UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.3-4. INFORMATION 

a. Main Memory Reference. The operations involved in referencing memory 
are accomplished during what is termed as the memory cycle. This two microsecond 
cycle is effected by a separate memory timing unit which reads information from 
the specified location and then writes that same or different information back 
into the same location. The read operation leaves the particular location cleared 
to O's, thus requiring the write portion to restore the information. 

There are several sections of memory referred to as banks. Each bank contains 
4,096 addresses. The referenced address is put into the Sl register. Sl directs 
the operation to the particular group of 18 storage units which comprise the 
specified location. The Zl register holds the information read from or written 
into main memory. 

Each instruction requires at least the one memory cycle necessary to obtain that 
instruction. An instruction may require additional memory cycles during its 
execution. For example, a store instruction causes the contents of a register to 
be stored in memory. Refer to figure 5.3-1 for a block diagram description of the 
main memory operation as used to extract and store information. 

b. Control Memory Reference. Any time that a memory reference is needed 
and the address is one which is assigned to control memory, the control memory 
cycle is initiated in place of main memory. This SOO-nanosecond cycle is effected 
by a separate timing unit which has a read operation and a write operation like 
that for main memory. 

SO is the control memory address register. The ZO register holds the information 
read from, or written into, control memory. 

5.3-1 



S . G. 12 19 (M) 5 • 3 

WRITE OPERATION 

RESTORES WORD 

READ OUT " 

WORD 
ADDRESS 

~ WRITE 

ZI 

18-~IT WORD 

READ FROM MEMORY 

READ 

a. WORD EXTRACTION OPERATION 

MAIN 
MEMORY 

SI 

WRITE 

STORAGE 
ADDRESS 

ZI 

NEW 18-BIT WORD 
TO BE STORED IN 
MEMORY 

READ 

'" 
b. WORD STORAGE OPERATION 

MAIN 
MEMORY 

READ OPERATION OCCURS TO CLEAR 
LOCATION TO O'S, INFORMATION 
READ OUT IS NOT GATED TO ZI (LOST) 

Figure 5.3-1. Main Memory Data Flow 

d. Register Data Flow. The data flow necessary to obtain instructions 
and execute them is directed to the proper registers by means of register entrance 
gates controlled by timing signals referred to as commands. Each register has 
circuitry which generates commands to enable the clearing of the register and data 
entry into the register from the proper source. Refer to figure 5.3-2 for an 
example showing one bit position of the AU register. 

The clear-AU command WQuld occur prior to the data entry command. The AU flip-flop 
can be set from either X or the X-Of Adder. This flip-flop is in the logic dia­
grams, figure 9-97. 

d. Selectors. Selectors are comprised of logic gates which have many 
input data sources and can have many output destinations. As for registers, each 
selector has logic circuitry which generates commands to enable the various input 
sources to apply their data to the selector gates. The selector actually serves 
the same function as the data entry gates to a register. The outputs of the 
selector can be one of the inputs to the register entry gates, thereby providing 
more data sources to the register than can be accommodated with the number of entry 

5.3-2 



S.G.1219 (M)5.3 

0 

OXAI8 AU I8 FLIP - FLOP 

C S 

09N04 

H => CLEAR AU 

+-- DATA ENTRY 
GATES 

TIMING COMMANDS 
19N04 

L=> X-D ADDER ~ AU 

29N04 

L=> X~ AU 

L=;> XOO = 12 

IXAOO 0 

L:::;> X - 0
1 

ADDEROO = 12 OXXOO XOO FLIP - FLOP 

C S 

• Figure 5.3-2. AU, Bit 18, Commands and Inputs 

gates on the flip-flop logic card. Refer to figure 5.3-3 for an example showing 
one bit position of arithmetic select. 

Notice that inputs to the selector can be other selectors as well as registers. 
Since the selector is comprised simply of gates, the input data source must be 
applied for the period of time that the data is needed at the output of the 
selector. The portion of the arithmetic select shown is in the logic diagrams, 
figure 9-82. 

Usually, the dam is applied to the selector for one clock cycle (500 nanoseconds). 
During this time period, the output of the selector can be used to set a register. 
Refer to table 5.3-1 for an example of data transfer from one register to another 
by way of a selector. 

TABLE 5.3-1. TRANSFER OF AL TO X VIA ARITHMETIC SELECT 

TIME NOTATION COMMANDS 

Tl.l AL~ Ari th Sel 

Tl.2 

T1.3 Clear X 

Tl.4 Arith Sel ~X (X = AL) 

T2.1 Drop AL~ Ari th Sel 

5.3-3 



S. G. 1219 (M) 5 . 3 

TIMING 
COMMANDS 

L =:> ARITH SELoo = '2 

13XOO 

.~- --

..;..;;;..;.19N;..,;;..;,..oI ___ -----Ilr1 j~ j~ Inl III 
L => AU ~ ARITH SEL 

29NOI 

L~AL~ARITH SEL 

49NOI 

L ~ Z SEL ~ ARITH SEL 

39NOI 

L ==:> P ~ ARITH SEl 

~5~9~N~O~I ____________________ +_----+_----+_----+_~'/' 12XOO 

L ~ SR/ICR /KO SEL ~ARITH SEl H ~ SR/ICR/KO 

SELOO: 12 

~=> PO~ =1 2 

o 
OXPOO 

C S 

PO~ FLI P - FLOP 

IOXOO 
H ~ Z SELoo=12 

v~ ALOO: 12 

o I 
OXAOO AlOO FLI P - FLOP 

C S 

o 
OXAI8 AU IS Fli P - FLOP 

c S 

Figure 5.3-3. Arithmetic Select, Bit 00, Commands and Inputs 

5.3-4 



S.G.1219 (M)5.3 

~.3-5. SUMMARY 

None. 

5.3-5 





S.G.12l9 (M)5.4 

SECTION 5 - CONTROL 

5.4. I-SEQUENCE 

5.4-1. OBJECTIVES 

To present the detailed theory of operations involved in the I-sequence. 

5.4-2. INTRODUCTION 

The I-sequence is used to obtain the next instruction from memory and formulate 
the value of U, XU, Up, or US R with or without B as required by the instruction. 
Some instructions are able to complete their operations within the two microsecond 
I-sequence. 

5.4-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Section 4-7, Table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.4-4. INFORMATION 

a. General Description. The I-sequence is used to obtain the instruction 
to be executed. The instruction is extracted from memory at an address which is 
dependent upon the previous instruction. If that instruction did not specify a 
program jump or skip, the next instruction is obtained from the next sequential 
address of the program. Refer to table 5.4-1 for a list of the basic operations 
performed during the I-sequence. 

TABLE 5.4-1. BASIC FUNCTIONS OF I-SEQUENCE 

NUMBER FUNCTION 

1 S is set from P to address of instruction. 

2 Memory cycle is initiated referencing address in S. 

3 Instruction word is read from memory and put in F, KO, and D. 

4 P is incremented by +1 to formulate address for next instruction. 

5 B (index register) is obtained from control memory at address in 
ICR. 

6 Value of Up or USR is formulated, if required. 

7 B is added to Up or USR if required. 

5.4-1 



S • G. 12 19 (M) 5 • 4 

b. De t ail ed Ana 1 ys is. 

1. Data Flow Block Diagram. Refer to figure 5.4-1 for a block diagram 
description of the I-sequence operations. 

Sl receives the instruction address from P at TI.I time. A memory cycle obtains 
this instruction which is put in Zl and applied to Z select. From Z select, the 
various portions of the instruction word are sent to three destinations. The six 
most significant bits of the word are examined from Z select to determine the 
format. If the instruction is format I, bits 17-12 are considered the function 
code and are placed in F. If the instruction is format 2, bits 11-6 are placed in 
F as the function code. The function code is translated by the function code 
translator which controls the remaining operations to execute the instruction. 

KO receives the six least significant bits of the instruction word. Although the 
transfer into KO is unconditional, KO is not used by all of the instructions. 

The entire instruction word is applied to arithmetic select from Z select. However, 
bits 17-12 are masked out by 0' s. The remaining 12 bits are placed in O. This 
value is referred to as U. Depending upon the instruction, 0 can receive bits from 
either SR or P so as to formulate Up or USR in O. For certain function codes, 
SR4,2-0 is conditionally set in 015-12. This transfer occurs only if SR3 = 12, 
which indicates that SR is active. With exceptions, for these function codes, ~ 

P15-12 is set in 015-12 if SR is inactive (SR3 = 02). 

If the interrupt sequence is active, the instruction is obtained from an interrupt 
entrance address due to the detection of an interrupt. The value of U contained 
in 0 is not modified by SR or P if the interrupt sequence is active. Therefore, 
if the instruction which is executed from an interrupt entrance address due to an 
interrupt references memory, the memory address will be in bank 0 (00000-077778). 
Usually the instruction contained in an interrupt address is a jump instruction . 

• If this instruction performs a direct jump, it will jump to bank O. If the in­
struction performs an indirect jump, the address of the jump address is in bank O. 

The value in 0 (U, USR, or Up) is modified by an index register for format 1 in­
structions whose function codes are less than 508 and are odd numbered. The index 
register is referred to as B and is the content of one of 8 addresses (00001-000108) 
in control memory. The address is specified by the content of ICR. Except for the 
value of 0002, the value of ICR is the exact address of B. The value of 0002 
specifies the B register at address 000108. 

If B is to be used, it is placed in X. The X-O' adder output of B-O' is 
effectively B + O. If B is not used, the value in 0 (U, USR, or Up) is outputted 
by the adder without modification. If used, the adder output is either the operand 
or the address of the operand depending upon the instruction. 

The advance P subsequence is used to increment P by +1. This operation sets P to 
the next consecutive address in preparation for obtaining the next sequential in­
struction of the program. If the instruction obtained by the I-sequence performs 
a program jump or skip, P will later be changed to the address of the desired next 
instruction. 

Notice that if U is modified by P15-12, 0 is set to these bits at T3.4 time. This 
time is after P has been advanced by +1. Therefore, if the current instruction 
was obtained from the last address of a memory bank, the value Up will specify the 

5.4-2 



S Q G. 1219 (M) 5.4 

I 

ZI -
-,0 READ . 

ft/()7 ,r T2.I-T3.1 

Z SEL= C Z SEL 

INSTRUCTION WORD 

Z SEL~7-12IF FORMAT I) _ Z SEL 5-0 
Z SELII-SIF FORMAT2j / 

T2,4 SET OXFOS FF T2.4~T2.4 . IF FORMAT 2 
F KO -

1;:>-40 ?'37 

K (USED BY 

WRITE 

/ 
I 
I 
I 

hAB INHIBITED 
/ TI.4-T2.3 

x-oj 
ADDER 

dJ 
X CLEARED TO O'S AT T\.3 

FORMAT 2 
...-J:2~ •• :...4.:.1.1 ..... -,,", ..... .,~g..r....-_ ........ 1 IN STR' S) ,--------

FUNCTION CODE 
TRANSLATOR NO USE FOR 

'--_----.... FORMAT II ----.. 
~ O'S ---.17-12 

CONTROL OPERATIONS TO I 
EXECUTE THE INSTRUCTION 1T2.I-T3.1 

ARITH SEL P~/7 

Pl5-12 ---+DI5-12IF (NOT SR~D). 
(ft 36,37,70,71 ).(NOT INT SEQ) 

ICR 

WRITEjl 
y T3.1 I 

1 

f 
T3.4 

I ZO ... -~--.... CONTROL H SO 
READ MEMORY P!.74 ------J T3.I-* 

Z SEL Z SEL= C (INDEX REGISTER) 

1 T3.I-T4.IIF (1=00-47)-(0001 )'(FORMAT il 

X p./Q "ARITH SEL I F NOTHING APPLIED TO 
., ,'- ARITH SEL,=ALL I ·S 

X CLEARED TO "IF FORMAT I '-~z. 
O·S AT T2.3 

OPERAND, ADDRESS OF OPERAND, OR JUMP ADDRESS DEPENDING UPON INSTRUCTION 

NOTES: * ZO --+ Z SEL OCCURS FOR THE DURATION OF THE T24 FF CLEAR 
OPERAND= 18 BITS 

ADDRESS= IS BITS 

ONLY THOSE EVENTS COMMON TO MOST INSTRUCTIONS ARE SHOWN 

Figure 5.4-1. I-Sequence Data Flow 

5.4-3 



S.G.1219 (M)5.4 

next bank. Obviously, special attention must be given to the use of the last 
bank addresses. 

Some instructions cause other events to occur during the last portion of the 
I-sequence. These additional operations are presented in later sheets. 

As discussed in a later sheet, the instruction could be obtained from bootstrap 
or control memory. 

2. Essential Commands. Refer to table 5.4-2 for a sequential list 
of essential-I sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

TABLE 5.4-2. I-SEQUENCE ESSENTIAL COMMANDS 

TIME NOTATION COMMANDS 

T4.4 Clear Sl 

Tl.l P~Sl, Init Memory, ~:~set Incr P ff 

Tl.3 *Clear 0, *Clear X, Clear F, Clear 21, *set OXLII ff 

T1. 4 ~:~PL ~ D
L

, ~:~PU ~ DU' Clear KO, * set Inhib EAB ff 

T2. 1 21~2 Sel, 2 Sel ~Ari th Sel, 0' s ~Ari th Sel17-12' ~:~Clear P 

T2.3 

T2.4 

T3.1 

T3.4 

T4.1 

~~ Cl ear Incr P ff 
~:~ Adder~P 

Clear X, Clear D, *Clear OXLII ff, *Clear Inhib EAB ff 

2 Sel17-l2 ~ F if format P:~*, 2 Selll-6 ~F & set OXF06 ff 
if format 2~:~* 

Ari th Sel ~D, 2 Sel5-0 ~KO 

ICR ~SO, Ini t CM, 20 ~2 SeP:~*~~ 

2 Sel ~Arith Sel if (f = 00-47) (odd f) (format 1); 
otherwise drop 2 Se 1 ~ Ari th Sel 

Drop 21~2 Sel, drop O's--+Arith Sel 17-12 

SR4 2-0 ~DI5-12 if ( SR3 = 1) • (f = 00-27, 32, 33, 40-47)· 
(not Int Seq.) 

P15- 12 ~D15-12 if (not SR ~D) . (f =I- 36, 37, 70, 71) (not 
Int Seq.) 

Arith Sel ~X if format 1 

Drop 2 Sel ~Ari th Sel 

*These events are concerned with or are controlled by the advance P subsequence. 

**The format of the instruction is sensed from 2 Sell7-l2. 
~:~~:n:~ZO~2 Sel occurs for the duration of the T24 ff clear. 

Only those events common to most instructions are listed. 

5.4-4 



S.G.1219 (M)5.4 

5.4-5. SUMMARY 

The I-sequence obtains from memory the instruction to be executed and formulates 
the value of U, XU, Up, or USR with or without B depending upon the requirements 
of the instruction. One of these values is available at the output of the X-D' 
adder at the end of the I-sequence. Some instructions require only the I-sequence 
for their executions. 

5.4-5 





S.G.1219 (M)5.4 

NAME: 

5.4-6. STUDY QUESTIONS 

a. Given: Pin 6 of OXF06 ff grounded (logic diagrams, figure 9-40) 
instruction in memory = 507203 

Explain briefly what would happen if the computer attempted to 
read this instruction from memory and execute it. What instruction 
would actually be executed? 

b. Given: 70NOl constant low level output (logic diagrams, figure 9-17) 
instruction in memory = 100500 

SR = 010102 

During the execution of this instruction, the content of some 
memory location is put into AU. Considering the given conditions, 
what will be the address from which the operand is obtained? 

Address of operand = ______________________ __ 

5.4-7 



\._-~ 



S. G. 1219 (M) 5.5 

SECTION 5 - CONTROL 

5.5. FUNCTION CODE TRANSLATOR 

5.5-1. OBJECTIVES 

To present the detailed theory of operation involved in the function code 
translator. 

5.5-2. INTRODUCTION 

The function code translator interprets the bit configuration of the function code 
in the F register and controls operations to execute the instruction. 

5.5-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraphs 4-2~ (2), and 
4-2~ (3). 

b~ UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams)o 

5.5-4. INFORMATION 

a. General Description. The function code translator translates the 
function code portion of the instruction word from the F register o F contains 
bits 17 through 12 of the instruction word for format 1 and bits 11 through 
06 for format 20 Format must be known to determine which of these instruction 
word bits are being translated. For example, if the translator should output a 
signal indicating "f = 30", the instruction could be either f = 30 or f = 50:30 
depending upon the format. Format is specified by F06 ' 

Separate translations are performed on the two octal digits comprIsIng the function 
code o The results of these translations are combined to determine the six-bit 
function code. 

Refer to the UNIVAC 1219 Technical Manual, Volume I, Section 4, figure 4-7 for a 
block diagram. 

b. Detailed Analysis 

1. Subtranslator 10 Refer to logic diagrams, figure 9-41. This logic 
group translates the more significant octal digits of the function code from 
F05-03o The gates which perform this translation are OSFOO through OSF30, OSF60, 
09F40, 09F50, and 09F70. The last two numbers of the logic gate number indicate 
the octal digit for which the particular gate translates o For example, OSFOO 
outputs a high level if bits 05 through 03 of F contain O's. Thus, this high 
level would indicate the presence of any function code whose more significant octal 
digit is Os which is f = 00-07. 

5.5-1 



S.G.1219 (M)5.5 

Other gates in this figure translate for larger function code groups. For 
example, a low level output of 91FOO indicates f = 00-07, 10-17, 20-27, ~0-37, 

40-47 or f = 00-47. 

2. Subtranslator 20 Refer to logic diagrams, figure 9-42. 

This logic group translates the less significant octal digit of the function code. 
Only four of the eight possible conditions are indicated because only bits 
F02 01 are tested. For example, 09FOl outputs a low level if F02 01 = 002. 
FOO'is not tested and could contain 02 or 12. Therefore, this low level indicates 
f = XO, Xl. The "X" means the more significant octal digit can be anything. 

3. Subtranslator 3. Refer to logic diagrams, figure 9-43. 

This logic group simply provides many logic outputs to indicate the conditions of 
F06 and Faa. If Faa = 12, the function code must be an odd number o If combined 
with the logic outputs of subtranslator 2, the FOO indication can specify the 
exact less significant octal digit of the function codeo For example, if 
subtranslator 2 indicates f = X4, X~ and subtranslator 3 indicates f = even, .then 
f = X4. 

F06 indicates the format of the instruction. If F06 = 12, the instruction is 
format 2. From this logic, format indication is combined with other function 
code translations to completely describe the instruction. 

4. Translator f = 02-77. Refer to logic diagrams, figures 9-44 
through 9-48. 

These logic groups combine various translator outputs to indicate groups of 
function codes. 

5.5-5. SUMMARY 

The function code translator indicates the operation to be performed as specified 
by the instruction. Function code translation is effected by combining several 
subtranslations of the bit configuration in F. 

5.5-2 



S.G. 1219 (M)S.5 

NAME: ________________________ _ 

5.5-6. STUDY QUESTIONS 

a G Given: 20F70 constant low level output (logic diagrams, figure 9-48) 

Considering this malfunction, list all function codes which will cause 
4lF72 (figure 9-48) to output a low level. 

b. Given: 30FOO constant low level output (logic diagrams, figure 9-48) 

Considering this malfunction, list all function codes which will cause 
4lF72 (figure 9-48) to output a low level. 

c. Refer to logic diagrams, figure 9-41. 

List all function codes which will cause 94FOO to output a high level 
(no malfunctions), 

d. Given: 08F40 constant low level output (logic diagrams, figure 9-41) 

Considering this malfunction, list all function codes which will cause 
93FOO (figure 9-41) to output a low level. 

5.5-3 



S.G.1219 (M)5.5 

5.5-4 

e. Given: 08FOO grounded output (logic diagrams, figure 9-41) 

Considering this malfunction, list all function codes which will cause 
93FOO (figure 9-41) to output a low level. 

f. Given: 08F40 grounded output (logic diagrams, figure 9-41) 

Considering this malfunction, list all function codes which will cause 
95FOO (figure 9-41) to output a low level o 



S.G.1219 (M)5.6 

SECTION 5 - CONTROL 

5.6. INSTRUCTION EXECUTION OF STOP 

5 0 6-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of the STOP 
instruction, f = 50:56. 

5.6-2. INTRODUCTION 

This instruction allows the program to conditionally or unconditionally stop 
itself. 

5.6-3. REFERENCES 

UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.6-4. INFORMATION 

a. General Description 

1. Instruction Interpretation. The STOP instruction, f = 50:56, 
conditionally stops the computer. A stop is effected if any 12 in k corresponds 
in bit position number to a manually selected STOP switch. If k05 = 12, an un­
conditional stop is performed. The computer is stopped by disabling the control 
of all sequences except I/O. Main timing is not affected; therefore, I/O oper­
ations can continue. 

After the stop, the STOP indicator which is lighted specifies which bi t of k caused 
the stop. These indicators are extinguished upon computer restart o 

2. Execution Sequence (I). All operations are performed within the 
I-sequence. Only the one memory reference to obtain the instruction is necessaryo 

b. Detailed Analysiso 

1. Data Flow Block Diagram. Refer to Figure 5.6-1 for a block diagram 
description of the execution of f = 50:56. 

Most of the I-sequence operations are as previously described. If necessary, 
refer to' study guide sheet number 5.4 for a detailed description. 

At T2.4 time, KO receives k of the instruction word. According to the bits set 
and STOP switches selected, the stop flip-flops are set. If any stop flip-flop 
is set at T4.1 time, the computer is stopped; i.e., sequences are disabled. If 
necessary, refer to study guide sheet number 5.2 for a review of the stop operation. 

5.6-1 



S. G. 1219 (M) 5 • 6 

As discussed in a later sheet, the instruction could be obtained from bootstrap 
or control memory. 

2. Essential Commands. Refer to table 5.6-1 for a sequential list 
of essential I-sequence events. Develop these commands by referring to the 
proper enable pages in the logic diagrams. 

5.6-5. SUMMARY 

The STOP instruction allows the program to unconditionally stop itself with 
k5 = 12G The other k bit positions set allow preselected manual stops. Stopping 
is effected by disabling the sequences. Main timing is not affected. 

Z SELII-6 

WRITE 

I ZI 
..... ~ ____ -41 MAIN l ....... ~~ 
,. READ l MEMORY r-

, T2.I-T3.1 

Z SEL 

Z SEL5-0 

T2.4 , T2.4 
...-_....L-_ 

F KO 

f = 50 :56 
1 k 

T I. 3 CLEAR ALL STOP F-F I S 
T3.4 SET STOP FF ACCORDING TO k 

SI 

--- -----

I 
I 

I 
I Tt.I 

/ 
/ 

I 
I 

/ 

EAB 

I INHIBITED 

I TI.4-T2.3 

I 
I 
I 

P 

D 

X-D' 
ADDER 

.~ 

x 

~2.2 

ADV P SEQ 

I X CLEARED TO O'S AT TI.3 

---------

Figure 5.6-1. I-Sequence Data Flow For f = 50:56 
5.6-2 



S.G.1219 (M)5.6 

TIME NOTATION 

T4.4 

TI.1 

Tl.3 

TI.4 

T2.1 

T2.2 

T2.3 

T2.4 

T4.1 

TABLE 5.6-1. I-SEQUENCE ESSENTIAL COMMANDS FOR f = 50:56 

COMMANDS 

Clear Sl 

P ~Sl, Ini t Memory, ;:~set Incr P ff 

*Clear D, *Clear X, Clear F, Clear ZI, *set OXLII ff, clear 
all Stop ff's 

~:~P ~D ;:~P ----;'D Clear KO, ~:¢set Inhib EAB ff L L' U U' 

ZI ~ Z Sel, ~~Clear P, ~:~clear Incr P ff 

*Adder ~P 

~~Clear OXLll ff, ~:¢clear Inhib EAB ff 

Z Sel
11

_6 ~F, set OXF06 ff, Z SeI
S

_
O 

---;'KO 

Set stop ff corresponding to KO bit = 12 and selected STOP 
switch 

Clear run I ff if any stop ff set 

*These events are concerned with, or are controlled by, the advance P 
subsequence. 

5.6-3 





.. ..----.., 

5.6-5. 

S.G.1219 (M)5.6 

NAME: -------------------------
STUDY QUESTIONS 

a. Given: OXG60 flip-flop, pin 12 grounded (logic diagrams, figure 9-31) 

Describe the effect that this malfunction will have upon computer 
operations. 

5.6-5 





S.G.1219 (M)5.7 

SECTION 5 - CONTROL 

5 0 7 c INSTRUCTION EXECUTION OF ENTALK, ADDALK 

5.7-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of instruc­
tion with f = 70, 71. 

5.7-2. INTRODUCTION 

These instructions enter AL with either the value of XU or XU + ALo 

5.7-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.7-40 INFORMATION 

a o General Description 

1. Instruction Interpretation 

a) ENTALK, f = 70. This instruction obtains the lower 12 bits 
of the instruction word, which is referred to as U, and extends its sign to formu­
late an 18-bit word. This value is placed in AL. The original contents of AL 
are destroyed (cleared)o 

b) ADDALK, f = 71. This instruction is similar to f = 70. It 
formulates an 18-bit value by extending the sign of U. XU is then added to AL 
and their sum is placed in AL. The original content of AL is destroyedo The 
Overflow flip-flop is set if an overflow occurs. 

20 Execution Sequence (I). All operations are performed within the 
I-sequence o Since the operand Y does not come from memory, only the memory 
reference to obtain the instruction is necessaryo 

b. Detailed Analysis 

1. Data Flow Block Diagramo Refer to figure 5.7-1 for a block 
diagram description of the execution of f = 70, 71. 

Most of the I-sequence operations are as previously described o If necessary, refer 
to study guide sheet number 5 0 4 for a detailed description. 

5.7-1 



S.G.1219 (M)S.7 

The operand Y is formulated in D. 0 receives U, the lower 12 bits of the 
instruction word, from arithmetic selecto The sign bit of U is extended from 
011. For 0, the operand XU is applied to one side of the X-D' Adder. Tf f = 70, 
X contains -0. If f = 71, X receives AL via arithmetic select. The final content 
of AL is X-D' which is effectively X + D. Therefore, for f = 70, AL receives 
-0 + XU. For f = 71, AL receives ALI + XU. 

The setting of the overflow flip-flop for f = 71 is conditioned by the X-O' 
addero The X-O' adder is analyzed in a later sheet. 

As discussed in a later sheet, the instruction could be obtained from bootstrap 
or control memory. 

2. Essential Commands. Refer to table 5.7-1 for a sequential list 
of essential I-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

5.7-5. SUMMARY 

The ENTALK and ADD~LK instructions both use the value XU o The sign extension is 
formulated in 0 after U has been set into its lower 12 bits. 

5.7-2 



Z SEL17-12 

0IS~17-1 2 

IIS~017- 12 IF 

011 = I 

F 

ZI 
~ READ 

T2.I-T3.1 

WRITE 

MAIN I+­
MEMORY 

Z SEL Z SEL: INSTRUCTION 

, T2.4 / 
I 

S.G.1219 (M)5.7 

1-__ ==---_-
TI.l I T2.2 

SI I 

) 

/ 

/ 
/ 

/ 

/ EAB INHIB-
/ I TED TIA-

T2.3 

P frf-

! TI.4 ADV P SEQ 

0 

~ 
X-.DI .... 
ADDER 

• 
X 

! 1 
T2.I-T3.1 

I 
I 
I 
I 
I 
I 

X CLEARED TO OIS AT 
TI.3 

ARITH SEL 

T3.4 
' T2.4 

0 o : Y = XU 

T4 .. 2 f=70 AL f ·= X -0' .. 
AL -

AL f = XU 1 f~71 
T3, I -T4.1 f = 71 ALf = X -0

1 

X-D I 
I 1------........ 

ADDER I 

ARITH SEL ALf = X +0 

ALf = ALi +XU 

X 
'--__ --.J ... T 3.4 

IF f =70, ARITH SEL=ALL liS 

T4.2 SET OVERFLOW ff IF(f=71)·(SIGN OFALf # SIGN OFALj)* 

NOTE: * THE OVERFLOW CONDITION IS INDICATED FROM THE X - 0
1 
ADDER BY: 

(X 17 = O2 , 0 17 ' = 12 • NO BORROW REQUEST~ BIT 17) + 

(X17 = 12' 017 I = O2 , BORROW REQUEST ~ BIT 17) 

Figure 5 0 7-10 I-Sequence Data Flow For f = 70, 71 

5.7-3 



S.G.1219 (M)5.7 

TABLE 5 0 7-1. I-SEQUENCE ESSENTIAL COMMANDS FOR f = 70, 71 

TIME NOTATION 

T1.1 

Tl.3 

Tl.4 

T2.1 

T2.2 

T2.3 

T2.4 

T3.1 

T4" 1 

T4.2 

COMMANDS 

Clear Sl 

P ~ Sl, Ini t Memory, ~:~Set Incr P ff 

Clear Zl, ~~set OXL11 ff, ~:~c1ear 0, ~:~clear X, clear F 

*p --:. 0 f,~set Inhib EAB ff U U' 

~:~Clear P, Zl ~Z Sel, Z Sel---:;.Arith Sel, a's ~Arith 

Se1 17_12 *C1ear Incr P ff 

f,~Adder ~ P 

C 1 ear X , ~:~ c 1 ear In h i b EA B f f, *c 1 ear a XL 11 f f 

A Sel
17

_
12 

--;'F, Arith Se1 --;;"0 

AL ~Arith Se1 if f = 71, drop ZI ~Z Se1 
drop Z Sel ~Arith SeI, drop a's ~Arith SeI

I7
_

12 

1 's ~D17-12 if 011 = 1, Arith Sel ~ X 

Clear AL, drop AL ---=- Ari th Se 1 

Adder ~AL, set Overflow ff if (f = 7I)O(sign of AL
f 

i sign 
of AL. ) 

1 

*These events are concerned with, or are controlled by, the advance P 
subsequence" 

5.7-4 



S.G.1219 (M)5.7 

NAME: -------------------------

a. Given: instruction = 714000 
ALi - 004000 

Assume each of the following malfunctions to occur individually. 
Indicate ALf for each of these conditions. 

1. 13Xll grounded output (logic diagrams, figure 9-83) 
ALf = __________________ _ 

2. 50N02 constant low level output (logic diagrams, figure 9-18) 
ALf = __________________ _ 

3. Pin 13 of OXDll ff grounded (logic diagrams, figure 9-86) 
ALf = 

4. Pin 13 of OXXll ff grounded (logic diagrams, figure 9-88) 
AL f = 

5. Pin 15 of OXAll ff grounded (logic diagrams, figure 9-100) 
ALf = __________________ _ 

6. 70NOI constant low level output (logic diagrams, figure 9-17) 
AL f = 

h. Given: 20NOl grounded output (logic diagrams, figure 9-17) 
instruction = 712005 

SR = 011002 
ALi = 600731 

content of address 42005 = 045007 

Give the final content of AL. 
AL = 

f -------------------

5.7-5 





S. G. 1219 (M);J.A 

SECTION 5 - CONTROL 

5 e 8. INSTRUCTION EXECUTION OF ENTICR, ENTSR 

5.8-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of instructions 
with f = 50:72, 50:73. 

5.8-2G INTRODUCTION 

These instructions enter either ICR or SR with the lower bits of the instruction 
word. 

5.8-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

508-4. INFORMATION 

a~ General Description 

1. Instruction Interpretation 

a) ENTICR, f = 50:72. This instruction places the three least­
significant bits of the instruction word in ICR o The original content of ICR is 
destroyed. ICR is used to specify a B register as used by certain other instruc­
tions. 

b) ENTSR, f = 50:73. This instruction places the five least­
significant bits of the instruction word in SR. The original content of SR is 
destroyed. If SR is active, its content is used by certain other instructions 
with bits 11-0 of these instruction words to formulate a memory address. SR is 
considered active if its bit position 3 is equal to 120 

2. Execution Sequence (1)0 All operations are performed within the 
I-sequenceo Only the one memory reference to obtain the instruction is necessaryo 

b. Detailed Analysis 

1. Data Flow Block Diagram. Refer to 5 0 8-1 for a block-diagram 
description of the execution of f = 50:72, 50:73 0 

Most of the I-sequence operations are as previously described o If necessary, 
refer to study guide sheet number 5 0 4 for a detailed description. 

5.8-1 



S.G. 1219 (M)5.8 

KO is set to the six least-significant bits of the instruction word from Z-selecto 
If f = 50:72, ICR is cleared and receives bits 2-0 of KO which are the lower three 
bits of the instruction word. If f = 50:73, SR is cleRred an~ receives bits 4-0 
of KO o If bit position 3 of the instruction word is equal to 12, this value 
entered in SR makes SR active. 

As discussed in a later sheet, the instruction could be obtained from bootstrap or 
control memory. 

2. Essential Commands. Refer to table 5.8-1 for a sequential list of 
essential I-sequence eventso Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

5.8-5. SUMMARY 

The ENTICR and ENTSR instructions are both format 2 and use the value k. The k 
value is available in KO after T2.4 time. Only the I-sequence is required to 
complete the execution of these instructions. 

5.8-2 



S.G.1219 (M)5.8 

WRITE 

~ r:------ --, 
... MAIN 

~ ... TI.I. r T2.2 I ZI MEMORY SI - I p ~ 
READ I ) 

TI.4 ADV P SEQ I / 
" / I 

6° / 0 

I 10 ;-/ / 
(fJ 7 / + 

102.I-T3.1 
q' 

/ I EAB INHIBITED X-D
I - ( ~ 

C ) TI.4 -T2.3 ADDER I Z SEL 

t I I 
Z SEL II _

6 ~5-0 I 
X 

I 
T2.4 Clf4)9"'17 ,. 1,.,'" I X CLEARED TO OIS AT I '. TI.3 

F KO 
L ____________ _J 

,-------., 
I f = 50:72 K02_0 II 

T3.4 

ICR 

r - ~ - - -f =-;-0: 73 1 
I 4-0 

I ~~3.4 '1- ,y 11EytJ I 
I fT3.3 I 

SR CLEAR SR 
... 

I T3.3 I CLEAR ICR 
~-?tqU( -------I I 

L_tJ~ ____ ~ 

Figure 5 0 8-1. I-Sequence Data Flow For f = 50:72, 50:73 

5.8-3 



S.G.1219 (M)5.8 

TABLE 5 0 8-1. I-SEQUENCE ESSENTIAL COMMANDS FOR f = 50:72, 50:73 

TIME NOTATION 

T4.4 

Tl.l 

Tl.3 

Tl.4 

T2.l 

T2.2 

T2.3 

T2.4 

T3.l 

T3.3 

T3.4 

COMMANDS 

Clear Sl 

P ~Sl, Init Memory, ~~set Incr P ff 

*Clear 0, *clear X, clear Zl, clear F, *set OXLll ff 

~!(PL~ D
L

, >:cP
U 
~DU' clear KO, >!¢set Inhib EAB ff 

~:ec 1 ear P, Z 1 ---==- Z S e 1, * c 1 ear Inc r P f f 

>:eClear OXLll ff, clear Inh i b EAB ff 

Z Sel
ll

_
6 

----:. F, set OXF06 ff, Z Se1
5

_
0 
~KO 

drop Zl ---+Z Sel 

Clear ICR if f = 50:72, clear SR if f = 50:73 

K0 2 _0 ---=--ICR if f = 50:72, K0
4

_
0 

--;"SR if f = 50:73 

~:eThese events are concerned wi th or are controlled by the advance-P 
subsequence. 

5.8-4 



5.8-6. STUDY QUESTIONS 

a e Given: Address 
006000 

Instruction 
507203 

S.Go 1219 (M)5.8 

NAME: --------------------------

This instruction is part of a program that is currently being executed. 
Assume that at Tl.3 time of the I-sequence for this instruction, pin 8 
of OXG32 flip-flop (logic diagrams, figure 9-27) is shorted to ground 
and remains grounded. Describe the effect that this malfunction would 
have upon the execution of the program. 

5.8-5 





S.G.1219 (M)5.9 

SECTION 5 - CONTROL SECTION 

5.9. INSTRUCTION EXECUTION OF ENTBK, ENTBKB 

5.9-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 36, 37. 

5.9-2. INTRODUCTION 

These instructions enter B with either the value of XU or XU + B. 

5.9-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.9-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) ENTBK, f = 36. This instruction obtains the lower 12 bits of 
the instruction word, U, and extends its sign to formulate an IS-bit word. This~ 

value is placed in the B register specified by the content of ICR. The original 
content of B is destroyed. 

b) ENTBKB, f = 37. This instruction is similar to f = 36. It 
formulates an IS-bit value by extending the sign of U. XU is then added to the 
content of the B register specified by ICR and their sum is placed in the same B . 
register. The original content of B is destroyed. 

2. Execution Sequences. 

a) I-Seguence. The operand Y (XU or XU + B) is formulated within 
the same I-sequence which obtains the instruction from memory. 

b) Next I-Sequence. The storage of Y into B is performed during 
the first portion of the I-sequence for the next sequential instruction. 

b. Detailed Analysis. 

1. Data Flow Block Diagram. Refer to figure 5.9-1 for a block dia­
gram description of the execution of f = 36, 37. 

5.9-1 



S.G.1219 (M)5.9 

Most of the I-sequence operations are as previously described. If necessary, refer 
to study guide sheet number 5.4 for a detailed description. 

The value of XU is formulated in 0 from where it is applied to one side of the X-D' 
adder. A control memory reference is used to obtain the content of the B register 
specified by ICR. ICR selects the B register by setting SO to the proper address 
(00001 - 000108). 

If f = 37, the content of the B register is placed in X. Zl receives the value of 
X-D' which is effectively X + D. For f = 36, Zl receives -0 + XU. For f = 37, Zl 
receives B + ZU. 

During the next I-sequence, another control memory reference is used, with the ad­
dress supplied by ICR, to store Zl in the B register location via ZOo The previous 
content of B is destroyed because the gating of control memory to ZO is disabled 
during the read portion of the memory cycle. 

As discussed in a later sheet, the instruction could be obtained from bootstrap or 
control memory. 

2. Essential Commands. Refer to table 5.9-1 for a sequential list of 
essential I and next I-sequence events. Develop these commands by referring to the 
proper enable pages in the logic diagrams. 

5.9-5. SUMMARY 

The ENTBK and ENTBKB instructions both use the value XU which is formulated in D. 
Only the I-sequence and the first portion of the next I-sequence are required to 
complete the executions of these instructions. 

5.9-2 



1 SEQUENCE 

1 SEQUENCE 
OF NEXT IN-

WRITE 

ZI -
READ 

T2.I-T3.1 

Z SEL 

Z SEL I7-12, T2.4 

F 

0'S~17-12 

ZI -

I T2.1-
_t T3.1 

ARITH SEL 

~-
T 4.4---

X
_-

O
I--

~ 
MAIN 

MEMORY 

I 
ZO 

~ 

S.G.1219 (M)S.9 

SI 

TI.l Irl - - - T-;:2- - -, 

~ • p ~ 

I I 

/' 
/ 

/' 

) lTI.4 ADV P SEQ I 
D 

( EAB INHIBITED X~ D' 
~ I TI.4 - T2.3 ADDER 

I t 
I x 

L x CLEAREO TO OIS AT T\.3 I ___________ ..-J 

WRITE 
lCR I 

~ CONTROL ~ 
.... -RE-A-D--I MEMORY 

... SO 
T3.1 

_l T3.1-* 

Z SEL Z SEL = B 
ADDER 

t 
x 

T3.I-T4.1 llF f = 37 

... _I----fr ARITH SEL IF f = 36, ARITH SEL = ALL liS 
'--__ -' T3.4 

STRUCTION ** 

ZO READ >E-- CONTROL ~ 
MEMORY , 

WRITE 

SO 
TI.l 

NOTES: *ZO ~ Z SEL OCCURS FOR DURATION OF T24 FF CLEAR. 

**Z I ~ ZO IS TIMED BY eM TIMING. 

Figure 5.9-1. I and Next I-Sequence Data Flow for f = 36, 37 

5.9-3 



S. G. 12 19 (M) 5 • 9 

TABLE 5.9-1. I AND NEXT I-SEQUENCE ESSENTIAL COMMANDS FOR f = 36, 37 

TIME NOTATION COMMANDS 

T4.4 

Tl.l 

Tl.3 

Tl.4 

T2.1 

T2.2 

T2.3 

T2.4 

T3.1 

T3.4 

T4.1 

T4.3 

T4.4 

Tl.l 

Tl.4 

5.9-4 

.'­", 

I-SEQUENCE 

Clear Sl 

P ~Sl, Ini t Memory, ~:~set Incr P ff 

Clear Zl, *set OXLll ff, *clear D, *clear X, clear F 

~:~C 1 ear P, Z 1 ~ Z Se 1, Z Se 1 ~ Ar i t h Se 1, 0' s ~ Ar i t h 
Sel17_12,*clear Incr P ff 

~~Adder~P 

Clear X, *clear Inhib EAB ff, *clear OXLll ff 

Z Sel17_12 ~F 

Drop Zl ~Z Sel, drop Z Sel ~ Ari th Sel, drop 0' s ~ Ari th 
Sel17-12. ICR ~SO, Ini t CM, ZO ~Z Sel ~:o:\ Z Sel ~ Ari th 
Sel if f = 37 

1 's ~ D 1 7 -12 if D 11 = 1, Ar i t h Se 1 ~ X 

Drop Z Sel ~ Ari th Sel 

Clear Zl 

Adder ~ Zl~:~~:~~:~, di sable CM ~ ZO 

I-SEQUENCE OF NEXT INSTRUCTION 

ICR ~SO, Ini t CM 

Drop di sable CM ~ ZO 

These events are concerned with, or are controlled by, the advance-P 
subsequence. 
ZO ~Z Sel occurs for duration of T24 ff clear. 
Zl ~ZO is timed by control memory timing. 



S.G. 1219 (M)5.9 

NAME: 

5.9-6. STUDY QUESTIONS 

a. Given: lON13 constant low level output (input to IINll. logic diagrams. 
figure 9-25) 

instruction = 376054 
ICR = 0112 

B3 = 323142 

Considering the given conditions. what is the final content of B3 
(control memory address 000003)? 

B3 f = ---------





S. G. 1219 (M);). 10 

SECTION 5 - CONTROL SECTION 

5.10. INSTRUCTION EXECUTION OF ENTB, ENTBB 

5.10-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 32, 33. 

5.10-2. INTRODUCTION 

These instructions enter B with the content of memory. 

5.10-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, tables 4-11 
and 4-12. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.10-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) ENTB, f = 32. This instruction obtains the operand Y from 
memory. The memory address is Up if SR is inactive or USR is active. Y is placed 
in the B register specified by the content of ICR. The original content of B is 
destroyed. 

b) ENTBB, f = 33. This instruction is similar to f = 32. Y is 
obtained from memory at address Up + B or USR + B depending upon the activeness of 
SR. The B register is specified by ICR. Y is placed in this same B register. The 
original content of B is destroyed. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the instruc­
tion from memory, the address of Y is formulated from U, P, SR, and B. 

b) RI-Sequence. The Rl-sequence is used to obtain the operand Y 
with another memory reference. 

c) Next I-Sequence. The storage of Y into B is performed during 
the first portion of the I-sequence for the next sequential instruction. 

;J.10-1 



S.(;.1219 (M)5.10 

b. Detailed Analysis. 

1. I-Sequence. The I-sequence operations are as previously described. 
If necessary, refer to study guide sheet number 5.4 for a detailed description. At 
the end of the I-sequence, the X-D' adder is outputting the address of Y. 

2. Data Flow Block Diagram. Refer to figure 5.10-1 for a block dia­
gram description of the execution of f = 32, 33. 

The Rl-sequence uses a memory reference to obtain Y. Y is placed in D from where 
it is applied to one side of the X-D' adder. X is set to alII's. Therefore, the 
X-D' adder outputs (-0) - Y' which is effectively Y. During the next I-sequence, 
20 receives Y from 21 and a control memory reference is used to store this value 
in B. The B register address is put in SO from ICR. The previous content of B is 
destroyed because the gating of control memory to 20 is disabled during the read 
portion of the memory cycle. 

As discussed in a later sheet, the instruction could be obtained from bootstrap or 
control memory. 

3. Essential Commands. Refer to table 5.10-1 for a sequential list 
of essential Rl- and I-sequence events. Develop these commands by referring to 
the proper enable pages in the logic diagrams. 

5.10-5. SUMMARY 

The ENTB and ENTBB instructions both use the value Up or USR which is formulated in 
D during the I-sequence. The Rl-sequence and the first portion of the next I-se­
quence are required to complete the executions of these instructions. 

5. 10-2 



RI SEQUENCE 

I SEQUENCE OF NEXT 
INSTRUCTION 

-

WRITE 

ZI .. .... 

READ 

, T2.I-T3.1 

Z 5EL 

T2.I-T3.1 , 
ARITH SEL ) 

" T2.4 

D 

X-D
I 

ADDER 

t 
X ~ 

T\.4 

X = -0 

T4.4 

ZI 

-- -- -- -- --

,* 
CONTROL 

ZO READ MEMORY 1+--1 

WRITE 

NOTE; * Z I ~ ZO IS TIMED BY CM TIMING. 

S.G.1219 (M)S.10 

X-D
I 

ADDER 

J TI.l , 
MAIN f4-- 51 

MEMORY 

51 : 

f = 32, UpO 

f = 33, Up+ 

OR USR 

ARITH SEL ARITH SE L = II S 

- -- -- --

TI.I 

SO -... I C R 

Figure 5.10-1. HI and Next I-Sequence Data Flow for f = 32, 33 

5. 10-3 



S. G. 1219 (M)5.10 

TABLE 5.10-1. Rl AND NEXT I-SEQUENCE ESSENTIAL COMMANDS FOR f = 32, 33 

TIME NOTATION COMMANDS 

T4.4 

Tl.1 

T1. 3 

Tl.4 

T2.1 

T2.3 

T2.4 

T3.1 

T4.3 

T4.4 

Tl.l 

T1.4 

;). 10-4 

Rl SEQUENCE 

Clear Sl 

Adder ~Sl, Init Memory 

Clear X, clear Zl 

Arith Sel --;a.X 

ZI ~Z Sel I Z Sel---:. Ari th Sel 

Clear D 

Ari th Sel -;. D 

Drop Zl ~Z Sel I drop Z Sel ---;'Ari th Sel 

Clear Zl 

Adder ~ Zl~:\ disable CM ~ZO 

I SEQUENCE OF NEXT INSTRUCTION 

ICR ~SO, Init CM 

Drop Di sable CM ~ZO 

~:~Zl---=- ZO is timed by control memory timing. 



S • G. I 2 1 9 (M) 5. I I 

SECTION 5 - CONTROL SECTION 

5.11. INSTRUCTION EXECUTION OF ENTAU, ENTAUB, ENTAL, ENTALB, ADDAL, ADDALB, SUBAL, 
SUBALB 

5.11-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 10-17. 

5.11-2. INTRODUCTION 

These instructions enter either AU or AL with the content of memory alone, +AU, +AL, 
-AU, or -AL. 

5.11-3. REFERENCES 

a. UNIVAC 1219 Technial Manual, Volume I, Paragraph 4-7, tables 4-11 and 
4-12. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.11-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) ENTAU. f = 10. This instruction obtains the operand Y from 
memory. The memory address is Up if SR is inactive or USR if SR is active. Y is 
placed in AU. The original content of AU is destroyed. 

b) ENTAUB, f = 11. Except for the memory address, this instruc­
tion is the same as f = 10. The address of Y is either Up + B or USR + B depending 
upon the activeness of SR. The B register is specified by ICR. 

c) ENTAL, f = 12. Except for the destination of Y, this instruc­
tion is the same as f = 10. Y is placed in AL, and the original content of AL is 
destroyed. AU is not disturbed. 

d) ENTALB, f = 13. Except for the address of Y, this instruction 
is the same as f = 12. The address of Y is the same as for f = 11. 

e) ADDAL, f = 14. This instruction obtains the operano Y from 
memory. The memory address is Up if SR is inactive or USR if SR is active. Y is 
added to AL and their sum is placed in AL. The original content of AL is destroyed. 
The Overflow flip-flop is set if an overflow occurs. 

f) ADD ALB , f = 15. Except for the memory address, this instruc­
tion is the same as f = 14. The address of Y is either Up + B or USR + B depending 
upon the activeness of SR. The B register is specified by ICR. The Overflow flip­
flop is set if the sign of ALf i sign of ALi-

5.11-1 



S . G. 12 19 (M) 5. 11 

g) SUBAL, f = 16. Except for the arithmetic operation performed, 
this instruction is the same as f = 14. Y is subtracted from AL and their differ­
ence is placed in AL. The Overflow flip-flop is set if an overflow condition 
occurs. 

h) SUBALB, f = 17. Except for the address of Y, this instruction 
is the same as f = 16. The address of Y is the same as for f = 15. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the instruc­
tion from memory, the address of Y is formulated from U, P, SR, and B. 

b) HI-Sequence. The HI-sequence is used to obtain the operand 
from memory, perform the necessary arithmetic operation, and place the result in 
ei ther AU or AL. 

b. Detailed Analysis. 

1. I-Sequence. The I-sequence operations are as previously described. 
If necessary, refer to study guide sheet number 5.4 for a detailed description. At 
the end of the I-sequence, the X - 0' adder is outputting the address of Y. 

2. Data Flow Block Diagram. Hefer to figure 5.11-1 for a block dia­
gram description of the execution of f = 10-17. 

The HI-sequence uses a memory reference to obtain Y. If f = 10-15, D receives Y. 
If f = 16, 17 D receives Y'. X is set to AL for f = 14-17; otherwise, X contains 
-0. The adder output of X - D' is placed in either AU or AL. 

If f = 10-13, the adder output is actually -O-Y' which is effectively -O+Y. If f -
14, 15, the adder output is actually AL Y' which is effectively AL + Y. If f = 
16, 17, the adder output is actually AL - Y' which is effectively AL-Y. 

For f = 14-17, the overflow flip-flop is used to record that the sign of ALi ~ ALf. 
The state of this flip-flop can be later sensed by the execution of f = 50:52 or 
50:53 instruction. The setting of the Overflow flip-flop is conditioned by the 
X - 0' adder. The X - D' adder is analyzed in a later sheet c 

As discussed in a later sheet, the operand Y could be obtained from bootstrap or 
control memory. 

3. Essential Commands. Hefer to table 5.11-1 for a sequential list of 
essential HI-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

5.11-5. SUMMAHY 

The f = 10-17 instructions use the value Up or USR which is formulated in D during 
the I-sequence. The HI-sequence is required to complete the executions of these 
instructions. 

;). 11-2 



r 
I f 

T 

I 
I 
I 
L 

Z SEL =Y 

------- - I = 12-17 
4.1 CLEAR AL I 

I 
AL 

.. T4.2 I 

I 
--.-- - _J 

f = 14-17 

TI.I- T2.1 
... 

WRITE 

ZI -

T2.I-T3.1 
r 

Z SEL 

READ 

,r T2.1 -T3.1 

ARITH SEL 

X-D
I 

ADDER 

TI.l 

S.G.1219 (M)5.11 

MAIN .. 
M EM 0 R Y 14_""'-'--1 SI 

SI = ADDRESS 
OF Y 

SI: 

f = 10,12,14,16 - Up OR USR 
f = 11,13,15,17- Up + BICR 

OR USR + BICR 

ARITH SEL~ D IF f = 10-15 
ARITH SEL'~ D IF f = 16,17 

T2.4 , 

D 

X-D
I 

ADDER 

x 

TI.4 

ARITH SEL 

I f = 10-, II 
- -- -1 

I I T4.1 CLEAR AU 

I T4.2 

I 
I 

I 
po AU 

I 
L _____ J 

f = I O,IIAUf=Y 

f =1 2,13 ALf =Y 
f =1 4,15 ALf = ALi + Y 
f = I 6,17ALf=ALj -Y 

IF f = 10 -13, ARITH SEL = ALL liS 

T3.2 SET OVERFLOW FF IF (f= 14-17)'(SIGN OF ALf # SIGN OF ALi)* 

NOTE: * THE OVERFLOW CONDITION IS INDICATED FROM THE X - D' ADDER BY: 

( X I7 = °2 , DI/ = 12 . NO BORROW REQUEST ~ BIT 17) + 
( X 17 = 12 , D17' = 02 • BORROW REQUEST ~ BIT 17) 

Figure 5.11-1. Rl-Sequence Data Flow for f = 10-17 

5. 11-3 



S.G.1219 (M)5.11 

TABLE 5.11-1. RI-SEQUENCE ESSENTIAL COMMANDS FOR f = 10-17 

TIME NOTATION COMMANDS f = 10,11 12,13 14,15 16,17 

T4.4 Clear Sl X X X X 

Tl.l Adder ~Sl, Init memory X X X X 

AL ~Ari th Sel X X 

T1.3 Clear X, clear 21 X X X X 

Tl.4 Arith Sel ~X X X X X 

T2.1 21 -+2 Sel, 2 Sel ~Ari th Sel X X X X 

Drop AL ~Arith Sel X X 

T2.3 Clear D X X X X 

T2.4 Arith Sel~ D X X X 

Arith Sel' ~D X 

T3.1 Drop 21 ~Z Sel, drop Z Sel~ X X X X 
Arith Sel 

T3.2 Set Overflow ff if sign of ALf f: X X 
sign of ALi 

T4.1 Clear AU X 

Clear AL X X X 

T4.2 Adder ~AU X 

Adder ~AL X X X 

5. 11-4 



5.11-6. STUDY QUESTIONS: 

a. Given: instruction = 140500 
SR = 010012 

content of address 010500 = 000003 
ALi = 000050 

S.G.1219 (M)S.ll 

NAME: 

Assume each of the following malfunctions to occur individually im­
mediately at the completion of the I-sequence. Indicate ALf (after 
Rl-sequence) for each of these conditions. 

1. Pin 8 of OXFOI ff grounded (logic diag., figure 9-40) 
ALf = -----

2. 17N02 grounded output (logic diag., figure 9-18) 
ALf - ____ _ 

3. 10N05 constant low level output (logic diag., figure 9-20) 

ALf = -----
4. 00N05 grounded output (logic diag., figure 9-20) 

AL f = -----
5. 00N03 grounded output (logic diag., figure 9-19) 

AL f = -----

6. 28N02 constant low level output (logic diag., figure 9-18) 
ALf = -----

7. 29NOI constant low level output (logic diag., figure 9-17) 

AL f = -----
b. Given: 06G22 grounded output (logic diag., figure 9-22) 

SR = 010012 
content of address 015000 = 326374 

Address 
006000 
006001 

Instruction 
105000 
125000 

Immediately after the execution of the instruction at address 
006000, what is the content of AU? 

AUf = ____ _ 

c. Given: 09N13 grounded output (logic diag., figure 9-23) 
SR = 010002 
content of address 002450 = 000023 

Address 
006000 

Instruction 
102450 

5. 11-5 



S.G~ 1219 (M)5.11 

After the execution of the instruction at address 006000, 
what is the final content of AU? Assume that 21 is ini­
tially cleared. 

AUf = ______ _ 

d. Given: 10N02 constant low level output (logic diag., figure 9-18) 
SR = 100002 
content of address 002300 = 560143 

Address ---001000 
Instruction 

102300 

After the execution of the instruction at address 001000, 
what is the final content of AU? 

AUf = ______ _ 



S. G. 1219 (M);). 12 

SECTION 5 - CONTROL SECTION 

5.12. INSTRUCTION EXECUTION OF ADDA, ADDAB, SUBA, SUBAB 

5.12-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
instructions with f = 20-23. 

5.12-2. INTRODUCTION 

These instructions add to or subtract from the 36-bit value held in AU and AL 
the 36-bit value formulated by the content of two consecutive addresses. 

5.12-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, Tables 4-11, 
4-12, and 4-13. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.12-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) ADDA, f = 20. This instruction obtains a 36-bit operand from 
two consecutive memory addresses. The address of the least significant IS bits 
is Up if SR is inactive or USR if SR is active. The address of most significant 
IS bits is the next sequential address. The 36-bit operand is added to the 36-bit 
value of AU and AL together with AU being the more significant half. The sum is 
placed in AU and AL. Their original values are destroyed. 

An overflow condition from AU will not cause an end-around effect upon AL, but this 
overflow condition will cause the Borrow Test flip-flop to be set. The Overflow 
flip-flop is set if an overflow occurs. The conditions of these flip-flops can 
be later sensed by the f = 50:51, 50:52, or 50:53 instructions which can cause the 
program to execute the necessary operations. 

If the address of the least significant IS bits of the operand is not an even 
number, this same address will be used to obtain the most significant IS bits of 
the operand. In this case, the same IS-bit number will be added to both AU and AL. 

b) AD DAB , f = 21. Except for the memory addr~sses, this 
instruction is the same as f = 20. The address of the IS least significant operand 
bits is either Up + B or USR + B depending upon the activeness of SR. The B 
register is specified by ICR. 

~.1:2-1 



S.G.1219 (M)5.12 

c) SUBA, f = 22. Except for the arithmetic operation performed, 
this instruction is the same dS f = 20. The arithmetic operation is the same as 
for f = 22. 

d) SUBAB, f = 23. Except for the arithmetic operation performed, 
this instruction is the same as f = 21. The arithmetic operation is the same as 
for f = 22. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the instruction 
from memory, the address of the 18 most significant bits of the operand is 
formulated from U, P, SH, and B. 

b) HI-Sequence. The HI-sequence is used to obtain the 18 least 
significant bits of the operand from memory, perform the necessary arithmetic 
operation with AL, and place the result in AL. The end-around effect of an AL 
overflow is prevented but is recorded. 

c) HI and H2-Sequences in Parallel. HI and H2-sequences are 
executed together to operate upon AU. The 18 most significant bits of the operand 
are obtained. The necessary arithmetic operation is performed with AU, and the 
result is placed in AU. An overflow from AL is considered during the arithmetic 
operation. An overflow from AU is prevented but recorded. 

b. De t ail ed An a 1 V sis. 

1. I-Sequence. The I-sequence operations are as previously described. 
If necessary, refer to study guide sheet number 5.4 for a detailed description. 
At the end of the I-sequence, the X-D' adder is outputting the address of the 18 
least significant bits of the operand. 

2. Data Flow Block Diagram. Hefer to figure 5.12-1 for a block diagram 
description of the execution of f = 20-23. 

The HI-sequence uses a memory reference to obtain the 18 least significant bits of 
the operand. Either this 18-bit value or its complement is placed in 0 depending 
upon the arithmetic operation to be performed. X receives AL. The X-D' adder 
output is placed in AL. For f = 20,21, AL receives ALi - Y' which is effectively 
ALi + Y. For f = 22, 23, AL receives ALi - Y" which is effectively ALi - Y. 

End-around borrow is inhibited since a borrow from AL is to be taken from AU. The 
Borrow Test flip-flop is set to record the end-around borrow and apply it to the 
operation involving AU. 

The HI and H2-sequences in parallel use a memory reference to obtain the 18 most 
significant bits of the operand. The memory address is one greater than the address 
used by the previous memory reference. This address is formulated by not clearing 
out the previous address in Sl and setting SIOO to a 12, If the first address in 
SI is not an even number, S100 would already contain a 12 and both memory references 
would use the same address. 

The arithmetic operation performed during the HI and H2-sequences is the same as 
executed during the previous HI-sequence except that AU is used. An end-around 
borrow is inserted in the X-O' adder if the Borrow Test flip-flop is set, which 
would indicate that the AL operation produced an end-around borrow. The inserted 

5. 12-2 



S. G. 12 19 (M) 5. 12 

end-around borrow effectively subtracts 1 from the difference of X-Of . 

End-around borrow from AU is inhibited although it is recorded by the Borrow Test 
flip-flop being set. The Overflow flip-flop is set if an overflow occurs. 
The setting of this flip-flop is conditioned by the X_Of Adder. The X-D' adder is 
analyzed in a later sheet. If overflow occurs, it is necessary to sense this 
condition with an f = 50:52 or 50:53 instruction. The f = 50:51 instruction can be 
executed to sense the end-around borrow which is inhibited. The program can insert 
this borrow by executing another add or subtract A (AU and AL combined) instruction 
with the 36-bit operand being +1. 

As discussed in a later sheet, the operand could be obtained from bootstrap or 
control memory. 

3. Essential Commands. Refer to table 5.12-1 for a sequential list of 
essential Rl and Rl/R2-sequence events. Develop these commands by referring to the 
proper enable pages in the logic diagrams. 

5.12-5. SUMMARY: 

The f = 20-23 instructions use the value Up or USR which is formulated in 0 during 
the I-sequence. The Rl-sequence and Rl in parallel with the R2~equence are 
required to complete the executions of these instructions. 

5.12-3 



S • G. 12 19 (M) 5. 12 

AL 
_ T4.2 
., 

WRITE 

MAIN 
ZI .. 

MEMORY +--
----,r--~ READ 

~ T2.1 -T3.1 

Z SEL Z SEL=18 LSB'S OF Y 

T2.1 -T3.1 

ARITH SEL 

ARITH SEL --+ 0 IF f:: 20, 21 
ARITH SEL'--.. 0 IF f = 22, 23 

T2.4 , 

D 

X-D' 
ADDER 

EAB INHIBITED 
T2.4 - T4.3 

X -0' 
ADDER 

i TI.l 

SI 
SI! 

f::20,22-U p OR USR 

f:: 21,23 -Up+ B I CR 
OR USR +BICR 

f TI.I- T2.1 
~------..... ; 

x r- TI . 4 
ARITH SE L AL 

T4.1 CLEAR BORROW TEST .ff 

R I SEQUENCE T4.2 SET BORROW TEST f1 IF EAB 

RI a R2 SEQUENCE IN PARA LLEL 

T3.2 SET OVERFLOW ff IF SIGN OF 
AUf ~ AUj* 

T4.1 CLEAR BORROW TEST ff 
T4.2 SET BORROW TEST ff IF EAB 

NOTE* THE OVERFLOW CONDITION 
IS INDICATED FROM THE 
X-D' 
ADDER BY; 

lX17:: 02" Dli :: 12'NO 
BORROW REQUEST-+BIT 17) 
+ (XI7= '2' 017' = 02' BORROW 
REQUEST-+ BIT 17 ) 

AU 
T4.2 

ZI 
READ 

WRITE 

MAIN 
MEMORY 

Z SEL :: 18 MSB'S OF Y 

1-+3-100 
.----......., TI.I . 

SI 51 NOT 
CLEARED 

ARITH SEL --+ D IF f :: 20 ,21 .... --- ARITH SEL ---+ D IF f :: 22,23 

o 

X-D' 
ADDER 

x 

EAB INHIBITED EAB INSERTED IF BORROW 
T2.4-T4.3 TEST ff 

T2.4 - T4.3 

TI.I-T2.1 

~ 
ARITH SEL 

TI.4 
AU 

Figure 5.12-1. Rl and Rl/R2-Sequence Data Flow for f = 20-23 

5.12-4 



S.G.1219 (M)5.12 

TABLE 5.12-1. HI AND Rl/H2 ESSENTIAL COMMANDS FOR f ~ 20-23 

TIME NOTATION COMMANDS 

T4.4 

T1.1 

Tl.3 

T1. 4 

T2.1 

T2.3 

T2.4 

T3.1 

T4.1 

T4.2 
\ 

T4.3 

Tl.l 

Tl.3 

Tl.4 

T2.l 

T2.3 

T2.4 

T3.1 

T3.2 

T4.1 

T4.2 

T4.3 

Rl SEQUENCE 

Clear Sl 

Adder ~Sl, Init memory, AL --;'Arith Sel 

Clear X, clear Zl 

Ari th Sel ~X 

Zl ~Z Sel, Z Sel ~Arith Sel, drop AL ~Arith Sel 

Clear D 

Arith Sel ~D if f = 20,21, Arith Sel '~D if f = 22,23 
set Inhib EAB ff 

Drop Zl ~Z Sel, drop Z Sel ~ Ari th Sel 

Clear AL, clear Borrow Test ff 

Adder ~AL, set Borrow Test ff if EAB 

Clear Inhib EAB ff 

Rl AND R2 SEQUENCES IN PARALLEL 

1 ~S100' Ini t memory, AU ~ Ari th Sel 

Clear X, clear Zl 

Arith Sel ~X 

Zl ~Z Sel, Z Sel ~Arith Sel, drop AU ~Arith Sel 

Clear D 

Arith Sel ~D if f = 20, 21; Arith Sel' ~D if f = 22,23 
set Insert EAB ff if Borrow Test ff set, set Inhib EAB ff 

Drop ZI ~Z Sel, drop Z Sel ~Arith Sel 

Set Overflow ff if s~gn of AUf ¥ sign of AUi 

Clear AU, clear Borrow Test ff -

Adder ~AU, set Borrow Test ff if EAB 

Clear Insert EAB ff, clear Inhib EAB ff 

3.12-5 





S.(;.1219 (M)5.12 

NAME: 
5.12-6. STUDY QUESTIONS: 

a. Given: 21E51 grounded output (logic diagrams, Figure 9-30) 

content of address 021000 = 450000 
content of address 021001 = 670002 

AU. = 130015 
1 

AL. - 457675 
1 

SR = 000002 

Address 
020000 

Instruction 
201000 

After the execution of the instruction at address 020000, 
what is the content of AU and AL? 

AUf = ________________ __ 
AL f = ------------------

5.12- 7 





S . G. 12 19 (M) S. 13 

SECTION 5 - CONTROL SECTION 

5.13. INSTRUCTION EXECUTION OF CL, CLB, STRB, STRBB, STRAL, STRALB, STRAU, STRAUB 

5.13-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
instructions with f = 40-47. 

5.13-2. INTRODUCTION 

These instructions store in memory either O's, B, AL or AU. 

5.13-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, tables 4-11 
and 4-14. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.13-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) CL, f = 40. This instruction clears the content of memory 
address Up if SR is inactive or USR if SR is active. The clearing is effected by 
storing O's. The original content of the memory address is destroyed. 

b) CLB, f = 41. Except for the memory address, this instruction 
is the same as f = 40. The storage address is either Up + B or USR + B depending 
upon the activeness of SR. The B register is specified by ICR. 

c) STRB, f = 42. This instruction stores the content of B in 
memory at address Up if SR is inactive or USR if SR is active. The B register is 
specified by ICR. The original content of the memory address is destroyed. The 
content of B is not disturbed. 

d) STRBB, f = 43. Except for the memory address, this instruction 
is the same as f = 42. The storage address is either Up + B or USR + B depending 
upon the activeness of SR. The B register which is used to formulate the storage 
address is the same one which is stored and is specified by ICR. 

e) STRAL, f = 44. This instruction stores the content of AL in 
memory at address Up if SR is inactive or USR if SR is active. The original content 
of the memory address is destroyed. The content of AL is not disturbed. 

5. IJ-l 



S.G.1219 (M)5.13 

f) STRALB, f = 45. Except for the memory address, this 
instruction is the same as f = 44. The storage address is either Up + B or 
USR + B depending upon the activeness of SR. The B register is specified by ICR. 

g) STRAU, f = 46. This instruction stores the content of AU in 
memory at address Up if SR is inactive or USR if SR is active. The original 
content of the memory address is destroyed. The content of AU is not disturbed. 

h) STRAUB, f = 47. Except for the memory address, this 
instruction is the same as f = 46. The storage address is either Up + B or USR 
+ B depending upon the activeness of SR. The B register is specified by ICR. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the 
instruction from memory, the storage address is formulated from U, P, SR, and B. 

b) W-Sequence. The W-seauence performs the storage of O's , B, 
AL or AU by executing another memory reference: 

b . De t a i led An a I y sis. 

1. I-Sequence. The I-sequence operations are as previously described. 
If necessary, refer to study guide sheet number 5.4 for a detailed description. At 
the end of the I-sequence, the X-D' adder is outputting the storage address. 

2. Data Flow Block Diagram. Refer to figure 5.13-5 for a block 
diagram description of the execution of f = 40-47. 

The W-sequence uses a memory reference to perform the storage. The previous content 
of the memory address is destroyed because the gating of memory to 21 is disabled 
during the read portion of the memory cycle. The value to be stored is placed 
in 21 from store-select. 

If f = 42, 43, a control memory reference is used to obtain the content of B. SO 
is set to the B register address from ICR. 

As discussed in a later sheet, the storage address could be in bootstrap or control 
memory. Since the content of bootstrap memory cannot be altered by the program, 
storage into its addresses is useless. 

3. Essential Commands. Refer to table 5.13-1 for a sequential list 
of essential W-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

5.13-5. SUMMARY 

The f = 40-47 instructions use Up or USR which is formulated in 0 during the 
I-sequence. The W-sequence is required to complete the execution of these 
instructions. 

5. 13-2 



,-----
I • 
I 

CONTROL 
ZO - READ MEMORY 

I IF f = 42,43 WRITE 

I 
1- - - - - - -

*- T2.1 , 
Z SEL 

OIS~ 17-0 
f = 42,43 

IF f = 40.41 

T I. 1- T2.1 

f = 46,47 " f = 44,45 

AU ~ ARITH SEL ~ 

TI.I- TI.I-T2.1 

T2.1 

IF f =40,41 ARITH SEL =OIS ** , 
X - 0

1 

STORE SEL f:?i ADDER 

~ SO 

- - -

AL 

S.G.1219 (M)5.13 

.... 
~ 

TI.l 

- -

1 CR 

- -

I 
I 
I 
I 

-.J 

TI.l " TI.4 f = 40,41 Z I f ;: OIS , 
f = 42, 43 ZI f = BICR 

SI 1--+ 
MAIN f-X READ ZI f = 44, 45 ZI f = AL 

MEMORY 
f = 46, 47 ZI f = AU 

t 
WRITE 

SI: 

f =40,42, 44,46-U p OR USR 

f = 4! , 43 , 45,47 - U P + B 1 C R 0 R Us R + 8 I C R 

NOTES: * ZO~ Z SEL OCCURS FOR DURATION OF T24 CLEAR. 

** ARITH SEL ~ STORE SEL OCCURS FOR ENTIRE W SEQUENCE. 

Figure 5.13-1. W-Sequence Data Flow for f = 40-47 

5. 13-3 



S. G. 1219 (M)5.13 

TABLE 5.13-1. W-SEQUENCE ESSENTIAL COMMANDS FOR f = 40-47 

TIME NOTATION COMMANDS f = 40,41 42,43 

T4.4 

Tl.l 

Tl. 3 

T1.4 

T2.1 

T2.4 

NOTES: 

5. 13-4 

Clear SI X X 

Adder --;'SI, Init Memory X X 

ICR ~ SO, In i t CM, ~:~Z Sel ~Ari th Sel X 

0' s ~Ari th Sel X 

AL ~Ari th Sel 

AU ~Arith Sel 

Clear Zl X X 

~:q:~St ore Se 1 ~ ZI , disable Mem --;'Zl X X 

Drop Z Sel ~Ari th Sel X 

Drop O's --;.Arith Sel X 

Drop AL ~Arith Sel 

Drop AU --=-Ari th Sel' 

Drop di sab] e Mem ~ Zl X X 

*zo ~ Z Sel occurs for duration of T24 ff clear. 

~:o:~Ari th Sel ~Store Sel occurs for entire W-sequence. 

44,45 46,47 

X X 

X X 

X 

X 

X X 

X X 

X 

X 

X X 



S.G. 1219 (M)S.13 

NAME: ___________ _ 

5.13-6. STUDY QUESTIONS 

a. Given: 11F75 constant low level output (logic diagrams, figure 9-48) 
instruction = 402000 

SR = 11001 2 

After the execution of the given instruction, what are the contents of SR and 
memory at address 112000? 

SRf = _______ _ 
MemorYf at address 112000 = ________________ __ 

b. Given: 10N13 constant low level output (logic diagrams, figure 9-23) 
instruction = 462000 

SR = 11001 2 
AU = 342015 

initial content of address 112000 = 411312 

After the execution of the given instruction, what is the content of 
memory at address 112000? 

MemorYf at address 112000 = ________________ _ 

c. Given: 93F02 constant low level output (logic diagrams, figure 9-44) 
instruction = 462000 

SR = 010002 
AU = 321456 
AL = 753663 

After the execution of the given instruction, what is the content of memory 
at address 002000? 

MemorYf at address 002000 = ____________________ _ 

5. 13-5 





S.G.1219 (M):1.14 

SECTION 5 - CONTROL SECTION 

5.14. INSTRUCTION EXECUTION OF STRICR, STRADR, STRSR 

5.14-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
instructions with f = 72, 74, 75. 

5.14-2. INTRODUCTION 

These instructions store the content of SR, ICR, or the lower' 12 bits of AL 
in memory. 

5.14-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, tables 4-11 
and 4-14. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.14-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) STRICR, f = 72. This instruction stores the content of 
ICR in memory at address Up. The initial six least significant bits of memory 
are destroyed. The initial 12 most significant bits of memory are retained. 
If ICR = 0002, bit 3 in memory is set to 12' 

b) STRADR, f = 74. This instruction stores the 12 least 
significant bits of AL in memory at address Up. The initial 12 least significant 
bits of memory are destroyed. The initial six most significant bits of memory 
are retained. AL is not disturbed. 

c) STRSR, f = 75. This instruction stores the content of SR 
in memory at address Up. The initial six least significant bits of memory are 
destroyed. The initial 12 most significant bits of memory are retained. 
After storage, SR is cleared which deactivates it. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the 
instruction from memory, the storage address is formulated by U and P. 

5. 1-1- 1 



S.G.1219 (M)5.14 

b) W-Sequence The W-sequence performs the storage into memory 
at address Up. 

b. Detailed Analysis 

1. I-Sequence. The I-sequence operations are as previously described. 
Jf necessary, refer to study guide sheet number 5.4 for a detailed 
description. At the end of the I-sequence, the X-D' adder is outputting the 
storage address Up. 

2. Data Flow Block Diagram. Refer to figure 5.14-1 for a block 
diagram description of the execution of f = 72, 74, 75. 

The W-sequence uses a memory reference to perform the storage. The value to be 
stored (ICR, AL, or SR) is applied to arithmetic-select. The bit positions not 
to be stored are masked-out in arithmetic-select with O's. 21 is set by 
arithmetic-select. Those original bits in memory which are to be replaced by 
the stored value are destroyed by not being gated to 21 during the read portion 
of the memory cycle. 

If f = 75, SR is cleared after it is stored. This clearing deactivates SR. 

As discussed in a later sheet, the storage address could be in bootstrap or control 
memory. Since bootstrap has nondestructive read-out, storage into this memory 
is useless. 

3. Essential Commands. Refer to table 5.14-1 for a sequential list 
of essential W-sequence events. Develop these commands by referring to the 
proper enable pages in the logic diagrams. 

5.14-5. SUMMARY 

The STRICR, STRADR, and STRSR instructions use the value Up which is formulated 
in D during the I-sequence. The W-sequence is required to complete the 
executions of these instructions. 

5.14-2 



NOTE: 

S. G. 12 19 (M) 5. 14 

0'S-+-17-4 IF f =72} 
O's --.. 17-12 IF f =74 

O· S -. 17 - 5 IFf = 75 

ICR 

f =72 

, 
2-0, 1-. ARITH SEL 3 IF ICR=0002 

X-D' 

ADDER 

TI.l 

SI 

S I = Up 

SR 

--

f = 75 -4-0 

MAIN READ 
MEMORY , 
• WRITE 

, T I. I - 12. I 

f = 74 
ARITH SEL AL .. -

17-00 

* 
STORE SEL 

TI.4 

- ZI 

'L MEM
I7

_
G 
~ ZI IF f = 72,75 

MEMI7_12~ ZI IF f = 74 

T2.3 CLEAR SR IF f =75 

* ARITH SEL ~ STORE SEL OCCURS FOR ENTIRE W SEQUENCE. 

f = 72 MEMORY f = 17- 6 
~ 
MEMORYj 

5-4 3 2 0 

Tf~ 
o If ICR ~ 0002 

I IF ICR : 000 2 

f = 74 ME M 0 RY f = I 7 _ I 2 II - 0 
~~ 

MEMORYj AL II - 0 

f = 75 MEMORYf = 17 -- 6 
~ 

MEMORY i 

5 

1 
o 

4-0 
'---y-J 

SR 

Figure 5.14-1. W-Sequence Data Flow for f = 72, 74, 75 

5.1.:1-3 



S . G. 12 19 (M) 5. 14 

TABLE 5.14-1.W SEQUENCE ESSENTIAL COMMANDS FOR f = 72, 74, 75 

ITIME NOTATION COMMANDS f = 72 74 75 

T4.4 Clear SI X X X 

Tl.l Adder ~SI, Init memory X X X 

ICR ~Arith Sel Z_0 , O's --;'Ari th 
Sel17_4 I~Arlth Se13 if ICR = 0002 X , 

AL ~Arith Sell 0' s ~ Ari th Sel17-12 X 

SR ~Ari th Se14_0 O's~Arith X 
Sel17-5 

, 

Tl. 3 Clear ZI X X X 

Tl.4 ~:~Store Sel ~ ZI, disable Mem5_0 ~ZI X X X 

Di sabl e Mem11 _6 ~ 21 X 

T2.1 Drop ICR~Arith Se1 2_0 drop 
O's---=-Arith Sel17_4 drbp 1 ~Arith X 
Se13 ' 

Drop AL ~Ari th Sell drop X 
0' s ~ Ar i t h Se 11 7 -12 

Drop SR Arith Se14_0 drop 
0' s Arith Sel17_5 ' X 

T2.3 Clear SR X 

Drop disable Mem
5

_0 ~ZI X X X 

Drop disable Mem11_6 ~ZI X 

)~ Arith Sel~Store Sel occurs for entire W-sequence. 

5.14-4 



S. (;.1219 005.14 

NAME: 
5.14-6. STUDY QUESTIONS 

a . Gi ven : 10G45 grounded ou t pu t (1 ogi c diagrams, f i gu re 9-39) 
ICR = 1002 

Address 
033356 

Instruction 
726632 

After the execution of the given instruction, what is the content of 
memory at address 036632? 

MemorY
f 

at address 036632 - ________ _ 

5.14-5 





S.G.1219 (M)S.15 

SECTION 5 - CONTROL SECTION 

5.15. INSTRUCTION EXECUTION OF SLSU, SLSUB, SLSET, SLCL, SLCP 

5.15-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
instructions with f = 04, OS, 51-53. 

5.15-2. INTRODUCTION 

These instructions selectively control the value placed in each bit of AL. As 
determined by the instruction, the final content of AL is controlled by the content 
of memory ALi, and AU. In this sheet, the "+" sign if used to indicate the logical 
inclusive OR function. 

5.15-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragrpah 4-7, tables 4-11 
and 4-12. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logical diagrams), 

5.15-4. INFORMATION 

a . Ge n era 1 De s c rip t ion 

1. Instruction Interpretation 

a) SLSU, f = 04. This instruction selectively substitutes the 
bits of the operand Y for the bits of AL as controlled by AU. The origin of Y 
is memory at address Up if SR is inactive or USR if SR is active. Where AU is 
a 12, the corresponding bit of Y is put in AL in place of the initial bit of AL. 
Where AU is a O2, the corresponding bit of AL is retained unchanged. AU is 
not disturbed. 

The logical term for ALf (AU'.ALi) + (AU·Y). 

b) SLSUB, f = 05. Except for the memory address, this instruction 
is the same as f = 04. The address of Y is either Up + B or USR + B depending 
upon the activeness of SR. The B register is specified by ICR. 

c) SLSET, f = 51. This instruction selectively sets the bits of 
AL as controlled by the operand Y. The origin of Y is memory at address Up. Where 
Y is a 12, the corresponding bit of AL is set to a 12' Where Y is a 02, the 
corresponding bit of AL is retained unchanged. 

The logical term for ALf is ALi + Y. 

5. 15-1 



S.G.1219 (M)5.15 

d) SLCL, f = 52. This instruction selectively 
of AL as controlled by the operand Y. The origin of Y is memory 
Where Y is a 02' the corresponding bit of AL is cleared to a O2 , 
the corresponding bit of AL is retained unchanged. 

The logical term for ALf is ALi·Y. 

clears the bits 
at address Up. 
Where Y is a 12, 

e) SLCPt f = 53. This instruction selectively complements the 
bits of AL as controlled by the operand Y. The origin of Y is memory at address 
Up. Where Y is a 12, the corresponding bit of AL is complemented. Where Y is a 
O2, the corresponding bit of AL is retained unchanged. 

The logical term for ALf is (ALi'·Y) + ALi·Y') .. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the 
instruction from memory, the address of Y is formulated from U, P, SR, and B. 

b) RI-Sequence. The Rl-sequence is used to obtain the operand 
from memory, perform the necessary operation, and place the result in AL. 

b. Detailed Analysis. 

1. I-Sequence. The I-sequence operations are as previously decribed. 
If necessary, refer to study guide sheet number 5.4 for a detailed description. 
At the end of the I-sequence, the X-D'Adder is outputting the address of the operand. 

2. Data Flow Block Diagram. 

a) SLSU and SLSUB Instructions, f = 04, 05. Refer to figure 
5.15-1 for a block diagram description of the execution of f = 04, 05. 

The Rl-sequence uses a memory reference to obtain the operand Y. 0 receives the 
complement of AU from arithmetic-select at Tl.4 time. Without clearing, 0 also 
receives Y at T2.4 time. 0 therefore applies to one side of the X-O' adder the 
inclusive OR function value of AU' + Y. 

X receives AU at Tl.4 time and also, without clearing, AL at T3.4 time. X therefore 
applies to the other side of the X-D' adder the inclusive OR function value of AU 
+ AL. 

AL is cleared and set to the value of X-D' from the adder which is actually (AU + 
ALi) - (AU' + Y)'. This term can best be expressed as (AU + ALi) - (AU·Y'), 

This final result in AL should be such that each bit position is set to the 
corresponding bit of either ALi or Y depending upon the value in AU. No bit 
position value is in any way dependent upon any other bit position, So as to use 
the arithmetic adder, inter-action among the bit positions must be prevented by 
insuring that borrow conditions will not occur. A borrow condition exists when in 
the same bit position the subtraction is O2 - 12 , For these instructions the adder 
subtracts (AU + ALi) - (AU.Y'), If the value of AU + ALi is equal to 02. AU must 

5.15-2 



S.G.1219 (M);=).15 

be equal to 02 and, therefore, the value of AU.Y' must also be equal to 02' Thus, 
whenever Xis equal to 02, D' is also equal to 02' A borrow condi tion can never 
exist during this logical operation, and no bit position can be affected by another 
pos i t ion. 

To analyze the value in ALf of (AU + ALi) - (AU.Y'), refer to table 5.15-1. 
Develop the ALf values in this table by considering each configuration of values 
for AU, ALi' and Y. 

TABLE 5.1p-l. TRUTH TABLE OF (AU + ALi) - (AU·Y') = ALf 

AU AL. Y ALf 1 

° 0 ° ° 
0 0 1 0 

0 1 0 I 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

This same truth table also holds true for the ALf value of (AU' ·ALi) + (AU·Y). 
This term satisfies the expression "substitute Y for AL where AU is a 12". If AU 
if a °2, the value in the corresponding ALf bit position is the same as the initial 
AL value. 

As discussed in a later sheet, the operand could be obtained from bootstrap or 
control memory. 

b) SLSET and SLCL Instructions, f = 51, 52. Refer to figure 5.15-2 
for a block diagram description of the execution of f = 51, 52. 

The Rl-sequence uses a memory reference to obtain the operand Y. Y is applied to 
arithmetic-select from Z-select. If f = 52, AL is also applied to arithmetic­
select which formulates the logical AND function value of ALi·Y. This value is 
placed in D from where it is applied to one side of the X-D' adder. The other side 
of the adder senses -0 from X. AL is cleared and receives the X-D' value of (-0)­
(ALi· Y)' which is effectively ALi·Y. This term satisfies the expression "clear AL 
where Y is a 02". If Y is a 12, the value in the corresponding ALf bi t posi tion is 
the same as the initial AL value. 

If f = 51, operations are very similar to those for f = 52. The logical AND function 
is not used. D simply receives Y and applies it to one side of the X-D' Adder. AL 
is not cleared of its initial value and receives the X-D' value of (-O)-Y' which is 

5. 15-3 



S. G. 12 19 (M) 5. 15 

effectively Y. The inclusion OR function of ALi + Y is formulated in ALf. This 
term satisfies the expression "set AL to a 12 where Y is a 12", If Y is a 02' 
the value in the corresponding ALf bit position is the same as the initial AL 
value. 

As discussed in a later sheet, the operand could be obtained from bootstrap or 
control memory. 

c) SLCP Instruction, f ~ 53. Refer to figure 5.15-3 for a block 
diagram description of the execution of f ~ 53. 

The Rl-sequence uses a memory reference to obtain the operand Y. 0 receives the 
complement of ALi from arithmetic-select at Tl.4 time. Without clearing, 0 also 
receives the complement of Y at T2.4 time. 0 therefore applies to one side of the 
X-D' adder the inclusive OR function value of Y' + ALi'. 

X receives AL at Tl.4 time and also, without clearing, Y at T2.4 time. X therefore 
applies to the other side of the X-D' Adder the inclusive OR function value of Y + 
ALi' 

AL is cleared and set to the value of X-D' from the adder which is actually (y + 
ALi')'. This term can best be expressed as (Y + ALi) - (Y·ALi). 

Borrow conditions in the adder are prevented to insure that any AL bit position 
value is not affected by any other bit position. A borrow condition exists when in 
the same bit position the subtraction is °2-12' For this instruction the adder 
subtracts (y + ALi) - (y . ALi). If the value of Y + ALi is equal to 02, ALi must 
be equal to 02; and, therefore, the value of Y . ALi must also be equal to 02' Thus, 
whenever X is equal to 02, 0' is also equal to 02' A borrow condition can never 
exist during this logical operation, and no bit position can be affected by another 
bit position. 

To analyze the value in ALf of (Y + ALi) - (Y . ALi)' refer to table 5.15-2. 
Develop the ALf values in this table by considering each configuration of values 
for ALi and Y. 

TABLE 5.15-2. TRUTH TABLE OF (y + ALi) - (Y.ALi) = ALf 

ALi Y ALf 

O· 
° ° 

° 1 1 

1 ° 1 

1 1 ° 

5. 15-4 



s. G. 12 19 (M);). 15 

This same truth table also holds true for the ALf value of (ALi' .y) + (ALi·Y'). 
This term satifies the expression "complement AL where Y is a 12", If Y is a 02, 
the value in the corresponding ALf bit position is the same as the initial AL value. 

As discussed in a later sheet, the operand could be obtained from bootstrap or 
control memory. 

3. Essential Commands. Hefer to table 5.15-3 for a sequential list 
of essential HI-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

5.15-5. SUMMAHY 

The f = 04, OS instructions use the value Up or USH. The f = 51-53 instructions 
use only the value Up. These values are formulated in D during the I-sequence. 
The HI-sequence is required to complete the executions of these instructions. 

5. 15-5 



S.G. 1219 (M)S.15 

ZI 
- READ 

T2. 1- T 3.1 

Z SEL 

1, T2.I-T3.1 

ARITH SEL 

ARITH SEL = Y 

T3.I-T4.1 
AL 

X-DI 

ADDER 

WRITE 

~ , T I. I 

MAIN 

MEMORY ~ SI AU 

. 

, r T 1 • 1 - T2 .1 
f = 04, Up OR USR 

f = 05, U P + BICR 

OR USR + BICR ARITH SEL ) 

AR I TH 

ARITH SEL 

SELl ~ 0 

T2.4 

T3.4 

r TI. 4 

0* 

D:AU 1+ Y 

X_D' 

ADDER 

.~ 

X=AU+AL i 

X* 
TI.4 

ALf = X -0' 

ALf = (AU+ ALj)-(AIJ.V') 

NOTES: * X AND DARE NOTCLEAREDAFTERTI.4ENTRV 

THE "+" SIGN INDICATES LOGICAL INCLUSIV.E OR FUNCTION. 

Figure 5.15-1. Rl~Sequence Data Flow for f = 04, 05 

5. 15-6 

T4.2 
r 

AL 



WRITE 
I • 

ZI 
.. MAIN -

READ MEMORY 

T2.I-T3.1 

Z SEL Z SEL = Y 

T2.I-T3.1 

ARITH SEL 

" T2.4 

o 

X-D' 

ADDER 

AL 

f=52 

f = 51: 0 =Y 
f=52: O=ALj.Y 

~ 

x ARITH SEL 

x = -0 

A L AL NOT CLEARED FOR f = 51 

AL f =X-D' ~ 1;.:J "..; IF f:: 52 

f= 51: ALf =ALi+Y 

f=52: ALf=ALj'Y 

NOTE; THE "+" SIGN INDICATES LOGICAL INCLUSIVE OR FUNCTION. 

Figure 5.15-2. RI-Sequence Data Flow for f = 51, 52 

s. (;.1219 eM)S.15 

x - 0' 
ADDER 

TI.l , 

SI 

SI = Up 

ARITH SEL = liS 

[).15-7 



S.G.1219 (M)S.1S 

x - D' 
ADDER 

WRITE ! TI.l • 
ZI .. MAIN f4- SI A L 

"" READ MEMORV 

SI : Up 

,r T2.I-T3.1 TI.I-T2.1 

Z SEL ARITH SEL ) 
ARITH SEL' ~D 

" T2.I-T3.~ TI.4 
ARITH SEL' T2.4 

ARITH SEL .. D* 

ARITH SEL = V 
D = Vi + ALj' 

X-D' 
ADDER 

X = V + ALi 

ARITH SEL TI.4 .. X* ~ 

T2.4 

,r T4.2 
AL f = X - 0' 

AL f = (V + ALj)-(V.ALj) AL 

NOTES: * X AND D ARE NOT CLEARED AFTER TI. 4 ENTRV, 

THE "+" SIGN INDICATES LOGICAL INCLUSIVE OR FUNCTION. 

Figure 5.15-3. HI-Sequence Data Flow for f = 53 

S. 15-8 



TABLE 5.15-3. Rl SEQUENCE ESSENTIAL COMMANDS FOR f = 04, 05, 51-53 

TIME NOTATION COMMANDS f - 04, 05 51 52 53 

T4.4 Clear Sl X X X X 

T1.1 Adder ~Sl, init Memory X X X X 

AU ~Arith Sel X 

AL --;:. Ar i t h Sel X 

T1. 3 Clear Zl, clear X X X X X 

Clear 0 X X 

Tl.4 Arith Sel ~X X X X X 

Arith Sel' ~D X X 

T2.1 Zl ~Z Sel, Z Sel ~Ari th Sel X X X X 

AL ~Ari th Sel X 

Drop AU ~Arith Sel X 

Drop AL~Arith Sel X 

T2.3 Clear 0 X X 

T2.4 Arith Se 1 ----;'0 X X X 

Arith Sel' ~D, Ari th Sel --:'X X 

T3.1 AL ~Ari th Sel X 

Drop Z1 ~Z Sel, drop Z Sel ~Ari th Sel X X X X 

Drop AL ~Arith Sel X 

T3.4 Arith Sel ~X X 

T4.1 Clear AL X X X 

Drop AL ~Arith Sel X 

T4.2 Adder ~AL X X X X 

5. 15-0 





S.G.1219 (M)~. 16 

SECTION 5 - CONTROL SECTION 

5.16. INSTRUCTION EXECUTION OF CPAL, CPAU, CPA 

5.16-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
instructions wi th f ::: 50 :61, 50 :62, 50 :63. 

5.16-2. INTRODUCTION 

These instructions complement the value in either AL, AU, or AL and AU together. 

5.16-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams), 

5.16-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) CPAL, f ::: 50 :61. This instruction takes the l' s complement 
of the content of AL and places this value in AL. The initial content of AL is 
destroyed. If AL initially equals +0, AL is not changed. 

b) CPAU, f::: 50:62. This instruction takes the 1 's complement 
of the content of AU and places this value in AU. The initial content of AU is 
destroyed. If AU initially equals +0, AU is not changed. 

c) CPA, f::: 50:63. This instruction takes the l's complement 
of the combined contents of AU and AL and places this 36-bit value in AU and AL. 
The initial contents of AU and AL are destroyed. If the initia136-bit value 
equals +0, AU and AL are not changed. 

2. Execu t i on Sequences. 

a) I-Sequence. During the I-sequence which obtains the instruction 
from memory, the complementing of AU occurs for f ::: 50:62, 50:63. 

b) Next I-Sequence. During the first portion of the I-sequence 
for the next instruction, the complementing of AL occurs for f = 50:61, 50:63. 



S.G.1219 (M)5.16 

b. Detailed Analysis. 

1. Data Flow Block Diagram. Refer to figure 5.16-1 for a block 
diagram description of the execution of f = 50:61, 50:62, 50:63. 

Most of the I-sequence operations are as previously described. These instructions 
are of the format 2 group. The lower six bits of the instruction word are not 
used. If necessary refer to study guide sheet number 5.4 for a detailed description. 

If f = 50:62, 50:63, 0 receives AU' at T3.4 time from arithmetic-select and 
applies this value to one side of the X-D' adder. According to the instruction, if 
the selected portion of A (AL, AU, or AL and AU) does not equal all O's, X is set 
by both arithmetic-select and its complement. The resulting logical inclusive OR 
function of AU v AU' in X causes X to be set·to aliI's. 

If f = 50:62, 50:63, AU is cleared and receives X - AU" which is effectively X + 
AUi '. Unless AUi equals +0, X is set to alII's or -0 which does not alter the 
value of AUi' as it is passed through the adder. If AUi equals +0, X is left 
cleared to +0. AU then receives the adder (+0) - (+0)" which is effectively 
(+0) - (+0>' The result in AU would be +0, the same as its initial value. 

The complementing of AL for f = 50:61, 50:63 is executed in the same manner as for 
AU. AU does not receive its final value from the adder until T1.2 of the I-sequence 
of the next instruction. 

As discussed in a later sheet, the instruction could be obtained from bootstrap or 
control memory. 

2. Essential Commands. Refer to table 5.16-1 for a sequential list of 
essential I-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

An additional main timing flip-flop (T52) is used for f = 50:61, 50:63, to provide 
the timing for the clear-AL and adder ~ AL commands. Refer to figure 9-11 in the 
logic diagrams for this flip-flop. 

5.16-5. SUMMARY 

The CPAL, CPAU, and CPA instructions are all format 2 and do not use the value k. 
Only the I-sequence and the first portion of the next I-sequence are required to 
complete the executions of these instructions. 

5.16-2 



,­
I 
I 
I 
I , 

21 

F 

AU 

WRITE 

MAIN 
MEMORY 

- - - --I 
f = 50:62,50:63 

T3.1- T4.1 

ARITH SEL 

I T3.4 ARITH SEL 

I 
I 
I 
I 
I 
I 

o 

X-DI 

ADDER 

~~ 

T4,2 _ 

* AUf = AU j
l 

1 _________ _ 

T2,3 CLEAR X X 

X -0
1 

ADDER 

T3,4 

AU 

, 
f = 50:61,50:63 

I 
SEQUENCEI 

o 

T4·4 ARITH SELl 

ARITH SEL 

T4,I-TI,I 

AL 

I 
SEQUENCE I 
OF NEXT I 
INSTRUC-I *ALf= ALj 
TION 1 ______ _ 

S . G. 12 19 (M);). 16 

_--_ 1--------
TI.l T2.2 

SI 

/ 
/ 

/ 

/ 
/ 

/ 

/EAB 

1/ INHIBITED 
I TI.4 -T2.3 

I 
I 

P 

TI.4 

o 

X-D
I 

ADDER 

X 

ADV P 

SEQ. 

I 
1 

X CLEARED TO OIS AT TI. 3 

1-

~SET X ~IIS (ARITH SEL~X a ARITH 
SELI~X) 

1~ 
TI.2 

AL 

{

f = 50: 61- AL;C OIS 
IF f=50:62'AU,#-0IS 

f = 50: 63'AU a AL :;lOis 

NOTE: * I F A i = OIS I 

Af = OIS BECAUSE OF 
II SET X = I' S II, , 

Figure 5.16-1. I and Next I Se'quence Data Flow for f = 50 :61, 50 :62, 50 :63 

5. 16-3 



S.G. 1219 (M)~. 16 

TIME 

TABLE 5.16-1. I AND NEXT I SEQUENCE ESSENTIAL COMMANDS 
FOR f = 50:61, 50:62, 50:63 

NOTATION COMMANDS f= 50:61 50:62 

I SEQUENCE 

T4.4 Clear Sl X 

T1.1 P -+ Sl, Init Memory, "'set Incr P ff X 

T1.3 Clear Zl, "'set OXL11 ff X 

"'Clear D, "'Clear X, Clear F X 

T1.4 "'PL -+ DL, "'PU~ DU X 

'" Set Inhib EAB ff X 

T2.1 "'Clear P, Zl --+ Z Sel X 

"'Clear Incr P ff X 

T2.2 "'Adder--+ P X 

T2.3 Clear X, "'clear Inhib EAB ff X 

"'Clear OXL11 if X 

T2.4 Z Se1
11

_
6 
~ F, set OXF06 ff X 

T3.1 Drop Zl --+ Z Sel X 

AU --+ Arith Sel 

T3.3 Clear D 

T3.4 Arith Sel' --+ D 

"''''Arith Sel~ X & Arith Sel' --+ X if AL,O's X 

"''''Arith Sel--+ X & Arith Sell --+ X if AU,O's 

"'''' Arith Sel ---+ X & Arith Sell --+ X if AU & AL;lO's 

T4.1 Clear AU, drop AU --+ Arith Sel 

AL ~ Arith Sel X 

T4.2 Adder--+AU 

T4.3 set T52 ff (Main Timing), Clear D X 

T4.4 Arith Sel' --+ D X 

T1.1 Clear AL, drop AL --+Arith Sel X 

T1.2 Adder--+ AL X 

T1.3 Clear T52 ff (Main Timing) X 

"'These events are concerned with or are controlled by the advance-P subsequence. 

"'''' Arith Sel--+X and Arith Sel'~ X Occurring Simultaneously cause the function of 
set X = l's. 

5. 16-4 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

50:63 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 



S.G.1219 (M)5.16 

NAME: --------------------------
5.16-6. STUDY QUESTIONS. 

a. Given: 10NOl constant low level output (logic diagrams, figure 9-17) 
instruction = 506200 

AU i = 345670 

After the execution of the given instruction, what is the content of AU? 

AUf = ______ _ 

b. Given: 91AOO constant low level output (logic diagrams, figure 9-29) 
instruction = 506100 

Describe any effect that this malfunction would have upon the execution 
of the given instruction and upon the final content of AL. 

5. 16-5 





5.G.1219 (M)S.17 

SECTION 5 - CONTROL SECTION 

5.17. INSTRUCTION EXECUTION OF CMAL, CMALB, CMSK, CMSKB 

5.17-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
instructions with f == 02, 03, 06, 07. 

5.17-2. INTRODUCTION 

These instructions compare the content of memory with either AL or the logical 
product of AU·AL. 

5.17-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, tables 4-11 
and 4-12. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.17-4. INFORMATION 

a . G e n era 1 De s c rip t ion. 

1. Instruction Interpretation. 

a) CMAL, f == 02. This instruction compares the operand Y with 
AL. The origin of Y is memory at address Up if SR is inactive or USR if SR is 
active. The Compare flip-flop is set. The Equal flip-flop is set If AL == Y. The 
Greater flip-flop is set if AL ~ Y algebraically. AL is considered greater if it is 
more positive than Y. AL is more positive than Y if AL is positive and Y is negative 
or if both AL and Y have the same signs and the absolute value of AL is greater than 
Y. 

Neither AL nor Y is disturbed. The conditions of the Equal and Greater flip-flops 
can be later sensed by the execution of f == 60-67. One of these instructions must 
be the next sequential instruction after f == 02, 03, 06, 07 to obtain the results 
of the comparison. Any instruction other than f == 60-67 will clear the Compare, 
Equal, and Greater flip-flops. 

b) CMALB, f = 03. Except for the memory address, this instruction 
is the same as f == 02. The address of Y is either Up + B or USR + B depending upon 
the activeness of SR. The B register is specified by ICR. 

c) CMSK, f == 06. This instruction is similar to f == 02. The 
orIgIn of Y is the same. The logical product (AND function) of AU·AL is compared 
with the logical product of Y·AU. 

5.17-1 



S.G. 1:219 (M)~.17 

The value in AU is such that it masks out the desired portion of AL. Where AU 
contains a 12, the corresponding bit position in AL will be used in the comparison 
with Y. If AU contains a O2, the corresponding logical product bit will be a O2 
and that AL bit value will not be compared with Y. 

AL, AU, and Yare not disturbed. 

d) CMSKB, f = 07. Except for the memory address, this instruction is 
the same as f = 06. The address of Y is either Up + B or USR + B depending upon 
the activeness of SR. The B register is specified by ICR. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the instruction 
from memory, the address of Y is formulated by U, P, SR, and B. 

b) RI-Sequence. The RI-sequence is used to obtain the operand from 
memory, perform the comparison using Y, AL, and possibly AU, and record the 
results in the comparison flip-flops. 

b. Detailed Analysis. 

1. I-Sequence. The I-sequence operations are as previously described. 
If necessary, refer to study guide sheet number 5.4 for a detailed description. 
At the end of the I-sequence, the X-D' adder is outputting the address of the 
operand. 

2. Data Flow Block Diagram. Refer to figure 5.17-1 for a block diagram 
description of the execution of f = 02, 03, 06, 07. 

The HI-sequence uses a memory reference to obtain the operand Y. X receives either 
AL or AU·AL from arithmetic-select at Tl.4 time. 0 receives the complement of Y or 
Y·AU from arithmetic-select at T2.4 time. The X-D' adder is used to perform the 
comparison by subtracting either AL - Y or (AU·AL) - Y depending upon the instruction. 

As discussed in a later sheet, the operand could be obtained from bootstrap or 
control memory. 

3. Essential Commands. Refer to table 5.17-1 for a sequential list of 
essential HI-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. A detailed analysis of the compare logic is 
presented later in this sheet. 

4. Compare Logic. 

a) Compare and Equal Flip-flops. Refer to logic diagrams, figure 
9-29 for flip-flops. 

For f = 02, 03, 06, 07, the Compare flip-flop is set by gate 10E34 unconditionally 
at T3.2 time of the HI-sequence. At this same time gate 8IAOO sets the Equal flip­
flop if X= 0'. 81AOO is condi tioned by the AND function of the outputs of gates 
80AOO, 80A04, 80A09, and 80A13. These gates use the outputs of certain one of the 
X-D' adder gates to determine the equality of a portion of the X and 0' values. 

5.17-2 



S.G.1219 (M)5.17 

For example, the 10AOO input to 80A00 is at a low level if Xoo = 0'00. Refer to 
logic diagrams, figure 9-94 for the analysis of the operation of gate 10AOO. 

10AOO has inputs from bit position 00 of the X and 0 registers; however, its output 
is described in terms of X and 0'. A low level output of 10AOO indicates Xoo = 0'00. 
Refer to table 5.17-2 for the conditions which produce a low level from 10AOO. 

TABLE 5.17-2. CONDITIONS FOR LOW LEVEL OUTPUT OF 10AOO 

INPUTS TO lOAOO 

CONDITION 00000 OOXOO 01000 OlXOO 

XOO = o & 0' 00 = 0 H L L H 

XOO = 1 & 0' - 1 L H H L 
00 -

Each of the other lOA--gates of the Adder is used to determine equality in its 
particular bit position of X and 0'. 

b) Greater Flip-Flop. Refer to logic diagrams, figure 9-29 for 
this flip-flop. 

When the Compare flip-flop is set, the Greater flip-flop is also set if X is more 
positive than 0' as indicated by a low level output of gate 70Al7. 70Al7 compares 
X and 0' by sensing the signs of these values from the adder bit position 17 and 
the end-around borrow condition involved in the X-D' subtraction. 

Input IOA17 to 70Al7 is like lOAOO which was discussed previously. lOA17 outputs 
a high level if X17 ~ 0'17. The condition for this high level can best be express­
ed as X and 0' signs unlike. The llA17 input to 70A17 is inversion of 10A17. 
Therefore, the condition for a high level at this input can be expressed as X and 
0' signs like. Refer to table 5.17-3 for the conditions which produce a low level 
from 70Al7. 

TABLE 5.17-3. CONDITIONS FOR LOW LEVEL OUTPUT OF 70A17 (SET GREATER FF) 

INPUTS TO 70A17 

CONDITION l2AOO llA17 13AOO IOAl7 

unlike signs . EAB (X pos & 0 H L L H 
neg) 

like signs . No EAB (/X/~/D'/) L H H L 

5. 17-3 



S.G.1219 (M)5.17 

c) Clearing of Comparison Flip-Flops. Refer to logic diagrams, 
figure 9-29. 

The Greater, Compare, and Equal flip-flops are cleared by a high level from gate 
00E34. 00E34 clears these flip-flops at T4.1 time of the I-sequence for any 
instruction other than f = 60-67. The f = 60-67 instructions test the states of 
these flip-flops. Therefore, these instructions must immediately follow the f = 
02, 03, 06, 07 instructions in order to detect the result of the comparison. 

5.17-5. SUMMARY 

The f = 02, 03, 06, 07 instructions use the value Up or USR which is formulated in 
o during the I-sequence. The RI-sequence is required to complete the execution 
of these instructions. 

5. 17-4 



NOTES~ 

S.G.1219 (M)5.17 

WRITE 

ZI 
r- READ 

~---I--

, T2.I-T3.1 

MAIN 
MEMORY I+-

S I: 

x-o; 
ADDER 

tTl. I 

SI 

Z SEL f = 0 2 , 06 - Up 0 R U S R 

f = 03,07- Up+ BICR 
OR USR + BICR 

10- 8 2 , T2 .1- T3. I 

.t ! ARITH SEL AU 
("J,' Jl,10r.'- ---.......----

ARITH SEL' 

T2.4 ,~ 
{IF 

f = 02,03 O'=Y 

..- - IF f = 06,07 0' = Y·AU 0 

+ AL 

X-O' 
ADDER 

, TI.I-T2.1 -17 
TI.4 

I X ..... ARITH SEL - AU .... ... I f = 06,01 

I COMPARE LOG IC 

'- - - - --
T3.2 SET COMPARE ff 

SET EQUAL ff IF X = 0' * 
SET GREATER ff IF X ~ 0' ALGEBRAICALLY ** 

* X = 0' MEANS: f = 02,03 (AL= Y) 

f = 06,07 (AL·AU)=(Y·AU) 

** X ~ 0' MEANS: f = 02, 03 (A L ~ Y ) 
f = 03,07 (AL'AU) ~ (Y~AU) 

Figure 5.17-1. Rl Sequence Data Flow for f = 02, 03, 06, 07 

5. 17-5 



S.G.1219 (M)5.17 

TABLE 5.17-1. Rl SEQUENCE ESSENTIAL COMMANDS FOR f = 02, 03, 06, 07 

TIME NOTATION COMMANDS 

T4.4 

Tl.l 

Tl.3 

Tl.4 

T2.1 

T2.3 

T2.4 

T3.1 

T3.2 

5 0 17-6 

Clear Sl 

Adder ~ Sl, I ni t Memory, AL --=- Ari th Se 1 

AU ~Ari th Sel if f = 06, 07 

Clear Zl, clear X 

Arith Sel ~X 

Zl ~Z Sel, Z Sel ~Ari th Sel, drop AL Ari th Sel, 
drop AU ~Ari th Sel, AU ~Ari th Sel if f = 06, 07 

Clear 0 

Ari th Sel' ~D 

Drop Zl ---;'Z Sel, drop Z Sel ~Arith Sel, drop AU ~ Arith 
Sel 

Set Compare ff, set Equal ff if X = Of 

Set Greater ff if X2: 0' algebraically 



S.G.1219 (M);j.18 

SECTION 5 - CONTROL SECTION 

5.1S. INSTRUCTION EXECUTION OF RND 

5.1S-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
the instruction with f = 50:60. 

5.18-2. INTRODUCTION 

This instruction rounds the 36-bit number in AU and AL to formulate an 
IS-bit number. 

5.1S-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams>. 

5.1S-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. This instruction, RND, considers 
the combined contents of AU and AL as a 36-bit number. AU contains the more 
significant half. This value is rounded so as to formulate an IS-bit value which 
is placed in AL. AU is not disturbed. The original content of AL is destroyed. 

2. Execution Sequence (I). All operations are performed wi thin the 
I-sequence. Only the one memory reference to obtain the instruction is necessary. 

b . De t a i led An a I y sis. 

1. Effect of AL I7 . The round operation involves the modification of 
AU by AL17 . The bit value in AL17 is simply added to AU. AU, therefore, is made 
greater by 12 or left unchanged. The operation is performed in the X-D' adder and 
the result is placed in AL. 

The sign of the 36-bit AU and AL number must be considered. With AU positive, 02 
is added to AU if AL17 = 0 and 12 is added to AU if AL17 = 1. The addition of 
AU + 1 is accomplished by placing AU in 0, setting X to +0, and inhibiting the 
the end around borrow. Refer to table 5.1S-1 for the adder conditions which are set 
up when AU is positive. 

Since X contains all O's for AL17 = 1, the subtraction of X_D' by the adder causes 
an end-around borrow for any positive value of AU. The addition of +1 is effected 
simply by inhibiting this borrow. 

5. lS-1 



S.G. 1219 (M)5.1S 

TABLE 5.1S-1. X-D' ADDER CONDITIONS FOR f = 50:60 

AU AL17 D X Other Adder OutpuL AL
f 

pos 0 AU -0 none (-0) - (AU)' AU + 0 

pos 1 AU +0 EAB inhibited ( +) - ( AU)' + 1 AU + 1 

neg 0 AU -0 EAB i nhi bi ted~:~ 1 (-0) - (AU)' -1 AU - 1 
EAB inserted 

neg 1 AU +0 none (+0) - (AU)' AU - 0 

* The inhibiting of the EAB with these conditions is of no use, since 
no EAB will occur. 

If AU is negative and AL17 = O2, this 02 is actually the negative representation of 
12 and AU must be made more negative. AU is made more negative by subtracting 1. 
Refer to table 5.1S-1 for the adder conditions which are set up when AU is negative. 

Since X contains alII's for AL17 = 0, the subtraction of X-D' by the adder causes 
no end-around borrow. The subtraction of -1 is effected simply by inserting an end­
around borrow. 

2. Data Flow Block Diagram. Refer to figure 5.1S-1 for a block dia­
gram description of the execution of f = 50:60. 

Most of the I-sequence operations are as previously described. If necessary, refer 
to study guide sheet number 5.4 for a detailed description. 

D receives AU at T3.4 time. X is cleared to +0 and is set to -0 if AL17 = O. Set­
ting X to alII's (-0) is effected by entering X with both arithmetic-select and 
its complement. 

The addition and subtraction of 12 is effected by the manipulation of the adder 
end-around borrow. 

As discussed in a later sheet, the instruction could be obtained from bootstrap or 
control memory. 

3. Essential Commands. Refer to table 5.1S-2 for a sequential list of 
essential I-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

5.1S-5. SUMMARY 

The RND instruction is format 2 and does not use the value k. Only the I-sequence 
is required to complete the execution of this instruction. 

5. 18-2 



Z SE L II - 6 

ZI ~ 

~ T2.I-T3.1 

Z SEL 

T2.4 
1r 

F 

AU 

D 

WRITE 

~ 
MAIN 

MEMORY f4-

/ 
/ 

/ 
I 
I 

TI.I 
SI ...oL 

~ 

/ 
/ 

/ 
/ 

/ 
/ 

S. G. 12 19 (M) S. 18 

,--- - ---, 
I 

P 
I 

I , 
/ 

1~ TI.4 

D 

1 

T 
14-

2.2 I 

ADV P SEQ 

I 
I , 

X-D' 
/ EAB INHIBITED ~ 

ADDER 
TI ,4- T2.3 f 

X 

X CLEARED TO O'S AT Tl.3 

---------- ........ ---

SET X = I'S (ARITH SEL~X a ARITH SEL' ~ X) 

IF ALI7 = 0 

X-D' 
ADDER 

.~_ -T3.4-T4.3 { 
EAB INHIBITED IF AU35 #AL I7* 
EAB INSERTED IF AU NEG· AL 17=0 

T3.4 

T2.3 CLEAR X TO o's 

T4.2 

AL 

NOTE: * AU 35 # ALI7 MEANS~ AU POSITIVE· AL I7 = 12 

OR AU NEGATIVE- AL 17 =02 

Figure 5.18-1. I-Sequence Data Flow for f = 50:60 

5. 18-3 



S.G. 1219 (M)5.18 

TABLE 5.18-2. I-SEQUENCE ESSENTIAL COMMANDS FOR f = 50:60 

TIME NOTATION 

T4.4 

Tl.l 

Tl. 3 

Tl.4 

T2.1 

T2.2 

T2.3 

T2.4 

T3.1 

T3.3 

T3.4 

COMMANDS 

Clear SI 

P ~SI, In i te Memory, ~:~set Incr P ff 

*Clear 0, *Clear X, Clear ZI, Clear F, *set OXLII ff 

':~Clear P, Z1--:. Z Sel, *clear Incr P ff 

*Adder~P 

Clear X, *clear OXLII ff, *clear Inhib EAB ff 

Z Selll_6 ~F, set OXF06 ff 

AU --=-Ari th Sel, drop Zl ~ Z Sel 

Clear 0 

Ari th Sel --=- 0, Ari th Sel ~X & Ari th Sel'~ X 
(Set X = l's) if AL17 = a 

Set Inhib EAB ff if AU35 1 AL17' set Insert EAB ff if 
AU neg·AL17=O 

T4.1 Clear AL, drop AU ~Ari th Sel 

T4.2 Adder --;. AL 

T4.3 Clear Inhib EAB ff, clear Insert EAB ff 

* These events are concerned with or are controlled by the advance-P 
subsequence. 

S.18-4 



S.G.12J9 (M)5.19 

SECTION 5 - CONTROL SECTION 

5.19. INSTRUCTION EXECUTION OF JP, JPB, JPAUZ, JPALZ, JPAUNZ, JPALNZ, JPAUP, JPALP, 
JPAUNG, JPALNG 

5.19-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 34, 35, 60-67. 

5.19-2. INTRODUCTION 

These instructions either unconditionally or conditionally perform a program jump 
to the address Up or Up + B. 

5.19-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5 0 19-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) JPI f = 34. This instruction unconditionally performs a pro-
gram jump to the address Up. 

b) JPB, f = 35. This instruction unconditionally performs a pro-
gram jump to the address Up + B. The B register is specified by ICR. 

c) JPAUZ, f = 60. This instruction performs a program jump to the 
address Up if the Compare flip-flop is clear and AU = +0 or the Compare flip-flop is 
set and the Equal flip-flop is set. 

d) JPALZ, f = 61. This instruction performs a program jump to the 
address Up if the Compare flip-flop is clear and AL = +0 or the Compare flip-flop is 
set and the Equal flip-flop is set. 

e) JPAUNZL f = 62. This instruction performs a program jump to 
the address Up if the Compare flip-flop is clear and AU i +0 or the Compare flip­
flop is set and the Equal flip-flop is clear. 

f) JPALNZ, f = 63. This instruction performs a program jump to 
the address Up if the Compare flip-flop is clear and AL i 0 or the Compare flip­
flop is set and the Equal flip-flop is clear. 

5. 10-1 



S.G. 1219 (M)5.19 

g) JPAUP, f = 64. This instruction performs a program jump to the 
address Up if the Compare flip-flop is clear and AU is positive or the Compare flip­
flop is set and the Greater flip-flop is set. 

h) JPALP, f = 65. This instruction performs a program jump to the 
address Up if the Compare flip-flop is clear and AL is positive or the Compare flip­
flop is set and the Greater flip-flop is set. 

i) JPAUNG, f = 66. This instruction performs a program jump to 
the address Up if the Compare flip-flop is clear and AU is negative or the Compare 
flip-flop is set and the Greater flip-flop is clear. 

j) JPALNG, f = 67. This instruction performs a program jump to 
the address Up if the Compare flip-flop is clear and AL is negative or the Compare 
flip-flop is set and the Greater flip-flop is clear. 

2. Execution Sequence (I). All operations are performed within the 
I-sequence. Only the one memory reference to obtain the instruction is necessary. 

b. Detailed Analysis. 

1. Data Flow Block Diagram. Refer to figure 5.19-1 for a block dia­
gram description of the execution of f = 34, 35, 60-67. 

Most of the I-sequence operations are as previously described. If necessary, refer 
to study guide sheet number 5.4 for a detailed description. 

The value of Up is formulated in 0 from where it is applied to one side of the X­
Dt adder. If f = 35, the content of the B register specified by ICR is placed in 
X from arithmetic-select. Otherwise, X receives all Its from arithmetic-select. 
The adder output is either Up or Up + B depending upon the instruction. 

If the jump condition is satisfied, P is cleared and is set to the jump address 
from the adder. Instructions with f = 34, 35, perform unconditional jumps, The 
program jump is actually effected by the following I-sequence when it obtains the 
next instruction from the address contained in p. 

As discussed in a later sheet, the instruction word could be obtained from bootstrap 
or control memory. 

2. Essential Commands. Refer to table 5.19-1 for a sequential list of 
essential I-sequence events. Develop these commands by referring to the proper en­
able pages in the logic diagrams. A detailed analysis of the jump evaluation logic 
i's presented later in this sheet. 

3. Jump Evaluation Logic. 

a) Clear P and Adder ~p Command Enable. Refer to logic diagrams, 
Figure 9-21 for the enable logic for the commands clear P and adder ~p. 

For these instructions, gate 10N07 is used to enable the clear P and adder~P com­
mands. For f = 34, 35, 10N07 unconditionally outputs a high level when the T42 
flip-flop is set during the I-sequence which causes these commands. Input 13G34 is 
at a constant low level for f = 34, 35. 

5.19-2 



S. G. 12 19 (M);). 19 

N()7 

WRITE 

ZI ..... 
READ 

.- ~H_" T2. I - T 3. I 
, 

Z SEL 

Z SEL 17-12 ~~ T2. 4 

I 

F 

O's --?I> 17-12 

!T2.I-T3.1
1 

o = Up 

T4.2 

ARITH SEL 

1. T2,4 

o 

X-DI 

ADDER 

x .... 

T3.4 

P T4.1 CLEAR P 

IF JUMP CONDITION SATISFIED 

L ..£ ::..!'~~ ______ -1 

MAIN 

MEMORY 
SI 

1-_-::---_ --
... TI . I I P ~2.2 

--I '-----._---J 

I l TI.4 ADV P SEQ 

P15 - 12 ~ D 15-12 

/ 

/ 
/ 

) 
D 

EAB IN- X-D I 

/ HIBITED 
/ ADDER 

/ TI.4-

I T2.3 

I 
I 
I 

t 
x 

X CLEARED TO OIS AT 
TI.3 

L _____ _ 
WRITE 

...... ----i CONTROL I+­
T3. I r-----, 

ZO 
READ 

T3.1-*~ 
tv 

Z SEL 

f = 35 

r T3.I-T4.1 

SO 
MEMORY 

AR ITH SEL IF f i:- 35 1 ARITH SEL = II S 

~ ICR 

Figure 5.19-1. I Sequence Data Flow for f = 34, 35, 60-67 
5. 19-3 



S.G.1219 (M)5.19 

TABLE 5.19-1. 

TIME NOTATION 

T4.4 

T1.1 

T1. 3 

Tl.4 

T2.l 

T2.2 

T2.3 

T2.4 

I SEQUENCE ESSENTIAL COMMANDS FOR f = 34, 35, 60-67 

COMMANDS 

Clear Sl 

P --3It Sl, Ini t Memory, ::;set Incr P ff 

*Clear 0, *clear X, clear ZI, clear F, *set OXLII ff 

~:;PL ~DL' ~:cPU ~DU' ~:cset Inhib EAB ff 

~:cClear P, ZI ~ Z Sel, Z Sel ~ Ari th Sel, a's --;.Ari th 
Sel

17
_

l2 

*Clear Incr P ff 

Clear X, clear D, ~:cclear OXLII ff, ~:cclear Inhib EAB ff 

Z SelI7_12~F, Arith Sel~D 

T3.l Drop Zl~Z Sel, drop Z Sel~Arith Sel, drop a's ~Arith 
Sel

17
_

12 

T3.4 

T4.l 

T4.2 

INCH --;'SO, Ini t CM, ZO ~ Z Sep:c*, Z Sel ~ Ari th Sel if 
f = 35 

PI5-12~DI5-l2' Arith Sel~X 

~:c*):cClear P if jump satisfied, drop Z Sel----=--Arith Sel 

NOTES: * These events are concerned with or are controlled by the advance-P 
subsequence. 

~:c ~:c ZO~Z Sel occurs for duration of T24 ff clear. 
~:c~:c* Jump condition is satisfied if: 

f = 34, 35 unconditionally 
f = 60 Compare ff clear AU = +0 or Compare ff set · Equal ff 
f = 61 Compare ff clear . AL = +0 or Compare ff set . Equal ff 
f = 62 Compare ff clear • AU :f +0 or Compare ff set . Equal ff 

set 
set 
clear 

f = 63 Compare ff clear • AL :f +0 or Compare ff set Equal ff clear 
f = 64 Compare ff clear · AU pos or Compare ff set · Greater ff set 
f = 65 Compare ff clear · AL pos or Compare ff set · Greater ff set 
f = 66 Compare ff clear • AU neg or Compare ff set · Greater ff clear 
f = 67 Compare ff clear • AL neg or Compare ff set · Greater ff clear 

5. 19-4 



.S.G.IL19 (M)S.19 

If f = 60-67, the logic level of input 13G34 is conditioned by the jump evaluation 
logic. Refer to logic diagrams, figure 9-29 for the jump evaluation logic. 

For f = 60-67, gate 13G34 has a high input level on pin 6. Each of the two remain­
ing input OR gates to 13G34 must be satisfied with at least one high level input in 
order to produce a low level output of 13G34 and cause the program jump. 

b) Compare Flip-Flop Clear. If the Compare flip-flop is clear, it ap­
plies a high level input to pin 13 of 13G34. In this case, gate 24G34 must apply a 
high level to pin 8 of 13G34 in order to cause a program jump. The output of 24G34 
is conditioned by the values in AU and AL which are to be tested by the f = 60-67 
instructions when the Compare flip-flop is clear. Refer to table 5.19-2 for the 
conditions necessary to produce a high level output of 24G34. 

c) Compare Flip-Flop Set. If the Compare flip-flop is set, it applies 
a high level input to pin 9 of 13G34. In this case, gate l2G34 must apply a high 
level to pin 12 of l3G34 in order to cause a program jump. The output of 12G34 is 
conditioned by the states of the Greater and Equal flip-flops which are to be tested 
by the f = 60-67 instructions when the Compare flip-flop is set. Refer to table 
5.19-3 for the conditions necessary to produce a high level output of 12G34. 

TABLE 5.19-2. CONDITIONS TO PRODUCE HIGH LEVEL FROM 24G34 

GATE OUTPUT LEVELS 

Conditions 91A18 91AOO 20G34 21G34 22G34 23G34 

f = 60 • AU = -to L L or H H H L H 

f = 61 · AL = +0 L or H L H H L H 

f = 62 . AU -/:- +0 H L or H L L or H H L 

f = 63 . AL -/:- +0 L or H H L L or H H L 

f = 64 . AU pos L or H L or H L or H H L H 

f = 65 . AL pos L or H L or H L or H H L H 

f = 66 . AU neg H L or H L L H L 

f = 67 · AL neg L or H H L L H L 

5. 19-5 



S.G. 1219 (M)5.19 

TABLE 5.19-3. CONDITIONS TO PRODUCE HIGH LEVEL FROM 12G34 

CONDITIONS GATE OUTPUT LEVELS 

10G34 IlG34 

f = 60, 61 . Equal ff set H L 

f = 62, 63 . Equal ff clear L H 

f = 64, 65 . Greater ff set H L 

f = 66, 67 . Greater ff clear L H 

5.19-5. SUMMARY 

The f = 34, 35, 60-67 instructions use the value Up which is formulated in D during 
the I-sequence. Only the I-sequence is required to complete the executions of these 
instructions. 

5. 19-6 



5.19-6. STUDY QUESTIONS 

a • G i ve n : ins t r u c t i on = 611000 
AL = 340000 

S.G.1219 (M)~.19 

NAME: 

When executed, the given instruction performs a program jumpo Assume 
each of the following malfunctions to occur individuallyo Indicate for 
each of these conditions if it would cause the erroneous program jump. 
Refer to logic diagrams, figure 9-29. 

would cause jump? 

1. 91AOO constant low level output 

20 22G34 constant low level output 

3. 13G34 constant low level ou tpu t 

4" lOG34 constant low level output 

5. lOG34 grounded ou t pu t 





S.G.1219 (M)5.20 

SECTION 5 - CONTROL SECTION 

5.20 INSTRUCTION EXECUTION OF IJPEI, IJP 

5.20-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 54, 55. 

5.20-2. INTRODUCTION 

These instructions perform an unconditional program jump to the address which is 
contained in memory. Interrupts are enabled by f = 54 clearing the All Interrupt 
Lockout flip-flop. 

5.20-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, tables 4-11 
and 4-12. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.20-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) IJPEI, f = 54. This instruction performs an unconditional 
program jump. The jump address is contained in the 15 least Significant bit posi­
tions of memory at the address Up. The All Interrupt Lockout flip-flop is cleared 
to enable the honoring of a future interrupt. 

This instruction is usually executed at the end of subroutine which is initiated at 
the occurrence of an interrupt. The program jump would be executed to return to 
the main program and allow the detection of another interrupt. 

b) I JP, f = 55. 
struction is the same as f = 54. 
ted. 

Except for the interrupt enable feature, this in­
The All Interrupt Lockout flip-flop is not affec-

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the instruc­
tion from memory, the address of the jump address is formulated from U and P. The 
All Interrupt Lockout flip-flop is cleared if f = 54. 

b) RI-Sequence. The Rl-sequence is used to obtain the jump ad­
dress from memory and place it in p. 

:=1.:20-1 



S.G.1219 (M)5.20 

b. Detailed An~L~. 

1. I-Sequence. Most of the I-sequence operations are as previously 
described. If necessary, refer to study guide sheet number 5.4 for a detailed de­
scription. At the end of the I-sequence, the X-D' adder is outputting the address 
(Up) of the jump address. 

In addition to the normal I-sequence operations, for f = 54, the All Interrupt 
Lockout flip-flop is cleared at T3.4 time. The effect of the All Interrupt Lockout 
flip-flop upon interrupts is analyzed in a later sheet. 

2. Data Flow Block Diagram. Refer to figure 5.20-1 for a block dia­
gram description of the execution of f = 54, 55. 

The Rl-sequence uses a memory reference to obtain the jump address. This address 
is applied to one side of the X-D' adder from D. X applies -0 to the other side 
of the adder which it received from arithmetic-select. Arithmetic-select indi­
cates alII's when nothing is applied to it. 

The adder output of X-D' is placed in P. P actually receives (-0) - (jump ad­
dress)' which is effectively the jump address not modified. The following I-se­
quence actually effects the jump when it obtains the next instruction from the ad­
dress contained in P. 

As discussed in a later sheet, the jump address could be obtained from bootstrap or 
control memory. 

3. Essential Commands. Refer to table 5.20-1 for a sequential list of 
essential HI-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

5.20-5. SUMMARY 

The IJPEI and IJP instructions use the value Up which is formulated in 0 during the 
I-sequence. The HI-sequence is required to complete the execution of these instruc­
tions. 

5.20-2 



S.G. 1219 (M)5.~O 

X-D' 
ADDER 

WRITE TI.l 

+ , 

ZI - READ MAIN - S - MEMORY SI = Up 

T2.I-T3.1 , 

Z SEL 

T2.I-T3.1 , 

ARITH SEL 

T2.4 
" 

D I D = JUMP ADDRESS 

t 
X-D' T4.2 

P 
ADDER 

P = ADDRESS OF NEXT INSTRUCTION 

TI.4 
X= -0 X - ARITH SEL ARITH SEL = 

NOTE: FOR f = 54, CLEAR ALL INTERRUPT LOCKOUT FF AT T3.4 OF 1 SEQUENCE. 

Figure 5.20-1. HI-Sequence Data Flow for f - 54, 55 

5.20-3 



S.G. 1219 (M)5.20 

TABLE 5.20-1. RI-SEQUENCE ESSENTIAL COMMANDS FOR f = 54, 55 

TIME NOTATION 

T4.4 

Tl.l 

T1. 3 

Tl.4 

T2.1 

T2.3 

T2.4 

T3.1 

T4.1 

T4.2 

5.20-4 

COMMANDS 

Clear Sl 

Adder ~Sl, Ini t Memory 

Clear Zl, clear X 

Arith Sel ~X 

Zl ~Z Sel, Z Sel ~ Ari th Sel 

Clear D 

Ari th Sel~D 

Drop Zl ~ Z Sel, drop Z Sel ~Ari th Sel 

Clear P 

Adder~P 



s. (;. l2 19 (M) 5 . 2 1 

SECTION 5 - CONTROL SErrrON 

5.21. INSTRUCTION EXECUTION OF RJP 

5.21-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of the 
instruction with f = 76. 

5.21-2. INTRODUCTION 

This instruction stores P in memory and performs a direct program jump. 

5.21-3. REFERENCES 

a. UNIVAC 1219 Technical Manudl, Volume I, Paragraph 4-7, tables 4-11 and 
4-14. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.21-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. This instruction, RJP, stores the 
content of P in memory at the address Up and performs a program jump to the 
address Up + 1. Just prior to the execution of this instruction, P contains the 
address 01 the normally next sequential instruction in the program. The storage of 
this address allows a later return to the proper point in the main program. 

If this instruction is executed from an interrupt entrance address due to an 
interrupt, the storage address for P is U, and the jump address is U +1. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the 
instruction from memory, the storage address for P is formulated from U and P. 

b) W-Sequence. The W-sequence uses a memory reference to store 
the content of P and set P to the jump address. 

b. Detailed Analysis. 

1. I-Sequence. The I-sequence operations are as previously 
described. If necessary, refer to study guide sheet number 5.4 for a detailed 

5.:21-1 



S.G.1219 (M)5.21 

description. At the end of the I-sequence, the X-D' adder is outputting the 
addres s Up. 

2. Data Flow Block Diagram. Refer to figure 5.21-1 for a block 
diagram description of the execution of f = 76. 

The W-sequence uses d memory reference to store p. ZI is set to P from where it is 
stored by the write portion of the memory cycle. The gating of memory to 21 is 
disabled during the read portion of the memory cycle which destroys the original 
memory content. 

P is cleared and, at T2.2 time, receives the value Up from SI. The advance-P 
subsequence is used to increment Up by +1. The following I-sequence actually 
effects the jump by obtaining the next instruction from the address contained in P. 

3. Essential Commands. Refer to table 5.21-1 for a sequential list 
of essential W-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. 

5.21-5. SUMMARY 

The RJP instruction uses the value Up which is formulated in D during the I-sequence. 
The W-sequence is required to complete the execution of this instruction. 

5.21-2 



S.C. ]219 (M)::i.21 

P ADVANCED BY + I 
DURING I SEQ. IF P 
NOT INTERRUPT. 

p....,' , TI.l - T2.1 

X-DI 

ADDER 
OIS~ 17,16-----~-~ 

WRITE 

,1. TI.l 

SI 
MAIN 

f---+ MEMORY ~ READ 

SI=Up 

, T2.2 

p 

f .... 35 ,-------- ------, 
I 
I 
I 

D 

T3.4 

I EAB INHIB- X-D
I 

ITED ADDER I T3.4 - T4. 3 ~-""""'-t----J 

x 

T4.2 

ADV P SEQ 

. P 

p = Up + I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I X CLEARED TO OIS AT T3.3 I 
L __________ - - _J 

I 
TI.4 -ZI -

NOTE: *" ARITH SEL ---;. STORE SEL OCCUR S DURI NG ENTI RE W SEQUENCE. 

Figure 5.21-1. W Sequence Data Flow for f = 76 

ARITH SEL 

STORE SEL 

5.21-3 



S.G.1219 (M)5.21 

TABLE 5.21-1. W SEQUENCE ESSENTIAL COMMANDS FOR f = 76 

rrIME NOTATION 

T4.4 

Tl.l 

T1.3 

T1. 4 

T2.1 

T2.2 

T2.4 

T3.1 

T3.3 

T3.4 

T4.1 

T4.2 

T4.3 

COMMANDS 

Clear Sl 

Adder ~Sl, Ini t memory, P ~ Ari th Sel, 0' s --;:. Ari th Sel17, 16 

Clear Z1 

):~ Store Sel ~ Zl, di sable Mem ~ Zl 

Clear P, drop P~Arith Sel, drop O's ~Arith Sel 17, 16 

Sl~P 

Drop di s abl e Mem --;:. Zl 

~:~ ~:~s et In cr P ff 

**Clear 0, **clear X, **set OXLII ff 

**Clear P, **clear Incr P ff 

**Clear OXLII ff, **clear Inhib EAB ff 

~:~ Ari th Sel ~ Store Sel occurs during entire W-sequence. 

** These events are concerned with or are controlled by the advance-P 
subsequence. 

5.21-4 



S. C. 1219 (M)S.22 

SECTION 5 - CONTROL SECTION 

5.22. INSTRUCTION EXECUTION OF IRJP, IRJPB 

5.22-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
instructions with f == 30, 31. 

5.22-2. INTRODUCTION 

These instructions store P in memory and perform an indirect program jump. 

5.22-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, tables 4-11, 
4-12, and 4-14. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.22-4. INFORMATION 

a. General Description 

1. Instruction Interpretation. 

a) IRJP, f == 30. This instruction stores the content of P in 
memory. The storage address is obtained from memory at the address Up. A program 
jump is then performed to this storage address incremented by +1. Just prior to 
the execution of this instruction, P contains the address of the normally next 
sequential instruction in the program. The storage of this address allows a later 
return to the proper point in the main program. 

If this instruction is executed from an interrupt entrance address due to an 
interrupt, the address of the P storage is U, rather than Up. 

b) IRJPB, f - 31. Except for the memory address of the storage 
address for P, this instruction is the same as f == 30. The storage address for P 
is obtained from memory at the address Up + B. The storage address is incremented 
by +1 to produce the jump address. 

2 . Ex e cut ion Se 9 u en c e s . 

a) I Sequence. During the I-sequence which obtains the 
instruction from memory, the address of the P storage address is formulated from 
U and p. 



S.G.1219 (M)5.22 

b) HI-Sequence. The HI-sequence uses a memory reference to 
obtain the storage address for P. 

c) W-Sequence. The W-sequence uses a memory reference to store 
the content of P and set P to the jump address. 

b. Detailed Analysis. 

1. I-Sequence. The I-sequence operations are as previously 
described. If necessary, refer to study guide sheet number 5.4 for a detailed 
description. At the end of the I-sequence, the X-D' adder is outputting the 
address Up. 

2. Data Flow Block Diagram. Hefer to figure 5.22-1 for a block 
diagram description of the execution of f = 30, 31. 

The HI-sequence obtains from memory the storage address for P. D applies this 
address to one side of the X-D' adder. X receives -0 from arithmetic-select. The 
adder outputs (-0) - (P storage address)' which is effectively the P storage 
address not modified. 

The W-sequence uses the storage address from the Adder to store P in memory. The 
gating of memory to 21 is disabled during the read portion of the memory cycle 
which destroys the original memory content. 

P is cleared and, at T2.2 time, receives the storage address from S1. The advance-
p subsequence is used to increment this storage address by +1. The following I­
sequence actually effects the jump by obtaining the next instruction from the address 
contained in p. 

As discussed in a later sheet, the P storage address could be obtained from boot­
strap or control memory. The value of the storage address could also specify boot­
strap or control memory. Since bootstrap has nondestructive readout, storage into 
this memory is useless. 

3. Essential Commands. Hefer to table 5.22-1 for a sequential list 
of essential HI and W-sequence events. Develop these commands by referring to the 
proper enable pages in the logic diagrams. 

5.22-5. SUMMARY 

The IRJP and IRJPB instructions use the value Up which is formualted in D during 
the I-sequence. The RI and W-sequences are required to complete the executions of 
these instructions. 

5.22-2 



R I SEQUENCE 

W SEQUENCE 

r T I. I 

s.(;. 1219 (M)f'i.22 

WRITE 

READ 

MAIN 
MEMORY ~ SI 

TI.l 
ZI -

T2.I-T3.1 SI: 

f = 30, Up 
Z SEL f = 31, Up + B ICR 

1r T2.I-T3.1 

ARITH SEL 

T2.4 

o 0 = STORAGE ADDRESS FOR P 

X-D' 
ADDER 

x 

X=-O 

-
TI.4 

ARITH SEL 

P ADVANCED BY t I 

DURING 1 SEQ. IF NOT 
INTERRUPT. 

ARITH SEL = 1'5 

P 

X-D' 

ADDER 

, TI.I-T2.1 

0'S~17,16 ARITH SEL 

WRITE 

I * 
TI.4 

51 = STORAGE ADDRESS 
FOR P 

MA IN '---.:11 READ 
SI ~ MEMORY ~ ZI - STORE SEL -

T2.2 r-------------l 
I T3.4 

I--------------~... D ADV P SEQ. I 
I ~ I 

P 

NOTE: *ARITH SEL--? STORE SEL 
OCCURS DURING ENTIRE 
W SEQUENCE 

I EAB INHIBIT- X-D' T4.2 I 
II ED 13.4 - T4. 3 ADDER - P I 

• P= Sitl (JUMP 
IL ADDRESS) I 
I X I 
L ___ ~C~ARED -20.2S~T-23~ ___ ..J 

Figure 5.22-1, HI and W-Sequence Data Flow for f = 30, 31 

;").22-3 



S.(;.1219 (M)5.22 

TABLE 5.22-1. Rl AND W-SEQUENCE ESSENTIAL COMMANDS FOR f = 30, 31 

~IME NOTATION COMMANDS 

T4.4 

Tl.1 

Tl.3 

T1. 4 

T2.1 

T2.3 

T2.4 

T3.1 

T4.4 

Tl.l 

Tl.3 

Tl.4 

T2.1 

T2.2 

T2.4 

T3.1 

T3.3 

T3.4 

T4.1 

T4.2 

T4.3 

Rl SEQUENCE 

Clear SI 

Adder --;. SI, In it Memory 

Clear ZI, clear X 

Arith Sel~X 

ZI ---:. Z Sel, Z Sel ~ Ari th Sel 

Clear 0 

Arith Sel~D 

Drop Zl ~ Z Sel, drop Z Sel ~ Ari th Sel 

W SEQUENCE 

Clear Sl 

Adder ~Sl, Init Memory, P ~Arith Sel, a's ~Arith Sel17, 16 

Clear ZI 

~:~Store Sel ~ Z, disable Mem -:.ZI 

Clear P, drop P~Arith Sel, drop a's ~Arith Sel17 16 , 
Sl~P 

Drop disable Mem ~ZI 

~:O:~Set In cr P ff 

**Clear 0, **Clear X, **set OXLll ff 

**Clear P, **clear Incr P ff 

~:~~:~ Adder --+ P 

**Clear OXLll ff, **clear Inhib EAB ff 

Arith Sel~Store Sel occurs during entire W Sequence. 

5.22-4 

These events are concerned with or are controlled by the Advance P 
Subsequence. 



S.G.1219(M)5.23 

SECTION 5 - CONTROL SECTION 

5.23. INSTRUCTION EXECUTION OF SKP, SKPNBO, SKPOV, SKPNOV 

5.23-1. OBJECTIVES 

To present the detailed theory of operation involved In the execution of 
instructions with f = 50:50 - 50:53. 

5.23-2. INTRODUCTION 

These instructions either unconditionally or conditionally perform a program jump 
of the next sequential instruction. 

5.23-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.23-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. 

a) SKP, f = 50:50. This instruction performs a program skip if 
either bit position 5 of the instruction word equals 1 or if any bit position from 
4 through 0 of the instruction word which equals a 1 corresponds to a skip key which 
is manually selected. 

b) SKPNBO, f = 50:51. This instruction performs a program skip if 
the Borrow Test flip-flop is clear. The Borrow Test flip-flop is not affected. 
This flip-flop is set by the execution of f = 20-23 to indicate that an end-around 
borrow condition occurred during the arithmetic operation involving AU. The f = 
20-23 instructions prevent the end around borrow and if this condition is detected 
by f = 50:51, a f = 22, 23 instruction should be executed with Y = +1 so as to 
provide the effect of the necessary end-around borrow. 

c) SKPOV, f = 50:52. This instruction performs a program skip if 
the Overflow flip-flop is set. After its condition is sensed, the Overflow flip­
flop is cleared. 

d) SKPNOV, f = 50:53. This instruction peforms a program skip 
if the Overflow flip-flop is cleared.After its condition is sensed, the Overflow 
flip-flop is cleared. 



S • G. 12 1 9 (M) 5 • 23 

2 . Exe cut i on Se 9 u en c e (I) . All 0 per at ion s are per form e d wit h the 
I-sequence. Only the one memory reference to obtain the instruction is necessary. 

b. Detailed Analysis. 

1. Data Flow Block Diagram. Refer to figure 5.23-1 for a block 
diagram description of the execution of f = 50:50 - 50:53. 

Most of the I-sequence operations are as previously described. If necessary, refer 
to study guide sheet number 5.4 for a detaifed analysis. 

D is cleared and, at T3.4 time, receives the content of p. At this time P has been 
incremented by +1. Therefore, 0 contains the address of the current instruction 
plus 1 which is the address of the instruction which might be skipped. 

X is cleared to O's at T3.3 time. The X-O' adder is used to increment the content of 
o by +1 just as is done by the advance-P subsequence. If the skip condition is 
satisfied, P is cleared and receives the adder value of Pi + 2. The next sequential 
instruction will therefore be skipped. 

As discussed in a later sheet, the instruction word could be obtained from boot­
strap or control memory. 

2. Essential Commands. Refer to table 5.23-1 for a sequential list 
of essential I-sequence events. Develop these commands by referring to the proper 
enable pages in the logic diagrams. The analysis of the skip evaluation logic is 
presented later in this sheet. 

3. Skip Evaluation Logic. 

a) Clear P and Adder ~ P Command Enable 

Refer to logic diagrams, figure 9-21 for the clear-P and Adder~ P command logic. 

When the T42 flip-flop is set during the I-sequence for these instructions, gate 
10N07 outputs a high level if its input 20G50 is at a low level. The high level 
from 10N07 allows the program skip by setting P to the new address. The logic level 
of input 20G50 is conditioned by the skip evaluation logic. 

b) SKP Instruction, f = 50:50. Refer to logic diagrams, figure 
9-30 for the skip evaluation logic. 

For f =: 50: 50, gat e 2 OG 50 has h i g h 1 eve 1 sap p 1 i edt 0 its i n put, pin s 5 , 7 , 9, and 
11. Input pin 13 is at a low level. If input pin 14 is at a high level, the 
resulting low level from 20G50 will cause a program skip. Pin 14 is at a low level 
if the Skip flip-flop is set. Refer to logic diagrams. figure 9-31 for the Skip 
flip-flop. 

The Skip flip-flop is set at T3.2 time if gate 16G50 outputs a high level or if bit 
5 of KO equals 12 , K05 corresponds to bit 5 of the instruction word. When set, 
this bit then causes an unconditional skip. 

5.23-2' 



S.G. 1219 (M)S.23 

WRITE SL=Pi r------------------. r--------
ZI 

READ 
'------.---.1 

, T2.I-T3.1 

Z SEL ) 

Z SELII-6 Z SEL5-0 
1~ T2.4 1 

r--...&----. 

F KO 

~ 
TO SKIP EVALUATION 

LOGIC (USED FOR 
f = 50:50) 

T3.2 SET SKIP ff IF K04-0SIT SET 

IS SAME AS SELECTED SKIP KEY 

OR K005 = 12 

MAIN 
MEMORY 

~;SKIP~ONDITIO; - -, 
T3.4 , 

I SATISFIED I 
I T4.1 CLEAR P I 
I I 
I P -- i T4.2 

I I 
I Pf = Pi + 2 I 

D 

X-D' 
ADDER 

t 

1-1- SI 
... TI.l _ I 

P 

J I 
I , 

/ ~ T\'4 

/ D 

/ .. 
/ {AB INHIBITED X-D' 
I TI.4-T2.3 ADDER 

I 
, 

I X 

I X CLEARED TO O'S AT TI.3 

I 
f 

D=Pi +1 

EAS INHIBITED 
T3.4-T4.3 

~T2.2 

ADV P SEQ. 

l-

I J 
X T4.4 CLEAR OVERFLOW FF IF 

f = 50:52, 50:53 

NOTE: * SKIP IF 

X CLEARED TO O'S AT T3.3 

= 50:50, SKIP FFSET 

= 50:51, BORROW TEST FF CLEAR 

= 50:52, OVERFLOW FF SET 

= 50: 53, OVERFLOW FF CLEAR 

Fig u r e 5. 23 -1 . I -5 e que nee Da t a Flo w For f = 50: 50 - 50 : 53 

-1 

5.:23-3 



S.G.l~19 (M)S.23 

TABLE 5.23-1. I SEQUENCE ESSENTIAL COMMANDS FOR f = 50:50 - 50:53 

TIME NOTATION 

T4.4 

Tl.l 

Tl. 3 

Tl. 4 

T2.1 

T2.2 

T2.3 

T2.4 

T3.1 

T3.2 

T3.3 

T3.4 

T4.1 

T4.2 

T4.3 

T4.4 

COMMANDS 

Clear Sl 

P ~Sl, Init memory, *set Incr P ff 

~:~Clear D, ~:~clear X, clear Zl, clear F, ~:~set OXLII ff 

~:~PL ~ DL, ~:~ Pu --;. DU, clear KO, ~:~set Inhib EAB ff 

~:~ C lear P, Z 1 ~ Z S e I , ~:~ c I ear Inc r P f f 

*Clear OXLll ff, *clear Inhib EAB ff 

Z Selll_6 ~ F, set OXF06 ff, Z SeI5_0~ KO 

Clear Skip ff, drop ZI ~Z Sel 

Set Skip ff if K005 = 1 or K004 -00 bit set same as selected 
skip key 

Clear 0, clear X 

Clear P if skip condition satisfied** 

Adder ~P if skip condi tion satisfied*):~ 

Clear Inhib EAB ff 

Clear Overflow ff if f = 50:52, 50:53 

~~ These events are concerned with or are controlled by the advance-P 
subsequence. 

** Skip condition satisfied if: f = 50:50, Skip ff set 

:j.23-4 

f = 50:51, Borrow Test ff clear 
f = 50:52, Overflow ff set 
f = 50:53, Overflow ff clear 



S.G.1219 (M)5.23 

16G50 outputs a high level if any bit of K04_0 is set and the corresponding skip 
key has been manually selected. 

c) SKPNBO Instruction, f = 50:51. Refer to logic diagrams, 
figure 9-30. 

For f = 50:51, gate 20G50 has high levels applied to its input pins 5, 7, II, and 
13. Input pin 9 is at a low level. If input pin 10 is at a high level, the 
resulting low level from 20G50 will cause a program skip. Pin 10 is at a high 
level if the Borrow Test flip-flop is clear, indicating a no borrow condition 
from the previous f = 20-23 instruction. 

d) SKPOV and SKPNOV Instructions, f = 50:52, 50:53. Refer to 
logic diagrams, Figure 9-30. 

For f = 50:52, 50:53, gate 20G50 has high levels applied to its input pins 7, 9, 11, 
an d 13. I n put pin 5 i sat a 1 ow 1 eve 1 . If i n put pin 6 i sat a h i g h 1 eve 1 , the 
resulting low level from 20G50 will cause a program skip. The level on pin 6 is 
conditioned by the Overflow flip-flop. Refer to table 5.23-2 for the conditions 
necessary to produce a high level from gate 12G52 for f = 50:52, 50:53. 

TABLE 5.23-2. CONDITIONS TO PRODUCE HIGH LEVEL FROM 12G52 FOR f = 50:52, 50:53 

GATE OUTPUT LEVELS 
CONDITIONS 10G52 11G52 

f = 50:52·0verflow ff set H L 

f = 50:53·0verflow ff clear L H 

5.23-5. SUMMARY 

The f = 50:50 50:53 instructions are format 2. The f = 50:50 instruction is 
the only one of this group that uses the value k. The k value is available in KO 
after T2.4 time. Only the I-sequence is required to complete the executions of 
these instructions. 

5.~3-5 





S.G.12l9 (M)5.24 

SECTION 5 - CONTROL SECTION 

5.24. INSTRUCTION EXECUTION OF BSK 

5.24-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of the 
instruction with f = 56. 

5.24-2. INTRODUCTION 

This instruction performs a program skip if B equals the operand from memory. 
If they are not equal, B is incremented by +1. 

5.24-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, tables 4-11 and 
4-12. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams), 

5.24-4. INFORMATION-

a. General Description. 

1. Instruction Interpretation. This instruction, BSK, obtains the 
operand Y from memory at the address Up and compares this value with B. 
register is specified by ICR. If B = Y, a program skip is performed. If B ~ Y, 
the content of B is incremented by +1. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the 
instruction from memory, the address of the operand is formulated from U and P. 

b) RI-Sequence. The RI-sequence uses a memory reference to 
obtain the operand and compares Y with B. P is modified to effect a skip if 
B = Y. 

c) Next I-Sequence. If B f. Y, the value of B + 1 is stored 
in control memory during the first portion of the I-sequence for the next 
instruction. 

b . De t ail e d An a 1 y sis. 

1. I-Sequence. The I-sequence operations are as previously 
described. If necessary, refer to study guide sheet number 5.4 for a detailed 
description. At the end of the I-sequence, the X-D' adder is outputting the 
address Up. 

~ • 2-1- 1 



S.G.1219 (M)5.24 

2. Data Flow Block Diagram. Hefer to figure 5.24-1 for a block dia­
gram description of the execution of f = 56. 

The HI-sequence obtains the operand Y from memory and places its complement in D. 
A control memory reference is used to obtain the content of the B register speci­
fied by ICR which is placed in X. The adder is used to compare X and 0'. The 
Eq u a 1 f lip - flo pis set i f X = D' (B = Y). 

If X ~ Of, the advance-P subsequence is used to increment P by +1. This increment­
ing changes P from the address of the instruction to be skipped to the following 
instruction. 

A second control memory reference is used to again obtain the content of the index 
register. This value is placed in B and is incremented by the B-network. The in­
cremented value of B + 1 is used only if the Equal flip-flop is clear which indi­
cates that B ~ Y. 

During the I-sequence, for the next instruction to be executed, another control 
memory reference is performed if the Equal flip-flop is clear. The value of B + 1 
is stored in the B register address from ZOo The gating of control memory to ZO 
is prevented during the read portion of the memory cycle which destroys the origi­
nal memory content. 

As discussed in a later sheet, the operand Y could be obtained from bootstrap or 
control memory. 

3. Essential Commands. Hefer to table 5.24-1 for a sequential list 
of essential RI and next I-sequence events. Develop these commands by referring 
to the proper enable pages in the logic diagrams. 

5.24-5. SUMMARY 

The BSK instruction uses the value Up which is formulated in D during the I-se­
quence. The HI-sequence and first portion of the next I-sequence are required to 
complete the execution of this instruction. 

5.24-2 



s . (;. 12 1 9 (M) ~ • 21 

TO X = D' COMPARE 
LOGIC 
T3.2 SET EQUAL 
FF IF X::.D'(B=Y) 

ZI 

WRITE 

READ 

MAIN 
MEMORY 

X = CONTENT OF INDEX REGISTER 

SI 
TI.l X-D' 

ADDER 

SI = Up 

WRITE 

.... ----4 CONTROL .... -....-.4 
MEMORY READ 

I - - - -- -- -- --; =--;:D;;E-;; ~INSTRUC-l 
WRITE 

t 
P T ION TO BE SKIPPED 

ICR 

TI.l 

I 
p" 

ZO 
READ CONTROL 

I 
I 
I EAB INHIB­

I ITED I T3.4-T4.3 

I X IS CLEARED 
TO O'S AT X 

[23.2. ____________ --1 
RI SEQUENCE 

I SEQU ENCE OF NEXT INSTRUCTION 

MEMORY 

B; CONTENT OF INDEX 
REGISTER 

T4.1 
+1 

(OPEN ENDED ADDER) 

1--; EQUAL ;;- C~A-;-( ;# ~ - -. - - - - -- -**- - - -, 
I I 

TI.I CONTROL READ I I ICR SO MEMORY ZO ZO = B +1 I 

I WRITE I L ____________________ ~ 

NOTE: * Zo --+ Z SEL OCCU R S FOR DURATION OF T24 FF CLEAR. 

** B NETWORK -. ZO IS TIMED BY CONTROL MEMORY TIMING. 

Figure 5.24-1. HI and Next I-Sequence Data Flow for f = 56 

T3.1 

SO 



S.G.1219 (M)5.24 

TABLE 5.24-1. Rl AND NEXT I-SEQUENCE ESSENTIAL COMMANDS FOR f - 56 

TIME NOTATION COMMANDS 

Rl SEQUENCE 

T4.4 Clear SI 

T1.1 Adder~SI, Init Memory, ICR---::--SO, Init CM, ~~Z Sel~Arith Sel 

Tl.3 Clear ZI, clear X 

Tl.4 Ari th Sel ~X 

T2.1 ZI ~ Z Sel, ~:~drop ZO --::.Z Sel 

T2.3 Clear D 

T2. 4 Ar i t h Se 1 ' ~ D 

T3.1 ICR ~SO, Ini t CM, set Incr P ff, drop Zl ~ Z Sel, drop 
Z Sel--::.- Ari th Sel 

T3.2 Clear B, set Equal ff if X = D', clear Incr P ff if X 1 D' 

T3.3 **Clear D, **clear X, **set OXLliff 

T3.4 ~:~* set Inh i b EAB ff I zo --:. B 

T4. 1 >:~~:;CI ear P, ~:o:~cl ear In cr P ff I cl ear B.±1 ff (+1 --=-- B Network 

T4. 2 ~:; ~:;Adder --;. P 

T4.3 **Clear OXLII ff, **clear Inhib EAB ff 

T4.4 Di sable CM ~ ZO~:;;:~ 

I=SEQUENCE OF NEXT INSTRUCTION 

Tl.1 ICR ~SO & Init CM if Equal ff clear 

Tl.4 Drop disable CM --:'ZO 

;!; ZO ~Z Sel occurs for duration of T24 ff clear. 

** These events are concerned with or are contrOlled by the advance-P 
subsequence which is disabled if X f 0' (B f Y) at T3.2 time. 

B-network~ZO is timed by control memory timing. 

5.24-4 



S.G.1219 (M)~.21 

NAME: 
5 0 24-6 0 STUDY QUESTIONS 

a. It is determined that the f = 50:50 50:~J instructions are able to 
perform program skips properly. However, it is found that the f = 56 
instruction cannot execute a skipo Indicate which of the following 
malfunctions might be suspected. 

1. 10LIO constant low level output (logic diagrams, 
figure 9-35) 

20 10N07 constant low level output (logic diagrams, 
figure 9-21) 

3 0 Pin 15 of OXG33 ff grounded (logic diagrams, figure 
9-27) 

Suspect? 





SECTION ~ - CONTROL SECTION 

5.25. INSTRUCTION EXECUTION OF ISK 

5.25-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of instruc­
tions with f = 57. 

5.25-2< INTRODUCTION 

This instruction performs a program skip if the content of memory Y equals +0. If 
not, Y is decremented by 1. 

5.25-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, tables 4-11, 
4-12, and 4-14. 

b o UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.25-4. INFORMATION 

a. General Description. 

1. Instruction Interpretation. This instruction, ISK, obtains the 
operand Y from memory at the address Up. If Y = +0, a program skip is performed. 
If Y t +0, Y is decremented by I and is replaced in memory. 

2. Execution Sequences. 

a) I-Sequence. During the I-sequence which obtains the instruc­
tion from memory, the address of the operand is formulated from U and p. 

b) R1-Sequence. 
tain the operand and examines it. 

The Rl-sequence uses a memory reference to ob­
If Y t +0, it is decremented by -1. 

c) 

either Y or Y - 1. 
W-Sequence. The W-sequence uses a memory reference to store 

P is modified to effect a skip if Yi = +0. 

b. Detailed Analysis. 

1. I-Sequence. The I-sequence operations are as previously described. 
If necessary, refer to-5tudy guide sheet number 5.4 for a detailed description. At 
the end of the I-sequence, the X-D' adder is outputting the address. 

20 Data Flow Block Diagram. Refer to figure 5.25-1 for a block dia­
gram description of the execution of f - 57. 



S.G.I219 (M)5.25 

The RI-sequence obtains the operand Y from memory and places it in 0 from where it 
is applied to one side of the X-D' adder. X receives -0 from arithmetic-select 
which has no input. If X = 0', then Y' = -0 or Y = +0 and the adder output is 
(-0) - (-0) or +0 which is Y. Since X is set to alII's, no end-around Lorcow can 
occur. If X # 0', an end-around borrow is inserted which causes the adder output 
to be Y - 1. 

During the W-sequence, ZI receives the adder output which is stored in memory at the 
same address from where Y was obtained. This address was placed in SI by the RI 
Sequence and is not cleared out. The gating of memory to Zl is prevented during 
the read portion of the memory cycle which destroys the original memory content 
(y), 

If X = 0' (Y i = +0), the next sequential instruction of the program is to be 
skipped. The advance-P subsequence is used to increment P. This incrementing 
changes P from the address of the skipped instruction to the address of the following 
instruction. 

As discussed in a later sheet, the operand Y could be obtained from bootstrap or 
control memory. Since bootstrap has nondestructive read-out, storage of the adder 
output into this memory would have no effect. Bootstrap would still retain the 
original Y value. 

3. Essential Commands. Refer to table 5.25-1 for a sequential list 
of essential Rl and W-sequence events. Develop these commands by referring to the 
proper enable pages in the logic diagrams. 

5.25-5. SUMMARY 

The ISK instruction uses the value Up which is formulated in 0 during the I-sequence. 
The RI and W-sequences are required to complete the execution of this instruction. 

5.25-2 



RI SEQUENCE 

W SEQUENCE 

TI. 4 ,. 

WRITE .. 
ZI 

MAIN 
MEMORY 14--

T2.I-T3.1 

Z SE:L 

• T2.I-T3.1 

ARITH SEL 

T2.4 

o D=Y 

X-DI EAB INSERTED IF X;£ 0
1 

ADDER (Y:;£ +0) 
T4.4-T2.3 (W SEQ) 

TI.4 
x -

X=O 

I F X =F D"ZI =Y-I 
IF X = DI,ZI=Y 

ARITH SEL 

ARITH SEL= ALL liS 

_----1"--_ 

ZI 
~ MAIN .... SI NOT CLEARED 

READ '" MEMORY 
~--~~ t 

WRITE ------------------l 
I P 

I P= ADDRESS OF ADV P SEQ IF X= 0 1 I 
INSTRUCTION I TO BE SKI PPED (Y =+0) I 

I I 
I I 
'I EAB INH I SITED 

T3.4-T4.3 

I 
Pf = ADDRESS OF I 

NEXT INSTRUCTION I 
X CLEARED TO OIS T3.3 

I 
I ------------------

Figure 5.25-1. Rl and W Sequence Uata Flow for f - 57 

X-DI 
ADDER 

TI.l 

SI 

SI=Up 

5.25-3 



S.G.1219 (M)5.25 

TABLE 5.25-1. Rl AND W SEQUENCE ESSENTIAL COMMANDS FOR f = 57 

TIME NOTATION COMMANDS 

RI SEQUENCE 

T4.4 Clear SI 

TI.l Adder ~ SI , In it Memory 

Tl. 3 Clear ZI, Clear X 

Tl. 4 Ari th Sel ~X 

T2.1 ZI~Z Sel, Z Sel~Arith Sel 

T2.3 Clear D 

T2.4 Arith Sel~D 

T3.I Drop Zl ~ Z Sel, drop Z Sel ~Ari th Sel 

T4.4 Set Insert EAB ff if X t 0' 

W SEQUENCE 

Tl.l Init Memory 

Tl.3 Clear ZI 

Tl.4 
Adder ~ ZI, di sabl e Mem ~ ZI 

T2.3 Clear Insert EAB ff 

T2.4 Drop di sable Mem ~ ZI 

T3.1 *Set Incr P ff if X = 0' 

T3.3 *Clear 0, *Clear X, *set OXLII ff 

T3.4 

T4.1 ~:~Clear P, ~:~clear Incr P ff 

T4.2 

T4.3 *Clear OXLII ff, *clear Inhib EAB ff 

* These events are concerned with or are controlled by the advance-P 
subsequence which is initiated only if X = 0' (Yi = +0). 

5.25-4 



S.G.1219 (M)~.2~ 

NAME: 
5.25-6. STUDY QUESTIONS 

a. Given: 30N13 constant low level output (logic diagrams, figure 9-23) 
initial content of address 034400 = 056000 

Address 
032000 

Instruction 
574400 

After the execution of the instruction at address 032000, what is the 
content of memory at address 034400? 

MemorYf at address 034400 = 





S.G.1219 (M)5.26 

SECTION 5 - CONTROL SECTION 

5.26. INSTRUCTION EXECUTION OF BJP 

5.26-1. OBJECTIVES 

To present the detailed theory of operation involved in the execution of 
instructions with f = 73. 

5.26-2. INTRODUCTION 

This instruction performs a program jump if B t +0 and then decrements B by 1. 
Nothing is affected if B = +0. 

5.26-3. REFERENCES 

a. UNIVAC 1219 Technical Manual, Volume I, Paragraph 4-7, table 4-11. 

b. UNIVAC 1219 Technical Manual, Volume II, Section 9 (logic diagrams). 

5.26-4. INFORMATION 

a. General Description. 

1 . Ins t r u c t ion In t e r pre tat ion. T his ins t r u c t ion, BJ P , 0 b t a ins the 
content of the B register specified by ICR. If B = +0, nothing is effected~ If 
B ¥ +0, B is decremented by 1 and a program jump is executed to the address Up. 

2. Execution Sequences. 

a) I Sequence. During the I-sequence which obtains the 
instruction from memory, B is obtained and examined. P is modified to effect 
a skip if B = +0. 

b) Next I Sequence. If B ¥ 0, the storage of B-1 back into 
control memory is performed during the first portion of the I-sequence for the 
next instruction. 

b . De t ail e d An a 1 y sis. 

1. Data Flow Block Diagram. Refer to figure 5.26-1 for a block 
diagram description of the execution of f = 73. 

Most of the I-sequence operations are as previously described. If necessary, refer 
to study guide sheet number 5.4 for a detailed description. 



S.G.1219 (M)S.26 

The value of Up is formulated in 0 from where it is applied to one side of the 
X-O' adder. X receives -0 from arithmetic-select which has no input. The adder 
output of (-0) - (Up)' if effectively Up. 

A control memory reference is used to obtain the content of the B register 
specified by ICR. If B = +0, P is cleared and receives the jump address Up 
The following I-sequence actually effects the jump by obtaining the next 
instruction from the address contained in P. 

During the first portion of the next I-sequence, another control memory reference 
is used to store the value of B-1 back into the B register address if B ¥ +0. 
The gating of control memory to 20 is prevented during the read portion of the 
memory cycle which destroys the original memory content. 

2. Essential Commands. Refer to table 5.26-1 for a sequential list 
of essential I and next I-sequence events. Develop these commands by referring 
to the proper enable pages in the logic diagrams. 

5.26-5. SUMMARY 

The BJP instruction uses the value Up which is formulated in 0 during the 
I-sequence. The I-sequence and first portion of the next I-sequence are 
required to complete the execution of this instruction. 

5.26-2 



S.C. ]219 (M);J.26 

WRITE 

1 • r:-----l 
MAIN TI.l I r T2.2 

........ -.....Z_' _:; READ,-M_E_M_OR_Y-.J~'---_S_' _.J~ If)' P.. I 

1 ! TI.4 I 
T2.1 -T3.1 / I 

Z SEL = INSTRUCTION Z SEL / 0 ADV P SEQ I 
WORD / • 

T2.4 / I I ~ X-DI 
EAB INHIBITED ADDER t- I I TI.4-T2.3 

I ' I 
I X I 
I X IS CLEARED TO OIS I 

Z SEL17-12 ----.. ~ 

F 

OIS -? 17-12 

! T2.1 - T3. I , 

ARITH SEL L __ ~T~I.':'" ____ ..J 

T2.4 ! 
T3.4 

o = Up o --
t P15 - 12 ~ 0 15 - 12 

I 
I 

p 

X-DI 
ADDER 

t 
X 

I Pf = ADDRESS OF NEXT I 
L I NSTRUCT ION J 
--------

TO B = to 
COMPARE LOGIC 

T3.4 --

1 
ZO 

I 

B 

ARITH SEL ARITH SEL = ALL liS 

WRITE 

~ 
CONTROL T3.1 

i4-- SO -MEMORY -
READ 

8 = CONTENT OF INDEX REGI STER 

I SEQUENCE 

B .... ___ \ 

NETWORK (OPEN - ENDED ADDER) 

1 SEQUENCE OF NEXT INSTRUCTION 

NOTE: * B NETWORK ~ ZO 
IS TI MED BY CONTROL 
MEMORY TIMING. 

r---

I 
I 

*\F B =i- to 
TI.l 

I zo = B-1 ZO READ CONTROL 
MEMORY 

SO 

I 
L _____ JiB.!TL- __ _ 

Figure 5.26-1. I and Next I-Sequence Data Flow For f = 73 

ICR 

l 
I 
I 
I 

--1 

5.:26-3 



S.G. 1219 (M)5.26 

TABLE 5.26-1. I AND NEXT I SEQUENCE ESSENTIAL COMMANDS FOR f = 73 

TIME NOTATION COMMANDS 

I SEQUENCE 

T4.4 Clear Sl 

T1.1 P ~Sl, Init Memory, ):~set Incr P ff 

T1.3 *Clear D, *clear X, clear F, clear Zl, *set OXLII ff 

T1.4 *PL ~ DL, ~:~PU ~DU' ~:~set Inhib EAB ff 

T2.1 ~~Clear P, Zl~Z Sel, Z Sel ~Arith Sel, O's ~Arith Sel17-12 
~~clear Incr P ff 

T2.2 *Adder~P 

T2.3 Clear D, clear X,*clear OXLII ff, *clear Inhib EAB ff 

T2.4 Z Se 11 7 -12 ~ F, Ar i t h Se 1 ~ D 

T3.1 ICR ~SO, In i t CM, drop Zl --;.. Z Sel, drop Z Sel > Arith Sel 

drop O's ~Arith Sel17-12 

T3.2 Clear B 

T3.4 P15-12 ~D15-12' Arith Sel ~X, ZO ~B 

T4.1 Clear P if B ¥ +0, clear B+ 1 ff 

T4.2 Adder ~P if B ¥ +0, set B+l ff (-1 ~B Network) 

T4.4 Disable CM ~ZO** 

I SEQUENCE OF NEXT INSTRUCTION 

Tl.l ICR~SO & Init CM if B ¥ +0 

Tl.4 Drop di sable CM ~ZO 

* These events are concerned with or are controlled by the advance-P 
subsequence. 

):o:~ B network ~ZO is timed by control memory timing. 

5.26-4 


