ILLIAC IT MANUAL
USE OF THE NEW ILLINOIS COMPUTER INSTALLATION

Edited by

C. W. Gear

March 1963

DEPARTMENT OF COMPUTER SCIENCE - UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC II MANUAL

USE OF THE NEW ILLINOIS COMPUTER INSTALLATION

Fdited by

C. W. Gear

March 1963

Chapter

1. INTRODUCTION . . v & & ¢ v o o o o o

D, THE OPERATING SYSTEM . « + & ¢ &« + o o o o o &
3. A MACHINE DESCRIPTION AND THE MACHINE LANGUAGE .
,. NICAP, THE ASSEMBLY PROGRAM
5. SYSTEM INPUT-OUTPUT AND AUXILIARY STORAGE

6. AUXILIARY EQUIPMENT

7. COMPILERS

8. THE PROGRAM LIBRARY

NOTE:

CONTENTS

Prepared by

. e . C. W. Gear

D. B. Gillies

C. W. Gear

C. D. Shepard

These are the plans for the contents of the manual. Not all of this is

written at this time. Additions will be distributed as they become

available.

Date: 6/3/65
Section: Contents
Page: 1lof 1
Change: 1

IILIAC II MANUAL

CHAPTER 1. INTRODUCTION

TABLE OF CONTENTS

1,1 Introduction
1.2 Use of This Manual
1.3 TILLTAC IT Organization

1.4 Puture Changes

1.1

1. INTRODUCTION

Introduction

ILLIAC II, the new University of Illinois computer, was designed
and built by the staff of the Digital Computer Laboratory. .Preliminary
study began in December, 1956, and design in December, 1957. Construction
began in 1960. The main processing unit was completed in September, 1962,
and it then began functioning with paper tape input/output. The gift from
the IBM Corporation of input/output equipment makes it possible to use the
power of the very fast arithmetic unit and memory to the full. At the
time of its introduction, it brings to the University of Illinois campus
a machine whose only competitor in speed of operation is the IBM 7030

computer (STRETCH).

Approximate figures for the various operation times are:

Multiply 6.6 microseconds

Floating Point Add 2.5 microseconds minimum,
3.5 microseconds average

Memory Cycle 1.8 microseconds

Index Operations 1.0 microseconds

These do not represent the whole story as there is a large amount of overlap
among the various tasks. Memory cycles, instruction decoding, indexing,
and instruction execution can be occurring simultaneously so that, for

example, most indexing operations absorb no effective time at all.

Arithmetic is performed on a 52-bit word which represents a
floating-point number with sign, 44 fraction bits and a seven-bit base k
exponent. This gives an unusually large precision of about 13 decimal
digits with a range of about 10—38 to lO+38. Sixteen index registers add
to the ease and speed of programming. These are stored in a very high-speed
memory with a cycle time of about .2 microseconds, This memory can also
hold up to eight instructions and four additional words of data which can

be used as temporary storage in the execution of a high-speed loop.

Date: 3/5/63
Section: 1.1
Page: 1 of 2
Change:

Additionally, the machine has the capabilities of performing 32
input/output operations simultaneous with compute operations. The central

computer is slowed down only if the memory is busy too often,

Input/output equipment that will be connected to the computer
includes 65,536 words of drum backup store, access time 6.8 microseconds
(circuitry for this was built at this laboratory); approximately 12 million
words of disk file backup store on IBM 1301 disk files; ten IBM 729 Mark VI
tape units; an IBM 1401 computer with 600 line-per-minute chain printer,

an 800 card-per-minute card reader, and a 250 card-per-minute card punch.

Date: 3/5/63
Section: 1.1
Page: 20f 2

Change:

1.2 Use of This Manual

The primary input to this computer is by punched cards, and the
purpose of this manual is to describe how these should be prepared. This
is not a manual of instruction in programming, but a specification of those
features that are available in hardware or software; that is, it is a
description of the equipment and programs available. It is assumed that

the reader already knows how to program.

The interests of the user should determine which parts of the
Manual he reads and in what order he reads them. A person who wishes only
to use compilers need read only Chapters 2 and 7. Chapter 2 is concerned
with operating procedures and Chapter 7 with compilers. On the other hand,
the person writing in assembly language will need to read Chapters 2, 3,
4 and 5 in some detail. Chapter 3 describes exactly what each order does,
while Chapter 4 describes the ways in which it can be written and punched
on a card. Chapter 5 describes the input/output and auxiliary storage
programs that constitute part of the system package. Their use is described
in terms of the assembly routine. The compilers will make use of the same
input/output routines, but the call sequences will be different and will be
described along with the compilers in Chapter 7. Chapter 6 contains
descriptions of the miscellaneous auxiliary equipment which is required
in any computer installation, such as key punches, reproducers, etc., and
Chapter 8 contains the program library. This manual, particularly in
Chapters 6, 7, and 8, is not fixed. It will be extended as more programs

and equipment are added to the system.

The assembly program, NICAP, available on ILLIAC II is designed
to make it possible for the programmer to use the powerful multiple-indexing
features of this machine easily. A second purpose is to save the programmer
learning all of the details of the complex address constructions that are
described in Chapter 3. It is possible to write simple programs for this
machine in assembly language without absorbing all of the details of Chapter 3,
and it issuggested that the assembly language programmer should not read
beyond Section 3.3.8 of Chapter 3, before reading over Chapter 4. Chapter 3

can be used mainly for reference for details of precisely how each order

works.
Date: 3/5/63
Section: 1.2
Page: lof1l

Change:

TLLIAC IT Organization

The machine can be viewed schematically as containing a floating-
‘point accumulator, a very high-speed memory of eight fast registers, and
a main memory of 8,192 words. Index registers are stored in four of the
fast registers, packed four per word. Words are 52 bits long; index
registers are 13 bits long. A diagram is given in Figure 1. Those registers
labelled FO, Fl, ..., F7 constitute the very high-speed memory. The boxes
labelled input/output represent input/output channels. Each channel may
have any number of input/output devices attached to it, although only one
device on a channel can be running at one time. All channels, however, can

run simultaneously.

The accumulator contains a double-precision number. All adds and
subtracts work with this double-precision number to give a double-precision
result. Before operations like multiply, the accumulator is rounded to
single precision. The details of this are given in Chapter 3. In many
cases the programmer will not be concerned with the extra precision avail-
able, in which case he need not examine the details of all of the operations.
If he always uses the store operation STR (Store Rounded and Normalized)
rather than the other store operations, then he can consider that the
accumulator is single precision and that all of the operations are single
precision, and thus write programs without referring to Chapter 3. He
should, however, realize that if he does this he cannot analyze exactly the
total rounding error that may be present, but it is true, in general, that

an analysis made on this basis will lead to a larger error bound.

A few general rules can be stated that make it fairly easy to

program in assembler language. These rules are:

(l) The orderswhich operate on the floating-point
accumulator require an operand. The address in
the :arithmetic order is usually the location of

that operand in the memory or in the fast memory.

(2) This operand is put into the fast register F1
before it is taken into the accumulator. This

can be seen from Figure 1.

Date: 3/5/63
Section: 1.3
Page: 1 of 3

Change:

Fast

Fast

Fast

Fast

Fast

Fast

Fast

Fast

Register O

Register 1

Register 2

Register 3¢

Register U

Register 5;

Register 6

Register T;

FO S
Accumulator

P Fl

-
9 F2 —
e i F3 T-—____-,
. o S
TEEE—— F5 I———
—» F6 SEE——
I F7 I]
-1 Core Memory]
< 8192 Words -
e Input / Output -——

Up to 32 Channels

Figure 1

MO | ML | M2 |M3
May
also
T be ML M5 M6 | M7
$>» used <<
as ‘
M8 |MO | MIO| M1l
index
registers.
M12 | M13 | M14| M15
.
Date: 3/5/63
Section: 1.3
Page: 2 of 3
Change:

(3) Exceptions to Rule 1 occur for those operations
which use the address directly as data. Examples
of this type of instruction are: ADE, Add to
Exponent; and LRS, Long Right Shift.

(4L) Fast register zero, or FO, receives a number
that is to be stored from the accumulator.

This also can be seen in Figure 1.

(5) The modifier (Index) order uses the address as
the operand. An exception to this rule is LDM,
Load Modifier.

From Figure 1 it can be seen that fast registers 4, 5, 6, and 7
can be used for temporary storage of floating point numbers or to hold
modifiers. The programmer should adopt his own conventions about the use
of these. Generally, it seems more convenient not to use Fk, F5, F6, or
'F7 for floating-point numbers, but to reserve them entirely for use as
modifiers. T2 and F3 can be used as temporary storage for floating-point

numbers. These two registers are usually adequate for this purpose.

Date: 3/5/63
Section: 1.3
.Page: 30of 3
Change:

1.4 PFuture Changes

At the time of writing, no compilers have been programmed for
ILLIAC II. The current proposal is to have a version of Algol available
in 1964 and then to turn our energies to other languages. . Since no
definite steps have been taken in this direction, comment from potential

users is very welcome.

A number of items that are not yet available are described in
this manual. In particular, there are only 4096 words of core storage,
only two tape units on line, no disk files and some features of the
assembly and I/O programs will not be working immediately. Suitable

notations will be made in the chapters in which they are described.

This manual will evolve as the hardware and programs available
increase. For this reason, all pages are dated and only section numbered.
Ags changes are made, the pages will be retyped and distributed. Periodically
an up-to-date version of the manual, suitably bound, will be issued. Since
the manual and programs will change, the Digital Computer Laboratory

welcomes suggestions about their context and form.

Date: 3/5/63
Section: 1.4
Page: 1l of 1
Change:

CHAPTER 2., THE OPERATING SYSTEM

TABLE OF CONTENTS

Change Date
2.1 Introduction 7/8/6k
2.2 The Core-Load Principle 7/8/6L
2.2,1 System Translation and Relocation 7/8/6k4
2.2.2 Binary Cards 7/8/6k4
2.3 Batch Processing 7/8/6k4
2.3.1 Messages from the Batch Processing System 7/@/6&
2.4 The System Library Tape 7/8/ 6k
2.A.1 APPENDIX 1 7/8/64
2,A.2 APPENDIX 2 7/8/ 6k
Date: T/8/6k4
‘Bection: Chapter 2
Contents
Page: 1l of 1
Change:

2. THE OPERATING SYSTEM

2.1 Introduction

The purpose of the operating system is to maintain an efficient
use of machine time by eliminating stops in and between user programs.
The operating system sequences call-outs of translators and object programs
automatically as directed by system control cards and provides the necessary
diagnostic messages. The simplest operating system 1s the batch processing
system which allows only one user on the active area of the machine at any
one time. More complicated systems may time-share certain of the machine's

facilities in order to gain efficiency.

Date: 7/8/64
Section: 2.1
Page: lof 1

Change:

2.2 The Core-Load Principle

Only one area of core may be active at any one time, that is,
only one area may be currently addressable by the main frame of the
computer. This area has a maximum size of 8192 words but occasionally,
for short programs, may be reduced in size in order to share this memory
among several programs. When the system loader puts a program into memory
for execution it divides the active memory into four areas according to
the type of use. The first three of these constitute the user area; the
last is the monitor area and is currently 512 words long. The user may
not in general use the monitor area. He has, however, complete freedom

to make use of the other three areas in the user area. These areas are:

(a) The COMMON Area

This is in the lower part of memory, normelly starting at location O
and is used to provide a common area for data links between various
subroutines and main programs. Because of the awareness of block
structure in input/output and auxiliary storage transfers, the
programmer can also make use of the common area in order to allocate
blocks of data for back-up storage buffers. The common area may be

relocated in some instances but only by a multiple of 256 words.

(b) The Program Area

Fach of the programs that the user requires are loaded into this area.
The program area starts immediately above the common area. The pro-
grams are loaded adjacent to each other in the order in which they are
processed by the system, followed by the necessary library programs
that are called from the system library tape. Programs are relocated

by an even number of words only.
(¢c) Erasable .

The erasable storage area is typically used for highly temporary
storage such as in subroutines. Use of this area allows the various
subroutines to use the same storage cells for their scratch pads,
thus saving memory. The erasable area starts immediately above the

program. It also is relocated by an even number of words.

Date: 7/8/6k4
Section: 2.2
Page: 1l of 1

Change:

2.2.1

System Translation and Relocation

Bach program that is received is translated from the source
language into a relocatable binary object program which is held in card
images until load time. If desired the set of binary cards can be
obtained as explained below. These binary cards may then be loaded in
place of the source language program. In order to provide for the
relocation, four different types of addresses are recognized. They are:

absolute, common relocatable, program relocatable, and erasable relocatable.

In order to link the various main programs and subroutines
together transfer vectors are used. Each symbolic name which is called by
a program, but not defined by that program, results in the compilation of
such a vector which oocupies one word at the front of the program. There-
fore, programmers who are working with absolute addresses must be aware of
this additional relocation to their program. In particular they should be
aware of the action of the ORG-pseudo operation in assembly language which
specifies an address relative to the start of the program including its
transfer vectors, Such a program, however, is still subject to the

relocation described above.

Date: 7/8/6k
Section: 2.2.1

Page: 1l of 1
Change:

2.2.2 Binary Cards

A program consists of header cards, program cards and a trailer
card (which can also contain program). Columns 11-80 of all cards are in

the following standard format:

Column 1 7-9 punch for binary

Columns 10+N, 21+4N, 22+4N, 23+4N and 24+4N for N =1, 2, ..., 1k

represent 14 52-bit words Wi, W ce; Wp) in the

2’
following fashion: Columns 21+4N to 24+LN are the
12 least significant bits of quarter words O to 3
respectively of word WN.
1 12 1 12 1 12 1

Column 21+4N| |Column 22+4N| |Column 23+4N| |Column 24+4N

Word WN

Column 10+N has the responsibility for relocating the quarter

words and providing the sign bits of WN:

ROl R02 SO Rll RlE Sl R21 R22 82 R3l R32 S3

Column 10+N (12 bits)

S. is the sign bit, R, R,, is the relocation
i il ie

(0 = no relocation, 1 = add R, (program area),
2 = add R, (common area), 3 = add R3 (erasable
area)) to the ith quarter of word W

For program cards columns 9 and 10 are used for control

information.

Date: 7/8/6k
Section: 2.2.2
Page: 1l of 3

Change:

Column 9 4 bits

___\,,__J A B C D E L_

Control Number of

bits = 00 words on
this card

A - E are not used Most significant bit

in this case. of address of first

word
Column 10 contains the least significant 12 bits of the

address of the first word to be loaded from this

card.

The last card of the program has a similar format except that
the control bits are Ol. In thise case, bit A, column 8 and bits B and C
form a 15-bit address which is the quarter word to which control should be
transferred if this is the main program. A main program is the first pro-
gram if there are no programs with zero entry points; otherwise it is the

program with zero entry points., (There should be only one such programu)

Header cards with control bits of 10 for the first and 11 for
subsequent ones, give information to the loader about the program. This

information is:

Length of program 13 bits in bit E and column 10
Length of common storage 13 bits in bit D and column 8
Length of erasable storage 12 bits in column 7
Number of entry points 12 bits in column 6
Number of CALL vectors 12 bits in column 5

For each entry point indicated, a word is constructed with the

BDC name and the 15-bit address corresponding to it packed in the format:

1 12 1 12 1 12 13
BDC name | 4 I % l L-l3—bit~word
(36 bits) 2-bit quarter address
word address

Dete: 7/8/ 6k
Section: 2.2.2
Page: 2 of 3
Change:

The N words corresponding to the N entries occupy the first card,

words W sesy WN and as many cards thereafter as necessary if N > 14. The

l)
next M words on the header cards are the M BCD names of the M CALLed sub-
routines. These have the same format as entry points except that all bits

except for the BCD name are O.

During loading, the entry points do not cause any words to be
generated, but the CALLed subroutines each cause a word contalning an

unconditional transfer to be generated at the front of the program.

Date: 7/8/6k
Section: 2.2.2
Page: 3 of 3

Change:

2.3 Batch Processing

Batch processing is achieved by stacking together a number of
Jjobs, Each job is separated by an appropriate card. The programs

typically contain four different types of cards.

First must come an ID card. This is to inform the machine of
the status of the user. The ID card must contain a blank in column 1.
It is similar in all respects to the ID cards currently used by the PORTHOS
operating system of the University of Illinois T094. Next will come one
or more system control cards. These cards are characterized by containing
a $ sign in column 1, Their purpose is to instruct the system on the
nature of the program that is to be run. Among these cards will appear
one Or more source programs. These may be in any of these available
languages or in binary. Finally, if the program uses data, the system
control card $ DATA will appear and the remainder of the cards are then

assumed to be data to the user program.

The system control cards may contain a number of messages. They
may appear on separate cards or several may appear on one card separated
by a comma. The message must not extend beyond column 64. The messages

accepted by the system are:

NICAP This card indicates that the next source language program
to be read will be in the assembly language. Therefore,
the first card following this that does not have a $ sign
in column 1 and is not a binary card is assumed to be the

first card of an assembly program.

PRINT OBJECT This tells the system that the user desires that the object
program of the next translation be printed. This applies

to assembly language as well as any algebraic languages.

PUNCH OBJECT This tells the system to punch a binary object program
for the result of the next translation. Note that PRINT
OBJECT and PUNCH OBJECT only apply to the next translation

and must be repeated for each separate translation.

Date: 7/8/6k4
Section: 2.3
Page: 1l of 2
Change:

GO

DUMP

BINARY

DATA

This indicates that after all translations have been
completed the program should be loaded and execution should

begin provided that there are no fatal errors,

This tells the system to give a nonzero memory dump if exit
from the user program is made via SYSERR. This exit will
happen is any of the standard subroutines are used incor-
rectly. It can also occur if the user terminates with a
CALL SYSERR.

This does not have to precede a binary source deck; however,
if it does then there are to be no more programs in other

than relocatable binary.

This card causes the system to terminate the translation
phase and begin loading. Any cards hereafter are assumed to
be data to be user program. If the user has no data at all

this card can be omitted.

If a system control card has a second $ immediately after the
$ is column 1 the card is reproduced on the listing but

causes no other effect. Use of this card should be reserved
for comments to the operator via an on-line printed facility

which currently does not exist.

Date: 7/8/6k4
Section: 2.3
Page: 2 of 2

Change:

2.3.1 Messages from the Batch Processing System

Each of the control cards that is read by the system is printed.
If inconsistencies are found appropriate messages are printed followed by a
row of asterisks. These messages are in general self-explanatory. - At the
termination of execution via the SYSERR exit a DUMP may be formed. This
dump will list each of the fast registers and the accumulator, MO will
have been changed to a 1 in the process. Also, the location at which the
CALL SYSERR was executed will be printed.

Date: 7/8/64
Section: 2.3.1
Page: lofl

Change:

2.4

The System Library Tape

This tape is on logical unit one and it contains a table of
contents followed by the programs, The table lists those programs which
are in the monitor areas and those programs which are on the tape approxi-
mately in order of freguency of the currents. The monitor programs also
have their addresses listed in the table. Other programs appear in
relocatable binary form on the tape after the table. The contents of this
tape are listed in Appendix 2 of this chapter.

Date: 7/8/6&
Section: 2.4
Page: lofl
Change: .

Message
GO

DUMP

PRINT $BJECT
PUNCH $BJECT
NICAP
BINARY

DATA

2.A.1 APPENDIX 1

SYSTEM CONTROL CARDS

Comments
Must appear before any programs.
Causes a memory dump only if SYSERR is called.

Should be used with assembly if listing desired.

No NICAP or compiler program may follow this.

Last card read by system. Not necessary if no data.

Date: 7/8/6%
Section: 2.A.1
Page : 1lof 1
- Change

Major Name

ATANL
DVDL
EXPL
GQUL
LAG6
LGT1
LGUN
PRINT
RKGL
SIN1
SQRL
SYSAUX
SYSERR
SYSIp
SYSTEM

2.A.2 APPENDIX 2

PROGRAMS ON LIBRARY TAPE

Minor Names Subroutines Used
LGB1, LGEL

PUNCH, READ SYSIP, SYSERR
chs1

Date: 7/8/6k4
Section: 2.A.2
Page: 1lof 1
Change

3.1

3.2

3.3

3.4

3.5

CHAPTER 3.

Change Date
Introduction
3.1.1 Machine Features 3/5/63
3.1.2 Additional Equipment 3/5/63
General Mode of Operation 3/5/63 :
3.2.1 Delayed Control 3/5/63
3.2.2 Advanced Control 3/5/63
3.2.3 Interplay 3/5/63
3.2.4 Use of Immediate Access Memory 3/5/63
3.2.5 Use of Fast Memory 3/5/63
3.2.6 Program Interrupt 3/5/63
Order Code for Floating-Point Arithmetic 3/5/63
3.3.1 The Floating-Point Accumulator 3/5/63
3.3.2 Zero and Overflow 3/5/63
3.3.3 Normalization 3/5/63
3.3.4 Addition and Subtraction 3/5/63
3.3.5 Multiplication 3/5/63
3.3.6 Division 3/5/63
3.3.7 Round-Off 3/5/63
3.3.8 Correct Overflow and Detect Zero 3/5/63
3.3.9 Floating-Point Orders 7/9/6k4
Orders Which Do Not Involve Floating Point 3/5/63
3.4.1 Interplay Orders 3/5/63
3.4.2 Block Reservation Orders 3/5/63
3.4.3 Advanced Control Orders 7/9/6k
3.4.L Modifier Arithmetic 3/5/63
Tables
3.5.1 Table 1. Address Construction 3/5/63
3.5,2 Table 2. Special Case Information on Instructions 3/5/63
3.5.3 Table 3. Order Code Index 3/5/63
3.5.4 Table 4. Order Code Listed Numerically 3/5/63
3.5.5 Table 5. Additional Mnemonics 7/9/6k4
Date: 7/9/6k4
Section: Chapter 3
Contents
Page: lofl
Change: 1

A MACHINE DESCRIPTION AND THE MACHINE LANGUAGE

TABLE OF CONTENTS

3, A MACHINE DESCRIPTION AND THE MACHINE LANGUAGE

3.1 Introduction

3.1.1 Machine Features

The computer has the following general characteristics:

Word Length 52 bits
Arithmetic Floating-point (multiply time 6.6 microseconds)

Tnstruction Length 13 or 26 bits

Address Length 13 bits

Index Registers (also called Modifiers) 16, each 13 bits long

Main Memory 8192 (or 213) words of core memory

Memory Cycle 1.8 psec for each memory

Fast Memory 10 words, 0.2 usec access time

Back-up Memory Two drums--65,536 words total, 6.8 usec per word

Ten IBM 729 MK VI magnetic tape units
Two IBM 1301 Disk Files--about 12,000,000 words

Input Punched card 800 cards/minute via on-line IBM 1401

Output Line Printer 600 lines/minute
- via on-line IBM 1401

Punched card 250 cards/minute,

Mode of Operation Parallel, highly concurrent

Special Features Interrupt, memory protection, I/O protection

A typewriter will be connected for system comments. It is not
directly available to the programmer. Paper tape I/O is also con-

nected to the machine, but it is only used for engineering tests.

Date: 3/5/63
Section: 3.1.1
Page: 1l of 1

Change:

3.1.2 Additional Equipment

Possible later additions may include I/O from remote stations,
oscilloscope output and data connections to the 7094 computer and the
pattern recognition computer being planned in the Digital Computer

Laboratory.

All orders are described below for completeness but those
designated with an * cannot be used in normal operation; they will cause

an interrupt to the system program stored in the high end of memory.

Date: 3/5/63
Section: 3.1,2
Page: 1l of1l

Change:

3.2 General Mode of Operation

This and subsequent sections describe in detail the operation
and address construction of each order. For most applications it is not
necessary to know the details of the address construction since this is
handled by the New Illinois Computer Assembly Progrem (NICAP) described
in Chapter L.

The principal controls and data paths are shown in Figure 1.
There are three main control units in this computer called Delayed Control,

Advanced Control and Interplay.

Date: 3/5/63
Section: 3.2
Page: lof2
Change:

Back-up Memories
and Input-Output
Devices

Character Transfers ;

52 Bit
Transfers

1/0 /0 /0 1/0
t : : Up to 32 Channels
Interplay
/o 52 bits «\’
> Core Memory 1 »
— (Odd Addresses) P 50 Bit
Transfers
— Core Memory O [~®
| (Even Addresses) t———————pm
—
Fast Memor
i v -
Registers
0 Arithmetic
«————— U I le——]
7 Unit N :
Delayed
Control
Advanced
% Control
I: Up to
Address 4 copies of
. Arithmetic - g
13 bits Unit 13 bits
Figure 1 Date: 3/5/63
Section: 3.2
Data Paths for ILLIAC II | page: 5 of D
Change:

3.2.1. Delayed Control

Floating-point arithmetic is performed in a double-precision
accumulator in the arithmetic unit under the control of Delayed Control.
IN and OUT are word registers which contain respectively the operand
for the next Delayed Control instruction, and the result of the last

Delayed Control store order.

Date: 3/5/63
Section: 3.2.1
Page: lof 1

Change:

3.2.2 Advanced Control

Every instruction is obeyed first by Advanced Control. Some
instructions, such as those which only change the value of a modifier
register (i.e., index register) are obeyed in their entirety by Advanced
Control using the 13-bit address arithmetic unit. For orders obeyed
by Delayed Control, Advanced Control must form any address required,
obtain any operand required and place it in the IN register in advance
of the instruction execution by Delayed Control, and store any result
from QUT after the instruction has been obeyed by Delayed Control.
Advanced Control must also do the following:

() Transfer words of instructions from core memories into

two registers called F8 and F9 in the fast memory.

(b) Sequence the control counter to define the core address

and position inside the word of the present instruction.
(c) Prepare instructions destined for Interplay.
(d) Time-share the core memories with Interplay.

(e) Program interrupt, to be explained later.

Date: 3/5/63
Section: 3.2.2
Page: lofl
Change:

3.2.3

Interplay

The basic Interplay operation is a block transfer between the
core memory and any one of the input/output devices or back-up memories.
This operation requires one interplay channel, which contains counters,
word-assembly equipment and provision for accessing core memory and
sensing the end of a block transfer. Most devices have their own private
Interplay channel. In the case of magnetic tape units, there will be
several units associated with a channel, at most one connected to the
channel at any one time. Any number of channels may be running
simultaneously, and in this case the core memories are time-shared among
the various Interplay channels and Advanced Control. For an Interplay

order, Advanced Control constructs an address in the address arithmetic

unit (AAU) and sends it on to Interplay.

Interplay is responsible for reading and writing blocks of
information between core memory and back-up memory of I/O devices, con-
current with arithmetic. For block transfer purposes, the memory may

be considered divided into 32 blocks of 256 words each,

block O comprising locations 0 to 255
block 1 comprising locations 256 to 511

. °
° .

block 31 comprising locations 7936 to 8191

Thus a full block begins at some multiple of 256 and ends just before

the next multiple of 256, For transfers to or from drum, an entire block
must be transferred at one time, For other devices an initial address
not necessarily equal to a multiple of 256 may be used, and Interplay
decides that the transfer is over when the next multiple of 256 is
reached, or a stop indication is received from the device, whichever
happens sooner. For example, a stop can be received from a tape unit at

the end of a record.

Date: 3/5/63
Section: " 3.2.3
Page: 1l of 2
Change:

For input (or playback from drum or file) Interplay assembles
characters into words, and periodically competes with Advanced Control
for the use of memory to store one word. There is also a prior competi-
tion between the various Interplay channels active at the time to see
which will have the opportunity of competing for Core Memory. The
completion of any block transfer causes Interplay to set an indicator

which may cause program interrupt (see below).

Date : 3/5/63
Section: 3,2.3
Page: 2 of 2
Change:

3.2.4 Use of Tmmediate Access Memory

Core Memory ﬁo The memory containing all even-numbered locations:

0, 2, 4, ..., 8190

Core Memory #1 The memory containing all odd-numbered locations:

1, 3, 5, ..., 8191

NOTE: For the period when only one core memory is attached
to the machine, its locations are numbered O, 1, 2,
..., 4095, and higher addresses refer to locations in
this memory modulo 4096 so address 4096 refers to
location O, 4O§§7refers to 1, ..., 8191 refers to 4095.

Memory protection is accomplished by means of the Block Checker,

a device having 32 indicators (called busy block flipflops), one for
each 256-word block of memory. A block may be set busy (indicator on)
by program because of an Interplay transfer in progress, or for any
other reason. . Subsequently all addresses going from Advanced Control to
the core memories are checked to be sure that a block being referred to
is not busy. Reference to a locked-out block when not in the interrupt
mode (see below) is a program error and causes: first, read-out even

if write was requested, and second, program interrupt (see section 3.2.6).

Date: 3/5/63
Section: 3.2.4
Page: 1l of 1l
Change:

3.2.5

Use of Fast Memory

Registers called FO, Fl, ..., F9 are specialized in purpose.
F8, F9 contain words of instructions currently being obeyed by the
computer. F8 holds the contents of some even-numbered location from
Core Memory #O, and F9 holds the contents of the next higher numbered
memory location: its address is odd so it came from Core Memory #1.
Each of these registers is subdivided into four 13-bit fields called

control groups. An instruction is made up of one or two control groups,

and is classified as short or long respectively. Reading from left (most

significant) to right in a word, the control groups are numbers O, 1,

2, 3. A long instruction occupies any two consecutive control groups in
memory, without restriction. Thus word 2000, control groups O and 1
could hold a long instruction which would be obeyed from F8,0 and F8,1.
Likewise 2000,3 and 2001,0 could hold a long instruction executed from
F8,3 and F9,0 and locations 2001,3 and 2002,0 could hold a long instruc-
tion executed from F9,3 and (after automatic refill of F8 and F9) from
F8,0. With the exception of the instructions CJF, CJS, to be explained
later, the programmer cannot refer explicitly to F8 and F9. Their use

is automatic.

NOTE: For the period when only one core memory is attached to

the machine, instructions are obeyed from F9.

Fi, F5, F6, F7 are four registers which may sometimes be con-
sidered as full word registers or, more commonly, each is divided into
four 13-bit fields called modifiers. These modifiers are numbers

MO, ML, ..., ML5 and, reading from left to right

FL comprises MO, ML, M2, M3

F5 comprises M4, M5, M6, M7

F6 comprises M8, M9, M10, MLl
F7 comprises M12, M13, Mik, M5

So, for example, the Iastruction CAM 7, 15 (clear add modifier = CAM)
would replace the rightmost 13 bits of F5 by the integer 15, and the

Date: 3/5/63
Section: 3.2.5
Page: 1l of 3

Change :

instruction STR F6 would normalize, round off and store the contents of
the floating-point accumulator into register F6, thereby overwriting
modifiers M8, M9, MO, Mll. In the latter case M8 will have most signifi-
cant digit equal to 1 if the accumulator is negative, equal to zero if
the accumulator is positive, and would be composed of all zeros if and

only if the accumulator held zero.

F2, F3 are temporary storage registers used for constants or

intermediate floating-point results.

F1 (also called IN) and FO (also called OUT) are closely
associated with the floating-point arithmetic unit, in the following way:
Advanced Control pre-processes every instruction obeyed by the machine.
Some, such as CAM above, it completely executes itself, using a 13-bit
Address Arithmetic Unit for any arithmetic required. For instructions
causing I/O actions, it constructs an address, and routes the modified
instruction on to Interplay. For instructions involving the floating-
point arithmetic unit, Advanced Control constructs any address required,
places any operand (obtained from core memory, or fast memory, or from
the address itself) in the register Fl, and places the order in a register

called DCR.

Meanwhile, the floating-point arithmetic unit, under Delayed
Control, may be executing a previous instruction. When Delayed Control
is ready to obey this instruction, it copies F1 into an internal register
in the Arithmetic Unit and decodes the order which is held in DCR. Now
F1 still holds the operand read-in so one can say in general that F1
contains the operand used by the last D.C.. (Delayed Control) instruction.
Therefore, for example, one could square the contents of memory location

200 with the program.

CAD 200 (Clear accumulator, add (200))
MPY Fl (Multiply by last operand).

Results of Delayed Control store orders are placed in FO and subsequently

copied by Advanced Control to their correct destinations. If the stated

Date: 3/5/63
Section: 3.2.5
Page: 2 of 3

Change:

destination is FO, then no further copying is necessary. Thus FO contains
the last number stored from the Arithmetic Unit. Two further instructions
LFR (Load Fast Register from core memory) and SFR (Store Fast Register
into core memory) are needed to complete the description of what is legal
and what is illegal in the use of FO and Fl. Fast registers may be used

for operands as follows:

(1) Delayed Control operands may come from any of FO through

F7 or from core memory.

(2) Delayed Control results may go to FO, F2, ..., FT or

core memory, but not Fl.

LFR
(3) E#RF can load F2, ..., F7 but not FO or Fl.

(4) SFR can store FO, F2, ..., F7 but not Fl.

Date: 3/5/63
Section: 3.2.5
Page: 3 of 3
Change :

3.2.6 Program Interrupt

Under certain conditions, some of which have already been

described, it is desirable to break into a program and execute a different

program retaining the option to resume the old program from point of exit.

The action of leaving the program and retaining such information as is

required to resume it later is called program interrupt. Program inter-

ruption causes the transfer of control to the system program area of

memory where the necessary fix-up is performed. Causes which might

Justify interrupt include the following:

(1)

(2)

(3)

(4)

(5)

Correctable machine malfunctions, such as the incorrect
read-in of a block from a magnetic tape unit. In this
case it is very possible that a second reading of the
same section of tape can be done error-free, and it is
convenient to have the system program handle this cor-

rection automatically for the programmer.

The completion of a block transfer or tape rewind, etc.
In this case the system program may wish to give
another block transfer to Interplay if it has been so

instructed by the programmer.

Illegal order executed by Advanced Control. During
program debugging it is desirable to print the location
and contents immediately rather than allowing control to
proceed, perhaps by obeying data as instructions. In

a production run the occurrence of an illegal order
means either a machine malfunction or that the program

was not properly debugged.

An unusual and possibly unwanted arithmetic result,

such as floating-point overflow.

Periodic real-time signals furnished by a clock, This
permits a system program to supervise code checks, and

posgibly keep a log, etc.

Date: 3/5/63
Section: 3.2.6
Page: lof 2
Change:

(6) Any I/O order (PID, POD, IBT, ASN, SSN, or SSR). When
the system is present, all I/O must be done by system

subroutines in order to provide for I/O protection.

After interruption has taken place, the machine operates in a
different mode called the interrupt mode, until a particular order is
obeyed (JDC with B = O to be explained later). In this mode orders
referring to Interplay and to the Block Checker are made legal, all

references to busy blocks are legalized and no further interruptions may
take place. An interrupt program determines the cause of the interrup-

tion, takes appropriate steps to remedy the situation, and, if possible,
resumes the program with a JDC, B = O order which takes it out of the

interrupt mode and back to the program.

Date: 3/5/63
‘Section: . 3.2.6
Page: 2 of 2

Change:

3.3 Order Code for Floating-Point Arithmetic

A word consisting of instructions is divided into four 13-bit

fields called control groups. An instruction consists of one or two

control groups and is referred to as short or long respectively, A short

instruction has three fields reading from left to right or most significant

to least significant.

F Seven bits designating the operation to be performed. These bits
may be designated by a three-letter mnemonic such as MPY for
multiply, or by three octal digits. For example, MPY is 120 in
octal or 1 010 000 in binary.

B Four bits usually designating a modifier register MB or a fast
register FB.
C Two bits which usually control address or operand preparation

and may indicate whether the instruction is short or long.

A long instruction consists of F, B, C in one control group, and a second

control group, called N which is usually an address.
Instructions destined for Delayed Control fall into four categories:

Full-word Arithmetic (such as MPY)
Full-word Store ~ (such as STR: normalize, round and store)
Exponent Arithmetic and Shifts (such as ADE: add to exponent)
Quarter-word Store (the orders SIA: store integer part as

an address; and SEX: store exponent).
Consider first the interpretation of B, C and possibly N for full-word

arithmetic:

If C

il

0, modifier MB contains an address (MB) of a core location containing

the operand.

JIf ¢ =1, again (ME) defines the core location containing the operand, but
also 1 + (MB) is returned to M.

Ir C

]

2, a long instruction with core address N + (MB) mod 8192.

If C

3 and B < 8 the operand is contained in fast register FB°

Date: 3/5/63
Section: 3.3
Page: 1l of 3
Change

If ¢ = 3 and B = 8 the core address is N.

If C = 3 and B = 9 the integer N converted to floating point is itself the
operand. In this case the leftmost digit of N is considered to
have negative weight so -4096 < N < L095.

If ¢ = 3 and B = 10 the fraction N converted to floating point is the
operand, and -1 < operand < 1 - l/h096.

If ¢C=3, 11 <BK 14, Unassigned. At present has the effect that floating
point zero is the operand, but these should not be used in
programs because later additions to the computer might require
the use of these combinations.

If ¢ = 3, B =15, floating-point zero is the operand.

Any order may be changed if it is preceded by an "add to next"
type order, such as ATN, SFN, ASN, SSN, or a modifier arithmetic order with
¢ field equal to 1 or 3. In this case the address of the present order,
if any, is affected by the preceding order. For floating-point orders only
¢ =3 and B<8or B>1l are unaffected by a preceding "add to next" type

order.

In summary, the instruction is short unless C =2, or C= 3 and
B is one of 8, 9, or 10; it refers to core memory if ¢ <3, or C= 3 and
B = 8; it refers to fast memory if C = 3 and B < 8; and Advanced Control
constructs an operand from the N address if C = 3 and B = 9 or 10, or supplies
the (zero) operand if C =3, B=15. If C= 1 counting is performed on the
modifier register specified. Since there are 16 active modifier registers
and not 15, the case C = 3, B = 8 is necessary to specify a fixed-memory
location. The computer may be expected to run somewhat faster if short
orders are used instead of long ones, and if registers in fast memory are

used in preference to locations in the core memory.

For full-word store orders the core memory address or fast memory
address specifies a destination rather than a source and the cases C = 3;
B=1or B>9 are illegal. (In the description of the fast memory it was
stated that it was illegal to store into Fl, so C = 3, B = 1 is illegal here.

For C = 3, B> 9 an operand destination is meaningless.

Date: 3/5/63
Section: 3.3
Page: 2 of 3

Change:

For exponent arithmetic, the "core address" defined above is not
used to go to core memory, but rather is reduced to eight bits and combined
with the exponent. More exactly, a word consisting of four copies of the
address is placed in the IN register and Delayed Control combines arith-
metically the right-hand eight bits of this word with the exponent. Shift
orders are also included in this class; however, only the rightmost seven
bits are used to define the number of shifts. The cases C = 3, B # 8 are

illegal for exponent arithmetic ordersand shift orders.

For the quarter-word store orders, the B digits define the modifier
register destination. These orders cannot refer to core memory, and C is
irrelevant. The instruction STA should have B = one of O, L, 8, 12 because
the integer will appear in the first 13 bits of the OUT register. The
instruction SEX should have B = one of 3, 7, 11, 15 because the exponent
will appear in the last 13 bits of the OUT register. If other B combina-
tions occur they are not called illegal by the computer and might just be
useful. For example, SIA, ML would cause the 13 bits immediately to the

right of the radix point to be stored in modifier #1.

Date: 3/5/63
Section: 3.3
Page: 3 0of 3
Change

3.3.1 .The Floating-Point Accumulator

There are a number of registers in the arithmetic unit whose
action is required in the execution of instructions, which need not be
described in the order code because results do not end up there. For
one order, SRM, we shall have to refer to some of these extra registers,
but otherwise the description will center around the basic registers which

hold the results of each instruction.

Accordingly, the accumulator consists of two registers, A, E.

A holds 89 bits called a .y agg in twos complement notation, with

O)
value

a=-a + L 2 'a, so-l<a<1 - 2—88.
0 1A i - -
1%0
L 1
The first 45 bits of A (a., ..., &), with value -a, + L2 a form a
0 Lk U i

fraction called a ("A Most"). A zero followed by the remaining digits

of A (Q? aMS’ cosy a88) form a fraction which is sometimes assigned the
B

value 2 2 a)),; @nd is called ay ("A Least"). These definitions will
i=1 :

be used in describing some orders. E holds eight bits called e7, €gs covs

e, with integer value

0

e = -128e., + L 2Te, so -128 <e < 127.
(BT

If a calculated e falls outside this range it is held modulo 256.

Shifts are base 4 only (two binary places at a time), and the
exponent e signifies a power of 4. The accumulator holds the number

n=a- 4%, Note that a = a + h—zgaz.

A word W in memory (core or fast) consists of a 45-bit fraction
x followed by a seven-bit exponent y at the right-hand end of the word.
Tts value is w = x - 49, -64 < y < 63, and fields x, y are represented in
twos complement notation. Note that the range of exponents permitted in
the accumulator is about twice that in memory, and the accumulator holds

a double-precision number.

Date: 3/5/63
Section: 3.3.1
Page: lofl
Change:

3.3.2

Zero and Overflow

6L

The representation is memory of a floating-point zero is 0.4~ s
i.e., zero fractional part and the most negative exponent possible, and
it is the only floating-point number with this exponent. When -64 is
detected as the exponent of an operand, some orders such as ADD (see
later) are bypassed. In the accumulator, a zero indicator Z is turned on
whenever a = 0, or when a calculated exponent is less than -128. The
contents of the floating-point accumulator is not otherwise altered (it
is not cleared to a fixed valuez so the numerical value of the accumulator
contents depends on Z as well as the contents of A and E. Whenever f is
changed, Z is cleared. Store orders, logical shift orders and orders
which are bypassed do not clear 7. When the operand of certain arithmetic
orders have exponent equal to -6L, the arithmetic is not done and the

order is bypassed.

An overflow indicator OV is turned on whenever any result is
too large to be correctly represented and remains on until cleared by a
special jump-on-overflow order (JDC with B = 10 or 11), If Z is on, the
setting of OV is inhibited except for the inverse divide order (VID),
in which case the memory operand divided by the zero accumulator con-

tents is judged to be an overflowed number.

In floating-point arithmetic, overflow of the fractional part
is corrected by a right shift of A (division by four) and the addition
of one to the exponent. For logical shifts: SRS, LRS, BLS the loss of
digits at the left end of A is considered normal. Therefore, for non-store
orders, OV is set only if e exceeds 127 or if we are asked to divide by

Zero.

For store orders one may be required to supply a particular
representation of the number, and in this case it turns out that either
the fraction or the exponent may overflow the more restricted range

of numbers permitted in the memory. In this case OV is also set.

Note that Z gives a continuous indication of whether the

accumulator now holds zero, whereas OV is a cumulative indicator telling

whether any result has exceeded range since OV was last reset.

Date: 3/5/63
Section: 3.3.2
Page: 1l of 2

Change:

The floating-point store orders (including STF: Tstore fixed
point) conform to the convention on zero numbers in memory, in that if Z
is on, or e < -64, or the 45-bit fraction to be stored consists of all

zeros, then the number O - (absolute zero) is transferred to memory.

The conditions Z on or y = -6L4 or x = 0 affect the following

orders:

ADD/SUB y = 6L bypass the order

ADD/SUB z on and y £ -64 obey "clear add"/"clear subtract”

MPY, Z on bypass the order

MPY, Z off, y = -64 partial normalize (see later), set
Z on, then bypass the order

DIV, x = O set OV and bypass the order

DIV, Z on, and x % 0] set remainder = O and bypass the
order

When OV has been set, the results in the accumulator are Judged
wrong, and no attempt is made to maintain a consistent representation of
wrong numbers. The orders SAM, SAL, SEX are logical in nature. (They
allow the programmer to store the digits in the accumulator without having
any floating-point conventions imposed on him.) If he later uses such a
number as a floating-point operand it may have exponent -64 and non-zero

fractional part.

Date: 3/5/63
Section: 3.3.2
Page: 2 of 2

Change:

3.3.3 Normalization

A number p -
(a) 2 on

(b) p=0

(¢) -1<p<-1/4
(@) 1/h<p<1

holds. - 4% = (4p) - Bt g
by repeated left shifts provided one
Note

Since p

for every left shift required.
during normalization due to exponent
results of arithmetic operations are

accumulator may be normalized at the

19 ig called normalized if one of

small fraction p may be normalized
subtracts one from the exponent q
that the Z indicator can come on

underfl ow. Except for divide, the

not normalized; however, the

start of multiply, divide, difference

absolute value (DAV) and certain of the store orders.

Date: 3/5/63
Section: 3.3.3

Page: lofl
Change:

3.3.4 Addition and Subtraction

The sum X ° hy and & - he ig obtained with an error of at most

u-hh

in its fractional part as follows:

(a) If |e - y| > 4b, the sum is teken to be the number with

the larger exponent.

(b) If e - ¥yl < Lk, the fractional part of the number with
small exponent is right-shifted |e - y| base 4 positions
and its first 89 bits (including sign digit) are added
to the other fraction. The error, if any, is a truncation
error to the right of the 89th bit. The larger exponent

is assigned to the result.

NOTE: Some cases of floating-point addition can take a large number
of steps by the computer, and a correspondingly long time to
execute the instruction. Sometimes these long add or sub-
tract orders can be avoided by careful programming. Relative

times for addition can be estimated from the number of steps

as follows:

Case 1 e -y <hk5 obey Clear Add six steps
Case 2 -l < e - y <0 about 5 + le - y| steps

Case 3 l1<e-y<22 about 5 + 2|e - y[steps
Case 4 23 < e - y <Lk about -11 + le - y| steps
Case 5 L45<e-y bypass three steps

Exceptions. Z true always means Case 1, and Z false but

y = -6b4 always means Case 5.

Date: 3/5/63
Section: 3.3.k4
Page: lofl

Change :

3.3.5

Multiplication

The accumulator is normalized, if necessary, and its first 45

bits are rounded to form a fraction ar. The product x - ar is formed

in A, and the sum of the two exponents is placed in E.

If a, = 0 normalization is not necessary (and is not done),
since the product (a ° x) LYY is exact. Likewise if a, becomes zero
after some even number of base 4 shifts, multiplication begins at that

point. Partial normalization may be described by these rules:

(l) If Z is true or a, = 0 or a is normalized we are done.

Otherwise go to (2).

(2) If one left shift (base L) of A will normalize a, left
shift one place and subtract one from the exponent. Ir

this results in an exponent less than -128 set Z.

(3) Otherwise left shift two places and subtract two from
the exponent. If this results in an exponent less than

-128 set Z. Now return to (1) above.

The same type of partial normalization is done at the beginning of the

DAV instruction.
The rules for ordinary normalization follow:
(1) If Z is true or a is normalized we are done. Otherwise go
to (2).

(2) If one left shift (base 4) of A will normalize a, left shift
one place and subtract one from the exponent. If this

results in an exponent less than -128 set Z.

(3) Otherwise left shift two places and subtract two from
the exponent. If this results in an exponent less than

-128 set Z. Now return to (1).

Date: 3/5/63
Section: 3.3.5
Page: 1 ofl
Change:

3.3.6 Division

First, the accumulator is normalized. Then the number from
memory is normalized. If the latter has a zero fractional part, oV is
set and the order bypassed at this point. Then if Z is true or the
difference of exponents (i.e., the exponent to be assigned to the
quotient) is less than -128, the remainder is cleared to floating-point
zero, Z is set and the order is bypassed. Otherwise the order is obeyed
and a quotient is formed which is either normalized or has fractional
part -l/h and is correctly rounded to 45 bits. After divide an is the

fractional part of the quotient, ay is zero, and e is the exponent.

If the Delayed Control order immediately following divide is
SRM (store remainder), the remainder from division which was held in
other registers in the arithmetic unit called R, ES is transferred to

memory, The remainder obeys the floating-point zero convention for numbers

to be stored.
Note that divide can produce exponent overflow.

We might call an improper division one in which the normalized

divisor has a fractional part smaller in magnitude than the fractional
part of the original divident (before normalization). In this case L7
bits would be requirea to express the fractional part of the remainder,
The first 45 of these are retained, and the two others agree with the
88th and 89th bits of the dividend.

Date: 3/5/63
Section: 3.3.6
Page: lofl
Change:

3.3.7 Round-Off

The first 46 bits of the fractional part of the normalized
infinite length quotient are rounded to 45 bits adding a one to the 45-bit
position, letting carries propagate, and then truncating the result after
45 pits. If the resulting fraction is +1 it is replaced by +1/4 and
one is added to the calculated exponent. If this addition_of one causes

the exponent to become equal to +128, then OV is set.

For orders other than divide, a different procedure is used to

obtain the rounded value of a, namely a_, as follows:

|+

a = g if a, <
r m i/

-22 1
] = = %
r a + kL ahh if az 5

©
1]

a + 4722 if a, >

noj-

&y
The values +1 and —1/4 of a, can occur even if a has been normalized. In
multiply, inverse divide and difference absolute value, these values of
a, are used in the arithmetic unit without additional normalization, since
it has a somewhat wider range of numbers which may be wused during the
execution of an instruction. In the case of store orders, the accumulator
is not changed after round-off, but the rounded result may be renormalized

on the way to the FO register.

% This corresponds to the rule in decimal arithmetic that to round off
a five choose the nearest even digit, for example, (.325) rounded =
.32 whereas (.335) rounded = .34. ’

Date: 3/5/63
Section: 3.3.7
Page: lofl
Change:

3.3.8 Correct Overflow and Detect Zero

As has been described already, the exponent is monitored during
the execution of an instruction, and Z or OV is set if the exponent of
the accumulator falls outside of the range -128 <e <127. At the end
of each instruction which affects the contents of the accumulator, the
operation "correct overflow and detect zero" is performed, whose rules

follow:
(1) If a = O set 2. If Z is set disregard (2) and (3).

(2) If -1 >a or a > 1, right shift A by one place and add

one to the exponent.

(3) If (2) results in exponent overflow set OV.

These operations are referred to as "the correction sequence."”

Date: 3/5/63
Section: 3.3.8

Page: lofl
Change:

3.3.9 Floating-Point Orders

Orders are listed as a mnemonic, followed by a binary plus two
octal digit representation of the seven-bit order field F. Where B or
¢ field digits affect the type of order (e.g., JDC orders), other mnemonics
can be used in NICAP. These are listed at the end of this Chapter in
Table 5 #nd' destribed’ further in .Chapter b

CcAD (102) Clear ‘Add.. Replace a, a8y ebyx, 0, y. Z is cleared but
‘ would be set if x = O after "the correction

sequence."

sB (100) Clear Subtract. Replace a , &y, e by -X, 0, y. Z is cleared
but would be set if x = 0, If x = -1, then

"the correction sequence" replaces f, y by 1/k,
y + 1. This could not cause OV to be set since
v+ 1< 6k,

CAT (103) Clear Add Twice. Replace a s 8y, € by 2x, 0, y. Z is cleareéd.
1f -1/2 > x or x > 1/2 then "the correction
sequence" replaces a, y by Q/Lg, y + 1, If x = O,
Z is set and OV cannot be set.

CST (101) Clear Subtract Twice. Replace a , a,, e by -2x, 0, y. Z is
cleared. If -1/2 >x or x > 1/2 then "the
correction sequence” replaces a, y by &/, y + 1.
If x = 0, Z is set and OV cannot be set.

AND (105) Digitwise Logical Multiply. Clear Z. Replace the digits of

& with digits consisting of the product a, * X

for each i. Do not change a, or e. Z may be
set if a = O at the end of this instruction. OV
cannot be set nor can corrective right shifts be

done.

LOR (106) Digitwise Logical OR. Clear Z. Replace the digits of a with

digits consisting of ones wherever a; and x, are
not simultaneously zeros. Do not change a, or e.
Z is set if a = 0 at the end of this instruction.

OV cannot be set nor can corrective right shifts

be done.
Date: 7/9/6%
Section: 3.3.9
Page: 1 of 9

Change: 1

NOT (104) Clear Add Digitwise Complement. Clear Z and age Replace a, by

digits 1 - x; in every digital position of a
Replace e by y. Z will be set if x is composed
entirely of ones, OV cannot be set nor can corrective

right shifts be done.

BLS (107) Single Binary Logical Left Shift of A Most. If C =3, B<8

(Also named LF1) and B # 1, a_is not changed. Otherwise a is
replaced logically by'Eam mod 2. Z is cleared and
will be set if a is O or -1, F IN is loaded with
an unused operand so to shift use B=1, C = 3, To
load a fast register into F IN use C = 3 and B < 8,
B # 1. The shift is not an arithmetic order unless

the result is in range.

AND, LOR and BLS are logical, and since they reset Z without
replacing the entire contents of the accumulators, should not be used in

floating~-point arithmetic.

ADD (112) Add. Form the sum of x - 4 + a - 4% as described on
page 1 of section 3.3.4. Apart from the cases Z
true of y = -64, the accumulator will contain the
double-precision sum with exponent equal to the
larger of the exponents of the two operands, before
overflow is corrected. Z may be set or a right
shift of one place may occur, adding 1 to the
exponent. This cannot cause OV to be set, since
the resulting exponent will not exceed +127. Note
that no automatic normalization is done during
addition, so it can serve as both floating-point
addition and fixed-point addition. The decision
on whether to normalize is made at the time of a
store order, and depends on the type of store

order given.

SUB (110) Subtract. Form (-x) * 4 + a - 4° in a manner precisely

analogous to ADD just above.

Date: 7/9/64
Section: 3.3.9
Page: 2 of 9

Change: 1

MPY (120) Multiply. Partially normalize a * 4 and call the result
a » 4%, Then, if either Z is true or y = -6k,
set Z and bypass the order. Otherwise replace
abyx cainAandebye+yinE, If
e +y < -128 set 2, and if e + y > 128 set OV.
Then "the correction sequence' will set Z if x
was zero and will right shift A one place and
1 to the exponent if, and only if, a = -1 and
x = -1, In this case OV would be set only if
e + y = 127 before shifting.

DIV (121) Divide. Normalize & - 4% and call result a - 4. Normalize
x + 4 and call result x - 4/, If x = 0, set OV
and bypass the order. If x % 0 and Z is truse, set
remainder equal to zero and bypass the order.

Form (%) rounded or (E%) rounded in a_, set ay = 0
and set e equal to e - y or e - y + 1 respectively.
The remainder will have an exponent approximately
20 less than e unless it is precisely zero. OV

or Z may be set if e - y or e ~ y - 1 go outside
the range -128 to +127. "The correction sequence"
will have effect only if a = +1. In this case the
fractional part of the quotient is right shifted
one place and 1 is added to the exponent. If

exponent overflow results, OV is set.

NDV (122) Negative Divide. Identical to DIV except that the divisor is
(-x) - 4,

VID (123) Inverse Divide. The accumulator is normalized and rounded,

and a, and x are interchanged and ay is cleared;

e and y are also interchanged. If Z is true OV
is set and the order by-passed at this point.
Otherwise x + 4 is normalized. If then x = O,

7 is set at this point and the order is by-passed.

Otherwise division proceeds from this point,

forming (=—) * 4% or —5—->- W+l 41 & manner
a, uar

analogous to that described under DIV above.

Date: 7/9/64
Section: 3.3.9
Page: 3 0of O

Change: 1

LAL (141) Load A Least. Z is cleared and the digits B)5s -5 Bgg BTE
set equal to the non-sign digits of x, namely
X XpeoeX)) o Z would be set if a = 0 and the
non-sign digits of x were all zeros, but "the
correction sequence” could have no other effect.
This is a logical order and should not be used

in floating-point programs.

DAV (122) Difference Absolute Value. The accumulator is partially

normalized and a, - 4% is formed. Tt is noted
whether or not Z is true at this time. Then 2

is cleared and -|x - 4¥| is placed in the accumu-
lator as if by a CAD or CSB order. If now Z was
true enter "the correction sequence" with action
like that in CAD or CSB. Otherwise enter ADD or
SUB to form |ar - 4% - |x - ¥}, Action from
this point on is identical to the ADD or SUB order,

STR (124) ©Normalize Round and Store, If Z is on, store O.,Ll--&L in FO and

subsequently in the memory location specified.
Otherwise normalize. If Z is now true, store
O.h-6ua From this point on the accumulator is
not changed, but the number stored may be changed.
Form ar° This may still be normalized or it may
take on the undesired values +1, -1/4. In the
latter two cases change this to +1/4, -1 and
respectively add 1 to the exponent or subtract 1
from the exponent. If now the exponent is < -6k
store floating-point zero. If the exponent is

> +64 set OV. If floating-point zero is not
stored, store the number obtained by the above
operations. Since only a 7-bit exponent is

stored the exponent is stored modulo 128,

Date ! 7/9/6k
Section: 3.3.9
Page: 4 of 9
Change : 1

XCH (125) Exchange. The new value of the memory register is the same
as 1f STR were executed. The new value of the
accumulator is the same as if CAD were executed.
Note that for C = 3 the case B =1 is illegal for

this order.

STN (127) Store Negatively. The accumulator is normalized and -a is
transferred to a, and ay is cleared. Then STR
is executed and it works all right even if
-a .= +1. Following STR, in this case "the
correction sequence" would right-shift and add
1l to e.

STF (130) Store Fixed Point Rounded. A fixed point number is either o.u'64

or has exponent zero. If Z is not on,; a ° L4 is
converted to fixed point by shifting right or left
and counting up or down respectively on e until

e becomes zero. If overflow in the fractional
part occurs, OV is set and the process continues.
After the shift the accumulator is unchanged.

a, is formed. If it is equal to +1, OV is set.
If Z is true of a_ =0, O,h-6u is stored. Other-
wise a 10 is stored with the exception that +1
is stored as ~-1. The net result, that numbers

are stored modulo 2 except for zero,is called
fixed-point representation. Z is set if the

result is a = 0.

STU (134) Store Unnormalized but Rounded. Identical to STR except that

there is no preliminary normalization. The use
of this order at key places in a program may

considerably reduce the number of shifts prior
to store orders and prior to succeeding add or

subtract orders.

Date: 7/9/ 6k
Section: 3.3.9
Page: 5 0of 9

Change: 1

SRM (143) Store Remainder. If this order follows a DIV, NDV, or VID

STC (126) Store Clear.

order with no intervening Delayed Control orders,
the remainder (unnormalized, unrounded, but
correctly represented even if zero) is stored
from the R, ES registers. Since R, ES are used
by most instructions, the use of this order
following a non-divide order might be useful for
engineering routines, but a catalog of results
expected would be voluminous. SRM following a
divide order sets overflow if the remainder has
an exponent > 6&, which can happen even when the

quotient is in range.

The accumulator is not cleared. The first part
of this instruction coincides with STR. Suppose
a, =8& + 2-uu€ where € = O or 1. Then a + 4° =
(o + 4%ay) « 4% = [a_+ 475 (a) -)]0 b€ =
a, " 4 4+ (az - e)he_ego Now STR stores a number
numerically equal to a ° 4%, STC after doing
this, transfers a, - € to & clears ay to zero
and subtracts 22 from e so the accumulator holds
the remainder from the store operation. Z is
set if a, - € = O or if e - 22 < -128. This
order allows a double-precision representation in
memory in which the most significant half is
correctly rounded, and, if STU follows STC, the
least significant half has an exponent nearly
always 22 less than the most significant half,
The exceptions to this rule are when the most
significant half rounds to +1.or -1/4, or when the

least significant half is judged zero.

ASC (116) Add and Store Clear, Identical in effect to ADD followed by

STC. Note that C = 3 and B =1 is illegal.

ssc (114) Subtract and Store Clear. Identical in effect to SUB followed

by STC. Note that C = 3 and B = 1 is illegal.

Date: 7/9/6k4
Section: 3.3.9
Page: 6 of 9

Change: 1

SIF (131) Store Integer Part as a Floating-Point Number. " If Z is not
true, the accumulator is shifted (see STF) until

its exponent becomes equal to +22. This means
that the radix point lies Ul bits to the right

of a,, that is;, it lies between a, and aye If,

7
durigg this process, overflow of the fractional
part occurs, OV is set. Then if a = 0 or Z is
true, Och'6u is sent to memory. Otherwise
a 422 ynich is the integer part of the number
modulo 2 5, is sent to memory. Then "the correc-
tion sequence" is obeyed, and it might set Z.

Note that if +2LLS is the correct answer, the
accumulator will have -245, OV will have been set,
and "the correction sequence" will not do a

corrective right shift.

SAM (135) Store A Most. a ° L% is transferred to memory, regardless of

Z, OV is not set, a is not changed and e .is
stored modulo 128. This is not a floating-point

order,

SAL (136) Store A Least. ay 4% is transferred to memory, regardless

of Z. OV is not set, a is not changed and e is
stored modulo 128. This is not a floating-point

order.

SEQ (132) Store Rounded with Exponent Equal. This order has no operand,

but an operand is implied in Fl. Normally, the
previous order would have been "Load IN" (LIN)
to be described later, but this is not necessary.
Whatever number is in Fl at the time SEQ is
obeyed furnishes a T-bit exponent, and it is
required to shift the accumulator in a manner
exactly analogous to STF until its exponent
becomes equal to this number and then round-off

and store with qualifications identical to STF.

| Date: 7/9/6k
| Section: 3.3.9
| Page: 7 of O
Change: 1

For the next group of orders, Advanced Control places the same address

into all four quarters of Fl. This address is interpreted modulo 256
*

for the first four and modulo 128 for SRS, LIRS, and is called y and ys

respectively. The most significant bit is a two's complement sign bit.

*
CAE (117) Clear Add Exponent. Place y in E. No overflow correction

is performed.

S *
CSE (115) Clear Subtract Exponent. Place -y inE., Ify = -128 set OV.

*

ADE (113) Add to Exponent. Place e +y in E. Set OV or Z if the range
-128 < exponent < 127 is exceeded, but do not
set OV if Z is true.

*
SBE (111) Subtract from Exponent. Place e - y in E., Set OV or Z if

the range -128 < exponent < 127 is exceeded, but
do not set OV if Z is true.

SRS (147) Short ‘Logical Right Shift. If y® is positive, translate the

digits of the A register right 2y° bits without
sign digit duplication and throw away those that
pass the right hand end of the a . If ys is
negative, translate the digits of a left, throwing
away those that pass the left end of the register.
Do not set OV. Z may be set. This is a logical
order which would not be useful in floating=-point

programs. NOTE: 2yS bits are ys base 4 shifts.

LRS (145) Long Logical Right Shift. The double length equivalent of SRS

above., This is also a base 4 shift.

Of the Delayed Control orders, there remain only two store
orders which produce 13-bit results to be transferred to modifier

registers in the fast memory.

SEX (137) Store Exponent. A word whose first 39 digits agree with the
first 39 digits of a, and whose last 13 digits

agree with the 8-bit exponent e extended five
digits left by duplication of the sign digit, is
place on FO, then the 1/U4 word of FO aligned with

Date: 7/9/6k4
Section: 3.3.9
Page: 8 of 9

Change: 1

ME is copied into Mﬁ. If the modifier register
specified is M3, M7, Mll, or Ml5, the last 1/l,
i.e., the exponent, is stored in it. This is

a logical order and Z is disregarded. The C field
of the SEX order has no effect.

STIA (133) Store Integer Address. The accumulator is shifted until its

exponent is equal to +6 in a manner similar to

SIF. If the base 4 exponent is +6 the radix point
lies between the 13th and 14th digits of the A
register. OV or Z may be set during the shift but
if Z was true beforehand, no shift is made. Now
if a = 0 or Z is true, o.u'&L is placed in FO.
Otherwise a - 4% is placed in FO. If the modifier
register specified is one of MO, Mk, M8, or MI2
the first quarter word, i.e., the integer part of
3, is copied into the MB,
Otherwise a different quarter word is copied

(see SEX). The C field of the SIA order has no
effect.

the accumulator, modulo 21

Date: 7/9/64
Section: 3.3.9
Page: 9 of 9
Change: 1

3.4 Orders Which Do Not Involve Floating Point

The orders described in the last section are obeyed first by
Advanced Control, which obtains any needed operand and places it in Fl,
then by Delayed Control which performs any necessary floating-point arith-
metic, and then, in the case of store orders, by Advanced Control again.
STA and SEX were a special type: always short, B represents the modifier
and C is irrelevant. Otherwise address construction was fairly uniform:
if ¢<30or C=3, B=8 an address is constructed and depending on the
order type this either defines a core memory location, or the address is

quadruplicated and used. Let us refer to this process as normal address

construction. For floating-point orders additional options were provided:

C = 3 and B < 8 means fast register F_ with the proviso that Fl is not a

destination, C = 3, B =1 is illegal ?or certain orders. Likewise floating-
point operands were generated for the cases C = 3, B > 9. These additional
options do not apply to the next class of orders: Advanced Control and
Interplay orders with normal address construction. If C = 3 and B % 8

these orders are illegal.

Date: 3/5/63
Section: 3.4
Page: 1lof 1
Change:

3.4.1 Interplay Orders

*¥PID (023) Prepare Input Device. After the address is constructed it is

sent to Interplay and is interpreted as a five-bit
field at the left-hand end signifying the channel
number and an eight-bit field specifying details
of a block transfer into the core memory. At the
time of this writing, channel O has been assigned
to the drum and the eight-bit field represents

the drum block. No other assignments have been

made yet.

*POD (062) Prepare Output Device. Similar to PID above except that a

transfer from the core memory is intended.

*IBT (022) Initiate Block Transfer. The address constructed specifies

the core address at which the transfer will start.
Depending on the device in question, the transfer
will cease when a stop character is reached or
when the core address reaches an address 1 less
than the next multiple of 256, whichever happens
sooner. In the case of the drum, and probably
all devices which operate on a fixed 256-word
block, only the first five bits of this address
matter--the others are replaced by zeros so a
drum transfer always begins at a core address
which is a multiple of 256 and ends at the address
one less than the next multiple of 256.

PID, POD, IBT are the only orders obeyed by Interplay. They may be used

only when Interrupt is disabled. When the system program is in the

machine, the user must do his input-output via system subroutines

described in Chapter 5.

Date: 3/5/63
Section: 3.k.1
Page: lofl

Change:

3.4k,2

Block Reservation Orders

*BBF (O43) Busy Block Flipflop. The first five bits of the address con-

structed define a block in core memory whose

indicator is to be set to the "busy" state.

¥FBF (0L2) Free Block Flipflop. The first five bits of the address con-

structed define a block in core memory whose

indicator is to be set to the "free" state.

Section:
Page: lofl
Change:

Date: 3/5/63
3.4.2

3.4.3 Advanced Control Orders

LIN (060) Iload IN Register. Four copies of the constructed address are

placed in Fl. This order usually precedes SEQ.

JIH (054) Jump to Left-Hand Control Group. A "jump" instruction is a

control transfer or branch operation., JLH has
the effect that the next order obeyed begins at
the first control group of the core word defined
by the address. This is an unconditional jump
which lacks generality and is mainly useful in

returning from a subroutine.

ATN (021) Add to Next Address. Certain orders, of which this is the

first example, influence the address construction
of order following. The address formed by this
instruction is added to the address of the next
instruction and then this next instruction is
obeyed normally. ATN may be repeated. Example:
suppose one wished to copy into the accumulator
the number from the memory location defined by
the sum of modifiers M2, M5, M/. The program is

ATN 2,0

ATN 5,0

CAD 7,0 or 3 short orders.
The first instruction adds (M2) to the second.
The second would normally add (M5) to the thiyd,
but since it has (M2) added to its address it
therefore adds (M2) + (M5) to the third instruc-
tion. The third instruction would normally have
core address (M7) but this is increased by
(M2) + (M5) meking a total of (M2) + (M5) + (M7)

as required.

SFN (O4l) Subtract from Next Address. The address formed is subtracted

from the address of the next instruction. Note that
two SFN orders in a row have the effect of adding

the first address and subtracting the second.

Date: 7/9./64
Section: 3.4.3
Page: lof 6

Change : 1

ORB (061) Logical OR with B Digits of the Next Instruction. The right-

most four bits of the address constructed are

combined with the four B bits of the instruction
following--the next next instruction will have
zeros only in those bit positions of the B field
where both bits are zero. This is a useful
instruction for breaking up words into quarter
words, but is not very useful for combining quarter

words into words.

This completes the list of instructions for which normal address

construction applies. The next group of instructions are always short.

*ASN (032) Add Special Register to Next Address. This is a short instruc-

tion. Provision is made in the computer for up
to 64 13-bit registers called special registers.
The address of this instruction and the two sub-
sequent - instructions is the number 4B + C
(between O and 63). The registers are used as
I/0 chennel condition registers and for special
1/0 (e.g., to paper tape for engineering and to
typewriter for system comments), They cannot be

used by the programmer unless interrupt is disabled.

*SSN'(072) Subtract Special Register from Next Address. This is a short

instruction. Similar to ASN except that sub-

traction rather than addition is done.

*3SR (073) Store in Special Register. This is a short instruction; and
its address is zero unless SSR was preceded by

an "add to next" type order. The B, C fields

specify which special register the address is

to be stored in. If an instruction such as ATN
had preceded this instruction, then, in general,
something other than zero would be stored in the

special register,

Date: 7/9/6Mk
Section: 3.4.3
Page: 2 of 6

Change: 1

CJF (057) Count and Conditional Jump to First. This is a short
instruction. One is added to the contents of
modifier MB and the result is returned to MB. If

the result is non~zero, jump to the instruction
at F8 position C (C = 0, 1, 2, or 3); otherwise
obey the next instruction in sequence. The
purpose of this instruction is to be able to

obey simple loops of instructions inside F8 and
FQ if the loop condition is just a count. In
These cases the instruction words are read from
memory just once and are held in F8 and F9 for
repeated execution. F8 contains the contents of
an even-numbered core memory location, and F9
holds the contents of the next higher-numbered
location, which is odd. Note that this implies
that the normal method of counting is to place the
negative of the count in a modifier register and
count up to zero. For a long program consisting
of long and short instructioné intermixed, the
programmer would refer to instructions symbolically
and would not, in general, know what word and
position any instruction occupied. One of the
operations which the assembly routine must be
able to do is to insert a jump to the left-hand
control group of the next even address so these
short loops may be correctly positioned. During
the period when there is only one core memory CJF
will have the effect of conditionally jumping to
F9, position C which means jump to position C of

the word containing the present instruction.

cJS (055) Count and Conditional Jump to Second. This is a short instruc-

tion, whose action is similar to CJF above except
the destination is F9, position C. During the
period when there is only one core memory the
action of CJS is identical to the action of CJF.

Date: 7/9/6k4
Section: 3.4.3
Page: 3 of 6

Change: 1

The next group of instructions are always long, and N, the
second control group, specifies the address.

cJU (077) Count and Jump if the Result is Unequal to Zero. Iong. Add

one to (MB) and return the result to modifier M.
If it is non-zero Jump to word N, positlon C;

otherwise obey the next instruction in sequence.

¢JZ (037) Count and Jump if the Result if Zero. Long. Add one to (MB)
and return the result to modifier‘MB, If it is
zero, Jump to word N, position C; otherwise obey
the next instruction 1n sequence. This is a very
rarely used instruction--CJU would be much more

common in progrems.

JPM (OT4) Jump if Positive Modifier. lLong. If the leftmost-of the 13
bits of (M.B) is a 0, jump to N, position C;

otherwlse obey the next instruction in sequence.

We may regard the integer held in‘MB as either
lying in the range -4096 < (ME) < 4095 1f the
leftmost digit is regarded as having negative
weight or lying in the range O to 8191 for core
addresses, or -8191 to O for orders like CJF,
CcJs, CJu, CJZ.

JMWM (034) Jump if Negative Modifier, Iong. If the leftmost of the 13

bits of (MB).is a 1, jump to word N, position C.

Otherwise obey the next instruction in sequence.

JZM (035) Jump if Zero Modifier, ILong. If all 13 bits of (MB) are
zeros, Jjump to word N, position C. Otherwise

obey the next instruction in sequence.

JuM (075) Jump if Modifier is Unequal to Zero. ILong. If the 13 bits

of (Mﬁ) are not identlcally zero, jump to word N,
position C. Otherwise obey the next instruction

in sequence.

Date: 7/0./64
Section: 3.4.3

Page: 4 of 6
Change: 1

B:=1L
g: 13

JSB (076) Jump to Subroutine. Long. Let H be the location of the N

address of this JSB instruction. Place H + 1 into
MB and jump to word N, position C. Conventionally
B = 3 and the subroutine returns control to the
left-hand control group of the word following the
JSB instruction. Thus entry to a subroutine at
location S would be accomplished by JSB 3, 0, S
and return from subroutine would be accomplished
by JLH 3, O,.

JDC (056) Jump on One of a Diversity of Conditions. Long. The B field

Green Sw. Center
Gregn Sw. Down (wormel)

specifies one of 16 possible conditions to be
tested. If the condition is true, the next instruc-
tion is obeyed from word N, position C. Otherwise
obey the next instruction in sequence. The
conditions are:

B =0 Unconditional. This also causes the

computer to leave the interrupt mode if
it happens to be in it.

B =1 Unconditional. This does not change the
interrupt status.
B =2 Accumulator positive or zero (Z on or a > 0).
B =3 Accumulator negative and not zero.
B =1L Accumulator unequal to zero (Z not on).
B=5 Accumulator zero.
B =6 Accumulator positive and not zero.
B =7 Accumulator zero or negative.
B=8 OV on.
B=29 OV not on.
B=10 OV on .
and then clear OV if it was on.
B =11 OV not on
B = 1k Digit ay = 0 (useful mainly in logical
operations.
B =15 Digit aj=1 (useful mainly in logical

operations.

Note that if B % 0 or 1 this Jjump 1s conditional
on the arithmetic result after Delayed Control

Date: 7/9/6&
Section: 3.4.3
Page: 5 of 6

Change: 1

has finished any instruction in progress and
quite possibly another instruction prepared by
Advanced Control. Such JDC orders can greatly
slow down the machine, and one of the objectives
of good programming is to reduce the number of
these, at least in critical parts of a program.
B =12 and B = 13 test an engineering switch and
therefore should not be used. (Normally 12 would
have the same effect as 1, and 13 would have the
same effect as O.) Other mnemonics may be used
for these orders to save remembering the meaning
of the B field digits. They are listed at the
end of this Chapter.

LDM (071)_ Load Modifier from Core Memory. Long. The quarter word aligned

with Mﬁ in word N in memory is copied into MB'
If B=0, 4, 8, or 12 this would be the first
quarter word; if B = 1, 5, 8, or 13 this would

be the second quarter word, etc.,

The remaining instructions are long if C = 2 or 3, and short
if C= 0 or 1. The address is O if the instruction is short, and N if
the instruction is long. If preceded by an "add to next" type order,

the O or N is appropriately modified.

LFR (070) Load Fast Register. Long if C = 2 or 3. Copy the word from

core location given by the address into FB. If

B=0Oor1lor B> 8 the instruction is illegal.

SFR (030) Store Fast Register. Long if C = 2 or 3. Copy the word from

FB into the core location. If B=1lor B> 8

the instruction is illegal.

Date: 7/9/64
Section: 3.4.3
Page: 6 of 6

Change: 1

3.b.4 Modifier Arithmetic

The remaining 12 orders cause the address to be combined with
the contents of a modifier. The result is either returned to the modifier
or added to the address of the next order according to the following rules:

0 means that the address is zero (short order) and the result
is returned to the modifier.

C

¢ = 1 means that the address is zero (short order) and the result
is added to the address of the next order.

c=2 means that a second control group provides an address N
(long order) and the result is returned to the modifier.

C = 3 means that a second control group provides an address N
(long order) and the result is added to the address of the
next order.

Note that if one of these orders is preceded by an "add to next" type
order, the O or N address 1is appropriately modified. To avoid writing
out the C field explicitly when it is 1 or 3, a second set of mnemonics
are listed at the end of this chapter. These have the effect of the
associated order described below with an odd C field. They are all
derived from the following mnemonics by changing the final M. to an N
(for "add to next").

CAM (027) Clear Add Modifier. Long if C = 2 or 3. The result equals

the address.

CSM (025) Clear Subtract Modifier. Iong if C = 2 or 3. The result

equals the negative of the address.

ADM (067) Add to Modifier. Long if C = 2 or 3. (MB) plus the address

is the result.

SBM (065) Subtract from Modifier. Long if C = 2 or 3. (Mﬁ) minus the

address is the result.

Date: 3/5/63
Section: 3.4.k4
Page: lof 3
Change:

CNM (02L4) Clear Negate Modifier. Long if C = 2 or 3. The digitwise

complement of the address is the result. The
digitwise complement of a binary number is the
number consisting of zeros where the original
number had ones, and vice versa. . In this case,
numerically, the digitwise complement is 8191

minus the address.

CRM (026) Circular Right Shift Modifier. Long if C = 2 or 3. The four
rightmost bits of the address define a number of

shifts p where O < p < 15. The result is the
modifier contents (MB) rotated right circularly p
places. Note that a shift of 13 places brings it

back to where it started from so

p = 13 has the same effect as p = O,
p = 1k has the same effect as p = 1,
p = 15 has the same effect as p = 2.

ANM (O47) AND with Modifier. Long if C = 2 or 3. The 13 bits of the
address are ANDed with the corresponding bits of
(MB) to form the result. A bit position of the

result has one if and only if both operands had

ones in that digital position,

ORM (046) OR with Modifier. Iong if C = 2 or 3. The 13 bits of the
address or ORed with the corresponding bits of

(MB) to form the result. A bit position of the
result has a O if and only if both operands had

zeros in that digital position.

EOM (066) Exclusive OR with Modifier. Long if C = 2 or 3. The exclusive
OR (or addition without carries) of the 13 address
bits and the 13 (MB) bits is the result. The

result has ones in those bit positions in which

the two operands differed.

Date: 3/5/63
Section: 3.h4.L
Page: 2 of 3

Change:

EQM (064) Equivalent with Modifier. Iong if C = 2 or 3. The equivalence

function of the address and (MB) is formed in
every digital position of the result. The result
has ones in those bit positions in which the two

operands agreed.

NAM (045) Negate, then AND with Modifier. Long if C = 2 or 3. The digit-

NOM (Obk) Negate, then

wise complement of the address if formed, and
ANDed digit by digit with (Mp) to form the result.
The result has ones only in those bit positions
where the address had zeros and the modifier had

ones.

OR with Modifier. ILong if C = 2 or 3. The digit-

wise complement of the address is formed and ORed
digit by digit with (MB) to form the result. The
result has zeros in those bit positions where

the address had ones and the modifier had zeros.

Date: 3/5/63
Section: 3.4.k
Page: 3 of 3

Change:

3,5 Tables

3.5.1

Table 1. Address Construction

Normal: LAL, CAD, CSB, CAT, CST, NOT, AND, LOR, BLS, ADD, SUB,

MPY, DIV, NDV, VID, DAV

Normal, ¢ = 3, B=1 or B> 9 illegal: STR, STU, STN, STC, STF,

SIF, SEQ, SAM, SAL, SRM,
ASC, SSC, XCH

Normal, C = 3, B‘% 8 illegal, address used as operand: CAE, CSE, ADE,

SBE, SRS, LRS,
LIN, *PID,
¥POD, *IBT,
¥BBF, *FEF,
JLH, ATN, SFN,
ORB

Short, B means : SIA, SEX, CJF, CJS For SIA, SEX C has no effect.
7

Short, 4B + C is name of special register: ¥ASN, *SSN, *SSR

Long, C represents l/h W except for LDM: CJU, CJZ, JPM, JNM, JZM,

JUM, JSB, LDM, JDC

Q
i

2 or 3 Means Long: LFR, SFR

Q
i

2 or 3 Means Long, C odd Means Add to Next: CAM, CSM, ADM, SBM,

CNM, CRM, ANM, ORM,
EOM, NAM, NOM, EQM

Order is interrupted unless interrupt is disabled.

Date: 3/5/63
Section: 3.5.1
Page: lof 1

Change :

3.5.2 Table 2.

.Special Case Information on Imstructions

LAL,

ADD,

DIV,

STR,

SAM,

CAE,

XCH

PID,

CAD,

SUB,

NDB,

STU,

SAL,

CSE,

POD,

CSB,

VID

STN,

SEX,

ADE,

IBT,

CAT,

ASC,

STC,

SBE

BEF,

CST, NOT, AND, LOR, BLS

S8C

STF,

SRS,

FEF,

'STF,

LRS,

ASN,

SEQ, STA

LIN

SSN, SSR

Clear Z first

Special cases if Z is true
or if y = -64

Special cases if Z is true
or if x =0

Special cases i1f Z is true:
the operand used is O x 4~

Disregard Z

Z or OV may be set. If Z
is true OV is not set

Special6 ase if Z is true
(0 » 47°*), Then clear Z

Cause Interrupt if in
interrupt enabled mode

Date: 3/5/63
Section: 3.5.2
Page: lof 1

Change:

3.5.3 Table 3,

Qrder Code Index

Order Codes Section No. Page No. Order Codes Section No. Page No.
ADD 112 3.3.9 2 LAL 1kl 3.3.9 L
ADE 113 3.3.9 8 LDM OT1 3.4.3 6
ADM 067 3.4.0 1 LFR 070 3.4.3 6
AND 105 3.3.9 1 LIN 060 3.4.3 1
ANM OLT 3.h k4 2 IOR 106 3.3.9 1
Asc 116 3.3.9 6 LRS 145 3.3.9 8

*ASN 032 3.4.3 2 MPY 120 3.3.9 3
ATN 021 3.k.3 1 NAM 0OL5 344 3
*BBF 043 3.h.2 1 NDV. 122 3.3.9 3
BLS 107 3.3.9 2 NOM Olk .44 3
CAD 102 3.3.9 1 NOT 104 3.3.9 2
CAE 117 3.3.9 8 ORB 061 3.4.3 2
CAM 027 3.k k 1 ORM OL6 3.h.4 2
CAT 103 3.3.9 1 *¥PID 023 3.4.1 1
CJF 057 3.4.3 3 *POD 062 3.4,1 1
CJS 055 3.4.3 3 SAL 136 3.3.9 7
CJu 077 3.4.3 L SAM 135 3.3.9 T
CJZ 037 3.4.3 L SBE 111 3.3.9 8
CNM 02k 3.4k 2 SBM 065 3.4k 1
CRM 026 3.4k 2 SEQ 132 3.3.9 T
CSB 100 3.3.9 1 SEX 137 3.3.9 8
CSE 115 3.3.9 8 SFN oLkl 3.4.3 1
CSM 025 3.h.k 1 SFR 030 3.4.3 6
CST 101 3.3.9 1 SIA 133 3.3.9 9
DAV 1k2 3.3.9 L SIF 131 3.3.9 7
DIV 121 3.3.9 3 SRM 143 3.3.9 6
EOM 066 3.4k 2 SRS 147 3.3.9 8
EQM 064 3.4.0 3 SSC 11k 3.3.9 6
*FBF Oho 3.h.2 1 *¥3SN 072 3.4.3 2
*IBT 022 3.4.1 1 *SSR 073 3.4.3 2
JDC 056 3.4.3 5 STC 126 3.3.9 6
JLH O5k4 3.4.3 1 STF 130 - 3.3.9 5
JNM 03k 3.4.3 L STN 127 3.3.9 5
JPM OT4 3.4.3 L STR 12k 3.3.9 L
JSB 076 3.4.3 5 STU 134 3.3.9 5
JuM 075 3.4.3 L SUB 110 3.3.9 2
JZM 035 3.4.3 L VID 123 3.3.9 3
XCH 125 3.3.9 5

NOTE: The page number indicates where the order is defined in the

text.

*
Order is interrupted unless interrupt is disabled.

Date: 3/5/63
Section: 3.5.3

Page: lofl
Change:

3.5.4 Table 4., Order Code Listed Numerically

Second
Octal
Digit 0 1 2 3 L 5 6 7
. 02 ATN *IBT *PID CNM] CSM CRM CAM
Binary
Foll?wed 03 SFR *ASN TNM : TZM o7 A.C. Orders
by First
Octal 4, SFN | *FBF | *BBF | NOM | NAM | ORM | ANM
Digit
05 JLH | CJS | JDC CJF
06 LIN ORB *POD EQM SBM EOM ADM

O7 | LFR | LDM | *¥SSN | *SSR | JEM | JUM | JSB | CJU

10| CSB | CST CAD CAT | NOT | AND { LOR | BLS | D.C. Orders

11 ¢ SUB | SBE ADD ADE | SSC | CSE | ASC | CAE

12 | MPY | DIV NDV VID | STR |} XCH | STC | STN

13 { STF | SIF SEQ STIA | STU | SAM | SAL | SEX

1k LAL DAV SRM | LRS SRS

NOTE: All unassigned order are illegal, namely the blanks in this
table and orders whose first digits are 00, Ol; 15, 16, or 17.

*
Order is interrupted unless interrupt is disabled.

Date: 3/5/63
Section: 3.5.4
Page: lofl
Change:

3.5.5 Table 5.

Additional Mnemonics

CAN
CSN
ADN
CNN
CRN
ANN >
ORN
EON
EQN
NAN
NON)

TEI
TRA
TZP
TN
TU
TZ
TP
TZN
TO
TNO
TOR
TNOR
TLP
TLN

CALL

CAJ

are equivalent to

Transfer

and enable interrupt

Transfer

Transfer

if

zero or plus

Transfer

if

negative

Transfer

if

unzero

Transfer

if

Z€r0

Transfer

if

plus

Transfer

if

zero or negative

Transfer

if

overflow

Transfer

if

no overflow

Transfer

if

overflow and reset

Transfer

if

no overflow and reset

Transfer

if

logical plus

Transfer

if

logical minus

is
is
is
is
is
is
is
is
is
is
is
is
is

is

(CAM)

CSM
ADM
CNM
CRM
ANM > with an odd C field.
ORM
EOM
EQM
NAM

\. NOM

JDC
JDC
JDC
JDC
JDC
JDC
JDC
JDC
JDC
JDC
JDC
JDC
JDC
JDC

O 0 3 O V1 & w ™M H+H O

i i
Ul F B O

is assembled as JSB3, and in addition it loads the subroutine
into memory (see Chapter 4) and it fills up the current word
so that the subroutine return can be made with a JLH 3,0,.

is assembled as either CJU, CJF or CJS.

Date: 7/9/64
Section: 3.5.5
Page: 1lof 1

Change: 1

CHAPTER 4. NICAP, THE ASSEMBLY PROGRAM

TABLE OF CONTENTS

Change Date
4,1 Introduction 3/5/63
L.2 Card Format 3/5/63
4k.2.1 Location Field 1 7/9/6k
4,2.2 Mnemonic Field 3/5/63
L,2.3 Address Fields 3/5/63
4.2.4 Comments Field 1 7/9/6k4
4.2.5 Identification Field 3/5/63
4.3 Address Construction 3/5/63
4,3.1 Machine Evaluation of Address Expressions 3/5/63
4.3.2 Illegal Use of Names in Address Fields 1 7/9/6k4
4,k Orders
k4,1 Type 1 Orders 3/5/63
4, 4,2 Type 2 Orders 3/5/63
L.,4.,3 Type 3 Orders 3/5/63
b, 4.k Type 4 Orders 3/5/63
4,45 Type 5 Orders 3/5/63
4.4.6 Type 6 Orders 3/5/63
L. k.7 Type 7 Orders 3/5/63
Type TA Orders
4L.4.8 Type 8 Orders 1 7/9/6k
4.4.9 Type 9 Orders 3/5/63
L.4,10 Type 10 Orders 3/5/63
l,4.,11 Type 11 Orders 3/5/63
L.4.12 Type 12 Order 1 7/9/6k4
L.4.13 Type 13 Orders 1 7/9/ 6%
L.4.14 TIllegal Orders 7/9/6k4
4.5 Pseudo Orders 3/5/63
4.5.1 Directives 2 7/9/6k
4.5,2 Data-Loading Pseudo Orders 1 7/9/64
4,6 Input/Output Pseudo Instructions 3/5/63
L,7 Macro Orders 3/5/63
4.8 Notes on Simple Programming in Assembler Language 1 7/9/64
4.9 Program Listing 2 7/9/6M4
4,10 Tables
4.10,1 Table 1. Order Code Index 1 7/9/6k4
4,10.2 Table 2. Pseudo Orders 2 7/9/64
4,10.3 Table 3. BCD Tape and Card Code 1 11/8/63
Date: 7/9/6k
Section: Chapter kL
Contents
Page: 1lof 1
Change: 1

L.1

L, NICAP, THE ASSEMBLY PROGRAM

Introduction

The assembly program is designed to allow the programmer writing
in machine language to program without thought to the many different address
constructions that are used internally and yet enable him to produce an
efficient program. It is not intended that this complex assembler should
replace compilers, but it is hoped that some jobs for which the programmer
turns to a compiler because of involved addressing can now be handled by

this aessembler, giving a more efficient object program.

For this reason a very general format is allowed in the address
field of most orders. This format is, in most cases, self-explanatory.
The address field can contain, for example, a direct indication of multiple
indexing, which will result in more than one order being assembled. In

this sense, the assembler performs a compilation on the address field.

Additionally, to give the flexibility necessary to those who wish
to write in a (1-1) transformation of the machine language, multiple field
address formats representing each of the three (B, C and N) address fields

are allowed.

To allow for future machine and system expansion, programs should
be written in a relocatable form. This can be achieved simply by never
using absolute addresses to refer to memory. If the first ORG pseudo-
operation is omitted, then the program will be automatically relocated to

start in the first free area of memory.

Date: 3/5/63
Section: k.1
Page: lofl
Change:

k.2 Card Format

’

1 6718 13|1415 32|33 72173 80
Location Mnemonic Address Comment Tdentification
Date: 3/5/63
Section: 4.2
Page: 1lof 1l
Change:

h.2.1

Location Field

Columns 1 to 6 are the location field and may contain a one to
six-character name. A name may consist only of alphanumeric characters,
and must contain at least one alphabetic character. A name is a symbolic
representation of one of four elements in the machine, and it is given a

title accordingly.

-The four subtypes of names are:

(1) Symbol the name of the location of a full word.

(2) Label the name of the location of a quarter word.

(3) Tag the name of a modifier register or index
register,

(4) BRegister the name of a fast register.

As with most assemblers, all names used must be defined at some
point . in the program. They are normally defined by appearing in the
location field of a card. This will define both the type of name and
its absolute value. An exception is made in the case of 24 names which

are predefined.

These are MO, Ml, ..., ML5, and FO, Fl, ..., F7 which are names
for the modifiers O to 15 and the fast registers O to 7 respectively.
These may not be additionally defined by the programmer.

Any name starting with SYS should be avoided by the programmer
since all system program routine names will start thus. The type of name
that is defined by a card is determined by the mnemonic field discussed
below. Following the location field column 7 is blank to provide a

separation between the name and the mnemonic fields.

An * in column 1 indicates a comment card. The remainder of the

card is ignored.

Date: 7/9/ 6%
Section: L4.2.1

Page: lofl
Change: 1

h,2.2

Mnemonic Field

Columns 8 to 13 contain a one to six-character mnemonic. This

mnemonic may be either:
(1) an order

(2) a pseudo order

(3) an I/O pseudo instruction

or
(4) a macro order

As a general rule, names appearing in the location fields of these types

are defined as:

(1) labels

(2) symbols

(3) symbols
ar

(4) 1labels
respectively.

Exceptions occur in the case of pseudo-orders (case (2)) and
are noted in their descriptions below. Details of the operation of orders
are given in Chapter 3, of the pseudo-orders and macro-orders in this
chapter and of the operation of the I/O pseudo~instructions in Chapter 5.

The address constructions of all mnemonics are listed later in this chapter.

Following the mnemonic field, Column 14 must contain a blank

to separate the mnemonic field from the address field.

Date: 3/5/63
.Section: L4.2.2
Page: lofl
Change:

4,2,3 Address Fields

Columns 15 on to the first blank character after column 15 or
on to column 72, whichever occurs first, contain the address information.
This field can contain an arbitrary number of characters up to 58 which
determine the address of the order. The various address constructions

are listed in section k4.3,

Date: 3/5/63
Section: 4.2.3
Page: lofl
Change:

L.,2.4 Comments Field

Anything that occurs after the first blank following column 15
but not before column 33 or after column 72 is comment, and is simply

reproduced on the output listing.

Comments may also be placed anywhere on a card with an ¥ in

column 1.

Date: 7/9/6%
Section: k4.2.4

Page: lofl
Change: 1

4.2,5 TIdentification Field

Columns 73 to 80 are also reproduced on the output listing,
but are normally used for card identification only. They do not affect

the program in any way.

Date: 3/5/63
Section: 4.2.5
Page: lof 1l

Change:

4,3 Address Construction

The types of address format allowed depend, in part, on the
mnemonic. The most general form of address that is allowed can be stated

as belng either:
(1) A register name F, e.g., F3 or some other name for it.
or

(2) Any algebraically meaningful expression E containing numbers
(decimally represented), symbols (representing numbers),
tags (representing modifiers), the algebraic operators
+, =, *, (multiply) and / (divide), and the parentheses
(and). Algebraically meaningful means that the
expression satisfies the conventional rules and that
multiplication is always written explicitly as *, e.g.,
{10+A) * (M5+7) may not be written as (10+A)(M5+7).

Various restrictions are applied to these rules for different
clagses of mnemonics; for example, most pseudo-orders do not allow the use
of tags since pseudo-orders generally are "obeyed" at assembly time and
tags, by definition, only have meaning at execution time.

Date: 3/5/63
‘Section: 4.3
Page: lofl
Change:

4.3.1 Machine Evaluation of Address Expressions

Rules that are observed by the machine in calculating these

addresses are as follows:

(1) If no tags are involved, the expression is

evaluated modulo 8192 at assembly time.

(2) If tags are involved, the rules are more complex.
Essentially an effort is made to write a piece of
program that will construct the address at execution
time with a minimum of orders. The result of this
is that if any modifier appears inside a parenthesis
or is involved in a multiplication or division, MO, the
accumulator, FO and F1 are changed before the order

is executed.

Two problems can arise in complex expressions due to the fact
.that addresses are computed in the accumulator when modifiers are
involved in multiplication, division, or parenthetical expressions. The
first is that the accumulator will lose least significant bits if the
result gets larger than EMh. Truncation modulo 8192 does not take place
until the last item has been evaluated in the accumulator. The second
problem concerns division which is performed in rounded floating-point
to UL places. The result is not truncated to an integer unmtil the last

evaluation in the accumulator has been completed. Thus the address

field of

7/2 + 9/2
will give an address of

3+k4=17,
whereas

M3/2 + Mi/2

will give an address of

Date: 3/5/63
‘Section: L4.3.1
Page: 1l of 2
Change :

if M3 contains 7 and Mt contains 9 at execute time.

Division is not generally a useful operation, so it is best to

avoid it unless either

(1) Tt does not involve tags.

(2) The answer is known to be an integer
or

(3) Only one division is used, and the result is not

involved in a subsequence multiplication.

Examples of Addressing

(1) CAD Mi+A will clear and add the number in location A plus the

contents of M4 at execution time.

(2) If a matrix Aij is stored by row in A to A + NM - 1 where M is the
length of a row and N the length of a column, and tags I and J are
the modifiers which contain i and j, then we can load modifier k4

with the address of Aij with

CAM U,A + I-1 + M¥(J-1)

where M is assumed to be defined as a symbol equal to the numerical

value of M,

Date: 3/5/63
Section: 4.3.1
Page : 2 of 2
Change :

L.3.2

Illegal Use of Names in Address Fields

The use of symbols for labels and labels for symbols is
permissible. It will cause an error to be listed, but the substitution
will be made in a natural way, that is, 15-bit labels will be truncated
to 13-bit symbols and 13-bit symbols will have two zero bits added to make
them labels.

If registers or tags are used illegally, an error will be listed,
and the name will now be interpreted as a symbol with value zero in order

to allow the assembler to search for further errors.
Undefined names will be treated similarly.

Labels may be defined absolutely or relative to the program.
Symbols may be so defined, and, additionally, may be defined relative to
the common area or the erasable area. The address of an order must not be
relocated more than once, or an error will be listed. There are, however,
cases where this is legitimate. For example: CAM 8, A-B+C where A, B
and C are program relocatable gives the address C which is relocatable plus
the difference between A and B which is absolute, To handle this, the
relocation bits are "exclusive ORed" so that double relocation (CAM 8, A-B)

causes no relocation, etc.

Addresses that are too garbled for the assembler to understand
cause the whole card to be rejected. Instead the gquarter word 17700 is
assembled., This is an illegal order which causes a hang-up if interrupt

is disabled, and an interrupt otherwise.

Date: 7/9/6k4
Section: L4,3.2
Page: lof 1
Change: 1

LN Orders

Any neme defined in the location field of an order is a label
with value equal to the quarter-word address of the first control group

formed by the order on that card.

The address construction for the order depends on the order type.

The cases are listed separately below.

There is one form, called the normal form which can be used for
all orders except for some extended mnemonics. The B, C and N fields are
listed separately, in that order, and separated by commas in the normal
address construction. The length of the order is determined by the B and
C digits and the order type. The B field can be numeric between O and 15,
and, in some cases, may be a tag or a register. The C field must be numeric
between O and 3. The N field is a general address field which may be subject
to restrictions for some order types, Other address constructions have
been included in order that the programmer will not have to do an unnecessary
amount of writiﬁg or remember exactly how each order forms its address. For

example, to load the number from location A into the accumulator, the order
CAD 8,3,A
can be written in the normal form. It can, however, also be written as

CAD A

Date: 3/5/63
Section: 4.4
Page: lofl
Change:

L.k,1 Type 1 Orders

ADD Add

AND AND

CAD Clear Add

CAT Clear Add Twice

CSB Clear Subtract

CST Clear Subtract Twice
DAV Difference Absclute Values
DIV Divide

LAL Load A Least

LOR Logical OR

MPY Multiply

NDV Negative Divide

NOT NOT

SUB Subtract

VID Inverse Divide

The straightforward way to use these instructions is to use a single
address field, If this consists of a register name F, say F5, then the
order uses the contents of that fast register as the operand. It is
assembled as one short order, e.g., CAD F5 has a B field of 5 and a C
field of 3, so is equivalent to CAD 5,3, in the normal form and puts the
contents of F5 in the accumulator, If the address field consists of an
expression E, the value of the address at execution time is the value of
the expression, using the value of the modifiers current at execution
time. This may result in more than one order being compiled. TFor example

the following pairs are equivalent:

CAD M5 is equivalent to CAD 5,0,

CAD M5 + 301 is equivalent to CAD 5,2,301

CAD M4 + M7 is equivalent to ATN 4,0,
CAD 7,0,

and

Date: 3/5/63
Section: 4.4.1
Page: 1l of 2
Change:

CAD M4-M7+301-M9 is equivalent to ATN 7,0
SFN 9,0

CAD k4,2,301

These instructions f£ill the accumulator with the number from the memory

address indicated.

Thus multiple indexing, which on the machine is performed by
preceding the instruction by a series of "to next"-type instructions,

can be indicated in the address field.

Another form of addressing for this class of orders is the

"normal" form
B, C, E

where B is a number, C is a number and E is any expression which should
be blank if the order is short, that is if

C=0,1 or if C=3and B#8, 9, or 10

B may also be a tag if C # 3, or a register if C = 3.

The third form consists of any expression E followed by the
decimal point (.). This is equivalent to B = 9 and C = 3, so that the

address is used as an integer operand.

Thus ADD E. is equivalent to ADD 9,3,E, e.g.,
ADD M5+7.

adds the integer 7 plus the contents of modifier 5 taken as an integer
into the accumulator. Note here that the top bit of the 13-bit number
in the modifier is used as a two's complement sign bit. Thus 8191 is
equivalent to -1, 8190 to -2, ..., 4096 is equivalent to -L096 but
L4095 is +4095.

Date: 3/5/63
Section: 4.4.1
- Page: 2 of 2

Change :

4.,4.2 Type 2 Orders

ASC ADD to Store ang Clear

SAL Store A Least

SAM Store A Most _

SEQ Store with Exponent Equal

SIF Store Integer Part in Floating Point
SRM Store Remainder

SSC Subtract, Store and Clear

STC Store and Clear

STF Store Fixed Point Rounded

- STN Store Negatively

STR Store Rounded and Normalized
STU Store Unnormalized but Rounded
XCH Exchange

These orders can have address field identical to type 1 orders
except that if the order would finally assemble with C= 3 and B =1
or B> 9 it is illegal. That is, Fl may not be used, the decimal point
may not be used and there additionally is a restriction on B if the normal

address structure is used with C = 3.

Date: 3/5/63
Section: L.4.2
Page: lofl

Change:

4,4,3 Type 3 Orders

ADE
ATN
*BBF
CAE
CSE
*FBF
*IBT
JLH
LIN
LRS
ORB
*PID
*POD
SBE
SFN
SRS

The address fieldsfor these orders are identical to those of
type 1 orders, except that the orders must not assemble with C = 3 and
B f 8. Therefore, the decimal point may not be used, and a fast register

may not appear in the address field. Note that for these orders, the

Add to Exponent

Add to Next

Busy Block Flipflop
Clear Add Exponent
Clear Subtract Exponent
Free Block Flipflop
Initiate Block Transfer
Jump to Left-hand Side
Load In Register

Long Right Shift

OR to B Digits of Next
Prepare Input Device
Prepare Output Device
Subtract from Exponent
Subtract from Next
Short Right Shift

address is generally the operand.

¥ These orders cause an interrupt and should not be used when operating
within the system.

Date:
.Section:

Page:

Change:

3/5/63
b.h.3
1l of 1

L.,k Type 4 Orders

ADM Add to Modifier

- ANM AND to Modifier

CAM Clear and Add to Modifier

CNM Clear and Negate to Modifier
CRM Circular Rotate Modifier Right
CSM Clear and Subtract from Modifier
EOM Exclusive OR to Modifier

EQM Equivalence to Modifier

NAM Negate and AND with Modifier
NOM Negate and OR with Modifier
ORM OR with Modifier

SBM Subtract from Modifier

‘In addition to the normal address construction B, C, E two

formats are allowed for this type of order,

For short orders with no address, the modifier alone can be

written. E.g.,
CAM B where B is numeric (< 16) or is a tag.

This clears modifier B unless modified by a previous "to next" instruction.

The second format is

CAM B,E

This order will be made short or long as E does or does not involve a

numeric quantity. -E.g.,

CAM 5,M7

assembles as

Date: 3/5/63
Section: L4.k.k4
Page: 1 of 2
Change:

ATN 7,0,

CAM 5,0,
while
CAM 5, MT7+3
assembles as
ATN 7,0,
CAM 5,2,3

The first address (B) is the modifer referred to by the

instruction, the second address field is the operand. Thus

ADM 3, M7 + 3

adds Modifier 7 and the integer 3 to modifier 3.

Under no circumstances may B be a register name.

Date: 3/5/63
- Section: L. 4.4

Page: .2 of 2
Change:

L.4,5 Type 5 Orders

These are the "to next" modification of the preceding group with
the C field equal to 1 or 3 instead of O or 2. They can be obtained from
the type 4 orders by replacing the final M with an N, e.g., ADM becomes

ADN,
They are:
ADN" Add to Next
ANN AND with Modifier and Add to Next
can” Add Address to Next
CNN Clear and Negate to Next
CRN Circulate Rotate‘and Add to Next
CoN" Subtract Address from Next
EON Exclusive OR with Modifier, and Add to Next
EQN Equivalence with Modifier, and. Add to Next
NAN Negate and AND with Modifier and Add to Next
NON Negate and OR with Modifier and Add to Next
ORN OR with Modifier and Add to Next
SBNT Subtract from Next

The address field of a type 5 order can have the same format
as type 4 order except that the normal address construction with

C = 0 or 2 may not be used,

* These operations perform no operation that cannot also be achieved by
ATN or SFN except that CAN or CSN can be used as a short no operation
provided that they are not preceded directly by an ORB order.

Date: 3/5/63
Section: L4.4.5
Page: lofl
Change:

In the following group, orders which call for "Count" mean
add one to the indicated modifier,, The Jump occurs if the modifier is
nonzero, except for CJZ.

L, 4,6 Type 6 Orders

CJF Count and Jump to First (if nonzero)
cJs Count and Jump to Second (if nonzero)

The normal form of addressing
cJs B,G,
may be used, The second comma may be omitted to get
cJs B,C

C must be numeric (O to 3), B may be numeric or it may be a tag.

These orders would not usually be used; rather the CAJ (type TA)
order would be used unless the user is interested in optimizing a very
short piece of program to make use of a fast loop in F8 and F9. (See
Chapter 3 for details of the orders.)

Date: 3/5/63
Section: k.L4,6
Page: lofl

Change:

4. 4,7 Type 7 Orders

CJU Count and Jump if Unzero

CJzZ Count and Jump if Zero

JbC Jump on Diversity of Conditions
JIM Jump if Negative Modifier

JPM Jump if Positive Modifier

JSB Jump to Subroutine

JUM Junmp if Unzero Modifier

JZM Jump if Zero Modifier

In the normal form
CJu B,C,E

B may only be a number or a tag. This address construction should normally
be avoided, since it is usually better to refer to locations of orders
by labels, which represent 15-bit rather than 13-bit addresses. (The

extra two bits are the quarter-word address O to 3.)

This construction would find use in branching to a table of

words, e.g.,
JPM5, 1, A+MT7

would jump on positive M5 to the second quarter word of A plus Modifier 7
(if A is a symbol). Library subroutines will also make use of this
construction so that only one label is used in the entire subroutine, e.g.,

in the COSINE routine, we might find constructions
CJU4,2, COS+T

to jump to the (hx7+l) = 20th quarter word after the start of the sub-

routine C0S. In fact this will work even if the subroutine were not to

Date: 3/5/63
Section: L4.4.7

Page: 1l of 3
Change:

start on a word boundary since the following rule is obeyed for this order

type and for types TA and 8:

If the first element in the N field expression is a label, the
quarter-word part of it (two bits) is added to the C field. The bottom
two bits of the answer are retained in the C field, and the carry is
added to the word address equivalent of the label, which is then truncated
to a symbol for use in eveluating the expression, e.g., if COS is location

100, quarter word 3,

CJUL,2, COS+T
is equivalent to

CJU4,1,108
However, beware:

CJuL,2,7+C0S
is equivalent to

cJuk, 2,107

If the latter of these constructions is used, a possible error

pointer will be given in the output listing.

If the C required is zero, the field and one of the commas may

be omitted. Thus:
JSB3, COS

will jump to the quarter-word in which the COS subroutine starts.

NOTE: TFor library programs which always return to the left-hand side
of a word, it is better to use the pseudo-operation CALL instead
of JSB3, (see below).

Date: 3/5/63
Section: L4.4.7
Page: 2 of 3

| Change:

Type 7A Order

CAJ Count and Jump if Nonzero

This order has the same address construction as type 7 orders;
it will assemble#‘as either CJU, CJF or CJS according to the range and
position of the jump. However, it will not necessarily make the most
efficient decision, so, in important, frequently-used short loops, it
is wiser to hand tailor it with CJF or CJS.

Date: .3/5/63
Section: 4.4.7
"Page: 3 of 3

. Change:

44,8 Type 8 Orders

TEI
TLN
TLP
N
TNO
- TNOR
TO
TOR
TP
TRA
TU
T7Z
TZN
TZP

Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer

Transfer

and Enable Interrupt

if
if
if
if
if
if
if
if

if

if

if
if

Logical Negative

Logical Positive

Negative but Not Zero

No Overflow

No Overflow and Reset Overflow
Overflow

Overflow and Reset Overflow

Positive but Not Zero

Unzero
Zero
Zero or Negative

Zero or Positive

These are similar to type 7 orders except that they do not

require a B field and therefore cannot use the normal address form. - The

address constructions are those of type 7 orders with the B field and

first comma omitted, e.g.,

TRA

and

TZ

START

to transfer unconditionally to the order

labelled START

2,C081+7

to transfer to the 30th quarter word after

the start of the COSINE subroutine if the
accumulator is zero

Date: 7/9/6M4
Section: 4.4.8
Page: lofl

Change: 1

4., 4.9 Type 9 Orders

LFR load Fast Register
SFR Store Fast Register

‘With normal address construction the B field must be either

numeric between 2 and 7 or a register name excluding FO.

The order is long if C = 2 or 3 and short otherwise. The C
field and the following comma may be omitted, in which case the order is
made long if the N field contains a numerical quantity, e.g.,

LFR5, MO+T
assembles as

ATN9, 0,

LFR5,2,7
whereas

LFR5,M13
assembles as

ATN13,0,

LFRS, 0,

NOTE: SFR may not use Fl.

Date: 3/5/63
Section: 4.4.9
Page: lofl

Change:

4L 4,10 Type 10 Orders

LDM Load Modifier

This order is always long so the C digits have no meaning in
normal address construction. Therefore the C field and the preceding
comme may be omitted, If the N address field is zero, it and the
preceding comma may be omitted.

The B address field must not be a register.

Date: 3/5/63
Section: L4.4.10
Page: lofl

Change:

h.%,11 Type 11 Orders

SIA Store Integer in Address
SEX Store Exponent

These orders are short always and C has no meaning. B must
not be a register. If the normal address format is used, the N field
should be blank. Everything except for the B field may be omitted.

Date: 3/5/63
_Section: k.k.11
Page: lofl

Change:

h.k,12

Type 12 Orders

BLS Binary Left Shift

or IFL Load Fast Register 1

In all cases this instruction loads F1 with an operand. In
addition it performs a logical single binary left shift unless C = 3 and
B<8and B % 1. If no address is used in BLS, it assembles as BLS 1,3,.
Otherwise it has the construction of type 3 orders. LF1l may only use a
number O, and 2-7 or a fast register name as an address. It always

assembles with an N, 3, case.

Date: 7/9/ 6L
Section: L.4,12
Page: lofl
Change : 1

4,4k,13 Type 13 Orders

*ASN
*38N
*¥35R
*HLT

Add Special Register to Next
Subtract Special Register from Next
Store in Special Register

Halt

These orders cause an interrupt, so should not be used when

using the system.,

Normall address construction can be used, but B and C must be

numeric and the N field must be blank. Alternatively, one expression

field only can be used., It must include no tags or fast registers. The

numerical value is used modulo 64 in the B and C bit positions.

Date: 7/9/6k
Section: 4.4.13
Page: lofl
Change: 1

L.4,14h TIllegal Orders

Mnemonics which cannot be understood, or those with addressing

sufficiently garbled are assembled as the quarter word 17700 which is an
illegal order.

Date: 7/9/6k4
Section: L4.4.1k
Page: 1l of 1

Change:

4.5 Pseudo Orders

Pseudo orders fall into two categories:

a) Directivesto the assembler which cause no words to
be assembled in the object program, but usuvally
either determine the memory location of subsequent

orders, make an entry in the name table, or do both.

b) Indications to the assembler that what follows is to

be used as data.

The address field of either group must be computable at assembly
time, that is, they may not contain modifiers.

Date: 3/5/63
Section: L4.5
Page: lofl

Change:

4.5.1 Directives

During the assembly phase, the assembler reads the cards, one
by one, assembles each card into one or more 13-bit groups, and assigns
them to consecutive control groups or 13-bit locations. To do this, the
agsembly has a "location counter"” which consists of a 13-bit word counter
W, and a 2-bit quarter-word counter Q. It is incremented by one quarter
for each control group assembled. -This can be modified by the following
groups of directives. It is initially set to the number of transfer vectors

to be generated by the program.

ORG (Origin) The address field of this pseudo order is put in the word
counter W and the quarter word counter Q is cleared to zero, Consequently
the next order assembled goes into the start of location W. Generally,
there is no need to use an ORG card; the program will automatically be

placed at the beginning of the available memory.

FIL (Fill) This may have a numeric address between O and 3, The zero
may be omitted. Its action is to assemble the order CAM 0,1 as many times
as necessary to make Q equal to the address in the FIL. CAM 0,1 acts as a
no operation except after an ORB instruction. The effect of FIL O for
example, is to advance the instruction counter to the next word boundary

unless it was already on a word boundary.

FLD (Fill Double) This may have a numeric address between O and 7. It is
similar to FIL except that it takes note of the oddness or evenness of the
word counter W. It assembles CAM O,1 instructions until L4 times (the bottom

bit of W) + Q isequal to the address in the FLD. Thus
FLD L

advances the instruction counter to the next odd word boundary, while
FLD

advances it to the next even word boundary.

Date: 7/9/6k4
Section: L4.5.1

Page: lofs
Change: 2

If any of the above pseudo orders have a name in the location field, it

is set as a symbol having the new value of the word counter W.

BSS (Block Started by Symbol) First an FIL O is performed, and then

the block of locations whose length is specified by the address field is
reserved, that is, the word counter W is increased by that number. The
name in the location field is made a symbol equal to the first location

of the block reserved.

BES (Block Ended by Symbol) Similar to BSS, except that the symbol
defined in the location field is equated to the word address immediately

following the last word reserved.

ASSIGN This performs a FIL. It would normally have nothing
in the location field, but if it did, the name would be made a symbol
equal to the current word address after the FIL. The address field of
the ASSIGN can only contain a sequence of names not defined elsewhere,
each followed by a comma, except for the last. They are entered in the
name table as symbols, each assigned a value of a consecutive word
location. The locations are reserved, that is, the word counter W is

incremented by a number equal to the number of symbols defined, e.g.,
ASSIGN X,Al,23K

defines three new symbols X, Al, and 23K and reserved one word for each.

GO This pseudo order signals the end of the program. The
address field may only contain a label which will be the address of the
first order to be obeyed. If no ORG was used, and the only pseudo orders
preceding the first order to be obeyed are EQU's, then this can have a

blank address field.

Date: 7/9/6k%
Section: 4.5.1

Page: 2 of %
Change: 2

The following six pseudo orders do not affect the instruction

counter.

EQUS (Equate to Symbol) The name in the location field is defined as

a symbol with the value given in the address field, e.g.,
AB EQU A+B

defines the symbol AB as having a value equal to the sum of the values of
the two symbols A and B.

EQUL (Equate to Label) This defines the location field name as a

label. The address of the pseudo order must be numeric or another label,

EQUM (Equéte to Modifier) The location field name is set as a tag with

the value given in the address field which must be numeric or another tag.

EQUF (Equate to Fast Register) The location field name is set as a
register with the value given in the address field which must be numeric

or another register.

MACRO is followed by a string of dummy names (for example MACRO X,Y,Z)
each followed by a comma except for the last. The contents of the location
field of this pseudo order do not define a name; they define a macro

operation.

This pseudo operation is followed by a string Qf machine operations
terminated by the pseudo operation END. Each time the macro name defined
by this MACRO appears, this string of instructions is copied in. The dummy
symbols, labels, tags or registers X, ¥, Z, ..., W are used in the
addresses of the instructions defining a macro. When the macro is used,

these addresses must be definéd in ah identical format.

Date: 7/9/6k
Section: L4.5.1
Page: 3 0of 5

Change : 2

Example:

CRASH MACRO

would not define symbols A, B and C, that is, they would not be entered in
the name table. When the macro instruction CRASH 10, ALPHA, 11 is used,

the machine instructions

CAD 10
MPY ALPHA
STR 11

are assembled.

Macro definitions may use pseudo orders except for the EQU and
ORG types.

END This pseudo order terminates a macro definition as described above.

COMMON This must have a numeric address N. It causes the next N words
of the COMMON area to be set aside for the symbol in the location field.

It is thus similar to the BSS instruction in the common area.

Example:
A COMMON 10
COMMON 13
COMMON 21

would allocate 44 words of COMMON. A would be O, B 10 and C 23 relative

to this area.

Date: 7/9/6k4
Section: L4.5.1
Page: 4 of 5

Change: 2

ERASE This controls the erasable area exactly as COMMON controls the

common area.

ENTRY This must be followed by one or more defined names, separated by
commas. These are the names by which the program segment being assembled

may be CALLed by other programs.

Date: 7/9/6k4
Section: L4.5,1
Page: 5 of 5

Change: 2

4.5.2 Data-Loading Pseudo Orders

DECQ

OCTqQ

CHR (Character)

can be followed by a sequence of addresses separated by

commas. Each assembles into one control group, e.g.,

DECQ 7, A+19,3

forms the three quarter words

7, A+19 and 3.

The addresses can be any expressions involving numbers

and symbols.,

is identical to DECQ except that numbers are converted

base 8, e.g.,

0CTQ 15071, 32

assembles the two quarter words

1 101 000 111 00l 0 000 000 011 010

1 5 0 7 1 3 2

0CTQ and DECQ cause outside names to be defined as labels.

This pseudo order is followed by one decimally represented
address N followed by a comma, then the following N
characters are packed, eight per word, into the next N/8
words. The last word is filled up with blank characters
once it is started. This is the only card for which the
address field does not terminate at the first blank after

column 15.

.Before the words are assembled, a FIL is performed, and

then any name in the location field is equated to a symbol

Date: 7/9/ 6k
Section: L4.5.2
Page: 1l of 3

Change : 1

with the value of the current word counter. The character
code used 1s the standard IBM BCD tape code given in

Table 3 at the end of this chapter. Two six-bit characters
are packed in adjacent six-bit groups in the least signifi-
cant 12 bits of each control group. Thus one word has

the following format:

DEC first performs a FIL, then equates the name as a symbol
equal to the current word counter., Decimal numbers may
appear in the address field separated from one another
by commas. Each is converted into a full word floating-
point number. The number may be punched with or without
a decimal point (no point is identical to putting the
point last) and with or without a decimal exponent. An
exponent must be preceded either by E, a sign, or E and a
sign. The number should lie between 10i38, but can con-
tain an arbitrary number of digits, although only 13 digits

(approximately) are retained.

- Example of numbers:

Punched as Value
72 £ 7% x 10°
- 27.1 271 x 10°
+30.E-02 +.301 X 107
7.5E06 +.75 X 10/
- 3.32-05 -.332 X 1074
-3.32E-5 -.332 % 107

The above pseudo orders should not cause more than seven

full words or 31 quarter words to be assembled.

Date: 7/9/ 64
Section: Uu/5/2
Page: 2 of 3

Change: 1

CALL

is identical to writing

JSB 3,
FIL

where the address field of the CALL follows the comma
in the J3B instruction. It may only contain a name.
If this name is not defined in the program, a transfer
vector TRA NAME will be assembled at the front of the

program.

Date: 7/9/6%
Section: L4.5.2
Page: 3 of 3
Change: 1

L.6 Input/Qutput Pseudo Instructions

These are a means of writing subroutine control words, usually
for Input/Output subroutines., Each mnemonic first performs a FIL, then
equates the location field name to the current word counter as a symbol.
Address fields are assembled into the appropriate control groups of one
full word and any necessary control bits are set in that word. The
instructions allowed are described in Chapter 5. Note that the address

fields must be computable at assembly time,

Date: 3/5/63
Section: 4,6
Page: lofl
Change:

4,7 Macro Orders

The address field of a macro order may contain a series of
expressions or register names, separated by commas. These are assigned

to the dummy symbols in the macro definition as shown in the example in
section 4,5.1,

Restrictions on the address fields of macro orders are precisely
those due to their use within the macro definition.

Date: 3/5/63
Section: 4,7
‘Page: lofl

Change:

4.8

Notes on Simple Programming in Assembler Language

To write simple programs, it is not necessary to meke use of

many of the different address formats allowed, or to learn many rules.

With arithmetic orders, the address need only be either a fast

register, e.g.,
ADD F3

or a memory location defined by an expression; e.g.,
CAD 9+M5.

Names used in these address fields are usually symbols defined in BSS, BES
or ASSIGN pseudo operations.

Modifier register orders naturally require an indication of the

modifier also, so this comes first followed by a comma, e.g.,
ADM 5, 3+MT7

"add to modifier 5, three plus modifier T7."

Jump or transfer orders must give the address of another order.

This address is usually a label, e.g.,
CJU M5, AA

"Count and jump if unzero modifier 5 to the order labeled AA."

‘Tt is necessary to go to other formats only to gain speed in

important places.

. Example 1., Polynomial Evaluation.

Suppose we wish to evaluate a polynomial p(x) = Ay + Ag x4

seo + onN where the coefficients AO’ Al,,.., AN are in locations A, A+l,

‘upto A+ N - 1 and x is in location X.

Date: 7/9/64
Section: 4.8
Page: 1 of 3
Change: 1

The program:

CSM L, N
CAD A
L1 MPY X
ADD A+N+1+Mh

CAJ 4,11

will do it. However, this will only be assembled as a short loop if Ll
falls in the right place. This can be avoided by making sure that it does
fall in the right place with a FIL.

Secondly, X is fetched from the memory on each pass. This can

be avoided by putting it in a fast register.

Thirdly, the ADD instruction is long; it can be made short by
using the C = 1 option. (In this case it makes no difference because the

loop is already less than eight quarter words.)

After rewriting, the program is:

CSM L, N
CAM 5,A+1
LFR 2,X
CAD A
FLD

Ll MPY F2
ADD 5,1,

CJF L

If the FLD causes no CAM 0,1 instructions to be assembled, the

program is, of course, that much faster.

Date: 7/ /64
Section: 4.8
Page: 2 of 3
Change: 1

Example 2.

To save time setting several modifiers, it is better to use

LFR instructions.

Add the three N vectors A, B and C, each stored in consecutive

locations in memory. Store the result starting at location D.

LFR 5,81 Load four modifiers
CsSM 8,N
FIL
L1 CAD 4,1,
ADD 5,1,
ADD 6,1,
STR 7,1,
CAJ 8,L1

FIL
Sl DECQ A,B,C,D Constants for loop

Execution of a program should be terminated by a CALL SYSTEM or a
CALL SYSERR in order not to obtain or to obtain a dump respectively.,

Date: 7/9/6%
Section: 4.8
Page: 3 0of 3
Change: 1

4,9 Program Listing

After the assembly has been performed, a listing will be prepared
giving the original program end its binary form side by side. The format,

across a line is:

Card Number in Decimal
Location in Decimal
Location in Octal

Octal Code first quarter word
second quarter word
third quarter word

fourth quarter word

Source Language

If any errors or suspected errors are found, an * is printed

after the card number.

Following the program is a list of all errors referenced to the

card number on which they occurred, and a name table list,

Date : 7/9/6M4
Section: k4.9
Page: lofl
Change! 2

4,10 Tables

4,10.1 Table 1. Order Code Index

Order Type Section No. Page No. Order Type Section No, Page No.
ADD 1 hoh,1 1 CST 1 L.h.1 1
ADE 3 L.4.3 1 DAV 1 bh.1 1
ADM L Lh.k 1 DIV 1 bhok,1 1
ADN 5 L.4.5 1 EOM b LoL.h 1
AND 1 Loyl 1 EON 5 L.L.5 1
ANM L LoLh.4 1 EQM L L.k 1
ANN 5 L.Lk.5 1 EQN 5 L.4.5 1
AsC 2 bk, 1 *FBF 3 L.4.3 1

*ASN 13 h.4,13 1 *IBT 3 b.4.3 1
ATN 3 b, k4.3 1 JDC 7 L.Lh.7 1

*BRF 3 4.4.3 1 JLH 3 4.4.3 1
BLS 12 L.h. 12 1 JNM 7 h.h.7 1
CAD 1 L.h.1 1 JPM 7 hoh.7 1
CAE 3 4.4.3 JSB 7 hoh.7 1
CAJ TA bok.7 3 JUM 7 bhok,7 1
CAM L b4 1 JZM 7 L.b.7 1
CAN 5 4.k4,5 1 LAL 1 Lokl 1
CAT 1 ok, 1 LDM 10 L.,Lk.,10 1
CJF 6 L.h.6 1 LFI 12 Lh.Lk.12 1
cJs 6 L.4,6 1 LFR 9 L,h,9 1
CJU 7 b7 1 LIN 3 L.L.3 1
CJz 7 L.Lh.7 1 LOR 1 L.Lh.1 1
CNM L b.h.L 1 LRS 3 h.k4,3 1
CNN 5 L.k.5 1 MPY 1 bk, 1 1
CRM T 1 NAM k4 TN 1
CRN 5 hoh,5 1 NAN 5 4.L,5 1
CSB 1 Lh.h.1 1 NDV 1 bk, 1
CSE 3 L. 4.3 1 NOM 4 Loh. 4 1
CsM L bhoh. L 1 NON 5 4, h.5 1
CSN 5 L. 4.5 1 NOT 1 L.h,1 1

Date: 7/9/6k4
Section: L4.10.1

Page: 1 of 2
Change: 1

4,10.1 Table 1. Order Code Index (Continued)

Order Type Section No. Page No, Order Type Section No, Page No.
ORB 3 L.4,3 1 STF 2 L.h.2 1
ORM L L.L ok 1 STN 2 L.4,2 1
ORN 5 b.h,5 1 STR 2 bL.k.2 1

*¥PID 3 b.k.3 1 STU 2 L.bh.2 1

*POD 3 b.L.3 1 SUB 2 L.k, 1
SAL 2 L.h.2 1 TEI 8 b,4.8 1
SAM 2 b.k.2 1 TLN 8 4.4.8 1
SEE 3 b.4.3 1 TLP 8 4.4.8 1
SBM L LoLh.h 1 TN 8 4L.4.8 1
SBN 5 L.L.5 1 TNO 8 4L.4.8 1
SEQ 2 L.Lh.2 1 TNOR 8 L.4.8 1
SEX 11 bok,11 1 TO 8 L.L.8 1
SFN 3 L.4.3 1 TOR 8 L.4.8 1
SFR 9 L.k.9 1 TP 8 4.4.8 1
SIA 11 hoh,11 1 TRA 8 L.4.8 1
SIF 2 L.Lh.2 1 TU 8 L,4.8 1
SRM 2 L.h,2 1 TZ 8 L.4.8 1
SRS 3 L3 1 TZN 8 4.,4.8 1
SsC 2 Loh.2 1 TZP 8 4.4, 8 1

*3SN 13 b.Lh.13 1 VID 1 L.oh,1 1

*3SR 13 L.4.13 1 XCH 2 L.h.2 1
STC 2 k.2 1

Date: 7/9/6#
Section: 4.10.1
Page: 2 of 2
Change: 1

4,10.2 Table 2.

Pseudo Orders

Pseudo Order

Page No.

ASSIGN
BES
BSS
CALL
CHR
COMMON
DEC
DECQ
END
ENTRY
EQUF
EQUL
EQUM
EQUS
ERASE
FIL
FLD
GO
MACRO
OCTQ
ORG

Section No,

L,5.1
L.5.1
4.5.1
L.5,2
L.5.2
L4,5.1
L.5.2
L.5.2
4.5.1
L.5.1
4,5.1
L.5.1
4,5,1
h.5.1
4.5.1
h.5.1
h,5.1
4.5.1
k5.1
L.5.2
L.5.1

H H w MM P HF UV wwwwwu DWW D DD,

Date:
Section:
Page:

| Change:

7/9/6k
4.,10,2
1l of 1
2

BCD Tape and Card Code

4,10.3 Table 3.

TABLE OF PERMISSIBLE CHARACTERS

+—
(ro) 1@ |G || &3S (28|23 |8 |2 |T|R|R|C
ade], uo apo) aod o
ovlorfowlo o R o RPN oldo| D | Y | d [HRo AlE Do R ?
3poD PIED PoYOUNd o |77+ =+ 4 s e
JIS3OBABYD| = | X | > | N nj~1—~1J+0H 1 |~ + 1 * |~ 1% -
(Te229) | o |l ol afo|lglnloltolAlatlo s n
ade, wo spop gl || | F |l |la |4 F |l | Ao
S +4 -4 -4 31 4+ - L4 ——
VI {AVINE (VIR (O B O I o T o I = A U T = I O
9p0OD PIB) PIYIUN] |H i~} 0 | N [+ i+ o |]+ 0| |+ o]+ oo au]o mjo +jo i
pBpeiep|loimd | Hik | MMl |slolm|Flm|lo s ||
jﬁv — —— T ———]
(1) o |l lalalmltglvwlollolalalalols o
r
8po) pae) payound m_ OlHlAa ol |~]oO]| O le2m3mhm5m6
e}
4
.Hmpoanmmo,m oldlajmn]|laln]joi~jfo|loalsimlolAa|l@E| &K
O

T Character is not normally used. When it is used it will not be

considered a sign.

11/8/63
4.10.3

Date:

Section:
Page:

lofl

1

Change :

CHAPTER 5. SYSTEM INPUT/OUTPUT AND AUXILIARY STORAGE

TABLE OF CONTENTS

5.3 Input-OQutput with Conversion

5.3.1 Format Control
5.3.1.1 Field Descriptions
1.2 Multiple Field Descriptions
+3 Hollerith Fields
.4 Control Characters
.5 Relation of Format to the I/O List
ssembling the I/O List in NICAP

5.3.
5.3.1
5.3.1
5.3.1
5.3.2 Ass

CHAPTER 5. SYSTEM INPUT/OUTPUT AND AUXILIARY STORAGE

TABLE OF CONTENTS

5.2 Direct Communication with Back-Up Storage and I/O Tapes

5.3

5.2.1 SYSIp
5.2.2 SYSAUX

Input/Output with Conversion

5.3.1 Format Control
5.3.1.1 Field Descriptions
5.3.1.2 Multiple Field Descriptions
5.3.1.3 Hollerith Fields
5.3.1.4 Control Characters
5.3.1.5 Relation of Format to the I/O List
5,.3.2 Assembling the I/O List in NICAP

Change Date
7/10/64
7/10/6k4
7/10/6k

11/08/63
11/08/63
1 7/10/6%
11/08/63
11/08/63
7/10/6k
11/08/63
1 7/10/6k
Date: 7/10/64
Section: Chapter 5
Contents
Page: 1l of 1
Change: 1

5.2

Direct Communication with Back-Up Storage and I/O Tapes

Programs in the monitor area are available for direct
commnication without any form of conversion. The auxiliary storage units
are addressed logically by the user program; the monitor program does a

table look-up to get absolute addresses.

Sections 5.2.1 and 5.2.2 describe programs that are part of the
permanent monitor. Special uses that are not adapted to these programs
may require additional optional moni£or'programs to be incorporated for

that use only.

Programs in the monitor area will run with user interrupt
enabled or disabled. If it is enabled, a CALL on the programs is sequenced
via interrupt since it is in protected memory,; otherwise the transfer is

direct.

Date: 7/10/6k
Section: 5.2
Page: lofl

Change:

5.2.1 SYSI@

SYSI¢ is a program for direct communication with the input/output
tapes. It includes an input and output buffer so that when control has
been returned to the programmer the transfer has been completed as far as

he is concerned. The sequence of operations is:

Input: Wait until the input buffer is loaded, then
copy information to programmer's ares of core.
Start a refill of the input buffer and return

to the user.

Output: Wait until the output buffer 1is empty, then
copy user's data to buffer. Begin transfer of
buffer to output tape and return control to

user.

.This simple picture is complicated by the fact that records are "blocked,"

but this does not affect the user.

Use of SYSIﬁ

The call sequence is

CALL SYSIP
DECQ fP, A, EfF, W

¢P determines the operation. Codes are
Read a binary card (20 words)

Read a BCD card (10 words)
Read a BCD card with a $ in column 1

w N +~ O

Read a BCD card without a $ in column 1

(The last two options are intended for the system programs!)

Date: 7/10/64
Section: 5.2.1
Page: lof 3
Change :

512 Punch a binary card (20 words)
513 Punch a BCD card (10 words)
514 Print a line (17 words)

The data input or output starts at location A. On input, sign bits of the
quarter words are cleared. On output they are ignored. In the case of
print, the first 3/8 of the first word is ignored, the next 1/8 is the

carriage control. Thus the format of these 17 words for output is:

first word 2-1T7th words

— e — - —— — — o—

EIElxlel [T 1 C-Z---C_C-:]

ignored [_M characters

carriage control

During read operations an end of file may occur. This will cause a branch
to the EﬂF address, if it is nonzero. If the wrong card type is read (e.g.,
Binary is requested and it is a BCD card, etc.) then a branch to location W
occurs if it is nonzero. No read takes place in either of these cases. If
the branch address is zero, execution is terminated. Also, SYSI¢ will not

go beyond an EﬁF mark on the input tape.

Format of Input and Output Tapes

The input and output tapes are written in binary with odd parity
throughout. Each record is 488 characters or 61 ILLIAC words. (It can be
168 or 328 if desired.) BEach record can, but need not, contain three card

or line images in the format.

< 1 Record >
L | [] L I A |]
Control Word 20 words 20 words 20 words
lst image 2nd image 3rd image

Date: 7/10/64
Section: 5.2,1
Page: 2 of 3
Change:

The control word consists of the eight characters
blank, number of images on this record, blank, Tl, blank, T2, blank, T3
where Tl, T2 and T3 are the types of the three images

blank = BCD card

1

]

line for printer

2

]

Binary card

Images are left-justified in the 20 word areas, that is a BCD card occupies
the first ten words, the next ten are not used. A line image occupies

the first 17 words.

Date: 7/10/6k
Section: 5.2.1
Page: 3 0of 3
Change:

5.2.2

SYSAUX

The system auxiliary storage program SYSAUX enables one block

to be transferred to a tape, the drum or the disk. The call sequence 1is

CALL SYSAUX
DECQ P, A, EfF, U

where ¢P is the operation type

and

A is the starting core address
ESF is the EfF branch address
U is the logical unit.
Currently assigned units are: .

O-N refer to the drum sectors O-N, The monitor
may relocate this upwards to avoid locked-out

areas, so N should not be too large.
1024-1033 Tapes 0-9.

Tapes 0-5 are system tapes and are not normally available
directly. Logical units 6-9 should be used

where possible.

Unlike SYSIﬁ, there is no buffering in SYSAUX. This has two consequences.

1.

On the drum, all transfers are of 256 words. The bottom 8 bits of the
aadress A are therefore ignored and a complete block starting from a
multiple of 256 is transferred. On tapes, transfer terminates either
at an end-of-record gap (reading only) or at the end of the core
block of 256 words being used. . Therefore care must be exercised in

allocating buffer areas for auxiliary transfers.

The transfer is overlapped, so that when control is returned to the
user, all previous transfers on that unit have been completed success-
fully without errors, end of files or end of tape signals, and the
present transfer has been initiated, but not necessarily completed.

If it is necessary to use the information or core area before another

Date: 7/10/6k
Section: 5.2.2
Page: 1lof 2
Change:

transfer is made from or to the same unit, the control operation WAIT
described below should be used. (Efficient programs will avoid the

use of this operation!)

If an end of file (not possible on the drum) is encountered,
the new transfer is not initiated; instead, a transfer is made to the E¢F
address 1f it is nonzero; otherwise execution is terminated. Errors are
checked for and the transfer is repeated a number of times until

successful or execution is terminated.

Operations for all units

0 Read a block
512 Write a block
256 WAIT until the last block has been transferred

Operations with meaning for tape units

1064 Backspace Record (returns to beginning of last record)
1072 Backspace File (returns to beginning of this file).
1088 Check Record (moves tape to next recorad)

1096 Check File (moves tape to beginning of next file)

1056 Rewind

1104 Write ESF Mark

Date: 7/10/6k4
Section: 5.2.2
Page: 2 of 2
Change:

5.3 Input Output with Conversion

Input -data, normally from cards, and output data, destined
for the printer or punch are normally in the IBM 6-bit BCD code shown
on page 4.10.3. In order to convert to or from a string of such
characters, from or to a suitable internal form in memory, two. types

of information must be provided:

a) Where the information comes from or goes to in the core

memory (the "input-output list").

b) A description of the format of the string of characters to

be input or output.

The programming language being used will determine how the
input-output list is specified. The format description is essentially
independent of the language, as it consists of a string of characters
describing the basic fields of the input or output information. This
format string is present in the memory at execution time. (It is put
there by the appropriate statement in the language used, for example,
FORMAT (...) in Fortran and CHR N, ...¥ in NICAP.) It consists of a
sequence of fileld descriptions which must be paired with consecutive
items in the I/0 list. The I/O list is a list of addresses of data
given in the program. The way in which the I/O list is programmed
depends on the user language, and is therefore described.in the
appropriate section. Section 5.3.1 will describe how the format

string is made up.

Date: 11/8/63
Section: 5.3
Page: 1lof1l
Change:

5.3.1 Format Control

Input and output is by means of 80 column cards or a 132
column printer. The user determines how many of these columns are
to be used for the first variable to be input or output, how many
for the second variable, and so on, always starting at the left
end; The size of these groups of columns, called fields, is
determined by a decimal integer in the format string. For example,

Al7,119,85
describes an A field of 17 columns followed by an I field of 19
columng followed by an S field of 5 columns. The meaning of the
field is determined by the field description letter appearing
before the number. The allowable letters are described in the
following sections.

#

In the cagse of output to the printer, the printer removes the
first (left most) character transmitted to it and uses it for
carriage control. Hence a maximum of 133 characters may be
transmitted to the printer per line.

Date: 11/8/63
Section: 5.3.1
Page: 1lof 1
Change:

5.3.1.1

Field Descriptions

In the descriptions below, w and n are unsigned decimal

integers, and d is an unsigned decimal digit. Inputs are described
in terms of reading cards, but also apply to reading card images on
magnetic tape. Outputs are described in terms of printing, but also

apply to punching cards or writing magnetic tape.

Fw.d or Tw.d The I or F fields, which are identical, transmit a

decimal number with the decimal point shown, for example
15, 101.66, -.0034, and 34352. The number is transmitted
to or from a full word location, hence the corresponding
entry in the Input-Output List must refer to a full word.
The w indicates the total width of the field in columns.
The 4 indicates the number of places to the right of the

decimal point.

On input, d 1s ignored if there is a decimal point
in the number, blanks are ignored, and an absent sign is
assumed to be plus. A decimal point may be omitted, in
which case it is assumed to be d places from the right
end of the number. If w is larger than needed, the number

may be punched anywhere in the field.

On output, the number is printed with d places after
the decimal point, right Justified in the w column field.
Leading zeros are suppressed up to the last digit before
the decimal point. Plus signs are suppressed and minus
signs are printed. (To print plus signs also, write
F+w.d.) If the number to be printed is floating zero,

then O with the appropriate decimal point and trailing

#

Floating zero is represented in the core memory as

o - y~ok,

Date: 7/10/64
Section: 5.3.1.1
Page: 1 of 6
Change: 1

zeros will be printed. If the output number overflows

the field on the left end, then the number will be printed
in E form (even though F was specified) with the least
significant digits of the fraction part truncated if

necessary to fit into the required number of columns.

Fw or Iw This indicates that a decimal integer is to be input
or output. The w indicates the total width of the field
in columns. On input, blanks are ignored. On output, the
number is printed right justified in the w column field
with leading zeros suppressed and with plus signs sup-
pressed, and without a decimal point. (To print the plus
signs, write F+w or I+w.) If the integer to be printed

is too large, it is printed in E form as described below.

Bw.d The Ew.d field describes a number which resembles the
form known as "scientific notation," for example,
23443 x 10°. Since card readers and printers do not
handle superscripts, the exponent is indicated by pre-
ceding it with an E. The general form of a number in an
E field is

I.XXX-..XEtee

where the x's represent decimal digits, the E implies

1"

"exponent follows," and the ee represents a two digit
exponent of 10. The w indicates the total width of the
field in columns. The d indicates the number of places
after the decimal point. (There are none before the point
unless the field description is modified by a P control
character, described below.) Note that up to six columns
of an E field are used for the characters

+ . Ezee
so that w must be greater than d by 6 or more. The number
in an E field is transmitted to or from a full-word loca-

tion, so the corresponding entry in the I/O list must refer

Date: 7/10 /64
Section: 5.3.1.1
Page: 2 of 6

Change: 1

to a full word. The range of exponents is -38 to +38 unless

" modified by the P control character (see below).

On input, the number may have the general form indicated
above, or an abbreviated form as indicated in the following

section. On input, d is ignored.

On output, the number will have the general formvshown
above, except that the sign of the number is printed only if
minus. (To print plus signs also, write E+w.d.) The sign
of the exponent is always printed and the exponent is always
printed, even if zero. If the field size, w, is larger than
required for the information, the number will be printed right
Justified in the field, with blanks supplied on the left.
Floating zero will be printed as

s Ommmmm OE-99

For example, using the field description E10.4, the decimal
number +10.39 would be printed as '
' b.1039E+02
~where b stands for blank. Using E9.3, the same number would
~be printed as k
b.1OLE+02
‘ Using E9.3, the number -10.39 would be printed as

‘ -.10LE+02

Variations allowed on input

On-input, E, F, and I fields will accept any of the

 following forms

109 unsigned integer
+11 signed integer
7.1 unsigned number with decimal poinf

-8.132 signed number with decimal point

Date: 7/10/6k
Section: 5.3.1.1
Page: 3 of 6

Change: 1

Sw

An or Cn

or any of the above followed by one of the following forms,

which indicate the decimal exponent:

E-07 general form

El2 plus sign absent

E+3 leading zero in exponent absent
+3 E and leading zero absent

=21 E absent

Note that E is necessary only if the sign of the exponent
is not punched. Unless modified by the P control character
(see below), E, F, and I fields are identical for input.

On input, blanks are ignored in the field. If the entire
field is blank, the value will be set equal to floating
point zero. Any number of diglts may be used 1In the field,

but only 13 decimal digits of accuracy are retained.

Space. On output, Sw causes w spaces to be printed.
On input, Sw causes w columns to be ignored. '

is identical to Sl1.

These field descriptions are used to transmit Hollerith
characters in the 6-bit BCD code given on page 4.10.3. The
field description An or Cn causes n Hollerith characters,
packéd 8 per word in the least significant 12 bits of each
quarter word, to be input or output. For example, if the
field description AlO0 were used to read a card punched with

ABCDEFGHIJ
then the two computer words involved would contain

1 6 6 1 6 6 1 6 6 1 6 6
' E

I T T T T T T T
it A1 B | C I D | | F | G I H
5 i ! | ' i 1 o 1
T i St | v T)] T \
|14 I I L
| [l] 4 4 i I A i

#

The first bit of each quarter word is unchanged.” If n is

#ﬁefore the program was loaded, the memory was cleared to
zero in every bit position. Unless the program has changed

it, these bits are still zero,

Date: 7/10/64
Section: 5.3.1.1
Page: L of 6

Change: 1

Dn

not a multiple of 8, the remaining space in the last word

is not changed.

This field description transmits quarter words as
decimal integers. When a D field is used, the corresponding

item in the Inpht—Output List should refer to a quarter word.

On input, the quarter word specified in the I/O list is
loaded with the number truncated to an integer modulo 8192.
Numbers greater than 4095 may be thought of either as positive
or twos complement negative number. Thus
4097 is -4096+1, 4098 is -L0O96+2,...

8191 is -4096 + L4095 = -1.
On input, phe‘number may have any of the forms allowed for
E fields.

On output, a decimal integer in the range -4096 to
+4095 is formed, so at least five columns are needed. If

n is greater than five, blanks are inserted on the left.

This field description transmits quarter words as
unsigned octal integers, in the range 00000 to 17777. When
a Q field is used, the corresponding item in the Input-Output

List should refer to a quarter word.

On input, blanks are ignored, other characters are
assembled as octal, but no check is made that these characters

are octal digits.

On output, five octal characters are printed, right

Justified in the n column field. No zero suppression occurs.

If n is less than five, only the rightmost digits are printed.
If n is greater than five, blanks are inserted on the left of

the five octal characters.

An I, field is similar to a D field in that it transmits

a 13-bit integer as a decimal integer.

Date: 7/10/6k4
Section: 5.3.1.1
Page: 5 of 6

Change: 1

On output, the address given in the I/O list is printead,
not the contents of the addressed word. A decimal integer in
the range -4095 to 4096 is printed as for the D field so at

least five columns are needed.

On input, the number read is copied into the read program
image of the Input/Output List, The Programmer's I/O list is
not changed; but if this address is used for the next item, the

changed value is used.

An M field is the same as an L field, except that the
13-bit address is input or output as an octal integer in the
range 00000 to 17777. L and M fields are provided for the
benefit of dump programs. It is doubtful if they will have much

value in general programming.

Double Precision

Floating-point conversion (E, F and I fields) is performed
almost correct to double precision (rounding will depend on the
exponent). Double precision words may be input and output by
doubling the field description letter. Thus EE30.24k will read
or print a 24-digit number in a 30-place field. On input, the
most significant part will go into the cell named in the I/O
list, the least significant part into the next higher addressed
cell. It counts as only one item in the list count but increases
the address by 2. On output, the contents of the two cells are

added, and then converted double precision.

Date 7/10/6k
Section: 5.3.1.1
Page: 6 of 6

Change:

5.3.1.2 Multiple Field Descriptions

Any field description letter may be preceded by a decimal
integer which indicates the number of times that field is to be
repeated. Thus 4I7,9X,3Q6 indicates four I fields of seven
columns each, then 9 spaces, then three @ fields of six columns each:

I I I I blank] Q. Q
ettt F———+—
T 1T 7 7T 9 6 6. 6

Date: 11/8/63
Section: 5.3.1.2
Page: lofl

Change:

5.3.1.3 Hollerith Fields

One field description letter must always be preceded by a
mmber, the Hollerith field. The general form of this field description

is onlx2x3...xn where the xi represent characters.

On output the n characters in the format string which immedi-
ately follow the H are to be printed exactly as shown. Note that in -
this case all the information to be printed comes from the format
string itself, not partly from the format string and partly from the
Input-Output List as is the case for other format specifications.

For example, the format string 10HLAVERAGEDb=,F7.1 = will
cause the 10 characters, including blanks, following the H to be
printed, followed by the number corresponding to the F7.1 description
(as indicated by the I/0 1list). If that number happens to be +101.3,
the printed output will be

bAVERAGEb=bb101. 3

On input, n charaéters are read from the input medium and
stored (in 6-bit BCD form) as the next n characters in the format
string itself as it is stored in the memory.

Date: 11/8/63
Section: 5.3.1.3
Page: 1 of 1
Change:

5.3.1.4 Control Characters

Except for H fields, each field description must be followed

by one of the characters

» /) *

Their meanings are
R is solely a separator.

./ means output this line and ,go on to the next
or read next card.

* means "end of format statement." It must be

given explicitly in NICAP., In FORTRAN ‘it is

supplied automatically.,
Parentheses "(" and ")" can be placed around a valid sequence of field
descriptions, and a decimal integer can appear immediately before the "(."
This means that the descriptions enclosed in the parentheses are to be
repeated the stated number of times. If no number appears before the
"(," it is assumed to be 1, Thus 3(F5,2HX=2E15.6/) will print a five-
digit fixed-point number, X=, and two 1l5-column floating-point numbers

followed by a 'carriage return" and repeat this three times.

Parentheses may be nested to a depth of three levels.

P Power or scale factor. The general form is nP where n is a
signed or unsigned decimal integer. The integer is a scale
factor that has the following effect on the next E, TorF
field.-

a) E Fields No effect on input. On output, it is the
number of places before the point. It does
not affect the size of the number, i.e., the
exponent printed is adjusted to compensate

for the shifted decimal point.

b) I and F Fields It scales the field by 107P on input, and
by 10° on output.

Date: 7/10/6L
Section: 5.3.1.L4
Page: 1l of 2
Change: 1

Thus for F and I fields the relation

External number = Internal number * lOp

holds for input and output.

Example:

Using the format -1P,E+13.7,F7.4, ... the internal numbers 10,13
and 17.25 would print as

+,0101300E+03b17.250. ..
If a P is not given, the scale factor is taken as zero. The scale factor

is cleared to O after a single or multiple field description has been

processed, e.g., 2P,3ELl7.5 would scale three fields by 100,

- Indirect Address Character . N

At any point where a decimally represented number may appear in
a format statement, an N may appear in its place. The control program
reads the next full word specified by the I/O list from memory, converts
it to an integer by truncation and uses that number for the format
control. Thus ..., NE15.6, ... will print a number of floating-point
words specified by a cell named in the I/O list.

Blank Characters

Blanks may appear anywhere in the format specification. They

have no effect.

Date: 7/10/6k
Section: 5.3.1.4
Page: 2 of 2

Change:

5.3.1.5 Relation of the Format to the I/0 List

The format is scanned first and each time that it requires
a word location (E, F, I, and A fields), a quarter word location (D and
Q fields), or an address (L and M fields), the I/O list is examined.
If there are no items left on the list, the input or output is termi-
nated by a card feed or a line eject. If there is an item, it is used.
When the end of the format (*) is reached, a card feed or line eject
is given and the I/0 list is checked. . If it is empty, again the input
output is terminated. If it is not empty however, the format definition
is continued by repeating from the last occurring outermost left
parenthesis, or from the beginning if there are no parentheses. The
combination of format and I/O list must not cause more than 80 columns
to be transmitted to or from a card, or more than 133 characters to
the printer. The printer only has 132 print positions; the first
character transmitted is removed during printing for carriage control.
Assignment of carriage control characters -will-be given in Chapter 2.

. Standard ones will always be

blank--single line feed
l--page eject Before printing.

The blank can be provided most simply by making sure that the first
field 1s sufficiently long to provide a blank.

Date: 11/8/63
Section: 5.3.1.5
Page: lof 1l
Change:

5.3.2 Assembling the I/0 List and Format Statement in NICAP

The format statement can be most easily assembled by use of
the CHR pseudo operation (see section 4.5.2, page 1). For example, to

store a format statement in location G, write
G CHR 18,4F19.1,3HX1=E2]1.8*
This would assemble as three consecutive words in G, G+1, and G+2.

The I/0O list is stored in a set of consecutive memory
locations. First let us consider full word items. Suppose that the
data in locations A, A+l,...A+N-1, B, B+l,...B+M-1l; and C, C+1l,...C+P-1
is to be transmitted. Then the I/O List will consist of three consecu-

tive words in memory, thus:

112 13 25 26 38 39 51

List 1 00 A N G
" List+1 |1 O0OJ B M
List+2 J00 00 C P

The 1 in bit position O of the iirst two words indicates that another
control word follows, i.e., this is not the end of the Input-Output
List. The 00 in bit positions O and 1 of the third word indicates
that this is the last control word. Quarter word 1 (bits 13-25) of
each control word contains an address. Quarter word 2 contains a
count of the number of items to be transmitted beginning at the
address in quarter word 1. This count must be less than 4096. After
the specified number of items have been transmitted, the input-output
program examines the next control word to see what item is to be
transmitted next, terminating at the end of the control word which
Eegins with 00. Quarter word 3 of the first control word contains
the address of the format string (the addrese of the first word in
the string if it occupies several words). Quarter word 3 of all the

other control words is ignored.

Date: 7/10/64

Seetion: 5.3.2
Page: lofh

Change: 1

The PRINT, READ, and PUNCH programs are entered by storing
the address of the first word of the I/0 List in Ml, and then CALLing
the appropriate program. For example, to print the items indicated
by the I/O List above, write

CAM 1,LIST
CALL PRINT

The CALL pseudo order will be assembled as JSB3,,PRINT.

For example, to print A, A+l, A+2, A+3, and B with the

format statement used earlier, the program below could be used

CAM 1,H1
In Program
CALL PRINT
G CHR 18,4F19.1,3HX1=E21.8% Constants
H1 DECQ 4096,A,k4,G elsewhere

DECQ 0,B,1,0 in memory

A little care is needed because DECQ is a quarter word pseudo
operation, i.e., it does not FIL before loading. Therefore it
should either be preceded by a full word pseudo operation, as in

this example, or should be preceded by a FIL.

When a quarter word address is required, as in D and Q, the
last two bits, indicating quarter O to 3, are stored in the least
significant two bits of the first quarter of the control word (bits
11 and 12). Thus to PRINT locations A,3; A+1,0; A+l,1; and B,2;

B,3; and B+1,0 in octal, the program might be

CAM 1,C
CALL PRINT
FIL

C DECQ L4096+3,4,3,F
DECQ 2,B,3,0
F CHR L, 6QT7*

Date: 7/10/6k
Section: 5.3.2
Page: 2 of 4
Change: 1

Note that the item count in quarter word 2 is the number of quarter
words., In general, this number is the number of items printed where
each E, ¥, I, A, C, D, L, M, and Q field counts as one item. H, S, and
X do not. If a full word item is input or output when the current—I/O
list address (i.e., that one to be used next) indicates quarter word

1, 2, or 3 rather than zero, then the quarter-word address is reset to O
and the full word address is incremented by 1 before the input or output.
Thus

CAM 1,D
CALL READ
FIL

D DECQ L4096+2,A,4,F1

DECQ 1,B,1,0
Fl CHR 11,3Q6,2E20,0%

will read three octal numbers into A,2; A,3; and A+1,0, and two full-

word floating-point numbers into A+2 and B+l.

If the bits O and 1 of the last control word are the Ol combina-
tion, then this indicates a "partial CALL." The next CALL either of the
READ, PRINT or PUNCH program will be interpreted as a continuation of
the previous CALL. That is, the same program will be used as was used
on the previous occasion (it does not matter whether PRINT, READ or
PUNCH is called), and the old format will be continued from the point
-1t has previosly reached. In other words, it is equivalent to placing

the new I/O list on the end of the last one.

Example:

To print the first 976 integers, ten per line, the following

program could be used:

Date: 7/10/6k
Section: 5.3.2
Page : 3 of 4

Change: 1

PR

CAD
STR
CSM
CAM
CALL
CAD
ABC
CJu
CAM
CALL
CHR
DECQ
DECQ

4,976
1,PR+1
PRINT

4,B

1,PR+2
PRINT
8,10F10%
2048, A,1,PR
0,0,0,0

Date:
Section:
Page:
Change :

7/10/6k
5.3.2

4 of L
1

7.1

F¢RTRAN II Version I

CHAPTER 7. COMPILERS

TABLE OF CONTENTS

Change

.1.1 Characters Used

7.1

7.1.2

T.1.3 Constants

7.1.4 Variables

T.1.5

7.1.6 Expressions

7.1.7 Statements

7.1.8 Subprograms:
7.1.8.1 How

7.1.8.2 How
7.1.
T.1.
T.1.
7.1.8.3 Now
7.1.8.4 How

7.1.8.5 How

Source Program Card Layout

Subscripted Variables

Functions and Subroutines

to Name a Function
to Define a PFunction

8.2.1 Arithmetic Statement Functions

8.2.2 TFUNCTION a(ay, ..., an)
8.2.3 User Defined Library Functions

to Name a Subroutine
to Define a Subroutine
to Use a Subprogram

7.1.9 Printed Output From a Compilation

Date: 6/3/65
Section: Chapter 7
Contents
Page: lof 1l
Change:
ILLIAC I1 MANUAL

7. COMPILERS

7.1 FPRTRAN II, Version I

Version I of the F¢RTRAN II compiler for ILLIAC II (hereinafter called
FﬁRTRAN) is designed to be fast at compiling at some expense in object code
efficlency. Generally speaking, the code generated is the best which can be
generated in one pass, making no special tests for restricted cases. Thus index
registers are not used in D¢ loops because at least 15 bits are generally needed,
and multiplication for array indexing is not moved outside of Dﬁ'loops. However,
if subscripts are specified as numbers, the computation is done at compile time.
A detailed description of the compiler forms Section 3.5 of the ILLIAC II Systems
Manual.

Logically, the ILLIAC IIVF¢RTRAN compiler is a '"one pass to assembly
language" compiler. The output of the FPRTRAN pass is fed directly into Pass II
of the NICAP assembler. NICAP then produces a relocatable binary object program
(plus a listing, if desired--see 7.1.9).

F¢RTRAN IT for ILLIAC II is essentially compatible with'FﬁRTRAN IT for
the IBM 7094 as implemented under the PPRTHPS operating system at the University
of Illincis. There are certain differences, however. In particular, F¢RTRAN II
for ILLIAC II will permit mixed arithmetic expressions (i.e., both floating and
fixed point quantities in the same expressidn); the statements READ DRUM and
WRITE DRUM are ignored by ILLIAC FﬁRTRAN; and PRINT n, list causes a line image
for off-line printing to be written on tape. Further, at present, none of double
precision arithmetic, complex arithmetic, or Boolean arithmetic (D, I, and B
respectively in column 1) are implemented for ILLIAC F¢RTRAN ITI. Cards in these
categories will be ignored in compilation, but will appear on the listing, and

will éenerate nonfatal errors.

Date: 6/3/65
Section: 7.1
Page: 1l of 3
Change:

ILLIAC II MANUAL

This brings us to another item in the philosophy of ILLIAC II as applied
to F¢RTRAN: every effort is made to compile errors. Theréfore a distinction is
made between fatal errors and nonfatal errors. Fatal errors cause an unsuccessful
compilation. However, the compiler will continue to analyze statements after
finding a fatal error in the hope of finding more errors. Nonfatal errors need
not cause an unsuccessful compilation; the compiler can make some sense out of
any statement containing nonfatal errors and no fatal errors, and it will compile
the object code that it decides the programme£ wants. Nonfatal errors are also
generated, as has been mentioned, by such things as mixed expressions, even though

in this case there is no doubt about what the programmer wants.

Control cards must precede all programs run under the ILLIAC II Operating
System including F¢RTRAN programs. The user is referred to Chapter 2 of the

present manual for details of the opérating system. We mention here some of the

necessities:
1. Each complete program must be preceded by a single 1D card, whose
format is identical to the format of the ID cards used by the IBM
7094 operating under PPRTHAS.
2. If execution is desired after compilation, a $ G¢ card must be

included between the ID card and the complete program.
3. Each program or subprogram written in F¢RTRAN must be preceded
by a $ FPRTRAN card.
L, If data is to be read from cards, it must be preceded by a
$ DATA card.
The remsinder of Section 7.l is devoted to a more detailed explanation of
F¢RTRAN. It is intended to be used as a reference, rather than as a learner's
manual. As a reference, it is reasonably complete, perhaps more so than would be
desired by people who are already familiar with F¢RTRAN in general and want only
to get at the peculiarities of this version of F¢RTRAN. We‘apologize’to such
people, and hope they will be able to find what they want in spite of having to wade

through much material.

Date: 6/3/65
Section: 7.1
Page: 2 of 3
Change:

ILLTAC II MANUAL |

Sections 7.1l.1 through 7.1.6 specify in part the terms which can appear
in F¢RTRAN statements. More details are given in Section 7.1.7, where the state-
ments are explained in alphabetic order, and in 7.1.8, where subprograms are

explained. Section 7.1.9 explains the printed output from a F¢RTRAN compilation.

Date: 6/3/65
Section: 7.1
Page: 3 of 3
Change:

ILLIAC IT MANUAL

7.1.1 Characters Used

The (decimal) digits are O through 9: the letters are A through Z. The
. alphanumeric characters are the letters and digits together. The special characters
used are = + - ¥ / (), .. Two other special characters, $ and ’ may be used in

comment cards and in H field specifications in Format statements.

Date: 6/3/65
Section: T.l.1
Page: lofl
Change:

ILLIAC II MANUAL

T.1.2 Source Program Card Layout

The standard IBM F¢RTRAN card layout is used. Thus, for example, there
‘may be as many as nine continuation cards, columns 1 through 5 are allowed for
the statement number (which must however be between 1 and 32,767 inclusive), and
the statement starts in column 7. Columns 73 through 80 are ignored. The letter
C in column 1 identifies a comment card; it is ignored in compiling, but appears
on the program listing. Comment cards may appear anywhere in a program. An F
in column 1 has & special meaning (see 7.1.8). All other cards should be blank
in column 1; any character other than F, C or blank (in particular, a D, B or I)

in colum 1 causes the card to be ignored.

Date: 6/3/65
Section: T.l.2
Page: lofl
Change:

ILLIAC II MANUAL

7.1.3 Constants

Note:

1.

1.

Fixed Point Constants: have 1 to 13 decimal digits, absolute value

less than 24h'

Floating Point Constants: are real numbers, absolute value between

10'3g

5.0, - .01). They may be followed by E and a decimal integer n,
denoting multiplication by lOn (e,g., 3.1E-6 = 3.1 X 10-6).

and 1073°, which must be written with a decimal point (e.g.,

Fixed and Floating point constants are represented in an identical
manner inside ILLIAC II. Thus arithmetic statements and expressions
can contain both kinds of constants and variables, contrary to the
usual rules of F¢RTRAN. That is, A = B+ 1 and A = B + 1. have the
same effect. Every constant occupies one word of memory (double
precision is not available) of which the left-hand U5 bits represent
the mantissa (with sign) in two's complement and the right-hand 7 bits

represent a base I exponent, also in two's complement notation.

Constants which are out of the allowed range will compile with the
largest allowed value, and will cause a nonfatal error to appear

on the listing.

Date: 6/3/65
Section: T.1.3
Page: lofl
Change:

ILLIAC II MANUAL

7.1.4

Variables

1.

Fixed Point Variables: have 1 to 6 alphanumeric characters,

beginning with I, J, K, L, M or N. They have fixed point values

and have the same range as fixed point constants.

Floating Point Variables: have 1 to 6 alphanumeric characters

beginning with any letter except I, J, K, L, M or N. They have
floating point values with the same range as floating points

constants.

Date: 6/3/65
Section: T7.1l.k4
Page: 1l of 1
Change:

ILLTAC II MANUAL

7.1.5 Subscripted Variables

Fixed and floating point variables may both have as many as three
subscripts attached e.g., AAAAAA(3), Al1111(I, K, L) are floating point subscripted
variables; IIITII(99), I22222(L M, 49) are fixed point subscripted variables.
Subscripts should be either fixed point constants or fixed point variables; if
a floating point quantity occurs as a subscript, it will be flagged as a nonfatal

error.

Subscripted variables must appear in a DIMENSI¢N statement (see 7.1.7)
before they appear anywhere else in a program, including in a C¢MM¢N statement,
except that they may appear as call parameters in the first line of a subprogram

(see 7.1.8) before appearing in a DIMENSI@N statement in the subprogram.

Subscripts may be any valid arithmetic expression, except for input and
output, where only the following kinds of expressions are allowed: (C and C' are

unsigned constants and V is a nonsubscripted variable).
¢, V, V+¢C, V-C,C*¥V, C*V+ ¢', c*¥VvV-_C'

In particular, expressions such as C + V, C * ' are not allowed as subscripts for

input and output.

Tn arithmetic expressions subscripted variables can themselves be

subscripted; this nesting of subscripts can be used to any level. For example
HAPK (K, NPT (NPT (K))) is legal.

If a subscript is greater than 4095, an overflow will occur, and
execution will be terminated by the system unless a system program that inhibits

overflow traps has been called.

Date: 6/3/65
Section: T.1.5
Page: lof 1
Change:)

ILLTAC II MANUAL

7.1.6 Expressions

1. Arithmetic Expressions are strings of operands, operators, and

brackets such as A + B/C, I1 + (2.%J1 - K), A * * B * ¥ C., The operands in

these expressions are "A", "B", "I1", "2.7, "J1", and "K". The operators in
these expressions are "+" (addition), "/" (division), "¥" (multiplication),
"_" (gubtraction), and "¥*" (exponentiation). These are the only operators

which are allowed.

The operands in a given expression should be either fixed or
floating; if both types are included, the expression is called a mixed expression
and will be flagged as a nonfatal error, except that floating ** fixed will not

be flagged. Any mixed expression will be treated as a floating point expression.

The usual operator priority rules are observed, i.e., exponentiation is
performed first, multiplication and division next, and addition and subtraction
last. If brackets are omitted, they will be inserted from the left. Thus, for
example, A ** B ** C is evaluated as (A *¥ B) ** C, and A ¥ B/C/D ** C is evaluated

as ((A *_B)/c) / (D ** C).

Note: All floating point operations are rounded rather than truncated so that
numerical answers will generally be more accurate than those obtained with the
same program when it is compiled by a compiler which uses a truncation process.

In general, expressions are not rearranged for more efficient computation.

2. Boolean Expressions are not yet implemented.

3. Hollerith Expressions such as 3HYES are not yet implemented except,

of course, in F¢RMAT statements for output.

Date: 6/3/65
Section: T.l.6
Page: 1l of 1
Change:

ILLIAC II MANUAL

T.1.7 Statements

First, we define the word "List," which is used in explaining input/

output statemerits. A list is a sequence x ceey Xn where each Xi is one of

l)
the following:

1. A fixed or floating point variable, which may be subscripted,
e. g., A; INTGR; A(3); Xx(L,9); ALP(I,2).

2. A sequehce of subscripted fixed or floating point variables, with
variable subscripts, possibly followed by an expression giving the ranges of the
variable subscripts, &8ll enclosed in brackets: e. g., (A(I), I=1, 3);
(c(x,3), X(I,K,4), Kk = 3,9); ((A(1,d), I =1, 10), J = 1,5). In the second

example, I must be a variable with a previously assigned value.
3. An array name.

Variables are input or output in the order in which they abpear in the
list, and within that order, they are ordered as illustrated by the following:
e.g., "A, (B(X,I), K=1, 3), ((D(L,M), M =1,2), L =2, 3), H" is a list.
Suppose A is an array with dimension (2, 3). Then the variables occurring in the
list will be input or output in the following order: A(1,1), A(2,1), A(1,2), A(2,2),
A(1,3), A(2,3), B(1,1), B(2,1) B(3,1), D(2,1), D(2,2), D(3,1), D(3,2), H.

A list of F¢RTRAN statements, together with some explanation of the
meaning and use of these statements, follows. The statements are listed in

alphabetical order.

a = e: This is an arithmetic statement. a must be a variable (either fixed or

floating), and e must be an arithmetic expressionv(which may involve the
variable a). Boolean statements are not yet implemented. a = e will result
in the contents of the location whose name is a being set equal to the value
of the expression e. If a is a floating point variable and e is a fixed point
expression, then the value of e will be converted to floating point before
being stored in a, and conversely, if a is a fixed point variable and e is

a floating point expression, then the value of e will be converted to fixed

point before being stored in a.

Date: 6/3/65
Section: T.1.7
Page: 1l ofll
Change:

ILLTAC II MANUAL

Example: X =X + 1. This will result in the contents of X being replaced
by what is now in X, plus 1.

ASSIGN n T¢ i: n must be a statement number, and i must be a nonsubscripted
fixed point variable which is not an array name. 1 must appear in an
assigned G¢ T¢ statement, and n should appear in an assigned Gﬁ T¢ statement.
Note that the compiler does not check to see that this last condition is

satisfied.

Example: ASSIGN 47 T¢ INTP will cause INT@ in GO T¢ INT@, (16, 47, 36, 9)
to have the value 47.

BACKSPACE j: causes symbolic tape unit J to backspace one logical record (a
logical record is defined to be the physical records written by a previous
WRITE TAPE statement). At the moment only scratch tapes 6 and 7 are available,
but eventually more possibilities (i.e., more tape units) will be available for

j. Note that no check is made at compile time to see that j = 6 or 7.
CALL a(al, coe an): see 7.1.8, 7.1.8.5.

COMMON X15 e
(i =1, ..., n). Array names must appear in a DIMENSIﬁN statement before the

xn: Each X, is a fixed or floating point variable or array name

CPMMPN statement in the same program as the CAMMEN statement.

C¢MM¢N is used in a calling program and in a subprogram to enable both programs

to gain access to certain guantities in ome area of memory called C¢MM¢N.

As each program is compiled, a counter is used to keep track of how much of
C¢MM¢N has so far been used. This counter is set to zero at the beginning of
each compilation, and is increased by one by each variable or position of an
array put into C¢MM¢N in the course of the compilation. Thus each variable or
position of an array specified by a C¢MM¢N statement is associated with a
unigque number by this counter. When the programs are cbnsolidated at run time
into one program, every C¢MM¢N variable or position of an array associated
with the same number is assigned to the same physical location in memory. This
is the way in which variables and arrays in C¢MM¢N are used by several sub-

programs .

Date: 6/3/65
Section: T.1.7
Page: 2 of 11
Change:

ILLIAC IT MANUAL

Example: If the first C¢MM¢N statements in each of two subprograms are
COMMPN X1, X2 |
COMMON X3

and
COMMAN R1, R2, R3

respectively, this would result in Xi and Ri representing the same location

(Locations, if Xi and Ri are array names of the same size), i =1, 2, 3, .

Any variables in C¢MM¢N which also appear in an EQUIVALENCE statement are
located at the beginning of the CPMMPN area i.e., the EQUIVALENCE statement

alters the number associated with a variable by the counter mentioned above.
Example: The statements

CAMMPN A, B, C, D

EQUIVALENCE (C, G), (E, B)

will cause A, B, C and D to be stored in C¢MM¢N in the order C, B, A, D rather
than in the order A, B, C, D. G and E will be stored in the same locations as

C and B respectively, as specified by EQUIVALENCE.

If the READ TAPE or WRITE TAPE statements are used, then the first 256 words
of CPMMPN must be allocated for buffer use (see the library program IPLIST).
This can be accomplished by

DIMENSION XXX (256)
COMMAN XXX

at the start of each program segment where XXX is a variable not used elsewhere
in the program. The C¢MM¢N area of memory is located at the beginning of

user's core.

CﬁNTINUE: is a dummy statement used to end a D¢ loop if the D¢ loop would otherwise

end with a transfer or a nonexecutable statement.

Date: 6/3/65
Section: T.1l.7
Page: 3 of 11
Change :

ILLTAC II MANUAL

DIMENSIﬁN al, ceey an: (see also 7.1.5). Each ai is a subscripted variable with

D¢ n

one, two, or three numerical subscripts. The values of the subscripts given
here are fixed point constants equal to the maximum value of the subscripts
used in the rest of the program, e.g., a; = MATRIX (10, 20, 15) defines a
three-dimensional matrix of dimension 10 X 20 X 15. The total amount of

storage specified in one DIMENSI¢N statement must be less than 4096 words.

The unsubscripted variable appearing in each ai is referred to as an array
name, ¢€.g., MATRIX is the array name in the example above. If an array
name appears in a program, it is understood to refer to the first location
in the array, e.g., MATRIX refers to MATRIX (1,1,1). Note that an array

name is not considered to be an unsubscripted variable.

A DIMENSIﬁN statement sets aside one word in memory for each of the elements

in the array.

Arrays are stored in forward order in memory. For example, the 2 X2 X2
array A is stored in successively higher numbered locations in the order
A(1,1,1), A(2,1,1), A(1,2,1), A(2,2,1), A(1,1,2), A(2,1,2) A(L,2,2), A(2,2,2).

The unique DIMENSIﬁN statement containing a given array name must appear

before that array name is used elsewhere, except as mentioned in 7.1l.5.

i= jl, jE’ j3: n must be a statement number referring to a statement
following the D¢ statement; i must be a nonsubscripted fixed point variable;
jl, 32 and j3 must be either fixed point constants or nonsubscripted fixed
point variables. A !@ statement results in the repeated execution of the Q@
loop (the statements following the D¢ statement up to and including statement
n), starting with the index, 1, equal to jl increasing 1 by j3 each time the
D¢ loop is executed, and stopping the repetitions immediately after the D¢
loop has been executed for the least value of i such that i + 33 > 32. Note,

however, that the DB loop is always executed at least once, even if jl > jg.

Date: 6/3/65
Section: T.1.7
Page: L of 11
Change:

ILLIAC IT MANUAL

Examples: (a) DIMENSIfN A(20)
I =2
J = 20
W10K=1,Jd, I
10 A(K) = K ** 2
will result in A(K) being set equal to K?, K=1, 3, 5, ..., 17, 19.
(v) DA 13 KAPPA = 3, 2
13 A = KAPPA

will result in the floating point constant 3 being stored in A.

The D¢ statement may also be specified in the form Dﬁ nis= jl, j2 in which

case it will be assumed that j3 = 1.

i, jl, 32, j3 should not be altered by any statements in the D¢ loop.

However, altering i, j2 or j. will be regarded as a nonfatal error. Altering

3
jl has no effect. Care must be taken to see that 33 is not set to zero, and

that 32 is not increased by more than j. each time through the loop. It

3
must be true that jl > 0, j2 > 0, and 33 > 0.

Note that the last statement of a D¢ loop cannot be a honexecutable statement
(e.g., DIMENSI@N, CAMM@N), nor can it be any transfer (e.g., Gf T@) or any
Dﬁ statement. If the last statement in the D¢ loop would be one of these, the

statement
n CYNTINUE

where n is the statement number appearing in the D¢ statement, should be
written following what would otherwise be the last statement. Aside from

these restrictions, any F¢RTRAN statement may appear in a Dﬁ loop.

Example:
DIMENSI@N A(10), B(5)
DO 5 NICK = 1,5
A(2*NICK) = NICK
B(NICK) = NICK ** 3

PRINT 2, A(2* NICK), B(NICK)
2 FYRMAT (1HO, 2(I10))

CANTINUE

END

Date: 6/3/65
Section: T.1l.7
Page: 5 of 11
Change:

ILLIAC IT MANUAL

This program will cause the following numbers to print out in the format

shown (b represents a blank):
bbbbbbbbblbbbbbbbbbl
bbbbbbbbb2bbbbbbbbb8
bbbbbbbbb3bbbbbbbb27
bbbbbbbbbibbbbbbbbbh
bbbbbbbbb5bbbbbbbl25

A sequence of Dﬁ statements is said to be nested if the D¢ loop of each D¢
statement in the sequence contains the next D¢ statement in the sequence and

its D¢ loop. The length of such a sequence is called the depth of the nest,

and is unbounded. Overlapping D¢ loops are not permitted.

Examples: (a) A=1
D/ 1LI=1,5
Dd1LJ=1,5
A=TI%J%*A
1 B=I+J+B

is a nest of Dﬁ loops of depth 2 which will result in A being set equal to
6192 x lO17 (computed by ILLIAC) and B being set egqual to 150.

(p) Dp 1LI=1, 10
D/ 2 J =1, 10

1I=1

2J =4

is illegal, since the two D¢ loops overlap.

Control can be transferred by means of any G¢ T¢ or IF statement from
inside a D¢ loop to outside the loop. The_value of the index of the loop
is available outside the‘loop. A nonfatal error will occur if the program
transfers back into the range of the D¢ loop. When such a transfer is
made, the value of the index will be the same as it was when the program
transferred out of the D¢ loop, unless the program changes it, in which

case it will have whatever value the program gives it.

Date: 6/3/65
Section: T.1.7
Page: 6 of 11
Change:

ILLIAC II MANUAL

However, execution of a subprogram inside a D¢ loop when the subprogram
contains a D¢ loop with the same index as the. original D¢ will not cause
the index of the original Db loop to be changed The general rule is that
all variables in ohe program with same name (1nclud1ng indices of Dﬁ loops)
are identified (i.e., stored in the same location) but that variables with

the same name occurring in different programs are not so identified.

END: ends compilation of any program or subprogram. If no END statement is
present, the F¢RTRAN compiler will generate one. It is compiled as a CALL
SYSTEM. 1In a subprogram, the END also acts exactly as a RETURN statement.
If the user wants to terminate execution at any point in his program, he

may do so by writing

Gf TP n

and prefixing the statement number n on the END statement of his program.

END FILE j: causes an end of file mark to be written on symbolic tape unit j.

At the moment, j must equal either 6 or 7.

EQUIVALENCE (xl, e, xr), (yl, cen ys), R O causes the

1 t):

variables x ceny xr to be stored in the same location, yl, ceey ys

l)

to be stored in the same location, ..., z z, to be stored in the

10 e 2y
same location. Bach Xi’ yi or zi can be fixed or floating point, and may
optionally include one subscript, which must be an unsigned fixed point

constant, whose meaning is best explained by an example: Suppose X, = A(3)-

Then if A is an array name, x. refers to second location following A(1),

1
A(1,1), or A(1,1,1) as the case may be. If A is not an array name, x

refers to the second location after A. An array name without a subsciipt
refers to the first element of the array as usual.

If a position of an array is equivalenced to a location X (i.e., either to
a variable or to a position of another array), then the whole array will

automatically be equivalenced to the locations on either side of X.

Example: if the statements

DIMENSIZN A(3,2), x(2,4)
EQUIVALENCE (A(5), X(&))

Date: 6/3/65
Section: T.1l.7
Page: 7 of 11
Change:
ILLIAC II MANUAL
T

appear in a program, then the arrays A and X will be stored overlapping

each other as given by the figure:

A(1,1)A(2,1) A(3,1) A(1,2) |a(2,2) 'A(3,2>

x(1,1) x(2,1) x(1,2) [x(2,2) | x(1,3) x(2,3) x(1,k4) x(2,4)

The locations in the box are the locations specified by the equivalence

statement.

EQUIVALENCE has roughly the same effect within one program as CﬁMMﬁN has

between two or more programs.

F¢RMAT: See 5.3. The F¢RTRAN format specifications for ILLIAC II are not the
usual FéRTRAN format specifications; they correspond to the format

specifications for NICAP.
FREQUENCY: ignored.

FUNCTION a(a . an): see 7.1.8.2.2

l)

G¢ T¢ n: results in a transfer to the statement numbered n.

G¢ No) (nl’ ‘oo, nk), i: This is a computed G¢ T¢. It results in a transfer to the
statement numbered n, - Thus 1 must be a nonsubscripted fixed point variable

and its value must lie between 1 and k.

Example: If I has the value 2, G T¢ (3, 39, 1k4), I results in a transfer to
statement 39.

G¢ T¢ i, (nlJ ey nk): This is an assigned G¢ T¢. It is generally not as useful
as a computed G¢ Tﬁ. It results in a transfer to the statement numbered n
when 1 = nr. i must be a nonsubscripted fixed point variable. Note that
for each r, 1 < r <k, there must be a statement numbered n, ora fatal
error will result. The value of i should previously have been assigned by an

ASSIGN statement.

Date: 6/3/65
Section: T.1.7
Page: 8 of 11
Change:

ILLIAC II MANUAL

Example: If the statement ASSIGN L7 TO INT¢ was the last ASSIGN
statement referring to INT¢ to be executed before G¢ T¢ INT¢, (16, k7,
36, 9), then the latter statement will result in a transfer to statement L47.

IF ACCUMULATAR @VERFLOW n), n,: results in a transfer to statement n, if v
(the accumulator overflow switch) is set, and to statement n, otherwise.
However, in the normal mode of operation, accumulator overflow causes a
system trap which terminates execution. It 1s possible to avoid this trap
by using the subroutine FPITIA. The user is referred to the ILLIAC II

library write-ups for details.

IF (e) Ny, Oy, n3: results in a transfer to statement n,, n, or n3 depending
whether the arithmetic expression e has a value less than, equal to, or

greater than zero, respectively.

IF (SENSE LIGHT k) n,, ny: If sense light k (L <k <13) is on, it will be

turned off, and control will transfer to statement n If sense light k is

off, it will remain off, and control will transfer ti statement ng. If k
is > 4, then a nonfatal error message will be produced for the sake of
compatability with F¢RTRAN II on the 7094%. k must not be a variable. The
sense lights are stored in M13, which is a 13-bit modifier in fast register

7. Sense light 1 is the right-most bit of M13.

IF (SENSE SWITCH k) n,, n,: If sense switch k (L <k < 13) has been turned on

control will transfer to statement n., and sense switch k will remain on. If

1
sense switch k is turned off control will transfer to statement n2, and sense

switch k will remain off. k must not be a variable.

At the moment, it is not possible to turn a sense switch on except by writing
a NICAP subprogram. Some day, it may be possible to set sense switches by
means of a $ SENSE SWITCH card. For those users who cannot wait, we offer
the information that the 13 sense switches are stored in M12, a 13-bit

register in fast register 7. Sense switch 1 is the right-most bit of Ml2.

If k is > 6, a nonfatal error will be generated for the sake of compatability

with FPRTRAN II for the IBM 7O9L.

Date: 6/3/65
Section: T.1l.7
Page: 9 of 11
Change:

ILLTAC II MANUAL

PAUSE: caﬁses
terminate

the start

PRINT n_, list:

tape. n

a halt order to compile. Halt is a trapped order which will
the job. If a halt is desired, a $ HALT card should be used at
of the program (see 2.3).

causes BCD line images for printing to be written on the output

must be the number of a F¢RMAT statement which specifies the

B
format of every line image. '"List" is explained at the start of this
section.

PUNCH nF, list: causes BCD card images for punching to be written on the output
tape. ng must be the number of a F¢RMAT statement which specifies the format
of every card image. '"List" is explained at the start of this section.

READ N list: causes BCD card images to be read from the input tape. nF must

be the number of a F¢RMAT statement which specifies the format of every card

image. "List" is explained at the start of this section. If the user attempts

to read binary card images with this statement, execution is terminated.

READ DRUM: ignored.

READ INPUT TAPE j, n, list: has the same effect as READ n, list. The tape

number J must be supplied but is ignored.

READ TAPE j, list: causes binary information to be read from one logical record

on the tape mounted on symbolic tape unit j into the locations specified in

the list.

At the moment, j must equal either 6 or 7. "List" is explained

at the start of this section. A logical record is read completely only if

the list specifies as many words as the logical record contains; no more than

one logical record is read. The tape, however, always moves to the beginning

of the next logical record.

Notes: 1.

A logical record is defined to be the physical records written by

a previous WRITE TAPE statement.

If CPMMAN is used in the same program as READ TAPE, 256 words at
the start of C¢MM¢N must be set aside as a buffer area (see the
explanation of the COMM@N statement).

Date: 6/3/65
Section: T.1.7
Page: 10 of 11

Change:

ILLTAC I MANUAL

RETURN: is the last executed statement of a subprogram (see 7.1.8.2.2).

REWIND j:’ cause symbolic tape unit J to rewind. At the moment, J must equal
either 6 or 7.

RIT j, n, list: has the same effect as READ n, list. The tape number j must be

supplied but is ignored.

SENSE LIGHT k: If k = O, this results in all thirteen sense lights being turned
off. If 1 <k <13, then only sense light k is turned on. If 5< k<13,
then a nonfatal error is produced for the sake of compatibility with F¢RTRAN
II for the IBM T094%. The sense lights are stored in the 13 bit modifier MI13.

k must not be a variable.

STOP: causes termination of execution of the program and a return of control to
the ILLIAC system programs. It is identical to CALL SYSTEM as a means Of

terminating a Jjob.
SUBRGUTINE a(ay, ««-; an): see 7.1.8.4.
WRITE DRUM: ignored.

WRITE ¢UTPUT TAPE j, n, list: has the same effect as PRINT n, list if j is an
even number or a variable name. If J is an odd number, it has the same

effect as PUNCH n, list.

WRITE TAPE j, list: causes one logical record of binary information to be
written on symbolic tape unit J from the locations specified in the list.
At the moment, j must equal either 6 or 7. "List" is explained at the start
of this section. Note: a logical record may include several physical
records but not vice versa. If C¢MM¢N is used in the same program as WRITE
TAPE, 256 words at the start of CAMMAN must be set aside as a buffer area (see
the explanation of the CPMMAN statement).

WgT j, n, list: is identical to WRITE @UTPUT TAFE.

Date: 6/3/65
Section: T.1.7
Page: 11 of 11
Change:

ILLIAC II MANUAL

f,l.8 Subprograms: Functions and Subroutines

A subprogram is a program which is used by another program (the
calling program). Subprograms in general must be assembled independently of one
another and independently of the calling program and then loaded into the machine
all together when it comes time to run the main program. Under the present
batch processor this is achieved by preceding just the complete program with an
ID card and a $ G¢ card and preceding each subprogram or calling program with a
$ FORTRAN card (or $NICAP etc., as the case may be). This will result in the
compilation of all programs which are to be compiled followed by execution of
the complete program. For further information the user is referred to Chapter 2.
Note that it is possible to define a function subprogram by means of an arithmetic
expression (ee 7.1.8.2) and that in this case independent assembly is not

required; in fact, it is not possible.

Every subprogram has a name which is assigned to it when the subprogram
is defined. A subprogram is then called (i.e., used by another program) by means
of its name. A detailed explanation of how to name and use a subprogram is given

below, starting with Section 7.1.8.1.

As the reader may have gathered, there are two kinds of subprograms:
functions and subroutines. Every function and most subroutines have associated
with themselves a list of parameters. When the subprogrem is defined, the list is

a list of dummy parameters. Dummy parameters must be fixed or floating point

nonsubscripted variables or array names. This list of dummy parameters must
appear immediately to the right of the name of the subprogram when the subprogram
is defined. (See 7.1.8.2 and 7.1.8.L4 for methods of defining subprograms). The

raison d'etre of dummy parameters is that they serve as place holders in the sub-

program for call parameters. Call parameters must be either fixed or floating

point constants or variables,or subscripted variables, or array names, or

arithmetic expressions, or subprogram names.

When the subprogram is used, a list of call parameters appears
immediately to the right of the name of the subprogram. In F@RTRAN, the list of
call parameters and the list of dummy parameters must be of the same length, and
there must be a certain amount of agreement in the characteristics of dummy and

call parameters occurring at the same positions of their respective lists. The

Date: 6/3/65
Section: 7.1.8
Page: 1 of 4
Change:

ILLIAC II MANUAL

amount of agreement required 1s made precise below. We digress here to clarify
the notion of a placeholder: any occurrence of a dummy parameter as a place-
holder in the definition of the subprogram will be replaced for purposes of
execution by the call parameter corresponding to it when the subprogram is called.
Thus the call parameters can be used to transfer data from the calling program

to the called subprogram, and vice versa.

The agreement required between corresponding dummy and call parameters

is in the following attributes:

1. If one of the parameters is an array name, then the other one must
also be an array name. Note that a parameter is an array name if
and only if it is a variable which appears in a DIMENSIﬁN statement.
Further, the two arrays must have the same size and dimension. Note
that the size of the array to which the dummy parameter refers to
cannot depend on another dummy parameter, i.e., dynamic dimension is

not permitted.

2. If a call parameter is subscripted, then it must appear in a
DIMENSI¢N statement in the calling program. The subscripts of a
call parameter may be constants, variables, or subscripted variables

again.

3. If a dummy parameter is used as a subprogram name in the subprogram
S, say, for which it is a dummy parameter, then the corresponding
call parameter in a call to S must appear in columns 7 - 72 of an
F card in the calling program (before it appears as a call parameter),
unless the call parameter is used as a subprogram name elsewhere in
the calling program (i.e., unless the calling program has some other
way of telling that this call parameter is actually a subprogram
name.) An F card is a éard with an F in column 1. More than one
subprogram name can appear in an F card, provided that the names
appearing are separated by commas. Dummy parameters standing for
subprogram names are used in subprogram definition precisely as the

subprogram names are intended to be used. No F card is required to

Date: 6/3/65
Section: 7.1.8
Page: 2 of 4
Change:

TLLIAC II MANUAL

identify the appearance of a dummy parameter standing for a
subprogram name in a subprogram. Note that it is not permitted
to call the subprogram being defined from within said subprogram,

i.e., recursive definition of subprograms is forbidden

4. No agreement is necessary with respect to parameters being fixed

or floating point.

We have pointed out the use of call parameters and dummy parameters for
the transfer of information between program ségments. There is another method
of transferring information: put it in CﬁMMﬁN (see 7.1.7). C¢MM¢N can only be
used when the call parameters are variables, subscripted variables or array names.
The advantage of using C¢MM¢N are first, that the subprogram performs fewer (if
any) address constructions and second, that if C¢MM¢N is not used, then data may
be transferred from the calling program to the subprogram, which takes timé and
space, particularly if large arrays are involved. Thus the use of CﬁMMﬁN means,

in general, that subprograms will be executed more quickly and take less space.

A word about the distinction between subroutines and function sub-
programs: a function subprogram always leaves a number (the value of the
function) in the accumulator when it returns control to the calling program; a
subroutine does not leave anything meaningful in the accumulator. Aside from this
distinction, plus the fact that a function subprogram must have a nonempty

associated list of parameters, function subprograms and subroutines are the same.
Some notes:

1. Note that care must be exercised in writing subprograms to ensure
that a subprogram does not change the values of the call parameters

specified by the calling program before it uses them.

2. Note that if the sense light settings are changed in a subprogram,
that change is effective in the main pfogram. ML3 is used to hold

the sense lights.

Date: 6/3/65
Section: 7.1.8
Page: 3 of k4
Change:

ILLIAC II MANUAL

3. Note that if the value of a parameter in the list of dummy
parameters is changed (e.g., if it appears on the left-hand side
of an arithmetic statement) in the subprogram, then the corres-
ponding call parameter must be.a variable, a subscripted
variable, or an array name (i.e., it should not be a constant or
an arithmetic expression. If it is a constant, the value of the
constant will be changed. Changing the value of an arithmetic

expression in this way is meaningless).

| Date: 6/3/65
Section: T7.l1.8
Page: L of 4

1 Change:

ILLTAC IT MANUAL

7.1.8.1 How to Name a Function

A terminal F is allowed in a function name, and a function name can
thus be up to seven characters long. Since other names in F¢RTRAN can only be
six characters in length, it is convenient to remove the terminal F in compiling
a seven-character function name. This is done. However, the terminal F is not
removed from a function name of six or fewer characters in length (except for
library functions--see 7.1.8.2). Thus the labels NAMEF and NAME will be
distinguished by FPRTRAN but NAMINGF and NAMING will not be distinguished,

In general, the terminal F is not required on the names of user defined
functions in this version of FPRTRAN, although it may be used. If, however, a
function name of four or more characters in length ending in F is used, then it
refers to a fixed or floating point valued function depending on whether the
first letter of the name is X or not, If the name is fewer than four characters
or if it does not end in ¥, then it is fixed or floating valued according as it
begins with one of I, J, K, L, M or N or not. Thus XPERTF, INF, and INTGER are
fixed point valued; XPERT, IRTF, PAD, and XAF are floating point valued.

Date: 6/3/65
Section: 7.1.8.1
Page: 1lof 1
Change:

ILLIAC II MANUAL

7.1.8.2 How to Define a Function

Functions are defined in three different ways:

1. Library functions and built-in functions (all built-in functions

and some library functions are predefined in F¢RTRAN)
2., Arithmetic statement functions
3. Function subprograms

F¢RTRA1\I provides the following library functions for the user:

SQrTF(a) = Vo

EIgeF(a) = log, O

BIgGF () = log, O

TIGGF () = log,, O

EXPF(Q) = &

SINF(¢) = sin(a) (@ in radians)
C¢SF(O£) = cos(oc) (ot in radians)
TANHF(c) = tanh(a) (@ in radians)
ATANF(o) = arctan(a) radians

Note: The final F is optional in all of the above names; thus SIN(C) means the
same as SINF(x). '

In addition, the following functions are "built-in" to FPRTRAN (&

and B should be floating point unless otherwise specified):

ABSF(a) = |
XABSFY
MgDF(ct, B) -a - [o/s®
XMJDF '
INTF(Q) = [o:]@
XINTF
SIGNF(c,B8) = lal 1B >0
= -la| ir B <O
XSIGNF
Dete: 6/3/65
Section: 7.1.8.2
Page: 1 of 2
Change:
ILLIAC II MANUAL

Notes: (1)

FLPTF (x)
XFIXF ()
DIMF(,B)
XDIMF
MAXOF(oz,Bf3
XMAXOFS
MAXJ,F(oc,a)C3>

xMax1 5

NENGﬁﬁ
XMINOIF(3
MrN1E
oS

I

il

1l

i

i

o (change from fixed to floating) | Not nec-

essary on

o (change from floating to fixed) TLLIAC II

o - MIN (a,B)
maximum of & and B where & and B are fixed point
maximum of & and B where & and B are floating

point

defined by analogy with MAX,

X prefixed indicates that the value of the function is fixed point

rather than floating.

(2)
(3)
(L)

The distinctions between library and built-in functions are minimal.

[a]

= greatest integer < Q.

These functions are restricted to two arguments.

The final F must be present on all built-in function names.

First, the user may, with the approval of the system programming group, add to

the set of library functions (see 7.1.8,2.3) but not to the set of built-in

functions;

second, the compiler will not have to search the library tape to

identify built-in functions (although it does at this time); and third, some

built-in functions (such as MAX¢F) will eventually have a variable number of

arguments,

The user may define functions himself in three different ways which

are described in the next three sections.

Date:
Section:
Page:
Change:

6/3/65

7.1.8.2

2 of 2

ILLIAC II MANUAL

7.1,8.2.1 Arithmetic Statement Functions

This type of function is simply defined within any FPRTRAN program

or subprogram by setting the function name, followed by brackets enclosing the

dummy parameter list, equal to the desired arithmetic expression.

Examples: 1, The statement

F(X,Y) = (X * Y - X % Y)/(X + Y+ 3.0)

defines a function F of two variables; the statement

G(U,V,W) = F(SIN(U ** 2 + V ** 2),W) + F(CPS(U ** 2 + V ** 2), W)

uses F to define a new function, G, of three variables.

2. Subscripted variables are not allowed as dummy parameters in

this type of function definition. Thus the statements

are illegal, but

is legal,

Fl(X) = X(10)
F2(X) = X(I)
F3(X,J) = X%(J)
Fu(I) = Y(I) %% 2

Note that no function can call itself directly or indirectly in its

definition. Thus for arithmetically defined functions, the following examples

are grossly illegal:

1. F(0)
F(X)

2. G(0)
F(0)
F(X)
a(x)

1
F(X - 1) X
0
1
(X - 1) +X
F(X - 1) *X

Date: 6/3/65
Section: 7.1.8.2.1
Page: lof 2
Change:

IILIAC II MANUAL

Arithmetic statement functions are local to the program or subprogram
in which they are defined, with one exception: the name of such a function
may appear as a call parameter in its defining program, in which case the

function may be used by the called subprogram,

Date: 6/3/65
Section: 7.1.8.2.1
Page: 2 of 2
Change:

ILLIAC ITI MANUAL

7.1.8.2,2 FUNCTION a(al, cen, an)

Here a is a fixed or floating point name and (al, ceey an) is a list
of dummy parameters. The name of the function, a, must obey the rules for
function names given in 7,1.8.1. The statement FUNCTI@N a(al, vees an) is then
the first statement of a function subprogram (although this is not checked).
The last statement executed by the function subprogram must be RETURN or END.
The variable a must occur at least once on the left hand side of an arithmetic
expression or in an input statement list in the function subprogram. Aside

from these restrictions, the function subprogram may be any legal F¢RTRAN program.,

It is also possible to encode function subprograms in NICAP if the
user wants some portion of his object program to be more efficient than an object
program written in the FPRTRAN source language. For this purpose, the user

needs to know the following facts:

1. The F¢RTRAN compiler computes all subscripts occurring in the list
of call parameters, and then compiles JSB 3, FIL, followed by as
many DECQ's as are needed to give the addresses of the call para-
meters in the same order as specified by the calling program.

A PIL is generated after the last parameter.

If the parameter in a call statement is a subprogram name, or an
indexed variable, the parameter given in the DECQ sequence is the
address of a temporary cell containing the transfer vector or the
value of the variable respectively., If the parameter is a number,
then the DECQ parameter is the address of a cell containing that

number in floating point.

0, Fast registers Fi, F5 and F6 must be saved (the indices of Df's

and other such valuable information is stored therein).
3. Ml2 and M13 contain the sense switches and lights.

L, The reéulting value of the function must be stored in the

accumulator before returning.

Date: 6/3/65
Section: 7.1.8.2.2
Page: 1lof 1
Change:

JLLIAC II MANUAL

7.1.8.2.3 User Defined Library Functions

The user may redefine by a SUBR¢UTINE or FUNCTI¢N subprogram any
library program, He should, however, beware of the names PRINT, READ,
PUNCH, IPLIST and eny name starting with SYS-- which are used by I/¢ state-
ments since if he uses these names, the program so named will no longer be

available to him.

Example: The subprogram

SUBRJUTINE PRINT(X)

PRINT 1,X
1 TF¢RMAT (1H, F10)
END

will cause the name PRINT to be redefined. In fact, the program above causes

an infinite loop to assemble, since the statement PRINT 1,X in it assembles

as a call to it.

Date: 6/3/65
Section: 7.1.8.2.3
Page: 1of 1
Change:

ILLIAC II MANUAL

7.1.8.3 How to Name a Subroutine

Any fixed or floating point variable can be used as the name of a

subroutine except as mentioned in 7.1.8.2.3.

Date: 6/3/65

Section: 7.1.8.3
Page: lof 1l

Change:

ILLIAC II MANUAL

7.1.8.4 How to Define a Subroutine

FPRTRAN does not provide any built-in subroutines. Subroutines are
defined by writing a subprogram which begins with SUBR@UTINE a(alan),
(2 is the name of the subroutine;(al cee an) is the list of dummy parameters:
it may be empty). and which consists of any legal sequence of F¢RTRAN state-
ments such that the last executed statement is always RETURN or END., It is not
necessary that the variable a appear on the left hand side of an equation or

that it appear in an input list.

Subroutines may also be encoded in NICAP as for function subprograms

except that nothingneed be returned to the accumulator.

Date: 6/3/65
Section: T7.1.8.L4
Page: lofl
Change:

ILLIAC II MANUAL

7.1.8.5 How to Use a Subprogram

The list of call parameters and the use of C¢MM¢N have been explained
in 7.1.8 and 7.1.7. It remains to explain the CALL statement and give examples.

CALL may be used to call any subprogram. This is not usually the
case in F@RTRAN,

Suppose that the subprogram name and list of dummy variables not
specified in CPMMPN are a(al coe an). Then to call the subprogram a with call
parameters (bl vee bn), one writes the statement CALL a(bl v bn) in the
calling program, This will result in automatic transfer to, execution of,

and return from the subprogram using the parameters b bn in place of

l e o0
8y ee. @ . Parameters specified in C¢MM¢N may appear as call parameters,
although they normally do not. Note however, that it does not make sense in
general for parameters specified in C¢NW¢N to appear as dummy parameters,

since it results in the contents of CPMMIN being overwritten,

To understand the effect of doing so the user should understand the
way in which data is transferred. Separate storage is allocated to variables
in subprograms. (This is the reason for using C¢MM¢N where possible.) On
entry to the subprogram, all of the data indicated in the CALL list is copied
from the calling program storage area into the subprogram area., Thus if the
subprogram has dummy variables in C¢MM¢N, they will be overwritten at this
time., On return from the subprogram, the data is copied back from the sub-
program storage area to the main program area, If any of the call parameters

are in C¢MM¢N, they. may be overwritten at this point,

A function subprogram may also be used without using the CALL state-
ment. (So may subroutines: again, this is unusual FPRTRAN,) In fact any
mention of the name of a function (together with a correct list of call
parameters) in an arithmetic expression will result in execution of the

function subprogram.

r_, X(1)
Example: The following function subprogram computes Z ~ for values

of N < 20:

Date: 6/3/65
Section: T.1.8.5
Page: 1l of 3
Change:

ILLIAC II MANUAL

FUNCTI@N PWRPLSF (X,Z,N)
DIMENSI@N X(20)

Y = 0.0
Dp11I =1,N

1Y =Y + X(1)
PWRPLSF = Z *¥ Y
END

The following program uses this function subprogram to compute and print

successively the quantities

ko
Zi=l i, k=1, 2, ..., 15:
2

DIMENSIgN A (20)

B = 2.0
D§ 10K = 1,15

A(K) =K

X = PWRPLS(A,B,K)

10 PRINT 12,X
12 FPRMAT (1HO, F30)

END
Date: 6/3/65
Section: T7.1.8.5
Page: 2 of 3
Change:
ILLIAC II MANUAL

The output from this program is as follows:

2
8

64

1024

32768

2097152

268435456

68719476736

3518L4372088484
36028797018533888

' 73786976293932236800
302231454899379506249728
2L475880078526850453431386061
+.105648192066669281773515E+32
+.132922799575000813986243E+37

This output appears to be most impressive; unfortunately, however,
only the 12 most significant digits have meaning in these numbers. The

remaining digits are garbage.

Note the following point to beware of: suppose we define
SUBR@UTINE SET1(S)
X=1
RETURN
Then if we write the statement

CALL SET1 (2),

this will result in the location which contained the value 2 being changed to

contain the value 1.

Date: 6/3/65
Section: T7.1.8.5
Page: 3 0f 3
Change:

ILLIAC II MANUAL

7.1.9 Printed Output From a Compilation

If a $PRINT $BJECT control card is present at the front of the program
deck to be compiled, the following items appear on the listing in the order

given (these items are explained below):

(a) ID information, date, control cards

(b) FPRTRAN source program listing

(c) Error messages, 1f any; these are self-explanatory

(d) Compiled object program, in machine language (it is hoped
eventually to print a NICAP version of the object program
beside the machine language Version)

(e) LYCATIONS ¢F VARIABLES N@T APPEARING IN FUNCTI@NS @R
DIMENSI@N STATEMENTS

(f) LYCATIPNS ¢F DIMENSIUNED VARIABLES AND FUNCTI¢N NAMES

(g) LPCATIPNS ¢F STATEMENT NUMBERS USED BY THE S@PURCE PR@GRAM,

If there is no $PRINT @BJECT control card, item (d) will not appear,
but everything else will. ZFurther, if a $G¢ control card is present, then

item (h} will appear, independently of the presence of the $PRINT ¢BJECT card:
(n) MEMJRY MAP,

The following explanation is offered of items (a) through (h)
(this explanation is meant to be read in connection with a listing of a

FPRTRAN compilation).

(a) First line: The left-most item is a sequence number

indicating what batch, and where in the batch, the
Job was run., The remaining items are self-explanatory.

Second line: The left-most portion is a copy of the ID card.
The remaining three items are the date, the sequence
number (again), and the time of day at which the job was
started, in hours, minutes, seconds, and decimal points
of a second.

Third line, and possibly fourth line, fifth line, etc. These

lines are copies of the control cards.

Date: 6/3/65
Section: T.l.9
Page: 1 ofk
Change:

ILLIAC IT MANUAL

Last line: This specifies the version of FPRTRAN used to

compile the program,

(b) Self-explanatory (Note that fatal error messages about undefined

statement numbers print out immediately following itemA(b),

and are not included in item (c))

(c) SEQUENTIAL STATEMENT NUMBER BELGW: Refers to the sequence

numbers assigned by the compiler to each statement.

These sequence numbers appear to the left of the statement
as listed in (b). Note that comment cards are not given
statement numbers. Note also that the word FATAL will
appear to the right of statement numbers referring to
fatal errors; if the error is nonfatal, nothing is printed

to the right of the statement number.

(d) The reader is referred to Chapters 2, 3, and 4 of the present

manual for an explanation of ILLIAC II machine language.,
We content ourselves here with the observations that the
left-most column of figures consists of the decimal
numbers assigned to successive instructions in the NICAP
program generated by the compiler from the user's
FPRTRAN program; that the second column consists of the
relocatable decimal storage locations assigned to this
program by the NICAP assembler; that the third column

is a translation of the second into octal; and that the
machine language listing itself is in octal. Note also
that the first few words of the program contain transfer
vectors to subprograms, if any of the latter have been

used.,

Date: 6/3/65
Section: T.1.9
Page: 2 of b
Change:

ILLIAC II MANUAL

(e) 1.

L i

(£) 1.

2,

The name of a function appears here on the listing of the
function subprogram, The location given is the temporary
storage location of the value of the function within the

subprogram,

Internal names used by the compiler and having no

significance for the F¢RTRAN user also appear here. These
names may be identified by the fact that they start with
a number while all of the user's names start with a letter.
The name of a function or subroutine subprogram sppears here
on the listing of the subprogram. The location given is
the entry point to the subprogram. (Note: The entry to a
subprogram is near the end, not the beginning, of the
listing of the subprogram, i.e.,, the entry to a subprogram
is generally nearer to the highest core location used by
the subprogram than to the lowest.,)
The names of subprograms called in the program being listed
appear here, The location given 1s the location of the
transfer vector (to the subprogram) within the program

being listed.

(g) Each statement number appearing in the user's program appears

here at least once, independently of whether any reference
is made to it by statements in the user’s program,
Normally, the octal address given for each statement
number is the quarter word to which the statement number
refers. However, statement numbers appearing in D¢ state-
ments {e.g., 13 appears in DY 13 I = 1, 33, 2) may appedr
here more than once in which case the situation is more
complicateg,

To be preéiéey a statement number will appear here once
for each DJ statement that itiappears: iniimthe User's program;
the octal address given for each DJ statement appearance
will be the location of the start of the DP loop to which

the DY statement refers, Further, if a reference is made

Date: 6/3/65
Section: T.1.9
Page: 3 of 4
Change:

ILLIAC II MANUAL

in a transfer statement (e.g., in an IF statement or

in a Gf TP statement) to a statement number appearing

in a D¢ statement, then that statement number will appear
here once more than the number of D¢ statements in which
it appears, and the octal address given in this case will
be the location of the first machine language instruction
in the sequence of machine language instructions used to
close the D¢ loop (this address will be greéter than any
of the addresses associated with appearances of the state-
ment number in s D¢ statement). |

CPMMPN: location given is the start of the C¢MM¢N area of
core.

ERASABLE: location given is the start of the ERASABLE
area of core.

AVAIIABLE MEMJRY STARTS AT: location given is the highest
location used by the program, except that the monitor is,
of course, always in locations 16,0008 through 17,7778
(the four high blocks of core).

PRPGRAM EXECUTIPN BEGINS AT: location given is the absolute
address of the first executable instruction in the object
program; in order to“Find out how much the program has been
relocated by, it is necessary to find out how many transfer
vectors there aré, and subtract that number from the
location given,

LPCATI@NS ¢F SUBRFUTINES USED: location given is the
entry point to the subroutine., The relocation of the
subroutine can be computed by subtracting the location

mentioned in (f)l. from the location given here,

Note: No indication is given when a program exceeds the amount

of core available to it; the excess only becomes apparent

when the program is executed.

Date: 6/3/65
Section: 7.1.9
Page: L of 4
Change:

ILLTAC II MANUAL

8.1
8.2
8.3
8.4

Introduction

Clagsification

CHAPTER 8.

THE PROGRAM LIBRARY

TABLE OF CONTENTS

Subroutine Conventions

Program Descriptions

. L-B1-ATAN1
.L-B1-SIN1
.4-B3-COSH1L
.4-B3-EXP1
. 4=B3-LGT1
. 4-B3-SINHL
. L-B4-SQRL
.L=D1-GQU1
.L-D2-RKG1
.4-E1-DVDF1
.L-FE1-TAG6
 L4-E1-LGUN
L-Fh-s1Ql
. 4-G5-RANL
. L-J6-TOPS

. 4-MO-CMP1
.4 -MP-PRINT

0o 0o Qo 0o o o Co Co Co o o o o Co Co o o GO

. 4L-KO-I@LIST

Change

Date
3/05/63
3/05/63
7/10/64

3/05/63

7/20/64
7/20/6k4
T/29/6k4
T/29/6k4
11/26/63
7/29/64
10/10/63
11/19/63
7/15 /6k4
7/20/6k
11/15/63
11/15/63
7/20/64
8/10/6k
11/1k/6k
Ve
9/22

7?16?6&

Date:

Section:

Page:
Change:
ILLIAC

6/2u4/65
Chapter 8
Contents
lofl

p)
IT MANUAL

8. THE PROGRAM LIBRARY

8.1 Introduction

Programs in the library fall into three classes:
1) subroutines
2) complete programs not of the system type

3) system programs (e.g., assemblers, compilers,

general I/O programs, monitors).

This chapter will describe classes 1) and 2) completely and the programming
details of class 3) All of class 3) will be on tape unless their use has
been discontinued. (Later on, disc files will be used instead of tape.)
Some of classes 1) and 2) will be on tape (as many as possible). The

remainder will be available on cards.

Date: 3/5/63
Section: 8.1
Page: lof 1
Change:

8.2 C(Classification

The numbering of the program is as follows. The number will

be made up of five parts,
cC, MMM...M, LL, QQ, SS
where

CcC is a classification code identical to the one
used in the SHARE 7090 library. (See Digital
Computer Laboratory Technical Progress Report,

April, 1962, pp. L2-U6 for details.)

MMM.,.M is a four- to six-letter semi-mnemonic identifica-

tion of the routine. It is unique to each routine.

LL is the change level. If the description is
changed in any way, the change number will be
incremented. Normally the routine itself should

not be changed.
QQ is the area of origination, normally UI.

5SS is a code specifying the system and/or language in
which the program is available. No assignments

have been made to this yet.

Date: 3/5/63
Section: 8.2
Page: lofl
Change:

8.3 Subroutine Conventions

Subroutines in the library follow the following conventions.

ENTRY Made with a JSB3,

A subroutine may start in any control group unless the description
states otherwise. If a subroutine does have requirements on the quarter

word placing, it will take care of them automatically by FIL pseudc operations.

EXIT

Made from subroutine by JLH3. Therefore the entry JSB3, ...
must be followed by a FIL. This is taken care of by using the CALL pseudo

operation,

Parameters and Data

ON ENTRY
Thirteen-bit parameters or addresses are handled as follows:

Single address length parameter in ML. More than four are
packed four per word in consecutive locations in memory
called control words. The address of the first location

is in Ml. Iess than four but more than one are packed into
the word followed the location of the address of the JSB3,...

instruction used for entry.*

Fifty-two bit parameters or data appear in memory with the locations of
individual words or the start and extent of blocks as 13-bit parameters.
When there gre one or two special data words, they may be in the Accumulator

if only one, or the Accumulator and F2 in the case of two words.,

* .
Some parameters fit more naturally into control words, some into the

word(s) following the entry jump order, so this convention may be
dropped as experience is gained in the use of this machine.

Date: 7/10/64
Section: 8.3
Page: 1l of2
Change: 1

ON EXIT

A single 13-bit answer is put in MO, When there is more than
one 13-bit answer, they are packed, four per word, into control words.
Fifty-two bit answers are put into locations specified in control words
on entry. One or two words of answer may appear in the accumulator and
F2. Exit is made to the left-hand control group in location M3 except
if parameters appeared in the order stream after the JSB3,... entry,
in which case exit is made to the left-hand control group of the first

location free of parameters.

TEMPORARY STORAGE

Subroutines which are complete in the sense that they do not
use user-supplied subroutines as auxiliary subroutines use locations

COMMON, COMMON+l, ..., etc., as far as necessary.

Subroutines on the library tape are in binary, and therefore
do not require the programmer to define COMMON. However, if the NICAP
deck is used, COMMON must be defined by the programmer.

Subroutines using auxiliary subroutines require that M2 contain
a location which is the start of a block of free locations of sufficient
length. For example, the Runge-Kutta integration of ordinary differential
equations uses four temporary storage locations. If M2 = 100 on entry
to Runge-Kutta, these locations are 100, 101, 102 and 103, On entry to
the auxiliary subroutine, M2 will contain 1O4; on return to the main

program, it will contain 100 again.

Date: 7/10/6k
Section: 8.3
Page: 2 of 2

Change: 1

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
B1-ATAN1-Q0-UI-AL

NAME : Arctangent Subroutine
PURPOSE ; Computes arctangents of arguments

OTHER SUBROUTINES USED: None

TEMPORARY STORAGE: Four words beginning with CHMMPN

NUMBER OF WORDS: 51 words

EXECUTION TIME: 210 usec (average)

USE: Normal entry with argument in accumulator. Normal exit

with result in accumulator. F2 through FT7 saved.

METHOD: The sign of the argument is noted and the absolute
value used to compute the arctangent. The correct sign
is restored before exit. To obtain the arctangent, the

domain of X is divided into seven intervals as follows:

No. Interval Comments
0 0 <X < tan 5& Use P(x) directly
1(3 :
—_— < =
1 tan oL = X tan 5T Use Bqn A with K = 1
2 tan 31 < X < tan PL Use Egn A with K = 2
24 = 24
3 tan 2% < X < tan kit Use Egqn A with K= 3
2L = 2L 4
i tan (993 X < tan 1 Use Eqn A with K = 4
2L = ok
5 tan-g—ﬁ-fx<tan% Use Eqn A with K = 5
6 tan!%% <X<= Use Eqn B
Programmed by: John Kelly Date: 7/20/6k
Approved by: Section: 8.4-Bl-ATANl

, r Page: 1l of 5
//éEZ\\) 1% Change :

X - tan kn

METHOD (Continued): Egn A: arctan X = kx + arctan t., t, = 12
12 k’ "k kn
l+Xtan'i—é

. arctan i
2 X

Egn B: arctan X

P(x) is used to compute arctan t, and arctan %.

P(x) = a;x + a3x3 + a5x5 ol + al7x17
where
al = 1.00000 00000 00000
a3 = -0.33333 33333 33333
85 = 0.19999 99999 99998
a, = -0.14285 71428 56331
8g = 0,11111 11109 O779k%
a,,= -0.09090 90609 63368
8 3= 0.07692 04073 24915
8)5= -0.06652 48229 41311
8y, 0.05467 21009 39594
ACCURACY: 12 decimal digits
. -12
Maximum error 0-1.0 .23 10
Average absolute error 0-1.0 .5 10713
Maximum error 0-0.1 7 lO-_13
-13

Average absolute error 0-0.1 11 10

REFERENCE : Perlin, I. E. and J. R. Garrett. Mathematics of

Computation, National Academy of Sciences--National
Research Council, vol. 1k, No. 71, July 1960, pp. 270-27Tk.

Date: 7/20/6k4
Section: 8.4-Bl-ATAN1
Page: 2 of 5

Change:

s a8uBy)

: 98-
$U0T1098

G Jo ¢

TNVIV-TE-1°Q

RELE=g)

79/03/L

ATANL

ATAN1A
ATANLB

ATAN1C

SFR
SFR
SFR
™

STR
CAM
CNM
suB
ADM
TZP
JIM
CAM
JZM
CAD
sus
STR
CAD
MPY
ADD
VID
SFR
LFR
STR
CAD
MPY
CAM
CSM
STR
CAD
FLD
MPY
ADD

59 COMMON
29 COMMON+2
3, COMMON+3
ATAN1G

F2

4.

-5

ATAN1IK+#MS+1
501
ATANIB

S ATANLC

&9 M5-6

6, ATANLH

F2
ATAN1IL+M5-1
F3
ATAN1L+MS5-=1
F2

1.

F3

6, COMMON+1

69 ATANIM#MS-1

F2

F2

F1

6 ATANLJ
18

F3

691y

F3
6ol

SAVE F5.

SAVE F2.

SAVE F3.

WANT ABSCLUTE: VALUE OF X.

SAVE X..

SET POSITIVE SIGN FLAG.

SET M5 FOR INTERVAL FLAG.

FORM NEXT DIFFERENCE TO GET INTERVAL.
INCREMENT INTERVAL FLAG.

JUMP IF INTERVAL NOT. YET REACHED.

TEST FOR INTERVAL 6.

JUMP IF INTERVAL 6.

ENTER X.

FORM X - TAN{(K=PI/12).

STORE NUMERATOR X - TAN{K=PI/12}).
ENTER TAN{K=P1/12).

FORM. THE DENOMINATOR

1 + X = TAN{K#Pl/12}.

ATAN1
ATAN1
ATANL
ATAN1
ATAN1
ATANL
ATAN1
ATAN1
ATAN1

ATAN1
JUMP IF INTERVAL O TO EXECUTION OF POLY.ATANL 1

ATAN1

ATAN1

ATAN1
ATAN1

ATAN1
ATAN1

ATAN1
ATAN1

TﬁK)ziXQTAN(K*PIIIZ)}I{1+X§T§N(Kt?331233AT§N1

SAVE Fé6.

STORE K#PI/12 IN Fé.
SAVE T(K} IN F2.

ENTER X, T{K}y OR 17X.
FORM Y==2,

SET LOCATION OF FIRST COEFFICIENT.
SET POLY ENDTEST COUNTER.

SAVE Ye==22 IN F3.

ENTER FIRST COEFFIC!ENT Af{17).

POLY MEANS THE POLYNGMIAL EXPRESSION.
FORM POLY = Y==2,

FORM POLY ¢ NEXT COEFFICIENT.

CALL IT Y.

“ATAN1
ATAN1
ATAN1
ATANY
ATAN1
ATAN1
ATANL
ATANY

ATAN1

ATAN1

ATANL |

ATAN1

: 98uBy)

: 988

1UOT109G
s 918

G JOo 1

TNVIV-TE-%°Q
©9/02/L

ATAN1D

ATAN1E

ATANLF

- ATAN1G

ATAN1H

ATANLI

ATAN1J

ATANIK

CJF
MPY
JIM
JNM
ADD
JZIM
STN
CAD
JZIM
LFR
LFR
LFR
LFR
JLH
STN
CNM
CAD
TRA
CAD
DIV
SFR
CNM
LFR
STR
TRA
sus
ADM
TRA
FIL
3198 £¢]
ocTe
0CcTQ
ocTQ
oCcTQ
ocTq

19

F2

Ss ATANLD
5o ATAN1LE
F6 v

4o ATANLE
FO

FO

So ATANLF
69 COMMON+1
5o COMNON
2, COMMON+2
3, COMMON+3
M3

F2

4

F2

ATAN1A

1.

F2

6, COMMON+1
5

6 ATANIN
F2

- ATAN1C

Fé6
491

- ATAN1D

POLY ENDTEST.
POLY=A(1)=Y+A(3)aYeald+. . . +A(1T7)aYRx]T.,
JUMP IF - INTERVAL 0.

JUMP IF INTERVAL 6.

ARCTAN{X} = POLY # KxPI/12.

JUMP IF POSITIVE SIGN FLAG WAS SET.
X WAS NEGATIVE, 50 MAKE

ARCTANIX)} NEGATIVE.

JUMP: IF. INTERVAL O.

RESTORE Fé6.

RESTORE F5.

RESTORE F2.

RESTORE F3.

EXIT ATANLI SUBROUTINE.

SAVE ABSCLUTE X.

SET NEGATIVE SIGN FLAG.

ENTER. X = ABSOLUTE X.

JUMP TO INTERVAL TEST.

SET NUMERATOR.

FORM ¥ = 1/X,

SAVE Fé.

SET. INTERVAL MODIFIER MS NEGATIVE.
STORE P1/2 IN Fé6.

SAVE 1/X. IN F2. .

JUMP. TO EXECUYE POLY.

=ARCTAN{X) = ARCTAN({1/X} - Pl1/2.
REVERSE SIGN SINCE —ARCTAN{X) L ZERO.
JUMP TO EXIT.

THE FOLLOWING ARE THE. TABLES USED.

6776017664513050,1776915676972506430,4777 A(L7}, A(15).
235494162:47339377,1505691057056100-11377 A{13}, Afll).
3434,7070:15622937T7513333,6666,15556,11777 A(9), Al7).
6314414631,511463,3377,15252:12525+5252,12600 A(5), A(3).

20005001

Afll)o

415441772351623¢915779220595730,4305,2400 TABLE OF

ATAN1
ATANL
ATAN1
ATAN1
ATAN1
ATAN1
ATAN1
ATANL
ATANL
ATANI
ATANL
ATANL
ATANL
ATANL

ATANL.

ATANL

ATANL.
ATANL.
ATANL

ATANL

ATAN1

ATAN
ATANL

ATANL

ATAN
ATANL

ATANL

ATAN1

- ATANL

ATANL
ATAN1
ATANI
ATAN1
ATANI
ATANI

33

34
35
36
37
38
39
40
41
42

43

44
45
46
47
48
49
50

52

53

54
55
56
57
58
59
60
61
62

63

64
65
66
67

s 98ury)

: 988y
:UOTID9G

G Jo g

TINVLV-Td-%"Q

$998(

©9/02/L

acTQ

ocTQ

gctQ

ATANLIL 0OCYQ
: ocTQ
ocYQ

ATANIM 0OCTQ

ocTQ

ocTQ
ATANLIN OCTQ

2646555105 666095600,4223,505,16475,11600 DIFFERENCES
21615,123344,6504,10001,24565745692032,12202 FOR
TTIT177T, 17777517677 THE INTERVAL TEST.
2111,10242,17236,14600:4474:15164,5440,6400 VABLE
2000599123355,11727,4130,4601 OF
7355511727+4130,4601 TAN{K=PI/12}.
206055221:14055,7200+41405,12443510132,16400 TABLE
6220,17665,4210,56005,2060,5221,14055,7201 OF
2474,646643070,15001 K=PI/12.

31105773251210452601 P1/2.

ATANL
ATAN1

ATANL.
ATANL.
ATANIL.

ATANL

ATANL
ATANL.
ATANL.

ATANI

68
69
70
71
72
73
T4
75
76
77

NAME :

PURPOSE :

OTHER SUBROUTINES USED:

TEMPORARY STORAGE:

NUMBER OF WORDS:

FAST REGISTERS CHANGED:

EXECUTION TIME:

EXIT:

USE:

METHOD:

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC IT LIBRARY PROGRAM
B1l-SIN1-00-UI-AL

B1-CfS1-00-UI-AL
Sine-Cosine
To compute sin % or cos % with x in the accumulator.
None

One location at COMMON, to be defined by the

programmer and F2.

13 words

F2 and the calling sequence uses M3, hence Fk.
65 psec (November, 1963)

Normal to left hand first word with sin % or cos %

in accumulator.

Normal, i.e,, CALL SINI,
CALL COSl

Chebyshev Polynomials

Entrance st "SINL" places x - 1/2 in A and computes
x(mod 2) is formed at
The identity

cos n(x - 1/2) = sin nx.
"0oS1l" and then x = 1/2 - |x].
sin(n/2 - |xx|) = cos nx is used at this point.
Sin nx is now computed using the Chebyshev polynomial

approximation of degree 13 to the Taylor series

expansion of sin nx, —1/2 <x< 1/2. The polynomial

Programmed by:
Revised by:
Approved by:

=

Robert Lange
Roberta White

o f s

. g 2K+1
sin x = Ckx
k=0
Date: 7/20/64
Section: 8.4-Bl-SIN1
Page: 1 of 3
Change:

METHOD (Continued):

REFERENCE :

is evaluated by the standard technique. The coefficients
were calculated on ILLIAC II, starting with

Hildebrand, F. B. Introduction to Numerical

Analysis, McGraw Hill, New York (1956).

Date: 7/20/64
Section: 8.4-Bl-SIN1
Page: 2 of 3
Change:

:88eg

: a8uBy)
:UOT2O9YG

€ J0 ¢
INIS-TE-°Q

1998

©19/08/L

FLD
DECQ

SIN1 SUB:
co0S1 STF:
| SFR
TOR

DAV

STN

MPY |

LER

STR

CAD

MPY

ADD

CJF

LER

MPY

JUH

0cTQ

ocTa

ocTe

0cTQ

0cTQ

0cTQ

ocTQ

COMMON BSS

. =63C0S1+5 MODIFIER CONSTANIS
10,3,2048 COMPUTE SINE
093¢ . S
6 COMMON SAVE F6
1,C0S81+1 CLEAR OV
10+3,2048 1X1 - 172 = A
F2 : X =172 - 1X1
FO : ~
6,C0S1-1 SET M8 AND M9, I = -6
FO STORE X#=2 IN FO
" 9¢ 1, . C1 = A
FO =Xxn2
9ol + C~1
851, IS I =0
69 COMMON RESTORE Fé6
F2 =X
- P = EXIT
3517:617444521,15173 c7
141659,15472,10711,10575 Ccé
2501,15532514354,1577 Ccs
13151,6467517623,6400 Ca
5063,5706,6336,13601 c3
15325,1030,14735,4602 c2
622041766554210,14201 Cl
1

SIN10600
S IN10001
SIN10002
SIN100 3
SIN10004
SIN1000S
SIN10006
SIN10007
SIN10008
SIN10009
SIN10010
SIN10O11
SIN10012
$IN10013
SIN10014
SINLOO1S
SIN10O16
SIN10017
SIN10018
SIN10019
SIN10620
SIN10021
SIN10022
SIN10023
SIN10024

NAME:

OTHER SUBROUTINES USED:
TEMPORARY STORAGE :<
NUMBER OF WORDS:
EXECUTION TIME:

USE:

MATHEMATICAL METHOD:

ACCURACY:

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
B3-COSH1-00-UI-AL

Hyperbolic cosine

EXP1

None

5 words

161.4 psec (average O < x < 2)

Standard CALL COSHL (x in the accumulator) and normal

exit (cosh x in the accumulator). Fast registers are

Programmed by:
Approved by:

John Kelly

/é; W L(ter

saved, OV is cleared,
cosh x = % (e* + 1/e*) where €* is computed by EXPL.
Using the identity cosh(2x) = 2 cosh™x - 1, the
maximum relative error is 7.9 ><.lO'12 and the average
error is 1,0 X 10-12.

Date: 7/29/6k%

Section: 8.4-B3-COSHL

Page: 1lof2

Change:

1 o8eg

: 93ury)
:UOT3038G

g 30 2

THSOD-£4-1Q

19187

719/62/L

COSH1 SFR
CALL
STR
viD
ADD
MPY
LFR
JLH
COSH1A BSS

4, COSH1A
EXP1

FO

1’

FO
1053,2048
44,COSH1A
M3

1

SAVE F4.
COSH1(X) IS
COMPUTED

FROM THE

EXP1 SUBROUTINE.

COSH1(X) = (1/2) = (E==X + Es==z{-X)}.

RESTORE F4.
EXIT COSH1 SUBROUTINE.
COSH1 TEMP STORAGE.

COSH1
COSH1
COSH1
COSH1
COSH1
COSH1
COSH1
COSH1
COSH1

01
02
03
04
05
06
07
08
09

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC ITI LIBRARY PROGRAM
B3-EXP1-00-UI-AL

NAME : Exponential

OTHER SUBROUTINES USED: None

TEMPORARY STORAGE: None

NUMBER OF WORDS: 40 words

EXECUTION TIME: 127.5 usec

USE: Standard, CALL EXPl (X in the accumulator) and normal

exit (eX in the accumulator)o Fast registers are
saved. OV is cleared but will be set if x > 127 log 2
[~ 88".)

MATHEMATTCAL METHOD: & = ¥ where K = 2%/ 8 v =x logee. w=16a +Db+f
where O < b < 15 (b integer), 0 < f <1, So
X =122 . g° °.K:, a is placed in the exponent
register and Kp comes from a table look-up. Kf = eCf

where ¢ = fn K.

eZ = 2(% +F(—:y)

where

So

£

3 5
2] c 2 c’ c 6
“30f *Tss0 T

*There is a correct 8-bit exponent in the accumulator. This may be too large
to store.

Programmed by: N, T. Hamilton Date: 7/29/64
Approved by: Section: 8.4-B3-EXP1l

Page: 1 of i
- ‘uém | Change:

ACCURACY: Using the identity e* = 1/e™, the maximum relative

error is 3.9 X 10—13,

Date: 7/29/ 64
Section: 8.L4-B3-EXPl
Page: 2 of 4

Change:

s 988g

s a8uey)
2 UOT3I08G

1 Jo €
TdXH-€9-4°Q

:o08Q

w9/62/L

EXP1

EXP1lA
EXP1B

EXP1C

TOR
MPY
SFR
SFR
SAM
LIN
SEQ
SAM
TNOR
JNM
DIV
CAD
LFR
LFR
JLH
AND
STR
MPY
CAM
STR
MPY
ADD
MPY
CRM
ADD
MPY
ANM
ADD
sus
viD
ANN
CAM
ORM
CNM
JZIM

Z2:EXP1
EXPLF
44EXPLE
5:sEXPlE+1
F5

8

FO

F&
EXP1C
44, EXP18
15,3,
15,3,
44EXPLE

5+EXPLlE+1

M3
EXP16G
F5

FO
29EXP1H
FO

291,
FO -

1,9

FO

1215

M2

F5

F5
28064

2
23127
3
29EXPLD

CLEAR 0OV.

FORM W = X = LOG2E. F#xX = Kauny.
SAVE F4

AND F5.

W = 1684 ¢+ B + F,

SHIFTY AND

STORE A IN MO

AND B IN Ml.

JUMP IF W NOT YOO EXTREME.
JUMP TO SET UF IF X NEGATIVE.
SET 0v.

CLEAR ‘ACC OR SET UF.
RESTORE F4

AND F5.

EXIT EXP1l SUBROUTINE.

MASK W .TO LEAVE FRACTIONAL
PART F :AND SAVE IN FS.

FORM F==2,

SET LOCATION OF POLY COEFFICIENTS.
SAVE F=22,

FORM .THE POLY .

EXPANSION FOR

{1/72) = KuzF4 K = 2#%{1/8).
RIGHT JUSTIFY B.

FORM

POLY.

MASK M1 TO LEAVE B.
CONTINUE

FORMING

POLY.

TEST FOR 0OV. LEFT 6 BITS
MUST BE 0 TO PASS.

TEST FOR UF. LEFY 6 BITS
MUST BE 1 TO PASS.

JUMP IF NO 0OV.

EXP1l
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXPl
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1

01
02
03
04 .
05
06
07

08\

09
10
i1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

: 38TEI)

;98-
UoT3299
s

T JO 4
TdXd-€d-%°Q

1B

2~y

£l
°

©9/62/L.

EXP1D

EXP1E
EXP1F
EXP16G
EXP1H

EXPll

JZM
JPM
TRA
ADD
CAE

" MPY

TRA

BSS

(E10 B¢
oCTQ
0CT1Q
0cTQ
ocTQ
0CTQ
ocTQ
oCTQ
orTQ
oCTQ
ocTQ
0CTG
0CTQ
0CTQ
0CcTQ
0cTQ
ocTQ
0ocTq
ocTa
oCcTQ
ocTQ
ocTQ

39 EXPLD
1EXP1A
EXP18
1093,2048

JUMP IF NO UF.
X POSITIVE SO SET 0OV.
X NEGATIVE SO SET UF.«
POLY EXPANSION COMPLETED.

MO PUT A IN EXPONENT REGISTER.

MLI+EXPLI
1,EXP1B

MPY BY 2 = K=»#8,
JUMP TO EXIT.

2 EXP1 TEMP STORAGE.

05612512166,05127,00202
00000,00777517777,17600
00000,00000,00026,03001
17777,17760,15377506401
00016514460,03775,04201
02705,05073,02453,10203
04000,00000,00000,00001
04271+05603,14372,12001
04603,07740,12143,07001
05137,16655,05154,05001
05520504746,06376,07401
06126,07124,02125,04001
06564504771511265,12401
072545;00615,14767,04401
02000,00000,00000,00002
02134912701,16175,05002
02301,13760,05061,13402
02457517326512466,02402
02650502363,03177,03602
03053,03452;01052,12002
032725022744514532,15202
035264500306,16373,12202

LOG2E.

MASK,
POLY

EXPANSION

COEFFICIENTS.

TABLE OF

2 # 2%x({B/8}

FOR 0

oLEs

B

oLE.

15.

EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXPL
EXP1
EXP1
EXP1
EXP1l
EXP1
EXP1
EXP1L
EXP1
EXP1
EXP1
EXP1
ExXP1
EXP1
EXP1
EXP1
EXP1
EXP1

36
37

.38

39
40
41
42
43
44
45
46
&7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER LABORATORY
URBANA, ILLINOIS

ILLTAC II LIBRARY PROGRAM

B3-LGT1-00-UI-AL
B3-LGE1-00-UI-AL
B3-LGB1-00-UI-AL

NAME : Logarithm
TEMPORARY STORAGE: COMMON, F2

OTHER SUBROUTINES USED: None

NUMBER OF WORDS: 53
EXECUTION TIME: 170 microseconds
ENTRY: Standard by

CALL LGT1 for loglox
CALL LGEl for logex
CALL LGBl for loggx

The number x, of which the logarithm is desired, should
be in the accumulator; on exit, the appropriate logarithm
replaces this number in the accumulator. If x < 0, OV is
set by the routine, and x is left in the accumulator;

therefore OV should be cleared before entering.

EXIT: Standard by JLH M3 with the appropriate log x in the
accumulator.
METHOD: To find the logarithm x, the routine normalizes x as

x = £.47%, 1/4 < f <1. An appropriate value of

(k =0, 1, ..., 11)

is chosen from a stored table of values so that

Programmed by: Marvin Gaer Date: 11/26/63
8.4-B3-LaT1

Approved by: Section:
L ,——‘y / Page: ‘1 of 5
, /, Change:

METHOD (continued):

L
loge(f) = loge(l + f

RANGE :

ACCURACY:

is such that 9 <1< —§. . A number
11
a = 1§ 5 (fll . 1)
77+ 2
. 1
is found, - 17 S < a<== 19° and following the series is

computed for logefl:

3 > 13
1L 1 + 2 2 2
) = loge(i":"g) = 2a + -%— + —%— ol —%3—

Finally logex is found from:

log x = log_ (f) +n log, Lo~ log, (ié)
e 1
16
(4 l

where log,) is found from a stored table.

-1 -1
log, X = (logelo) (logex)5 logx = (logBE) (logex)°

Finds the logarithm of all x > 0. OV set if x < 0.

-Exact to 12 decimal places, unless characteristic is

zero in which case good to 11 decimal places. Small
round-off error in the 13th or 12th decimal place as the

case may be.

Date: 11/26/63
Section: 8.4-B3-LGT1
Page: 2 of 5

Change:

s 93uBi)

:93ed

$UO0T3098

G 30 €
TIOT-Sd-4°Q

HELL- g

€9/92/11

t6T1

L6B81

LGE1

FIL:

SFR
CAM
TRA
SFR
CAM
TRA
SFR
CSM
TIN
STR
SEX
CAE
ADE
SiA
SBE

MPY

SuB
STR

ADD
vVIiD

STR

MPY |

STR
CAM
CAD
FIL

MPY

ADD

CIF -

MPY
SuB
STR
CAD

MPY .

49 COMMON
sl :
3sLGTE+3
%9 COMMON -
1
367143
4 o COMMON
1s1 :
3,L6TI+L7
F2

3

0

2

0

2

LGT1+154M0

10

F2

2.

F2

F2

F2

F3

2:-6
LGT1+43

F3.
LGT1+50+M2
2:0y

F2.:
LGTI+2T+#MO
F2
LGTL+50
M3.

L06 10 X

Mi= 1
Lo6 2

MEANS LOG

X

10 X

MO=0 -MEANS LOG 2 X

Mli=-1 MEANS LOG E X

X LY EQUAL TO O -MEANS ERROR

NORMALIZE X X=F-4N

16-F F
TABLE

OR
LOOKUP

RESTORE F

‘o 16{40

F 1l =
STORE.

5¢K=F
F1-1
F 11

A= F 11 /7 (2+F 11)

STORE
XQ=A2
STORE
A6

XA 2
*ﬁif i
LOG -

+A=L0G{1+

STORE
LN 4 -

A

A2 IN F3

=§§o‘.n0

LN F:

F 111=L0G F 1
=LOG 16 / 4.54N=LN F:

. LGTL0000 -
- L6T10001

L6T10002
L6T10003
LGT10004
L6T10005
LGT10006
LGT10007
L6T10008 -
LGT10009
L6T10010

. LGT10011

LGT10012
LG6T10013
LGT10014 :
LGT10015
LGT10016
LET10017
LGT10018

- LGT1E0019

L6T10020
LGT10021
L6T10022
LGT10023
LGT10024 °
L6T10025
LGT10026
LET10027
LGT10028
L6T10029
LGT10030
L6T10031
L6T10032

LGT10033

LET10034

:a8usy)

s 988d

TUOTF0998
s99%8(Q

§ Jo 4

TIDT-€E-1°Q
£9/92 /11

ADD
JIM
JHM
MPY .
LFR
JLH
MPY
TRA
DIv
TRA
FIL
ocTQ
ocTqQ
ocTQ
ocTQ
0CcTQ
ocTQ
ocTQ
ocTQ
ocTQ
ocTQ
ocTQ
0cTQ
0cTQ
ocTQ

ocTQ
ocTQ
ocTq
ocTQ
0cTQ
0cTQ
0CcTq -
ocTe

0cTQ

ocTe

07070,16161,14343,11401
05642516427,04272,02601
04730411661,03542,07001
04210,10421,01042,01601
03607:10360,17036,01201
03274512065,16241,12601
03030,06060,14141,07601
02620,13102,14413,02001
02436413412,03656,01201
02275512045,16641,02601
02151,16713500432,07601
02041,00410,04102,01001

- 02422,17224,04027,11201

02105¢:07400507163,01601
07151¢11744016071,16000
06037,07541,05534,00000
050364 14777,02762+404400
04127,03556,02640,12600
03275504512511110514600
02510,12560,03470,12200
07714,+10706,14547:06177
05337:,12006,13250,07777
03114,415362,16531,05577
04040,12730,11716,10576

F2 +LN F= LN F.4N=LNX
1¢3,LGT1+16 -
1:.L6T1+16 LOG E
LGT1+S51 -1/ LOG:E 10
49 COMMON RESTORE F4
LGT1¢52 o1 7 LN 2 = LOG 2 X
LGTl+1l6
. 1853,
LGT1+16

SCALE= 16 /7 4.5+R

LOG 16 7 4.5+R

LGT10035
L6T10036
LGT10037
LGT10038
LGT10039

- LGT10040

L6T10041
LGT10042
LGT10043

- LGT10044

LGT10045
L6T10046
LGT10047
L6T10048
LGT10049
L6T10050
LGT10051
L6T10052
LGT10053
LGT10054

- LBT10055

LGT10056
LGT10057
LGT10058 -
LGT10059
LET10060
LGT10061
LGT10062

L6T10063
LGT10064 -

LGT10065

- LGT10066

LGTLI006T
LGT10068
LGT10069 :

s 98usy)

: 98eg
{U0T309¢g

:938Q

g Jo g

TIOT-CE-1°Q
£€9/92/11

0cTQ
oCcTQ
0cTQ
0CcTQ
0cTQ
0CTQ
ocTQ
0cTQ
0cTQ

ocTQ

04730,11661,03542,10377

056425 16427:04272,03371
07070516161:14343,10577
02222,04444:11111,02200
03146,06314914631,11400
05252, 12525,05252,12600
04000,00000,00000,00001
026135,11027,17372,03601

103362, 15730512446,16400

02705,05073,02453,10201}

A6

AS

A4

A3

A2

Al

AQ

LN 4

1.7 EN 10

WILL BE 1 /7 EN 2

- LGT10070

LGT1007}
LGT10072
LG¥10073
LGT10074 -
LGT10075
LGT10076
LGT10077
LGT10078 -
L6T10079

NAME :

OTHER SUBROUTINES USED:
TEMPORARY STORAGE:
NUMBER OF WORDS:

EXECUTION TIME:

USE:

MATHEMATICAL METHOD:

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
B3-SINH1-00-UI-AL

Hyperbolic sine
EXP1l

None

21 words

89.3 usec for |x| <1, 178.3 usec average for
1< |x|] <10,

Standard, CALL SINH1 (x in the accumulator) and normal
exit (sinh x in the accumulator). Fast registers are

saved. OV is cleared if EXPl is called.

For |x| < 1, a Chebyshev polynomial organized by powers
of x is used. The coefficients are given in the

reference below. For lx] > 1,

sinh x = % (e* - 1/&%)

where e¥ is computed by EXPl.

ACCURACY: Using the identity sinh2(2x) = hsinhzx(l + sinhex),
the maximum relative error is 2.2 X lO“l2 and the
average error is .30 X 10_12.

REFERENCE: Clenshaw, C. W., Chebyshev Series for Mathematical
Functions, Vol. 5 of Mathematical Tables, National
Physical Laboratory, p. 2k.

Programmed by: John Kelly Date: 7/29/6L

Approved by: Section: 8.4-B3-SINH1

Page: 1 of 3
‘//,422 - ’Qz Se s Change :

1 28uBy)

19887
:UO0T3098

€ Jo g

THNIS-CL-%"Q

1 998(Q

w9/62/L

SINH1

SINHI1A

SINHIB

SINH1C
SINH1D

SFR
STR
DAV .
suB
TP
CAD
MPY
SFR
CAM
STR
MPY
CLSM
FLD
ADD
MPY
CJF
ADD
MPY
LFR
LFR
JLH
CAD
CALL
STR
VID
ADD
MPY
TRA
BSS
8CTGQ
5eTQ
8100 B¢

44 SINHIC

SAVE F4.
Fa SAVE Xa.
- FORM
i. ABS. (X)) - 1.
S5INH1B8 JuEP IF X .iL. -1 OR X .G. 1.
F& FORM
Fl Xxw2,
59,SINHIC+1 SAVE F5.
49 SINHID SET LOCATION OF POLYNOMIAL CONSTANTS.
FO Y = X#x2,
491> FORM Al3 = Y.
595 SET LOOP COUNTER.
451y SINHLI(X) IS
FO COMPUTED FROM
5 A CHEBYSHEY
M4 POLYNOMIAL EXPANSION.
F&4 SINHL({X) = Al=X+A3#X*n3+,..+A13#X=x]13,
5¢SINHIC+] RESTORE F5.
45 SINHIC RESTORE F4.
M3 EXIT SINH1 SUBRDUTINE.
F& Xa
EXP1 SINH1I(X) IS
FO COMPUTED
-1. FROM THE
FO EXP1 SUBROUTINE.
105352048 SINHI{X) = (1/2) = (E=#X - E=#{-X]}.
SINH1A JUMP TO EXIT.
2 SINH1 TEMP STORAGE.

05474,00102504236416560 Al3.
03271,04232,12511,15164 All.
05616,17127,11460,16767 A9.

SINHL
SINHL
SINHI
SINH1
SINH1
SINHL
SINH1
SINH1
SINHI
SINHL
SINH1
SINHIL
SINH1
SINH1
SINH1
SINH1
SINHI
SINH1
SINH1
SINH1
SINH1
SINH1
SINH1
SINHI
SINH1
SINH]
SINH]L
SINH1
SINHL
SINH1
SINH1
SINH1

01
02
03
04
05
06
o7
08
G9
10

i1

i2
i3
i4
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

: 98uey)

1 088J
$UOT3I08S

€ Jo ¢

TNHIS-£4-1°8

1 9%B(

79/62/L

0CTO
OCTg
ocTQ
ocTa

06400, 15001,07005,10372 AT.
04210,10421,01047,02775 AS.
05252,12525,05252,12377 A3.
02000,00000,00000,00001 Al.

SINHL 33
SINH1 34
SINH1 35
SINHL 36

NAME:

PURPOSE:

OTHER SUBROUTINES USED:
TEMPORARY STORAGE USED:
NUMBER OF WORDS:
DURATION:

ACCURACY:

RANGE USE:

ENTRY:

EXIT:

METHOD:

UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER LABORATORY
ILLIAC II LIBRARY PROGRAM

BL-SQR1-00-UI-AL

Square Root

Replaces the rounded contents of the accumulator
with its square root if the accumulator is
positive. Does nothing if negative. This routine

always clears overflow.
None

F2 and COMMON

9

150 microseconds

Maximum error is not more than 1.5 in the least

significant place (bit ULk).

Accumulator exponent can be in range -128 to +127
on entry.

Standard by CALL SQRT with X in the accumulator.

Standard with NX in the accumulator if X > 0O or

with X in the accumulator if X < O.

Four iterations of the Newton Fformula

Xgp = (XN + X/XN)/2 are used.

The first approximation X. is formed from the

5

normalized form of X = Y4 as follows:
If E odd, X = (v + 1)4ED/2,

0
If E even, X =1/2(Y + 1452,

]

0]

The iteration is done with a zero exponent.

Py o)
Programmed by{/,é;f/tx), C%'Cklf Date: 10/10/63

Approved by:

Section: 8.4-B4-SQR1
Page: 1of 2
Change:

SGR1

:98uey)

:28eg
1uoT108g

c 3o ¢

ot/

'8
0T

Tads-

199%8(

€9

FIt
TZN
SFR
STR
SEX
CAE
STR
ADD
ADD
SBE
CSM
STR
vID

ASC

CAT
SBE
CJu

CRM .

JPM
STR
CAT
ADE
LFR
TOR
JLH

1,SQR1+8 "
4, COMMON
Gs3y

3.

0

2935

293,

2.

1

24

03235

2939

0s3»

053,

1
2:5QR1+4
3¢l

3423 SQR1+7
03,

03,

339

44, COMMON
3,SQR1+8 -
399

SQUARE ROOT FIRST CARD
TEST FOR ZERG

SAVE F4

ROUND

STORE EXPONENT

CLEAR EXPONENT

DOUBLE

ADD 1

DIVIDE BY FOUR
SET COUNT
STORE . XN

X7 XN

DOUBLE
DIVIDE BY FOUR

- LOOP FOUR TIMES

HALVE EXPONENT
TEST FOR EVEN -EXPONENT
DOUBLE

SET EXPONENT -
RESTORE F4

- RESET :OVERFLOW

EXIT

SQR10001 .
SQR1C002
S5QRLI0003
SQR10004 -
SQR10005
SQR10006
SQR1000Q7 -
SQR10008 -
SQR100G9
SQR10010
SQR10011
SQR10012
35QR10013
SQR10014 -
SQR10015
SQR10016 -
SQR10017
SQR10018
SQR10019
SQRE0020 :
SQR10021
SQR10022
SQR10023
SQR1I0024 °

UNIVERSITY OF ILLINOIS
GRADUATE COLLEGE Entry Name
DEPARTMENT OF COMPUTER SCIENCE | CCPLEC

ILLIAQ, LI Library Routine
J5-CCP4SC-40-UI-AL
August 19, 1965

IDENTIFICATION CalComp Plotter Scale for FPRTRAN and NICAP.

PURPOSE CCP4SC (1) finds the minimum value in a specified
subarray of a given one-dimensional array, and (2) computes a scaling factor for
the array. It places these results into a two-element array which can be used
with CCPOLN to graph the array and/or with CCPS5AX to construct an axis.

RESTRICTIONS None.

REGISTERS AND USER'S MEMORY CHANGED M3 by the calling‘sequence, FO-F3, and
accumulator. \

TEMPORARY STORAGE None .

LENGTH OF ROUTINE ‘ 53 words éxciuding other subroutines used.
OTHER SUBROUTINES USED : J5-DXDY-00-UI-AL

EXECUTION TIME -1 seconds for 4,000 numbers.

ENTRY The NICAP calling sequence is

CALL CCPLSC

DECQ X,S,N,K

DECQ T,,,
where X, S, N, K, and T are the addresses of the parameters defined below ahd
not the parameters themselves.

Programmed by: Richard Lyon Date: 8719765
. . . Section: 8.4-CCP4SC
Approved by: Joanne Watkins Page : 1 of 2
Change: 0]

ILLIAC II MANUAL

UNIVERSITY OF ILLINOIS
GRADUATE COLLEGE
DEPARTMENT OF COMPUTER SCIENCE Entry Name

IILLIAC IT LIBRARY ROUTINE CCPOIN
J5-CCPOLN-41-UI-AL
August 17, 1965

IDENTIFICATION CalComp Line for F¢RTRAN and NICAP.

PURPOSE CCPAIN plots and connects on the CalComp Plotter a
specified subset of the set of points

<X(I)-rXMIN Y(I)- SYMINY 0 1o1) o, ..., T,

given the arrays X andD§ whose elZFents are X(1), x(2), ..., X(N) and Y(1),
v{2), «o., Y(N), respectively, and given XMIN, YMIN, DX and DY.

RESTRICTIONS (ymax-ymin)/DY < 29 where ymax is the maximum and ymin
is the minimum of Y(1), Y(|X|+1), Y(2|K|+1), ..., ¥(r|K|+1) where r is the largest
integer such that r|K|+l < N.

REGISTERS AND USER'S MEMORY CHANGED M3 by the calling sequence, accumulator
and FO-F3.

TEMPORARY STORAGE None.

IENGTH OF ROUTINE About 81 words excluding other subroutines used.

OTHER SUBROUTINES USED J5-CCP1PP-00-UIL-AL

EXECUTION TIME 3.68 seconds for 2,000 data points.

ENTRY The NICAP calling sequence is

CALL CCP6SC
DECQ X,Y,N,K
DECQ TX,TY,,

where X, Y, N, K, TX, and TY are addresses .of the parameters defined below and
not the paramters themselves.

Programmed by: Richard Lyon : Date: - 8/17/65
o) . Section: 8.4-CCPAIN
Approved by: Joanne Watkins | Page : 1 of 2
Change: 0
ILLIAC II MANUAL

UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER LABORATORY
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
D1- GQU1-00-UTI-AL

TITLE: ' Gauss Quadrature

LENGTH: 194 words
TEMPORARY STORAGE: 18 words at a location specified by the calling program

(see Method of Use).

OTHER SUBROUTINES USED: A subroutine to evaluate f(x) supplied by calling
program (see Method of Use).

TIMING: . Ranges from 200 psec for n = 2 to 875 usec for n = 15.
(50n + 100) psec is a good estimate of the timing.

PURPOSE : - To evaluate numerically

u/\q f(x)ax

b

where p,q are constants supplied by the calling program,
and f is a real-valued function which is evaluated by a

~ subroutine also supﬁlied by the calling program.
METHOD. OF USE: The calling program must supply five items as follows:

1. p: The lower limit of integration must be in F2

upon entry to the subroutine.

2. q: The upper limit of integration must be in the

accumulator upon entry to the subroutine.

3. n: The number of points at which the function is
to be evaluated must be in the first quarter-word
of the word following the CALL instruction; n must
be an integer in the range 2, 3, ..., 16.

 Programmed by: L. Lunde Date: 11/19/63

Approved by: Section: 8.4-D1-GQUL
Page: lof 9
}1/ Z Change:

METHOD OF USE (cont'd):

BXIT:

EXAMPLE:

L. f: Auxiliary subroutine to evaluate f(x) at arguments
supplied by this subroutine. Upon calling the
auxiliary subroutine, the argument x is placed in
the accumulator, and f(x) is to be returned to the
accumulator. The auxiliary subroutine must begin in
the left-most quarter-word. The.address of this
location is to be placed in the second quarter-word
of the word following the CALL instruction. The
link to the auxiliary subroutine is M3. The control
word following CALL has the form:

n | address of f| not used | not used

5. . A block of 18 consecutive words for temporary
storage. The address of the first word of the block

must be put in M2 before entering the subroutine.

Upon exit from this subroutine, the approximation to the
integral of the function is returned to the accumulator.

[The accumulator will contain

n
q-D a-p,g+Dp
2 igiaif(xi 7~ + =)]

Control is returned to the word following the one which

contains the parameters.

A portion of program which might be used to call this

subroutine is as follows:

CAM 2,400 LOO is the location of block

for temporary storage
CAD 6.
STR F2 = 6 (lower limit of integration)
CAD 9. a = 9 (upper 1limit of integration)
CALL GQU1

Control DECQ 10,250,, n = 10, the auxiliary subroutine
returned - f is located beginning at 250
here

Date: 11{19/63

| Section: 8.4-D1-GQUL

Page: 2 of 9

Change:

MATHEMATICAL DESCRIPTION: The Gaussian quadrature formula for evaluating an
integral with arbitrary limits (p,q) is given by

fq £(x)a(x) = 4% %aif(xi 52+ A5E) + R (1)
i=1
b

where x, is the ith root of Pn(x) and

L 1 b/wl Pn(x) =

. 1 -
i Pn(x.) /| X - X

1

X, = = . a, = .
i *n-i+1? 1T Bpeiel

) is an arbitrary polynomial of degree at
) =0.

I £, o (x

most 2n.- 1, then Rn(fEn-l
If £(x) has a continuous derivative of order 2n in the

interval (p,q), then

(en)
R = E;——-iél where ¢ is a point in the interval (p,q)
(2n)!

n

and

K is (ann)(2n+l)l/2
n (q - p)n+l/2

Rn is the error term. The zeros of the Legendre
mhmﬂﬂs%@%n=2,&.“,w,wdwewwﬁ-
ponding weight coefficients a; were taken from the

16 place tables from Tables of Functions and of Zeros

of Functions, Applied Mathematics Series 37, prepared

by the U.S. Department of Commerce, National Buresu
of Standards.

Date: 11/19/63
Section: 8.4-D1-GQULl
Page: 3 of 9
Change:

s 88uBy)
ad3eg

6 Jo %

ndoH-Ta-+°Q

S UOT3098
2998

€9/6T/1T

GQU1

FIL

STR
ADM
ATN
SFR
ATN
SFR
ATN
SFR
ATN
SFR
LFR
CAD

suB -
MPY .

STR
ADD
STR
CRM
JNM

CRM .

css

MPY .

SIA

CAM
CAD .

sus
Tz

CAD
MPY
ADD
SIA

ADD :

SIA

CJu

F3
2:14
2515
4
2+1¢
5
2ols
6
2:1y
T-
5¢M3

F3

F2
1053,2048
M2-6

F2

M2-5

451
4,6QULI+38
4912

M4,
1053,2048
8

1

M4,

2.
GQUL+11

1+2,6QUL+9

Mi.
Mi+l.
6QU1+59,
0
Ml1+64.

;12

PICK UP PARAMETERS N AND F

(Q-P}/2
{(QsP)s72

JUMP IF N IS ODD

LOCATE XI IN TABLE

LOCATE AI IN TABLE

6QU10000
6QU10001
6QU10002
6QU10003
6QU10004
6QU10005
6QU10006
6QU10007
6QU10008
6QU10009
GQuloolo
6QU10011
6QU100L2
6QU10013
GQU10014
6QU10015
6QU1l0016
GQU10017
GQU10018 "
6QU10019
GQU10020
6QuU10021
6QU10022
6QU10023
6QU10024
6Qu10025
6QU10026
6QU10027
6QU10028
6QU10029
GQU10030
6QuU10031 .
6QU10032
6QU10033
6QU10034

2 38uBy)
: 98984

6 Jo ¢
dH-TA-4°Q :uo1308g

s99%8Qq

€9/61/1T

CAM
CAM
CAD
MPY

ADD

SFR

SFR

SFR -

SFR
J§B
FIL
LFR
STR
cse
MPY
ADD

SFR -

Jss
FIL
LER
LFR
LER
LER
ADD

MPY .

STR
SBM
cJu
Ccss
ADD

TZ.
CAD

ADD
cJu

9,1
6yM2-14 -
MO

M2-6
MN2-5
#gﬂz—la
SeM2-17
H9M2~16
T+ M2-15
3sM5

Q{HZﬁlB‘
M6

Osly
M2-6
M2-5
3¢MS

H4M2—-18
5:M2-17
64M2-16
TsM2-15
M6 .

1241,

6'1'

9.1
842,6QU1+15
M4,

2

GQUL+37
TeM2~-14 -
Tels

Tely
9+2:6QUL+32

FORM 'ARGUMENT T+R

EVALUATE F(T+R)

EVALUATE F{-=T+R)

FORM :

SUMMATION

6QU10035
6QU10036
GQUL0037
GQU10038
6QU10039
6QUL0040
6QU10041
GQU10042 -
GQU10043 -
6QU10044
GQU1004S
GQUL0046
GQU10047
6QU10048
6QU10049
6QU10050
6QU10051
6QU10052
GQuU10053
6QU10054%
GQU10055
6QU10056
6QU1LG057
GQU10058 -
6QU10059
6QU10060
6QU10061
6QU10062
GQU10063
6QU1006%
6QU10065
6QU10066
6QU1006T -

‘6QU10068

6QUL0069

2 98uey)
o8.g

6 Jo 9
ndH-Ta-%°Q

$UOTLO9G
;9%

€9/6T/11

MPY

LFR
ATN
LFR
ATN
LFR
ATN
LFR
ADM
JLH
CAD
TRA
CRM
CAM
€SB
MPY
SIA
CAM
CAD
Sus
Tz

ADM :

sus
[24

cJu
CAD
MPY
ADD
SIaA
sus
ADD
SIA
SFR
SFR
SFR

M2-6
&GoM2-4
2:¢1y

S

251y

é

7
Zg"’ia

- 35201

M2-14
1:6QU1¢33
4912

9

M4-1.
10:3,2048
8

151

M4,

3.
2:6QULI+44
| P

2.
2¢:6QUL+44
1:,6QULI+43
ﬁio

Mi+1l.
G6QULI+122.

- 12
M1+GQU1+122.

6QU1+59.,
0 .
49M2-18.
S5.M2-17
6y M2-16

EXIT

LOCATE FIRST A

LOCATE FIRST X

6QU10070
6QU10071
6QU10072
6QU10073
6QU10074
6QU10075
6QU10076
6QU10077
6QU10078 -
6QU10079
6QU10080
6QU10081
6QU10082
6QU10083
GQU10084
6QU10085
6QU10086
6QU10087
6QU10088
6QU10089
6QU10090 -
6QU10091
6QU10092
6QU10093
6QU10094
6QU10095
6QUL0096
6QU10097
6QU10098
6QU10099
6QU10100
GQULO101
6QU10102
6QU10103
GQU10104

s aguey)

: 9884
$UOTRO09S

6 30 L
Bo-Ta-4°g

9980

€9/6T/TT

SFR
CAD
JsB -
FIL
LFR
LFR
LFR
LFR
ATN
MPY
CAM
STR
TRA
FIL
ocTQ
0cTQ
ocTQ
oCcTQ
0CcTQ
ocTQ
ocTQ
ocTQ
ocYQ
ocTQ
ocTQ
ocTQ
ocTQ
oC¥Q
ocTQ
0CTQ
ocTQ

ocTQ

acrQ
0cTQ
ocTQ

T+4M2-15
M2-5
3+M5 EVALUATE F(Q+P}/2)
5.M2-17

64M2-16

TeM2-15

12+,1,

[+
6,M2-14
6491,
2+GQULI+1S

04474,15164505440,06400,06144,13757,04176,16200,02560
10776514735503600,06707,03333,14754,07400,04235,11077
15463,06600,07177,13316,00246507600,07505,10455,00154
16777:,05224,05011,06253,11000,07353,06244416401,04200
03176,05357,10432,00000,05735,0477113707,04000,07457
10570, 16370:14000,05675,06224,17170+16577,04150+11225
10145,00600,06277:02253,02223,164005,07535,05434,13025
11600,02460,02213,07110,12600,04720,05722,00357,17600
06540,06104,17032,00200,07575,11262:16576,04400504607
02407,10443,14377,03357,03000,04401,06400+05336;15622
02433,14400,06727,04625,16471,06200,07625,01740,06125
16200,02120,00617,07753,04000,04116,03367414233,01400
056564513173415103,02600,07061,06421,12740,11200507646
15142,17657,15400,04003,15137,10765,06377,02742,12151
00250,13000,04545,12360,05600,17000,06121,10256516661

01400,07167;04164,17767,01000,07664507435,10710,05600 -

07277:15207,11036,05377,03455,00327410214,07200505107
01003,03540,03400,06323,04161+10470,17000,07265507565
01341:11400507677,03327,06122,14600,03352,05751,13336
07577,02433,01262,04422,15200,04076,07253,05235,416000
05377,02333,00474,01600,06474503356,04333,13200,07332

6QU10105
6QU10106
GQU10107
6QU10108
6QU10109
GQU10110
GQU1OL11
6QU10112
6QU10113
6QU10114
GQU10115
6QU10116
6QU10117
6QU10118
6QU10119
6QU10120
6QU10121
6QU10122
GaQu10123
6QU1I0124
6QU10125
6QU10126
6QuU10127
6Qu10128
6QU10129
6QU10130
6QU10131
6QU10132
6QU10133
6QU10134
6QU10135
6QU10136
GQU10137
6QU10138 -
6QU10139

: 98uey)

: 988
$U0T}088

6 30 Qg

dD-Tad-4°8

: 9980

£9/61/TT

0CcTQ
0CTQ
0cTQ
0cTQ

0CcTQ

ocTqQ -

ocTQ
0cTQ
ocTQ
0CTQ
0CcTQ
ocTQ
ocTQ
ocIQ
0CcTQ

ocTQ

0cTQ
0cTQ
0cTQ
ocTQ
ocIQ
0cTQ
ocTQ
0CTQ
ocTQ
0cTQ
ocTQ
oCcTQ
octTQ

0cTQ

oCcTIQ
oacTQ
ocTQ

0cTQ

0cTQ

15721,02563,03600,07707,15060,17673,05400,06340,05646
02736,00777,03116,07064,11127,15400,04442,13166,17021

16200;05627,03341,10065,06200,06622,04042,01777,17600

07377:01114404761,06200,07716,15047,14145,14600,03024
12753,03166,12577,02201,07127,03102,03200,03524,0045%
15103,12400,04742,15106,06653+15000,06026,02122,17207

03200!06?31Q12003!05051!16490t0?43‘i11526’0665511?*00'

07724,11302,06232,17200 :

GZOGG:GQGOG;GO@OO:GOOOI:070?0:16161'1€343s11200104343
10707,01616,03600,05157,02770,04030,04600,02620,15007
13747,13400,04432,02547,10465407600,03650,07321,02656
04200407451514754:03334500377403574211152+04625,04200
02705,12675412571,04600,05366,17540,01705,13577,03257
17277,00074,03000,03033,17472,07343,02600,02171,12613
10475,10400,04111,07551,17404,15577,02715,10660,65431
11200,02404,17050,05045,05400,07073,07665,03072,05377
03172,10350,02312,00177,02510,12441,17545,04400,02377
05764414070,15200,02053,07303+16202,07200,05617,13651

131044,05377,02463+11457,14003,416777,02272,07363,10024

15400,02116,16523,15125,11600,07005,10131,15001.,0777%7
04620511614,10361:16177,02104+05374,05542,15777,02135
16326, 04176,00400,02064,07121,03372,05400,07354,12261
04215514377,05754,02670,15577,16177:,040k1,10107,15737
01377+071005,04562,06267,07376,07762:00316:06651516177
07361,10525,14112,15577,06400,13076,06543,05177,05076
13445,10744,05777,03330,01401,05716,06177,06023,12731
15724+415726,07342:01775,01702,13577,07173,06616,05335
02777,06514,15565,13701,04377,05546,13714+14511,04777
04343,04667,;00254,13777,02745,05062,06417,14177,05135
02434,10751,11776,06706,16101:,05242,12177,06441,17427
11337,05177:05737:,15616,02521,16377,05017,11673,16705
12377,03706,17272,07366,01177;02441,04754,05334,07177
04375,11330,13117,16776,06367,00527,05763+11377,;06263
01477,01772,00577,05752,00772,07333,10577,05244,02363
00520, 15777:04356,13473:04454,06377,03333,13113,01537

6QU10140
GQU1014L
6QULO142
6QUL0143
6QU10144
GQU10145
GQULO146
GQU1OL4T
6QU10148
6QU10149
GQUL0150 -
6QU10151
6QU10152
6QU10153
6QUL0154 -
6QU10155
6QU10156 -
6QU10157
6QUIOLS58
6QU10159
6QU1L0160
GQULO161
6QU10162
6QUL0163
6QU10164
6QU10165
6QUI0166
GQU10167
6QU10168
6QU10169
GQU10170

GQU10L71

6QUlol72
6QU10173
6QU10L74 -

s 98usBy)

s 2883
¢ UOT2098

6 30 6
mndoH-Td-4%"8

$ 9380

€9/61T/11

ocTQ
ocTQ

oc1qQ
ocTQ .
octQ -

01177,02200,16023,00265,15177,03737,07071,01172,02576
06037,17256510034,11577,05657414307,07701,10177,05323
07273413264516777,04622,17541+13624,07577,03771,16571
05655,03577,03027,01167,03634,14377,07757,15432,02602
04T16403363,07325+12267,14176

GQU10175
6QU10176
6QU1L0177
6QU10178
6QU10179

NAME:

PURPOSE :

OTHER SUBROUTINES USED:

TEMPORARY STORAGE:

NUMBER OF WORDS:
FAST REGISTERS CHANGED:

EXECUTION TIME:

USE:

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
D2-RKG1-00-UI-AL

Runge-Kutta-Gill

To solve a system of N simultaneous, first-order,

ordinary differential equations.
An auxiliary subroutine provided by the programmer.

Three consecutive wordsbeginning at a location given
in M2,

25
F2

50 + 290N + L4 (auxiliary subroutine time in microseconds)

where N is the number of equations to be solved.

Standard by CALL RKGl with: the address of the first

of three words of temporary storage in M2; the parameters

LA[MIN]]

in the word immediately following the CALL, where A is
the address of the auxiliary subroutine (which must

begin in the first guarter of a word), N 1s the number

of equations to be solved, and M is the address of the
first word of a block of 3N words to be used by RKG1.

(a) Yor ¥ys +-e» ¥y_y 8re stored in locations M, M+l,
ooy M+N-1 respectively. The initial conditicns
are stored here by the user. The auxiliary sub-
routine uses y,, ¥y, ... -1 (but does not alter
them) to compute the k. 's. The solutions are found

here upon return from RKG1.

Programmed by: F. Schaffer Date: 7/15/6k

Approved by:

: N e Page: 1of 5
Ly R

Section: 8.4-D2-RKG1

Change:

USE (Continued):

METHOD:

() kys K5 ..., ky | are stored in locations M+,
M+N+l, ..., M+2N-1 respectively. The ki = hfi are

computed and placed here by the auxiliary subroutine.

(c) g Gys ee+s Qy_p Bre stored in locations M+2N,
M+2N+1l, ..., M+3N-1 respectively. (Note: This
block of N words must be cleared to zero by the

user prior to his first entry into RKGl.)

If the independent variable x occurs in the functions
fi or if it is required during an integration as an

index, then it must be obtained by integrating the

equation x' 1. The independent variable is then
treated as an additional dependent variable, for which
the auxiliary subroutine must provide the quantity

hx' = h. However, this latter quantity should be

planted at the béginning of the integration in the
appropriate location and left there so that the auxiliary
subroutine is relieved of the task. If x does not appear
in any of the fi's but is merely wanted for indication
purposes, it is quicker to use a simple counter in the

main routine.
Backward integration is achieved by making h negative,

Given the set of N differential equations

y; = fi(yO’yl’yQ’“"’yN-l) (1= 0, 1, 2, ooy N = 1)

the process used in the integration is defined by the

following equations:

li = hfi(yoj}ylj} o e °)Y(N_1)J)

r., . B.(k.. - A_q..
i,J+1 J(ij JqlJ)

Yi,54¢1 T Vi3 T Ti 541

Date: 7/15/6k
Section: 8.4-DP-RKG1l
Page: 2 of 5

Change:

METHOD (Continued):

U,a41 T Yy T3 s 7 Oy

with the following table of values:

3 |A. B, C.
J J J

112 1/2 1/2
21 [1-+1/2" 1 -41/2
311 |1+ 11/
L|2 1/6 1/2

where the subscript i indicates the variable, the
subscript j indicates the four parts of the integration
step size. The process is sometimes known as the
Gill-Kutta method.

The kij's are evaluated by a cloged auxiliary subroutine
which must be provided by the user. During each pass
through RKGl four entries are made into the auxiliary

i tain .’ . ! s,
routine to obtain the li s, kEJ S, k3J s and khg s
RKG does the arithmetic indicated in the rij’ yij and

q.. equations above.

ij
This is a fourth-order Process, hence the truncation
error in one step is of the order of h,5o An approxima-

tion to the error is obtained from the expression
1/15(y, - Yo /o)

where Yy is the value of y obtained from using an
interval of length h and yh/2 is the value of y obtained
from using an interval of length h/2° The rapid accumu-
lation of round-off errors is suppressed by retaining

the quantities q:.L between integration steps.

Date: 7/15/6L
Section: 8.4-D2-RKG1
Page: 30of 5
Change:

s a8uBy)

: o88g
{UOT3039g

$ 30 4
TONY-20-4'Q

2998

79/ST/L

RKG1

ATN
SFR
ATN
LFR
ATN
SFR
ATN
SFR
CAM
CAM
cSMm
JSB
FIL
CSM
cSB
MPY
ADD
MPY
STR
ASC
CAD
MPY
STR
css
ADN
CAM
MPY

JNM

MPY
ADD
ATN
ASC

201,
N
391y
7

221,
.3
291
4

10,RKG1+17
BsM14+M14
9.4

3,M12

11:M14
M8+M1I3
10,1,
M13+M14
1040,
223,
1340,
2939

3.

293y
Ml3+M14
91

15
10?‘19
15,RKG1+11
3.

890y
1341,

F7=PARAMETERS FOR RUNGE-KUTTU

M10C = ADDRESS OF FIRST CONSTANT
M8 = 2N o ,

M9=—4; STEP COUNTER

ENTER AUXILIARY

MIl= -N

ACCU=-QI1J

ACCU = ~AJ*QLJ
ACCU = KIJ - AJ=QlJ
ACCU = BJ(KIJ-AJ*QIJ)=RLJ
F2= RIJ -
YI;J+1=YIJ¢RIJ
ACCU= FIJ

ACCU= 3RI1J

F2. = 3RI1J

ACCU =-KIJ

MI5=0 ON 4TH STEP; ELSE-VE.
ACCU=-8J%K1J, INCREMENT ‘M10 -
JUMP IF NOT :4TH STEP
ACCU=(~=1/61KI4=={1/23Ki4
ACCU= 3RIJ-BJ=sKIlJ

Ql s J+1=QIJ+3RIJ-ByxKIJ

RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1

RKG1:

RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1

"RKG1

RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1

RKG1

RKG1
RKG1
RKG1

0C0o

001

002
003
004
005
006
007
008
009
010
011
012
013
014
01%
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030
031

s 98uBYD

s aded
$UOTI09G

¢ Jo ¢
TOME-2a-1°Q

:938(

79/ST/L

cJz
S8M
TRA
SBM
CJu
SBM
ATN
LFR
ATN
LFR
ATN
LFR
SBM
JLH
FIL
0cTQ
ocTQ
oCcTQ
ocTq
oCcTQ

1141,RK61¢13
1052
2:RKG1+5
13,M14
G93,RKG1+3
293

2¢15

7

2019

6

2:19

&
293
3,0¢

4000999194000 0¢

COUNT AND JUMP IF I= N-1

RESET M10O

JUMP TO CALCULATE YI®+1,J+#1,0I+1,J+1

RESET M13=A

COUNT AND JUMP IF J NOT 4

2000999194539,1660656300,6201

20005591

332441171511477,11601,4000945-1

525251252555252912577

RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1
RKG1

032

033

034

035

036
037
038

039
040
041
042
043
044
045
046
047
048
049
050
051

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
E1-DVDF1-00-UI-AL

NAME : Divided differences
OTHER SUBROUTINES USED: An auxiliary routine for evaluating the function f(x).

TEMPORARY STORAGE: A block of (k + 3) consecutive words, beginning at the

location specified by the content of M2 at entry time.

NUMBER OF WORDS: 15 words (14 * L quarter words if the routine begins in

quarter word 1)
FAST REGISTERS CHANGED: F2
PARAMETERS: Link in M3.

Address of first location of temporary storage block
in M2,

Three parameters which have to be written in the word

following the one with the CALL instruction:

f address of auxiliary

A address of first abscissa

k kth divided difference

EXECUTION TIME: Dependent on the parameter k and the duration TA of the
auxiliary routine (which is entered k + 1 times).

Approximately, the total duration T is given by

TR k2 - 25 usec + (k + l)TA
Programmed by: Jurg Nievergelt Date: 7/20/6h
Approved by: Section: 8,4-E1-DVDF1

Page: 1 of k4
/(EDLq) (%(LaJ' Change :

USE: The user must provide:

1) k +1 abscissas Xyr X5 eees X,

in locations A, A+l, ..., A+ k

2) An auxiliary routine which takes the argument Xj
either from the accumulator or from Fl and leaves
f(Xj) in the accumulator, has to be entered in

quarter word O and linked in M3.

3) A block of k + 3 consecutive words beginning at the

location specified by the value of M2 at entry time.

The subroutine computes a divided difference table and

stores:

kth divided difference f[xo, cevs xk] in location
(M2) + 2

(k-1)st divided difference f[xl, cees xk] in location
(M2) + 3

(k-2)nd divided difference f[xg, cens xk] in location
(M2) + L4

lst divided difference f[X -12%,] in location

(M2) +k + 1
the value of the function f(Xk) in location (M2)+k+ 2

k

where (M2) is the content of M2 at entry time. The kth
divided difference f[xo, Xys eees xk] is also left in

the accumulator.

REMARK: This routine can be used recursively, i.e., the auxiliary

routine f may again contain a CALL DIVF.

Date: ,7/20/6&
Section: 8.4-E1-DVDF1l
Page: 2 of L

Change:

: 98uey)

1 9898g
tUOT}09G

 Jo €

TAQAT-TE-R"Q

s 918

79/02/L

DVDF1

DIVFL

DIVF2

DIVF3

ATN
SFR
ATN
LFR
ATN
SFR
ATN
CAM
ATN
CsSM
CAD
ATN
JSB

FIL

STR
CJdu
ATN

SBM
- ATN

CsSM
CAM
ATN
AIN

CAM

ATN
css
ATN
ADD
STR
ATN

€S8

ATN

29ls
5

3,1,

.5

2515
4
M5
0
M6
7sl
Otlﬂ
M4

34040

2919
T.D1IVF1L
M6

21

M6
3
0
M3
M6
1+1
M5
MO -
M5
' 0
F2
M2 -
Oel,
M2

DIVIDED DIFFERENCES FIRST CARD:
SAVE FS5 -

INCREASE t!ﬁx B? 1

READ PARAMETERS: INTO F5

‘SAYE F§

ﬂ?-= %§K+11;
ABSC1ISSA.

- AUXILIARY

FILL UP So¢sxvoec FSK

M3 = =K.

M1 COUNTS UP. TO K FOR INNER LOOP
CURRENT: ABSCISSA

NEXT ABSCISSA

STORE DIFFERENCE OF ABSCISSAS IN F2

CURRENT DIVIDED DIFFERENCE

pIVFOlL
DIVFO2
DIVFO3
DEIVFO4
DIVFOS
DIVFO6
DiVFOT
pivEQe
O1IVFO9
DEVF10
DIVF11
DIVF12
DIVF13
DIVE14
DIVELS
DIVF16
DIVFI7
DIVF18
DIVF19
DIVF20
DivF2l

DIVF22
DIVF23
DIVF24
DIVF25
DIVF26
DIVF2T

- DIVF28

DIVF29
DIVF30
DIVF31

1 98uey)

19383
1UOTL00g

30 4

TITAI-TE-1"Q

: 938Q

79/02/L

ADD
DIV
SBM
STR
SEN
ATN
CAM
JpM
cJu
ATN
LFR
SBM
ATN
LFR
JULH

Mo
F2
02351
M2
M1 .
M6

7.
T+DIVF3
3,DIVF2
M2
1!3“'1
292
M2

S

M3

NEXT DIVIDED DIFFERENCE

NEW DIVIDED DIFFERENCE

INNER LOQOP
QUTER LOOP

RESTORE F4

RESTORE F5

DIVE32 .
DIVF33
DIVF34
DIVFas
DIVF36
DIVF37
DIVF3S
DIVF39
DIVF40
DIVF41
DIVF42
DIVF43
DIVE44 -
DIVF4S
DIVF46

NAME ;

OTHER SUBROUTINES USED:

TEMPORARY STORAGE:

NUMBER OF WORDS:

FAST REGISTERS CHANGED:

TIME:

ENTRY:

UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER LABORATORY
ILLIAC II LIBRARY PROGRAM .

F1-LAG6-00-UI-AL

Lagrange six-point interpolation for equal intervals.
None
COMMON to COMMON + 7.

On exit, COMMON to COMMON + 5 contain 120 times the six
Lagrange coefficients A_2, A-l’ A, A2 and A3 respectively.

1/120 is available at location LAG6 + 26.

Ml is incremented by the number of control words used.
27

F2, F3 and F4 (except MO and MR)

250 + 125N microseconds where N is the number of control

words.
Standard by CALL with:

x in Acc where x is the interpolation point scaled
as if the tabulated values of f(x) are at x = 0, x = 1,
X =2, ..., and with the address of the first control

word in MLl.

The format of the control words is:

where B is the base of the table, S is the spacing
between the entries: that is, Y(0) is in B, Y(1) in
B+S ... and Y(N - 1) is in B + (N - 1)8), R is the
storage location where the result is to be placed, and
if C % 0, there is another control word specifying

another table in the next higher addressed location.

Programmed byi/égf?Lv;'Q%,Cli‘ Date: 11/15/63

Approved by:

Section: 8.4-E1-LAG6
Page: 1l of5
Change:

EXAMPLE

EXIT:

RANGE :

- ACCURACY:

Suppose locations 100 to 199 contain
. s
sin (566) n=0,1, ..., 99

and locations 300 to 399 contain

nmn
tan (366 n=0,1, ..., 99
To find sin nx and tan ax, and to store in locations B
and B + 1 where x is in the accumulator, the program

below can be used.

MPY Loo
CAM 1, A
CALL LAG6
FIL

A DECQ 100, 1, B, 1
DECQ 200, 1, B+ 1, O

Standard by JLH M3. The Interpolated value of the last
table entry is in the accumulator at exit as well as

in the specified storage location.

Table entries f should satisfy |f‘ < E%E 463 and x should
satisfy 2 < x < n - 3 where n is the number of table

entries.

Error arises from four sources. For a discussion see
"Pables of Lagrangian Interpolation Coefficients,"
Columbia University Press. New York (194k4), pp. xiii-xx.

The errors are:

1. Round-off in this subroutine < 11 X 2'2”|f| where

|f| is the maximum absolute table entry used.

2. Truncation in six-point Lagrange formula.

Date: 11/15/63
Section: 8.4-E1-LAG6
. Page: 2 of 5

Change:

ACCURACY (continued): 3. Error due-to errors in table entries. This is
bounded by 89/64 max Iei[where €, are the errors

in the six entries used,
L. Error due to error € in interpolant x.

USE: This subroutine can be used for interpolating
simultaneously in several tables for different functions
of the same argument x. If the functions are tabulated

+ h, x

at points X X +2h, ..., Xg + nh, x must be

0 0

translated and scaled before entry by subtracting Xq

and dividing by h. The user must prepare a list of
control words in memory, one for each table, in ascending
addresses. The last one should have a zero fourth

quarter; all others should not.
METHOD: 120 times the six-point Lagrange coefficients
A, =-(0-3)p-2)p - 1l +1)/120
A, =+5(p - 3)p - 2)(p - L)p(p + 2)/120
Ay = -10(p - 3)(p - 2)(p - 1)(p + 1)(p + 2)/120
A = +10(p - 3)(p - 2)+(p + 1)(p + 2)/120

Ay =-5(p - 3)(p - L)p(p + 1)(p + 2)/120

Ay =+(p-2)p - 1)p(p + 1)(p + 2)/120

are calculated using 16 multiplies and placed in
locations COMMON to COMMON + 5 where p is the fraction
part of x. Then for each table J,

T., = contents of location (B, + S.(q - i))
Ji J J
+3
is found, and 2 T..Ai is stored in location Rj where q
i=-2

is the integer part of x.

Date: 11/15/63
Section: 8.4-E1-LAG6
Page: 30f 5
Change :

:988g
$UOT1O8g

s 98uBy)

G JO

OVI-TH-°Q

HELE =)

€9/st/1T

LAG6

FIL
SFR
SFR
SIA

SUB

STR
sus
STR

MPY
STN
€S8

ADD
MPY
STR
MPY
STR
CsB

ADD .
MPY

STR
MPY
STN
CAD
MPY
STR
MPY
STR

- CAD
ADD
MPY

SIN

CAM:
CAM :
CAD

ADD

57, COMMON+6
6, COMMON+7
A

H#e

- F2

3.

F3

5.
COMMON+4
2.

F2

F3

F3

10.
COMMON+3
1.

F2

F3

- F3

1 Do"’
COMMON+2
F2

F3

F3

5.
COMMON+L
:

F2

E3
COMMON -
Hy—%

5,COMMON+L

2.
F2

SAVE F5
SAVE Fé6
INTEGER PART Q TO M4

FRACTIONAL 'PART :P TO F2

P-3
=5{P=-3} .

10(P-3)(P-2])

=10{P-3)P-2}(P-1}

5{P-3}(P-2)(P-1)P

-(P=3) (P-2)P=11P(P+1)

LAG60000
LAG60001
LAG60002 |
LAG60003
LAG60004
LAG60005
LAG60006
LAG60007
LAG60008

- LAG60009
- LAG60010

LAG60011
LAG60012

- LAG60013 -

LAG60014 -

- LAG60015 -

LAG60016

- LAG60017
- LAGH60018 -

LAG60019
LAG60020
LAG60021

. LAG60022

LAG60023
LAG60024
LAG60025
LAG60026 -
LAG60027 -
LAG60028 -
LAG60029 -

- LAG&0030 -
- LAG60031
- LAG60032 .
- LAG60033 -
- LAG60034

: a8usy)

ta8rg
$UOT 23038

GJog

PVI-TE-1"Q

RN

g9/st/1T

STR
MPY
STR
CAD
ADD
MPY
CJu
STR
CAM
ATN
LFR
CAD
MPY
SIA
ADM .
CAM
CAD
STR
CAM
CAD
MPY
ADM -
ASC -
cJu
ADD
MPY .
STR
JUM
LFR
LER
JLH
FIL:
TQ

F3

M5

551,

"3"360

F2

F3

692: LAGSK+13
COMMON+S
TeM4G ¢

1:1

5 .
M9,
-2+M7.

=

B MG
6;"6 '
15,35
F3.

5, COMMON
S5sly

N8

8,M9

F3

691l LAGH+21]
F3

- LAG6+26

M10

11,0,LAG6+LT

5,COMMON+6
6+ COMMON+7 -
M3 }

(LAG6+13,2)

AlL)g: I==23=lgvocst?

A(3)
M7=Q

GET NEXT CONTROL WORD

(Q-2})=5+8

(LAG6+#21,1)

A=3 T=34ca.+A2T2

= 17120
STORE RESULT:
TEST FOR MORE TABLES

4210,10421,1042,2375 17120

LAG60035
LAG60036
LAG60037
LAG60038
LAG60039
LAG60040
LAG60041
LAG60042
LAG60043
LAG60044 -
LAG60045
LAG60046
LAG60047
LAG60048 -
LAG60049
LAG60050
LAG60051

- LAG60052
- LAG60053

LAG60054
LAG6005S
LAG60056
LAG600ST
LAG66058 -
LAG60O59 -

- LAGS60060O

LAG60061
LAG60062
LAG60063

- LAG60064

LAG6006S

- LAG60066
. LAG60067 .

NAME ¢

TEMPORARY STORAGE:

OTHER SUBROUTINES USED:

NUMBER OF WORDS:

EXECUTION TIME:

USE:

UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER LABORATORY
ILLIAC II LIBRARY PROGRAM

BE1-LGUN-00-UI-AL

Lagrange Interpolation for Unequal Intervals

COMMON to COMMON + 1.

F2, F3 and F4 (except for MO and M2).

ML is incremented by the number of control words used.
None

28

24N2 + 28NM microsecs where N is number of points used

and M is the number of functions interpolated,
Standard by CALL LGUN with:

X in accumulator.
Control word list address in M1, where the First Control

Word contains:

where the values x. to x of the independent variables

0 N-1
x are in locations B, B, + S, ..., B + (N - l)SX
respectively where N is the number of points used and T
is the first word of a block of N temporary storage
locations in which the Lagrange coefficients AO to AN-l
will be placed. The second and subsequent control words

have the format

where the functional wvalues

T, = f(xo), T, = f(xl), ey T g = f(xN_l)

Programmed by:
Approved by:

yoy

Date: 11/15/63
Section: 8.4-E1-LGUN
Page: lof 7

Change:

USE (continued): are in locations B, B+ S, ..., B+ S(N - 1)
respectively. The result of interpolation in this

table to get f(x), i.e., the number

N-1
2 AT,
i=0

is stored in location R. If ¢ # O, there is another
control word for another tabulated function in the next

higher addressed location.

EXTIT: Standard by JLH M3 with the last interpolated value in
the accumulator as well as in store, and Locations T,
T+ 1l, «s., T+ N - 1 contain the Lagrange coefficients

A Al’ caoy AN-l respectively.

O?

METHOD: The N Lagrange coefficients A, A

19 ooo_gA

re

0’ N-1 &

calculated, where

N-1 (x - xi)
A, ={§§§} IE;'TT?Z;S

J

These appear in locations T + J.

This takes 3(N - 2) + N{N - 2) multiplications and N
divisions.
N-1
- Then for each table, % TiAi is evaluated.
i=0 :

ACCURACY: Error can arise in five ways.

1l. . Accumulated round-off in this subroutine

< {41\1 R E IAi]} 245 ¢

where]fl is the maximum absolute table entry.

Date: . 11/15/63
Section: 8.4-E1-LGUN
Page: 2 of 7
Change:

ACCURACY (continued):

RANGE:

EXAMPLE :

2. Truncation error in the Lagrange formula. Refer to
"Tables of Lagrangian Interpolation Coefficients,"
Columbia University Press. New York (194k)

3. BError in the interpolant.
L. Error in the table entries.

5. Error in the X o If the x; are close to each other,
this error can be very large since it depends on

terms including

The Ai will be in range provided that

u'6“ < ;d]N'l < ID}N'l < 4'63

where d is minimum distance between the xi and D is the

meximum distance between the xi or Xi and x.

For a "rule of thumb” that relaxes this strict limit,
the average distance between the xi's should be in the

range

-63\ _1

e

N-1" (v - 17

The intermediate scalar products Z A, ﬂ cannot overflow
if % IT ‘ !D[N e 63, although it is normally suf-
ficient that the result be in range. If the strict

bounds are not satisfied, overflow should be checked.

- Suppose that a monotone increasing function f(x) is

tabulated for points Xy xl) cony x99 in locations

100-199, that Xps X5 ooy x99 are in locations 200-299
Date: 11/15/63
Section: 8.4-E1-LGUN
Page: 3of 7

Change:

- EXAMPLE (Continued): and that another function g(x) is tabulated in locations
300-399. Given f it is desired to find x and g(X) where

x is such that
f = f(x)
Suppose that N is such that

£(xy) ST < (xy,;)

and a six-point interpolation is employed the entry

below can be used.

CAM 1,A
CALL LGUN

A DECQ N+ 98, 1, 7, COMMON + 2
DECQ N+ 198, 1, x, 1
DECQ N+ 298, 1, G, O

COMMON is assumed to denote a block of eight storage
locations, X contains x and G contains g(x) after
execution. In this case we must have 2 < N<97, so

that the points used are inside the table.

Date: 11/15/63
Section: 8.4-E1-LGUN
Page: Lk of 7
Change

s 98eg

: 98ury)
:U0T308g

L Jo g

NODT-TH=-1°Q

2 9%8Q

€9/41/11

LGUN

FIL

SFR
SFR
STR
ATN
LFR
sus
CAM
CAM
CAM
STR

ADM

CAD

SuB
MPY |

CJu
STR
ADM
CAM
CAD

SuUB .

STR
SBM
MPY
STR

CAD

SBM
sus
MPY
CJu
STR

CAM

CSM

CAD

STR

5, COMMON

69 COMMON+1

F2

&

M8 -
3}9:2"”10
Se1+M11
6, M8
Bely

6o M9

F2

FO
4eLGUN+4
M5

69 M9
492=M10
F2

M6

F3

Se1

M5

M5

F2

64 M9

M6

F3.

44 LGUN+8
M1l1 -
T+M8

6 M10
M7

F2

SAVE F5

SAVE Fé6

F2=X

FIRST CONTROL WORD
X—-X0

M4=~N+2

NS=T+1

M6=8

(X=X{0))ooo{X=XI{N-2})

(X-X‘N"l’)»»d,o © (X"X! 1) ’

F2=%X{J)

LGUNOOOO
LGUNOOO1
LGUNOO0O2

- LGUNDOO3

LGUNOOO4
LGUNOOOS
LGUNOOOS6
LGUNOOGO7
LGUNOOOSB
LGUNOOO9
LGUNOGO10
LGUNOO11
LGUNOOL2
LGUNOO13
LGUNOO14
LGUNOO15
LGUNOO16
LGUNOO17
LGUNOO18

- LGUNOO19
- LGUNOO20 -

LGUNOO21
LGUNOCO22
LGUNOO23
LGUNOGO24
LGUNDO25
LGUNOO26

- LGUNO0027

LGUNOO28
LGUNOO029

- L6UNOO30

LGUNOO31

- LGUNDOO32

LGUNOO33
LGUNOO34

s al8uey)

:988g

:U0T309G
29980

L 3o 9

NOOT-TE-%°Q
€9/S1/11

CAM
sus
SFN
CAM
JoC
CAD
ADM
Sus
CJu
CAD
ADM
SuUB
JbC
MPY
STR
cJu
CAD
VID
STR
ADM
CJu
SBM
ATN
LFR
CAM
CAD
MPY
STC
STR
ADM
CAD
MPY
ADD
ASC
CJu

5:M8

M5

M10

4

493, LGUN+LY
F2

54 M9

MS
493;1LGUN+LY
F2

54M9

M5
5,LGUN+18
Fo

FO

491 GUN+16
FO

M1l1

11,1,

7449

691, LGUN+12Z

11,M10
1+1,

5

9422 1-M10
11,1,

M4

F2

FO

4oM5

M4

11,1,

FO

F2
953, L GUN+22

M5=8
X{J)=X{1)
M& = —N

1S X{Ji=-X(0}=0

X{11=X{(0)

X{J3)=-%L1)

At{J) .

NEXT CONTROL WORD
M9=-(N-1)}

A(C) T(C)

SUM A(I)T(I) |

LGUNDO35S
LGUNOO36
LGUNO0O37
LGUNOO38
LGUNOO039
LGUNOD4O
LGUNOO41
LGUNOO42
LGUNOO43
LGUNOO44
LGUNOO4S
LGUNOD46
LGUNOO47
LGUNOO48
LGUNOO49
LGUNOOS50
LGUNOOS51
LGUNOO52
LGUNOOS3

- LGUNOOS54

LGUNGO55
LGUNOOS6
LGUNOOS7

- LGUNDOS8

LGUNOO59
LGUNDO60O
LGUNOOS61
LGUNOO62
LGUNOCO63
LGUNOOb64
LGUNOO6S5
LGUNOO66
LGUNOO67
LGUNCO68
LGUNOO69

s a8uey)

: 288g
tUOTFO8G

L 3o J,
NOOT-TE-4°Q

2 9%8(Q

€9/st/1T

ADD

STR

JUM

LFR
LFR
JLH

F2

M6
T21:LGUN+20
5, COMMON

69 COMMON+1
E P

TEST FOR MORE CONTROL WORDS
RELOAD FS5
RELOAD Fé

LGUNOO70 -
LGUNOOT1
LGUN0O72
LGUNOO73
LGUNOO74
LGUNOO75

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
Fl-SLQL-00-UI-AL

NAME : Simultaneous Linear Equations

OTHER SUBROUTINES USED: None

TEMPORARY STORAGE: Common to Common + 4 + N where N is the rank of the
matrix A.
NUMBER OF WORDS: 3

FAST REGISTERS CHANGED: F2 and F3
EXECUTION TIME: Approximately lON2(N + 2M) microseconds
ENTRY: Standard by CALL SLQL with:

Ml = address of parameter P.

P INIM[ATB]

N = dimension of matrix A.

M = number of solutions to computer, i.e., number of
columns of matrix B.

A = address of first word of matrix A where A is stored
consecutively by rows.

B = address of first word of matrix B where B is stored
consecutively by rows.

For example, if we have
P DECQ 17,4,1000,1800

and we have

Programmed by: J. Presti Date: 7/20/6k
Approved by: Section: 8.4-FL4-SLQL

Page: 1l of 7
/L\)A ’ZLW\ Change:

ENTRY (Continued):

EXIT:

METHOD:

CAM 1,P
CALL SLQ

then SLQ finds the four sets of solutions to the set
of 17 simultaneous equations represented in core by
the matrix beginning at 1000 and where the constant
matrix begins at 1800.

Standard by JLH M3. The value of the determinant of

the matrix is in the accumulator at exit.

The solutions for the matrix problem

AX = B

are obtained via Gauss-Jordan elimination using maximal
pivotal elements. The solutions in the matrix B.are
handled in parallel, i.e., each element in a row of B

is computed before going on to another row.

The matrix A is destroyed and matrix B contains the

solutions to the problem.

Date: 7/20/6k
Section: 8.4-FLk-sSLQL
Page: 2 of 7
Change:

s @8usy)

:9898g
$UOT103G

L Jo ¢
™IS-Hd-1°Q

s 998

w9/0g/L

SLQlL

- CAM :
CAM
CSM -

TABLE

NXCcot -

coMp

SKIP

SER
SER
SFR
SFR

LFR -

CAM

CAD
STR
SFR
ADM
ADM
cJu

LFR -

ADM
CAM

- LFR

ADM
CAD
DAV

JDC

SBM
SER
CAD
SAM
cJu
SFR

- CAM

CAD
Div

49 COMMON+1

- 55 COMMON+2

69 COMMON+3

- T9COMMON+4

H9M1 .
8sM2
9eM3
391—-MO

‘4."0:~

1. -
COMMON

- 69 COMMON+M4+MO+5

9pM1
8sMO
490, TABLE

59 COMMON+M3+MO+4

4o MO+M3~1

2,M3

65 COMMON4+MZ +M0O+5
8,“0*33‘1.

M&

M8

20 SKIP

- 49 MO+M3~1

5o COMMON+M24+M0+5
Fé6

F5

2+ 0, COMP

5o COMMON+M3+MO+4
2943

l.»

M4

SLQ

SLQ
sLQ -
SLQ.

sLQ

SLQ

sta-

SLQ
SEQ

SLQ

SLQ

SLQ
sLQ
SLQ
SLQ
sLQ
SLQ
sLQ
SLQ

sLQ
sLQ
SR

10
11
12
13

16
18
20

23
24
25
26
27

29
30
31
33
34
35

:98ury)

:99eg
:UO0T3D3G

L 30 1
™IS-fd-%°Q

19980

19/02/L

NXROW

STR
CAD

MPY

STR
LFR

ADM
LFR

ADM
CAD

MPY
CAM

STR

FLD

css
MPY
ASC

CJF -

CsSM
FLD
css
MPY
ASC

CJF

cJyu
LFR
ADM
CAM
FLD
CAD
MPY

STR -
CJE .

CcSM
FLD

CAD

" F3

MG

- COMMON

COMMON

69 COMMON+M3+MO+4
8,1
79C0ﬂ88ﬂ*”2§30*5
129”0*‘”3"’1

F3 v

12015

6. M3

F2

8ol
F2
1201,
6900
G Ml

99l

.F2.

13¢1,
690y
250y NXROW

6 COMMON4+M3+M0O+4

8,1
2;M3

M8
F3 -
851,
290¢
2:M1

MO

SLQ

StQ

sLQ
sLQ

sLQ'
SLQ
sSLQ .

stQ

stQ -
S$LQ
SLQ

stQ

sLQ

SLQ
sLQ
stQ

sLQ .

SLQ

SLQ
5LQ
sLQ
SLQ

StQ

sLQ

SLQ
sLQ

sLQ
SLQ

36

40

42
43
45
46
49
50
si

52
53

54
55
56
57
58
59
60

62
63
64
65
66
67
68
69
70

7

: 88uey)

:98eg
:UOT308g

L Jo ¢
TOIS-Hd-1°Q

s 97eQq

19/02/L

BKsuB
NXTRO

MPY .

STR

CJF -

CJu
LFR
ADM
CAD

DIV

CSM
STR
CAD

MPY |

STR
FLD
CAD

MRY |

STR
CJF

CAM
CAM

LFR
LDM
ADM

LFR.
CAD -

STR

CSM

FLD

€SB :

MPY
ASC
CJF
CJu
cJu
LDM

F3

901y

2509

3,0 NXCOL
59 COMMON+MO+4
49 MO-1

1.

M4

2.M1

F2

M4

COMMON
COMMON

M5

F2

Sele

2:09

3¢1=-MO

2¢M3

6 COMMON-M2+4
59 COMMON-M3+5
89”2‘”3*1

2y M8

iib;,

M8

H M1

Sely

F2

S9le

6:09
2:0,NXTRO
390,BKSUB
13,COMMON+1

sLQ

SLQ
st
sLQ .

SLQ
sLQ
SLQ
$LQ -
5LQ

Si¢
sLQ

sLe

$LQ
sLQ
sLQ
stqQ

SLQ
sLQ

SLQ
SLQ

SLQ
sLQ
stq
sLQ
stQ
SLQ
SLg

¥4
73
74
7

19
80
81
82
83

84
85
86
87
88
91
92

95
96

98 -
99
100
101
i02
103
104
105
1066

: 93uey)

s 988BJg
{UO0T303g

L Jo 9
OTIs-Hd-4°Q

1998

w9/02/L

- LDM

CRDYBL -

ORDER

CAM
CSM

LFR -
CAM .

CAM

ADM .

SFR
cJdu
CSM
CAM
LER
EOM

- CAM

SWITCH.

out

JIM
CAM
LER
EOM
CAM
JIM
CJu
CAM
SF

CsH
FLD
CAD
XCH

STR -

CJF

- ADM

OMIT

cJu

CAD

CRM
JPM
MPY

3¢M13

2:M3 -

3:M0

S COMMON+M34+M04+5
SpM2

T9M2

29M1

5o COMMON+M3+M0+5
350,0RDTBL

39 ?60”1

13

5o COMMON+M3+M0+4
693,M5

M8

B8,0,0MIT

2:M3

6, COMMON+M24+M0+5
10:3,M5

Ml2 .

129 O'BUI
290-,SWITCH

10,M6

69 COMMON+M2+MD+5
2eM1 :

M1l

1ols

11.1,

2¢0¢

13,1

390, ORDER "
COMMON
13,1

13, DETOK
"’10

sLQ
SLQ

sLQ
sLQ
sLQ
sLQ
siQ

sLQ
sLQ
s$LQ
SLQ
5LQ
SLQ
5LQ
$LQ
stLQ

SLQ
stQ
stQ
stQ
sLQ
5LQ

sLQ

‘108

109

111
112
113

115
116

118
119
120
121

123
124
125
126

127

129
130
131
132
133
134

135

198983

: a8uey)
$UOT309G

L Jo L
OTS-hd-1°Q

$93B(Q

%9/02/L

- DETOK

- LER -

LFR
LER
LFR

JLH

. 4o COMMON+1
- 5,COMMON+2 -

6,&0”"0“*3
T+ COMMON*4
M3

NAME ¢

TYPE:

TEMPORARY STORAGE:

FAST REGISTERS CHANGED:

EXECUTION TIME:

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINCIS
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
G5-RAN1-00-UI-AL

Random Number Generator
Closed Subroutine
Internal

Accumulator, FO, Fl

25 usec for 13-bit numbers, 60 usec for 52-bit numbers

DESCRIPTION: The subroutine will generator unnormalized floating-
point random numbers as specified by parameters in
MO and ML, Two types of results are possible. Both
are entered by
CALL RAN1
1) MO = number of 52-bit numbers to be generated
(MO > 0).
ML = storage location of first number; subsequent
numbers are stored sequentially.
2) MO = O means generate only a 13-bit number and put
it in MO.
ML is not used here.
Two independent methods of generation are used. One
is for the 45-bit fraction, and the other for the T7-bit
exponent.
The fractional part is created using a modification of
the sequence
Programmed by: G. Cooper Date: 8/10/6k

Approved by:

Page: 1l of 5
////éf?;%l/ Aﬁ; Change:

Section: 8.4-G5-RAN1

DESCRIPTION (Continued):

L

F_= : Slg)mod 27, F.=1

v = Fy1

with cycle 2&2.

Experience has shown that there is a noticeable bias in
the last few bits of the numbers generated by this
sequence. A corrective step consisting of a right
shift of four bits is used to ament the anomaly.

Detailed testing of this generator is described in

File No. 612.l

For the exponent part a modified version of the

Fibonacci sequence

is employed. The change consists of doing a single
bit circular left shift of e - This modified sequence
has a period of 62,445,728, Further details of this
generator, as well as a fuller description of the
fractional algorithm used above, can be found in File
No. 608.°

The right-hand seven bits of the shifted version of e,
are used as the exponent of the 52-bit result, and

the left-hand bit is used as the sign. In the case of
entry with MO = O, the 13-bit shifted version of e, is
used directly.

It will be noted that every time this subroutine is

reloaded, the sequences are initialized. If one

lRandom Number Generator Test Procedures Applied to a Modified, Multiplicative,
Congruential Generation Method, by D. K. Chow.

2Random Number Generators for ILLIAC II, by Gilbert Cooper.

Date: 8/10/6L
Section: 8.4-G5-RANL
Page: 2 of 5

Change:

DESCRIPTION (Continued):

wishes to extend the sequence over many runs, the

following procedure may be used.

1) After using the subroutine for the last time do a
CALL RANLB

A card will be punched. BSave it.

2) The next time the program is loaded do a
CALL RAN1C

before the first entry to the random number
generator, Include with your program deck a

dollar-data card followed by the card punched above.

These two subroutines either punch or read locations
RANP and RANP + 1 in eight octal quarter words. The

format is

y e, 0, 2, F (four quarter words)

en—l N (

Inter-subroutine access to RANP is made by a special

entry in RANl, namely RAN1A.

Date: 8/10/64
Section: 8.4-G5-RANL
Page: 3 of 5
Change:

s a8uey)

:93eJ

1U0T108G
s 998

¢ Jo ¢

TNVY-6D-1°Q
w9/01/8

COMMON
RAN1

RANL

FIN

ROX

RANP

RANS
RANF

ENTRY
BSS
SFR
SFR
LFR
CSM
ADM
CAM
CRM
JUM
CAM
SFR
LFR
JLH
CAD
MPY
CAE
SAL
LRS
SAL
CAD
ANN
CAE
ANN
LOR
SAM
cJu
LFR
TRA
FIL
ocTQ
0CcTQ
oCcTQ
DECQ
CHR

RAN1sRAN1A
2

5, COMMON
49 COMMDN+1
5. RANP

04 M0

5¢ M4
4,}45-)‘14
5,12

O, ROX

Oy M5

55 RANP

5¢ COMMON
M3

RANP+2
RANP+1

M6

RANP+1

M7

FO

FO

59127

M5

594096

0‘

11,
O»RANL

4, COMMON+]
FIN

Osles2
199200

261,12127,10275,1200
¢+ RANP, By RANF

4 8BR6%

SAVE F4 AND F5

LOAD PARAMETERS
SET WORD COUNTER

FORM 13 BIT RANDOM NUMBER

JUMP IF FULL WORDS DESIRED
OTHERWISE KEEP ONLY 13 BITS
SAVE PARAMETERS

REPLACE FS5

EXIY

FORM 45-BIT FRACTIONAL PART
PREVENT Z SET ON LATER PASS

SAVE FOR NEXT GENERATION

CORRECT FOR BIAS IN LAST FEW BITS

PUT CORRECTED NO. IN ACCUM.
USE 7 BITS FOR EXPONENT

USE SIGN BIT FOR SIGN OF FRACTION

STORE IN DESIRED SPOT AND INC. COUNTER
END TEST

REPLACE F4

GO0 TO PRE-EXIT

PARAMETERS

lo {FIXED POINT)}

5219 {FIXED POINT)
PUNCH—-READ PARAMTER

FORMAT

RAN1
RAN1
RANL
RAN1
RANL
RANL
RAN1
RAN1
RAN1
RANL
RAN1
RANL
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1

- RAN1

RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RANL

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
o1s
019
020
021
022
023
024
025
026
027
028
029
030
031

032

033
034

s a%uBy)

:98Bg
:UCT3099g

G Jo g
INVE-SD-1°Q

: 938

79/01/8

RAN1A CAM
JLH
G0
ENTRY
COMMON BSS
RAN1B SFR
CALL
CALL
LFR
JLH
RAN1IC SFR
CALL
CALL
LFR
JLH
GO

1,RANS
M3

RAN1B,RANIC
1

4, COMMON
RANIA
PUNCH

49 COMMON
M3

4, COMMON
RAN1A
READ

43 COMMON
M3

GET PARAMTERS FOR PUNCH-READ
EXIT

SAVE F4 :
GO TO PARAMETER FETCH
PUNCH FOR NEXT TIME
REPLACE F4

EXIT

SAVE F4

GO TO PARAMETER FETCH
READ CARD FRDM LAST TIME
REPLACE F4

EXIT

RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1
RAN1

RANL.

RAN1
RAN1
RAN1
RAN1

035
036
037

038

039
040

041

042
043
044
045
046
047
048
049
050

TYPE:

TEMPORARY STORAGE:

FAST REGISTERS CHANGED:
EXECUTION TIME:

DESCRIPTION:

Note:

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLTAC II LIBRARY PROGRAM
J6~TOPS-0L-UI-AL

Typewriter Or Paper-tape Output System

Collection of output subroutines compatible with

interrupt mode

Each subroutine contains its own area of temporary

storage.
None
Variable, depending on output device selected

These subroutines are useful mainly for engineering
purposes. The user may specify choice of three

modes of operstion:

(1) Bypass all output

(2) Output on the on-line IBM Selectric
typewriter

(3) Output on paper tape

The subroutines included are listed below with

information on their use.

If a print sequence does not begin with one of
these subroutines, the programmer should start
with
CAM 1,48 (See table 1, entry L4B)
CALL PTA

to assure that the typewriter is in the output

mode .

Programmed by: M. S. Levin Date T/ 1k/6k
W. J. Bouknight Section: 8.4-J6~TOPS

Approved by: W Change: 2

Page: 1 of 39

&

USE:

SUBROUTINES INCLUDED:

1.

Name :

Length:

Other subroutines used:

Use:

Name:

Length:

Other subroutines used:

Use:

Name :

Length:

Other subroutines used:

‘Uset

Choice of Mode:

The first two bits of SR3L;8~;sp:e.cifyvmode:

Bit O = O for output
= 1 for bypass output
Bit 1 = O for typewriter

11

1 for paper tape

Punch-Type Alternator

ML = character in paper tape code

L2 words

None

To output one character in mode specified,

set M1 and enter via
CALL, PTA

Punch or Type MeSSage

ML = address of first word of message
13 words

Number 1

To output a message, set ML and enter via

CALL PIMSS
The message should start at a word boundary,
one character per quarter-word, in paper tape
code (see table 1). A quarter word of all
ones is used as the terminator symbol.
(A) Punch or EYpe Quarter Word in Octal
ML = quarter word
(B) Punch or Type Full Word in Octal
ML = address of word
31 words
Number 1
(A) To output a quarter word in octal format,

set Ml and enter via

Date: 10/14/64
Section: 8,4-J6-TOPS
Page: 2 of 39

Change: 2

L.

Name:

Length:
Other subroutines used:

Use:

Name :

Length:
Other subroutines used:

Use:

CALL PTQW for no preceding character
CALL PTQWl to precede by a LF/CR
CALL PTQW2 to precede by a space

or CALL PTQW3 to precede by a tab

(B) To output a full word from memory in
octal format (L4 quarter words per line)

set Ml and enter via

CALL PTFW for no preceding character
CALL PTFW1l to precede by a LF/CR
CALL PTFW2 to precede by a space

or CALL PTFW3 to precede by a tab

Punch or Type Decimal Quarter Word

ML = quarter word
35 words
Number 1

To output a quarter word as a positive
decimal number, O < n < 8191, (4 digits
right justified with leading zeros sup-

pressed) set ML and enter via

CALL PTDQ for no preceding character
CALL PTDQL to precede by a LF/CR
CALL PTDQ2 to precede by a space

or CALL PTDQ3 to precede by a tab

Punch or Type Full Word in Octal with Address
ML = address of word
7 words
Number 3, Number 4 (Number 1)
To output a full word from memory in octal
format with the address as follows:

100 00144 02760 13500 10202 00137

set M1 and enter via

CALL PTFWA

Date: 1L/1h/6k
Section: 8.4-J6-TOPS
Page: 3 of .39
Change: 2

6.

T.

Name:

Length:
Other subroutines used:

Use:

Name :

Length:
Other subroutines used:

Use:

Punch or Type Sexadecimal Word
ML = address of word (except for special
entry PTSWS)

L0 words

Number 1

To output a full word from memory in float-
ing point sexadecimal format, set ML and

enter via

CALL PTSW for no preceding character
CALL PISW1 to precede by a LF/CR
CALL PTSW2 to precede by a space

or CALL PTSW3 to precede by a tab

SPECIAL ENTRY

This subroutine takes a word from memory with
7-bit exponent and extends the exponent to 8
bits by duplicating the sign bit. If it is
desired to output a word from the accumulator
with full 8-bit exponent, load the exponent

into M1, the word into F5, and enter via
CALL PTSWS

Punch or Type Sexadecimal Word with Address
Ml = address of word

T words

Number 3, Number 4, Number 6 (Number 1)

To output a full word from memory in floating
point sexadecimal format with the address as

follows:
100 00144 05d0-+042080 bd
set M1l and enter via

CALL PTSWA

Date: 11./1h/6M4
Section: 8.4-J6-TOPS
Page: b of 39
Change: 2

8.

Name :

Length:
Other subroutines used:

Use:

Punch or Type Decimal Word (with variations)

ML = gome value as specified below
131 words
Number 1
1l. Ml = address of word
To output a full word from memory in
floating point decimal format, set M1 and
enter via
CALL PTDW for no preceding character
CALL PTDWL to precede by a LF/CR
CALL PIDW2 to precede by a space
or CALL PTDW3 to precede by a tab
2. Ml = address of parameter word
To obtain a fixed format printout of N
consecutive variables starting at loca-
location L, use: '
CAM 1,PARAM
CALIL, PTFDW
The format calls for up to eight words
on a line, each word of the form
bbb+ 0000000000000E+00
3 blanks 13 2
PARAM is a location in memory specifying
the parameters N and L as
PARAM DECQ N,L,,
3. Ml = not used

To obtain a fixed format printout of the

current contents of Amost use:!

CALL PTFDA
| Date: 11/1k4 /64
Section: 8.4-J6-TOPS
Page: 5 of 39

Change: 2

The contents of Amost will appear in the

format

quOOOOOOOOOOO9EiQO

13 2

Ml = address of parameter list

To print the contents of Amost in a very

adaptable manner, use:
CAM 1,PARAM
CALL PTFDWA

PARAM is the address in core memory of two

words containing the following information:

PARAM DECQ s,N,X,,F,C,P,R

The parameters have the following meanings:

1. S is the number of spaces preceding the
sign.
S = -1 means 1 LF/CR
8 = 0 means no space

Range: -1 <3S

2. N is the total number of digits
computed; if leading zeros are printed,
N is the total number of digits printed
out.
Range: 1 < N(< 13 for F = 1 only).

3. K is the number of digits after the
decimal point; K = O means no decimal
point.

Range: O <K < N.

Date: 11/14/64
" Section: 8.4-J6-TOPS
Page: 6 of 39

Change: 2

L. F specifies the format
F = 0 gives the format

X
~—

+00...00.0...0
__Y_.J'

N

S
This format utilizes a feature called
automatic N increment (see a. in notes).
F = 1 gives the format

K
| IhQQ...O0.0.. +00
_Y_J -

S N 2

5. C is the desired character to precede
the number if positive. All negatilve
11 1

numbers are preceded by '-.° C must

be a decimal code appearing in PTCON.
6. P

P = 1 means suppressed initial zeros

i

0 means initial zeros are suppressed.

are replaced as dictated by R (see 7
below). This parameter has effect only
for format F = O.

7. R = O means suppressed initial zeros are
replaced by nothing.
R = 1 means suppressed initial zeros

are replaced by spaces.

Notes on format O

a. Automatic N-increment

N-K

If the number to be converted is > 10 -
it cannot be correctly represented by N-K

decimal digits before the decimal point.

Date: 11ﬁ1u/6u
Section: 8.4-J6-TOPS
Page: T of 39
Change: 2

Registers Destroyed:

Accuracy:

Acknowledgment:

Hence, N is increased until the number
is < lON-K. Notice: There is no N-

increment for format F = 1

b. If the user asks for K decimal digits after

the point, the number a_. is multiplied by

0

K K n _ 1

107, If 1078, > L 038, this leads to
overflow and a nonsense result. This
limitation of the size of K is no real
restriction, however, since the additional
digits after the point would not be

significant anyway.

c. The method used to convert a number ay
from binary to decimal assumes that a, is
an integer. In general, ao is not an
integer; but as long as |aO] < 2&4, it 1is
rounded and the integer part (a84+ 1/2) is

converted exactly. If]aol >2 7, this is

is

no longer possible, and the unrounded a,

submitted to the algorithm.

R,ES

This subroutine is not planned for maximum aceuracy;
frequent multiplications by 10 may generate a con-
siderable round-off error. Integers up to 13 digits
are exact. For format F = 0, more than 13 digits are

not gsignificant.

This program is an adaptation of the original paper
tape output routine (J3-DPR1-24y) written by
Jurg Nievergelt on October 30, 1962, for the Digital

Computer Laboratory at the University of Illinois.

Date: 11/14/64
Section: 8.4-J6-TOPS
Page: 8 of 39
Change: 2

9. Name: Punch or Type Decimal Word with Address
Ml = address of word
Length: T words
Other subroutines used: Number 3, Number 4, Number 8 (Number 1)
Use: To output a full word from memory in floating

point decimal format with the address as follows:

100 0014k +,1234567890123E+02

set ML and enter vis

CALL PTDWA

10, Name: Memory Dump Control for Full Word Octal

Ml = address of parameter word

Length: 6 words
Other subroutines used: Number 3, Number 16 (Number 1)
Use: : To dump a portion of the memory in full word

octal format, set ML and enter via
CALL PTMDF
The parameter word should contain:

Q. W. 0) not used
Q. W. 1) First word address
Q- W. 2) Last word address
Q. W. 3) not used

11. Name: Memory Dump Control for Full Word Octal with
Addresses

ML = address of parameter word (see #10)

Length: 6 words
Other subroutines used: Number 5, Number 16, (Number 1, Number 3,
Number 4)

Date: 11/14/6k

Section: 8,4-J6-TOPS
Page: 9 of 39 !
Change: 2

b

Use: To dump a portion of the memory in full word

octal format with addresses, set ML and enter via

CALL PTMDFA

Name : Memory Dump Control for Sexadecimal
Ml = address of parameter word (see #10)

Length: 6 words
Other subroutines used: Number 6, Number 16 (Number 1)

Use: To dump a portion of the memory in floating

point sexadecimal format, set ML and enter via

CALL PTMDS

Name : Memory Dump Control for Sexadecimal with
Addresses

ML = address of parameter word (see #10)
Length: 6 words

Other subroutines used: Number 7, Number 16 (Number 1, Number 3,
Number 4, Number 6)

Use: To dump a portion of the memory in floating
point sexadecimal format with addresses, set ML

and enter via

CALL PTMDSA

Name : Memory Dump Control for Full Word Decimal
Ml = address of parsmeter word (see #10)

Length: 6 words
Other subroutines used: Number 8, Number 16 (Number 1)

Use: To dump a portion of the memory in floating

point decimal format, set ML and enter via

CALL PTMDD
Date: 11/14/64
Section: 8.4-J6-TOPS
Page: 10 of 39

Change: 2

15. Name: Memory Dump Control for Full Word Decimal
with Addresses

Ml = address of parameter word (see #10)
Length: 6 words

Other subroutines used: Number 9, Number 16 (Number 8, Number 3,
Number 4, Number 1)

Use: To dump a portion of the memory in floating
point decimal format with addresses, set ML

and enter via

CALL PTMDDA

16. Name: Punch or Type Memory Dump
Length: 9 words
Other subroutines used: None

Use: This subroutine should not be called by the

programmer. It is used by subroutines
Number 10, Number 11, Number 12, Number 13,
Number 14, and Number 15 to produce a memory

dump in the specified format.

17. Name: Fast Register Dump Control for Full Word
Octal Format

M1l = address of storage
Length: 5 words
Other subroutines used: Number 3, Number 20 (Number 1)

Use: To dump fast registers 2 through 7 (properly
labeled) in full word octal format, store Fi
in memory, set ML to the address of storage,

and enter via

CALL PTFRDY

Date: 11/1k4/6k
Section: 8.4-J6-TOPS
Page: 11 of 39

Change: 2

The original contents of Fi (as stored in

memory) are restored to F4 prior to exit.

18. Name: Fast Register Dump Control for Sexadecimal
Format

Ml = address of storage
Length: 5 words
Other subroutines used: Number 6, Number 20 (Number 1)

Use: To dump fast registers 2 through 7 in
sexadecimal format, proceed as in Number 17,

but enter via

CALL PTFRDS

19. Name: Fast Register Dump Control for Full Word
.Decimal . Format

Ml = address in storage
Length: 5 words
Other subroutines used: Number 8, Number 20 (Number 1)

Use: To dump fast registers 2 through 7 in decimal

format, proceed as in Number 17 but enter via

CALL PTFRDD
20. Name: Punch or Type Fast Register Dump
Length: 25 words

Other subroutines used: Number 1

Use: This subroutine should not be called by the

programmer. It is used by subroutines Number 17,
Number 18, and Number 19 to produce a fast

register dump in the specified format.

Date: 11./14/6k
Section: 8.4-J6-TOPS
Page: 12 of 39

Change: 2

Name : Punch or Type ACCumulator Dump
M1 = not used

Length: 88 words
Other subroutines used: Number 1, Number 2, Number 6

Use: To dump Amost, Aleast, R,ES, FO(Out), and
Fl(In) as floating point sexadecimal numbers,

enter via
CALL PTACC

This subroutine also indicates whether OV or Z
indicators were on upon entry. All information

is restored except R,ES.

Note that R,ES contains the remainder immediately
after division, but otherwise may be meaningless.
If the first two bits of ES differ, OV will be set
during storage (see EXCEPTIONS below). Should
this occur, the comment "OV set during storage"
will occur in the output, although the true con-

tents of BES will be given.
EXCEPTIONS:

If 7 indicator is on or if R contains zero, the
setting of OV during storage of R,ES will be in-
hibited. Therefore, if either of the two conditions
are true, a question mark will appear after ES to
indicate that the true value of the first bit of ES

is undeterminable by a program.

Date: 11/14/6k
Section: 8.4-J6-TOPS
Page: 13 of 39

Change: 2

TABLE 1. PTCON, Punch to Type CONversion

This is a table of the typewriter characters assigned to the various
baper tape characters. Note that the following special typewriter characters

are not included: 7V %

Paper-| Typewriter Paper- Typewriterj
Decimal Octal Tape Character Decimal Octal ' Tape ! Character,
= Value |Equivalent]| Code Assigned || Value [Equivalent: Code g Assigned |
0 00000 0 0 6k 00100 ; })
1 00001 1 1 65 00101 A # 3
2 00002 2 2 66 00102 ([;
3 00003 3 3 67 00103 }] *
L 0000k 4 u 68 00104 < <
5 00005 5 5 69 00105 > >
6 00006 g 6 70 00106 A A
7 00007 7 7 ral 00107 e -
8 00010 3 8 T2 00110 : ?
9 00011 9 9 73 00111 « (
10 00012 + + Th 00112 = =
11 00013 - - 75 00113 [| i
12 00014 a a 6 00114 A A !
13 00015 b b 7 00115 8 B
14 00016 c c 78 00116 ¢ c
15 00017 d d 79 00117 > D
16 00020 e e 80 00120 E E
17 00021 f f 81 00121 Food F
18 00022 g g 82 00122 G G
19 00023 h h 83 00123 H H |
20 0002k i i 8k 0012k | I ;
21 00025 J h| 85 00125 J J ;
22 00026 k k 86 00126 K K
23 00027 P 1 87 00127 L L
24 00030 m m 88 00130 M M
25 00031 n n 89 00131 N N
26 00032 o o 90 00132 0 0
27 00033 p P 91 00133 P P
28 00034 q q 92 0013k . @ Q
29 00035 r r 93 00135 , R R
30 00036 s] ol 00136 | 5 S
31 00037 t t 95 00137 | T T

Date: 13/ /6h
Section: 8.4-J6-TOPS
Page: 14 of .39
Change: 2

TABLE 1. PTCON, Punch to Type CONversion (Continued)
Paper- |Typewriter Paper- [Typewriter
Decimal Octal Tape Character Decimal Octal Tape Character
Value |(Bquivalent Code | Assigned Value {Equivalent Code | Assigned
32 00040 u u 96 00140 U 7]
33 00041 v v 97 00141 v v
34 00042 W w 98 00142 W W
35 00043 X X 99 00143 X X
36 0004k y Yy 100 001 kk Y Y
37 00045 z z 101 00145 ¢y Z 2
38 00046 ' ' 102 00146 £ "
39 000kT _ 103 001k47 w E
Lo 00050 : 10k 00150 / /
41 00051 . . 105 00151 , ,
It 00052 | NOP 106 00152 - NoP
43 00053 NOP NOP 107 00153 NOP NOP
Ll 0005k NOP NOP 108 00154 | NoOP NOP
45 00055 NOP NoP 109 00155 ! NOP NOP
46 00056 NOP NOP 110 00156 ; NOP NoP
L7 00057 NOP NoP 111 00157 NOP NoP
L8 00060 delay S.F.0.M, 112 00160 tab tab
49 00061 NOP NoP 113 00161 NOP NoP
50 00062 biack NOP 114 00162 red NoP
51 00063 NOP NOP 115 00163 NOP NoP
52 00064 NOP NoP 116 00164 NOP NOP
53 00065 NOP NOP 117 00165 NOP NoP
5k 00066 NOP NoP 118 00166 NOP NoP
55 00067 NOP NOP 119 00167 NOP NoP
56 00070 space space 120 00170 backsp, | backspace
57 i 00071 clr tab NOP 121 00171 Iset tab NoP
58 | 00072 clr all NoP 122 00172 | 'NOP NopP
59 ' 00073 NOP NOP 123 00173 NOP NoP
60 0007k HLD index 124 00174 | HLU NoP
61 00075 NOP NOP 125 00175 | NoOP NOP
62 00076 & * 126 00176 & $
63 00077 LF /CR LF/CR 127 00177 | erase NoP
8191 17777 special character used as the terminator for PTMSS

This assignment is made in order to have a character which will set the
typewriter for output mode without affecting paper tape output.

Date:
Section:
Page:
Change:

1./14/6k
8.4-J6-TOPS
15 of:39

2

s o8uey)

S

6 J0 9T
SI0I-9L-1°Q

:98eg
$UOT.09g

199%(Q

#9/MT/TT

HERREE

*EE

PTEMP
PTCON

PTA

TYPEWRITER -OR PAPER-TAPE OUTPUT SYSTEM

NUMBER 1) PUNCH-TYPE ALTERNATOR

ENTRY .
BSS
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
DECQ
SFR
ASN
CAM
JNM
CRM
JNM
SFR
CRN
CAM
ANN
LFR

PTA

2
4152,4217+442185,4155,4184,4121,4122,4187
4220541579412854223,4098,4163,4196,4133
413494199941005416594166,4103,4208,4145
4146y4211,4112,4177+,417844115,4148,4213
4214:4151,4180,411794118,4183,4097,4348
428694158999 999

384099999909 - :

25690991024, ,4194,768
42599425044285,4280,4345,4346,4249, 4321
435194322+44193,4283,422694291,4324,4261
426224327+4228+y4293+429494231,4336,4273
427644339:4240,4305,430644243,4276,4341
4342+4279+4308,4245,4246,4311,4225,4262

4131416059999

12805999099 -

5124192149 14256,

44PTEMP FREE F4

28 - READ SR34

2

2:PTAL BYPASS DUTPUT

2:12

2,PTA2 PUNCH MODE

T+PTEMP+1 FREE F7 ,
1.2 FETCH PROPER WORD OF PTCON
031

7+PTCON

(J6-TOPS-01-UI-AL)

01234567

89+~ABCD

EFGHIJKL
MNOPQRST
UVHXYZ®*

L
)

(= ABCD
EFGHIJKL
MNOPQRST
UVHXYZ E
/s

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

fut ot
O WO SN

Pt ot ot oot b okt o
VOO WN

NANNNNNNN
wW PP WN O

NN
O o

: 28uBy)

I

6€ Jo)T
SI0I-9L-4"Q

:98eg
$UOT3098g

1908

w9/HT/TT

PTALl

PTA2

X

PTEMPL
PTMSS

PTMSS1

PTMSS2

PTMSS3

ORB
ATN
SSR
LFR

. LER

JLH
ATN
SSR
TRA
60

NUMBER
ENTRY .
-BSS

SFR
SFR
cgﬁL
CAM
CNM
TRA
CSM
ATN
LFR
ORB .
CAM
JIM
S8M.
CALL
CJu

- TRA

PIMSS4

LFR

LFR
JLH
GO

M1

M12

6
T+PTEMP+L
4+PTEMP
M3

Ml

PTAL

TYPE PROPER -CHARACTER

RESTORE F7
RESTORE F4
EXIT ~
PUNCH CHARACTER

GO TO EXIT

2) . PUNCH OR TYPE MESSAGE

PTMSS -
2
4,PTEMP1
T+PTEMP1+41]
1M1

2

PTMSS3
2,4

rls

‘?.

M2
1oMI241
1,PTMSS4
1.1

- PTA

2.PTMSS2
PTMSSI
T+PTEMPL+1
4,PTENMPL
M3

FREE F4

FREE F7

SAVE ADDRESS

SET 'UP SPECIAL CHARACTER
SET LOOP COUNTER

ENTER LOOP

SET 'LOOP COUNTER

FETCH WORD AND (INCREMENT

TEST NEXT CHARACTER FOR END

END OF ‘MESSAGE
RESTORE CHARACTER

GO TO OUTPUT CHARACTER
MORE TO GO: IN THIS WORD
RETURN FOR NEW 'WORD
RESTORE F7

RESTORE F4

EXIT

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

- TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
T0PS
TOPS

T0PS

TOPS
TOPS
TOPS
TOPS
TOPS

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

:98eg

1 U0T 098
1998

1 98uUBY)

c

6€ Jo QT

SI0L-9r-%"Q
79/1T/TT

|
|

L2 2 B

PTEMP2
PTQW .

PTQNW1
PTQNWZ

PTQW3

PTQW4

PTQWS

NUMBER 3A)

ENTRY

BSS
SFR
CAM .
TRA
CAN
SFR
CAM
TRA
CAN
SFR
CAM
TRA
CAN
SFR
CAM
CAM
CaLL.
CAM
CALL
LDM
CRN
CaM
ANN
CAM
CSM .
TRA

#
44PTEMP2+2
1:48

PTQUS

0,0

4. PTEMP2 +2
2463

PTQW4

0,0
4yPTEMP2 +2
2956

PTQUS

050
4yPTEMP2+2
2:112
1;@8'

PTA

1,M2

PTA

12 PTEMP2+2
112 '
2

2.1

1

5
PTQHWT

- PUNCH OR TYPE QUARTER WORD IN OCTAL

PTFWoPTFHL s PTFW2,PTFW3,PTQW,PTQWL,PTQW2,PTQNW3

FREE F4
SET ‘UP SPECIAL :CHARACTER

NEEDED FOR SPACING
FREE F4
SET UP "'LF/CR®*

NEEDED FOR SPACING
FREE F4&
SET UP "*SPACE"**

NEEDED FOR SPACING

FREE F4

SET .UP **'TABL

SET UP SPECIAL CHARACTER
GO TO-DUTPUT :CHARACTER
FETCH NEXT CHARACTER

G0 TO .OUTPUT CHARACTER
FETCH QUARTER-WORD

LOAD SHIFTED QUARTER-WORD INTO M2

FETCH SIGN BIT

SET LOOP COUNTER -
ENTER LOOP

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

- TOPS

TOPS

- TOPS

TOPS
TOPS

62
63
64
65
66
67
68
69
70
71

- 12

13
74
15
76
17
18-
79
80
81
82
83
84
85
86
87
88

: 28uBy)

c

65 J0 6T
SI0L-9r-1°Q

1288
1 U0T4098

129%(q

H9/MT/TT

PTQHW6

PTQWT

t 2 2]

PTFM .
PTFH1
PTFW2

PTFKW3

PTF W4

PTF#5

CRM - 2:10 -
ANN 247

CAM 1

CALL PTA

cJu +PTQUWE
LFR 44.PTEMP2+2
JLH M3

- NUMBER -3B)

SFR 44PTEMP2
CAM 2

TRA PTFH4
SFR 44.PTEMP2
CAM 2+2

JRA PTFK4
SFR 4,PTEMP2
CAM 2¢4

TRA PTFUH4
SFR 4,PTENP2
CAM 246

SFR T+PTEMP2+1
LFR TsM1

LSM 4

ORB MO

CAM 1.M12
ATN M2

CALL PTQHW

CAM 2e%

cJu 'PTFUS
LFR T+PTEMP2+1
LFR 49 PTEMP2
JLH M3

GO0

SHIFT FOR NEXT CHARACTER
LOAD CHARACTER INTO M1

G0 TO QUTPUT (HARACTER
MORE CHARACTERS
RESTORE f4&

EXIY -

- PUNCH OR TYPE FULL WODRD' IN OCTAL

FREE F4
SET RELATIVIZER FOR BLANK

FREE F4
SET RELATIVIZER FOR *LF/CR®

FREE F4
SET RELATIVIZER FOR 'SPACE"

FREE F4

SET RELATIVIZER FOR °*TAB®
FREE F7

FETCH WORD

SET QUARTER-WORD COUNTER
LOAD PROPER QUARTER-WORD

60 TC OUTPUT IT

SET RELATIVIZER FOR *'SPALE"
MORE QUARTER-WORDS TG 6O .
RESTORE F7

RESTORE F4

EXIT

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS
T4PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

- TOPS

T0PS
TOPS
TOPS
TOPS
T0PS
TOPS
TOPS

89
90
91
92
93
94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

:98ueyn

c

6€ 3o oz
SI0L-9L-1°Q

:038g
{UO0T3098

1398(Qq

"9/MT/TT

%

PTEMP3
PZERO .
PTDQ

PTDQL

PTDQ2

PTDQ3
PTDQZ

PTDQY .

NUMBER 4) PUNCH DR TYPE DECIMAL QUARTER WORD

ENTRY .
BSS
DECQ
SFR
CAM
TRA
SFR
CAM
TRA
SFR
CAM
TRA
SFR
CAM
CAM
CALL .
CAM
CALL .
SFR
LDM
LFR
JPM
SBM .
JPM
CAM
CAN .
CAM
TRA

PTDQ,PTDQL,PTDQ2,PTDQ3

3

29y

4. PTEMP3
1,48
PIDQY
4, PTEMP3
2463

- PTDQZ

44PTEMP3
2:56
PTDQZ
4,PTEMP3
22112
1+48

PTA

1. M2

PTA

T+ PTENMP3+]
1. PTEMP3
7,PZEROC
1,PTDQA
14100
1,PTDO4
12,4
14,9
15,M1+10
PTDQK

SAVE F4
SET FOR OUTPUT

SAVE F4

OUTPUT LF/CR
CHARACTER

SAVE F4

OUTPUT SPACE
CHARACTER

SAVE F4

OUTPUT TAB CHARACTER
SET FOR OUTPUT FOR
PREFIX CHARACTERS

OUTPUT PREFIX CHARACTERS
SAVE F7

FETCH QUARTER-WORD (N)
SET ALL COUNTERS TO ZERO
N L.T. 4096

REDUCE N

N G. T. 4099

SET 409X TO BE OUTPUT

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

:98eg
1 UO0TQ09g

199eq

1 98uByD

4

6¢ Jo T2

SI0L-9r-1°Q
H9/MT/TT

e i v

PTDQ4
PTDQA

PTDQB .

PTDQC

PTDQD

PTDQE

PTDQF -

PTDQS

PTDQK
PTDQ6

CAM

- CAM

SBM
JNM
CJu
ADM
SBM
JNM
cJu
ADM
SBM
JNM
cJu
ADM
SBN
CAM
JUM
CAM
CJu
JUM
CAM
JUM
CAM
JUM
CAaM
CSM
ORB
CAM
CALL
cJu
LFR
LFR
JLH
60

12:4
13,1
1,1000 -
1,PTDAB
12,PTDQA
1,1000
1,100
1,PTDQD
13,P¥DQC
1,100
1,10

1, PTDQF
14,PTDQE
15,M1+10
13,10

1
1:PTDQS
13
12,PTDQK -
12, PTDQK
12,56
13,PTDQK :
13,56
14,PTDQK
14456
2+4

M2
1,M12
PTA
2,PTDQS

T+ PTEMP3+1 .

44,PTEMP3
M3

CORRECYT FOR N 6. T. 4099

EXTRACT
THOUSANDS
DIGIT

EXTRACTY
HUNDREDS
DIGIY

EXTRACY

TENS

DIGIT

EXTRACT UNITS DIGITY
CORRECY FOR CARRY

SCAN TO ELIMINATE
LEADING ZEROS

SET DIGIT .COUNTER -
QuUTPUY

ALL

DIGITS

RESTORE F7
RESTORE F4
EXIY

TOPS
TOPS
TOPS

- TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOoPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
T0PS
TOPS
TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173

174
175
176
177
178
179
180
181

19887

: 93uBy)
$UOT]09¢g

c

6¢ Jo 22
SJ0L-9L-%"Q

199%Qq

H9/MT/TT

%R

PTMP2A
PTFHA

t 2 & 2

PTEMPS4
PTSHWS

PTSW

PTSKL

PTSKW2

PTSW3

PTSK4

NUMBER 5)

PUNCH OR TYPE FULL WORD IN OCTAL WITH ADDRESS

NEEDED TO SET UP TRANSFER VECTOR
FREE F4&
GO TO OQUTPUT ADDRESS

RESTORE F&
GO TO OQUTPUT WORD

PUNCH OR TYPE SEXADECIMAL WORD

ENTRY PTSW,PTSW1,PTSW2,PTSW3,PTSKS

ENTRY PTFWA
CALL PTYFW2
SFR 44.PTMP2A
CALL PTDQ1
CALL PTQWZ
LFR 4. PTMP2ZA
TRA PTFW2
&G0

NUMBER 6)

BSS 3

SFR 4. PTEMPA
SFR S5+PTEMP4+1
SFR T+PTEMP4+2
CAM 15,M1
CAM 148
CALL PTA

TRA PTSHW7
SFR 44+ PTEMP4
CAM 1,48

TRA PISHS
SFR 4. PTEMPS
CAM 2963

TRA PTSH4A
SFR 4. PTEMP4
CAM 2956

TRA PTSH4
SFR 4. PTEMPA
CANM 25112
CANM 1048

FREE F4

FREE FS

FREE F7

SAVE EXPONENT

SET UP SPECIAL CHARACTER
G0 TO OUTPUT CHARACTER

FREE F4
SET UP SPECIAL CHARACTER

FREE F4
SET ‘UP "LF/CR*

FREE F4
SET UP °*SPACE?

FREE F4
SET UP *TAB®
SET UP SPECIAL .CHARACTER

TOPS
T0PS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

182
183
184
185
186
187
188
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

1 a8ury)

v@‘

6€ Jo €2
Sd0L-9r-%"Q

:988g
1 U0T109¢g

1918

W9/MT/TT

PTSHWS

PTSH6
PTSW7

PTSW8
PTSW9

PTSW1O0

CALL
CAM
CALL
SFR
SFR
LDM
LFR
CAM
CRN
CAM
JNM
ANM
TRA
ORM
CRM
ANN
CAM
CNM
CSM
CSM
TRA
CSM
CRM
ANN
CaM
CALL
cJu
cJyz
CAM
cJz
ANM :
ANN
ADM
CRM

PTA

1,M2

PTA
S5+PTEMP4+]
T+ PTEMPS4+2
1,PTEMPS
5,M1
15.M7
15,7

14
14,PTSW6
15,127
PTSH7
15,128
4912

4491

i

12

13,3
14:4
PTSUW1O0
14,3

499

4415

1

PTA

14, PTSHI
13,PTSK11
44M5
12,PTSKS8
4.1
648190

4

441

60 TO OUTPUT CHARACTER
FETCH NEXT CHARACTER

60 TO DUTPUT CHARACTER
FREE F5

FREE F7

FETCH ADDRESS

LOAD WORD

LOAD EXPONENT

EXTEND EXPONENT TO 8 BITS

LOAD SIGN BIT

SET GROUP COUNTERS

SET DIGIT COUNTER
ENTER - LOOP

SET DIGIT COUNTER
LOAD NEXT DIGIT

G0 TO OUTPUT CHARACTER
MORE DIGITS TO GO

3 GROUPS PUNCHED

LOAD GROUP 2

1 GROUP PUNCHED

LOAD GROUP 3

{8190 = 17776)

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
T0PS
TOPS
TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

1 088g

1 98uBy)
1 UO0TQ088

4

6E IO H2
SI0I-9L-1%"8

oqeq

"9/MT/TT

PTSWL1 .

PTSK12

PTSH13

PTEX5

*u%

PTMP4A
PTSHA

TRA
ANM ¢
ANN
ADM !
CRM
cCsSH
CRM .
ANN
CAM
CALL
cJu
JUM
CAM
CRN
CaN
CSM
cJdu
LFR
LFR
LFR
JLH
60

PYSHB

623
T+8064

6

6492

1442

6499

6415

;.

PT
14,PTSW12
13,PTEXS
1456
15,8

b

14,3
13,PTSH13

T:PTEMP4£2 .

5, PTEMP4+1
4,PTEMP4
M3

ENTER LOOP
LOAD GROUP 4
{8064 = 17600}

SET DIGIT COUNTER
LOAD NEXT DIGIT

60 TO OUTPUT CHARACTER
MORE DIGITS TO GO
END SIGNAL SETY

- SET UP "SPACE®*

LOAD EXPONENT

SET DIGIT COUNTER

ENTER LDOP AND SET END SIGNAL
RESTORE F7

RESTORE F5

RESTORE F4&

EXIT

NUMBER 7) PUNCH OR TYPE SEXADECIMAL WORD NITH ADDRESS

ENTRY .
CALL
SFR
CALL
CALL
LFR
TRA
GO

PTSHA
PTSW2
4, PTNP4A
PTDQ1
PTQHW2
49 PTMP4LA
PTSHW2

NEEDED TO SET UP :TRANSFER VECTOR
FREE F4&
GO0 TO QUTPUT ADDRESS

RESTORE F4
60 TO DUTPUT WORD

- TOPS

TOPS
TOPS
TOPS
TGOPS
TOPS
TOPS

TOPS.

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

267
268
269
270
271
212
273
274

193983
$UO0T3099

1 28uey)

[+

6¢ 30 G2
Sd0L-9L-1"Q

s an%eq

H9/MT/TT

HER

PTEMPS -
PTDW

PTDW1

PTDHWZ2

PTDNW3

PTDW4

PTDWS

PTFDW

NUMBER 8)

ENTRY
ENTRY
BSS
SFR
CAM
TRA
CAN
SFR
CAM
TRA
CAN
SFR
CAM
TRA
CAN
SFR
CAM
CAM
CALL
CAM
CALL
SFR
SFR
LDM
CSM
TRA
SFR
SFR
SFR
CAM
CALL
LDM -

PUNCH OR TYPE DECIMAL HORD (WITH VARIATIONS)

PTDW,PTDW1,PTOKZ,PTDW3

PTFDW,PTFDA,PTFDKA

15
44PTEMPS+]
1448
PYDKWS

0,0

4, PTEMPE+1
2963

PTDW4

0,0

4, PTENMPB+]

2456

PTDW4

0,0

4. PTEMPS+]
24112

1,48

PTA

14M2

PYA
69PTEMPS
T+PTEMPB+S
1, PTEMP8+1
024

RELS6
64PTEMPS -
T+ PTEMPB+S

44PTEMPB+1

1:48
PTA
1.PTEMP8+]

FREE F4
SET UP SPECIAL CHARACTER

NEEDED FOR SPACING
FREE F4
SET UP 'LF/CR?

NEEDED FOR SPACING
FREE Fé&
SET UP *SPACE®

NEEDED FOR SPACING
FREE F4

SET UP *TAB*

SET UP SPECIAL CHARACTER
GO TO OUTPUT CHARACTER
FETCH NEXT CHARACTER
GO TO OUTPUT CHARACTE
SAVE Fé6 ‘
SAVE F7

RESTORE M1

SET ENTRY FLAG TO 4
PROCEED

SAVE F6

SAVE F7

SAVE F4

SET FOR

OUTPUT MODE

RESTORE M1

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

_TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

2715
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

:a8uey)

c

6€ 3o 92
SI0L-9L-1°Q

18383
:UOT2088

1o9%(q

HO/MT/TT

PTFDA

PTFDHA

REL6 -

JB3

JB4% ¢

CSM
TRA
SFR -
SFR
SFR
CAM

- CALL

LDM -
CSM
TRA
SFR
SFR
LFR
SFR
CaAM
CALL

. LDM -

LFR
CAM .
SFR
SFR
SFR
CAM
CAM

- TNOR

ADM
Tu .
ADM
ATN
SFR
SEX
ATN
SFR
SAM

0¢3

RELG6

6 PTEMPS
T1+PTEMPS+5
4.PTEMPB+]
1248

PTA
1,PTEMPB+1
02 :
RELSG
64PTEMPB
T+PTEMPB+5
6y M1
49PTEMPS+1
1248

PTA
1,PTEMPS+]
LaeMl+)
13,M1 :
3,PTEMP8+*2
5.PTEMPS+3

49 PTEMPB+14 .

T+ PTEMPB+8
2 :
JB3
224096
JB4

241

Trl,

M3
Tyl
4
Tely

SET ENTRY FLAG TO 3
PROCEED

SAVE Fé

SAVE F7

SAVE F4

SET FOR

OUTPUT MODE

RESTORE M1

SET ENTRY FLAG TO 2
PROCEED

SAVE Fé6

SAVE F7

LOAD PARAMETER WORD
SAVE F4

SET FOR

OUTPUT -MODE

RESTORE M1

LOAD 2ND PARAMETER WORD
SAVE SIGN IN M13
SAVE F3

SAVE FS5

SAVE F4

SET TEMP STORE STARTING ADDRESS
RESET OV, 1 FLAGS
OV NOT SET

SET OV FLAG

Z NOT ON

SET Z FLAG

SAVE FO=DUT

SAVE EXPONENTY
SAVE Z,0V FLAGS
AND EXPONENT
SAVE AMOST

TOPS

TOPS.

TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

- TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

:9%uByD

Va

6¢ Jo)2
Sd0L-90-4"Q

1 988g

1 U0 T3.09G
:39%8Q

HO/HT/TT

REL9B

REL9A

REL9

REL11
RELI1IA .
REL11B:

REL14

REL1S5

SAL
CAD
SAM

SFR -

LFR
ADM
JPM
ADM
JIM
ADM
JIN
ADM
CAD
CAM
TRA
LFR
SBM
CSM
CSM

CAD

CJu
CSM
SFN

CsSM:
CSM

CAM
SBM
CaAM

CAM

TRA
CSM
CSM

CAM

SFR

Tely

Fi

M7

49 PTEMPB+7

44 PTEMPB+14

Oel -
OyREL14
03’1
OyRELI9B
021
O.REL9A
0,1

Ml
8
REL11B
S5.M1

Os1

5.M5

691
4{1’.
6RELLIIA
6546

4

B+3

Be13
10513
0s1
13,10

2
REL1S
8sM8
94M9

7

2,PTEMPB+4

SAVE ALEAST
SAVE F1=IN

SAVE OV, Z FLAGS
RESTORE F4

JUMP IF ENTERED

BY PTFDWA

CHECK FOR

PTFDA ENTRY .

CHECK FOR

PTFDW ENTRY .

RESET FOR CORRECT FORMAT
LOAD WORD FOR PRINTING

SET FOR ‘NO PRECEEDING CHARACTER

JUMP FOR PTFDA ENTRY .

. LOAD PARAMETER WORD

RESET CORRECT: FORMAT

SET COUNTER

SET QUAD. =-1

LOAD CURRENT WORD

JUMP ON WORD ON LINE COUNTY
SET WORD ON:LINE COUNT:
SET S$=-1

SET $=3

SET N=13

SET K=13

RESET-CORRECT FORMULA
SET -FOR POSITIVE SIGN '+*
SUPPRESS LEADING ZEROS
SKIP OVER

RESET ENTRY .

CLEAR SIGN FLAG
SAVE F2

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
T0PS
TOPS
TOPS
TOPS

341
342
343
344
345
346
347
348
349
350
351
352

353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

1 88ury)

2

6E Jo g2
SI0L-9L-1*Q

1988
$UOT109g

2238

HO/HT/TT

REL17

REL20

REL21

J1i

REL2S
REL26

REL29

REL30 -

TZP
STN
CAN
STR
JNM
JIN
CAM .
CALL
TRA
CAM
CALL
CJu
JIM
CAM
CAD
T2

CA

CAD
JIM
MPY
cJu
STR
CAD
DAY
TZP
CAD
MPY
STR
SBM
TRA
CAD
MPY
STR
CAD

REL17
F3
13,11
8,REL20 -
8,REL21
1463
PTA
REL21
1456
PTA
8,REL20
O,REL6ES
11,M10+M9-1
F3.. .
REL32
B8yMI+1
1.
8,REL25
10.
8,J1

F2

F3

F2
REL29
F3.

10.

F3

10,1
REL26
F2
16.

F2

F3

JUMP IF AMOST G.T.E. ZERO
SET NUMBER POSITIVE
SET FOR MINUS SIGN -t
PUT NUMBER. IN F3
JUMP IF 'S G.T.E. 1
JUMP IF 5 = 0O

PRINT .

LF/CR

PROCEED

PRINT

SPACES

JUMP FOR ENTRY BY PTFODW
SET Ml=—{N-K+1)

LOAD NUMBER IN AMOST
JUMP 1F NUMBER=0

SET S=1-N ‘
LOAD 1.0 INTO AMOST
JUMP IF $=0

MPY BY 10.0

FORM 10=2=4-1)

STORE 10#={N-1)
LOAD F3 IN AMOST

ABS{AQ)-10#=(N-1)IN AMOST

ABS{AQ)G.T.E. 10==(N-1)
FORM .

10A0 - :

SUBTRACT 1 FROM EXPONENT
FOR EVERY MULTIPLICATION
RETURN TG TRY AGAIN
10=={N-1}IN AMOST

10==N
LOAD F3 IN AMOST

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

:a8uey)

©

6¢ Jo 62
SI0I-90-%*Q

:o898g
1U0T108g

1998

H9/HT/TT

REL32
REL33
REL33A

REL35
REL36

REL38

REL40

REL40A

REL41L
REL42

DAV
TN
CAD

DIV

STR
ADM
TRA
CSM
TOR

CAD .

ADD
SIF
TOR
SIF
CAM
CAD

JIM .

MPY
cJu
STR
CAM
CSM™

CAD .

CJu
CcJu
oIV
SIA

CJu

CcJu

JIM .

ADM
JIM
JUM

ChM

F2

*REL33

F3

10.

F3

10.1 .
REL30 -
10499
REL33A
F3
10,3,2048
Fz
REL35

F3
Byl+M9
il.
8,REL38 -
10.
8,REL36
F2

8sM0
15,1

F3
9sREL40A
2:REL40A
F2 -

M12
11,REL4]L
2sREL4)
12,REL42
251
2+.REL4Y
T+REL44
M7

ABS{AQ)-10#=N

JUMP [IF ABS{AO)L.T.10%=N
LOAD F3 IN AMDST

DIV BY 10.

SAVE IN F3

INCREASE EXPONENT COUNT
RETURN

SET EXPONENT=-99 IF A0=0
CLEAR OV :

LOAD F3 INTO AMOSTY
ROUND- A0 AND

STORE INTEGER FIX POINT IN F2

JUMP IF OV

STORE: INTEGER FIXED PT. IN F3

SET S=1-N

LOAD 1 IN AMOST
JUMP. IF S=0
MPY BY 10.0
RETURN FOR MORE
10==N-1 TO F2
TRUE FORMAT - IN M8

SET COUNTER FOR TEST OF D=10

LOAD F3. INTO- AMOST
INCREASE M2 AFYER (N-1)
FIMES: THROUGH LOOP
O=INTYEGER PART OF
AO/(10=={N—-1)

JUMP IF D=0
Ml4+1 IF D N.E. O
JUMP IF DIGITS SUPPRESSED

JUMP . IF ‘SIGN ALL READY PRINTED

N7 N.E. O

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPRS
TOPS
TOPS
TOPS
TOPS
TOPS
TGPS
TOPS
TOPS
TOPS
TOPS

TOPS.

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

1 98uryD

z

6€ J0 0%
SIOL-9L-1°Q

1088
1 UOT3098

1 99%8(Q

79/7T/11T

REL44

REL4S

REL47

REL48 -

REL49

REL50

CAM
CALL
JUM
CAM
CALL
CJu
SBM
JUM
CSM
ADM
ADM
CAM
CALL
TRA
LDM
JIM
CAM
CALL
SFN
CAD
MPY
ADD
MPY
STR
JNM
JZIM
CAM
CALL
CAD
STR
ATN
CAD
JPM .
STN

1.M13
PTA
11,REL4S
141

PTA
15.REL4S8
12410
12+RELAGT .
12,9
10,1
12,10
1eM12
PTA
RELSO
3,PTEMPS+14
3,RELS50
156
PTA

M12

Oe

F2

F3

10.

F3

9, REL4AO
OsRELS9
1,80
PTA.

104

F2

M10

0.

104 RELS6
F3

CHARACTER

JUMP IF POINT ALL READY PRINTED
guTPUT :

DECIMAL POINT

JUMP EXCEPT. IN FIRST PART

JUMP. IF D N.E. 10
IF .D=10s SET D=1
AND INCREASE EXPONENT BY 1

PRINT
D

JUMP IF SUPPRESSED LEADING ZEROS
ARE REPLACED BY NOTHING

ouTPUT

SPACE

FORM |

A=10(A-(10=={N-1))D)

PUT EXPONENT

INTO AMOSY

JUMP. IF EXPONENT POSITIVE
CHANGE SIGN

TOPS
TOPS
TOPS
TOPS
JOPS
TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TO0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

1 a8uey)

2

68 I0 TE
SI0L-90-1°8

:98eg
{1 UOTQ099

298]

H9/MT/T1

REL56

REL59

REL62

JB5

JBé

ATN
CAM
CALL
STR
CAM
CSHM
CSM
TRA -
LFR
LFR
ADM
JPM
CSM
cJu
LFR
CAM
CAD
SAM
ATN
LFR
JPM
CAD
DIV
CAD
LAL
CAE
CRM
JPM .
ADE
ADE
ATN
LFR
ocTQ
LFR

1

1,10

PTA

F3

0

9,2

11,3

REL4O

T+ PTEMPB+S
2:PTEMPR+4
8y1
8sRELS2
0,1

S5+REL9

3, PTEMPB+2
1.PTEMPS+8
1+1,

FO

| B S

5

6,JBS

13.

15,3,

1:1,

1el,

M7 -

621

63 JB6
-128

-128"

1,1,

5.;

10727

4, PTEMPB+1

PRINY *-¢
PRINT t=&°

CHANGE FORMAT
SEY N=2
~{N-K+#1})=-3

RESTORE F4
RESTORE F2
{M8)+1

RESET CORRECT FORMAT

SET TEMP STORE STARTING ADDRESS
RESTORE

FO=0UT

FETCH Z,0V FLAGS

AND EXPONENT

JUMP IF OV NOT SET

SET .0V

LOAD AMOST
LOAD ALEASY
RESTORE EXPONENT

JUMP IF -Z NOT SET
SET 1

RESTORE
Fi=IN

RESTORE F4

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS

T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS.

TOPS

TOPS

TOPS
TOPS
TOPS
TOPS
TOPS

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

1 38uey)

8

6 Jo 2¢
SI0L-90-%1°8

1 98%g
1U0T409¢

199001

"o/MT/TT

REL#65

REL66
REL67
REL68

J2

REL71

H%®

PTMPBA
PTDWA

LFR 5. PTEMPS8+3
CLFR 69 PTEMPS
JLH M3
CcSM 8,M10
CAD 1.
JZM By RELSG7
MPY 10.
cJu B,RELGS
MpYy F3
STR F3
CAM 8oM9
CAD 1.
MPY i0.
cJu 8yJ2
SuUB F3 .
TP RELT1
SBM 9,1
TRA REL6S
CAM 11, M9+4M10~1
TRA REL33
FIL
GO
NUMBER 9)
ENTRY . PTDHA
CALL PTDHW2
SFR 4 +PTYMPBA
CALL - PTDQ1L
CALL PTQW2
LFR 4oPTMPBA
TRA PTDW2
GO

RESTORE F5
RESTORE Fé6
RETURN
{M8)=-K

{10==K}AO

{M8)=-N

{(10#2N)-{10=%K) A0

N=N+1

PUNCH OR TYPE DECIMAL WORD WITH ADDRESS

NEEDED TO SET UP TRANSFER VECTOR
FREE F4
60 TO QUTPUT ADDRESS

RESTORE F4
60 TO CUTPUT WORD

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

- TOPS

TOPS
T0PS
TOPS
T0PS
TOPS
TOPS
T0PS
TOPS
T0PS
TOPS
YOPS
TOPS
T0oPS
TOPS

TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
T0PS

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

533
534
535
536
537
538
539
540

1 28uLey)

4

6€ Jo €€
SI0L~9L-%°Q

19983
1 UOTA098

1 99%(

7o/M1/T1

*E®

PYMP6A

PTMDF -

L 2 2 2

PTMP6B -
PTMDFA

LA £

PTMPSL

PTMDS

L2 2]

PTMPED

PTMDSA

NUMBER
ENTRY
BSS
CALL
SFR
CAM:
CALL
GO

NUMBER
ENTRY
BSS
CALL
SFR
CAM .
CALL
60

NUMBER
ENTRY
BSS
CALL
SFR
CAM
CALL
60

NUMBER
ENTRY .
BSS
CALL
SFR
CAM :
CALL
&0

10} . MEMORY DUMP
PYMDF
1
PTFW1
44PTHPOA
2 PTMPGA+]
PTMDX

11) = MEMORY DUMP
PTMDFA

1 -
PTFHA
4,PTMP6B
+JPTMPEB+1

PTMDX

12) = MEMORY DuMP
PTMDS

1

PTSHL
43 PTMP6C
PTMPOC+L
PTMDX

13) . MEMORY DUMP
PTMDSA

1

PTSHA
49 PTMPSED
+PTMP6D+]
PTMDX

CONTROL FOR FULL WORD OCTAL

TaPS.

TOPS

TOPS.

FREE F4 TOPS
LOAD LOCATION OF -JUMP INSTRUCTION T0PS
. : TOPS
TOPS

CONTROL FOR FULL WORD OCTAL WITH ADDRESSES
TOPS
TOPS
TOPS
FREE F4& TOPS
LOAD LOCATION OF JUMP 'INSTRUCTION T0OPS
TOPS
TOPS
CONTROL FOR SEXADECIMAL WORD :
TOPS
TOPS
TOPS
FREE F4& TOPS

- LOAD LOCATION OF -JUMP INSTRUCTION TOPS

TOPS
TOPS
CONTROL FOR SEXADECIMAL WORD WITH ADDRESSES -
- TOPS
TOPS
TOPS
FREE F4& TOoPS
LOAD LOCATION OF JUMP: INSTRUCTION T0PS
TOPS
TOPS

541
542
543
544
545
546
547
548
549
550
551
552
553
554

555
556
557
558
559
560
561
562
563
564
565
566
567
568

to8eg

:98uByD
$UOT209G

=

6 Jo HE
SJ0L-9L-1°Q

19q8q

HO/MT/TT

%

PTMP6E
PTMDD

(X1
PTMP6F -
PTMDDA

HR%

PTEMPS
PTMDX

PTMDX1

NUMBER 14) MEMORY DUMP CONTROL FOR DECIMAL WORD

ENTRY PTMDD
BSS 1

CALL PTDW1

SFR - 49 PTMPSGE
CAM . +PTMPGE+]L
CALL PTMDX

60

NUMBER 15)
ENTRY PTMDDA
BSS 1 :
CALL PTDHA
SFR 44PTMPOHF
CAN 1 PTMPSF+]
CALL . PTMDX

GO

NUMBER 16)
ENTRY PTMDX
BSS 1 :

SFR 5,PTEMPS
LFR 5 M0

SFR S.PTMDX1
LDM 2+ M1

LDM 1,M1

CSM 24M2-M1+1
FIL:

JSB ¢ 34.PTMDX
FIL

ADM 1.1

cCJu 2,PTMDX1
LFR S+PTEMPS
LER 44 MO-1
JLH M3

GO0

FREE F4

LOAD LOCATION OF -JuMP INSTRUCTION

MEMORY .DUMP CONTROL FOR DECIMAL WORD WITH ADDRESSES

FREE F4

LOAD LOCATION OF JUMP INSTRUCTION

PUNCH OR TYPE MEMORY DUMP

FREE F5

FETCH JUNMP INSTRUCTION
STORE JUMP INSTRUCTION
FETCH L.W.A.

FETCH F.uW.A.

SET WORD COUNTER

(JUMP TO PROPER SUBROUTINE
IS STORED HERE}

INCREMENT HWORD COUNT

MORE WORDS TO BE DUMPED
RESTORE FS

RESTORE F4

EXIT

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
T0PS
TOPS

TOPS
TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS

- YOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

569
570
571
572
573
574
575

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

1 28uByD

< .

6€ IO GE
SI0L-9r-%*Q

19887
{UOT1.098

12980

HO/MT/TT

"EY

PTIFRDO

PTMPTA

HER

PTFRDS
PTMPTB

L X 2]

PYFRDD

PTMPTC

wRE

PTEMPT
PTFRD .

NUMBER 17} FAST REGISTER DUMP CONTROL FOR FULL WORD OCTAL

ENTRY

CAM

CAM
CALL -
CALL -
60

PIFRDO

2:PTMPTA - LOAD LOCATION OF -JUMP INSTRUCTION
0sM3 SAVE LINK

PTFRD

PTFH2

NUMBER 18) FAST REGISTER DUMP CODNTROL FOR SEXADECIMAL WORD

ENTRY
CAM
CAM .
CALL

-CALL

60

PTFRDS :
2+PTMPTB ¢ LOAD LOCATION OF JUMP INSTRUCTION
04M3 SAVE LINK

PTFRD

PTSHW2

NUMBER 19) FAST REGISTER DUMP CONTROL FOR DECIMAL WORD

ENTRY |
CAM
CAM
CALL
CALL
G0

PTFRDD

2oPTMPTC LOAD LOCATION OF -JUMP INSTRUCTION
OsM3 SAVE LINK .

PTFRD

PTDW2

NUMBER 20} . PUNCH OR TYPE FAST REGISTER DUMP

ENTRY .
BSS
SFR
LFR
SFR
LFR
SFR

PYFRD

7.

T+PTEMPT+S FREE FT7.

ToM2 FETCH JUMP. INSTRUCTION
72 PTFRDB - STORE JUMP INSTRUCTION
T M1 FETCH ORIGINAL F4

TyPTEMPT®2 STORE ORIGINAL F4

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS
TOPS
TOPS
TOPS
T0PS
TOPS
TOPS

600
601
602
603
604
605

606
607
608
609
610
611

612
613
614
615
616
617

618
619
620
621
622
623
624

1 28uey)

c

6€ Jo of
SJ0T-9r-1"Q

1988y
tUOTQ098

1998

"9/HT/TT

PTFRDA

PEFRDSB -

PTFRD2Z .

CaM
CAM .
SFR -
SFR
SFR
SFR
SFR
CAM
CALL
CSM™
CAM

CALL -

CAM

CALL .

caM
CALL
CAM
FIL
JsB
FIL
cJu
LFR
LFR
FIL
TRA
FIL
GO

12,2948
13,M0
7+PTFRD2
24PTEMPT
3,PTEMPT+1
S5:PTEMPT+3
6+ PTEMPT+4
1'48 ’

PTA

Osb

1:63

PTA

1,81

PTA

1,M0+8

PTA

1,PTEMPT+64MO

3+ PTFRD -
O, PTFRDA .
49 PTEMPT+2
T+ PTEMPT+5

M3

(2948 = 05604} SET LINK
STORE LINK
STORE OTHER FAST REGISTERS

SET UP SPECIAL CHARACTER

GO TO DUTPUT CHARACTER

SET LOOP COUNTER

SET UP *LF/CR!

60 TO OUTPUT IY

SEY UP *F*

GO TO oUTPUY 17

SET UP NUMBER OF FAST REGISTER
GO TO OQUTPUT IT

SET ADDRESS OF FAST REGISTER

{JUMP TO PROPER SUBROUTINE
1S STORED HERE)

MORE TO GO

RESTORE F4

RESTORE

EXIT (LINK IS
STORED HERE)

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TO0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

625
626
6217
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

:28usy)

c.

6¢ Jo LE
SI0L-9L-1°Q

s o883
$UOT109¢g

199%(Q

#9/1T/TT

%*ER

PTEMPS
PTAMS1

PTAMS2

PTAMS3

NUMBER 21)
ENTRY .

BSS -
DECQ -
DECQ
DECQ :
DECQ

‘DECQ

DECQ
DECQ .

‘DECQ

. DECQ

PTANMSS
PTAMSS -
PTACC :

PTACC1

DECQ
‘DECQ
DECQ .
SFR -
SFR -
SFR
SFR -
CAM:
CAM
CAM |
CAM
SFR
TNOR -
ADM :

SRM

TNOR -
ADM -

PTACC
10 :

PUNCH OR TYPE - ACCUMULATOR. DUMP -

6376, 785789964884y 96,87,76595,90,93
5697999648859 463376924426930431,56 .
56956981915:56¢56956990,97¢564204525
15920914412431926929456326¢25956,56
63976923,16412,30,31,56,5658191,,
569569565101:56,20525,15,20514,12,31
269299563265 255456956,56 - -
631931105’80!94t56156056’56.8191,1
5695695639099 7+56930516931,56515,32
29920925418456930931426,29,12,18416
63:31!111g90132131156356:8191't
63981:1911984.25!56t56:56'8191

44PTENPS+2 .
5,PTENP5+3
6, PTEMPS+4

- T+PTENMP54S5 -

8. L -
9 .
10

11,PTEMPS5+6

OyPTEMPS+1. .
PTACCY

8ys1 .

11le1,
PTACC2
9,1

SAVE. F4.
SAVE F5
SAVE F6
SAVE F7
SET FLAGS TO ZERO

SET BASE ADDRESS OF :STORAGE
SAVE FO

SET’FLAGv* OV ON
SAVE R»ES -

SET FLAG—-0OV ON AFTER R,ES

ACCUMULATOR
DUMP AMOST
- DV IN

OICATOR ON
ALEAST

- 7 INDICAY
OR ON-

R+ES

-0V SEY ‘DU

RING STORAGE
FO~-0QUTY
F1-IN

TOPS
TOPS
TOPS
TOPS

TOPS

TOPS
TOPS
T0PS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
T0OPS
TOPS
TOPS
TOPS
TOPS

652
653
654 -
655
656
657
658
659
660
661
662
663
664
66S
666
667
668
669
670
671
672
6713
674
675
676
677
678
679

1 28uByD

e

6 Fo gf
SJ0L-9L-1"Q

HEY k]
{UOT9098

to9%e(

H9/HT/TT

PTACC2 SAM

SAL

SEX

U

ADM :

PTACC3 CAD

SAM :

SFR
caM:

CALL

LFR
CAM

CALL
CAM
JIM

S8M

CAD .

DIV

PTACC4 CALL -

LFR
CAM

CALL
CAM .
JINM

SBM

PTACCS CALL -
CAD .
SAM

SEX

CAM |
JUM
JUM

TU

11,1,
11,1,

15. .
PTACC3
1051

F1l

M1l
T+PTEMPS
1sPTAMS1
PIMSS

S PTEMPS+7
1.M15
PTSHUS
1,PTAMS2
8+PTACCS .
1,5

13.

1593,

PTNMSS
5:PTEMP5+8
1.M15
PTSHWS
1,PTAMS3
10,PTACCS
1+5
PTMSS
M11-3

F5.

15
0,PTAMSS
9. PTALLT .
104PTACCS
PTACCS -

SAVE A-MOST
SAVE A-LEAST
SAVE EXPONENT

SET FLAG-Z ON

SAVE F1

SAVE EXPONENT

LOAD FIRST MESSAGE
OUTPUT FIRST MESSAGE

OUTPUT ‘A-MOST

LOAD SECOND MESSAGE
'OV ON®* FLAG NOT SET
ADJUST :SECOND MESSAGE
RESET OV

OUTPUT SECOND MESSAGE

DUTPUT A-LEAST

LOAD THIRD MESSAGE
*Z ON** .FLAG NOT :SET
ADJUST THIRD MESSAGE
OUTPUT THIRD MESSAGE
FETCH RHES

LOAD FOURTH MESSAGE

**0V ON AFTER RyES'*' FLAG SET

*Z DN FLAG SET

TOPS
TOoPS
TOPS
TO0PS
ToPS
TOPS
TOPS
TOPS
TOoPS

TOPS

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

TOPS
TOPS.

TOPS
TOPS
TOPS
TOPS
TOPS
TOPS
TOPS

- TOPS

TOPS

TOPS.

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698 -
699
700
701
702
703
704
705
706
707
708
709
710
711

712

s 98uBy)

=0

6¢ IO 6E
SJI0L-90-%"Q

HEYs ok
1UO0TA09g

19980

no/HT/TT

PTACCS

PTACCT
PTACCS -
PTACCY

CAM

CALL

CAM

CALL

TRA
ADM
SBM

CAM:

CALL -

CAM

CALL

CAM

CALL

CAM
CALL
CaM:
CALL
CAD |
SAM
CAD
LAL .

LER

PTAC1O

CAE
JIN .
ADE
ADE -
LFR

ocTQ

LFR
LFR -
LER
LFR
JLH
60

1,M15

- PTSHWS

1,72
PTA.
PTACCHY
15,128
046

1, M15
PTSWS
1s MO
PTMSS

1 PFEMPS+1

PTISH

1, PTAMSS -
PTMSS
1,PTEMPS+9
PTSW . -
PTEMPS+1
PTEMP5+1

PTEMPS+7 .

PTEMPS5+8
7,PTENPS |
M15
10,PTACLO
-128 <

. =128
- T+ PTENMPS5+9

10737 . :
SyPTEMP5+3

6PTEMPS+4 -
- T9 PYEMRS5+5

4y PTEMPS+2
M3

OUTPUT RLES

SET UP QUESTION MARK
OUTPUT QUESTION MARK

CORRECT:ES
ADJUST :FOURTH MESSAGE

OUTPUT RHES
LOAD PARAMETER
OQUTPUT ‘FOURTH MESSAGE

OUTPUT FO -IN SEXADECIMAL
LOAD 'FIFTH MESSAGE
OUTPUT FIFTH MESSAGE

OUTPUT F1 IN SEXADECIMAL
RELDAD FO -

RELOAD A-MOST
RELOAD A-LEAST

RELOAD EXPONENT
ADJUST

FOR

UNDERFLOW |

- RELOAD F1

EXIT

TOPS

TOPS.
TOPS:

TOPS
TOPS

TOPS.

TOPS
TOPS

- TOPS

TOPS

- TOPS

TOPS
TaPS

TOPS.

TOPS

TOPS:

TOPS

- TOPS

TOPS
TOPS
TOPS
TOPS

TOPS
TOPS.

TOPS
TOPS
TOPS
TOPS
TOPS

TOPS.

TOPS
TOPS

- TOPS

T0PS

713
714
715
716
77
718
719
720
721
722
723
124
725
126
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
T44
745
746

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLTAC II LIBRARY PROGRAM
KO+ IPLIST-00-UI-AL

NAME : I/¢ List Program

PURPOSE : This program provides the tape blocking and buffering
necegsary for the FORTRAN statements

READ TAPE

WRITE TAPE
BACKSPACE

REWIND

and

END FILE

It can be used by other programs, but, due to the nature
of the FORTRAN statements, it is not an efficient way of

reading from tapes.
TEMPORARY STORAGE: Accumulator, FO-F3 and the first 256 words of COMMAN.
NUMBER OF WORDS: 76 words

USE: The program uses a calling sequence identical to that of the
PRINT/READ/PUNCH program (so that the FORTRAN compiler task

is identical).

A CALL is made with the address of an I/O list in ML. This
list defines the operation and a number of groups of con-

tiguous memory cells in the following way:

(e[M[N]T]

Format of the I/0 List Word

Programmed by: C. W. Gear Date: 7/20/ 6k
Approved by: Section: 8.4-KO-IPLIST

Page: 1 of 10
/() e_(Qeor Change :

USE (Continued):

The first quarter C of the list is the control word. It
is split into 2 and 11 bit parts.

| 2] 11 |

Control Quarter

The 1l-bit group indicates the function to be performed:

0 Read
lOOO8 Write
2040 Rewind
2050 Backspace
2120 End of File

' In these cases

The last three are "control operations.'
the list is one word long and the two-bit group is ignored.

For all operations, T is the logical tape unit number.

For read and write operations, M is the first word of a
group of length N (5 4095) words which are to be transmitted.
If the first of the top two bits of the control quarter is a
one, then another list word follows in the next location in
core, T and the 11 operation bits are ignored in all sub-

sequent words of the list.

When the top bit of a control quarter is a zero, the list
terminates. The CALL on the I¢LIST program is said to be a
partial or final CALL accordingly as the second bit of the

control quarter is a one or a zero.

A partial CALL means that the next CALL on the ISLIST program
is for the same unit and with the same control, The new list
is used to add more words to the block of words specified by

the preceding list.

Date: 7/20/6k4
Section: 8,4-KO-IPLIST
Page: 2 of 10

Change:

USE (Continued): A final CALL causes the block of words to be output to tape
(WRITE), or it causes the program to be set so that the
next READ will start a fresh block from tape.

METHOD: Information put on a tape by FORTRAN object program must be
buffered in records of not more than 256 words. Since a
block of data may be longer than this, one block may occupy
several records. To accomplish this the first word of each

record is a control word with the format:

|1

-256 + number of words
or O if there is another
block

Record number with block

The words are placed into a buffer backwards until it is
full (255 words) and then another record is started. When
the last word of a block has been placed in the buffer, the
control word is placed in the next available position and
a record of n + 1 words 1is wfitten where n is the number of

data words in the buffer.

READing tape is performed by loading the buffer with the
first block and then copying as many words as desired into
the cells defined in the list. If the buffer is exhausted

it is refilled from tape as long as there are records avail-
able. If the tape block runs out first, a message is printed,
and an exit occurs to SYSERR. Otherwise the tape is moved

to the correct end of the block.

BACKSPACE is a slow operation since the tape is backspaced
one block, read for one block and then backspaced the
number of blocks specified in the record number quarter of
the last block.,

Date: 7/20/64
Section: 8.4-KO-IPLIST
Page: 3 of 10

Change:

METHOD (Continued): A control word is used to tell whether the buffer is free or

not, and if not, which unit is using it.

00%00, 00377g -
Number of records——l I-Uni'l: using
in this block buffer,

0 => free
End of buffer address

BUF+1: BUFFER CONTROL WORD

A control word is also used to remember whether the last

CALL was partial or final.

0 if FINAL CALLA ~ g
Previous Control Counters saved from last entry
otherwise

if it was a partial CALL
(partial CALL control)

BUF
Use of Modifiers.
MO is O if the program is input mode,
ML contains the next list address word.

M4-M7 contains the current list word, the address in M5 is

incremented and the count in M6 is decremented.

M8 is positive during read if there are no more records

in this block.

MO contains the buffer address as the buffer is loaded

or unloaded.

MLO contains a count of 255 during write or a count of
the number of words in a record during READ., It

determines when a block is full or empty.

MLl contains the unit number currently in use.
Date: 7/20/6k4
Section: 8.4-KO-TPLIST
Page: 4 of 10
Change:

METHOD (Continued): After a partial call, the information in F6 is stored in
BUF and restored at the next CALL.

Date: 7/20/64
Section: 8.4-KO-IPLIST
Page: 5 of 10

Change:

EXIT

OBEY

BACKSPACE
RECORD
-
WAIT FOR |
LNIT NOT BUSY|.
Lo
EXIT -
BACKSPACE OUTPUT
N RECORDS RECORD ERROR
COPY TO OR
BT FROM BUFFER
OUTPUT
RECORD EXIT
I0 LIsT
SUBROUTINE FLOW
‘Date: 7/20/6k4
Section: 8.4-KO-IALIST
Page: 6 of 10

Change:

: 98uBYD

HEY LR
{1 UOT3089

0T Jo L

ISITPI-0M-7°8

1 998(]

©9/02/L

READ
WRITE

BCKSPR -

WALT
I0LISY

ENTRY .
EQUS
EQUS
EQUS

- EQUS

SFR -
SFR
SFR
SFR
LFR
ATN
LFR
JUM
CAM
ORM

- CAM

LFR
CAM
SFR
CRN
CAM
JPM
ANN

- CAM

oLz

CAM
SFR
CALL
B8SS
SBM
JUM -
CAM
CAM

5

IOLIST
Q-

512
1084
256
5,12
6,713
T: T4
4,?1 ’
649 BUF
% B
8s1I0L18
8y M4
844096
11,M7

- TeBUF+1

13

T+BUF+1

4011
12 .
12,10L4
442047 .
12. . ..

15:sM7+41024 -

TI0L2
SYSAUX
1

12¢BCKSPR
12,10L20

491024
651

SAVE F4-F7

- LOAD BUF

LOAD FIRST CONTROL WORD
SECONDARY ENTRY .JUMPR .
SET CONTROL (AND

UNIT IN BUF;0 AND BUF:3

RECORD COUNY = 0O
NOT CONTROL

CONTROL CODE
TAPE UNIT NUMBER

NOT BACKSPACE, EXIT

: 98ury)

19883
1U0T3088

0T #0 8

ISITPI-03-°9

i 998Q

719/02/L

10L&

I0L13
10L6A

10L3

10L8

I0LS
I0L7

10L8
1019

I0L12

ANN
CAN
CAM
JZM
CAM
LFR
JzM
SFR
CAM .
CALL
BSS

ADM

SFR
CAM
ADM
JNM
cJz
Jzm
CAD
SAN
SBM
TRA
FIL
CAD
SAM
TRA
JPM
ATN

LFR

TRA
CRN
CAM
JPM
ORM
SFR -

Be512
o e
19""1 '
Cs I0LBA
10,=256
T¢8BUF+1
15510L3+1
7. 10L3
15.
SYSAUX

1 .
13,1
T+:BUF+1
GeM14
6:~-1

6, 10LS8
104I0L10A
O I0L7Y
951

- HOLé

M9

Sels
I0LS
4, 10L9
% 3

5 .
i0oLe
4412
12

12,10L108

842048 -
69 BUF -

MO=0 -‘MEANS INPUT
BLOCK- COUNT -EMPTY FOGR INPUT
INPUT

BLOCK: (EEMPTY FOR OUTPUT

BUFFER FREE

WAIT FOR UNIT NOT BUSY
INCREASE RECORD COUNT

WORD ‘COUNT ‘DECREASED
TEST FOR EMPTY .
BUFFER EXHAUSTED .
TEST. INPUT

MOVE TO BUFFER
BUFFER. COUNT

MOVE FROM BUFFER

JUMP IF LAST CONTROL
NEXT CONTROL TO FS

JUMP - IF :FINAL: CONFROL
RESTORE BUF :

: 38uBy)

: 98eg
:UOT}088

0T 30 6

ISTTPI-OM-1°Q

: 9380

79/02/L

1oL 108

I0L14

I0L 15

10L 16

IoL17

I0L10A
I0L10

LFR
LFR
LER
LFR
JUH
JUM
JPM
JPM
LFR
CAM
SFR
CALL
DECQ
CAM
SFR -
CALL
8SS
CRN
CAM
JNNM
CAM
LFR
OR

JZN
ANM
ADM
ADM
ADM
CAM
TRA
JIM
LFR
CAM
SFR
CAM

4,71
5,72
6573

-T2 T4

M3

O I0L1CQ
8,10L20

8¢ IOLERR
7:10L15

15, M11+1024
T, 10L15
SYSAUX

READoRDBF-=255, IOLECGF0

12, WALIY
7+ 10L16
SYSAUX

1

4911

12
12,10L21
S RDBF=255
TeN9 -
844096

14 10L17
824095
1451

61

Gy M144255

105-256—-M14 .

I0L6
0, I0L14

- 1+BUF+1

144M10 -
T+ M9
134M9

AND F4-F7

JUMP IF OUTPUT
NO BLOCKS LEFT JUMP
NO BLOCKS LEFY - ERROR

READ TAPE

WAIT UNTIL 'IN

BACKSPACE

MORE BLOCKS TO COME

RESTORE WORD COUNT
END OF BUFFER
SET COUNT

JUMP. IF - INPUT

BUFFER COUNT
STORE CONTROL

s 23ury)

1998
sUOT1D9Q

0T 40 0T

ISTTPI-0-+°Q

©19/02/L

19980

10011

0L 20

10L 18
10L21
1oL23
ioL22
BUF

RDBF .
10L ERR

MESS

CAM
CAM
SER
CALL
B8Ss
LFR
CAM
SFR
ADM
JIM
CAN
TRA
ANN
CAM
TRA
LFR
csm
LER
CAM
SFR
CALL -
DECQ
CJv
TRA
BSS
DECQ
ASSIGN
EQUS
CALL
DECQ
CALL
CHR

12, WRITE
15.M11+1024
75 10L11
SYSAUX
T
7,BUF+1

15,M11+41024

1¢8UF+1
6,1
104I0L13
8 .

foL12
84512

L R

10L6
1+RDBF-=255
11,M13

T+ 10L22
154M7+1024

- To10L22

SYSAUX

BCKSPR;0,0,0 -

11,10L23
10L20
1

T1,72, T3, T4
255 .
SYSIO

WRITE+2,MESS0,0:

SYSERR

WAIT:0,RDBF;0

TAPE CODE

WRITE ON TAPE
SET 'BUSY BUFFER

SET M8=0 MEANING :FINAL ENTRY .

32, G6READ TAPE LIST TOO LONG.

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC IT LIBRARY PROGRAM
MO-CMP1-00-UI-AL

NAME : Compare N Words

PURPOSE : Subroutine to compare two lists of N words
NUMBER OF WORDS: 10

TEMPORARY STORAGE : 3 words in CHMMAN

FAST REGISTERS CHANGED: None if two lists are identical; FU if two lists are

not identical.
EXECUTION TIME: Variable, depending on the parameter N

USE: This subroutine is useful mainly for engineering

purposes. The parameters are specified as follows:

CAM 1,PARAM

CALL CMP1

where PARAM is the address of a full word in memory

containing the following parameters:

Quarter word O N N words in the two lists
Quarter word 1 FWAL First word addressof list 1
Quarter word 2 FWA2 First word address of list 2
Quarter word 3 ERRTRN Transfer address if compare
error
N lies in the range
1 <N<8192
Programmed by: W. J. Bouknight Date: 9/22/64
Approved by: Section: 8.4-MO-CMPL
Page: 1l of 3
Change:

USE (CONT'D):

ERRTRN must be the address of the first quarter of a
word in memory as control is transferred by a JLH M3
order. Where an error is detected and control is
returned to the main program via ERRTRN, ML and M2 will
contain the addresses of the two words in question plus
1. TFor example, if the word in location 300 does not
agree with the word in location 500, a return is made

via ERRTRN with ML = 301 and M2 = 501.

Date: 9/22/6k
Section: 8.4-MO-CMP1
Page: 2 of 3

Change:

: a8uBy)

1 988
1U0T2089g

€ Jo ¢
TdWD=0W-1°Q

1 918(

719/22/6

ENTRY

CMP 1 SFR
SFR
SFR
LFR
LSM
CMP1A ATN
LFR
ATN
LFR
EOM
EON
ORM
EDN
ORM
EON
ORM
JUM
CJu
LFR
CMP1B LFR
LFR
JLH
FIL
COMMON 8SS

tMpPl

4 COMMON
6y COMMON+1
79 COMMON+2
44M1

0, MO

6

231y

7

ByM12
GyM13

8

10,M14

8

11,M15

8

8,CMP1B
O,CMP1A

4y COMMON

6 COMMON+1
T+ COMMON+2
M3

3

SAVE F4

SAVE Fé6

SAVE F7

LOAD PARAMETERS

SET COUNT FOR N WORDS
LOAD FIRST WORD

TO COMPARE

LOAD SECOND WORD

TO COMPARE

EOM M12 TO M8

EOM M13 10 M9

ORM M9 T0O M8

EOM Ml14 YO M10

ORM M10 7O M8

EOM M15 T0O M11

ORM M11 7O M8

JUMP IF NO COMPARE EQUAL
RETURN FOR MORE COMPARES
RESTORE F4

RESTORE Fé6

RESTORE F7

RETURN

TEMPORARY STORAGE

CcMP1
CMP1
CMP1
CMP1
CMP1
CMP1
CMP1
CMP1
CMP1
CMP1
CMP1
cMP1
CMP1
CMP1
CMP1
CMP1
cMPl
CMP1
CMP1
cMPl
CMP1
CMP1
cMP1
CMP1
cMP1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020 -
021
022
023
024

NAME :
TEMPORARY STORAGE:

NUMBER OF WORDS:

FAST REGISTERS CHANGED:

USE:

DESCRIPTION:

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

ILLIAC II LIBRARY PROGRAM
M2-PRINT-00-UI-AL
M2-RE AD-00-UI-AL
M2 -PUNCH-00-UI-AL

PRINT, READ and PUNCH with input output conversion.
None
568 words

Accumulator, FO to F3, and ML and M3 by the calling

sequence.
See Manual, Chapter 5.

Master Control Logic--Main Format Scan Control

This portion of the program reads the format characters,
sets the proper control words and switches and transfers
to the parts of the program indicated by the format

characters. READ, PUNCH or PRINT are each entrances to

the master control logic.

If this is the first time READ, PUNCH or PRINT has been
entered after a "final call)' control words and the
switches in ML5 are set (see Fig. 2 for the meaning of
the ML5 switches; also see Figs. 4 and 5). If this is
not the first time this routine has been entered a new
I/O list word is put in F5, see Fig, 1. Parenthesis
counts are initialized. Up to three nested parenthesis

are allowed,

After initializion, the FORMRD routine is called and
each format character is read, see Fig, 3, for the
coding of each format character. Numbers, whose meaning

is not yet defined, are stored in M9 (temporary counter)

Programmed by: M, Gaer

Approved by:

Date: 7/16/6k
Section: 8.4-Mp-PRINT

¢/4f?7ﬁ)4 ﬁ eef, Page: 1 of 62

Change:

DESCRIPTION (Continued): until a later format character defines their meaning;
then they are placed in the proper modifier. See
Fig. 1 for the complete fast register layout in the
master logic. The following is a brief description of
each portion of the program that is branched to when
the proper format character is encountered. Blanks in
the format string are ignored. The switches are kept
in the low-order bits of ML5. They are interrogated by
doing a CRN15, bit position + 1, putting the result into
MLh and checking the sign of Mik, M4 < O => on.

*¥ - BSTAR: If this occurs inside a parenthesis, the
program exits to a format error. If there is still
more data in the I/O list to be processed, the program
resets the format string to the last outside left
parenthesis if there is one, or to the beginning of the
format string if there are no parentheses. If there is
no more data at this time, a repeat entry bit is examined
to determine if a later portion of the program will
produce more data to be output on this same line, 1if
this is an output type. If there is, all of the counts
are saved and the routine exits to the main program. If
no repeat entry bit is on in an output type, the routine
calls FRESET to f£ill out the rest of the line with
blanks, prints or punches out the line and exits to the
main program. For an input type, the routine just

exits to the malin program.

) » BRPR: It is first determined whether more repetitions
are neededy if so the routine starts reading format at
the previocus mateching left parenthesis. If no more
repetitions are reguired at this level the routine pushes
up to the next higher parenthesis level unless this
parenthesis was one too many in which case it takes an
error exit. The routine then starts processing data at

this higher parenthesis level.

Date: 7/16/6k4
Section: 8.4-M2-PRINT
Page: 2 of 62

Change:

DESCRIPTION (Continued): [— BSLSH: FRESET is called to finish this line and

the next format character is read.

, = comma: This will have been encountered while setting
up previous format instruction and will have terminated

it. DNext character is now read.

1l - 10 - BSUB2 and BSUB: BSUB2 and BSUB are two

entrances to a subroutine of the master logic which
constructs & number from a decimally-represented integer
until it reaches a character which terminates the con-
struction. This routine is sometimes entered auto-
matically when the previous format character implies
that the next character should be a digit. Since an
integer can be replaced by the letter N, this must be
checked for first. If N is encountered, the integer
portion of the current word in the I/O data block is
used to fill out the format specification. Since zero
has a BCD code of 10, this must be treated as a special
cage. If N was encountered, a short subroutine BINC is
now called to move the I/O data list word address to

the next full word boundary. BSUB2 (BSUB) now returns
to the return address in control logic previously placed
in MO,

(If a plus or minus had been encountered immediately
before a digit and no other format character was
associated previously with this digit, the routine now
assumes that this integer is to be used for scaling and

proceeds accordingly.)

S —» BS: This character indicates blanks are to be input
or output. BSUB, see above, is called to determine how

many blanks are required. The character terminating

Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 3 of 62
Change:

DESCRIPTION (Continued):

the S format is saved., If this is an output type
blanks are output from M8, FLDBF is used; otherwise
FRDBF is used to read in blanks.

X - BX: This is the same as an S-type format, except
the count has already been read in. This routine is

now set up as an S type and the S routine is used.

F, I, E > BEF: This routine first sets switches for E

or F type and whether leading plus signs are to be
printed. Whether or not the number 1s to be double-
precision is also determined. The integer up to the
decimal point is now constructed using BSUB; this will
be the total field length of the number to be input or
output. The number following the decimal point
indicates the number of decimal digits to be input or
output. The scaling factor has already been set. If
this is an output type, FDP is called as many times as
required to print or punch the decimal numbers as
indicated. If this is an input type, READEC is called
to read in the decimal numbers indicated. The next

format character is then read.

H - BH: The number of hollerith characters involved has
already been determined. If this is an output type, the
characters immediately following the H in the format
string are read by FORMRD, and output by FLDBF. If this
is an input type, the characters following H in the
format string are replaced by the charactersin the input
buffer. To get the proper location in the format string,
the format control word, FRCNT, see Fig. 2, is needed.

If this routine had been entered from the A routine (see
below), the routine returns to the A routine at BA3;

otherwise the next format character is read. If this

Date: 7/16/ 6k
Section: 8.4-M2~-PRINT
Page: 4 of 62

Change:

DESCRIFTION (Continued): was an A or C format, the I/O list address and I/O
count are incremented at BA3 since one A word may over-
lap into several list words. It is now determined whether
there are more A characters in the current word., If
there are, the next group of eight or less characters
is processed as a continuation of the previous group.
To do this the program branches to BAL (see below under
BA). If this word is finished the A field length is
restored and BAL gets the next data word., If there are
more A words to be processed, the above is repeated as
often as necessary. When finished the next format

character is put in MO.

A or C - BA: BSUB is called to get the number of A
characters desired., FRCNT, the format control word is
saved because a fake format word will be constructed.
When the A format is finished, program proceeds from
where it left off in the format string given by FRCNT.
BAL is the part of the BA routine which gets the data
word to be processed by the BA routine. BINC is used
to move up to the next full word boundary. If the I/O
block is finished a new I/O block is gotten; otherwise
the next I/O data word is gotten from the current block.
A fake Hollerith, H format, is constructed for eight or
less characters. The A field length is decremented by
eight, and a marker is set so that the H routine exits
to BA3 (see above under BH). The current format word
in the format string is replaced by the I/O data word
(for output); otherwise by a blank word which is filled
by BH from the input buffer. The BH routine is now
used., When finished FRCNT and the current word in the
format string are restored. If this is an input type,
the A word constructed has been stored in the I/O data

list.

Date: 7/16/64
Section: 8,4-M2-PRINT
Page : 5 of 62

Change:

DESCRIPTION (Continued): M - BM:
D - BD:
Q - BQ:

I, » Bl

number,

Sets indicator for M, then uses ERL.
Sets indicator for D, then uses BL.
Sets indicator for Q, then uses BL.

BSUB is used to get the field length of the
The next I/O data word is gotten. The following

is what occurs for each case separately:

M input: Character is read from the input buffer

using FRDBF, blanks are ignored. The characters

are assembled in M7 as octal characters. Note that

since the BCD code for zero is 10, O must be treated

differently. When a quarter word is assembled it

is placed in the I/O list and the item count (number

of words in block) is decreased. If there are more

wanted, the above 1s repeated; otherwise routine

exits to read the next format character.

M output: Puts the data block address plus item

count into M7{. The number is now printed in octal.

Since the first digit of a five-digit octal number

is binary, it must be converted differently from

the second through fifth digits. The item comment

is incremented and process is repeated as often

as called for. Next format character is then read.

L input: This is identical to M input except that

integers are read from the input buffer using READEC,

the decimal read routine.

L output: This option is identical to M output

except that the number is printed in decimal using

FDP, the decimal print routine.

D input: Decimal number is read by READEC, and

stored in proper quarter word of F7, which is then

Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 6 of 62

Change:

DESCRIPTION (Continued): stored in memory, counts are incremented and the
process 1s repeated as often as specified. Next

format character is then read.

D output: The data word specified by M5 is put in
F7. The correct quarter is extracted for printing
and put in the accumulator. It is then printed in
decimal using FDP. The quarter word count and the
item count is incremented. The above process is
repeated as often as specified. Next format

character is then read.

Q input: Identical to D input except that character
is read from buffer using FRDBF and constructed as

an octal number,

Q output: Identical to D output except that the
number is printed out octally. If more than five
characters are printed, leading blanks are supplied.
If less than five digits are required, the left

most are suppressed. There is no zero suppression.

- BLPR: BLPR is part of the initialization. The
pushdown count is incremented unless the count exceeds
three deep, in which case an error exit is taken. The
address of this parenthesis is saved as is the number
of repetitions for this parenthetical expression., The

next character is then read.

P - BP: The integer scale factor has already been read.
If scale factor is negative, this is indicated and it
is stored as a positive number. The next character is

then read.

Date: 7/16/6h
Section: 8.4-M2-PRINT
Page: 7 of 62

Change:

DESCRIPTION (Continued): + — BPLUS (- enters inside BPLUS): If a sign has

already been encountered an error exit is taken.
Otherwise plus or minus is indicated. The next format

character is then read.

FBACK

If the format string is exhausted but data still remains
to be processed, this subroutine returns to the format
specification starting at the last outside left
parenthesis, and if there is no parenthesis, it returns
to the beginning of the format list. The remaining data

is processed accordingly.

F4 and F7 are saved and the above format address is in
M13. This specifies the format word to which we wish
to return. This word is put into F7. The control
word, FRCNT, Fig. 4, is put into FL, where the format
counter will be reset to this new starting point. The
proper format character is found and the running counts
and switches are reset. The counts are saved and Fh

and F7 are restored.

FORMRD

This subroutine reads the next format character. Format
characters are packed two to a quarter word and the

main purpose of this routine is to extract the proper
quarter word and keep a running count of where we are

in the format string. Counts are kept in FRCNT, cf.,
Fig. k.

4 and F7 are saved. FLi is loaded with FRCNT, and F7
with the current format word, specified in M3. All the

information necessary to pick up the correct character

Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 8 of 62

Change:

DESCRIPTION (Continued):

is kept in FRCNT. The character is extracted, put into
M8, the counts are incremented, FRCNT is saved and Fh

and F7 are restored.

FLDBF

FLDBF is the subroutine used to fill the output buffer

character by character.

A buffer preparation word, FBFWD, is put in F7. This
word is filled two characters to a quarter word, one
character being added by each pass through this sub-
routine., When FBFWD is filled it is placed in its

proper position in the output buffer.

F5 contains the control word, FCNTS, which keeps the

running count of what is to be filled next, cf., Fig. 5.

To put each character into FBFWD, the proper quarter
word is first determined and then which half of the
quarter word is to be filled. When FBFWD is filled it
is placed in the output buffer, then restored to blanks,

i.e., zeros.

If too many characters are to be put in the buffer, an

error exit is taken.

After each pass, FBFWD and FCNTS are saved.

FRDBF

FRDEF is the subroutine used to read the next character

from a card, the card already being in the input buffer.

The control word FCNTSC (cf., Fig. 6) with the running
counts is put into F5. M5 is now used to pick up the
correct word of the input buffer and put it into F7.
If too many characters have been called for an error

exit is taken.

Date: 7/16/6k
Section: - 8.4-M2-PRINT
Page: 9 of 62
Change:

DESCRIPTION (Continued): Since characters are packed two per quarter word, the
correct quarter word and then the correct half of the
quarter word is determined, the character extracted
and put into M8, Counts are then incremented and FCNTSC

is saved.

FRESET

FRESET is the subroutine used to output a line or card
or read a card. The switches set in ML5 determine which
option is to be taken. SYSI¢ is the subroutine used

for input and output.

If input: SYSI¢ is called to read a card into the
input buffer INPBF, The input control word FCNTSC is

reset and saved, cf., Fig. 6.

If output: Output control word FCNTS, cf., Fig. 5, is
put in F5, and the buffer preparation word FBFWD is put
in F7. If the buffer is not completely filled already,
it is filled out with blanks., If a line is to be
printed, SYSI¢ is called for printing. FCNTS is reset
(- 133 total character count) and FBFWD is zeroed.

FCNTS and FBFWD are saved. Punching is the same, except
that SYSI¢ is called for punching, and the total

character count is set to -80.

READEC

READEC is a subroutine which reads in decimal numbers
and converts them to the proper octal representation.
It makes use of two other subroutines--FRDBF, the read
buffer subroutine which brings in characters one at a

time from the input buffer, and FEXP, which provides

Date: 7/16/6k
Section: 8/L4-M2-PRINT
Page: 10 of 62
Change :

DESCRIPTION (Continued):

the correct normalization and exponent after the rest
of the number has been assembled. The arithmetic in

this routine is double precision.

As each character is brought in, it is tested by a
series of subtractions to determine whether it is a
(1) digit, (2) + or - sign, (3) decimal point, (4) E
for exponent, or (5) a blank,

Exponents are sometimes indicated only by having plus

or minus signs occurring in the character sequence, e.g.,
+.1043 + 12 = ,1043E + 12. If a sign is not noted

where one should occur it is assumed to be plus.

Switches are set to indicate whether the next sign is
for an exponent, whether a decimal point has been
encountered, and whether we are assembling the exponent,

cf., Fig. 7.

If the character read in is an integer, the previous
number assembled is multiplied (double precision) by
ten and the new integer is added to it. Exponents are
assembled in the same way only in a modifier. The
number of integers past a decimal point is combined
with the exponent to provide the final normalization
after the entire number has been assembled. Normaliza-
tion takes place by calling FEXP. The completed number

is in the accumulator in double precision.

FEXP

This is a double precision subroutine that makes the
final normalization in READEC and the initial normaliza-
tion in FDP. The exponent of 10 is in M4 when FEXP is
entered and the number being assembled is in the
accumulator. A table of 10, 102, 104, 108, 1016 is

contained in the routine. If the ten's exponent is

Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 11 of 62

Change:

DESCRIPTION (Continued):

positive these powers of ten will be used to multiply
the number in the accumulator; if the exponent is

negative, they will be used for division.

The correct powers of ten are chosen in the following
way: first 16 is successively subtracted from the
exponent until the exponent is less than 16. Each time
such a subtraction was possible the number is multiplied
(divided) by 1016, When the exponent is less than 16

it will have a binary representation in M4 of

0000-1111 corresponding to 10°-1072, Right shift of Mk
puts the low-order bit into the sign bit of F5. If the
sign bit is negative multiply (divide) by that power of
of ten; if positive ignore. When this is completed do
another circular right shift, picking up the next higher
power of ten in the table and repeat the above. The
above process is carried out four times getting all
powers of ten from O to 15. All multiplications and
divisions are double precision. The normalized number

is in the accumulator when finished.

FDP

This subroutine is used to punch or print double
precision decimal numbers for the E, F or I formats.

FDP uses the FEXP subroutine to normalize the numbers.
The main problem this subroutine has is rounding

since once a digit is output it can no longer be changed.
Consecutive nines have to be saved until the proper
rounding procedure is determined by the numbers fol-
lowing it. A particularly bad case, for example, is
9.9999 which may be rounded to 10,0000. However, before
rounding can take place all the nines have to be
converted. Also a leading blank space has to be saved

to make room for the 1.

Date: 7/16/6k4
Section: 8.4-M2-PRINT
Page: 12 of 62
Change:

DESCRIPTION (Continued): The following is a description of the modifiers and

the various sections of the program.

Modifier Use

MO

M3

M4

M5

M6

GACVT puts converted digit -9 into MO.
GABUTL moves digit to M.

Set to -L096 if a blank is being held back
for possible overflow of F field. C(leared
if a zero is encountered during the GALD

section, or when a digit is printed by GAﬁUTla
Contains N at entry.
Link.

Set negative initially, indicating that there
is no digit being saved. If GALD encounters
a zero when ML is negative, M4 is set to

this zero, thus preserving it for later

printing.

It is used to preserve characters other than
9's for printing when the next non-nine
character is converted. GASUT 1 prints this
character (if it is nonnegative), and, before
exiting, copies MO + 9, the next non-nine

character into M.

Minus the number of nonzero digits to be

converted is set in here for counting.

Is set to O = no sign
> 0 = plus sign

< O => minus sign

It is reset to O when the sign is printed.
If GALD section prints a point, it precedes
it with a sign as necessary and clears M6, If

M6 # O when GAPUT1 is entered, a sign is printed.

Date: 7/16/6Mk
Section: 8.4-M2-PRINT
Page: 13 of 62

Change:

DESCRIPTION (Continued):

M8

M9

MLO

Is negative 1f the decimal point is to be
inhibited. This is an entry parameter and

is not damaged.

Used as temporary storage initially to
construct various counts. Then it is used

t0 transmit characters to FLDBF.

Contains k on entry. Minus the "lead-in"
count is placed in here for use in GALD. This
is the number of blanks plus the number of
zeros which precede the number (-1 if an F
field). If this count is negative, the field
1s too short and an alternative format of

E + N ° (N - 6) is used if this is legal,
where N is the input parameter in M2. For F
fields, -1 is allowed and is changed to O, but
it means that there is no spare blank should
the field be one too long because of rounding.
If this occurs, the final 9 in the output is

rounded up to *.

During GACVT and GA¢UT1, M9 carries -1 minus

the number of consecutive 9 digits encountered.

Is set to Blank (0) initially. GALD prints
this character. When a point is printed, it

is changed to zero (10), thus giving zero
suppression in front of the point. It is

set to 9 for use by GAﬁUTl which prints -M9 - 1
characters from MLO after printing M4. When
the last digit has been converted, rounding
may increase the number; in this case MLO 1is

changed to zero (10).

Date: 7/16/6k4
Section: 8.4-M2-PRINT
Page: 14 of 62

Change:

DESCRIPTION (Continued): MLl Contains -1 minus the number of digits, zeros
and blanks which precede the point. GALD and
GAbUTl automatically insert the point when

this count reaches O.

Ml2 Contains the scale factor s on entry. E fields
do not change it, F fields and the decimal
exponent of A to it, giving in both cases,

the number of digits in front of the point.
ML3 Holds the exponent of the printed number.
MLL Is not used.

ML5 DNegative for E fields and ML5 bit 8 is a one
if the sign digit is to be printed. This is

an entry parameter and is not changed.

Sections of the Program FDP

First Section. Sets the sign code in MA. Scales

the number in the accumulator by 107 5o that it
is in the range 1/10 < A < 1, (It uses FEXP and
GACVT for this.)

(Unless rounding increases the number to exactly 1,
the placement of the number can now be made. To
avoid finding % 107" for any n, rounding is deferred
until the last digit is corrected. If this should
change the output from 99 ... 9 to 10 ... 0, the

following actions must be taken:

B increase the exponent by 1 and print

10 ... O instead (do not print extra digits).

B move the first digit one place to the left if
possible., If this is not possible because
there is no space, print 99 ... 9% instead.
The lead count is placed in M9, digit count
in M5 and the point count in Mll., The lead

Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 15 of 62
Change:

DESCRIPTION (Continued):

count is the number of blanks and zeros to be
printed in front of any nonzero digits. It
is decreased by 1 in the case of F fields if
possible, to allow for possible overflow by
rounding. If M5, the number of nonzero digits
to be printed, is negative, MO and MLl must
be reduced correspondingly. The point count
is the number of blanks, zeros and digits to
be printed before the point. If either the
lead-in count or the point count is negative,
an alternative standard format of

E+0N-. (N-6)is used if N > 6; if N <6,
the exit to ERRPRT is made.

Subroutines in FDP

GALD

prints the lead zeros and blanks and inserts

the point and sign if necessary.

GAﬁUTl is a subroutine that prints the digit saved

in M4, if there is one, and the character
from MLO -MO-1 times. It inserts a point if
necessary, and prints a sign initially if
it has not already been printed. If ML is
negative on entry, meaning that a space

has been saved for an F field, this blank
is printed first. MO+9 is sent to M4 and
MO is set to -1,

GACVT multiplies by 10 double precision and puts

the integer part -9 in MO. If this is zero,
M9 is decreased by 1 and exit is made to

M3. Otherwise exit is made to M3+1l.

Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 16 of 62

Change:

Tl

F5¢

F7:

MO M1 M2 M3
Format Character I/O List Word Type: Input/ Return
Count Address Cutput Used for
Field Length in
E, F, I
M4 M5 M6 M7
O [Repeat or Address in Core |Number of Words |First Format
1 [Reentry Bit of Data Block Address
(0=+ => Last
1= - => More)
F5 filled from I/0 List Word.
M8 M9 M10 M1

Format Character

Temporary Count

Multiplicity of

Repetition Count

Symbol Read (Decimal Place Current Format for Parenthesis
Count for E, F Instruction, e.g.,
Also) 5 of 5E15,6
Mi2 M13 MLL M15

Scaling Power

Address of Push
Down Bits of
Parenthesis

For Interrogating
Switches in M15

Switches in Low
Bit Position.
Algso + = T,

- = R

Figure 1.

1l => on, O = off,

Modifier Layout for Master Control Logic

Date:
Section:
Page:
Change :

7/16/6L
8,4-M2-PRINT
17 of 62

M15 <0, i.,e., - = E type
M5 >0, i.,e., + = F or I type

starting from low bit positions. If a one is in this position, implication is

true.

1= (

2 =P

3=)

y —

5 = +

6 = -

7=/

8 = %

9 = Print if = 1, Punch if = O and switch 10 is off.
10 = Input, i.e., card read.

Figure 2, ©Switches in M15 for Master Control Logic

Representation--Actual Character Representation--Actual Character

0 = blank 39=P
1-9 = 1-9 40 = Q
10 =0 L = *
17 =/ L8 = +
18=38 Lo = A
23 = X 52 =D
27T =, 53 = E
28 = (54 = F
32 = - 56 = H
35 =1L 57T.= 1
36 = M 60 =)

Figure 3. BCD Characters

Date: 7/16/64
Section: 8.4-M2-PRINT
Page: 18 of 62 :
Change:

Fl:

F5:

F5:

MO

ML

M2

M3

Left, Right

Format Character

1/k-Word Count in

Current Format

Switch for Count Format Word Word Address
Correct 1/2 of
1/ Word
Figure 4. FRCNT
M M5 M6 M7
Total Buffer Address in Left or Right Quarter Word

Character Count

Buffer Where

1/2 or 1/k Word

Count

-133 or -80 FBFWD Is to Be -1 = Left,
Placed 0 => Right
Figure 5. FCNTS
M4 M5 M6 My
Total Character |[Address of Right or Left Quarter Word

Count -80 Current Word in |1/2 of Quarter Count
Input Buffer Word. -1 => Left,
0 => Right
Figure 6. FCNTSC
Date: 7/16/6k
Section: 8,L4-M2-PRINT
Page: 19 of 62
Change:

Fl:

F5:

F6:

Fr:

MO ML M2 M3
Not Used Number of Places|Length of Field [|Return Address
Past Decimal
Point
ML M5 M6 M7

Exponent in Here

Last Character
Read

Original Return
Saved When Using
FRDBF or FEXP

Length of Field

M8 Mo M1O M1l
Character Read = 1 = Next Sign|0 => Exponent +1 = Number +
for Exponent Plus -1 => Number -
= 0 Initially -1 => Exponent
Minus
M2 ML3 M1k M15
=1 =>1in = 1 => Digit = 1 => Digit Read|{= 1 => Decimal
Exponent Read is First is the First Point Has Been
= 0 Initially Digit of Number |Digit of the Encountered
Exponent
Figure 7. READEC Modifiers
Date 7/16/6k
Section: 8,4-M2-PRINT
Page: 20 of 62
Change :

SAVE aave SAVE
7 F7 F7
> = >
ves ° vER
z
Pick UP CON- PICK UP CON-|
TROL WORDS SAVE ROL WORDS
FOR PRINT F5.e FOR READ. SET
SET LINE COUNT| ’ LINE COUNT
-198.H4 -4 FOR READ= -80)
PUT NEW 1/ CALL FRESET
LIST WORD TO READ IN
INTO F5 ANOTHER
CARD.
BL
Ve B e TNITIALIZATION:

INFT6

PICK UP CON-

=-80, Mi4=-2

QUTPUTGONTROL.
WORDS. SET
FOR
PRINT/PUNCH

CONTROL \WORD.

INTTIALIZE PARLN -
THESIS PUSHDOWN)]
SAVE LAST QUTSIDE
LEFT PARENTHESIS
ADDRESS OR FIRST
FORMAT ADDRESS

] mrr
MAKE FIRST
PUSH DOWN)

ENTRY

ENTER BSUB)
AT BSUBZ

CRROR
(FRMERR)
i
CALL FORMRD
GETS NEXT
FORMAT CAARAC
CALL FRESET TER INTOMS
L\
RETURN FORMAT]
URE ERROR Toineing
(RneRR) BEGINNING
SET PUSHDOWN LIST
TO LAST LEFT RESET
PARENTHESIS ORp—s{ PARENTHES IS
BEGINNING OF REPLAT
FORMAT GCOUNT.

PUSH UP TO
NEXT

X
HIGHER LEVEL

ERROR
AT [0 s
Sony @ (FRMERR)

MAIN FORMAT SCAN CONTROL

PART 1

GET NEXT

CONTOL
WORD

"SAVE AND RESTOI
F4,567.EXIT TO
MAIN PROGRAM

CALL FRESET]
PRINT
LAST LINE

Change:

Date: 7/16/6k4
Section: 8.4-M2-PRINT
Page: 21 of 62

8383
u0T3098

.
°

a3ury)

29 10 22

INTHI-ZN-1°8

: 9381

19/91/L

SET UP COUNTS
GO TA AF4 Mio=Mq=0 AND TERHNA'RNG
AFTER P FOR SYMBOL AS
DIGITS FOR S
CALL B5LB
FOR SPACE
COUNT
SAVE
M8
BS7
ISET TERMINATH
ICHARACTERS. M9
=0. NEXT
CHARACTER TO
M8 FROM MO

CALL FRDBF
FOR
BLAVKS M8
i SAVE NUMBER
CALL FLDBF READ AS
TO OUTPUT FIELD LENGTH
BLANKS

=EFOR I EXPRES-
SION FINISHED. NEXT
CHARACTER FOR NEXT

FORMAT EXPRESSION

e - -
4

CALL FDP CALL READEC CALL

PRINT/PUNCH TO READ 1N BINC G@QF

NUMBER
PUT NUMBER
IN
ACCUMULATOR

MAIN FORMAT SCAN CONTROL

PART 2

DATA BLOCK

SET INHIBIT
+ SIGN
SWITCH
SET F SETE
SWITCH SWITCH
SAVE TEMP
COUNT INMID=
REPEAT COUNY
M2=M7-M3-0
1.
[
CALL FORMAD
TOGET NEXT
CHARACTER
GO TO BSUBA
N
BSUB
*
‘GOTO B3UB3
N
BSUB
SET POINT SET
INDICATOR i DOURLE
: DRECISION
POt L GOTO
READ BSUB
ves

BINC - UTINE

I NO
I) AL FORED CSPREEEDING guee
. T MBER +
PUT DIGIT OF T BLANK T CHARACTER [BSUB |NEW DIGIT DIGIT 7 ()
| DATA WORD . SUBS
bl INTO : No
| Ma
INCREMERT
DATA WORD ,
ADDRESS CALL BINC. “PICK UP
l INCRErEN SAVE F4 DIGITS N?
0 gﬁ%w D IN FCOMG FROM 10 LIST | V&'
I No
| wﬁ%ﬁ tmﬂ RETURN.
BES, RETURN ADDRESS |
__‘ INM3 Mo,
|

B3UB - SUBROUTINE

8MB0,B0,BL.

Mz-MDaL .
2 COONT T

MIO,M3=0

COUNT TO Mio

13+0.GOTOBSUB|

TO GET A-FIELD)
LENGTH

SAVE NEXT
CHARACTER
IN Mi4. SAVE
FORMAT CONT
WORD

REPLACE
CHARACTERS

CALL FORMRD
TOGET NEXT|
FORMAT H

CHARACTER

BAG

CALL
BINC

GO TO BEQ

SET LINK.

7) no | PECREMENT
NUMBER OF
LARACTE CHARACTERS BY

SET 3I6N
TINDICATOR-

GET NEXT
CONTROL

ET UP MARKER|
FOR CORRECT
EXIT.GOTO BY

PUT M8 INTO
CORRECT 34

WORD OF F7,
SAVE F7

TTEM INTO 50 T
Lﬁ” BOUT L

wo 804
4o DATA WORD
QvEN B

RUT TYPE <1038 ro £7

RESTORE
A FIELD
LENGTH

RESTORE £7

- T]
CHARACTERS A REPEAT COUNT (NOW INTEGER
[Read M0 LIST)

o o SAVE AND
ESTORE F7.

BA4 RLSTORE F7.
CHARACTCRMO |

RESTORE Fo
AoreR O NG
MO
GO TO BY7 M9,M8=0
—
DECREMENT CALL FLDBF s K
COUNT GET ALLDIGITS| OCTAL

IN'Ma INTO BUFFER] DIGT
No
' CALL FoP
TO PRINT
EXTRACT |, _#ad EXTRACT DECIMAL
2" THRU FINISHED Sele 2onE Wit FIRST
5™ DIGITS ? ? DIGIT
YEs (39
ws | ZERO
Nop<H-TrPE et “:’g“_,‘“ COUNT

> (0] co To
G0 TO Go 1O CALL FLDBF BDY
CREMENT
BD L 807 DR -
MAIN FORMAT SCAN CONTR
PART 3

Date: 7/16/64
Section: 8,4-M2-PRINT
Page: 23 of 62
Change:

SAVE
F4 ANDF7

13]=ADDRESS OF
LAST LEFT PAREN~
THESIS. PUT FORMAT]
'WORD SPECIFIED
INTD F7

PUT RUNNING U

AND SWITHES ,

ERCNT, TNTO
Fa4

|

PICK UP
PROPER
FORMAT
CHARACTER

RESET
FRCNT

SAVE
FRCNT

RESTORE
F4; F 7AND
© RETURN

FBACK

Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 2k of 62
Change:

FORMRD

SET
SWITCH 4.
OFF

TSOLATE RIGHT]
HAND PART OF
QUARTER WORD|

SAYE
F4 ANDF7

PICK UP FORMAT
ICONTROL WORD
FRCNT

PUT PROPER
FORMAT WORD
M3l INTOF7

4

ISOLATE
PROPER
QUARTER WORD

YES

NO

SET
SWITCH 1
OMN

ISOLATE LEFT
HAND PART OF
QUARTER WORD

Change:

RESET INCREMENT SAVE
QUARTER WORD FRCNT FRCNT
COUNT
Y
RESTORE
F4 AND F7
RETURN
FORMRD
Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 25 of 62

SAVE
FS,6, 1.

PUT BUFFER PRE-

1S POT IN OUTBF)

PARATION WORD IN
TO F7(WHEN FILLEDT}

CONTROL WORD,
FCNTS, INTO FS.
BUFFER COUNT

IN M4

ERROR
(FERRPR)
K ¥
4T [M7T=curRENT 15T 28
M8 — M1S QUARTER WORD OF M8 INTO RIGHT] M8 — M13
RIGHT HALF BUFFER PREPARA- HALF OF M12 RIGHT HALF
TION WORD
3RC
M8 —M 14 1 w | SET 1
RIGHT HALF" ON
YES
)
SET 2 ON
BUFFER PREPARM SET 2 MOVE T0 LEFT INCREMSE |
TIGN WORDINTD OFF HALF OF QUARTER QUARTER WORD| ¢
BUFFER : WORD COUNT
— > 3
ZERQ BUFFER INCREASE
PREPARATION SAVE FCNTS CHARACTER [- SET 4
WORD AND BUFFER COLNT oFF
RESET COLNTS PREPARATION WORD
RESTORE
FS, 6,7
RETURN
FLDBF
Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 26 of 62
Change:

FROBF

PUT CORRENT BUF

FER WORD INTO

F7. (SPECIFIED
IN MS)

INCREMENT
CHARACTER
(LINE) COUNT

PUT CORRECT
OLARTER WORD

SAVE
F5,7

PUT CONTROL
WORD, FCNTSC,
INTO F5

LINE OVER-
FLOW.
ERROR

INTO M8
YES SET 1 RESET M7 To
OFF FIRST QUARTER
WORD
J AT
SETL . MASK OUT DPPER INCREASE
oN > HALF 0F QUARTER BUFFER WORD
WORD COLNT
y
=
SHIFT LEFT HALF SAVE RESTORE
OF GUARTER WORD| ™ FCNTSC RE TURN
RIGHT SIX PLACES
FRDBF
Date: 7/16/6k
Section: 8.4-M2-PRINT
Page: 27 of 62

Change:

SAVE
F4,5,7.
CALL ©YSIO
JES To READ
. A CARD.
NG
PUT OUTPUT CON- RESET READ CARD CONd
TROL WORD, TROL WORD,FCNTSC,
FCNTS, INTO AND L= TNPUT BUF-
Fs. FER ADDRESS.
PUT BUFFER
PREPARATION SAVE
WORD, FBFWD, FCNTSC
INTO V7

FILL OUT REST OF
LINE WITH BLANKS
=0

CALL FOR SYSIO

PUNCH
CALL SYSIO RESET FCNTS
FOR WITH PURCH
PRINT COUNTS
REGET FCNTS RESET 15T BUF-
WITH FER ADDRESS
PRINT COUNTS SAVE FCOTS
ZERO
ouT
FBFWD
RESTORE
F4, 5,7
RETURN ([*

FRESET

Date:
Section:
Page:
Change

7/16/64
8.4-M2-PRINT
28 of 62

ISTERS, INITIAL-
IZE SWITCHES
AND COUNTS.

COMBINE NUM-

SAVE FAST REG-

READ NEXT
CHARACTER
(CALL FRDBF).

BER OF DECIMAL]
PLACES WITH
EXPONENT
CALL FEXP SETSIGN FOR | Y
TO NORMALIZE | NUMBER,NEXT NG
THE NMUMBER, FOR EXPONENT)
SETS EXPONENT]
___"J YES
1 _ ‘
RESTORE REG- MAKE SIGN +, SET SIGN
ISTERS AND NEXT FOR EX-) FOR
RETURN PONENT EX PONENT
\ -
ADD TO 10 ADD NEW DIGIT SET EXPONENT
o] * EXPONENT lgf |70 LOKPREVIOS 1o [TNDICATOR IF [o]
IN M4, DIGITS READ. . NOT SET
ALREADY
¥
TNCREMENT SET DECIMAL
DECIMAL POINT
COUNT INDICATOR
- . J
READEC
Date: 7/ 16/ 6L
Section: 8.4-M2-PRINT
Page: 29 of 62
Change:

SAVE
FS5

PUT 10
INTO F3

-
I

MULTIPLY NUMBER
BY 10%“. SLR -

TRACT 16 FROM
EXPONENT.

DIVIDE NUMBER
BY L0 SuUB-

TRACT 16 FROM
EXPONENT.

RESTORE REG-
ISTERS AND REq
TURN

FEXP

Date: 7/16/ 6k
Section: 8.4~M2-PRINT
Page: 30 of 62
Change:

SET

EXPONENT
=-99

YES

MAKE NUMBER
>0. SET

NEGATIVE SIGN
INDICATOR IN M6

SAVE
F4,5,6,7
SET M6=0

ACCUMU=
LATOR =0

4

SET LEAD

> COUNT IN M8

SET EXP

=T-SCALE

NO | INCREMENT

M8

]

INCREMENT
M8

|

POINT COUNT
TO M11.
PLACES BEFORE

POINT

4

DIGIT COUNT TO
MS. = NUMBER

OF NON ~ZERQ

DIGITS TO BE
CONVERTED

y

NUMBER OF
BLANKS AND
ZEROS
PRECEDING
NUMBER TO M9

EXP‘(LOG:O 4)
=T-1
SET TO -T
CALL FEXP
NORMALIZES
NUMBER =A
A<1 NoOw.
CALL GACVT
DOUBLE NO
PRECISION
MULTIPLY BY 10. <
YE
L
SET
PLUS SIGN |g-YES
INDICATOR
NO
3
NO
YES
GA 8 ‘
NUMBER OF
PLACES BEFORE
DEC. POINT
=EXP + SCALE
=T+S=Q

SET COUNTS
FOR STANDARD
PRINT

GA4

OVER-
FLOW (FOR F)
?

Change:

ERROR
EXIT
(ERRORT)
Date: 7/16/6k
Section: 8.4~M2-PRINT
Page: 31 of 62

4

FOR 9....9's
ROUNDING IN

GA7 GAG
SET SPARE f
ROUND BLANK SET SPARE PUT BLANK
NOT SAVED BLANK SAVED IN M10
INDICATOR INDICATOR M4 SET <0
1 YES y GALD
GALD- GALDG
LEAVE | NO_~ROUNDINGN_ PRINT LEADING
DIGIT =0 ol NECESSARY 7% BLANKS, ZEROS
? SIGNS
A DEC. PT.
CLEAR _ YES _
S PARE SPARE
?
NO
l GA17
_ RESTORE PRINT THE PRINT CALL GACVT
- F4,5,6,7 EXPONENT E AND CONVERT
‘ EXP SIGN FIRST DIGIT
IF DIGIT =9
_ YEs NO GACVT KEEPS
- F-TYPE | ~ A COUNT.
EXIT ? IF NOT
TO MAIN CONTINUES
PROGRAM #9
GA19

CALL GAQUT1
TO PRINT
LAST DIGIT

CALL GAQUT1L

TO PRINTOUT

DIGITS BEFORE
LAST ONE

SET ¥ PRINT (CANNOT
ROUND LAST9)
DECREASE

CONSECUTIVE
9’s COUNT

CALL GAOUT1
TO OUTPUT
SAVED DIGITS

PREVIOU
DIGIT NON
=9 DIGIT,

Page:
Change:

32 of 62

DECREASE
QUTPUT CONSECUTIVE ROUND
< 100....0 9's COUNT
USING SPARE [NCREMENT LAST DIGIT
SPACE FOR 1. EXPONENT
Date: 7/16/6k4
Section: 8.4-M2-PRINT

SAVE F4

GOUT6
PUT BLANK
YES | =0 IN M8 PUT ZERO
DECREASE =10 INTO M8
9's COUNT
]
CALL FLDBF CALL FLDBF
TO PRINT SIGN TO OUTPUT GOUT 4
CHARACTER ’
1
PUT PREVIOUS| GOUT &
CLEAR | PUT savED NON-9 CHARAC
SIGN DIGIT INTO INTO OUTPUT [*
OUTPUT REG. REGISTER
M4 - M8
Y
IF ZERO
ADJUST
ZERO CODE
REPEAT
CHARACTER. RESET 9's
INTO M4 COUNT TO -1
M10 = M4 1
[
BLAN
WITHMELD A PUT NEW DIGIT]
? INTO M4
)
CALL FLDBF RESTORE
sﬁsgﬁiﬁkiﬁ?p TO OUTPUT F4
CHARACTER EXIT
Y
SAVE F4
SET POINT .
CODE. CALL POINT
FLDBF TO INHIBIT |
OUTPUT POINT e
Date: 7/16/6k4
Section: 8.4-M2-PRINT
Page: 33 of 62
Change:

: o8uBy)

: 9%88g
:UOTQ029

29 J0 €

INTHI-2N-17°Q

: 998

w9/91/L

READEC

XX
SUBRY

YYY

DECPT

PLUS

MINUS

ENTRY
CAD
SFR
SFR
SFR
SFR
CAM
CAM
LFR
LFR
JIM
cs
CALL
JZIM
ADM
JNM
ADM
JIM
ADM
JZM
SBM
JIM
SBM
JUM
JUM
CAM
CAM
TRA
JUM
JUM
CAM
TRA
JUM
JUM
CSM

PRINT READ,PUNCH

15535

4o FCOM29
5, FCOM26
6 FCOM27
T FCOM28
1,M9

4
69 ZERD
7sCON

27 ERROR
TsM2.
FRDBF .
85X
85—=11

8¢ NUMBER
85=37
B8 PLUS
8516

8 MINUS
Be 21
8¢EXP
8,6

8, ERROR
15,ERROR
1501

|

X

12:A

9gA

11,1

€ -
12,8
9,8
11,1

SUBROUTINE TO READ IN DECIMAL NUMBERS

SET ACCUMULATOR TO O

SAVE FAST REGISTERS

PLACES PAST DEC. PT.

M12=M15=0y ML13=Ml4=1
FIELD LENGTH

BLANK

DEC. PT.
DEC. PT. INDICATOR SET,
SEY DEC. PT. INDICATOR

ERROR

IS THIS SIGN FOR EXPONENT
SET PLUS FOR NUMBER

- IS THIS SIGN FOR EXPONENT

SET MINUS FOR NUMBER

: 98uLry)

1 98BJg
SUOTID3G

g9 Jo &€

INTHI-ZH-1°Q

19980

79/91/L

COMPNO

J5
Jé

END

QO »m

EXP

NUMBER

CAM
CAM
cJu
LER
JPM
CAM
JPM
CSM
SBM
CALL
LER
JPM
STC
STN
suB
LER
LFR
LFR
JLH
CSM
JZM
CAM
CAM
TRA
JuM
TRA
cJu
CAM
JUM
JIM
CAM
CAM
CAM -
STC
MPY

91

13

Te XX

T FCOM28
15945

12

10,J6
4oM4
49M12+M1
FEXP

4, FCOM29
11U
2939
293,

6, FCOM27
5; FCOM26
TsFCOM28
390, -
1051

14, ERROR
14

1251

X

12, ERROR
D1

8, NUMBER <1
3:”19
12,EXPRY
13,F
11,1

951

i3

2039

100

- IF ‘ALREADY

SET NEXT SIGN FOR EXPONENT:

ENTIRE NUMBER IN

NORMALIZE NUMBER

COMBINE EXPONENT AND NUMBER OF
PLACES AFTER o

NORMALIZE WITH PROPER EXPONENT

PLUS
MAKE NUMBER MINUS

RESTORE FAST REGISTERS

RETURN

SEY EXPONENT MINUS

IF EXPONENT SIGN ALREADY IN, ERROR
SET EXPONENY SIGN:IN

SET EXPONENT INDICATOR

IN EXPONENT; ERROR
ZERO = 10 BCD, MUST BE ADJUSTED

IS THIS NUMBER IN EXPOMENT
SIGN OF NUMBER IN

IF NO SIGN, MAKE PLUS

NEXT SIGN FOR EXPONENT

SET SIGN: IN

DOUBLE PRECISION ARITHMETIC
10 X PREVIGUS DIGITS

: a3ury)

:98rg
:UOT1089g

29 Jo 9f

INTHd~-CN-1°Q

1998

79/91/L

EXPRY

ZERQD
CON

FDP

GAL

XCH
mMPY .
ADD
ADD
JZM
ADM
TRA
JZM
CAM
CAM
CRM
CRM
ADM
Joc
FIL.
0cTQ
0cTQ
ASSIGN
SFR
SFR
SFR
SFR
CAM
1z
STC
XCH
TzP
STN
SsC
CAM
XCH
STR
SEX
CAD
MPY

293¢
10s
293
10+M8.
155X
1,1

X

14¢H
10,1
14
4,10
49302
4910+MB
O X

PLUS NEW DIGIT

AFTER DEC. PT.
INCREMENT DECIMAL COUNTY

IF NO SIGN FOR EXPONENT, SET PLUS

SET EXPONENT SIGN: IN
10 X PREVIOUS EXPONENT DIGITS

ADD NEW DIGIT

00000C, 00000,00000,00000
00000,00001,00001,00000
FCOM26,FCOM27 (FCOM28,FCOM29

4,GAY
5:6AT=#1
6,GAT+2
1:GAT+3
GA22A
F2

F2
GAl
FO

F2

- 694096

F2
F3

3

M3,
GAT+4

SAVE ‘FAST REGISTERS

ZERO
STORE NUMBER
POSITIVE
CHANGE SIGN

SETY NEGATIVE INDICATOR

EXPONENT = LOG BASE 10 OF 4

: a8ury)

: 838
IU0TAD8G

29 Jo LE

INTHI-SH-7 "8

1998

719/91/L

GAT1

GA2
GA23

GA26
GA9

GA3
GA4

GAS

SIA
CAM
CAD
ADD
CALL
STC
STR
ADD
sus
sus
TZP
CAD
CALL
BSS
ADD
ADM
STR
CAD
CAM
ANN
ORM
JPM
CAM
CAM
ADM
JPM
ADM
JIM
ADM
CAM
CAM
JPM
SBM
CSM
CAM

8
4,-M8-1
F2

F3

- FEXP

F3

F2

F3

GAT+S
GAT+6

GA2

F3

GACVT

i

MO+9,
8y—1

F3

F3

1

15516

6

15,GA8
13,M841-M12
8.3

B8 MI-M24+M12
T:GA3

8,1

69GA%
851
11,M8-M12
5,M12¥M9
5,GAS
8:M5

5:M5

9, M8

-T

Ax10=={-T)
STORE AWAY
A-1710

POSITIVE OR ZERO

A=10

T1=T-1

SET NO SPARE BLANK

SET PLUS SIGN COR IGNORE
F TYPE

EXP= T-§

LEAD COUNT

NO- POINT

NO SIGN

POINT COUNT
DIGIT EOUNT
PCSITIVE

DECREMENTY LEAD COUNT

~1-LEAD COUNT TO M9

1 a8uLry)

1 98eg
:UOT3D98

29 Jo gt

INTYI-SN-1°Q

1998

79/91/L

GA6

GALD

GALD1L

GALD2

GALDS

GALD3
GALD4

GAT
GA8

GALD6

JPM
JPM
JINM
cJz
CAM
CAM
CAM
CJu
JIM
CAM
JINM
CAM
CALL
CAM
JPM
CAM
CALL
cJz
CAM
JNM
CAM
JPM
CAM
TRA
cJz
CAM
CALL
TRA
CAM
TRA
ADM
CAM
TRA
CAM
CAM

G GA25
11,GA25
15,GA6
9, GA7
14096
10 :
4,4096
11,GALD3
6¢GALD2
8932

6 GALDL
8,48
FLDBF

6
7:GALDS
8,59
FLDBF

9, GALDS
1010
15.GALDS
4
1:GALD3
1 ‘
GALDS
g GALDG
8yM10
FLDBF
GALD
9'“1

12, M8+1
8,-1
GAS
9’“’1
1049

LEAD COUNT NEGATIVE

POINT TOO FAR TGO LEFTY

E FIELD

SAVE BLANK FOR F FIELD
SET SAVED

LEAD CHARACTER BLANK
NO DIGIT YET

NOT TIME FOR POINY
NO SIGN

MINUS

CORRECTY

PLUS

QUTPUT SIGN

CLEAR SIGN. INDICATOR

NO. POINT

OUTPUT POINTY

DONE ON LEAD. CHARS
CHARACTER NOW ZERO

E FIELD

FIRSY DIGIT ZERD

NO SPARE

CLEAR SPARE INDICATOR

DONE ON LEAD CHARACTERS
QUTPUT LEAD CHARACTER
Logp

NO SPARE IN F FIELD

Q=S+7

s 93uLry)

:998g
:UOT3089G

29 Jo 6%

INTHd-SH-1°Q

: 9.8

19/9T/L

GAl1O

GAL9

GA28

GAl2

GA13

GAl4

GAlS5

GAl6
GAL7

GA18

JPM
CALL
cJu
TRA
CALL
CJu
sus
N
ADM
CALL
JPM
CAM

CALL

CAM
JPM
CAM
CSM
CALL
CAM
ADM
JNM
CJu
JUM
CAM
CALL
CAM
JUM
CAM
CALL
LFR
LFR
LFR
LFR
JLH
SuB -

S5,GA27
GACVY
5:GA10
GA18
GAQUT1
5:GAL10 -
10:3,2048
GAl19
491 -
GACGUT1
15:6A17
8; 53 .
FLDBF
8948
13,GA12
8932
13oM13
FLDBF :

8 .
134-10
13,GA14
8¢,GA13
8¢GA1S
8,10
FLDBF
8,M13410
8,6GA16
8,10
FLDBF
44,GAT
S¢GAT+1
6o GAT+2
Ts6AT+3
M3
10:3,2048

NO DIGITS Our
CONVERT FIRST DIGIT
NINEs SAVE

DONE WITH DIGITS
OQUTPUT SAVED DIGITS

ROUND LAST DIGIToco.

NO ROUNDING NECESSARY
ROUND

OUTPUT LAST DIGIT

F TYPE

OUTPUT Eo

EXPONENY SIGN

AND EXPONENT DIGITS

RESTORE FAST REGISTERS

EXIT
DO WE ROUND LAST 9

: 33uBy)

1 98B

{UO0TL09G
1918

29 IO 0%
19/9T/L

INTHd~SN~-1°Q

GA22

GA20
GA21

GACVTY

GCVT9A

GCVT8A
GAOUT1
couUT?

TN

CAM

JPM
JPM
ADM

ADM
CAM.

ADM
TRA
JPM
CAM
TRA
MPY
STC
XCH
MPY
ADD
ASC
XCH
TZpP
CAD
STR
SiA
sus

ADM .

JNM
JIM
ADD
CAM

ADM .

JLH
SFR
JNM
JIM

CAM

GAl19
10410
4,GA20
155,GA21
951 -
1341

4

491

- GA19

1:GA24
1 .
GA22
10,

F3

F2

10.

F3

F2.

F2
GCVTOA
1503,

F2

0.

MO

0e—9
CoM3+1
C,6GLYTEA
| P

Q.
9"”1

M3
4,GAT1
1. 60UT6
6,60UT2
8,32

NO

ZERO IN M10

PREVIOUS NON 9 DIGIT
F FIELD

INCREASE EXPONENT

SET ZERO AS PREVIOUS BIGIT
ROUND uP :
GU!P”T 100‘ s oo 0

NO SPACE SAVED

USE .SPACE FOR 1

DOUBLE: PRECISION MULTIPLY. BY 10

MOSY SIGNIFICANT: PART IN ACC.

EXIT
SAVE. F4&
BLANK SAVED
NO SIGN
MINUS

s 98uBy)
o3eg

29 Jo TH

INTHI-IH-1°Q

1uoT109g
HERR g

19/91/L

GOUT1
GOUT2

GOUT3
G0UTs

GOUTS
60UTS

60UT6

GOUTSA

GA22A

GA24

JINM
CAM
CALL
CAM
CAM
JUM
CAM
CAM
INM
CALL

- CJu

JPM
CAM
CALL
CAM
CJy
CAM
CAM
LER
JLH
CAM
ADM
JINM
CAM
TRA
JPM
LER
CAM
SFR
TRA
CAM
STR
TRA
CAM
ADM

6,60UT1
Be4B
FLDBF
8,!&4
8,60UT3
8510
4,M10
8,G0UTS5A
FLDBF -
11,60UT5
T,G0UTS
8559
FLDBF
8yM4

9, 60UT7
99?1
4o.M0+9
4,GAT1
M3

8 BLANK

9e=1
11,60UT4
80,10
GOUTS
1,6G0UTS
4:6GATYL .
1 .
4, GATE

- GOUT8

8,-100
F2
GA23
0s35
9,1

CORRECT

PLUS

OUTPUT SIGN

CLEAR SIGN

SAVED DIGIT TO M8
CODE CORRECY ZERD

REPEAT CHARACTER TO M4

NO FIRSY. DIGIT

OUTPUT ‘M8

NOT TIME FOR POINT

DUTPUT POINT

M4 TO OQUTPUT REGISTER
NOT DONE YET

RESET NINES COUNT

NEW DIGIT TO M4
RESTOR F4

EXIY

CLEAR SPARE BLANK INDICATOR

EXPONENY OF :ZERO IS -99

PRINT = BECAUSE ND SPACE

: a3uBy)

: 088
$UOTIO9G

29 Jo 2f

INTHd-2H-%°Q

1998

19/91/L

GA2S5

GA27

GA30

GAT

FEXP

FEXP2

FEXP1

CALL
TRA
CAM
JNM
CAM
ORM -
CAM
CAM
ORM
TRA
JPM
JNM
JPM
CAM
CAM
suB
N
JUM
ADM
TRA
B8SS
ocTQ
ocTQ
SFR
LFR
JNM
S¥C
TRA
MPY
XCH
MPY
ASC
SBM
CSM -
JPM

4o FEXP2

GACUTL
- GA19

9o M2~6 .

9, ERRORT - NGO ROOM FOR STANDARD PRINT
74096 SET :UP STANDARD PRINT

6932

13,M12 ﬂF S$S=0/E+N.{N=-6})¢

12-

1554096
- GA26 -

49GA30 DIGIT ALLREADY CONVERTED
15,6A28 E TYPE, PRINY EXPONENT
1, 6A17 NG SPARE

1 : CLEAR SPARE

4 .

10:,3,2048 DIGIT IS ZERO

GA1LlS NO: ROUNDING

5,6A19 NO: ROUNDING TOO SMALL
4ol . ROUND

G6A19

4 YﬁﬂPORARY STORAGE
04642g00465900522914000 L0G &4 BASE 10
03146906314914ﬁ310i15?7903146906314914631911551 i710 .
5. FEXPC1 SUBROUTINE. YO NORMALIZE DECIMALS NUMBERS
3,FTABL 10 SIXTEENTH. INTO F3

- 4y FEXPY9 EXPONENT NEGATIVE

2935 DOUBLE .PRECISION MULTIPLY BY
FEXP1 10 SIXTEENTH

303y

293¢

3039

203,

4916 EXPONENT GREATER THAN 16

Se4

1 23uBry)

:938g
1 UOT309%

29 Jo &4

INTHd~SN-1" B

1998

79/91/L

FEXP3

FEXP4

CRM
JPM
MPY .
STC
CAD
MPY .
ADD
STC
CcJu

- ADD

FEXP9

FEXP6

FEXPS5

FEXP7

FEXP8

FEXP10

FEXPC1

TRA
SBM
TRA
DIV
SRM
XCH
DIV
ADD
ADM
JNM
CSM
CRM
JNM
DIV
SRM
STR
CAD
ViD
ADD
cJu
LFR
JLH
B8SS
ocTaQ
0cTQ

451
4,FEXP4
5,FTABL
0s3,
293
0s3p
2039

5. FEXP3
293¢
FEXP10
401
FEXPS
393
2:3¢
2:39
3¢3
293¢
k’,lﬁ '
4,FEXP
Sc4
491
4,FEXPS
S5,FTABL
2¢3y
0s3;
2:3¢
0e3o

S, FEXP7

5., FEXPC1

M3
1

POMERS OF 10 LESS THAN 16
PRESENT -UN EXPONENT

DOUBLE PRECISION MULYIPLY .BY
PROPER POWER OF 10

GET ‘NEXT HIGHER POMER CF ‘10
COMPLEMENT -EXPONENT

DOUBLE PRECISION DIVIDE BY
10 SIXTEENTH

EXPONENT LESS THAN. -16

~POWER OF 10 GREATER THAN -16

DOUBLE PRECISION DIVIDE BY
PROPER POWER OF 10 LESS THAN 16

05000;00000,00000,00002 10
03100,00000,00000,00004

10 SQUARED

: 93uByD

19883

1U0TA09G
1918

29 30 i

INISd-N-%°Q
79/91/L

FTABL
READ

RD1

PUNCH

PRINT

0cTQ
0cTQ
0cTQ
SFR
LFR
JNM
SER
CAM
CALL
TRA
LFR
SER
LER
SFR
ATN
LFR
LDM
SFR
LFR
JLH
SER
LER
INN
CAM
CAM
CAM
CAM
TRA
SFR
LER
JINM
CAM
CAM
CAM
CAM

G4704,00000,00000,00007 10 FOURTH
02765¢16040,00000,00016 10 EIGHTH

04341,13623,0770

1, FCOM4
7. FCOM1
124RDL .
4, FCOML
15,512
FRESET

- T9FCOM3

6,FCOM3
&6, FCOM2

5¢FCOM2

1.1y
5.
7, FCOM1
44, FCOM1
4oFTH
M3
T:FCOM4
T, FCOM1
12:RD1
12,-80-
i3
14,-2
15oM
B2

T2 FCOM4

T+FCOM1
12:RD1
12,-133
134256
144-1
15¢2+M

1,00033 10 SIXTEENTH

REPEAT ENTRY

SET FOR READ
READ FIRST CARD

REPEAT ENTRY .START

NEW. I-0 LIST HWORD:

REPEAT ENTRY .
COUNT FOR PUNCHED CHARACTERS

REPEAT ENTRY
COUNT FOR PRINTED CHARACTERS

;9883

{UOTAODG
L 91%9(

s 98uey)

B2 SFR
CAM . 3,M13
CAM 13,0UTBF
SFR 7. FCNTS
CAM 15:M3

4, FCOM1
QUTPUT CONTROL WORD

SET PRINT OR PUNCH CONTROL

Bl SFR 6, FCOM3
LDM 11.,M1 FORMAY START ADDRESS
CAM 8,-2 : :
CAM 9

CAM 10+—4

SFR 6, FRCNT
CAM 12

SFR 69 PUSHDN+#+2
CAM 134 PUSHDN
SFR 5. FCOM2

FORMAT CONTROL WORD SETY

SET SCALE TO ZIERO -

INITIALIZE PARENTHESIS PUSH DOWN
M13 IS PUSH DOWN ADDRESS

ATN 1ol :
LFR 5 FIRST CONTROL WORD

BLPR CAM 10,M11 LEFT PARENTHESIS AND START OF FORMAY
CAM 11oM9-1

MAKE FIRST PUSH DOWN ENTRY
LDM 99 FRCNT : - - :
CAM 8sM12
SBM 13, PUSHDN®4
JPM 13, FRMERR
ADM 13, PUSHDN+5
SFR 69 M13

TOO MANY NESTED PARNETHESES

STORE ENTRY

29 Jo &

INTYI-~IN-1" B

79/91/L

AF2 CAM 7 : M7 IS UDED TO DETERMINE WHICH CHARS. MAY BE
AF3 CAM 9 READ. NUMBERS ARE CONSTRUCYED IN M9
AFS5 CALL FORMRD READ FORMAT: CHAR.
AF1 JIiM 89 AF5 SKIP BLANK CHARACTER
ADM Be—44 -
JIM 8, BSTAR ASTERISC
ADM 8y,-16 :
JIM 89 BRPR RIGHT PARNETHESUS
ADM 8443
JIM 8¢BSLSH SLASHo.END OF LINE

: 98ury)

: 2384
$UOTA038

39 30 9%

INTHd-SH-1"8

1908

719/9T/L

ADM
JIM
JNM
ADM

dsB -

FIL
ANN
CAM
JUM
ADM
JzM
ADM
JIM
ADM
ANM
JzM
ADM
JIM
ORM
cJz
ADM
JZM
ADM
CAM
JIM

ADM

JIM
CJz
ADM
JIM
ADM
JIM
cJz
ADM
JIM

81"10
89AF2
7+ FRMERR
8,16
C;BSUB2

152

14
14,AF4
Be=7
848S
89—5
8,yBX
8+-34
15,4077
8, BEF
83
BoBEF
1544096
8,BEF
853
8,BH
8s7

2

B¢ BA
8,-3
B8.BD
8¢BA
85,11
8:8BQ
8:4

8y BM
8.8BL
8y7
8,BLPR

COMMA
SHOULD HAVE NEEN TERMINATING CHAR.

DIGIT, GO CONVERT

MUST BE P SINCE ¢+ OR — OCCURRED
S FOR SPACES
X FOR SPACE

SET INHIBIT PLUS AND F SWITCHES
F FIELD =

I WHICH IS SAME
SET E SWITCH
E FIELD

HOLLERITH FIELD

A FIELD

D FIELD

Q FIELD FOR OCTAL QUARTER HWORDS

M FIELD FOR OCTAUL ‘LOCATIONS
L FIELD FOR DECIMAL LOCATIONS

LEFT PARENTHESIS

s a8usy)

: 9387

:U0T10S8
29980

29 Jo Ly
79/91/L

INI¥d-cN-1°Q

AF4

BPLUS

BINC

BINC1

BRPR

BSTARL

BRPR1

BSLSH

8p

8P1

ADM
ADM
JIM
JUM
ADM
JZIM
ADM
JUM
ORM
ORM
TRA
ANN
CAM
JZM
ADM
ANM
JLH
SBM
JNM
FIL
CALL
TRA
SBM
JNM
ADM
LDM
CAM
TRA
CALL
TRA
ANN
CAM
JIM
CSM
CAM

8517
8:°33)
8,.,BP

14 FRMERR
8,-9

8, 8PLUS
8,16

8¢ FRMERR
154

192

AFS

493

14
14,8INC1
Sel
4,8188
399

1151
11,8RPR1

FBACK
AF2

13¢PUSHDN+2

13 FRMERR

13,PUSHDN+1

10sM13+1
11,M10

- AF2

FRESET

AF2

Te4

14
14,BP1
g, M9
12, M9

POWER OR SCALE FIELD
ALREADY HAD SIGN

PLUS SIGN

NOT MINUS SIGN

SET MINUS

SET SIGNED

SUBROUTINE TO MOVE I-0 LIST TO FULL WORD
ALREADY ON FULL WORD

INCREMENT WORD ADDRESS

QUARTER WORD ADDRESS NOW ZERO

EXIT |

RIGHT PARENTHESIS; COUNT REPEAT COUNT
REPEAT AGAIN IF POSITEVE

FORMAT BACK UP TO MATCHING LEFT PARENTHESIS
PUSH UP TO NEXT HIGHER LEVEL

YOO MANY CLOSING PARNTHESES

FETCH PREVOIUS REPEAT COUNT

SLASH, NEXT LINE OR CARD

POWER.

POSITIVE SIGN

CHANGE SIGN
SET SCLAE FACTOR

s 998

TUOT109G
: 998

s 93uey)

29 Jo gt
19/91/L

INTHI-gH-1°Q

TRA AF2
BEF CAM 104M9-1

CAM 2 E F ORI FIELD
CAM 7 : : :
CAM 9

BEF1 CALL FORMRD READ NEXT CHAR

CAM 14,M8-37
CAM C+BE2
JZIM 14,85UB4 N CHARACTER; GO GET NUMBER FROM 10 LIST

ADM 14,26
JNM 14,BSUB3 DIGITy GO READ REST OF NUMBER
ADM 14,-37 :
EOM 1502 SET DOUBLE PRECISION BIT
JUM 14,BEF1 DOUBLE PRECISIOCN
EOM 15018 CANCEL DOUBLE PRECISION AND SET PLUS PRINT
BEl JSB 05 BSUB GC READ A NUMBER
: FIL ~
BE2 JPM 7.BE3 POINT NET READ VET
BEVA CAM OsMB+11 SAVE NEXT FORMAT CHAECTAER
FiL
BE7 CALL BINC INCREMENT WORD COUNT IF NOT ON WORD BOUNDARY .
JZM 69BE4 10 WORD EXHAUSTED
ANN 15¢512 : -
CAM 14 READ BIY
JUM 14,BES BRANCH IF INPUT
CAD 5¢1s NUMBER TO ACCUMULATOR
CRN 1502 DOUBLE PRECISION BIY
CAM 14 » .
JPM 14,BEAL BRANCH IF SINGLE PRECISION
: ADD 5919 SECONG HALF . OF NUMBER
BEA1L CALL FDP PRINT »
BE6 ADM 6o-1 DECREASE COUNT
ADM 10o-1 DECREASE E FIELD COUNT
JPM 10,BE7 REPEAT IF MOTE NUMBERS

CAM 12

: a8uBy)

1 988J

PUOTAD9G
1918

29 Jo 64

INTHI-ZH-1"Q
"9/9T/L

BS7

BES

BE4

BSTAR

CAM
CaM
CAM
TRA
CALL
S¥C
CRN
CAM
JPM
STR
TRA
CaAM
JPM
ATN
LFR
TRA
CAM
JUM
CAM

- LDM

BSTAR3
RESTAR.

BSTARS -

BE9

JUM
CAM
LDM
FiL
CAM
JUM
JPM
ATN
LFR
TRA .
CAM
CRM
JNM
CRN
CAM

7194096
g

8,M0
AF1
READEC
1552
14
14,BE6
5210
BES
3,BE7
4.BE9
1,1

5 .
BE7

14, PUSHDN+1-M13
14, FRMERR

13, PUSHDN+2
9,M13 :

9, BSTAR3

13, PUSHDN®1
11,M13

3:;BSTARL

6, FRESEY
49BSTARS

1010

5
RESTAR
3;RESTAR
4512
4.BESA
15410

14

SET TERMINATING CHARACTER REQUIRED

NEXT CHARACTER TO M8

RETURN TO FORMAT TEST

INPUT NEXT NUMBER

STORE MOST SIGNIFICANT HALF

DOUBLE PRECISIGN BIT

BRANCH IF SINGLE PRECISION
STORE LEAST SIGNIFICANT HALF
GO TO END TESTS

GEY NEXT IC CONTRBL WORD

ASTERISKy CHECK FOR EMPTY PUSHDOWN
STILL INSIDE PARNENTHESIS

SET PUSHDOWN TQO LAST LEFYT P+RENTHESIS {OUTSIDE)
FORMAT ADDRESS OF :LAST LEFYT PARENTHESIS

ZERQ. IF NO: PARENTHESES ENCOUNTERED
SET PUSHDOWN TO BEGINING OF FORMAT
RESET PERENTHESIS REPEAT COUNT

NEW LINE ON kEYﬁRﬁ AND 60 T0O BACK up
LAST CONTROL WORD.

LOAD NEXY CONTROL WORD

REPEAT ENTRY BIT ON

s 98uBy)

: 9883
$ UOT1O3G

29 Jo 06

INTHI-cN-1°Q

19187

79/9T/L

BE9A

BE3

BS

BX1

BS6

8SS5

BS3

BS4

JNM
CALL
SFR
LFR
SFR
LFR
SFR
LFR
SFR
LFR
JLH
CAM
CAM
CAM
JUM
CAM
TRA
CAM
CAM
Jss
FIL
CAM
JIM
CRN
CAM
CAM
SFN
CAM
JNM
CALL

- CJu

ADM
JPM
TRA
CALL

14¢BESA
FRESET
4.FT6

4, FCOML
5, FCON1
S5.FCOM2
6 FCOM2
6o FCOM3
1, FCOM3
T FCOM4
399
149M8-48
2. M9

g
14,BETA
1: 4096
BE1
10oM9-1
g .
CoBSUB

OpM8+11
9, BS7
15,10
8'

999

2
1.854
FLDBF
29:8B55
105-1
10,856
BS7
FRDBF -

INPUT TYPE

OTHERWISE PRINT ‘LATS LINE

RESTORE F4

SAVE F5 FOR REPEAT ENTRY

RESTORE F5
SAVE Fé
RESTORE Fé6
SAVE F7
RESTROE F7
EXIT .

LENGTH COUNT TO M2
CLEAR POINY COUNTY

JUMP. IF NOT POINT

SET POINT READ

SPACES S
CLEAR NUMBER
READ NUMBER

SAVE NEXT DIGIT
NC SPACES

INPUY OQUTPUT BIT
BLANK TO M8

MINUS COUNY F6R S
INPUT
QUTPUT =M1 BLANKS

COUNT REPEAT COUNT

READ =M2 CHARACTERS

: 98uBy)

:998g
:UOTIO99

29 Jo TG

INTHd-ZN-1°Q

19980

79/9T/L

B8H

8H1

BH2

BHS5

BH3

BH3A

cJu
TRA
SEN
CAM
JIM
CRN
CAM
INM
CALL
CALL
cJu
TRA
SFR
LFR
SFR
CALL
CAM
ciz
CRM
CRM
LER
JLH
FIL
NAM
ORM
JZM
TRA
NAM
ORM
JIM
TRA
NAM
ORM
JIM
TRA

2:884
8sS3
Goe -
2
9, BH6

15,10

14

14,BH2
FORMRD

FLDBF

29 BH1

BH6

5,FCOM12
S¢FRCNT -
T,FCOM13
FRDBF -

9,63

4¢BH3

857 -

9,7

T M7
BH3A+M6+M6+8

12.M9
12,M8
49 BH4
8H38B -
13:M9
13,M8
4, BH4
BH3B
144M9
14,M8
44,BH4
BH3B

HOLLERITH FIELD, INVERT COUNT
ZERO COUNT

INPUT QUTPUT BIT
IMPUT

READ FORMAT CHARACTER
ouTPUT

COUNT

SAVE FS

FORMAT CONTROL WORD
SAVE F7

READ. CHARACTER
SET MASK

LEFT OR RIGHT,
MOVE TO LEFT
DITTO MASK
CURRENT FORMAT WORD

BRANCH ACCORDING .TO QUARTER WORD

BRANCH IF RIGHT

FIRST QUARTER
CHARACTER REPLACED IN FORMAY
RIGHT HAND PART:

SECOND QUARTER DIFYO

THIRD QUARTER DITIC

1 a8uBy)

HEY AR
cUOT1D99g

29 Jo 2§

INTHd -~ Q

918

79/91/L

BH38B

BHé6
BA3

BAS

BH4

BSUB1

NAM
ORM
JuM
ADM
CAM
CAM
ATN
SFR
ADM
CJSU
SER
LFR
LER
JPH
ADM
ADM
JPM
ADM
CAM
JPM
LFR
SFR
LFR
CAM
TRA
CAM
TRA
CAM
ADM
TRA

CRM

CRN
ADM
cJu
ADM

154M9
15,M8

- 49BH3B

191
#y“z
b5=4

=1

1: M7
Sl

29 BHS

S FRUNY
S;FCOML2
ToFCOML3
10 AF2
501
69‘»’1
12,BAS5
10,-1
So MO
10,BA4
T FCOM6
1, FRCNY
19 FCOMS
O Mi4
BS7
GeMi2+1
BA4
4o-2
691
BH38
9,10
9,2
GoM8+11
8,BSUB
9;"’10

FOURTH QUARTER

JUMP IF .LEFT HAND PART
INCREMENT WORD ADRESS
RESET FORMAT CONTROL

STROE CURRENT FORMAT WORD BACK IN MEMDRY .
INCREASE FORMAT ADDRESS

BY ONE.. THIS IS A COUNT OF THE NUMBER OF FORMAY
CHARACTERS. COUNT NUMBER OF HOLLERITH CHARACTER
S. RESTROE FORMAT COUNY, F5 AND F7

THIS IS POSIYIVE IF HOLLERITH, -VE IF A FIELD
INCREMENY 10 LIST ADDRESS

DECREASE IG COUNT

TEST FOR MORE A CHARACTERS

TEST REPEAT COUNT

RESTORE M9. TO NUMBER FOLLOWING A

POSITIVE IF MUST REPEAT

REPLACE TRUE FORMAT ADDRESS

CONTROL WORD .

RESTORE F7

NEXT CHARACTER TO MO

END OF ALL A FIELDS FOR NOW

M9 CONTAINS NUMBER OF NEXY GROUP OF 8 OR LEES CH
ARACTERS .. |
RESET TO LEFT HAND QUARTER
INCREASE QUARTER WORD COUNT

MULTIPLY BY TEN
AND ADD NEXT DIGIT

TEST FOR ZERCO
RECODE FROM 12 BASES

: o8uBy)

2 938J
$U0T2089g

29 Jo ¢4

INTHd~-SN-1" 8

19997

79/91/L

BSUB .
BSUB3

8suB2

BSUB4

RENN

REN1

FLDBF

CALL
JIM
ADM .
JNM
ADM
JZM
ADM
JLH
SFR
CALL
LFR
FIL
JUM
CAM
JPM
CAD
ADM
SIA
CaAM
TRA
SFR
SFR
SFR
LFR
LFR
JPM
JLH
FitL
ADM
CJz
CRM
TRA
ADM
cJz
CRM

FORMRD
By BSUB
8y-11
8,BSUB1
87“’26
8,BSUB4
By26
Cryo -

4, FCOMS
BINC

44 FCOM6

69REN1
3+ RENN
4, BES
59l
59‘=1
8
Sy M8
BSuUB
S5¢FCOM7
6, FCOMB
T FCOM9
19 FBFWD
5¢FCNTS
4 FERRPR
{99

12,M8
69 FN3A
127
13,M8
63 FN3A
13,7

READ NEXT FORMAT. CHARACTER
SKIP BLANK CHARACTER

DIGIT
Ny GOT READ A NUMBER FROM THE

OTHERWISE EXIT

SUBRCUTINE WHICH PUTS M8 IN OUTPUT BUFFER AS NEX

T CHARACTER

BUFFER PEPARATION WORD
CONTROL WORD

I0 LIST:

T00 HA&Y~CHARACTERS FGR LINE OR CARD

BRANCH ACCORDING TO QUARTER
FIRST QUARTER, CHAR. TO Mi2
BRANCH IF RIGHT HAND PART
MOVE 7O LEFT. .

SECOND QUARTER

s 98uey)

: 9983
:UOT}039g

29 Jo 9

INTHd-IH-1"Q

2909

19/9T/L

FN6

FN3A

FN8
FNB A

FBACK

TRA

ADM

cJz-

CRM
TRA
ADM
CJz
CRM
TRA
ATN
SFR
LFR
CAM
CSM
ADM
ADM
SFR
SFR
LFR
LFR
LFR
JLH
SFR
SFR
LFR
LER
ANM
ANN
SBM
CRN
SBM
CaM
ANN
CAM
ANN

- FNB

14, M8
69 FN3A
1457

. FN8

155M8 -
6:FN6
15,7
FN8

T
1.FZERD
TeM=2
62

192

41

7 FBFWD

59 FCNTS

5, FCOMT
6, FCOME
1:FCOM9
399

49 FCOM12
T1oFY5
T:M13
43 FRCNT
1,8184
13,8184
1

1.3

3

1413
1¢1
Gv°2
1:6

THIRD QUARTER
FOURTH QUARTER

STORE BUFFER PREPARATION WORD IN BUFFER

PREPARATION WORD 70O BLANKS
RESET M7, QUARTER WORD CONTROL
RESET LEFT/RIGHT CONTROL
INCREMENTQUARTER CONTROL
INCREASE CHARACTER COUNT

STROE PREPARATION WORD

EXIT

SUBROUTINE TO BACK UP FORMAT CONTROL WORD TO
LAST LEFT PARENTHESIS IN CASE OF REPEAT
PUSHDOWN ENTRY

CONTROL WORD

RESET FORMAT WORD ADDRESS

LEFT RIGHT SWITCH RESET

: 28uBy)

10383
s U0T1028

g9 Jo 4§

INTHd-IN-1"Q

1999

79/91/L

CAM
CRM

SBM

SFR
LFR
LFR
JLH
FORMRD SFR
SFR
LFR
LFR

ORB -

CAM
cJ42
CRM
FORM3 ADM
ANM
SFR
LFR
LER
JUH
FORM2 CAM
cJu
CAM
ADM
TRA
FRESET ANN
CAM
SFR
SFR
SFR
JUM
LFR
FRST1 LFR
TRA

2

2+ 1

2¢+4

49 FRCONT
T:FIS
4,FCGOM12
399

4o FCOM12
7,FCOM13
49 FRCNT
T+ M3

2:%
ByM12

Qe FORM2
8s6

11

8963

4 FRCONT
4, FCOM12
T FCOM13
399

09“2

29 FORM3
29?4

391

- FORM3

15,512
14
5¢FCOM7
4, FCOM24
T FCOM9

14,FNOOUT

5S¢ FCNTS
T+ FBFWD
FBLNK2

QUARTER WORD COUNT RESET

STORE BACK:

RESTORE F5-

EXIT
SUBROUT+NE

IN MEMROY
AND F7

WHICH READS NEXT FORMAT. CHARACTER

FORMAT CONTRCL WORD

FORMAY WORD

EXTRACY QUARTER WORD

BRANCH IF RIGHT HAND PART

SHIFY

INCREMENT COUNT
EXTRACY 6 BITS
RESTORE CONTROL WORD

RESTORE. F4
EXIT
RESET LEFT

AND F7

RIGHT SHITCH

INCREMENT QUATER WORD COUNT
RESET QUARTER COUNT
INCREMENT ADDRESS OF FORMAT WORD

SUBROUTINE

T0 GUTPUT LINE OR CARDy OR: INPUT A CA

RD DEPENDING ON SWITHCES IN M1S5

BRANCH IF INPUT
OUTPUT BUFFER CONTROL WORD
PREPARATION WORD YO F7

1 a8uBy)

: 988
:UOT13038g

29 Jo 99

INTHd-cN-1°Q

1938

19/91/L

FBLNK1

FBLNKZ

FN9A

FN9B

FNOOUT

FRSTNC.

ATN
SER
LER
ADM
JNM
LFR
ANN
CAM
JUM
CALL
BECQ
CAM
CAM
CAM
TRA
CALL

DECQ

CAM
CAM
CAM
CAM
SFR
LFR
SFR
TRA
CALL
DECQ
CAM
CAM
CAM
CAM
SFR
LFR
LER
LFR

51,
r S
7. FZERC
4,8
4¢FBLNK1
T+FCOM9
15,256
14
14.FN9A
SYS10 ..

“RITE*iQGUTBFQG,G

0e—80
2:—=2 .
3¢ M
FNSB
SYSIO

WRITE+2,0UTBF3040

0s-133
2:-1
3e2¢M

1. QUTBF -
4o FCNTS
T+ FZERQO
19 FBFRD
FRSTNC.
SYSIO

1+ INPBF;0,0

0,—-80
24-2
39—4
1+ INPBF -
45 FCNTSC

- S¢FCOMT.

4, FCOM24
19 FCOM9

FILL OUT BUFFER WITH PREPARATION WORD, THEN
A :

ALL BLANKS :

MORE WORDS TO 60

PUNCH/PRINT BIT
BRANCH IF PRINT
OUPUT TO PUNCH VIA SYSTEM

RESET BUFFER CONTROL WORD FOR PUCH

PRINT VIA SYSTEM PROGRAM

RESET BUFFER CONYROL WORD FOR PRINT
BUFFER ADDRESS RESET

STORE FORU BACK INTO BUFFER CONTROL -
RESTROE F7

- INPUT CARD SECTIGN

RESET CARD READ: CONTROL WORD

STORE IN CARD READ CONTROL
RESTORE F4, F5 AND F7

: 98uBY)

1 98eg

1 UO0T109G
1998

29 3o LG
79/91/L

INTYd-ZN-1°Q

FRDBF

FNC3

FNC2

BX

BA

. BAL

JLH
SFR
SFR
LFR
JPM
LFR
ADM
CRB
CAM
cJz
CRM
ANM
SFR
LFR
LFR
JLH
CAM
CJu
CAM

ADM

TRA
CAM
CAM
CAM
TRA
CAM
CAM
Js8
FIL
CAM
SFR
LFR
SFR
CAM
LFR

399
5 FCOM7
7. FCOM9

- 59 FCNTSC

4o FERRPR
ToM5
491

14
BoM12
6,FNC2
8s6 -
8¢63

59 FCNTSC
5.FCOMT
T, FCOM9
399
692
7:FNC3
T9=%
Sel
FNC3
10, M9-1
9p1
Ce27
BX1
10,M9-1
9

0y BSUB .

1#9“8*11
7, FCOMS

- T9FRCNT

ToFCOM6
0, M9
7. FCOMS5

EXIT

SUBROUTINE 7O READ NEXT CHARACTER FROM A. CARD

CONTROL WORD
100 MANY CHARACTERS READ
CURRENT WORD OF 8 CHARACTERS

EXTRACT QUARTER WORD

RIGHT HAND QUIZRTER
SHIFT OVER FROM LEFTY
EXTRACY 6 BITS

STROE CONTROL WORD BACK
RESTORE F5 AND F7

EXIT

RESET LEFT/RIGHT COUNTY
QYARTER WORD COUNT-.BRANCH IF NOT FOURTH
RESEY TO FIRST QUARTER
AND. INCREMENT ADDRESS

X FIELD

SET COUNT. TQ ONE

FAKE A COMMA READ

AND GO TG S FIELD TYPE
A OR C FIELD

COUNT..TO M10

NUMBER OF CHARACYERS TO M9

SAVE NEXT CHARACYER iN Ml4
SAVE F7 4 : :

FORMAT. CONTROL IS SAVED

AND REPLACED SO THAT THE HOLLERITH PROGRAM :CAN B

E USED
RESTORE 170 CONTRBL IN M15

: 28uBy)

:938J
:U0T309S8

g9 Jo g¢

INTHI=-ZN-1"8

:998(

79/91/L

REBA

BAl

BA2

BM

80
BQ

BL

B8D3

CALL
FIL
JZIM
CAM
CAM
CAM
SFR
LFR
CAM
JNM
CAM
CAM
TRA
CAM
JPM
ATN
LFR
TRA
ADM
ADM
ADM
CAM
CAM
JsSB
Fit
CAM
ADM
SFR
CRN
CAM
CAM
CAM
CAM
FIL
JIM

BINC

69 BA2
i29°2
140-4
15,M5
T¢ FRCONT
T FCOMS
12oM9-9
12:BAL -
9,8
704096
BH

3, REBA
49 BE9

P

5
BA4
20-2

29 %097
2 %096
10oM9-1
9

C.BSUB

Oy M2
8011
6o FCOMS
15410
29 M9
g .
i2

65 BD2

MOVE UP TO WORD BBUNRARY

CONSTRUCT FAKE FORMAT. CONTROL WORD

RESTROE F7

BRANCH IF LESS THAN 8 CHARACTARS LEFT
SET COUNTY YO -8 CHARACTERS
SET MARKER IN M7 SO THAT CORRECT EXIT IS MADE FR

M HOOLERITH
FETCH NEXT CONYROL MWORD

M FIELD.
D FIELD
Q FIELD
L FIELD
CLEAR NUMBER REGISTER
READ NUMBER

M/0/Q/L CONTROL 1O MO
SAVE NEXY DIGIT
INPGYVOUTPUT»

COUNT TO M2

CLEAR POINT CONTRBL
CLEAR SCALE FACYOR

NC MCORE WORDS IN I8 CONVYROL WORD

1998

1 UOTAD9G
:938(Q

: a8ury)

29 Jo 66
19/9T/L

INTHI~ZH-1"Q

SFR 7. FCOM6 SAVE F7

JPM 11.8Q4A BRANCH IF QUTPUT
JNM C.BQ1 BRANCH IF OCTAL
CALL READEC READ DECINAL . NUMBER
SIA 8 STORE AS INTEGER IN M8
JIM 0,BLY BRANCH -1F L FIELD
BQ4 LFR Ty M5 DATA WORD TO M8
JPM 11,BDOUT BRANCJ. IF -QUTPUT -
ANN 403 : . -
TRA BD4 BRANCH ACCORDING TC QUARTER WORD
BD4 CAM 12,M8 FIRST QUARTER
TRA BDS
CAM 13,M8 SECOND QUARTER
TRA BDS
CAM 14,M8 THID QUARTER
TRA BDS :
CAM i5.,M8 FOURTH QUARTER
B8D5 SFR T, M5 STORE BACK IN MEMDRY
BD11 ANN 493 :
CAM 34-3
ADM 491 INCREASE Q
JUM 3,8BD7 NOT - KORD BOUNDARY
ADM 494 o :
BDé6 ADM 51 INCREASE WORD COUNT
BD7 ADM Ge-1 DECREASE ITEM COUNT
LER 1. FCOM6 RESTORE F7 S
ADM 10,1 DECREASE REPEAT. COUNT
JPM 10,8D3 REPEAT FIELD
LFR 6. FCOM5 RESTORE Fé6
CAM O.M8 NEXT :CHARACTER. IN FORMAT :TO
TRA 857 S . :
BD2 CAM 3,8D3 SET LINK SHOULD REPEAT ENTRY ARISE
JPM 44BE9 LAST CONTROL WORD USED
ATN 1o1, LOAD NEXT CONTROL WORD TO FS

LFR 5

: a8uBy)

:938g
{UOT103G

g9 J° 09

INTHd-2N-°Q

=Lk}

79/9T/L

BQ4A
BM1

BDOUT
BOUT1

BOUT2

BOUT4

BOUT3

BOUT7

BOUTS

TRA
JIM
cJu
CAM
CAN
CAM
TRA
ORB
CAM
JNM
CAD
CAM
CAM
CAM
CAM

CALL ¢

JUM
TRA
CAM
CAM
TRA

- CALL

ADM
JPM
CAM
CRM
ANN
CAM
TRA

- CRM

ANN
CAN -

- CJdu

JUM
CAM

BD3
O,BM1
0:8BQ4
0,-1
T9MS
10
BOUT1 .
499
TsM12
C.BOUT2
Q93 M7
12

g.

1

15

FDP
CeB8D11
BD7
GeN2-6
8
BOUT3
FLDBF
Fe—1
9, BOUT4S
11,-5
Tel

8
BOUTS
1910

TeT.

8.
9,8B0UT6
B4BOUTSZ
8,10

BRANCH IF M FIELD

AND 1IF Q FIELD

RESET SWITCH FOR M FOELD :
ITEM .TO M7

CLEAR REPEAT- COUNT

EXT&ACT ‘QUARTER WORD FOR PRINING
OCTAL PRINT
NUMBER TO ACCUMULATOR

STE ENTRY PARAMTERS FOR INTEGER PRINT
PRINT -
NOT AN ADDRESS PRINT

OCTAL PRINT :START

BLANK

OUTPUT CHARACTER
DECREASE COUNT

REPEAT CHARACTER

COUNT FOR K OCTAL DIDGITS
EXTRACT FIRST DIGIT

EXTRACTY 2ND THRU S5TH DIGITS

COUNT NUMBER OF :CHARACTERS
NOY ZERO
ZERD CODE CONVERY

s 93uBY)

:8898g
1UOT2099

g9 30 19

INTHd-SN-1"Q

1918

79/91/L

BOUTS5Z CALL

BOUTG

8Q1
BQ2

BQ3

BL1

FCNTSC .DECQ
DECQ
DECQ

FCNTS
FZERO
OUTBF
NP BF
PUSHON

ERROR
ERRORT.
FERRPR

CAM
cJu
CJu
TRA
CSM
CAM

CALL

JZM

CRM
ADM

ADM

JUM
ADN
CJu

cam

CJu
CAM
CAM
SFR
TRA
FIL

8SS
BSS.
BSS

FLDBF -
9e-1

11,80UT7T

0BD11
8D7
QM2
1.
FRDBF
8+8Q3
7,10
ToM8
84-10
8¢8BQ3
7+=10
9,8Q2
8, M7 .
0,BQ4
10
5¢M8 -
T+ FCOM6
8D7

-807 INPBFo—-29-4%
-133,0UTBFs=25M

XX

17.
10

-5

ASSIGN
ASSI

CAM.
TRA

CAM .

TRA
CAM

GN.

OQUTPUT CHARACTER
STT BLANK INHIBIY
COUNT. LENGHTH: OF ‘FIELD
NOT ADDRESS: PRINT

OCTAL READ PROGRAM

CLEAR ASSEMBLY AREA

READ. CHARACTER

IGNORE BLANK

SHIFT ASSEMBLED WORD LEFF¥Y 3.
AND INSERT NEW OCTAL. CHARACTER
CODE CORRECTY IF ZERO

NOT ZERO. '

COUNT CHARACTERS
ASSEMBLED QUARTER TO M8
NOT ADDRESS READ

- CLEAR REPEAT.COUNT

SET IN IO LIST IMAGE.

FCOM1,FCOM2,FCOM3,FCOM4
FRCNTFCOM12,FCOM13

1, ERM1
ERPR
1. ERM2

- ERPR

1. ERM3

:88ury)

:98eg
1 U0 T1039g

g9 4o 29

INTHI-SH-7°Q

1998

719/91/L

- FRMERR -

ERPR -

EMES
ERM1
ERM2
ERM3
ERMS
MES 1
MES 2
MES3
MESS

WRITE

TRA
CAM
LFR
SFR
LFR
SFR
CAM
SFR
CALL
LFER
SFR
CALL
FIL
BSS
DECQ
DECQ
DECQ
DECQ
CHR.
CHR
CHR
CHR -
ASSIGN
ASSIGN
ASSIGN
EQUS

ERPR
1-,ERMS

T FRCNT
T2EMES+1
T¢ FCOM1
T+EMES
12
ToFCOM1
PRINT

49 EMES
4oFCOM1
SYSERR

2

3,EMES; 1, MES]

3sEMES,1,MES2

3oEMES, 1, MES3

3yEMES+1,1,MESS

32,26H DATA CHARACTER: INCORRECT QS=
24517H FIELD. 70O -SMALL :Q5#

409294 TOO MANY CHARACTERS ON liﬁﬁ Q5=
24514H FORMAT ERROR Q5%
FCOM7,FCOMB,FCOM9
FCOM6,FCONSFCOM24

FBFHD,FIS FT6

512

8.4 Program Descriptions

A number of subroutines are in preparation for the card operating

system and should be available by June. (No descriptions are yet available.)
They will include:

Logarithm

Sin/Cos

Square Root

Exponential

Integration of Ordinary Differential Equations
Solution of Linear Equations

Roots of Polynomial

Quadrature

Date: 3/5/63
"Section: 8.4
Page: lofl

Change:

	000
	001
	002
	01.00_Introduction
	01.01.01
	01.01.02
	01.02.01
	01.03.01
	01.03.02
	01.03.03
	01.04.01
	02.00_OperatingSys
	02.01.01
	02.02.00.01
	02.02.01.01
	02.02.02.01
	02.02.02.02
	02.02.02.03
	02.03.00.01
	02.03.00.02
	02.03.01.01
	02.04.01
	02.0A.01
	02.0A.02
	03.00_MachineDescr
	03.01.01
	03.01.02.01
	03.02.00.01
	03.02.00.02
	03.02.01.01
	03.02.02.01
	03.02.03.01
	03.02.03.02
	03.02.04.01
	03.02.05.01
	03.02.05.02
	03.02.05.03
	03.02.06.01
	03.02.06.02
	03.03.00.01
	03.03.00.02
	03.03.00.03
	03.03.01.01
	03.03.02.01
	03.03.02.02
	03.03.03.01
	03.03.04.01
	03.03.05.01
	03.03.06.01
	03.03.07.01
	03.03.08.01
	03.03.09.01
	03.03.09.02
	03.03.09.03
	03.03.09.04
	03.03.09.05
	03.03.09.06
	03.03.09.07
	03.03.09.08
	03.03.09.09
	03.04.00.01
	03.04.01.01
	03.04.02.01
	03.04.03.01
	03.04.03.02
	03.04.03.03
	03.04.03.04
	03.04.03.05
	03.04.03.06
	03.04.04.01
	03.04.04.02
	03.04.04.03
	03.05.01.01
	03.05.02.01
	03.05.03.01
	03.05.04.01
	03.05.05.01
	04.00_NICAP
	04.01
	04.02.00
	04.02.01
	04.02.02.01
	04.02.03.01
	04.02.04.01
	04.02.05.01
	04.03.00.01
	04.03.01.01
	04.03.01.02
	04.03.02.01
	04.04.00.01
	04.04.01.01
	04.04.01.02
	04.04.02.01
	04.04.03.01
	04.04.04.01
	04.04.04.02
	04.04.05.01
	04.04.06.01
	04.04.07.01
	04.04.07.02
	04.04.07.03
	04.04.08.01
	04.04.09.01
	04.04.10.01
	04.04.11.01
	04.04.12.01
	04.04.13.01
	04.04.14.01
	04.05.00.01
	04.05.01.01
	04.05.01.02
	04.05.01.03
	04.05.01.04
	04.05.01.05
	04.05.02.01
	04.05.02.02
	04.05.02.03
	04.06.01
	04.07.01
	04.08.01
	04.08.02
	04.08.03
	04.09.01
	04.10.01.01
	04.10.01.02
	04.10.02.01
	04.10.03.01
	05.00.01
	05.00_IO_System
	05.02.00.01
	05.02.01.01
	05.02.01.02
	05.02.01.03
	05.02.02.01
	05.02.02.02
	05.03.00.01
	05.03.01.00.01
	05.03.01.01.01
	05.03.01.01.02
	05.03.01.01.03
	05.03.01.01.04
	05.03.01.01.05
	05.03.01.01.06
	05.03.01.02.01
	05.03.01.03.01
	05.03.01.04.01
	05.03.01.04.02
	05.03.01.05.01
	05.03.02.01
	05.03.02.02
	05.03.02.03
	05.03.02.04
	07.00_Compilers
	07.01.00.01
	07.01.00.02
	07.01.00.03
	07.01.01.01
	07.01.02.01
	07.01.03.01
	07.01.04.01
	07.01.05.01
	07.01.06.01
	07.01.07.01
	07.01.07.02
	07.01.07.03
	07.01.07.04
	07.01.07.05
	07.01.07.06
	07.01.07.07
	07.01.07.08
	07.01.07.09
	07.01.07.10
	07.01.07.11
	07.01.08.00.01
	07.01.08.00.02
	07.01.08.00.03
	07.01.08.00.04
	07.01.08.01.01
	07.01.08.02.00.01
	07.01.08.02.00.02
	07.01.08.02.01.01
	07.01.08.02.01.02
	07.01.08.02.02.01
	07.01.08.02.03.01
	07.01.08.03.01
	07.01.08.04.01
	07.01.08.05.01
	07.01.08.05.02
	07.01.08.05.03
	07.01.09.01
	07.01.09.02
	07.01.09.03
	07.01.09.04
	08.00_Program_Libr
	08.01.01
	08.02.01
	08.03.01
	08.03.02
	08.04-B1-ATAN1.01
	08.04-B1-ATAN1.02
	08.04-B1-ATAN1.03
	08.04-B1-ATAN1.04
	08.04-B1-ATAN1.05
	08.04-B1-SIN1.01
	08.04-B1-SIN1.02
	08.04-B1-SIN1.03
	08.04-B3-COSH.01
	08.04-B3-COSH.02
	08.04-B3-EXP1.01
	08.04-B3-EXP1.02
	08.04-B3-EXP1.03
	08.04-B3-EXP1.04
	08.04-B3-LGT1.01
	08.04-B3-LGT1.02
	08.04-B3-LGT1.03
	08.04-B3-LGT1.04
	08.04-B3-LGT1.05
	08.04-B3-SINH1.01
	08.04-B3-SINH1.02
	08.04-B3-SINH1.03
	08.04-B4-SQR1.01
	08.04-B4-SQR1.02
	08.04-CCP4SC.01
	08.04-CCP6LN.01
	08.04-D1-GQU1.01
	08.04-D1-GQU1.02
	08.04-D1-GQU1.03
	08.04-D1-GQU1.04
	08.04-D1-GQU1.05
	08.04-D1-GQU1.06
	08.04-D1-GQU1.07
	08.04-D1-GQU1.08
	08.04-D1-GQU1.09
	08.04-D2-RKG1.01
	08.04-D2-RKG1.02
	08.04-D2-RKG1.03
	08.04-D2-RKG1.04
	08.04-D2-RKG1.05
	08.04-E1-DVDF1.01
	08.04-E1-DVDF1.02
	08.04-E1-DVDF1.03
	08.04-E1-DVDF1.04
	08.04-E1-LAG6.01
	08.04-E1-LAG6.02
	08.04-E1-LAG6.03
	08.04-E1-LAG6.04
	08.04-E1-LAG6.05
	08.04-E1-LGUN.01
	08.04-E1-LGUN.02
	08.04-E1-LGUN.03
	08.04-E1-LGUN.04
	08.04-E1-LGUN.05
	08.04-E1-LGUN.06
	08.04-E1-LGUN.07
	08.04-F4-SLQ1.01
	08.04-F4-SLQ1.02
	08.04-F4-SLQ1.03
	08.04-F4-SLQ1.04
	08.04-F4-SLQ1.05
	08.04-F4-SLQ1.06
	08.04-F4-SLQ1.07
	08.04-G5-RAN1.01
	08.04-G5-RAN1.02
	08.04-G5-RAN1.03
	08.04-G5-RAN1.04
	08.04-G5-RAN1.05
	08.04-J6-TOPS.01
	08.04-J6-TOPS.02
	08.04-J6-TOPS.03
	08.04-J6-TOPS.04
	08.04-J6-TOPS.05
	08.04-J6-TOPS.06
	08.04-J6-TOPS.07
	08.04-J6-TOPS.08
	08.04-J6-TOPS.09
	08.04-J6-TOPS.10
	08.04-J6-TOPS.11
	08.04-J6-TOPS.12
	08.04-J6-TOPS.13
	08.04-J6-TOPS.14
	08.04-J6-TOPS.15
	08.04-J6-TOPS.16
	08.04-J6-TOPS.17
	08.04-J6-TOPS.18
	08.04-J6-TOPS.19
	08.04-J6-TOPS.20
	08.04-J6-TOPS.21
	08.04-J6-TOPS.22
	08.04-J6-TOPS.23
	08.04-J6-TOPS.24
	08.04-J6-TOPS.25
	08.04-J6-TOPS.26
	08.04-J6-TOPS.27
	08.04-J6-TOPS.28
	08.04-J6-TOPS.29
	08.04-J6-TOPS.30
	08.04-J6-TOPS.31
	08.04-J6-TOPS.32
	08.04-J6-TOPS.33
	08.04-J6-TOPS.34
	08.04-J6-TOPS.35
	08.04-J6-TOPS.36
	08.04-J6-TOPS.37
	08.04-J6-TOPS.38
	08.04-J6-TOPS.39
	08.04-K0-IOLIST.01
	08.04-K0-IOLIST.02
	08.04-K0-IOLIST.03
	08.04-K0-IOLIST.04
	08.04-K0-IOLIST.05
	08.04-K0-IOLIST.06
	08.04-K0-IOLIST.07
	08.04-K0-IOLIST.08
	08.04-K0-IOLIST.09
	08.04-K0-IOLIST.10
	08.04-M0-CMP1.01
	08.04-M0-CMP1.02
	08.04-M0-CMP1.03
	08.04-M2-PRINT.01
	08.04-M2-PRINT.02
	08.04-M2-PRINT.03
	08.04-M2-PRINT.04
	08.04-M2-PRINT.05
	08.04-M2-PRINT.06
	08.04-M2-PRINT.07
	08.04-M2-PRINT.08
	08.04-M2-PRINT.09
	08.04-M2-PRINT.10
	08.04-M2-PRINT.11
	08.04-M2-PRINT.12
	08.04-M2-PRINT.13
	08.04-M2-PRINT.14
	08.04-M2-PRINT.15
	08.04-M2-PRINT.16
	08.04-M2-PRINT.17
	08.04-M2-PRINT.18
	08.04-M2-PRINT.19
	08.04-M2-PRINT.20
	08.04-M2-PRINT.21
	08.04-M2-PRINT.22
	08.04-M2-PRINT.23
	08.04-M2-PRINT.24
	08.04-M2-PRINT.25
	08.04-M2-PRINT.26
	08.04-M2-PRINT.27
	08.04-M2-PRINT.28
	08.04-M2-PRINT.29
	08.04-M2-PRINT.30
	08.04-M2-PRINT.31
	08.04-M2-PRINT.32
	08.04-M2-PRINT.33
	08.04-M2-PRINT.34
	08.04-M2-PRINT.35
	08.04-M2-PRINT.36
	08.04-M2-PRINT.37
	08.04-M2-PRINT.38
	08.04-M2-PRINT.39
	08.04-M2-PRINT.40
	08.04-M2-PRINT.41
	08.04-M2-PRINT.42
	08.04-M2-PRINT.43
	08.04-M2-PRINT.44
	08.04-M2-PRINT.45
	08.04-M2-PRINT.46
	08.04-M2-PRINT.47
	08.04-M2-PRINT.48
	08.04-M2-PRINT.49
	08.04-M2-PRINT.50
	08.04-M2-PRINT.51
	08.04-M2-PRINT.52
	08.04-M2-PRINT.53
	08.04-M2-PRINT.54
	08.04-M2-PRINT.55
	08.04-M2-PRINT.56
	08.04-M2-PRINT.57
	08.04-M2-PRINT.58
	08.04-M2-PRINT.59
	08.04-M2-PRINT.60
	08.04-M2-PRINT.61
	08.04-M2-PRINT.62
	08.04

