
UCSD WORKSHOP
on

SYSTEMS PROGRAMMING
EXTENSIONS

to the

PASCAL LANGUAGE

Inst i tute ~or In~ormolion Systems

University oT Cal iTornia~ San Diego

10-14 0uly~ 25-28 0uly 1978

PROCEEDINGS OF

UCSD WORKSHOP ON SYSTEM PROGRAMMING EXTENSIONS

TO THE PASCAL LANGUAGE.

CONVENER KENNETH L. BOWLES

EDITORS TERRENCE C. MILLER
GILLIAN M. ACKLAND

INSTITUTE FOR INFORMATION SYSTEMS

UNIVERSITY OF CALIFORNIA, SAN DIEGO

10-14 JULY, 25-28 JULY 1978

Copyright (c) 1979

Regents of the University of California, San Diego.

EDITORS FOREWORD

This document is an attempt to record the results of the
UCSD Workshop in Systems Programming Extensions to the Pascal
Language. Readers should be aware of the following limitations:

1) This document does not reflect changes of opinion that
have occurred since the conference took place.

2) This document is comprised of reports prepared by
subgroups of the conference. In some cases, the wording of the
report was agreed to by all members of the subgroup. However,
in other cases, the reports were prepared by a single
participant, and were not reviewed by the subgroup.

This is an historical record and should not be used as an
authority.

The Proceedings have been distributed to all Workshop
participants and will be available at cost to anyone who
requests individual copies (supplies permitting). Recipients of
this document are requested not to distribute it further.

Terrence C. Miller
Gillian M. Ackland 5/8/79

TABLE OF CONTENTS

A. ORIGINS, ORGANIZATION, AND EFFECTS

B. GENERAL RESOLUTIONS 4

C. WORKSHOP APPROVED EXTENSIONS

C. 1 GENERAL 6

C.2 NUMERICAL 13

C.3 FILES 14

D. TUTORIAL NOTES 17

E. TOPICS DISMISSED 34

F. RECOMMENDATIONS TO OTHER GROUPS 66

G. PROPOSED EXPERIMENTS 74

PARTICIPANTS 111

SECTION A

ORIGINS OF THE WORKSHOP

By Fall of 1977, a growing number of firms in the computer
industry were using Pascal for system programming. Some of
these found it necessary to extend Pascal as defined in the
User Manual and Report, Jensen and Wirth. Although some of
their extensions accomplished similar tasks, they varied widely
in choice of syntax and semantic definition. In subsequent
months, Ken Bowles of the Institute for Information Systems
(lIS) of UCSD contacted certain industry representatives as to
their willingness to cooperate in a discussion of possible
extensions and to attempt to reach an agreement on syntax and
semantics. Most of the contacted industries responded
positively, provided agreement was reached soon because of the
expense of retrofitting changes in existing software.

On the basis of that response, Ken Bowles convened a 9-day
workshop, July 10-14, 25-28 in 1978 at the University of
California, San Di.ego. Participants included representatives of
over 30 companies (see list at end of Proceedings), official
representatives of the Pascal User's Group, and individuals
involved in international efforts on standardization of and
extensions to Pascal. In addition, lIS provided about ten
people who served in a number of ways to facilitate the
Workshop functions.

ORGANIZATION OF THE WORKSHOP

A checklist of topics for potential consideration was
distributed to Workshop participants prior to July. The list
included virtually all serious suggestion of problems that might
require extension and changes to Pascal (as Pascal was
understood in the absence of an official standard). Workshop
participants were asked to mark their company's priorities on
each of those items. The responses to the checklist did not
support the idea that the sets of problems deemed important were
nearly as homogeneous as previously hoped. The overlap was
small.

The checklist was categorized into the following topic
groups: control con5tructs; issues related to parameters;
expressions; data types and declarations; input/output;
modularity and separate compilation; real-time and concurrency;
programmer convenience. To ensure that each of the items in
these topic groups was given fair consideration, the Workshop
participants divided into eight subgroups for detailed
discussion of the eight topic areas. Although format varied,
each day was a combination of subgroup meetings and plenary
sessions. The plenary sessions covered itens appropriate to the
combined group, such as resolution, scheduling, and the subgroup
discussion reports.

In the last two plenary session, the Workshop participants
voted on each item in the original checklist and decided whether
the topic was approved, dismissed, too experimental for any

decision, or recommended for further consideration by one of
two ,groups described below.

ORGANIZATION OF THE PROCEEDINGS

Section B describes general resolution made in plenary
session.

:::>t:CTIUN A

Section C contains approved topics. The reader should take
c are to note that some of the se to pics were approved "in theor y"
but no agreement was reached in syntax or semantics. Section C
is in three parts; the latter two are intended as packages and
each should be implemented as an entire package or not at all.
All of these are understood to be extension to the language and
should be noted as such in documentation as per the general
resolutions' instructions.

Section D contains topics that were requested as extensions
but the Workshop participants agreed (after mutual education)
that they were unnecessary as extensions because they were
already available in the language. Since their request as
extensions shows that this decision will surprise some users of
Pascal, this section of tutorial notes was included for their
education and benefit.

Section E contains topics that were dismissed for other
reasons. The reasons varied considerably and t~e net result
was that there was no consensus on any of these topics. This
section contains the bulk of the items from the original
checklist.

Section F includes topics from C and G (approved and
experimental) which the Workshop participants supported but
agreed to defer to existing standardization and extension groups
for clarification, syntax, and semantics. The standardization
group is under the British Standards Institution and is headed
by Tony Addyman. This group is preparing a proposal of a Pascal
standard for the International Standards Organization (ISO).
The extensions group is international in membership and, at the
time of the Workshop, was led by Jorgen Steensgard-Madsen.
This group is usually referred to in the Proceedings as the
Working Group.

Section G contains suggestions for experiments in the areas
in which extensions might be desirable. Encapsulation, external
compilation and concurrency are the major topics in this
section.

A WORD ON THE NUMBERING SYSTEM

Topics have maintained their numbers from the original
checklist. Hence, section C has 1.1 followed by 2.2. The gap
between those numbers occurs because 1.2-1.5, 1.7-1.12, 1.14 and
2.1 are in section E; 1.6 is in section D; and 1.13 is in
section F.

2

~tCIIUN A

EFFECTS OF THE WORKSHOP

1. The key people in the computer industry with respect to
Pascal were brought together.

2. The BS! effort was accelerated.

3. The Workshop participants were able to serve in an
advisory role, albeit weak, to inform the Working Group and the
BSI group concerning interests and preferences.

4. Many participan~s were educated regarding how robust
the Pascal language already is and how difficult it is to do
language design well even after agreement is reached on a
particular goal.

5. To our knowledge, this Workshop was the largest non­
proprietary Pascal extension effort to date. For the record, of
the 95 topics on the original checklist only 17 made it to
section C (approved) and the majority of these are approved in
principle only, but no agreement was reached for syntax or
semantics. Because of this experience, it is expected that most
of those who participated will approach future extension
proposals with caution and an improved understanding of Pascal's

3

SECTIONS GENERAL RESOLUTIONS

The Workshop attempted to reach unanimity on a number of
topics covering its overall impact in the Pascal community, and
also on specific topics of language detail. The general
recommendations are contained in this section, while the
detailed recommendations appear in several of the subsequent
sections. The form of the general recommendations was agreed
upon at the end of the first week of the Workshop. The wording
was revised during the second week.

At the time the workshop convened, two major activities
with respect to the definition of the language Pascal were
already underway. In light of the shortcomings of the Jensen
and Wirth User Manual and Report, a small group had begun
working on a complete definition of the Pascal language. This
definiton is intended for submission to the International
Standards Organization for consideration and possible adoptiono
A Working Group focused around Professor Jorgen Steensgaard­
Madsen had begun working on extensions to the Pascal language
aimed at correcting a few well known deficiencies in the
language. In light of these activities the Workshop assumed as
its primary goal, to address well-defined, consistent,
application-oriented extension sets and agreed to pass to the
other two bodies such recommendations and information deemed
appropriate to their work.

The Workshop recognized the existence of possible
modifications to the Pascal language which, due to the impact
throughout the language, would defacto create a new language and
decided not to act on these modifications at this time.

In order to achieve the purposes stated above the Workshop
has resolved to: '

I. Publish and distribute the Proceedings of the Workshop.
In particular, the Proceedings will be forwarded to the
committee preparing a draft ISO standard for Pascal, the Pascal
Users Group, and to the Extensions Working Group. Produce a
document that provides syntax and semantics for certain
dismissed topics. This document will be distributed to
participants of the Workshop and others who request it, but it
is not to be rionsidered part of the Proceedings of the Workshop.

II. Organize a structure which will permit the orderly
continuation of the work begun at the meeting in San Diego.

III. Provide a mechanism to reinforce the importance of
standard Pascal by agreeing that all compilers purporting to
support the programming language Pascal should include a variant
of the following statement in the source code and all
documentation:

"The language --(1)--supported by this compiler contains
the language Pascal, as defined in ~-(2)--, as a subset with
the following exceptions:

4

(a) features not implemented
--(3)-- refer to page --

(b) features implemented which deviate from the standard
format

No te s :

(1) insert the name of the dialect

(2) insert a reference to a specific definition, such as

"the Jensen and Wirth User Manual and Report(specify
edition)" or

"the ISO draft standard" as appropriate.

(3) a brief statement plus reference to more detailed
information will suffice. The list should be as
complete as possible.

5

SECTION C WORKSHOP APPROVED EXTENSIONS

This section contains recommendations to the Pascal
community regarding conventialized extensions. (The term
"conventialized extension" has come into widespread use in the
Pascal user community. The Workshop understands it to mean that
if one chooses to extend the language for the purposes
associated with a conventialized extension, it is recommended
that the published syntax and semantics associated with that
extension should be used rather than some alternative.) These
recommendations were approved by general consensus of the
Workshop attendees. In other words, a substantial majority of
those attending agreed to the recommendations as stated. Where
dissent occurred, as happened on many topics, it represented
only a small minority of those attending.

An attempt was made to partition the approved extensions
into groups of related items. The hope was, that implementors
would include all items within a group, rather than implementing
only a partial selection of the recommended extensions. This
concept failed to receive enthusiastic support except as
regards extensions for numerical applications (section C.2).

The grouping on Files (section C.3) represents an attempt
to group related items for clarity, rather than a recommendation
that every implementor install all items noted in C.3, if any
are installed at all. Section C.1 contains recommendations of
general interest which should be considered individually.

SECTION C.1 GENERAL

1.1 Add else clause to case statement.

Extend the case statement to include specification of the
action to be taken if the selector expression fails to match any
case constant (label) in the statement.

Recommendation:

The Workshop recommends the implementation of this
extension (as published in Pascal News #13) according to the
syntax and semanti~s ad~pted by the Working Group.

Discussion:

The Working Group is addressing this problem and, according
to Arthur Sale, there is substantial consensus on the
desirablity of this extension and on the method of implementing
it. According to members of the Working Group present at the
Workshop the syntax is

6

SECTION C.1 WORKSHOP APPHUV~U ~XTN~. G~N~nRL

case-statement =

case expression of
case-I i st- el ement { ";" case-Ii st-el ement }
!"Otherwise" statement T";" statement }]
end

2.2 Provide type-checking in parameterized procedures. and
functions.

Recommendation:

This change is desirable to cover a lapse in type
checking. A consensus has not been reached on the method to
use~ See 2.2 in Section F.

2.3 Add adjustable array parameters.

Add dynamic array (ie. adjustable array bounds) parameters
to allow libraries of procedures that can operate on different­
si zed arrays.

Recommendation:

This change represents a desirable change to the language.
The Workshop prefers the form mentioned below, but defers to the
Working Group.

Discussion:

We felt the following form, which is similar to that
suggested informally by Wirth, was desirable and is being
examined by the Working Group.

procedure zap(~ a: array [i .• j: type] of char);

where type is integer or other scalar (not a subrange).

[Editorial comment: The phrase "not a subrange" was controversial.]

The variables i and j would receive, respectively, the
lower and upper bounds ofth~ array being passed. Within the
procedure any modification to the variables containing the array
bounds should be disallowed. Note that the limitation to var
type adjustable bounded arrays may be desirable, because to
allow passing value type arr~ys would be very close to allowing

7

SECTIUN e.l WUHK~HUY AYYnUV~U ~Al~~. u~~~nHL

dynamic arrays, since the space needed could not be calculated
until run-time. It was reported by members of the Working Group
present at the Workshop that they may not impose this
restriction in order to permit use of string constants.

2.7 Allow functions to return any type.

Extend functions to return any type, rather than just
I

scalars and pointers.

Recommendation:

This is a desirable extension to the language, and we
recommend it be adopted.

[Editorial comment: Successive votes on this issue oscillated
violently. The implications of this recommendation regarding
functions returning files were not discussed.]

Discussion:

The only reservation is that this might complicate space
management, especially for existing implementations.

4.2 Minimum sizes of data types.

Decide upon the mInImum set size, the mInImum range of the
type integer, the minimum range and precision of type real, and
the ability to specify the desired range and precision of real
numbers. This would allow small machines to use small, easily
manipulated representations for most values, and only incur more
expensive representations when extra precision is needed.

Recommendation and discussion:

It was decided not to specify mInImum sizes for any types;
it might be perfectly reasonable to have only 8-bit integers in
some applications. For portability, sets should support set of
char. A large number of portability problems related to
insufficient maximum sizes are due to small sets. See section E
for discussion of tbe remainder of these topics.

It was also decided not to standardize extended
precision forms at this time. The details of the standard would
rely on the type (real or integer), precision, application,

8

~~CTIUN C.l WUHK~HUY AYYHUV~U ~XTN~. ti~N~HAL

and on machine factors. More user experience with extended
precision is needed before agreement can be reached on a
standard.

Jensen and Wirth implies that the result of an operation on
integers may be undefined if it or it's arguments absolute value
exceeds MAXINT (which is implementation defined). The
question, is what should a compiler do with a declaration like
"K: 0 .• N" where N is bigger than MAXI NT. Many implementations
will not produce good code where K is used. The compiler should
be required to flag an error when it cannot correctly compile
something.

4.5 Structured constants.

Add the abili ty to declare structured constants, for 'tables
and other structured data that currently must be variables and
have code space and execution time associated with their
definition.

Recommendation:

The Workshop decided that structured constants should be
accepted but defers to the Working Group for a final
recommendation on the syntax. We recommend the example shown
below.

Di scussion:

This feature was accepted primarily because it can be
implemented easily in such a way as to provide a significant
decrease in the size and execution time of code required for
many applications of Workshop participants with severe size and
speed constraints. It is also clean and consistent with
existing syntax.

type arraytype = array [0 .• 1] of record
i : integer;
r :real

end; {record}

const arconst = arraytype((1,2.0), (0,0.0));

A const section is needed after the type section (See
4.5b in section F for discussion of methods)and in this
section declarations of the form given above are allowed. The
list of values is recursive i.e. «1,0),(0,1») can be used to
specify the value ofa constant two dimensional array of
integers or a record of records of two integers each. Note that
in a record with a case variant, a record variant' selector must

9 .

~~ClIUN C.l WUHK~HU~ A~~HUV~U ~AIN~. ~~~CnAL

appear in the list, even if a tag is not explicitly a part of
the record. The list may not contain variables or expressions.
The production for <expression> needs to be extended to include
structured constants, along with indexing and selection of
structured constants.

4.18 Representation of non-decimal numbers.

Recommendation:

Realizing that this is, a highly implementation dependent
subject, we recommend that it remain so. In the absence of an
existing convention, the Workshop recommends the following
syn tax:

<non-decimal number> .. -.. - <radix part> II <constant part>

< r ad ix paY't> :: = 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 :. 10 : 11 12

13 : 1 4 1 5 I 1 6

[Editorial comment: Some participants felt that <radix part> was
limited to 2,8,and 16.]

<constant part> ::= <hex digit> {<hex digit>}

< hex d ig it> :: = < dig it> : A I B : C : D : E : F

Ex amples : 1611FFFF

811177777

2111111111111111111

6.2 Specify the syntax for separate compilation of Pascal
modules and procedures, and rules specifying what must
be recompiled when a procedure is changed.

Recommendation:

The Workshop acknowledges an existing mechanism for
separate compilation that is widely used: the substitution of a
linkage designation for the procedure block to indicate it's
external availability~ (See chapter 13.A.2 of the User Manual)
If this conceptual approach to separate procedure compilations
is used, then this conventional syntax should be adopted. Such
a mechanism may not provide the type security that is desired

10

SECTION C.1 WORKSHOP APPROV~D tXTN~. G~N~~aL

and ex pected by Pa scal programmers. In section' G an
experimental solution to this problem is presented.

8.4 Upper/lower case and break characters.

Resolve what to do with identifiers written in both upper
and lower case; and whether a break character for numbers and
identifiers should be allowed and if it is significant in
identifiers.

Recommendation:

We recommend that there be no distinction between upper and
lower case except inside <string>.

<string> :: = ' <character> ,{ <character>} ,

If a break character exists, we recommend that it not be
significant and that it be allowed only in identifiers and only
where a digit would be allowed. i.e.

<identifier> : :=<letter> {<letter or digit or break character>}

<letter or digit or break character> .. -.. - <letter> : <digit>
<break character>

We recommend that the underscore character (' ') be used
for a break character on any implementation with a-character set
that includes this symbol.

[Editorial comment: Note that the effects of the underscore
character on printing devices vary widely.]

< break character> :: = I <empty>

Note: We strongly recommend that any implementation that
allows lower case characters and/or the break character in
identifiers indicate with a warning message any occurrence of an
identifier that does not exactly match its declaration in case
and occurrence of break characters.

1 1

SECTION G.1 WORKSHUP APPHUV~V ~AIN~. ~~N~nAL

8.7 Character set enumeration.

Enable one to enumerate a character set, or provide some
other device to lessen portability problems, or decide upon one
character set. Should all compilers be able to compile for
ASCII and EBCDIC? Should control characters be in the type char
on ASCII-based systems?

Recommendation:

We follow Jensen and Wirth [User Manual].

We recommend that if the character set contains lower-c~~e
letters ('a' to 'z'), that they be in ascending order.

We felt that due to the large number of conflicting
character sets we could not recommend anything stronger. If a
choice of character sets exists, we recommend the use of the ISO
standard character set (ASCII in the United States).

12

SECTION C.2 NUMERICAL

3.4 Exponentiation.

Add an exponentiation operator, or a standard procedure
power (or raise), for the number-brunching people.

Recommendation:

We recommend a conventional, pre-declared function,

function power(a,b:real):real;

A.H.J.Sale presents (Section D) a Pascal version of such a
function, so a language extension here is not absolutely
necessary.

Minority opinion:

People who are used to ,**, as an exponentiation operator want
this operator and futhermore, it doesn't conflict with
existing syntax. If they can be given complex numbers why
should they not also get their exponentiation operator. This
introduces a new level of precedence in expressions but not an
objectionable one since everyone seems to have the same idea as
to what it's precedence should be. (Note that the 'Report' says
:tt sqr (x) computes x**2 ttl •

Di sc us sion :

See Section D.

4.9 Complex.

Add and provide the language support of the type complex,
for scientific application people.

Recommendation:

We recommend that complex arithmetic should be considered
a conventionalized extension to Pascal. All details of the
extension have not yet been finalized, so the Workshop's
conclusions are presented in section F as suggestions for
consideration by the Working Group.

13

SECTION C.3 FILES

5.1 Define communication between program and operating system
through the program heading.

Recommendation:

We recommend that the program heading be used for
communication between program and operating system.

We recommend that the nature or the means of this
communication not be specified in the language or as an
extension.

Discussion:

Jensen and Wirth [Report] specifies only that the program
heading include identifiers. We feel that the usage of the
identifiers should be implementation defined, since the
interaction with the operating system is, by definition, system­
dependent.

One of the primary uses of the program heading is to
identify Pascal file variables which will be bound to files
existing outside, and beyond the lifetime of, the program.
However, we do not wish to limit the identifiers to be file
names because it may be desirable to communicate other data
through the program header. For example, in the C language
under UNIX, the system passes an argument count and array of
pointers (to strings) to the program when it is invoked. The
strings include file names as well as other arguments.

We recognize that it may not always be feasible to follow
the convention described here. For example, this mechanism does
not permit the specification of an arbitrary number of files at
program invocation time (e.g., by the use of "wild card"
symbol s). In such a case, binding is best done at run-time.
For this reason, the mechanism discussed in 5.2 is provided as
an alternative specifically for the binding of file variables to
system files.

5.2 Decide how to open files that exist outside the program.

Recommendation:

We recommend, as an implementation-dependent extension, the_
use of RESET and REWRITE described below.

Discussion:

14

The standard procedures RESET and REWRITE should be
extended to allow at least two arguments. The first is the file
variable, as in the standa~d. The second is a string (packed
array of char, with implementation-defined bounds); this
presumably will name the external file to be bound. (The
question of delimiting the end of the valid file name was not
addressed.) For example,

reset(filevar,'filename')

binds the Pascal (internal) file filevar to the externally
defined file 'filename'. Additional arguments may be included
to provide further information needed to complete the binding.
Their content is not specified. The suggestion that a new
standard (or predeclared) procedure be added solely for the
purpose of binding is rejected since there is a large user base
which already uses the recommended extension.

5.4 Add s~pport for random access files.

Recommendation:

We recommend that this capability be considered as an
experimental extension to the language.

Discussion:

There is a clear need ,for "random access" file capability,
but the mechanism, as it impacts Pascal, is not yet well enough
understood that we can specify how to add it to the language.
Two alternative approaches are sketched (see section G); these
include the semantics and implementation, but the syntax has not
been set tl ed .

5.13 Should RESET be required before GET and REWRITE before PUT.

Recommendation:

We recommend this item as ~ clarification to the language.

Discussion:

While Jensen and Wirth does not explicitly require the use
of RESET before GET and REWRITE before PUT, this clarification
is useful for implementors in that it equates RESET with "open
for input" and REWRITE with "open for output".

\,15

The following procedure written in standard Pascal will
permit appending to an existing file:

procedure append(~ f: file of t);
var tempf: file of t;
begin ---- --

rewrite(tempf); reset(f);
while not eof(f) do

be~i-n-- --
empfA::fA;

get(f); put(tempf)
end;

reset(tempf); rewrite(f);
while not eof(tempf) do

be~i-n-- --
A::tempfA;

get(tempf); put(f)
end

end-;--

A predefined function accepting files of any type could be
provided in any implementation where the operating system allows
the effect of this procedure to be obtained without copying.

16

SECTION D TUTORIAL NOTES

Many proposals for changes of extension to Pascal were
apparentl y fo unded upon an incomplete understand ing of the
'standard' language. In this regard, the question of what the
standard contains was often left clouded because of
inconsistencies or incompleteness in the Jensen and Wirth Manual
and User Report. In many cases Tony Addyman provided
information indicating the probable course the British
standardization effort will take.

This section contains suggestions on how some frequently
encountered problems can be handled within the existing standard
Pascal language as it is understood by the Workshop attendees.

Contents of these topics in this section do not imply
workshop approval.

1.6 Disallow dependence upon the value of FOR control variables
after loop. Disallow altering control variable in loop.

Recommendation:

Implementors of Pascal compilers are encouraged to try to
enforce the prohibition specified in the standard against
altering the control variable in FOR loops and against any
dependence upon the value of this variable after the loop.

Dis c us s i on :

Detecting all attempts to alter the control variable at
compile-time is difficult (eg procedure side-effects). However
use of a hidden count variable permits run-time checking as
shown by the following code template:

for v := e1 to e2 do s;

TEMPLATE:
tempcount:=e1;
templimit:=e2;
loop: if (tempcount > templimit)

then goto fini;
v: =tempcount;

s; {body of the loop}
if (tempcount <> v)
then abort the program;
tempcount:~tempcount+1;
goto loop;

fini:~undefined;

[Editorial comment: See also C. N. Fischer amd R.J. Leblanc,
SIGPLAN ,Notices V12 3 pp19-24 for another implementation.]

The program will abort if the control variable (v) is

11

changed inside the loop body.

3.4 Exponentiation.

Add an exponentiation operator, or a standard procedure
power (or raise), for the number-crunching people.

Discussion:

(as summarized by Arthur Sale, Dept of Inf Sci, Uni of Tasmania,
July 14 1978)

3.4.1. Motivation

Many users of FORTRAN have pressed for additions to the
language Pascal, in order to make it easier to use in numerical
computations. One of the most frequently made requests is for
an exponentiation operator, often modeled on the FORTRAN syntax
and a '**' token.

3.4.2. Recommendation

This operator not be added to the language as a
'conventionalized extension'.

It was felt that:

(a) the extra precedence rules would complicate the
language for little benefit,

(b) the operation is little used except in numerical
computations, and the extra operator would clutter the language,
and

'(c) the need for this operator is not as important as
sometimes indicated, as long as there is some way to express
exponentiation.

It was recognized, however, that a need did exist which
seemed to be predominantly for real values to be raised to an
integer or real power. We considered that a single function
could be provided to users, either as a function to be included
in their program or externally bound into its environment or, as
a pre-defined function in a compiler. The action of the program
is defined by its listing, provided later; the heading is:

function power(x,y : real) : real;

18

SECTION D TUTORIAL NOTES

3.4.3. Optimization

The form of this function enables one to economize on
functions, especially pre-defined ones, but enables a compiler
which implements it as a pre-defined function to still carry out
some effective optimizations.

For e x am pI e :

(8) If the actual argument y is a small integer constant
(say -1 or 3) the compiler can insert in-line code to compute
the result by an optimal multiplication (or division) processo

(b) If the actual argument y is known to have integral
values,(it may be a constant or be of integer type or a subrange
thereof), the square-and-halve algorithm encorporated in the
provided function can either be invoked by a function call,
whose name is unknown to the programmer, or by in-line code ()

(c) Otherwise, it will be necessary to callan a hidden
function that uses the exp-ln evaluation.

It is important that the optimization remains completely
equivalent to the function program given. If there lS a
deviation, users, who have to include the function text in their
programs, may find the effects different, and there will be an
unnecessary loss of portabilityG

3.4.4. Program

function power(x 1 y : real) : real;

{Author : Arthur H. J ~ Sale, Pascal Users Group. 1978-Jul-14

This function is provided for use in Pascal programs
instead of an exponentiation operator. Users may include it in
their source text, or implementors may provide a pre-defined
function with th~ same interface definition and equivalent
computation.

The function is in standard Pascal, except for the
procedure 'abort the program' which is called when the result is
not mathemati~ally difinedo This procedure should cause a run­

time errorG

If the exponent is integral, the power is evaluated by
multiplications, otherwise it is evaluated by logarithms, and
is not defined for negative values of x.}

var
z:real;
e: integer;
integral: boolean;
mode: (direct,reciprocal);

19

(* accumulates the result *)
(* carries integer exponent *)
(* true if y has integral value *)
(* evaluation mode for integral y *)

SECTION D TUTORIAL NOT~S

begin
if (x= 0.0) then begin

if, (y = O:l))thenbagin
-- (* resultiSun efined 0 ** 0 *)

abort the progr~m;
end else begin

end· --'

rv-o to some otQer power *)
po wer : = o. 0;

end else begin
--- ~etermine which algorithm to use *)

if (abs(y) > maxint) then begio
-- integral:=false;-'---
end el se beg in
--- integral:=(trunc(y) = y);
end" ---' (* so select on it *)
if integral then begin

e: =truncT"YY"; .
(* preserve in mode whether a rec'iproc'$l is needed *)
if (e >= 0) then begin
-- mode:=direct;
end else begin
--- mode:=reciprocal; e:=abs(e);
end" -' (* establish invariant R trivially *)
(* at this point let eO be value of e, and· similarly

let xO be the value of x. Variable e is already
set. *)

z:=1.0;
(* The invariant R for the loop is:'

R = " (z * (x. * * e » = (xO * * eO), and (e > = 0)" *)
while (e <> O)do begin

(* R holds here of course *)
while not odd(e) do begin

x:=x*x; e:=e CITv 2;,
end" ---
---' (* R still holds, but alSo we know e is now odd *)
z : = z * x; e:= e - 1 ;
(* R still holds, and e is even again *)

end; (* of while *)
rr-R holds, together wi th (e = 0), imples z = xO ** eO *)
if (mode = direct) then begin

power: = z;
end else begin
--- power:=1.0/z;
end;

end elSe begin (* of non-integral y treatment *)
ITT x < 0.0) then begin
-- (* resultiSof complex type!! *)

abort_the_program;

20

end else begin (* the safe case *)
po we r : = ex p (1 n (x) * y) ;

end---' end;,
end;--

~;~ of function power *)

3.12 Allow programmers the ability to "read" from or "write" to
a string.

Recommendation:

We conclude that this item can be done within the language.
See also 4.6 in section G and 5.9 and 5.12 in this section.

Di scussion:

The aim of this facility is to be able to do formatted
transfers to and from, strin~s at run-time (e.g. integer to
string, string to integer). It was felt that this capability is
already present, using the file mechanism:

To tran sl ate the "in teger" in str ing form in S to a Pa sc al
integer I:

var
--f: text;

S: packed array [O •• x] of char;
I: integer;

begin

r e wr i t e (f) ;
wr it e (f , S) ;
reset(f) ;
read(f,I);

end" --'

{prepare f to receive string}
{write the string to the file}
{prepare f to return an integer}
{read the string as an integer}

Note that, if in-memory files (5.12) are not used, this
mechanism may invoke some lID (even though f is not bound to
an external file, it may be implemented as a temporary file of
some sort).

4.2 Note regarding mInImum sizes of data types (and 4.13
Unsigned integers).

21

~cCTIUN V TUTU.K1AL NUTt.;::)

See also Sections C and F.

Jensen and Wirth (chapter 2, section B) describes an
implementation-defined standard identifier maxint which has the
property that a op b is guaranteed to be correctly implemented
when a, b, and a op b are related to maxint in a certain
specified way_

The same section also defines a value of type integer as
'an element of the implementation-defined subset of whole
numbers'. A common implementation of type integer defines a
value of that type to be an element of the subrange-maxint
.. maxint where maxint is defined to be the largest integer
that can be represented on that machine. Although this may
comply with the Jensen and Wirth [User Manual] definitions, it
is not required by the User Manual.

In particular, the implementation described in chapter 13
defines maxint to be 2**48-1 while the largest possible integer
value is 2**59. Given all the operations permitted on integers,
maxint is the largest integer that satifies the requirements of
chapter 2y section B. A subset of those operations can be
performed on integers greater than maxint and are not prohibited
by the User Manual's combined definitions of maxint and a value
of type integer.

4.5b Note regarding relaxing the required ordering of const,
type, var and procedure function declarations.

It is possible to group components without relaxing the
restriction. As an example, consider a program which is
logically grouped into three sections, named leKical,
symbol table, and the rest. Each section can be assumed to
contain label, variable, procedure and function declarations,
type and constant definitions, and initialization statements.
Under the relaxation-of-ordering proposal, this program may be
w r itt e n a s (s om e v a ria t ion 0 f) the follow in g: '

program whatever;
... lexical, except for initialization •••
... symbol table, except for initialization .•.
..• the_rest, except for initialization ...

begin
... lexical initializatione •.
•.. symbol table initialization ••.
•.. the rest initialization and operation •.•

end.

22

SECTION D TUTOHIAL NOI~~

One may observe here the inadequacy of the relaxati6n-of-ordering
proposal, in that the initialization statements are still outside
of the logical grouping.

The alternative solution would write this program as:

program whatever;
•.• l~xical, except for initialization .••

procedure symbol_table;
..• symbol_table, except for initialization •..

proced ure the_rest;
•.. the_rest, except for initialization and operation •.•

begin
.•. the rest initialization and operation •.•

end (*the rest*)

begin
... symbol table initialization .•.
the rest

end (*symbol_table*)

begin
••• lexical initialization •••
symbol table

end (*lexical and whatever*)

Notice that, by adding a few words here and there, the desired
result is achieved without changing the language.

4.12 Should dispose, mark, and release be standard procedures?
Can some more reliable means be fqund to re-allocate space
on the heap?

Recommendation and discussion:

Jensen and Wirth [Report] section 10.1.2. defines dispose
to be a standard procedure. It is probable that the question of
the status of dispose a~ises from the inadvertant omission of
part of this section in several printings of the Revised
Report. This typographical error cannot be construed to amend
the report or the language defined therein.

Section 10.1 permits any implementation to provide
"addi tional predeclared proced ures." It is recommended that mar k
and release remain in this category. For those who choose to
implement them, the following conventional definition is
suggested:

23

~tCTIUN U lU1UH1AL NU1~~

mark (p) where p is of any pointer type, dynamically opens
a new category of allocation. The procedure NEW
allocates variables only in the current category.
The value given to p by Mark identifies the category.

release (p) if P identifies the current allocation category,
release(p) disposes all variables in the current
category and clQses the category. The category that
was current at the opening of the just-released one is
made current again. Where the category identified by
p is not current, the current categories are released
until that identified by p has been released.

Notice that this description is entirely consistent with
the common implementation of mark and release without dispose,
and is also consistent with an implementation that also provides
dispose.

[Editorial comment: A pointer value returned from the procedure
Mark may only ,be used subsequently as a parameter to Release. J

4.14 Note regarding embedding control characters in strings.

The program fragment below shows how control characters can
be inserted in strings (see section E for additional discussion).

const form feed=55,
carriagereturn=56;

type string = packed array [1 .. nJ of char;

where n is some implementation defined integer.

var str:string;

str: = 'THIS IS A LINE. ' ;
str[16J:= chr(formfeed);
str[17J:= chr(carriagereturn);

The string str now contains two control characters.

5.3 Allow interactive file communication.

Add facilities to allow reasonable communication in
interactive environments.

24 \
!l

SECTION D TUTORIAL NOTES

/

Recommendation:

We conclude that this item is in the language.

Discussion:

1/0 to terminals is available in several implementations,
with varying degrees of success. Three of these are treated in
a following separate writeup. The one which appears most
promising is similar to that used by the Berkeley UNIX Pascal
interpreter.

The essence of the soiution is to recognize that, for input
files (those that must be RESET; see 5.13), binding the next
character of the input sequence to the file buffer variable (fA)
can be delayed until the character is needed to satisfy a
request. The possible requests are:

Assignment: variable:=fA (or use as parameter)

Check on status: eof(f) or eoln(f)

In each case, the request may cause a physical input
transfer to occur (in addition to those which may occur on
GET). Note that any implementation-specific procedures which
interact with Pascal files may also cause such action. There is
also a difficulty arising from using the file buffer variable as
an actual parameter corresponding to a VAR formal parameter.
for this reason, the file must be checked at the point of its
use.

Some comment on overhead and implementation is in order.
First, one could be hard-nosed and require that an assignment
from the file buffer variable not occur until the status of eof
had been determined. This would alleviate the need for checks
of the first type.

It may be desirable to specify, say as a pragmat, that a
given file doesldoes not require this special treatment. This
interpretation of Pascal 1/0 can be implemented by treating
references to the file buffer variable as an implicit procedure
(or function) call. While the representation ·of the file
element (fA) is that of a variable, it need not be treated that
way. The implementation here makes more explicit the treatment
of the Pascal file as a special object.

Some examples:

To copy from an interactive input file:

25

program copy(input,output);
begin

while not eof(input) do
begi-n-- --

while not eoln(input) do
begi-n-

~~~l~UN U lUlUn~aL NU1~~ 

read(input,ch); write(output,ch) 

end. 

end; 
reaaTn ( input) ; 
writeln(output) 

end 

{finish the line} 
{write the eoln "character"} 

To read a sequence of integers: 

program readlist(input); 
var I: integer; 

procedure skipspaces; 
begin 

while (input A = ' ') and not eof(input) do get(input) 
end; 

begin 
wr i te (output, 'Prompt: '); 
skipspaces; 
while not eof(input) do 

begi-n-- --
read(input,I); 
w r i t e ( 0 u t put , ' Prom p t: '); 
skipspaces 

end 
end. 

Notice the order of processing in the second example: 

prom pt 
loop 

read 
prompt 

endloop 

This highlights the fact that this implementation forces a 
method of coding on the programmer in order to use the language 
correctly. Specifically, the form: 

loop 
prom pt 
read 

end loop 

which might be considered', will not work as expected here. For 
the test for eof at the lOQP head will invoke a fetch of the 
first item in the file, prior to the issuance of the prompt. The 
user, not having been prompted, might well sit and wait. Thus, 
some care needs to be exercised in the use of Pascal liD, at 

26 



s.} 1:. V ~ .J. V 1'1 .LJ ~ U ~ V 1\ .l n I.. 1'1 \,J J. 1:. '...J 

least in the interactive environment. 

An additional remark is that this implementation technique 
permits timely recognition of end-of-file on an interactive 
device. Most implementations wait. until a get is performed to 
do an input operation (if needed). Here, the check foreof I 

itself will perform one; if at that time the user has decided to 
quit, the input can be terminated with whatever the system­
defined file terminator is (AD, AZ, @EOF, and so on). 

There are two basic problems with input from interactive 
files: the buffer-priming problem and the EOF problem. Both 
arise because the availability of characters from an interactive 
file (=tty) cannot in general be determined ahead of time. Thus 
an attempt to refill a buffer after the last character has been 
passed to the user mayor may not succeed, and the characters in 
this case may not be available until the program explicitly 
prompts for them. Similarly, a read may be required to 
determine whether the end of the file has been reached. 
Combined with the above constraint on read-ahead, the EOF is not 
detectable in the same way it would be with a non-interactive 
file. 

If there is a problem with output to an interactive file, 
it is generally due to the following consideration: some systems 
may treat a terminal as a single device, for both input and 
output ("half duplex"), and may even use a common buffer for 
each (regardless of the program's separation of the two). In 
this case, there is a need.to synchronize the input with the 
output. This problem is treated, in part, in section 5.11, 
where a mechanism is proposed to allow the user to handle this 
e x pI ic i tl y • 

Using "interactive" files in Pascal is feasible within the 
language as it is currentlY defined. Problems may arise due to 
"incorrect" implementation of the 110 mechanisms. Following are 
three possible implementations purporting to solve this 
problem. The third is recommended as the preferred one. 

I. The first implementation attempts to treat the 
interactive file without special indication from the program. 
Either the distinction is not made (all files are treated the 
same) or an attempt is made to check this at runtime (when the 
file is opened). A variation of this scheme is used in many 
implementations. 

RESET - defineseoln=true and fA=blank 

The normal I/O proceeds: 

readln; 
read(A,B, .•. ) 

leaving eoln=true for the next read 

Unless the above interpretation of RESET is indicated in 
the text of the program, there are a number of difficulties 

27 



~~CI1UN V lUlUH~AL NVIC~ 

with this method. Among them are the fact that having differing 
schemas for interactive vs. normal files makes device­
independence difficult or impossible to obtain. Also, while 
this may work for formatted I/O. 

II. The second implementation is that used in UCSD's 
Pascal. A new type, 'interactive', is defined, which is a file 
of char (or text) with the following characteristics. 

RESET does not define f~ 

READ is defined as: 
GET(f); ch:=f~ (i.e., no look-ahead). 

Again, this provides differing schemes for interactive and 
normal I/O. Since any file can be declared interactive, this 
may result in a new standard, as all text files will likely be 
so declared. 

An additional problem with this method is that EOF may not 
be detected properly for certain input sequences. For example, 
consider the input sequence 

123<eof> 

With the schema: 

READ(input,i); if not eof(input) then process(i) 

the number 123 is not processed. Note that with this 
implementation, it is necessary to check eof after read to 
assure that the data read is valid; hence the above schema. 

III. The third implementation, used by the UC Berkeley 
Pascal interpreter, depends on delaying the binding of input 
character to file buffer variable until necessary. It appears 
to satisfy all the requirements of Pascal I/O, insofar as they 
can be tested by a Pascal program; and also appears to handle 
both normal and interactive files in the same way. 

A schema from which to define this implementation is 
presented below, together with a sketch of a PDP-11 
implementation. 

A number of potential difficulties have been mentioned in 
connection with this method. These are: tricky implementation, 
high overhead, difficult to teach. 

The implementation has no more problems associated with it 
than any of the others. If the overhead is high, perhaps a 
pragmat can be introduced to indicate that this method need not 
be used with the file in question. As for teaching, the problem 
of explaining why I/O can sometimes be caused by such apparently 
static tests as eof and eoln is something to be reckoned with. 
However, the basic idea is that, to achieve a measure of device 
independence, some complex manipulations have to go on behind 
the scenes. This is basically the problem of matching several 

28 



SECTION D TUTORIAL NOTES 

different external schemes to a single internal scheme, and 
should be taught in just that light~ 

Jim Miner suggests difficulties with the following program: 

procedure quirk(var ch:char); 
begin 

end" --' 

quirk( f"); 

Invocation of procedure quirk, as shown above, requires 
evaluation of the file buffer variable (and possible 1/0). 

A useful exercise for any of these three methods is writing 
a program to copy a character file to a standard ('disk') file 
exactly, with all line structure maintained - the standard 
pro gram can be fo u nd in J ens e nan d Wi r th, p. 5 9 • 

Implementation Schema for version III 1/0 

The following purports to implement the UC Berkeley 
treatment of files. The key is to delay moving the next 
character from the physical file to the file buffer variable 
until it (or knowledge of its presence) is actually required. 
This means that 1/0 may occur (for input) during a check on eof 
or eoln; as well as during an assignment from the buffer 
variable (including its use as a value parameter). A problem 
does arise, as indicated above, if the buffer variable is used 
as a var parameter. 

In the following, assume: f: file of T; 

Also, the following (non-syntactic) implicit variables are 
referenced (items enclosed in <>'s are optional, and are used 
for undefined error state checks; items in {}'s are operations 
which need further elaboration): 

f.wait,f.eof: boolean; 
<f.defined: boolean;> 

29 



procedure intransfer(f); 
begin 

if f.eof then error 
el se beg i-n--
~:= {next component}; 

f . wa it: = tr ue ; 
f.eof:={end-of-file}; 
<f.defined:=not f.eof;> 

end 
encr:­
~ 

procedure get(f); 
begin 

if f.wait 
then int'ransfer (f); 
f.wait:=true 

end; 

function eof(f):boolean'; 
begin 

if f.wait 
then intransfer(f); 
eof: =f . eo f 

end; 

function reference(f):T; 
begin 

if f.wait 
then intransfer(f); 
<if not f.defined then 
re ference: = fA 

error el se> 

end; 

procedure scopeexit(f); 
begin 

if f.wait 
then intransfer; 
{close(f)} 

end; 

{or:} 

30 

procedure reset(f); 
begin 

{openforinput(f)}; 
f . eo f : = fa 1 se ; 
f.wait:=true; 
<f.defined:=false> 

end: 

procedure rewrite(f); 
begin 

{openforoutput(f)}; 
f .eof: =true; 
f • wa it: = f al se ; 
<f.defined:=false> 

end· 
,~ 

procedure put(f); 
begin 

if not (f.eof <and f.defined» 
thenerror 
else outtransfer; 
<f.defined:=false> 

end; , 

procedure assign(f,v); 
begin 

if f.wait 
then intransfer; 
~v· ' r ; = , 
<f.defined:=true> 

end; 

procedure scopeexit(f); 
begin 

if f.wait and f.eof 
then error-;­
TCIOse(f)} 

end; 



PDP-11 Implementation Sketch 

The following represents one possible PDP-11 implementation 
of the above schema. 

;File variable 
f:.WORD status 

wait = 
eof = 
def = 

.WORD pointer 

. , 
GET: TST 

BPL 
JSR 

1 $: BIS 
RTS 

EOF: TST 
BPL 
JSR 

1 $: BIT ... 
RTS 

REF: TST 
BPL 
JSR 

1 $: < BIT 
BNE 
ERROR 

2$: > MOV ... 

definition: 

100000 
40000 
20000 

f 
1 $ 
PC,INTRANS 
/lwait,F 
PC 

f 
1$ 
PC,INTRANS 
fleo f , f 

PC 

f 
1$ 
PC,INTRANS 
/ldef,f 
2$ 

@ f+2, v 

Note abbreviated code 

READ: ; v:=f"; get(f) 
TST f 
BPL 1 $ 

JSR PC,INTRANS 
1$:< BIT /ldef,f 

BNE 2$ 
ERROR 

2$:> MOV @f+2,v 
B IS Ilwa it, f 

••••• 

5.9 Allow or disallow files as components of structures. 

Recommendation: 

We conclude that this item is in the language. 

Oi sc ussion : 

There is no prohibition in Jensen and Wirth for the 
inclusion of files as components of structures •. The question 
a~dresses the reasonability (i.e., implementability) of the 

31 



SECTION D TUTOHlA.L NUTt~ 

prototypical constructs array ... of file type; record ... f: 
file_types; ... end; and file of file type. The question arises 
from a conf~sion of the Pascal file ~oncept with the widespr~ad 
use of the word file to denote a dataset on external storage. 
The abstract notion in Pascal is of a sequence of components: 
i.e.,file of integer denotes a sequence of integers. The 
language defines a bundle of properties and operations as part 
of its notion: this bundle forms, in some usages, an 
idealization of those properties and operations pertinent to 
magnetic tape datasets and similar external quantities. 

However, when the abstaction is separated from its common 
implementation, and when the word sequence is used where 
appropriate, it is readily apparent that there is indeed meaning 
in the concepts of a sequence of sequences (file of file type), 
an array of sequences (array ... of file type), and a sequence as 
a field of a record. Thus the Workshop recommends the 
recogn i tion that "a file as a component of a str uct ure" is a 
meaningful notion and that such constructions are permitted by 
the language. It is noted that this area is not well understood 
and is deserving of more published explanatory material. 

[Editorial comment: There is a question re the semantics of get 
and put when applied to a file of array of file.] 

***** 

5.12 Discussion regarding "core" files. 

This was suggested as a possible solution to the 
ENCODE/DECODE problem. See 3.12 and 5.9 in this section and 
section E. However, as shown below, the current language 
definition currently permits this useful feature. See also 
proposal 4.6 in section G. 

Discussion: 

Jensen and Wirth (chapter 9) defines a file to be a 
structure consisting of a sequence of components--- all of which 
are of the same type." Note in particular that no mention is 
made of a physical device. A few paragraphs later in that 
chapter, the comment is made that "the sequential processing and 
the existence of a buffer variable suggest that files may be 
associated wi th secondary storage and peripherals. n Files are 
not required to be so associated though they may be~ 

An example of when it is convenient and advantageous for 
files not to be associated with secondary storage is when one 
wants capabilities similar to Fortran's ENCODE and DECODE. 

Consider : type bufferspace = file of char; 
~ buffer:bufferspace; 

The variable BUFFER can be an in~core file~ that is~ a 

32 



~C~l~U~ U lUlUn~ftL ~VIC0 

sequence of characters in memory which is ordered and whose 
length is not fixed by the definition. Standard file-handling 
operations can be performed on this sequence including read and 
wr i te . 

***** 

8.3 Note regarding arbitrary physical record layouts. 

Arbitrary physical record layouts can be described with the 
Pascal record type constructor. If the variant part occurs 
before the end, that variant can be described in another type 
definition and its name can be used where it is needed in the 
record definition. 

~ dcb = record 
I:integer; 
case boolean of 

true: (TF:boolean) 
false: (K:integer) 

end; 
J:Tnteger 

end; 

The definition of deb violates Pascal syntax rules because 
the case variant part is not last. However, if the case variant 
is defined earlier, its name may be used without violating the 
syntax rules. That is, 

~ subdcb = record 
case boolean of 
true: (TF:boolean) 
fal se: (K: integer) 

end 
end 

dcb = recor<i 
I: integ"er ; 
sd c b : s u bd c b; 
J:integer 

end; 

The use of filler fields when necessary combined with a 
knowledge of the compiler's packing algorithm permits a 
syntactically legal Pascal description of nearly all existing 
records with which ~ Pascal program must interface. 

***** 

33 



SECTION E TOPICS DISMISSED 

In the case of the majority of the topics considered, the 
Workshop recommended against making any changes to the language 
or its definition. The inclusion of a topic in this section 
does not necessarily imply that the Workshop considered it a bad 
idea per see Topics were dismissed for a number of reasons 
including: 

1) the extension proposed already exists in Pascal 

2) the extension proposed was really a change to the 
language and would invalidate existing programs 

3) the extension proposed, while desirable, was not 
considered important enough to justify adding complexity to the 
language 

4) the programming problems motivating a proposal for an 
extension can be solved in other ways 

5) the proposal was considered too implementation dependent 
to be included in the language 

6) the Workshop could not reach a decision 

7) no-one attending was interested 

1.2 Allow subranges in the CASE statement. 

Allow subranges (given by constant .• constant ) in CASE 
label lists. 

Recommendation: 

We recommend that this feature not be included in the 
standard. 

Discussion: 

Our review of the subject disclosed the following problems: 

a) There is no canonical collating sequence for characters, 

b) Checking for 6ve~~apping ranges of case-labels may cause 
implemenation difficulties, 

c) There is the argument that this syntax should be 
consistent with the variant record syntax and that the Working 
Group has been more negative about ranges in that situtation. 

***** 
34 



o..)t:..V~.J.Vl1l 1..:. ~Vl .J.Vt.J JJ..LUII..Lt.Jt.J~L./ 

1.4 Add ASSERT statement. , 

Add an ASSERT statement, eg. ASSERT boolean-expression 
which causes a run-time error if the program was compiled with 
assertion checking on and the boolean expression evaluates 
fal se. 

Recommendation and discussion: 

The Workshop's feeling was that there was only minimal 
value to this feature but that if an implementation chose to 
provide it, it should do so in the form 

<assert statment) ::= ASSERT « boolean expression» 

so that it could be implemented via a predefined procedure and 
so that an implementation which did not have the feature could 
ignore it by providing an ASSERT procedure which did nothing. 

***** 

1.5 Disallow out-of-block GOTO statements. 

Restrict GOTO statements from jumping out of blocks. 
As the main justification for such GOTO statements is handling 
exceptional conditions, this is dependent upon some form of 
structured error recovery. (Most Pascal-P2, P4 derivatives 
already do not support jumping out of blocks.) 

Recommendation: 

Although many people dislike this feature, it is EXPLICITLY 
allowed on page 150 of Jensen and Wirth [Revised 
Report] and so we recommend NOT disallowing it. 

***** 

1.7 Allow "FOR i IN" set-expressi,on loops. 

Extend the FOR loop to include a FOR i IN setexpression 
syntax. 

Recommendation and discussion: 

We recommend that this feature not be included in the 

35 



language and do not recommend any syntax for implementing it. 
A. Sale provided the following equivalent construct. It requires 
the FIRSTMEMBER function defined in section E, 3.14. 

var 
i 
s 

begin 

thing; 
set of thing; 

{ the loop invariant R = "the values corresponding to 
the members of the set s have not beery processed" } 

while (s <> []) do begin 
i:=firstmember(s); 

s : = s- [ i] ; 
end; 
TS is now [] (destroyed), and i is undefined } 

***** 

1.8 Add a generalized LOOP construct. 

Recommendation: 

We recommend that this feature not be included in the 
~tandard and do not recommend any syntax for implementing it. 
The Working Group has considered this feature and rejected it as 
unnecessary. 

***** 

1.9 Extend the WITH statement to allow renaming. 

Clear up the semantics of the WITH statement, or extend the 
WITH statemeQt to be a "renaming" statement. This would allow 
the use of array abbreviations in addition to pointers and 
records, and allow abbreviations of two variables of the same 
type, e.g. 

with x = b".c[i], y = d".c[i] do s1. 

Recommendation: 

We recommend no changes or extensions to the WITH statement 
in the 1 ang uage. 

Di sc us sion : 

We recognize problems with the current WITH statement 

36 



(e.g., aliases). The solutions suggested may entail significant, 
even unacceptable, implementation overhead. 

Consider the followi'ng example: 
var i:integer; 

r:record x:integer end; 
begin 

with i=r do i.x:=1 
end. 

It is not clear whether i should be defined within a new 
scope or whether this should be disallowed as a redefinition of 
i within the current scope. (Defining it within a new scope 
would involve a change (extension) in the scope rules of 
Pa sc al . ) 

This extension creates additional opportunities for 
aliasing problems. 

***** 

1.10 Add an EXIT statement. 

Recommendation: 

We recommend that neither a procedure nor a structured 
statment EXIT facility be added as an extension. The GOTO 
statement, in spite of its faults, provides this and many of us 
feel that duplicating this facility clutters the language. 

***** 

1.11 Add a NULL statement. 

Add a new statement consisting of the single identifier 
NULL. This statement would have no effect. 

Recommendation: 

We do not recommend adding this statement to the standard. 
We note that a comment {NULL} will serve the same purpose. 

***** 

1.12 Add embedded assignments. 

Allow an assignment "statement" to be used wherever an 

37 . 



SECTION E TOPICS DISMISSED 

expression is now allowed. The value of the assignment 
statement would be the value of its right-hand side. 

Recommendation: 

We recommend not adding embedded assignments as an 
extension. We consider this contrary to the basic natut'e or 
Pascal because any use of this feature would cause side-effects. 

***** 

1.14 Clarify the semantics of the WITH statement. 

Recommendation: 

Jensen and Wirth covers this topic in section 9.2.4 of the 
Rev i sed Re port. 

[Editorial Comment: See further the British Standards 
In st i tution·d raft. ] 

***** 

2.1 Allow empty parameter lists. -
Allow empty actual parameter lists, so as to distinguish 

function call~ thatta~eno parameters from simple variables for 
readability. 

Recommendation·: 

·It was not recommended because it is a minor syntactic 
change which is not neces~ary as it, is easily indicated by an 
empty comment. 

***** 

2.4 Allow/require repetition of paramet~r list of forward procedures. 

Allow, or even require, that the definition 6f a procedure 
or function that has been declared forward include the parameter 
list. Th~ current situation often results in looking back a 
number of pages to determine what parameters are being passed 0 

Recommendation: 

38 



This was not recommended because it is easily indicated by a 
comment. 

***** 

2.5 Restrict var parameters to use call-by-reference. 

Restrict var parameters to be passed by reference and 
disallow the use-of a value-result mechanism.· ; f\.:pr~grammer , 
using var parameters for speed would then be assured that 'the 
structure being passed was not copied. However, this proposal 
might limit even further the ability to link FORTRAN routines to 
Pa sc al prog rams. 

Recommendation and discussion: 

This is an implementation detail. We recommend that the 
Working Group examine the semantics of using side-effects in 
programs. 

***** 

2.6 Restrict call-by-value parameters to be constants. 

Restrict call-by-value parameters to be constants, and 
therefore unassignable, within the procedure body. 

Recommendation: 

This represents a change in the existing language and would 
cause many existing programs to have to be rewritten. We do not 
recommend this change. 

***** 

2.8 Restrict functions to have no side-effects. 

Restricting functions to have no side-effects whatsoever 
could facilitate optimization and formal proofs of correctness. 

Recommendation and discussion: 

We do not recommend this change, especially since it is 
very difficult to enforce. It was noted that many existtng 

39 



SECTION E TOPICS DISMISSED 

functions have side effects and that this change would 
invalidate much existing code. It has also been noted that such 
things as I/O from functions would not be possible if this were 
the case (i.e. interactive file EOF, see 5.3). 

[Editorial Comment: Does 'interactive file EOF' have a side 
effect if the program cannot determine that something has been 
changed by calling EOF? Relative to the program there is no 
side effect; relative to the programmer (who must adopt a 
certain scheme to synchronise user and program) there is a side 
effect. ] 

***** 

2.9 Allow the declara~ion of INLINE procedures. 

Allow the declaration of INLINE proced~res, which generate 
direct code at each invocation, rather than a call to a shared 
piece of code. 

Recommendation: 

We reject this feature, because it is an implementation 
dependent compiler feature, and tends to mix representation with 
abstraction. Directions to the compiler have no place in the 
actual language. 

***** 

2.11 RETURN ( value) statement from functions and procedures. 

Recommendation and discussion: 

This would make a major change in the concept of structure 
as present in Pascal as it would allow multiple paths out of a 
function, and create a second method for returning function 
values. We recommend this proposal be dropped. 

***** 

2.12 REFIN, REFOUT, INOUT, OUTPUT procedure parameter forms. 

These parameter types are proposed to allow the user to 
specify the manner in which the parameters are passed to the 
procedure; for instance, read-only and write-only call-by­
reference. 

Recommendation: 

40 



lJ1,..V.L ..Lvn 1,.. .L VI ..LVlJ V..LU'-I..LUU1,..V 

These additional parameters forms are not necessary, and 
their addition would constitute an unnecessary change to the 
1 ang uage. 

***** 

2.13 Vpriable number of parameters to a procedure. 

Recom~endation and discussion: 

Implementation of this would complicate many things, and 
READ is difficult enough now •. No clear way to specify a 
variable number of parameters has been proposed. We recommend 
that this proposal be dropped. 

***** 

2.14 Generalized FOR statement. 

Recommendation: 

No changes in the FOR statement were recommended. 

***** 

3.1 Redefinition of div and mod. 

Redefine div to truncate toward negative infinity, rather 
than zero (thuSSl so causing mod to return di fferent val ue s). 

-1 div 3 = -1; 
-1 mod 3 = 2; 

Recommendation: 

We recommend the definition of div with respect to 
negative operands be an implementation dependent feature, and 
the report should be amended to so state. If the user wishes to 
assure portab~lity the appropriate interpretation of division 
may be implemented with a Pascal function as given by the 
example below. 

Discussion: 

div is usually implemented according to hardware dictates. 
If it-r5 truly an implementation choice, it is preferable that 
div truncates toward minus infinity so that mod woulrl be 

41 



~tCTION E TOPICS DISMISSED 

mathematically correct. 

On a machine that truncates toward zero on integer divide, 
the following code can be generated or called for i div j. 
(mdiv represents the hardware divide.) 

if j < 0 then {since i div -j = -i div j} 
-begin --

i : = - i; 
j : = - j 

end; 
if i < 0 then 
-quotien~ (i-j+1) mdiv j 
else 

quotient := i mdiv j 

If only a positive hardware divide exists, or if mod need 
be computed with negative operands, the following code can be 
call ed ... 

if j > 0 then {divide by positive} 
if i >=-o-then {divide positive by positive} 
-begin 

quotient := i div j 
{remainder := r-ffiod j} 

end ---
else- {divide negative by positive} 
----oegin 

quotient := - «-i-1) div j) - 1; 
{remainder:= j - 1 --r(-i-1) mod j)} 

end ---
el se---{ di v ideb y negati v e} 
--i f i > 0 the n { d i v id e po s i ti v e by neg a t i v e } 

-begin 
quotient := -( (i-1) div (-j) )-1 
{ r em a i n de r : = ( (i - 1) mod ( - j ) ) + 1 + j} 

end --
else- {divide negative by negative} 
~gin 

quotient := (-i) div (-j); 
{remainder := -«=rr mod (-j»} 

end ---

***** 

3.2 Short-circuit AND and OR. 

Either redefine AND and OR to be short-circuit (aka 
conditional, sequential) operators, only evaluating an 
expression as far as necessary to determine its value; or leave 
them as they are and add short-circuit operators to the 
language. e.g. 

while (i < array top) cand (a[i] <> pattern) do i := i+1 

42 



Recommendation: 

We recommend that AND and OR should be left as defined, 
i.e. the implementer may choose short circuit or complete 
evaluation, user beware! 

Di sc us sion : 

The effect of short circuit AND and OR (CAND and COR) can 
be programmed in existing Pascal. The majority of the Workshop 
felt that the cost of implementation (size, introducing 
features, etc.) does not justify the benefit of extensions. 

We firmly reject the concept of introducing complete 
evaluation operators, such as LAND or LOR. 

I~*** 

3.3 Type Transfer Functions. 

Extend type-transfer functions, at least for scalars 
(excluding reals) and pointers (as an implementation-dependent 
feature) to provide an inverse ord function, thereby reducing 
the necessity of subverting type~checking by the use of variant 
records with no tag fields. e.g. 

c := color(i) 

(Aiso specify that enumerated types start at 0, and allow 
ord( pointer) .) 

Recommendation: 

We recommend that there should not be functions in the 
language to allow type transfer from pointer to integer or vise­
versa. In particular ORD is especially inappropriate, since 
pointers are not ordered. 

We recommend that type transfer functions from integer to 
ordered scalar types not be added to the standard but an 
experiment is suggested in G. 

***** 

3.5 Addition of the operator NOT IN. 

Add NOT IN to the relational operators, to provide a nicer 
method·of asking if an element is not a member of a set. 

43 



SECTION E TOPICS DISMISSED 

Recommendation: 

We do not recommend that NOT IN be added to the language~ 

Discussion: 

The reason for this is that it can be done currently, 
not too awkwardly, and it would only add complexity to the 
language. e.g. 

if I not in [A,B,C] then 

can be written 

if not (I in [A,B,C] ) then 

3.6 Set Constructor~. 

***** 

Add a method for det~rmining the type of a constructed set, 
thereby allowing sets to be tmplemented with hon-zero bases. 
packset = set of 100.~115; 

var a: packset; 

a : = pac kse t ( [ 1 00 •• 102, 115]) 

Where the set 'a' could be stored in 16 bits, rather'~han 116. 

Recommendation: 

The Workshop decided not change the syntax for set constructors. 

Di sc ussion : 

In compiling. a set constructor like [J+K], the compiler cannot 
determine ho~ much Space to reserve as set of integer is too 
large and it's type is a little vague. If the expression were 
required to be MYSET[J+K], where MYSET is a ~ype identifier, 
then better type checking could be done for both the elements of 
the set being constructed and the set. If it is part of a 
surrounding expression, exact space requirements are known and 
range checking ~an be done on dynamic elements. 

Making this change would invalidate large numbers of 
programs. The proposed syntax resembles array indexing while an 
alternative, MYSET(J+K), is similar to a function call. Putting 
the type identifier aft~~ the cloSing bracket would provide only 
marginally useful informat~on\ to an LL(1) recu1rsive descent 
compiler. . 

44 



***** 

3.7 Structured Value Constructors. 

Add a general structured value constructor, to fill 
arrays, pa~s structured values as parameters without first 
assigning to a dummy variabl~, eto. 

Recommendation: 

The Workshop decided this should be left out of the 
language, largely because every known use of this is expressable 
in standard Pascal without difficulty. 

Discussion: 

A structured value construction would look something like 
"MYTYPE(" <element list> ")" and would represent an array or 
record. 

These values could not be used in comparisons since the 
Workshop decided against this for all records and arrays because 
of variant field and packing attribute problems. If these 
values are not then allowed to be indexed or selected, the only 
use would be in simple assignment statements and call by value 
procedure and function parameters. Typically a compiler will 
produce code that runs no faster than a user's equivalent that 
assigns to each field or element separately and explicitly, and 
almost necessarily will waste space with a temporary in 
assignment statements because of the possibility of 

" A : = A TYPE ( A [1 J, A [0 ] ) " 

even when this type of anomaly isn't present. Allowing indexing 
and selecting of these values seems of little use since a large 
amount of calculations would typically be discarded and would 
totally waste computation time, in particular, if selecting or 
indexing by a constant. To index by a variable can be simulated 
with a case statement. An often claimed use of constructors is, 
initiallization of variables where some of the fields need 
computed values but this can be accomplished with an assignment 
by a constant, see 4.5, and then assign over some parts with 
com puted val ue s. 

***** 

3.8 Array Slices and Catenation. 

Add array slice (s\lb-~rray) capabilities and" a 
concatenation operator, e.g.. 

45 , 



a[4 •. 9] : ~ a[5 .. 8] & b[0 .. 1]; 
cstring := cstring[1 .. pos] & dstring & 

cstring[pos+1 •• length(cstring)J; 

Recommendation: 

We recommend rejection of adding array slice capabilities 
and a concatenation operator. 

Discussion: 

We believe this would introduce significant and 
unacceptable complexity to the language. 

it**fjr* 

3.9 Redefinition of Precedence Rules. 

Redefine precedence rules to make the parentheses in, for 
example, (a < b) AND (c = d) unnecessary. 

Recommend ation: 

We recommend that precedence rules not be redefined. 

Di sc ussion: 

When A,B, and Care booleans, the expression A = Band C yields 
A = (B and C) under the current precedence rules an~A = B) and 
C under-one alternative. 

Compilers that have set an unfortunate precedence may do 
the best possible with the situation if they issue a warning to 
anyone using relational operators with boolean operands: 

"WARNING: THIS EXPRESSION MAY BE DIFFERENTLY PARSED ON A 
STANDARD PASCAL SYSTEM. FULLY PARENTHESIZE IT FOR SAFETY." 

***** 

3.10 Comparison of Arrays and Records. 

Add the ability to use = and <> to compare (at least 
unpacked) arrays and records (it is likely that most compilers 
descended from P2 or P4 provide this capability already.) 

Recommendation: 

We recommend rejection of the proposal to add = and <> 

;1 46 



com~arisons on arrays and records. 

Discussion: 

There was considerable experience within the group 
indicating that significant and unacceptable implementation 
expense and difficulty would occur when implementing this 
otherwise desirable feature. In order to k~ep Pascal easy to 
implement rejection of this feature is recommended. 

1) There are problems in determining the length and the 
fields to be compared for records with variant structures. This 
would justify excluding comparison of structures with variants. 

2) The structures requiring fill in the storage allocation 
must assure that the fill is identical or specifically ignore 
the fill in doing comparisons. This would apply to both arrays 
and records. 

3) A real component cannot be reliably checked using 
integer arithmetic. 

4) If the elements of an array were records with variants 
they may not be comparable due to the first reason. Thus to 
allow these comparisons would require specifying a large number 
of exceptions. It is much simpler not to allow these 
comparisons, as they can be done with standard Pascal (although 
a wk war d I y) . 

[Editorial Comment: Also, structures containing REAL components 
present further problems.] 

***** 

3.11 Packing and Unpacking. 

Allow the packing and unpacking of records as well as 
arrays. One possibility is to simply use the pre-defined 
procedures pack and unpack, without specifying a length. 
Another is to allow packing and unpacking via type names. e.g. 

type a = record ... end; b = packed record ..• end; 
c = array [0 •• 1~of boolean; 
d = packed array [~.15J of boolean; 

var x: a; y: b; 
z: c; w: d; 

x : = a ( y); ( un pa c k y) 
y := b(x); (pack x) 
z := c(w); (unpack all of d) 

Recommendation and discussion: 

47 



SECTION E TOPIC~ Vl~Ml~~tV 

It is an open question whether packing and unpacking of 
records is allowed in the language already because 

1) type compatibility rules are inadequately defined 

2) packed is defined in section 6.2 of Jensen and Wirth 
[Report] to have no effect. 

Example of packed' compatibility problem: 

var a:record x,y:real end; 
b:packed record x,y-real end; 

It is not clear whether or not A and B are compatible. If 
n am e com pat i b iIi t y i sus ed, the sea reno t com pat i b 1 e • If 
structure compatibility is used, these are compatible because 
packed has no effect according to the report. 

We recommend that A and B not be compatible and that no 
other extensions be made. While it might be possible to do it 
within the language with a predefined procedure, we feel 
that if the tag field of a variant record is not stored or it is 
unassigned it may be impossible to do the operation. 

***** 

3.13-3.14 Additional Functions. 

3.13 Add min and max as standard functions. 
min(arithmeticexpression, arithmeticexpression), 
max( •.. ): real or integer 

3.14 Add standard functions to extract the cardinality and 
the first element of a set. 
card(setexpression), first(setexpression) 

Recommendation: 

MIN, MAX, MEMBERS, FIRSTMEMBER and LASTMEMBER are the names 
we recommend the implementer use if it is desired to implement 
these predefined functions. We are not recommending that they 
be added. 

Di sc ussion : 

FIRSTMEMBER and LASTMEMBER are undefined when these 
functions are applied to an empty set. 

MIN and MAX determine and return the minimUm or maximum 
value of the two operands supplied. 

MEMBERS(X) is the number of elements contained in the set Xo 

48 



SECTION E TOPICS DISM1SS~V 

FIRSTMEMBER(X) is the first element from the enumeration 
which is contained in the set X. 

LASTMEMBER(X) is the last element from the enumeration 
which is contained in the set X. 

[Editorial Comment: For further discussion see 
O.-J. Dahl, E.W. Dijkstra, C.A.R. Hoare, 
Structured Programming, Acedemic Press Inc., 1972] 

***** 

3.15 Access to Size of Variables. 

Add access to machine-dependent information about the size 
of variables. 

sizeof(variable): integer; 

sizeof(variable, t1, t2 ... ) 

Recommendation: 

returns size in some machine­
dependent units 
get size of variantrecord 

We do not recommend adding access to the size of variables. 

Discussion: 

It is machine dependent and should be implementation 
dependent. This mixes representation and implementation. 

***** 

3.17 Conditional Expressions. 

Add Algol 60 style conditional expressions so that 
statements such as 

x:= if y >= 0 then y else -y; 

can be written. 

Recommendation: 

We do not recommend adding conditional expressions to the 
language.' 

***** 

49 



SECTION E TOPICS DISMISSED 

3.18 Eliminate the standard function SQR. 

Recommendation: 

We recommend not changing the language for the function "SQR". 

***** 

3.19 Multiple Assignments (eg. x:=y:=2). 

Recommendation: 

We recommend not changing the language to add multiple 
a ssig nments. 

***** 

3.20 Allow / for div. 

Allow / to represent div when used with integer operands. 

Recommendation: 

We recommend that "I" and div not be changed. These 
operators perform different operations and they are defined. 

***** 

3.21 Implementation inquiries. 

Recommendation: 

We recommend that implementation inquiries not be added as 
predefined functions to the language. 

Discussion: 

A collection of constant definitions can be made for a 
given application area and included in programs that need it. 

***** 

50 



SECTION E TOPICS DISMISSED 

4.1 Allow type b = packed a; 

Allow an <unpacked structured type) to be a type 
identifier, thereby allowing something like b = packed a; 

Recommendation: 

The amount of effort to implement outweighs the advantages. 

Discussion: 

This is primarily a shorthand notation which might reduce 
errors, but it requires a fairly significant compiler overhead 
to recalculate the new, packed versions of the offsets of the 
structure. 

An issue that falls out of this and should be addressed by 
the ISO standardizing group is what constitutes valid arguments 
to the procedures pack and unpack. This is especially needed if 
strict name type compatability is decided upon for structures. 

***** 

4.2 Minimum sizes of data types. 

Decide upon the mlnlmum set size, the mlnlmum range of the 
type integer, the minimum range and precision of type real, and 
the ability to specify the desired range and precision of real 
numbers. This would allow small machines to use small, easily 
manipulated representations for most values, and only inc.ur more 
expensive representations when extra precision is needed. 

Recommendation and discussion: 

It was decided not to specify mlnlmum sizes for any types; 
it might be perfectly reasonable to have o!lly c"",bit intege~"2 ",r! 
some applications. 

It was also decided not to standardize extended 
precision forms at this time. The details of the standard would 
rely on the type (real or integer), precision, application, \ 
and on machine factors. More user experience with' extended 
precision is needed before agreement can be reached on a 
stand ard . 

Jensen and Wirth implies that the result of an operation on 
integers may be undefined if it or it's arguments absolute value 
exceeds MAXINT (which is implementation defined). The 
question, is what should a compiler do with a declaration ~ike 
"K: O .. N" where N is bigger than MAXINT. Many implementations 
will not produce good code where K is used. The compiler should 

51 



SECTION E TOPICS DISMISSED 

be required to flag an error when it cannot correctly compile 
something. 

See section C for recommendation regarding set of char. 

***** 

4.3 Scaled integers. 

Include scaled integer arithmetic, for use in business 
applications. e.g. 

v a ra: 0.. 1 0000000 s c a led . 0 1 {or 1 / / 1 00 } 

would be capable of containing numbers from zero to ten million, 
with a precision of pennies (hundredths). 

Recommendation: 

The Workshop decided that this feature should not be added to 
the lang uag e . 

Di scussion : 

The necessity of this has not been shown but merely infered 
from it's inclusion in DOD's IRONMAN. A programmer can always 
keep track of his own scaling and introduce scaling constants 
into expressions where necessary. The proposals seen so far all 
involve difficult rules and restrictions to the use of scaled 
integers and complications and exceptions to the concept of type 
compatablity ( a very touchy concept these days ). 

***** 

4.4 Constant expressions. 

Add the ability to use simple constant expressions in place 
of the constant allowed now. e.g. 

const bell = chr(7); 
maxelements = 100; 

var a: array [0 •. maxelements-1 ] of integer; 

Recommendation and discussion: 

The Workshop decided against this feature. 

At first the Workshop decided that only a fully general 
implementation, where constant expressions could appear 

52 



everywhere that constants could, would be acceptable. Later, the 
following examples of code using constant expressions were 
discovered: 

~ T = (N) { an enumerated scalar type with a single value} 

S = (SL) .. SH { a subrange }; 

R = (A + B) * C •• D; 

R = (A,B,C) 

The Workshop decided that it was unacceptable to require or 
suggest that a compiler be able to cope with the amount of 
lookahead or complexity that appears to be needed to parse these 
examples, and others not listed here, since this is not 
necessary in any existing syntax. Note: these problems do not 
arise if constant expressions are allowed only in the const 
section or if constant expressions with leading "("s are not 
allowed. 

***** 

4.7 Require tag fields. 

Require all variant records to include a tag field, and 
disallow changing the tag field without changing the value of 
the entire record (see structured constructors above). This 
would forbid the use of variant records to subvert type-checking 
(and so would need adequate facilities to "cleanly" do type 
tr an sferr ing) . 

Recommendation: 

No. This would be a restriction of the standard. 
Implementations are free to require tag fields, but realize that 
such an implementation would not be Standard Pascal. 

***** 

4.10 Value initialization. 

Include some ability to initialize variables in the 
declaration section, rather than in the actual code. This could 
allow a savings of code spaoe on many machines, and may enhance 
readability. e.g. 

var i: integer := 0; 
var i: integer; 
init i := 0; 

or, al ternatel y, 

53 



SECTION ~ TOP1~~ Vl~Ml~~~V 

Recommendation and discussion: 

The Workshop decided this should not be provided. The 
proposals examined were generally along the lines of 

"var R : T = <value>" 

where if T could be structured the <value> would be 
syntactically as in structured constants (4.5a) and this 
initialization would take place each time the scope was 
entered. 

The Workshop decided that if this were accepted at all that 
the <value> should be fully general in allowing arbitrary 
expressions including other variables. This then begins to look 
like general structured value constructors which this subgroup 
rejected (3.1), the reasons for which being applicable here. 

Furthermore, no compelling reasons for having this feature 
were known to this group so it was viewed as language 
cluttering. Many even felt that textually separating the 
initialization of a variable from the algorithm that uses it, 
constitutes a hazard. 

[Editorial Comment: It should be noted that nothing in the language 
forbids a compiler from interpreting assignment statement's at 
the beginning of a procedure's statement part as value 
initializations.] 

***** 

4.11 Dynamic Arrays. 

Add fully dynamic arrays, whose bounds are determined at 
scope-entry time, as in ALGOL-60. e.g. 

var size: integer; 
procedure arraydemo; 
var a: array [1 .. size] of integer 

Discussion: 

There are three classes of 'dynamic' arrays; extensible 
arrays, dynamic arrays, and flexible arrays. Flexible arrays 
(truly dynamic arrays, with dynamic subranges) are major 
extensions to the language and are prohibitively expensive to 
add. Dynamic arrays, which should include dynamic subranges, or 
arrays with indices specified at scope entry have an obvious 
syntax and equally obvious semantics, unfortunately some 
ambiguities exist •.. 

54 



~rogram messedup; 
var n: integer; 

procedure one; 

SECTION E TOPICS DISMISSED 

t y p e d yn ran g e = a r ray [0 •• n] 0 fin t e g e r; (n i s a v a ria b 1 e ) 
var dynarray: dynrange; 

proced ure two; 
var anotherdyn: dynrange; 

begIn 
anotherdyn := dynarrary; 

end; 

begin 
n : = 5; 
two; 

end" --' 
begin 

n := 10; 
one; 

end. 

Of course, a restriction could be made on the use of the 
variable n, in the manner that assignments to loop induction 
variables are disallowed. 

Adjustable array bounds is being taken up by the Procedures 
subgroup. (See section C1, 2.3.) 

***** 

4.13 Unsigned integers. 

Allow the declaration of unsigned integers which may use 
all the bits available in a machine word to represent 
magnitude. 

Recommendation and discussion: 

After much discussion about the trouble one can get in when 
allowing unsigned integers .•. (assume a 16 bit word): 

var i: 0 •• 65535; 
J: -32767 .. 32767; 

begin 
i := 2*65535; {requires different overflow checking} 
i := 0-2; {requires overflow checking on a subtract} 
i : = 1; 
j := -1; 

if i < j 
then {requires check to make sure that j is posi ti ve 

before an unsigned comparison can be made} 

55 



SECTION E TOPICS DISMISSED 

w··\ considered what these things are actually used for. 

This proposal is submitted by the' implementation group. 
I~teger is -32768 ... +32767 but the need is for values in the 
range 0 .. +65535 which only uses one word of storage. The 
Workshop decided that this is too much of an implementation 
detail to consider. It was noted however that at least one 
implementation is known to\ accept these requests but fails to 
generate correct code in all cases where such variables are used 
(watch out for those integer comparison operations). 

***** 

4.14 Embedding control characters in strings. 

The Workshop decided that this was an unnecessary addition 
to the language. Jensen and Wirth specifies no restriction on 
which characters may appear in strings in Standard Pascal. If a 
given editor or operating system DOES prohibit the input of 
certain characters that is an implementation restriction and not 
a subject for extension to the language. See section D for a 
way of inserting control characters in strings. 

***** 

4.15 Allow type a = 1, 5 .. 7, 14 

Recommendation: 

We recommend not to add this construct to the language. 

***** 

4.16 Automatic conversion of types. 

Allow automatic conversion of types as in: 

i := 2.5 

where i is of type integ~r (is assigned the value 2). 

Recommend ation : 

56 



SECTION E TOPICS DISMISSED 

Coercion to a type that is a superset of the coerced type 
is one thing, but automati9 conversion the other way has long 
been recognized as error-prone. 

***** 

4.17 Pointers to objects in the stack. 

Recommendation: 

Although this can allow more efficient access than arrays 
0.' some machines, other machines keep the concept of the stack 
and the heap totally separate. Also, programs are that much 
more prone to errors when pointers into the stack are allowed. 
We recommend against such an extension. 

***** 

5.5 Add formatted reading. 

Make the 10 operations allowable on a textfile symmetric 
to more easily process business type data. Note that 
the inclusion of recovery blocks allows the flexible processing 
of bad input data, e.g. 

read(cardfile, seq: 6, id: 8, x: 10 :4) 

Recommendation: 

We recommend that this item be dismissed. 

Discussion: 

This item was not of sufficient interest to justify its 
inclusion in the language. If it is desired to include it, 
however, the syn tax sho uld be the "inver se" of the WRITE 
statement. 

The semantics, however, are not so obvious, and a number of 
decisions need to be made. 

***** 

5.6 Allow the reading and writing of·scalar identi fiers. 

var c: (red, blue, green); 

write(output, c) 

57 



SECTION E TOPICS DISMISSED 

read(input,boolval) 

Recommendation: 

We recommend that this item be dismissed. 

Discussion: 

If this capability is implemented, it should follow the 
syntax and semantics used for other types. In particular, field 
length should be extended to accomodate the identifier being 
written. For reading, the problem of misspelling must be 
considered; for example, to read values of the type 

color = (blue1,blue2, .•. ); 

the delimiting characters need to be well defined. A similar 
example (blue,bluegreen, ... ) shows that not all problems are 
easily solved. The best solution, perhaps, is to treat these 
values, for input, as identifiers in the Pascal sense. This 
eliminates any of the above problems. At the same time, it 
makes clear the need to specify a minimum length of 
significance, so that distinct values will be distinct in all 
implementations. 

Implementors should be aware of the overheads involved in 
this capability before adding it to the language. For both 
input and output, a symbol table mechanism is required. 

***** 

5.7 Raise a run-time exception if a specified field width is 
too small for the writing of a number or string. (Needs 
structured error recovery to be useful.) 

Recommendation: 

Jensen and Wirth [Report] specifies that a field width is 
expanjed as required if it is too small for the value to be 
written. We recommend that this item be rejected. 

***** 

5.8 Extended formatting to be similar to COBOL. 

Extended formatting to allow capabilitie~ similiar to 
COBOL PICTURE formats, ie. floating dollar-sign, suppressed or 
non-suppressed leading zeroes~ etc. 

Recommendation: 

58 



~tCTIUN t TU~lC~ Vl~Ml~~tV 

This seems to require more effort and introduces more 
comple~ity into the language than can be justified by any 
benefits it produces. This suggestion is rejected. 

***** 

5.10 Allow access to file attributes. 

Allow specification and access to file attributes, like 
size, etc., yielding facilities similiar to some Burroughs 
compilers. 

Recommendation: 

We recommend that this item be dismissed. 

Discussion: 

Such access was felt to be system-dependent, and also not 
presenting any implementation/language problems. For this 
reason, we did not consider it further. 

It should be noted that some file attributes may change 
during the execution of a given program. For this reason, it 
can be expected that any form of access to these attributes will 
require the effect of a procedure call (to update these values). 

Two suggestions have been considered. The first implements 
the access as a procedure call with the following prototypical 
decl ar a tion : 

procedure status(f:<anyfiletype); var rec:<fileattributetype»); 

The type <fileattributetype) is unspecified, but will 
presumably be a record whose components represent the possible 
attribute values. The n~me "status" is not particularly 
recommended. Possible names considered are status, attributes, 
fileattributes. 

An alternative suggestion related to this one proposes a 
separate procedure for each attribute. This is rejected as 
polluting the name space. Since record field identifiers exist 
only within the scope of the record name, the names used are 
still available for use by the programmer in other contexts. 
The type <fileattributetype) will be a predeclared type and so 
known in any program. Good programming style may inhibit the 
use of these names in a program using them as attribute names, 
but there is nothing syntactical to prevent it. 

The second proposal, not fully thought out, specifies that 
the name of a (Pascal) 'file var iable be treated as a record 
name, and that the a ttr ib utes of a file be re ferenced as field s 

59 ~ 



SECTION E TOPICS DISMISSED 

of the file: file.attribute. This raises a number of problems, 
not the least of which is syntactical (a file type is not a 
record). Another is the hidden cost of the denotation. An 
assignment or use in an expression will require a system call, 
at least if the attribute accessed can change dynamically (e.g., 
terminal status, protection bits). 

***** 

5.11 Provide a facility to "flush" the buffer associated to a file. 

Recommendation: 

We recommend that this item be dismissed. 

Discussion: 

We felt that there were good reasons for providing such a 
facility. This is, howeve~, an implementation detail and should 
be decided by the implementor. The most common mechanism is a 
predefined procedure, declared (prototypically): 

procedure break(f:<anyfiletype»); 

Break is a common name for this procedure. Other names 
which have been used are flush and sync ("synchronize", as in 
synchronize internal and external versions of this file). 

This facility solves a basic need: to force out the 
contents of a system buffer to the file (or perhaps to dump the 
contents of an input buffer). This is needed to force out 
prompts; to get as much data as possible to a file (for 
debugging; or to synchronize the program's idea of the file with 
that of the system); or to synchronize the input with the output 
(as for a half duplex device; also, the system may use a common 
buffer for input and output to the same device). 

***** 

5.12 Prov ide "core" files. 

Recommendation: 

We recommend that this item be left up to the individual 
implementor. 

Di sc ussion : 

It was felt that to require the provlslon of "files" 
residing exclusively in core was too much of an imposition on 
implementors of the Pascal language. No extension to the 

60 



language is necesary. See 5.12 in section D. 

***** 

6.3 Allow OWN variables, (this should only be considered in the 
absence of approval of some kind of encapsulation scheme). 

Recommendation: 

We recommend that OWN variables, as known in Algol 60, 
should not be provided. 

***** 

6.4 Add capabilites for overlays, if this is possible to do in a 
standard way. Many operating systems may impose restrictions 
making agreement upon this impossible. 

Recommendation: 

We believe that overlays should not be handled in the 
Pascal language. Such facilities might be supplied by a linker 
of separately compiled procedures/modules or invoked by compiler 
directive in a single compilation. 

***** 

8.1 Include the ability to access hardware memory, registers, or 
instructions in some clean fashion, for machine-specific code. 

Recommendation: 

We recommend that access to underlying hardware be handled 
only by compiler directive as this is highly dependent on the 
implementation and that assembly language be available only in 
external routines and not as inline code. 

***** 

8.2 Full-word, logical operators. 

Add the ability to implement boolean operations on full 
words, and the addition of an XOR operator. Requiring 
conversion to and from SET to the original (via variant 
records or some kind of type conversion), type transfer to and 

61 



'SECTION E TOPICS DISMISSED 

from boolean to the original, and the ability to use 
AND, OR, and NOT on integers are all possibilities. 

Recommendation: 

We recommend that boolean operations on non-boolean 
operands be done only with functions, which may be pre­
declared. 

Discussion: 

Infix operators were rejected because of the introduction 
of insecurities in the type-checking of the operands. 

[Editorial Comment: The Pascal language is a high level language 
and thus has no need for the concept of a word; sets do not, in 
programming or in mathematics, have Boolean operations; the 
exclusive or operator is present in the language in the form 
of inequality of Booleans; and and, or, and not do not 
have meaningful application to numbers, either-integer or real.] 

***** 

8.3 Allow the specification of field layout in a packed record, to 
facilitate using Pascal structures to manipulate low-level 
objects. 

Recommendation: 

The Workshop recommended no extension in this area. See 
section D for a way to obtain the desired effect. 

Discussion: 

Two differing solutions are offered for consideration: 

1) Record specification corresponds to the physical layout, 
through bit-by-bit packing, i.e. by allocating to each field the 
eiact number of bits required for its specification. 

2) Physical allocation is explicitly specified in the 
record declaration. 

The first solution is easier to implement, while the second 
provides for greater flexibility in allowing independence of 
logical and physical structures. 

***** 

8.5 Decide if PROCEDUR is a reserved word, and if functionid is 
a valid identifier (on compilers with 8 characters of 

62 



SECTION E TOPICS DISMISSED 

significance). Should identifiers be signiticant to an 
arbitrary length, at least as an option? 

Recommend ation : 

We recommend that PROCEDUR (sic) not be a reserved word. 

[Editorial Comment: See further the British Standards 
Institution draft.] 

***** 

8.8 Decide upon what characters should be standard substitutes 
for "', [, etc. 

Discussion: 

We refer standard substitution of character sets to the 
PUG interchange group (see section F, 8.15). This topic 
requires research in other character sets, which we cannot 
undertake at this time. 

***** 

8.9 Define a standard, as far as common options, for compiler 
directives. The simplest form is the one discussed in the 
Pascal-6000 implementation, where one-letter options that can 
be turned on or off. A slightly more complicated, but very 
useful feature is the ability to set, reset, or pop compiler 
options. 

Recommendation: 

We recommend that no effort be made to standardize compiler 
directives. 

Di sc ussion : 

1) Widely differing requirements may necessitate widely 
differing syntaxes. 

2) The convention used in the CDC compiler is not to be 
taken as a standard. 

***** 

8.10 Add a compiler directive allowing the incl usion of separate 
source text files, requiring the relaxation of declaration order 

63 



SECTION E TOPICS DISMISSED 

under special circumstances e.g. ($Include decs, procs, body). 

Recommendation: 

An "include" facility is desirable, but we make no 
recommendation on syntax. See section 8.9. 

***** 

8.11 Standardize a conditional compilation format, whether by 
compiler directives or by boolean constants. 

Recommendation: 

We do not recommend language extensions to support 
conditional compilation. 

Di scussion: 

1) A simple pre-processor may provide this capability. 

2) Compile-time evaluation of boolean expressions will 
provide conditional code generation, but is inadequate for 
declarations. 

***** 

8.12 Allow different forms of comments, eg. a comment by which 
the compiler ignores the rest of the line. 

Recommendation: 

We recommend no change to the report's comment convention. The 
small gain in convenience does not justify the language change. 

***** 

8.13 Enumerated scalars with designated values. 

Recommendation: 

No recommendation was made. 

Discussion: 

Needs for enumefated scalars with funny values can be 

64 



SECTION E TOPICS DISMISSED 

handled by using the scalars as indices into a constant array 
(see section C1, 4.5). 

***1* 

65 



SECTION f RECOMMENDATIONS TO OTHER GROUPS 

Several of the topics considered by the Workshop are being 
(or we recommend should be) considered by other groups in the 
Pascal community including the International Working Group and 
the committee preparing a draft ISO standard. In some cases, 
the Workshop agreed that the final recommendation of those 
groups should govern action on a given topic. In others support 
is requested for extensions that are recommended unequivocally. 

1.1 Add else clause to case statement. 

Extend the case statement to include specification of the 
action to be taken if the selector expression fails to match any 
case constant (label) in the statement. 

Recommendation: 

We recommend the implementation of this extension (as 
published in Pascal News #13) according to the syntax and 
semantics adopted by the Working Group. 

Discussion: 

See sec tion C 1. 

***** 

1.13 Semantics of CASE statement. 

Jensen and Wirth [User Manual] states "the CASE statement 
selects for execution that statement whose label is equal to the 
current value of the selector; if no such label is listed, the 
effect is undefined". 

Recommendation: 

We recommend that "undefined" in this case be interpreted 
as causing a run-time error. 

***** 

2.2 Provide type-checking in parameterized procedures and 
functions. 

Redefine the syntax for passing procedures and functions so 
as to allow type checking and the use of var in the parameter 

66 



tJC.vlJ.U1'II l' I\C.vUI·l1·lc.nU.t1lJ.UnoJ ~v V~llL:.1\ U1\VU!1J 

lists of procedures and functions that are themselves 
parameters. There are two main approaches: one, to redefine the 
syntax for a parameter list to reflect the nested parameter 
list, eg. 

procedure q (function p (integer): boolean) 

the other is to allow the declaration of procedure and 
function types, e.g. 

type funcparam = function p (i: integer): boolean 

Recommendation: 

This change is desirable to cover a lapse in type 
checking. This represents an extension to the language. A 
consensus has not been reached on the method to use. 

Di sc ussion : 

There are several different methods for solving this 
problem. The first provides type information inline in the 
parameter list. This does not work for recursively defined 
parameter lists, and forces comparison of, parameter list types 
by structure only. 

A second method provides another section, similar to const 
or label, which defines the parameter list form. Although this 
allows type compatibility checking by name, it introduces a 
declaration section of a new and different nature. 

A third solution allows procedure and function type 
constructors (see section 2.10 and the example in the question 
above). Parameter checking can be'easily done using name type 
compatibility. This may open the way for procedure variables to 
be implemented. 

***** 

2.3 Add adjustable array parameters. 

Recommendation: 

This change represents a desirable change to the language. 
We prefer the form mentioned in section C 1 , but defer to 
the Working Group. See section C1 for discussion. 

***** 

2.10 Add a procedure type constructor to the language. 

67 



~~LTIUN r ~~LUMM~NUAI~UN~ IV Uln~n unuur~ 

Recommendation: 

The Workshop recommends that the Working Group consider 
this as a true extension to the language. Since this extension 
is mainly offered as n solution to procedural type checking, we 
do not recommend it by itself. 

Discussion: 

This change represents a solution to the problem of type 
checking in procedures. It needs to be examined closely. An 
example function type declaration is shown below: 

type funcparam = function p (i: integer): boolean 

and the declaration of an identifier to be a function of this 
type would appear as follows: 

function funcname: funcparam; 
begin . 

{ function body} 
end·---
--' 

The existing form of function and procedure declarations 
would remain valid (anonymous type). 

This extension leads to, but does not require, a further 
extension permitting variables but not functions of a procedure 
type. The value of a variable of procedure type is a procedure 
or function of the same procedural type, and is defined only 
during the lifetime of the block containing the declaration of 
the procedure or function. 

***** 

3.22 Should NEW of a variant record assign the tag? 

Recommendation and discussion: 

As can be seen from the two contradictory opinions which 
follow, the Workshop was d~vided on the meaning of the current 
definition of NEW. If, as it says in the latest(?) edition of 
Jensen and Wirth, it should not be assumed that NEW does 
anything to these fi~ld~, no extension is recommended. In spite 
of the usefulness of such a feature it should be discarded 
because it gives rise to portability problems that cannot be 
detected at compile time if not all installations use the same 
definitions. It is a tota~ly unnecessary change. 

However, the case can be made that NEW must create the new 
record with values in the tag fields. Section 10.1.2 in Jensen 
and Wirth [Report] can be interpreted as defining the NEW 
variable to be created such that the tag fields possess the 

68 



SECTION F RECOMMENDATIONS TO OTHER GROUPS 

given values ab initio. This can be considered by analogy to 
constants: a constant has a value immediately upon its 
creation. Thus, the statement in Jensen and Wirth that "This 
does not imply assignment to the tag fields", is not 
contradicted. This interpretation is supported by the warning 
of the next paragraph, forbidding any meaningful assignment to e 
tag field. Assume that the tag fields are initially undefined: 
then, the variants are also undefined. The warning requires 
that the variable must not change its variant - that is, the 
variant must not be changed from undefined to something alse, as 
a consequence of an assignment to a tag field. Therefore, it is 
required that NEW create the record with its tag fields 
defined. 

We recommend that the British Standards Institution resolve 
this question. 

***** 

4.1 Allow an <unpacked structured type) to be a type 
identifier, thereby allowing something like 

b = packed a; 

Recommendation: 

The amount of effort to implement outweighs the advantages. 

Discussion: 

See section E. 

***** 

4.5 Structured constants. 

Add the ability to declare structured constants, for tables 
and other structured data ~that currently must be variables and 
have code space and execution time associated with their 
definition. 

Recommendation: 

The Workshop decided that structured constants should be 
accepted. We defer to the Working Group for a final 
recommendation on the syntax and recommend the syntax shown in 
section C1. 

Discussion: 

See section C1. 

69 



SECTION F RECOMMENDATIONS TO OTHER GROUPS 

***** 

4.5b Should the required ordering of const, ~, var and 
procedure,function declarations be relaxed? 

Recommendation: 

No consensus was reached on an explicit proposal, but we 
recommend that the Working Group consider this area. 

Discussion: 

See section G. 

***** 

4.8 What rules for type compatibility should be standard? 

Explicitly define the rules for type compatibility, 
especially for structured types. There exist currently two 
major definitions, and the two are, of course, incompatibleo 

Discussion: 

The Workshop had lots of discussion on the merits and 
fail ing of "name" compatibili ty. It was generally acknowledged 
that this topic is too full of minute and subtle details for the 
Workshop, however a leaning towards some form of "name" 
compatibility was obviously there. Precise definitions will 
have to come from the Working Group and/or from the British 
Standards Institution committee. 

Some of the problems di scused were: 
anonymous types as in A : array 
the difference between use in assignment and in expressions 
the type of a set constructor as in " [ 10, 11, 12 ] " 
the type of a dynamic array parameter, if they are ever allowed, 
is type declaration reflexive i.e. 

" type B =A; C = A {B =? C }" 

***** 

4.9 Add and provide the language support of the type Complex, for 
scientific application people. 

70 



SECTION F RECOMMENDATIONS TO OTHER GROUPS 

Recommendation: 
1,\ 

1) Complex arithmetic should be considered a 
conventionalized extension to Pascal. 

2) The type COMPLEX should be added as a predefined simple 
type (as opposed to a structured type like record). 

3)The standard infix arithmetic operators +, -, *, / should 
be provided by overloading the existing operators.Further, the 
infix operators such as <>,= etc need to be extended to apply to 
com pIe x val ue s . 

4)The full set of standard real mathematical functions 
(i.e., ABS, SQR, SIN, CO~, ARCTAN, EXP, LN, SQRT, and POWER (as 
defined in 3.4)) should be extended to allow complex arguments 
and to produce complex results with the exception that ASS 
should still produce a real result. The following new 
predefined functions should be considered part of complex 
arithmetic for Pascal: 

function arg(z: complex):real 
functioncmplx(x,y: real):complex 
functionre(z:complex): r~al 
functionim(z:complex): real 

returns argument of z 
returns x+y*sqrt(-1) 
returns real part of z 
returns imaginary part of z 

The results of all functions are to agree with the ANSI 
Fortran standard as this standard reflects accepted practices in 
computational numerical methods. 

5) There was considerable debate over the form that complex 
constants should take. As two members of the Working Group are 
continuing work on this area, a final decision should b~ left 
un til the res u 1 t s 0 f the ire f for t s are k no wn . It wa s 
recommended that an explicit form of constant not be introduced 
into the language, but that complex constants be constructed 
with the function cmplx. It was also realised that an adequate 
definition for complex constants may be able to be formulated 
once the final form of str~ctured constants was decided upon. 

6) No direct input or output of complex values is supported 
in this extension. 

Di sc ussion : 

Complex arithmetic in Pascal should only be added so as not 
to impact the language as it is currently defined ( and as 
formalised by the ISO standard). To achieve the status of a 
"pure extension", it must be possible to provide a mechanism for 
moving a program that uses complex arithmetic features in a 
particular implementation to another system where the extension 
has not been installed, by: 

1) Providing a set of Pascal procedures/functions that may 
be added to the program to b~ compiled and executed on the new 
machine. ' 

71 



SECTION F RECOMMENDATIONS TO OTHER GROUPS 

2) Providing a pre-processor that accepts as input the 
program using complex arithmetic and produces as output an 
equivalent program in Standard Pascal. 

In fact, a combination of the above approach may be required. 

Record or Scalar? 

There have been a number of proposals for complex 
arithmetic in Pascal which advocate the use of a predeclared 
record type 'complex' as follows: 

type complex = record 
re,im: real 

end 

The problem with the above proposal is that, functions are 
then required to return a structured type, a facility not 
currently available in the language. 

A second proposal is to regard the type complex as a new 
predefined scalar type, with the underlying structure 
transparent. It then becomes necessary to define a mechanism for 
the specification of complex constants. Two possibilities were 
considered: 

1) Use the letter J to indicate the real and complex 
components in a complex number e.g 4J5. The problem with this 
notation is illustrated by the following: 

5. OJ -6. 0 

which really represents the complex value 5.0 - 6.0j. Yet 
another example along this line is: 2.0-5. OJ -6., o. A further 
problem involves the specification of a negative real part of a 
number i.e. -5J6. Is this (-5)J6 or -(5J6)? 

2) The alternative appears to allow complex values to be 
constructed only with the function cmplx. The restriction here 
i~ that complex constants are now not allowed in the const 
section of a procedure ( in a similar way that ord(x) is not 
allowed) • 

This whole area needs some more work, however it is felt that 
constant construction with the function cmplx will prove to be 
adequate. 

***** 

5.1 Define communication between program and operating system 
through the program heading. 

See section C3. 

72 



SECTION ~ HtCUMMtNvAI1UN~ IU UIH~H ~Huur~ 

***** 

5.13 Should RESET be required before GET and REWRITE before PUT? 

Recommend ation: 

We recommend this item as a clarification to the language. 

Di sc ussion : 

See sec tion C3. 

***** 

8.4 Upper/lower case and break characters. 

See section C1. 

***** 

8.7 Character set enumeration. 

See sec tion C 1. 

***** 

8.15 Interchange standards. 

Recommendation: 

We recommend that a longer term group be formed within PUG 
to consider interchange standards such as those in 8.4, 8.5, 
8.14, and similar topic~ such as a minimum character set and 
minimum (maximum) line length. 

[Editorial Comment: This group has been organized. See Pascal 
New 1113.] 

***** 

73 



SECTION G PROPOSED EXPERIMENTS 

The Workshop recognized several areas in which extensions 
might be desirable. This section contains suggestions for 
experiments in those areas. 

1.3 Structured error-handling and recovery. 

Add facilities for structured error-handling and recovery, 
for both hardware (like floating point overflow) and user­
defined (like symbol-table full) errors and exceptions. One of 
three alternatives is a highly modified form of recovery blocks, 
e.g. 

try <statement list 1) 
exception <statement list 2)' 
end 

where failure inside statement list 1 causes control to be 
transfered to statement list 2. Failure in 2 causes failure of 
the construct, and control is passed to the enclosing (run-time) 
recovery block. 

Another proposal is exception procedures that get called 
when errors occur, and can be nested, and redefined in inner 
scopes. 

exception divide by zero; 
begin - -

writeln('divideby zero occured'); 
end; 

A third is EPILOGUE PROCEDUREs, as in Burroughs DCALGOL, 
which always get called at the end of a block, even if ~rrors 
have occurred. \ 

Recommendation: 

No attempts should be made to define a "conventionalized 
ex ten sion" until there is some base of ex per ience. There wa s 
some discussion of global error handling for domain and range 
failure on predefined functions, but no agreement was reached on 
any aspect of this topic. 

***** 

3.3 Type Transfer Functions. 

Extend type-transfer functions, at least for scalars 
(excluding reals) and pointers (as a~ implementation-dependent 

14 



SECTION G PROPOSED EXPERIMENTS 

feature) to provide an inverse ord function,thereby reducing 
the necessity of subverting type-checking by the use of variant 
records with no tag fields. e.g. 

c := color(i) 

Also specify that enumerated types start at 0, and allow 
ord (pointer) . 

Recommendation: 

There are obvious flaws in the following suggestion, e.g. 
the mixing of types and functions, but we suggest the following 
form for experimentation: 

a := color(I); 

where color is a scalar type and the integer I is coerced to be 
of type color. 

***** 

4.5b Should the required ordering of const, ~, var and 
procedure function declarations be relaxed ? 

Recommend ation : 

No consensus was reached on an explicit proposal. 

Discussion: 

This represents a very small change to most compilers and 
should make it possible to write more modular and hence 
understandable programs. This also allows structured constants 
(4.5a) to appear in more meaningful places. Most of the 
arguments about this proposal centered around variations of the 
following Pascal text: 

~ P = AB; 
proced ure Q; 

var QP : P; 
15e"gin 

{to use QP here requires it's full type to be known} 
end; 

type B = ••• 

The Workshop agreed that this degree of forward referencing 
is not acceptable; that such a forward referenQe must be 
resolvable by the end of the type declaration part that it 
appears in (i.e. before the procedure in this example). 

Section D shows a nlethod for' grouping declarations which 
does not require relaxirig order requirements. 

75 



SECTION G PROPOSED EXPERIMENTS 

***** 

4.6 Parameterized type string. 

Add the parameterized type string, which has a dynamic 
length associated with it, plus the necessary language support. 
This dynamic length is used to determine the validity of 
indexing, assignment, etc., hence it is difficult to implement 
as a record in standard Pascal. In addition, methods are needed 
for insertion, deletion, substring extraction, concatanation of 
strings, and access to the dynamic length. 

var str1: string[1 .• 80J, str2: string[O .• 19J; 

s t r 1 : = ' a b cd ' ; 
str2 := str1 & str2; 
str1 := str2[3 .• 5]; 

Recommendation: 

We do not recommend including the parameterized type string 
as a conventionaliz~d extension, as there are still too many 
unknowns. However, for those who do want to implement it now, 
the UCSD proposal is one method, and includes the following •.. 

1) the predefined parameterized type string, with the form: 

var str : string [MaxStringLengthJ; 

two variables of type string are always compatible as far 
as type checking is concerned, irrespective of their maxlen. 

2) assignment between strings, the assignment: 

str1 := str2; 

is legal if the dynamic length of str2 is less than or 
equal to the maximum length of str1. 

3) subscripting of strings, i.e. str[1J is the first 
character of the string. Notice that string subscripts start 
at one. Range-checking is done aga~nst the dynamic length. 

4) a collection of predefined procedures and functions: 
position, length, insert, delete, concatenate, copy. 
Concatenate and copy can either be defined as functions of two 
string arguments returning a string or as procedures of three. 
Functions can cause run-time inefficiencies, procedures can 
cause difficulties in use. 

5) allow strings to be read and written 

76 



oJ L. \.I ~ .lo V n U 1 1\ V 1 VoJ L. U .L:..I\.1.L:. 1\ .loa"J L. t'4 ~ oJ 

6) allow string constants 'quoted strings'. 

There is an alternate proposal by Arthur Sale which is 
based upon the existing structuring abstraction of files, with 
the addition of random-access characteristic~. This might allow 
the capabilities desired but require less conceptual additions 
to the 1 ang uag e . 

[Editorial Comment: See also the article by Arthur Sale on 
Strings and the Sequence Abstraction in Pascal to appear in 
Software-practice and Experience earlY-in 1979. A follow-up 
article by Judy Bishop is expected to appear also.J 

***** 

5.4 Add support for random access files. 

The I/O Subgroup has concluded that some form of "random 
access" I/O mechanism would be a valuable extension to Pascal. 
During our deliberations, however, it became clear that there 
are several problems to be overcome in the definition and 
implementation of this capability. These are: 

1) define exactly what is and is not meant by the term 
"random access" 

2) determine the extent to which our definition can be 
straight-forwardly implementep within ;the scope of existing 
file/operating systems 

3) determine how to treat the file buffer variable 

4) assure that the chosen definition(s) fit closely the 
current standard 

The latter is a motherhood statement, but it reflects our 
overall desire to maintain a language that can reasonably be 
called Pascal, rather than a desire to define a new language. 

Our working idea of a random access file is as follows. It 
is a sequence of components, each of which has an "index" or 
position number, with the first being 1. Within the file, any 
component may be positioned under the "read/write head" by doing 
a SEE K to that com ponent . Both" read i ng" and "wr it ing" are 
defined anywhere within the bounds of the file (see below), 
regardless of the state of EOF. The exact mechanisms for these 
operations are defined below. 

Each component has a value, although there may be no way of 
predicting what that value is. A random access file, like a 
sequential file, must be extended one component at a time (see 
below): there is no way, in our concept, of writing a random­
access file with holes in it. There may be system-dependent 
problems arising from an attempt to read such a file which has 

77 
\ I 



SECTION G PROPOSED EXPEHIM~NI~ 

not been written by a Pascal program. For example, some systems 
require random access files to be highly formatted and will have 
a wa y 0 f dete rm i ni ng that cert air) c(,)m ppnent s (r ecord s) {3r e 
"undefined"., In this case, there may be a system-enforced abort 
when reading such a record. Such features are beyond our scope 
at this point and are left to the implementor and the documentator. 

We have isolated two basic suggestions for random access 
110, differentiated by the presence of a "file buffer variable". 
These are described below. The Workshop felt that there is not 
enough experience with specific implementations to justify a 
recommendation to extend the language with this capability. 
Rather, the following schemes are suggested as experimental. 
Our intent is to track implementations of each to determine both 
their utility and suitability. 

In each case, there is no clear agreement on a choice of 
identifiers. In particular, while it is agreed that files to 
be used as random access should be specially declared, how this 
is done is not settled. 

Random Access 1/0, Version 

This version of the random access file (RAF) capability has 
two alternative forms. The distinction is made on the treatment 
of the file buffer variable. In either case, some problems do 
exist. These will be discussed below. 

Declaration: Each RAF will be declared as follows! 

index edfile 0 f (type i d> 

Note in particular that "text files" cannot be treated as 
random access ( although "file of char", of course, can). This 
decision was made due to the very system-dependent nature of 
"text files": they are often record-oriented files, wi th 
variable length-records, and of no certain (between systems) 
format. 

As mentioned, there is no fixed agreement on terminology. 
Most of us disliked the term" indexed" for two reasons: it 
smacks of "indexed sequential" files, which are not being 
implemented; and it might conflict internally with many 
compilers which use the term "indexed" to describe variable 
access. Other suggestions are: 

replace "indexed" with "random"; "randomaccess"; "random" 
"access" (two keywords); the same, with "direct" in place of 
" r and om"; 0 r "re I at i v e" 

repl ace "indexed file" wi th "direct access store" or some 
variant thereof, the idea being to emphasize the distinction 
between the two lID concepts 

The reason for requiring a special declaration is that some 
systems need to know that a file is to be treated as random 

. access, either because such files differ physically from 

78 



sequential files or because different system routines must be 
used to process them. 

Operations: 

The following operations are the only ones defined for RAFs. 

RESET: open for input/output (and SEEK to position 1) 
REWRITE: create an empty file (and SEEK to position 1) 
SEEK: change the current position in the file 
GET: see below 
PUT: see below 
LENGTH: return the number of components in the file 
EOF: end-of-file predicate (see below) 

Note that the normal meaning of RESET and REWRITE are 
somewhatbl urred in the context (!)f ,random access files . Here, 
RESET is used to open a pre-existing file (either from the point 
of view of the external world or from that of the program; the 
latter does not make a lot of sense). REWRITE is used to create 
a RAF which is initially empty. After components have been 
added to the file, of course, these may be accessed as if a 
RESET had been (but need not be) done. 

The predicate (boolean function) EOF is true of the indexed 
file f, iff the position of the file (i.e., as of the last SEEK) 
is >= LENGTH(f)+1. The effect of SEEKing to a position beyond 
LENGTH(f)+1 is explicitly undefined, and is left for the 
implementor to define. Specific implementations should indicate 
what the effect will be. 

Version I, Variation 1 

This implementation treats the file buffer variable (fA) as 
a "window" into the file. In particular, it is al ways defined, 
and any modifications to the buffer variable imply an immediate 
(i.e., without any further action) corresponding effect on the 
file. 

In this variation the operations above are defined as follows. 

SEEK: defines the value of the buffer variable as that of 
the file component at that position 

GET: not defined 

PUT: valid only when EOF is TRUE and the current position 
is at the end of the file; this is the only way to extend the 
file. Note that, when EOF is TRUE, just modifying the buffer 
variable does not have an effect on the file. PUT must be done 
to ex tend. 

Version I, Variation 2 

This variation differs from the first in that the SEEK does 

79 



SECTION G PROPOSED EXPERIMENTS 

not define the file buffer variable. Specifically, the only 
effect of the SEEK is to inform the runtime support which 
component is to be involved in the next 1/0. The GET procedure 
must be invoked to give the buffer variable the value of the now­
current component. 

The operations are defined as follows. 

SEEK: "posi tions" the file, but does not affect the file or 
buffer variable contents. 

GET: gives the buffer variable the contents of the current 
component; advances the position by one 

PUT: puts in the file, at the current position, the current 
value of the buffer variable; advances the position by one 

Potential Problems with Version I 

There are problems with these treatments which deserve a 
close look. One of the major ones, and one which can be a 
problem for standard Pascal, is the treatment of the buffer 
variable when used as a VAR parameter. It is likely that the 
standard is going to disallow this usage, as an example of 
aliasing, but if that is not the case, the choices are run-time 
checking and arbitrary decision as to treatment. 

[Editorial Comment: Consider the following. 

var f: indexed file of t; 

procedure p(var b: t); 
begin --

b := expression of type t; 
end; 

begin p ( fA ) end. 

This fragment exhibits no aliasing, yet still causes 
problems when assignment fA := expr is interpreted as changing 
the file ('doing 1/0' if you wish). It requires no less than 
either a thunk or else automatic updating of the file after 
return from p. I don't think this can be avoided sl long as an 
assignment to the buffer variable is interpreted as changing 
the file itself. This is apparently the case for both 
Variations of Version I. (Variation 2 does not explicitly 
state what happens, but this effect is not mentioned as a 
difference from Variation 1.)J 

Another major implementation problem, which does not arise 
for sequential files, comes from the use of a "sliding window" 
buffer. This is an internal buffer, managed by the runtime 
support, which may contain more than one component of the file. 
For random access files of Variation 2, the following partial 
program shows up a problem if the buffer variable is implemented 
as a pointer into an internal buffer which can contain more than 
one com ponen t: 

80 

I 



f" := X; 
put( f); 
f":=y; 

~~~IIUN G PHUPU~tV tXPtHIMtNI 

seek(f,current + abigbunch);

In this example, the first assignment represents a
legitimate modification to the file (by virtue of the PUT);
however, the second does not. Thus, the efficiency of internal
buffering is lost, or the file buffer variable is turned into
another buffer.

Both variations are possibly in conflict with the
restriction recommended in 5.13 (sections C and -).

Random Access 1/0, Version II

This suggests a 'minimal' direct access file capability.
Only four operations are defined for 'indexed files'. The
operations are defined syntactically and semantically by four
Pascal procedures and functions. (All four conform to the
current standard except for the use of a predefined procedure
'abort the program'.)

If these operations are recommended as a conventionalized
extension, we suggest that an implementation be considered as
conforming to the extension if the provided operations have
identical semanatics and syntax.

1. Summary of defined operations.

Given f and indexed file of T, the only operations allowed on
fare:

file_length(f)

read_indexed(f,p,v)

write_indexed(f,p,e)

2. Formal definitions.

to return the number of components in
the file.

to cause f to have length zero.

to read into v the value of the p-th
component of f. The type of v must be
T (the component type).

to write into the p-th component of f
the value of the expression e. The type
of e must be T (the component type). A
new component is appended if
p = file_length(f)+1.

Clearly the procedures presented below do not provide an
efficient implementation. No attempt has been made to optimize
the source code. Nonetheless, it is fairly obvious that a
number of such optimizations are feasible.

81

~ ftype = {indexed} file of T;

function file length(var f:ftype)
{file length(f) is-rhe number of
var count: integer;

begin
count := 0;
reset(f);
while not eof(f) do

begi-n-
count := count + 1;
get(f)

end;
fire-length := count

end {fTle_length};

procedure make empty(var f:ftype);

~~CIIUN G PHUPU~~V ~XPEHIM~NT~

integer;
components in file f. }

{ make empty(f) causes f to be the empty file. }
begin -

rewr i te (f)
end {make_empty}

procedure read indexed(var f: ftype; p: integer; var v: T);
{ read indexed(f,p,v)-a5signs to variable v the value of

the "P-th component- of f }
var count: integer;

begin
If (p <1) or (p > file length(f)) then
-{ component index is-out of valid range }

abort the program
else - -
~gin

{ skip the first p-1 components of f }
reset (f) ;
for count := 1 to p-1 do get(f);
~eturn the value of the p-th component
v:= fA

end
end-rread indexed}

82

SECTION G PROPOSED EXPERIMENTS

proced ure wri te_indexed(var f: ftype; p: integer; e: T);
{ write indexed(f,p,e~ssigns to the p~th component of

f the-value of expression e. }
var count: integer;

f2: ftype;

begin
if (p < 1) or (p > file length(f) + 1) then
--{ component index is out of valid range-}

abort the program
el se - -
~gin

end

{ copy the first p-1 components of f into f2 }
reset(f); rewrite(f2);
for count := 1 to p-1 do
~egin

f2A := f";
get(f) ;
put (f2)

end;
{ assign e to the p-th component of f2, and skip the p-th

component of f. } ,
f2" := ej put (f2);
if not eof(f) then get(f)j
r-copy any components after the p-th from f into f2 }
while not eof(f) do

begin
f2" := f"j
get(f)j
put(f2)

end;
{ copy all of f2 back into f }
reset(f2); rewrite(f);
while not eof(f2) do

begi-n-
fA : = f 2" ;
get(f2)j
put (f)

end

end -rwrite_indexed}j

83

6.1 Encapsulation.

Add encapsulation capabilities for constants, types,
variables, and procedures and functions.

Recommendation and discussion:

We conclude that it is premature to recommend as a
conventionalized extension, any specific scheme for supporting
the facilities generally referred to as "encapsulation", and

dngled up with separate compilation and other topics.

[Note: We have however, in 6.2, made recommendation in the area
of external compilation which is a pre-requisite for
encapsulation.]

However, a great deal of progress in this area has been
achieved by several independent groups, three of whom ar~
represented among us.

We recommend, therefore, that these three implementations
be considered as informal experiments to determine the relative
merits or pitfalls of the various approaches. After sufficient
usage ("Beta site testing") of these implementations has been
recorded, we will be in a better position to decide, with some
confidence, which approach (if any) should be recommended.

In this preliminary report, we will not detail the
individual proposals. Rather, we will try to summarize the
aspects which unite and differentiate them. For this purpose,
we have adopted the following informal definitions:

Obj ec t =
Componen t
Program =

constant, type, variable, procedure, or function
= Collection of objects
Runnable collection of components

The three candidates for experimentation are proposals
from: 1) National Semiconductor Corp., 2) Tektronix, Inc., and
3) the UCSD Pascal Project. We list first the functional
capabilities that the proposals share, and then comment on their
differences.

Shared Functional Capabilities of Proposed Experiments in
Separable Program Components

1. Selective propag~tion of information made available by
a component, thus permitting the hiding of details of data and
algorithms.

2. Separate compilation of components.

3. Compile-time type security across (even separately
compiled) components (with no linker cha?ges required).

4. Mandatory single point definition of shared objects.

84

5. Long-lived variables of less-than-global scope
(providing the benefits of "own" variables without the
d ifficul ties) .

6. Renaming facility upon importation and exportation of
objects.

Differences:

The NSC and UCSD proposals are similar in concept but
differ in certain details. The Tektronix proposal embodies a
philosophy that is distinctly different from the others. This
has led to many differences of detail.

Among these differences are the answers to the questions:

1. Should the unit of encapsulation be co-existensive with the
unit of 'compilation?

2. To what extent should a renaming capability be
provided?

3. Is it necessary, possible, and/or reasonable to provide
automatically invoked data structure initialization?

4. How can access to non-Pascal components be provided?

6.2 Specify the syntax for separate compilation of Pascal
modules and procedures, and rules specifying what must
be recompiled when a procedure is changed.

Recommendation and discussion:

The following is an attempt to represent the agreement of
the discussion group on type-secure external compilation. No
new abstraction is being provided. This proposal does not
address the wider problem of encapsulation (see 6.1). In
particular the following interesting and possibly desirable
extensions are not considered:

1. Abstract data types

2. Information hiding (in particular the structure of
type s)

3. Use of languages other than Pascal

4. Renaming of identifiers

However, this proposal does not rule out these extensions and
could serve as a basis for further experiments.

[Editorial Comment: The accuracy of this representation has been
disputed.]

85

Type Secure External Compilation

This is a proposal for type secure external compilation in
Pascal. The proposal was developed from a variety of module
proposals, using the following criteria:

1. Must allow external compilation of all Pascal objects,
including constants, types, variables, procedures, and
functions.

2. Must support the development of libraries as well as
the piecewise development of large programs.

3. Must maintain type security across separately compiled
objects.

4. Must use existing linkers, as provided by most
operating systems.

5. Must involve minimal extensions to Pascal.

6. The unit of encapsulation is the unit of compilation.
This utilises the encapsulation normally provided by Linkers.

7. Must provide a base for experimentation with other
modularization methods.

6 . 2. 1 Th e pro po sal

The basic unit of modularity is the "compilation unit.' A
conpilation unit is simply that Pascal code which is compiled at
one time by the compiler. It contains the information necessary
to control communication with other compilation units.

<compilation unit> :: = <program> : <unit>

<unit> ::= <unit heading> <unit body> END.

<unit heading> ::= UNIT <unit identifier>;

<unit identifier> ::= <identifier>

The "unit" is a compilation unit which defines objects for
use by other compilation units. The "unit identifier" is a name
which is used by other compilation units to gain access to these
defined objects. The unit identifier is defined both in the
outer scope of the unit a.nd in the "external scope" of all
compiled objects. Different operating environments will
unfortunately have different definitions for this "external
scope" and the implementer will usually be forced to follow
these definitions.

A unit consists of an "interface part", which contains
those objects which are to be made available for reference by
other compilation units, and an "implementation part", which is
not made available (private).

86

~tCTIUN G PRUPUSED EXPERIMENTS

Some Pascal implementations may allow separate compilation
of the interface 'part and the implementation part of a unit, in
which ca~e the unit identifier serves to relate the two parts.

<unit body> :: = <interface part> l <implementation part>
<interface part <implementation part>

<interface part> ::= INTERFACE
<use clause>
<constant definiton part>
<type definition part>
<variable definition part>
<procedure and function heading part>

All objects defined in the interface part are made
available for reference by (exported) to other compilation units
which use this unit.

<use clause> ::= USES <unit identifier>
{, <unit identifier>} : l <empty>

When a unit identifier is named in a "use clause", those
objects defined in the interface part of that unit are made
available for reference in the scope of that use clause. This
is said to "import" the objects into that scope. We also speak
loosely of importing the unit, which means importing all the
objects in the interface part of the unit. Imported objects
become defined in the order in which they are mentioned in the
use clause.

In the case of a use clause in the interface part of a
unit, these objects are not automatically made available for
reference by compilation units which import that unit. Since
the objects in such a use clause will normally be required in

.. e definition of objects in the interface part, they must be
imported into any scope which imports that unit. Normal Pascal
rules about definition before use apply, so they must be
imported prior to any unit which imports them.

<procedure and function heading part> ::=
{<procedure or function heading>}

,<procedure or function heading> ::= <procedure heading>
<function heading>

The bodies of procedures and function declared in the
"procedure and function heading" part must be provided in the
implementation part for that unit.

The <implementation part> contains the bodies of all
procedures defined in the interface, and anyother objects
private to the unit.

<implementation part> ::= IMPLEMENTATION
<use clause>
<constant definition part>

87 .

SECTION G PROPOSED EXPERIMENTS

<type definition part>
<variable declaration part>
<procedur~ and function
declaration part>

The parameter list and result type of any procedures or
functions defined in the interface part are not repeated in the
implementation part. This is similar to the current treatment
of "FORWARD" procedures and functions within Pascal. All
objects which are defined or imported into the interface part
are available within the implementation part for that unit.

The objects imported into the implementation part need not
be imported into scopes which import the unit. This allows
implicit inclusion of units used only in the implementation.
This also allows mutual recursion between units, though some
Pascal implementation may disallow this.

The following modification to existing Pascal syntax allows
the importation of objects from externally compiled units into
the main program.

<program> . . -.. - < pr 0 g, ram he ad in g > < use c I au s e > < b 1 0 c k> .

Note that a use clause is allowed only in the global scope
of t~e program. This avoids semantic problems when objects are
imported into nested scopes, possibly with some parts hidden by
other declarations. It is also consistent with the conceptual
"external scope" in which unit identifiers are defined.

For eachprqgram there is only one instance of any unit,
even if that uni t is imported into many other' compilation uni ts.
Unit global variables, which are declared either in the
interface part or in the main scope of the implementation part,
have the same lifetime as variables within the global scope of
the main program. The values of these variables are retained
between calls to procedures within that unit.

There is no implicit initialization of units. Programmers
may program such initialization as a procedure to be explicitly
called.

6 . 2 • 2 An Ex am pI e

We illustrate the use of units with the ubiquitous stack,
but with some elaboration to illustrate more of the features.

{The following unit defines general types}

88

unit symbol_types; interface

type
s ym = (a s ym, b s ym, ...);
{other type defInitions}

end. {symbol types}
TThe following unit defines a stack of symbols}

unit symbol stack;
----ri1terface-

uses
symbol_types; {used in the interface}

procedure push sym(s:sym);
procedure pop sym;
function top sym: sym;
procedure inTt_sym;

implementation

uses
error_handler; {privateimportation}

const
stack max = 100;

var
cur top: O .. stack max;
stack: array [1 .. stack max] of sym;

procedure-push'sym; {note:parms not repeated}
begin -

if cur top < stack max then
oegin - -

cur top := cur top + 1;
stack[cur top]-:: s;

end -
else
--o0mb program('Symbol stack overflow');

{A procedure form error handler}
end; {push sym}

procedUre pop sym;
begin -

if cur top > 0 then
--cur_top := cur_top -1
else
~mb program('Symbol stack underflow');
end; T po p _ s y m }

89

function top sym; {note: type not repeated}
begln -

ilf cur top> 0 then
--top sym := stacKTcur top]
else - -
~mb program('Sumbol stack empty');
end- -,

procedUre init sym;
begin -

cur top := 0;
end; -

end {symbol stack}.
{The followIng program uses the symbol stack}

program use_stack(output);

uses
--SYmbol types, {needed before symbol stack}

symbol stack; {import the stack}

{use of the above}

end {use stack}

The first unit (symbol types) defines types which are
expected to see wide use throughout the program being
impl emented .

The second unit (symbol stack) defines a more specialized
object which uses a type defIned in symbol types. In addition,
within the implementation, it uses a procedure defined within
the unit error handler.

The main program imports both symbol types and
symbol stack, and may freely use identifi~rs defined within
them. -Since a type from symbol types ~s required within the
interface of symbol stack, symbol types must be'imported prior
to symbol_stack. - -

Note that error handler may be used by many units
throughout the program, but there is still only one instance of
the error handler unit.

6.2.3 Rationale

This section gives the rationale behind specific decisions
embodied in the proposal.

6.2.3.1 Environments

In Pascal News #12 Rich LeBlanc proposed the compilation of
"environments". This was rejected as an approach because it
did not lend itself to the construction of libraries, only

90

....., V .L ..L '-' I... U I. 1\ """ I '-J....., '-' '-" ~.I\' I a..... I. \ ..L I 1 a..... I" .L,

small parts of which will be used by any single program. It
seems very well suited for developing large programs.

6.2.3.2 Separate Interface and Implementation

The interface and the implementation were separated for two
reasons.

1 . Th e com p i 1 e rca n get all 0 f t he i n t e r fa c e d a t a i t
requires by a simple textual scan of the interface part, thus
requiring minimum change to existing compilers.

2. With separate interface and implementation, it is
possible to change the implementation without affecting those
programs which use the interface. This avoids some
recompilation. In addition, an implementation may allow
separate compilation of the interface and implementation for a
unit.

6e2.3.3 No implicit Importation

If a unit is imported into an interface part, it is not
implicitly imported into units which import that interface. To
allow this has at least two consequences which can complicate
the compiler.

1. A compiler may have to do an arbitrarily deep file
search to get data on all implicitly imported units.
Alternative implementations are certainly possible, but also add
compilation.

2. If a unit is imported into a scope twice, by direct or
indirect paths, the compiler must detect this and avoid
duplicate entries into the symbol table. In addition, it must
check that all imports are the same type. This becomes even
more complicated if imports are allowed in nested scopes, or
with renaming.

6.2.3.4 All Items in the Interface are Imported

This provides minimum change to existing compilers.
Im~lementations wishing to extend this way add explicit export
lists to the interface. Hiding the structure of exported types,
as is done in Modula, was considered to be outside the scope of
external compilation and to be a major change form Pascal. It
also requires additional notation to specify when the structure
is or is not to be exported.

6 .. 2.3.5 Require Prior Importation of Interface Imports

This iestriction is included to allow compilers to have
the data which they need to parse the interface. It is
consistent with the general philosophy of Pascal, which requires

91

definition before use.

6.2.3.6 Imports Allowed in the Implementation

This was included to allow implicit nesting and modular
libraries. It does present possible difficulties in the case of
mutually referencing units, and implementations may forbid'
this.

6.2.3.7 Importation Allowed Only in Outer Scopes

This avoids problems with part of the definitions needed by
a unit being hidden by intervening declarations. It is also
consistent with existing linkers, which do not usually have the
concept of "scope".

6.3.2.8 Single Instance of a Unit

This is basically the issue of abstract data types. If
multiple instances of a unit are allowed, each instance can be
considered an instance of an abstract data type defined by that
unit. This was considered to be outside the scope of external
compilation. If a user wants to implement abstract data types,
he can do so by defining a type for the storage structure for
that data type, allowing tha user to define variables of that
type, and passing that type as a parameter to routines of the
unit. See the discussion in the Modula papers for more data.

6.3.2.9 No Initialization Part

If a unit is imported into multiple scopes, such as a main
program and an implementation part of another unit, some means
is needed to avoid multiple initializations. Since
initialization is easily programmed by the user as procedure, no
initialization part is provided.

6.2.4 Implementation Notes

These notes describe a trial implementation on a Univac
1110. The Univac linker allows 12 character alphanumeric
symbolic references between compilation units. The filing
system makes a file search form compiler relatively simple.

The general approach is to' st6re the interface as a
symbolic file, generated by the compiler as a side-effect of
compilation. A unique reference identifier is generated for
each compilation unit, and this is used at compile time and link
to provide diagnostics.

1. Storage for variables in the interface and
implementation is allocated at compile time. The unit
dentifier is externally defined as the address of the start of

92

SECTION G PROPUS~U .~XP~HIM~NTS

this block of storage.

2 . Ge n era tea "c he c kid en t i fie r " for the un it. Th e d ate
and time of compilation are expressed as the number of seconds
since 00:00,1 Jan 78, then encoded base 32. This results in 6
alpnumeric characters. This result is appended to the unit
identifier (up to 6 characters) so that the linker messages will
make sense to the user.

3. Generate an external definition for this check
identifier within the object module produced for the unit being
compiled. The value of this definition is not important. Any
unit of program which imports this unit will generate an
external reference to this same check identifier. If the unit
has been recompiled since the importing unit, the linker will
fail. It would be possible to change this check identifier only
when the interface part is changed, which avoid some
recompilation. This is not proposed for the initial
implementation.

4. Generate an external definition for each exported
routine, the same conventi9ns currently used for external
routines is used.

5. When compiling a unit, generate an attribute file which
can be located by the compiler from the unit identifier for
that unit. This file is a textfile built according to the
following syntax. .

<attribute file> <unit heading> <interface part> end.

change:

<unit identifier> ::= <identifier> [<check identifier>]

<check identifier> ::= as described above

This description file contain~ the interface part for the
unit, augumented by the check identifiers for this unit and
all units imported into the interface part.

6. The definitions and declarations in the interface are
treated as though they are in the outer scope of the
implementation part, and the procedure and functions are
treated as "forward" declarations. The implementation part is
then compiled as usual.

7 . Th e com p i 1 e r m a in t a ins ali s tin t ern a 11 y 0 fun i t
identifiers and their corresponding check identifiers. When
the compiler encounters ~ use clause in a program or
impl ementation, it does the' followi ng for each uni t identi fier
contained therein:

1) Locate the attribute file for that unit.

2) Pars~ that attribute file with a slight modification to
the normal parser.

93

3) The unit idenitfier and check identifier are compared
with the internal list, and entered if unique. An external
reference to the check id~ntifier is compiled in the object
mod ul e.)

4) For all units imported into the interface, their unit
identifiers and' check identifiers are checked against the
internal list, and must match identically.

5) All declarations are entered into the symbol table
normally, with procedures and function declared as external.

7 • 1. Co n cur r en c y

Add concurrent process facilities, ala Concurrent Pascal,
Modula (and 7.2 The addition of interrupt handling facilities).

7.1.1 Introduction

It is the consensus of the workshop that the concurrency
and interrupt handling topics be recommended for experimental
implementation. The goal of this paper is to find minimal
extensions to Pascal which will permit experimentation with
concurrency and/or interrupt handlers that can be coded in
standard Pascal (with the exception of those specific features
which are needed for concurrency or interrrupt handling). The
specific features in this area of application should be
expressed as nearly as possible in the spirit of Pascal.

In the process of this group's sessions we have heard
reports on the mechanisms for expressing concurrency in several
higher order languages, including Concurrent Pascal and MODULA.
We have found that it is impossible to settle on a standard set
of higher level mechanisms for concurrency at this point; that
in fact, implementing a full set of such mechanisms can only be
implemented cleanly by creating a new language, or switching to
one of the already existing concurrent languages, such as those
mentioned above. However, we think it may be possible to
recommend a set of lower level primitives which can implement
any program which can be expressed by any of those programming
languages. The cost of such primitives is the lack of user
protection present in the higher level languages, yet we
encourage experimentation with higher level constructs
translated into Pascal with a preprocessor.

It must be observed that there is a severe cost entailed in
all these proposals. Whereas a large portion on Pascal has been
defined axiomatically [6J, these axioms hold only under very
strict conditions if a program consists of parallel paths ..
These conditions cannot be enforced by the low level mechanisms
which will be introduced here, and the axioms therefore become
theorems to be proven for each statement with respect to every
combination of states of all parallel paths.

94


~~~l~UN u ~HUPUSED EXPERIMENTS 

A second problem is that concurrency has a major impact on 
many features of Pascal, many of which are difficult to assess. 
Examples of affected parts are scope rules (what can a 
descendant process reference, how can you reference variables of 
a process which has terminated, etc.), and recursion and dynamic 
allocation of variables (where can you put the space these will 
take up since the storage for processes cannot be allocated in a 
stack-like manner). It was from this morass of impossible 
decisions that we decided that if someone wants higher-level 
mechanisms for concurrency at this time, he would do well to 
switch to another language, although he might continue to write 
his sequential code in Pascal, as most users of Per Brinch 
Hansen's Concurrent Pascal do. 

Thus we became convinced that any specific recommendations 
for Pascal extensions must restrict themselves to lower level 
primitives which minimally impact the language, but which depend 
on quite knowledgeable programmers. Two solutions were 
proposed. The first proposal (Alternative One) extends the 
language with operations on semaphores and is presented in 
section 3. The second proposal (Alternative Two) attempts to 
specify an even "lower level" set of primitives which would 
provide greater flexibility for those who need it, and is 
presented in section 4. 

7.1.2 Creating Concurrency 

Both proposals use essentially the same mechanism for 
creating the possibility of concurrent execution. A process is 
declared along with procedures and functions using the following 
syntax: 

<process declaration> ::= <process heading> <block> 

<process heading> ::= process <identifier> ; : 
process <identifier> ( <formal parameter section> 
{; < for mal par am e t e r sec t ion> } );' 

and invoked like a procedure call (Alternative One) or as a. 
function call (Alternative Two). 

The syntax of the block is now affected as follows: 

<block> ::= <label declaration part> <data declaration part> 
<procedure and function declaration part> 
<process declaration part> <statement declaration part> 

<process declaration part> ::= {<process declaration>;} 

Some implementations may wish to impose the following 
restrictions: 

1) All parallel processes must be declared at the highest 
level. This is to avoid impacting Pascal's lex level 
structure. It also makes it impossible for a descendant 

95 



SECTION G PROPOSED EXPERIMENTS 

process to persist beyond the scope in which it was declared. 

2) 'Processes may only be invoked in the outer block. 

3) All var parameters must be handled using call by reference. 

4) Memory requirements for processes must be calculable at 
compile time. This requires that if execution of the process 
could result in recursive procedure execution, the user 
provides (via pragmat) the maximum possible number of 
simultaneous activations of a procedure. This allows all 
memory for processes to be statically declared. 

7 . 1.3 Al ternati ve One: Semaphores 

7.1.3.1 Introduction 

A process in invoked by a process statement, which has the same 
syntax as a procedure call. 

<process statement> ::= <process identifier> : 
<process identifier> «actual parameter>{, 

actual parameter>}) 

<process identifier> ::= <identifier> 

Once parallel processes can be declared and invoked, we 
need constricts for their safe cooperation: 

a) they should be able to synchronize with each other 

b) competing for scarce resources has to be resolved; this 
includes the creation of mutual exclusive access to shared data. 

Dijkstra [5] has shown that both type of cooperation can be 
achieved with two operations (called uP" and "V" ) on 
semaphores. We have chosen for the extension of Pascal with 
semaphores, and not with higher level constructs like monitors, 
despite the fact that higher level constructs are safer to use. 
We have done this for the following reasons: 

1) At this experimental stage we do not want to impose any 
higher level mechanism on the user (like monitors, messages, 
boxes). We would like to remain flexible. 

2) Yet it is possible to implement for example monitors as 
defined in Concurrent Pascal [2] and Modula [3] with semaphores. 
Thus it is possible to write a preprocessor to translate these 
higher level constructs into operations on semaphores. Section 
3.3 shows how the various monitor definitions can be 
implemented with semaphores. 

3) Although operations on semaphore are at a low level, 
they are by no means at the lowest "inhibit interrupt" level. 
The user does not have to write a scheduler, since semaphore 
operations perform implicit scheduling. However he has some 

96 



~~CllUN G PHUPU~~U ~XP~HIM~Nl~ 

control over scheduling, as is shown in se6tion 3.4. If the 
user wants even more freedom, he should use the lower level 
approach of Alternative Two (see section 4). In section 3.4 it 
is also explained why a third operation on a semaphore, called 
"awaited" is desirable. 

4) The starting of a process on an 
conveniently be mapped on the semaphore 
process wants itself to be continued by 
executes a P operation on a semaphore. 
will generate a V operation on the same 
is given in section 3.5. When testing, 
simulated by a V operation performed in 

interrupt can 
operations. When a 
an interrupt, it 
The interrupt internally 
semaphore. An example 
interrupts can be 
the program itself. 

5) It appears possible with a minimum extension to Pascal 
(a predefined type "semaphore" and three predefined procedures 
and functions) to provide a mechanism for the cooperation 
between concurrent processes and the mapping of interrupts that 
will be sufficient for many applications. 

7.1.3.2 The Proposed Extensions 

The detailed proposal is as follows: 

1. There is a predefined type, called "semaphore". A 
variable of type "semaphore" is essentially a non-negative 
integer with an associated queue of waiting processes. This 
queue may be empty. Apart from the predefined procedures and 
functions desc~ibed below, a semaphore variable acts as an 
integer. In particular assignment to an integer value (for 
initialization) and comparison with an integer value are often 
used. 

2 . Th ere i sap red e fin e d pro c e d u r e, c all e d " P ", t hat has 
as parameter a variable of type semaphore: 

P (var serna: semaphore) (* serna > = 0 *) 

with the following definition: 

if serna> 0 then serna := serna -
else put process in queue of serna 

3. There is a predefined function called "V", that has as 
parameter a variable of type semaphore: 

V (var serna: semaphore) (* serna >= 0 *) 

with the following definition: 

if serna queue not empty 
then dequeue process from serna queue and continue it 
else serna := serna + 1 

4. Th ere i sap red e fin e d fun c t ion, c all e d "a w a i ted", t hat 
has as parameter a value of type semaphore: 

97 



SECTION G PROPOSED EXPERIMENTS 

awaited (serna: semaphore) : boolean 

with the following definition: 

false if serna queue empty 
true otherwise. 

5. Association between a specific interrupt (e.g. address, 
level) and a variable of type semaphore is done via pragmats. 
No syntax is given here because the interrupt systems vary 
considerably between different installations. The connection 
between a process and priority level is also done with pragmats. 

Note: The names "P" and "V" are proposed here to emphasize that 
they represent the same operations as originally proposed in 
[5 J, and because the terms "SIGNAL" and "WAIT", which are 
sometimes used to denote the same operations, have too many 
other possible connations. 

7.1.3.3 Implementation of Monitors with Semaphores 

7.1.3.3.1 Comparison of different Monitors Concepts 

Hoare defines in [1 J the monitor construct. For 
synchronization he uses the operations 'signal' and 'wait' on a 
variable of type 'condition'. Any number of processes may be 
waiting in the queue of a 'condition' variable. 

Wirth [3J uses an interface module, with the operations 
'send' and 'wait' on variables of type 'signal'. A 'signal' is 
equivalent to a 'condition' except for one difference in the 
definition of the 'send'. In Hoarets monitor concept only the 
'wait' operation is a singular point in a monitor, that is at 
anyone time any number of processes may be positioned at 'wait' 
operations but only one process is executing. Wirth [4'J 
specifies that also 'send' operations are singular points, that 
is at anyone time any number of processes may be positioned at 
'wait' or 'send' operations, but only one process is executing a 
monitor procedure. 

Brinch Hans~n's monitors [2J are essentially the same as 
Wirth's interface modules. The synchronization operation are 
called "continue" and "delay" on variables of type "queue". 
Contrary to Wirth's and Boare's solution, at most one process 
may be waiting in a "queue". 

Consequently when implementing monitors with semaphores, 
Hoare's monitors need one extra semaphore in order to ensure 
that if a process leaves the monitor any process that was held 
on a 'signal' or 'continue' operation first gets control before 
other processes can call a monitor procedure. 

3.1.1. Implementation of Hoare's Monitor 

98 



;:) .t. L 1 1 U 1'J \..J t" 1'\ U t" U oJ J:.. 1) J:.. At" J:.. n 1. 1"1 J:.. 1'1 1 U 

Hoare presents in [1J an implementation of a monitor, 
together with the operations 'signal' and 'wait', with (binary) 
semaphores. There are two semaphores requir~d for the monitor 
itself: 

mutex (initially = 1) for the mutual exclusion of the entire 
monitor. 

urgent (initially = 0) for the continuation of any process held on a 
'signal' operation before mutex is released. 

In order to be able to test whether there is any process in 
the queue of 'urgent', we need a counter 'urgentcount', which 
should be incremented just before the 'signal' operation and 
decremented after the continuation of the process. 

Thus when a process leaves the monitor, that is after a 
'wait' operation or at the end of a monitor procedure, we need 
the statement: 

if urgentcount > 0 then V(urgent) else V(mutex) 

For every variable of type 'condition' a separate semaphore 
is required. As an example: 

var condvar : ~ondition; condsem : semaphore; 

A 'wait' operation includes P(condsem). However a 'signal' 
operation should only perform V(condsem) if any processes are 
waiting for 'condsem'. Therefore another variable has to be 
introduced that contains the number of processes waiting in the 
queue of 'condsem': 

var condcount : integer; 

'Condcount' is incremented before every 'wait', and 
decremented after the continuation of the waiting process. 

The implementation of the monitor and the operations 
'signal' and 'wait' can now be coded as follows: 

monitor entry: 

P(mutex) 

monitor exit: 

if urgentcount > 0 then V(urgent) else V(mutex) 

, wa it' : 

condcount := condcount + 1; 
if urgentcount > 0 then V(urgent) else V(mutex); 
PCcondsem); ----
condcount := oondcount - 1 

'signal' : 

99 



SECTION G PROPOSED EXPERIMENTS 

urgentcount := urgentcount + 1; 
if condcount > 0 then begin V(condsem); 

---- P(urgent) 

urgentcount 
end; 

urgentcount -

Notice that in the 'wait' operation the process first 
releases the monitor to another process by executing V(urgent) 
or V(mutex) before executing P(condsem) which may be delayed for 
some time. However this does not matter since condcount was 
incremented before the process released itself from the monitor. 

Example: 

assume process A is in the monitor and executes wait(condvar) 
process B is trying to enter the monitor and will perform 

signal(condvar) 
and at this time condcount = urgentcount = condsem = mutex = 0 

We may get the following dynamic execution pattern: 

process A executes wait(condvar) 

condcount := condcount + 1; 
V(mutex) 

(* condcount = 1*) 
(* process B enters monitor *) 

after some time process B executes signal(conQvar) : 

V(condsem) (* condsem = 1; process A continues *) 

process A finishes the execution of wait(co~dvar) 

P(condsem) 
condcount := condcount - 1 

(* condsem = 0 *) 
(* concount = 0 *) 

Since 'condcount' is incremented before the mutual 
exclusion is released by the 'wait' operation, P(condsem) can be 
performed afterwards. Notice also that replacing 'condsem' and 
'condcount' by a general semaphore would not work in this case. 

7.1.3.3.2 Implementation of Wirth's interface modules 

The implementation if Wirth's interface modules is simpler, 
since the semaphore 'urgent' and the variable 'urgentcount' can 
be omitted: 

interface module entry: 

P(mutex) 

interface module exit: 

V(mutex) 

'wait': 

100 



condcount := condcount + 1; 
V(mutex); 
P ( co nd sem) ; 
condcount 0- condcount - 1; 

'send' : 

if condcount > 0 then 
begin 

V(condsem); 
P(mutex) 

end; 

~~CIIUN G PHUPU~~V ~XP~HIM~NI~ 

7.1.3.3.3 Implementation of Brinch Hansen's Monitor 

The implementation of Brinch Hansen's monitor is 
essentially the same as Wirth's interface module, except that at 
most only one process can be held in the semaphore 'condsem'. 
The program should make sure that this is the case. The 
variable 'condcount' should now be defined as: 

var condcount: 0 .. 1 

and run-time checking can be performed. 

7.1.3.4 Scheduling strategies 

7.1.3.4.1 Scheduling with Signals 

The definition of the semaphore in [5J stipulates that a V 
operation releases that process that is waiting longest (FIFO 
stategy). In actual situations another strategy may be 
required, for example one based on priorities. This is 
presumbly one of the reasons why Brinch Hansen's 'queue' 
variables can have at maximum only one process waiting, thus 
hinting to make arbitrary strategies by using a~rays o~ 'queue' 
variables and performing 'continue' operations according to the 
desired strategy. However this means that even for 
implementation of a simple FIFO strategy a sizeable program is 
required. 

Hoare introduces so-called 'scheduled waits' 

condvar.wait(p) 

in which p denotes the priority of the waiting process in the 
queue of 'condvar'. The execution of 

condvar.signal 

will wake up the highest priority process waiting on 'condvar'.: 

Wirth introduces so-called 'ranks' for the same purpose. Assuming 

var s : signal; 

101 



~~CTIUN G PROPOSED EXPERIMENTS 

r : integer 

the corresponding operations Hre: 

w~it(s,r) and 
send(s) 

1.1.3.4.2 Scheduling with Semaphores 

Scheduling can be controlled if we introduce for every 
variable of type 'condition' an array of semaphores. 

For example if we want 'priority 'scheduling we introduce 

const 
type 
var 

n = .....; (* highest priority *) 
priority = O .. n; 
condsemarray : array [priority] of semaphore; 
i : priority 

If we want to perform a 'wait' operation while giving the 
process a priority i in the queue, the operation P(condsem) has 
to be replaced by : 

P(condsemarray[i]) 

The 'signal' operation should wake up the process with the 
highest priority. Therefore we ought to know whether any 
processes are waiting on the semaphores in 'condsemarray'. 
Hence the single variable 'condcount' has also to be replaced by 
an array : 

var condcountarray : array [priority] of integer 

Introducing the boolean variable 

var condfound : boolean 

we can implement the 'signal' operation as follows 

urgentcount := urgentcount + 1; 
i : = n; cond found : = fal se ; 
repeat 

condfound := condcountarray[i] > 0; 
i := i - 1 

until condfound or i = -1; 
if condfound thenbegin V(condsemarray[ i]); 

---- P(urgent) 
end; 

urgentcount := urgentcount -1 

7.1.3.5 Testing whether Process queue is empty 

Hoare introduces in [1] another operation on variables of 
type 'condition' in order to test whether any processes are 
waiting on a particular 'condition' variable : 

102 



~~C~lUN G PHUPUS~D EXPERIMENTS 

condvar.queue 

which yields the value true if any process is waiting on 
'condvar' and false otherwise. 

Wirth docs the same in [3] with variables of type 'signal': 

awaited( s) 

This function is very convenient since there is no other 
way of finding out whether any processes are waiting apart from 
keeping counters as we did before. 

Let us introduce the following function with a semaphore as 
parameter : 

awaited (serna: semaphore): boolean 

which returns the value true if any process is waiting on 
'serna', and false otherwise. This would simplify the 
implementation of the priority scheduling since the array 
'condcountarray' is no longer required. 

The body of the repeat statement in the implementation of 
the 'signal' operation now becomes: 

repeat 
If awaited(condsemarray[i}) then condfound := true; 
1:= i - 1; 

until condfound or i = -1; 

7.1.3.6 Interrupts and Semaphores 

The following example shows how interrupt routines can be 
written using semaphores. 

(* pragmats *) 
sem1 [34HJ; (*associates sem1 with interrupt location hex 34*) 
tty [6J; (*gives' process tty priority level6*) 
(* end of pragmat *) 

program main 

var sem1,sem2: semaphore: 

process tty (var s: semaphore); 

begin 
while true do 
begIn 

p (s) ; 
(* body of interrupt routine *) 

end 
end; (* tty *) 

103 



begin 
sem1 
sem2 

(* . -
. -

main 
o . , 
O· , 

tty (sem 1 ) ; 

tty (sem2); 
V (sem2); 

0C~1~UN ~ ~KU~U~~U tXPtHIMENTS 

* ) 
(* initialization of semaphores *) 

(* start parallel execution of tty *) 

(* start parallel execution of tty *) 
(* give 'software' interrupt *) 

end (* main *). 

The invocation of 'tty' concurrently with 'main', however 'tty' 
will immediately be held on the semaphore 's£m1 '. An interrupt, 
which produces V (sem1), will make the process 'tty' execute one 
cycle, until it is again held at P (sem1). 

At the end of the program 'main' an example is given of another 
invocation of 'tty' with a different semaphore as parameter. The 
interrupt is now generated by the statement V (sem2). 

7.1.4 Alternative Two: Indivisible Sections 

A second suggestion for experimentation is a lower-level 
set of primitives for controlling concurrency. The extensions 
provide only facilities for making a section of code execute 
indivisibly and for selecting the process to be allocated the 
proc£ssor. This very primitive facility was chosen for two 
reasons. 

Using these extensions it is possible to describe in 
Pascal the higher level operations which are considered as 
primitives in other models. It is also possible (and of course 
necessary) to describe the processor scheduling algorithm (thus 
allowing direct user controlled scheduling which is not possible 
when the scheduler is buried in the operating system kernel). 

Secondly, the primitive operations of most models for 
concurrency are defined as executing indivisibly. If the 
extensions to Pascal provide'a weaker set of indivisible 
primitives (ie P and V only), much of their use would be in 
providing indivisibility for the more complex operations -a 
possible waste of their power. (Since the more complex 
operations are still short and provide a queuing mechanism, 
queuing is not required in the indivisibility mechanism.) 

7.1.4.1 The Extensions 

The extensions require the following prA-defined types 
and functions: 

104 



~~CTION G PROPOSED EXPERIMENTS 

process_id = (id1 ,id2,id3,id4, .... ); 
{implementation dependent} 

place = (proc1,proc2, .... ); 
{implementation dependent} 
{required for multi-processor systems only} 

function whoamI : process_id; 

function wheramI: place; {multi-processor only} 

procedure cause interrupt(p: place); 
{the interrupt to be caused must be specified 

in a pragmat} 
{multi-processor only} 

A new statement is also required and is defined in examples 
given below: 

var 
--- t1,t2: process_id; 

process task( .... );. 
<procedure body>; 

~ beg in 

end. 

{ .... } 
t1:=task( ..... ); {process invocation is a function} 

{returning the id of the new process} t2:=task( .... ); 

{ ..... } 

indivisibly do 
{ only one indivisible statement may be 

executed at one time } 
{ the statement will execute completely 

without interruption } 

{ • • . .• < s tat em en t 1 is t > } 

switching to t1; {expression of type process id} 
r-before releasing indivisibility the 

processor executing this statement is 
switched to the process indicated} 

{ .... } 

7.1.4.2 Interrupts 

The interrupt system cap then be modeled by the following 
Pascal code: 

105 



var 

SECTION G PROPOSED EXPERIMENTS 

what now (intl,int2, .. ,intN); 
{ specifies which interrupt has 

occured } 
interrupt_assignment: array [intl .. intN] of 

process id; 
the association between particular interrupts 
and particular processes are established using 
pragmats - the user has no access to the above 
varIables} 

indivisibly do 
sWItching-to interrupt_assignment[what_now]; 

An interrupt may be simulated by executing equivalent code. 

,A process responding to an interrupt (as the result it's 
process id being in interrupt assignment [what now] when the 
above code was executed {or sTmulated}) would Took like; 

process task; 
begin 

{ ....... } 
indivisibly do 

{ ...... }-
switching to <id of some other process>; 

repeat 
{ ......... } 
indivisibly do 

{ ...... } 
switching to <id of some other process>; 

until false 
end; 

The process is activated once and executes the loop body 
once for each interrupt. 

If the body of the endless loop which is executed for each 
interrupt contains a single'indivisible statement, a more 
efficient implementation would place that statement in the 
interrupt system. This would reduce the number of context swaps. 

If for a particular application it was more desirable to 
have interrupts represented as V operations, either the process. 
switched to could execute a V, or a different pragmat could 
associate a semaphore with a particular interrupt instead of a 
process. 

7.1.4.3 The Scheduler and Queues 

The first step in creating a more useful set of operations 
is to provide a scheduler. A possible definition is shown below: 

type 
run status = set of process_id; 

106 



;:) t. L T 1 U N l; PH 0 PO SED E X PER 1 MEN T S 

var 
ready: run status; 
next, scheduler_id: process_id; 

process scheduler(var r:run status); 
begin ---

while true do 
indivisibly do 

{ ...... -} 
n ex t : = ••••• 

switching to next; 
end; 

begin 
-----scheduler id:=scheduler(ready); 

{ ....... }-
end. 

In addition the operations defined using this scheduler will use 
a double ended queue or deque for local storage. The sections 
which follow assume the following functions and procedures are 
available: (user written in standard Pascal) 

procedure empty deque(var d: deque); 
,functlon number-waitingTVar d:deque): integer; 
procedure on taTl(p: process id; var d: deque); 
pro c e d u'r eon - h e a d ( p: pro c e s s - i d; va r d; de que) ; 
functlon off-tail(var d: deque): process id; 
function off-head(var d: deque): process=id; 

7.1.4.4 Implementation of P and V 

We will now write (extended) Pascal procetlures for the 
standard synchronization primitives P and V: 

type 
----semaphore = record 

count: O .. maxint; 
holding: deque 

end; 

procedure P(vars: semaphore); 
var next:-process id; 
begin -

indivisibly do 
with s do -
----rT count> 0 

-then begin 
count:= count-1; 
next: = whoamI 

end. 
else be'gin 

on tail(whoamI,holding); 
ready:=ready-[whoamI); 
next:=scheduler id 

107 



end 
switching to-next 

end; 

procedure V(var s: semaphore); 
v a r n ext: Pro c e s sid '; 
oegin -

indivi$ibly do 
with s do --

:)'tCIIUN G PROPOSED EXPERIMENTS 

--rT numoer waiting(holding) > 0 
-then begin 

ready:=ready+[off head(holding)]; 
next:=scheduler ia 

end 
else t:>egin 

count :count+1; 
next: =whoamI 

end 
switching to-next 

end; 

7.1.4.5 Concurrent Pascal 

As a second example of the use of the extended Pascal we 
give below code for four functions which would be needed to 
implement Concurrent Pascal using a pre-processor: (two - Delay 
and Continue - are in Concurrent Pascal and calls to the others 
which control monitor entry would be generated by the pre­
processor) 

type 
----monitor = record 

gate: boolean; 
holding: deque 

end" ---' 
procedure Enter monitor(var m: monitor); 

var next: process id;--
begin -

indivisibly do 
wlth m do -­
-----rr g ate 

-then begin 
gate:=false; 
next: =whoamI 

end 
else 'b"egin 

on tail(whoamI,holding); 
ready:=ready-[whoamIJ; 
next:=scheduler id 

end 
switching ~next 

end; 

1 08 



~~~llUN G p~UYU~tV tXPERIMENTS 

procedure Delay(var m: monitor; var d: deque);
var next: process id;
begin -

indivisibly do
with m do -
~gin-

on tail(whoamI, d);
ready:=ready-[whoamI];
if number w~iting(holding) > 0
--then ready:=ready+[off head(holding)]

else gate:=true; -
next:=scheduler id

end
sWitChIng to next

end' -
--'

procedure Continue(var m: monitor; var d: deque);
var next: process id;
begin -

indivisibly do
with m do -
--rr number waiting(d) > 0

-then begin
ready:=ready+[off head(d)];
next:~scheduler ia

end
else be"gin

gate:=true;
next:=whoamI

{process calling Continue must leave monitor
and should not call Exit monitor}

end
switching t()next

end;

procedure Exit monitor(var m: monitor);
var next: process id-;-
begin -

indivisibly do
with m do -
--rr number waiting(holding) > 0

--then begin
ready:=ready+[off head(holding)];
next:=scheduler id

end
else begin

gate:=true;
next: =whoamI

end
switching to-next

end;

109

~tCTION G PROPOSED EXPERIMENTS

7.1.5 References

1. HOARE, C.A.R.
Monitor~: An Operating System Structuring Concept
Communications ACM vol. 17, no. 10 (Oct. 1974)

2. BRINCH HANSEN, P.
The Programming Language Concurrent Pascal
IEEE Transactions On Software Engineering vol 1, no. 2

. (June 1975)

3. WIRTH, N
MODULA, A Language For Modular Multiprogramming
Software - Practice and Experience vol 7, 3-35 (1977)

4. WIRTH,N
Design And Implementation Of MODULA
ibid.,67

5. DIJKSTRA, E.W.
Hierarchical Ordering Of Sequential Processes
Acta Informatica vol 1, 115-138 (1971)

6. HOARE, C.A.R. and WIRTH, N
An Axiomatic Definition of the Programming Language Pascal
Ac ta In formatoca Vol 2, 335-355 (1973)

7 . 2 (Inc 1 ud e din 7. 1)

110

UCSD WORKSHOP ON SYSTEM PROGRAMMING EXTENSIONS

TO THE PASCAL LANGUAGE

CONVENER

Kenneth L. Bowles

PARTICIPANTS

Tony Ad d ym an

Durga Agarwal

John Ahlstrom

Roger Anderson

Don .Baccus

Jeff Bahr

Michael S. Ball

Win sor Brown

Dav id Bulman

Joe Caporaletti

Richard J. Cichelli

Joe Co in tm e n t

Bob Dietrich

Stephen Dum

Glen Edens

Norm Finn

Steve Frankl in

Jim Greenwood

Al Hartmann

Institute for Information Systems

University of Manchester, England

National Semiconductor

Olivetti

Lawrence Livermore Laboratories

Oregon Minicomputer Software

National Semiconductor

Naval Ocean Systems Center

General Automation

Pragmatics, Inc.

NCR Corporation

ANPA Research Institute

Texas Instruments

Tektronix, Incorporated

Tektronix, Incorporated

National Semiconductor

Rolm Corporation

University of California,Irvine

Lawrence Livermore Laboratories

Intel Corporation

11 1

Charles Haynes ----Carl Helmers

Scott Jameson

Dick Karpinski

Dennis Kodimer

Walt Kosinski

Warren E. Lop~r

Eugene Martinson

David C. Matthews

Craig Maudl in

Terrence C. Miller
~-.---_/

James F. Miner

Gabe Moretti

Mark D. Overgaard

William Price

Br uce Ravenel ,.. ____ --"--

Ruth H. Richert

Arthur H. J. Sale
.------

William F. Shaw

Kees Smed ema

Barry Smith

Don Story

Robert Strahl

Skip Stritter

Jeffrey M. Tobias

Justin Walker

David Weil

Richard Woodward

Basic Timesharing, Inc.

Byte Publications

Hewlett Packard Corporation

Northwest Microcomputer Systems

Terak Corporation

General Autom9tion

Naval Ocean Systems Center

Data 100 Corporation

Process Computer Systems

Renaissance Systems

Institute for Information systems, UCSD

University of Minnesota

Signetics Corporation

Institute for Information systems, UCSD

Tektronix, Incorporated

Language Resources

Burroughs Corporation

University of Tasmania, Australia

Systems Engineering Laboratories

Philips Laboratories
;

Oregon Minicomputer Software
\ , I

General Automation

Signetics Corporation

Motorola, Incorporated

AAEC Research Establishment

National Bureau of Standards

Boeing Computer Services

American Microsystems, Inc.

112

STAFF

from the Institute for Information Systems

Chip Chapin
Greg Davidson
Al bert Ho ffman
Peter Lawrence
Joel Mc Co rmack
Keith Shillington
Richard Sites
Dennis Vol per

and Rodney C. Steel from Tektronix, Inc.

11 3

