
DOCUMENTS

PDP-11 Version 2.9

July, 1983

Second Berkeley Software Distribution
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley. California 94 720

DOCUMENTS

PDP-11 Version 2.9

Second Berkeley Software Distribution

Installing and Operating 2.9BSD
March 26, 1984

Michael J. Karel1
Carl F. Smith

University of California
Berkeley, California 94720

ABSTRACT

This document contains instructions for installation and operation of the
Second Berkeley Software Distribution's 2.9BSD release of the PDP-llt UNIX*
system. It is adapted from the paper Inatalling and Operating .f.1 bad by Bill Joy.

This document explains the procedures for installation of Berkeley UNIX on
a PDP-11 or to upgrade an existing Berkeley PDP-11 UNIX system to the new
release. It then explains how to con6gure the kernel for the available devices and
user load, lay out file systems on the available disks, set up terminal lines and
user accounts, and do system specific tailoring. It also explains system operations
procedures: shutdown and startup, hardware error reporting and diagnosis, file
system backup procedures, resource control, performance monitoring, and pro­
cedures for recompiling and reinstalling system software. Technical details on the
kernel changes are presented in the accompanying paper, "Changes in the Kernel
in 2.9BSD."

The 2.9BSD release, unlike previous versions of the Second Berkeley
Software Distribution, is a complete Version 7 UNIX system with all of the stan­
dar~ UNIX tools and utilities, with or without Berkeley modifications. Therefore,
it does not need to be layered onto an existing Version 7 system; because of the
many changes and additions throughout the system, it would require a substan­
tial effort to mer:ge into most earlier systems.

TDl!C, MASSaS, H>P, and UNIEIJS are tra.dem&rka of Digit&! Equipment Corporation.
~is a trademark of Bell Laboratories.

March 26, 1984

Installing/Operating 2.9BSD - 2 - Introduction

1. INTRODUCTION

This document explains how to install the 2.9BSD release of the Berkeley version of UNIX
for the PDP-11 on your system. U you are running the July 1981 release or the system, which
was called 2.8BSD, you can avoid a full bootstrap from the new tape by extracting only the
software that has changed. Be warned, however, that there are a large number of changes.
Unless you have many local modifications it will probably be easier to bring up an intact 2.9BSD
system and merge your local changes into it. IC you a.re running any other version of UNIX on
your PDP-11, you will have to do a full bootstrap. This means dumping all file systems which are
to be retained onto tape in a format that can be read in again later (tar format is best, or V7
dump if the file system configuration will be the same). A new root file system can be made and
read in using standalone utilites on the tape. The system sources and the rest or the /usr file sys­
tem can then be extracted. Finally, old file systems can be reloaded from tape.

To get an overview oC the process and an idea oC some oC the alternative strategies that are
available, it is wise to look through all or these instructions before beginning.

1.1. Hardware supported

This distribution can be booted on a PDP-11/23, 24, 34, 34A, 40, 44, 45, 55, 60, or 70 CPU
with at least 192 Kbytes oC memory and any oC the following diskst:

DEC MASSBUS:
D~UNIBUS:

AED 8000 UNIBUS:
AED STORM-II
DIV A COMP V MASSBUS:
EMULEX SC-21 UNIBUS:

RM03, RM05, RP04, RP05, RPOO
RK05, RK06, RK07, RLOl, RL02,
RM02, RP03, RP04, RP05, RPOO
AMPEX DM980 (emulating RP03}
AMPEX DM980 (emulating RM02}
AMPEX 9300

EMULEX SC-11 or SC-21 UNIBUS:
AMPEX 9300, CDC 9766 (emulating RM05}
CDC 9762, AMPEX DM980

The tape drivest supported by this distribution are:

DEC MASSBUS:
DEC UNIBUS:
DATUM 15X20 UNIBUS:
EMULEX TC-11 UNIBUS:

1.2. Distribution format

TE16, TU45, TU77
TElO, TE16, TSU, TU45, TU77
KENNEDY 9100 (emulating TElO)
KENNEDY 9100, 9300 (emulating TElO)

The distribution format is two 9-track 800bpi or one 1600bpi 2400' magnetic tape(s). If you
are able to do so, it is a good idea to immediately copy the tape(s) in the distribution kit to guard
against disaster. The first tape contains some 512-byte records, some 1024-byte records, followed
by many 10240-byte records. There are interspersed tape marks; end-of-tape is signaled by a dou­
ble end-of-file. The second tape contains only 10240-byte records with no interspersed tape
marks.

The boot tape contains several standalone utility programs, a dump image or a root file sys­
tem, and a tar image oC part oC the /usr file system. The files on this tape are:

f Other controllel'!I a.nd drives ma.y be ea.i!ily usa.ble with the system, but might require minor modifications to
the system to a.llow bootstrapping. The controllel'll a.nd the drives shown here a.re known to work a.s bootstrap
devices.

March 26, 1984

Installing/Operating 2.9BSD - 3 - Int.roduction

File Contents Record Size

0 boot block 512
(EOR)
boot bl0ck 512
(EOR)
Standalone Boot 512
(EOF)

1 Standalone cat 1024
(EOF)

2 This index 1024
(use cat to read)
(EOF)

3 Standalone mkfa 1024
(see mk/s(S)t)
(EOF)

4 Standalone reator 1024
(see restor(8))
(EOF)

5 Standalone lcheck 1024
(see icheck(8))
(EOF)

6 Dump of small "root" file system 10240
(217 lOK-byte blocks; see dump(8))
(EOF)

7 Tar archive of /usr files 10240
(most of the tape; see tar(l))
(EOF)
(EOF)

The last 61e on the 800bpi tape is a tar image of most of the /usr 61e system except for sources
(relative to /usr; see tar(l)). It contains most of the binaries and other material which is nor­
mally kept on-line, with the following directories: '10 adm bin contrlb diet doc gain.es Include
llb local man map preserve publlc apool aya tmp ucb. It contains 1785 lOK byte blocks.
The second 800bpi tape contains one file in tar format, again relative to /usr, consisting of 1903
lOK byte blocks and containing the source tree with all command and kemel sources. It contains
the directories Ingres, net, and arc, and includes the Berkeley additions (which are in
/usr/src/ucb and /usr/ingres). The net directory contains sources for the TCP /JP system. On
the 1600bpi tape, the two tar images are combined into one tape file of 3687 lOK byte blocks.

1.3. UNIX device naming

UNIX has a set of names for devices that are different from the DEC names for the devices.
The disk and tape names used by the bootstrap and the system are:

fReferences of the form X{Y) mean the subsection named X in section Y of the Berkeley PD~u tlNIX

Programmer's manua.I.

March 26, 1984

Installing/ Operating 2. QBSD - 4 - Introduction

RK05 disks rk
RK06, RK07 disks bk
RLOl, RL02 disks rl
RP02, RP03 disks rp
TE16, TU45, TU77 /TM02, 3 tapes ht
TEIO/TMll tapes tm
TSll tapes ta

There is also a generic disk driver, xp, that will handle most types of SMD disks on one or
more controllers (even different types on the same controller). The xp driver handles RM02,
RM03, RM05, RP04, RP05 and RP06 disks on DEC, Emulex, and Diva UNIBUS or MASSBUS
controllers.

The -studalone system used to bootstrap the full UNIX system uses device names of the
form:

.xx (y, z)

where .xx is one oC bk, ht, rk, rl, rp, tm, ts, or xp. The value y specifies the device or drive unit
to use. The z value is interpreted differently for tapes and disks: for disks it is a block offset for a
file system and for tapes it is a file number on the tape.

Large UNIX physical disks (bk, rp, xp) are divided into 8 logical disk partitions, each of
which may occupy any consecutive cylinder range on the physical device. The cylinders occupied
by the 8 partitions for each drive type are specified in section 4 of the Berkeley PDP-11 UNIX

Programmer's manual.t Each partition may be used for either a raw data area such as a swapping
area or to store a UNIX file system. It is conventional for the first partition on a disk to be used
to store a root file system, Crom which UNIX may be bootstrapped. The second partition is tradi­
tionally used as a swapping area, and the rest of the disk is divided into spaces for additional
"mounted file systems" by use oC one or more additional partitions.

The disk partitions have names in the standalone system of the Corm ".x.x(y,z)" as described
above. Thus partition 1 of an RK07 at drive 0 would be "hk(0,5940)". When not running stan­
dalone, this partition would normally be available as "/dev/hkOb". Here the prefix "/dev" is the
name of the directory where all "special files" normally live, the "bk" serves an obvious purpose,
the "O" identifies this as a partition of bk drive number "O" and the "b" identifies this as parti­
tion 1 (where we number Crom 0, the 0th partition being "hkOa"). Finally, "5940" is the sector
offset to partition 1, as determined from the manual page hk(4).

Returning to the discussion of the standalone system, we recall that tapes also took two
integer parameters. In the case of a TE16/TU tape formatter on drive 0, the files on the tape
have names "ht(O,O)'', "ht(0,1)", etc. Here "file" means a tape file containing a single data
stream separated by a single tape mark. The distribution tapes have data structures in the tape
files and though the first tape contains only 8 tape files, it contains several thousand UNIX files.

1.4. UNIX devices: block and raw

UNIX makes a distinction between "block" and "character" (raw) devices. Each disk has a
block device interface where the system makes the device byte addressable and you can write a
single byte in the middle of the disk. The system will read out the data Crom the disk sector,
insert the byte you gave it and put the modified data back. The disks with the names
"/dev/.x.xOa", etc. are block devices and thus use the system's normal buffering mechanism.
There are also raw devices available, which do physical I/O operations directly from the
program's data area. These have names like "/dev /rz.xOa", the "r" here standing for "raw." In
the bootstrap procedures we will often suggest using the raw devices, because these tend to work

f 1t in poneible to cha.nge the pa.rtitionn by cha.nging the va.lues in the disk's sizes a.rra.y in ioconf.c.

March 26, 1984

Installing/ Operating 2. 9BSD - 5- Introduction

Caster. In general, however, the block devices are used. They are where file systems are
"mounted." The UNIX name space is increased by logically associating (mounting) a UNIX file
system residing on a given block device with a directory in the current name space. See mount (2)
and mount (8). This association is severed by umount.

You should be aware that it is sometimes important to use the character device (for
efficiency) or not (because it wouldn't work, e.g. to write a single byte in the middle or a sector).
Don't change the instructions by using the wrong type or device indiscriminately.

1.5. Reporting problem• or queatlona

Problems with the software or this distribution, or errors or omissions in the documentation,
should be reported to the 2BSD group. For bug reports and fixes, the address is:

2bsd-bugsCberkeley
or

ucbvax!2bsd-bugs

(by ARP Anet)

(by UUCP)

These reports or fixes are expected to be in the format generated by the aendbug(l) program. For
administrative concerns, use:

2bsdQberkeley
or

ucbvax!2bsd

(by ARP Anet)

(by UUCP)

A redistrli>ution list or users who have indicated that they would like to receive bug reports is also
maintained:

2bsd-peopleCberkeley
or

ucbvax! 2bsd-people

(by ARPAnet)

(by UUCP)

This list may also be used as a general forum for help requests, sharing common experiences, etc.
Requests to be added to or deleted from this list should be made to the 2bsd address above. Ir it
is not possible to use electronic mail, then call or write the 2BSD oO'ice. Although there is seldom
someone there to take your call, there is an answering machine, and your request will be for­
warded to the appropriate person. The phone number and mailing address are:

Berkeley PDP-11 Software Distribution - 2BSD
Computer Science Division, Department of EECS
573 Evans Hall
University or California, Berkeley
Berkeley, California 94720
(415) 642-6258

March 26, 1984

Installing/ Operating 2. 9BSD - 6 - Boo~strapping

2. BOOTSTRAP PROCEDURES

This section explains the bootstrap procedures that can be used to get one or the kernels
supplied with this tape running on your machine. Ir you are not yet running UNIX or are running
a version or UNIX other than 2.8BSD, you will have to do a full bootstrap.

Ir you are running 2.8BSD you can use the update procedure described in section 4.2 instead
of a full bootstrap. This will affect modifications to the local system less than a full bootstrap.
Note, however, that a full bootstrap will probably require less effort unless you have made major
local modifications which you must carry over to the new system.

Ir you are already· running UNIX and need to do a full bootstrap you should first save your
existing files on magnetic tape. The 2.9BSD file system uses lK-byte blocks by clustering disk
blocks (as did the 2.8BSD system); file systems in other formats cannot be mounted. Those
upgrading from 2.8 should note that 2.9BSD uses generally different file system parti­
tion sizes than 2.8BSD, and that a few of the maJor device numbers have changed {In
particular, that for the hk). The easiest way to save the current files on tape is by doing a
full dump -3.Jtd then restoring in the new system. This works also in converting V7, System-III, or
System-V 512-byte file systems. Although the dump format is different on V7, System-III, and
System-V, S1£restor(8) can restore old format V7 dump image tapes into the file system format
used by 2.9BSD. Tar(l) can also be used to exchange files from different file system formats, and
has the additional advantage that directory trees can be placed on different file systems than on
the old configuration. Note that 2.9BSD does not support cpio tape format.

The tape bootstrap procedure involves three steps: loading the tape bootstrap monitor,
creating and initializing a UNIX "root" file system system on the disk, and booting the system.

2.1. Booting from tape

To load the tape bootstrap monitor, first mount the magnetic tape on drive 0 at load point,
making sure that the write ring is not inserted. Then use the normal bootstrap ROM, console
monitor or other bootstrap to boot from the tape. Ir no other means are available, the following
code can be keyed in and executed at (say) 0100000 to boot from a TM tape drive (the magic
number 172526 is the address of the TM-11 current memory address register; an adjustment may
be necessary if your controller is at a nonstandard address):

012700 (mov $172526, rO)
172526
010040 (mov rO, -(rO))
012740 (mov $60003, -(rO))
060003
000777 {hr .)

When this is executed, the first block of the tape will be read into memory. Halt the CPU and
restart at location 0.

The console should type

nnBoot

where nn is the CPU class on which it believes it is running. The value will be one of 24, 40, 45
or 70, depending on whether separate instruction and data (separate I/D) and/or a UNIBUS map
are detected. The CPUs in each class are:

March 26, 1984

Installing/Operating 2.9BSD - 7 - Bootstrapping

Class PDPlls Separate I/D UNIBUS map
24 24 +
40 23, 34, 34A, 40, 60
45 45, 55, 73, 83 +
70 44, 70, 84 + +

The bootstrap can be forced to set up the machine as for a different class of PDPll by placing an
appropriate value in the console switch register (if there is one) while booting it. The value to use
is the PDPll class, interpreted as an octal number (use, for example, 070 for an 11/70). Warn­
ing: some old DEC bootstraps use the switch register to indicate where to boot from. On such
machines, if the value in the switch register indicates an incorrect CPU, be sure to reset the
switches immediately alter initiating the tape bootstrap.

You are now talking to the tape bootstrap monitor. At any point in the following procedure
you can return to this seetion, reload the tape bootstrap, and restart.

To first check that everything is working properly, you can use the cat program on the tape
to print the list of utilities on the tape. Through the rest of this section, substitute the correct
disk type for dk and the tape type for tp. In response to the prompt of the bootstrap which is
now running}type

tp(0,1)

Cat will respond

Cat
Fller

(load file 1 from tape 0)

The table of contents is in file 2 on the tape, therefore answer

tp (0,2)

The tape will move, then a short list of files will print on the console, followed by:

exit called
nnBoot

After cat is finished, it returns to the bootstrap for the next operation.

2.Z. Creating an empty UNIX file system

Now create the root file system using the following procedures. First determine the size of
your root file system from the following table:

Disk Root File System Size
(lK-byte blocks)

hk 2970
rkt 2000
rlOlt 4000
rl02t 8500
rp 5200
xp 4807 (RP04/RP05/RP06)

2400 (RM02/RM03)
5168 (RM05)
4702 (DIVA)

f These sizes a.re for full disks less some space used for swapping.

March 26, 1984

Installing/Operating 2.9BSD -8- Bootstrapping

If the disk on which you are creating a root file system is an xp disk, you should check the
drive type register at this time to make sure it holds a value that will be recognized correctly by
the driver. There are numbering conflicts; the following numbers are used internally:

Drive Type Register Drive Assumed
Low Byte

(nominal address: 0776726)

022 RP04/05/06
025 RM02/RM03
027 RM05
076 Emulex SC-21/300 Mb 815 cylinder RM05 emulation
077 Diva Comp-V /300 Mb SMD

Check the dtive type number in your controller manual, or halt the CPU and examine this regis­
ter. If the value does not correspond to the actual drive type, you must place the correct value in
the switch register after the tape bootstrap is running and before any attempt is made to access
the drive. This will override the drive type register. This value must be present at the time each
program (including the bootstrap itself} first tries to access the disk. On machines without a
switch register, the zptype variable can be patched in memory. After starting each utility but
before accessing the disk, halt the CPU, place the new drive type number at the proper memory
location with the console switches or monitor, and then continue. The location of zptype in each
utility is mkfs: 032724, restor: 031614, icheck: 030174 and boot: 0430000 (the location for boot
is higher because it relocates itselr). Once UNIX itself is booted (see below) you must patch it
also.

Finally, determine the proper interleaving factors m and n Cor your disk and CPU combina­
tion from the following table. These numbers determine the layout of the free list that will be
constructed; the proper interleaving will help increase the speed or the file system. If you have a
non-DEC disk that emulates one of the disks listed, you may be able to use these numbers as
well, but check that the actual disk geometry is the same as the emulated disk (rather than the
controller mapping onto a ditl'erent physical disk). Also, the rotational speed must be the same as
the DEC disk Cor these numbers to apply.

Disk Interleaving Factors for Disk/CPU Combinations (m/ n)
CPU RK05 RK06/7 RLOl/2 RM02 RM03 RM05 RP03 RP04/5/6

11/23 X/12 X/33 X/10 X/80 X/100 X/209
11/24 X/12 7/33 X/10 10/80 X/100 10/209
11/34 X/12 6/33 X/10 8/80 3/100 8/209
11/40 2/12 6/33 X/10 8/80 ·3/100 8/209
11/44 X/12 4/33 X/10 6/80 2/100 6/209
11/45 2/12 5/33 X/10 7/80 3/100 7/209
11/55 X/12 5/33 X/10 7/80 3/100 7/209
11/60 X/12 5/33 X/10 7/80 3/100 7/209
11/70 X/12 3/33 X/10 5/80 7/80 7/304 X/100 5/209

For example, for an RP06 on an 11/70, mis 5 and n is 209. See mk/s(8} for more explanation or
the values of m and n. An X entry means that we do not know the correct number for this com­
bination or CPU and disk. If you do, please let us know. If m is unspecified or you have a disk
which emulates a DEC disk, use the number for the most similar disk/CPU pair. It n ls
unapeclfted, use the cylinder size divided by 2.

Then run a standalone version of the mkfs (8) program. In the following procedure, substi­
tute the correct types for tp and dk and the size determined above for size:

March 26, 1984

Installing/Operating 2.9BSD

: tp (0,3)
Mk fa
file system: dk(O,O)
file system size: size

- 9 -

Interleaving factor (m, 5 default): m
Interleaving modulus (n, 10 default): n
lslze =XX
m/n = m n
Exit called
nnBoot

You now have an empty UNIX root file system.

2.3. Restof.!ng the root file system

To restore a small root file system onto it, type

: tp (0,4)
Restor
Tape! tp (0,6)
Disk! dk(O,O)
Last chance before scribbling on disk.

(30 second pause then tape should move)
(tape moves for a few minutes)

end of tape
Exit called
nnBoot

Bootstrapping

(root is the first file system on drive 0)
(count or 1024 byte blocks in root)
(interleaving, see above)
(interleaving, see above)
(count or inodes in root file system)
(interleave parameters)

(back at tape boot level)

(unit 0, seventh tape file)
(into root file system)
(just hit return)

(back at tape boot level)

Ir you wish, you may use the icheck program on the tape, tp(0,5), to check the consistency or the
file system you have just installed.

2.4. Booting UNIX

You are now ready to boot Crom disk. It is best to read the rest or this section first, since
some systems must be patched while booting. Then type:

:dk(O,O)dkunix (bring in dkunix off root system)

The standalone boot program should then read dkunix Crom the root file system you just created,
and the system should boot:

Berkeley UNIX (Rev. 2.9.1) Sun Nov 20 14:55:50 PST 1983
mem = xxx

CONFIGURE SYSTEM:
(Information about various devices will print;
most or them will probably not be found until
the addresses are set below.)
erase=A?, kill=AU, lntr=AC
:fl:

Ir you are booting Crom an xp with a drive type that is not recognized, it will be necessary to
patch the system before it first accesses the root file system. Halt the processor after it has begun
printing the version string but before it has finished printing the "mem = xxx" string. Place the

March 26, 1984

Installing/ Operating 2. 9BSD - 10 - Boo~strapping

drive type number corresponding to your drive at location 061472; the addresses for drives 1, 2
and 3 are 061506, 061522 and 061536 respectively. Ir you plan to use any drives other than 0
before you recompile the system, you should patch these locations. Make the patches and con­
tinue the CPU. The value before patching must be zero. Ir it is not, you have halted too late
and should try again.

UNIX begins by printing out a banner identifying the version of the system that is in use
and the date it was compiled. Note that this version is different from the system release number,
and applies only to the operating system kernel.

Next the mem message gives the amount or memory (in bytes) available to user programs.
On an 11/23 with no clock control register, a message "No clock???" will print next; this is a rem­
inder to turli'on the clock switch if it is not already on, since UNIX cannot enable the clock itself.
The information about different devices being attached or not being found is produced by the
autoconfig(B) program. Most of this is not important for the moment, but later the device table
can be edited to correspond to your hardware. However, the tape drive or the correct type should
have been detected and attached.

The "erase= ... " message is part or /.profile that was executed by the root shell when it
started. The file /.profile contained commands to set the UNIX erase, line kill and interrupt char­
acters to be what is standard on DEC systems so that it is consistent with the DEC console inter­
face characters. This is not normal for UNIX, but is convenient when working on a bardcopy
console; change it it you like.

UNIX is now running, and the Berkeley PDP-11 UNIX Programmer's manual applies. The
'#' is the prompt Crom the Shell, and lets you know that you are the super-user, whose login
name is "root."

There are a number or copies or uniz on the root file system, one for each possible type or
root file system device. All but one of them (zpuniz) has had its symbol table removed (i.e. they
have been "stripped"; see strip(!)). The unstripped copy is linked (see /n(l)) to /uni:& to provide
a system namelist for programs like ps(l) and autoconfig(B). All or the systems were created from
/ uniz by the C shell script /gen al/sys.sh. Ir you had to patch the zp type as you booted, you may
want to use adb (see adb{l)) to make the same patch in a copy or zpuniz. Ir you are short of
space, you can patch a copy or / uniz instead (setting the rootdev, etc.) and install it as / uniz
after verifying that it works. See / genallsys.sh for examples of using adb to patch the system.
The system load images for other disk types can be removed. Do not remove or replace the
copy ot /uniz, however, unle11 you have made a working copy ot It that ls patched tor
your ft.le system conftguratlon and stlll has a symbol table. Many programs use the sym­
bol table of / uniz in order to determine the locations or things in memory, therefore / uniz should
always be an unstripped file corresponding to the current system. Ir at all possible, you should
save the original UNIX binaries for your disk configuration (dkunix and unix) for use in an emer­
gency.

There are a few minor details that should be attended to now. The system date is initially
set from the root file system, and should be reset. The root password should also be set:

date yymmddhhmm
passwd root
New password:
Retype new password:

(set date, see date(l))
(set password for super-user)
(password will not echo)

2.5. Installing the disk bootstrap

The disk with the new root file system on it will not be bootable directly until the block 0
bootstrap program for the disk has been installed. There are copies of the bootstraps in /mdec.
This is not the usual location for the bootstraps (that is /usr/src/sys/mdec), but it is convenient
to be able to install the boot block now. Use dd(l) to copy the right boot block onto the disk;

March 26, 1984

Installing/ Operating 2. 9BSD - 11 - Boo~sirapping

the first form of the command is for small disks (rk, rl) and the second form for disks with multi­
ple partitions (hk, rp, xp), substituting as usual for dk:

dd if=dkuboot oC=/dev/rdkO count=l

or

dd if=dkuboot of=/dev /rdkOa count=l

will install the bootstrap in block 0. Once this is done, booting from this disk will load and exe­
cute the block 0 bootstrap, which will in turn load /boot (actually, the boot program on the first
file system, which is root). The console will print

>boot

nnBoot

(printed by the block 0 boot)

(printed by /boot)

The '>'is the prompt from the first bootstrap. It automatically boots /boot for you; if /boot is
not found,-it will prompt again and allow another name to be tried. It is a very small and simple_

program, however, and can only boot the second-stage boot Crom the first file system. Once /boot
is running and prints its ": " prompt, boot unix as above, using dkunix or unix as appropriate.

2.8. Checking the root ftle system

Before continuing, check the integrity of the root file system by giving the command

fsck /dev /rdkOa

(omit the a for an RK05 or RL). The output from fsck should look something like:

/dev/rxxOa
Flle System: /

** Checking /dev /rxxOa
• • Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
• • Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
238 flies 1918 blocks xxxxx tree

If there are inconsistencies in the file system, you may be prompted to apply corrective
action; see the document describing fsck for information. The number of free blocks will vary
depending on the disk you are using for your root file system.

March 26, 1984

Installing/Operating 2.9BSD - 12 - Device and file system configuration

3. DEVICE AND FILE SYSTEM CONFIGURATION

This section will describe ways in which the file systems can be set up for the disks avail­
able. It will then describe the files and directories that will be set up for the local configuration.
These are the / dev directory, with special files for each peripheral device, and the tables in /etc
that contain configuration-dependent data. Some of these files should be edited after reading this
section, and others can wait until later if you choose. The disk configuration should be chosen
before the rest of the distribution tape is read onto disk to minimize the work of reconfiguration.

3.1. Disk configuration

This section describes how to lay out file systems to make use of the available space and to
balance gisk load for better system performance. The steps described in this section (3.1) are
optional.

3.1.1. Disk naming and divisions

Each large physical disk drive can be divided into up to 8 partitions; UNIX typically uses
only 3 to 5 partitions. For instance, on an RM03 the first partition, rmOa, is used for a root file
system, a backup thereof, or a small file system like /tmp; the second partition, rmOb, is used for
swapping or a small file system; and the third partition, rmOc, holds a user file system. Many
disks can be divided in different ways; for example, the third section (c) of the RM03 could
instead be divided into two file systems, using the rrnOd and rmOe partitions instead, perhaps
holding /usr and the user's files. The disk partition tables are specified in the ioconf. c file for
each system, and may be changed if necessary. The last partition (h) always describes the entire
disk, and can be used for disk-to-disk copies.

Warning: for disks on which DEC standard 144 bad sector forwarding is supported, the
last track and up to 126 preceeding sectors contain replacement sectors and bad sector lists.
Disk-to-disk copies should be careful to avoid overwriting this information. See bad144 (8). Bad
sector forwarding is optional in the bk, hp, rm, and xp drivers. It has been only lightly tested in
the latter three cases.

3.1.2. Space available

The space available on a disk varies per device. The amount of space available on the com­
mon disk partitions for /usr is listed in the following table. Not shown in the table are the parti­
tions of each drive devoted to the root file system and the swapping area.

Type Name Size

RK06 hk?d 9.2Mb
RK07 hk1c 22.4 Mb
RM02, RM03 rm?c 60.2 Mb
RM02, RM03 rm?d 30.9 Mb
RP03 rp?c 33.3 Mb
RP04, RP05, RP06 hp?c 74.9 Mb
RP06 hp?d 158.9 Mb
RM05 xp?c 115.4 Mb
RM05 xp?e 80.9 Mb

Each disk also has a swapping area and a root file system. The distributed system binaries
and sources occupy about 38 megabytes.

The sizes and offsets of all of the disk partitions are in the manual pages for the disks; see
section 4 of the Berkeley PDP-11 UNIX Programmer's manual. Be aware that the disks have their
sizes measured in "sectors" of 512 bytes each, while the UNIX file system blocks are 1024 bytes

March 26, 1984

Installing/Operating 2.9BSD - 13 - Device and file system configuration

each. Thus if a disk partition ha.s 10000 sectors (disk blocks), it will have only 5000 UNIX file
system blocks, and you must divide by 2 to use 5000 when specifying the size to the mlcf s com­
mand. The sizes and offsets in the kernel (ioconf.c) and the manual pages are in 512-byte blocks.
If bad sector forwarding is supported for your disk, be sure to leave sufficient room to contain the
bad sector information when making new file systems.

3.1.3. Layout considerations

There are several considerations in deciding how to adjust the arrangement of things on
your disks: the most important is making sure there is adequate space for what is required; secon­
darily, throughput should be maximized. Swapping space is an important parameter. Since run­
ning out of swap space often causes the system to panic, it must be large enough that this does
not happen.

Many common system programs (the C compiler, the editor, the assembler etc.) create inter­
mediate files in the /tmp directory, so the file system where this is stored also should be made
large enough to accommodate most high-water marks; if you have several disks, it makes sense to
mount this id a "root" or "swap" (i.e. first or second partition) file system on another disk. On
RK06 and RK07 systems, where there is little space in the hk?c or hk?d file systems to store the
system source, it is normal to mount /tmp on /dev /hkla.

The efficiency with which UNIX is able to use the CPU is often strongly affected by the
configuration of disks. For general time-sharing applications, the best strategy is to try to split
the most actively~used sections among several disk arms. There are at least five components of
the disk load that you can divide between the available disks:

l. The root file system.
2. The swap area.
3. The /tmp file system.
4. The /usr file system.
5. The user files.

Here are several possibilities for utilizing 2, 3 and 4 disks:

disks

what 2 3 4

root 1 1 1
tmp 1 3 4
usr 1 2 2
swapping 2 3 4
users 2 1+3 1+3
archive x x 4

The most important consideration is to even out the disk load as much as possible, and to
do this by decoupling file systems (on separate arms) between which heavy copying occurs. Note
that a long term average balanced load is not important; it is much more important to have
instantaneously balanced load when the system is busy. When placing several busy file systems
on the same disk, it is helpful to group them together to minimize arm movement, with less
active file systems off to the side.

Intelligent experimentation with a few file system arrangements can pay oft' in much
improved performance. It is particularly easy to move the root, the /tmp file system and the
swapping areas. Note, though, that the disks containing the root and swapping area can never be
removed while UNIX is running. Place the user files and the /usr directory as space needs dictate
and experiment with the other, more easily moved file systems.

As an example, consider a system with RM03s. On the first RM03, rmO, we will put the
root file system in rmOa, and the /usr file system in rmOc, which has enough space to hold it
and then some. If we had only one RM03, we would put user files in the rmOc partition with the

March 26, 1984

Installing/ Operating 2. 9BSD - 14 - Device and file system configuration

system source and binaries, or split them between rmOd and rmOe. The /tmp directory will be
part or the root file system, as no file system will be mounted on /tmp.

Ir we had a second RM03, we would create a file system in rmlc and put user files there,
calling the file system /mnt. We would keep a backup copy or the root file system in the rmla
disk partition, a file system for /tmp on rmOb, and swap on rmlb.

3.1.4. Implementing a layout

Once a disk layout has been chosen, the appropriate special files for the disk partitions must
be created (see Setting up the /dev directory, below). Empty file systems will then be created in
the appropriate partitions with mk/s(8), and the files belonging in the file system can then be
restored from tape. The section on setting up the /usr file system contains detailed information
on this process. The swap device is specified when the kernel is configured, which is also dis­
cussed later. At that time, you may also want to consider whether to use the root device or
another file system (e.g. /tmp) for the pipe device (the pipe device is a file system where the ker­
nel keeps temporary files related to pipe 1/0; it should be mounted before any 1/0 through pipes
is attempted).

3.2. Setting up the /dev directory

Devices are accessed through special files in the file system, made by the mknod(8) program
and normally kept in the /dev directory. Devices to be supported by UNIX are implemented in
the kernel by drivers; the proper driver is selected by the major device number and type specified
to mknod. All devices supported by the distribution system already have nodes in /dev. They
were created by the /dev /MAKE shell script. It is easiest to rebuild this directory from the
beginning with the correct devices for your configuration. First, determine the UNIX names of
the devices on your system (e.g. dh, Ip, zp). Some will be the same as the names or devices on the
generic system. Others need not be. See section 4 or the UNIX Programmer's Manual. Next
create a new directory /newdev, copy /dev/MAKE into it, edit MAKE to provide an entry for
local needs, replacing the case LOCAL, and run it to generate the desired devices in the /newdev
directory. The LOCAL entry can be used for any unusual devices, and to rename standard dev­
ices as desired. It should also move the node for the disk partition being used as the swap area to
swap (or, if swap is after a file system as on RK05 or RL disks, link the other node to awap).
Different devices are specified to MAKE in various ways. Terminal multiplexors (DZ and DH) are
specified by boards, and 8 or 16 nodes will be made, as appropriate. Disks are made by partition,
for example xpOc, so that you may make the nodes corresponding to the file systems that you
intend to use. Note that hp, rm and zp are actually synonyms, but you should use the name
corresponding to the driver you plan to use. The kernel configuration section (section 5.4.1) has
more information. For tape drives, there are different invocations for different types or controll­
ers, although the nodes produced will have the same names. The different types are ht, tm and ta,
as above, and also ut, which is used for the Emulex TC-11 and other TM-11 emulations that are
also capable or selecting 1600 or 800 bpi under software control. Making htO or utO will result in
nodes mtO and mtl (800 and 1600 bpi, respectively) and parallel nodes for other options; htl uses
the names mt2 and mt9. See ht(4) and tm(4). In contrast, the MAKE script makes only one set
or nodes for tm or ta, without changing the unit number specified. Different sites use different
naming conventions for tapes; you could use the LOCAL entry in MAKE to move the tape files
to your favorite names.

As an example, if your machine had a single DZ-11, two DH-Us, an RP03 disk, two RP06
disks, and a TM03 tape formatter you would do:

March 26, 1984

Installing/ Operating 2. 9BSD

* cd /
mkdir newdev
cp /dev /MAKE /newdev /MAKE
cd newdev
./MAKE dzO dbl htO std LOCAL

- 15 - Device and file system con!lguratfon

./MAKE rpOa rpOb rpOc hpOa hpOb hpOc hpla hplb hpld hple

Note the "std" argument here that causes standard devices such M console, the console terminal,
to be created.

You can then do

cd I
mv dev genericdev ; mv newdev dev
#sync

to install the new device directory. Once you are confident that the new directory is set up prop­
erly, you can remove / genericdev.

3.3. Editing system-dependent conflguratlon fllee

There are a number of small files in /etc that are used by various programs to determine
things about the local configuration. At this point, several of these should be edited to describe
the local configuration. You may have old versions or some or them which you may want to use,
or you may edit the files that are provided as examples. Some of this may be done later at your
convenience, but is presented here for organization. Both /etc/dtab and /etc/fstab should be
edited now.

3.3.1. /etc/dtab

This file contains the list or devices which will be checked at boot time by autoconfig(8).
The devices that are listed are tested to see whether they exist and have the correct register
addresses and interrupt vectors. Ir they do, and the kernel has a corresponding driver routine,
autoconfig notifies the driver that the device exists at that address. In this way, the addresses and
vectors or most devices do not need to be compiled into the operating system. The exception is
that disks must be preconfigured if they are to be used as root file systems.

This file should be edited to include all of the devices on the system with the exception of
the clock and console device. Other device entries can be deleted or commented out with a '#' at
the beginning of the line. The format of the entries is defined in dtab(5). Autoconfig(8) describes
the autoconfiguration process. One word or caution: if a device fails to interrupt as expected,
and if its unit number is specified (not a '?' wildcard), autoconfig will notify the driver that the
device is not present, and preconfigured devices (like root disks) could be disconnected. Thus, it
is probably best to use a '?' instead or a unit number for your root disks until you are confident
that the probe always finds that disk, especially if your disk controller is an emulation or another
disk type. Disks that are not used as boot devices for UNIX can be properly listed with unit
numbers.

3.3.2. /etc/fstab
This file contains the list of file systems normally mounted on the system. Its format is

defined in fstab(5). Programs like d/(l) and /sck(8) use this list to control their actions. Each
disk partition that has been assigned a function should be listed here. See the manual pages for
specifics on how to configure this file.

3.3.3. /etc/ldent
The banner printed by getty(8) is read from /etc/ident. Edit this file to the banner you

wish to use. It may contain special characters to clear terminal screens, etc., but note that the
same file is used for all terminals.

March 26, 1984

Installing/ Operating 2. 9BSD - 16 - Device and file system iconfiguradc2

3.3.4. /etc/motd

The contents of /etc/motd, the "message of the day," is displayed at the terminal when a
user is logged in by login (1).

3.3.5. /etc/pauwd, /etc/group

These files obviously need local modifications. See the section on adding new users. Entries
for pseudo-users (user IDs that are not used for logins) have password fields containing "***",
since encrypted passwords never not contain asterisks.

3.3.G. /etc/re

A1s the system begins multiuser operations, it executes the commands in /etc/re (see init(8)).
Most of the commands in this file are standard and should not be changed, including the section
for checking file systems after a reboot. These commands will be ignored if autoreboot is not
enabled. You should edit /etc/re to set your machine's name. Look for the line

/etc /hostname hostnameunknown

and change hostnameunknown to the name of your ma.chine. This name will be used by Mail(I)
and uucp(!) (among others) and should correspond to the name by which your machine is known
to external networks (if any). At this time you may wish to add additional commands to this file
if you need to start additional daemons, remove old lock files, or perform any other cleanup as the
system comes up.

3.3.7. Configuring terminals

If UNIX is to support simultaneous access from more than just the console terminal, the file
/etc/ttys (ttys(5)) has to be edited.

Termmrus connected via DZ interfaces are conventionally named ttydd where dd is a
decimal number, the "minor device" number. The lines on dzO are named /dev /ttyOO,
/dev /ttyOl, ... /dev /tty07. Lines on DH interfaces are conventionally named ttyhz, where z is a
hexadecimal digit. Ir more than one DH interface is present in a configuration, successive termi­
nals would be named ttylz, ttyjz, etc.

To add a new terminal be sure the device is configured into the system, that the special file
for the device has been made by /dev /MAKE, and the special file exists. Then set the first char­
acter of the appropriate line of /etc/ttys to 1 (or add a new line). The first character may also be
3 if the line is also to be used in maintenance mode (see init(8)).

The second character of each line in the /etc/ttys file lists the speed and initial parameter
settings for the terminal. The most common choices, from getty(8), are:

0 300-1200-150-110
3 1200-300
4 300 (e.g. console)
5 300-1200
6 1200
7 2400
8 4800
g 9600
B auto baud

Here the first speed is the speed a terminal starts at, and "break" switches speeds. Thus a newly
added terminal /dev /ttyOO could be added as

19tty00

if it was wired to run at 9600 baud. The "B" indicates that getty should attempt to guess a line's
speed when the user types a carriage return or control-C. Note that this requires kernel support.

March 26, 1984

Installing/Operating 2.9BSD - 17 - Device and file system configuration

See section 5.3.6 below.

Dialup terminals should be wired so that the carrier is asserted only when the phone line is
dialed up. For non-dialup terminals from which modem control is not available, you must either
wire back the signals so that the carrier always appears to be present, or (for lines on a DH-11 or
DZ-11) add 0200 to the minor device number to indicate that carrier is to be ignored. See dh(4)
and dz(4) for details.

You should also edit the file /etc/ttytype placing the type of each terminal there (see
ttytype(5)).

When the system starts running multi-user, all terminals that are listed in /etc/ttys having
a 1 or 3 as the first character or their line a.re enabled. Ir, during normal operations, it is desired
to disable a terminal line, the super-user can edit the file /etc/ttys, change the first character of
the corresponding line to 0 and then send a hangup signal to the init process, by typing (see
kill(!))

kill -1 I
or

#kill -HUP I

Terminals can similarly be enabled by changing the first character of a line Crom a 0 to a I and
sending a hangup to init.

Note that if a special file is inaccessible when init tries to create a process for it, init will
print a message on the console and try to reopen the terminal every minute, reprinting the warn­
ing message every IO minutes.

Finally note that you should change the names of any dialup terminals to ttyd? where ? is
in I0-9a-fJ since some programs use this property or the names to decide whether a terminal is a
dialup. Shell commands to do this should be put in the /dev /MAKE script under case LOCAL.

March 26, 1984

Installing/Operating 2.9BSD - 18 - /usr setup

4. SETTING UP THE /usr FILE SYSTEM

The next step in bringing up the 2.9BSD distribution is to read in the binaries and sources
on the /usr file system. This will also demonstrate how to add new file systems in general, and
the overall procedure can be repeated to set up additional file systems. There are two portions or
the /usr file system, one on each tape. The first tape contains the binary directories, manual
pages and documentation, as well as skeletal directories such as spool and msgs. IC you have
room, it is easiest to extract everything. The size of the entire /usr file system image on the dis­
tribution tapes is 38 megabytes. It will not fit on a single RK05, RK06/7 or RLOI/2. In these
cases, the /usr file system will have to be extracted in sections or split across multiple disks. The
bin, include, lib, and ucb subdirectories are essential. The system sources will also be needed to
reconfigure the kernel; they are in /usr/src/sys. The adm, diet, msgs, preserve, spool, sys and tmp
directories may also be extracted to provide a skeletal system. The first part or this section
describes how to extract /usr as part or a full bootstrap; the second part explains how to install
2.9BSD as an upgrade to a 2.8BSD system if you decide not to perform a full bootstrap.

4.1. Full bootstrap procedure

This procedure will create a new file system and extract the /usr directory into it. First
determine ·t~ name or the disk on which you plan to place the new file system, for example rmOc,
and substitute it for disk throughout this section. You may want to create a small "prototype"
file to describe the file system (see mkfs (8)) in order to change the size of the inode list. This is
the same as the maximum number of files that can be created on the file system. The default is
to allow 16 inodes (occupying one block) per 24 file system blocks, allowing the file system to be
completely filled with small files (1-2 blocks). This is more than required for /usr and other file
systems which have larger average file size. Ir you decide to set up a prototype file for mkfs, use
its name for proto below. The prototype file needs to contain only the name of the bootstrap, the
sizes, and the line for the root directory (don't forget the '$' to terminate). Look up the correct
size for this file system in the manual section for the disk. Note that the size given to mkfs is in
file system blocks of 1024 bytes, and thus the sizes in the manual page will have to be divided by
2. IC not using a prototype file, substitute the size for proto in the mkfs command below. Finally,
recall the interleaving parameters m and n that you used in making the root file system. They
are in the table in section 2.2. Comments are enclosed in (); don't type these. Then execute the
following commands (substituting rmtl and nrmtl for rmtO and nrmtO respectively if you have a
1600 bpi tape on an ht or tm controller):

/etc/mkfs /dev /rdisk proto m n
lslze = nnnnn
m/n = m n

/etc/mount /dev /disk /usr
cd /usr

mt -t /dev /nrmW fsf 7
tar xpf /dev /rmtO

tar xpf /dev /rmtO

(create empty user file system)
(the count of available inodes)
(free list interleave parameters)
(this takes a few minutes)
(mount the usr file system)
(make /usr the current directory)
(make sure that the first tape is mounted)
(skip first seven tape files)
(extract the /usr file system binaries)
(this takes about 20 minutes)
(now mount the second tape)
(extract the /usr file system sources)
(this takes another 20 minutes)

You can now check the consistency of the /usr file system by doing

March 26, 1984

Installing/Operating 2.9BSD

cd I
/etc/umount /dev /disk
* rsck /dev/rdisk

- rn -

(back to root)
(unmount /usr)

To use the /usr file system, you should now remount it by saying

/etc/mount /dev /disk /usr

/usr setup

Ir you are installing the distribution on a PDPU/44, 11/45, 11/70, 11/73, 11/83, or 11/84
(machines with separate instruction and data space) you should test and install the separate I/D
versions or csh, ex, etc. in /usr /70. Note, however, that these binaries assume the existence or
hardware floating point support.

4.2. Bootstrap path 2: upgrading 2.8BSD

Begin by reading the other parts or this document to see what has changed since the last
time you bootstrapped the system. Also look at the new manual sections provided to you. Ir you
have local system modifications to the kernel to install, look at the document "Changes in the
Kernel in 2.9BSD" to get an idea or how the system changes will affect your local mods. Disclai­
mer: there are a very large number or changes from 2.8BSD to 2.9. This section may not be
complete, and if a new program fails to work arter being recompiled, you may find that additional
libraries or other components may also need to be updated.

There are 6 major areas or changes that you will need to incorporate to convert to the new
system:

1. The _f!eW kernel and the associated programs that implement job control or read kernel
memor}: autoconfig, csh, the jobs library, login, ps, pstat, w, etc.

2. The programs related to system reboots and shutdowns.

3. The programs directly related to user text overlays: adb and Id.

4 The C compiler driver, C preprocessor, and assembler.

5 The new version or the standard I/O library.

6. Other programs with significant bug fixes, significant improvements, or which were previ­
ously unavailable because they had not been overlaid.

Here is a step-by-step guide to converting. Before you begin you should do a run backup or
your root and /usr file systems as a precaution against irreversible mistakes.

1. Set the shell variable "nbsd" to the name or a directory where an empty file system can be
mounted and a quantity or material from the tape (you should allow for about 38 mega­
bytes) can be extracted. Choose a disk or sufficient size to hold this quantity or material,
make a file system, and mount $nbsd on this disk. Next, restore (see restor(8)) the root file
system dump image to this disk. Finally, change directory to "$nbsd/usr", and extract the
eighth file from the first distribution tape and all or the second tape using tar (see tar(l)).

2. Install the new include files by copying $nbsd/usr/include/•.h to /usr/include and
$nbsd/usr/include/sys/•.h to /usr/include/sys. Install the C compiler driver from the new
system by copying $nbsd/bin/cc to /bin/cc. Install the assembler from the new system by
copying $nbsd/bin/as to /bin/as and $nbsd/lib/as2 to /Iib/as2. Install the new C prepro­
cessor by copying $nbsd/lib/cpp to /lib/cpp. Install the new versions of adb and Id by
copying $nbsd/bin/adb and $nbsd/bin/ld to /bin.

3. Reconfigure the system in $nbsd/usr/src/sys to correspond to your configuration according
to the instructions in section 5.

4. Put in the new versions or the following programs:

/bin: csh, kill, login, iostat, ps, pstat, vmstat

March 26, 1984

Installing/Operating 2.9BSD - 20 -

/etc: autoconfig, fsck, init, mount, reboot, savecore, shutdown, umount

/usr/ucb: ex, w

/usr aetup

Merge any local changes to /etc/re into $nbsd/etc/rc. Put the resulting file in /etc/re.
Create the directory /usr/sys and perhaps some files in this directory (read savecore(8)).
Make a device description file for autoconfig. See dtab(5) and autoconfig(8).

5. Try bootstrapping the new system; it should now work. Make sure to write new instruc­
tions to your operators.

6. Incorporate some other important bug fixes or enhancements:

a) Replace the file tmac.an in the directory /usr /lib/tmac with the version from
$nbsd/usr/lib/tmac. Replace the file /usr/lib/me/local.me with the version from
$nbsd/usr/lib/me; copy $nbsd/usr/lib/me/refs.me to /usr/lib/me.

b} Install the new C library source, /usr/src/lib/c, rebuild and reinstall /lib/libc.a and
/usr /lib/libovc.a.

c) Install the jobs library, /usr/src/lib/jobs and build and install /usr/lib/libjobs.a and
/usr/lib/libovjobs.a.

d) Replace the directory /usr/src/cmd/refer. Then rebuild and reinstall the programs.

e) Install the new Mail source, /usr/src/ucb/Mail and reinstall /usr/ucb/Mail.

r) Ir the target machine is a nonseparate I/D CPU, install the new lex and yacc direc­
tories, compile and install the programs.

g) Install the new version of tar from $nbsd/usr /src/cmd/tar.c and also the program mt
from $nbsd/usr/src/ucb/mt.c.

h) Merge your changes to /usr/src/ucb/termcap/reorder and reinstall the terminal data
base, /etc/termcap. Install the new terminal library, /usr/src/ucb/termlib, remake
and reinstall /usr/lib/libtermcap.a and /usr/lib/libovtermcap.a. Then make and
install the new version of ex.

i) Ir you want the new version of the Pascal system incorporating overlays (Cor non­
~arate I/D CPUs), remake the directories pi and px in $nbsd/usr/src/cmd and
install the programs.

j) Install the new F77 compiler, /usr/src/cmd/il7, and the new libraries,
/usr/src/lib/lib•77. Then remake and reinstall them.

k) Install the new library sources, /usr/src/lib/{ape,curses,m,mp,plot} and remake and
reinstall the new libraries.

I} Install new versions of as many of the following programs as you choose: 512dumpdir,
512restor, atrun, cat, catman, ccat, compact, checkobj, ctags, df, cliff, du, egrep, error,
expand, Cgrep, find, from, grep, hostname, jove, Ill, lint, In, lock, login, lpr, ls, mll,
make, man, mkfs, more, msgs, mv, ncheck, printenv, pq, ranm, rewind, rm, rmdir,
sed, setquota, size, sort, split, sq, strings, strip, stty, sysline, tail, tbl, tset, ul, uncom­
pact, unexpand, vsh, we.

m) Install the modified or new administrative programs: ac, getty, last.

n) Install some security fixes in the mail systems by installing new sources for berknet
(/usr/src/ucb/berknet), delivermail (/usr/src/ucb/delivermail), mail
(/usr/src/cmd/mail.c), and secret mail (/usr/src/cmd/xsend), and remaking and rein­
stalling the new binaries.

o) Install the new version of uucp (/usr/src/cmd/uucp).

p) Install the news (/usr/contrib/news) or notes (/usr/contrib/notes) bulletin board sys­
tem if you wish.

q) Install the new eqn(l) symbol macros, /usr/public/eqnSyms.

March 26, 1984

Installing/Operating 2.9BSD - 21 - /usr setup

r) Install manual pages corresponding to the new and changed programs.

s) Remove the old programs /bin/ovM, /bin/ovld, /lib/ovas2, and /bin/ova.db. Remove
the libucbpath library. Remove the old version or reset and link the new version or
tset to reset.

March 26, 1984

Installing/Operating 2.9BSD - 22 - Kernel configuration

5. CONFIGURING AND COMPILING ~:~E KERNEL

This section describes procedures used to set up a PDP-11 UNIX kernel (operating system).
It explains the layout of the kernel code, compile time options, how files for devices are made and
drivers for the devices are configured into the system and how the kernel is rebuilt to include the
needed drivers. Procedures described here are used when a system is first installed or when the
system configuration changes. Procedures for normal system operation are described in the next
section. We also suggest ways to organize local changes to the kernel.

5.1. Kernel organization

The kernel source is kept in the subdirectories of /usr/src/sys. The directory
/usr/src/sys/sys contains the mainline kernel code implementing system calls, the file system,
memory management, etc. The directory /usr/src/sys/dev contains device drivers and other
low-level routines. The header files and scripts used to compile the kernel are kept in
/usr/src/sys/conf, and are copied from there into a separate directory for each machine
configuration. It is in this directory, /usr /src/sys/ machine, that the kernel is compiled.

5.2. Configuring a System

Th~ 1cernel configuration of each PDP-11 UNIX system is described by a set of header files
(one for each device driver) and one file of magic numbers (ioconf.c) stored in a subdirectory or
/usr/src/sys for each configuration. Pick a name for your machine (call it PICKLE). Then in the
/usr/src/sys/conC directory, create a configuration file PICKLE describing the system you wish to
build, using the format in con.fig (8). This is most eai;ily done by making a copy of the GENERIC
file used for the distributed UNIX binary. Many of the fields in the configuration file correspond
to parameters listed in the remainder of this section, which should be scanned before proceeding.
See especially section 5.4.3 on how to set up automatic reboots and dumps. Then use con.fig to
create a system directory .. /PICKLE with "config PICKLE." Note the difference between config
and autoconfig. Con.fig sets up a directory in which the kernel will be compiled, with all or the
system-specific files used in compilation, and specifies what devices will potentially be supported.
Autoconfig adapts the running kernel to the hardware actually present, by testing and setting the
register addresses and interrupt vectors.

Con.fig does most of the work of configuration, but local needs will dictate some changes in
the options and parameters in the header files. All of the options are listed in the next section.
Examine whoami.h, localopts.h, param.h, and param.c and make any changes required; it might
also be wise to look through the header files for the devices that you have configured, to check
any options specific to the device drivers that are listed there. After you have finished configuring
a kernel and tested it, you should install whoami.h in /usr/include, and copy localopts.h and
param.h into /usr/include/sys. This will allow user-level programs to stay in sync with the run­
ning kernel.

IC you wish to change any disk partition tables or device control status register addresses
(other than those configured at boot time by auto con.fig (8)), edit ioconf.c and change the appropri­
ate line (s). The file l.s contains the interrupt vectors and interface code and may also be edited if
necessary, but usually will require no change. Both c.c and l.s include support for all normal dev­
ices according to the header files per device, and with autoconfiguration, the actual vectors need
not be specified in advance. Finally, examine the Makefile, especially the options near the top
and the load rules. Ir you have placed the include files in the standard directories, you shouldn't
have to make any changes to the options there.

The following sections give short descriptions of the various compile-time options for the
kernel, and more extensive information on the autoreboot and disk monitoring setup. After veri­
fying that those features are configured correctly for your system, you can proceed to kernel com­
pilation.

March 26, 1984

Installing/Operating 2JIBSD - 23 - Kernel configuration

5.3. Compile Time Option•

The 2.9BSD kernel is highly tunable. This section gives a brief description of the many
compile-time options available, and references to sections of the Berkeley PDP-11 UNIX

Programmer's manual where more information can be found. Options fall into four categories;
the letters following each will be used to mark the options throughout the rest of this section.

Standard (S) These include options which we consider necessary for reasonable
system performance or resiliency.

Desirable (D) These include many other features that are convenient but which
may be turned off if system size is critical. The user programs
and libraries distributed with 2.9BSD generally assume that these
are turned on, so turning them off may necessitate recompiling
libraries or programs. These options, along with those designated
"standard," have received the most thorough testing.

Configuration Dependent (C) Options that depend on such things as the physical configuration
or speed issues Call in to this category.

Experimental (X) New features that have not been well tested, options that have
known problems, or ones that we do not normally use are listed as
experimental. You should not use such options unless the prob­
lems listed are not considerations for your system, or you are wil­
ling to watch things closely and possibly do some debugging.

The following sections list the parameters and options used in the kernel. The parameters
(section 5.3.2} have numeric values, usually table sizes, and most of them are in param.h or
param.c. Those that are in param.h are typically not changed, with the possible exception of
MAXMEM, as their values are set by convention. The option flags are either defined or
undefined to enable or disable the corresponding feature, with the exception or UCB_NKB,
which is unlikely to change. Each option is marked with a letter to indicate into which of the
four categor~s above it falls.

5.3.1. Hardware

ENABLE34

NONFP

NONSEPARATE

PARITY

PDPll

SMALL

C Automatically detect a.nd support Ahle Computer's ENABLE/34t
memory management board. This option implies UNIBUS_MAP.

C Do not compile in code to automatically detect and support an
FPll floating point processor. Also, include a fa.st illegal­
instruction trap handler and modify the signal routines to make it
possible to run programs using the floating-point interpreter under
trace.

C Do not attempt to support separate I/D user programs.

C Recognize and deal with cache a.nd memory parity traps.

C This should be set to the CPU type of the target machine (23, 24,
34, 40, 44, 45, 60, 70, 73, or GENERIC). You should use 34 for an
11/34A, 45 for an 11/55, and 73 for an 11/74. GENERIC should
be used to build a system which runs on a variety or CPUs. It was
used to make the distributed kernels. MENLO_KOV and NON­
SEP ARATE are defined if PDPU is 23, 24, 34, 40, or 60.
MENLO_KOV is also defined if PDPll is GENERIC.
UNmUS_MAP is defined if PDPU is 44, 70, 84, or GENERIC.

C Use smaller (by about a factor of 8} queues and hash tables.

f ENA!LE;/34 is a. tra.dema.rk of Able Computer, Inc.

March 26, 1984

Installing/ Operating 2. 9BSD - 24 - Kernel configuration

UNIBUS_MAP C Compile in code to detect (and support if present) a UNIBUS map.

5.3.2. Parameters

5.3.2.1. Global configuration

MAXUSERS This is the maximum number of users the system should normally
expect to support. Config sets this from the corresponding field in
the description file; the definition is copied into the system Makefile
rather than a header file. It is not intended to be a hard limit. It
is used in sizing other parameters (CMAPSIZ, NFILE,
NINODE, NPROC, NTEXT, and SMAPSIZ). The formulae
are found in param.c. Reasonable values for MAXUSERS might
be 3 or 4 on a small system (11/34, 11/40), 15 for an 11/44 with a
reasonable amount or memory, and 15-30 for an 11/70 system.

TIMEZONE The number of minutes westward from Greenwich. Config sets this
from the corresponding field in the description file. Examples: for
Pacific Standard time, 8 (* 60); for EST, 5.

DSTFLAG

HZ

Should be 1 if daylight savings time applies in your locality and 0
otherwise. Config sets this from the field in the description file.

This is the line clock frequency (e.g. 50 for a 50 Hz. clock).

5.3.2.2. Tunable parameters

CMAPSIZ This is the number or fragments into which memory can be broken.

MAXMEM

NBUF

NC ALL

NCLIST

If this number is too low, the kernel's memory allocator may be
forced to throw away a section of memory being Creed because
there is no room in the map to hold it. In this case, a diagnostic
message is printed on the console. Normally scaled automatically
according to MAXUSERS.

This sets an administrative limit on the amount or memory a pro­
cess may have. It is specified as (nn*l6), where the first number is
the desired value in kilobytes (the product is in clicks). This
number is usually considerably lower than the theoretical max­
imum (304 Kb for a nonseparate I/D CPU, 464 Kb for a separate
I/D CPU, assuming MENLO_OVL Y is defined). Normal values
are 128 Kb if there is no UNIBUS map (maximum physical
memory 248 Kb), otherwise 200 Kb.

This sets the size or the system buffer cache. It can be no greater
than 248. If UCB_NKB is defined, these are 1024 byte buffers.
Otherwise, they are 512 byte buffers. The buffers are not in kernel
data space, but are allocated at boot time. Normally scaled
automatically according to MAXUSERS, but should be examined
in the light or the disk load and amount or memory. For a small
to medium system, around 20 buffers should be sufficient; a large
system with many disks might use 40 to 60 or more.

This is the maximum number or simultaneous callouts (kernel
event timers). Ca.Houts are used to time events such as tab or car­
riage return delays. Normally scaled automatically according to
MAXUSERS.

This is the maximum number or dist segments. Clists are small
buffer areas, used to hold tty characters while they are being pro­
cessed. If UCB_CLIST is defined, they are not in kernel data
space, and this number must be less than 512 if you are using 14

March 26, 1984

Installing/ Operating 2. 9BSD

NDISK

NF ILE

NINO DE

NMOUNT

NPROC

NTEXT

SMAPSIZ

- 25 - Kernel configuration

character clists (the default), or 256 tor 30 character clists. (The
dist size, CBSIZE, is in param.h.)

This is the maximum number or disks and controllers for which
1/0 statistics can be gathered. See iostat (8). Care must be taken
that this is large enough tor the parameters tor each disk
(.XX_DKN and number or disks; see the section on disk monitor­
ing).

This sets the maximum number or open files. An entry is made in
this table each time a file is "opened" (see er eat (2)), open (2)).
Processes share these table entries across forks (see /ork(2),
v/ork(2)). Normally scaled automatically according to
MAXUSERS.

This sets the size of the inode table. There is one entry in the
inode table tor each open file or device, current working or root
directory, saved text segment, active quota node (if
UCB_QUOTAS is defined), and mounted file system. Normally
sea.led automatically according to MAXUSERS.
This indicates the maximum number or mountable file systems. It
should be large enough that you don't run out at inconvenient
times.

This sets the maximum number or active processes. Normally
sea.led automatically according to MAXUSERS.

This sets the maximum number or active shared text images
(including inactive saved text segments). Normally sea.led
automatically according to MAXUSERS.
This is the analogy or CMAPSIZ for secondary memory (swap
space). Normally scaled automatically according to MAXUSERS.

6.3.2.3. Parameten that are aet by convention

CANBSIZ This sets the maximum size or a terminal line input buffer. Ir
using the old tty line discipline, exceeding this bound causes all
characters to be lost. In the new tty line discipline, no more charac­
ters are accepted until there is room. Normally 256.

MAXSLP

MAXUPRC

MSGBUFS

NCARGS

NOFILE

SIN CR

This is the maximum time a process can sleep before it is no longer
considered a "short term sleeper." It is used only if
UCB_METER is defined. Normally 20.

This sets the maximum number of processes each user is allowed.
Normally 20, but can be lower on heavily loaded systems.

This is the number of characters saved from system error messages.
It is actually the size or circular buffer into which messages are
temporarily saved. It is expected that dmesg(8) will be run by
cron(8) frequently enough that no message is overwritten before it
can be saved in the system error log. Normally 128.

This is the maximum size of an ezec(2) argument list (in bytes).
Normally 5120.

This sets the maximum number or open files each process is
allowed. Normally 20.

The increment (in clicks) by which a process's stack is expanded
when a stack overflow segmentation fault occurs. Normally 20.

March 26, 1984

Installing/Operating 2.9BSD - 26 - Kernel con.figuration

SSIZE

5.3.3. General Options

ACCT

CGL_RTP

DIAGNOSTIC

INSECURE

MENLO_JCL

MENLO_KOV

MENLO_OVLY

OLD TTY

UCB_AUTOBOOT

UCB_CLIST

UCB_GRPMAST

UCB_NET

UCB_NTTY

UCB_PGRP

The initial size (in clicks) of a process's stack. This should be
made larger if commonly run processes have large data areas on
their stacks. Normally 20.

D Enable code which (optionally) writes an accounting record for
each process at exit. See lastcomm(l), sa(l), acct(2), accton(8).

C Support a system call which marks a process as a "real time" pro-­
cess, giving it higher priority than all others. See rtp (2).

C Turn on more stringent error checking. This enables various kernel
consistency checks which are considered extremely unlikely to fail.
It is useful when the system is inexplicably crashing.

C Do not turn off the set-user-id or set-group-id permissions on a file
when it is written.

D Support reliable signal handling and enhanced process control
features. See sigsys(2j), jobs(3j), sigset(3j). This option requires
UCB_NTTY.

C Support automatic kernel text overlays. This is required for non­
separate I/D systems and is defined automatically if PDPll is
defined to be 23, 24, 34, 40, 60, or GENERIC.

D Support automatic user text overlays. This is required in order to
run certain programs (e.g. ex version 3.7 or, on nonseparate I/D
systems, the process control C shell).

C Support the standard V7 tty line discipline (see tty(4)). This must
be defined if UCB_NTTY is not defined.

D Allows the kernel to automatically reboot itself, either on demand
(see reboot (2) and reboot (8)) or after panics. This option requires a
little planning; see section 5.4.3. Thia option requires
UCB_FSFIX.

C Map clists out of kernel virtual data space. Ir there is sufficient
space in kernel data for an adequate number of clists, this option
should not used. Mostly used on large systems, or on systems
where kernel data space is tight.

C Allow one user to be designated a "group super-user," able to per­
form various functions previously restricted to root or the file's
owner alone. In the kernel, users whose group and user ids are the
same are granted the same permissions with respect to files in the
same group as is the owner. User level software implements other
permissions, allowing the group super-user to change the password
of a user in the same group. The most common use for this is in
allowing teaching assistants to oversee students.

X Enable code implementing a PDP-11 port of Berkeley's version of
TCP /IP. The code is experimental and the implementation is
incomplete.

S Support the Berkeley tty line discipline (see tty(4) and newtty(4)).
This must be defined if OLDTTY is not defined.

C Fix a bug in the way standard V7 counts a user's processes. This
should be enabled only if MENLO_JCL is undefined, since the
notion of process groups is completely different in the two cases. IC
UCB_PGRP and MENLO_JCL are both defined, the limit on

March 26, 1984

Installing/Operating 2.9BSD - 27 - Kernel configuration

UCB_SCRIPT

UCB..;.UPRINTF

UCB_VHANGUP

VIRUS_ VFORK

6.3.4. Ftle system

INTRLVE
MPX_FILS

UCB_FSFIX

UCB_SYMLINKS

UCB_NKB

UCB_QUOTAS

the number of processes allowed per user (MAXUPRC) IS

effectively eliminated.

X Allow scripts to specify their own interpreters. For example, exe­
cuting a script beginning with "#! /bin/sh" causes /bin/sh to be
executed to interpret the script. This is not the same as the facil­
ity on 4.IBSD VMUNIX, and probably needs a little work. The
Bourne shell, /bin/sh, would need modification also.

D Write error messages directly on a user's terminal when the user
causes a file system to run out of inodes or free blocks, or on cer­
tain mag tape errors.

D Support a system call which allows init(8) to revoke access to a
user's terminal when the user has logged out. This is used to give
new users "clean" terminals on login.

D Implement a much more efficient version of fork in which parent
and child share resources until the child ezecs. See vfork(2). Note
that this changes the way processes appear in memory. It makes
swap operations slower, and thus might not be desirable on systems
which swap heavily.

X Allows interleaving of file systems across devices. See intrlve (4).

X Include code for the V7 multiplexer. The code is buggy and unsup­
ported.

S Ensure that file system updates are done in the correct order, thus
making damaged file systems less likely and more easily repairable.
Thia option la required by UCB_AUTOBOOT (actually, by
the -p option of /sck(S), which makes certain assumptions
about the state of the file systems).

C Add a new inode type to the file system: the symbolic link. Sym­
bolic links cause string substitution during the pathname interpre­
tation process. See ln (1), readlink(2), and symlink(2).

S Use file system blocks of N KB, normally 1. Changes the funda-­
mental file system unit from 512 byte blocks to 1024 byte blocks
(with a corresponding reduction in the size of in-core inodes). This
increases file system bandwidth by 100%. Note that UCB_NKB
is not boolean, but is defined as 1 for IKB blocks. Other values are
possible, but require additional macro definitions. All file systems
would have to be remade with new versions of mkfs and restor.
All supplied software expects UCB_NKB to be defined and
equal to 1.

C Support a simplistic (and easily defeated) dynamic disk quota
scheme. See ls(l), pq(l), quota(2), and setquota(8).

6.3.6. Performance Monitoring

DISKMON

UCB_LOAD

UCB_METER

C Keep statistics on the buffer cache. They are printed by the -6
option of iostat (8).

D Enable code that computes a Tenex style load average. See la(l),
gldav(2), loadav(3).

D Keep statistics on memory, queue sizes, process states, interrupts,
traps, and many other (possibly useful) things. See vmstat(l) and

March 26, 1984

Installing/ Operating 2. 9BSD - 28 - Kernel configuration

section 7.5 of this paper.

5.3.8. Device Drivers

In this section, an XX_ prefix refers to the UNIX name of the device for which the option is
intended to be enabled. For example, TM_IOCTL refers to mag tape ioctls in tm.c. Most of
these definitions go in the header file zz.h for the device. The exceptions are BADSECT, MAX­
BAD, UCB_DEVERR, and UCB_ECC.

BADSECT C Enable bad-sector forwarding. Sectors marked bad by the disk for-
matter are transparently replaced when read or written. Currently,
only the hk driver's code bas been thoroughly tested.

DDMT C Currently used only by the tm driver. Should be defined if you

DZ_PDMA

MAXBAD

have a TM-11 emulator which supports 800/1600 bpi dual density
drives with software selection.

C Configure the dz driver to do pseudo-dma.

C This sets the maximum number of replacement sectors available on
a disk supporting DEC standard bad sector forwarding. It can be
no larger than 126 but may be smaller to reduce the size or kernel
data space. See the include file / uer/include/ sys/ dkbad.h.

TEXAS_AUTOBAUD C Support an ioctl which defeat.a detection or framing or parity
errors. This is used by gett71(8) to accurately guess a line's speed
when a carriage return is typed.

UCB_DBUF C If defined for a given disk driver, the driver will use one raw buffer

UCB_DEVERR

UCB_ECC
VP _TWOSCOMPL

XX_IOC~L

X:X_SILO

X:X_SOFTCAR

XX_ TIMEOUT

per drive rather than one per controller. This increases throughput
for controllers that are capable of seeking on one drive while simul­
taneously transferring on another.

D Print device error messages in a human readable (mnemonic) for­
mat.

C Recognize and correct soft ecc disk transfer errors.

C Used in the Versatec (vp) driver. Ir defined, the byte count register
will be loaded with the twos-complement or the byte count, rather
than the byte count itself. Check your controller manual to see
whether your controller requires this.

D Turn on optional ioctls for the corresponding device. See section 4
of the Berkeley PDP-11 UNIX Programmer's manual for details.

D Used in the dh and dz drivers. If defined, the drivers will use silo
interrupt.a to avoid taking an interrupt for each character received.

C Currently used only by the db and dz drivers. Should be defined if
not all of the lines on a DH-11 or DZ-11 use modem control. It
allows one to select lines on which modem control will be disabled.
See dh(4) and dz(4). It can also be used with escape-code autodi­
alers to allow modem control to be ignored while talking to the
dialer.

D Enable a watchdog timer. This is used to kick devices prone to los­
ing interrupts. It is currently available only for the tm driver.

5.3.7. Miscellaneous System Calls

UCB_LOGIN C Support a system call which can mark a process as a "login pro­
cess" and set its recharge number (for accounting purposes). This
is usually done by login(l). See login(2).

March 26, 1984

Installing/Operating 2.9BSD - 29 - Kernel configuration

UCB_RENICE

UCB_SUBM

D Support a system call which allows a user to dynamically change a
process's "nice" value over the entire range (-127 to 127) of values.
See renice(l) and renice(2).

C Support a system call to mark a process as having been "submit­
ted," permitting it to run after the user has logged out and ena­
bling special accounting for its CPU use. See submit(l) and sub­
mit(2). It this option is enabled, init(8) sends a SIGKILL signal to
a user's unsubmitted processes when that user logs out. It is
ineffective if MENLO_JCL is defined.

6.3.8. Performance Tuning

NOKA6

PROFIL

UCB_BHASH

UCB_FRCSW AP

UCB_IHASH

UNFAST

C Simplify the code for kernel remapping by assuming that KDSA5
will not be used for normal kernel data. Kernel data space must
end before 0120000 if this option is enabled. It is unfortunate but
unavoidable that one must first make a kernel and size it to deter­
mine whether this option may be safely defined. It is usually possi­
ble on all but the largest separate I/D kernels, and on the small­
to-medium nonseparate, overlaid kernels. The checksys utility will
print a warning message if the data limit is exceeded when a new
kernel is loaded.

C Turn on system profiling. This requires a separate I/D cpu
equipped with a KWll-P clock. It cannot be used on machines
with ENABLE/34 boards since they have no spare page address
registers. It profiling is enabled, you should change the definition
of SPLFIX in the corresponding machine Makefile to :splfiz.profiJ.
The directory / usr/ contrib/ getsyspr contains a program for extract­
ing the profiling information from the kernel.

D Compile in code to hash buffer headers {and cut the time required
by the getblk routine by 50% or more on large systems).

C Force swaps on all forks and expands {but not vforks). This is
used to transfer some of the load from a compute-bound CPU to an
idle disk controller. This is probably not a good idea with
VIRUS_ VFORK defined, but then the load is better reduced by
using vfork instead or fork.

D Compile in code to hash in-core inodes (and cut the time required
by the iget routine by 50% or more on large systems).

C Do not use inline macro expansions designed to speed up file sys­
tem accesses at the cost or a larger text segment.

6.4. Additional conftguratton detalle
A few of the parameters and options require a little care to set up; those considerations are

discussed here.

6.4.1. Alternate dlak drtvera
There are several disk drivers provided for SMD disks. The hp driver supports RP04/05/06

disks; rm supports RM02/03 disks, and dvhp supports 300 Mbyte drives on Diva controllers. In
addition, there is an xp driver which handles any of the above, plus RM05 disks, multiple con­
trollers, and disks which are similar to those listed but with different geometry (e.g. Fujitsu 160
Mbyte drives). It can be used with UNIBUS or MASSBUS controllers or both. In general, if you
have only one type of disk and one controller, the hp, rm or dvhp drivers are the best choices,
since they are smaller and simpler. It you use the xp driver, it can be set up in one of two ways.
It XP _PROBE is defined in xp.h, the driver will attempt to determine the type of each disk and

March 26, 1984

Installing/ Operating 2. 9BSD - 30 - Kernel configuratb:::

controller by probing and using the drive type register. To save the space occupied by this rou­
tine, or to specify different drive parameters, the drive and controller structures can be initialized
in ioconf.c if XP _PROBE is not defined. The controller addresses will have to be initialized in
either case {at least the first, if it is a boot device). The file /usr/include/sys/hpreg.h provides
the definitions for the flags and sizes. Ioconf.c has an example of initialized structures. Xp (4)
gives more information about drive numbering, etc.

5.4.2. Diak monitoring parameters

The kernel is capable of maintaining statistics about disk activity for specified disks; this
information can be printed by ioatat(8). This involves some setup, however, and if parameters
are set incorrectly can cause the kernel monitoring routines to overrun their array bounds. To set
this up correctly, choose the disks to be monitored. loatat is configured for a maximum or 4
disks, but that could be changed by editing the headers. The drivers that do overlapped seeks
(bk, hp, rm and xp) use one field for each drive (NXX) plus one for the controller; the others use
only one field, for the controller. When both drives and controllers are monitored, the drives
come first, starting at XX_DKN, followed by the controller (or controllers, in the case of xp).
Then set NDISK in param.c to the desired number. The number or the first slot to use for each
driver is defined as XX_DKN in the device's header file, or is undefined it that driver is not using
monitoring. Joatat currently expects that if overlapped seeks are being metered, those disks are
first in the array (i.e., XX_DKN for that driver is 0). As an example, for 3 RP06 disks using the
hp driver plus 1 RL02, HP _DKN should be 0, RL_DKN should be 4, and NDISK should be 5 {3
hp disks + 1 hp controller + 1 rl). The complete correspondence for ioatat would then be:

0 (HP _DKN + 0)
1 (HP _DKN + 1)
2 (HP _DKN + 2)
3 (HP _DKN + NHP)
4 (RL_DKN + 0)

hpO seeks
hpl seeks
hp2 seeks
hp controller transfers
rl transfers

It la very Important that NDISK be large enough, since the drivers do not check for
overflow.

Arter the kernel disk monitoring is set up, ioatat it.self needs to be edited to reflect the
numbers and types or the disks. The source is in /usr/src/cmd.

5.4.3. Automatic reboot

The automatic reboot facility (UCB_AUTOBOOT) includes a number or components,
several or which must know details or the boot configuration. The kernel has an integral boot
routine, found in boot.s in the configuration directory for the machine, which reads in a block 0
bootstrap -f-rQm the normal boot device and executes it. The block 0 bootstrap normally loads
boot from the first file system on drive 0 of the disk; this can be changed if necessary. The
second-stage bootstrap, /boot, needs to know where to find unix.

The first step is to determine which kernel boot to use. Currently, there are boot modules
supplied for the following disk types: bk, rl, rm, rp, dvhp, sell and sc21 {the last two are for
Emulex SCH and SC21 controllers, using the boot command). Ir one or these will work with
your boot disk, place that entry in the bootdev field in the device configuration file before run­
ning config, or simply copy . .f conr/ dkboot.s to boot.s in the machine configuration directory. Ir
no boot module supplied will work, it is not too difficult to create one for your machine. The
easiest way to do this is to copy one or the other boot modules, and modify the last section which
actually reads the boot block. Ir you have a bootstrap ROM, you can simply jump to the correct
entry with any necessary addresses placed in registers first. Or, you can write a small routine to
read in the first disk block. Ir you don't have a boot module, bootdev in the configuration file
should be specified as none, and noboot.s will be installed. This is a dummy file that keeps the
load rules from changing. The UCB_AUTOBOOT option should not be defined until a boot

March 26, 1984

Installing/ Operating 2. 9BSD - 31 - Kernel configuration

module is obtained.

The other change that is normally required is to specify where /unix will be found. This is
done by changing the definition of RB_DEFNAME in /usr/include/sys/reboot.h. The definition
is a string in the same format as the manual input to boot, for example "xp(O,O)uni"<". After
making this change, boot will need to be recompiled (in /usr/src/sys/stand/bootstrap) and
installed. It can be installed initially as /newboot, and the original boot can be used to load it for
testing:

>boot

nnBoot
: dk(O,O)newboot

nnBoot
: dk(O,O)unix

Ir you want to have core dumps made after crashes, this must be specified in the
configuration file as well. Dumps are normally taken on the end or the swap device before reboot­
ing, and after the system is back up and the file systems are checked, the dump will be copied
into /usr/sys by 1avecore(8). Dump routines are available for the bk, hp, rm and xp drivers. To
install, change the dumpdev entry to the same value as the swap device. Then set dumplo to a
value that will allow as much as possible of memory to be saved. The dump routine will start the
dump at dumplo and continue to the end or memory or the end or the swap device partition,
whichever comes first. Dumplo should be larger than swplo so that any early swaps will not
overwrite the dump, but if possible, should be low enough that there is room for all or memory.
The dumproutlne entry in the configuration file is then set to dkdump, where dk is the disk
type. Finally, alter running config, edit the header file dk.h in the new configuration directory to
define DK_DUMP, so that that dump routine will be included when the driver is compiled.

6.4.4. Considerations on a PDP-11/23

Ir setting up a kernel on a PDP-11/23, it is necessary to consider the interrupt structure or
the hardware. Ir there are any single-priority boards on the bus, they must be behind all
multiple-priority devices. Otherwise, they may accept interrupts meant for another, higher­
priority device Carther from the processor, at a time when the system has set the processor prior­
ity to block the single-level device. The alternative is to use spl6 uniformly for any high proces­
sor priority (spl4, spl5, spl6). This may be accomplished by changing the _spl routines in mch.s,
the definitions or br4 and br5 in l.s, and by changing the script :splfix.mtps (in the con/ directory).

Berkeley UNIX does not support more than 256K bytes of memory on the 11/23. Ir you have
extra memory and a way to use it (e.g. a disk driver capable of 22-bit addressing) you will want
to change this.

6.6. Complllng the kernel

Once you have made any local changes, you are ready to compile the kernel. Ir you have
made any .~hanges which will affect the dependency rules in the Makefile, run "make depend"
(N.B.: the ~tput of this command is best appreciated on a crt). Then, "make unix." Note:
although several shortcuts have been built into the makefile, the nonseparate I/D make occasion­
ally runs out or space while recompiling the kernel. Ir this happens, just restart it and it will gen­
erally make it through the second time. The separate I/D version or make in /usr/70 should have
no problem. Also note, it is imperative that overlaid kernels be compiled with the 2.9BSD ver­
sions or cc, ae (and as.e) and Id. Use or older C preprocessors or assemblers will result in compile­
time errors or (worse) systems that will almost run, but crash alter a short time.

After the unix binary is loaded, the makefile runs a small program called checbye which
checks for size overtlows. It you are building an overlaid system, check the size or the object file
(see eize(l)) and overlay layout. The overlay structure may be changed by editing the makefile.

March 26, 1984

Installing/Operating 2.9BSD - 32 - Kernel configuration

For a nonseparate I/D system, the base segment size must be between 8194 and 16382 bytes ~:!d
each overlay must be at most 8192 bytes. If you a.re building an overlaid system with
ENABLE/34 support, note that the object module enableS,f.o must be loaded in the base segment.
The final object file "unix" should be copied to the root, and then booted to try it out. It is best
to name it /newunix so as not to destroy the working system until you're sure it does work:

cp unix /newunix
#sync

It is also a good idea to keep the old system around under some other name. In particular, we
recommend that you save the generic distribution version of the system permanently as /generi­
cunix Cor use in emergencies.

To boot the new version or the system you should follow the bootstrap procedures outlined
in section 2.4 above. A systematic scheme for numbering and saving old versions or the system is
best.

You can repeat these steps whenever it is necessary to change the system configuration.

5.&. Making changes to the kernel

Ir you wish to make local mods to the kernel you should bracket them with

#if def PICKLE

#endif

perhaps saving old code between

#ifndef PICKLE

#endif

This will allow you to find changed code easily.

To add a device not supported by the distribution system you will have to place the driver
for the device in the directory /usr/src/sys/dev, edit a line into the block and/or character device
table in /usr/src/sys/PICKLE/c.c, add the name of the device to the OPTIONAL line or the file
Depend, and to the makefile load rules. Place the device's address and interrupt vector in the
files ioconf.c and l.s respectively if it is not going to be configured by autoconfig(8); otherwise, 1.s
will only need the normal interface to the C interrupt routine. Ir you use autoconfiguration, you
will need an attach routine in the driver, and a probe routine in the driver or in autoconfig. Use
the entries for a similar device as an example. Ir the device driver uses the UNIBUS map or sys­
tem buffers, it will probably need modifications. Check "Changes in the Kernel in 2.9BSD" for
more technical information regarding driver interfacing. You can then rebuild the system (be sure
to make depend first). After rebooting the resulting kernel and ma.king appropriate entries in the
/dev directory, you can test out the new device and driver. Section 7.1 explains shutdown and
reboot procedures.

March 26, 1984

Installing/Operating 2.9BSD - 33 - Recompiling system software

6. RECOMPILING SYSTEM SOFTWARE

We now describe how to recompile system programs and install them. Some programs must
be modified for the local system at this time, and other local changes may be desirable now or
later. Before any of these procedures are begun, be certain that the include files <whoami.h>,
<sys/localopts.h> and <sys/param.h> are correct for the kernel that has been installed. This
is important for commands that wish to know the name of the local machine or that size their
data areas appropriately for the type of CPU. The general procedures are given first, followed by
more detailed information about some or the major systems that require some setup.

0.1. Recomplllng and relnstalllng system software

It is easy to regenerate the system, and it is a good idea to try rebuilding pieces or the sys­
tem to build confidence in the procedures. The system consists of three major parts: the kernel
itself, along with the bootstrap and standalone utilities (/usr/src/sys), the user programs
(/usr/src/cmd, /usr/src/ucb, and subdirectories), and the libraries (/usr/src/lib). The major part
of this is /usr/src/cmd.

We have already seen how to recompile the system itself. The commands and libraries can
be recompiled in their respective source directories using the Makefile (or Ovmakeftle if there are
both overlaid and non-overlaid versions). However, it is generally easier to use one of the MAKE
scripts set up for /usr/src/lib, /usr/src/cmd, and /usr/src/ucb. These are used in a similar
fashion, such as

./MAKE -40 I -cp I I -f J file ...

The first, required ftag sets the CPU class for which to compile. Three classes are used to used to
set requirements for separate instruction and data and for floating point. "MAKE -40" makes
nonseparate I/D versions that load the floating point interpreter as required. "MAKE -34" is
similar but assumes a hardware ftoating point unit. "MAKE -70" is used for separate I/D
machines and also assumes Boating point hardware. "MAKE -70 -r' is used for separate I/D
machines without ftoating point hardware. The use of these MAKE scripts automates the selec­
tion of CPU-dependent options and makes the optimal configuration of each program for the tar­
get computer. The optional argument -cp causes each program to be installed as it is made.
They are installed in the normal directories, unless the environment variable DESTDffi is set, in
which case the normal path is prepended by DESTDffi. This can be used to compile and create a
new set of binary directories, e.g. /nbsd/bin, /nbsd/lib, etc. Running the command "MAKE
-70 -cp •"in /usr/src/lib, /usr/src/cmd and /usr/src/ucb would thus create a whole new tree of
system binaries. The six major libraries are the C library in /usr/src/lib/c, the jobs library,
/usr/src/lib/jobs, the FORTRAN libraries /usr/src/lib/libF77, /usr/src/lib/libl77, and
/usr/src/lib/libU77, and the math library /usr/src/lib/m. Most libraries are made in two ver­
sions, one each for use with and without process overlays. In each case the library is remade by
changing into /usr/src/lib and doing

./MAKE -cpu libname

or made and installed by

./MAKE -cpu -cp lilmame

Similar to the system,

#make clean

cleans up··in each subdirectory.

To recompile individual commands, change to /usr/src/cmd or /usr/src/ucb, as appropriate,
and use the MAKE script in the same way. Thus to compile adb, do

March 26, 1984

Installing/ Operating 2. 9BSD - 34 - Recompiling system software

./MAKE -cpu adb

where cpu is 34, 40, or 70. To recompile everything, use

./MAKE -cpu •

After installing new binaries, you can use the script in /usr/src to link files together as necessary
and to set all the right set-user-id bits.

cd /usr/src
./MAKE aliases
#./MAKE modes

8.2. Making local modifications

To keep track or changes to system source we migrate changed versions of commands in
/usr/src/cmd in through the directory /usr/src/new and out of /usr/src/cmd into /usr/src/old for
a time before removing them. Locally written commands that aren't distributed are kept in
/usr/src/local and their binaries are kept in /usr/local. This allows /usr/bin, /usr/ucb, and /bin
to correspond to the distribution tape (and to the manuals that people can buy). People wishing
to use /usr/local commands are made aware that they aren't in the base manual. As manual
updates incorporate these commands they are moved to /usr/ucb.

A directory /usr/junk to throw garbage into, as well as binary directories /usr/old and
/usr/new are useful. The man(l) command supports manual directories such as /usr/man/mann
for new and /usr/man/manl for local to make this or something similar practical.

8.3. Setting up the mall system

The mail system can be set up in at least two ways. One strategy uses the delivermail(8)
program to sort out network addresses according to the local network topology. It is not perfect,
especially in the light of changing ARPAnet conventions. However, it you use the Berkeley net­
work or are connected directly or indirectly to the ARP Anet, it is probably the method of choice
for the time being. On the other hand, if you use only local mail and UUCP mail, /bin/mail
(mail(!)) will suffice as a mail deliverer. In that case, you will only need to recompile mail(l) and
Mail(l).

The entire mail system consists of the following commands:

/bin/mail
/usr /ucb/Mail
/usr /lib/Mail.re
/etc/ delivermail
/usr /net/bin/v6mail
/usr /spool/mail
/usr /spool/ secretmail
/usr /bin/xsend
/usr /bin/xget
/usr /lib/ aliases
/usr/ucb/newaliases

old standard mail program (from V7 or System III)
UCB mail program, described in Mail{!)
aliases and defaults for Mail(1)
mail routing program
local mailman for berknet
mail spooling directory
secure mail directory
secure mail sender
secure mail receiver
mail forwarding information for delivermail
command to rebuild binary forwarding database

Mail is normally sent and received using the Mail(l) command, which provides a front-end to edit
the messages sent and received, and passes the messages to de/ivermai/(8) or mail(!) for routing
and/or delivery.

Mail is normally accessible in the directory /usr/spool/mail and is readable by all users.t To

f You can ~~ic~your mail unreadable by othen1 by changing the mode of the file /ur/spool/ma.il/yourname to
600 and putting the line "set keep" in your .mailrc file. The diredory /uer/spool/ma.il must not be writable
(mode 755) for this to work.

March 26, 1984

Installing/Operating 2.9BSD - 35 - Recc:-.1piHng system software

send mail which is secure against any possible perusal (except by a code-breaker) you should use
the secret mail facility, which encrypts the mail so that no one can read it.

8.3.1. Setting up mall and Mall

Both /bin/mail and /usr/ucb/Mail should be recompiled to make local versions. Remake
mail in /usr/src/cmd with the command

./MAKE -cpu mail

Install the new binary in /bin after testing; it must be setuserid root. Section 6.1 gives more
details on the use of the MAKE scripts. To configure Mail, change directories to
/usr/src/ucb/Mail. Edit the file v7.Jocal.h to assign a letter to your machine with the definition
of LOCAL; if you do not have a local area network, the choice is arbitrary as long as you pick an
unused letter. It you wish to use delivermail, the definition or SENDMAIL should be uncom­
mented. Then add your machine to the table in config.c; configders.h gives some information on
this. The network field should specify which networks (if any) you are connected to (note: the
Schmidt net, SN, is Berknet). Arter the changes are made, move to /usr/src/ucb and

./MAKE -40 Mail (on a nonseparate I/D machine)
or

./MAKE -70 Mail (on a separate I/D machine)

Install Mail in /usr/ucb; it should not be setuserid. The Mail.re file in /usr/lib can be used to set
up limited distribution lists or aliases if you are not using delivermail.

8.3.2. Setting up dellvermall

To set up the delivermail facility you should read the instructions in the file READ_ME in
the directory /usr/src/ucb/delivermail and then adjust and recompile the delivermail program,
installing it as /etc/delivermail. The routing algorithm uses knowledge of network name syntax
built into its tables and aliasing and forwarding information built into the file /usr/Iib/aliases to
process each piece or mail. Local mail is delivered by giving it to the program
/usr/net/bin/v6mail which adds it to the mailboxes in the directory /usr/spool/mail/username,
using a locking protocol to avoid problems with simultaneous updates. You should also set up the
file /usr/lib/aliases for your installation, creating mail groups as appropriate.

8.4. Setting up a uucp connection

The version of uucp included in 2.9BSD is an enhanced version of that originally distributed
with V7•. The enhancements include:

• support for many auto call units other than the DEC DNll,

• breakup of the spooling area into multiple subdirectories,

• addition or an L.cmds file to control the set of commands which ma.y be executed by a remote
site,

• enhanced "expect-send" sequence capabilities when logging in to a remote site,

• new commands to be used in polling sites and obtaining snap shots of uucp activity.

This section gives a brief overview or uucp and points out the most important steps in its installa­
tion.

To connect two UNIX machines with a uucp network link using modems, one site must have
an automatic call unit and the other must have a dialup port. It is better if both sites have both.

You should first read the paper in volume 2B of the Unix Programmers Manual: "Uucp
Implementation Description". It describes in detail the file formats and conventions, and will give

• The uucp included in this distribution is the result of work by many people; we gratefully acknowledge their
contributiopn, but refrain from mentioning names in the intere~ of keeping thin document current.

March 26, 1984

Installing/ Operating 2. 9BSD - 36 - Recompiling system soitware

you a little context. In addition, the document setup.tblms, located in the directory
/usr/src/usr.bin/uucp/UUAIDS, may be of use in tailoring the software to your needs.

The uucp support is located in three major directories: /usr /bin, /usr /lib /uucp, and
/usr/spool/uucp. User commands are kept in /usr/bin, operational commands in /usr/lib/uucp,
and /usr /spool/uucp is used as a spooling area. The commands in /usr /bin are:

/usr /bin/uucp
/usr /bin/uux
/usr/bin/uusend
/usr/bin/uuencode
/usr /bin/uudecode
/usr/bin/uulog
/usr /bin/uusnap
/usr /bin/uupoll

file-copy command
remote execution command
binary file transfer using mail
binary file encoder (for uusend)
binary file decoder (for uusend)
scans session log files
gives a snap-shot or uucp activity
polls remote system until an answer is received

The important files and commands in /usr /lib /uucp are:

/usr /Iib/uucp/L-devices
/ usr /lib/uucp /L-dialcodes
/usr /lib/uucp/L.cmds
/ usr /lib/ uucp /L .sys
/usr /lib/uucp/SEQF
/usr/lib/uucp/USERFILE
/usr /lib/uucp/uuclean
/usr /lib/uucp/uucico
/usr/lib/uucp/uuxqt

list or dialers and hardwired lines
dialcode abbreviations
commands remote sites may execute
systems to communicate with, how to connect, and when
sequence numbering control file
remote site pathname access specifications
cleans up garbage files in spool area
uucp protocol daemon
uucp remote execution server

while the spooling area contains the following important files and directories:

/usr /spool/uucp /C.
/usr /spool/uucp JD.
/usr /spool/uucp /X.
/usr /spool/uucp JD. machine
/usr /spool/uucp JD. machineX
/usr/spool/uucp/TM.
/usr /spool/uucp fL OGFILE
/usr /spool/uucp /SYSLOG

directory for command, "C." files
directory for data, "D.", files
directory for command execution, "X. ", files
directory for local "D." files
directory for local "X." files
directory for temporary, "TM.", files
log file of uucp activity
log file or uucp file transfers

To install uucp on your system, start by selecting a site name (less than 8 characters). A
uucp account must be created in the password file and a password set up. Then, create the
appropriate spooling directories with mode 755 and owned by user uucp, group daemon.

IC you have an auto-call unit, the L.sys, L-dialcodes, and L-devices files should be created.
The L.sys file should contain the phone numbers and login sequences required to establish a con­
nection with a uucp daemon on another machine. For example, our L.sys file looks something
like:

adiron Any ACU 1200 out0123456789- ogin-EOT-ogin uucp
cbosg Never Slave 300
cbosgd Never Slave 300
chico Never Slave 1200 out2010123456

The first field is the name of a site, the second indicates when the machine may be called, the
third field specifies bow the host is connected (through an ACU, a hardwired line, etc.}, then
comes the phone number to use in connecting through an auto-call unit, and finally a login
sequence. The phone number may contain common abbreviations which are defined in the L-

March 26, 1984

Installing/Operating 2.9BSD - 37 - Recompiling system sortwue

dialcodes file. The device specification should refer to devices specified in the L-devices file. Indi­
cating only ACU causes the uucp daemon, uucico, to search for any available auto-call unit in L­
devices. Our L-dialcodes file is of the form:

ucb 2
out 9%

while our L-devices file is:

ACU culO unused 1200 ventel

Refer to the README file in the uucp source directory for more information about installation.

As uucp operates it creates (and removes) many small files in the directories underneath
/usr /spool/uucp. Sometimes files are left undeleted; these are most easily purged with the
uuclean program. The log files can grow without bound unless trimmed back; uulog is used to
maintain these files. Many useful aids in maintaining your uucp installation are included in a sub­
directory UUAIDS beneath /usr /src/usr.bin/uucp. Peruse this directory and read the "setup"
instructions also located there.

6.5. Miscellaneous software

The directory /usr / contrib contains programs and packages that you may wish to install on
your system. Some were directly contributed; others were collected from the usenet news group
net.sources. Also, some programs or libraries in other directories are sufficiently unique to be
noteworthy. Here is a brier summary.

6.5.1. Ape

Ape (Arbitrary .Precision &tended) is a replacement for the multiple precision arithmetic
routines (mp (3)). It is much faster and contains numerous bug fixes.

6.5.2. LU, Mll

Ml 1 is a Macro-11 assembler. It recognizes and emulates almost all of the directives of
standard DEC Macro-11 assemblers. L11 is its loader.

6.5.3. Jove

Jove (Jonathan's Own Version of EMACS) is an EMACS style editor developed at Lincoln
Sudbury Regional High School.

6.5.4. Kernel scheduler modlflcatlons

The scheduler modifications made by Darwyn Peachey at the University of Saskatchewan
are included here but have not been incorporated into the distribution kernel {although it would
not be hard). It improves the response of interactive jobs and provides a real time facility
different from the one currently implemented.

6.5.5. News

The network bulletin board system developed at Duke University and the University of
North Carolina and since heavily modified at Berkeley.

6.5.6. Notes

The network bulletin board system developed at the University of Illinois. This version con­
tains many enhancements and clean news interfaces.

March 26, 1984

Installing/Operating 2.9BSD - 38 - Recompiling system sol'~wue

6.5.7. Ranm

Ra nm is a Cast uniform pseudorandom number generator package developed at Berkeley.

March 26, 1984

Installing/Operating 2.9BSD - 39 - System Operation

7. SYSTEM OPERATION

This section describes procedures used to operate a PDP-11 UNIX system. Procedures
described here are used periodically, to reboot the system, analyze error messages from devices, do
disk backups, monitor system performance, recompile system software and control local changes.

7 .1. Bootstrap and shutdown procedures

The system boot procedure varies with the hardware configuration, but generally uses the
console emulator or a ROM routine to boot one of the disks. /boot comes up and prompts (with
": ") for the name of the system to load. Simply hitting a carriage return will load the default
system. The system will come up with a single-user shell on the console. To bring the system up
to a multi-user configuration from the single-user status, all you have to do is hit 'D on the con­
sole (you should check and, if necessary, set the date before going multiuser; see date(l)). The
system will then execute /etc/re, a multi-user restart script, and come up on the terminals listed
as active in the file /etc/ttys. See init(8) and tty1(5). Note, however, that this does not cause a
file system check to be performed. Unless the system was taken down cleanly, you should run
"fsck -p" or force a reboot with reboot(8) to have the disks checked.

In an automatic reboot, the system checks the disks and comes up multi-user without inter­
vention at the console. If the file system check fails, or is interrupted (after it prints the date)
from the console when a delete/rubout is hit, it will leave the system in special-session mode,
allowing root to log in on one of a limited number of terminals (generally including a dialup) to
repair file systems, etc. The system is then brought to normal multiuser operations by signaling
init with a SIGINT signal (with "kill -INT l ").

To take the system down to a single user state you can use

#kill l

or use the 1hutdown(8) command (which is much more polite if there are other users logged in)
when you are up multi-user. Either command will kill all processes and give you a shell on the
console, almost as if you had just booted. File systems remain mounted after the system is taken
single-user. If you wish to come up multi-user again, you should do this by:

cd /
/etc/umount -a
#'D

The system can also be halted or rebooted with reboot (8) it automatic reboots are enabled. Oth­
erwise, the system is halted by switching to single-user mode to kill all processes, updating the
disks with a "sync" command, and then halting.

Each system shutdown, crash, processor halt and reboot is recorded in the file
/usr/adm/sbutdownlog with the cause.

7 .t. Device errors and dlagnostlca

Wlien .(rrors occur on peripherals or in the system, the system prints a warning diagnostic
on the console. These me55ages are collected regularly and written into a system error log file
/usr/adm/messages by dme1g(8).

Error messages printed by the devices in the system are described with the drivers for the
devices in section 4 of the Berkeley PDP-11 UNIX Programmer's manual. If errors occur indicating
hardware problems, you should contact your hardware support group or field service. It is a good
idea to examine the error log file regularly (e.g. with "tail -r /usr/adm/messages").

If you have DEC field service, they should know bow to interpret these messages. If they do
not, tell them to contact the DEC UNIX Engineering Group.

March 26, 1984

Installing/Operating 2.9BSD - 40 - System Operation

7.3. File system checks, backups and disaster recovery

Periodically (say every week or so in the absence of any problems) and always (usually
automatically) after a crash, all the file systems should be checked for consistency by fsck(8).
The procedures of boot(8) or reboot(8) should be used to get the system to a state where a file
system check can be performed manually or automatically.

Dumping of the file systems should be done regularly, since once the system is going it is
easy to become complacent. Complete and incremental dumps are easily done with dump (8).
You should arrange to do a towers-of-Hanoi dump sequence; we tune ours so that almost all files
are dumped on two tapes and kept for at least a week in almost every case. We take full dumps
every month (and keep these indefinitely).

Dumping of files by name is best done by tar(l) but the amount of data that can be moved
in this way is limited to a single tape. Finally, if there are enough drives, entire disks can be
copied with dd(l) using the raw special files and an appropriate block size.

It is desirable that full dumps of the root file system are made regularly. This is especially
true when only one disk is available. Then, if the root file system is damaged by a hardware or
software failure, you can rebuild a workable disk using a standalone restore in the same way that
restor was used to build the initial root file system.

Exhaustion of user-file space is certain to occur now and then; the only mechanisms for con­
trolling this phenomenon are occasional use of df(l), du (1), quot (8), threatening messages of the
day, personal letters, and (probably as a last resort) quotas (see aetquota(8)).

7 .4. Moving flle system data

If you have the equipment, the best way to move a file system is to dump it to magtape
using dump (8), to use mkfs(8) to create the new file system, and restore, using reetor(8), the tape.
If for some reason you don't want to use magtape, dump accepts an argument telling where to
put the dump; you might use another disk. Sometimes a file system has to be increased in logical
size without copying. The super-block of the device has a word giving the highest address that
can be allocated. For small increases, this word can be patched using the debugger adb(l} and
the free list reconstructed using /sck(8). The size should not be increased greatly by this tech­
nique, since the file system will then be short of inode slots. Read and understand the description
given in fi/sys(5) before playing around in this way.

If you have to merge a file system into another, existing one, the best bet is to use tar(l). Ir
you must shrink a file system, the best bet is to dump the original and restor it onto the new file
system. However, this will not work if the i-list on the smaller file system is smaller than the
maximum allocated inode on the larger. If this is the case, reconstruct the file system from
scratch on another file system (perhaps using tar(!)) and then dump it. If you are playing with
the root file system and only have one drive the procedure is more complicated. What you do is
the following:

I. GET A SECOND PACK!!!!

2. Dump the root file system to tape using dump (8).

3. Bring the system down and mount the new pack.

4. Load the standalone versions of mkfs(8) and restor(8) as in sections 2.1-2.3 above.

5. Boot·nq,rmally using the newly created disk file system.

Note that if you add new disk drivers they should also be added to the standalone system in
/usr/src/sys/stand.

7 .S. Monitoring System Performance

The iostat(8) and vmstat (8) programs provided with the system are designed to aid in moni­
toring systemwide activity. By running them when the system is active you can judge the system
activity in several dimensions: job distribution, virtual memory load, swapping activity, disk and

March 26, 1984

Installing/Operating 2.9BSD - 41 - System Operation

CPU utilization. Ideally, there should be few blocked (DW) jobs, there should be little swappL'lg
activity, there should be available bandwidth on the disk devices (most single arms peak out at
30-35 tps in practice), and the user CPU utilization (US) should be high (above 60%).

Ir the system is busy, then the count of active jobs may be large, and several of these jo!Js
may often be blocked (DW).

Ir you run vmstat when the system is busy (a "vmstat 5" gives all the numbers computed
by the system), you can find imbalances by noting abnormal job distributions. If many processes
are blocked (DW), then the disk subsystem is overloaded or imbalanced. Ir you have several
non-OMA devices or open teletype lines that are "ringing", or user programs that are doing high­
speed non-buffered input/output, then the system time may go high (60-70% or higher). It is
often possible to pin down the cause of high system time by looking to see if there is excessive
context switching (CS), interrupt activity (IN) or system call activity (SY).

Ir the system is heavily loaded, or if you have little memory for your load (248K is little in
almost any case), then the system will be forced to swap. This is likely to be accompanied by a
noticeable reduction in system performance and pregnant pauses when interactive jobs such as
editors swap out. Ir you expect to be in a memory-poor environment for an extended period you
might consider administratively limiting system load.

7 .e. Adding users

New users can be added to the system by adding a line to the password file /etc/passwd.
You should add accounts for the initial user community, giving each a directory and a password,
and putting users who will wish to share software in the same group. User id's should be assigned
starting with 16 or higher, as lower id's are treated specially by the system. Default startup files
should probably provided for new users and can be copied from /usr/public. Initial passwords
should be set also.

A number or guest accounts have been provided on the distribution system; these accounts
are for people at Berkeley and at Bell Laboratories who have done major work on UNIX in the
past. You can delete these accounts, or leave them on the system if you expect that these people
would have occasion to login as guests on your system.

7 .7. Accounting

UNIX currently optionally records two kinds or accounting information: connect time
accounting and process resource accounting. The connect time accounting information is nor­
mally stored in the file /usr/adm/wtmp, which is summarized by the program ac(8). The process
time accounting information is stored in the file /usr/adm/acct, and analyzed and summarized by
the program sa(8).

If you need to implement recharge for computing time, you can implement procedures based
on the information provided by these commands. A convenient way to do this is to give com­
mands to the clock daemon /etc/cron to be executed every day at a specified time. This is done
by adding lines to /usr/adm/crontab; see cron{S) for details.

7 .8. Resource control

Resource control in the current version or UNIX is rather primitive. Disk space usage can
be monitored by du(l) or quot(8) as was previously mentioned. Disk quotas can be set and
changed with setquota(8) if the kernel has been configured for quotas. Our quota mechanism is
simplistic and easily defeated but does make users more aware of the amount of space they use.

7 .9. Fl'u which need periodic attention

We coDclude the discussion of system operations by listing the files and directories that con­
tinue to grow and thus require periodic truncation, along with references to relevant manual
pages. Cron(8) can be used to run scripts to truncate these periodically, possibly summarizing
first or saving recent entries. Some of these can be disabled if you don't need to collect the

March 26, 1984

Installing/ Operating 2. 9BSD

information.

/usr/adm/acct
/usr / adm/ meHagea
/uar / adm/ahutdownlog
/uar/adm/wtmp
/uar/apool/uucp/LOGFILE
/uar / spool/uucp/SYSLOG
/usr /diet/ apellhlst
/uar /Uh/learn/log
/usr/•Y•

- 42 -

sa(8)
dmesg(8)
sbutdown(8)
ac(8)
uulog(l)
uulog(l)
spell(l)
learn(l)
savecore(8)

March 26, 1984

System Operation

raw process account data
system error log
log of system reboots
login session accounting
uucp log file
more uucp logging
spell log
learn lesson Jogging
system core images

Installing/ Operating 2. 9BSD - 43 - Magic numbers

8. KERNEL MAGIC l\1UMBERS

This sections contains a collection of magic numbers for use in patching core or an execut­
able unix binary. Some of them have also been mentioned earlier in this paper. With the excep­
tion of the zp_type{i} variables (which hold bytes) and swplo (which is a long) all locations given
contain short integers. N.B.: in the case of paired interrupt vectors (for DHs and DZs) the
address of the second vector of the pair is four more than the address of the first vector.

Interrupt Vectors

Vector Handler Contents Block device Character device
0160 rlio 01202 8 18
0210 hkio 01142 4 19
0220 rkio 01172 0 9
0224 tmio 01222 3 12
0224 htio 01152 7 15
0224 tsio 01232 9 20
0254 xpio 01242 6 14
0260 rpio 01212 1 11
t dzin 01132 21
t dzdma 02202 21
t dhin 01112 4
t dhou 01122 4
t lpio 01162 2

f Set by autoconfig(8).

March 26, 1984

Installing/Operating 2.9BSD - 44 -

Other Variables

Name
xp_addr
xp_type!OJ
xp_type!lJ
xp_type!2l
xp_type!3J
HKADDR
HTADDR
RKADDR
RLADDR
RPADDR
TMADDR
TSADDR
dz_addr
dh_addr
lp_addr
rootdev
pipedev
swapdev
swplo
nswap

t Set by autoconfig(8).
t Set by reading the corre11ponding drive type register.
• System dependent.

Address
061464
061472
061506
061522
061536
061006

0114226
061152
061154
061236

0113320
0113612
0113324
0114136
0113452
060772
060776
060774
061000
061004

March 26, 1984

Magic numbers

Contents
0176700

* * * * 0177440
t

0177400
0174400
0176710

t
t
t
t
t
*
*
*
*
*

Changes in the Kernel in 2.DBSD

Michael J. Kare/a

Department or Molecular Biology
University or California, Berkeley

Berkeley, California 94720

Carl F. Smith

Department or Mathematics
University oC California, Berkeley

Berkeley, CaliCornia 94720

William F. Jolitz

Symmetric Computer Systems
Los Gatos, California

This document summarizes changes in the PDP-llt UNIX:j: kernel between the July 1981
2.8BSD release and the July 1983 2.gBSD distribution. The kernel remains highly tunable, and
changing #defined options may affect the validity or remarks in this paper.

The major changes fall into these categories:

Ill The new signal mechanism needed for process control has been added to the system, making
the job control facilities or 4.IBSD available.

[21 Vfork, a Corm or fork which spawns a new process without fully copying the address space of
the parent, is available to create a new context for an exec much more efficiently.

[31 The system can reboot itselC automatically, after crashes or manually. The system is more
crash-resistant and is able to take crash dumps before rebooting.

141 A fast and reliable method or accessing mapped buffers and clists without increasing proces­
sor priority is now available.

!SJ The protocols for allocation oC the UNIBUS map have been changed, and DMA into system
buffers with 18-bit addressing devices is also different.

161 Changes have been made in code organization, so that more than one system configuration
may be built from a single set oC sources. Each system is described by a single file that
includes parameters such as system size, devices, etc. Most or the "magic numbers" such as
device register addresses and disk partitions are in one file, ioconC.c, and the number oC dev­
ices of each type are in header files local to that system.

l7J Most devices are configured at boot time rather than at compilation time, reducing the work
in system configuration and making it possible Cor one binary to work on several similar sys­
tems. References to nonexistent devices are now rejected rather than causing a crash.

!SJ System diagnostics have been changed to a standard, readable format; file system diagnos­
tics refer to file systems by name rather than device number. Device diagnostics refer to
devices by name and print error messages mnemonically as well as in octal.

f FDP-11, DEC, UNIBJS and~ are trademarks of Digit.a.I Equipment Corporation.
~is a trademark of Bell Laboratorie3.

- 2 -

Many other performance enhancements and bug fixes have been made. Some conditional
compilation flags have been removed because the feature they control is now considered standard
(e.g. UCB_BUFOUT). Other features have been grouped together and are now controlled by the
same flag (e.g. code previously conditional on UCB_SMINO now depends on UCB_NKB).

Many of the changes in 2.9BSD are based on work by many other people. Several features
are modeled on those of the 4.IBSD VMUNIX system, and much of the code comes directly from
that source.

Converting local software

Most local changes should be easily ported to the new system. The actual system
configuration is much simpler than with previous kernels.

There are many changes that affect the device drivers. The appendices give the details of
the conversions necessary. Device drivers that used the kernel's in-address-space buffers must be
rewritten to use mapped buffers or their own dedicated buffers. "Abuffers" have been removed
from theturtent system.

Appendix A contains a description of the new data mapping protocols used to access
mapped buffers, clists, and some tables.

The UNIBUS map is allocated dynamically. Kernel data space is no longer guaranteed to
be mapped by any portion of the UNIBUS map. Any local software making such assumptions
must now explicitly allocate a section of the UNIBUS map; mapalloc and mapfree may be used for
objects with buffer headers. See Appendix B for a description of the new UNIBUS map protocols.

The line discipline switch has been reorganized slightly to make it cleaner. Some unused
fields in the linesw structure have been removed. There is a default line discipline,
DFLT_LDISC, which may not be assumed to be 0. See Appendix C for a description of the new
terminal and line discipline protocols.

As part of the implementation of vfork, process images are scatter loaded. Standard system
monitoring programs (e.g. ps and w) have been modified. Local software must be changed accord­
ingly. See Appendix D for a more detailed description of vfork.

Sites may wish to convert their device drivers to use the new autoconfiguration features
described in Appendix E.

Processors are described by capabilities rather than cpu type. Separate I/D spaces and
UNIBUS maps are detected and supported independently. Thus it is much easier to describe
machines with foreign hardware enhancements. In particular, the Able ENABLE/34t is automat­
ically detected and supported.

A new bootstrap loader that loads all object files except 0405 replaces the old version that
loaded only 0407, 0411, and 0430. The kernel assumes that boot has already set the kernel mode
segmentation registers and cleared bss. Other bootstraps that do not do so will not work.

Organlzatlonal changes

The system compilation procedure has been changed so that more than one set of binaries
may be made with a single set of source code. System sources are kept in the directories sys/sys
and sys/ dev. No binaries are kept in either of these directories.

The directory sys/cont contains several files related to system configuration. For each
machine to be configured, a single file should be created in this directory. Each such file describes
all the parameters of the machine necessary for building a system. The format of the
configuration files is described in config(B)t. This procedure is more fully described in "Installing
and Operating 2.9BSD."

f ENAILF,13-4 is a. tra.dema.rlc of AELE Computer, Inc.
iReferences of the form X{ Y) mea.n the subsection na.med X in eedion Y of the Berkeley FDf'.ll UNIX

Progra.mmer's ma.nua.1.

- 3 -

Corresponding to each system to be configured, there is a subdirectory or ay1. One proto­
type directory, GENERIC, is already there. This directory is created and the appropriate files
are installed by config, based on information in the machine description file. The configuration
program processes the information in the configuration file and produces:

1) A set or header files (e.g. dh.h) which contain the number or devices available to the target
system. These definitions force conditional compilation or drivers, resulting in the inclusion
or exclusion or driver code and the sizing or driver tables. This technique, based on compi­
lation, is more powerful than a loader-based technique, since small sections or code may be
easily conditionalized. Only drivers that are needed are included in the resulting system.
Option flags that are specific to individual drivers are also placed in these header files.

2) The assembly language vector interface, l.s, which turns the hardware generated UNIBUS
interrupt sequences into C calls to the driver interrupt routines.

3) A table file, loconf.c, which defines controller addresses for each disk controller in the
configured system, and the partition tables for the larger disks.

4) The._~les localopta.h, param.c, param.h, and whoaml.h. These can be edited if local
taste s<t·dictates. Whoaml.h contains the definition or PDPll, which will have one or the
following values: 23, 34, 40, 44, 45, 60, 70, or GENERIC. The distributed binary is com­
piled with PDPll=GENERIC, allowing the system to support most or the hardware on any
supported processor. The definitions for the optional features or the system are in
localopt1.h. Finally, the files param.c and param.h contain the tunable sizes and
parameters. These are mostly dependent on the definitions or PDPll and MAXUSERS (in
the Makefile). Param.c contains most or the commonly-changed parameters, so that only
this file need be recompiled to retune the system. Also, because these parameters are now in
global variables, system utilities may easily determine the current values by examining the
running system.

5) The Makefile contains the default compilation and load rules for the type or kernel being
made (overlaid or not overlaid). It also contains the specification or an editor script that
implements in-line expansions or calls to spl, depending on the instruction set available.
The makefile may need editing to change the overlay structure or to include optional device
drivers in the load rules. MAXUSERS is defined here and used in param.c to gauge the
sizes or data structures.

In order to add new files or device drivers to the system, it is necessary to explicitly add
them to the Makefile load rules, to its extension Depend (used in the "make depend" command to
rebuild the Makefile dependency rules), to the configuration file c.c and optionally to
autoconfig(8) and config(B) or I.e.

Header flle.
Many new files have been added for use in device drivers. They contain definitions or the

device structure and mnemonics used in referencing registers and printing diagnostics. Most files
have been reorganized slightly to improve modularity or readability.

acct.h The UCB_XACC option has been separated into UCB_LOGIN and
UCB_SUBM.

buf.h

conf.h

Unused flags have been deleted and the others compacted. Two Hags
have been added. B_RH70 indicates that a device is on an RH70 con­
troller. B_UBAREMAP indicates that the buffer's address is being inter­
preted as UNIBUS virtual, not physical.

A d_root field has been added to the 6devsw structure. The unused fields
/_rend and /_meta have been deleted Crom the linesw structure. L_rint
has been renamed /_input. L_start has been deleted and a new field,
/_output added for uprintf. See Appendix C.

cpu.h

dkbad.h

ftlsys.h

lnllne.h

lstat.h

koverlay.h

mtlo.h

param.h

proc.h

qatat.h

reboot.h
reg.h
aeg.h

trap.h

tty.h

types.h
uba.h

uaer.h

vcmd.h

System flies: sys/sys

- 4 -

New file. Contains mnemonics for fields in the cache and memory con­
trol registers or various processors.

New file. Contains mnemonics and structures used to implement DEC
standard 144 bad sector forwarding.

Two fields in the filsys structure, sJname and sJpack, have been
replaced by sJsmnt. The new field is u5ed by the kernel to print diag­
nostics and by /sck(8).

New file. Definitions of inline expansions and macro replacements
designed to speed up file system accesses at the cost or code expansion.

Renamed qstat.h. The structure previously names /stat is now names
qstat and all structure fields previously named ls_* have been renamed
qs_•.

New file. Contains definitions relating to kernel text overlays. Both non­
separate I/D (0430) and separate I/D (0431) kernels can be overlaid.
Most or the information in this file cannot be changed easily. It is pro­
vided to clarify the way kernel overlays work.

An mt_type field bas been added to the mtget structure. Tape drivers
may be interrogated to determine formatter type. See mt(4).

Many configuration constants (e.g. NINODE, NPROC) have moved from
here to param.c and are referenced by global variables rather than mani­
rest constants. Thus only one file need be recompiled to change them.

Numerous changes have been made to support job control and vforks.
The zproc structure is in a union in the proc structure so that it is easily
possible to determine which fields are overlaid.

Used to be called letat.h. Contains declarations for the qstat and qfstat
system calls (for quotas).

New file. Contains options for the reboot system call.

The (unused) definition or ROV has been deleted.

New macros and definitions have been added to support the remapping of
kernel data to access buffers and clists. Changes have been made to
allow dynamic support or the ENABLE/34.

New file. Used in l.s, mch.s, and trap.c to encode trap types mnemoni­
cally.

Contains a macro for lookc if UCB_NTTY is defined and UCB_CLIST is
not defined.

More typedefs have been added.

New file. Most UNIBUS map specific structures and macros are collected
here.

Numerous changes have been made to support job control and vf orks.

New file. Contains commands used by the vp driver and user ioctl
definitions.

Major changes have taken place to support job control and vforks. The file, proc, and text
tables have been moved to the end of kernel data space (possibly in the region into which buffers
and clists are mapped) and thus are not necessarily accessible at interrupt time; those functions
that need to access these tables or the u. from interrupt level (currently clock, gsignal, and
wakeup) must save and restore kernel mapping registers.

- 5 -

Inclusion or both the multiplexer and floating point support is conditional, reducing the size
or systems that do not require them. Some consistency checks that we consider extremely
unlikely to fail, and the accompanying panics, are uniformly conditional on the definition or
DIAGNOSTIC. Calls to splN (where N is 0, ... , 7) that do not require the previous priority to be
returned have been changed to _splN and are expanded in-line by editing the compiler's output.

acct.c

alloc.c

clock.c

enable34.c

fakemx.c

flo.c

lget.c

I.a

machdep.c

The sysphys routine has been moved from here to machdep.c.

File system error messages are identified by file system name rather than
major /minor device number. They are printed directly on a user's termi­
nal if that user causes a file system to run out or free space. Getfs no
longer panics if it cannot find a device in the mount table. Callers or
getfs have been modified to check for a NULL return value. This,
together with a change to pipe.c, avoids a panic if pipedeu is a file system
that is not currently mounted.

Cloclc has been modified to use the new remapping protocols. Disk moni­
toring has been simplified and can monitor more (or fewer) than three
disks. Free memory averaging is calculated in kilobytes, avoiding
overflow.

New file. Contains support routines for the ENABLE/34. Two routines,
fiobyte and fioword are used to help solve the problem or probing the I/O
page on machines with ENABLE/34 boards. Wherever fuibyte and fui­
word would be used to probe a location possibly on the 1/0 page, these
routines should be used instead.

This file is no longer necessary and has been deleted.

Falloc uses the tablefull routine. A bug in the access system call with the
UCB_GRPMAST option has been fixed.

After reading blocks or inodes, both the error flag and the residual count
are checked. This avoids destroying whole blocks or inodes on failure.
The residual count is also checked in other places in the kernel { bmap,
etc.). Ir an error occurs in iget, iput is not called for an invalid inode.
/get uses the tablefull routine.

Both l.s and the old 140.s are merged into this file. The code is prepro­
cessed with cpp, allowing consistency with C fi!es for conditional compila­
tion.

A boot function has been added to cause the system to reboot itself and
(optionally) take a crash dump automatically. The type or reboot is
passed to /etc/init as an argument. Mapalloc and mapfree use a resource
map to dynamically allocate sections of the UNIBUS map. Mapalloc
translates physical addresses in buffer headers for cache buffers to
UNIBUS addresses for transfers on UNIBUS devices. Mapal/oc is thus
called for both buffered and raw transfers now. Ubinit initializes the
UNIBUS map and the resource map describing it. Mapin and mapout no
longer run at elevated priorities to block interrupts. Mapout is elim­
inated if the kernel data segment is sufficiently small.

A new function, dorti, which is used by the new signal mechanisms has
been added.

Buffer space is uniformly malloced in startup rather than in start (mch.s)
The same is true for clists if UCB_CLIST is defined.

On machines without UNIBUS maps, no attempt is made to detect
memory past 0760000, avoiding crashes when device registers are found
at this address.

maln.c

malloc.c

mch.s

naml.c

plpe.c

prf.c

-6-

Clkstart calls fioword to probe for the line clock register. It is not a panic
if no clock register is found since 11/23s may not have one; a message is
printed in this case.

The name of the root file system ("/") is copied into its superblock so
that the name will be available for error messages (e.g. if the root file sys­
tem becomes full).

All addresses and sizes in malloc.c have been typedetfed and are
unsigned. This makes it possible to use more than two megabytes of
memory. A new function, mallocS, efficiently allocates memory for
scatter loading, minimizing the cost of failing. M/ree contains many
more consistency checks. Resource maps have a new structure that
includes a limit. Mfree prints a console error message when it must dis­
card a piece of a map because of fragmentation instead of overrunning
the map or panicing. When malloc cannot allocate enough swap space, it
frees the swap space belonging to saved text segments, possibly avoiding
panics caused by running out of swap space.

Both m40.s and the old mch.s have been merged into this file. The C
preprocessor is used to produce the right code for different CPUs, includ­
ing GENERIC. It is able to reboot after power failures if the contents of
memory are intact.

Copyseg and clearseg have been converted to copy and clear respectively.
They take an additional argument, a count of the number of clicks to
copy or clear. They remap the kernel to access the source and target
more efficiently. Ir real-time support is enabled, both are preemptible. A
new routine, copyu, is available to copy the u. in non-preemptible mode.

Most spl calls are now done in-line; the old priorities are saved and
restored as bytes (to allow the use of mfpa/ mtps instructions where avail­
able). Kernel red stack violations are detected, allowing normal panics.

System call traps are handled separately from other processor traps.
This results in a 22% decrease in system call overhead. Emulator traps
(used in automatic text overlays) are also handled separately from gen­
eral traps. This decreases overlay switch overhead by 45%. On
machines without hardware floating point, a fast illegal instruction trap
routine reduces system overhead for interpreted floating point by 00%.

The kernel overlay support has been changed to use new, smaller subrou­
tine entries ("thunks") in the base segment that are compatible with the
loader used for user-level overlaid programs. The management of the
kernel stack in the trap/interrupt code is simpler and faster.

The kernel text relocation that was done in mch.s if UCB_CLIST or
UCB_BUFOUT were defined is no longer necessary and has been
replaced by calls to malloc in startup.

File names are not allowed to contain characters with the parity bit
(0200) set. File name comparisons stop at the first null. A bug that
caused permissions to be checked incorrectly when searching to " .. " from
the root of a mounted filesystem has been fixed.

Allocates inodes for pipes on the root device if iallocs on pipedev fail.
Inodes for pipes are marked for special handling.

Panic causes the system to reboot. A function, uprintf, has been added
to print error messages on the terminal of the user causing the error
rather than the console. Print/ no longer uses recursion. It supports a
%c format to print a single character, a %b format used to print register

prlm.c

rdwrl.c

slg.c

slgjcl.c

slgnojcl;,c

slp.c

subr.c

sysl.c

sys3.c

sys4.c

- 7 -

values mnemonically, and a %X format for long hexadecimal. Prdev has
been eliminated. Deverror is included only if UCB_DEVERR is
undefined.

The routines prdev and deverror, that printed diagnostics that were
difficult to interpret, are replaced by harderr, that begins a message
about an unrecoverable device error, and the %b format mentioned
above. Tahlefull is a new function used to report that a table is run.
Uses new mapping protocols for CMAPIN and CMAPOUT. Getw has
been discarded. Putw is included only if needed for the multiplexer
driver. Cpaddr has been deleted. It is now a macro in dh.c. Other rou­
tines that are used only by the dh driver are eliminated if there are no
dh's on a system. Lookc is eliminated (replaced by a macro) if
UCB_CLIST is not defined.

Inodes allocated for pipes receive special handling: writei always uses
hdwrite and readi cancels the disk write if it has not yet occurred. This
results in a large improvement in pipe throughput, especially if the
UCB_FSFIX option is in use (for more robust file systems).

This is now a dummy file that includes either sigjcl.c or signojcl.c
depending on whether MENLO_JCL is defined.

A new file that supports the signal mechanisms necessary for job control.
The changes listed under signojcl.c are also included.

Used to be called sig.c. A race condition that occasionally caused ignored
signals to generate bus errors has been fixed. Ptrace supports overlay
changes, allowing breakpointing of overlaid subprocesses. If floating
point arithmetic is being simulated by catching illegal instruction traps,
traced subprocesses are allowed to process the signal normally without
stopping. Stack growth is rounded to SK boundaries, to allow the max­
imum theoretical stack size.

There are major changes in the sleep/ wakeup mechanism for process con­
trol. Swapped processes are no longer kept on the run queue. Newproc
has been modified to allow vforks. The scheduling algorithm has been
modified to avoid deadlocks possible with vfork. Processes are scatter
loaded in three pieces (data, stack and u. area; text is handled
separately), with changes in newproc, expand and swap in.

The unused routine dequeue has been removed.

Bcopy may now be called with a count or 0.

Fork has been modified to allow vforks and uses the tahlefull routine.
Support has been added for wait2, used in job control. Bdwrite is used
instead or hawrite when copying out argument lists in e:rece, in an
attempt to avoid disk 1/0. A pointer to the last used proc table slot,
lastproc, is used to shorten searches for processes. A message is printed if
/etc/init cannot be executed.

Smount copies the mounted file system's name (e.g. "/usr") into the
s_rsmnt field or the superblock. The in-address-space buffers (abutfers)
have been removed, and the superblocks of mounted file systems are in
the mount table itself.

The mechanism for sending signals to all processes has been changed so
that the process broadcasting the signal does not receive it itself. This
allows reboot(8) to shut down the system cle2.llly before rebooting.

The #if def for UCB_STICKYDIR has been removed. This is now stan­
dard. Setpgrp is included to support job control. A bug in utime bas

syslocal.c

text.c

trap.c

ureg.c

-8-

been fixed.

The old setpgrp is replaced by the job control version. Chfiie and iwait
have been removed. A new system call, vhangup, is used by init to
revoke access to terminals after logouts. Another new system call, ucall,
allows autoconfig(8) to call internal kernel routines. Support for qstat,
and q/stat (formerly 1st at and If stat respectively) is conditional on
UCB_ QUOTAS.

Xswap has been modified for scatter loading. Xumount frees all saved
text segments if called with argument NODEV. Malloc uses this to
attempt to avoid panics when swap space is exhausted. Xalloc uses the
tablefull routine.

Trap no longer handles system calls. Instead, a new routine, syscall, is
called from mch.s when a system call trap occurs. Trap saves the previ­
ous kernel mapping on kernel faults.

A new routine, choverlay, has been added to change overlays for user
processes. It is called from mch.s when an overlay switch trap occurs.
The units of the variables describing the overlay region (ovbase and
dbase) have changed. Segmentation register prototypes are no longer
maintained for the overlay region, necessitating a call to choverlay from
sureg. Estabur and sureg support scatter loading. A bug has been fixed
that caused overlaid processes to fail when the base segment length was a
multiple of 8192. On machines without separate l/D space, estahur is
simplified.

Device support: eys/dev

All of the drivers have been modified to support autoconflguration. They have attach rou­
tines to record the csr addresses after the device has been probed by autoconfig(8). Appendix E
describes the strategy. Drivers with attach routines properly reject attempts to access nonexistent
controllers (instead of causing a crash). Each device driver has a corresponding header file indi­
cating the number of such devices present and other configuration dependent options.

Devices that do OMA on machines with UNIBUS maps must ensure that their data areas
are accessible through the UNIBUS map; UNIBUS addresses are not necessarily the same as physi­
cal addresses. see Appendix B. Only buffers and clists are statically mapped. It is possible to
map in out-of-address space data at interrupt level (this was previously risky) provided the previ­
ous map is saved and restored; a mechanism is provided for this, as described in Appendix A.
The structure of the line switch has been reorganized and the protocol to be used in opening a
device and setting up a line discipline is well defined. See Appendix C.

Disks that are potentially RH.70 MASSBUS disks have been provided with attach routines
that detect RH70s, as well as root attach routines that force attachment before autoconflguration
occurs. Some disk drivers have been provided with crash dump routines. See rmdump in rm.c or
hkdump in hk.c for examples.

The format of device option flags is now consistent. Optional device ioctls are enabled by
XX_IOCTL (e.g. DH_IOCTL). Optional watchdog timers are enabled by XX_TIMER (e.g.
TM_TIMER). The dh (respectively dz) driver, which is capable of managing the input siilo to
reduce interrupts, does so if DH_SILO (respectively DZ_SILO) is defined. The disk cache moni­
toring numbers used by iostat(8), formerly called DK_N, have been renamed XX_DKN (e.g.
HP _DKN) so that they can be placed in the header files.

All drivers use include files to define the device structures and register constants. The
drivers themselves uniformly use mnemonics rather than magic numbers in device registers and
error messages. Initialized device register addresses and disk driver partition tables reside in
ioconf.c.

blo.c

bk.c

dh.c

dhdm.c

dhfdm.c

dvhp.c

ds.c

hk.c

hp.c

ht.c

kl.c

mem.c

ml.c

mux.c

rf.c

rk.c

rl.c

rm.c

- 9-

lodone reverses the translation of buffer addresses (done by mapalloc)
from physical to UNIBUS virtual when doing block 1/0 on UNIBUS
disks. Bwrite now correctly supports the B_AGE ftag on asynchronous
writes. A portion of the disk monitoring code that was of questionable
usefulness has been discarded. The physio subroutine has been divided
into separate routines, allowing use of bphysio by drivers that allow
byte-oriented rather than word-oriented transfers or don't use buffer
headers.

The Berknet line discipline has been changed to use dedicated buffers
instead of abuffers. It is still untested.

Changed to use the new UNIBUS map location of clists. Ioctls for setting
and clearing break and dtr have been added. Ir DH_SOFTCAR is
defined, modem control is ignored for lines whose minor device number is
greater than or equal to 0200. Dhdm.c is now part of dh.c; the appropri­
ate dm support is included only if needed.

This is now part of dh.c.

This file is no longer necessary and has been deleted.

This driver is simplified if there is only one drive, as no seek is needed
before a transfer. Error correction code has been added.

Optionally uses the dz silo. Ioctls for setting and clearing break and dtr
are available. Ir DZ_SOFTCAR is defined, modem control is ignored for
lines whose minor device number is greater than or equal to 0200.
Pseudo-dma has been implemented.

New version of the RK06/7 driver. Now performs disk sorts, ECC
corrections, and DEC standard 144 bad sector forwarding. A dump rou­
tine has been added.

This driver is simplified if there is only one drive, since no search is
needed before a transfer. Error correction code works with mapped
buffers and 1024 byte blocks. The driver waits for Drive Ready when
doing positioning commands. A dump routine has been added. A prel­
iminary, lightly tested version of DEC standard 144 bad sector forward­
ing has been added.

Tape ioctls are supported. Uses bphysio for byte-oriented transfers.
Clrbuf is no longer called from interrupt level.

Putchar has been modified to support uprintf.

Some unneeded spls have been deleted. Routines used to read and write
memory set page protections correctly.

New file. A driver for the DEC :ML 11 solid state disk courtesy of the
DEC UNIX Engineering Group.

Dropped from this distribution.

New version of an old driver missing from 2.8BSD.

Properly recovers the residual byte count at the end of a transfer.

Properly recovers the residual byte count at the end of a transfer.

This driver is simplified if there is only one drive; the rmustart routine is
merged with rmstart, and no search is needed before a transfer. Error
correction code works with mapped buffers and 1024 byte blocks. The
software simulation of the current cylinder register has been fixed. The
driver waits for Drive Ready when doing positioning commands. A
dump routine has been added. A preliminary, lightly tested version of
DEC standard 144 bad sector forwarding has been added.

rp.c

rx2.c

rx3.c

tm.c

ts.c

tty.c

ttynew.c

xp.c

- 10 -

Properly recovers the residual byte count at the end of a transfer.

New file. A driver for the DEC RX211 floppy disk controller courtesy or
the DEC UNIX Engineering Group.

New file. A driver for the DSD480 floppy disk controller courtesy or Tek­
tronix.

Uses bphysio for byte-oriented transfers. Clrbuf is no longer called from
interrupt level. Contains code for an optional watchdog timer. Checks
for density changes in mid-tape.

Tape ioctls are supported. Uses bphysio for byte-oriented transfers.
Clrbuf is no longer called Crom interrupt level.

The ttioctl subroutine calls the line discipline's ioctl before any other pro­
cessing. Ttioctl has also been changed to eliminate code for the old line
discipline if it is not present, and when changing disciplines it checks that
the new discipline is supported. These changes allow the old line discip­
line to be omitted. It is possible to flush either the input or output
queues (or both) using TIOCFLUSH.

Tandem mode is supported with raw mode in the new tty driver. The
t_char field is no longer disturbed by flow control in tandem mode.
Backslashes are no longer printed before capital letters on upper-case­
only terminals.

This driver (which supports an assortment or RP04/05/06, RM02/03/05,
Diva and other disks) now is able to manage more than one controller.
The probe routine is optional if the drive and controller structures are
initialized. It is simplified if there is only one drive; no search is needed
before a transfer. Error correction code works with mapped buffers and
1024 byte blocks. The driver waits for Drive Ready when doing position­
ing commands. A dump routine has been added. A preliminary, lightly
tested version or DEC standard 144 bad sector forwarding has been
added.

- 11 -

Appendix A: Kernel Data Mapping Protocols

1. Introduction

These protocols ultimately address the question of how to "expand" the kernel's data space
beyond the severe limitations imposed by the PDP-11 hardware. This concern about methods of
expanding kernel data space stems from the desirability of retaining large system buffer pools and
dist areas despite hardware limitations. We do this by keeping certain data objects resident in
core but without guaranteeing that they will be accessible through kernel virtual data space at all
times. Iri th~s way the same virtual address range can be used for several different objects.

1.1. History

The original Berkeley PDP-11 kernel distribution (2.8BSD) provided the ability to move
buffers and clists out of kernel data space. Buffers were accessed by mapping them in through
KDSA5. A side effect was that the data that normally resided there were unavailable until buffers
were mapped out again. Clists were mapped in through KDSAl with the same side effect.

Because of this restriction, and the possibility of interrupts at any time, sections in which a
kernel data register was repointed generally had to be protected by spl6()/ splz() pairs. (The
exception is that spls were unnecessary for buffer mapping if KDSA5 was used only for that pur­
pose, and this was not done from interrupt level.) This inevitably led to increased interrupt
latency and sometimes caused the system clock to lose time perceptibly.

It is not at all clear why these registers were special. They were chosen after careful exami­
nation of the system namelist. On our ll/70s, the inode table used all virtual addresses refer­
enced through KDSAl and it was known that no part of the kernel required simultaneous access
to clists and inodes. Similarly, it was observed that data referenced through KDSA5 typically
consisted of tty structures and the kernel did not require simultaneous access to tty structures and
buffers.

It should be obvious how vulnerable this method is to even the most trivial changes such as
system load order or table sizes. Clearly something better was needed.

1.2. 2.9BSD Methods

We chose four goals for our new remapping protocols:

Ill They must be fast. Interrupt latency should not be increased by elevating the processor
priority.

[21 They should be flexible, allowing objects other than buffers and clists to be remapped easily.

[3J Interrupt service routines should not be slowed unnecessarily by requiring that the map he
changed on all interrupts.

l4J There must be a well-defined class of objects that the remapping will make inaccessible.
Furthermore, any section of code that requires access to one of these objects during inter­
rupt processing must itself ensure that the object is mapped in.

The implementation we chose uses KDSA5 as the primary mapping register. The only
normally-resident objects allowed in this region (0120000 to 0140000) are the proc, file, and text
tables. These objects were chosen because they are rarely accessed from interrupt level. If kernel
data space is small enough that these tables end before this region, the code can be further
simplified by defining the conditional-compilation Oag NOKA5. In general, kernel functions are
able to map in external data at will, with the caveat that interrupt routines must save the previ­
ous map (which may already point at some mapped-in object).

- 12 -

To make copy (previously copyseg) as Cast as possible, yet interruptible, we also allow it to
use KDSA6 as a mapping register. This makes the normal kernel stack (which lies in the region
addressed by KDSA6) inaccessible, so the kernel uses a temporary stack while in copy.

Most or the segmentation map switching is done by macros Cor speed; some or the macros
test whether any work need be done before calling a subroutine. The data structures and macros
used in this scheme are in the include file seg.h, with the subroutines in machdep.c. These macr06
must be used Cor all kernel remapping or races will ensue (because the order in which registers are
set is critical to the protocol).

1.z.1. Top Level Protocol

A global prototype page address/descriptor pair is maintained (ir necessary) for virtual
addresses Crom 0120000 to 0140000. It is initialized in startup. KDSA5 may be repainted to
access other objects Crom the top level provided that the normal mapping is restored before the
next context switch. The contents or KDSA5/KDSD5 are changed by the macro call

mapsefi5{addr, desc);

where addr is the new value for KDSA5 and desc is the new value ror KDSD5. The default map­
ping Cor this page is restored by the macro call

normalsegS(};

The mapin and mapout (unctions use this method to provide access to a mapped buffer.

Unless the kernel data map has been explicitly reset by mapin or mapsegS, the proc, file, and
text tables are guaranteed to be mapped in when the kernel is not at interrupt level.

1.z.z. Interrupt Level Protocol

Interrupt-level routines may not assume that the range controlled by KDSA5 or KDSA6
contains valid data unless the map is explicitly set to either the normal state (for the proc, text or
file tables, or for the u.) or to map external data.

Interrupt routines that wish to repoint KDSA5 must first save the current contents or
KDSA5 and KDSD5 in a local variable by

segm saveregs;
savesegS(saveregs);

before changing their contents with mapsegS. Before returning, the old contents must be restored
by the call

restorsegS(saveregs);

This method is used by getc and putc to access the clist area.

Note that mapin does not save the current map in this way. To use mapin and mapout
Crom interrupt level, it is necessary to save the map with savesegS before calling mapin, and then
restore it with restorsegS after the last mapout.

Ir an interrupt routine must access either the u. or any or the tables, it must save the previ­
ous P ARs and PD Rs for pages 5 and 6 in a local variable and set the map to the normal state
using

mapinfo map;
sauemap(map);

- 13 -

and restore the old contents with

restormap(map);

This mechanism is used by gsignal and wakeup, which are frequently called from interrupt level
and must access the proc table, and by clock, which needs access to the proc table and the user
structure. It is also used in trap, which saves the map data in the global map kernelmap on
kernel-mode traps for potential use in debugging.

- 14 -

Appendix B: UNIBUS Map Protocols

2. Introduction

UNIX as distributed by Bell Labs and in previous Berkeley releases made some tacit assump­
tions about the arrangement or kernel data space and the use or the UNIBUS map (or machines
with 22-bit addressing):

• All kernel data space was statically covered by some portion or the UNIBUS map. This
included mapped out objects such as buffers and clists. Kernel virtual data space addresses
needed no conversion to UNIBUS or physical addresses. Thus no special action was taken
on, for example, DMA transfers Crom kernel data space to ensure that the source or target
area was accessible through the UNIBUS map.

• The remaining portion or the UNIBUS map was dedicated to only one I/O request at a
time. Thus a fixed portion or the UNIBUS map was used for each physical 1/0 request.

Although these assumptions did result in much simpler code, they had the unfortunate side
effect of degrading system performance. Two swaps could not occur simultaneously. When a
slow device such as a tape drive was used for physical 1/0, all other physical 1/0 suffered
severely. This was most noticeable when file system dumps were occurring. It also made the use
oC raw 1/0 for real-time data acquisition impossible.

2.1. 2.9BSD Methods

The solution is to manage the UNIBUS map with a resource map, allocating and freeing
groups of registers as required by the size of the I/O request. This has already been implemented
independently at some sites. Our code is modeled after several of these.

In an effort to have as many UNIBUS map registers as possible available for allocation, only
the clist area and buffer pool have statically allocated UNIBUS map registers. The clist area is
mapped through UNIBUS register 0. It may therefore be at most 8192 bytes long, and begins at
UNIBUS virtual address 0. The global variable clstaddr contains the UNIBUS address (in bytes)
oC clists (even if a UNIBUS map is not present). The appropriate number or registers is dedicated
to the buffer pool at boot time and the rest are made available for allocation. When there is a
UNIBUS map, the buffers begin at UNIBUS byte address BUF _UBADDR, whereas their physical
address (in clicks) is bpaddr.

Routines that manipulate the UNIBUS map must be prepared to be called even if no
UNIBUS map exists. They should check the boolean variable ubmap, which is nonzero if a
UNIBUS map is present. For convenience, several useful macros have also been provided. See
the include file uba.h.

The code for block 1/0 dynamically supports both MASSBUS and UNIBUS controllers. A
buffer header associated with the buffer cache used for block I/O normally contains the physical
address or the buffer area. This is translated into a UNIBUS address before beginning the 1/0
operation if the device does not use 22-bit addressing. This translation is performed by mapalloc;
thus, UNIBUS disk and tape drivers should call mapalloc for both raw operations (B_PHYS set)
and those in the buffer cache. While a buffer header contains the UNIBUS virtual address of the
buffer area instead of the physical address, the B_UBAREMAP flag is set in its b_flage field.
After the transfer is finished, iodone restores the physical address in the buffer header. Drivers for
disks that may be either MASSBUS or UNIBUS generally set the B_RH70 flag in the b_flags oC
their devtab structures if they are 22-bit MASSBUS devices and test it before calling mapalloc.

- 15 -

Appendix C: Terminal and Line Discipline Changes

3. Introduction

There have been several changes in the kernel terminal-handling routines. The initial incen­
tive for these changes was to allow the old tty discipline to be removed. This required that line
disciplines be symmetric and equivalent. Previously, line discipline 0 (the old tty driver) was
treated specially and was assumed to exist.

3.1. Ttyopen and Ttycloae

The first group of changes is in the open and close sections. The routines ttyopen and tty­
close are no longer part of any discipline, but do the necessary initialization at the first open and
the breakdown at the final close. They call the line discipline-specific open or close routine, and
all the drivers (db, dz, kl etc.) need do is call ttyopen and ttyclose Crom their open and close rou­
tines.

3.!. Ioctl Protocols

The second set of changes is in the ioctl-handling sections. The line disciplines are given the
opportunity to reject or modify any ioctl call, or to do it themselves, before the common code is
reached. Again, all the work is done by the discipline-independent routine, ttioctl, which calls the
line discipline's ioctl routine. The device drivers thus call only ttioctl. There are three possible
return conditions from ttioctl:

• a command is returned that the device driver is expected to execute

• 0 is returned with u. u_error clear, meaning that the command completed successfully

• 0 is returned with u.u_error set, meaning that the command completed abnormally

The typical device driver ioctl routine will thus look like this:

switch (ttioctl(tp, cmd, addr, flag)) {
case TIOCSETP:

}

case TIOCSETN:
setparam(unit);
break;

case other_known_command:
implement the command;
break;

default:
u.u_error = ENOTTY;

case 0:
break;

3.3. Line Switch Changes

There are a few other differences in the terminal handlers Crom previous systems. The
line discipline switch is no longer optional (the defined constant UCB_LDISC is gone). The
linesw can have unused discipline entries in it, so that line discipline numbering is indepen­
dent of the disciplines supported at any time; unused disciplines are marked by using nodev
as their open routines, thus preventing entrance into them. This necessitates a new defined
constant, DFLT_LDISC, which is the line discipline that device drivers should set on initial

- 16 -

open. Finally, the line discipline switch itself has been reorganized, with three entries being
deleted and one field added. The previously-unused /_rend and /_meta pointers have been
removed, and calls to /_start have been replaced with calls to ttstart. The l_rint entry has
been renamed /_input and an /_output pointer has been added for the use or uprintf.

- 17 -

Appendix D: VJ ork Implementation Notes

The kernel changes for the vforJ: system call are major and deserve a few notes.
Processes are no longer in one piece, but instead the user structure, data segment, and stack
segment are separate. They are located at p->p_addr, p->p_daddr, and p->p_saddr
respectively (where p is a pointer to a proc entry) and their sizes are USIZE, p-> p_dsiz and
p-> p_ssiz. The latter two are copies or the entries in the user structure. All segments are
swapped if any are, and there is a new routine, mallocS, to allocate memory or swap for all
three segments at once. When a vfork occurs, the u. is copied, and the data and stack are
passed to the child. The parent sleeps until the child calls exec or exit. At that time, the
child locks itseir in core and waits for the parent to reclaim the data and stack.

The major advantages or these changes are the efficiency or avoiding the copy in I orlc,
and more efficient utilization or memory, as processes are in smaller segments. The disad­
vantage is that swaps require three separate transfers in each direction. Except on heavily
loaded systems with small main memory, the result should be a net gain. There is a poten­
tial for deadlock since the child must lock itself into core; this can only be a problem with
small memories when the parent has been swapped out. To help avoid problems, the swap­
ping algorithm has been changed to swap in the parent process in a vrork before any others.

- 18 -

Appendiz E: Autoconfiguration

The kernel changes to add autoconfiguration are fairly small. The most global change
is that device CSR addresses and interrupt vectors must be initialized only for disk drivers
which service root devices. Most or the work or autoconfiguration is done in user mode by
autoconfig(8). It reads the device table /etc/ dtab, then verifies the CSR address by reading
from it (through /dev /kmem). IC the CSR is present, autoconfig then tries to make the dev­
ice interrupt in order to check that the vector specified is correct. To facilitate this check,
l.s has two interrupt catchers, CBAD and CGOOD, that set the global variable _con/_int to
-1 and 1 respectively when called. Autoconfig sets all unused vectors to CBAD, then sets
the expected vector to CGOOD. After the probe, autoconfig checks the contents or
_con/_int to see whether the device interrupted and whether it was through the expected
vector. IC everything is correct to this point, autoconfig calls the device driver's attach rou­
tine with the unit number and address, then sets up the interrupt vector.

The kernel support for autoconfiguration consists of two parts. The first includes the
interrupt catchers in l.s and a new routine in syslocal.c that allows autoconfig to call the
driver attach routines. This new system call, ucaU (see ucall(2)), calls a specified kernel rou­
tine (by address) at a specified priority with two user-supplied arguments. The other group
of changes is in the drivers. Most drivers have new attach routines which simply place the
address specified into their address arrays, checking that the unit number is in range. Dev­
ice open and/or strategy routines have been modified to test that the device address has
been set before allowing the open, read, or write to succeed. Drivers that need to probe the
hardware to test its type may do that as well in the attach routine. The drivers that handle
both MASSBUS and UNIBUS devices check for bus address extension registers at this time.
A new routine, fioword, is provided to read a word from the 1/0 page, returning -1 if the
address does not exist. Because the disks must be attached before autoconfig runs if they
are to be used for root file systems, their addresses and vectors are still initialized. A new
entry in the block device switch, d_root, is used at boot time to call driver routines which
disk drivers may use to attach all known devices before iinit. This allows them to deter­
mine controller and drive types. Drivers currently fall into three classes: UNIBUS only
disks, MASSBUS/UNIBUS disks, and others. Prototypes of the attach and d_root routines
for each class follow.

The probe routines that are used to make the devices interrupt may be either in
autoconfig or in the kernel. IC the kernel has a probe routine, that will be used, otherwise
autoconfig will use its own probe. This mechanism is provided because it may be difficult to
address some devices properly by reading and writing /dev /kmem. All current probe rou­
tines are internal to autoconfig.

Device drivers that have no attach routines are ignored by autoconfig. Old drivers that
have not been converted to use autoconfiguration will thus work properly.

- 19 -

/•
• Example 1: autoconfiguration prototype for devices other
• than disks. Xxattach will be called by autoconftg(8).
•/

xxattacb(addr, unit)
struct xxdevice •addr;
{

}

if ((unsigned) unit >== NXX)
return(O);

xx_addrlunit} == addr;
retum(l);

/•ARGSUSED•/
xxopen(dev, ftag)
dev_tdev;
int flag;
{

}

register int unit= XXUNIT(dev);

if (xx_addrlunitJ === (struct xxdevice •)NULL) {
u.u_error = ENXIO;
return;

}
if (unit>= NXX) {

u.u_error = EINVAL;
return;

}

- 20-

/* * Example 2: autoconfiguration prototype for UNIBUS disks.
* Xxattach will be called by autoconfig(8).

*/

xxattach(addr, unit)
struct xxdevice •addr;
{

}

iC (unit != 0)
return(O);

XXADDR = addr;
return(I);

xxstrategy(bp)
register struct bur •bp;
{

iC (XXADDR == (struct xxdevice *)NULL) {
bp->b_error = ENXIO;
goto errexit;

}
iC (bp->h_blkno >= NXXBLK) {

bp->b_error = EINVAL;
errexit:

}

}

bp->b_ftags I= B_ERROR;
iodone(bp);
return;

- 21 -

/*
* Example 3: :iutoconfiguration prototype for disks
* possibly on the MASSBUS. Xxroot will be called
* from binit (main.c).

*/

void
xxroot()
{

xxattach(XXADDR, O);
}

xxattach(addr, unit)
register struct xxdevice •addr;
{

if (unit!= 0)
return(O);

if ((addr != (struct xxdevice *)NULL) && (fioword(addr) != -1)) {
XXADDR = addr;

#if PDPll == 70 II PDPll == GENERIC
if (fioword(&(addr->xxbae)) != -1)

xxtab.b_fiags I= B_RH70;
:/fendif

}

return(l);
}
XXADDR = (struct xxdevice *) NULL;
retum(O);

xxstrategy(bp)
register struct buf •bp;
{

register unit;
long bn;

if (XXADDR == (struct xxdevice *)NULL) {
bp->b_error = ENXIO;
goto errexit;

}

unit= minor(bp->b_dev) & 077;
ir(unit >= (NXX < < 3) II bp->b_blkno < 0 II

(bn = dkblock(bp)) + ((bp->b_bcount + 511) >> 9)
> xx_sizes!unit & 07J.nblocks) {

bp->b_error = EINV AL;
errexit:

}

}

bp->b_fiags I= B_ERROR;
iodone(bp);
return;

INGRES
VERSION 6.3

REFERENCE MANUAL

4/2/81

by

John Woodfill
NickWhyle
Mike Ube!l
Polly Siegal

Dan Ries
Marc Meyer

Paula Hawlho_-n
Bob Epstein

Rick Berm:'in
Erle Allman

- 1 -

INTRODUCTION (lNGRES) 3/15/79 INTRODUCTION (INGRES)

This manual is a reference manual for the I\"G::t::'.S data base system. It docu­
ments the use of INGRES in a very terse manner. To learn bow to use INGRES, refer
to the document called "A Tutorial on INGR:s".

The rNG!ES reference manual is subdivided into four parts:
Quel describes the commands and features which are used inside of INGRES.
Unix describes the INGR2S programs which are executable as UNIX commands.
Files describes some of the important files used by INGRES.
Error lists all the user generatable error messages along with some elabora­

tion as to what they mean or what we think they mean.

Each entry in this manual has one or more of the following sections:

NA..\!E section
This section repeats the name of the entry and gives an indication of
its purpose.

SYNOPSIS section
This section indicates the form of the command (statement). The con­
ventions which are used are as follows:

Bold face names are used to indicate reserved keywords.
Lower case words indicate generic types of information which

must be supplied by the user; legal values for lhese
names are described in tbe DESCRlPTlO)l' section.

Square brakets ([]) indicate that the enclosed item is optional.
Braces (B) indicate an optional item which may be repeated. Jn

some cases they indicate simple (non-repeated)
grouping; the usage should be clear from context.

When these conventions are insuff..cie~t to fully specify the legal format
of a command a more general form is given and the allowable subsets
are specified in the DESCRlPTIOi\ section.

DESCRIPTION section
This sect.ion gives a detailed description of the entry with references to
th~ generic names used in the SY)iOPSJS section.

EXAMPl E section
This section gives one or more examples of the use of the entry. Most
of these examples are based on the follo·wing relations:

emp(name,sal,mgr,bdate)
and

newemp(name,sal,age)
and

parts(pnum, pname, color, weight, qoh)

SEE ALSO section
This section gives the names of entries in the manual which are closely
related to the current entry or which are referenced in the description
of the current entry.

BUGS section
This section indicates known bugs or deficiencies in the command.

To start using iNGRES you must be entered as an ;);GRES user; t.his is done by t!"le
INGRES administrator who will enter you in the "u::;ers" file (see users(files)). To
start usbg ingre$ see the section on ingres(unLx), quel(quel), and monitor{quel).

J.CKNO'!'LEDG EI.llih"l'S
We would like to acknowledge the people ·who have worked on INGRES in the past:

- 1 -

INTRODUCTION (INGRES)

FOOTNOO.'E

William Zook
Karel Youssefi
Peter Rubinstein
Peter Kreps
Gerald Held
James Ford

3/15/79

UNIX is a trademark of Bell Laboratories.

- 2 -

INTRODUCTION (INGRES)

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (INGRES)

APPE!\1J(QUEL) - ~pend tuples to a relation
append (toJ relname {target.list) [where qual]

COPY(QUEL) - copy data into/from a relation from/into a ::-~IX file.
copy relname (domname =format~. domnamc =format n

direction "filename"
CREATE(QUEL) - create a new relation

create relname (domnamel = format ~. domname2 = format n
DEFINE(QUEL) - de.fine subschema

define view name (target list) [where qual]
define permit oplist ~ on I of~ to J var [(attlist)] to name [at term] [

from time to time] L on day to day] [where qual]
define integrity on var is qual

DELETE(QUEL) - delete tuples from a relation
delete tuple_yariable [where qualJ

DESTROY(QUEL) - destroy existing relation(s)
deslroy relname l. relnameJ
destroy [permit I integrity) relname [integer ~. integeri! all]

HELP(QUEL) - get information about how to use L'\GRES or about relations in the
database.
help [relname] ["section"] ~. relnameU, "section"!
help view relname l. relnameJ
help permit re!name L rclno.me~
help integrity relnarne ~. relnamc}

INDEX(QUEL) - create a secondary index: on an existing relation.
index OT' relname is indexname (domainl ~ ,domain2D

rnTEGRITY(QUEL) - define inlegrity constraints
define integrity on var is qual

MACROS(QUEL) - terminal monitor macro facility
MODIFY(QUEL) - convert the storage strudure of a relation

modify relname to storare-struct.11re [on keyl [: sortorder] [~ . key:? r :
sortorder] J] f where [filllactor = n J [, minpages = n] [,
maxpages =n

MONITOR(QUEL) - inlcractive terminal monitor

PEP •. MIT(QUEL) - add permissions to a relation
define permit oplist l on L of I to J var [{attlist)]

to name L at term] [frn:n time to time]
(on day to day] [where qual]

PRINT{QUEL) - print relation(s)
print relname ~. relnameJ

QUEL(QUEL) - QUEry Language for INGEES
RANGE(QUEL} - declare a variable to range over a relation

range of variable is relname
REPLACE(QUEL)- replace values of domains in a relation

replace tuple_yariable {target.Jist) [where qual]
RE.1'RlEVE(QUEL) - retrieve tuples from a relation

retrieve ((into] relname] (taz;get_Jist) [where qual]
retrieve unique (target.list) L where qual)

- 1 -

TABLE OF CONTENTS (INGRES) 3/23/79

SAVE(QUEL) - save a relation until a date.
save relname until month day year

TABLE OF CONTENTS (INGRES)

VlEW(QUEL) - define a virtual relation
define view name (target-list) [where qual J

CREATDB(UNIX) - create a data base
creatdb [-uname J [~] [-m] [±c] [±q] dbname

DESTROYDB(UNIX) - destroy an existing database
destroydb [-s J [-m] dbname

EQUEL(UNIX) - Embedded QUEL interface to C
equel [-d] [-r] [-r] file.q ...

HELPR(UNIX) - get information about a database.
helpr [-uname J [±w] database relation ...

lNGRES(UNIX) - INGRES relational data base management system
ingrcs [fta.9s] db name [process_J,able]

PRINTR(UNIX) - print relations
printr [flags] database relation ...

PURGE(UNIX) - destroy all e:-,.pired and temporary relations
purge [-f] [-p J [-a] [-s J [=W J L database ...]

RESTORE(UNIX) - recover from an ING?.:::'.S or UXIX crash.
restore [-a J [-s] [±w] [database ...]

SYSMOiJ(U~IX)-:- modify system reb.~i':)ns to predeterminc:d,s;o:--age structu::-~s.
sysmod I -s] [-w] dbname L relation] [attribute J L indexes] [t..rcc J [
protect] [integrities]

USERSETlJP(UNIX) - setup users file
.. ./bin/uscrsetup [pathname }

DAYFJJ.E(FILES) - ING!tES login message

DBTMPLT(FILES) - database template

ERROR(FILES) - files with ING~S errors

IJBQ(FJLES) - Equel run-time support library

PROCTAB(FILES) - INGtBS nmtime configuration information

STAH.TUP(FILES) - INGa:::s startup file

USEES(FILES) ·-INGRES user codes and parameters

INTRODUCTION(ERROR) - Error messages introduction

EQUEL(ERROR) - EQUE:. error message summary
Error numbers 1000 - 1999.

PARSER(ERROR) - Parser error message summary
Error numbers 2000 - 2999.

QRYMOD(ERROR) - Query Modification error message summary
Error numbers 3000 - 3999.

OVQP(ERROR) - One Variable Query Processor error message summary
Error numbers 4000 - 4499.

DECOMP(ERROR) - Decomposition error message summary
Error numbers 4500 - 4999.

DBU(ERROR) - Data Base Utility error message summary
Error numbers 5000 - 5999

- 2 -

APPEND(QUEL) 1/26/79 APPEND(QUEL)

app~nd - append tuples to a relation

SYNOPSIS
append [to] relname {target_jist) [where qual]

DSSC'1lll'TION
Append adds tuples which satisfy the qualification to relnam.e. Relna.m.e must be
the name or an existing relation. The ta:rget_Jist specifies the values of the attri­
butes to be appended to relname. The domains may be listed in any order. At­
tributes or the result relation which do not appear in the tar9et_jist as
result_attnames (either explicitly or by def a ult) are assigned def a ult values of 0,
for numeric attributes, or blank, for character attributes.

Values or expressions of any numeric type may be used to set the value or a
nume:-ic type domain. Conversion to the result domain type takes place.
Nwneric values cannot be directly assigned to character domains. Conversion
from nwneric to character can be done using the ascli operator {see
quel(quel)). Character values cannot be directly assigned to numeric domains.
Use the intl, int.2. etc. functions to convert character values Lo numeric (see
qucl(quel)).

The kc..yword all can be used when it is desired to append all domains of a rela­
tion.

An append may only be issued by the owner c~ the relation or a user with append
permission on the given relation.

J«AlAPLE
/•Make new employee Jones work for Smith •/

range of n is ncwemp
append to emp(n.name, n.sal, mgr= "Smill:", bdate = 1975-n.age)

where n.name ="Jones"
/•Append the newempl relation to newemp •/

range of nl is newemo 1
append to newemp(ni.all)

SEE.ALSO
copy(quel), permit{quel), quel(quel), retrieve{quel)

DIAGNOSTICS

BUGS

Use of a numeric type expression to set a character type domain or vice versa
will produce diagnostics.

Duplicate tuples appended to a relation stored as a "paged heap" {unkeyed, un­
structured) are not removed.

- 1 -

COPY(QUEL) 1/19/79

copy - copy da.ta into/from a relation from/into a UNIX file.

SYNOPSIS
copy relname {domname =format L domnarne =format D

direction "filename"

DESCRIP'l'ION

COPY(QUEL)

Copy moves data between INGRES relations and standard UNIX files. Relname is
lhe name of an existing relation. In general damna:me identifies a domain in rel­
nam..e. Format indicates the format the 'CSIX file should have for the correspond­
ing domain. .Direction is either into or from. Filename is the full UNIX pathname
of the tile.

On a copy from a file to a relation, the relation cannot have a secondary index, it
must be owned by you, and it must be updatable (not a secondary index or sys­
tem rdation).

Copy cannot be used on a relation which is a 'iew. For a copy into a UNIX file, you
must either be the owner of the relation or tne relation must have retrieve per­
mission for all users, or all permissions for all users.

The formats allowed by copy are:

il.i2,i4- - The data is stored as an integer of length 1, 2, or 4- bytes in the UNIX
file.

f4,f8 - The data is stored as a floating poir..t number {either single or double
precision) in the UNrx file.

c1,c2, ... ,c255 - The data is stored as a fixed le:1gth string of characters.

cO - Variable length character string.

d0,dl, ...• d255- Dummy domain.

Corresponding domains in the relation and the UNIX file do not have to be the
same type or length. Copy will convert as necessary. When converting anything
except character to character, copy checks for overflow. When converting from
character to character, cnpy will blank pad or truncate on the right as neces­
sary.

The domains should be ordered according to the way they should appear in the
UNIX file. Domains are matched according to name, thus the order of the
domains in the relation and in the UNIX file does not have to be the same.

Copy also provides for variable length strings and dummy domains. The action
lc>.ken depends on whether it is a copy into o:- a copy from. Delimitors for vari­
able length strings and for dummy domains cc.n be selected from the list of:

nl - new line character
tab - lab character
sp- space
nul or null - null character
comma - comma
colon - colon
dash- dash
lparen - left parenthesis
rparen - right parenthesis
:z; - ClilY single character 'x'

The special meaning of any delirnitor can be lt.;rned ofI by preceeding the delimi­
tor with a ''\'. The delimit.or can optionally be in quotes (''delim"). This is useful­
ly if you wish to use a single character delirr:itor which has special meaning to

- 1 -

COPY(QUEL) 1/19/79 COPY(QUEL)

the QUEL parser.

When the direction is from, copy appends data into the relation from the UNIX
file. Domains in the INGRF.s relation which are not assigned values from the UXIX
tile are assigned the default value of zero for numeric domains, and blank for
character domains. When copying in this direction the following special mean­
ings apply:

cOdelim - The data in the UNIX file is a variable length character string terminat­
ed by the delimiter delim. If d.elim is missing then the first comma,
tab, or newline encountered '\\ill terminate the string. The delimiter is
not copied.

For example:
pnum=cO - string ending in comma, tab, or nl.
pnum=cOnl - string ending in nl.
pnum=cOsp - string ending in space.
pnum=cO"Z" - string ending in the character 'Z'.
pnum=c0"%" - string ending in the character '%'.

A delimiter can be escaped by preceeding it with a '\'. For example,
using name = cO. the string "Blow\, Joe," '\\ill be accepted into the
domain as "Blow, Joe" ..

dOdelim - The data in the UNIX file is a variable length character string delimited
by d.elim. The string is read and discarded. The delimiter rules are
identical for cO and dO. The domain name is ignored.

d1,d.2, ..•• d255 - The data in the UNIX file is a fixed length character string. The
string is read and discarded. The domain name is ignored.

W~en the direction is into. coptJ transfers data into the UNIX file from the rela­
tion. 1f the file already existed, it is truncatc:d to zero length before copying be­
gtns. When copying in this direction, the f ollcwing special meanings apply:

cO - The domain value is converted to a fixed length character string and writ­
ted into the UNIX file. For character domains, the length will be the
same as the domain length. For numeric domains, the standard INGRES
conversions will take place as specified by the '-i', '-{', and '-c' tlags
(see ingres(uni.x)).

cOdelim - The domain will be converted according to the rules for cO above. The
one character delimitor will be inserted immediately after the domain.

d1,d2, d255 - The domain name is taken to be the name of the delimilor. 1t is
written into the UNIX file 1 time for ell. 2 times for d.2, etc.

dO - This for mat is ignored on a copy into.

dOdelim - The delim is written into the file. The domain name is ignored.

If no domains appear in the copy command {i.e. copy relname () into/from
"filename") then CO]YIJ automatically does a "bulk" copy of all domains, using the
order a.nd formal of the domains in the relation. This is provided as a con­
venient. shorthand notation for copying and restoring entire relations.

To copy into a relation, you must be the owner or all users must have all permis­
sions set. Correspondingly, to CO'P!J from a relation you must own the relation or
all users must have al least retrieve permission on the relation. Also, you may
not coptJ a view.

RlCAMPIB
/• Copy data into the emp relation • /

copy emp (name=c10,sal=f4,bdate=i2,mgr=cl0,xxx=dl)

-2-

COPY(QUEL) 1/19/79 ·COPY(QUEL)

from "/mnt/me/myfile"

/•Copy employee names and their salaries Li.to a file •/
copy emp (name=c0,comma=dl,sal=c0,nl=d1)

into "/mnt/you/yourfile"

/•Bulk copy employee relation into file •/
copy emp {)

into "/mnt/ours/ourfile"

/•Bulk copy employee relation from file •/
copy emp ()

from "/mnt/thy/thyfile"

SEEAISO

BUGS

append(quel), create(quel), quel(quel), perrrJt(quel), view(quel), ingres(unix)

Copy stops operation at the first error.

When specifying filename, the entire UNIX direct-7 pathname must be provided,
since INGRES operates out of a different director.r than the user's ·working dirnc­
tory at the time INGRES is invoked.

- 3 -

CREATE(QUEL) 1/26/79 CREATE(QUEL)

create - create a new relation

SYNOPSIS
create relname {domnamel =format~. domname2 =format D

DESCRIPTION
Create will enter a new relation into the data base. The relation will be "owned"
by the user and will be set to expire after seven days. The name of the relation
is relname and the domains are named domna:me 1, domna.me2, etc. The
domains are created with the type specified by format. Formats are described
in the quel{quel) manual section. .

The relation is created as a paged heap with no data initially in it.

A relation can have no more than 49 domains. A relation cannot have the same
name as a system relation.

~I.E
/•Create relation emp with domains name, sal and bdate •/

create emp (name= c10, salary= f4, bdate = i2)

SEE Al.SO
append(quel), copy(quel), destroy(quel), save(quel)

BUGS

- 1 -

DEFlNE(QUEL)

define - define subschema

SYNOPSIS

2/7/79 DEF1NE (QUEL)

defme view name {target list) [where qual J
define permit oplisl ~ on I of i to ~ var [(alllisl)] to name [at term] [from lime

to time] [on day to day] [where q'.lal]
define integrity on var is qual

D~'ION
The define statement creates entries for the subschema definitions. See the
manual sections listed below for complete descriptions of these commands.

SEE ALSO
integrity(quel), permit(quel), view(quel)

- 1 -

DELETE{QUEL} 1/26/79 DELETE{QUEL)

NAME
delete - delete tuples from a relation

SYNOPSIS
delete tuple_yariable [where qual]

DESCRIPTION
Delete removes tuples which satisfy the qualification qual from the relation that
they belong to. The tuple_:ya:riable must have been declared to range over an
existing relation in a previous range statement. Delete does not have a
ta:rget.Jist. The delete command requires a tuple variable from a range state­
ment; and not the actual relation name. lf the qualification is not given, the
efiect is to delete all tuples in the relation. The result is a valid, but empty rela­
tion.
To delete tuples from a relation, you must be the owner of the relation, or have
delete permission on the relation.

EX'AllPLE
/•Remove all employees who make over $30,000 •/

range of e is emp
delete e where e.sal > 30000

S!mALSO
deslroy{quel), permit{quel), quel{quel}, range{quel)

BUCS

- 1 -

DESTROY (QUEL) 2/21/79

destroy - destroy existing relation(s)

~NOPSIS

DESTROY (QUEL)

destroy relname f , relname J
destroy [permit 1 integrity] relname [integer ~ , integer J ! all]

D~CRIP'l'!ON
Destroy removes relations from the data base, and removes constraints or per­
missions from a relation. Only the relation owner may destroy a relation or its
permissions and integrity constraints. A relation may be emptied of tuples, but
not destroyed, using the delete statement or the modify statement.

lf the relation being destroyed has secondary indices on it, the secondary in­
dices are also destroyed. Destruction of just a secondary index does not affect
the primary relation it indexes.

To destroy individual permissions or constraints for a relation, the integer argu­
ments should be those printed by a help perm.it (for destroy permit) or a help
integrity (for destroy integrity) on the same relation. To destroy all constraints
or permissions, the all keyword may be used in place of individual integers. To
destroy constraints or permissions, either the integer arguments or the all key­
word must be present.

EAJ".MPIB
/• Destroy the emp relation • /

destroy emp
destroy emp, parts

/•Destroy some permissions on parts, and all in~ ~grity
• con~traints on employee -
•/

destroy permit parts 0, 4, 5
destroy integrity employee

ST•!EALSO
create(quel), delete(quel), help(quel), index(quel), modify(quel)

- 1 -

HELP{QUEL) 2/21/79 · HELP { QUEL)

help - get information about how to use !NGRES or about relations in the data­
base.

SYNOPSIS
help [relname] ["section"] f. relnameH. "section"J
help view relname f, relnameJ
help permit relname f, relnameJ
help integrity relname f, relnameJ

DESCRIPTION
Help may be used to obtain sections of this manual, information on the content
of the current data base, information about specific relations in the data base,
view definitions, or protection and integrity constraints on a relation. The legal
forms are as follow:

help "section " - Produces a copy of the specified section of the INGRES Refer-
ence Manual, and prints it on the standard output device.

help- Gives information about all relations that exist in the current database.
helprelna.me ~. relnam.eJ - Gives information about the specified relations.
help"" - Gives the table of contents.
help view relname L relnameJ - Prints view definitions of specified views.
help permit relname L relnameJ - Prints permissions on specified relations.
help integrity relna.m.e L relnameJ - Prints integrity constraints on specified

relations.

The perm.it and integrity forms print out unique identifiers for each constraint.
Th~se identifiers may be used to remove the constraints with the destroy slate­
mtnt.

EXAllPLE
help
help help /•prints this page of the manual•/
help quel
help emp
help emp, parts, "help", supply
help vie·_v overp_yiew
help permit parts, employee
help integrity parts, employee

SEEAISO

BUGS

destroy{ quel)

Alphabetics appearing within the section name must be in lower-case lo be
recognized.

INDEX (QUEL) 2/21/79 INDEX(QUEL)

index - create a secondary index on an eX:sting relation.

SYUOPSIS
index on relname is indexname (domainl I ,domainZD

DESCRIPTION
Index is used to create secondary indices on existing relations in order to make
retrieval and update with secondary keys more efficient. The secondary key .is
constructed from relname domains 1, 2, ... ,6 in the order given. Only the owner
of a relation is allowed to create secondary indices on that relation.

In order to maintain the integrity of the index, users ·will NOT be allowed to
directly update secondary indices. Eowever, whenever a primary relation is
changed, its secondary indices will be a:.itomatically updated by the system.
Secondary indices may be modified to further increase the access efficiency of
the primary relation. When an index is first created, it is automatically modified
to an isam storage structure on all its dor:i.ains. If this ~tructure is undesirable,
the user may override the default isam structure by using the -n switch (see
ingrcs(unix)), or by entering a modify corr.:.mand directly.

If a modify or destroy command is used on relname, all secondary indices on
relname are destroyed.

Secondary indices on other indices, or on system relations are forbidden.

EXA~.Plli
/•Create a secondary index called "x" on :-elation "emp" •/

index on emp is x(mgr,sal)

SEE Al.SO
copy(quel), destroy(quel), modify(qucl)

At most 6 domains may appear in the key.

The copy command cannot be used to cop;· into a relation which has secondary
indices.

The defo.ult structure isam is a poor choice for an index unless the range of re­
trieval is small.

- 1 -

INTEGRITY (QUEL) 2/7/79

integrity - define integrity constraints

S'lNOPSIS
define integrity on var is qual

Dg:;crup"flON

INTEGRITY { QUEL)

The integrity statement adds an integrity constraint for the relation specified
by var. After the constraint is placed, all updates to the relation must satisfy
qual. Qua! must be true when the inte9ri.!y statement is issued or else a diag­
nostic is issued and the statement is rejected.

In the current implementation, integrity constraints are not flagged - bad up­
dates are simply (and silently) not performed.

Qual must be a single variable qualification and may not contain any aggre­
gates.

i:ntegrity statemer:; may be issued only by the relation owner.

EXAMPLE
/•Ensure all employees have positive salaries */

range of e is employee
define integrity one is e.salary > 0

SEEAIBO
destroy{ quel)

- 1 -

MACROS(QUEL) 2/19/79 MACROS(QUEL)

NAME
macros - terminal monitor macro facility

D&SCRIP'lION
The terminal monitor macro facility provides the ability to tailor the QUEL
language to the user's tastes. The macro facility allows strings of text to be re­
moved from the query stream and replaced with other text. Also, some buill in
macros change the environment upon execution.

Basic Concepts
All macros are composed of two parts, l!:.le template part and the replacement
part. The template part defines when thi:? macro should be invoked. For exam­
ple, the template "ret" causes the corresponding macro to be invoked upon en­
countering the word "ret" in the input stream. When a macro is ·~ncounlered,
the template part is removed and replaced '\•tith the replacement part. For ex­
ample, if the replacement part of the "ret" macro was "retrieve", then all in­
stances of the word "ret" in the input te~ would be replaced with the word "re­
trieve", as in the statement

ret (p.all)

Macros may have parameters, indicated ::y a dollar sign. For example, the tem­
plate "get $1" causes the macro to be triggered by the word "get" followed by
any other word. The word following "get" is remembered for later use. For ex­
ample, if the replacement part of the "get" macro where

retrieve (p.all) where p.pnum = Sl

then typing "get 35" would retrieve all i:n.f::irmation about part number 35.

Deiining Macros

Macros can be defined using the special rr:acro called "define". The template for
the define macro is {roughly)

(define; St; $r~

where $t and $r are the template and re?lacement parts of the macro, respec­
tivdy.

Let's look at a few examples. To defi...ne the "rel" macro discussed above, we
would type:

(define; rel; retrieveJ

'\llhen th~s is read, the macro processor removes everything between the curly
braces and updates some tables so that ··rel" will be recognized and replaced
with the word "retrieve". The define m<~:::ro has the null string as replacement
text, so that this macro seems to disappear.

A useful macro is one which shortens ran&e statements. It can be defined with

fdefine; rg $v Sr; range of $vis Sr;

This macro causes the word "rg" follr:>wec. by the next two words to be removed
and replaced by the words "range of", fo::cwed. by the first word which followed
"rg", followed by the word "is", followe:i by the second word which followed
"rg". For ~xample, the input

rg p pe1rts

becomes the same as

range of p is parts

- l -

M.ACROS{QUEL) 2/19/79 'MACROS(QUEL)

Evaluation Ti.mes
When you type in a define statement, it is not processed immediately, just as
queries are saved rather than executed. Xo macro processing is done until the
query buf!er is evaluated. The commar.ds \go, \list, and \eval evaluate the
query buffer. \go sends the results to :SG?2S, \list prints them on your terminal,
and \eval puts the result back into the query buffer.

It is important to evaluate any define statements, or it will be exactly like you
did not type them in at all. A common way to define macros is to type

fdefine ... J
\eval
\reset

If the \eval was left out, there is no effect at all.

Quoting

Sometimes strings must be passed through the macro processor without being
processed. In such cases the grave and acute accent marks (• and ') can be
used to surround the literal text. For example, to pass the word "rel" through
without converting it to "retrieve" we could type

'rel'
A.."lother use for quoting is during pararr..eter collection. If we want to enter
more than one word where only one was expected, we can surround the parame­
ter with accents.

The backslash character quotes only the next character {like surrounding the
character with accents). Jn particular, a grave accent can be used literully by
prcceeding it with a backslash.
Since macros can normally only be on or:e line, it is frequently useful to use a
backslash at the end of the line to hide foe newline. For example, to enter the
long .. get" macro, you might tY,Pe:

ldefine; get $n; retrieve {e.all) '\
where e.name = "Sn"J

The b 1cksla.sh always qcotes the next c': a:acter even when it i.3 a backsbsh. So,
to get a real backslash, use two backslashes.

More Param.eters
Parameters need not be limited lo the word following. For example, in the tem­
plate descriptor for define:

ldetlne; St; $rJ
the St parameter ends at the .first semico:on and the Sr parameters ends at the
.first right curly brace. The rule is that the character which follows the parame­
ter specifier terminates the parameter; if this character is a space, tab, newline,
or the end of the template then one word is collected.
As with all good rules, this one has an exception. Since system macros are al­
ways surrounded by curly braces, the ma::ro processor knows that they must be
properly nested. Thus, in the statement

(define; x; isysfnB
The first right curly brace will close the "sysfn" rather than the "define". Oth­
erwise this would have to be tyvcd

(define; x; 'f sysfnj'J

- 2 -

MACROS(QUEL) 2/19/79 MACROS(QUEL)

Words are defined in the usual way, as strings of letters and digits plus the un­
d~rscore character.

Other Builtin Macros

There are several other macros built in to the macro processor. In the following
description, some of the parameter specifiers are marked with two dollar signs
rather than one; this will be discussed in the section on prescanning below.

fdetlne; $$t; $Srj defines a macro as discussed above. Special processing occurs
on the template part which will be discussed in a later section.

f rawdefine; $$t; $$r~ is another form of define, where the special processing does
not take place.

(remove; $$nJ removes the macro with name Sn. It can remove more than one
macro, since it actually removes all macros which might conflict wi.th $n under
some circumstance. For example, typir...g

!define; get part Sn: ... ~
define; get emp $x; ... ~
remove; getJ

would cause both the get macros to be removed. A call to

lremove; get partJ

would have only removed the first macro.

~type $Ss~ types Ss onto the terminal.

~read $$s~ types $s and then reads a li:r:e from the terminal. The line wh~ch was
typed replaces the macr.o. A mac.:ro called "lreadcountj" is defined containing
the number of characters read. A control-D (end of tile) bec0mes -1, a single
ne,y-line becomes zero, and so forth.

~readdefine; $Sn; $$s~ also types $s and reads a line, but puts the line into a
macro named Sn. The replacement text is the count cf the number of charac­
ters in the line. ireadcountl is still de!L":ed.

fifsame; S$a; S::lb; St; sq compares the strings $a and $b. 1f they match exactly
then the replaceme.1t ::.~~'t becomes $~. otherwise it bt.:comes Sf.
lifeq; $Sa; $Sb; $t; Sq is similar, but the comparison is numeric.

~if gt; $$a; $$b; $t; Sf~ is like ifeq, but the test is for Sa strictly great.er than $b.

isubstr; $$f; $St; SSsl returns the part cf Ss between character positions Sf and
$t, numbered from one. lf $for $t are out of range, they are moved in range as
much as possible.

~dump; $$n~ returns the value of the m3.cro (or macros) '\\-hich match Sn (using
the same algorithm as remove). The output is a rawdefine statement so that it
can be read back in. ~dump~ without arguments dumps all macros.

lfol.acharaclers

Certain characters are used internally. "Normally you will not even see th£-~m.
but they can appea!· in the output of a dump command, and can sometime:; be
used to create very fancy macros.

\I matches any number of spaces, tabs, or newlines.]t ·will even match zero, but
only between words, as can occur ·with pun::tuation. For example, \I will match
the spot between the last character of a word and a comma following it.

\ mute.bes exactly one space, tab, or ne•·;line.

- 3 -

MACROS (QUEL) 2/19/79 MACROS(QUE.w)

\&matches exactly zero spaces, tabs, or !:ewlines, but only between words.

Tue Define Process

When you define a macro using define, a lot of special processing happens. This
processing is such that define is not funct:onally complete, but still adequate for
most requirements. If more power is needed, rawdefine can be used; however,
rawdefine is particularly difficult to use correctly, and should only be used by
gurus.

In define, all sequences of spaces, tabs. a.'1d newlines in the template, as well as
all "non-spaces" between words, are turned into a single \j character. lf the
template ends with a parameter, the \& c:iaracter is added at the end.

If you want to match a real tab or newli..'1e, you can use \t or \n respectively.
For example, a macro which reads an entire line and uses it as the name of an
employee would be defined with

ldefine; get $n\n; \
ret (e.all) where e.name = "Sn"~

This macro might be used by typing

get •Stan*

to get all information about everyone wi:h a name which included "Stan". By
the way, notice that it is ok to nest the "ret" macro inside the "get" macro.

Parameter Prescan

Sometimes it is useful to macro process a parameter before using it in the re­
placement part. This is particularly imp:irtant when using certain b1 1 '~in mac­
ros.

For prescan to occur, two things must ·:;)e true: first, the parameter must be
specified in the template with two dolla:- signs instead of one, and se:::ond, the
actual parameter must begin with an "at" sign("@") (which is stripped off).

For an example of the use of prescan, see "Special Macros" below.

Special Macros
Some special macro:; are used by the Lerminal moniL>r to control the emiron­
ment and return results to the user.

lbegintrap~ is executed at the beginning cf a query.

lend trap} is executed after the body of a q_uery is passed to ING::t2S.

lcontinuetrap~ is executed after the que:-y completes. The difference between
this and end.trap is that endtrap occurs a.:'ter the query is submitted, but before
the query executes, whereas continuetra;:: is executed after the query executes.

leditorl can be defined to be the pathnar::.e of an editor to use in the \edit com­
mand.
!shell~ can be defined to be the pathnar::-:e of a shell to use in the \shell com­
mand.
ttuplecount} is set after every query (bi.:.':. before continuetrap is sprung) to be
the count of the number of tuples \\·hich satisfied the qualification of the query
in a retrieve, or the number of tuples chc_-:iged in en update. lt is nol set for DDu
functions. lf multiple queries are run at once, it is set to the number of Luples
which satisfied the last query run.
For example, to print out the number of Llples touched automatically after each
Clllery, you could enter:

4 idefine; ibegintrapl: lremove; ~tup:ecountHJ

-4-

MACROS (QUEL) 2/19/79

{define; ~continuetrap~; '\ ·
lifsame; @~tuplecounq; ~tuplecountl;; \

g.ype @~tuplecounq tuples touched~ll

SEEMSO
monitor(quel)

- 5 -

MACROS(QUEL)

MODIFY { QUEL) 2/23/79

modify - convert the storage structure of a relation

SYNOPSIS

MODIFY (QUEL)

modify relname to storage-structure [on key1 (: sortorder] l l. key2 [: S()r­

torder] J]] [where [till.factor = n J [, minpages = n] [, maxpages =
n]]

D~ION

Relna.me is modified to the specified storage structure. Only the owner of a re­
lation can modify that relation. This command is used to increase performance
when using large or frequently referenced relations. The storage structures are
specified as fo1lows:

isam - indexed sequential storage structure
cisam - compressed isam
hash - random hah storage structure
chash - compressed hash
heap - unkeyed and unstructured
cheap - compressed heap
heapsort - heap wi.lh tuples sorted and duplicates removed
cheapsort - compressed heapsorl
truncated - heap with all tuples deleted

The paper "Creating and Maintaining a Database in INGRES" (ERL Memo M77-71)
discusses how to select storage structures based on how the relation is used.

The current compression algorithm only suppresses trailing blanks in character
fields. A more effective compression scheme may be possit>le, but lradeoffs
between that and a larger and slower compression algorithm are not clear.

If the on phrase is omitted when modif:,ing to isam, cisam, hash or chash, the
relation will automatically be keyed Oi: lhe firsl domain. 'When modifying to
heap or cheap the on phrase must be emitted. When modifying to heapsorl or
cheapsort the on phrase is optional.

When a relation is being sorted (isam, c:sam, hcapsort and cheapsort), the pri­
mary sort keys will be those specified in the on phrase (if any}. The first key
after the on phrase ·;vill te the most si.1nificant sort key and each successive key
specified will be the next most significan:. sort key. Any domains not specified in
the on phrase will be used as least significant sort keys in domain number se­
quence.

When a relation is modified to heapsort or cheapsort. the sortord?..~ can be
specified to be ascending or descending. The default is always ascending. Each
key given in the on phrase can be optioDally modified to be:

key: descending

which will cause that key to be sorted in descending order. For completeness,
ascending can be specified after the colon (':'), although this is unnecessary
since it is the default. Descending can be abbreviated by a single 'd' and,
correspondingly, ascending can be abreYiated by a single 'a'.

Fillfactor specifies the percentage (fro::-:1 1 to 100) of each primary data pnge
that should be filled with tuples, under :deal conditior.s. Pillfa.ctor may be U'.ied

with isam, cisam, hash and chash. Care should be taken when using large [Jllfac­
tors since a non-uniform distribution of :,Cey values could cause overfto·w ?a.ges to
be created, and thus degrade access pe::-formance for the relation.

!Ji:npages specifies the minimum numbe:- of primary pages a hash or chasb rela­
tion must have. JJa.:;;pages specifies the maximum number of primary pages a
hash or chash relation may have. !Jinp~es and ma.xpa.;;es must be at least one.

- 1 -

MOD!FY (QUEL) 2/23/79 MODIFY (QUEL)

i
'
I

If both m.i.tjpages and maxpagcs are S,?ecified in a modify, minpages cannot
exceed maxpages. ·

!

Default values for fill!actor, minpages. a.nd maxpagcs are as follows:
i

I FILLFACTOR

hash I 50
chasn 75
isam ! 80
cisarrf 100

UINPACES

10
1
~A
~A

BX.AMP.LES !

/•modify t~e emp relation to an indexed
sequential storage structure with
"name"! as the keyed domain*/

modify emp !to isam on name

/•if "name"lis the first domain of the err:.p relation,
the sa~e result can be achieved by •/

!

modify emp ~o isam

/*do the sa~e modify but request a 603 occupancy
on ai1 primary pages *I

modify emp to isam on name where fillfo:::tor = 60
I

/•modify th:e supply relation to compressed hash
storage! structure vdth "num" a.rid ''quan"
as keyetl domai.ns • /

I

• i
modify supp\y to chash on num, quan

I

/*now the s~me modify but also reques':. 75% occupancy
on all pbmary, a minimum of 7 prir.:i.ary pages
pages afid a maximum of 43 primary pages * /

I

mod..fy supp\y to chds:b on num, quan
where ~llfaclor = 75, minpages = 7,
maxpages = 43

/* again the lsame modify but only request a minimum
of 16 Pljimary pages • /

I

modify supp~y to cha.sh on num, quan
where r:p.inpages = 16

I

/* modify pa!rts lo a heap storage structure * /
!

modify part~ to heap
I

/• modify palrts lo a heap again, but have tuples
sorted 0n "pnum" domain a"f:ld have any duplicate
tuples tjemoved * / .

I

modify pnrt1 to heapsort on pnum

;~modify eq'lployee in ascending order by manager,
descenq..ing ord.er by salary and have any
duplicate tuples removed•/

-2-

JJAXPAGES

no limit
no limit
NA
NA

MODIFY (QUEL) 2/23/79

modify employee to beapsort on manager, salary:descending

SEEAl.SO
sysmod(unix)

-3-

MODIFY (QUEL)

MONITOR (QUEL) 2/23/79 MONITOR (QUEL)

monitor - interactive terminal monitor

DESCRIPTION
The interactive terminal monitor is the primary front end to INGRES. lt provides
the ability to formulate a query and review it before issuing it to INGRC:S.]f
changes must be made, one of the u.r..:x text editors may be called to edit the
query buff er.

Messages and Prompts.
The terminal monitor gives a variety of messages to keep the user informed of
the status of the monitor and the query buffer.

As the user logs in, a login message is printed. This typically tells the version
number and the login time. It is followed by the dayfile, which gives information
pertinant to users.

When INGRES is ready to accept input, the message "go" is printed. This means
that the query buffer is empty. The message "continue" means that there is in­
formation in the query buffer. After a \go command the query buffer is au­
tomatically cleared if another query is typed in, unless a command which affects
the query buffer is typed first. These commands are \append, \edit, \print,
'list, \eval, and \go. For example, typing

help parts
\go
print parts

results in the query bufl'er containing
print parts
whereas

help parts
\go
\prinL
print parts

results in the query buffer containing
help parts
print parts

An asterisk is printed at the beginning of each line when the monitor is wailing
for the user to type input.

Commands
There are a number of commands which may be entered by the user to nfiecl
the query bufier or the user's environment.. They are all preceeded by a
backslash('\'), and all are executed immediately (rather than at execution time
like queries).

Some commands may take a filename, which is defined as the first significant
character after the end of the command until the end of the line. These com­
mands may have no other commands on the line with them. Commands which
do net take a filename may be slacked on the line; for example

\date\go\date
will gh·e the time before and after execution of the current query buffer.

\r
\reset Erase the entire query (reset lhe query buffer). The former contents

of the buffer are irretrievcably lost.

\p
\print Print the current query. The contents of the buffer are printed on the

user's terminal.

- 1 -

MONITOR (QUEL) 2/23/79 MONITOR(QUEL)

\J
\.list

\eval

\e
\ed
\edit
\editor

\g
\go

\a

~rint the current query as it "ill appear after macro processing. Any
side efiects of macro processing, such as macro definition, will occur.

Macro process the query buffer and replace the query buffer with the
result. This is just like 'Jist except that the output is put into the
query buffer instead of to the terminal.

Enter the UNIX text editor {see ED in the UNIX Programmer's Manual);
use the ED command 'w' follo1,.ed by 'q' to return to the INGRES monitor.
If a filename is given, the editor is called with that file instead of the
query butier. If the macro "leditorJ" is defined, that macro is used as
the pathname of an editor, otherwise "/bin/ed" is used. lt is impor­
tant that you do not use the "e" command inside the editor; if you do
the {obscure) name of the query buffer will be forgotten.

Process the current query. The contents of the buffer are macro pro­
cessed, transmitted to ING:Es, and run.

\append Append to the query buffer. Typing \a after completion of a query will
override the auto-clear featur.e and guarantees that the query buffer
will not be reset.

\time
\date

\s
\sh
\shell

\q

Print out the current time of day.

Escape to the UNIX shell. Typi::lg a control-d will cause you to exit the
shell and return to the IKG~::.:s ::-nonitor. If there is a filename specified,
that filename is taken as a shea file which is run with the query bufier
as the.: parameter "$1 ". If no filename is given, an interactive shell is
forked. 1f the macro "{shellj" is defined, it is used .as the pathname of
a shell; otht..rwise, "/bin/sL" i~ used.

\quit Exit from INGRES.

\cd
\chdir Change the working directory of the monitor to the named directory.

\i
\include
\read Switch input to the named file. Backslash characters in the file will be

processed as read.

\w
\write Write the contents of the q~ery buffer to the named file.

\branch Transfer control within a \inck.de file. See the section on branching
below.

\.mark Set a label for \branch.

\<any ot.her character>
Ignore any possible special meaning of character follov~ing '\'. This al­
lows the '\' to be inout as a literal character. {See also quel(quel) -
strings). It is important to note that backslash escapes are sometimes
eaten up by the macro processor also; in general, send two backslashes

-2-

MONITOR (QUEL} 2/23/79 . MONITOR (QUEL)

if you want a backslash sent (even this is too simplistic [sigh] - try to
avoid using backslashes at all). .

Macros

For simplicity, the macros are described in the section macros{quel).

Branching
The \branch and \mark commands permit arbitrary branching within a \include
file {similar to the .. goto" and":" commands in the shell). \mark should be fol­
lowed with a label. \branch should be followed with either a label, indicating un­
conditione.l branch, or an expression preceeded by a question mark, followed by
a label, indic:iting a conditional branch. The branch is taken if the expression is
greater than zero. For example,

\branch ?ltuplecountJ<=D notups
branches to label "notups" if the "ituplecountr· macro is less than or equal to
zero.

The expressions usable in \l:.-anch statements are somewhat restricted. The
operators+, -, "• /, <=, >=, <. >. =. and!= are all defined in the expected way.
The left unary operator "!" can be used as to indicate logical negation. There
may be no spaces in the expression, since a space terminates the expression.

Initialization
At initialization {login) time a number of initializations take place. First, a mac­
ro called ''ipathnamej" is defined which expands to the pathname of the ING::t~S
subtree {normally "/mnt/ingres"); it is used by system roulines such as
demodb. Second, the initialization file .. ./files/startup is read. This file is in­
tended to define system-dependent parameters, such as the default editor and
shell. Third, a user dependent initialization file, specified by a field in the users
file, is .cead and executed. This is normally set to t~e f,,le ".ingres" in the user's
home directory. The startup file might be used to define certain macros, exe­
cute common range statements, and soforth. Finally, control is turned over to
lbe user's terminal.

An interrupt while executing either of t~e initialization files restarts execution of
that step.

Flags
Certain flags may be included on the command line to !~GR~S which affect the
operation of the terminal monitor. The -a flag disc.i.bles the auloclear function.
This means that the query buffer will never be automatically cleared; equivalent­
ly, it is as though a \append command were inserted after every \go. Note that
this means that the user must explicitly clear the query buffer using \f'esel
after every query. The -d fiag turns o~ the printing of the dayfile. The -s flag
turns ofi printing of all. messages (except errors) from the monitor, including
the login and logout messages, the dayfile, and prompts. lt is used for executing
"canned queries", that is, queries redirected from .files.

EEEAISO
ingres(unix), quel{quel}, macros{quel)

DU,GNOSTICS
go

continue

Executing ...

You may begin a fre!:'h query.

The previous query is finished and you are back in the moni­
tor.

The query is being processed by I:l\GRES.

- 3 -

MONITOR (QUEL) 2/23/79 MONITOR(QUEL)

>>ed

>>sh

You have entered the :JNIX text editor.

You have escaped lo the UNIX shell.

Funny character nnn converted to blank
INGRES maps non-printing ASCII characters into bbnks; this
message indicates that one such conversion has just been
made.

Il~COYPATIBILITIES

BUGS

Note that the construct
\rprinl parts

{intended to reset the query buffer and then enter "print parts") no longer
works, since "rprint" appears to be one word.

- 4 -

PER\fIT(QUEL) 2/7/79

permit - add permissions to a relation

SYNOPSIS
define permit oplist t on I of i to l var [(attlist)]

to name L at term] [from time to t.ime]
[on day to day] [where qual]

DESCRIPTION

PERMIT (QUEL)

The permit statement extends the cur:-ent permissions on the relation specified
by var. Oplist is a comma separated list of possible operations. which can be re­
trieve, replace, delete, append or all; a.ll is a special case meaning all permis­
sions. Name is the login name of a user or the word all. Term is a terminal
name of the form 'ttyx' or the keyword all; omitting this phrase is equivalent to
specifying all. Times are of the form 'bh:mm' on a twenty-four hour clock which
limit the times of the day during whic~ this permission applies. Days are three­
character abbreviations for days of tbe week. The gual is appended to the
qualification of the query when it is run.

Separate parts of a single perm:il statement. are conjoined (A.i\TDed). Ditierent
permit statements are disjoined (ORed) . .for example, if you include

... to eric at tty4 ...

the permit applies only to eric when logged in on tty4, but if you include two per­
mit statements

... to eric at all .. .

. . . lo all at tty4 .. .

then when eric logs in on tty4 he will get the union of the permissions specified
by the two statements. If eric logs in on ttyd he will get only the permissions
specified in the first perm.it statement, and if bob logs in on tty4 he will get only
the perrrtissions specified in the second perm:il statment.

The permit statement may only be issued by the owner of the relation. Although
a user other than lhe DBA may issue a permit statement, it is useless because
noone else can access her relations anyway.

Permit statements do not apply to the owner of a relation or to views.

The statements

define permit all on x to all
define permit retrieve of x to all

with no further qualification are handled as special cases and are thus particu­
larly c.tEcient.

EXMIPLES
range of e is employee
define permit retrieve of e (name, sal) lo mare

at ttyd from 8:00 to 17:00
on Mon to Fri
where e.mgr ="mare"

range of p is parts
define perm.il retrieve of e to all

SEEAISO
destroy(quel)

- 1 -

PRINT(QUEL) 1/26/79 PRINT(QUEL)

NAME
print - print relation(s)

SYNOPSIS
print relname ~. relname~

DESCRIPTION
Print displays the contents of each relation specified on the terminal (standard
output). The formats for various types of domains can be defined by the use of
switches when ingres is invoked. Domain names are truncated to fit into the
specified width.

To print a relation one must either be the owner of the relation, or the relation
must have "retrieve to all" or "all to all" permissions.

See ingres(quel) for details.

EXAUPLE
/* Frint the emp relation • /

print emp
print emp, parts

SF.EALSO
permit(quel), retrieve(quel), ingres(unix), printr(unix) handle long lines of out­
put correctly - no wrap around.

Print should have more formating features lo make printouts more readable.

Print should have an option to print on the line printer.

- 1 -

QUEL{QUEL) 2/23/79 QUEL(QUEL)

NAME
quel - QUF..ry Language for INGRES

DESCRT.PTION
The following is a description of the general syntax of QUEL. Individual QUEL state­
ments and commands are treated ~eparately in the document; this section
describes the syntactic classes from which the constituent parts of QUEL state­
ments are drawn.

1. Comments

A comment is an arbitrary sequence of characters bounded on the left by "/•"
and on the right by"•/":

/•This is a comment•/

2. Names

Names in QUEL are sequences of no more than 12 alphanumeric characters,
starting with an alphabetic. Underscore U is considered an alphabetic. All
upper-case alphabetics appearing an,prhere except in strings are automatically
and silently mapped into their lower-case counterparts.

3. Key·words

The following identifiers are reserved for use as keywords and may not be used
otherwise:

abs all and
any append ascii
at a tan avg
avgu by co:acat
copy cos count
countu create define
delete destroy exp
tloat4 tloatB from
gamma help in
index intl int2
Ll.l4 intc·grity into
is log max
min mod modify
not cf on
onto or permit
print range replace
retrieve save sin
sqrt SU!ll sum.u
to unique until
view where

4-. Constants

There are three types of constant:.;, corresponding to the three data types avail­
able in QUEL for data storage.

4.1. String constants

Strings in QUSL are sequences of no more than 255 arbitrary ASCII characters
bounded by double quotes (" "). l:pper case alphabetics within strings are ac­
cepted literally. Also, in order to imbed quotes within strings, it is necessary to
prefix them "•ith '\' . The same conver:tion applies to '\' itself.

- 1 -

QUEL(QUEL) 2/23/79 QUEL{QUEL)

Only printing characters are allowed within strings. Non-printing characters
(Le. control characters) are converted to blanks. ·

4.2. Integer constants

Integer constants in QUEL range from -2,147,483,647 to +2,147,483,647. Integer
constants beyond that range will be converted to floating point. lf the integer is
greater than 32, 767 or less than -32, 767 then it will be left as a two byte integer.
Othen\ise it is converted to a four byte integer.

4.3. Floating point constants

Floating constants consist of an integer part, a decimal point, and a fraction
part or scientific notation of the following format:

l<dig>J [.<dig>] [e!E [+I-] ~ <dig>JJ
Where <dig> is a digit, [] represents zero or one, ~ J represents zero or more, and
I represents alternation. An exponent with a missing mantissa has a mantissa of
1 inserted. There may be no extra characters embedded in the string. Floating
constants are taken to be double-precision quantities with a range of approxi-
mately -1088 to 1058 and a precision of 17 decimal digits.

5. Attributes

An attribute is a construction of the form:

variable.domain

ltiria.ble identifies a particular relation and can be thought of as standing for the
rows or tuples of that relation. A variable is associated with a relation by means
of a range statement. Doma.in is the name of one of the columns of the relation
over wh!ch the variable ranges. Together they make up an attribute, which
represients values of the named doma:.n.

6. Arithmetic operators

Arithmetic operators take numeric type expressions as operands. Unary opera­
tors group right to left; binary operators group left to right. The operators (in
order of descending precedence) are:

+-' {ur.ary) plus, minus
exponentiation

•./
+.-

multiplication, division
(binary) addition, subtrc.ction

Parentheses may be used for arbitrary grouping. Arithmetic overflow and divide
by zero are not checked on integer operations. Floating point operations are
checked for overfiow, underflow, and divide by zero only if the appropriate
machine hardware exists and has been enabled.

7. Expressions (aJxpr)
An expression is one of the following:

constant
attribute
functional expression
aggreoate or aggregate funclio:i
a combination of numeric expressions and arithmetic operalors

:F'or the purposes of this document, an arbitrary expression will be refercd to uy
the name aJrpr.

B. Formats
Every a_grpr has a format denoted by a letter (c. i, or f. for character, integer,

-2-

QUEL{QUEL) 2/23/79 QUEL{QUEL)

or ft.eating duta types respectively) and a number indicating the number of
bytes of storage occupied. Forr:nals currently supported are listed below. The
ranges of numeric types are indicated in parentheses.

cl - c255 character data of length 1-255 characters
i1 1-byte integer (-128 to +127)
i2 2-byte integer {-32768 lo +32767)
i4 4-byte integer (-2, 14 7,483,648 to +2, 14 7,483,64 7)
f4 4-byte floating { -lO~c to + 1038, 7 decimal digit precision)
f4 8-byte floating (-103a to + 1038, 17 decimal digit precision)

One numeric format can be converted to or substituted for any other numeric
format.

9. Type Conversion.

When operating on two numeric domains of different types, INGRES converts as
necessary to make the types identical.

When operating on an integer and a fioating point number, the integer is con­
verted to a floating point number before the operation. When operating on two
integers of different sizes, the smaller is converted to the size of the larger.
When operating on two floating point number of different size, the larger is con­
verted to the smaller.

The following table summarizes the possible combinations:

il i2 i4 f 4.- f8

il - i1 i2 i4 f 4 f 8
i2- i2 i2 i4 f4 f8
i4 - i4 i4 i4 f4 fO
f4- f 4 f 4 f4 f 4 f4
rn- f8 f8 f 8 f 1 f8

INGRES provides five type conversion operators specifically for overriding the de­
fault actions. The operators are:

inll!a_exprl result type il
int2 a_expr result type i2
inl4 a expr result type i4
ftoat4{aJxpr) result type f4
ft.oatB(a_expr) result type f8

The type conversion operators convert their argument aJxpr lo the requested
type. AJxpr can be anything including character. If a character value cannot
be converted, an error occures and processing is halted. This can happen only if
the syntax of the character value is incorrect.

Overflow is not checked on conversion.

10. Target.Jist

A target list is a parenthesized, comma separated list of one or more elements ,
each of which must be of one of the following forms:

a) result_g.ttna.me is a.J:r:pr
Result_g.ttname is the name of tl1e attribute to be created {or an already exist­
ing attribute name in the case of update statements.) The equal sign ("=") may
be used interchangeably with is. In the case where a.Jxpr is anything other
than a single attribute, this form must be used lo assign a result name to the ex­
pression.

-3-

QUEL(QUEL) 2/23/79 QUEL(QlJEL}

b) att·ri.bute

In the case of a retrieve, the resultant domain will acquire the same name as
that of the attribute being retrieved. ln the case of update statements (append,
repla.ce), the relation being updated must have a domain with exactly that name.

Inside the target list the keyword all can be used to represent all domains. For
example:

range of e is employee
retrieve {e.all) where e.salary > 10000

will retrieve all domains of employee for those tuples which satisfy the
qualification. All can be used in the target list of a retrieve or an append. The
domains will be inserted in their "create" order, that is, the same order they
were listed in the create statement.

11. Comparison operators

Comparison operators take arbitrary expressions as operands.

< less than)
<= less than or equal}
> greater than)
>= greater than or equal) = equal to)
!= not equal to)

They are all of equal precedence. When comparisons are made on character at­
tributes, all blanks are ignored.

12. Logical operators

Logical operato.rs take clauses as operands and group left-to-right.:

not !logical not; negation)
and logical and; conjunction)
or logical or; disjunct.ion}

Not has the highest precedence of the three. And and or have equal precedence.
Parentheses may be U3ed for arbitrary grouping.

13. Qualification (qual)

A qualificc:.tion consists of any number of clauses connected by logical opera­
tors. A clause is a pair of expressions connected by a comparison operator:

a.,J?xpr comparison_pperator a_expr

Parentheses may be used for arbitrary grouping. A qualification may thus be:

clause
not qu.al
qual or qual
qual and qual
{ qual)

14. Functional expressions

A functional e:z:pr:ession consists of a :unction name followed by a parenthesized
(bsl of) operand(s}. Functional exprt!,ssions can be nested _to any level. . In the
following list of functions support~d \n) represents an arbitrary numeric type
expression. The format of the result is indicated on the right.

abs(n) - same as n {absolute value)
ascii(n) - character strir..g (converts numeric to character)
e.tan(n.} - f8 {arctangent)
concat(a,b)-character (charact.er concatenation. See 16.2)

-4-

QUEL{QUEL) 2/23/79 QUEL(QUEL)

exp(n) - f8 exponential of n.) ·
cos(n) - fB !cosine)

gamma(n) - f8 log gamma)
log(n) - fB natural logarithm)
mo~n.b)- same as b (n modulo b. n and b must be il, i2, or i4)
sin(n) - f8 (sine}
sqrt(n) - f6 (square root)

15. Aggregate expressions

Aggregate expressions provide a way to aggregate a computed expression over a
set of tuples.

15.1. Aggregation operators

The definitions of the aggregates are listed below.

count­
countu-
sum­
sumu­
avg­
avgu­
max-

(i4) count of occurrences
(i4 ~ count of unique occurrences
summation
summation of unique values
{f8) average (sum/count)
{ffi) unique average (sumu/countu)
maximum

min - minimum
any - {i2) value is 1 if any tuples satisfy the qualification, else il is 0

15.2. Simple aggregate

aggrr-gaiion_gperator (a_gxpr [where qual])

A sii"nple aggregate evaluates to a single scalar value. A_gxpr is aggregated over
the set of tuples satisfying the qualit::::alion (or all tuples in the range of the ex­
pression if no qualification is present). Operators sum and avg require numeric
type aJ:r:pr; count, an.y, max and min permit a character type attribute as well
as numeric type a_gxpr.

Si:mple aggrega.tes are completely bcal. Thal is, they are logically removed
from the query. processed sepe.rately, and replaced by their scalar value.

15.3. "any" aggregate

It is sometimes useful to know if ar:.:;r tuples satisfy a particular qualification.
One way of doing this is by using the aggregate count and checking whether the
return is zero or non-zero. Using any instead of cou:n.t is more efficienl sirlce
processing is stopped, if possible, the first time a tuple satisfies a qualification.

/my returns 1 if the qualification is true and 0 otherwise.

15.4. Aggregate functions

aggregaiion_pperator (a._gxpr by b!(_dorna.in
f. by_domain~ [where qual J)

Aggregate functions are extensions of simple aggregates. The by operator
groups (i.e. partitions) the set of qu::tlifying tuples by by_rf.omain values. For
more than one by..J},omain, the value:: which are grouped by are the concatena­
tion of individual by_doma.in values. A_expr is as in simple aggregates. The ag­
grega~c function evaluates to a set of aggregate results, one for each pa!·tilion
into which the set of qualifying tuples has been grouped. The aggregate value
used during evaluation of the query is the value associated with the partition
into which the tuple currently bei.."'lg processed would fall.

-5-

QUEL(QUEL) 2/23/79 QUEL(QUEL)

Unlike simple aggregates, aggregate functions are not completely local. The
lnJ_i:ist, which differentiates aggregate functions from simple aggregates, is olo­
bal to the query. Domains in the by_Jist are automatically linked lo the other
domains in the query which are in the same relation.

Example:
I* retrieve the average salary for the employees
working for each manager •I
raDge of e is employee
retrieve (e.man.ager. avesal=avg(e.sala.ry by e.managcr))

15.5 Aggregates on Unique Values.

It is occasionally necessary to aggregate on unique values of an expression. TI1e
au9u, sumu, and countu aggregates all remove duplicate Yalues before perform-
ing the aggregation. For example: .

count(e.manager)

would tell you how many occurrences of e. mana.;;er exist. But

com .~.u(e.manager)

would tell you how many unique values of e.771,anager exist.

16. Special character operators

There are three special features which are particular to character domains.

16.1 Pattern matching characters

There are four characters which take on special meaning when used in charac­
ter constants (strings):

•
?
[..]

matches any string of zero or more characters .
matches any single character.
matches any of characters in the brackets.

These characters can be used in any combination to form a variety of tests. Fer
exa.mple:

where e.name = "•" - matches ~-iy name.
where e.na.me = "E•" - matches any name starting with "E".
where e.name = "•ein" - matches all names ending with "ein" ·
where e.name = "•[aeiou]•" - matches any name wilh at least one vowel.
where e.name = "Allman?" - rr.atches any seven charactc::r nume starting

with "Allman··.
where e.name = "[A-J]•" - matches any name starting with A,B, .. ,J.

The special meaning of the pattern matching characters car1 be disabled by
preceding them with a'\'. Thus••\•" refers to the chc.i.racter "•". When the spe­
cial characters appear in the target list they must be escaped. For example:

title = "*** ingres \•\•\•"
is the correct way to assign the string "*** ingre s **•" to the domain "title".

16. 2 Concatenation
There is a concatenation operator ·which can form one character strir:g from
two. lts syntax is ••concat(fieldl. ficld2)". The size of the new character ::;trir;g
is the sum of the sizes of the original two. Trailing blanks are trimmed from the
first field. the second field is concatenated and the remainder is bla.nk padded.
The result is never trimmed to 0 length, however. Concat can be arbitrarily
nested inside other concats. For exar.iple:

-6-

QUEL{QU:EL) 2/23/79 QUEL(QUEL)

name = concat{concat{x.lastr:=.rne, ","), x.firslname)

will concatenate x.laslname with a comma and then concatenate x.firslname t.o
lhal.

16.3 Ascii (numeric lo character lrar:slation)

The ascii function can be used lo convert a numeric field to its character
representation. This can be useful when il is desired to compare a numeric
value wit.h a character value. For exa.'11ple:

retrieve { ...)
where x.chardomain = ascii(x.numdomain)

~cii can be applied to a character value. The result is simply the character
value unchanged. The numeric conYersion formats are determined by the print­
ing formals {see ingres{unix)).

SEEAISO
append(quel),
ingres(unix)

delete(quel), ran~e(quel), replace(quel), retrieve(quel),

The maximum number of variables w::i.ich can appear in one query is 10.

Numeric overflow, underflow, and diV::ie by zero are not detected.

'When converting between numeric ly?es, overflow is not checked.

-7-

RA.i~GE (QUEL) 2/29/79 RAJ~GE (QUEL)

NAME
range - declare a variable to range over a relation

SYNOPSIS
range of variable is relname

DESCRIPTION
Ra.nge is used to declare variables which will be used in subsequent Q~EL state­
ments. The va.ria.ble is associated with the relation specified by relname. When
the variable is used in subsequent statements it will refer to a tuple in the
named relation. A range declaration remains in effect for an entire INGRES ses­
sion {until exit from INGRES), until the variable is redeclared by a subsequent
range statement, or until the relation is removed with the destroy command.

RKMIPLE
/•Declare tuple variable e to range over relation emp • /

range of e is emp

SEEM.SO

BUGS

quel(quel), destroy(quel)

Only 10 variable declarations may be in effect at any time. After the 10th range
statement, the least recently referenced variable is re-used for the next range
statement.

REPLACE{QUEL) 2/29/79 RZPLACE{QUEL)

NAME
replace - replace values of domaL.•s in a relation

SYNOPSIS
replace tuple_variable {target.Jist) [where qual]

DESCi.UP"fION
Replace changes the values of the domains specified in the target_Jist for all tu­
ples which satisfy the qualification qua.!. The tuple_ya.riable must have been de­
clared to range over the relation which is to be modified. Note that a tuple vari­
able is required and not the relation name. Only domains which are to be
modified need appear in the target_Jist. These domains must be specified as
result_attnames L.""1 the target_Jist either explicitly or by default (see quel(quel)).

Numeric domains may be replaced by values of any numeric type (with the ex­
ception noted below). Replacement values will be converted to the type of the
result domain.

Only the owner of a relation, or a user with replace pemi:ssion on the rela~ion can
do replace.

If the tuple update would violate an. integrity constraint (see integrity(quel)), it
is not done.

EXAMPLE
/• Give all employees who work for Smith a 10% raise • /

range of e is emp
replace e(sal = 1.1 • e.sal) where e.mgr ="Smith"

~'E.AI.SO
integrity(quel), permil(quel), quel(quel), range{quel)

DIAGNOSTfCS

BUGS

Use of a numeric type expression to replace a character type domain 01· vice
versa will produce diagnostics.

- 1 -

RET.RlEVE (QuEL) 2/29/79 RETRIEVE { QUEL)

retrieve - retrieve tuples from a relation

SYNOPSIS
retrieve [[into] relname] {tar_get.Jist) [where qual]
retrieve unique (target_Jist) L where qual]

Dh"'3CI.UP'l'ION
Retrieve will get all tuples which sat:sfy the qualification and either display them
on the terminal (standard output) or store them in a new relation.

If a relname is specified, the result of the query will be stored in a new relation
with the indicated name. A relation with this name owned by the user must not
already exist. The current user will be the owner of the new relation. The rela­
tion will have domain names as specified in the tar9et_list result_attnames. The
new relation will be saved on the system for seven days unless explicitly saved
by the user until a later date.

If the keyword unique is present, tuples will be sorted on the first domain, and
duplicates will be removed, before being displayed.

The keyword all can be used when it is desired to retrieve all domains.

If no result relname is specified then the result of the query will be displayed on
the terminal and will not be saved. Duplicate tuples are not removed wh~n the
result is displayed on the terminal.

The format in which domains are printed can be defined at the time ingres is in­
voked (see ingres(unix)).

If a result relation is specified then fae default procedure is to modify the result
relation to an cheapsort storage structure removing duplicate tuples in the pro­
cess.

If the default cbeapsort structure is not desired, the user can override this at
the tirrie INGEES is invok<:?d by usin~ tbe -f" switch (see ingres(unix)).

Only the relation's owner and users with retrieve permission may retrieve from
it.

EXMIPI..E
/•Find all employees who make more than their manager•/

range of e is emp
range of m is emo
retrieve (e.name) where e.mgr = m.name

and e.sal > m.sal
/• Retrieve all domains for those who make more

than the avera~e salary • /
retrieve into temp (e.all) where e.s::.l > avg(e.sal)

/•retrieve employees's names sorted.•/
retrieve unique {e.name) .

~..EAT..SO
modify{quel), permit(quel), quel{qu~l), range(quel), save(quel), ingres{unix)

DIACNOOTICS

BUGS

- 1 -

SAVE(QUEL) 3/10/77 SAVE(QUEL)

NAME
save - save a relation until a date.

SYNOPSIS
save relname until month day year

DESCR.IPITON
Sa.ve is used to keep relations beyond the default 7 day life span .

. !.fonth can be an integer from 1 through 12, or the name of the month, either ab­
breviated or spelled out.

Only the owner of a relation can scxve that relation. There is an INGR2S process
which typically removes a relation immediately after its expiration date .w.s
passed.

The actual program which destroys relations is called purge. lt is not automati­
cally run. It is a local decision when expired relations are removed.

System relations have no expiration date.

EXAMPIB
/• Save the emp relation until the end of February 1987 • /

save emp until feb 28 1987

SEE AI.SO
create(quel), retrieve(quel), purge(unix)

- 1 -

VJEW(QUEL) 2/7/79 VIEW (QUEL)

NAME
view - define a virtual relation

SYNOPSIS
define view name (target-list) [where qua!]

DESCRIP'f lON
The syntax of the view statement is almost identical to the retrieve into stc..t­
mcnt.; however, the data is not retrieved. Instead, the definition is stored. When
the relation name is later used, the query is converted to operate on the rela­
tions specified in the target-list.

All forms of retrieval on the view a.:-e fully supported, but only a limited set of
updates are supported because of anomalies which can appear. Almost no up­
dat.es are supported on views whic:: span more than cne relation. No updates
are supported that aftect a domain :...'1 the qualification of the view or that affect
a domain which does not translate i:::to a simple attribute.

In general, updates are supported 'l and only if it can be guaranteed (without
looking at the actual data) tha':. the result of updating the view is identical to
that of updating the corresponding real relation.

The person who defines a view must ovm all relations upon which the view is
based.

IDWIPLE
range of e is employee
range of d is dept
define view empdpt (ename = e.narr:e, e.sal, dname = d.name)

where e.mgr = d.mgr

SEE ALSO
retrieve(quel), destroy(quel)

- 1 -

CREATDB (UNIX) 11/6/79 CREATDB (UNLX)

NAME
creatdb - create a data base

SYNOPSIS
creatdb [-uname] [-e] [-m] [±c] [±q] dbname

DESCruPTION
Creatdb creates a new !NG-RES database, or modifies the status of an existing da­
tabase. The person who executes this command becomes the Database Adminis­
trator (DEA) for the database. The DEA has special powers not granted to ordi­
nary users .

.IJtmame is the name of the database to be created. The name must be unique
among all INGRES users.

The tlags ±c and ±q specify options on the database. The form +.:r turns an op­
tion on, while -z turns an option off. The -c fiag turns off the concurrency con­
trol scheme {default on}. The +q ftag turns on query modification (default on).

Concurrency control should not be turned off except on databases which are
never accessed by more than one user. This applies even if users do not share
data relations, since system relations are still shared. If the concurrency con­
trol scheme is not installed in UNIX, or if the special file /dev/lock does not exist
or is not accessible for read-write by INGR:::s, concurrency control acts as though
it is of! {although it will suddenly come on when the lock driver is installed in
UNIX).
Query modification must be turned on for the protection, integrity, and view
subsystems to work, however, the system will run slightly slower in some cases if
it is turned on. It is possible to turn query modification on if it is already off in
an existing database, but it is not possible to turn it off if it is already on.

Databases with query modification turned off create new relations with all access
permitted for all users, instead of no access except to the owner, the default for
databases with query modification enabled.

Database options for an existing database may be modified by stating the -c
flag. The database is adjusted to conform to the option flags. For example:

c ... ·ea .. db -e +q mydb

turns query modification on for database "mydb" (but leaves concurrency con­
trol alone). Only the database administrator (DBA) may use the ~flag.

When query modification is turned on, new relations will be created with no ac­
cess, but previou~ly created relations will st.ill have all access to everyone. The
destroy comman~l may be used to remove this global permission, after which
more selective permissions may be specified with the perm.it command.

The INGRES user may use the -u ftag to specify a different DEA: the flag should be
immediately followed by the login name of the user who should be the DBA.

The -m flag specifies that the UNIX directory in which the database is to reside
alrearly e}':ists. This should only be needed if the directory if a mounted file sys­
tem, as might occur for a very large database. The directory must exist (as
... /clata/base/dbname), must be mode 777, and must be empty of all files.

The user who executes this command must have the U_CREATDB bit set in the
status field of her ent.ry in the users file.

The INGr.:::s supe'!':"'user can creat.e a file in ... /data/base containing a single line
wh~ch is the full pathname of the location of the database. The file must be
owned by ING-R3S and be mode 600. When the database is created, it will be creat­
ed in the file named, rather than in the directory .. ./data/base. For example, if

- 1 -

CREATDE (UNIX) 11/6/79

the file ... /data/base/ericdb contained the line

/mnt/ eric/ database

CREATDB (UNlX)

then the database called "ericdb" would be physically stored in the directory
/mnt/eric/database rather than in the directcry ... /data/base/ericdb.

EXAMPLE
crealdb demo
creatdb -ueric -q erics_sib
creatdb -e +q -c -u;av erics_db

... /files/ dbtmplt6. 3

... /files/data/base/*

.. ./files/datadir/* (for compatibility with previ:ms versions)

SEEAISO
demodb(unix), destroydb(unix), users(files), chmod(I). destroydb(quel),
permit(quel)

DIAGNOSTICS
No database name specified.

You have not specified the name of t~e database to create (or modify)
with the command.

You may not access this database
Your entry in the users file says you a:-e not authorized to access this da­
tabase.

You are not a valid INGRES user
You do not have a users file entry, anC. can not do anything with ING:i.ES at
all.

You are not alloi.,·ed this command
The U_CREATDB bit is not set in your users file entry.

You may not use the -u flag
Only the INGRES superuser may become someone else.

<name> does not exist
With -c or -m, the directory does not eXist.

<name::-- already exists
Without either -e or -m, the database (actually, foe directory) alreauy
exists.

<name> is not empty
With the -m flag, the directory you na:i:led must be empty.

You are not the DBA for this database
With the -e flag, you must be the data:iase administrator.

- 2 -

DESTROYDB (UNIX) 3/14/79

destroydb - destroy an existing database

SYNOPSIS
d~stroydb [-s] [-m] dbname

Dl!!)CP.IP'l'ION

DESTROYDB (UNIX)

Destroydb will remove all reference to an existing database. The directory of the
database and all files in that directory will be removed.

To execute this command the current user must be the database administrator
for the database in question, or must be the INGRES superuser and haye the -s
ftag stated.

The -m ftag causes destroydb not lo remove the UNIX directory. This is useful
when the directory is a separate mounted UNIX file system.

EX1\MPLE
destroydb demo
destroydb -s erics_db

.. ./data/base/*

... /datadir/* (for compatibility with previous versions)

SEEM-~
ere atdb(unix)

DT..ACNOS'l'ICS
invalid dbname - the database name specified is not a valid name.
you may not reference this database - the database may exist, but you do not

have permission to do anything with it.
you may not use the -s flag - you have tried to use the -s flag, but you are not

the INGRES superuser.
you are not the dba - someone else created this database.
database does not exist - this database does not exist.

- 1 -

EQUEL{UNIX) 3/14/79 EQUEL (UNIX)

NAllE
equel - Embedded QUEL interface to C

~YNOPSIS

equel [-d] [-f] [-r] file.q ...

DESCRIPTION
Equel provides the user with a method of in:erfacing the general purpose pro­
gramming language .. C" with INGRES. It cons:sts of the EQUEL pre-compiler and
the EQUEL runtime library.

Compilation
The precompiler is invoked with the statemer:':.:

equel [<flags>] filel.q [<flags>] file2.q ...

where fllen.q are the source input file n~""!les. which must end with .q. The out­
put is written to the file "ftlen.c". As many ft.es as wished may be specified.
The flags that may be used are:

-d Generate code to print source listing f.2.e name and line number when a
run-time error occurs. This can be usef"..:.! for debugging, but takes up pro­
cess space. Defaults to ofi.

-l Forces code to be on the same line in the output file as it is in the input file
to ease interpreting C diagnostic messa;es. EQUEL will usually try to get all
C code lines in the output file on the st.::ie lines as they were in the input
ftle. Sometimes it must break up que:-:es into several lines to avoid C­
preprocessor line overflows, possibly mo·:'..ng some C code ahead some lines.
With the -f flag specified this will ne\·er :-:appcn and, though the line buffer
may overflow, C lines will be on the rigt.: line. This is useful for finding the
line in the source file that C error diagnostics on the output file refer to.

-r Resets flags to default values. Used to s'.lpress other flags for some of the
files in the argument list.

111e output files may than be compiled using be C compiler:

c~ filel.c file2.c. -lq

The -lq requests the use of the EQUEL object li::rary.

All EQUEL routines and globals begin with the: characters "ll", and so all globals
variables and procedure names of the form ::Xxx are reserved for use by EQUEL
and should be avoided by EQUEL users.

Basic Syntax
EQUEL commands are indicated by lines -:·:hie:::. begin wi.th a double pound sign
("##"). Other lines are simply copied as is. .!..'..1 normal INGRES commands may be
used in EQUEL and have the same effect aE if i:-.voked through the int.eractive ter­
minal monitor. Only retrieve commands witb no result relation specified have a
different syntax and meaning.
The format of retrieve without a result relatic::-i is modified to:

II# retrieve {C-variable = ajcn ~ . c-...-ariable = ajcn J)
optionally followed {immediately) by:

II# [where qu.al]
l

/• C-code •/
J

EQUEL (UNJX) 3/14/79 EQUEL (UNIX)

Tb.is statement causes the "C-code" to be executed once for each tuple re­
trieved, with the "C-variable"s set appropriately. Numeric values of any type
are converted as necessary. No conversion is done between numeric and char­
acter values. (The normal INGRES ascii functio:'J. may be used for this purpose.)

Also, the following EQUEL commands are perm!tted.

ingres [ingres flags] data_pase_pame

##exit

This command starts INGRES running. and directs all dynamically follow­
ing queries to the database d.ata_]Jase_name. It is a run-time error to
execute this command twice without an intervening "## exit", as well
as to issue queries while an "## ingres" statement is not in effect.
Each .flag should be enclosed in quotes to avoid confusion in the EQUEL
parser:

ingres "-f4f10.2" "-i212" demo

Exit simply exits from INGRES. It is equivalent to the \q command to the
teletype monitor.

Parametrized Quel Statements
Que! statements with target lists may be "parametrized". This is indicated by
preceding the statement with the keyword "pararn". The target list of a
parametrized statement has the form:

(tl_var, argv)

where tl var is taken to be a string pointer at execution time (it may be a string
constant} and interpreted as follows. For an\· parametrized .:::Q-:.:::::.. statement ex­
cept a retrieve without a result relation (:-10 "into rel") (i.e. append, copy,
create, replace, retrieve into) the string tl_1;a.r is taken to be a regular target
list except that wherever a'%' appears a val:::i :\GRES type (f4, fB, i2, i4, c) is ex­
pected to follow. Each of these is replaced by the value of the corresponding en­
try into argv (starting at 0) which is interpreted to be a pointer to a variable of
the type indicated by the '%' sequence. Neither argv nor the variables which it
points to need be declared to EQI.JEL. For example:

char •argv[ll1];

argv[O] = &~ouble_yar;
argv[1J = &mt_yar;

param append to rel
("doml = %f8, dom2 = %i2", argv)
/•to escape the "%<ingres_j.ype>" mechanism use"%~~" •/
/*This places a single ''.>~' in lhe string. */

On a retrieve to C-variables, within tl var, ir:stead of the C-variable to retrieve
into, the same '%' escape sequences are used to denote the type of the
corresponding argv entry into which the value will be retrieved.

The quo.liflcation of any query may be rep'.3.ced by a string valued variable,
whose contents is interpreted at run time as the text of the qualification.

'i'be c'.Jpy statement may also be parametrized. The form of the parametrized
cayd is analogous to the other parametrizeC. statements: the target list may be
parametrized -in the same manner as the a.p,-:Jend. statements, and furthermore,
the from/into keyword may be replaced by a string valued variable whose con­
tent at rwi time should be inlo or from.

Dcclaraticns

Any valid C variable declaration on a line beginning with a "##" declares a C-

-2-

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

variable that may be used in an EQUEI, state:nent and as a normal variable. All
variables must be declared before being usec!. Anywhere a constant may appear
in an INGRES comr,1and, a C-variable may apz:;ear. The value of the C-variable is
substituted at execution time.

Neither nested structures nor variables of ~ype char {as opposed to pointer to
char or array of char) are allowed. Further:nore, there are two restrictions in
the way variables are referenced within ~g:.::::::.. statements. All variable usages
must be dereferenced and/or subscripted (f::r arrays and pointers), or selected
{for structure variables) to yield lvalues {sca'..ar values). Otar variables are used
by EQUEL as a means to use strings. Therefore when using a char array or
pointer it must be dereferenced only to a .. char • ". Also, variables may not
have parentheses in their references. For example:

struct xxx
~

int i;
int *ip;
II# J **struct_yar;

/• not allowed • /
delete p where p.ifield = •(•:::ruct_yar)->ip

/•allowed•/
delete p where p.i:field = •str:.ict_yar[O]->ip

C variables declared to EQ'JEL have either glc":>al or local scope. Their scope is io­
cal if their declaration is within a free (not '.:lound to a retrieve) block declared
to EQUEL. For example:

/•globals scope variable •/
##int Gint;

func(i}
int i;
~

~

/*local scope variable */
int *'gin~_p;

If a variable of one of the char types is used almost anywhere in an EQUEL state­
ment the content of that variable is used at run time. For exarnpie:

char *dbname[MAXDATABASES + 1];
int current_db;

dbname(current__9.b]::: "derr:o'';
ingres dbname[current_db]

will cal'se r\GR:SS lo be invoked with data base "demo". However, if a variable's
name is to be used as a constant, then t.he nail-referencing operator '#' should
be used. For example:

-3-

3/14/79 EQUEL (UNIX)

##char

demo= "my_siatabase";

/• ingres -d my_database • /
ingres "-d" demo

/• ingres -d demo•/
ingres "-d" #demo

The C-preprocessor's #include feature may be used on fi~es containing equel
statements and declarations if these files are named anything.q.h. An EQUEL
processed version of the file, which will be ifincluded by the C-preprocessor, is
left in anything .c.h.

Errors and lntelT"Upts

INGRES and run-time EQUEL errors cause the routine Ilerror to be called, with the
error number and the parameters to the error in an array of string pointers as
in a C language main routine. The error messaae will be lookecJ. up and printed.
before printing the error message, the rouli:Je (*Ilprint_!!rr)() is called with the
error number that ocurred as its single ar~ument. The error message
corresponding to the error number returned by (•Ilprint_err)() will be printed.
Printing will be supressed if (•Ilprint~rr)(} returns 0. llprint_err may be reas­
signed to, and is useful for programs which map INGRES errors into their own er­
ror messages. In addition, if the "-d" flag was set the file name and line number
of the error will be printed. The user may ·.-.Tite an 1Ierror routine to do other
tasks as long as the setting of Jlerrfia.g is no: modified as this is used to exiL re­
trieves correctly.

Interrupts are caught by equel if they are r..ol being ignored. This insures thal
the rest of L~GR:SS is in sync wilh the EQL.::::::::.. process. There is a function point.er,
Ilinterrupt, which points to a function to ca:l after the inlerrupt is caught. The
user may use lhis to service the interrupt. It is initialized to "exit()" and is
called with -1 as its argument. For example:

extern int (•Ilinterrupt)();
extern reset();

setexit();
llinterrupt = reset;
mainloop(};

To igno:::-e interrupts, signal() should be called before the 11# ingres statement is
executed .

... /ftles/ error6. 3_•
Can be used by the user to decipher ::N"G~ES error numbers.

/lib/libq.a
Run lime library.

SEI1.J\tSO

BUGS

... /doc/other/equeltut.q, C reference manual. ingres(UNIX). quel(QUEL)

The C-code embedded in the tuple-by-tuple retrieve operation may not contain
additional QUE1 statements or recursive invocations of ING::~ES.

Ther.::"! is no ·way to specify an i1 format C-variable.

-4-

EQUEL (UNIX) 3/14/79 E.QUEL(UNIX)

lncludes of an equel file within a parameterized target list, or within a C
variable's array subscription brackets, isn't done correctly.

-5-

nELPR (UNIX) 3/14/79 HELPR {UNIX)

NAYE
helpr - get information about a database.

SYNOPSIS
helpr [-uname] [±w] database relation ...

DESCRIPTION
Helpr gives information about the named relation(s) out of the database
specified, exactly like the help command.

Flags accepted are -u and ±u. Their meanings are identical to the meanings of
the same ftags in INGRES.

SEE.ALSO
ingres(unix), help(quel)

Dl.iiGNOSTICS
bad flag - you have specified a ftag which is not legal or is in bad format.
you may not access database - this database is prohibited to you based on

status information in the users file.
cannot access database - the database does not exist.

- 1 -

INGRES (UNlX) 3/14/79 INGRES (UNlX}

NAJ.!E
ingres - INGRES relational data base management system

SYNOPSIS
ingres [flags] dbname [process_J.able]

DESCRJPTION
This is the UNIX command which is used to invoke IKGRES. Dbname is the name of
e.n existing data base. The optional flags have the following meanings (a "±"
means the fiag may be staled "+x" to set option x or "-x" to clear option x.
"-" alone means that "-x" must be stated to get the x function):

±U

-uname

-cN

-ilN

-f.lxM.N

-vX

-rM

-nJ.1

±a

±b

±d
±s

±w

Enable/disable direct update of the system relations and secondary in­
dicies. You must have the 000004 bit in the status field of the users file
set for this flag to be accepted. This option is provided for system de­
bugging and is strongly discouraged for normal use. .
Pretend you are the user with login name name (found in the users
file). If nam.e is of the form :xx, xx is the two character user code of a
user. This may only be used by the DEA for the database or by the
INGRES superuser.
Set the minimum field width for printing character domains lo N. The
default is 6.
Set integer output field width to N. l may be 1, 2, or 4 for il's, i2's, or
i4's repectively.
Set floating point output field width to JJ characters with N decimal
places. l may be 4 or 8 to apply lo f4's or f8's respectively. x may be
e, E, f, F, g. G, n, or N to specify an output format. Eis exponenlial
form, Fis floating point form, and G and N are identical to F unless the
number is too big to fit in that field, when it is output in F. format. G.
format guarantees decimal point alignment: N does not. The default
format for both is n10.3.
Set the column seperator for retrieves to the terminal and print com­
mands to be X. The default is vertical bar.
Set modify mode on the retrieve command to .U. !J may be isam.
cisam, hash, chash, heap, cheap. heapsort, or cheapsort. for JSJ\. .. \1,
compressed JSAM, hash table, compressed hash table, heap,
compressed heap, sorted heap, or compressed sorted heap. The de­
fault is "cheapsort".
Set modify mode on the index command to U. U can take the same
values as the -:r flag above. Default is "isam".
Set/clear the autoclear option in the terminal monitor. lt defaults to
set.
Set/reset batch update. Users must the 000002 bit set in the status
field of the users file to clear tr.Us fiag. This fiag is normally set. When
clear, queries will run slightly faster, but no recovery can take place.
Queries which update a secondary index automatically set this fiag for
that query only.
Print/don't print the dayfile. :'\armally sel.
Print/don't print any of the monitor messages, including prompts.
TI1is flags is normally set. If cle2l.red, it also clears the -d flag.
Wait/don't wait for the database. If the +w flag is present, INGRES will
wait if certain processes are r...:nning (purge.restore, and/or sysmod)
on the given data base. Upon completion of those processes INGrtES will
proceed. 1f the -w flag is prese~t. a message is returned and execution
stopped if the data base is not. available. If the ±w flag is omitted ar~d
the data base is unavailable, tl::e error message is returned if NGR'.:;S 1s
running in foreground (more precisly if the standard input is from a
terminal), otherwise the wait option is invoked.

- 1 -

INGRES(UNIX) 3/14/79 INGRES (UNIX)

Process_Jable is the pathnill'Tle of a Ul\-::X ftle which may be used to specify the
run-time configuration of !NGRES. This feature is intended for use in system
maintenance only, and its unenlightened us:'! by the user coffimunity is strongly
discouraged.

Note: It is possible to run the monitor as a batch-processing interface using the
'<', '>' and 'I' operators of the UNIX shell, provided the input file is in proper
monitor-format.

KXA.Jl?LE
ingres demo
ingres -d demo
ingres -s demo < batchfile
ingres -f4g12.2 -i13 +b -rhash demo

... /files/users - valid INGRES users

... /data/base/* - data bases

... /datadir/"' - for compatability with previcus versions

... /files/proctab6.3 - runtime configuration file

Sfilo~ ALSO
monitor(quel)

DIAGNOSTICS
Too many options to INGRES - you have state:i too many flags as INGRES options.
Bad 11.ng format - you have stated a flag in c.. format which is not intelligible, or a

bad flag entirely.
Too mar:y parameters - you have given a c?.tabase name, a process table nan:1e,

and "something else" which INGRSS does:1't know what to do with.
No database name specified
Improper database name - the database na.:ne is not legal.
You may not access database name - accord'.ng to the users file, you do not

have perrnission to enter this database.
You are not authorized to use the flag fiag - the flag speciQed requires some

special authorization, such as a bit in tte users file, which you do not have.
Datahase name does not exist
You are not a valid INGRE:S user - you have not been entered into the users file,

which means that you may not use I!\GR:::s at all.
You may not specify this process table - special authorization is needed to

specify process tables.
Database temporarily unavailable - someone else is currently performing some

operation on the database which makes it impossible for you to even log in.
This condition 8hould disappear shortly.

- 2 -

PRINTR (UNIX)

printr - print relations

SYNOPSIS

3/14/79

printr [flags j database relation ...

DESCRIPTION

PRINTR (UNIX)

Printr prints the named relation(s) out o~ the database specified, exactly like
the print command. Retrieve permission must be granted to all people to exe­
cut~ this command.

Flags accepted are -u, ±w, -<::, -i. -f, and -'V. Their meanings are identical to
the meanings of the same flags in INGRES.

SEEAI.SO
ingres{unix). print{quel}

DIAGNOSTICS
bad flag - you have specified a flag which i~ not legal or is in bad format.
you may not access database - this database is prohibited tc you based on

status information in the users file.
cannot access database - the database does not exist.

- 1 -

PURGE (UNIX) 3/14/79 PURGE (UNIX)

NAME
purge - destroy all expired and temporary :relations

SYNOPSIS
purge [-f] [-p] [-a] [-s] [±w] [datatase ...]

n~rro"N"

P..i.rge searches the named databases deleting system temporary relations.
When using the -p ftag, expired user relations are deleted. The -f flag will cause
unrecognizable files to be deleted, normally purge will just report these files.

Only the database administrator (the DBA) for a database may run purge, except
the INGRES superuser may purge any database by using the -s ftag.

If no databases are specified all databases for which you are the DBA will be
purged. All databases will be purged if the INGRES superuser bas specified the
-s flag. The -a flag will cause purge to prir.: a message about the pending opera­
tion and execute it only if the response if a 'y'. Any other response is interpret­
ed as "no''.

Purge will lock the data base while it is bei...""lg processed, since errors may occur
if the database is active while purge is ·working on the database. If a data base is
busy purge will report this and go on to t:::e next data base, if any. If standard
input is not a terminal purge will wait for the data base to be free. If -w flag is
stated purge will not wait, regardless of standard input. The +w flag causes
purge to always wait.

EXAMPLES
purge -p +w tempdata
purge -a-f

SREJJ.SO
save{quel), restore{unix)

DJAGNOS'TICS

BUGS

who are you? - you are not entered into tl-:e users file.
not ingres superuser - you have tried to use the -s ftag but you are not the

INGRES superuser.
you an. not the dba - ;ou have tried ~ o :;'..l"."ge a databa!!'~ for which you are no~.

the DBA.
cannot access database - the database dces not exist.

If no database names are given, only tte databases located in the directory
data/base are purged, and not the old d::!.tabases in datadir. Explicit database
names still work for databases in eilhi::r C.::ectory.

- 1 -

RESTORE (UNIX) 3/14/79 RESTORE (UNIX)

.liMIE
restore - recover from an INGRES or UNIX crash.

SYNOPSIS
restore [-a] [-s] [:1:w] [database ...]

D&9CRIPTION
Restore is used to restore a data base after an INGFES or U~"DC crash. It should al­
ways be run after any abnormal termination to ensure the integrity of the data
base.

Jn order to run restore, you must be the DBA for the database you are restoring
or the INGRES superuser and specify the -s ftag.

If no databases are specified then all databases for which you are the DBA are
restored. All databases will be restored if the INGRES superuser has specified the
-s flag.

If the -a flag is specified you will be asked before restore takes any serious ac­
tions. It is advisable to use this flag if you suspect the database is in bad shape.
Using /dev /null as input with the -a ftag will provide a report of problems in the
data base. If there were no errors while restoring a database, purge will be
called, with the same ftags that were given to restore, to remove unwanted files
and system temporaries. Restore may be called with the -f and/or -p flags for
purge. Unrecognized files and expired relations are not removed unless the
proper flags are given. In the case of an incomplete destroy, create or index re­
store will not delete files for partially created or destroyed relations. Purve
must be called with the -f ftag lo accomplish this.

Restore locks the data base while it is being processed. If a data base is busy re­
store will reporl this and go on to the next data ba!5e. lf standard input is not a
terminal restore will wait for the data base to be free. lf the -w flag i:s set re­
stare will not wait regardless of standard input. If +w is set it wi.11 always wait.

Restore can recover a database from an update which had finished filling the
batch file. Updates which did not make it to this stage should be rerun. Similar­
ly modifies which have finished recreating the relation will be completed {the re­
lation relation and attribute relations will be updated). If a destroy was in pro­
gres~ il vill be carrie.::. to completio.1, while a creak w:H almost alway_; be
backed out. Destroying a relation with an index should destroy the index so re­
store may report that a secondary relation has been found with n.o primary.

If interrupt {signal 2) is received the current database is closed and the ne):t, if
any, is processed. Quit (signal 3) will cause restore to terminate.

E:{A..'!.IPI.E
restore -f demo
restore -a grants < /dev /null

DIACNCSTICS
All diagnostics are followed by a tuple from a system relations.

"No relation for atlribule{s)" - the attribates listed have no corresponding en-
try in the relation relation ·

"No primary relation for index" - the tuple printed is the relation tuple. for a
st:~ondary ind~x for which there is no primary relation. The prunn.ry
probably was destrnyed the st::condary will be.

"No indexes entry for primary relation" - the tuple is for a primary relation,
the relindxd domain ·will be set to zero. This is the product of an in­
complete destroy.

"No indexes entry for index" - the tuple is for a secondary index, the index will
be destroyed. This is the product of an incomplete destroy.

- 1 -

RESTORE (UNIX) 3/14/79 RESTORE (UNIX)

"relname is index for" - an index has been found for a primary which is not
marked as indexed. The primary will be so marked. This is probably
the product of an incomplete i:::dex command. The index will have
been created properly but not mc:iitied.

"No file for" - There is no data for this re~ation tuple, the tuple will be deleted.
If, under the -a option, the tuple :s not deleted purge will not be called.

"No secondary index for indexes entry" - An entry has been found in the
indexes relation for which the se::ondary index does not exist (no rela­
tion relation tuple). The entry >vC be deleted.

SEE ALSO
purge{unix)

BUGS
If no database names are given, only the databases located in the directory
data/base are restored, and not the old d~tabases in datadir. Explicit database
names still work for databases in either dir=ctory.

- 2 -

SYSMOD {UNIX) 3/14/79 SYSMOD (UNIX)

NAME
sysmod - modify system relations to predetermined storage structures.

SYNOPSIS
sysmod [-s] [-w] dbname [relation] [attribute] [indexes] [tree] [pro­
tect] [integrities]

DESCRIPTION
Sysmad will modify the relation, attribute, indexes, tree, protect, and integrities
relations to hash unless at least one of the relation. attribute, indexes, tree,
protect. or integrities parameters are given, in which case only those relations
given as parameters are modified. The system relations are modified to gain
maximum access performance when running INGRES. The user must be the data
base administrator for the specified database, or be the IKGRC:S superuser and
have the -s flag stated.
Sysmod should be run on a data base when it is first created and periodically
thereafter to maintain peak performance. If many relations and secondary in­
dices are created and/or destroyed, sysmod should be run more often.

If the data base is being used while sysmod is running, errors will occur. There­
fore, sysmad will lock the data base while it is being processed. If the data base
is busy, sysmod will report this. If standard input is not a terminal S1Jsmod will
wait for the data base to be free. If -w fiag is stated sysmod will not wait, re­
gardless of standard input. The +w flag causes sysmod to always wait.

The system relations are modified to hash: the relation relation is keyed on the
first domain, the indexes, attribute, protect, and integrities relations are keyed
on the first two domains, and the tree relation is keyed on domains one, two, and
five. The relrition and attribute relations have the minpages option set at 10, the
indexes, protect, and integrities relations have the minpages value set at 5.

SF.E AI.SO
modify{quel)

- 1 -

USERSETUP (UNIX) 3/14/79 USERSETUP (UNIX)

NMIE
usersetup - setup users file

SYNOPSIS
.. ./bin/usersetup [pathname]

DESCRIPTION
The /etc/passwd file is read and reform:itted to become the INGR~S users file.
stored into ... /files/users. If pathna.me is specified, it replaces" ... ". lf path­
name is "-", the result is written to the standard ou!.put.

The user name, user, and group id's are initialized to be identical to the
corresponding entry in the /etc/passwd file. The status field is initialized to be
zero, except for user ingres, which is initialized to all permission bits set. The
"initialization file" parameter is set to the file .ingres in the user's login directo­
ry. The user code field is initialized with sequential two-character codes. All
other fields are initialized to be null.

After running usersetup, the users file must be edited. Any users who are to
have any special authorizations should have the status field changed, according
to the specifications in users{files). To disable a user from executing INGRSS en­
tirely, completely remove her line from tl":e users file.

As UNIX users are added or deleted from the /etc/pass:ad file, the users file will
need to be editted to reflect the changes. For deleted users, it is only necessary
to delete the line for that user from the users file. To add a user, you must. as­
sign that user a code in the form "aa" a..:.d enler a line in the users file in the
form:

r.ame:cc::uid:gid:status:fiags:proct?.'.:):initfHe::tlatabases
where nu.me is t~rn user name (taken from the first field of the /ctc/pass·V"d file
entry for th:;, user). cc is the user code assigned, which must be exadly two
c.:haracters long and must not be the same as any other existing user codc;s, w'.d
and gid are lhe user and group ids (taker! from the third and fourth fields in lhe
/etc/passwd entry), status is the st3tus bits for this user, normaJly 000000,
flags are the default flags for INGRES (on a per-user basis), proctab is the default.
process table for this user (which defaults to =p.:-octabG.3), and data.bases is a
list of the databases this user mav enter. 1f null, she may use all databases. If
the first character i~; a lash("-"), tbe B.eld is a comrr.a s=,)arated list c; data­
bases which she may not enter. Other.,ise, it is a list of databases which she
may enter.

The databases field includes the names of databases which may be cr~ated.

Usersetup may be executed only once, to i.i."1itially create the users file .

... /files/users
/etc/passwd

s.c:~:AISo
ingres(unix), passwd(V), user~(files)

BUGS
It should be able tu bring the users file up to date.

- 1 -

DAYFlLE (FlLES) 3/14/79 DAYFILE (F1LES)

.. ./files/dayfileB.1 - INGRES login message

DESCRIPTION
The contents of the daytile refiect user inf o::-:nation of general system interest,
and is more or less analogous to /etc/mold :._'1. ::xrx. The file has no set format; it
is simply copied n.t login time to the standc.:d output device by the monitor if
the -s or -d options have not been requesteS... ~{oreover the dayfile is not man­
datory, and its absence \vill not generate errors of any sort; the same is true
when the dayfile is present but not readable.

- 1 -

DBTMPLT (FILES) 3/14/79 DBT.MPLT (F1LES)

N.\YE
... /files/db~mplt6.3 - database template

D~CRIPTION
This file contains the template for a database used by creatd.b. lt bas a set of en­
tries for each relation to be created in the database. The sets of entries are
separated by a blank line. Two blank lines or an end of file terminate the file.

The first line of the file is the database status and the default relation st.atus,
separated by a colon. The rest of the file describes relations. The first line of
each group gives the relation name followed by an optional relation status,
separated by a colon. The rest of the lines in each group are the attribute name
and the type, separated by a tab character.

All the st.atus fields are given in octal, and have a syntax of a single number fol­
lowed by a list of pairs of the form

±x±N
which ~ays that if the ± x .fiag is asserted on the creatdb command line then set.
(clear) the bits specified by N.
The first set of entries must be for the relation catalog, and the second. set must
be for the altribute catalog.

EXAMPLE
3-c-1+q+2:010023
relation:-c:-20
relid c12
relowne c c2
relspec il

at.tribute:-c-20
attrelid c12
attowner c2
attname c12

(other relation descriptors)

~~EMSO

creatdb(unix)

- 1 -

ERROR (F11ES) 3/14/79 ERROR (F1LES)

... /files/error6.3_J - files with INGRES errors

D:'SCRI.PTION
'These files contain the INGRES error messages. There is one file for each
thousands digit; hence, error number 2313 will be in file error6.3_2.

Each file consists of a sequence of error- messages ·wi.th associated error
numbers. When an error enters the front end, the appropriate file is scanned for
the correct error number. If found, the message is printed; otherwise, the first
message parameter is printed.

Each message has the format
errnum <TAB> message tilde.

Messages are terminated by the tilde character ("-'). The message is scanned
before printing. If the sequence %n is encountered (where n is a digit from 0 to
9), parameter n is substituted, where %0 is the first parameter.

The para.meters can be in any order. For example, an error message can refer­
ence %2 before it references 30.

SF.E ALSO
error(UTJL)

EXJUfi•Lg
1003 line %0, bad database name 31-
1005 In the purge of %1,
a bad %0 ca.used execution to halt.....,
1006 No prot.:ess, try again.""

- 1 -

LIBQ (FlLES) 3/14/79 LIBQ (F1LES)

NAME
libq - Equel run-time support library

DF.sCRIPTION
Libq all the routines necessary for an equel program to load. It resides in
/lib/libq.a. and must be specified when loading equel pre-processed object
code. It may be referenced on the command line of cc by the abbreviation -lq.

Several useful routines which are used by equel processes are included in the li­
brary. These may be employed by the equel programmer to avoid code duplica­
tion. They are:

int
char
int

char
char
int

char
char

char
int

int
char

int
char

Ilatoi(buf, i)
*buf;
i;

*llbmove(source, destination, len)
•source, *destination;
len;

•IIconcatv(buf, argl, arg2, ... , 0)
*buf, •argl, ... ;

*Ilitos{i)
i;

llsequal(s 1, s2)
*sl, *s2;

Illength(string)
•string;

llsyserr{string, argl, arg2, ...);
char *string;

Ilatoi

llbmove

Jiconcatv

llitos

llsequal

lllength

llatoi is equivalent to atoi(UTIL).

Moves len bytes from source to destination, returning a pointer to
the location after the last byte moved. Does not append a null byte.

Concatenates into bu/ all of its arguments, returning a pointer to I.he
null byte at the end of the conc2.tenation. Buf may not be equal to
any of the arg-n but argl.

llitos is equivalent to itoa(III).

Returns 1 itr strings sl is identical to s2.

Returns max(length of string without null byte at end, 255)

]!syseu llsyserr is diferrenl from syscrr(util) only in that it will print Lhe
name in Ilproc_parne, and in that there is no 0 mode. Also, it will al­
ways call exit(-1) aft.er printing the error message.

There are also some global Equel variables ·which may be manipulated by l.he
user:

int Ilerrtlag;
char *Ilmai.npr;
char (•Jiprint_err)();
int Ilret_err();

- 1 -

l.JBQ (FILES)

int

ilerrfiag

Ilmainpr

3/14/79 l.JBQ (FILES)

llno_prr();

Set on an error from INCREl: lo be the error number {see the error
message sect.ion of the "iNG:?EE Reference Manual") that ocurred.
This remains valid from the time the error occurrs to the time when
the next equel statement is issued. This may be used just after an
equel statement lo see if it succeded.

This is a string which determines which ingres to call when a "##
ingres" is issued. Initially it is "/usr/bin/ingres".

Ilprint_err This function pointer is used to call a function which determines what
(if any) error message should be printed when an ingres error oc­
curs. It is called from IIerror{) with the error number as an argu­
ment, and the error mess~e corresponding to the error number re­
turned will be printed. If ~·I1pri:itJrr)(<errno>) returns 0, then no
error message will be printed. lr:ilially Ilprint~rr is set lo Ilret~rr() .
lo print the error that ocurred.

Ilret~rr Returns its single integer argu,'"!lent. Used to have (*Ilprint_e:-r)()
cause printing of the error that o~urred.

Hno_err Returns 0. Used lo have {*llprintJrr)() suppress error message
printing. Ilno~rr is used when a..-i error in a parametrized equel sla­
temenr occurs to suppress printing of the corresponding parser er­
ror.

::::::F..El..I.SO
c-toi(util), brnove(ulil), cc{I), equel(unix). exit(Il), iloa(llI), lenglh(ulil),
sequal(util.), sys err(ulil)

-2-

PROCTAB (FJLES) 3/14/79 PROCTAB (F1LES)

NAME
... /files/proctab6.3 - INGRES runtime configuration information

DFBCP.IPTION
The file .. ./files/proctab6.3 describes the runtime configuration of the INGRES
system.

The process table is broken up into logical sections, separated by lines •vith a
single dollar sign. The first section descri:,es the configuration of the system
and the parameters to pass to each system module. All other sections contain
strings which may be macro-substituted into the first section.

Each line of the first section describes a si::lgle process. The lines consist of a
series of colon-separated fields.

The first field contains the pathname of the module to be executed.

The second field is a set of flags which allow the line to be ignored in certain
cases. 1f this field is null, the line is accepted; otherwise, it should be a series of
items of the form "+-=X', where any of "+-=·· may be omitted, and Xis a fl.ilg
which may appear on the ING~ES command line. The characters "+-=" are inter­
preted as the sense of the flag: "+"will accept the line if the flag "+X' is stated
on the command line, "-" ''till accept if "-X" is stated, and "=" will accept if
th-:: "Y' fl.ag is not stated at all. 111ese may be combined in the forms "+=" and
"-=". For example, the field:

+=&

will acept the line if the EQUEL fiag ("&")is :stated as"+&" or is not stated, but
the line will be ignored if the "-&" flag is stated.

If any flag item rejects the line, the entire line is rejected.

The third field is a status word. The number in this word is expressed in octal.
The bits have the following meaning:

000010 close diagnostic output
000004 close standard input
000002 run in user's directory, not database
00000 l ru"1 as the user, not a~ ;:.iGR:'.:S

The fourth field is a file name to which the standard output should be redirected.
It is useful for debugging.

The fifth field describes the pipes which should be connedecl lo this process.
The field must be six characters long, with ':.be characters corresponding to the
L"1ternal variables R_up, W_up, R_down, W_dcwn, R_front, and W_front respective­
ly. The characters may be a question mar~. which leaves the pipe closed; a di­
git, which is filled in from the tile descripto:-s provided by the EQUEL flag or lhe
"@" fiag; or a lo·wer case letter, which is connected via a pipe with any other
pipes having the same letter; this last action is done on the fly to conserve file
descriptors.

The sixth and subsequent fields are arbit::-ary parameters to be sent to the
modules. There must be a colon after the 5.fth field even if no parameters are
present, but there need not be a colon after the last parameter.

T.le la.st module executed {usually the last line in the first :;ection) becomes the
parent of all the other processes.

1be second. through last sections of the process table consist of a single line
which names the section followed by arbilrc.ry text. The pathname field and all
parameter fields of each line of the firs~ se~tion are scanned for strings of the
form "$name": this string is replaced by t'.:e text from lhe corresponding sec­
tion. For convenience, the name $pathname is automatically defined to be the

- 1 -

PROCTAB (FILES) 3/14/79 PRO.CT AB (FILES)

pathname of the root of the INGRES subtree.

The DBU routines want to see two parameters. The first parameter is the path­
name of the "ksort" routine. The second ::>arameter is a series of lines of the
form: •

command__pame:place_Jist

where command_name is the name of one cf the possible INGRES commands exe­
cuted by the DBU routines, and place_Jist is a comma-separated list of the actu­
al location(s) of that command. Each "place" is a two-character descriptor: the
first character is the overlay in which tha:. command resides, and the second
character is the function within that overlay. If a command is in more than one
place, INGRES will try to avoid calling in another overlay. For example:

creale:aO,ml

means that the create command may be found in overlay "a" function 0 or in
overlay "m" function 1.]f already in over:ay "a" or "m" the create command
resident in that overlay will be called; olhenise, overlay" a" will be called.

E>W.IPLE
The following example will execute a three process system unless the "&" ftag is
specified (as ''-&"), when a two-,erocess sy;:~em will be executed with the moni­
tor dropped out and the calling (EQUEL) prcgrarn in its place. I\otice that there
are two lines for the parser entry, one for ::i.e EQUEL case and one for the non­
EQUEL case. In the EQUEL case, output f:om the parser is diverted to a file
cailed "debug.out".

$pathname/bin/overlaya::000014::b::??23:$pathname/bin/ksort:$dbut.ab
$pathnarne/bin/parscr:+=&:OOO:JH-::adcb??:
$pathr.rune/bin/parser:-&: 000014-: c ::bug. out:O le b??:
$pat.hname/bin/monitor:+=&:OOOOC-3::??da??:$pathname/fi.les/st.artup
$
dbutab
create:aO,ml
dest.roy:a1,m2
modify:mO
i1elp:a2
$

- 2 -

STARTUP (FILES) 3/14/79 STARTUP (F1 LES)

... /files/startup- INGRES startup file

DESCRIP'fION
This file is read by the monitor at login tir::e. It is read before the user startup
file specified in the users file. The primary purpose is to define a new editor
and/or shell to call with the \e or \s cor:rl.II!ands.

SEE ALSO
monitor{quel), users{files)

- 1 -

USERS (FILES) 3/14/79 USERS (F1LES)

.. ./files/users - INGRES user codes and parameters

DESCRIPTION
This file contains the user information in fields seperated by colons. The fields
are as follo\V~:
•User name, taken directly from /etc/passwd file.
•User code, assigned by the INGRES super-user. It must be a unique two charac-

ter code.
*UNIX user id. This MUST match the entry in the /etc/passwd file.
• UNIX group id. Same comment applies.
• Status word in octal. Bit values are:

0000001 creatdb permission
0000002 permits batch update override
0000004 permits update of system catalogs
0000020 can use trace flags
0000040 can turn off qrymod
0000100 can use arbitrary proctabs
0000200 can use the =proctab form
0100000 ingressuperuser

•A list of flags automatically set for this user.
* The process table lo use for this user.
"'An. initialization file to read be read by the monitor al login time.
"' Unassigned.
• Comma seperated list of databases. lf tbis list is null, the user may enter any

database. If it begins with a'-', the user may enter any database except
the named databases. Otherwise, t'."le user may only enter the named da­
tabases.

~Al.ti:> ill
ingres:aa:5:2: 177777:-d:=special:/mnt/ingres/.ingres::
guest:ak35: l:OOOOOO:::::demo,guest

S't<."R ALSO
init.ncoc'! e(util)

- 1 -

INT.RODUCTJON (ERROR) 3/30/79 INTRODUCTION(ERROR)

Error messages introduction

D~RIPTION
This document describes the error returns which are possible from the INGR::S
dala base system and gives an explanation of the probable reason for their oc­
currence. In. all cases the errors are numbered nxxx where n indicates the
source of the error, according to the following table:

1 = EQUEL preprocessor
2 = parser
3 = query modification
4 = decomposition and one variable query processor
5 = data base utilities
30 = GEO-QUEL errors

For a description of these routines the reader is referred to The Design and Jm,­
pl.e mentation of INGRES. The x::r:x in an error number is an arbitr.:i.ry identifier.

The error messages are stored in the file .. ./files/error6.3_n, where n is defined
as above. The format of these files is the error number, a tab character, the
message to be printed, and the tilde character ("-") to delimit the message.

Jn additiori many error messages have "%i" in their body where i is a digit inter­
preted as an otrset. into a list of parameters returned by the sourc~ of the error.
'I'his indicates that a parameter will be inserted by the error handler into the er­
ror return. In most cases this parameter will be self explanatory in meaning.

Wh-:.r·e the error message is thought to be completely self explanatory, no addi­
tional description is provided.

- 1 -

EQUEL(ERROR) 3/30/79 EQUEL(ERROR)

EQUEL error message summary

SYNOPSIS
Error numbers 1000 - 1999.

D:!?.SCRIPTION

ERRORS

The following errors can be generaled al run t'...'"lle by EQUEL programs.

1000 In domain %0 nwneric retrieved into c~ar field.

Equel does not supporl conversion at run-time of numeric data from the
data base to character string representation. Hence, if you attempt to
assign a domain of numeric type to a C-variable of type character string,
you will get this error message. To convert numerics to characters use
the "ascii" function in QUEL.

1001 Numeric overflow during retrieve on dc:nain %0.

You will get this error if you at.temFt to assign a numeric data ba!::e
domain to a C-variable of a numeric type but with a shorter length. In
this case the conversion routines may generate an overflow. For exam­
ple, this error will result from an at:empt to retrieve a large floating
point number into a C-variable of type :nteger.

1002 In domain %0, character retrieved into numeric variable.

This error is t:re converse of error 100:.

1003 Bud type in target list of parameterize:. retrieve "%0".

Valid types are %f8, %f4, %i4, %i2, 3c.

100'1- Bad type in target list of parameterize:. statement "%0".
Valid types are %f8, %f4, %i4, %i2, ?{il, ~c.

- 1 -

PARSER(ERROR) 3/30/79 PARSER(ERROR)

Parser error message summary

SYNOPSIS
Error numbers 2000 - 2999.

DES~ON

ERRORS

The follovving errors can be generated by the parser. The parser reads your
Cf.lery and translates it into the appropriate internal form; thus. almost all of
these errors indicate syntax or type conflict problems.

2100 line %0, Attribute '% 1' not in relation '32'

This indicates that in a given line of the executed workspace the indicat­
ed attribute name is not a domain in the indicated relation.

2103 line %0, Function type does not match type of attribute '%1'

This error will be returned if a function expecting numeric data is given a
character string or vice versa. For example, it is illegal to take the SJN
of a character domain.

2106 line %0, Data base utility command but:"er overflow

This error will result if a utility command is too long for the buffer space
allocated to it in the parser. You must shorten the corrunand or recom­
pile the parser.

2107 line %0, You are not allowed to update this relation: %1

Thi.s error will be returned if you atter:l.pt to update any system relation
or secondary index directly in Q::3L (such as the REL~TION relation).
Such operations which compromi~e th~ integrity of the dnla base are not
allowed.

2108 line %0, lnvalid result relation for APPE.'\D '31'

This error message will occur if you execute an append command to a re­
lation that does not exist, or that you cannot access. For example, ap­
pend to junk(...) will fail if junk does not exist.

2109 line %0, Variable '31' not declared in R\;.'\GE statement

Here, a symbol was used in a QD::::... expression in a place where a tuple
variable was expected and this symbol ·was not defined via a RANGE !.itate­
ment.

2111 line %0, Too many attributes in key for 1:\DEX

A secondary index may have no more than 6 keys.

2117 line 30, Invalid relation name '31' in R!..;\GE statement

You are declaring a tuple variable wbich ranges over a relc.tion which
does not exist.

2118 line 30, Out of space in query tree - Qt.::ery too long

You have the misfortune of creati.r1g a query which is too long for the
parser to digest. The only options are to shorten the query or recompile
the parser to have more buffer space for the query tree.

2119 line %0, MOD operator not defined for tloating point or character attri­
butes

- 1 -

PARSER(ERROR) 3/30/79 PARSER(ERROR)

2120

2121

2123

2125
2126
2127

2128
2129

2130

2132

The mod operator is only defined for i.r..teg ers.

line %0, no pattern match operators al:owed in the target list

Pattern match operators {such es "*") can only be used in a
qualification.

line %0, Only character type domains are allowed in CONCAT operator

line %0, '%1.all' not defined for replace

line %0, Cannot use aggregates ("avg" or "avgu") on character values
line %0, Cannot use aggregates ("sum'' or "sumu") on character values
line %0, Cannot use numerical functions (ATA.i'i, COS, GA.i\!MA, LOG, SIN,
SQRT. EXP, ABS) on character values
line %0, Cannot use unary operators{"+" or"-") on character values
line %0, Numeric operations (+ - * /) :!Ot allowed on character values

Many functions and operat.ors are mea.'1.ingless when applied to character
values.

line %0, Too many result domains in ta:get list

Maximum number of result domains is ~IA .. XDOM (currently 4·9).

line %0, Too many aggregates in this q:iery

Maxi.mum number of aggregates allowed in a query is MAXAGG (currently
49).

2133 line %0, Type conflict on relational ope:ator

It is not legal to compare a character :.ype to a numeric type.

2134 line ~rn. '%1' is not a constant operate:.
Only 'dba' or 'usercode' are allowe: d.

2135 line %0, You cannot duplicate the nan:~ of an existing relation(%1)

You have tried to create a relation wt:ch would redefine an existing rela­
tion. Choose another name.

2136 line %0, There is no such hour as %1, t.:se a 24 hour clock system
2137 line %0, There is no such minute as %1. use a 24 hour clock system
2138 line %C, There is no: uch time as 24::0:, use a 24 hot:r cl::>~k system

Errors 2136-38 indicate that you have used a bad time in a permit state­
ment. Legal times are from 0:00 to 2~:00 inclusive.

2139 line %0, Your database does not suppo:t query modificntion

You have tried to issue a query modc::ation statement (defi:n.e), but the
database was created with the -q flag. To use lhe facilities made ava.il­
able by query modification, you rr..ust say:

creatdb -e +q dbname

lo the shell.

2500 syntax error on line 30
last symbol read was: % 1
A 2500 error is reported by the parse:- if it cannot otherwise classify lhe
error. One common way to obtain ·~'lis error is to omit the required
parentheses around the target list. i:ie parser reports the last symbol
which was obtained from the scar.ner. Sometimes, the last symbol is far
ahead of the actual place where the e::-ror occurred. The string "EOF'' is
used for the last symbol when the pan:r has read past the query.

-2-

PARSER(ERROR) 3/30/79 PARSER(ERROR)

2502 line %0, The word '%1', cannot follow a RETR1EVE command, therefore the
comniand was not executed.

2503 line %0, The word '%1', cannot follow an APPEND command, therefore the
command was not executed.

2504 line %0, The word '%1', cannot follow a REPLACE command, therefore the
command was not executed.

2505 line %0, The word '%1', cannot follow a DELETE command, therefore the
command was not executed.

2506 line %0, The word '%1', cannot follow a DESTROY command, therefore the
command was not executed.

250'7 line %0, The word '%1', cannot follow a HELP command, therefore the
command was not executed.

2508 line %0, The word '%1', cannot follow a ~fODIFY command, therefore the
command was not executed.

2509 lir1~ 30, The word '% 1 ', cannot follow a PRINT command, therefore the
command was not executed.

2510 line %0, The word '%1', cannot follow a RETRIEVE UNlQlIE command,
therefore the command ·was not executed.

2511 line %0, The word ·~~ i ', cannot follow a DEFINE VIEW command, therefore
the command was not executed.

2512 line 30, The word '31', cannot follow a EELP VIEW, HELP l~TEGRJTY, or
HELP PERMIT command, therefore the command was not executed.

2513 line %0, The word '%1', cannot follow a DEFINE PERMIT command, there­
fore the command was not executed.

2514 line %0, The word '%1', cannot follow a DEFINE INTEGRITY command,
therefore the c'.Jmrnand was not executed.

2515 line: %0, The word '%1', cannot follow a DESTROY INTEGRJTY or DESTROY
PERMIT command, therefore the command was not executed.

Ii;rrors 2502 through 2515 indicate bat after an otherwise valic1. query,
t.here was something v:hich could not begin another command. The
query was therefore aborted, sinc.:e this could have been caused by
misspelling where or something equally as dangerous.

2700 line 30, non-terminated string

You hcve omitted the required strinR" terminator(").

2701 line %0, string too long

Somehow, you have had the persistence or misfortune to enter a charac­
ter string constant longer than 255 characters.

2702 line %0, invalid operator

You have entered a character which is not alphanumeric, but which is
not a defined operator, for example, "?"'.

2703 line %0, Name too long '%1'

In INGRES relation names and domain names are limited to 12 characters.

2704- line %0, Out of space in symbol table - Query too long

Your query is too big to process. Try breaking it up with more \go com­
mands.

2705 line %0, non-terminated comment

You have left ofI the comment terminator symbol("•/").

2707 line %0, bad floating constant: %1

Either your .floating constant was incorrectly specified or it was too large
or too small. Currently, overflow and underflow are not checked.

-3-

PARSER(ERROR) 3/30/79. PARSER(ERROR)

2708 line %0, control character passed in pre-converted string

ln EQUEL a control character became embedded in a string and was not
caught until the scanner was processing it.

2709 line %0, buffer overflow in converting a number

Numbers cannot exceed 256 characters in length. This shouldn't become
a problem until number formats in L\G~::!:S are increased greatly.

- 4 -

QRY.MOD(ERROR) 3/30/79 QRYMOD(ERROR)

NAME
Query Hodification error message summ::!.ry

SYNOPSTS
Error numbers 3000 - 3999.

Dl'"SCR.IPTION
These error messages are generated by the Query Modification module. These
errors include syntc:1.ctic and semantic problems from view, integrity, and pro­
tection definition, as well as run time errors - such as inability to update a view,
or a protection violation.

ERRORS -
3310 %0 on view %1: cannot update some domain

You tried to perform operation 30 on a view; however, that update is not
defined.

3320 %0 on view %1: domain occurs in ~uaEfication of view

It is not possible to update a domain in the qualification of a view, since
this could cause the tuple to disappear from the view.

3330 %0 on view %1: update would result in more than one query

You tried to perform some update on a view which would update two
underlying relations.

3340 %0 on view 31: views do not have TID's

You tried to use the Tuple JDentit.er f.eld of a view, which is undefined.

3350 %0 on view %1: cannot_ update an c..ggregate value

You 8annot update a value whic'.': is defined in the view definition as an
aggregate.

3360 %0 on view %1: that update might be non-functional

There is a c~ance that the resulting update would be non-functional, that
is, that it may have some unexpi::cted side effects. INGRES takes the atti­
tude that it is better to not try the U?date.

3490 JNTEGRJTY on %1: cannot handle aggregates yet

You cannot define integrity constraints 'vhich include aggregates.

34-91 JNTEGRJTY on %1: cannot handle multivc:..riable constraints

You cannot define integrity consl:raints on more than a single variable.

3492 INTEGRITY on % 1: constraint does not initially hold

When you defined the constraint, there were already tuples in the rela­
tion which did not satisfy the constraint. You must fi.x the relation so
that the constraint holds before you can declare the constraint.

3493 JNTEGRITY on % 1: is a view

You can not define integrity constraints on views.

3494 INTEGRITY on %1: You must own ·:~1·

You must own the relation when you declare integrity constraints.

3500 %0 on relation %1: protection violetion

You have tried to perform an operatian which is not permitted to you.

- 1 -

QRYMOD(ERROR) 3/30/79 QRYMOD(ERROR)

3590 PERMIT: bad terminal identifier "%2"
Jn a perm:it statement, the terminal i::ienlifier field was improper.

3591 PERMIT: bad user name "%2"

You have used a user name which is r:ot defined on the system.
3592 PERMIT: Relation '%1' not owned by y::iu

You must own the relation before iss::.ln.g protection constraints.

3593 PER\UT: Relation '%1' must be a real :-elation (not a view)
You can not define permissions on views.

3594 PER.\iIT on %1: bad day-of-week '%2'

The day-of-week code was unrecognized.

3595 PER\UT on %1: only the DBA can use the PERMIT statement

Since only the DBA can have shared relations, only the DEA can issue per­
m.it statements.

3700 Tree buffer overflow in query modification
3701 Tree build stack overflow in query mcdification

Bad news. An internal buff er has cverftowed. Some expression is too
large. Try making your expressions smaller.

- 2 -

OVQP(ERROR) 3/30/79 OVQP(ERROR)

NAME
One Variable Query Processor error message summary

SYNOPSIS
Error numbers 4000 - 4499.

D~CRIPTION

F.U.RORS

These error messages can be generated a':. run time. The One Variable Query
Processor actually references the data, processing the tree produced by the
parser. Thus, these error messages are associated with type confl.icts detected
at run time.

4100 OVQP query list overflowed

4101

4102
4103
tr104
4105

4106
4107

4108
4109

Tbis error is produced in the unlikely event that the internal form of
your bteraction requires more space in the one variable query proces­
sor than has been allocated for a query buffer. There is not much you
can do except shorten your interaction or recompile OVQP with a larger
query buffer.

numeric operation using char anC. numeric domains not allowed

Occasionally, you will be notified by OVQP of such a type mismatch on ar­
ithmetic operations. This only happens if the parser has not recognized
the problem.

unary operators are not allowed ::::n cha::-acter values
binary operators cannot accept c:irr:':linations of char and numeric fields
cannot use aggregale ope:::-atar "s"..lrr:" on character domains
cannot use aggregate operator "e:.:;g" on character domains

These errors indicate type mismc.tches - such as trying to add a number
to a character string.

the interpreters stack overflowed -- query too long
the buffer for ASCH and CONCAT comznands overflowed

More buff er overflows.

cannot use arithmetic operators on two character fields
cc:.nnot use numeric values with CO:'.\CAT operator

You have tried to perform a num:::ric operalion on charac:er fklds.

4110 floating point. exception occurred.

:f you have floating point hardwa::-e instead of the floating point software
interpreter, you will get this e::ror upon a floating point exception
(underflow or overflow). Since tbe s:::>ft"ware interp:::-eter ignores such ex­
ceptions, this error is only possib:e with floating point hardware.

4111 character value cunnot be converted to numeric due to incorrect syntax.

Whcm using int1, int2, int4, tloat4, or float8 to convert a character to
value to a numeric value, lbe character value must hnve tbe proµer syn­
tax. This error will occur if the chc:-..!·acter value contained non-nu:mcric.:
characters.

4112 ovqp query vector overflowed

Similar to error 4100.

4199 you must convert your 6.0 secondary index before running this query!

- 1 -

OVQP{ERROR) 3/30/79 OVQP{ERROR)

The internal format of secondary iDdices was changed between versions
6.0 and 6.1 of INGR:.:s. Before deciding to use a secondary index OVQP
checks that it is not a 6.0 index. The solution is to destroy the secondary
index and recreate it.

-2-

DECOMP(ERROR) 3/30/79 DE.COMP (ERROR)

NAME
Decomposition error message summary

SYNOPSIS
Error numbers 4500 - 4999.

DESCRIP'l'iON

ERRORS

These error messages are associated w:th -:.be process of decomposing a multi­
variable query into a sequence of one variable queries which can be execuled by
OVQP.

4602 query involves too many relations to create aggregate function inler­
mediate result.

4.610
4611
4612
4613
4614

4615

4620

In the processing of aggregate funct~ons it is usually necessary to create
an intermediate relation for each aggregate function. However, no query
may have more than ten variables. Since aggregate functions implicitly
increase the number of variables in lhe query, you can exceed this limit.
You must either break the interaction apart and process the aggregate
functions separately or you must recompile INGRES to support more vari­
ables per query.

Query too long for available buffer space lqbufsize).
Query too long for available buffe:=- s;:ace varbufsiz)
Query too long for available bufie!" s;:ace sqsiz)
Query too long for available bufie!- s;:ace slacksiz)
Query too long for available butre:=- s;::lce agbufsiz).

These will happen if the internc..1 fo::-m of the interaction processed by
decomp is too long for the available buffer space. You must either shor­
ten your interaction or recom_?ile decamp. The name in parenthesis
gives the internal name of which but:er was too small.

Aggregate function is too wide or has too many domains.

The internal form of an aggregate f:.mction must not contain more than
49 domains or be more than 495 by",es wide. Try breaking the aggregate
f•.mction into twc :)r more parts.

Target list for "retrieve unique" has more than 49 domains or is wider ·
than 498 bytes.

- 1 -

DI''J(ERROR) 3/30/79 DBU(ERROR)

Data Base Utility error message summCL'-Y

SYNOPSIS
Error numbers 5000 - 5999

D&se..'UPTION

fil'.r-,cms

The Data Base Utility functions perform al::i.ost all tasks which are not directly
associated with processing queries. The e:-ror messages which they can gen­
erate result from some syntax checking an:i a considerable amount of semantic
checking.

5001 PRINT: bad relation name %0

You are trying to print a relation wt:.cb doesn't exist.

5002 PRINT: %0 is a view and can't be prir:':.ed

The only way to print a view is by re::-ieving it.

5003 PRJNT: Relation %0 is protected.

You are not authorized to access tr..::: relation.

5102 CREATE: duplicate relation name %C

You are trying to create a relation w'.::J.ich already exists.

5103 CREATE: %0 is a system relation

You cannot create a relation with ~je same name as a system relation.
The system depends on the fact ~.ha~ the system relations are unique.

5104 CREATE %0: invalid attribute nar;:e ;:; 1

This l\ill happen if you try to crea•.:: a relation ·with an attribute longer
than 12 characlers.

5105 CREATE %0: duplicate attribute narr.= %1

Attribute name~ in a relation rr~ust be unique. You are trying to creatt::
0-:1-:: with a dupli·:·ited name.

5106 CREATE %0: invalid attribute format "%2'' on attribute %1

The allowed formals for a doma:.n <:.:-e c 1-c255, il. i2, i4, f4 and f8. Any
other format will generate this e:-ro:-.

5107 CREATE 30: excessive domain count :m attribute 31

A relation cannot have more thc:.n ~3 domains. The origin of this magic
number is obscure. This is very dif:E::ult to change.

5108 CREATE 30: excessive relation '"idth on attribute 31

The maximum number of bytes al'.:rwed in a tuple is 498. This results
from the decision that a tuple m~st fit on one UNIX "page". Assorted
pointers require the 14 bytes which separates 498 from 512. This "m0gic
num.ber" is very hard to change.

5201 DESTROY: 30 is a system relatic::i.

The system ·would immediately stc;:- ·working if you were allowed lo do
this.

5202 DESTROY: %0 does not exist or is no'.. owned by you

- 1 -

DBU(ERROR) 3/30/79 DBU{ERROR)

To destroy a relation, it must exist, and you must own it.

5203 DESTROY: %0 is an invalid integrity constraint identifier

Integers given do not identify integrity constraints on the specified rela­
tion. For example: If you were to type "destroy permit parts 1, 2, 3", and
1, 2, or 3 were not the numbers "help permit parts'' prints out for per­
missions on parts, you would get this error.

5204 DESTROY: %0 is an invalid protection constraint identifier

Integers given do not identify protection constraints on the specified re­
lation. Example as for error 5203.

5300 INDEX: cannot find primary relation

The relation does not exist - check your spelling.

5301 11\1JEX: more than maximum number of domains

A secondary index can be created on at most six domains.

5302 INDEX: invalid domain 30

You have tried to create an index en a domain which does not exist.

5303 INDEX: relation %0 not owned by you

You must own relations to put i:idicies on them.

5304 INDEX: relation %0 is already an index

INGRES does not permit tertiary ::-id:cies.

5305 INDEX: relation %0 is a system relat:on

Secondai:-y ind~ces cannot be created on system relations.

5306 INDEX: %0 is a view and an index ca..-:'t be built on it

Since views are not physically stored in the database, you cannot build
indicies on them.

5401 HELP: relation 30 does not exist

5402 HELP: cannot find manual section "%0"

£ither the desired manual sect.ion does not exist, ur your system does
not have any on-line documentation.

5403 HELP: relation %0 is not a view

5404
5405

5410
5411

Did a "help view·· {which prints vie•~- definition) on a nonview. For exam­
ple: "help view overpaidv" prints out overpaidv's view definition.

HELP: relation %0 has no permissior:s on it granted
HELP: relation %0 has no integrity constraints on it

You have tried to print the permissions or integrity constraints on a rela­
tion which has none specified.

HELP: tree buffer overflowed
HELP: tree stack overflmved

Sti.ll more bufTcr overfiovrs.

5500 MODI?Y: relation %0 does not exist

5501 MODIFY: you do not own relation %0

You cannot modify the storage structure of a relation you do not own.

- 2 -

DBU(ERROR) 3/30/79

5502 MODIFY %0: you may not provide keys on a heap

By definition, heaps do not have keys.

5503 MODlFY %0: too many keys pro>ideC.

You can only have 49 keys on any relation.

5504 MODIFY %0: cannot modify system "."elation

DBU(ERROR)

System relations can only be mod..:.5.ed by using the sysmod command to
the shell; for example

sysmod dbname

5507 MODIFY %0:.duplicate key "%1"

You may only specify a domain as a key once.

5508 MODIFY %0: key width (%1) too large for isam

When modifying a relation to isarn, the sum of the width of the key fields
cannot exceed 245 bytes.

5510 MODIFY %0: bad storage structure "%1"

The valid storage structure names are heap, cheap, isam, cisam, hash,
and chash.

5511 MODIFY %0: bad attribute name ";:;-1"

You have specified an attribute th3t does not exist in the relation.

5512 MODJFY %0: "%1" not allowed or sp:cified more than once

You hav~ specified a parameter which conflicts wi.th another pargmeter,
is inconsistant with the storage mode, or which has already been
specified. ·

5513 MODlFY %0: fillfactor value %1 out of bounds

F'illfa.ctor must be between 1 and 100 percent.

5514 MODIFY %0: minpages value %1 out of bounds

Minpages must be greater than zero.

5515 MODIFY %0: '%1' should be "fillf..ictor", "maxpa£_es", ::>r "minpages"

You have specified an unkno-. .. -n p?..:rameter to modify.

5516 MODlFY %0: maxpages value % 1 oc:.t of bounds

5517 MODJFY %0: minpages value exceeds max:pages value

5518 MODJFY ~~O: invalid sequence spe::-1fter "31" for domain %2.

Sequence specifier may be "as::-ending" (or "a") or "descending" (or
"d") in a modify. For example:

modify parts to heapsort on
pnum:ascending,
pname:clescending

5519 MODJFY: %0 is a view and can't be modified

Only physical relations can be n:odified.

5520 MODJFY: %0: sequence specifier "'%1" on dorr..ain 32 is not allowed with the
specified stora;,e structure.

Sortorder may be supplied or~y when modifying to heapsort or chca:;>­
sorl.

- 3 -

DBU(ERROR) 3/30/79 DBU(ERROR)

5600 SAVE: cannot save system relation "%0"

System relations have no save date and are guaranteed to stay for the
lifetime of the data base.

5601 SAVE: bad month "%0"
5602 SAVE: bad day "%0"
5603 SAVE: bad year "%0"

This was a bad month, bad day, or maybe even a bad year for.

5604 SAVE: relation %0 does not exist or is not owned by you

5800 COPY: relation %0 doesn't exist

5801 COPY: attribute %0 in relation 31 doesn't exist or it has been listed twice

5803 COPY: too many attributes

5804

5805

5806

Each dummy domain and real domain listed in the copy statement count
as one attribute. The limit is 150 attributes.

COPY: bad length for attribute %0. Length="%1"

COPY: can't open file %0

On a copy "from", the file is not readable by the user.

COPY: can't create file %0

On a copy "into", the file is not creatable by the user. This is usually
caused by the user not having write permission in the specified directo­
ry.

5807 COPY: unrecognizable dummy domain "%0"

On a copy "into", a dummy domain name is used to insert certain char­
acters into the unix file. The domain,name given is not valid.

5808 COPY: domain %0 size too small for con¥ersion.
There were %2 tuples successfully copied from %3 into 34

When doing any copy except character to character, copy checks that
the field is large enough to hold the value being copied.

5809 COPY: bad input string for domain %0. lnput was "%1". There were %2 tu­
ples successfully copied from %3 into %4

This occurs when converting chara.ctei- strings to integers or floating
point numbers. The character strin~ ·· contains something other than
numeric characters (0-9,+,-,blank,etc._r.

5810 COPY: unexpected end of file while filling domain %0.
There were %1 tuples successfully copied from 32 into 33

5811 COPY: bad type for attribute %0. Type="%1"

The only accepted types are i, f, c, and d.

5812 COPY: The relation "%0" has a secondary index. The index(es) must be
destroyed before doing a copy "from"

Copy cannot update secondary indices. Therefore, a copy "from" cannot
be done on an indexed relation.

5813 COPY: You are not allowed to update the relation 30

You cannot copy into a system relation or secondary index.

5814 COPY: You do not own the relation %0.

-4-

DBU(ERROR) 3/30/79 DBU{ERROR)

You cannot use copy to update a relation which you do not own. A copy
"into" is allowed but a copy "from" is not.

5815 COPY: An unterminated "cO" fi!:'ld occurred while filling domain %0.
There were %1 tuples successfully copied from %2 into %3

A string read on a copy "from" t:sing the "cO" option cannot be longer
than 1024 characters.

5816 COPY: The full pathname must be specified for the file %0

The file name for copy must start with a "/".
5817 COPY: The maximum width of the output file cannot exceed 1024 bytes

per tuple

The amount of data to be output :o the file for each tuple exceeds 1024.
This usually happens only if a for:'.':'lat was mistyped or a lot of large dum­
my domains were specified.

5818 COPY: %0 is a view and can't 'be ccpied

Only physical relations can be co~ied.

5819 COPY: Warning: %0 duplicate tuples were ignored.

On a copy "from", duplicate tuples were present in the relation.

5820 COPY: Warning: %0 domains had control characters which were converted
to blanks.

5821 COPY: Warning: %0 cO character :.omains were truncated.

Character domains in cO format are of the same length as the domain
length. You had a domain value ;realer than this length, and it was trun­
cated.

5822 COPY: Relation %0 is protected.

You are not authorized to access this relation.

- 5 -

Screen Updating and Cursor MoYement Optimization:
A Library Package

Kenneth C. R. C. Arnold

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94 720

ABSTIUCT

This document describes a package of C library functions which allow the user to:
• update a screen with reasonable optimization,

• get input from the terminal in a screen-oriented fashion, and
• independent from the above, move the cursor optimally from one point to another.

These routines all use the /etc/termcap database to describe the capabilities of the
terminal.

Acknow·ledgements

This package would not exist without the work of Bill Joy, who, in writing his editor,
created the capability to generally describe terminals, wrote the routines which read this data·
base, and, most importantly, those which implement optimal cursor movement, which routines
I have simply lifted nearly intact. Doug Merritt and Kurt Shoens also were extremely impor·
tant, as were both willing to waste time listening to me rant and rave. The help and/or support
of Ken Abrams, Alan Char, Mark Horton, and Joe Kalash, was, and is, also greatly appreciated.

Screen Packa1e

Co1111na

1 Overview
1.1 Terminology (or, Words You Can Say to Sound Brilliant) -
1.2 Compiling Things .. .
1.3 Screen Updating I
1.4 Naming Conventions 2

2 Variables 2
3 Usage.. 3

3.1 Starting up .. 3
3.2 The Nitty-Gritty 3

3.2.l Output ... 3
3.2.2 Input .. 4
3.2.3 Miscellaneous 4

3.3 Finishing up 4
4 Cursor Motion Optimization: Standing Alone .. 4

4.1 Terminal Information ... 4
4.2 Movement Optimizations, or, Getting Over Yonder .. 5

5 The Functions 6
5. l Output Functions 6
5.2 Input Functions .. 9
5.3 Miscellaneous Functions ... 10
5 .4 Details 13

Apprndixes

Appendix A .. 14
1 Capabilities from termcap 14

1.1 Disclaimer 14
1.2 Overview 14
1.3 Variables Set By settermO .. 14
1.4 Variables Set By gettmodeO ... 15

Appendl:i B 16
1 The WINDOW structure•.... 16
Appendl:i C 17
1 Examples 17
2 Screen Updating•.. 17

2.1 Twinkle 17
2.2 Life ... 19

3 Motion optimization 22
3.1 Twinkle•... 22

-·-

Screen Package

1. Overview

In making available the generalized terminal descriptions in /etc/termcap, much informa­
tion was made available to the programmer, but little work was taken out of one's hands. The
purpose of this package is to allow the C programmer to do the most common type of terminal
dependent functions, those of movement optimization and optimal screen updating, without do­
ing any of the dirty work, and (hopefully) with nearly as much ease as is necessary to simply
print or read things.

The package is split into three parts: (1) Screen updating: (2) Screen updating with user
input; and (3) Cursor motion optimization.

It is possible to use the motion optimization without using either of the other two, and
screen updating and input can be done without any programmer knowledge of the motion op­
timization, or indeed the database itself.

1.1. Terminology <or, Words You Can Say to Sound Brilliant)
In this document, the following terminology is kept to with reasonable 1..:nsistency:

window. An internal representation containing an image of what a section of the terminal screen
may look like at some point in time. This subsection can either encompass the entire ter­
minal screen, or any smaller portion down to a single character within that screen.

terminal. Sometimes called terminal ICl"ttn. The package's idea of what the terminal's screen
currently looks like, Le., what the user sees now. This is a special screen:

rreen: This is a subset of windows which are as large as the terminal screen, i.e., they start at
the upper left hand comer and encompass the lower right hand corner. One of these.
stdscr, is automatically provided for the programmer.

1.2. Compiling Things
In order to use the library, it is necessary to have certain types and variables defined

Therefore, the programmer must have a line:

#include < curses.h >
at the top of the program source. The header file <curses.h> needs to include <sgtty.h>.
so the one should not do so oneself1. Also, compilations should have the following form:

cc [flags 1 file . . . - Jcurses - llermlib

1.3. Screen Updatina
In order to update the screen optimally, it is necessary for the routines to know what the

screen currently looks like and what the programmer wants it to look like next. For this pur­
pose, a data type (structure) named WINDOW is defined which describes a window image to
the routines, including its starting position on the screen (the (y, x) co-ordinates of the upper
left band comer) and its size. One of these (called curscr for current screen) is a screen image
of what the terminal currently looks like. Another screen (called stdscr, for standard screen) is
provided by default to make changes on.

A window is a purely internal representation. It is used to build and store a potential im­
age of a portion of the terminal. It doesn't bear any necessary relation to what is really on the
terminal screen. It is more like an array of characters on which to make changes.

When one has a window which describes what some part the terminal should look like,
the routine refresh() (or wrtfreshO if the window is not stdscr) is called. refresh() makes the ter-

I The screen paclta&e also uses the Standard 1/0 library, so <eunes.b> includes <1tdlo.b>. It is redundant
(but harmless) for the proSfammer to do it, too.

-1-

. Screen Packace

minal, in the area covered by the window, look like that window. Note. therefore, that chang­
ing something on a window does not change the terminal. Actual updates to the terminal screen
are made only by calling refresh() or wrefreshO. This allows the programmer to maintain
several different ideas of what a portion of the terminal screen should look like. Also, changes
can be made to windows in any order, without regard to motion efficiency. Then, at-will, the
programmer can effectively say "make it look like this," and let the package worry about the
best way to do this.

l . .C. Naming Conventions
As hinted above, the routines can use several windows, but two are automatically given:

curscr, which knows what the terminal looks like, and stdscr, which is what the programmer
wants the terminal to look like next. The user should never really access curscr directly.
Changes should be made to the appropriate screen, and then the routine refresh() (or
wrefresh ()) should be called.

Many functions are set up to deal with stdscr as a default screen. For example, to add a
character to srdscr, one calls addchO with the desired character. If a different window is to be
used, the routine waddchO (for window-specific addch()) is provided2. This convention of
prepending function names with a "w" when they are to be applied to specific windows is con­
sistent. The only routines which do not do this are those to which a window must always be
specified.

In order to move the current (y, x) co-ordinates from one point to another, the routines
move() and wmoveO are provided. However, it is often desirable to first move and then per­
form some I/O operation. In order to avoid clumsyness, most 1/0 routines can be preceded by
the prefix "mv" and the desired (y, x) co-ordinates then can be added to the arguments to the
function. For example, the calls

move(y, x);
addch(ch);

can be replaced by

mvaddch(y, x, ch);

and

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If
such pointers are need, they are always the first parameters passed.

2. V arlables
Many variables which are used to describe the terminal environment are available to the

programmer. They are:

type name
WINDOW • curscr
WINDOW • stdscr
char • Def _term

description
current version of the screen (terminal screen).
standard screen. Most updates are usually done here.
def a ult terminal type if type cannot be determined

2 Actually, tlddchO is really a "'#define" macro with arsuments, as are most or the "functions• which deal with
.Ii 6lllscr as a default.

-2-

boo I My_term

char• ttytype
int LINES
int COLS
int ERR
int OK

Screen Package

use the terminal specification in Def term as terminal,
irrelevant of real terminal type -
full name of the current terminal.
number of lines on the terminal
number of columns on the terminal
error flag returned by routines on a fail.
error flag returned by routines when things go right.

There are also several "#define" constants and types which are of general usefulness:

reg
boo!
TRUE
FALSE

storage class "register" (e.g., reg inr i;)
boolean type, actually a "char" (e.g., boo/ doneir;)
boolean "true" flag (1).
boolean "false" flag (0).

3. Usage

This is a description of how to actually use the screen package. In it, we assume all up­
dating, reading, etc. is applied to srdscr. All instructions will work on any window, with chang­
ing the function name and parameters as mentioned above.

3.1. Starting up

In order to use the screen package, the routines must know about terminal characteristics.
and the space for curscr and srdscr must be allocated. These functions are performed by 1n­
itscrO. Since it must allocate space for the windows, it can overflow core when attempting to do
so. On this rather rare occasion, inirscrO returns ERR. initscrO must always be called before
any of the routines which affect windows are used If it is not, the program will core dump as
soon as either curscr or srdscr arc referenced. However, it is usually best to wait to call it until
after you are sure you will need it, like after checking for startup errors. Terminal status
changing routines like n!O and crmode() should be called after inirscrO.

Now that the screen windows have been allocated, you can set them up for the run. 1f
you want to, say, allow the window to scroll, use scrollokU If you want the cursor to be left
after the last change, use leaveokO. If this isn't done, refresh() will move the cursor to the
window's current (y, x) co-ordinates after updating it. New windows of your own can be creat·
ed, too, by using the functions newwinO and subwinO. delwinO will allow you to get rid of old
windows. If you wish to change the official size of the terminal by hand, just set the variables
LINES and COLS to be what you want, and then call initscrO. This is best done before, but can
be done either before or after, the first call to inirscrO, as it will always delete any existing srdscr
and/or curscr before creating new ones.
3.2. The Nitty·Gritty

3.2.1. Output
Now that we have set things up, we will want to actually update the terminal. The basic

functions used to change what will go on a window are addchO and moveO. addchO adds a
character at the current (y, x) co-ordinates, returning ERR if it would cause the window to ille·
pJJy scroll, i.e., printing a character in the lower right-hand corner of a terminal which au­
tomatically scrolls if scrolling is not allowed. move() changes the current (y, x) co-ordinates to
whatever you want them to be. It returns ERR if you try to move off the window when scrol·
ling is not allowed. As mentioned above, you can combine the two into mvaddchO to do both
thinp in one fell swoop.

The other output functions, such as addstrO and prinrwO, all call addchO to add characters
to the window.

After you have put on the window what you want there, when you want the portion of
the terminal covered by the window to be made to look like it, you must call refresh(). In order

-3-

Screen Package

to optimize finding changes, refresh() assumes that any part of the window not changed since
the last refresh() of that window has not been changed on the terminal, i.e., that you have not
refreshed a portion of the terminal with an overlapping window. If this is not the case, the rou­
tine rouchwinO is provided to make it look like the entire window has been changed,_ thus mak-
ing refresh() check the whole subsection of the terminal for changes. -

If you call wrefreshO with curscr, it will make the screen look like curscr thinks it looks
like. This is useful for implementing a command which would redraw the screen in case it get
messed up.

3.2.2. Input

Input is essentially a mirror image of output. The complementary function to addch() is
getchO which, if echo is set, will call addchO to echo the character. Since the screen package
needs to know what is on the terminal at all times, if characters are to be echoed, the tty must
be in raw or cbreak mode. If it is not, getchO sets it to be cbreak, and then reads in the charac­
ter.

3.2.3. Miscellaneous

All sorts of fun functions exists for maintaining and changing information about the win­
dows. For the most part, the descriptions in section 5.4. should suffice.

3.3. Finishing up

In order to do certain optimizations, and, on some terminals, to work at all, some things
must be done before the screen routines start up. These functions are performed in getrrmode()
and serrermO, which are called by initscrO. In order to clean up after the routines, the routine
endwinO is provided. It restores tty modes to what they were when inirscrO was first called.
Thus, anytime after the call to initscr, endwin () should be called before exiting.

4. Cursor Motion Optimization: Standing Alone

It is possible to use the cursor optimization functions of this screen package without the
overhead and additional size of the screen updating functions. The screen updating functions
are designed for uses where parts of the screen are changed, but the overall image remains the
same. This includes such programs as eye and vi 3. Certain other programs will find it difficult
to use these functions in this manner without considerable unnecessary program overhead. For
such applications, such as some "err hacks " 4 and optimizing cat (1)-type programs, all that is
needed is the motion optimizations. This, therefore, is a description of what some of what goes
on at the lower levels of this screen package. The descriptions assume a certain amount of
familiarity with programming problems and some finer points of C. None of it is terribly
difficult, but you should be forewarned .

.-.1. Terminal Information
In order to use a terminal's features to the best of a program's abilities, it must first know

what they are5. The /etc/termcap database describes these, but a certain amount of decoding is
necessary, and there are, of course, both efficient and inefficient ways of reading them in. The
algorithm that the uses is taken from vi and is hideously efficient. It reads them in a tight loop
into a set of variables whose names are two uppercase letters with some mnemonic value. For

3 Iye actually uses these functions. YI does not.

• Graphics prosrams desisned to run on character-oriented terminals. I could name many. but they come and
10, so the list would be quickly out of date. Recently. there have been programs such as rocket and sun.

' If this comes as any surprise to you, there's this tower in Paris they're thinking of junkins that I can let you
have for • sons.

Screen Package

example, HO is a string which moves the cursor to the "home" position6. As there are two
types of variables involving ttys, there are two routines. The first, gettmodeO, sets some vari­
ables based upon the tty modes accessed by atty(2) and stty(2) The second, seuermO, a larger
task by reading in the descriptions from the /etc/termcap database. This is the way these rou­
tines are used by initscrO:

If (isa tty (0)) I
gettmodeO;

}
else

If (sp-getenv("TERM"))
setterm (sp);

setterm (Def term);
_puts(TI); -
_puts(VS);

isarry() checks to see if file descriptor 0 is a terminal7• If it is, gettmodeO sets the terminal
r'escription modes from a atty(2) getenvO is then called to get the name of the terminal, and
t tat value (if there is one) is passed to settermO, which reads in the variables from
/etc/termcap associated with that terminal. (gerenvO returns a pointer to a string containing
the name of the terminal, which we save in the character pointer sp.) If isarry() returns false.
the default terminal Def_rerm is used. The TI and VS sequences initialize the terminal (_puts(}
is a macro which uses rputsO (see termcap(3)) to put out a string). It is these things which
endwinO undoes .

.e.2. Mo-vement Optimizations, or, Getting Over Yonder

Now that we have all this useful information, it would be nice to do something with it 8.

The most difficult thing to do properly is motion optimization. When you consider how many
different features various terminals have (tabs, backtabs, non-destructive space, home se­
quences, absolute tabs,) you can see that deciding how to get from here to there can be a
decidedly non-trivial task. The editor vi uses many of these features, and the routines it uses
to do this take up many pages of code. Fortunately, I was able to liberate them with the
author's permission, and use them here.

After using gettmode() and settermO to get the terminal descriptions, the function mvcurO
deals with this task. It usage is simple: you simply tell it where you are now and where you
want to go. For example

mvcur(O, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, 0) to the middle of the screen. If you wish
to force absolute addressing, you can use the function tgotoO from the termllb(7) routines, or
you can tell mvcurO that you are impossibly far away, like Cleveland. For example, to abso­
lutely address the lower left hand corner of the screen from anywhere just claim that you are in
the upper right hand comer:

mvcur(O, COLS-1, LINES-I, 0)

'These names are identical to those variables used in the /ttc/ltrmcap database to describe each capability. See
Appendix A for a complete list of those read, and termcap(S) for a full description.

7 urry() is defined in the default C library function routines. It does a 1tty(2) on the descriptor and checks the
return value.

1 Aetually. it aan be emotionally fulfillina just to 1et the information. This is usually only true. however, if you
have the social life of a kumquat.

-5-

Screen Package

5. The Functions

In the following definitions, "f' means that the "function" is really a "#define" macro
with arguments. This means that it will not show up in stack traces in the debugger, or, in the
case of such functions as addchO, it will show up as it's "w" counterpart. The arguments are
given to show the order and type of each. Their names are not mandatory, just suggestive.

5.1. Output Functions

addch(ch) t
char ch;

waddch("ft·in, ch)
WINDOW •win;
char ch;

Add the character ch on the window at the current (y, x) co-ordinates. If the character is
a newline ('\n') the line will be cleared to the end, and the current (y, x) co-ordinates will
be changed to the beginning off the next line if newline mapping is on, or to the next line
at the same x co-ordinate if it is off. A return ('\r') will move to the beginning of the
line on the window. Tabs ('\t') will be expanded into spaces in the normal tabstop posi­
tions of every eight characters. This returns ERR if it would cause the screen to scroll
illegally.

addstr (str) t
char •str;

waddstdwin, str)
WINDOW •win;
char •srr;

Add the string pointed to by srr on the window at the current (y, x) co-ordinates. This re­
turns ERR if it would cause the screen to scroll illegally. In this case, it will put on as
much as it can.

box (win, nrt, hor)
WINDOW •win;
char vert, hor;

Draws a box around the window using vert as the character for drawing the vertical sides,
and hor for drawing the horizontal lines. If scrolling is not allowed, and the window en·
compasses the lower right-hand corner of the terminal, the corners are left blank to avoid
a scroll.

clearO t

wclear(win)
WINDOW -Win;

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will
cause a clear-screen sequence to be sent on the next refresh() call. This also moves the
current (y, x) co-ordinates to (0, 0).

-6-

cJearok Cser, boo}f) t
WJNDO W •scr;
boo! boo If;

Sere-en Package

Sets the clear flag for the screen scr. If boolf is TRUE, this will force a clear-screen to be
printed on the next refresh(), or stop it from doing so if boolf is FALSE. This only works
on screens, and, unlike clearO, does not alter the contents of the screen. If scr is curscr.
the next refresh() call will cause a clear-screen, even if the window passed to refresh() is
not a screen.

cJrtobotO t

wclrtobot (win)
WINDOW •win;

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does
not force a clear-screen sequence on the next refresh under any circumstances. This has
no associated "mv" command.

clrtoeol 0 t

wclrtoeol (win)
WINDOW •win;

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This
has no associated "m,·" command.

delch 0

wdelch (win)
WINDOW -Win;

Delete the character at the current (y, x) co-ordinates. Each character after it on the line
shifts to the left, and the last character becomes blank.

deletelnO

wdelete)n (win)
WINDOW •win;

Delete the current line. Every line below the current one will move up, and the bottom
line will become blank. The current (y. x) co-ordinates will remain unchanged.

eraseO t

werase(win)
WINDOW -Win;

,

Screen Package

Erases the window to blanks without setting the clear flag. This is analagous to clearO.
except that it never causes a clear-screen sequence to be generated on a refresh(). This
has no associated "m,·" command.

lnscb (c)
char c;

winsch (win, c)
WINDOW •win;
char c;

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right, and
the last character disappears.

insertln 0

winsertJn (win)
WINDOW •win;

Insert a line above the current one. Every line below the current line will be shifted
down, and the bottom line will disappear. The current line will become blank, and the
current (y, x) co-ordinates will remain unchanged.

move(y, x) t
int y, x;

wmove(win, y, x)
WINDOW •win;
int y, x;

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it
would cause the screen to scroll illegally.

overlay(winl, win2)
WINDOW •winl, ~in);

Overlay winl on win2. The contents of win], insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done non-destructively, i.e., blanks on winl
leave the contents of the space on win2 untouched.

overwrlte(winl, win2)
WINDOW ~inl, ~in2;

Overwrite win} on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done destructively, i.e., blanks on winl become
blank on win2.

printw (f mt, •J'll, a.ra2, •• .)
char '1mt,·

-8-

wprintw (win, fmt, aral. aral}
WINDOW -Win;
char 9.fmt;

Screen Package

Performs a print/() on the window starting at the current (y, x) co-ordinates. It uses
addstrO to add the string on the window. It is often advisable to use the field width op­
tions of print/() to avoid leaving things on the window from earlier calls. This returns
ERR if it would cause the screen to scroll illegally.

refresh() t

wrefresh (win)
WINDOW •win;

Synchronize the terminal screen with the desired window. If the window is not a screen,
only that part covered by it is updated. This returns ERR if it would cause the screen to
scroll illegally. In this case, it will update whatever it can without causing the scroll.

standout 0 t

wstandout(win)
WINDOW •win;

standendO t

wst andend (win)
WJNDO W •win;

Start and stop putting characters onto win in standout mode. standout(} causes any charac­
ters added to the window to be put in standout mode on the terminal (if it has that capa­
bility). standendO stops this. The sequences SO and SE (or US and UE if they are not
defined) are used (see Appendix A).

5.2. Input Functions

mnodeO t

nocrmode 0 t
Set or unset the terminal to/from cbreak mode.

ecboO t

noecboO t
Sets the terminal to echo or not echo characters.

,

aetchO t

waetch(wfn)
WINDOW •win;

Screen Package

Gets a character from the terminal and (if necessary) echos it on the window. This re­
turns ERR if it would cause the screen to scroll illegally. Otherwise, the character gotten
is returned. If noecho has been set, then the window is left unaltered. In order to retain
control of the terminal, it is necessary to have one of noecho, cbreak, or rawmode set. If
you do not set one, whatever routine you call to read characters will set cbreak for you.
and then reset to the c;>riginal mode when finished.

aetstr(str) t
char •srr;

wgetstr(wln, str>
WINDOW -Win;
char •str;

Get a string through the window and put it in the location pointed to by srr, which is as­
sumed to be large enough to handle it. It sets tty modes if necessary, and then calls
gerchO (or wgercMwin)) to get the characters needed to fill in the string until a newline or
EOF is encountered. The newline stripped off the string. This returns ERR if it would
cause the screen to scroll illegally.

rawO t

norawO t

Set or unset the terminal to/from raw mode. On version 7 UNIX' this also turns of new­
line mapping (see nl()).

scanw (fmt, argl, aral, .. .)
char 9fmt;

wscanw(win, fmt, IJ'll, IJ'll, .• .>
WINDOW -Win;
char 9/mt;

Perform a scaef() through the window using /mt. It does this using consecutive getchO's
(or wgetch(win)'s). This returns ERR if it would cause the screen to scroll illegally.

5.3. Miscellaneous Functions

delwin (win)
WINDOW -Win;

' VNl:l is a trademark of Bell Laboratories.

- 10 -

deJwin (.. ·in)
WINDOW • ... ·in;

Screen Package

Deletes the window from existence. All resources are freed for future use by calloc (3 J.
If a window has a subwinO allocated window inside of i1, deleting the outer window the
subwindow is not affected, even though this does invalidate it. Therefore, subwindows
should be deleted before their outer windows are.

endwin 0

Finish up window routines before exit. This restores the terminal to the state it was be­
fore initscrO (or gettmode() and serrerm()) was called. It should always be called before
exiting. It does not exit. This is especially useful for resetting tty stats when trapping ru­
bouts via signal (2).

aetyx(win, y, x) t
WINDOW -....·in;
int y, x;

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a macro.
not a function, you do not pass the address of y and x.

inch 0 t

winch (win) t
WINDOW •win;

Returns the character at the current (y. x) co-ordinates on the given window. This does
not make any changes to the window. This has no associated "m,·" command.

initscr 0

Initialize the screen routines. This must be called before any of the screen routines are
used. It initializes the terminal-type data and such, and without it, none of the routines
can operate. If standard input is not a tty, it sets the specifications to the terminal whose
name is pointed to by Def_term (initialy "dumb"). If the boolean My_term is true,
Def_ term is always used.

leaYeok (win, booJf) t
WINDOW -Win;
boo/ boo//;

Sets the boolean flag for leaving the cursor after the last change. If boolf is TRUE, the
cursor will be left after the last update on the terminal, and the current (y, x) co-ordinates
for win will be changed accordingly. If it is FALSE, it will be moved to the current (y, x)
co-ordinates. This flag (initialy FALSE) retains its value until changed by the user.

longname(termbuf, name)
char •zermbuf, •name;

-u -

Screen P1c:ka1e

Fills in name with the Iona <full) name of the terminal described by the termcap entry in
termbuf It is generally of little use, but is nice for telling the user in a readable format
what terminal we think he has. This is available in the global variable nyrype. Termbuf is
usually set via the termlib routine tgetentO.

m•wln(wln, y, x)
WINDOW -Win;
Int y, x;

Move the home position of the window win from its current starting coordinates to (y, x).
If that would put part or all of the window off the edge of the terminal screen, mvwinO re­
turns ERR and docs not change anything.

WINDOW•
ne"·win<lines, cols, bqin_y, bqln_x)
int lines, cols, begin_y, begin_x;

Create a new window with lines lines and cols columns starting at posn1on
(begin_y, begin_x). If either lines or rols is 0 (zero), that dimension will be set to (LINES
- begin_y) or (COLS - begin_x) respectively. Thus, to get a new window of dimen­
sions LINES x COLS, use newwm(<J, 0, Q, ()).

nJO t

nonJO t

Set or unset the terminal to/from- nl mode, i.e., start/stop the system from mapping
<RETl·RN> to <LINI-FIID>. If the mapping is not done, refresh() can do more
optimization, so it is recommended, but not required, to turn it off.

sc:rollok (win, boolf) t
WINDOW -Win;
boo/ boo If;

Set the scroll flag for the aiven window. If boolfis FALSE, scrolling is not allowed. This
is its def a ult setting.

touc:bwln (win)
WINDOW -Win;

Make it appear that the -every location on the window has been changed. This is usually
only needed for refreshes with overlapping windows.

WINDOW•
1ubwln(wln, lines, cols, bealn_J, bealn_s)
WINDOW -Win;
lftt lines, cols, bqin_y, bqin_x:

Create a new window with liMs lines and cols columns starting at position
(~gin_y, begin_x) in the middle of the window win. This means that any chanae made to
either window in the area covered by the subwindow will be made on both windows.
begin_y, be1in_x are specified relative to the overall screen, not the relative (0, 0) of win.
If either liMs or cols is 0 <zero), lhet dimension will be set to (LINES - ~gin_y) or

-12-·

Screen Package

(COLS - begin_x) respectively.

unctrl (ch) f
char ch;

This is actually a debug function for the library, but it is of general usefulness. It returns
a string which is a representation of ch. Control characters become their upper-case
equivalents preceded by a Other letters stay just as they are. To use uncrr!O, you
must have #include <unctrl.h> in your file.

5 • .C. Details

cettmodeO
Get the tty stats. This is normally called by initscrO.

mvcur(lasty, lastx, newy, newx)
int lasry, lastx, ne"M-y, neKx;

Moves the terminal's cursor from (lasry, /asrx) to (ntKJ, neKx) in an approximation of op­
timal fashion. This routine uses the functions borrowed from ex version 2.6. It is possi­
ble to use this optimization without the benefit of the screen routines. With the screen
routines, this should not be called by the user. move() and refresh() should be used to
move the cursor position, so that the routines know what's going on.

scroll (win)
WINDOW •win;

Scroll the window upward one line. This is normally not used by the user.

savettyO t

resettyO t
saverry() saves the current tty characteristic flags. reserryO restores them to what saverryO
stored. These functions are performed automatically by inirscrO and endwinO.

setterm (name)
char •name;

Set the terminal characteristics to be those of the terminal named name. This is normally
called by initscrO.

tstpO
If the new tty(4) driver is in use, this function will save the current tty state and then put
the process to sleep. When the process gets restarted, it restores the tty state and then
calls wreftesh(curscr) to redraw the screen. initscrO sets the signal SlGTSTP to trap to this
routine.

-13-

Appendix A

1. Capabilities from termcap

1.1. Disclaimer

The description of terminals is a difficult business. and we only attempt to summarize the
capabilities here: for a full description see the paper describing termcap.

1.2. Oveniew
Capabilities from termcap are of three kinds: string valued options. numeric valued op­

tions, and boolean options. The string valued options are the most complicated, since they may
include padding information, which we describe now.

Intelligent terminals often require padding on intelligent operations at high (and some­
times even low) speed. This is specified by a number before the string in the capability, and
has meaning for the capabilities which have a P at the front of their comment. This normally is
a number of milliseconds to pad the operation. In the current system which has no true pro­
grammable delays, we do this by sending a sequence of pad characters (normally nulls, but can
be changed (specified by PO). Jn some cases, the pad is better computed as some number of
milliseconds times the number of affected lines (to the bottom of the screen usually, except
when terminals have insert modes which will shift several lines.) This is specified as. e.g., 12*.
before the capability, to say 12 milliseconds per affected whatever (currently always line).
Capabilities where this makes sense say P*.

1.3. Variables Set By settermO

Type Name
char• AL
boo! AM
char• BC
boo! BS
char• BT
boo! CA
char• CD
char• CE
char• CL
char• CM
char• DC
char• DL
char• DM
char• DO
char• ED
boot EO
char• EI
char• HO
boo I HZ
char• IC
boo I IN
char• IM
char• IP
char• LL
char• MA
boot MI
boo! NC

variables set by setrermO

Pad Description
p• Add new blank Line

Automatic Margins
Back Cursor movement
BackSpace works

P Back Tab
Cursor Addressable

p• Clear to end of Display
P Clear to End of line
p• Clear screen
P Cursor Motion
p• Delete Character
p• Delete Line sequence

Delete Mode (enter)
DOwn line sequence
End Delete mode
can Erase Overstrikes with • ·
End Insert mode
HOme cursor
HaZeltine - braindamage

P Insert Character
Insert-Null blessing
enter Insert Mode (IC usually set, too)

p• Pad after char Inserted using IM+ IE
quick to Last Line, column 0
ctr! character MAp for cmd mode
can Move in Insert mode
No Cr: \r sends \r\n then eats \n

-i.c-

Type
char•
bool
char
char•
char•
char•
char•
char•
char•
char•
char•
char•
bool
char•
char•
char•
char•
char•
boo I

Name
ND
OS
PC
SE
SF
so
SR
TA
TE
Tl
UC
UE
UL
UP
us
VB
VE
VS
XN

Appendix A

variables set by MtttrmO

Pad

p

p
p

Description
Non-Destructive space
OverStrike works
Pad Character
Standout End (may leave space)
Scroll Forwards
Stand Out begin (may leave space)
Scroll in Reverse
T Ab (not ·1 or with padding)
Terminal address enable Ending sequence
Terminal address enable Initialization
Underline a single Character
Underline Ending sequence
Underlining works even though !OS
UPline
Underline Starting sequence 10

Visible Bell
Visual End sequence
Visual Start sequence
a Newline sets eaten after wrap

Names starting with X are reserved for severely nauseous glitches

1 . .C. Variables Set By aettmodeO

type
bool
boo I
boo I

variables set by geumodeO

name
NONL
GT
UPPERCASE

description
Term can't hack linefeeds doing a CR
Gtty indicates Tabs
Terminal aenerates only uppercase letters

10 US and UE. if' they do not exist in the termcap entry. are copied from SO and SE in 1«1mnO

-15-

Appendix B

1.
The WINDOW structure

The WINDOW structure is defined as follows:

define WINDOW 1truct _ win_st

atruct _ win_st (
short
abort
short
short
boo!
boo!
boo!
char
short
abort

#define
#define
#define
#define
#define

_cury, _curx;
_maxy, _maxx:
_begy, _begx:
_flags;
_clear;
_leave;
_scroll;
•• _y:
• _firstch:
• _lastch:

_SUB WIN
_END LINE
_FULL WIN
_SCROLL WIN
_STANDOUT

01
02
04
010
0200

_cury and _curx are the current (y, x) co-ordinates for the window. New characters ad­
ded to the screen are added at this point. _ma.\)· and _maxx are the maximum values allowed
for (_cury, _curx). _begy and _begx are the starting (y, x) co-ordinates on the terminal for the
window, i.e., the window's home. _cury, _curx, _maxy, and _maxx are measured relative to
(_begy, _begx), not the terminal's home.

_clear tells if a clear-screen sequence is to be generated on the next refresh() call. This is
only meaningful for screens. The initial clear-screen for the first refresh() call is generated by
initially setting clear to be TRUE for curscr, which always generates a clear-screen if set, ir­
relevant of the dimensions of the window involved. _leave is TRUE if the current (y, x) co­
ordinates and the cursor are to be left after the last character changed on the terminal, or not
moved if there is no change. _scroll is TRUE if scrolling is allowed.

_y is a pointer to an array of lines which describe the terminal. Thus:

_y[i]

is a pointer to the Ah line, and

_y[i] UJ
is the .fth character on the Ah line.

_flags can have one or more values or'd into it. _SliBWIN means that the window is a
subwindow, which indicates to delwinO that the space for the lines is not to be freed. _END­
LINE says that the end of the line for this window is also the end of a screen. _FliLLWIN
says that this window is a screen. _SCROLLWIN indicates that the last character of this
screen is at ·the lower right-hand comer of the terminal; i.e., if a character was put there, the
terminal would scroll. _STANDOliT says that all characters added to the screen are in stan­
dout mode.

11 All variables not normally accessed directly by the user are named with an initial " •• to avoid C011flicts with
the user's variables. -

Appendix C

1. Eumples
Here we present a few examples of how to use the package. They attempt to be represen­

tative, though not comprehensive.

2. Screen l.ipdatin&

The following examples are intended to demonstrate the basic structure of a program us­
ing the screen updating sections of the package. Several of the programs require calculational
sections which are irrelevant of to the example, and are therefore usually not included. It is
hoped that the data structure definitions give enough of an idea to allow understanding of what
the relevant portions do. The rest is left as an exercise to the reader, and will not be on the fi.
nal.

2.1. Twinkle
This is a moderately simple program which prints pretty patterns on the screen that might

even hold your interest for 30 seconds or more. It switches between patterns of asterisks, put·
ting them on one by one in random order, and then taking them off in the same fashion. It is
more efficient to write this using only the motion optimization, as is demonstrated below.

include < curses.h >
#include <signal.h>

/.
• the idea for this program was a product of the imagination of
• Kurt Schoens. Nor responsible for minds lost or stolen.
•I

#define
#define
#define

1truct locs {

NCOLS 80
NUNES 24
MAXP A TTERNS

char y, x;

typedef struct locs LOCS;

LOCS

int

mainO {

Layout [NCO LS • NUNES];

Pattern,
Numstars;

cbar
int

srand (getpid 0);

initscrO;
signal(SIGINT, die);
noechoO;
nonlO;

•getenvO;
dieO;

leaveok(stdscr, TRUE);
scrollok (stdscr, FALSE);

4

/e current board layout •I

/e current pattern number •I
le number of stars in pattern •I

le initialize random sequence •I

- 17 -

for (;;) {

"'

make board():
puton (' • '):
puton(' ');

Appendix C

I- make the board setup •I
/e put on '•s •I
/. cover up with ' · s •I

• On program exit, move the cursor to the lower left corner by
• direct addressing, since current location is not guaranteed.
• We lie and say we used to be at the upper right corner to guarantee
• absolute addressing.
•I

die 0 {

;.

signal(SIGINT, SIG_IGN):
mvcur(O, COLS-1, LINES-1, 0);
endwinO:
exit(O);

• Make the current board setup. Jr picks a random pattern and
• calls ison () to determine if the character 1s on that pattern
• or not.
•I

make board 0 I

;.

reg Int
reg LOCS

y, x:
•Ip:

Pattern - rand()% MAXPATTERNS:
Ip - Layout;
for (y - 0; y < NUNES: y+ +)

for (x - 0; x < NCO LS; x + +)
If (ison (y, x)) I

lp->y - y;
lp+ +->x - x;

)
Numstars - Ip - Layout;

• Return TRUE if (y, x) is on the current pattern.
•I

ison(y, x)
reg lnt y, x; {

1wltcb (Pattern) {
case 0: I- alternating lines •I

retDl'D ! (y & 01);

- 11 -

puton(ch)
reg char

}

2.2. Life

case 1:

case 2:

case 3:

)

Appendb C

/e box •I
If (x > - LINES && y > - NCOLS)

return FALSE:
If (y < 3 II y > - NLINES - 3)

return TRUE;
return (x < 311 x > - NCOLS - 3);

/e holy pattern! •I
return ((x + y) & 01);

/e bar across center •I
return (y > - 9 && y < - 15);

/e NOTREACHED •I

reg LOCS
reg Int
reg LOCS
LOCS

ch; {

•Ip;
r:
•end:
temp:

end - &Layout[Numstars];
for (Ip - Layout; Ip < end: Ip++) {

r - rand 0 o/o Numstars;
temp - •Ip:
•Ip - Layout[r];
Layout [r] - temp:

for (Ip - Layout; Ip < end: Ip++) {
mvaddchOp->y, lp->x, ch);
refresh():

This program plays the famous computer pattern game of life (Scientific American, May,
1974). The calculational routines create a linked list of structures defining where each piece is.
Nothing here claims to be optimal, merely demonstrative. This program, however, is a very
good place to use the screen updating routines, as it allows them to worry about what the last
position looked like, so you don't have to. It also demonstrates some of the input routines.

lnchade <curses.h>
lnclade < signal.h > ,.
• Run a life game. This is a demonstration program for
• the Screen Updating section of the -/curses cursor package.
•I

atnct lst_st { /e linked list element •I

-19 -

int
struct lst_st

t7pedef struct lst_st

Appendix C

y, x;
•next, •last;

LIST;

f. 6'. x) posiflon of piece •I
;. doubly linked •I

LIST •Head; I- head of linked lisr •I

main(ac, av)
Int ac;
char •av[]; {

;.

int die();

evalargs (ac, av);

initscrO;
signal(SJGINT, die);
crmodeO;
noechoO;
nonlO;

getstart ();
for (;J I

prboard ();
update();

• This is the routine which is called when rubout)s hit.
• Jr resets the try stars to their original values. This
• is the normal way of leaving the program.
•I

dieO {

;.

signal(SIGINT, SlG_IGN);
mvcur(O, COLS-I, LINES-I, 0);
endwinO;
exit(O);

;. evaluate arguments •I

;. initialize screen package •I
I- set to restore try sra rs •I
;. set for char-brchar •I
;. input •I
;. for optimizanon •I

fa get starring position •I

fa print our current board• I
fa update board poswon •I

;. ignore rubours •I
;. go to bottom of screen •I
;. set terminal to initial stare •I

• Ger the starting position from the user. They keys u, i, o, j, I,
• m, ,, and. are used for moving their relative directions from the
• k key. Thus, u move diagonally up to the left, , moves directly down,
• etc. x places a piece at the current position, • " takes it away.
• The input con also be from a file. The list is built after rhe
• board setup is ready.
•I

getstartO {

reg char
reg Int

c;
x, y;

- 20 -

)

,.

Appendix C

box (stdscr, i, · ·);
move(l, l); -

/. box in the screen •I
/e move to upper left corner •I

do {
refresh();
If ((c-getch()) - - 'q')

break:

/. print current position •I

switch (c) {
case 'u':
case 'i':
case 'o':
case T:
case T:
case 'm':
case',':
case'.':

case 'f:

case 'x':

case

adjustyx(c):
break:

mvaddstr<o, 0, MFile name: M);
gets tr (buf);
readfile {buf):
break~

addch ('X'):
break:

addch (' '):
break:

If (Head !- NULL)
dellist (Head):

Head - ma!Joc(1lzeof (LIST));

"' • loop through the screen looking for • x' s, and add a list
• element for each one
•I

for (y - I; y < LINES - 1; y + +)
for (x - 1; x < COLS - l; x + +) {

move(y, x);
If (inchO - - 'x')

addlist (y, x);

/. start new list •I

• Print out the current board position from the linked list
•I

prboardO (

reg LIST

- 21 -

erase();
box(stdscr, j, ._.);

/e

Appendii: C

/e clear our last positt0n •/
/e box 1n the screen •I

• go through the list addtng each piece to rhe newly
• blank board
•I

for (hp - Head; hp; hp - hp->next)
mvaddch(hp->y, hp->x, 'X');

refresh();

3. Motion optimization

The following example shows how motion optimization is written on its own. Programs
which flit from one place to another without regard for what is already there usually do not
need the overhead of both space and time associated with screen updating. They should instead
use motion optimization.

3.1. Twinkle
The twinkle program is a good candidate for simple motion optimization. Here is how it

could be written (only the routines that have been changed are shown):

main() (

)

reg char
char
Int

srand (getpid 0);

If (isatty(O)) {
gettmodeO;

•sp;
•getenvO;
_putcharO, die();

If (sp- getenv ("TERM"))
setterm (sp);

signal(SIGINT, die);
}
else {

/e initialize random sequence •I

printf("Need a terminal on %d\n", _tty _ch);
exit (1);

}
_puts(TI);
_puts(VS);

noechoO;
nonlO;
tputs(CL, NLINES, _putchar);
for (;;) {

}

make board();
puton (' • ');
puton(' ');

- 22 -

le make the board setup •I
;. put on ·•s •I
/. cover up with • • s •I

Appendix C

"' • _putchar defined for tputsO (and _puts(})
•I

_J>Utchar(c)
reg char c; (

putchar(c);
}

puton(ch)
char ch; (

static Int
reg LOCS
reg Int
reg LOCS
LOCS

lasty, lastx;
•Ip;
r;
•end:
temp;

end - &Layout[NumstarsL
for (Ip - Layout; lp < end: Ip++) (

r - rand 0 % Numstars;
temp - •Ip;
•Ip - Layout[r};
Layout[rl - temp:

for (Ip - Layout; Ip < end; Ip++)
;. prevent scrolling •I

If (!AM II {lp->y <NUNES - 11! Ip->x < NCOLS - 1)) (
mvcurOasty, lastx, lp->y, lp->x);

}

putchar(ch);
lasty - lp->y;
If ((lastx - lp->x + 1) >- NCOLS)

If (AM) (

}
else

- 23 -

lastx - O;
lasty++;

lastx - NCO LS - 1;

CURSES (3) UNIX Programmer's Manual

NAME
curses • screen functions with "optimal" cursor motion

SYNOPSIS
cc l flags J files - lcurses - I termcap I libraries]

DESCRIPTION

CURSES (3)

These routines give the user a method of updating screens with reasonable optimizauon The'
keep an image of the current screen, and the user sets up an image of a new one. Then th~
refresh() tells the routines to make the current screen look like the new one. In order to innial­
ize the routines, the routine initscrO must be called before any of the other routines that deaj
with windows and screens are used. The routine endwinO should be called before exiting

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold.
stty(2), setenv(3), termcap(S)

AUTHOR
Ken Arnold

FUNCTIONS
addch(ch)
addstr (str)
box (win, vert,hor)
crmodeO
clear()
clearok (scr, boo If)
clrtobotO
clrtoeolO
delchO
deletelnO
delwin(win)
echo()
endwinO
erase()
getchO
gets tr (str)
gettmodeO
getyx (win,y ,x)
inch()
initscrO
insch (c)
insertlnO
leaveok (win,boolf)
longname (tcrmbuf,name)
move(y,x)
mvcur(lasty ,lastx,newy ,newx)
newwin Oines,cols,begin_y ,begin_x)
nIO
nocrmode()
noechoO
nonlO
norawO
overlay (win 1, win2)
overwrite (win 1, win2)
printw(fmt,argl ,arg2, ...)

add a character to stdscr
add a string to srdscr
draw a box around a window
set cbreak mode
clear srdscr
set clear flag for scr
clear to bottom on srdscr
clear to end of line on srdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase srdscr
get a char through stdscr
get a string through srdscr
get tty modes
get (y ,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on stdscr
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode
overlay win 1 on win2
overwrite win 1 on top of win2
printf on stdscr

CURSES (3) UNIX Programmer's Manual CCRSES i 3 l

raw()
refresh()
resettyO
savettyO
scanw(fmt,argl ,arg2, ...)
scroll(win)
scrollok (win,boolf)
setterm (name)
standendO
standout()
subwin (win.lines,cols,begin_y. begin_x)
touch win (win)
unctrl(ch)
waddch(win.ch)
waddstr(win,str)
wclear(win)
wclrtobot (win)
wclrtoeol (win)
wdelch (win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr (win,str)
winch(win)
winsch (win,c)
winsertln(win)
wmove(win,y,x)
wprintw(win,fmt,arg1,arg2, ...)
wrefresh (win)
wscanw(win,fmt,argl ,arg2, ...)
wstandend (win)
wstandout (win)

set raw mode
make current screen look like srdscr
reset tty flags to stored value
stored current tty flags
scanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
"change" all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on .,..in
delete char from win
delete line from win
erase "''in
get a char through win
get a string through win
aet char at current (y,x) in win
insert char into win
insert line into wm
set current (y ,x) co-ordinates on ...,.in
printf on win
make screen look like win
scanf through win
end standout mode on .,..;n
start standout mode on .,..in

WRITING PAPERS WITH NROFF USING -ME

Eric P. Allman

Electronics Research Laboratory
University of California, Berkeley

Berkeley, California 94 720

This document describes the text processing facilities available on the UNIXt
operating system via NROFFt and the -me macro package. It is assumed that
the reader already is generally familiar with the UNIX operating system and a
text editor such as ex. This is intended to be a casual introduction, and as such
not all material is covered. In particular, many variations and additional
features of the -me macro package are not explained. For a complete discus­
sion of this and other issues, see The -me Reference Manual and The
NROFF /TROFF Reference Manual.

NROFF, a computer program that runs on the UNIX operating system, reads
an input file prepared by the user and outputs a formatted paper suitable for
publication or framing. The input consists of text, or words to be printed, and
requests, which give instructions to the NROFF program telling how to format the
printed copy.

Section 1 describes the basics of text processing. Section 2 describes the
basic requests. Section 3 introduces displays. Annotations, such as footnotes,
are handled in section 4. The more complex requests which are not discussed in
section 2 are covered in section 5. Finally, section 5 discusses things you will
need to know if you want to typeset documents. lf you are a novice, you prob­
ably won't want to read beyond section 4 until you have tried some of the basic
features out.

When you have your raw text ready, call the NROFF formatter by typing as a
request to the UNIX shell:

nroff -me -Ttype files

where type describes the type of terminal you are outputting to. Common
values are dtc for a DTC 300s (daisy-wheel type) printer and lpr for the line
printer. If the -T fiag is omitted, a "lowest common denominator" terminal is
assumed; this is good for previewing output on most terminals. A complete
description of options to the NROFF command can be found in The NROFF /TROFF
Reference Manual.

The word argument is used in this manual to mean a word or number which
appears on the same line as a request which modifies the meaning of that
request. For example, the request

.Sp

spaces one line, but

tUNIX, NROFF, and TROFF are Trademarks of Bell Laboratories

USING NROFF AND -YE 1

USING NROFF AND -ME 2

.sp 4

spaces four lines. The number 4 is an argument to the .sp request which says to
space four lines instead of one. Arguments are separated from the request and
from each other by spaces.

1. Basics of Text Processing
The primary function of NROFF is to collect words from input lines, fill

output lines with those words, justify the right hand margin by inserting
extra spaces in the line, and output the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, ...

will be read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their party.
Four score and seven years ago, ...

Sometimes you may want to start a new output line even though the line you
are on is not yet full; for example, at the end of a paragraph. To do this you
can cause a break, which starts a new output line. Some requests cause a
break automatically, as do blank input lines and input lines beginning with a
space.

Not all input lines are te.xt to be formatted. Some of the input lines are
requests which describe how to format the text. Requests always have a
period or an apostrophe (" '") as the first character of the input line.

The text formatter also does more complex things, such as automatically
numbering pages, skipping over page folds, putting footnotes in the correct
place, and so forth.

I can offer you a few hints for preparing text for input to NROFF. First,
keep the input lines short. Short iilput lines are easier to edit, and NROFF will
pack words onto longer lines for you anyhow. In keeping with this, it is helpful
to begin a new line after every period, comma, or phrase, since common
corrections are to add or delete sentences or phrases. Second, do not put
spaces at the end of lines, since this can sometimes confuse the NROFF pro­
cessor. Third, do not hyphenate words at the end of lines {except words that
should have hyphens in them, such as "mother-in-law"); NROFF is smart
enough to hyphenate words for you. as needed, but is not smart enough to
take hyphens out and join a word back together. Also, words such as
"mother-in-law" should not be broken over a line, since then you will get a
space where not wanted, such as "mother- in-law".

2. Basic Requests

2.1. Paragraphs
Paragraphs are begun by using the .pp request. For example, the

input:

USING NROFF AND -ME 3

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ...

produces a blank line followed by an indented fust line. The result is:

Now is the time for all good men to come to the aid of their
party. Four score and seven years ago, ...

Notice that the sentences of the paragraphs must not begin with a
space, since blank lines and lines begining with spaces cause a break. For
example, if I had typed:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years

ago, ...

A new line begins after the word "men" because the second line began with
a space character.

There are many fancier types of paragraphs, which will be described
later.

2. 2. Headers and Footers
Arbitrary headers and footers can be put at the top and bottom of

every page. Two requests of the form .he title and .fo title define the titles
to put at the head and the foot of every page, respectively. The titles are
called three-part titles, that is, there is a left-justified part, a centered
part, and a right-justified part. To separate these three parts the fust
character of title (whatever it may be) is used as a delimiter. Any charac­
ter may be used, but backslash and double quote marks should be avoided.
The percent sign is replaced by the current page number whenever found
in the title. For example, the input:

.he "3"

.fo 'Jane Jones"My Book'

results in the page number centered at the top of each page, "Jane Jones"
in the lower left corner, and "My Book" in the iower right corner.

2.3. Double Spacing
NROFF will double space output text automatically if you use the

request .ls 2, as is done in this section. You can revert to single spaced

mode by typing .ls 1.

2.4. Page Layout
A number of requests allow you to change the way the printed copy

looks, sometimes called the layout of the output page. Most of these
requests adjust the placing of "white space" (blank lines or spaces). In
these explanations, characters in italics should be replaced with values

USING NROFF AND -ME 4

you wish to use; bold characters represent characters which should actu­
ally be typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be omitted
(meaning skip a single line) or can be of the form Ni {for N inches) or Ne
(for N centimeters). For example, the input: ·

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line "My thoughts on
the subject", followed by a single blank line.

The .in + N request changes the amount of white space on the left of
the page (the indent). The argument N can be of the form +N (meaning
leave N spaces more than you are already leaving), -N (meaning leave less
than you do now), or just N (meaning leave exactly N spaces). N can be of
the form Ni or N c also. For example, the input:

initial text
.in 5
some text
.in +li
more text
.in-2c
final text

produces "some text" indented exactly five spaces from the left margin,
"more text" indented five spaces plus one inch from the left margin
(fifteen spaces on a pica typewriter), and "final text" indented five spaces
plus one inch minus two centimeters from the margin. That is, the output
is:

initial text
some text

more text
final text

The .ti + N (temporary indent) request is used like .in + N when the
indent should apply to one line only, after which it should revert to the
previous indent. For example, the input:

.in li

.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:
Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent

book containing translations of most of Confucius' most
delightful sayings. A definite must for anyone interested in
the early foundations of Chinese philosophy.

Text lines can be centered by using the .ce request. The line after the
.ce is centered (horizontally) on the page. To center more than one line,
use .ce N {where N is the number of lines to center), followed by the N

USING NROFF AND -ME 5

lines. If you want to center many lines but don't want to cciunt them, type:

.ce 1000
lines to center
.ce 0

The .ce 0 request tells NROFF to center zero more lines, in other words,
stop centering.

All of these requests cause a break; that is, they always start a new
line. If you want to start a new line without performing any other action,
use .br.

2. 5. Underlining
Text can be underlined using the .ul request. The .ul request causes

the next input-line to be underlined when output. You can underline multi­
ple lines by stating a count of i:n:put lines to underline, followed by those
lines {as with the .ce request). For example, the input:

.ul 2
Notice that these two input lines
are underlined.

will underline those eight words in NROFF. (In TROFF they will be set in ital­
ics.)

3. Di.splays
Displays are sections of text to be set off from the body of the paper.

Major quotes, tables, and figures are types of displays, as are all the examples
used in this document. All displays except centered blocks are output single
spaced.

3.1. Major Quotes
Major quotes are quotes which are several lines long, and hence are

set in from the rest of the text without quote marks around them. These
can be generated using the commmands .(q and .)q to surround the quote.
For example, the input:

As Weizenbaum points out:
.(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.)q

generates as output:

As Weizenbaum points out:
It is said that to explain is to explain away, This maxim is nowhere so well
fulfilled as in the areas of computer programming, ...

3.2. Lists
A list is an indented, single spaced, unfilled display. Lists should be

used when the material to be printed should not be filled and justified like
normal text, such as columns of figures or the examples used in this
paper. Lists are surrounded by the requests .(land .)I. For example, type:

USING NROFF AND -ME

Alternatives to avoid deadlock are:
.(1
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)1

will produce:
Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

3.3. Keeps

6

A keep is a display of lines which are kept on a single page if possible.
An example of where you would use a keep might be a diagram. Keeps
differ from lists in that lists may be broken over a page boundary whereas
keeps will not.

Blocks are the basic kind of keep. They begin with the request .(band
end with the requ'est .)b. If there is not room on the current page for
everything in the1 block, a new page is begun. This has the unpleasant
effect of leaving blank space at the bottom of the page. When this is not
appropriate, you can use the alternative, calledjloating keeps.

F!oating keeps move relative to the text. Hence, they are good for
things which will be referred to by name, such as "See figure 3". A floating
keep will appear at the bottom of the current page if it will fit; otherwise, it
will appear at the top of the next page. Floating keeps begin with the line
.(z and end with the line .)z. For an example of a floating keep, see figure
1. The .bl request is used to draw a horizontal line so that the figure
stands out from the text.

3.4. Fancier Displays
Keeps and lists are normally collected in nafill mode, so that they are

good for tables and such. If you want a display in fill mode (for text), type
.(l F (Throughout this section, comments applied to .(l also apply to .(band
.(z). This kind of display will be indented from both margins. For example,
the input:

.(z

.hl
Text of keep to be floated .
. Sp
.ce
Figure 1. Example of a Floating Keep .
. hl
.)z

Figure 1. Example of a Floating Keep.

USING NROFF AND -M:E

.(1 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)1

will be output as:

And now boys and girls, a newer, bigger, better toy than ever be­
fore! Be the first on your block to have your own computer! Yes
kids, you too can have one of these modern data processing dev­
ices. You too can produce beautifully formatted papers without
even batting an eye!

7

Lists and blocks are also normally indented (floating keeps are nor­
mally left justified). To get a left-justified list, type .(l I... To get a list cen­
tered line-for-line, type .(l C. For example, to get a filled, left justified list,
enter:

.(l L F
text of block
.)1

The input:
.(1
first line of unfilled display
more lines
.)1

produces the indented text:

first line of unfilled display
more lines

Typing the character L after the .(l request produces the left justified
result:

first line of unfilled display
more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

Sometimes it may be that you want to center several lines as a group,
rather than centering them one line at a time. To do this use centered
blocks, which are surrounded by the requests .(c and .)c. All the lines are
centered as a unit, such that the longest line is centered and the rest are
lined up around that line. Notice that lines do not move relative to each
other using centered blocks, whereas they do using the C argument to
keeps.

Centered blocks are not keeps, and may be used in conjunction with
keeps. For example, to center a group of lines as a unit and keep them on
one page, use:

USING NROFF AND -ME

.(b L

.(c
first line of unfilled display
more lines
.)c
.)b

to produce:

first line of unfilled display
more lines

8

If the block requests (.(band .)b) had been omitted the result would have
been the same, but with no guarantee that the lines of the centered block
would have all been on one page. Note the use of the L argument to .(b;
this causes the centered block to center within the entire line rather than
within the line minus the indent. Also, the center requests must be nested
inside the keep requests. ·

4. Annotations
There are a number of requests to save text for later printing. Footnotes

are printed at the bottom of the current page. Delayed text is intended to be
a variant form of footnote; the text is printed only when explicitly called for,
such as at the end of each chapter. Indexes are a type of delayed text having
a tag (usually the page number) attached to each entry after a row of dots.
Indexes are also saved until called for explicitly.

4.1. Footnotes
Footnotes begin with the request .(f and end with the request .)f. The

current footnote number is maintained automatically, and can be used by
typing **, to produce a footnote number1. The number is automatically
incremented after every footnote. For example, the input:

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.**
.(f
**James R Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77 .
.)f
.)q

generates the result:
A man who is not upright and at the same time is presumptuous; one who
is not diligent and at the same time is ignorant; one who is untruthful and
at the same time is incompetent; such men I do not count among acquain­
tances. 2

It is important that the footnote appears inside the quote, so that you can

1Ll.ke this.
1James R. Ware, The Best of Conjw;ius, Halcyon House, 1950. P~e 77.

USING NROFF AND --ME 9

be sure that the footnote will appear on the same page as the quote.

4.2. Delayed Text
Delayed text is very similar to a footnote except that it is printed

when called for explicitly. This allows a list of references to appear {for
example) at the end of each chapter, as is the convention in some discip­
lines. Use\ •H on delayed text instead of\•• as on footnotes.

If you are using delayed text as your standard reference mechanism,
you can still use footnotes, except that you may want to reference them
with special characters* rather than numbers.

4.3. Indexes
An "index" (actually more like a table of contents, since the entries

are not sorted alphabetically) resembles delayed text, in that it is saved
until called for. However, each entry has the page number (or some other
tag) appended to the last line of the index entry after a row of dots.

Index entries begin with the request .(x and end with .):x. The .)x
request may have a argument, which is the value to print as the "page
number''. It defaults to the current page number. If the page number
given is an underscore ("_'..') no page number or line of dots is printed at
all. To get the line of dots without a page number, type .)x '"', which
specifies an explicitly null page number.

The .xp request prints the index.

For example, the input:

.(x
Sealing wax
.)x
.{x
Cabbages and kings
.)x_
.(x
Why the sea is boiling hot
.)x 2.5a
.(x
Whether pigs have wings
• }x ffH

.(x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines .
.)x
.xp

generates:
Sealing wax .. 9
Cabbages and kings
Why the sea is boiling hot 2. Sa
Whether pigs have wings
This is a terribly long index entry, such as might be used for a list

of illustrations, tables, or figures; I expect it to take at least

'Such as an asterisk.

USING NROFF AND -ME 10

two lines. ... 9

The .(x request may have a single character argument, specifying the
"name" of the index; the normal index is x. Thus, several "indicies" may
be maintained simultaneously (such as a list of tables, table of contents,
etc.).

Notice that the index must be printed at the end of the paper, rather
than at the beginning where it will probably appear (as a table of con­
tents); the pages may have to be physically rearranged after printing.

5. Fancier Features

A large number of fancier requests exist, notably requests to provide
other sorts of paragraphs, numbered sections of the form 1.2.3 (such as used
in this document), and multicolumn output.

5.1. More Paragraphs
Paragraphs generally start with a blank line and with the first line

indented. It is possible to get left-justified block-style paragraphs by using
.Ip instead of .pp, as demonstrated by the next paragraph.

Sometimes you want to use paragraphs that have the body indented, and
the first line exdented (opposite of indented) with a label. This can be
done with the .ip request. A word specified on the same line as .ip is
printed in the margin, and the body is lined up at a prespecified position
(normally five spaces). For example, the input:

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph .
.ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin .
.lp
We can continue text...

produces as output:

one This is the first paragraph. Notice how the first line of the resulting
paragraph lines up with the other lines in the paragraph.

two And here we are at the second paragraph already. You may notice
that the argument to .ip appears in the margin.

We can continue text without starting a new indented paragraph by using
the .Ip request.

If you have spaces in the label of a .ip request, you must use an
"unpaddable space" instead of a regular space. This is typed as a
backslash character ("\") followed by a space. For example, to print the
label "Part 1", enter:

.ip "Part\ 1"

If a label of an indented paragraph (that is, the argument to .ip) is
longer than the space allocated for the label, .ip will begin a new line after
the label. For example, the input:

USING NROFF AND -ME

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

will produce:

longlabel

11

This paragraph had a long label. The first character of text on the
first line will not line up with the text on second and subsequent lines,
although they will line up with each other.

It is possible to change the size of the label by using a second argu­
ment which is the size of the label. For example, the above example could
be done correctly by saying:

.ip longlabel 10

which will make the paragraph indent 10 spaces for this paragraph only. If
you have many paragraphs to indent all the same amount, use the number
register ii. For example, to leave one inch of space for the label, type:

.nr ii li
somewhere before the first call to .ip. Refer to the reference manual for
more information.

If .ip is used with no argument at all no hanging tag will be printed.
For example, the input:

.ip [a]
This is the first paragraph of the example.
We have seen this sort of example before .
. ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

produces as output:
[a] This is the first paragraph of the example. We have seen this sort of

example before.

This paragraph is lined up with the previous paragraph, but it has no
tag in the margin.

A special case of .ip is .np, which automatically numbers paragraphs
sequentially from 1. The numbering is reset at the next .pp, .Ip, or .sh (to
be described in the next section) request. For example, the input:

.np
This is the first point .
. np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np request.
.pp
This paragraph will reset numbering by .np .
. np
For example,
we have reverted to numbering from one now.

generates:

USING NROFF AND -M:E 12

(1) This is the first point.

(2) This is the second point. Points are just regular paragraphs which are
given sequence numbers automatically by the .np request.

This paragraph will reset numbering by .np.

(1) For example, we have reverted to numbering from one now.

5.2. Section Headings
Section numbers {such as the ones used in this document) can be

automatically generated using the .sh request. You must tell .sh the depth
of the section number and a section title. The depth specifies how many
numbers are to appear {separated by decimal points) in the section
number. For example, the section number 4.2.5 has a depth of three.

Section numbers are incremented in a fairly intuitive fashion. If you
add a number {increase the depth), the new number starts out at one. If
you subtract section numbers {or keep the same number) the final
number is incremented. For example, the input:

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

. sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

1. 'lb.e Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the section number to begin by placing the section
number after the section title, using spaces instead of dots. For example,
the request:

.sh 3 "Another section" 7 3 4

will begin the section numbered 7.3.4; all subsequent .sh requests will
number relative to this number.

There are more complex features which will cause each section to be
indented proportionally to the depth of the section. For example, if you
enter:

.nr si N
each section will be indented by an amount N. N must have a scaling fac­
tor attached, that is, it must be of the form Nx, where x is a character tel­
ling what units N is in. Common values for x are i for inches, c for centim­
eters, and n for ens (the width of a single character). For example, to
indent each section one-half inch, type:

.nr si 0.5i

After this, sections will be indented by one-half inch per level of depth in
the section number. For example, this document was produced using the

USING NROFF AND -M:E 13

request

.nr si 3n

at the beginning of the input file, giving three spaces of indent per section
depth.

Section headers without automatically generated numbers can be
done using:

. uh "Title"

which will do a section heading, but will put no number on the section.

5.3. Parts of the Basic Paper
There are some requests which assist in setting up papers. The .tp

request initializes for a title page. There are no headers or footers on a
title page, and unlike other pages you can space down and leave blank
space at the top. For example, a typical title page might appear as:

.tp

.sp 2i

.(1 c
TIIE GROWTH OF TOENAILS
IN UPPER PRIMATES
.Sp
by
.sp
Frank N. Furter
.)1
.bp

The request .th sets up the environment of the NROFF processor to do
a thesis, using the rules established at Berkeley. It defines the correct
headers and footers (a page number in the upper right hand corner only),
sets the margins correctly, and double spaces.

The .+c T request can be used to start chapters. Each chapter is
automatically numbered from one, and a heading is printed at the top of
each chapter with the chapter number and the chapter name T. For
example, to begin a chapter called "Conclusions", use the request:

.+c "CONCLUSIONS"

which will produce, on a new page, the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot
of the page on the first page of a chapter. Although the .+c request was
not designed to work only with the .th request, it is tuned for the format
acceptable for a PhD thesis at Berkeley.

If the title parameter Tis omitted from the .+c request, the result is
a chapter with no heading. This can also be used at the beginning of a
paper; for example, .+c was used to generate page one of this document.

Although papers traditionally have the abstract, table of contents, and
so forth at the front of the paper, it is more convenient to format and print
them last when using NROFF. This is so that index entries can be collected
and then printed for the table of contents (or whatever). At the end of the
paper, issue the .++ P request, which begins the preliminary part of the
paper. After issuing this request, the .+c request will begin a preliminary

USING NROFF AND -llE 14

section of the paper. Most notably, this prints the page number restarted
from one in lower case Roman numbers .. +c may be used repeatedly to
begin different parts of the front material for example, the abstract, the
table of contents, acknowledgments, list of illustrations, etc. The request
.++ B may also be used to begin the bibliographic section at the end of the
paper. For example, the paper might appear as outlined in figure 2. (In
this figure, comments begin with the sequence\".)

. th \" set for thesis mode

.fo "DRAFT" \" define footer for each page

.tp \"begin title page

.(1 C \"center a large block
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank Furler
.)1
.+c INTRODUCTION
.(x t
Introduction
.)x
text of chapter one
. +c "NEXT CHAPTER"
.(x t
Next Chapter
.)x
text of chapter two
.+c CONCLUSIONS
.(x t
Conclusions
.)x
text of chapter three
.++B
.+c BIBLIOGRAPHY
.(x t
Bibliography
.)x
text of bibliography

\"end centered part
\" begin chapter named "INTRODUCTION"
\" make an entry into index 't'

_ \" end of index entry

\" begin another chapter
\"enter into index 't' again

\" begin bibliographic information
\" begin another •chapter'

. ++ P \" begin preliminary material

.+c "TABLE OF CONTENTS"

.xp t \" print index 't' collected above

.+c PREFACE \"begin another preliminary section
text of preface

Figure 2. Outline of a Sample Paper

USING NROFF AND -ME 15

5.4. Equations and Tables

Two special UNIX programs exist to format special types of material.
Eqn and neqn set equations for the phototypesetter and NROFF respec­
tively. Tbl arranges to print extremely pretty tables in a variety of for­
mats. This document will only describe the embellishments to the stan­
dard features; consult the reference manuals for those processors for a
description of their use.

The eqn and neqn programs are described fully in the document
Typesetting Malhematics - Users' Guide by Brian W. Kernighan and
Lorinda L. Cherry. Equations are centered, and are kept on one page.
They are introduced by the .EQ request and terminated by the .EN
request.

The .EQ request may take an equation number as an optional argu­
ment, which is printed vertically centered on the right hand side of the
equation. If the equation becomes too long it should be split between two
lines. To do this, type:

.EQ (eq 34)
text of equation 34
.ENC
.EQ
continuation of equation 34
.EN

The C on the .EN request specifies that the equation will be continued.

The tbl program produces tables. It is fully described (including
numerous examples) in the document Tbl - A Progra:m to Format Tables
by M. E. Lesk. Tables begin with the . TS request and end with the . TE
request. Tables are normally kept on a single page. If you have a table
which is too big to fit on a single page, so that you know it will extend to
several pages, begin the table with the request .TS Hand put the request
.TH after the part of the table which you want duplicated at the top of
every page that the table is printed on. For example, a table definition for
a long table might look like:

.TSH
css
n nn.
THE TABLE TITLE
.TH
text of the table
.TE

5.5. Two Column Output
You can get two column output automatically by using the request

.2c. This causes everything after it to be output in two-column form. The
request .be will start a new column: it differs from .bp in that .bp may leave
a totally blank column when it starts a new page. To revert to single
column output, use . le.

5.6. J)efining Macros
A macro is a collection of requests and text which may be used by

stating a simple request. Macros begin with the line .de ::r:z (where z:z: is the
name of the macro to be defined) and end with the line consisting of two
dots. After defining the macro, stating the line .z:z: is the same as stating

USING NROFF AND -ME 16

all the other lines. For example, to define a macro that spaces 3 lines and
then centers the next input line, enter:

.de SS

.sp 3

.Ce

and use it by typing:

.SS
Title Line
{beginning of text)

Macro names may be one or two characters. In order to avoid
conflicts with names in -me, always use upper case letters as names. The
only names to avoid are TS, TII. TE, EQ, and EN.

5. 7. An.notations Inside Keeps

Sometimes you may want to put a footnote or index entry inside a
keep. For example, if you want to maintain a "list of figures" you will want
to do something like:

.(z

.(c
text of figure
.)c
.ce
Figure 5 .
. (x f
Figure 5
.)x
.)z

which you may hope will give you a figure with a label and an entry in the
index f (presumably a list of figures index). Unfortunately, the index entry
is read and interpreted when the keep is read, not when it is printed, so
the page number in the index is likely to be wrong. The solution is to use
the magic string \! at the beginning of all the lines dealing with the index.
In other words, you should use:

.(z

.(c
Text of figure
.)c
.Ce
Figure 5.
\!.{x f
\!Figure 5
\!.)x
.)z

which will defer the processing of the index until the figure is output. This
will guarantee that the page number in the index is correct. The same
comments apply to blocks {with .(band .)b) as well.

6. TROl'Y and the Photosetter

With a little care, you can prepare documents that will print nicely on
either a regular terminal or when phototypeset using the TROFF formatting

USING NROFF AND -ME 17

program.

6.1. Fonts
A font is a style of type. There are three fonts that are available

simultaneously, Times Roman, Times Italic, and Times Bold, plus the spe­
cial math font. The normal font is Roman. Text which would be underlined
in NROFF with the .ul request is set in italics in TROFF.

There are ways of switching between fonts. The requests .r, .i, and .b
switch to Roman, italic, and bold fonts respectively. You can set a single
word in some font by typing (for example):

.i word

which will set word in italics but does not affect the surrounding text. In
NROFF, italic and bold text is underlined.

Notice that if you are setting more than one word in whatever font,
you must surround that word with double quote marks (' "') so that it will
appear to the NROFF processor as a single word. The quote marks will not
appear in the formatted text. If you do want a quote mark to appear, you
should quote the entire string {even if a single word), and use two quote
marks where you want one to appear. For example, if you want to produce
the text:

"Master Control"

in italics, you must type:

.i """Master Control\)"""

The \I produces a very narrow space so that the "l" does not overlap the
quote sign in TROFF, like this:

"Master Control"

There are also several "pseudo-fonts" available. The input:

.(b

.u underlined

. bi "bold italics"

. bx "words in a box"

.)b
generates

underlined
bold italics
lwords in a boxl

In NROFF these all just underline the text. Notice that pseudo font requests
set only the single parameter in the pseudo font; ordinary font requests
will begin setting all text in the special font if you do not provide a parame­
ter. No more than one word should appear with these three font requests
in the middle of lines. This is because of the way TROFF justifies text. For
example, if you were to issue the requests:

. bi "some bold italics"
and
. bx "words in a box"

in the middle of a line TROFF would produce same bol.d italics and I words ip
a bo~.
which 1 think you will agree does not look good.

USING NROFF AND 41E 16

The second parameter of all font requests is set in the original font.
For exam.ple, the,font request:

.b bold face

generates "bold" in bold font, but sets "face" in the font of the surround­
ing text, resulting in:

boldface.

To set the two words bold and face both in bold face, type:

. b "bold face"

You can mix fonts in a word by using the special sequence \c at the
end of a line to indicate "continue text processing"; this allows input lines
to be joined together without a space inbetween them. For example, the
input:

.u under \c

.i italics

generates underitalics, but if we had typed:

.u under

.i italics

the result would have been under italics as two words.

6.2. Point Sizes
The phototypesetter supports different sizes of type, measured in

points. The default point size is 10 points for most text, 8 points for foot­
notes. To change the pointsize, type:

.sz +N

where N is the size wanted in points. The vertical spacing (distance
between the bottom of most letters (the baseline) between adjacent lines)
is set to be proportional to the type size.

Warning: changing point sizes on the phototypesetter is a slow
mechanical operation. Size changes should be considered carefully.

6.3. Quotes
It is conventional when using the typesetter to use pairs of grave and

acute accents to generate double quotes, rather than the double quote
character (' "'). This is because it looks better to use grave and acute
accents; for example, compare "quote" to "quote".

In order to make quotes compatible between the typesetter and ter­
minals, you may use the sequences \ "'(Iq and\ •(rq to stand for the left and
right quote respectively. These both appear as " on most terminals, but
are typeset as " and •• respectively. For example, use:

\ *(lqSome things aren't true
even if they did happen.*{rq

to generate the result:
"Some things aren't true even if they did happen."

As a shorthand, the special font request:

.q "quoted text"

will generate "quoted text". Notice that you must surround the material
to be quoted with double quote marks if it is more than one word.

USING NROFF AND -ME 19

Acknowledgments
I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the

courage to use the -me macros to produce non-trivial papers during the
development stages; Ricki Blau, Pamela Humphrey, and Jim Joyce for their help
with the documentation phase; and the plethora of people who have contributed
ideas and have given support for the project.

This document was TROFF'ed on June 17, 1983 and applies to version 1.1 of the
-me macros.

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIXt systems. It incor­
porates good features of other shells and a history mechanism similar to the redo
of INTERLISP. While incorporating many features of other shells which make
writing shell programs (shell scripts) easier, most of the features unique to csh
are designed more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes the shells capabilities which you can explore after you have
begun to become acquainted with the shell. Later sections introduce features
which are useful, but not necessary for all users of the shell.

Back matter includes an appendix listing special characters of the shell and
a glossary of terms and commands introduced in this manual.

November 8, l 980

tUNIX is a Trademark of Bell Laboratories.

Introduction

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94 720

A shell is a command language interpreter. Csh is the name of one particular command
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a termi­
nal into system actions, such as invocation of other programs. Csh is a user program just like
any you might write. Hopefully, csh will be a very useful program for you in interacting with
the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX programmer's
manual. The csh documentation in the manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in italics. These are important words~ names of
commands, and words which have special meaning in discussing the shell and U1'1X. Many of
the words are defined in a glossary at the end of this document. If you don't know what is
meant by a word, you should look for it in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in
its debugging and in the debugging of its documentation. I would especially like to thank
Michael Ubell who made the crucial observation that history commands could be done well
over the word structure of input text, and implemented a prototype history mechanism in an
older version of the shell. Eric Allman has also provided a large number of useful comments
on the shell, helping to unify those concepts which are present and to identify and eliminate
useless and marginally useful features. Mike O'Brien suggested the pathname hashing mechan­
ism which speeds command execution. Jim Kulp added the job control and directory stack
primitives and added their documentation to this introduction.

- 2 -

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other programs are invoked.
While it has a set of builtin functions which it performs directly, most commands cause execu­
tion of programs that are, in fact, external to the shell. The shell is thus distinguished from the
command interpreters of other systems both by the fact that it is just a user program. and b\
the fact that it is used almost exclusively as a mechanism for invoking other programs. ·

Commands in the UNIX system consist of a list of strings or words interpreted as a rn111-
mand name followed by arguments. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed, in this case the
mail program which sends messages to other users. The shell uses the name of the command
in attempting to execute it for you. It will look in a number of directones for a file with the
name mail which is expected to contain the mail program.

The rest of the words of the command are given as arguments to the command itself when
it is executed. In this case we specified also the argument bill which is interpreted by the mail
program to be the name of a user to whom mail is to be sent. In normal terminal usage we
might use the mail command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

EOT
%

Bill

Here we typed a message to send to bill and ended this message with a tD which sent an
end-of-file to the mail program. (Here and throughout this document, the notation "l x" is to
be read "control-x" and represents the striking of the x key while the control key is held
down.) The mail program then echoed the characters 'EOT' and transmitted our message. The
characters '% ' were printed before and after the mail command by the shell to indicate that
input was needed.

After typing the '% ' prompt the shell was reading command input from our terminal.
We typed a complete command 'mail bill'. The shell then executed the mail program with
argument bill and went dormant waiting for it to complete. The mail program then read input
from our terminal until we signalled an end-of-file via typing a TD after which the shell noticed
that mail had completed and signaled us that it was ready to read from the terminal again by
printing another '% ' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete
command is typed at the terminal, the shell executes the command and when this execution
completes, it prompts for a new command. If you run the editor for an hour, the shell will
patiently wait for you to finish editing and obediently prompt you again whenever you finish
editing.

An example of a useful command you can execute now is the tser command, which sets
the default erase and kill characters on your terminal - the erase character erases the last char­
acter you typed and the kill character erases the entire line you have entered so far. By default,
the erase character is '#' and the kill character is '@'. Most people who use CRT displays
prefer to use the backspace (TH) character as their erase character since it is then easier to see
what you have typed so far. You can make this be true by typing

- 3 -

tset -e

which tells the program tset to set the erase character, and its default setting for this character is
a backspace.

1.2. FJag arguments

A useful notion in UNIX is that of a ffa!(argument. While many arguments to commands
specify file names or user names some arguments rather specify an optional capability of the
command which you wish to invoke. By convention, such arguments begin with the character
' - ' (hyphen). Thus the command

Is

will produce a list of the files in the current working directory. The option -sis the size option.
and

Is -s

causes Is to also give, for each file the size of the file in blocks of 512 characters. The manual
section for each command in the UNIX reference manual gives the available options for each
command. The Is command has a large number of useful and interesting options. Most other
commands have either no options or only one or two options. It is hard to remember options
of commands which are not used very frequently, so most UNIX utilities perform only one or
two functions rather than having a large number of hard to remember options.

1.3. Output to files

Commands that normally read input or write output on the terminal can also be executed
with this input and/or output done to a file.

Thus suppose we wish to save the current date in a file called 'now'. The command

date

will print the current date on our terminal. This is because our terminal is the default standard
output for the date command and the date command prints the date on its standard output. The
shell lets us redirect the standard output of a command through a notation using the metacharac­
ter '>' and the name of the file where output is to be placed. Thus the command

date > now

runs the date command such that its standard output is the file 'now' rather than the terminal.
Thus this command places the current date and time into the file 'now'. It is important to
know that the date command was unaware that its output was going to a file rather than to the
terminal. The shell performed this redirection before the command began executing.

One other thing to note here is that the file 'now' need not have existed before the date
command was executed; the shell would have created the file if it did not exist. And if the file
did exist? If it had existed previously these previous contents would have been discarded! A
shell option noclobber exists to prevent this from happening accidentally~ it is discussed in sec­
tion 2.2.

The system normally keeps files which you create with '>' and all other files. Thus the
default is for files to be permanent. If you wish to create a file which will be removed automat­
ically, you can begin its name with a '#' character, this 'scratch' character denotes the fact that
the file will be a scratch file.• The system will remove such files after a couple of days. or

•Note that if your erase character is a'#'. you will have to precede the'#' with a'\'. The fact that the'#.
character is the old (pre-CRT) standard erase character means that it seldom appears in a file name. and allows
this convention to be used for scratch files. If you are using a CRT. your erase character should be a Ill. as
we demonstrated in section 1.1 how this could be set up.

- 4 -

sooner if file space becomes very tight. Thus, in running the dale command above. we don ·1

really want to save the output forever, so we would more likely do

date > #now

1.4. Metacharacters in the shell

The shell has a large number of special characters Oike '> ') which indicate special f unc­
tions. We say that these notations have syntactic and sema111ic meaning to the shell. In general,
most characters which are neither letters nor digits have special meaning to the shell. We shall
shortly learn a means of quotation which allows us to use me10charac1ers without the shell treat­
ing them in any special way.

Metacharacters normally have etf ect only when the shell is reading our input. We need
not worry about placing shell metacharacters in a letter we are sending via mall. or when we are
typing in text or data to some other program. Note that the shell is only reading input when it
has prompted with '% '.

1.5. Input from files; pipelines

We learned above how to redirect the standard ourpu1 of a command to a file. It is also
possible to redirect the standard input of a command from a file. This is not often necessary
since most commands will read from a file whose name is given as an argument. We can give
the command

sort < data

to run the sorT command with standard input, where the command normally reads its input.
from the file 'data'. We would more likely say

sort data

letting the sorT command open the file 'data' for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard inpUI. Since we did not red1rec1 the
standard input, it would sort Jines as we typed them on the terminal until we typed a j D to
indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command
with the standard input of another, i.e. to run the commands in a sequence known as a pipeline.
For instance the command

ls -s

normally produces a list of the files in our directory with the size of each in blocks of 512 char­
acters. If we are interested in learning which of our files is largest we may wish to have this
sorted by size rather than by name, which is the default way in which Is sorts. We could look at
the many options of Is to see if there was an option to do this but would eventually discover
that there is not. Instead we can use a couple of simple options of the sort command, combin­
ing it with Is to get what we want.

The -11 option of sort specifies a numeric sort rather than an alphabetic sort. Thus

ls -s I sort -n

specifies that the output of the Is command run with the option -s is to be piped to the com­
mand sort run with the numeric sort option. This would give us a sorted list of our files by
size, but with the smallest first. We could then use the -r reverse sort option and the head
command in combination with the previous command doing

- 5 -

ls -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We
have run this to the standard input of the sort command asking it to sort numerically in reverse
order (largest first). This output has then been run into the command head which gives us the
first few lines. In this case we have asked head for the first 5 lines. Thus this confmand gives
us the names and sizes of our 5 largest files.

The notation introduced above is called the pipe mechanism. Commands separated by · ! ·
characters are connected together by the shell and the standard output of each is run into the
standard input of the next. The leftmost command in a pipeline will normally take its standard
input from the terminal and the rightmost will place its standard output on the terminal. Other
examples of pipelines will be given later when we discuss the history mechanism; one important
use of pipes which is illustrated there is in the routing of information to the line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX p01h­
names consist of a number of compone111s separated by '/'. Each component except the last
names a directory in which the next component resides, in effect specifying the path of direc­
tories to follow to reach the file. Thus the pathname

/etc/mold

specifies a file in the directory 'etc' which is a subdirectory of the root directory'/'. Within this
directory the file named is 'motd' which stands for 'message of the day'. A parhnam£' that
begins with a slash is said to be an absolute pathname since it is specified from the absolute top
of the entire directory hierarchy of the system (the root). Pathnames which do not begin with
'I' are interpreted as starting in the current working directory, which is, by default, your hom£'
directory and can be changed dynamically by the cd change directory command. Such path­
names are said to be relative to the working directory since they are found by starting in the
working directory and descending to lower levels of directories for each component of the path­
name. If the pathname contains no slashes at all then the file is contained in the working direc­
tory itself and the pathname is merely the name of the file in this directory. Absolute path­
names have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and '. 's (periods). In fact,
all printing characters except '/' (slash) may appear in filenames. It is inconvenient to have
most non-alphabetic characters in filenames because many of these have special meaning to the
shell. The character '.' (period) is not a shell-metacharacter and is often used to separate the
extension of a file name from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the
name that is left when a trailing • .' and following characters which are not '.' are stripped off).
The file 'prog.c' might be the source for a C program, the file 'prog.o' the corresponding object
file, the file 'prog.errs' the errors resulting from a compilation of the program and the file
'prog.output' the output of a run of the program.

If we wished to ref er to all four of these files in a command, we could use the notation

prog.•

This word is expanded by the shell, before the command to which it is an argument is exe­
cuted, into a list of names which begin with 'prog.'. The character ••• here matches any
sequence (including the empty sequence) of characters in a file name. The names which match
are alphabetically sorted and placed in the argument list of the command. Thus the command

echo prog.•

will echo the names

- 6 -

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above.
The echo command receives four words as arguments, even though we only typed one word as
as argument directly. The four words were generated by filename expansion of th_e one input
word.

Other notations for filename expansion are also available. The character '?' matches any
single character in a filename. Thus

echo ? ?? ???

will echo a line of filenames; first those with one character names, then those with two charac­
ter names, and finally those with three character names. The names of each length will be
independently sorted.

Another mechanism consists of a sequence of characters between '[' and '] '. This
metasequence matches any single character from the enclosed set. Thus

prog. [co]

will match

prog.c prog.o

in the example above. We can also place two characters around a • - ' in this notation to denote
a range. Thus

chap.[1-5]

might match files

chap. I chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap. [12345]

and otherwise equivalent.

An important point to note is that if a list of argument words to a command (an arKument
list) contains filename expansion syntax, and if this filename expansion syntax fails to match
any existing file names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character '.' at the beginning are
treated specially. Neither '*' or '?' or the '[' ']' mechanism will match it. This prevents
accidental matching of the filenames '.' and ' .. ' in the working directory which have special
meaning to the system, as well as other files such as .cshrc which are not normally visible. We
will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home direc­
tory of other users. This notation consists of the character ·-· (tilde) followed by another users'
login name. For instance the word ·-bill' would map to the pathname '/usr/bill' if the home
directory for 'bill' was '/usr/bill'. Since, on large systems, users may have login directories
scattered over many different disk volumes with different prefix directory names, this notation
provides a reliable way of accessing the files of other users.

A special case of this notation consists of a ·-• alone, e.g. •• 1mbox'. This notation is
expanded by the shell into the file 'mbox' in your home directory, i.e. into '/usr/bill/mbox' for
me on Ernie Co-vax, the UCB Computer Science Department VAX machine, where this docu­
ment was prepared. This can be very useful if you have used cd to change to another directory
and have found a file you wish to copy using cp. If I give the command

cp thatfile -

the shell will expand this command to

cp thatfile /usr/bill

since my home directory is /usr/bill.

- 7 -

There also exists a mechanism using the characters 'I' and '}' for abbreviating a set of
words which have common parts but cannot be abbreviated by the above mechanisms because
they are not files, are the names of files which do not yet exist, are. not thus conveniently
described. This mechanism will be described much later, in section 4.2, as it is used less fre­
quently.

1. 7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharac­
ters pose a problem in that we cannot use them directly as parts of words. Thus the command

echo•

will not echo the character '*' It will either echo an sorted list of filenames in the current
working directory, or print the message 'No match' if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers, digits,
• /', •.' or ' - ' in an argument word to a command is to enclose it with single quotation charac­
ters ···, i.e.

echo···

There is one special character '!' which is used by the history mechanism of the shell and which
cannot be escaped by placing it within "' characters. It and the character •'' itself can be pre­
ceded by a single '\' to prevent their special meaning. Thus

echo\'\!

prints
.,

These two mechanisms suffice to place any printing character into a word which is an argument
to a shell command. They can be combined, as in

echo\"•'

which prints

••
since the first '\' escaped the first '" and the ••• was enclosed between '" characters.

1.8. Terminating commands
When you are executing a command and the shell is waiting for it to complete there are

several ways to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely
to continue for several minutes unless you stop it. You can send an INTERRUPT signal to the cat
command by typing the DEL or RUBOUT key on your terminal.• Since cat does not take any pre­
cautions to avoid or otherwise handle this signal the INTERRUPT will cause it to terminate. The
shell notices that cat has terminated and prompts you again with '% '. If you hit INTERRUPT

•Many users use st(r(]) to change the interrupt character to tC.

- 8 -

again, the shell will just repeat its prompt since it handles INTERRUPT signals and chooses 10
continue to execute commands rather than terminating like cal did, which would have the effect
of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their
standard input. Thus the mail program in the first example above was terminated when we
typed a l D which generates an end-of-file from the standard input. The shell also terminates
when it gets an end-of-file printing 'logout'; UNIX then logs you off the system. Since this
means that typing too many l D's can accidentally log us off, the shell has a mechanism for
preventing this. This ignoreeof option will be discussed in section 2.2.

If a command has its standard input redirected from a file, then it will normally terminate
when it reaches the end of this file. Thus if we execute

mail bill < prepared. text

the mail command will terminate without our typing a f D. This is because it read to the end­
of-file of our file 'prepared.text' in which we placed a message for 'bill' with an editor program.
We could also have done ·

cat prepared.text I mail bill

since the cal command would then have written the text through the pipe to the standard input
of the mail command. When the cal command completed it would have terminated. closing
down the pipeline and the mail command would have received an end-of-file from it and ter­
minated. Using a pipe here is more complicated than redirecting input so we would more likely
use the first form. These commands could also have been stopped by sending an Il'TERRL"PT.

Another possibility for stopping a command is to suspend its execution temporarily, with
the possibility of continuing execution later. This is done by sending a STOP signal via typing a
lZ. This signal causes all commands running on the terminal (usually one but more if a pipe­
line is executing) to become suspended. The shell notices that the command(s) have been
suspended, types 'Stopped' and then prompts for a new command. The previously executing
command has been suspended, but otherwise unaffected by the STOP signal. Any other com­
mands can be executed while the original command remains suspended. The suspended com­
mand can be continued using the jg command with no arguments. The shell will then retype
the command to remind you which command is being continued, and cause the command to
resume execution. Unless any input files in use by the suspended command have been
changed in the meantime, the suspension has no effect whatsoever on the execution of the
command. This feature can be very useful during editing, when you need to look at another
file before continuing. An example of command suspension follows.

% mail harold
Someone just copied a big file into my directory and its name is
f Z
Stopped
% Is
funnyfile
prog.c
prog.o
%jobs
(1] + Stopped mail harold
% fg
mail harold
f unnyfile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he
wanted to mention. The mail command was suspended by typing l Z. When the shell noticed

- 9 -

that the mail program was suspended, it typed 'Stopped' and prompted for a new command
Then the Is command was typed to find out the name of the file. The jobs command was run to
find out which command was suspended. At this time the fg command was typed to continue
execution of the mail program. Input to the mail program was then continued and ended with
a TD which indicated the end of the message at which time the mail program typed EOT. The
jobs command will show which commands are suspended. The f Z should only be typed at the
beginning of a line since everything typed on the current line is discarded when a signal is sent
from the keyboard. This also happens on INTERRUPT, and QUIT signals. More information on
suspending jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to
stop them somewhat ungracefully. This can be done by sending them a QUIT signal. sent b}
typing a f \. This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file 'core' has been created containing information about the program 'a.out's
state when it terminated due to the QUIT signal. You can examine this file yourself, or forward
information to the maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will
ignore INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill com­
mand. See section 2.6 for an example.

If you want to examine the output of a command without having it move off the screen as
the output of the

cat /etc/passwd

command will, you can use the command

more /etc/passwd

The more program pauses after each complete screenful and types ' - - More- - ' at which
point you can hit a space to get another screenful, a return to get another line, or a 'q' to end
the more program. You can also use more as a filler, i.e.

cat /etc/passwd I more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the TS key to stop the
typeout. The typeout will resume when you hit TQ or any other key, but TQ is normally used
because it only restarts the output and does not become input to the program which is running.
This works well on low-speed terminals, but at 9600 baud it is hard to type TS and T Q fast
enough to paginate the output nicely, and a program like more is usually used.

An additional possibility is to use the T 0 flush output character~ when this character is
typed, all output from the current command is thrown away (quickly) until the next input read
occurs or until the next shell prompt. This can be used to allow a command to complete
without having to suffer through the output on a slow terminal; TO is a toggle, so flushing can
be turned off by typing TO again while output is being flushed.

1.9. What now?
We have so far seen a number of mechanisms of the shell and learned a lot about the way

in which it operates. The remaining sections will go yet further into the internals of the shell,
but you will surely want to try using the shell before you go any further. To try it you can log
in to UNIX and type the following command to the system:

chsh myname /bin/csh

Here 'myname' should be replaced by the name you typed to the system prompt of 'login:' to
get onto the system. Thus I would use 'chsh bill /bin/csh'. You onl~· have to do this once; it

- l 0 -

takes effect at next login. You are now ready to try using csh.

Before you do the 'chsh' command, the shell you are using when you Jog into the system
is '/bin/sh'. In fact, much of the above discussion is applicable to '/bin/sh'. The next section
will introduce many features particular to csh so you should change your shell to csh before you
begin reading it.

- 11 -

2. Details on the sheJJ for terminal users

2.1. Shell startup and termination

When you login, the shell is started by the system in your home directory and begins by
reading commands from a file .cshrc in this directory. All shells which you may start during
your terminal session will read from this file. We will later see what kinds of commands are
usefully placed there. For now we need not have this file and the shell does not complain
about its absence.

A login shell, executed after you login to the system, will, after it reads commands from
.cshrc, read commands from a file .login also in your home directory. This file contains com­
mands which you wish to do each time you login to the UNIX system. My .login file looks
something like:

set ignoreeof
set mail= (/usr/spool/mail/bill)
echo "$(prompt)users" ; users
alias ts\

'set noglob; eval 'tset -s -m dialup:c100rv4pna -m plugboard:?hp262lnl *";
ts; stty intr TC kill TU crt
set time= 15 history= 10
msgs -f
if (-e $mail) then

endif

echo "$(prompt}mail"
mail

This file contains several commands to be executed by UNIX each time I login. The first is
a se1 command which is interpreted directly by the shell. It sets the shell variable ignoreeof
which causes the shell to not log me off if I hit TD. Rather, I use the logou1 command to log
off of the system. By setting the mail variable, I ask the shell to watch for incoming mail to
me. Every 5 minutes the shell looks for this file and tells me if more mail has arrived there.
An alternative to this is to put the command

biff y

in place of this set; this will cause me to be notified immediately when mail arrives, and to be
shown the first few lines of the new message.

Next I set the shell variable 'time' to '15' causing the shell to automatically print out
statistics lines for commands which execute for at least 15 seconds of CPU time. The variable
'history' is set to 10 indicating that I want the shell to remember the last 10 commands I type
in its history list, (described later).

I create an alias "ts" which executes a tset (1) command setting up the modes of the ter­
minal. The parameters to tset indicate the kinds of terminal which I usually use when not on a
hardwired port. I then execute "ts" and also use the stty command to change the interrupt
character to lC and the line kill character to f U.

I then run the 'msgs' program, which provides me with any system messages which I
have not seen before; the ·-r option here prevents it from telling me anything if there are no
new messages. Finally, if my mailbox file exists, then I run the 'mail' program to process my
mail.

When the 'mail' and 'msgs' programs finish, the shell will finish processing my .login file
and begin reading commands from the terminal, prompting for each with '% '. When I log off
(by giving the logout command) the shell will print 'logout' and execute commands from the
file '.logout' if it exists in my home directory. After that the shell will terminate and UNIX will
log me off the system. If the system is not going down, I will receive a new login message. In

- 12 -

any case, after the 'logout' message the shell is committed to terminating and will take no
further input from my terminal.

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history and time which
had values '10' and '15'. In fact, each shell variable has as value an array of zero or more
strings. Shell variables may be assigned values by the set command. It has several forms, the
most useful of which was given above and is

set name-value

Shell variables may be used to store values which are to be used in commands later
through a substitution mechanism. The shell variables most commonly referenced are, how­
ever, those which the shell itself refers to. By changing the values of these variables one can
directly affect the behavior of the shell.

One of the most important variables is the variable path. This variable contains a
sequence of directory names where the shell searches for commands. The set command with
no arguments shows the value of all variables currently defined (we usually say set) in the shell.
The default value for path will be shown by set to be

% set
argv
cwd
home
path
prompt
shell
status
term
user
%

()
/usr/bill
/usr/bill
(. /usr/ucb /bin /usr/bin)
%
/bin/csh
0
c100rv4pna
bill

This output indicates that the variable path points to the current directory '.' and then
'/usr/ucb', '/bin' and '/usr/bin'. Commands which you may write might be in '.' (usually one
of your directories). Commands developed at Berkeley, live in '/usr/ucb' while commands
developed at Bell Laboratories live in '/bin' and '/usr/bin'.

A number of locally developed programs on the system live in the directory '/usr/local'.
If we wish that all shells which we invoke to have access to these new programs we can place
the command

set path-(. /usr /ucb /bin /usr /bin /usr /local)

in our file .cshrc in our home directory. Try doing this and then logging out and back in and do

set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you
insert into your path and determines which commands are contained there. Except for the
current directory '. ', which the shell treats specially, this means that if commands are added to
a directory in your search path after you have started the shell, they will not necessarily be
found by the shell. If you wish to use a command which has been added in this way, you
should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it
will find the newly added command. Since the shell has to look in the current directory '.' on

- 13 -

each command, placing it at the end of the path specification usually works equivalently and
reduces overhead.

Other useful built in variables are the variable home which shows your home directory,
cwd which contains your current working directory, the variable 1gnoreeq(which can be set in
your .login file to tell the shell not to exit when it receives an end-of-file from a terminal (as
described above). The variable 'ignoreeor is one of several variables which the shell does not
care about the value of, only whether they are set or unset. Thus to set this variable you simply
do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable 'ignoreeor no value, but ·none is desired or required.

Finally, some other built-in shell variables of use are the variables noc/obber and mail.
The metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous con­
tents of the named file. In this way you may accidentally overwrite a file which is valuable. If
you would prefer that the shell not overwrite files in this way you can

set noclobber

in your .login file. Then trying to do

date > now

would cause a diagnostic if 'now' existed already. You could type

date > ! now

if you really wanted to overwrite the contents of 'now'. The '> !' is a special metasyntax indi­
cating that clobbering the file is ok. t

2.3. The shell's history list

The shell can maintain a history list into which it places the words of previous commands.
It is possible to use a notation to reuse commands or words from commands in forming new
commands. This mechanism can be used to repeat previous commands or to correct minor typ­
ing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechan­
ism of the shell. In this example we have a very simple C program which has a bug (or two) in
it in the file 'bug.c', which we 'cat' out on our terminal. We then try to run the C compiler on
it, referring to the file again as '!$', meaning the last argument to the previous command. Here
the '!' is the history mechanism invocation metacharacter, and the '$' stands for the last argu­
ment, by analogy to '$' in the editor which stands for the end of the line. The shell echoed the
command, as it would have been typed without use of the history mechanism, and then exe­
cuted it. The compilation yielded error diagnostics so we now run the editor on the file we
were trying to compile, fix the bug, and run the C compiler again, this time ref erring to this
command simply as '!c', which repeats the last command which started with the letter 'c'. If
there were other commands starting with 'c' done recently we could have said '!cc' or even
'!cc:p' which would have printed the last command starting with 'cc' without executing it.

tThe space between the '!'and the word 'now' is critical here. as '!now' would be an invocation of the h1s1on

mechanism. and have a totally different effect.

% cat bug.c
main()

printf("hello);

% cc!$
cc bug.c

- 14 -

"bug.c", line 4: newline in string or char constant
"bug.c", line 5: syntax error
% ed !$
ed bug.c
29
4s/)J"&/p

w
30
q
% !c

printf ("hello");

cc bug.c
%1 a.out
hello% !e
ed bug.c
30
4s/lo/lo\ \n/p

printf ("hello\n");
w
32
q
% !c -o bug
cc bug.c -o bug
% size a.out bug
a.out: 2784+364+ 1028 = 4176b == Oxl050b
bug: 2784+364+1028 = 4176b = Ox1050b
% ls -1 !"'
ls -l a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
% bug
hello
% num bug.c I spp

3932 Dec 19 09:41 a.out
3932 Dec 19 09:42 bug

spp: Command not found.
% Tspptssp
num bug.c I ssp

1 main()
3 I
4 printf("hello\n");
5 J

% !! I lpr
num bug.c I ssp I !pr
%

• 15 •

After this recompilation, we ran the resulting 'a.out' file, and then noting that there still
was a bug, ran the editor again. After fixing the program we ran the C compiler again, but
tacked onto the command an extra '-o bug' telling the compiler to place the resultant binary
in the file 'bug' rather than 'a.out'. In general, the history mechanisms may be used anywhere
in the formation of new commands and other characters may be placed before and after the
substituted commands.

We then ran the 'size' command to see how large the binary program images we have
created were, and then an 'ls -I' command with the same argument list, denoting the argu­
ment list ••'. Finally we ran the program 'bug' to see that its output is indeed correct.

To make a numbered listing of the program we ran the 'num' command on the file
'bug.c'. In order to compress out blank lines in the output of 'num' we ran the output through
the filter 'ssp', but misspelled it as spp. To correct this we used a shell substitute, placing the
old text and new text between T characters. This is similar to the subst!tute command in the
editor. Finally, we repeated the same command with '!!',but sent its output to the line printer.

There are other mechanisms available for repeating commands. The history command
prints out a number of previous commands with numbers by which they can be referenced.
There is a way to refer to a previous command by searching for a string which appeared in it,
and there are other, less useful, ways to select arguments to include in a new command. A
complete description of all these mechanisms is given in the C shell manual pages in the Fl"IX

Programmers Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input
commands. This mechanism can be used to simplify the commands you type, to supply default
arguments to commands, or to perform transformations on commands and their arguments.
The alias facility is similar to a macro facility. Some of the features obtained by aliasing can be
obtained also using shell command files, but these take place in another instance of the shell
and cannot directly affect the current shells environment or involve commands such as cd
which must be done in the current shell.

As an example, suppose that there is a new version of the mail program on the system
called 'newmail' you wish to use, rather than the standard mail program which is called 'mail'.
If you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a call on 'newmail'. More generally, suppose we wish the command 'Is' to always show
sizes of files, that is to always do ·-s'. We can do

alias ls ls -s

or even

alias dir Is - s

creating a new command syntax 'dir' which does an 'Is -s'. If we say

dir -bill

then the shell will translate this to

Is -s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other commands. It is also
possible to define aliases which contain multiple commands or pipelines, showing where the

- 16 -

arguments to the original command are to be substituted using the facilities of the history
mechanism. Thus the definition

alias cd 'cd \!* : ls·

would do an Is command after each change directory cd command. We enclosed the entire alias
definition in "' characters to prevent most substitutions from occurring and the character ': ·
from being recognized as a metacharacter. The '!' here is escaped with a '\' to prevent it from
being interpreted when the alias command is typed in. The '\!*' here substitutes the entire
argument list to the pre-aliasing cd command, without giving an error if there were no argu­
ments. The ';' separating commands is used here to indicate that one command is to be done
and then the next. Similarly the definition

alias whois 'grep \!T /etc/passwd'

defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a
large number of commands there, shells will tend to start slowly. A mechanism for saving the
shell environment after reading the .cshrc file and quickly restoring it is under development, but
for now you should try to limit the number of aliases you have to a reasonable number ... 10 or
15 is reasonable, 50 or 60 will cause a noticeable delay in starting up shells, and make the sys­
tem seem sluggish when you execute commands from within the editor and other programs.

2.5. More redirection; > > and >&
There are a few more notations useful to the terminal user which have not been intro­

duced yet.

In addition to the standard output, commands also have a diagnostic output which is nor­
mally directed to the terminal even when the standard output is redirected to a file or a pipe. It
is occasionally desirable to direct the diagnostic output along with the standard output. For
instance if you want to redirect the output of a long running command into a file and wish to
have a record of any error diagnostic it produces you can do

command > & file

The '> & ' here tells the shell to route both the diagnostic output and the standard output into
'file'. Similarly you can give the command

command I& lpr

to route both standard and diagnostic output through the pipe to the line printer daemon /pr.#

Finally, it is possible to use the form

command > > file

to place output at the end of an existing file. t

#A command form

command >&!file

exists. and is used when noclobber is set and .file already exists.
tlf nnclobber is set, then an error will result if file does not exist. otherwise the shell will create file if ii
doesn't exist. A form

command > > ! file

makes it not be an error for file to not exist when noclobber is set.

- 17 -

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of com­
mands separated by semicolons, a single job is created by the shell consisting of these com­
mands together as a unit. Single commands without pipes or semicolons create the simplest
jobs. Usually, every line typed to the shell creates a job. Some lines that create jobs (one per
line) are

sort < data
Is -s I sort -n I head -5
mail harold

If the metacharacter '&' is typed at the end of the commands, then the job is started as a
background job. This means that the shell does not wait for it to complete but immediately
prompts and is ready for another command. The job runs in the back[:round at the same time
that normal jobs, called foreground jobs, continue to be read and executed by the shell one at a
time. Thus

du >usage &

would run the du program, which reports on the disk usage of your working directory (as well
as any directories below it), put the output into the file 'usage' and return immediately with a
prompt for the next command without out waiting for du to finish. The du program would con­
tinue executing in the background until it finished. even though you can type and execute more
commands in the mean time. When a background job terminates, a message is typed by the
shell just before the next prompt telling you that the job has completed. In the following
example the du job finishes sometime during the execution of the mail command and its com­
pletion is reported just before the prompt after the mail job is finished.

% du >usage &
[l] 503
% mail bill
How do you know when a background job is finished?
EOT
[1] - Done du > usage
%

If the job did not terminate normally the 'Done' message might say something else like
'Killed'. If you want the terminations of background jobs to be reported at the time they occur
(possibly interrupting the output of other foreground jobs), you can set the notffj· variable. In
the previous example this would mean that the 'Done' message might have come right in the
middle of the message to Bill. Background jobs are unaffected by any signals from the key­
board like the STOP. INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell
remembers the command names, arguments and the process numbers of all commands in the job
as well as the working directory where the job was started. Each job in the table is either run­
ning in the foreground with the shell waiting for it to terminate, running in the backwound. or
suspended. Only one job can be running in the foreground at one time, but several jobs can be
suspended or running in the background at once. As each job is started, it is assigned a small
identifying number called the job number which can be used later to ref er to the job in the com­
mands described below. Job numbers remain the same until the job terminates and then are
re-used.

When a job is started in the backgound using '&', its number, as well as the process
numbers of all its (top level) commands, is typed by the shell before prompting you for another
command. For example,

- 18 -

% ls -s I sort -n > usage &
(2] 2034 2035

0/<1

runs the 'ls' program with the '-s' options, pipes this output into the 'sort' program with the
' - n' option which puts its output into the file 'usage'. Since the ' & ' was at the end of the line.
these two programs were started together as a background job. After starting the job, the shell
prints the job number in brackets (2 in this case) followed by the process number of each pro­
gram started in the job. Then the shell immediates prompts for a new command, leaving the
job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing T Z which sends
a STOP signal to the currently running foreground job. A background job can become
suspended by using the stop command described below. When jobs are suspended they merely
stop any further progress until started again, either in the foreground or the backgound. The
shell notices when a job becomes stopped and reports this fact, much like it reports the termi­
nation of background jobs. For foreground jobs this looks like

% du >usage
TZ
Stopped
%

'Stopped' message is typed by the shell when it notices that the du program stopped. For back­
ground jobs, using the stop command, it is

% sort usage &
(I] 2345
% stop %1
[11 + Stopped (signal)
%

sort usage

Suspending foreground jobs can be very useful when you need to temporarily change what you
are doing (execute other commands) and then return to the suspended job. Also, foreground
jobs can be suspended and then continued as background jobs using the bg command, allowing
you to continue other work and stop waiting for the foreground job to finish. Thus

% du >usage
TZ
Stopped
% bg
[1] du > usage &
%

starts 'du' in the foreground, stops it before it finishes, then continues it in the background
allowing more foreground commands to be executed. This is especially helpful when a fore­
ground job ends up taking longer than you expected and you wish you had started it in the
backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job
name arguments begin with the character '%'. since some of the job control commands also
accept process numbers (printed by the ps command.) The default job (when no argument is
given) is called the current job and is identified by a '+' in the output of the jobs command,
which shows you which jobs you have. When only one job is stopped or running in the back­
ground (the usual case) it is always the current job thus no argument is needed. If a job is
stopped while running in the foreground it becomes the current job and the existing current job
becomes the previous job - identified by a ' - ' in the output of jobs. When the current job ter­
minates, the previous job becomes the current job. When given, the argument is either '%-'
(indicating the previous job); '%#'. where # is the job number; '%pref where pref is some

- 19 -

unique prefix of the command name and arguments of one of the jobs~ or '%?' followed by
some string found in only one of the jobs. ·

The jobs command types the table of jobs, giving the job number, commands and status
('Stopped' or 'Running') of each backgound or suspended job. With the '-I' option the pro­
cess numbers are also typed.

% du > usage &
[1] 3398
% ls -s I sort -n > myfile &
[2] 3405
% mail bill
TZ
Stopped
% jobs
[l] - Running
{2] Running
[3] + Stopped
% fg %ls
Is -s I sort -n > myfile
% more myfile

du > usage
ls -s I sort -n > myfile
mail bill

The Jg command runs a suspended or background job in the foreground. It is used to res­
tart a previously suspended job or change a background job to run in the foreground (allowing
signals or input from the terminal). In the above example we used .fk to change the 'Is' job
from the background to the foreground since we wanted to wait for it to finish before looking at
its output file. The bg command runs a suspended job in the background. It is usually used
after stopping the currently running foreground job with the STOP signal. The combination of
the STOP signal and the bg command changes a foreground job into a background job. The stop
command suspends a background job.

The kill command terminates a background or suspended job immediately. In addition to
jobs, it may be given process numbers as arguments, as printed by ps. Thus, in the example
above, the running du command could have been terminated by the command

% kill %1
[l] Terminated
%

du > usage

The notify command (not the variable mentioned earlier) indicates that the termination of
a specific job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is then run in the foreground, input can be given to the job. If
desired, the job can be run in the background again until it requests input again. This is illus­
trated in the following sequence where the 's' command in the text editor might take a long
time.

% ed bigfile
120000
1,$s/thisword/thatword/
TZ
Stopped
% bg
(1] ed bigfile &
%
. . . some foreground commands

(1) Stopped (tty input) ed bigfile
% fg

ed bigfile
w
120000
q
%

- 20 -

So after the 's' command was issued, the 'ed' job was stopped with TZ and then put in the
background using bg. Some time later when the 's' command was finished, ed tried to read
another command and was stopped because jobs in the backgound cannot read from the termi­
nal. The Jk command returned the 'ed' job to the foreground where it could once again accept
commands from the terminal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to
the terminal. This prevents messages from background jobs from interrupting foreground job
output and allows you to run a job in the background without losing terminal output. It also
can be used for interactive programs that sometimes have long periods without interaction.
Thus each time it outputs a prompt for more input it will stop before the prompt. lt can then
be run in the foreground using .& more input can be given and, if necessary stopped and
returned to the background. This wv command might be a good thing to put in your .logtn file
if you do not like output from background jobs interrupting your work. It also can reduce the
need for redirecting the output of background jobs if the output is not very big:

% stty tostop
% wc hugefile &
[l] 10387
% ed text
... some time later
q
[l] Stopped (tty output) wc hugefile
% fg WC

wc hugefile
13371 30123 302577

% stty - tostop

Thus after some time the 'we' command, which counts the lines, words and characters in a file.
had one line of output. When it tried to write this to the terminal it stopped. By restarting it in
the foreground we allowed it to write on the terminal exactly when we were ready to look at its
output. Programs which attempt to change the mode of the terminal will also block, whether or
not tostop is set, when they are not in the foreground, as it would be very unpleasant to have a
background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows
nothing about background jobs started in other login sessions or within shell files. The ps can
be used in this case to find out about background jobs not started in the current shell.

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working direct0t:r. The
'change directory' command chdir (its short form cd may also be used) changes the working
directory of the shell, that is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files
related to that project in that directory. The 'make directory' command, mkdir, creates a new
directory. The pwd ('print working directory') command reports the absolute pathname of the
working directory of the shell, that is, the directory you are located in. Thus in the example
below:

% pwd
/usr/bill
% mkdir newpaper
% chdir newpaper
% pwd
/usr/bill/newpaper
%

- 21 -

the user has created and moved to the directory nev.paper. where, for example, he might place
a group of related files.

No matter where you have moved to in a directory hierarchy, you can return to your
·home' login directory by doing just

cd

with no arguments. The name ' ' always means the directory above the current one in the
hierarchy, thus

cd ..

changes the shell's working directory to the one directly above the current one. The name · .. '
can be used in any pathname, thus,

cd . ./programs

means change to the directory 'programs' contained in the directory above the current one. If
you have several directories for different projects under, say, your home directory, this short­
hand notation permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the variable
cwd. The shell can also be requested to remember the previous directory when you change to a
new working directory. If the 'push directory' command pushd is used in place of the cd com­
mand, the shell saves the name of the current working directory on a directory sracJ.: before
changing to the new one. You can see this list at any time by typing the 'directories' command
dirs.

% pushd newpaper/references
· 1newpaper /references -
% pushd /usr/lib/tmac
/usr /Jib/tmac -;newpaper /references -
% dirs
/usr/lib/tmac - inewpaper/ref erences -
% popd
-inewpaper /references -
% popd

%

The list is printed in a horizontal line, reading left to right, with a tilde n as shorthand for
your home directory-in this case '/usr/bill'. The directory stack is printed whenever there is
more than one entry on it and it changes. It is also printed by a dirs command. Dirs is usually
faster and more informative than pwd since it shows the current working directory as well as
any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first direc­
tory in the list. The 'pop directory' popd command without an argument returns you to the
directory you were in prior to the current one, discarding the previous current directory from
the stack (forgetting it). Typing popd several times in a series takes you backward through the
directories you had been in (changed to) by pushd .command. There are other options to pushd
and popd to manipulate the contents of the directory stack and to change to directories not at
the top of the stack~ see the csh manual page for details.

- 22 -

Since the shell remembers the working directory in which each job was started. it warns
you when you might be confused by restarting a job in the foreground which has a different
working directory than the current working directory of the shell. Thus if you start a back­
ground job, then change the shell's working directory and then cause the backgrol.lnd job to run
in the foreground, the shell warns you that the working directory of the currently running fore­
ground job is different from that of the shell.

% dirs -I
/mnt/bill
% cd myproject
% dirs
-/myproject
% ed prog.c
1143
tZ
Stopped
% cd ..
% Is
myproject
textfile
% fg
ed prog.c (wd: -/myproject)

This way the shell warns you when there is an implied change of working directory. even
though no cd command was issued. In the above example the 'ed' job was still in
'/mnt/bill/project' even though the shell had changed to '/mnt/bill'. A similar warning is
given when such a foreground job terminates or is suspended (using the STOP signal) since the
return to the shell again implies a change of working directory.

% fg
ed prog.c (wd: -/myproject)
... after some editing

q
(wd now:-)
%

These messages are sometimes confusing if you use programs that change their own working
directories, since the shell only remembers which directory a job is started in, and assumes it
stays there. The ' - I' option of jobs will type the working directory of suspended or background
jobs when it is different from the current working directory of the shell.

2.8. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing how they are
used.

The alias command described above is used to assign new aliases and to show the existing
aliases. With no arguments it prints the current aliases. It may also be given only one argu­
ment such as

alias Is

to show the current alias for, e.g., 'Is'.

The echo command prints its arguments. It is often used in shell scripts or as an interac­
tive command to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with
the history events can be used to reference previous events which are difficult to reference
using the contextual mechanisms introduced above. There is also a shell variable called prompt.

- 23 -

By placing a '!' character in its value the shell will there substitute the number of the current
command in the history list. You can use this number to ref er to this command in a his ton
substitution. Thus you could ·

set prompt=='\! %i ·

Note that the '!' character had to be escaped here even within ,., characters.

The limit command is used to restrict use of resources. With no arguments it prints the
current limitations:

cputime
filesize
datasize
stacksize
coredumpsize

unlimited
unlimited
5616 kbytes
512 kbytes
unlimited

Limits can be set, e.g.:

limit coredumpsize l 28k

Most reasonable units abbreviations will work~ see the csh manual page for more details.

The logout command can be used to terminate a login shell which has ixnoreeqf set.

The rehash command causes the shell to recompute a table of where commands are
located. This is necessary if you add a command to a directory in the current shell's search
path and wish the shell to find it, since otherwise the hashing algorithm may tell the shell that
the command wasn't in that directory when the hash table was computed.

The repeat command can be used to repeat a command several times. Thus to make 5
copies of the file one in the file five you could do

repeat 5 cat one > > five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to 'adm3a'. A user program pri111e111· exists
which will print out the environment. It might then show:

Thus

% printenv
HOME=/usr/bill
SHELL== /bin/csh
PA TH= :/usr/ucb:/bin:/usr /bin:/usr /local
TERM=adm3a
USER=bill
%

The source command can be used to force the current shell to read commands from a file.

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect before the
next time you login.

The time command can be used to cause a command to be timed no matter how much
CPU time it takes. Thus

- 24 -

% time cp /etc/re /usr/bill/rc
O.Ou 0.ls 0:018%2+lk 3+2io lpf+Ow
o/o time we /etc/re /usr/bill/rc

52 178 1347 /etc/re
52 178 1347 /usr/bill/rc

104 356 2694 total
O.lu 0.ls 0:00 13% 3+3k 5+3io 7pf +Ow
o/o

indicates that the cp command used a negligible amount of user time (u) and about I/10th of a
system time (s): the elapsed time was I second (0:01), there was an average memory usage of
2k bytes of program space and I k bytes of data space over the cpu time involved (2 +I k): the
program did three disk reads and two disk writes (3 + 2io), and took one page fault and was not
swapped (l pf +Ow). The word count command we on the other hand used 0.1 seconds of user
time and 0.1 seconds of system time in less than a second of elapsed time. The percentage
•13%' indicates that over the period when it was active the command 'we' used an average of
13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable definitions
from the shell, and unsetenv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more
features of the shell to be discussed here, and all features of the shell are discussed in its
manual pages. One useful feature which is discussed later is the .foreach built-in command
which can be used to run the same command sequence with a number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and
the shell manual pages to become familiar with the other facilities which are available to you.

- 25 -

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and exe­
cute commands from these files, which are called shell scripts. We here detail those features of
the shell useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program called
make which is very useful for maintaining a group of related files or performing sets of opera­
tions on related files. For instance a large program consisting of one or more files can have its
dependencies described in a makefile which contains definitions of the commands used to create
these different files when changes occur. Definitions of the means for printing listings, cleaning
up the directory in which the files reside, and installing the resultant programs are easily. and
most appropriately placed in this makefile. This format is superior and preferable to maintain­
ing a group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be created which defines how
different versions of the document are to be created and which options of nroff" or troff are
appropriate.

3.3. lm·ocation and the argv variable

A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and ' .. .' is replaced by a
sequence of arguments. The shell places these arguments in the variable arg1• and then begins
to read commands from the script. These parameters are then available through the same
mechanisms which are used to reference any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a '#'
character) then a '/bin/csh' will automatically be invoked to execute 'script' when you type

script

If the file does not begin with a '#' then the standard shell '/bin/sh' will be used to execute it.
This allows you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution
After each input line is broken into words and history substitutions are done on it. the

input line is parsed into distinct commands. Before each command is executed a mechanism
know as variable substitution is done on these words. Keyed by the character '$' this substitu­
tion replaces the names of variables by their values. Thus

echo Sargv

when placed in a command script would cause the current value of the variable argv to be
echoed to the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables.
The notation

$?name

expands to 'l' if name is set or to 'O' if name is not set. It is the fundamental mechanism used

- 26 -

for checking whether particular variables have been assigned values. All other forms of refer­
ence to undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name. Thus

% set argv= (a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
0
% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Th us

$argv [1]

gives the first component of arg1· or in the example above 'a'. Similarly

$argv [$#argv]

would give 'c', and

$argv[1-2)

would give 'a b'. Other notations useful in shell scripts are

$11

where 11 is an integer as a shorthand for

$argv [11)

the 11th parameter and

$"'

which is a shorthand for

$argv

The form

$$

expands to the process number of the current shell. Since this process number is unique in the
system it can be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell's standard input
(not the script it is reading). This is useful for writing shell scripts that are interactive, reading
commands from the terminal, or even writing a shell script that acts as a filter, reading lines
from its input file. Thus the sequence

echo 'yes or no?\c'
set a==($<)

would write out the prompt 'yes or no?' without a newline and then read the answer into the

- 27 -

variable 'a'. In this case '$#a' would be 'O' if either a blank line or end-of-file (!DJ was typed.

One minor difference between '$11' and '$argv[n]' should be noted here. The form
'$argv[11]' will yield an error if /1 is not in the range 'l-$#argv' while '$n' will never yield an
out of range subscript error. This is for compatibility with the way older shells handled parame­
ters.

Another important point is that it is never an error to give a subrange of the form ·n - ·:
if there are less than /1 components of the given variable then no words are substituted. A
range of the form 'm-n' likewise returns an empty vector without giving an error when /11

exceeds the number of elements of the given variable, provided the subscript /1 is in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate
expressions in the shell based on the values of variables. In fact, all the arithmetic operations
of the language C are available in the shell with the same precedence that they have in C. In
particular, the operations'====' and'!==' compare strings and the operators'&&' and 'I!' imple­
ment the boolean and/or operations. The special operators '=-· and T' are similar to · = = ·
and '! ==' except that the string on the right side can have pattern matching characters Oike *. ?
or []) and the test is whether the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

-? filename

where '?' is replace by a number of single characters. For instance the expression primitive

-e filename

tell whether the file 'filename' exists. Other primitives test for read. write and execute access
to the file, whether it is a directory. or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form
'I command l' which returns true, i.e. '1' if the command succeeds exiting normally with exit
status 0, or 'O' if the command terminates abnormally or with exit status non-zero. If more
detailed information about the execution status of a command is required. it can be executed
and the variable '$status' examined in the next command. Since '$status' is set by every com­
mand, it is very transient. It can be saved if it is inconvenient to use it only in the single
immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and
some of its control structure follows:

- 28 -

% cat copyc

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
already in - /backup

set noglob
foreach i ($argv)

end

if ($i !- • .c) continue # not a .c file so do nothing

if(! -r ·1backup/$i:t) then

end if

echo $i:t not in backup ... not cp\'ed
continue

cmp -s $i ·1backup/$i:t #to set $status

if ($status ! = 0) then
echo new backup of $i
cp $i -/backup/$i :t

endif

This script makes use of the foreach command, which causes the shell to execute the com­
mands between the foreach and the matching end for each of the values given between '(' and
')' with the named variable, in this case 'i' set to successive values in the list. Within this loop
we may use the command break to stop executing the loop and cominue to prematurely ter­
minate one iteration and begin the next. After the foreach loop the iteration variable U in this
case) has the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the members of ar;.:l'.
This is a good idea, in general, if the arguments to a shell script are filenames which have
already been expanded or if the arguments may contain filename expansion metacharacters. 11
is also possible to quote each use of a '$' variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to the current implementation of the
sheII.t

tThe following two formats are not currently acceptable to the shell:

and

if (expression)
then

command

end if

#Won't work!

if (expression) then command endif #Won't work

- 29 -

The shell does have another form of the if statement of the form

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve
• 1 ·, • & ' or ·~' and must not be another control command. The second form requires the final
•\' to immediately precede the end-of-line.

The more general ifstatements above also admit a sequence of else-!fpairs followed by a
single else and an endif. e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

end if

Another important mechanism used in shell scripts is the •:' modifier. We can use the
modifier ·:r' here to extract a root of a filename or ':e' to extract the extension. Thus if the
variable i has the value '/mnt/foo.bar' then

% echo Si Si:r $i:e
/mnt/foo.bar /mnt/foo bar
o/o

shows how the •:r' modifier strips off the trailing •.bar' and the the •:e' modifier leaves only the
•bar'. Other modifiers will take off the last component of a pathname leaving the head ':h' or
all but the last component of a pathname leaving the tail •:t'. These modifiers are fully
described in the csh manual pages in the programmers manual. It is also possible to use the
command substitution mechanism described in the next major section to perform modifications
on strings to then reenter the shells environment. Since each usage of this mechanism involves
the creation of a new process, it is much more expensive to use than the •:' modification
mechanism.# Finally, we note that the character '#' lexically introduces a shell comment in
shell scripts (but not from the terminal). All subsequent characters on the input line after a
'#' are discarded by the shell. This character can be quoted using "' or '\' to place it in an
argument word.

#It is also important to note that the current implementation of the shell limits the number of ':' modifiers
on a '$' substitution to 1. Thus

% echo Si Si:h:t
/a/b/c /a/b:t
%

does not do what one would expect.

- 30 -

3.7. Other control structures

The shell also has control structures while and stt·itch similar to those of C. These take the
forms

and

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:

endsw

commands
breaksw

For details see the manual section for csh. C programmers should note that we use breaks11 to
exit from a stt·itch while break exits a while or foreach loop. A common mistake to make in csh
scripts is to use break rather than breaks11· in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which
is running the script. This is different from previous shells running under UNIX. It allows shell
scripts to fully participate in pipelines, but mandates extra notation for commands which are to
take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As
an example, consider this script which runs the editor to delete leading blanks from the lines in
each argument file

• 31 -

% cat deblank
deblank - - remove leading blanks
foreach i ($argv)
ed - $i << 'EOF'
l,$s/T[]*//
w
q
'EOF'
end
%

The notation '< < 'EOF'' means that the standard input for the ed command is to come from
the text in the shell script file up to the next line consisting of exactly "EOF''. The fact that
the 'EOF' is enclosed in "' characters, i.e. quoted, causes the shell to not perform variable sub­
stitution on the intervening lines. In general, if any part of the word following the '< < · which
the shell uses to terminate the text to be given to the command is quoted then these substitu­
tions will not be performed. In this case since we used the form ').$' in our editor script we
needed to insure that this '$' was not variable substituted. We could also have insured this by
preceding the '$' here with a '\ ', i.e.:

J.\$s/T[]*//

but quoting the 'EOF' terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell
script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a 'goto label'
and we can remove the temporary files and then do an exit command (which is built in to the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit(})

e.g. to exit with status '1 '.

3.10. What else?
There are other features of the shell useful to writers of shell procedures. The 1·erbo~e

and echo options and the related - ,, and - x command line options can be used to help trace
the actions of the shell. The -11 option causes the shell only to read commands and not to
execute them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which do not begin with
the character '#'. that is shell scripts that do not begin with a comment. Similarly. the
'/bin/sh' on your system may well defer to 'csh' to interpret shell scripts which begin with '#'.
This allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using '"' which allows only some of the
expansion mechanisms we have so far discussed to occur on the quoted string and serves to
make this string into a single word as "' does.

- 32 -

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal to _aid in per­
forming a number of similar commands. For instance, there were at one point three shells in
use on the Cory UNIX system at Cory Hall, '/bin/sh', '/bin/nsh', and '/bin/csh'. To count the
number of persons using each shell one could have issued the commands

% grep -c csh$ /etc/passwd
27
% grep -c nsh$ /etc/passwd
128
% grep -c -v sh$ /etc/passwd
430
%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i ('sh$' ·csh$' · -v sh$')
? grep -c $i /etc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with '? ' when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You
can, for example, do

% set a= Cls')
% echo $a
csh.n csh.rm
% ls
csh.n
csh.rm
% echo $#a
2
%

The set command here gave the variable a a list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within ''' characters is converted by the shell to a list of words.
You can also place the •·• quoted string within '"' characters to take each (non-empty) line as a
component of the variable; preventing the lines from being split into words at blanks and tabs.
A modifier ':x' exists which can be used later to expand each component of the variable into
another variable splitting it into separate words at embedded blanks and tabs.

4.2. Braces I ... } in argument expansion

Another form of filename expansion, alluded to before involves the characters 'I' and 'J '.
These characters specify that the contained strings, separated by ',' are to be consecutively sub­
stituted into the containing characters and the results expanded left to right. Thus

A lstrl ,str2, ... strn}B

expands to

,•

- 33 -

AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursiveh
(i.e. nested). The results of each expanded string are sorted separately, left to right order being
preserved. The resulting filenames are not required to exist if no other expansion mechanisms
are used. This means that this mechanism can be used to generate arguments which are not
filenames, but which have common parts.

A typical use of this would be

mkdir -/lhdrs,retrofit,cshJ

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is
most useful when the common prefix is longer than in this example, i.e.

chown root /usr/lucb/lex,editJ,lib/lex?. ?*,how_exl J

4.3. Command substitution

A command enclosed in •'' characters is replaced, just before filenames are expanded, by
the output from that command. Thus it is possible to do

set pwd == 'pwd'

to save the current directory in the variable pwd or to do

ex 'grep - I TRACE • .c.

to run the editor ex supplying as arguments those files whose names end in '.c' which have the
string 'TRACE' in them.•

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of
different substitutions performed by the shell. The exact meaning of certain combinations of
quotations is also occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX pro­
grams, and debugging shell scripts. See the shells manual section for a list of these options.

•command expansion also occurs in input redirected with • < <' and within ••• quotations. Refer to the shell
manual section for full details.

- 34 -

Appendix - Special characters

The following table lists the special characters of csh and the UNIX system, giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in
expressions. See the csh manual section for a complete list.

Syntactic metacharacters

' I
()
&

2.4
1.5
2.2,3.6
2.5

separates commands to be executed sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed without waiting for completion

Filename metacharacters

I
?

•
[]

I l

1.6
1.6
1.6
1.6
1.6
4.2

separates components of a file's pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

Quotation metacharacters

\ 1.7
1. 7
4.3

prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like ·, but allows variable and command expansion

Input/output metacharacters

<
>

1.5
1.3

indicates redirected input
indicates redirected output

Expansion/substitution metacharacters

$ 3.4
2.3
3.6
2.3
4.3

Other metacharacters

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

1.3,3.6 begins scratch file names; indicates shell comments
1.2 prefixes option (flag) arguments to commands

% 2.6 prefixes job name specifications

- 35 -

Glossary

This glossary lists the most important terms introduced in the introduction to the shell
and gives references to sections of the shell document for further information about them.
References of the form 'pr (1)' indicate that the command pr is in the UNIX -programmer·s
manual in section 1. You can get an online copy of its manual page by doing --

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this
manual.

Your current directory has the name '.' as well as the name printed by the
command pwd; see also dirs. The current directory ·.' is usually the first co111-
po11e111 of the search path contained in the variable parh, thus commands which
are in '.' are found first (2.2). The character '.' is also used in separating co111-
ponems of filenames (1.6). The character '.' at the beginning of a co111pone111 of
a pathname is treated specially and not matched by the .filename expansion meta·
characters '?', '*', and '[' ']' pairs 0 .6).

Each directory has a file ' .. ' in it which is a reference to its parent directory.
After changing into the directory with chdir, i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

The current directory is printed by pwd (2.7).

a.out Compilers which create executable images create them. by default, in the file
a.out. for historical reasons (2.3).

absolute pathname

alias

argument

argv

background

base

A pathname which begins with a 'I' is absolute since it specifies the path of
directories from the beginning of the entire directory system - called the roo1

directory. Pathnames which are not absolute are· called relari1•e (see definition of
relative pathname) 0 .6).

An alias specifies a shorter or different name for a Ul'ilX command. or a
transformation on a command to be performed in the shell. The shell has a
command alias which establishes aliases and can print their current values.
The command unalias is used to remove aliases (2.4).

Commands in UNIX receive a list of arfr(wnelll words. Thus the command

echo ab c

consists of the command name 'echo' and three argumem words 'a', 'b' and 'c'.
The set of arguments after the command name is said to be the arfr(ume111 list of
the command (1.1).

The list of arguments to a command written in the shell language (a shell
script or shell procedure) is stored in a variable called arg1• within the shell.
This name is taken from the conventional name in the C programming
language (3.4).

Commands started without waiting for them to complete are called background
commands (2.6).
A filename is sometimes thought of as consisting of a base part, before any '.'
character, and an extension - the part after the '.'. See filename and extension
(1.6)

bg

bin

break

breaksw

builtin

case

cal

cd

chdir

ch sh

cmp

command

command name

- 36 -

The bg command causes a suspended job to continue execution in the back­
ground (2.6).

A directory containing binaries of programs and shell scripts to be executed is
typically called a bin directory. The standard system bin directories are '/bin·
containing the most heavily used commands and '/usr/bin' which contains
most other user programs. Programs developed at UC Berkeley live in
'/usr/ucb', while locally written programs live in '/usr/local'. Garnes are kept
in the directory '/usr/garnes'. You can place binaries in any directory. If you
wish to execute them often, the name of the directories should be a component
of the variable path.

Break is a builtin command used to exit from loops within the control struc­
ture of the shell (3. 7).

The breaksw builtin command is used to exit from a stt·itch control structure.
like a break exits from loops (3.7).

A command executed directly by the shell is called a builtin command. Most
commands in UNIX are not built into the shell, but rather exist as files in b111
directories. These commands are accessible because the directories in which
they reside are named in the path variable.

A case command is used as a label in a stt·itch statement in the shell's control
structure, similar to that of the language C. Details are given in the shell
documentation 'csh(I)' (3.7).

The cat program catenates a list of specified files on the standard output. It is
usually used to look at the contents of a single file on the terminal. to 'cal a
file' (1.8, 2.3).
The cd command is used to change the y.·orking direct01y. With no arguments.
cd changes your working directory to be your home directory (2.4, 2. 7).

The chdir command is a synonym for ed. Cd is usually used because it is easier
to type.

The chsh command is used to change the shell which you use on UNIX. By
default, you use an different version of the shell which resides in '/bin/sh'.
You can change your shell to '/bin/csh' by doing

chsh your-login-name /bin/csh

Thus I would do

chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to UNIX after
doing this command, you will be using csh rather than the shell in '/bin/sh'
0.9).
Cmp is a program which compares files. It is usually used on binary files, or to
see if two files are identical (3.6). For comparing text files the program di.ff;
described in 'diff (1)' is used.

A function performed by the system, either by the shell (a builtin command)
or by a program residing in a file in a directory within the UNIX system. is
caJJed a command (1.1).

When a command is issued, it consists of a command name, which is the first
word of the command, followed by arguments. The convention on UNIX is
that the first word of a command names the function to be performed (1.1).

- 37 -

command substitution

component

continue

control-

core dump

cp

csh

.cshrc

cwd

date

debugging

default:

DELETE

detached

diagnostic

The replacement of a command enclosed in ,., characters by the text output bv
that command is called command substitution (4.3). .

A part of a pathname between • /' characters is called a component of that pa1h­
name. A variable which has multiple strings as value is said to have several
components; each string is a componenr of the variable.

A builtin command which causes execution of the enclosing foreach or 11'/11/c
loop to cycle prematurely. Similar to the conrinue command in the program­
ming language C (3.6).

Certain special characters, called conrrol characters, are produced by holding
down the CONTROL key on your terminal and simultaneously pressing another
character, much like the SHIFT key is used to produce upper case characters.
Thus control-c is produced by holding down the CONTROL key while pressing
the 'c' key. Usually UNIX prints an up-arrow q) followed by the corresponding
Jetter when you type a control character (e.g. 'lC' for control-c (1.8).

When a program terminates abnormally, the system places an image of its
current state in a file named 'core'. This core dump can be examined with the
system debugger 'adb(l)' or 'sdb(l)' in order to determine what went wrong
with the program (1.8). If the shell produces a message of the form

Illegal instruction (core dumped)

(where 'Illegal instruction' is only one of several possible messages). you
should report this to the author of the program or a system administrator. sav­
ing the 'core' file.

The cp (copy) program is used to copy the contents of one file into another
file. It is one of the most commonly used UNIX commands 0 .6).

The name of the shell program that this document describes.

The file .cshrc in your home directory is read by each shell as it begins execu­
tion. It is usually used to change the setting of the variable parh and to set
alias parameters which are to take effect globally (2. I).

The cwd variable in the shell holds the absolute pathname of the current tt·ork­
ing directory. It is changed by the shell whenever your current tt·orking directorr
changes and should not be changed otherwise (2.2).

The date command prints the current date and time 0 .3).
Debugging is the process of correcting mistakes in programs and shell scripts.
The shell has several options and variables which may be used to aid in shell
debugging (4.4).

The label default: is used within shell switch statements, as it is in the C
language to label the code to be executed if none of the case labels matches
the value switched on (3.7).
The DELETE or RUBOUT key on the terminal normally causes an interrupt to be
sent to the current job. Many users change the interrupt character to be t C.

A command that continues running in the background after you logout is said
to be detached.
An error message produced by a program is often ref erred to as a diagnostic.
Most error messages are not written to the standard output, since that is often
directed away from the terminal (1.3, 1.5). Error messsages are instead writ­
ten to the diagnostic output which may be directed away from the terminal, but
usually is not. Thus diagnostics will usually appear on the terminal (2.5).

- 38 -

directory A structure which contains files. At any time you are in one particular d1rc'ctn1T
whose names can be printed by the command pwd. The chd1r command wiil
change you to another direc1ory, and make the files in that d1rec101T visible. The
direclory in which you are when you first login is your home d.irectory (l .1.
2.7).

directory stack The shell saves the names of previous "wking directories in the direc1on slack
when you change your current working direclory via the pushd command The
directory stack can be printed by using the dirs command, which includes your
current working directory as the first directory name on the left (2. 7).

di rs The di rs command prints the shell's directory stack. (2. 7L

du The du command is a program (described in 'du(])') which prints the number
of disk blocks is all directories below and including your current work111g direc­
tory (2.6).

echo The echo command prints its arguments 0 .6, 3.6).

else The else command is part of the 'if-then-else-endir control command con­
struct (3.6).

end if If an if statement is ended with the word then, all lines following the if up to a
line starting with the word end!f or else are executed if the condition between
parentheses after the ifis true (3.6).

EOF An end-o.f-file is generated by the terminal by a control-d, and whenever a
command reads to the end of a file which it has been given as input. Com­
mands receiving input from a pipe receive an end-o.f-file when the command
sending them input completes. Most commands terminate when they receive
an end-of file. The shell has an option to ignore end-o.f-.file from a terminal
input which may help you keep from logging out accidentally by typing too
many control-d's (1.1, 1.8, 3.8).

escape A character '\' used to prevent the special meaning of a metacharacter is said
to escape the character from its special meaning. Thus

/etc/passwd

exit

exit status

echo*

will echo the character '*' while just

echo•

will echo the names of the file in the current directory. In this example. \
escapes '*' (1. 7). There is also a non-printing character called escape, usually
labelled ESC or AL TMODE on terminal keyboards. Some older UNIX systems use
this character to indicate that output is to be suspended. Most systems use
control-s to stop the output and control-q to start it.

This file contains information about the accounts currently on the system. It
consists of a line for each account with fields separated by':' characters 0.8).
You can look at this file by saying

cat /etc/passwd

The commands finger and grep are often used to search for information in this
file. See 'fingerO)', 'passwd (5) ', and 'grep(l)' for more details.

The exit command is used to force termination of a shell script, and is built
into the shell (3.9).

A command which discovers a problem may reflect this back to the command
(such as a shell) which invoked (executed) it. It does this by returning a
non-zero number as its exit status, a status of zero being considered 'normal
termination'. The exit command can be used to force a shell command script

expansion

expressions

extension

f g

filename

- 39 -

to give a non-zero exit status (3.6).

The replacement of strings in the shell input which contain metacharacters bv
other strings is referred to as the process of expansion. Thus the replacemen.t
of the word '*' by a sorted list of files in the current directory- is a 'filename
expansion'. Similarly the replacement of the characters '!!' by the- text of the
last command is a 'history expansion'. Expansions are also referred to as subsn­
tutions 0 .6, 3.4, 4.2).

Expressions are used in the shell to control the conditional structures used in
the writing of shell scripts and in calculating values for these scripts. The
operators available in shell expressions are those of the language C 0.5).

Filenames often consist of a base name and an extension separated by the char­
acter '. '. By convention, groups of related files often share the same ron1
name. Thus if 'prog.c' were a C program, then the object file for this program
would be stored in 'prog.o'. Similarly a paper written with the '-me' nroff
macro package might be stored in 'paper.me' while a formatted version of this
paper might be kept in 'paper.out' and a list of spelling errors in 'paper.errs'
0.6).

The job control command Jg is used to run a background or suspended job in the
foreground 0 .8, 2.6).

Each file in UNIX has a name consisting of up to 14 characters and not includ­
ing the character '/' which is used in pathname building. Most .filenames do not
begin with the character '.', and contain only letters and digits with perhaps a
'.' separating the base portion of the filename from an extension (1.6).

filename expansion

flag

foreach

foreground

goto

grep

Filename expansion uses the metacharacters '*','?'and'[' and')' to provide a
convenient mechanism for naming files. Using filename expansion it is easy to
name all the files in the current directory, or all files which have a common
root name. Other filename expansion mechanisms use the metacharacter ·-· and
allow files in other users' directories to be named easily 0 .6, 4.2).

Many UNIX commands accept arguments which are not the names of files or
other users but are used to modify the action of the commands. These are
referred lo as flag options, and by convention consist of one or more letters
preceded by the character'-' 0.2). Thus the ls (list files) command has an
option '-s' to list the sizes of files. This is specified

ls -s

The foreach command is used in shell scripts and at the terminal to specify
repetition of a sequence of commands while the value of a certain shell vari­
able ranges through a specified list (3 .6, 4.1).
When commands are executing in the normal way such that the shell is waiting
for them to finish before prompting for another command they are said to be
foreground jobs or running in the foreground. This is as opposed to background.
Foreground jobs can be stopped by signals from the terminal caused by typing
different control characters at the keyboard (1.8, 2.6).
The shell has a command goto used in shell scripts to transfer control to a
given label (3.7).
The grep command searches through a list of argument files for a specified
string. Thus

grep bill /etc/passwd

will print each line in the file letclpasswd which contains the string 'bill'·

head

history

home directory

if

ignoreeof

input

interrupt

job

- 40 -

Actually, grep scans for regular expressions in the sense of the editors 'ed (Jr
and 'ex(l)'. Grepstands for 'globally find regular expression and print' (2.4).

The head command prints the first few lines of one or more files, If you have
a bunch of files containing text which you are wondering about it is sometimes
useful to run head with these files as arguments. This will usually show
enough of what is in these files to let you decide which you are interested in
0 .5).
Head is also used to describe the part of a pathname before and including the
last '/' character. The tail of a pathname is the part after the last • /'. The ':h'
and ':t' modifiers allow the head or tail of a pathname stored in a shell variable
to be used (3.6).

The history mechanism of the shell allows previous commands to be repeated.
possibly after modification to correct typing mistakes or to change the meaning
of the command. The shell has a history list where these commands are kept,
and a history variable which controls how large this list is (2.3).

Each user has a home directory, which is given in your entry in the password
file, letclpass ... ·d. This is the directory which you are placed in when you first
login. The cd or chdir command with no arguments takes you back to this
directory, whose name is recorded in the shell variable home. You can also
access the home directories of other users in forming filenames using a .filename
expansion notation and the character ·-· 0 .6).

A conditional command within the shell, the if command is used in shell com­
mand scripts to make decisions about what course of action to take next 0.6).

Normally, your shell will exit, printing 'logout' if you type a control-d at a
prompt of '% '. This is the way you usually log off the system. You can se1
the ignoreeqf variable if you wish in your .login file and then use the command
logout to logout. This is useful if you sometimes accidentally type too many
control-d characters, logging yourself off (2.2).

Many commands on UNIX take information from the terminal or from files
which they then act on. This information is called input. Commands normally
read for input from their standard input which is, by default, the terminal. This
standard input can be redirected from a file using a shell metanotation with the
character '< '. Many commands will also read from a file specified as argu­
ment. Commands placed in pipelines will read from the output of the previous
command in the pipeline. The leftmost command in a pipeline reads from the
terminal if you neither redirect its input nor give it a filename to use as stan­
dard input. Special mechanisms exist for supplying input to commands in shell
scripts (1.5, 3.8).
An interrupt is a signal to a program that is generated by hitting the RUBOUT or
DELETE key (although users can and often do change the interrupt character,
usually to fC). It causes most programs to stop execution. Certain programs,
such as the shell and the editors, handle an interrupt in special ways, usually by
stopping what they are doing and prompting for another command. While the
shell is executing another command and waiting for it to finish, the shell does
not listen to interrupts. The shell often wakes up when you hit interrup1
because many commands die when they receive an interrupt (1.8, 3.9).

One or more commands typed on the same input line separated by 'I' or ';'
characters are run together and are called a job. Simple commands run by
themselves without any ·r or ·~· characters are the simplest jobs. Jobs are
classified as foreground, background, or suspended (2.6).

job control

job number

jobs

kill

.login

login shell

logout

.logout

lpr

ls

mail

make

makefile

manual

metacharacter

- 41 -

The builtin functions that control the execution of jobs are called job co111rol
commands. These are bg, fg, stop, kill (2.6).

When each job is started it is assigned a small number called a job 1111111bcr
which is printed next to the job in the output of the jobs command. This
number, preceded by a '%' character, can be used as an argument to job co111rol
commands to indicate a specific job (2.6).

The jobs command prints a table showing jobs that are either running in the
background or are suspended (2.6).

A command which sends a signal to a job causing it to terminate (2.6) .

The file .login in your home directory is read by the shell each time you login to
UNIX and the commands there are executed. There are a number of com­
mands which are usefully placed here, especially set commands to the shell
itself (2.1).

The shell that is started on your terminal when you login is called your login
shell. It is different from other shells which you may run (e.g. on shell scripts)
in that it reads the .login file before reading commands from the terminal and it
reads the .logout file after you logout (2.1).

The logout command causes a login shell to exit. Normally, a login shell will
exit when you hit control-d generating an end-o.f/ile, but if you have set
ignoreeof in you .login file then this will not work and you must use logout to
log off the UNIX system (2.8).

When you log off of UNIX the shell will execute commands from the file . logout
in your home directory after it prints 'logout'.

The command /pr is the line printer daemon. The standard input of /pr spooled
and printed on the UNIX line printer. You can also give /pr a list of filenames
as arguments to be printed. It is most common to use /pr as the last com­
ponent of a pipeline (2.3).

The Is (list files) command is one of the most commonly used UNIX com­
mands. With no argument filenames it prints the names of the files in the
current directory. It has a number of useful flag arguments, and can also be
given the names of directories as arguments, in which case it lists the names of
the files in these directories 0 .2).

The mail program is used to send and receive messages from other UNIX users
(1.1, 2.1).

The make command is used to maintain one or more related files and to organ­
ize functions to be performed on these files. In many ways make is easier to
use, and more helpful than shell command scripts (3.2).

The file containing commands for make is called makefile (3.2).

The manual often referred to is the 'UNIX programmer's manual'. It contains a
number of sections and a description of each UNIX program. An online version
of the manual is accessible through the man command. Its documentation can
be obtained online via

man man

Many characters which are neither letters nor digits have special meaning
either to the shell or to UNIX. These characters are called metacharacters. If it
is necessary to place these characters in arguments to commands without them
having their special meaning then they must be quoted. An example of a meta­
character is the character '>' which is used to indicate placement of output

mkdir

modifier

more

noclobber

noglob

notify

onintr

output

pushd

path

- 42 -

into a file. For the purposes of the history mechanism, most unquoted mcra­
characters form separate words (1.4). The appendix to this user's manual lists
the metacharacters in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the history mechanism, keyed by the character '!' or of vari­
ables using the metacharacter '$'. are often subjected to modifications, indi­
cated by placing the character ':' after the substitution and following this with
the modifier itself. The command substitution mechanism can also be used to
perform modification in a similar way, but this notation is less clear 0.6).

The program more writes a file on your terminal allowing you to control how
much text is displayed at a time. More can move through the file screenful by
screenful, line by line, search forward for a string, or start again at the begin­
ning of the file. It is generally the easiest way of viewing a file 0 .8).

The shell has a variable noc/obber which may be set in the file .login to prevent
accidental destruction of files by the '>' output redirection metasyntax of the
shell (2.2, 2.5).

The shell variable noglob is set to suppress the .filename expansion of arguments
containing the metacharacters ·-•, •••, '?'.'['and']' (3.6).

The notify command tells the shell to report on the termination of a specific
background job at the exact time it occurs as opposed to waiting until just
before the next prompt to report the termination. The not(fy variable, if set.
causes the shell to always report the termination of background jobs exactly
when they occur (2.6).

The onintr command is built into the shell and is used to control the action of
a shell command script when an interrupt signal is received (3. 9).

Many commands in UNIX result in some lines of text which are called their 0111-

put. This output is usually placed on what is known as the standard outpur
which is normally connected to the user's terminal. The shell has a syntax
using the metacharacter '>' for redirecting the standard output of a command
to a file (1.3). Using the pipe mechanism and the metacharacter "r it is also
possible for the standard output of one command to become the standard inplll
of another command (1.5). Certain commands such as the line printer dae­
mon p do not place their results on the standard output but rather in more use­
ful places such as on the line printer (2.3). Similarly the M'rite command places
its output on another user's terminal rather than its standard output (2.3).
Commands also have a diagnostic output where they write their error messages.
Normally these go to the terminal even if the standard output has been sent to
a file or another command, but it is possible to direct error diagnostics along
with standard output using a special metanotation (2.5).

The pushd command, which means 'push directory', changes the shell's work­
ing directory and also remembers the current working directory before the change
is made, allowing you to return to the same directory via the popd command
later without retyping its name (2. 7).
The shell has a variable path which gives the names of the directories in which
it searches for the commands which it is given. It always checks first to see if
the command it is given is built into the shell. If it is, then it need not search
for the command as it can do it internally. If the command is not builtin, then
the shell searches for a file with the name given in each of the directories in
the path variable, left to right. Since the normal definition of the path variable
is

pathname

pipeline

po pd

port

pr

printenv

process

program

- 43 -

path (. /usr/ucb /bin /usr/bin)

the shell normally looks in the current directory, and then in the standard S\ s­
tem directories '/usr/ucb', '/bin' and '/usr/bin' for the named comm;nd
(2.2). If the command cannot be found the shell will print an error diagnostic.
Scripts of shell commands will be executed using another shell -to interpret
them if they have 'execute' permission set. This is normally true because a
command of the form

chmod 755 script

was executed to turn this execute permission on 0.3). If you add new com­
mands to a directory in the path, you should issue the command rehash (2.2).

A list of names, separated by '/' characters, forms a pathname. Each co111-
po11e111, between successive '/' characters, names a directory in which the next
componem file resides. Pathnames which begin with the character '/' are inter­
preted relative to the root directory in the filesystem. Other pathnames are
interpreted relative to the current directory as reported by pv-•d. The last com­
ponent of a pathname may name a directory, but usually names a file.

A group of commands which are connected together, the standard output of
each connected to the standard input of the next, is called a pipeline. The pipe
mechanism used to connect these commands is indicated by the shell meta­
character ·r (1.5, 2.3).

The popd command changes the shell's K·orking directory to the directory you
most recently left using the pushd command. It returns to the directory
without having to type its name, forgetting the name of the current K·orki11g
directory before doing so (2.7).
The part of a computer system to which each terminal is connected is called a
port. Usually the system has a fixed number of ports, some of which are con­
nected to telephone lines for dial-up access, and some of which are per­
manently wired directly to specific terminals.

The pr command is used to prepare listings of the contents of files with
headers giving the name of the file and the date and time at which the file was
last modified (2.3).

The pri111e11v command is used to print the current setting of variables in the
environment (2.8).

An instance of a running program is called a process (2.6). UNIX assigns each
process a unique number when it is started - called the process number. Pro-
cess numbers can be used to stop individual processes using the kill or stop com­
mands when the processes are part of a detached background job.

Usually synonymous with command. a binary file or shell command script
which performs a useful function is often called a program.

programmer's manual

prompt

Also referred to as the manual. See the glossary entry for 'manual'.

Many programs will print a prompt on the terminal when they expect input.
Thus the editor 'ex(l)' will print a':' when it expects input. The shell prompts
for input with '% ' and occasionally with '? ' when reading commands from
the terminal (1.1). The shell has a variable prompt which may be set to a
different value to change the shell's main prompt. This is mostly used when
debugging the shell (2.8).

ps

pwd

quit

quotation

redirection

rehash

- 44 -

The ps command is used to show the processes you are currently running..
Each process is shown with its unique process number, an indication of the
terminal name it is attached to, an indication of the state of the process
(whether it is running, stopped, awaiting some event (sleeping"), and whether
it is swapped out), and the amount of CPU time it has used so far. The com­
mand is identified by printing some of the words used when it was invoked
(2.6). Shells, such as the csh you use to run the ps command, are not nor­
mally shown in the output.

The pwd command prints the full pathname of the current working direcro1y.
The dirs builtin command is usually a better and faster choice.

The quit signal, generated by a control-\, is used to terminate programs which
are behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning. usu­
ally by using the character .. in pairs, or by using the character '\', is ref erred
to as quotation (1.7).

The routing of input or output from or to a file is known as redirection of input
or output (1.3).

The rehash command tells the shell to rebuild its internal table of which com­
mands are found in which directories in your path. This is necessary when a
new program is installed in one of these directories (2.8).

relative pathname

repeat

root

RUBOUT

scratch file

script

set

A pathname which does not begin with a '/' is called a relatil'e pathname since it
is interpreted relative to the current working directory. The first componellf of
such a pathname refers to some file or directory in the working directory. and
subsequent componems between '/' characters refer to directories below the
M.'Orking directory. Pathnames that are not relative are called absolute pathnames
(1.6).

The repeat command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is called the
root directory since it is the 'root' of the entire tree structure of directories.
The name used in pathnames to indicate the root is '/'. Pathnames starting with
'I' are said to be absolute since they start at the root directory. Root is also
used as the part of a pathname that is left after removing the extension. See
filename for a further explanation (1.6).

The RUBOUT or DELETE key sends an interrupt to the current job. Most
interactive commands return to their command level upon receipt of an inter­
rupt, while non-interactive commands usually terminate, returning control to
the shell. Users often change interrupt to be generated by tC rather than
DELETE by using the stty command.

Files whose names begin with a '#' are referred to as scratch files, since they
are automatically removed by the system after a couple of days of non-use, or
more frequently if disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell command scripts.
It is often possible to perform simple tasks using these scripts without writing a
program in a language such as C, by using the shell to selectively run other
programs (3.3, 3.10).

The builtin set command is used to assign new values to shell variables and to
show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the set command the behavior of
the shell can be affected (2.1).

setenv

shell

shell script

signal

sort

source

special character

- 45 -

Variables in the environment •environ(5)' can be changed by using the se1c111
builtin command (2.8). The printenv command can be used to print the value
of the variables in the environment.

A shell is a command language interpreter. It is possible to write and run your
own shell, as shells are no ditf erent than any other programs as far as the sys­
tem is concerned. This manual deals with the details of one P.articular shell.
called csh.

See script (3.3, 3.10).

A signal in UNIX is a short message that is sent to a running program which
causes something to happen to that process. Signals are sent either by typing
special control characters on the keyboard or by using the kill or stop commands
(1.8, 2.6).

The sort program sorts a sequence of lines in ways that can be controlled by
argument flags (1.5).

The source command causes the shell to read commands from a specified file.
It is most useful for reading files such as .cshrc after changing them (2.8).

See metacharacters and the appendix to this manual.

standard We refer often to the standard input and standard output of commands. See
input and output (1.3, 3.8).

status

stop

string

stty

substitution

suspended

switch

termination

then

A command normally returns a status when it finishes. By convention a sraws
of zero indicates that the command succeeded. Commands may return non­
zero status to indicate that some abnormal event has occurred. The shell vari­
able status is set to the status returned by the last command. It is most useful
in shell commmand scripts (3.6).

The stop command causes a backgrou11d job to become suspended (2.6).

A sequential group of characters taken together is called a stri11g. Strings can
contain any printable characters (2.2).

The stty program changes certain parameters inside UNIX which determine how
your terminal is handled. See 'stty(l)' for a complete description (2.6).

The shell implements a number of substirutions where sequences indicated by
metacharacters are replaced by other sequences. Notable examples of this are
history substirurion keyed by the metacharacter '!' and variable substitution indi­
cated by ·s·. We also refer to substitutions as expansions (3.4).

A job becomes suspended after a STOP signal is sent to it, either by typing a
conrrol-z at the terminal (for foreground jobs) or by using the stop command
(for background jobs). When suspended, a job temporarily stops running until it
is restarted by either the Jg or bg command (2.6).

The switch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the
switch statement in the language C (3. 7).

When a command which is being executed finishes we say it undergoes termi­
nation or terminates. Commands normally terminate when they read an end­
of-file from their standard input. It is also possible to terminate commands by
sending them an interrupt or quit signal (1.8). The kill program terminates
specified jobs (2.6).

The then command is part of the shell's 'if-then-else-endir control construct
used in command scripts (3.6).

time

tset

tty

unalias

UNIX

unset

- 46 -

The time command can be used to measure the amount of CPU and real time
consumed by a specified command as well as the amount of disk i/o, memory
utilized, and number of page faults and swaps taken by the command (2. 1.
2.8).

The rser program is used to set standard erase and kill characters and to tell the
system what kind of terminal you are using. It is often invoked in a .login file
(2.1).

The word t(\' is a historical abbreviation for 'teletype' which is frequently used
in UNIX to indicate the port to which a given terminal is connected. The m
command will print the name of the Tty or port to which your terminal is
presently connected.

The unalias command removes aliases (2.8).

UNIX is an operating system on which csh runs. UNIX provides facilities which
allow csh to invoke other programs such as editors and text formatters which
you may wish to use.

The unset command removes the definitions of shell variables (2.2, 2.8).

variable expansion

variables

verbose

we

while

See variables and expansion (2.2, 3.4).

Variables in csh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path, noclobber, and
iRnoreeof for examples. Variables such as arg1• are also used in writing shell
programs (shell command scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after
they are history expanded. This is often useful in debugging shell scripts. The
verbose variable is set by the shell's -v command line option 0. 10).

The we program calculates the number of characters, words, and lines in the
files whose names are given as arguments (2.6).

The while builtin control construct is used in shell command scripts 0.7).

word A sequence of characters which forms an argument to a command is called a
word. Many characters which are neither letters, digits, ' - ', '.' nor '/' form
words all by themselves even if they are not surrounded by blanks. Any
sequence of characters may be made into a v.-ord by surrounding it with ,.,
characters except for the characters ,., and '!' which require special treatment
(l.1). This process of placing special characters in 1mrds without their special
meaning is called quotinR.

working directory

write

At any given time you are in one particular directory, called your 'H·orki11g direc­
tory. This directory's name is printed by the pwd command and the files listed
by Is are the ones in this directory. You can change 11·orking directories using
chdir.

The K'rite command is used to communicate with other users who are logged in
to UNIX.

A Guide to the Dungeons of Doom ·

Michael C. Toy
Kenne th C. R. C. Arnold

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94 720

ABSTRACT

Rogue is a visual CRT based fantasy game which runs under the UNIXt
timesharing system. This paper describes how to play rogue, and gives a
few hints for those who might otherwise get lost in the Dungeons of
Doom.

fUNIX is a trademark of Bell Laboratories

A Guide to the Dungeons of Doom

I...... . +

I
.. @] . · 1

.... B
I I
-----+------

Level: 1 Gold: 0 Hp: 12(12) Str: 16(16) Ac: 6 Exp: 1/0

Figure 1

Hp Your current and maximum hit points. Hit points indicate how much
damage you can take before you die. The more you get hit in a fight, the
lower they get. You can regain hit points by resting. The number in
parentheses is the maximum number your hit points can reach.

Str Your current strength and maximum ever strength. This can be any
integer less than or equal to 31. or greater than or equal to three. The
higher the number, the stronger you are. The number in the parentheses
is the maximum strength.you have attained so far this game.

Ac Your current armor class. This number indicates how effective your
armor is in stopping blows from unfriendly creatures. The lower this
number is, the more effective the armor.

Exp These two numbers give your current experience level and experience
points. As you do things, you gain experience points. At certain experi­
ence point totals, you gain an experience level. The more experienced
you are, the better you are able to fight and to withstand magical attacks.

3. 2. The top line
The top line of the screen is reserved for printing messages that describe

things that are impossible to represent visually. If you see a "--More--" on the
top line, this means that rogue wants to print another message on the screen,
but it wants to make certain that you have read the one that is there first. To
read the next message, just type a space.

3. 3. The rest of the screen
The rest of the screen is the map of the level as you have explored it so far.

Each symbol on the screen represents something. Here is a list of what the vari­
ous symbols mean:
@ This symbol represents you, the adventurer.

-I
+

...

These symbols represent the walls of rooms.

A door to/from a room.
The ftoor of a room.

The ftoor of a passage between rooms.
A pile or pot of gold .

-2-

) A weapon of some sort.

] A piece of armor.

A fl.ask containing a magic potion.
? A piece of paper, usually a magic scroll.

= A ring with magic properties
/ A magical staff or wand

A trap, watch out for these.

% A staircase to other levels
A piece of food.

A Guide to the Dungeons of Doom

A-Z The uppercase letters represent the various inhabitants of the Dungeons of
Doom. Watch out, they can be nasty and vicious.

4. Commands
Commands are given to rogue by typing one or two characters. Most com­

mands can be preceded by a count to repeat them (e.g. typing "10s" will do ten
searches). Commands for which counts make no sense have the count ignored.
To cancel a count or a prefix, type <ESCAPE>. The list of commands is rather
long, but it can be read at any time during the game with the "?" command.
Here it is for reference, with a short explanation of each command.

? The help command. Asks for a character to give help on. If you type a"*",
it will list all the commands, otherwise it will explain what the character you
typed does.

/ This is the "What is that on the screen?" ,command. A"/" followed by any
character that you see on the level, will tell you what that character is. For
instance, typing "/@" will tell you that the "@" symbol represents you, the
player.

h. H Move left. You move one space to the left. If you use upper case "h", you
will continue to move left until you run into something. This works for all
movement commands (e.g. "L" means run in direction "l")

j Move down.

k Move up.
1 Move right.
y Move diagonally up and left.

u Move diagonally up and right.
b Move diagonally down and left.
n Move diagonally down and right.
t Throw an object. This is a prefix command. When followed with a direction

it throws an object in the specified direction. (e.g. type "th" to throw
something to the left.)

f Find prefix. When followed by a direction it means to continue moving in
the specified direction until you pass something interesting or run into a
wall. You should experiment with this, since it is a very useful command,
but very difficult to describe.

z Zap prefix. Point a staff or wand in a given direction and fire it. Even non­
directional staves must be pointed in some direction to be used.

Identify trap command. If a trap is on your map and you can't remember
what type it is, you can get rogue to remind you by getting next to it and

-3-

A Guide to the Dungeons of Doom

typing " followed by the direction that would move you on top of it.

s Search for traps and secret doors. Examine each space immediately adja­
cent to you for the existence of a trap or secret door. There is a large
chance that even if there is something there, you won't find it, so you might
have to search a while before you find something.

> Climb down a staircase to the next level. Not surprisingly, this can only be
done if you are standing on staircase.

< Climb up a staircase to the level above. This can't be done without the
Amulet of Yendor in your posession.

Rest. This is the "do nothing" command. This is good for waiting and heal­
ing.

i Inventory. List what you are carrying in your pack.

I Selective inventory. Tells you what a single item in your pack is.

q Quaff one of the potions you are carrying.

r Read one of the scrolls in your pack.

e Eat food from your pack.

w Wield a weapon. Take a weapon out of your pack and carry it for use in
combat, replacing the one you are currently using (if any).

W Wear armor. You can only wear one suit of armor at a time. This takes
extra time.

T Take armor off. You can't remove armor that is cursed. This takes extra
time.

P Put on a ring. You can wear only two rings at a time {one on each hand). If
you aren't wearing any rings, this command will ask you which hand you
want to wear it on, otherwise, it will place it on the unused hand. The pro­
gram assumes that you wield your sword in your right hand.

R Remove a ring. If you are only wearing one ring, this command takes it off.
If you are wearing two, it will ask you which one you wish to remove,

d Drop an object. Take something out of your pack and leave it lying on the
ftoor. Only one object can occupy each space. You cannot drop a cursed
object at all if you are wielding or wearing it.

c Call an object something. If you have a type of object in your pack which
you wish to remember something about, you can use the call command to
give a name to that type of object. This is usually used when you figure out
what a potion, scroll, ring, or staff is after you pick it up. (See the "askme"
option below.)

D Print out which things you've discovered something about. This corrunand
will ask you what type of thing you are interested in. If you type the char­
acter for a given type of object (e.g. "!" for potion) it will tell you which
kinds of that type of object you've discovered (i.e., figured out what they
are). This command works for potions, scrolls, rings, and staves and wands.

o Examine and set options. This command is further explained in the section
on options.

-L Redraws the screen. Useful if spurious messages or transmission errors
have messed up the display.

-R Repeat last message. Useful when a message disappears before you can
read it. This only repeats the last message that was not a mistyped com­
mand so that you don't loose anything by accidentally typing the wrong

-4-

character instead of ~R.

<ESCAPE>
Cancel a command, prefix, or count.

Escape to a shell for some commands.

Q Quit. Leave the game.

A Guide to the Dungeons of Doom

S Save the current game in a file. It will ask you whether you wish to use the
default save file. Caveat: Rogue won't let you start up a copy of a saved
game, and it removes the save file as soon as you start up a restored game.
This is to prevent people from saving a game just before a dangerous posi­
tion and then restarting it if they die. To restore a saved game, give the file
name as an argument to rogue. As in

% rogue save _file

To restart from the default save file (see below), run
% rogue -r

v Prints the program version number.

5. Rooms
Rooms in the dungeons are either lit or dark. If you walk into a lit room,

the entire room will be drawn on the screen as soon as you enter. If you walk
into a dark room, it will only be displayed as you explore it. Upon leaving a
room, all objects inside the room which might move or be removed are erased
from the screen. In the darkness you can only see one space in all directions
around you. A corridor is always dark.

6. Fighting
If you see a monster and you wish to fight it, just attempt to run into it.

Many times a monster you find will mind its own business unless you attack it. It
is often the case that discretion is the better part of valor.

7. Objects you can find
When you find something in the dungeon, it is common to want to pick the

object up. This is accomplished in rogue by walking over the object. If you are
carrying too many things, the program will tell you and it won't pick up the
object, otherwise it will add it to your pack and tell you what you just picked up.

Many of the commands that operate on objects must prompt you to find out
which object you want to use. If you change your mind and don't want to do that
command after all, just type an <ESCAPE> and the command will be aborted.

Some objects, like armor and weapons, are easily differentiated. Others,
like scrolls and potions, are given labels which vary according to type. During a
game, any two of the same kind of object with the same label are the same type.
However, the labels will vary from game to game.

When you use one of these labeled objects, if its effect is obvious, rogue will
remember what it is for you. lf it's effect isn't extremely obvious, you can use
the "call" command (see above) or the "askme" option (see below) to scribble
down ~omething about it so you will recognize it later.

7.1. Weapons
Some weapons, like arrows, come in bunches, but most come one at a time.

In order to use a weapon, you must wield it. To fire an arrow out of a bow, you
must first wield the bow, then throw the arrow. You can only wield one weapon
at a time, but you can't change weapons if the one you are currently wielding is

-5-

A Guide to the Dungeons of Doom

cursed.

7.2. Arm.or

There are various sorts of armor lying around in the dungeon. Some of it is
enchanted, some is cursed, and some is just normal. Different armor types have
different armor classes. The lower the armor class, the more protection the
armor affords against the blows of monsters. Here is a list of the various armor
types and their normal armor class:

Type
None
Leather armor
Studded leather / Ring mail
Scale mail
Chain mail
Banded mail/ Splint mail
Plate mail

Class
10
8
7
6
5
4
3

If a piece of armor is enchanted, its armor class will be lower than normal. If a
suit of armor is cursed, its armor class will be higher, and you will not be able to
remove it. However, not all armor with a class that is higher than normal is
cursed.

7.3. Scrolls
Scrolls come with titles in an unknown tongue. After you read a scroll, it

disappears from your pack.

7.4. Potions
Potions are labeled by the color of the liquid inside the ft.ask. They disap­

pear after being quaffed.

7.5. Staves and Wands
Staves and wands do the same kinds of things. Staves are identified by a

type of wood; wands by a type of metal or bone. They are generally things you
want to do to something over a long distance, so you must point them at what
you wish to affect to use them. Some staves are not affected by the direction
they are pointed, though. Staves come with multiple magic charges. the
number being random, and when they are used up, the staff is just a piece of
wood or metal.

7.6. Rings
Rings are very useful items, since they are relatively permanent magic,

unlike the usually fleeting effects of potions, scrolls, and staves. Of course, the
bad rings are also more powerful. Most rings also cause you to use up food more
rapidly, the rate varying with the type of ring. Rings are differentiated by their
stone settings.

8. Options
Due to variations in personal tastes and conceptions of the way rogue

should do things, there are a set of options you can set that cause rogue to
behave in various different ways.

-6-

A Guide to the Dungeons of Doom

8.1. Setting the options
There are two ways to set the options. The first is with the "o" command of

rogue; the second is with the "ROGUEOPTS" environment variable2 .

8.1.1. Using the 'o' command
When you type "o" in rogue, it clears the screen and displays the current

settings for all the options. It then places the cursor by the value of the first
option and waits for you to type. You can type a <RETURN> which means to go to
the next option, a "-" which means to go to the previous option, an <ESCAPE>
which means to return to the game, or you can give the option a value. For
boolean options this merely involves typing "t" for true or "f" for false. For
string options, type the new value followed by a <RETURN>.

8.1. 2. Using the ROGUEOPTS variable
The ROGUEOPTS variable is a string containing a comma separated list of

initial values for the various options. Boolean variables can be turned on by list­
ing their name or turned off by putting a "no" in front of the name. Thus to set
up an environment variable so that jump is on, terse is off, and the name is set
to "Blue Meanie", use the command

% setenv ROGUEOPTS "jump,noterse,name=Blue Meanie"3

8. 2. Option list
Here is a list of the options and an explanation of what each one is for. The

default value for each is enclosed in square brackets. For character string
options, input over fifty characters will be ignored.

terse [noterse]
Useful for those who are tired of the sometimes lengthy messages of rogue.
This is a useful option for playing on slow terminals, so this option defaults
to terse if your are on a slow (1200 baud or under) terminal.

jump [nojump]
If this option is set, running moves will not be displayed until you reach the
end of the move. This saves considerable cpu and display time. This option
defaults to jump if you are using a slow terminal.

step [nostep]
When step is set, lists of things, like inventories or "*" responses to "Which
item do you wish to ... ? " questions, are displayed one item at a time on
the top of the screen, rather than clearing the screen, displaying the list,
then re-displaying the dungeon level.

tl.ush [noftush]
All typeahead is thrown away after each round of battle. This is useful for
those who type far ahead and then watch in dismay as a Kobold kills them.

askme [noaskme]
U pan reading a scroll or quaffing a potion which does not automatically
identify itself upon use, rogue will ask you what to name it so you can recog­
nize it if you encounter it again.

2 On Version 6 systems, there is no equivalent of the ROGUEOPTS feature.

3 For those of you who use the bourne shell, the commands would be
S ROGUEOPTS="jump,noterse,name=Blue Meanie"
S export ROGUEOPTS

-7-

A Guide to the Dungeons of Doom

passgo [napassgo]
Follow turnings in passageways. If you run in a passage and you run into
stone or a wall. rogue will see if it can turn to the right or left. If it can only
turn one way, it will turn that way. If it can turn either or neither, it will
stop. This is followed strictly, which can sometimes lead to slightly confus­
ing occurrences {which is why it defaults to being off). The "f" prefix still
works.

name [account name]
This is the name of your character. It is used if you get on the top ten
scorer's list.

fruit [slime-mold]
This should hold the name of a fruit that you enjoy eating. It is basically a
whimsey that the program uses in a couple of places.

file [""/rogue.save]
The default file name for saving the game. If your phone is hung up by
accident, rogue will automatically save the game in this file. The file name
may contain the special character """" which expands to be your home
directory.

9. Scoring
Rogue usually maintains a list of the top ten scoring people on your

machine. Each account on the machine can post only one non-winning score on
this list. If you score higher than someone else on this list, or better your previ­
ous score on the list, you will be inserted in the proper place under your current
name.

If you quit the game, you get out with all of your gold intact. If. however,
you get killed in the Dungeons of Doom, your body is forwarded to your next-of­
kin, along with 90% of your gold; ten percent of your gold is kept by the
Dungeons' wizard as a fee. This should make you consider whether you want to
take one last hit at that monster and possibly live, or quit and thus stop with
whatever you have. If you quit, you do get all your gold, but if you swing and live,
you might find more.

If you just want to see what the current top ten list is, you can type
% rogue -s

10.
Acknowledgements

Rogue was originally conceived of by Glenn Wichman and Michael Toy. Ken
Arnold and Michael Toy then smoothed out the user interface, and added jillions
of new features. We would like to thank Bob Arnold, Michelle Busch, Andy
Hatcher, Kipp Hickman, Mark Horton, Daniel Jensen, Bill Joy, Joe Kalash, Steve
Maurer, Marty McNary, Jan Miller, and Scott Nelson for their ideas and assis­
tance, and also the teeming multitudes who graciously ignored work, school, and
social life to play rogue and send us bugs, complaints, suggestions, and just plain
!lames. And also Morn.

-8-

An Introduction to Display Editing with Vi

William Joy

Revised.for versions 3.512.13 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94 720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using vi the
screen of your terminal acts as a window into the file which you are editing.
Changes which you make to the file are reflected in what you see.

Using vi you can insert new text any place in the file quite easily. Most of
the commands to vi move the cursor around in the file. There are commands
to move the cursor forward and backward in units of characters, words, sen­
tences and paragraphs. A small set of operators, like d for delete and c for
change, are combined with the motion commands to form operations such as
delete word or change paragraph, in a simple and natural way. This regularity
and the mnemonic assignment of commands to keys makes the editor com­
mand set easy to remember and to use.

Vi will work on a large number of display terminals, and new terminals
are easily driven after editing a terminal description file. While it is advanta­
geous to have an intelligent terminal which can locally insert and delete lines
and characters from the display, the editor will function quite well on dumb ter­
minals over slow phone lines. The editor makes allowance for the low
bandwidth in these situations and uses smaller window sizes and different
display updating algorithms to make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals,
storage tubes and "glass tty's" using a one line editing window; thus vi's com­
mand set is available on all terminals. The full command set of the more tradi­
tional, line oriented editor ex is available within vi; it is quite simple to switch
between the two modes of editing.

September 16, 1980

An Introduction to Display Editing with Vi

William Joy

Revised.for versions 3.512.13 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94 720

1. Getting started

This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be
running vi on a file you are familiar with while you are reading this. The first part of this docu­
ment (sections 1 through 5) describes the basics of using vi. Some topics of special interest are
presented in section 6, and some nitty-gritty details of how the editor functions are saved for
section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings
which this character has in vi. Attached to this document should be a quick reference card.
This card summarizes the commands of vi in a very compact format. You should have the card
handy while you are learning vi.

1.1. Specifying terminal type

Before you can start vi you must tell the system what kind of terminal you are using.
Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear
here, you should consult with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Full name Type

2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
act5 Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit hl 9 Intelligent
ilOO lnfoton 100 Intelligent
mime Imitating a smart act4 Intelligent

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.

t1061
vt52

Teleray 1061
Dec VT-52

- 2 -

Intelligent
Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal._ The code used
by the system for this terminal is '2621 '. In this case you can use one of the following com­
mands to tell the system the type of your terminal:

% setenv TERM 2621

This command works with the shell csh on both version 6 and 7 systems. If you are using the
standard version 7 shell then you should give the commands

$ TERM=2621
$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in,
you can use the tset program. If you dial in on a mime, but often use hardwired ports, a typical
line for your .login file (if you use csh) would be

setenv TERM 'tset - -d mime'

or for your .profile file (if you use sh)

TERM='tset - -d mime'

Tset knows which terminals are hardwired to each port and needs only to be told that when you
dial in you are probably on a mime. Tset is usually used to change the erase and kill characters,
too.

1.2. Editing a file

After telling the system which kind of terminal you have, you should make a copy of a
file you are familiar with, and run vi on this file, giving the command

% vi name

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen. If something else happens refer to the footnote.i

1.3. The editor's copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor
makes a copy of this file, in a place called the buffer, and remembers the file's name. You do
not affect the contents of the file unless and until you write the changes you make back into the
original file.

* If you gave the system an incorrect terminal type code then the editor may have just made a mess out of
your screen. This happens when it sends control codes for one kind of terminal to some other kind of termi­
nal. In this case hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you back
to the command level interpreter. Figure out what you did wrong (ask someone else if necessary) and try
again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an
error diagnostic. In this case you should follow the above procedure for getting out of the editor. and try
again this time spelling the file name correctly.

If the editor doesn't seem to respond to the commands which you type here. try sending an interrupt to it
by hitting the DEL or RUB key on your terminal, and then hitting the :q command again followed by a carriage
return.

- 3 -

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text
which should be replaced with appropriate input will be given in italics. We will represent spe­
cial characters in SMALL CAPITALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals
with cursor positioning keys, these keys will also work within the editor. If you don't have cur­
sor positioning keys, or even if you do, you can use the h j k and J keys as cursor positioning
keys (these are labelled with arrows on an adm3a). *

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick)
to send to the machine, otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left corner of
your terminal. Try hitting this key a few times. The editor will ring the bell to indicate that it
is in a quiescent state.t Partially formed commands are cancelled by ESC, and when you insert
text in the file you end the text insertion with ESC. This key is a fairly harmless one to hit, so
you can just hit it if you don't know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It
is usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the
editor to stop what it is doing. It is a forceful way of making the editor listen to you, or to
return it to the quiescent state if you don't know or don't like what is going on. Try hitting the
'/' key on your terminal. This key is used when you want to specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after a '/' printed as a
prompt. You can get the cursor back to the current position by hitting the DEL or RUB key; try
this now.• From now on we will simply refer to hitting the DEL or RUB key as "sending an
interrupt."**

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line, then the editor is performing a computation, such as com­
puting a new position in the file after a search or running a command to reformat part of the
buffer. When this is happening you can stop the editor by sending an interrupt.

1. 7. Getting out of the editor

After you have worked with this introduction for a while, and you wish to do something
else, you can give the command zz to the editor. This will write the contents of the editor's
buff er back into the file you are editing, if you made any changes, and then quit from the edi­
tor. You can also end an editor session by giving the command :q!cR;t this is a dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need to know about this command in case you change the editor's copy of a file you wish

• As we will see later, -h moves back to the left (like control-h which is a backspace). J moves down (in the
same column), kmoves up (in the same column), and /moves to the right.
:t On smart terminals where it is possible, the editor will quietly flash the screen rather than ringing the bell.
• Backspacing over the '/' will also cancel the search.
•• On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is comput­
ing with the cursor on the bottom line.
t All commands which read from the last display line can also be terminated with a ESC as well as an CR.

- 4 -

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. Moving around in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of
these is generated by hitting the control and D keys at the same time, a control-Dor 'AD'. We
will use this two character notation for referring to these control keys from now on. You may
have a key labelled 'A' on your terminal. This key will be represented as T in this document;
'A' is exclusively used as part of the 'Ax' notation for control characters.*

As you know now if you tried hitting AD, this command scrolls down in the file. The D
thus stands for down. Many editor commands are mnemonic and this makes them much easier
to remember. For instance the command to scroll up is AU. Many dumb terminals can't scroll
up at all, in which case hitting AU clears the screen and refreshes it with a line which is farther
back in the file at the top.

If you want to see more of the file below where you are, you can hit AE to expose one
more line at the bottom of the screen, leaving the cursor where it is. ** The command Ay
(which is hopelessly non-mnemonic, but next to AU on the keyboard) exposes one more line at
the top of the screen.

There are other ways to move around in the file; the keys AF and AB * move forward and
backward a page, keeping a couple of lines of continuity between screens so that it is possible to
read through a file using these rather than AD and AU if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a
file, hitting AF to move forward a page will leave you only a little context to look back at.
Scrolling on the other hand leaves more context, and happens more smoothly. You can con­
tinue to read the text as scrolling is taking place.

2.2. Searching, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for.
Type the character I followed by a string of characters terminated by CR. The editor will posi­
tion the cursor at the next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will search backwards from where you are, and is
otherwise like I. t

If the search string you give the editor is not present in the file the editor will print a diag­
nostic on the last line of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string
with an t. To match only at the end of a line, end the search string with a $. Thus flsearchCR
will search for the word 'search' at the beginning of a line, and /lastScR searches for the word
'last' at the end of a line.•

* If you don't have a ,., key on your terminal then there is probably a key labelled 't'; in any case these
characters are one and the same.
** Version 3 only. * Not available in all v2 editors due to memory constraints.
t These searches will normally wrap around the end of the file, and thus find the string even if it is not on a
line in the direction you search provided it is anywhere else in the file. You can disable this wraparound in
scans by giving the command :se nowrapscancR, or more briefly :se nowscR.
•Actually, the string you give to search for here can be a regular expression in the sense of the editors ex(I)
and ed(l). If you don't wish to learn about this yet, you can disable this more general facility by doing
:se nomagiccR; by putting this command in EXINIT in your environment, you can have this always be in
effect (more about EX/N/Tlater.)

- 5 -

The command G, when preceded by a number will position the cursor at that line in the
file. Thus lG will move the cursor to the first line of the file. If you give G no count, then it
moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the
editor will place only the character ,_, on each remaining line. This indicates that the last line
in the file is on the screen; that is, the ,_, lines are past the end of the file.

You can find out the state of the file you are editing by typing a "G. The editor will show
you the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now, and remember the number of the line you are on. Give a G command to get to the end
and then another G command to get back where you were.

You can also get back to a previous position by using the command" (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving a
G or a search with I or ? and then a " to get back to where you were. If you accidentally hit n
or any command which moves you far away from a context of interest, you can quickly get
back by hitting ".

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4
or 5 keys with arrows going in each direction) try them and convince yourself that they work.
(On certain terminals using v2 editors, they won't.) If you don't have working arrow keys, you
can always use h, j, k, and I. Experienced users of vi prefer these keys to arrow keys, because
they are usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The - key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen will scroll down (and up if possible) to
bring a line at a time into view. The RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will
take you to the top (home) line on the screen. Try preceding it with a number as in 3H. This
will take you to the third line on the screen. Many vi commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen, and
L, which takes you to the last line on the screen. L also takes counts, thus SL will take you to
the fifth line from the bottom.

2.4. Moving within a line

Now try picking a word on some line on the screen, not the first word on the line. move
the cursor using RETURN and - to be on the line where the word is. Try hitting the w key.
This will advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end of the current word rather
than to the beginning of the next word. Also try SPACE (the space bar) which moves right one
character and the BS (backspace or "H) key which moves left one character. The key h works
as -H does and is useful if you don't have a BS key. (Also, as noted just above, I will move to
the right.)

If the line had punctuation in it you may have noticed that that the w and b keys stopped
at each group of punctuation. You can also go back and forwards words without stopping at
punctuation by using W and B rather than the lower case equivalents. Think of these as bigger
words. Try these on a few lines with punctuation to see how they differ from the lower case w
and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving
to a word on a line below where you are by repeatedly hitting w.

- 6 -

2.5. Summary

SPACE advance the cursor one position
AB backwards to previous page
AD scrolls down in the file
AE exposes another line at the bottom (v3)
AF forward to next page
AG tell what is going on
AH backspace the cursor
AN next line, same column
AP previous line, same column
Au scrolls up in the file
Ay exposes another line at the top (v3)
+ next line, at the beginning

previous line, at the beginning
I scan for a following string forwards
? scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
w forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of I or ? pattern
w word after this word

2.6. View;

If you want to use the editor to look at a file, rather than to make changes, invoke it as
view instead of vi. This will set the readonly option which will prevent you from accidently
overwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, every­
thing you type until you hit ESC is inserted into the file. Try this now; position yourself to
some word in the file and try inserting text before this word. If you are on an dumb terminal it
will seem, for a minute, that some of the characters in your line have been overwritten, but
they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an 's'. Position yourself at this
word and type e (move to end of word), then a for append and then 'sESc' to terminate the
textual insert. This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works; i
placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or
after some specific line in the file. Find a line where this makes sense and then give the com­
mand o to create a new line after the line you are on, or the command O to create a new line
before the line you are on. After you create a new line in this way, text you type up to an ESC

* Not available in all v2 editors due to memory constraints.

- 7 -

is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that
one is given by a lower case key and the other is given by an upper case key. In these cases,
the upper case key often differs from the lower case key in its sense of direction, with the
upper case key working backward and/or up, while the lower case key moves forward and/or
down.

Whenever you are typing in text, you can give many lines of input or just a few charac­
ters. To type in more than one line of text, hit a RETURN at the middle of your input. A new
line will be created for text, and you can continue to type. If you are on a slow and dumb ter­
minal the editor may choose to wait to redraw the tail of the screen, and will let you type over
the existing screen lines. This avoids the lengthy delay which would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
up, and the missing lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normally use at the sys­
tem command level (usually AH or #) to backspace over the last character which you typed,
and the character which you use to kill input lines (usually @, AX, or "U) to erase the input
you have typed on the current line. t The character "W will erase a whole word and leave you
after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased; the cursor moves backwards, and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap­
pear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a
again.

Notice also that you can't erase characters which you didn't insert, and that you can't
backspace around the end of a line. If you need to back up to the previous line to make a
correction, just hit ESC and move the cursor back to the previous line. After making the
correction you can return to where you were and use the insert or append command again.

3.2. Making small corrections
You can make small corrections in existing text quite easily. Find a single character

which is wrong or just pick any character. Use the arrow keys to find the character, or get near
the character with the word motion keys and then either backspace (hit the BS key or "H or
even just h) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed then hit the x key; this deletes the character from the file. It is
analogous to the way you x out characters when you make mistakes on a typewriter (except it's
not as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command re, where c is replaced by the correct character. Finally if the character which is
incorrect should be replaced by more than one character, give the commands which substitutes
a string of characters, ending with ESC, for it. If there are a small number of characters which
are wrong you can precede s with a count of the number of characters to be replaced. Counts
are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operators
You already know almost enough to make changes at a higher level. All you need to

know now is that the d key acts as a delete operator. Try the command dw to delete a word.
Try hitting. a few times. Notice that this repeats the effect of the dw. The command . repeats
the last command which made a change. You can remember it by analogy with an ellipsis ' ... '.

t In fact, the character "H (backspace) always works to erase the last input character here, regardless of what
your erase character is.

- 8 -

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE.

This deletes a single character, and is equivalent to the x command.

Another very useful operator is c or change. The command cw thus changes the text of a
single word. You follow it by the replacement text ending with an ESC. Find a .word which you
can change to another, and try this now. Notice that the end of the text to be changed was
marked with the character '$' so that you can see this as you are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a line which you want to
delete, and type dd, the d operator twice. This will delete the line. If you are on a dumb ter­
minal, the editor may just erase the line on the screen, replacing it with a line with only an @
on it. This line does not correspond to any line in your file, but only acts as a place holder. It
helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close up
the hole created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this will change a whole line, erasing its previous con­
tents and replacing them with text you type up to an ESC. t

You can delete or change more than one line by preceding the dd or cc with a count, i.e.
Sdd deletes 5 lines. You can also give a command like dL to delete all the lines up to and
including the last line on the screen, or d3L to delete through the third from the bottom line.
Try some commands like this now.• Notice that the editor lets you know when you change a
large number of lines so that you can see the extent of the change. The editor will also always
tell you when a change you make affects text which you cannot see.

3.5. Undoing
Now suppose that the last change which you made was incorrect; you could use the insert,

delete and append commands to put the correct material back. However, since it is often the
case that we regret a change or make a change incorrectly, the editor provides au (undo) com­
mand to reverse the last change which you made. Try this a few times, and give it twice in a
row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line back.
The U command restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back; see the section
on recovering lost text below.

3.6. Summary

SPACE
AH
Aw
erase
kill

0
u
a
c

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually ·Hor#), erases a character during an insert
your kill (usually@, ·x, or ·u), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text

t The command S is a convenient synonym for for cc, by analogy with s. Think of S as a substitute on
lines, while s is a substitute on characters.
• One subtle point here involves using the I search after a d. This will normally delete characters from the
current position to the point of the match. If what is desired is to delete whole lines including the two points,
give the pattern as /pat/ +o, a line address. •

d

0

u

- 9 -

deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low level character motions

Now move the cursor to a line where there is a punctuation or a bracketing character such
as a parenthesis or a comma or period. Try the command fx where xis this character. This
command finds the next x character to the right of the cursor in the current line. Try then hit­
ting a ;, which finds the next instance of the same character. By using the f command and then
a sequence of ;'s you can often get to a particular place in a line much faster than with a
sequence of word motions or SPACES. There is also a F command, which is like f, but searches
backward. The ; command repeats F also.

When you are operating on the text in a line it is often desirable to deal with the charac­
ters up to, but not including, the first instance of a character. Try dfx for some x now and
notice that the x character is deleted. Undo this with u and then try dtx, the t here stands for
to, i.e. delete up to the next x, but not the x. The command T is the reverse oft.

When working with the text of a single line, an f moves the cursor to the first non-white
position on the line, and a $ moves it to the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab Cl) characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every 8 positions.• When the cursor is at
a tab, it sits on the last of the several spaces which represent that tab. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document, that is with a two character
code, the first character of which is 'A'. On the screen non-printing characters resemble a 'A'
character adjacent to another, but spacing or backspacing over the character will reveal that the
two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the set­
ting of the beautifY option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a ·v before the control character.
The AV quotes the following character, causing it to be inserted directly into the file.

4.2. Higher level text objects
In working with a document it is often advantageous to work in terms of sentences, para­

graphs, and sections. The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command d) will delete the rest of the current sentence; like­
wise d(will delete the previous sentence if you are at the beginning of the current sentence, or
the current sentence up to where you are if you are not at the beginning of the current sen­
tence.

A sentence is defined to end at a '.', '!' or '?' which is followed by either the end of a
line, or by two spaces. Any number of closing ')', ']', '"' and "' characters may appear after
the '. ', '!' or '?' before the spaces or end of line.

The operations (and } move over paragraphs and the operations ll and JI move over sec­
tions. t

• This is settable by a command of the form :se ts•.XCR, where xis 4 to set tabstops every four columns.
This has effect on the si:reen representation within the editor.
t The II and II operations require the operation character to be doubled because they can move the cursor far

- 10 -

A paragraph begins after each empty line, and also at each of a set of paragraph macros,
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the -ms and -mm macro pack­
ages, i.e. the '.IP', '.LP', '.PP' and '.QP', '.P' and '.LI' macros.:!: Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands can be given counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally '.NH', '.SH',
'.H' and '.HU', and each line with a formfeed "L in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document, try looking through it using the section commands.
The section commands interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the base size for newly drawn
windows until another size is specified. This is very useful if you are on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

4.3. Rearranging and duplicating text

The editor has a single unnamed buff er where the last deleted or changed away text is
saved, and a set of named buffers a - z which you can use to save copies of text and to move
text around in your file and between files.

The operator y yanks a copy of the object which follows into the unnamed buffer. If pre­
ceded by a buffer name, "xy, where x here is replaced by a letter a-z, it places the text in the
named buffer. The text can then be put back in the file with the commands p and P; p puts
the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which
partially spans more than one line, then when you put the text back, it will be placed after the
cursor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case, the put acts much like a o or 0
command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line, and place it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines; try 3Y P.

To move text within the buffer, you need to delete it in one place, and put it back in
another. You can precede a delete operation by the name of a buff er in which the text is to be
stored as in "a5dd deleting 5 lines into the named buff er a. You can then move the cursor to
the eventual resting place of the these lines and do a "ap or "aP to put them back. In fact, you
can switch and edit another file before you put the lines back, by giving a command of the form
:e nameCR where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buff er (or discard them) if you have made changes
before the editor will let you switch to the other file. An ordinary delete command saves the
text in the unnamed buff er, so that an ordinary put can move it elsewhere. However, the
unnamed buffer is lost when you change files, so to move text from one file to another you
should use an unnamed buff er.

from where it currently is. While it is easy to get back with the command ", these commands would still be
frustrating if they were easy to hit accidentally.
~ You can easily change or extend this set of macros by assigning a different string to the paragraphs option
in your EXINIT. See section 6.2 for details. The '.bp' directive is also considered to start a paragraph.

4.4. Summary.

T
$
)
)
II
(

{
II
fx
p
y
tx
Fx
p
Tx

first non-white on line
end of line
forward sentence
forward paragraph
forward section
backward sentence
backward paragraph
backward section
find x forward in line

- 11 -

put text back, after cursor or below current line
yank operator, for copies and moves
up to x forward, for operators
f backward in line
put text back, before cursor or above current line
t backward in line

5. High level commands

5.1. Writing, quitting, editing new files

So far we have seen how to enter vi and to write out our file using either ZZ or :wcR.
The first exits from the editor, (writing if changes were made), the second writes and stays in
the editor.

If you have changed the editor's copy of the file but do not wish to save your changes,
either because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :q!CR to quit from the editor without writing the
changes. You can also reedit the same file (starting over) by giving the command :e!CR. These
commands should be used only rarely, and with caution, as it is not possible to recover the
changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command :e namecR.
If you have not written out your file before you try to do this, then the editor will tell you this,
and delay editing the other file. You can then give the command :wCR to save your work and
then the :e namecR command again, or carefully give the command :e! namecR, which edits
the other file discarding the changes you have made to the current file. To have the editor
automatically save changes, include set aurowrite in your EXINIT, and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form
:!cmtk::R. The system will run the single command cmd and when the command finishes, the
editor will ask you to hit a RETURN to continue. When you have finished looking at the output
on the screen, you should hit RETURN and the editor will clear the screen and redraw it. You
can then continue editing. You can also give another : command when it asks you for a
RETURN; in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the com­
mand :shCR. This will give you a new shell, and when you finish with the shell, ending it by
typing a ·n, the editor will clear the screen and continue.

On systems which support it, ·z will suspend the editor and return to the (top level)
shell. When the editor is resumed, the screen will be redrawn.

- 12 -

5.3. Marking and returning

The command " returned to the previous place after a motion of the cursor by a com­
mand such as/, ? or G. You can also mark lines in the file with single letter tags and return to
these marks later by naming the tags. Try marking the current line with the command mx,
where you should pick some letter for x, say 'a'. Then move the cursor to a different line (any
way you like) and hit 'a. The cursor will return to the place which you marked. Marks last
only until you edit another file.

When using operators such as d and ref erring to marked lines, it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form 'x rather than 'x. Used without an operator, 'x will move to the first
non-white character of the marked line; similarly " moves to the first non-white character of
the line containing the previous context mark ".

5.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal, or
because some program other than the editor wrote output to your terminal, you can hit a AL,
the ASCII form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing AR to cause the editor to retype the screen,
closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of
the screen, you can position the cursor to that line, and then give a z command. You should
follow the z command with a RETURN if you want the line to appear at the top of the window, a
. if you want it at the center, or a - if you want it at the bottom. (z., z-, and z+ are not avail­
able on all v2 editors.)

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is
generated to your screen so that you will not suffer long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @

when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
slowcR. If your system is sluggish this helps lessen the amount of output coming to your ter­
minal. You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally tolerable only
on lightly loaded systems and fast terminals. You can disable this by giving the command
:se noredrawCR.

The editor also makes editing more pleasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly well on intelligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminals. If possible, try the editor on an intelligent terminal to see how this
works.

You can control the size of the window which is redrawn each time the screen is cleared
by giving window sizes as argument to the commands which cause large screen motions:

:/?(())''

Thus if you are searching for a particular instance of a common string in a file you can precede

- 13 -

the first search command by a small number, say 3, and the editor will draw three line windows
around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose, by
giving a number on a z command, after the z and before the following RETURN, . or - . Thus
the command z5. redraws the screen with the current line in the center of a five line window. t

If the editor is redrawing or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may partially con­
fuse the editor about what is displayed on the screen. You can still edit the text on the screen
if you wish; clear up the confusion by hitting a AL; or move or search again, ignoring the
current state of the display.

See section 7.8 on open mode for another way to use the vi command set on slow termi-
nals.

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following table.

Name
autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
sections
shiftwidth
showmatch
slowopen
term

Default
noai
noaw
noic
no lisp
nolist
no magic
no nu
para= IPLPPPQPbpP LI
no re
sect== NHSHH HU
sw==8
nosm
slow
dumb

Description
Supply indentation automatically
Automatic write before :n, :ta, AT, !
Ignore case in searching
({) } commands deal with S-expressions
Tabs print as AI; end of lines marked with $
The characters . [and * are special in scans
Lines are displayed prefixed with line numbers
Macro names which start paragraphs
Simulate a smart terminal on a dumb one
Macro names which start new sections
Shift distance for <, > and input AD and AT
Show matching (or { as) or } is typed
Postpone display updates during inserts
The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You
can set numeric and string options by a statement of the form

set opt= val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are
running vi by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setcR, or the
value of a single option by the command :set opt?CR. A list of all possible options and their
values is generated by :set allcR. Set can be abbreviated se. Multiple options can be placed on
one line, e.g. :se ai aw nucR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are to be run every time you start up ex, edit, or vi. A

t Note that the command Sz. has an entirely different effect, placing line 5 in the center of a new window.
t All commands which start with : are ex commands.

- 14 -

typical list includes a set command, and possibly a few map commands (on v3 editors). Since
it is advisable to get these commands on one line, they can be separated with the I character, for
example:

set ai aw terselmap @ dcilmap # x

which sets the options autoindent, autowrite, terse, (the set command), makes @ delete a line,
(the first map), and makes # delete a character, (the second map). (See section 6.9 for a
description of the map command, which only works in version 3.) This string should be placed
in the variable EXINIT in your environment. If you use csh, put this line in the file .login in
your home directory:

setenv EXINIT 'set ai aw terselmap @ dcilmap # x'

If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT ='set ai aw terselmap @ dcilmap # x'
export EXINIT

On a version 6 system, the concept of environments is not present. In this case, put the line in
the file .exrc in your home directory.

set ai aw terselmap @ dcilmap # x

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that
they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1-9. You can get the n'th previous deleted text back in your file by the
command "np. The" here says that a buffer name is to follow, n is the number of the buffer
you wish to try (use the number 1 for now), and p is the put command, which puts text in the
buffer after the cursor. If this doesn't bring back the text you wanted, hit u to undo this and
then . (period) to repeat the put command. In general the . command will repeat the last
change you made. As a special case, when the last command refers to a numbered text buffer,
the . command increments the number of the buff er before repeating the command. Thus a
sequence of the form

"lpu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You
can omit the u commands here to gather up all this text in the buffer, or stop after any . com­
mand to keep just the then recovered text. The command P can also be used rather than p to
put the recovered text before rather than after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes.
You will normally receive mail when you next login giving you the name of the file which has
been saved for you. You should then change to the directory where you were when the system
crashed and give a command of the form:

% vi -r name

replacing name with the name of the file which you were editing. This will recover your work
to a point near where you left off. t

t In rare cases, some of the lines of the file may be lost. The editor will give you the numbers of these lines
and the text of the lines will be replaced by the string 'LOST'. These lines will almost always be among the
last few which you changed. You can either choose to discard the changes which you made (if they are easy
to remake) or to replace the few lost lines by hand.

- 15 -

You can get a listing of the files which are saved for you by giving the command:

% vi -r

If there is more than one instance of a particular file saved, the editor gives you the newest
instance each time you recover it. You can thus get an older saved copy back by first recover­
ing the newer copies.

For this feature to work, vi must be correctly installed by a super user on your system,
and the mail program must exist to receive mail. The invocation "vi -r" will not always list all
saved files, but they can be recovered even if they are not listed.

6.S. Continuous text input

When you are typing in large amounts of text it is convenient to have lines broken near
the right margin automatically. You can cause this to happen by giving the command :se
wm-tOcR. This causes all lines to be broken at a space at least 10 columns from the right
hand edge of the screen.•

If the editor breaks an input line and you wish to put it back together you can tell it to
join the lines with J. You can give J a count of the number of lines to be joined as in 3J to
join 3 lines. The editor supplies white space, if appropriate, at the juncture of the joined Jines,
and leaves the cursor at this white space. You can kill the white space with x if you don't want
it.

6.6. Features for editing programs

The editor has a number of commands for editing programs. The thing that most distin­
guishes editing of programs from editing of text is the desirability of maintaining an indented
structure to the body of the program. The editor has a autoindent facility for helping you gen­
erate correctly indented programs.

To enable this facility you can give the command :se aicR. Now try opening a new line
with o and type some characters on the line after a few tabs. If you now start another line,
notice that the editor supplies white space at the beginning of the line to line it up with the pre­
vious line. You cannot backspace over this indentation, but you can use AD key to backtab
over the supplied indentation.

Each time you type AD you back up one position, normally to an 8 column boundary.
This amount is settable; the editor has an option called shiftwidth which you can set to change
this value. Try giving the command :se sw-4CR and then experimenting with autoindent
again.

For shifting lines in the program left and right, there are operators < and >. These shift
the lines you specify right or left by one shiftwidth. Try < < and > > which shift one line left
or right, and < L and > L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put the
cursor at a left or right parenthesis and hit 0/o. This will show you the matching parenthesis.
This works also for braces { and } , and brackets [and].

If you are editing C programs, you can use the ll and II keys to advance or retreat to a
line starting with a {, i.e. a function declaration at a time. When II is used with an operator it
stops after a line which starts with }; this is sometimes useful with y)).

• This feature is not available on some v2 editors. In v2 editors where it is available, the break can only oc­
cur to the right of the specified boundary instead of to the left.

- 16 -

6. 7. Filtering portions of the buffer

You can run system commands over portions of the buff er using the operator ! . You can
use this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer.
Try typing in a list of random words, one per line and ending them with a blank line. Back up
to the beginning of the list, and then give the command !}sortcR. This says lo sort the next
paragraph of material, and the blank line ends a paragraph.

6.8. Commands for editing LISPt

If you are editing a LISP program you should set the option lisp by doing :se lispcR. This
changes the (and) commands to move backward and forward over s-expressions. The { and }
commands are like (and) but don't stop at atoms. These can be used to skip to the next list,
or through a comment quickly.

The autoindent option works differently for LISP, supplying indent to align at the first argu­
ment to the last open list. If there is no such argument then the indent is two spaces more
than the last level.

There is another option which is useful for typing in LISP, the showmatch option. Try set­
ting it with :se smCR and then try typing a '(' ~ome words and then a ')'. Notice that the cur­
sor shows the position of the '(' which matches the ')' briefly. This happens only if the match­
ing '(' is on the screen, and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in
with lisp and autoindent set. This is the - operator. Try the command -% at the beginning of
a function. This will realign all the lines of the function declaration.

When you are editing LISP,, the II and]] advance and retreat to lines beginning with a (,
and are useful for dealing with entire function definitions.

6.9. Macros*

Vi has a parameterless macro facility, which lets you set it up so that when you hit a single
keystroke, the editor will act as though you had hit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EXINI1) with a command of the
form:

:map lhs rh!C,R

mapping lhs into rhs. There are restrictions: lhs should be one keystroke (either 1 charac­
ter or one function key) since it must be entered within one second (unless notimeout is
set, in which case you can type it as slowly as you wish, and vi will wait for you to finish it
before it echoes anything). The lhs can be no longer than 10 characters, the rhs no longer
than 100. To get a space, tab or newline into lhs or rhs you should escape them with a ·v.
(It may be necessary to double the "V if the map command is given inside vi, rather than
in ex.) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wq"V"VcR CR

which means that whenever you type q, it will be as though you had typed the four characters
:wqCR. A "V's is needed because without it the CR would end the : command, rather than

t The LISP features are not available on some v2 editors due to memory constraints.
i The macro feature is available only in version 3 editors.

- 17 -

becoming part of the map definition. There are two "V's because from within vi, two "V's must
be typed to get one. The first CR is part of the rhs, the second terminates the : command.

Macros can be deleted with

unmap lhs

If the lhs of a macro is "#0" through "#9", this maps the particular function key instead
of the 2 character "#" sequence. So that terminals without function keys can access such
definitions, the form "#x" will mean function key x on all terminals (and need not be typed
within one second.) The character "#" can be changed by using a macro in the usual way:

:map "V"V"I #

to use tab, for example. (This won't affect the map command, which still uses #, but just the
invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a '!' after the word map causes the mapping to apply to input mode, rather than
command mode. Thus, to arrange for "T to be the same as 4 spaces in input mode, you can
type:

:map "T "VMMMM

where H is a blank. The ·v is necessary to prevent the blanks from being taken as white space
between the lhs and rhs.

7. Word Abbreviations**

A feature similar to macros in input mode is word abbreviation. This allows you to type a
short word and have it expanded into a longer word or words. The commands are :abbreviate
and :unabbreviate (:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Com­
puter Sciences'. Word abbreviation is different from macros in that only whole words are
affected. If 'eecs' were typed as part of a larger word, it would be left alone. Also, the partial
word is echoed as it is typed. There is no need for an abbreviation to be a single keystroke, as
it should be with a macro.

7 .1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we
have introduced here. You can find these commands easily on the quick reference card. They
often save a bit of typing and you can learn them as convenient.

8. Nitty-gritty details

8.1. Line representation in the display

The editor folds long logical lines onto many physical lines in the display. Commands
which advance lines advance logical lines and will skip over all the segments of a line in one
motion. The command I moves the cursor to a specific column, and may be useful for getting
near the middle of a long line to split it in half. Try 801 on a line which is more than 80
columns long. t

The editor only puts full lines on the display~ if there is not enough room on the display
to fit a logical line, the editor leaves the physical line empty, placing only an @ on the line as a

U Version 3 only.
t You can make long lines very easily by using J to join together short lines.

- 18 -

place holder. When you delete lines on a dumb terminal, the editor will often just clear the
lines to @ to save time (rather than rewriting the rest of the screen.) You can always maximize
the information on the screen by giving the "R command.

If you wish, you can have the editor place line numbers before each line on the display.
Give the command :se nucR to enable this, and the command :se nonuCR to turn it off. You
can have tabs represented as "I and the ends of lines indicated with '$' by giving the command
:se listcR; :se nolistCR turns this off.

Finally, lines consisting of only the character •-• are displayed when the last line in the file
is in the middle of the screen. These represent physical lines which are past the logical end of
file.

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The
following table gives the common ways in which the counts are used:

new window size
scroll amount
line/column number
repeat effect

:/?(())
"D ·u
z G I
most of the rest

The editor maintains a notion of the current default window size. On terminals which run
at speeds greater than 1200 baud the editor uses the full terminal screen. On terminals which
are slower than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as the
default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or
other motion moves far from the edge of the current window. The commands which take a
new window size as count all often cause the screen to be redrawn. If you anticipate this, but
do not need as large a window as you are currently using, you may wish to change the screen
size by specifying the new size before these commands. In any case, the number of lines used
on the screen will expand if you move off the top with a - or similar command or off the bot­
tom with a command such as RETURN or "D. The window will revert to the last specified size
the next time it is cleared and refilled. t

The scroll commands "D and ·u likewise remember the amount of scroll last specified,
using half the basic window size initially. The simple insert commands use a count to specify a
repetition of the inserted text. Thus lOa+----ESc will insert a grid-like string of text. A
few commands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as "R), the rest of the editor
. commands use a count to indicate a simple repetition of their effect. Thus 5w advances five
words on the current line, while 5RETURN advances five lines. A very useful instance of a
count as a repetition is a count given to the . command, which repeats the last changing com­
mand. If you do dw and then 3., you will delete first one and then three words. You can then
delete two more words with 2 ..

8.3. More file manipulation commands

The following table lists the file manipulation commands which you can use when you are
in vi. All of these commands are followed by a CR or ESC. The most basic commands are :w
and :e. A normal editing session on a single file will end with a ZZ command. If you are edit­
ing for a long period of time you can give :w commands occasionally after major amounts of
editing, and then finish with a zz. When you edit more than one file, you can finish with one

t But not by a "L which just redraws the screen as it is.

:w
:wq
:x
:e name
:e!
:e + name
:e +n
:e #
:w name
:w! name
:x,yw name
:r name
:r !cmd
:n
:n!
:n args
:ta tag

write back changes
write and quit

- 19 -

write (if necessary) and quit (same as ZZ).
edit file name
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag tag, at tag

with a :w and start editing a new file by giving a :e command, or set autowrite and use :n
<file>.

If you make changes to the editor's copy of a file, but do not wish to write them back,
then you must give an ! after the command you would otherwise use; this forces the editor to
discard any changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a + n argu­
ment to start at line n. In actuality, n may be any editor command not containing a space, use­
fully a scan like +I pat or +?pat. In forming new names to the e command, you can use the
character % which is replaced by the current file name, or the character # which is replaced by
the alternate file name. The alternate file name is generally the last name you typed other than
the current file. Thus if you try to do a :e and get a diagnostic that you haven't written the file,
you can give a :w command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the Jines that bound the range to
be written using AG, and giving these numbers after the : and before the w, separated by ,'s.
You can also mark these lines with m and then use an address of the form · x,' y on the w com­
mand here.

You can read another file into the buffer after the current line by using the :r command.
You can similarly read in the output from a command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command
line, and then edit each one in tum using the command :n. It is also possible to respecify the
list of files to be edited by giving the :n command a list of file names, or a pattern to be
expanded as you would have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a
data base of function names and their locations, which can be created by programs such as
ctags, to quickly find a function whose name you give. If the :ta command will require the edi­
tor to switch files, then you must :w or abandon any changes before switching. You can repeat
the :ta command without any arguments to look for the same tag again. (The tag feature is not
available in some v2 editors.)

8.4. More about searching for strings

When you are searching for strings in the file with I and ? , the editor normally places you
at the next or previous occurrence of the string. If you are using an operator such as d, c or y,
then you may well wish to affect lines up to the line before the line containing the pattern.

- 20 -

You can give a search of the form I pat/- n to ref er to the n'th line before the next line con­
taining pat, or you can use + instead of - to refer to the lines after the one containing pat. If
you don't give a line offset, then the editor will affect characters up to the match place, rather
than whole lines; thus use "+O" to affect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :se icCR. The command :se noicCR turns this off.

Strings given to searches may actually be regular expressions. If you do not want or need
this facility, you should

set nomagic

in your EXINIT. In this case, only the characters T and $ are special in patterns. The character
\ is also then special (as it is most everywhere in the system), and may be used to get at the an
extended pattern matching facility. It is also necessary to use a \ before a I in a forward scan
or a ? in a backward scan, in any case. The following table gives the extended forms when
magic is set.

l
$

\<
\>
[str]
[l str]
[x-y]
*

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and y
matches any number of the preceding pattern

If you use nomagic mode, then the . I and * primitives are given with a preceding\.

8.5. More about input mode

There are a number of characters which you can use to make corrections during input
mode. These are summarized in the following table.

"H deletes the last input character
·w deletes the last input word, defined as by b
erase your erase character, same as "H
kill your kill character, deletes the input on this line
\ escapes a following "H and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
·o backtabs over autoindent
o·o kills all the autoindent
ro same as o·o, but restores indent next line
·v quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "H to correct a single
character, or by typing one or more "W's to back over incorrect words. If you use # as your
erase character in the normal system, it will work like "H.

Your system kill character, normally @, ·x or ·u, will erase all the input you have given
on the current line. In general, you can neither erase input back around a line boundary nor
can you erase characters which you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started you can hit ESC to end the
insertion, move over and make the correction, and then return to where you were to continue.

• 21 .

The command A which appends at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you must precede it
with a \, just as you would do at the normal system command level. A more general way of
typing non-printing characters into the file is to precede them with a ·v. The ~v echoes as a t
character on which the cursor rests. This indicates that the editor expects you to type a control
character. In fact you may type any character and it will be inserted into the file at that point.•

If you are using autoindent you can backtab over the indent which it supplies by typing a
"D. This backs up to a shiftwidth boundary. This only works immediately after the supplied
autoindent.

When you are using autoindent you may wish to place a label at the left margin of a line.
The way to do this easily is to type t and then ·n. The editor will move the cursor to the left
margin for one line, and restore the previous indent on the next. You can also type a 0 fol­
lowed immediately by a "D if you wish to kill all the indent and not have it come back on the
next line.

8.6. Upper case only terminals

If your terminal has only upper case, you can still use vi by using the normal system con­
vention for typing on such a terminal. Characters which you normally type are converted to
lower case, and you can type upper case letters by preceding them with a \. The characters I - }

, I ' are not available on such terminals, but you can escape them as \ (\ t \) \! \'. These charac­
ters are represented on the display in the same way they are typed.f *
8.7. Vi and ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can
escape to the line oriented editor of ex by giving the command Q. All of the : commands
which were introduced above are available in ex. Likewise, most ex commands can be invoked
from vi using :. Just give them without the : and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic
and be left in the command mode of ex. You can then save your work and quit if you wish by
giving a command x after the : which ex prompts you with, or you can reenter vi by giving ex a
vi command.

There are a number of things which you can do more easily in ex than in vi. Systematic
changes in line oriented material are particularly easy. You can read the advanced editing docu­
ments for the editor ed to find out a lot more about this style of editing. Experienced users
often mix their use of ex command mode and vi command mode to speed the work they are
doing.

8.8. Open mode: vi on hardcopy terminals and "glass tty's" *
If you are on a hardcopy terminal or a terminal which does not have a cursor which can

move off the bottom line, you can still use the command set of vi, but in a different mode.
When you give a vi command, the editor will tell you that it is using open mode. This name
comes from the open command in ex, .which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is

•This is not quite true. The implementation of the editor does not allow the NULL ("@) character to appear
in files. Also the LF (linefeed or • J) character is used by the editor to separate lines in the file, so it cannot
appear in the middle of a line. You can insert any other character, however, if you wait for the editor to
echo the t before you type the character. In fact, the editor will treat a following letter as a request for the
corresponding control character. This is the only way to type ·s or "Q, since the system normally uses them
to suspend and resume output and never gives them to the editor to process. * The\ character you give will not echo until you type another key. * Not available in all v2 editors due to memory constraints.

- 22 -

displayed.

In open mode the editor uses a single line window into the file, and moving backward and
forward in the file causes new lines to be displayed, always below the current line. Two com­
mands of vi work differently in open: z and "R. The z command does not take ·parameters, but
rather draws a window of context around the current line and then returns you to the current
line.

If you are on a hardcopy terminal, the "R command will retype the current line. On such
terminals, the editor normally uses two lines to represent the current line. The first line is a
copy of the line as you started to edit it, and you work on the line below this line. When you
delete characters, the editor types a number of \'s to show you the characters which are deleted.
The editor also reprints the current line soon after such changes so that you can see what the
line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in the
full screen mode. You can do this by entering ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor. Peter Kessler
helped bring sanity to version 2's command layout. Bill Joy wrote versions 1 and 2.0 through
2. 7, and created the framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number of terminals and Unix systems.

- 23 -

Appendix: character functions

This appendix gives the uses the editor makes of each character. The characters are
presented in their order in the ASCII character set: Control characters come first, then most
special characters, then the digits, upper and then lower case characters. -

For each character we tell a meaning it has as a command and any meaning it has during
an insert. If it has only meaning as a command, then only this is discussed. Section numbers
in parentheses indicate where the character is discussed; a 'f' after the section number means
that the character is mentioned in a footnote.

A@ Not a command character. If typed as the first character of an insertion it is
replaced with the last text inserted, and the insert terminates. Only 128 char­
acters are saved from the last insert; if more characters were inserted the
mechanism is not available. A A@ cannot be part of the file due to the editor
implementation (7 .Sf).

Unused.

Backward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7.2).

Unused.

As a command, scrolls down a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future AD and AU commands
(2.1, 7 .2). During an insert, backtabs over autoindent white space at the begin­
ning of a line (6.6, 7.5); this white space cannot be backspaced over.

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3 only.)

Forward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7 .2).

Equivalent to :fcR, printing the current file, whether it has been modified, the
current line number and the number of lines in the file, and the percentage of
the way through the file that you are.

Same as left arrow. (See h). During an insert, eliminates the last input char­
acter, backing over it but not erasing it; it remains so you can see what you
typed if you wish to type something only slightly different (3.1, 7.5).

Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab character it rests at the last of the spaces which
represent the tab. The spacing of tabstops is controlled by the tabstop option
(4.1, 6.6).

Same as down arrow (see j).

Unused.
The ASCII formfeed character, this causes the screen to be cleared and redrawn.
This is useful after a transmission error, if characters typed by a program other
than the editor scramble the screen, or after output is stopped by an interrupt
(5.4, 7.2f).

A carriage return advances to the next line, at the first non-white position in
the line. Given a count, it advances that many lines (2.3). During an insert, a
CR causes the insert to continue onto another line (3.1).

Same as down arrow (see j).

Unused.

·1 (ESC)

SPACE

- 24 -

Same as up arrow (see k).

Not a command character. In input mode, ·Q quotes the next character, the
same as ·v, except that some teletype drivers will eat the "Q so that the editor
never sees it.

Redraws the current screen, eliminating logical lines not corresponding to phy­
sical lines Oines with only a single @ character on them). On hardcopy termi­
nals in open mode, retypes the current line (5.4, 7.2, 7.8).

Unused. Some teletype drivers use ·s to suspend output until ·Qis

Not a command character. During an insert, with autoindent set and at the
beginning of the line, inserts shiftwidth white space.

Scrolls the screen up, inverting ·n which scrolls down. Counts work as they
do for ·n, and the previous scroll amount is common to both. On a dumb ter­
minal, ·u will often necessitate clearing and redrawing the screen further back
in the file (2.1, 7.2).

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file (4.2, 7. 5).

Not a command character. During an insert, backs up as b would in command
mode; the deleted characters remain on the display (see ·H) (7.5).

Unused.

Exposes one more line above the current screen, leaving the cursor where it is
if possible. (No mnemonic value for this key; however, it is next to ·u which
scrolls up a bunch.) (Version 3 only.)

If supported by the Unix system, stops the editor, exiting to the top level shell.
Same as :stopCR. Otherwise, unused.

Cancels a partially formed command, such as a z when no following character
has yet been given; terminates inputs on the last line (read by commands such
as : I and ?); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus hit ESC if you don't know what is happening till the edi­
tor rings the bell. If you don't know if you are in insert mode you can type
ESCa, and then material to be input; the material will be inserted correctly
whether or not you were in insert mode when you started (1.5, 3.1, 7.5).

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing
:ta, this word, and then a CR. Mnemonically, this command is "go right to"
(7.3).

Equivalent to :e #CR, returning to the previous position in the last edited file,
or editing a file which you specified if you got a 'No write since last change
diagnostic' and do not want to have to type the file name again (7.3). (You
have to do a :w before ·r will work in this case. If you do not wish to write
the file you should do :e! #CR instead.)

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.

Same as right arrow (see I).

An operator, which processes lines from the buffer with reformatting com­
mands. Follow ! with the object to be processed, and then the command name
terminated by CR. Doubling ! and preceding it by a count causes count lines to
be filtered; otherwise the count is passed on to the object after the !. Thus
2!}/mtCR reformats the next two paragraphs by running them through the pro­
gram fmt. If you are working on LISP, the command !%griniX:R: given at the

*Both fmr and grind are Berkeley programs and may not be present at all installations.

$

%

&

(

}

•
+

- 25 -

beginning of a function, will run the text of the function through the LISP

grinder (6.7, 7.3). To read a file or the output of a command into the buffer
use :r (7.3). To simply execute a command use :! (7.3).

Precedes a named buffer specification. There are named buffers 1-9 used for
saving deleted text and named buffers a-z into which you can place text (4.3,
6.3)

The macro character which, when followed by a number, will substitute for a
function key on terminals without function keys (6.9). In input mode, if this
is your erase character, it will delete the last character you typed in input
mode, and must be preceded with a \ to insert it, since it normally backs over
the last input character you gave.

Moves to the end of the current line. If you :se JistCR, then the end of each
line will be shown by printing a $ after the end of the displayed text in the
line. Given a count, advances to the count'th following end of line; thus 2$
advances to the end of the following line.

Moves to the parenthesis or brace { } which balances the parenthesis or brace
at the current cursor position.

A synonym for :&CR, by analogy with the ex & command.

When followed by a ' returns to the previous context at the beginning of a
line. The previous context is set whenever the current line is moved in a
non-relative way. When followed by a letter a- z, returns to the line which
was marked with this letter with a m command, at the first non-white character
in the line. (2.2, 5.3). When used with an operator such as d, the operation
takes place over complete lines; if you use ', the operation takes place from the
exact marked place to the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginning of a LISP s­
expression if the lisp option is set. A sentence ends at a . ! or ? which is fol­
lowed by either the end of a line or by two spaces. Any number of closing) I
" and ' characters may appear after the . ! or ? , and before the spaces or end of
line. Sentences also begin at paragraph and section boundaries (see { and II
below). A count advances that many sentences (4.2, 6.8).

Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence (4.2, 6.8) .

Unused.

Same as CR when used as a command.

Reverse of the last f F t or T command, looking the other way in the current
line. Especially useful after hitting too many ; characters. A count repeats the
search.

Retreats to the previous line at the first non-white character. This is the
inverse of + and RETURN. If the line moved to is not on the screen, the
screen is scrolled, or cleared and redrawn if this is not possible. If a large
amount of scrolling would be required the screen is also cleared and redrawn,
with the current line at the center (2.3).

Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit . to
delete more and more words/lines. Given a count, it passes it on to the com­
mand being repeated. Thus after a 2dw, 3. deletes three words (3.3, 6.3, 7.2,
7.4).

I

0

1-9

<

=

>

?

@

A

B

c
D

- 26 -

Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The normal input editing sequences may be used
during the input on the bottom line; an returns to command state without ever
searching. The search begins when you hit CR to terminate the pattern~ the
cursor moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB, or by back­
spacing when at the beginning of the bottom line, returning the cursor to its
initial position. Searches normally wrap end-around to find a string anywhere
in the buff er.

When used with an operator the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern you can force whole
lines to be affected. To do this give a pattern with a closing a closing I and
then an off set + n or - n.

To include the character I in the search string, you must escape it with a
preceding \. A l at the beginning of the pattern forces the match to occur at
the beginning of a line only; this speeds the search. A $ at the end of the pat­
tern forces the match to occur at the end of a line only. More extended pat­
tern matching is available, see section 7.4; unless you set nomagic in your
.exrc file you will have to preceed the characters . I * and - in the search pat­
tern with a\ to get them to work as you would naively expect (1.5, 2,2, 6.1,
7.2, 7.4).

Moves to the first character on the current line. Also used, in forming
numbers, after an initial 1 - 9.

Used to form numeric arguments to commands (2.3, 7 .2).

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with an CR, and
the command then executed. You can return to where you were by hitting
DEL or RUB if you hit : accidentally (see primarily 6.2 and 7 .3).

Repeats the last single character find which used f F t or T. A count iterates
the basic scan (4.1).

An operator which shifts lines left one shiftwidth, normally 8 spaces. Like all
operators, affects lines when repeated, as in < <. Counts are passed through
to the basic object, thus 3< < shifts three lines (6.6, 7.2).

Reindents line for LISP, as though they were typed in with lisp and autoindenr
set (6.8).

An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects
lines when repeated as in > >. Counts repeat the basic object (6.6, 7 .2).

Scans backwards, the opposite of /. See the I description above for details on
scanning (2.2, 6.1, 7.4).

A macro character (6.9). If this is your kill character, you must escape it with
a \ to type it in during input mode, as it normally backs over the input you
have given on the current line (3.1, 3.4, 7.5).

Appends at the end of line, a synonym for Sa (7.2).

Backs up a word, where words are composed of non-blank sequences, placing
the cursor at the beginning of the word. A count repeats the effect (2.4).

Changes the rest of the text on the current line; a synonym for c$.

Deletes the rest of the text on the current line; a synonym for d$.

E

F

G

H

I

J

K

L

M

N

0

p

Q

R

s

T

u
v

- 27 -

Moves forward to the end of a word, defined as blanks and non-blanks, like B
and W. A count repeats the effect.

Finds a single following character, backwards in the current line. A count
repeats this search that many times (4.1).

Goes to the line number given as preceding argument, or the end of the file if
no preceding count is given. The screen is redrawn with the new current line
in the center if necessary (7.2).

Home arrow. Homes the cursor to the top line on the screen. If a count is
given, then the cursor is moved to the count'th line on the screen. In any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator, full lines are affected (2.3, 3.2).

Inserts at the beginning of a line; a synonym for l i.
Joins together lines, supplying appropriate white space: one space between
words, two spaces after a ., and no spaces at all if the first character of the
joined on line is) . A count causes that many lines to be joined rather than the
default two (6.5, 7.lf).

Unused.

Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-white of the count'th line from the bottom.
Operators affect whole lines when used with L (2.3).

Moves the cursor to the middle line on the screen, at the first non-white posi­
tion on the line (2.3).

Scans for the next match of the last pattern given to I or ? , but in the reverse
direction; this is the reverse of n.

Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete, as the slowopen option works better (3 .1).

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole Jines. Otherwise the
text is inserted between the characters before and at the cursor. May be pre­
ceded by a named buffer specification "x to retrieve the contents of the buffer;
buffers 1-9 contain deleted material, buffers a-z are available for general use
(6.3).

Quits from vi to ex command mode. In this mode, whole lines form com­
mands, ending with a RETURN. You can give all the : commands; the editor
supplies the : as a prompt (7. 7).

Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

Changes whole lines, a synonym for cc. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the screen
before the substitution begins.

Takes a single following character, locates the character before the cursor in
the current line, and places the cursor just after that character. A count
repeats the effect. Most useful with operators such as d (4.1).

Restores the current line to its state before you started changing it (3.5).

Unused.

w

x

y

zz

ll

\
JI
T

a

b

c

d

e

f

g

- 28 -

Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect
(2.4).

Deletes the character before the cursor. A count repeats the ·effect, but only
characters on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer, to be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines.
May be preceded by a buffer name to put lines in that buffer (7.4).

Exits the editor. (Same as :xcR.) If any changes have been made, the buffer is
written out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins at each macro in
the sections option, normally a '.NH' or '.SH' and also at lines which which
start with a formf eed AL. Lines beginning with { also stop ll; this makes it
useful for looking backwards, a function at a time, in C programs. If the
option lisp is set, stops at each (at the beginning of a line, and is thus useful
for moving backwards at the top level LISP objects. (4.2, 6.1, 6.6, 7.2).

Unused.

Forward to a section boundary, see II for a definition (4.2, 6.1, 6.6, 7.2).

Moves to the first non-white position on the current line (4.4).

Unused.

When followed by a ' returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a-z, returns to the position which was marked with this letter with
a m command. When used with an operator such as d, the operation takes
place from the exact marked place to the current position within the line; if
you use·, the operation takes place over complete lines (2.2, 5.3).

Appends arbitrary text after the current cursor position; the insert can continue
onto multiple lines by using RETURN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line.
The insertion terminates with an ESC (3.1, 7.2).

Backs up to the beginning of a word in the current line. A word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect (2.4).

An operator which changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text
which is changed away is saved in the numeric named buffers. If only part of
the current line is affected, then the last character to be changed away is
marked with a $. A count causes that many objects to be affected, thus both
Jc) and c3) change the following three sentences (7.4).

An operator which deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w (3.3, 3.4, 4.1, 7.4).

Advances to the end of the next word, defined as for b and w. A count
repeats the effect (2.4, 3.1).

Finds the first instance of the next character following the cursor on the
current line. A count repeats the find (4.1).

Unused.

Arrow keys b, j, k, I, and H.

h

j

k

m

n

0

p

q

r

s

t

u

v

w

x

y

z

- 29 -

Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or one of the synonyms ("H) has the same
effect. On v2 editors, arrow keys on certain kinds of terminals (those which
send escape sequences, such as vt52, clOO, or hp) cannot be used. A count
repeats the effect (3.1, 7.5).

Inserts text before the cursor, otherwise like a (7 .2).

Down arrow. Moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column.
Synonyms include A J (linefeed) and AN.

Up arrow. Moves the cursor one line up. AP is a synonym.

Right arrow. Moves the cursor one character to the right. SPACE is a
synonym.

Marks the current position of the cursor in the mark register which is specified
by the next character a -z. Return to this position or use with an operator
using· or· (5.3).

Repeats the last I or ? scanning commands (2.2).

Opens new lines below the current line; otherwise like 0 (3.1).

Puts text after/below the cursor; otherwise like P (6.3).

Unused.

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split Jines. A
count replaces each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r (3.2).

Changes the single character under the cursor to the text which follows up to
an ESC; given a count, that many characters from the current line are changed.
The last character to be changed is marked with Sas in c (3.2).

Advances the cursor upto the character before the next character typed. Most
useful with operators such as d and c to delete the characters up to a following
character. You can use . to delete more if this doesn't delete enough the first
time (4.1).

Undoes the last change made to the current buffer. If repeated, will alternate
between these two states, thus is its own inverse. When used after an insert
which inserted text on more than one line, the lines are saved in the numeric
named buffers (3.5).

Unused.

Advances to the beginning of the next word, as defined by b (2.4).

Deletes the single character under the cursor. With a count deletes deletes
that many characters forward from the cursor position, but only on the current
line (6.5).

An operator, yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification, "x, the text is placed in that buffer
also. Text can be recovered by a later p or P (7.4).

Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen, . the center of the screen,
and - at the bottom of the screen. A count may be given after the z and
before the following character to specify the new screen size for the redraw. A
count before the z gives the number of the line to place in the center of the
screen instead of the default current line. (5.4)

A? (DEL)

- 30 -

Retreats to the beginning of the beginning of the preceding paragraph. A para­
graph begins at each macro in the paragraphs option, normally '.IP', '.LP'.
'.PP', '.QP' and '.bp'. A paragraph also begins after a completely empty line.
and at each section boundary (see II above) (4.2, 6.8, 7.6). -

Places the cursor on the character in the column specified by the count (7 .1,
7.2).
Advances to the beginning of the next paragraph. See (for the definition of
paragraph (4.2, 6.8, 7 .6).

Unused.

Interrupts the editor, returning it to command accepting state (1.5, 7.5)

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no
prior familiarity with computers or with text editing. Its aim is to lead the
beginning UNIXt user through the fundamental steps of writing and revising a
file of text. Edit, a version of the text editor ex, was designed to provide an
informative environment for new and casual users.

This edition documents Version 2 of edit and ex.

We welcome comments and suggestions about this tutorial an.d the UNIX
documentation in general.

August 31, 1980

tUNIX is a trademark of Bell Laboratories.

UNX 3.3.1

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

Text editing using a terminal connected to a computer allows one to create, modify, and
print text easily. A specialized computer program, known as a text editor, assists in creating and
revising text. Creating text is very much like typing on an electric typewriter. Modifying text
involves telling the text editor what to add, change, or delete. Text is printed by giving a com­
mand to print the file contents, with or without special instructions as to the format of the
desired output.

These lessons assume no prior familiarity with computers or with text editing. They con­
sist of a series of text editing sessions which will lead you through the fundamental steps of
creating and revising a file of text. After scanning each lesson and before beginning the next,
you should follow the examples at a terminal to get a feeling for the actual process of text edit­
ing. Set aside some time for experimentation, and you will soon become familiar with using
the computer to write and modify text. In addition to the actual use of the text editor, other
features of UNIX will be very important to your work. You can begin to learn about these other
features by reading "Communicating with UNIX" or one of the other tutorials which provide a
general introduction to the system. You will be ready to proceed with this lesson as soon as
you are familiar with your terminal and its special keys, the login procedure, and the ways of
correcting typing errors. Let's first define some terms:

program

UNIX

edit

file

filename

A set of instructions given to the computer, describing the sequence of steps
which the computer performs in order to accomplish a specific task. As an exam­
ple, a series of steps to balance your checkbook is a program.

UNIX is a special type of program, called an operating system, that supervises the
machinery and all other programs comprising the total computer system.

edit is the name of the UNIX text editor which you will be learning to use, a pro­
gram that aids you in writing or revising text. Edit was designed for beginning
users, and is a simplified version of an editor named ex.

Each UNIX account is allotted space for the permanent storage of information,
such as programs, data or text. A file is a logical unit of data, for example, an
essay, a program, or a chapter from a book, which is stored on a computer system.
Once you create a file it is kept until you instruct the system to remove it. You
may create a file during one UNIX session, log out, and return to use it at a later
time. Files contain anything you choose to write and store in them. The sizes of
files vary to suit your needs; one file might hold only a single number, and
another might contain a very long document or program. The only way to save
information from one session to the next is to write it to a file, storing it for later
use.

Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor­
mation in a file, you use the name of that file in a UNIX command, and the system
will automatically locate the file.

disk

buff er

- 2 -

Files are stored on an input/output device called a disk, which looks something
like a stack of phonograph records. Each surface is coated with a material similar
to the coating on magnetic recording tape, on which information is recorded.

A temporary work space, made available to the user for the duration of a session
of text editing and used for building and modifying the text file. We can imagine
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

Session 1: Creating a File of Text

To use the editor you must first make contact with the computer by logging in to UNIX.
We'll quickly review the standard UNIX login procedure.

If the terminal you are using is directly linked to the computer, turn it on and press car­
riage return, usually labelled "RETURN". If your terminal connects with the computer over a
telephone line, turn on the terminal, dial the system access number, and, when you hear a
high-pitched tone, place the receiver of the telephone in the acoustic coupler. Press carriage
return once and await the login message:

:login:

Type your login name, which identifies you to UNIX, on the same line as the login mes­
sage, and press carriage return. If the terminal you are using has both upper and lower case, be
sure you enter your login name in lower case; otherwise UNIX assumes your terminal has only
upper case and will not recognize lower case letters you may type. UNIX types ":login:" and
you reply with your login name, for example "susan":

:login: susan (and press carriage return)

(In the examples, input typed by the user appears in bold face to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it to prevent others from seeing it. The message is:

Password: (type your password and press carriage retum)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX

will respond with

Login incorrect.

:login:

in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX will print the message of the day and eventually will present you with a % at
the beginning of a fresh line. The % is the UNIX prompt symbol which tells you that UNIX is
ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con­
venient time to choose a name for the file of text which you are about to create. To begin your
editing session type edit followed by a space and then the filename which you have selected, for
example "text". When you have completed the command, press carriage return and wait for
edit's response:

- 3 -

% edit text (followed by a carriage return)
"text" No such file or directory

If you typed the command correctly, you will now be in communication wtth edit. Edit has set
aside a buff er for use as a temporary working space during your current editing session. It also
checked to see if the file you named, "text", already existed. As we expected, it was unable to
find such a file since "text" is the name of the new file that we will create. Edit confirms this
with the line:

"text" No such file or directory

On the next line appears edit's prompt":", announcing that edit expects a command from you.
You may now begin to create the new file.

The "Command not found" message

If you misspelled edit by typing, say, "editor", your request would be handled as follows:

% editor
editor: Command not found.
%

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named
"editor". Since there is no program named "editor", UNIX reported that the program was "not
found." A new % indicates that UNIX is ready for another command, so you may enter the
correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look some­
thing like this:

Entering text

:login: susan
Password:

... A Message of General Interest ...

% edit text
"text" No such file or directory

You may now begin to enter text into the buffer. This is done by appending text to what­
ever is currently in the buffer. Since there is nothing in the buffer at the moment, you are
appending text to nothing; in effect, you are creating text. Most edit commands have two
forms: a word which describes what the command does and a shorter abbreviation of that word.
Either form may be used. Many beginners find the full command names easier to remember,
but once you are familiar with editing you may pref er to type the shorter abbreviations. The
command to input text is "append" which may be abbreviated "a". Type append and press
carriage return.

% edit text
:append

Messages from edit

If you make a mistake in entering a command and type something that edit does not
recognize, edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, "ad~" instead of

- 4 -

"append" or "a", you will receive this message:

:add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead, a new ":" appeared to let
you know that edit is again ready to receive a command.

Text input mode

By giving the command "append" (or using the abbreviation "a"), you entered text input
mode, also known as append mode. When you enter text input mode, edit responds by doing
nothing. You will not receive any prompts while in text input mode. This is your signal that
you are to begin entering lines of text. You can enter pretty much anything you want on the
lines. The Jines are transmitted one by one to the buff er and held there during the editing ses­
sion. You may append as much text as you want, and 1vhe11 you wish to stop entering texr lines
you should type a period as the only character on the line and press carriage return. When you give
this signal that you want to stop appending text, you will exit from text input mode and reenter
command mode. Edit will again prompt you for a command by printing ":".

Leaving append mode does not destroy the text in the buff er. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and type any other character on the same line, edit will
believe you want to remain in append mode and will not let you out. As this can be very frus­
trating, be sure to type only the period and carriage return.

This is as good a place as any to learn an important lesson about computers and text: a
blank space is a character as far as a computer is concerned. If you so much as type a period
followed by a blank (that is, type a period and then the space bar on the keyboard), you will
remain in append mode with the last line of text being:

Let's say that the lines of text you enter are (try to type exactly what you see, including
"thiss"):

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a carriage return that gets you out of append mode. If
while typing the line you hit an incorrect key, recall that you may delete the incorrect character
or cancel the entire line of input by erasing in the usual way. Refer to "Communicating with
UNIX" if you need to review the procedures for making a correction. Erasing a character or
cancelling a line must be done before the line has been completed by a carriage return. We will
discuss changes in lines already typed in session 2.

Writing text to disk

You are now ready to edit the text. The simplest kind of editing is to write it to disk as a
file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor's buff er is temporary and will last only until the end of the
editing session. Thus, learning how to write a file to disk is second in importance only to enter­
ing the text. To write the contents of the buffer to a disk file, use the command "write" (or its
abbreviation "w"):

- 5 -

: write

Edit will copy the buff er to a disk file. If the file does not yet exist, a new file will be created
automatically and the presence of a "New file" will be noted. The newly-created file will be
given the name specified when you entered the editor, in this case "text". To confirm that the
disk file has been successfully written, edit will repeat the filename and give the number of
lines and the total number of characters in the file. The buff er remains unchanged by the
"write" command. All of the lines which were written to disk will still be in the buffer, should
you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print

No current filename

in response to your write command. If this happens, you can specify the filename in a new
write command:

: write text

After the "write" (or "w") type a space and then the name of the file.

Logging off

We have done enough for this first lesson on using the UNIX text editor, and are ready to
quit the session with edit. To do this we type "quit" (or "q") and press carriage return:

: write
"text" [New file] 3 lines, 90 characters
: quit
%

The % is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Since we want to end the entire session at the terminal we also need to exit from
UNIX. In response to the UNIX prompt of "%" type the command logout or a "control d".
This is done by holding down the control key (usually labelled "CTRL") and simultaneously
pressing the d key. This will end your session with UNIX and will ready the terminal for the
next user. It is always important to logout at the end of a session to make absolutely sure no
one could accidentally stumble into your abandoned session and thus gain access to your files,
tempting even the most honest of souls.

This is the end of the first session on UNIX text editing.

- 6 -

Session 2
Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (give passll'ord and carriage return)

%

This time when you say that you want to edit, you can specify the name of the file you worked
on last time. This will start edit working and it will fetch the contents of the file into the
buffer, so that you can resume editing the same file. When edit has copied the file into the
buffer, it will repeat its name and tell you the number of lines and characters it contains. Thus,

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 char­
acters of text into the buff er. Edit awaits your further instructions. In this session, we will
append more text to our file, print the contents of the buff er, and learn to change the text of a
line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append com­
mand to enter text input mode. When append is the first command of your editing session, the
lines you enter are placed at the end of the buffer. We'll soon discuss why this happens. Here
we'll use the abbreviation for the append command, "a":

Interrupt

:a
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Should you press the RUBOUT key (sometimes labelled DELETE) while working with edit, it
will send this message to you:

Interrupt

Any command that edit might be executing is terminated by rubout or delete, causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text that you were typing
when the append command was interrupted will not be entered into the buff er.

Making corrections

If you have read a general introduction to UNIX, such as "Communicating with UNIX",
you will recall that it is possible to erase individual letters that you have typed. This is done by
typing the designated erase character as many times as there are characters you want to erase.
Accounts ·normally start out using the number sign (#) as the erase character, but it's possible
for a different erase character to be selectedt. We'll show "#" as the erase character in our

tu)':IX accounts may be "personalized" in other ways, too. If you're using an established account, check with
someone who is familiar with your account to find out if it has any other non-standard characteristics which
may affect your work. Accounts for students in classes are often given class commands and other special
features; the teaching assistant or instructor is the best source of information about these changes.

- 7 -

examples, but if you've changed your erase character to backspace (control-H) or something
else, be sure to use your own erase character.

If you make a bad start in a line and would like to begin again, erasing individual charac­
ters with a"#" is cumbersome - what if you had 15 characters in your line and wanted to get
rid of them? To do so either requires:

This is yukky tex###############

with no room for the great text you'd like to type, or,

This is yukky tex@This is great text.

When you type the at-sign (@), you erase the entire line typed so far. (An account may select
a different line erase character to use in place of @. If your line erase character has been
changed, use it where the examples show "@" .) You may immediately begin to retype the
line. This, unfortunately, does not help after you type the line and press carriage return. To
make corrections in lines which have been completed, it is necessary to use the editing com­
mands covered in this session and those that follow.

Listing what's in the buffer

Having appended text to what you wrote in Lesson I, you might be curious to see what is
in the buffer. To print the contents of the buffer, type the command:

:l,$p

The "1" stands for line 1 of the buffer, the "$" is a special symbol designating the last line of
the buffer, and "p" (or print) is the command to print from line 1 to the end of the buffer.
Thus, "1,$p" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may enter into the buffer a character which can't be printed, which is done by
striking a key while the CTRL key is depressed. In printing lines, edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character "control-A" into the word "illustrate" by accidently holding down the CTRL key
while typing "a". Edit would display

it does illustrA Ate the editor.

if you asked to have the line printed. To represent the control-A, edit shows w A". The
sequence "A" followed by a capital letter stands for the one character entered by holding down
the CTRL key and typing the letter which appears after the "A". We'll soon discuss the com­
mands which can be used to correct this typing error.

In looking over the text we see that "this" is typed as "thiss" in the second line, as sug­
gested. Let's correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find "thiss"
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for "thiss" and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash marks:

- 8 -

: /thiss/

By typing /thiss/ and pressing carriage return edit is instructed to search for "thiss". If we
asked edit to look for a pattern of characters which it could not find in the buff er, it would
respond "Pattern not found". When edit finds the characters "thiss", it will print the line of
text for your inspection:

And thiss is some more text.

Edit is now positioned in the buff er at the line which it just printed, ready to make a change in
the line.

The current line

At all times during an editing session, edit keeps track of the line in the buffer where it is
positioned. In general, the line which has been most recently printed, entered, or changed is
considered to be the current position in the buffer. The editor is prepared to make changes at
the current position in the buff er, unless you direct it to act in another location. When you
bring a file into the editor, you will be positioned at the last line in the file. If your initial edit­
ing command is "append", the lines you enter are added to the end of the file, that is, they are
placed after the current position. You can refer to your current position in the buffer by the
symbol period (.) usually known by the name "dot". If you type"." and carriage return you
will be instructing edit to print the current line:

And thiss is some more text.

If you want to know the number of the current line, you can type . = and carriage return,
and edit will respond with the line number:

2

If you type the number of any line and a carriage return, edit will position you at that line and
print its contents:

:2
And thiss is some more text.

You should experiment with these commands to assure yourself that you understand what they
do.

Numbering lines (nu)

The number (nu) command is similar to print, g1vmg both the number and the text of
each printed line. To see the number and the text of the current line type

:nu
2 And thiss is some more text.

Notice that the shortest abbreviation for the number command is "nu" (and not "n" which is
used for a different command). You may specify a range of lines to be listed by the number
command in the same way that lines are specified for print. For example, "I ,$nu" lists all
lines in the buffer with the corresponding line numbers.

Substitute command (s)

Now that we have found our misspelled word it is time to change it from "thiss" to
"this". As far as edit is concerned, changing things is a matter of substituting one thing for
another. As a stood for append, so s stands for substitute. We will use the abbreviation "s" to
reduce the chance of mistyping the substitute command. This command will instruct edit to
make the change:

- 9 -

2s/thiss/this/

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want sub­
stitution. Inside the first set of slashes are the characters that we want to change, followed by
the characters to replace them and then a closing slash mark. To summarize:

2s/ what is to be changed I what to change to I

If edit finds an exact match of the characters to be changed it will make the change only in the
first occurrence of the characters. If it does not find the characters to be changed it will
respond:

Substitute pattern match failed

indicating your instructions could not be carried out. When edit does find the characters which
you want to change, it will make the substitution and automatically print the changed line, so
that you can check that the correct substitution was made. In the example,

: 2s/thiss/this/
And this is some more text.

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact
match is found, "thiss" will be changed to "this". Strictly speaking, it was not necessary
above to specify the number of the line to be changed. In

: s/thiss/this/

edit will assume that we mean to change the line where we are currently positioned (". "). In
this case, the command without a line number would have produced the same result because ·
we were already positioned at the line we wished to change.

For another illustration of substitution we may choose the line:

Text editing is strange, but nice.

We might like to be a bit more positive. Thus, we could take out the characters "strange,
but " so the line would read:

Text editing is nice.

A command which will first position edit at that line and then make the substitution is:

: /strange/s/strange, but //

What we have done here is combine our search with our substitution. Such combinations
are perfectly legal. This illustrates that we do not necessarily have to use line numbers to iden­
tify a line to edit. Instead, we may identify the line we want to change by asking edit to search
for a specified pattern of letters which occurs in that line. The parts of the above command are:

/strange/
s
/strange, but //

tells edit to find the characters "strange" in the text
tells edit we want to make a substitution
substitutes nothing at all for the characters "strange, but "

You should note the space after "but" in "/strange, but /". If you do not indicate the
space is to be taken out, your line will be:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we real­
ize from this that a blank space is a real character to a computer, and in editing text we need to
be aware of spaces within a line just as we would be aware of an "a" or a "4".

- 10 -

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other
commands can be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

: 1z

edit will start with line 1 and continue printing lines, stopping either when the screen of your
terminal is full or when the last line in the buff er has been printed. If you want to read the
next segment of text, give the command

:z

If no starting line number is given for the z command, printing will start at the "current" line,
in this case the last line printed. Viewing lines in the buff er one screen full at a time is known
as paging. Paging can also be used to print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to pause in our work, and so we should end the second ses­
sion. If you (in haste) type "q" to quit the session your dialogue with edit will be:

:q
No write since last change (q! quits)

This is edit's warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you have done during the editing session since the latest
write command. Since in this lesson we have not written to disk at all, everything we have
done would be lost. If we did not want to save the work done during this editing session, we
would have to type "q!" to confirm that we indeed wanted to end the session immediately, los­
ing the contents of the buffer. However, since we want to preserve what we have edited, we
need to say:

:w
"text" 6 lines, 171 characters

and then,

:q
% logout

and hang up the phone or turn off the terminal when UNIX asks for a login name. This is the
end of the second session on UNIX text editing.

- 11 -

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit. You should try to login without looking at the
notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you say

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
"text" into the buffer. If you did forget to tell edit the name of your file, you can get it into
the buff er by saying:

: e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated "e" when you're in the editor, tells edit that
you want to erase anything that might already be in the buff er and bring a copy of the file
"text" into the buffer for editing. You may also use the edit (e) command to change files in
the middle of an editing session or to give edit the name of a new file that you want to create.
Because the edit command clears the buffer, you will receive a warning if you try to edit a new
file without having saved a copy of the old file. This gives you a chance to write the contents
of the buff er to disk before editing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buff er to another by means
of the move (m) command:

:2,4m$

This command directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format
for the move command is that you specify the first line to be moved, the last line to be moved,
the move command "m", and the line after which the moved text is to be placed. Thus,

:l,6m20

would instruct edit to move lines 1 through 6 (inclusive) to a position after line 20 in the
buffer. To move only one line, say, line 4, to a position in the buffer after line 6, the com­
mand would be "4m6".

Let's move some text using the command:

:5,$ml
2 lines moved
it does illustrate the editor.

After executing a command which changes more than one line of the buffer, edit tells how
many lines were affected by the change. The last moved line is printed for your inspection. If
you want to see more than just the last line, use the print (p), z, or number (nu) command to
view more text. The buffer should now contain:

- 12 -

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

We can restore the original order by typing:

:4,Sml

or, combining context searching and the move command:

: I And this is some/ ,/This is text/m/This is some sample/

The problem with combining context searching with the move command is that the chance of
making a typing error in such a long command is greater than if one types line numbers.

Copying lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:

: 12,15copy $

makes a copy of lines 12 through 15, placing the added lines after the buffer's end($). Experi­
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is "co" (and not the letter "c" which has another meaning).

Deleting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
followed by "delete" or "d". This example deletes line 4:

:4d
It doesn't mean much here, but

Here "4" is the number of the line to be deleted and "delete" or "d" is the command to
delete the line. After executing the delete command, edit prints the line which has become the
current line (".").

If you do not happen to know the line number you can search for the line and then delete
it using this sequence of commands:

: /added in Session 2./
This is text added in Session 2.
:d
It doesn't mean much here, but

The "/added in Session 2./" asks edit to locate and print the next line which contains the indi­
cated text. Once you are sure that you have correctly specified the line that you want to delete,
you can enter the delete (d) command. In this case it is not necessary to specify a line number
before the "d". If no line number is given, edit deletes the current line("."), that is, the line
found by our search. After the deletion, your buff er should contain:

This is some sample text.
And this is some more text.
Text editing is nice.

- 13 -

It doesn't mean much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

: 2,3d

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for
delete.

Again, this presumes that you know the line numbers for the lines to be deleted. If you
do not you might combine the search command with the delete command as so:

: I And this is some/ ,/Text editing is nice.Id

This tells the editor to start deleting with the next line that contains the characters "And this is
some" and continue until it has deleted the line containing "Text editing is nice."

A word or two of caution:

In using the search function to locate lines to be deleted you should be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit will search for the first occurrence of the characters starting from where you last edited -
that is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing carriage return to send the command
on its way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command. To
undo the previous command, type "u" or "undo". Undo can rescue the contents of the buff er
from many an unfortunate mistake. However, its powers are not unlimited, so it is still wise to
be reasonably careful about the commands you give. It is possible to undo only commands
which have the power to change the buffer, for example delete, append, move, copy, substi­
tute, and even undo itself. The commands write (w) and edit (e) which interact with disk files
cannot be undone, nor can commands such as print which do not change the buff er. Most
importantly, the only command which can be reversed by undo is the last "undo-able" com­
mand which you gave.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines which were formerly numbered 2 and 3. Executing undo at this
moment will reverse the effects of the deletion, causing those two lines to be replaced in the
buff er.

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now "dot" (the current line).

- 14 -

More about the dot (.) and buffer end ($)

The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode we type dot (and only a dot) on a line and press carriage
return;

2. to refer to the line we are at in the buff er.

Dot can also be combined with the equal sign to get the number of the line currently being
edited:

Thus if we type ". =" we are asking for the number of the line and if we type "." we are ask­
ing for the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit to
print the last line in the buffer. If the dollar sign is combined with the equal sign ($ =) edit
will print the line number corresponding to the last line in the buff er.

"." and "$" therefore represent line numbers. Whenever appropriate, these symbols can
be used in place of line numbers in commands. For example

: .,$d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and -)

It is frequently convenient during an editing session to go back and re-read a previous
line. We could specify a context search for a line we want to read if we remember some of its
text, but if we simply want to see what was written a few, say 3, lines ago, we can type

-3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
We can move forward in the buffer similarly:

+2p

instructs edit to print the line which is 2 ahead of our current position.

You may use "+" and " - " in any command where edit accepts line numbers. Line
numbers specified with "+" or " - " can be combined to print a range of lines. The command

: -1, +2copy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buff er ($).

Try typing only " - "; you will move back one line just as if you had typed "-1 p". Typ­
ing the command "+"works similarly. You might also try typing a few plus or minus signs in
a row (such as "+ + + ") to see edit's response. Typing a carriage return alone on a line is the
equivalent .of typing "+ lp"; it will move you one line ahead in the buffer and print that line.

If you are at the last line of the buff er and try to move further ahead, perhaps by typing a
"+" or a carriage return alone on the line, edit will remind you that you are at the end of the
buffer:

At end-of-file

Similarly, if you try to move to a position before the first line, edit will print one of these mes­
sages:

- 15 -

Nonzero address required on this command
Negative address - first buffer line is 1

The number associated with a buffer line is the line's "address", in that it can be used to locate
the line.

Changing lines (c)

There may be occasions when you want to delete certain lines and insert new text in their
place. This can be accomplished easily with the change (c) command. The change command
instructs edit to delete specified Jines and then switch to text input mode in order to accept the
text which will replace them. Let's say we want to change the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To do so, you can type:

: 1,2c
2 lines changed
This text was created with the UNIX text editor.

In the command l,2c we specify that we want to change the range of lines beginning with 1 and.
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After a carriage return enters the change command, edit notifies you if more than one line will
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the change command. You will remain
in text input mode until you exit in the usual way, by typing a period alone on a line. Note
that the number of lines added to the bu!fer need not be the same as the number of lines
deleted.

This is the end of the third session on text editing with UNIX.

- 16 -

Session 4
This lesson covers several topics, starting with commands which apply throughout the

buffer, characters with special meanings, and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing. and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com­
mand repeatedly, once for each time the change needs to be made. Edit, however, provides a
way to make commands apply to the entire contents of the buffer - the global (g) command.

To print all lines containing a certain sequence of characters (say, "text") the command
is:

: g/text/p

The "g" instructs edit to make a global search for all lines in the buff er containing the charac­
ters "text". The "p" prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed on the
identified lines. Global substitutions are frequently useful. For example, to change all
instances of the word "text" to the word "material" the command would be a combination of
the global search and the substitute command:

: g/text/s/text/material/g

Note the "g" at the end of the global command which instructs edit to change each and every
instance of "text" to "material". If you do not type the "g" at the end of the command only
the first instance of "text" in each line will be changed (the normal result of the substitute
command). The "g" at the end of the command is independent of the "g" at the beginning.
You may give a command such as:

: 14s/text/material/g

to change every instance of "text" in line 14 alone. Further, neither command will change
"Text" to "material" because "Text" begins with a capital rather than a lower-case t.

Edit does not automatically print the lines modified by a global command. If you want
the lines to be printed, type a "p" at the end of the global command:

: g/text/s/text/material/gp

The usual qualification should be made about using the global command in combination with
any other in essence, be sure of what you are telling edit to do to the entire buff er. For
example,

:g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your docu­
ment, since most lines have spaces between words and thus would be deleted. After executing
the global command, edit will print a warning if the command added or deleted more than one
line. Fortunately, the undo command can reverse the effects of a global command. You
should experiment with the global command on a small buffer of text to see what it can do for
you.

- 17 -

More about searching and substituting

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a less tedious way to repeat the same string
of characters. To change "noun" to "nouns" we may type either

:/noun/s/noun/nouns/

as we have done in the past, or a somewhat abbreviated command:

: /noun/sf /nouns/

In this example, the characters to be changed are not specified - there are no characters, not
even a space, between the two slash marks which indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean "use the characters we last
searched for as the characters to be changed."

Similarly, the last context search may be repeated by typing a pair of slashes with noth,ing
between them:

: /does/
It doesn't mean much here, but
: //
it does illustrate the editor.

Because no characters are specified for the second search, the editor scans the buff er for the
next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the
buff er to the beginning, until the specified character string is found. If you want to search in
the reverse direction, use question marks (?) instead of slashes to surround the character
string.

It's also possible to repeat the last substitution without having to retype the entire com­
mand. An ampersand (&) used as a command repeats the most recent substitute command,
using the same search and replacement patterns. After altering the current line by typing

:s/noun/nouns/

we could use the command

: /nouns/&

or simply

://&

to make the same change on the next line in the buffer containing the characters "nouns".

Special characters

Two characters have special meanings when used in specifying searches: "$" and "A".
"$" is taken by the editor to mean "end of the line" and is used to identify strings which
occur at the end of a line.

: g/ing$/s//ed/p

tells the editor to search for all lines ending in "ing" (and nothing else, not even a blank
space), to change each final "ing" to "ed" and print the changed lines.

The symbol "A" indicates the beginning of a line. Thus,

: sr 11. I

instructs the editor to insert "1." and a space at the beginning of the current line.

The characters "$" and "A" have special meanings only in the context of searching. At

- 18 -

other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to temporarily lose its special
significance by typing another special character, the backslash (\), before it.

: sl\$/dollar/

looks for the character "$" in the current line and replaces it by the word "dollar". Were it
not for the backslash, the "$" would have represented "the end of the line" in your search,
rather than the character "$". The backslash retains its special significance unless it is pre­
ceded by another backslash.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful
to you or ask for a list of your files. Removing and listing files are not functions of the editor,
and so they require the use of UNIX system commands (also referred to as "shell" commands,
as "shell" is the name of the program that processes UNIX commands). You do not need to
quit the editor to execute a UNIX command as long as you indicate that it is to be sent to the
shell for execution. To use the UNIX command rm to remove the file named "junk" type:

: !rm junk

'

The exclamation mark (!) indicates that the rest of the line is to be processed as a UNIX com­
mand. If the buff er contents have not been written since the last change, a warning will be
printed before the command is executed. The editor prints a "!" when the command is com­
pleted. The tutorial "Communicating with UNIX" describes useful features of the system, of
which the editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the current filename. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (e) command is used to specify a
new file. Once edit has recorded a current filename, it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file, edit, as we
have seen, supplies the current filename. You can have the editor write onto a different file by
including its name in the write command:

: w chapter3
"chapter3" 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the write com­
mand unless it is the first filename given in the editing session. Thus, in the next write command
which does not specify a name, edit will write onto the current file and not onto the file
"chapter3".

The file (f) command

To ask for the current filename, type file (or f). In response, the editor provides current
information about the buffer, including the filename, your current position, and the number of
lines in the buff er:

:f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buff er have changed since the last time the file was written, the editor
will tell you that the file has been "[Modified]". After you save the changes by writing onto a
disk file, the buff er will no longer be considered modified:

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 --75%--

Reading additional files (r)

- 19 -

The read (r) command allows you to add the contents of a file to the buffer without des­
troying the text already there. To use it, specify the line after which the new text will be
placed, the command r, and then the name of the file.

: Sr bibliography
"bibliography" 18 lines, 473 characters

This command reads in the file bibliography and adds it to the buff er after the last line. The
current filename is not changed by the read command unless it is the first filename given in the
editing session.

Writing parts of the buffer

The write (w) command can write all or part of the buffer to a file you specify. We are
already familiar with writing the entire contents of the buffer to a disk file. To write only part
of the buff er onto a file, indicate the beginning and ending lines before the write command, for
example

: 45,Sw ending

Here all lines from 45 through the end of the buff er are written onto the file named ending.
The lines remain in the buff er as part of the document you are editing, and you may continue
to edit the entire buffer.

Recovering files

Under most circumstances, edit's crash recovery mechanism is able to save work to within
a few lines of changes after a crash or if the phone is hung up accidently. If you lose the con­
tents of an editing buff er in a system crash, you will normally receive mail when you login
which gives the name of the recovered file. To recover the file, enter the editor and type the
command recover (rec), followed by the name of the lost file.

: recover chap6

Recover is sometimes unable to save the entire buff er successfully, so always check the con­
tents of the saved buff er carefully before writing it back onto the original file.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your
work by using the command preserve (pre), which saves the buff er as if the system had
crashed. If you are writing a file and you get the message "Quota exceeded", you have tried to
use more disk storage than is allotted to your account. Proceed with caution because it is likely
that only a part of the editor's buff er is now present in the file you tried to write. In this case
you should use the shell escape from the editor (!) to remove some files you don't need and try
to write the file again. If this is not possible and you cannot find someone to help you, enter
the command

: preserve

and then seek help. Do not simply leave the editor. If you do, the buffer will be lost, and you
may not be able to save your file. After a preserve, you can use the recover command once the
problem has been corrected.

- 20 -

If you make an undesirable change to the buff er and issue a write command before dis­
covering your mistake, the modified version will replace any previous version of the file.
Should you ever lose a good version of a document in this way, do not panic and leave the edi­
tor. As long as you stay in the editor, the contents of the buffer remain accessible. Depending
on the nature of the problem, it may be possible to restore the buffer to a more complete state
with the undo command. After fixing the damaged buff er, you can again write the file to disk.

Further reading and other information

Edit is an editor designed for beginning and casual users. It is actually a version of a
more powerful editor called ex. These lessons are intended to introduce you to the editor and
its more commonly-used commands. We have not covered all of the editor's commands, just a
selection of commands which should be sufficient to accomplish most of your editing tasks.
You can find out more about the editor in the Ex Reference Manual, which is applicable to both
ex and edit. The manual is available from the Computer Center Library, 218 Evans Hall. One
way to become familiar with the manual is to begin by reading the description of commands
that you already know.

Using ex

As you become more experienced with using the editor, you may still find that edit con­
tinues to meet your needs. However, should you become interested in using ex, it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit, only the characters "~", "$", and "\" have special meanings in searching the
buff er or indicating characters to be changed by a substitute command. Several additional char­
acters have special meanings in ex, as described in the Ex Reference Manual. Another feature
of the edit environment prevents users from accidently entering two alternative modes of edit­
ing, open and visual, in which the editor behaves quite differently than in normal command
mode. If you are using ex and the editor behaves strangely, you may have accidently entered
open mode by typing "o". Type the ESC key and then a "Q" to get out of open or visual mode
and back into the regular editor command mode. The document An Introduction to Display Edit­
ing with Vi provides a full discussion of visual mode.

This tutorial was produced at the Computer Center of the University of
California, Berkeley. We welcome comments and suggestions concern­
ing this item and the UNIX documentation in general.

addressing, see line numbers
append mode, 4
backslash (\), 18
buffer, 2
command mode, 4

- 21 -

Index

"Command not found" (message), 3
context search, 7-8, 9, 13, 17
control characters ("A" notation), 7
control-D, 5
current filename, 18, 19
current line (.), 8, 14
diagnostic messages, 3-4
disk, l
documentation, 20
edit (to begin editing session), 2, 6
editing commands:

append (a), 3, 4, 6
change (c), 15
copy (co), 12
delete (d), 12-13
edit (e), 11
file (f), 18
global (g), 16-17
move (m), 11-12
number (nu), 8
preserve (pre), 19
print (p), 7
quit (q), 5, 10
quit! (q!), 10
read (r), 19
recover (rec), 19
substitute (s), 8-9, 16, 17-18
undo (u), 13, 16
write (w), 4-5, 10, 19
z, 10

! (shell escape), 18
$= ' 14
+, 14
-, 14
II, 7-8, 17
? ? ' 17
., 8, 14
.=, 8, 14

erasing
characters (#), 6
lines (@), 7

ex (text editor), 20
Ex Reference Manual, 20
file, 1
file recovery, 19
filename, 1
Interrupt (message), 6
line numbers, see also current line

dollar sign ($), 7, 14
dot (.), 8, 14
relative (+ and -), 14

logging out, 5
login procedure, 2
non-printing characters, 7
program, 1
recovery see file recovery
shell, 18
shell escape (!), 18
special characters C, $, \), 1 7-18
text input mode, 4
UNIX, I

1. Introduction

MAIL REFERENCE MANUAL

Kurt Shoens

Version 2.10

June 15, 1983

Mail provides a simple and friendly environment for sending and receiving
mail. It divides incoming mail into its constituent messages and allows the user
to deal with them in any order. In addition, it provides a set of ed-like com­
mands for manipulating messages and sending mail. Mail offers the user simple
editing capabilities to ease the composition of outgoing messages, as well as pro­
viding the ability to define and send to names which address groups of users.
Finally, Mail is able to send and receive messages across such networks as the
ARPANET, UUCP, and Berkeley network.

This document describes how to use the Mail program to send and receive
messages. The reader is not assumed to be familiar with other message han­
dling systems, but should be familiar with the UNIX1 shell, the text editor, and
some of the common UNlX commands. "The UNIX Programmer's Manual," "An
Introduction to Csh," and "Text Editing with Ex and Vi" can be consulted for
more information on these topics.

Here is how messages are handled: the mail system accepts incoming mes­
sages for you from other people and collects them in a file, called your system
mailbox. When you login, the system notifies you if there are any messages wait­
ing in your system mailbox. If you are a csh user, you will be notified when new
mail arrives if you inform the shell of the location of your mailbox. On version 7
systems, your system mailbox is located in the directory /usr/spool/mail in a
file with your login name. If your login name is "sam," then you can make csh
notify you of new mail by including the following line in your .cshrc file:

set mail=/usr /spool/mail/sam
When you read your mail using Mail, it reads your system mailbox and separates
that :file into the individual messages that have been sent to you You can then
read, reply to, delete, or save these messages. Each message is marked with its
author and the date they sent it.

1 UNIX is a trademark of Bell Laboratories.

:Mail Reference :Manual 6/15/83 2

2. Common usage
The Mail command has two distinct usages, according to whether one wants

to send or receive mail. Sending mail is simple: to send a message to a user
whose login name is, say, "root," use the shell command:

% Mail root

then type your message. When you reach the end of the message, type an EOT
(control-d) at the beginning of a line, which will cause Mail to echo "EOT" and
return you to the Shell. When the user you sent mail to next logs in, he will
receive the message:

You have mail.

to alert him to the existence of your message.

If, while you are composing the message you decide that you do not wish to
send it after all, you can abort the letter with a RUBOUT. Typing a single RUBOUT
causes Mail to print

(Interrupt - one more to kill letter)

Typing a second RUBOUT causes Mail to save your partial letter on the file
"dead.letter" in your home directory and abort the letter. Once you have sent
mail'to someone, there is no way to undo the act, so be careful.

The message your recipient reads will consist of the message you typed,
preceded by a line telling who sent the message (your login name) and the date
and time it was sent.

If you want to send the same message to several other people, you can list
their login names on the command line. Thus,

% Mail sam bob john
Tuition fees are due next Friday. Don't forget!!
<Control-d>
EOT
%

will send the reminder to sam, bob, and john.

If, when you log in, you see the message,

You have mail.
you can read the mail by typing simply:

% Mail

Mail will respond by typing its version number and date and then listing the
messages you have waiting. Then it will type a prompt and await your command.
The messages are assigned numbers starting with 1 - you refer to the messages
with these numbers. Mail keeps tack of which messages are new (have been
sent since you last read your mail) and read (have been read by you). New mes­
sages have an N next to them in the header listing and old, but unread messages
have a U next to them. Mail keeps track of new/old and read/unread messages
by putting a header field called "Status" into your messages.

To look at a specific message, use the type command, which may be abbre­
viated to simply t. For example, if you had the following messages:

N 1 root Wed Sep 21 09:21 "Tuition fees"
N 2 sam Tue Sep 20 22:55

you could examine the first message by giving the command:
type 1

which might cause Mail to respond with, for example:

Mail Reference Manual 6/15/63

Message 1:
From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees
Status: R

Tuition fees are due next Wednesday. Don't forget!!

3

Many Mail commands that operate on messages take a message number as an
argument like the type command. For these commands, there is a notion of a
current message. When you enter the Mail program, the current message is ini­
tially the first one. Thus, you can often omit the message number and use, for
example,

t

to type the current message. As a further shorthand, you can type a message
by simply giving its message number. Hence,

1

would type the first message.

Frequently, it is useful to read the messages in your mailbox in order, one
after another. You can read the next message in· Mail by simply typing a new­
line. As a special case, you can type a newline as your first command to Mail to
type the first message.

If, after typing a message, you wish to immediately send a reply, you can do
so with the reply command. Reply, like type. takes a message number as an
argument. Mail then begins a message addressed to the user who sent you the
message. You may then type in your letter in reply, followed by a <control-d> at
the beginning of a line, as before. Mail will type EOT, then type the ampersand
prompt to indicate its readiness to accept another command. In our example.
if, after typing the first message, you wished to reply to it, you might give the
command:

reply

Mail responds by typing:

To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection
mode described at the beginning of this section and Mail will gather up your
message up to a control-d. Note that it copies the subject header from the ori­
ginal message. This is useful in that correspondence about a particular matter
will tend to retain the same subject heading, making it easy to recognize. If
there are other header fields in the message, the information found will also be
used. For example, if the letter had a "To:" header listing several recipients,
Mail would arrange to send your replay to the same people as well. Similarly, if
the original message contained a "Cc:" {carbon copies to) field, Mail would send
your reply to those users, too. Mail is careful, though. not too send the message
to you, even if you appear in the "To:" or "Cc:" field, unless you ask to be
included explicitly. See section 4 for more details.

After typing in your letter, the dialog with Mail might look like the following:

reply
To: root
Subject: Tuition fees

Thanks for the reminder

Mail Reference Manual

EOT
&

6/15/83 4

The reply command is especially useful for sustaining extended conversa­
tions over the message system, with other "listening" users receiving copies of
the conversation. The reply command can be abbreviated tor.

Sometimes you will receive a message that has been sent to several people
and wish to reply only to the person who sent it. Reply with a capital R replies to
a message, but sends a copy to the sender only.

If you wish, while reading your mail, to send a message to someone, but not
as a reply to one of your messages, you can send the message directly with the
mail command, which takes as arguments the names of the recipients you wish
to send to. For example, to send a message to "frank," you would do:

mail frank
This is to confirm our meeting next Friday at 4.
EOT
&

The mail command can be abbreviated to m.

Normally, each message you receive is saved in the file mbox in your login
directory at the time you leave Mail. Often, however, you will not want to save a
particular message you have received because it is only of passing interest. To
avoid saving a message in mbox you can delete it using the delete command. In
our example,

delete 1

will prevent Mail from saving message 1 (from root) in mbox. In addition to not
saving deleted messages, Mail will not let you type them, either. The effect is to
make the message disappear altogether, along with its number. The delete com­
mand can be abbreviated to simply d

Many features of Mail can be tailored to your liking with the set command.
The set command has two forms, depending on whether you are setting a binary
option or a valued option. Binary options are either on or off. For example, the
"ask" option informs Mail that each time you send a message, you want it to
prompt you for a subject header, to be included in the message. To set the
"ask" option, you would type

set ask

Another useful Mail option is "hold." Unless told otherwise, Mail moves the
messages from your system mailbox to the file mbox in your home directory
when you leave Mail. If you want Mail to keep your letters in the system mailbox
instead, you can set the "hold" option.

Valued options are values which Mail uses to adapt to your tastes. For
example, the "SHELL" option tells Mail which shell you like to use, and is
specified by

set SHELL=/bin/csh
for example. Note that no spaces are allowed in "SHELL=/bin/csh." A complete
list of the Mail options appears in section 5.

Another important valued option is "crt." If you use a fast video terminal,
you will find that when you print long messages, they tly by too quickly for you to
read them. With the "crt" option, you can make Mail print any message larger
than a given number of lines by sending it through the paging program more.
For example, most CRT users should do:

Mail Reference Manual 6/15/83

set crt=24

to paginate messages that will not fit on their screens. More prints a screenful
of information, then types --MORE--. Type a space to see the next screenful.

Another adaptation to user needs that Mail provides is that of aliases. An,
alia!;l is simply a name which stands for one or more real user names. Mail sent
to an alias is really sent to the list of real users associated with it. For example,
an alias can be defined for the members of a project, so that you can send mail
to the whole project by sending mail to just a single name. The alias command
in Mail defines an alias. Suppose that the users in a project are named Sam,
Sally, Steve, and Susan. To define an alias called "project" for them, you would
use the Mail command:

alias project sam sally steve susan

The alias command can also be used to provide a convenient name for someone
whose user name is inconvenient. For example, if a user named "Bob Anderson"
had the login name "anderson,"" you might want to use:

alias bob anderson

so that you could send mail to the shorter name, "bob."

While the alias and set commands allow you to customize Mail, they have
the drawback that they must be retyped each time you enter Mail. To make
them more convenient to use, Mail always looks for two files when it is invoked.
It first reads a system wide file "/usr /lib/Mail.re," then a user specific file,
".mailrc," which is found in the user's home directory. The system wide file is
maintained by the system administrator and contains set commands that are
applicable to all users of the system. The ".mailrc" file is usually used by each
user to set options the way he likes and define individual aliases. For example,
my .mailrc file looks like this:

set ask nosave SHELl...=/bin/csh
As you can see, it is possible to set many options in the same set command. The
"nosave" option is described in section 5.

Mail aliasing is implemented at the system-wide level by the mail delivery
system d.elivermail. These aliases are stored in the file /usr/lib/aliases and are
accessible to all users of the system. The lines in /usr /lib/aliases are of the
form:

alias: name 1, name2 , name3

where alias is the mailing list name and the na.mei are the members of the list.
Long lists can be continued onto the next line by starting the next line with a
space or tab. Remember that you must execute the shell command newaliases
after editing /usr/lib/aliases since the delivery system uses an indexed file
created by newaliases.

We have seen that Mail can be invoked with command line arguments which
are people to send the message to, or with no arguments to read mail. Specify­
ing the -f flag on the command line causes Mail to read messages from a file
other than your system mailbox. For example, if you have a collection of mes­
sages in the file "letters" you can use Mail to read them with:

% Mail -f letters
You can use all the Mail commands described in this document to examine,
modify, or delete messages from your "letters" file, which will be rewritten when
you leave Mail with the quit command described below.

Mail Reference Manual 6/15/63 6

Since mail that you read is saved in the file mbox in your home directory by
default, you can read mbox in your home directory by using simply

% Mail -f

Normally, messages that you examine using the type command are saved in
the file "mbox" in your home directory if you leave Mau with the quit command
described below. If you wish to retain a message in your system mailbox you
can use the preserve command to tell Mail to leave it there. The preserve com­
mand accepts a list of message numbers, just like type and may be abbreviated
to pre.

Messages in your system mailbox that you do not examine are normally
retained in your system mailbox automatically. If you wish to have such a mes­
sage saved in mbox without reading it, you may use the mbox command to have
them so saved. For example,

mbox2

in our example would cause the second message (from sam) to be saved in mbox
when the quit command is executed. Mbox is also the way to direct messages to
your mbox file if you have set the "hold" option described above. Mbox can be
abbreviated to mh

When you have perused all the messages of interest, you can leave Mau with
the quit command, which saves the messages you have typed but not deleted in
the file mbox in your login directory. Deleted messages are discarded irretriev­
ably, and messages left untouched are preserved in your system mailbox so that
you will see them the next time you type:

% Mail
The quit command can be abbreviated to simply q.

If you wish for some reason to leave Mau quickly without altering either
your system mailbox or mbox, you can type the x command (short for exit),
which will immediately return you to the Shell without changing anything.

If, instead, you want to execute a Shell command without leaving Mau, you
can type the command preceded by an exclamation point, just as in the text edi­
tor. Thus, for instance:

!date
will print the current date without leaving Mau.

Finally, the help command is available to print out a brief summary of the
Mau commands, using only the single character command abbreviations.

Mail Reference Manual 6/15/83 7

3. Maintaining folders
Mail includes a simple facility for maintaining groups of messages together

in folders. This section describes this facility.

To use the folder facility, you must tell Mail where you wish to keep your
folders. Each folder of messages will be a single file. For convenience, all of
your folders are kept in a single directory of your choosing. To tell Mail where
your folder directory is, put a line of the form

set folder=letters

in your .mailrc file. If, as in the example above, your folder directory does not
begin with a '/,' Mail will assume that your folder directory is to be found start­
ing from your home directory. Thus, if your home directory is /usr/person the
above example told Mail to find your folder directory in /usr/person/letters.

Anywhere a file name is expected, you can use a folder name, preceded with
'+.' For example, to put a message into a folder with the save command, you
can use:

save +classwork

to save the current message in the classwork folder. If the classwork folder
does not yet exist, it will be created. Note that messages which are saved with
the save command are automatically removed from your system mailbox.

In order to make a copy of a message in a folder without causing that mes­
sage to be removed from your system mailbox, use the copy command, which is
identical in all other respects to the save command. For example,

copy +classwork
copies the current message into the classwork folder and leaves a copy in your
system mailbox.

The folder command can be used to direct Mail to the contents of a
different folder. For example,

folder +classwork

directs Mail to read the contents of the classwork folder. All of the commands
that you can use on your system mailbox are also applicable to folders, includ­
ing type, delete, and reply. To inquire which folder you are currently editing,
use simply:

folder

To list your current set of folders, use the folders command.
To start Mail reading one of your folders, you can use the -f option

described in section 2. For example:

% Mail -f +classwork
will cause Mail to read your clasS1.1Jork folder without looking at your system
mailbox.

Mail Reference Manual 6/15/83 B

4. More about sending mail

4.1. Tilde escapes
While typing in a message to be sent to others, it is often useful to be able

to invoke the text editor on the partial message, print the message, execute a
shell command, or do some other auxiliary function. Mail provides these capabil­
ities through tilde escapes, which consist of a tilde ("') at the beginning of a line,
followed by a single character which indicates the function to be performed. For
example, to print the text of the message so far, use:

"'P
which will print a line of dashes, the recipients of your message, and the text of
the message so far. Since Mail requires two consecutive RUBOUT's to abort a
letter, you can use a single RUBOUT to abort the output of "'P or any other "'
escape without killing your letter.

If you are dissatisfied with the message as it stands, you can invoke the text
editor on it using the escape

which causes the message to be copied into a temporary file and an instance of
the editor to be spawned. After modifying the message to your satisfaction,
write it out and quit the editor. Mail will respond by typing

(continue)

after which you may continue typing text which will be appended to your mes­
sage, or type <control-d> to end the message. A standard text editor is pro­
vided by Mail. You can override this default by setting the valued option "EDI­
TOR" to something else. For example, you might prefer:

set EDITOR=/usr/ucb/ex

Many systems offer a screen editor as an alternative to the standard text
editor, such as the vi editor from UC Berkeley. To use the screen, or visual edi­
tor, on your current message, you can use the escape,

"'V works like "'e, except that the screen editor is invoked instead. A default
screen editor is defined by Mail. If it does not suit you, you can set the valued
option "VISUAL" to the path name of a different editor.

It is often useful to be able to include the contents of some file in your mes­
sage; the escape·

""r filename

is provided for this purpose, and causes the named file to be appended to your
current message. Mau complains if the file doesn't exist or can't be read. If the
read is successful., the number of lines and characters appended to your mes­
sage is printed, after which you may continue appending text. The filename may
contain shell metacharacters like * and ? which are expanded according to the
conventions of your shell.

As a special case of "'r, the escape

"""d
reads in the file "dead.letter" in your home directory. This is often useful since
Mau copies the text of your message there when you abort a message with
RUBOUT.

Mail Reference Manual 6/15/83 9

To save the current text of your message on a file you may use the

""W filename

escape. Mail will print out the number of lines and characters written to the file,
after which you may continue appending text to your message. Shell metachar­
acters may be used in the filename, as in "'r and are expanded with the conven­
tions of your shell.

If you are sending mail from within Mail's command mode you can read a
message sent to you into the message you are constructing with the escape:

..... m4

which will read message 4 into the current message, shifted right by one tab
stop. You can name any non-deleted message, or list of messages. Messages
can also be forwarded without shifting by a tab stop with -f. This is the usual
way to forward a message.

If, in the process of composing a message, you decide to add additional peo­
ple to the list of message recipients, you can do so with the escape

-t name 1 name2 ...
You may name as few or many additional recipients as you wish. Note that the
users originally on the recipient list will still receive the message; you cannot
remove someone from the recipient list with -t.

If you wish, you can associate a subject with your message by using the
escape

""S Arbitrary string of text
which replaces any previous subject with "Arbitrary string of text." The subject,
if given, is sent near the top of the message prefixed with "Subject:" You can see
what the message will look like by using "'P·

For political reasons, one occasionally prefers to list certain people as reci­
pients of carbon copies of a message rather than direct recipients. The escape

..... c name 1 name2 ...
adds the named people to the "Cc:" list, similar to -t. Again, you can execute
""P to see what the message will look like.

The recipients of the message together constitute the "To:" field, the sub­
ject the "Subject:" field, and the carbon copies the "Cc:" field. If you wish to
edit these in ways impossible with the t, ""S, and "'C escapes, you can use the
escape

""h
which prints "To:" followed by the current list of recipients and leaves the cur­
sor {or printhead) at the end of the line. If you type in ordinary characters,
they are appended to the end of the current list of recipients. You can also use
your erase character to erase back into the list of recipients, or your kill char­
acter to erase them altogether. Thus, for example, if your erase and kill charac­
ters are the standard # and @ symbols,

..... h
To: root kurt####bill

would change the initial recipients "root kurt" to "root bill" When you type a
newline, Mail advances to the "Subject:" field, where the same rules apply.
Another newline brings you to the "Cc:" field, which may be edited in the same
fashion. Another newline leaves you appending text to the erid of your message.
You can use "'P to print the current text of the header fields and the body of the
message.

Mail Reference Manual 6/15/83 10

To effect a temporary escape to the shell, the escape

-!command

is used, which executes command and returns you to mailing mode without
altering the text of your message. If you wish, instead, to filter the body of your
message through a shell command, then you can use

-I command

which pipes your message through the command and uses the output as the new
text of your message. If the command produces no output, Mail assumes that
something is amiss and retains the old version of your message. A frequently­
used filter is the command fmt, designed to format outgoing mail.

To effect a temporary escape to Mail command mode instead, you can use
the

"':Mail command

escape. This is especially useful for retyping the message you are replying to,
using, for example:

"': t
It is also useful for setting options and modifying aliases.

If you wish (for some reason) to send a message that contains a line begin­
ning with a tilde, you must double it. Thus, for example,

"'"'This line begins with a tilde.

sends the line

"'This line begins with a tilde.

Finally, the escape

prints out a brief summary of the available tilde escapes.

On some terminals (particularly ones with no lower case) tilde's are difficult
to type. Mriil allows you to change the escape character with the "escape"
option. For example, I set

set escape=]

and use a right bracket instead of a tilde. If I ever need to send a line beginning
with right bracket, I double it, just as for "'. Changing the escape character
removes the special meaning of"'.

4.2. Network access
This section describes how to send mail to people on other machines.

Recall that sending to a plain login name sends mail to that person on your
machine. If your machine is directly (or sometimes, even, indirectly) connected
to the Arpanet, you can send messages to people on the Arpanet using a name of
the form

name@host

where nrime is the login name of the person you're trying to reach and host is
the name of the machine where he logs in on the Arpanet.

If your recipient logs in on a machine connected to yours by UUCP (the Bell
Laboratories supplied network that communicates over telephone lines), send­
ing mail to him is a bit more complicated. You must know the list of machines
through which your message must travel to arrive at his site. So, if his machine
is directly connected to yours, you can send mail to him using the syntax:

Mail Reference Manual 6/15/83 11

host!name

where, again, host is the name of his machine and name is his login name. If
your message must go through an intermediate machine ftrst, you must use the
syntax:

intermediate!host!name

and so on. It is actually a feature of UUCP that the map of all the systems in the
network is not known anywhere (except where people decide to write it down for
convenience). Talk lo your system administrator about the machines connected
to your site. ·

If you want to send a message lo a recipient on the Berkeley network (Berk­
net), you use the syntax:

host: name

where host is his machine name and name is his login name. Unlike UUCP, you
need not know the names of the intermediate machines.

When you use the reply command lo respond to a letter, there is a problem
of figuring out the names of the users in the "To:" and "Cc:" lists relative to the
current machine. If the original letter was sent to you by someone on the local
machine, then this problem does not exist, but if the message came from a
remote machine, the problem must be dealt with. Mail uses a heuristic to build
the correct name for each user relative to the local machine. So, when you
reply to remote mail, the names in the "To:" and "Cc:" lists may change some­
what.

4.3. Special recipients
As described previously, you can send mail to either user names or alias

names. It is also possible to send messages directly to files or to programs,
using special conventions. If a recipient name has a'/' in it or begins with a'+',
it is assumed to be the path name of a file into which to send the message. If the
file already exists, the message is appended to the end of the file. If you want to
name a file in your current directory (ie, one for which a '/' would not usually be
needed) you can precede the name with './' So, to send mail to the file "memo"
in the current directory, you can give the command:

% Mail ./memo

If the name begins with a'+,' it is expanded into the full path name of the folder
name in your folder directory. This ability to send mail to files can be used for a
variety of purposes, such as maintaining a journal and keeping a record of mail
sent to a certain group of users. The second example can be done automatically
by including the full pathname of the record file in the alias command for the
group. Using our previous alias example, you might give the command:

alias project sam sally steve susan /usr /project/mail_record
Then, all mail sent to "project" would be saved on the file
"/usr/project/mail_record" as well as being sent to the members of the pro­
ject. This file can be examined using Mail -j.

It is sometimes useful to send mail directly to a program, for example one
might write a project billboard program and want to access it using Mail. To
send messages to the billboard program, one can send mail to the special name
'!billboard' for example. Mail treats recipient names that begin with a 'I' as a
program to send the mail to. An alias can be set up to reference a 'I' prefaced
name if desired. Caveats: the shell treats 'I' specially, so it must be quoted on
the command line. Also, the 'I program' must be presented as a single argument
to mail. The safest course is to surround the entire name with double quotes.

Mail Reference Manual 6/15/83 12

This also applies to usage in the alias command. For example, if we wanted to
alias 'rmsgs' to 'rmsgs -s' we would need to say:

alias rmsgs "I rmsgs -s"

Mail Reference Manual 6/15/83 13

5. Additional features
This section describes some additional commands of use for reading your

mail, setting options, and handling lists of messages.

5.1. Message lists
Several Mail commands accept a list of messages as an argument. Along

with type and delete, described in section 2, there is the from command, which
prints the message headers associated with the message list passed to it. The
from command is particularly useful in conjunction with some of the message
list features described below.

A message list consists of a list of message numbers, ranges, and names,
separated by spaces or tabs. Message numbers may be either decimal numbers,
which directly specify messages, or one of the special characters "t" "." or "$"
to specify the first relevant, current, or last relevant message, respectively.
Relevant here means, for most commands "not deleted" and "deleted" for the
undelete command.

A range of messages consists of two message numbers (of the form
described in the previous paragraph) separated by a dash. Thus, to print the
first four messages, use

type 1-4

and to print all the messages from the current message to the last message, use

type.-$

A name is a user name. The user names given in the message list are col­
lected together and each message selected by other means is checked to make
sure it was sent by one of the named users. lf the message consists entirely of
user names, then every message sent by one those users that is relevant (in the
sense described earlier) is selected. Thus, to print every message sent to you by
"root," do

type root

As a shorthand notation, you can specify simply "*" to get every relevant
(same sense) message. Thus,

type*

prints all undeleted messages,

delete *

deletes all undeleted messages, and

undelete*

undeletes all deleted messages.
You can search for the presence of a word in subject lines with /. For

example, to print the headers of all messages that contain the word "PASCAL,"
do:

from /pascal
Note that subject searching ignores upper /lower case differences.

5.2. List of commands
This section describes all the Mail commands available when receiving mail.

Used to preface a command to be executed by the shell.

Mail Reference Manual 6/15/83 14

The - command goes to the previous message and prints it. The - com­
mand may be given a decimal number n as an argument, in which case the
nth previous message is gone to and printed.

Print
Like print. but also print out ignored header fields. See also print and
ignore.

Reply
Note the capital R in the name. Frame a reply to a one or more messages.
The reply (or replies if you are using this on multiple messages) will be sent
ONLY to the person who sent you the message (respectively, the set of peo­
ple who sent the messages you are replying to). You can add people using
the ""t and ""C tilde escapes. The subject in your reply is formed by prefac­
ing the subject in the original message with "Re:" unless it already began
thus. If the original message included a "reply-to" header field, the reply
will go o'Tlly to the recipient named by "reply-to." You type in your message
using the same conventions available to you through the mail command.
The Reply command is especially useful for replying to messages that were
sent to enormous distribution groups when you really just want to send a
message to the originator. Use it often.

Type
Identical to the Print command.

alias
Define a name to stand for a set of other names. This is used when you want
to send messages to a certain group of people and want to avoid retyping
their names. For example

alias project john sue willie kathryn

creates an alias project which expands to the four people John, Sue, Willie,
and Kathryn.

alternates
If you have accounts on several machines, you may find it convenient to use
the /usr/lib/aliases on all the machines except one to direct your mail to a
single account. The alternates command is used to inform Ma:il that each
of these other addresses is really you. Alternates takes a list of user names
and remembers that they are all actually you. When you reply to messages
that were sent to one of these alternate names, Mail will not bother to send
a copy of the message to this other address (which would simply be
directed back to you by the alias mechanism). If alternates is given no
argument, it lists the current set of alternate names. Alternates is usually
used in the .mailrc file.

chdir
The chdir command allows you to change your current directory. Chdir
takes a single argument, which is taken to be the pathname of the directory
to change to. If no argument is given, chdir changes to your home direc­
tory.

copyThe copy command does the same thing that save does, except that it does
not mark the messages it is used on for deletion when you quit.

delete
Deletes a list of messages. Deleted messages can be reclaimed with the
undelete command.

dt The dt command deletes the current message and prints the next message.
It is useful for quickly reading and disposing of mail.

Mail Reference Manual 6/15/83 15

edit To edit individual messages using the text editor, the edit command is pro­
vided. The edit command takes a list of messages as described under the
type command and processes each by writing it into the file Messagex
where x is the message number being edited and executing the text editor
on it. When you have edited the message to your satisfaction, write the
message out and quit, upon which Mail will read the message back and
remove the file. Edit may be abbreviated to e.

else Marks the end of the then-part of an if statement and the beginning of the
part to take effect if the condition of the if statement is false.

endif
Marks the end of an if statement.

exit Leave Mail without updating the system mailbox or the file your were read­
ing. Thus, if you accidentally delete several messages, you can use exit to
avoid scrambling your mailbox.

file The same as folder.
folders

List the names of the folders in your folder directory.

folder
The folder command switches to a new mail file or folder. With no argu­
ments, it tells you which file you are currently reading. If you give it an
argument, it will write out changes {such as deletions) you have made in the
current file and read the new file. Some special conventions are recognized
for the name:

from

Name

%
%name
&
+folder

Meaning
Previous file read
Your system mailbox
Name's system mailbox
Your "'/mbox file
A file in your folder directory

The from command takes a list of messages and prints out the header lines
for each one; hence

fromjoe

is the easy way to display all the message headers from "joe."

headers
When you start up Mail to read your mail, it lists the message headers that
you have. These headers tell you who each message is from, when they
were sent, how many lines and characters each message is, and the "Sub­
ject:" header field of each message, if present. In addition, Mail tags the
message header of each message that has been the object of the preserve
command with a "P." Messages that have been saved or written are flagged
with a "*." Finally, deleted messages are not printed at all. If you wish to
reprint the current list of message headers. you can do so with the headers
command. The headers command (and thus the initial header listing) only
lists the first so many message headers. The number of headers listed
depends on the speed of your terminal. This can be overridden by specify­
ing the number of headers you want with the wind.ow option. Ma:U main­
tains a notion of the current "window" into your messages for the purposes
of printing headers. Use the z command to move forward and back a win­
dow. You can move Mail's notion of the current window directly to a

Mail Reference Manual 6/15/63

particular message by using, for example,

headers 40

16

to move Mail's attention to the messages around message 40. The headers
command can be abbreviated to h.

helpPrint a brief and usually out of date help message about the commands in
Mail. Refer to this manual instead.

holdArrange to hold a list of messages in the system mailbox, instead of moving
them to the file mbox in your home directory. If you set the binary option
hold. this will happen by default.

if Commands in your ".mailrc" file can be executed conditionally depending
on whether you are sending or receiving mail with the if command. For
example, you can do:

if receive
commands ...

endif

An else form is also available:

if send
commands ...

else
comm.ands ...

endif

Note that the only allowed conditions are receive and send

ignore
Add the list of header fields named to the ignore list. Header fields in the
ignore list are not printed on your terminal when you print a message. This
allows you to suppress printing of certain machine-generated header fields,
such as Via which are not usually of interest. The Type and Print com­
mands can be used to print a message in its entirety, including ignored
fields. If ignore is executed with no arguments, it lists the current set of
ignored fields.

mailSend mail to one or more people. If you have the ask option set, Mail will
prompt you for a subject to your message. Then you can type in your mes­
sage, using tilde escapes as described in section 4 to edit, print, or modify
your message. To signal your satisfaction with the message and send it,
type control-d at the beginning of a line, or a . alone on a line if you set the
option dot. To abort the message, type two interrupt characters (RUBOUT by
default) in a row or use the ""q escape.

mbox
Indicate that a list of messages be sent to mbox in your home directory
when you quit. This is the default action for messages if you do not have the
hold option set.

nex:tThe next command goes to the next message and types it. If given a mes­
sage list, next goes to the first such message and types it. Thus,

next root

goes to the next message sent by "root" and types it. The next command
can be abbreviated to simply a newline, which means that one can go to and
type a message by simply giving its message number or one of the magic
characters"'!'" "."or"$". Thus,

Mail Reference Manual 6/15/83

prints the current message and

4
prints message 4, as described previously.

preserve

17

Same as hold Cause a list of messages to be held in your system mailbox
when you quit.

quit Leave Mau and update the file, folder, or system mailbox your were reading.
Messages that you have examined are marked as "read" and messages that
existed when you started are marked as "old." If you were editing your sys­
tem mailbox and if you have set the binary option hold, all messages which
have not been deleted, saved, or mboxed will be retained in your system
mailbox. If you were editing your system mailbox and you did not have hold
set, all messages which have not been deleted, saved, or preserved will be
moved to the file mbox in your home directory.

reply
Frame a reply to a single message. The reply will be sent to the person who
sent you the message to which you are replying, plus all the people who
received the original message, except you. You can add people using the ""t
and ""'C tilde escapes. The subject in your reply is formed by prefacing the
subject in the original message with "Re:" unless it already began thus. If
the original message included a "reply-to" header field, the reply will go
only to the recipient named by "reply-to." You type in your message using
the same conventions available to you through the mail command.

savelt is often useful to be able to save messages on related topics in a file. The
save command gives you ability to do this. The save command takes as
argument a lit of message numbers, followed by the name of the file on
which to save the messages. The messages are appended to the named file,
thus allowing one to keep several messages in the file, stored in the order
they were put there. The save command can be abbreviated to s. An exam­
ple of the save command relative to our running example is:

s 1 2 tuitionmail
Saved messages are not automatically saved in mbox at quit time, nor are
they selected by the next command described above, unless explicitly
specified.

set Set an option or give an option a value. Used to customize Mau. Section 5.3
contains a list of the options. Options can be binary, in which case they are
on or off, or valued. To set a binary option optwn on, do

set option
To give the valued option optwn the value value, do

set option=value
Several options can be specified in a single set command.

shell
The shell command allows you to escape to the shell. Shell invokes an
interactive shell and allows you to type commands to it. When you leave the
shell, you will return to Mau. The shell used is a default assumed by Mau;
you can override this default by setting the valued option "SHELL," eg:

set SHELL=/bin/csh

source
The source command reads Mau commands from a file. It is useful when

Mail Reference Manual 6/15/83 18

you are trying to fix your ".mailrc" file and you need to re-read it.

top The top command takes a message list and prints the first five lines of each
addressed message. It may be abbreviated to to. If you wish, you can
change the number of lines that top prints out by setting the valued option
"toplines." On a CRT terminal,

set toplines=10

might be preferred.

typePrint a list of messages on your terminal. If you have set the option crt to a
number and the total number of lines in the messages you are printing
exceed that specified by crt, the messages will be printed by a terminal
paging program such as more.

undelete
The undelete command causes a message that had been deleted previously
to regain its initial status. Only messages that have been deleted may be
undeleted. This command may be abbreviated to u.

unset
Reverse the action of setting a binary or valued option.

visual
It is often useful to be able to invoke one of two editors, based on the type
of terminal one is using. To invoke a display oriented editor, you can use
the visual command. The operation of the visual command is otherwise
identical to that of the edit command.

Both the edit and visual commands assume some default text editors.
These default editors can be overridden by the valued options "EDITOR"
and "VISUAL" for the standard and screen editors. You might want to do:

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi

write
The save command always writes the entire message, including the headers,
into the file. If you want to write just the message itself, you can use the
write command. The write command has the same syntax as the save com­
mand, and can be abbreviated to simply w. Thus, we could write the second
message by doing:

w 2 file.c
As suggested by this example, the write command is useful for such tasks
as sending and receiving source program. text over the message system.

z Mail presents message headers in windowfuls as described under the
headers command. You can move Mail's attention forward to the next win­
dow by giving the

z+
command. Analogously, you can move to the previous window with:

z-

5.3. Custom options
Throughout this manual, we have seen exarn.ples of binary and valued

options. This section describes each of the options in alphabetical order, includ­
ing some that you have not seen yet. To avoid confusion, please note that the
options are either all lower case letters or all upper case letters. When I start a
sentence such as: "Ask" causes Mail to prompt you for a subject header, I am
only capitalizing "ask" as a courtesy to English.

Mail Reference Manual 6/15/83 19

EDITOR
The valued option "EDITOR" defines the pathname of the text editor to be
used in the edit command and ""'e. If not defined, a standard editor is used.

SHELL
The valued option "SHELL" gives the path name of your shell. This shell is
used for the ! command and "'! escape. In addition, this shell expands file
names with shell metacharacters like * and ? in them.

VISUAL
The valued option "VISUAL" defines the pathname of your screen editor for
use in the visual command and ""'V escape. A standard screen editor is used
if you do not define one.

append
The "append" option is binary and causes messages saved in mbox to be
appended to the end rather than prepended. Normally, Mailwill mbox in the
same order that the system puts messages in your system mailbox. By set­
ting "append," you are requesting that mbox be appended to regardless. It
is in any event quicker to append.

ask "Ask" is a binary option which causes Mail to prompt you for the subject of
each message you send. If you respond with simply a newline, no subject
field will be sent.

ask cc
"Askcc" is a binary option which causes you to be prompted for additional
carbon copy recipients at the end of each message. Responding with a new­
line shows your satisfaction with the current list.

autoprint
"Autoprint" is a binary option which causes the delete command to behave
like dp - thus, after deleting a message, the next one will be typed
automatically. This is useful to quickly scanning and deleting messages in
your mailbox.

dot "Dot" is a binary option which, if set, causes Mail to interpret a period
alone on a line as the terminator of a message you are sending.

escape
To allow you to change the escape character used when sending mail, you
can set the valued option "escape." Only the first character of the
"escape" option is used, and it must be doubled if it is to appear as the first
character of a line of your message. If you change your escape character,
then ""' loses all its special meaning, and need no longer be doubled at the
beginning of a line.

folder
The name of the directory to use for storing folders of messages. If this
name begins with a'/' Mail considers it to be an absolute pathname; other­
wise, the folder directory is found relative to your home directory.

ignore
The binary option "ignore" causes RUBOUT characters from your terminal to
be ignored and echoed as @' s while you are sending mail. RUBOUT characters
retain their original meaning in Mail command mode. Setting the "ignore"
option is equivalent to supplying the -i fiag on the command line as
described in section 2.

ignoreeof
An option related to "dot" is "ignoreeof" which makes Mail refuse to
accept a control-d as the end of a message. "Ignoreeof" also applies to

Mail Reference Manual 6/15/83 20

Mau command mode.

keep
The "keep" option causes Mau to truncate your system mailbox instead of
deleting it when it is empty. This is useful if you elect to protect your mail­
box, which you would do with the shell command:

chmod 600 /usr/spool/mail/yourname

where yourname is your login name. If you do not do this, anyone can prob­
ably read your mail, although people usually don't.

keepsave
When you save a message, Mau usually discards it when you quit. To retain
all saved messages, set the "keepsave" option.

metoo
When sending mail to an alias, Mau makes sure that if you are included in
the alias, that mail will not be sent to you. This is useful if a single alias is
being used by all members of the group. If however, you wish to receive a
copy of all the messages you send to the alias, you can set the binary option
"metoo."

nosave
Normally, when you abort a message with two RUBOUTs, Mau copies the par­
tial letter to the file "dead.letter" in your home directory. Setting the
binary option "nosave" prevents this.

quiet
The binary option "quiet" suppresses the printing of the version when Mail
is first invoked, as well as printing the for example "Message 4:" from the
type command.

record
If you love to keep records, then the valued option "record" can be set to
the name of a file to save your outgoing mail. Each new message you send
is appended to the end of the file.

screen
When Mail initially prints the message headers, it determines the number
to print by looking at the speed of your terminal. The faster your terminal,
the more it prints. The valued option "screen" overrides this calculation
and specifies how many message headers you want printed. This number is
also used for scrolling with the z command.

sendmail
To alternate delivery system, set the "sendmail" option to the full path­
name of the program to use. Note: this is not for everyone! Most people
should use the default delivery system.

toplines
The valued option "toplines" defines the number of lines that the "top"
command will print out instead of the default five lines.

Mail Reference Manual 6/15/63 21

6. Command line options
This section describes command line options for Mau and what they are

used for.

-N Suppress the initial printing of headers.

-d Turn on debugging information. Not of general interest.

-f file
Show the messages in file instead of your system mailbox. If file is omitted,
Mau reads mbox in your home directory.

-i Ignore tty interrupt signals. Useful on noisy phone lines, which generate
spurious RUBOUT or DELETE characters. It's usually more effective to
change your interrupt character to control-c, for which see the stty shell
command.

-n Inhibit reading of /usr /lib/Mail.re. Not generally useful, since
/usr/lib/Mail.rc is usually empty.

-s string
Used for sending mail. String is used as the subject of the message being
composed. If string contains blanks, you must surround it with quote
marks.

-u name
Read names 's mail instead of your own. Unwitting others often neglect to
protect their mailboxes, but discretion is advised.
The following command line ftags are also recognized, but are intended for

use by programs invoking Mau and not for people.

-T file
Arrange to print on file the contents of the article-id fields of all messages
that were either read or deleted. -T is for the readnews program and
should NOT be used for reading your mail.

-hnumber
Pass on hop count information. Mau will take the number, increment it,
and pass it with -h to the mail delivery system. -h only has effect when
sending mail and is used for network mail forwarding.

-r name
Used for network mail forwarding: interpret name as the sender of the
message. The name and -r are simply sent along to the mail delivery sys­
tem. Also, Mau will wait for the message to be sent and return the exit
status. Also restricts formatting of message.
Note that-hand -r, which are for network mail forwarding, are not used in

practice since mail forwarding is now handled separately. They may disappear
soon.

Mail Reference Manual 6/15/83 22

7. Form.at of messages
This section describes the format of messages. Messages begin with a from

line, which consists of the word "From" followed by a user name, followed by
anything, followed by a date in the format returned by the ctime library routine
described in section 3 of the Unix Programmer's Manual. A possible ctime for­
mat date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time zone
indication, which should be three capital letters, such as PDT.

Following the from line are zero or more header field lines. Each header
field l~ne is of the form:

name: information

Name can be anything, but only certain header fields are recognized as having
any meaning. The recognized header fields are: article-id, bee, cc, from, reply­
to, sender, subject, and to. Other header fields are also significant to other sys­
tems; see, for example, the current Arpanet message standard for much more
on this topic. A header field can be continued onto following lines by making the
ftrst character on the following line a space or tab character.

If any headers are present, they must be followed by a blank line. The part
that follows is called the bod:y of the message, and must be ASCII text, not con­
taining null characters. Each line in the message body must be terminated with
an ASCII newline character and no line may be longer than 512 characters. If
binary data must be passed through the mail system, it is suggested that this
data be encoded in a system which encodes six bits into a printable character.
For example, one could use the upper and lower case letters, the digits, and the
characters comma and period to make up the 64 characters. Then, one can
send a 16-bit binary number as three characters. These characters should be
packed into lines, preferably lines about 70 characters long as long lines are
transmitted more efficiently.

The message delivery system always adds a blank line to the end of each
message. This blank line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end
of a message each time it is forwarded through a machine.

It should be noted that some network transport protocols enforce limits to
the lengths of messages.

Mail Reference Manual 6/15/83

B. Glossary
This section contains the definitions of a few phrases peculiar to Mail.

alias
An alternative name for a person or list of people.

23

flag An option, given on the command line of Mail, prefaced with a -. For exam­
ple, -f is a flag.

header field

mail

At the beginning of a message, a line which contains information that is part
of the structure of the message. Popular header fields include to, cc, and
subject.

A collection of messages. Often used in the phrase, "Have you read your
mail?"

mailbox
The place where your mail is stored, typically m the directory
/usr /spool/mail.

message
A single letter from someone, initially stored in your mailbox.

message list
A string used in Mail command mode to describe a sequence of messages.

option
A piece of special purpose information used to tailor Mail to your taste.
Options are specified with the set command.

Mail Reference Manual 6/15/83 24

9. Sum.mary of commands, options, and escapes
This section gives a quick summary of the Mail commands, binary and

valued options, and tilde escapes.

The following table describes the commands:

Command

Print
Reply
Type
alias
alternates
chdir
copy
delete
dt
endif
edit
else
exit
file
folder
folders
from
headers
help
hold
if
ignore
mail
mbox
next
preserve
quit
reply
save
set
shell
top
type
undelete
unset
visual
write
z

Description
Single command escape to shell
Back up to previous message
Type message with ignored fields
Reply to author of message only
Type message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or folder
Delete a list of messages
Delete current message, type next message
End of conditional statement; see if
Edit a list of messages
Start of else part of conditional; see if
Leave mail without changing anything
Interrogate/change current mail file
Same as file
List the folders in your folder directory
List headers of a list of messages
List current window of messages
Print brief summary of Mail commands
Same as preserve
Conditional execution of Mail commands
Set/ examine list of ignored header fields
Send mail to specified names
Arrange to save a list of messages in mbox
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave Mail; update system mailbox, mbox as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of messages
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messa~es to a file, don't include headers
Scroll to next/previous screenful of headers

Mail Reference Manual 6/15/83

The following table describes the options. Each option is shown as being
either a binary or valued option.

Option
EDITOR
SHELL
VISUAL
append
ask
askcc
autoprint
crt
dot
escape
folder
hold
ignore
ignoreeof
keep
keeps ave
me too
no save
quiet
record
screen
sendmail
top lines

Type
valued
valued
valued
binary
binary
binary
binary
valued
binary
valued
valued
binary
binary
binary
binary
binary
binary
binary
binary
valued
valued
valued
valued

Description
Pathname of editor for "'e and edit
Pathname of shell for shell, ""! and !
Pathname of screen editor for ""V, visual
Always append messages to end of mbox
Prompt user for Subject: field when sending
Prompt user for additional Cc's at end of message
Print next message after delete
Minimum number of lines before using more
Accept. alone on line to terminate message input
Escape character to be used instead of ""
Directory to store folders in
Hold messages in system mailbox by default
Ignore RUBOUT while sending mail
Don't terminate letters/command input with 1'D
Don't unlink system mailbox when empty
Don't delete saved messages by default
Include sending user in aliases
Don't save partial letter in dead.letter
Suppress printing of Mail version
File to save all outgoing mail in
Size of window of message headers for z, etc.
Choose alternate mail delivery system
Number of lines to print in top

The following table summarizes the tilde escapes available while sending
mail.

EscaEe Arauments Descrip_tion
..... ! command Execute shell command
"'C name ... Add names to Cc: field
-d Read dead.letter into message
"'e Invoke text editor on partial message
-f messages Read named messages
"'h Edit the header fields
"'ffi messages Read named messages, right shift by tab
"'P Print message entered so far
"'q Abort entry of letter; like RUBOUT
-r filename Read file into message
"'S string Set Subject: field to string
"-'t name ... Add names to To: field
....... v Invoke screen editor on message
,...,w filename Write message on file

"'I command Pipe message through command
stri:ng Quote a "' in front of string

Mail Reference Manual 6/15/83 26

The following table shows the command line flags that Mau accepts:

Flag Description
-N Suppress the initial printing of headers
-T file Article-id's of read/deleted messages to file
-d Turn on debugging
-f file Show messages in file or /mbox
-h number Pass on hop count for mail forwarding
-i Ignore tty interrupt signals
-n Inhibit reading of /usr /lib/Mail.re
-r name Pass on name for mail forwarding
-s stri:ng Use string as subject in outgoing mail
-u name Re ad name 's mail instead of your own

Notes: -T, --d. -h. and-rare not for human use.

Mail Ref ere nee Manual 6/15/63

10. Conclusion

Mail is an attempt to provide a simple user interface to a variety of under­
lying message systems. Thanks are due to the many users who contributed
ideas and testing to Mail.

An Introduction to the Berkeley Network

Eric Schmidt

Computer Science Division
Department or 'Elettrial £n1ineering and Computer Science

University of Ctlifomia, Berkeley
Berkeley, California 94720

May 1979
<revised March 1980)

ABSTJUC/'

This document dcsm"bes the use or a network between a number of
'U'Ntxt machines on the Berkeley campus. This network can execute commands

.on other machines, including file transf us, sendin1 and reuiving mail, remote
printing, and shell-scripts.

The network opcntes in a batch-request mode. Network re.quests an:
queued up at the source and sent in shortest-first order to the destination
machine. To do this, the requesu are forwarded throu1h a network of inter­
connected machines until they arrive at their destination 11there they are exe·
cuted. The time this requires depends on system lead., inte.r-aw:hine transf u
speed., and quantity of data beina sent.

The network enforces normal 'U'NtX sec\lrity and demands a remote
account with a password for most commands. Information can be returned to
the user in files, for later processina. or on the terminal for immediate viewing.

Introduction
A network betweCl\ a number of UNIX machines on the Berkeley campus has been im;>le·

mented. This doc:ument is a brief introduction to the use of this network. Information which
is specific to the local network has been pthered into Appendix A. The new user should read
both this introduction and Appendix A io orde.r to learn to use the network etreaively.

This document is subdivided into the rollowin& sections:

·2·

Use of the Network
1) Copyina Files over the Network
2) Listinc Requests in the Network Queue
J) Removina Requests from the Network Queue
•> Sendinc Mail over the Network
5) Jte.adinc Mail over the Net"WOri:
6) Usiac the Lineprinter over the Network
7) Net Prototype Comma.ad

Scttin1 Oefauits
How ID Specify Remote Passwords
Appendix A:. The Network at Berke.Icy
Appendix B: Gettin1 Started - An Example

Tbis manual is written in terms or three mythic:a.I machines, named X. Y. and Z. S~.fic
names at Berkefey are in Appendix A, alone with more local information.

Use of the Network

The network provides raa1it.ies for issuicc a command on one machine (the lot:a/
machine) which is to be ueaited on another (the 11mo~ machine). Network commands are
available to transi'e: tiles from one machlne to another. ID send mail to 1 user on a remote
machine, to reUieve one's mail from a remote account, or to print a file oa 1 remoce line·
printer. These commands are described below, as is the more seneral n~ command which
allows users ID sped{y the name of some command er shell saipt to be e:cet"Uted on a remote
machine. Network requests are queued on the local machine and sent LO the remote machine,
forwarded throuJh intermediate machines it aeces.sary.

Most or the oet'NOrk commands require that you have an ICC'Ount on the remote machine.
II a remote aceount is not aeeded for 1 putic:ular comman~ it will be noted in the f ollowina
disc:'Ussioa. The Am example introduces proc:dure:s and responses wruch are applicable LO all
network comma.ads.

-··
1. CopriDI rues 01'V the Network

Suppose that you have sc:eounts on both the X and Y machines and that you are presently
loued into the X machine. U' you want to copy 1 ftle n.amed 'ftlel' from your current direcu:>ry
oa machiDc X to aw:bioe Y (the 1tmo1t machine),™ the command:

t. aetcp at.I Y:m&l
'Tbe net will make 1 CCi'Y ol ·mer in your tCjin directory oa the Y machine. CThe 'Y:' will no<
be part ot the filename oa the Y machine.> In order to verity your permission to write into the
Y ICCOW1t. the Mtcp command wtll prompt you with: •

Name CY:,out·o.ame):

You should respond with your toem name on the Y machine, followed by 1 earriage-renira. Ir
70u have the same JOiin aame oa both machines. just type a carriqe·retuni. Next a password
will be requested:

Password CY::emote·na.me):
Now type in your pa:sword followed by 1 carria&e·retum (you must type it even it your pus.
words are the same oa both machines). The Mtcp comma.ad 'lfl1J make 1 copy ot your •&el• in
I queue destined (or t.be Y machine, and will then return you to the Sheil..

Ukewise it you W'l.Dted to tnmfer 1 .Ille named 'sa.n.p' from Y to X.
t. aeu;p Y:x::an.p scaa.p

.3.

would place that file in your current directory on X.

The network 'ft'l11 "'writeH you when it has executed your request ar)'OU are stm loczed
in}. or will "m111" you • mcssa.ge (if you are not}. You may use lbe - n option (dC$C?ibed
later) to disallow the interruption and lbus force mail to be sent. A typical message might look
like this:

Mcssa1e from Y:your-oame at time -·
(comman~ netcp filel Y:.fi.lel. R.; o. sent April 1 11:03, took 10 min 3 sec}

The mess.ace indudes the current time, the time you sent the command oc machine X. and the
exit code of the command Czero normally means success).

Tbe network response will tell you if it was unable to exee-ute the remote command sue·
cessfully by retuntjna an error messa1e some time l&ter. Ir. for example, you type lbe wrong
password,' you will aet the response

Mes.saae from Y:your-name as time _
(command: netcp ftlel Y:.filel, sent April l 11:03, took 10 min 3 sec)
Error: bad Io&in/pa.s.sword your-name

Tbe Mtcp command is actually 1 aeneraliution or the UNIX cp command.. sim.Uar to uuef!t.
Its syntax is: •

Detcp {-l /crin] [-p pas.sworo1 [-al (-qJ [-fl /r0/1'//ik to.fik

where from,fik and IQ/ik can be loa.1 or remote files. A ftlcna.me which is not a full pathname is
either from the current direetory on the local machine or your login direetory on the remote
machine. The -1 and -p options may be used to specify your remote lo&in name and pass·
word on the command line. If the password contains shell meta-characters. it must be in
quotes. (These options are useful in shell scripts. but be 11.1re to make tbe shell script readable

. only by yourself if you've aot passwords in it!) The -a option forces any responses from the
remote machine to be malled rather than written to you.. Tbe -r option forces prom.ptinl for a
remote user name and password, even if they are set by other options or are in the .. .nem:., file
<Ke 0 Settin1 Defaults .. below). Finally. the. -q option prevents any confirmation messages
Crom bein& sent beck to you.., it there were no errors., the exit code or the comm.and is zero. and
the command had no output.

Transferred Ales may or may not have the correet ale prot~tion mode~ use the cltmod m
command to reset it. Wben Ales are to be brouaht from a remote mach.ine. they are created
zero-lensth 11 the time the command is issued; when they arrive. they assume their uue len1th.
Unlike cp, 1Wtcp docs not allow the tofik to be simplified to a directory. if the files have the
same a.ame.
Examples:

1' ncu:;> Alel Y::mel
1' netcp Y:filel Alel
1' nctcp Z:&cl Z:.filcl
1' netcp X:Jcx.c · Y:lex.c
1' ncu:;> Y:subdir/ftlel Alcl
1' nctcp llcl l1cl

copy 'fUel' from the current direaory to Y
copy 'filel' from Y to the current directory
cp command on remote machine
copy from X to Y
copy from a 11.1b-directory
an error- use the cpcommand

•••
l. Listin& Requests in the Network Queae

To see where your command is in the queue, type

% aetq

A typic:a.l output of which looks lik:e:

From To Len Code 'lime Command
X.')'our-aame Y:remot~name 100 b99999 Mu 2J 18:05 netCj) filel Y:filel

The format is similar to that of the {pq command. The files are unt one at a time. in the order
listed. It 11t1q tells you the queue is empty, your request bas been ~nt already. The queues ror
diEerent destinations are totally sepante.

~ netq Y

will list just the queue destined for the Y machine. Nerq summarizes requests from other u.scl'3.
The command

~ netq -a
wt1l print the requests from all users.

3. Removin& Requests from the Network Queue

It you want to cancel your net request, and "b99999" (sec the netq example above) is
your .. Code.•• use the command

~ netrm b99999

which will remove the request (il" it ha.sn•t already ~n sent). Fl.lnhermore,

~ aetrm -
will remove all your net requests in the queues on the local machine (you must have made the
request in order to remove it) .

.C. ~ndln& ~all over the Network

To send mail to remote machines, uu the m.ail command with the remote acto1Jnt
prefixed 'by the destination machine's name and a •:•. 04Y:~~mid1'•, for example. refers to Ill
account .. sc.'lmidt99 on the Y machine. The full sequence is il!UStrated below:

qf, mail Y:x!:unidt
{your messaae to user "schmidt •• }

{coatrol-d)

This will send to user ".sthmidt'• on the Y machine. the text you type in. As with intra­
mac:hine mail, the messace is terminated by a control-d.

You do not need an aceount on a remote machine to send man to a user there.

5. Rndtn1 Mall o<rer the Network

It is also possible to read your mail oa remote machines. From the X machine. the com·
mand

" neumil Y
sends a command to the Y machine to Wee any mail you may have and mail it back to you. As
a pr~aution., the mail 011 the remote machine CY in this example) il appended to the file

.5 •

.. mbox... Neunai1 has -L. -p. -• and -f options just like tttrq,. If a machine is not
specified. the default machinet is used. If the -q option is specified (like netcp) no messace is
sent back if there is no mail.

Ne1mail also takes a -c option:

"' netmail -c Y:usemame

which turns the command into a .. mail check" command. A mess.age is sent back tellin& the
user whether the specified username has mail. No pas.sword is required. As above, the -q
option suppresses the messa1e if there is no mail. This command was desianed to be put in C
shell .. .Jo1in" files.

4. 1Jsin& the Llneprinttr over the Network

Remote lineprinters ean be u.sed with the nttlpl' command:

aetlpr I-m machind [-c commantli ji/11 /ik] -Jilin

'Which sends the tiles it.s ar1uments represent to the lineprinter on machint. It wtll prompt you
for an account and password. The -1, -p, -n and -r options may be supplied, u in the
ntrcp command. lf the -c option is specified, a different printin& command (default is "!pr")
can be specified~ see Appendix A for the list or printers allowed. Copies of the files are not
made in the remote acxount.

'7. Net Prototype Command

The above commands all use internally one more 1eneral command-the ntt command
which hu the f ollowina form:

aet [-m machind {-l lotin] [-p paSSW<Nt/, [-r fikl [-] [-sal [-q] [-Cl command

Nt1t sends the 1iven command to a remote machine. The machine may be specified either with
the - m option or in the .. .nem:" file Cf or the specific names. see Appendix A). If not
specified. a default is used. -1. -p. -•. -ca and -r are as explained above for the nttcp
command. The - r option indicates the local filt which 'Will ~eive the output (the standard
output and standard error files) of command when it is executed on the remote machine. By
def a ult this output is written or mailed tc you. Thus, for example, to find out who is on the Y
machine when you are loued in on the X machine, execute the f oUowina command:

~ net - m Y "who'"

which will run the who command on the Y machine~ the response will be written or mailed to
)'OU. Similarly I

~ net -m Y -r res., •who•

trill take the output (result) and return it to you in ftle 'resp' on the loal machine. II instead
)'OU want the result of' the who command to remain on the Y machine the command

~net -m Y '"who >res.,•

'W111 create a ftle •resp" isl your loain direc1.ory on the Y machine. It is a cood idea to put the
command in quotes. and it must be in quotes it 110 redire.ction (<. >,or other syntax special
to the shell) is used.

It you do not specify the remote machine explicitly (or in the .. .netrc"' file, explained
be!ow), the default machine will be used (see Appendix A).

t <Me ""Scnin& Dera•• llclowl

• 6.

The - option indicates that standard input rrom the local machine is to be supplied to the
command exeC"Utina remotely IS standard input. thus if defaults ror I.he loain name and pas.s-
word are set up correctly as desaibed below. ·

~ net - m Y - •mai1 ripper8
{ message to ripper }

{conuol-dl

is equivalent to

~ mail Y :ripper
(message to ripper }

{control-dJ

The aet command also has other options not do<:umented here. See the UNIX
Provammer's Manual ~tion.s for more de:ails.

Settin1 Defaults
Instead of repeatedly typinc rrequently-o.;.eded options for every invocation or the various

network commands, the user may supply in his login directory a file •• .nettc,.. which contains
the repeated information. The •• .netre .. file is typically used to specify login names on remote
machin~ &~ well IS other options. A.a example of .such a file is pven bciow:

default Y
machine Y, Io&in dn.eula
machine Z lo&in draeula, quiet yes

This example sets the default machine to Y so that for net commands where a remote machine
is not explicitly specified, the command wilI then be executed OD the Y machine. The second
and third lines indicate ror the Y and Z mactlines a lo&in name of .. draeu.la" should be wed to
network ~mmands. a.nd to assume the "quiet" option OD all commands destined for the Z
machine. The complete list of options lhat may follow the machine indication is:

Option
Joein
password
command
write
force
quiet

.netrc options ror eac:h machine
Parameter Default Comment
name
pas.sword
commmd
Yf:$/no
yes/no
yes/no

Jocwame
(none)
(none)
yes
DO
no

login came for remote machine
password for remote loiio name
default command to be executed
if possible, write to user
always prompt for name ind password
like the - q option

In setting up the ... netrc .. file, it the '"default''" option is present, it must be the tint line
of the tile. The information for each machine start! with the word "machine" and the machine
name ind continues one or more lines up to another machine indication (or the end of the
ftle). laput is rre:·iormat. Multiple spaces, ubs. newlines, a.nd commas serve as separaton
between words. Double quotes (•) must surround passwords with bla.nk.s or special characters
in them.

How to Specity Remote Passwords
For the commands which require the password for the aceount on the remote mac:hine.

there are a number or ways to speC[y the password:

1)

2)
3)

•>
5)

.7.

lettin& the command ask you, u in the Mtcp enmple in Sec:tion 1.
specityina it with l.D aJiu ar usin1 the c shell).
puttina it into the cunent environment it the local machine is runnin& UNIX Version 7.
specifyin& it on the command line 'With the -p option,
storina it in the .. .netrc•• file, descnDed in the previous section.

These can be ranked in order or security, from 1 - areatest security to S - lowest secu­
rity, from the point of view of security of passwords from unauthorized use by other users and
possibly an illicit super-user. Each i.s described in tum:
1) I! you make no eff'on to specify the remote password elsewhere, the network commands

'lltill prompt you with:

Password (mac:h:username):

Type your Pa.ssword, f oltowCd by a carriage return. This is the mest secure -mode of
specifying passwords. Uthe net command i.s executed in the back.ground Ci.e. with "&")
then the command can't read the password from your terminal and one of optioo.s 2-5
below must be used.

2) The aJiu feature oC the t shell can be used to specify the remote password. The com­
mand

~ aJias netcp netcp -1 aodz.illa -p Spas.s

in the ... cshrcn ft.le, followed by

~ set path-your-puswd

ri&ht before usina the network: will set ror subsequent "~rep commands the login name
.. &odzilla'" and password "passwd ... This alias command must be &iven everytime you
login (see the UNIX Proara.mmers Manual section ror the C shell (csb (1)) for more inf or·
nation about a/iaj. Oo not put this alias corn.rmnd in your .. Joa.in" file.

3) If runnin1 on a Version 7 UNIX system, the pusword can be put in the c:unent environ·
menL The command (to the C shell)

" setenv M.ACHmch ·netlOlin -m Meh.

or (to the default Version 7 .. Bourne'" shell}

"MACHmc11-·nello&in -m mcl,.
~ expon MACHmch

will prompt you for a loJin name and password ror the remote machine mch and put an
encrypted copy of the password in your environment. (Note the back-quotes to the
shell.) Subsequent network commands wilt find it in your environment and not prompt
you for iL These encrypted passwords are invalidated after the us.er lop out. Type "man
netlopn'" for more information on the n~tlo1in command.

4) Each net command takes a -p option on the command line to specify the password.
These are usually put in shell command sc:riptS. These shell script files should !lave file
mode 0600 - use the c:hmod m command to set lhe mode.

S) The remote password can be specified in the user's ••..netrc.. ft.le. If passwords are
presen~ the .. .Aetrc .. Ale must have mode 0600 (as in#• above).

The system man11ers recommend options 1·3 and warn a&ainst • and S. Should someone
break into your account on one machine. and you use option 4 or 5, you will have to chanse
your passwords on aJJ net machines ror which your passwords have been stored in shell script
Iles or in the .. .Actrc'" Ale. ·

. I.

Loe FlJe
The me .. /usr/spool/berknet/log/ile ... has a record or the most recent requests and

responKS, each line of which is dated. Lines indiatina .. sent .. show lhe file name sent; lines
indiatin1 .. n:v•• show commands executed on tbe loa.1 machine (C:), their retum code Cll.:),
and their ori&inator. For example, on the Y machine, the !octile:

Feb 28 10:2~ n:v X: neil (neil> Jt: 0 C: netc:p desisn Y:desicn
Feb 28 10:43: sent tucJc to Z (z00466, 136 bytes, wait 2 min 3 sec)
Feb 21 11:0.S: n:v X: bill (bill) ll.: 0 C: 11etc:p structures Y:.structures

shows three entries. In this example, there are two n~t'P commands sendin1 ftles from the X
machine to Y, each rrom a di.lferent user. The second command sent was ori1inated here by
"tuck .. and is 136 bytes Iona: the command that wu sent is not shown. The command

~ aetloe

will print the tut few lines of this me. Its prototype is

aetloc - num

where num is an inte1er will point the last num lines Crom the Ale.

Acknowledcements
Special thankl 10 to Bob Fabry, Bill Joy, Van= Vaughan, Ed Gould, Jtobyn Allsman. Bob

Kridle, Je6 Schriebman, Kirk Thege and Ricki Blau of Berkeley, and Dave Sous of Xuox
PAJlC tor their belp in makinc this network possible.

• 9 •

A~ndixA

Tbe Network at Berkeley

1. The Confi&untioa <Marth 1, 1980)

The Current State or the Berkeley llNJX Network
Machine Internal Run Default Other
Name Name By Machine Name(s)
A. A Computer Center c
B B Computer Center D
c c Computer Center A
D D Computer Centi:r c
E E Computer Center c
In170 1 INCiitE.S Group ln1VAX Incres
lncVAX J INCi'RES Group Ina70
Image M Sakrison ESVAX
ESVAX 0 EE·CE Research CSVAX
SRC s Survey Res. Cent. D
CSVAX v CS Research Cory
Cory y EECS Dept CSVAX
EECS40 z EECS Dept. ESVAX

/"" E!CS40 Image

It a path exisu from the local machine to the requested remote machine. I.he network will for·
ward the request to the correct machine. Thus Cory users may communicate with all the other
machines on the network u wen as C and CSV AX (with a degra~tion in speed because of the
intermediate machine(s)). The links between In170-InaVAX, In170-CSV AX. A-C, C-D,
C-E. and B-D run at 9600 Baud, the other links run at 1200 Baud.

• 10.

2. Documentadoa

Tbe network commands (n11. utq, 111rrm. n11/01. 111rcp, n1rmail. n1tlpr. n1tlotin) are an
documented in the U'Ntx Pro&rammcrs Manual. For example.

'9 man aetq

will print the nnq manual seetioa.

Tbere are two more documents av1J1able:

Network S)'Slem Manual
Berkeley Network R.euospective

The Manual is intended for the systems st.a.tr who wt1l maintain the network. The Retrospective
is my Master's report and details the history of the project. discusses the design. and lisu future
plans.

There is an up-to-date news me:
1' news net

or
'9 he!p &Nt

or
'9 c:at /mr/net/ncws {it those fail)

which print.s news about the network. dated and with the most rec:nt news first.
Tbe U'Ntx Programmer's Manual. section I. has information on the chmO</, cp, mail. who,

and writt commands mentioned in the text. Also, the '"'' command has in!ormation about file
protec:tions:

~news ac:ess {on the Cory machine}
or

'9 help permissions {on the CC machines}

3. Futures at Berkeler

a) Tbcre is a built•in character limit O(100,000 chancters per sinJ!e transmission. which
cannot be overriddea. Tbe limit is 500,000 characters bet'lfeen the INCillS machines.
Lonaer ales mmt be split into smaller ones in order to be sc:1L

b) The 1200 Baud links between machines seldom transmit any faster tmn SO c:haracters per
second Cior 9600 Baud links, 350 cbancters a ~nd). and c:an slow to a fractjoa of I.hat
m pe.ak system loadin& periods. Tbis is due to an expansion of the data packets to
1C1:Cm<XUte a seven-bit data peth. wakeup time on the machines, a.ad the packet sent in
acknowled1emenL Heavy ale transfer is faster by ma111etic: tape. •

c) Oa the CSVAX. ln&VAX. a.ad ESVAX tbe net commands are all in 'lusr/ucb'. Your
search path oa these VAX's should be set to include the direc:tory '/mr/ucb'; otherwise
you will have to pre.fix all net commands by '/usr/ucb\ as in '/usr/ucb/ne1c:p•.

cD Limited Free Commands

Users who do not have accounts on remote machines may sull execute certain com·
mands by &ivina a remoce loaia aame oC .. network". and no remote password. The com·
mands currently allowed are:

bpq netJos res vpq whom
9" aetq rc:sJos w write
Snaer ps rcsq where JU1k
lpq pit.at trq who

Tbe tp, command is allowed oa the INGRES machine. Also. mail to remote machines and
Mtlpr between Computer Center machines do aoc require a remote ac:ounL Tbe UCS-40

• 11 •

machine allow• nf\ free commands (but allows the sendins or mail).

For example, ~o execute an /pq command on the A machine, the user would type:

4' net -I network -m A "-Wbo"

e) U no machine name specification is in the front or a full path name, the ftrst four charac­
ters are checked and the machine is interred from that it possible. Ill the command

~ netcp ftle 1 /ca/sc:hmidtlfile 1

the second file name is equivalent to .. C:1Uel" .. it you are .. sc:hmidt'' on the C machine.
f) The network can only send files in one direction at a time. Tbus confirmations can slew

down heavy ftle transfer. U you reaularly use a sbe!I script to transfer a set of files, the
-ca option to n~tcp will improve transfer time.

&) Tbe networx creates a heavy load on the system and thi.i.s is expensive to run. 1f aeneral
user throuahput is adversely alf ected, a cbarae will be implemented on the Computer
Center machines.

ll) When tra.nsferrina ftles, quota overflow will result in a partial copy, so you should check
the space requirements of the ftle beina sent.

I) The Computer Center .. A•• machine's phototypesetter is usable from other network
machines. U on one of the 8-E machines, you do not need an account on the A machine.
You simply type

~ troff' -Q other-options file Cs)

instead or the normal .
~ troft" other-options file (s)

The trotr command is executed on the local machine and the phototypesetter instructions
are sent to the A machine. You will be sent mail both when the file is queued and when
ii is finally typcSet. To see your place in the rrqf'queue, type:

.. trq

on any Computer Center machine. There is a command

~ trnn code

(where tot/~ is the code from the rrq command) to remove queue ftles before they have
been typeseL Tnm must be exea1ted on the same machine from which the job was su~
mined.

If' you are on a non-Computer Center machine. you may use the 11~111'Q6'command:

• nettrolf options !le Cs)

which is sinu1ar to tbe 11troft' -Q .. command earlier. You will need an account on the A
machine and the trrm command doesn't work from a non-Computer Center machine.

U usina Mtlrqf', no more than 15 pases may be sent to the typesetter. If usin1 rro.6'
more than 15 pa1es may be sent only it the -s option is specified Csee t.rotrCl) for more
information). The network will not transfer any file lonaer than 100,000 characters to the
A machine. Ot is best to aim for 5les of 25.000 characters or Jess)t. For more intorma·
tioa. tJpe

t Oanaars (rom ""'' output. floe the 11111''1 10UrC1 Illes. II ii our 11neraJ uperience that ~outJUU
nMt&hir hrica 11 11W1J wnaen 11 an ill the IOUrft lie Cbtrore 1111 "" °' tbl prePfOC&'Sliftl,.)

• 12.

{oa the Computer Center machines}
or

man nettro1!' [on the other mac:hiru:s}

The MttrO§~mmand is not supported by the Computer Center.

j) The nttlfJ' command allows .. cpr,.. '"bpr'". and '"'VJ)r,. IS alternate line;:>rinters (usina the
-c option).

4. Bup la systems at Berkeie1 CAs of March 1, 1980)

a) tr you are on the Computer Center machines u.sina obsolete shells (/usr/p~cal/sb.
/usr/pasal/nsh) and have a ... profile" orsbrc .. file to cban1e your shell prompt. you
must make sure that you don't tum on .. promptin1" ror non-interactive shells. Thu will
interfere with the net commands. You should use this shell command to chan1e your
prompt:

S{prompt?prompt-P}

where "P"' is the prompt desired. This will avoid the problem.

U' you set the variable limt in the C shell, extraneous time stamps may appear in response
messaaes. The correct way to set the variable timt in the C shell is

it (S?prompt) then
set time- m.tm

endit

where flum is the time interval in ~nd.s.
b) The file mode should be preserved by nttcp and it should be pos.sible to default the second

ft.le name to a directory IS in cp(l).

c) Various response mes.sages are lost. This includes .. fctchin1" files when the file bein1
retrieved never arrives. J suspect this !tas somethina to do with unreliable delivery of
error messages, but this is not reliably reproduc:ible.

d) Tbe network makes no provision for errors in transit on intermediate machines, such as
.. No more processes" or 0 File System Overflow". While these ocxur only nrely, when
they do, oo messaae or notification is sent to anyone.

e) The network commands are too slow oa he.avt1y-loaded instructional machines. The n~t
c:cmmand has to read the password file, .. Jletrc,. file and the .. /etc:/utmp" file.

() The queue files are normally sent shortest-job first. Unfortunately, under heavy loading
the queue-search becomes too expensive and the network will choose the next file to send
from the am 3S queue entries it finds in the queue directory, so the ~r should Dot
depend on the requests bein& sent shortest-first.

&) Comments and bua discoveries are encouraaed and can be sent by loc:3.I or remote mail to
.. csvu:schm.idt ••.

• 11 e .•

Cieuin1 St.arteJ · .~ An Example

The best way to Start out is to follow this example. Suppose you're 1 Cory user, and you have
accounts on the A and CSV AX machines.

1) Add a file .. .netrc'" (mode 600) to your l<>&in directory, u in th'e followin& 'example:

default CSV AX
machine A lo&in yourNanwOnA
machine CSV AX Io1in yourNam~nCSYax

or ··default'.' occurs. it must be the first tine of the file.)
2) Make sure that

a) if' 1ou are on one of the VA.X's, you have in your surch path the directory
•/us:/ucb'. Otherwise, on those machines you will have to prefix all commands by
1/usr/ucbr (e.s. 1 /usr/ucb/netq:i').

b) on the Computer Center machines, if you choose to set your shell prompt, you have
done so correctly (details in Appendix A).

3) Then type

~ net '"ho ..
~ netq

•hkh will send a w command to the CSV AX~ some undetermined time later you will
have written (or mailed) to you the output from the command executed on the CSV AX
machine.

lbe adventuresome may try:

~net -m A •6wf1o"

with the etrect of bein& routed more slowly throu1b an intermediate link in the net.

Berkeley Network Quick Reference

May 1979

Command Summl.l"1

netcp jfont/fk 1ofile

mall moch."USlr

netmaU [-cl [moch] .
netlpr [-m mach] jik
netq [- a] [mach]

Detrm (-] (code')
net [-m mach] [- l comma NI

(updated March 1980)

Example

" netcp de(s.h C:defs.h
" netc:p A:fi1l 5sl
"netcp Cory:ql D:ql
" mail A:alan
" ma.t1 A:ala.a C:1eorie
'Ml netmail Cory
" netmail -c Cory:useru
"' oetlpr -m D pl.p
~ netq
~ Detq -a COf"/
"'netrm -
" net :-m A who
" net - -mA lpr <n

Explanation

copy def s.h to C machine
copy from A to here
copy rrom Cory to D
send mail to .. llan .. on A
multiple r~ipients
re.ad mail on Cory machine
check man on Cory machine
print pl.p on D lineprinter
list network: queue
_ all files to Cory
remove the user's requests
send who to A machine

· I, file .. n" on A

Tbe nrtq, nrrmai~ n~/pl'. and nrr commands need remote login names and passwords. They
may be provided when prompted·for on the terminal, on the command line, or in a .. .nem:"
ftle in the user's login directory.
Other Options

-I q;,, login name on remote machine
password on remote machine -p pauword _,

-a
-q
-m mach

prompt for lo1in name and password
mall back rather than write back
silent mode - no messaaes sent back
send to moch (only for Ml. nrt/pf')
input from standard input (only (or Mt}

Example .netn: Ile:

default Z
nachine Y login drac:ula
machine Z login schmidt. quiet yes

Option
)oeln
password
command
write
force
quiet

.aetrc options !or nch machine
Parameter Default Comment
name
password
command
Jes/DO

. JU/DO
yes/no

Jocahwne
(none)
(none)
Jes
DO

DO

login name ror remote machine
password for remote login name
default command 10 be executed
JI possible. write to user
always prompt ror name and password
like the -q option

A TUTORIAL ON INGRES

by
Robert Epstein

Memorandum No. ERL - M77-25
December 15, 1977

(Revised)

Electronics Research Laboratory
College of Enginee~ins

University of California! Berkeley
94720

A Tutorial on Il4GRES

This tutorial describes how to use the INGRES data base manage­
ment system. You should be able to follow the the examples given
here and observe the same results.

The data manipulation language supported by the INGRES system is
called QUEL (QUEry Language). Complete information on QUEL and
INGRES appears in the INGRES reference manual. This tutorial
does not attempt to cover every detail of INGRES.

Begin by logging onto UNIX, the time sharing system under which
IHGRES runs. If at all possible, use a terminal that has both
upper and lower case letters; otherwise life is going to be
miserable for you. If you are on an upper case only terminal,
type "\\" everywhere 11 \ 11 appears in the tutorial.

There should currently be a 11 3'' printed on your terminal. To
start usin~ INGRES type the command:

% i:igres demo

This requests "UNIX" to invoke INGRES using the data base called
"demo''. After a few seconds, the following will appear:

INGRES version 6.1/0 login
Tue Aug 30 14:52:23 1977

COPYRIGHT
The Regents of the University of California
1977

This program material is the property of the
Regents of the University of California and
may not be reproduced or disclosed without
the prior written permission of the owner.

The first two lines include the INGRES version number (in this
case version 6.1) and the current date. Following that is the
"dayfile", which includes messages rel3ted to the INGRES system.
The "go" indicates that INGRES is ready for your interactions.

The INGRES monitor prints an asterisk (11 * 11) at the beginning of
each line to remind you that INGRES is waiting for input.

A Tutorial on INGRES Page 1

Type the command:

* print parts
* \g
Exee:uting .

The line "print parts" requests a printc:Jt of some
the data base. The 11 \g" means "go". r:ie message
• " indicates that INGRES is processing your query.
then appears:

data stored in
"Executing .

parts relation

lpnum lpname lcolor :weightlqoh
I I .--1 1lcentral processor

2lmemory
3ldisk drive
4ltape drive
5ltapes
6lline printer
7ll-p paper
a:terminals

i3lpaper tape reader
14:paper tape punch
9lterrninal paper

10lbyte-soap
1llcard reader
12lcard punch

lpink
lgray
:black
lblack
lgray
:yellow
lwhite
:blue
lblack
: bl a cl'
lwhite
:clear
:gray
lgray

10:
20:

685l
450l

1 :
578:

15:
19:

101:
1il7:

2:
o:

327:
427:

1 :
32l
2:
4!

250:
3l

95l
15:
o:
o:

350:
143l

o:
o:

I I .--,
C:ontinue
*

The following

Wt1 at is
tively,
columns.

printed on your terminal is th€ 1•parts relation". Intui­
a relation is nothing more t!:2t a table with rows and

Ir. this case the relation name is 11 p2rts 11 • There are five
e;olumns (we call them domains) named ;mum (part number), pname
(part name), e:olor, weight, qoh (quar.ti :y on hand). Eae:h row of
the relation (called a tuple) represents one entry, which in this
case represents one part in a computer installation. A relation
can have up to 49 domains and a virtual!y unlimited number of tu­
ples.

Nctice that after the query is executed, INGRES prints 11 contin­
u e " , w hi le w h en we f i r s t e n t er e d HI:; R ES i t pr i n t e d 11 go " • A s you
enter a query INGRES saves what you t/pe in a "workspace". If
you ever mistype a query, typing 11 \r 11 will "reset 11 (ie. erase)
your workspace. (Later on we will lear~ ways to edit mistakes so
we don't have to retype the entire query.)

A Tutorial on INGRES Page 2

At any time you can see what is in the workspae:e by typing "\p''.
Try typing 11 \p":

w \p
print parts
w

The current contents of the workspace is printed. Now try typing
"\r":

* \r
go
*
The workspace is now empty. Whenever INGRES types "continue" the
work space is non-empty; whenever ING RES types "go" the workspace
is empty.

After a query is executed, INGRES typic;ally types "continue". If
you then type a new query, INGRES automatically erases the previ­
ous query, so you don't have to type 11 \r" after every query.
This will be further explained as we proceed.

Using the "retrieve" command we can write specific queries about
relations. As an example, let's have INGRES print only the
11 pname 11 domain of the parts relation. Type the command:

~ ranse of p is parts
M retrieve (p.pna~e)

* \g
Executing .

:pname
I .--------------------:central processor
: mer.ior y
:disl< drive
l t.npe drive
:tapes
'line printer
1-p paper
terminals

I

paper tape reader
paper tape punch
terminal paper
byte-soap
card reader
card punch
·--------------------
continue

A Tut~ri~l on INGRES Page 3

The output is just the pname domain from the parts relation.
Wh:.t we did required two steps. First •..Je declared 'what is called
a "tuple variable" and assigned it to range over the parts rela­
tion.

range of p is parts

What this means in English is that the letter "p" represents the
parts relation. It may be thought of as a marker which moves
down the "parts" relation to keep our place. INGRES remembers
the association so that once p is declared to range over parts,
we don't have to repeat the range declaration. This is useful
when we are working with more than one relation, as will be seen
later on.

Next we used the retrieve command. Its form is

retrieve (list here what you want retrieved)

11 p'' by itf lf refers to the parts rela:ion. 11 p.pname 11 refers to
tr.e pnaffie domain of the parts relation, so saying:

retrieve (p.pname)

means retrieve the pnarne domain of the parts relation.

Try t~e query to retrieve pname and color:

* retrieve p.pname, p.color
i- \ g
Executing ..

2500: syntax error on line 1
last symbol read was:

continue
*
Unfortunately we've made an error. INGRES tells us that it found
a syntax error on the first line of r.he query. 11 ::.yntax error"
~eans that we have typed something which INGRES cannot recognize.
The error occured on line 1. INGRSS makes a sometimes helpful
anc sometimes feeble attempt at diagnosing the problem. Whenever
possible, INGRES tells us the last thing it read before it got
e:onfused.

In thfs case, the error is that the ii st of things to be re­
trieved (called the target list) must be enclosed in p2renthesis.
The correct query is:

A Tutorial· on IIJGRES Page 4

* retrieve (p.pnarne, p.color)
i(· \ g
Executing ..

lpname :color
I I -----------------------------. central processor
rr.emory
disk drive
tape drive
tapes
line printer

'l-p paper
terminals

I

paper tape reader
paper tape punch
terminal paper
byte-soap
card reader
i::ard punch

lpink
:gray
lblack
lblack
'gray
yellow
white
blue
black
black
white
clear

,gray
lgray

,-----------------------------
cont i ni;e
~

You can re3trict which tuples are printed by adding a "qualifica­
tion" to the qt.1ery. For example to get the name and color of
cnly those parts which are gray, type:

· retrieve (p.pnarne, p.color)
;' where p.color = "gray"
;c \ g
Executing ..

lpname I color
I I .-----------------------------· lrnemory
:tapes
:card reader
lcard punch

I gray
I gray
I gray
lgray

I I ·-----------------------------,
continue
*
Notice that INGRES prints only those parts where p.color is gray.
Uotice also that gray must be in quotes (11 gray 11). This is neces­
sary. The only way INGRES will recognize character strings (e.g.
words) is to enclose them in quotes.

A Tutorial on INGRES Page 5

:·Jhat if we wanted part names for gray or pink parts? We only
!e~d to append to the previous query the phrase:

vr p.color = "pink"

R e:nember, however, that if the next line typed begins a new
query, INGRES will automatically reset the workspace. The
workspace will be saved only if the next line begins with a com­
mand such as "\p" or 11 \g". (There are others which we will come
to lat er.) If such a command is typec, the previous query is
saved and anything further will be apper.ded to that query.

Thus, by typing:

ii \ p
retrieve (p.pname, p.color)
where p.color = "gray"
ii

JOU can see the previous query. Now type:

t. or p.color ="pink"
x

INGRES appends that last line to the e~d of the query. You can
verify this yourself by printing the wo~~space:

* \p
retrieve (p.pna~e, p.color)
where p.col·:>r = "gray"
or p.color = "pink"
iC·

Now run the query:

* \g
Executing . . .

pname

central processor
memory
tapes
card reader
card punch

continue
*

I color

I pink
I gray
I gray
I gray
:gray

The rules about when the workspace is reset may be very confusing

A Tutorial on INGRES Page 6

at first. In general, INGRES will do exactly what you want
without you having to think about it.

We have seen qualifications which u~ed "or" and
one can use:

and
or
not
= (equal)
!= (not equal)
> (greater than)
>= (greater than or equal)
< (less than)
<= (less than or equal)

"-" - . In general

Evaluation occurs in the order the qualification was typed (ie.
left to right). Parenthesis can be used to group things in any
arbitrary order.

INGRES can do computations on the data sto~ed in a relation. For
e:xample, the parts relation has quantity on hand and weight for
each item. We might like to know the total weight for each group
of parts (i.e. weight multiplied by qoh) ..

To get the name, part number and total weight for each part type
the query:

* retrieve (p.pname, p.pnum, p.qoh * p.weight)
ii \g
Executing . . .

2500: syntax error on l~n~ 1
last symbol read was: *
continue
*
Another error. The problem is that ~hen a computation is done,
HIGRES does not know how to title tte domain/ on the printout.
For a simple domain, INGRES uses the d~main name as a title. For
anything else, you must create a ne~ d~main title by specifying:

tot = p.qoh * p.weight

More generally the form is:

title = expression

For example:

name = p.pname

A Tutorial on INGRES ·Page 7

co~?utntiJn ~ o.weieht I 2000 * (p.qoh + 2)

:...1·:.· $ fix t:ie e,, or by rety::-iing the query. As long as the first
lir.·-~ <ifter ~ quc. y does not begin with ri 11 \p" or 11 \g" then INGRES
~!!l ~~to~3tic2lly reset the workspace, erasing the previous
q •; t".' r y f o r u s .

* retrieve (p.pname, p.pnum, tot=p.qoh * p.weight)
• \g
Ex~cuting .

:pname lpnum ltot
I I ,----------------------------------.
lcer.tral processor
:memory
lwisk drive
:tape drive
:tapes
:line printer
: 1-p paper
: terminals
:pa~~r tape reader
:pap~r tape punch
: t.::-rminaJ. paper
l ~:·te-soap
:card reader
: .:arc puncr1

1 :
2'
3
4
5
6
7
81

13:
14:
9:

10:
11 :
12:

10:
640:

1370:
1800:
2501

17 34:
1425:
285l

o:
o:

700:
o:
o:
Ol

I I ,----------------------------------,
continue

In addition to multiplicat10n, INGRES supports:

+ addition

I

abs
mod

subtraction (and unary negation)
division
multiplication
exponentiation (e.g. 3**10)

absolute value (e.g. abs(p.qoh - 50)
modulo division

)

CJr.d rn2ny others. Please refer to the INGRES reference manual for
a brief but complete description of what is supported.

If all we wanted were part numbers 2 or 10, then we could add the
qualification:

where p.pnum = 2 or p.pnum = 10

CAU fION: if we just started typing "i,.;here p.pnum " INGRES

A Tutorial on INGRES Page 8

would understand this as the beginning of a new query and would
reset the workspace. To avoid this you could type "\p" and force
INGRES to print the workspace, or you can type '.'\a" (append).
The append command guarantees that whatever else is typed will be
appended to what is already in the wort< space. This command is
only needed immediately after a query is executed. Any other
time data will be appended automatically. Try the following:

* \a
* where p.pnum = 2 or p.pnum = 10
• \g
Executing • • •

lpname lpnum ltot
I I ·----------------------------------· :memory 2: 640:
lbyte-soap 10: Ol
I I ·----------------------------------.
continue
I

To include all part numbers greater tha~ 2 and less than br equal
to 10:

* retrieve (p.pname, p.pnum, tot=p.qch * p.weight)
* where p.pnum > 2 and p.pnum <= 10
* \g
Executing • . •

lpname lpnJm ltot
I I .----------------------------------, :disk drive 3 1370:
:tape drive 4 1800:
:tapes 5 250:
:line printer 6 1734l
:1-p paper 7 14251
:terminals 8 285:
lterminal paper 9 700l
lbyte-soap 10 o:
I I ·----------------------------------·
continue
*
Now, suppose we want to change the previous query to give
for part numbers between 5 and 10 instead of 2 and 10.
probably annoyed at having to retype the entire query in
change one character. Consequently, INGRES lets you use
text editor to make corrections and/or additions

A T~torial on INGRES

results
You are

order to
the UNIX
to your

Page 9

workspace. At any time you can type 11 \e 11 and the INGRES monitor
will write your workspace to a file and call the UNIX 11 ed 11 pro-
gram. For example:

* \e
>>ed
83

The 11 >>ed 11 message tells you that you are now using the editor.
The number 83 is the number of characters in your workspace.

We can now edit the query by changing the 2 to a 5. Included in
the UNIX documentation is a tutorial or: using the text editor.
Rather than duplicating that tutorial, we will just use a few of
the editor commands to illustrate how to do editing:

1p
retrieve (p.pname,p.pnurn,tot
2p
where p.pnum
s/2/5/p
where p.pnum
w
83
q
<<monitor

*

> 2 and p.pnum

) 5 and p.pnum

= p.qoh * p.· eight)

<= 10

<= 10

Very brii;fly, this is what happens. "1p'' and 11 2p 11 printed lines
1 and 2. "s/2/5/p 11 substitutes 2 5 for a 2 on the current line
(line 2), and then prints that line. "'.;" writes the query back
to the INGRES workspace.

Inside the editor you can use any "ed" c:Jmr;;and except "e" (since
e changes the file name). When you qui:. the editor (q command),
the INGRES monitor will print "<<monitor" to remind you that you
are back in INGRES. Notic;e that you MUST precede the "q" command
w i th a 11 w 11 c; o mm a n d to p as s th e c; or re : t e d w or k s pa c e b a c k to
IiJGRES.

To verify that the query is correct and ~o run it, type:
, .. \p\g
retriev2 (p.pname,p.pnum,tot = p.qoh * p.weight)
where p.pn~m > 5 and p.pnum <= 10
Executing .

lpname :pnum ltot
I I .----------------------------------, lline printer
:1-p paper
:terminals

~ Tut0rial on INGRES

17 34:
1 Ll25 l
285:

·Page 10

:terminal paper 9: 700:
:byte-soap 10: o:
I I .----------------------------------,
continue
*

Having exhausted the interesting queries concerning the parts re­
lation, lets now look at a new relation called "supply". Type:

* print supply
* \g
Executing •· • .

supply relation

lsnum lpnum ljnum lshipdate:quan
I I

·---------------~--------------------· 475: 1 : 1001 73-12-31: 1 :
4751 21 1002 74-05-31: 32:
475: 3 : 1001 73-12-31 I 2:
11751 4l 1002 74-05-31: 1l
122: 1: 1003 75-02-01 : 144:
122: 1: 1004 75-02-01: 48:
122: 9: 1004 75-02-01 I 144'
41-!0: 61 1001.74-10-10: 2
21: 1 : ll l 1001: 73-12-31: 1

62: 3l 1002:74-06-18: 3
475: 2: 1001 : 7 3-12-31 : 32
475: n 1002:14-07-01 1

s: 11 : 1003l7Z1-11·-15 3 s: !J : 1004:75-01-22 6
20: 51 1001175-01-10 20
20: s: 1002175-01-10 75

241 I 1 I 1005175-06-01 , 1 I
241 21 1005l75-06-01l 32:
241 3: 1005175-06-01: 1l

67 41 1005175-07-01: i:
999 101 1006176-01-01: 144l
2111 e: 1005l75-07-01l 1 :
241 9: 1005: 75-07-01: 144l

I I .------------------------------------,
continue
*
The supply relation contains snum
(the part number which is supplied
job number), shipdate (the date it
quantity shipped).

(the supplier number), pnum
by that supplier), jnum (the
was shipped), and quan (the

A Tutorial on INGRES Page 11

To find out what parts are supplied by supplier number 122 type:

• retrieve (s.pnum) where s~snum = 122
* \g
Executing . . .

2109: line 1, Variable 's' not declared in RANGE statement

continue

*
We have referenced the tuple variable 11 s 11 (i.e. s.pnum) without
telling INGRES what "s" represents. 'tie are missing a range de­
claration. Retype the query as follows:

w range of s is supply
* retrieve (s.pnum) where s.snum = 122
;r \g
Executing . . .

pnum

7
7
9

continue
*
Supplier number 122 supplies part numbers 7, 7 and 9. Note that
7 is listed twice. When retrieving t~ples onto a terminal it is
more efficient for INGRES NOT to chee:k for duplicate tuples.
INGRES can be forced to remove duplicate tuples. We will come to
that later.

We now know that supplier 122 supplies ~art numbers 7 and 9. If
you haven't run this query 2 few hu~dred times you probably don't
know what part names correspond to pa:t numbers 7 and 9. We
could find out simply by running the qu:ry:

* retrieve
* p.pnum =
* \g
Executing

:pname

(p.pname) where p.pnum = 7 or
9

I I .--------------------·
ll-p paper
:terminal paper

A Tutorial on INGRES Page 12

I I ·--------------------·
e;ontinue
*
After two queries we know by part name what parts are supplled by
supplier number 122. We could do the same thing in one query by
asking:

* retrieve (p.pname) where p.pnum = s.pnum
* and s.snum = 122
* \g
Executing . • •

loriame
I• I ,--------------------,
ll-p paper
ll-p paper
:terminal paper
I I .--------------------,
continue
*
Again note that 11 1-p paper" is duplicated. Look closely at this
qu~ry. Note that the domain pnum exists in both the parts and
supply relations. By saying p.pnum = s.pnurr., we are logically
joining the two relations.

Suppose we wished to find all suppliers who supply the central
processor. We know that we will want to retrieve s.snum. We
w6~t only thc~e s.snum's wher~ the C:?rresponding s.pnum is eou2l
to the part number for the central processor.

If we find the p.pname which is equal to 11 central processor" then
that will tell us the correct p.pnum. Finally we want s.pnum =
p.pnum. The query is:

* retrieve (s.snum) where
+:· s.pnum = p.pnurn and p.pnarne = "central proe:essor"
·if \g
Executing . . .

:snuin
I I ·------· 475:

475:
241 :

I I 1------1

A Tutorial on INGRES Page 13

continue
*
Let's abandon the parts and supply relations and try another.
First, we can see what other relations are in the database by
typing:

* help \g
* Executing

relation name

relation
attribute
indexes
integrity
constraint
item
sale
employee
dept
supplier
store
parts
SU pply

continue
"
Let's lock at the
about the relation
about it. Type:

* help employee
* \ \g
Executing ...

Relation:
Owner:
Tuple width:
Savt:d until:
Number of tuples:
Storage structure:
relation type:

attribute name

numbe:r
name

relation owner

ingres
ingres
ingres
ingres
ingres
ingres
ingres
ingres
ingres
ingres
ingres
ingres
in gr es

uemployee" relation.
we can al.c;o use the

employee
in gr es
30

Since
"help"

Fri t-Jar 25 11:01:30 1977
24
paged heap
user relation

type length keyno.

i
C;

2
20

A Tutorial on INGRES

we know nothing
command to learn

Page 14

salary i 2
manager i 2
birthdate i 2
startdate i 2

continue
*
The help command lists overall informa:ion about the employee re­
lation together with each attribute, i~s type and its length.

INGRES supports three data types: integer numbers, floating point
numbers, and characters strings. Character domains can be from 1
to 255 characters in length. Integer domains can be 1, 2, or 4
bytes in length. This means that integers can obtain a maximum
value of 127; 32,767; and 2,147,483,6~7 respectively. Floating
point numbers can be either 4 or 8 bytes. Both hold a maximum
value of about 10**38; with 7 or 17 digit accuracy respectively.

Tc look at all domains we could use the print command or we could
use the retrieve command and list each domain in the target list.
INGRES provides a shorthand way of doi~g just that. Try the fol­
lowing:

* range of e is employee
w retrieve Ce.all)
f- \g
Executing . . .

:number:name :salary:manage:birthd:startd:
I I ·---, 157:Jones, Tim

111o:smith, Paul
35lEvans, Michael

129:rhomas, Tom
13:Ectwards, Peter

215:collins, Joanne
55: James, Mary
26lThompson, Bob
gs:williams, Judy
321Smythe, Carol
33lHayes, Evelyn

199lBullock, J.D.
4901lBailey, Chas M.

843lSchmidt, Herman
2398lWallace, Maggie J.
1639:choy, Wanda
5119lFerro, Tony

37:Raveen, Lemont
5219lWilliams 1 Bruce

A Tutorial on INGRES

12000:
6000:
5000:

ioooo:
9000:
7000:

12000:
13000:

9000:
9050:

10100:
27000:

8377:
11204l
7880l

11160l
136 21 :
119 85 :
1337 1~:

199l
33:
32:

199:
19 9:

10:
199:
199:
199:
199l
199l

o:
32:
26l
26l
55:
55l
26l
33:

1940:
19 52:
1952:
19 41 :
1928:
1950:
1920:
1930l
1935:
1929l
1931:
1920:
1956:
1936:
1940l
19 47:
1939:
1950:
1944l

1960:
1973:
1974l
1962l
1958:
, 971 :
1969:
1970:
1969l
1967l
1963l
1920:
1975
1956
1959
1970
1963
1974
1959

Page 15

1523
430
994

1330
10
1 1

Zugnoni, Arthur A.
Brunet, Paul C.
Iwano, Masahiro
Onstad, Richard
Ross, Stanley
Ross, Stuart

19868l
17674:
15641:
8779:

15908:
12067:

129:
129l
129:

13:
199l

o:

1928
1938
1944
1952
1927
1931

19 49:
1959l
1910:
1971 :
1945l
1932:

I

---~-·

continue
*
"All" is a keyword which is expanded by INGRES to become all
domains. The domains are not guara~teed to be in any particular
order. The previous query is equivale~t to:

range of e is employee
retrieve Ce.number, e.name, e.salary, e.manager

e.birthdate, e.startdate)

Let's retrieve the salary of Stan ?.oss. At this point we will
need to be able to type both upper a::d lower case letters. If
you are on an upper case only termir.al, type a single "\" before
a letter you wish to capitalize. Thus on an upper case only ter­
minal type 11 \ROSS, \STAN". If you a:-e ::m an upper and lower case
terminal, use the shift key to capitalize a letter.

Ru:i the query:

* retrieve (e.name,e.salary)
* where e.name = "Ross, Stan"
* \g
Executing . • •

:name lsalaryl
I I ,---------------------------· I I ,---------------------------·
continue
*

is no e.:-:ame which satisfies the
because we know there. is a Stan
know, f~r example, that "Stanley"
same.

Tne result is empty. There
qualification. That's strange
Ross. However, I~GRES does not
and 11Stan" are semantically the

To get the correct answer in this situation you may use the spe­
cial "pattern matching" characters p!""ovided by INGRES.

One such character is "*"· It matches ::ny string of zero or more
characters. Try the query:

A Tutorial on INGRES Page 16

* retrieve (e.name,e.salary)
* where e.name = "Ross, S*"
* \g
Executing .

:name :salary:
1 I ·---------------------------,
lRoss, Stanley l 15908:
lRoss, Stuart l 12067l
I I .---------------------------·
e:ontinue
*
In the first case "*" matched the st:-ing "tanley" and in the
second case it matched 11 tuart 11 •

Here is another example.
first name is "Paul":

Find the sal::ries of all people whose

* retrieve (e.name,e.salary)
* where e.name = 11 •,Paul*"
* \g
Executing .

lname ~sal2ry:

' ' ,---------------------------·
:smith, Paul : 6000:
!Brunet, Paul C. : 17674:
I I .---------------------------,
~ontinue

*
N o t i c e th at i f we h ad a s k e d for e . n am e = 11 * , P au 1 " .we w o u 1 d no t
have Botten the second tuple. Also, IN3RES ignores blanks in any
character comparison whether using pattern matching characters or
not. This means that the following would all give the same
results:

e.name = "Ross,Stanley"
e.name = "Ross, Stanley "
e.name = "R o s s,Stanley"

Pa~ticular characters
square brackets ((]).
start with "B" through

or ranges of
For example,

"F":

~ retrieve (e.name,e.salary)
* where e.name = 11 (B-F]* 11

A Tutorial on IHGRES

characters can be put in
find all people whose names

Page 17

* \g
Exee;uting

name

Evans, Michael
Edwards, Peter
Collins, Joanne
Bullock, J.D.
Bc::iley, Chas M.
Choy, Wanda
Ferro, Tony
Brunet, Paul C.

I salary

5000
9000
1000

21000
8377

11160
13621
17674

I ---------------------------·
continue
*
Notice that this last query could be do~e another way:

* retrieve (e.name,e.salary)
* where e.name >"B" and e.name <11 G11

.. \g
Executing . . .

:name :salary
I ---------------------------Evans, Michael
Ecwards, Peter
Collins, Joanne
Sullock, J.l).
Bailey, Chas M.
Choy, Wanda
Ferro, Tony
Brunet, Paul C.

5000
9000
7000

27')00
8377

11160,
13621 :
176741

I ---------------------------·
continue
*
The two results are identical; however, the second way is gen­
erally more efficient for INGRES to process.

There are three types of pattern mate:hi~g constructs. All three
can be used in any combination for ch:racter comparison. They
are:

*
'?
[]

matches any length character string
matches any one (non-blank) cha:acter
can match any character listed in the brackets.

A Tutorial on INGRES

If two

Page 13

\·h :racters are separated by a dash (-), then it matches
1nv character falling between the two characters.

The sp1 _ _;_al. meaning of a pattf:rn matching character can be turned
off by receeding it with a 11 \ 11 • This means that "*" refers to
the cha> 3Cter u;r 11 •

We turn now to the aggregation facilities supported by INGRES.
This allows a user to perform computations on whole domains of a
relation. For example, one aggregate is average (avg). To com­
pute the average salary for all employees, we enter:

* retrieve (avgsal:avg(e.salary))
• \g
Executing .

lavgsal :
I I ·----------· : 11867.520:
I I 1----------J
continue
*
The part i cul a r title " avg s a 1 11 is a r bi tr a r y , but n e c e s s a r '/ ; I NG R ES
needs some sort of title for any expression in the t;:;rget list
(other than a simple domain).

We can also find the minimum and maximum salaries:

w retrieve (minsal=min(e.salary),maxsal:max(e.salary))
·r. \g
Executing ...

:minsal:maxsall
I I .-------------,

5000: 27000:
I I ,-------------·
continue
*
If we wanted to know the names of the employees who make the
minimum and maximum salaries, that query would be:

* retrieve Ce.name, e.salary)
* where e.salary = min(e.salary) or e.salary = max(e.salary)
* \g
Executing ...

A Tutorial on INGRES Page 19

:name I salary I
I I ,---------------------------· :Evans, Michael I sooo:
'B 11 k J D ', 27000', I U OC I • •
I I ·---------------------------·
continue
-J

INGRES supports the following aggregates:

count
min
max
avg
sum
any

We now indicate the query to list eae;!'l employee along with the
average salary for all employees:

* retrieve (e.name,peersal=avg(e.salary))
* \g
Executing •••

name lpeersal
-------------------------------Jones, Tim
Smith, Paul.
Evans, Michael

,Thomas, Tom
Edwards, Peter
Collins, Joanne
Jc:imes, Mary
Thompson, Bvb
Williams, Judy
Smythe, Carol

:Hayes, Evelyn
:Bullock, J.D.
:Bailey, Chas M.
:si:;hmidt, Herman
'Wallace, Maggie J.
Choy, Wanda
Ferro, Tony
Raveen, Lemont
Williams, Bruce
Zugnoni, Arthur A.
Brunet, Paul C.
Iwano, Masahiro
Onstad, Richard
Ross, Stanley

A Tutori~l on IN~RES

11867.520
11867.520
11867.520
11867.520
11857.520
11867.520'
11867.520
11867.520
11867.520
11867.520
11867.520
11867.520
11867.520'
11867.520
11367.520
11867.520

I 11867.520
11867.520
11867.520
11867.520
11867.520
11867.520
11867.520
11867.520

Page 20

:noss, Stuart : 11867.520:
' I ,-------------------------------.
c.;ontinue
*
An aggregate always evaluates to a sing:e value. To process the
last query, INGRES replicated the ave:age salary next to each
e.name.

Aggregates can have their own qualification. For example, we can
retrieve a list of each employee along ~ith the average salary of
those employees over 50.

• retrieve (e.name,peersal=
* avg(e.salary where 1977-e.birthdate > 50))
* \g
Executing ..

:nc:r:!e lpeersal
I I .-------------------------------. :Jones, Tim
:smith, Faul
l Evans, Mie:llael
!Thomas, Tom
: Ecwar.js, Peter
:collins, Joanne
:James, Mary
IThompson, Bob
:Williams, Judy
:srnythe, Carol
: Hayes, Eve ly11
lBullock, J.D.
:Bailey, Chas M.
:schmidt, Herman
:wzllace, Maggie J.
lChoy, Wanda
:Ferro, Tony
:Raveen, Lemont
:Williams, Bruce
:zugnoni, Arthur A.
lBrunet, Paul C.
:Iwano, Masahiro
:onstad, Richard
:Ross, Stanley
l Ross, Stuart
I

19500.000:
19500.000
19500.000
19 500 ._000
, 9500 .-000
19500.000
19500.000
19500.000
19500.000
19500.000
1S50o.ooo
19500.000:
19500.000:
19500.000'
19500.000
19500.000
19500.000
19500.000
19500.000
19500.0001
19500.000
19500.000
19500.000
19500.000
19500.000

·-------------------------------
continue
*

A Tutorial on INGRES Page 21

Contrast the previous query with ti,;; n~xt one. We will retrieve
the names of those employees over · fty and retrieve the average
s2lary for all employees.

*retrieve (e.name,peersal=avg(e.salary))
* where 1977-e.birthdate > 50
* \g
Executing ..

:name lpeersal
I I ·-------------------------------,
:James, Mary : 11867.5201
:Bullock, J.D. : 11867.5201
I I .-------------------------------.
continue
*
There is a very important distinction between these
queries. An aggregate is completely self-contained.
affected by the qualification of the query as a whole.

last two
It is not

In the first case, average is computed only for those employees
ove~ fifty, and all employees are retrieved. In the second case,
however, average is computed-for all em~loyees but only those em­
ployees over 50 are retrieved.

If we w~nted a list of all employees ave; fifty together with the
average salary of employees over fifty, we would combine the pre­
vious two queries into one~ That query would be:

* retrieve (e.name, peersal=
~ avg(e.salary where 1971 - e.birthdate > 50))
* where 1977 - e.birthdate > 50
* \g
Executing ..

lname

continue
*

:peersal

It is sometimes useful to
aggregation is computed.
many ma?"lagers there are,
right answer:

have duplicate values removed before an
For example if you wanted to know how

the following query will not give the

A T~tori2l on INGRES Page 22

* retrieve (bosses = count(e.manager))
* \g
* Executing . . •

lbosses I
I

I I ·--------------· 25:
I I ·-------------·
continue
•
Notice that that gives the count of how many tuples there are in
employee. What we want to know is how many unique e. manager's
there are.

INGRES provides three special forms of aggregation.

countu
avgu
sumu

count un~que values
average unique values
sum unique values

It's interesting to note that mi nu, rnaxu, and anyu are not need­
ed. Their values would be the same wtether duplicates were re­
m·:> ved or not.

The correct query to find the number of managers is:

;.; retrieve (bosses=countu(~.manager))
v \g
Exe cu ting • • .

lbosses I
I

I I .-------------. 9:
I I .-------------·
continue
;.;

Another aggregate facility supported by IHGRES is called aggre­
gate functions. Aggregate functions group data into categories
and perform separate aggregations on each category.

For example, what if you wanted to retrieve each employee, and
the average salary paid to employees with the same manager? That
query would be:

* retrieve (e.name,manageravg=avg{e.salary by e.manager))
* \g

A Tutorial on INGRES Page 23

Executing . . .

:name lmanageravg
:--~----------------------------Jones, Tim
Thomas, Tom
Edwards, Peter
James, Mary
Thompson, Bob
Williams, Judy
Smythe, Carol

'Hayes, Evelyn
Ross, Stanley
Smith, Paul
Williams, Bruce
Evans, Michael
Bailey, Chas M.

,Collins, Joanne
lBullock, J.D.
IRoss, Stuart
:Schmidt, Herman
:wallace, Maggie J.
lRaveen, Lemont
Ci1oy, Wanda
Ferro, Tony
Zugnoni, Arthur A.
Brunet, Paul C.
Iwano, Masahiro
Onstad, Richard

11117.555
11117.555
11117.555
11117.555
11117.555
11117.555
11117.555
11117.555
11117.555
9687.000
9687.000,
6688.500l
6688.500:
7000.000:

19533.500:
19533.500:
10356.333:
10356.333:
10356.3331
12390.500:
12390.500:
17727.666:
17727.666:
17727.666:
8779.000l

I -------------------------------·
continue
ilf

The first nine people all have the same manager and their average
salary is 11117 .555. The next two people have the same manager
and their average salary is 9687. etc.

Once again, if we wanted to see the sac~ list just for those em­
ployees pver 50:

* retrieve (e.name,manageravg:avg(e.salary by e.manager))
* ~here 1977-e.birthdate > 50
tr \g
Executing . . .

lname lmanageravgl
I I .-------------------------------· : .J zmes, Mary
lBullock, J.D.

A T!.ltorial on I!!GRES

: 11117.555:
: 19533.500:

Page 24

I I ·-------------------------------,
continue
*
Agg;egate functions (unlike simple aggregates) are not completely
local to themselves. The domains upon which the data is grouped
(called the by-list) are logically connected to the domains in
the rest of the query.

In these last examples, the "e.manager" in the by-list refers to
the same tuple as "e.name" in the target list.

If we wanted to compute the average salaries by manager for only
managers 33 and 199, then the query would be:

* retrieve {e.name,manageravg=
* avg(e.salary by e.manager)
* where e.manager = 199 or e.manager = 33
* \g
Executing . • •

:name :manageravg
I -------------------------------Jones, Tim
Thoraas, Tom
Edwcirds, Peter
James, Mary
Thorr.pson, Bob
Williams, Judy
Smythe, Carol
Hayes, Evelyn
Ross, Stanley
Smith, Paul
Williams, Bruce

continue
*

11117.555
11117.555
11117.555
11117.555
11117.555
11117.555
11117.555
11117.555
11117.555
9687.000
9687.000

Suppose we wanted to find out how many people work for each
manager, and in addition wanted only to include those employees
who have worked at least seven years.

* retrieve {e.manager,people=count(e.name by e.manager where
* e.startdate < 1970))
* \g
Executing • • •

:managelpeople

A Tutorial on INGRES Page 25

I --------------------·
199
33
32
10

0
26
55

129 , ~ _,

continue
*

Bl
2:
O'
0
2
2 ,
2
0

Notice that managers 32, 10, and 13 h~ve no employees who started
before 1970. Now suppose we want to k~ow the average salary for
those employees. Simply change "cour.:. 11 to "avg" and rerun the
query.

* retrieve (e.manager,people:avg(e.sal:ry by e.manager where
* e.startdate < 1970))
* \g.
E ;.: e c u ti n g .

: ;.,2nage: people
I I ,-----------------.

199: 10882.250:
33: 22687.000l
32: 0.000:
10: o.ooo:
o: 19S33.500:

26: 9542 .000:
55l 13621.000l

129: 18111.000:
13: o.ooo:

t I .-----------------.
~ontinue

*
tiotice what INGRES does for managers :32, 10 and 13. The average
salary fer those manager employees is actually undefined since
there are no employees who started before 1970. INGRES always
makes undefined values zero in aggrega:es.

If you want to remove the zero values from the output, a qualifi­
cation can be added to the query. The follm.Jing query will find
the average salaries only for those which are greater than zero.

* retrieve (e.manager,people:avg(e.sal2ry by e.manager where

A Tutorial on INGRES Page 26

* e.startdate < 1970))
* where avg(e.salary by e.manager where e.startdate < 1970) > O
* \g
Exe cu ting • • .

manage:people

199 I 10882 .250
331 22687.000
o: 19533.500

261 9542.000
551 13621.000

129 I 18771.000

cr:rntinue
ii

Up until now we have been retrieving results directly onto the
terminal. You can also save results by retrieving them into a
new relation. This is done by saying:

retrieve into newrel ()
where . . .

The rules are exactly the same as for retrieves onto the termi­
nal. INGRES will create - the new !"elation with the c;orree:t
domains, and then put the results of the query in the new rela­
tion.

For example, create a new relation called "overpaid" which has
only those Pmployees who make more than $3000:

* retrieve into overpaid (e.all)
* where e.salary > 8000
* print overpaid
* \g
Exe cu ting . . .

overpaid relation

'number I name lsalarylmanage:birthd:startdl
I ---· 101Ross, Stanley

111Ross, Stuart
131Edwards, Peter
261Thompson, Bob
321Smythe, Carol
33:Haycs, Evelyn
37lRaveen, Lemont

A Tutorial on INGRES

15908:
12067:

90001
130001
9050:

10100:
11985:

1991 o:
1991
1991
1991
1991
261

1927
1931
1928
1930
1929
19 31
1950

19115:
1932:
1958:
1970:
1967:
19631
1974:

Page 27

55lJames, Mary 12000: 199l 1920: 1969:
981Williams, Judy 9000: 199l 1935l 1969:

129lThomas, Tom 10000: 199: 19 41 : 1962:
157lJones, Tim 12000: 199l 1940l 1960l
1S9lBullock, J.D. 21000: o: 1920: 1920:
430l8runet, Paul c. 17674l 129l 1938l 19 59:
843lSe:hmidt, Herman 11204 : 2" I 01 1936: 1956l
994l!wano, Masahiro 15641: 129: 19 44: 1970:

I 1330l0nstad, Richard 8779l 13: 1952l 1971 : l

1523lZugnoni, Arthur A. 19868l 129: 19281 1949:
1639lChoy, Wanda 11160l 55l 19 47: 1970:
4901 ~Bailey, Chas M. 8377: 32: 1956: 1975:
5119lFerro, Tony 13621 : 5.- I '.)I 1939l 196 3:
5219lWilliams, Bruce 13374: 33: 1944l 1959:

I ---,
continue
*
On a 11 retrieve into 11 nothing is pr:.nt~d. We had to include a
"print" command t.:::i see the results. Also, the relation name on a
"re'.:.rieve into" must not already exist. For example, if we tried
the same query again:

* \g
ExeciJting

5102: CREATE: duplicate relation name cverpaid

Tr.ere are two special features about :: "?""etrieve into". First,
the result relation is automatically so~ted and any duplicate tu­
ples are removed. Second, the relation becomes part of the data
base and is owned by you. If you don't ~ant it to be saved you
should remember to des troy it. The m:cha ni sm for destroying a
relation will be mentioned a bit later.

So far we have only retrieved data but ~ever changed it. INGRES
supports three update commands: appe~d, replace, and delete.

For example, to add "Torn Terrific" to the list of overpaid em­
ployees and start him off at $10000:

* append to overpaid(name = "Terrific, Tom 11 ,salary = 10000)
• \g
Executing .

continue
*

A Tutorial on INGRES Pace 28

Notice that we specified values for only two of the six domains
in "overpaid". That is fine. INGRES will automatically set
numeric domains to zero and character domains to blank, if they
are not specified.

Notice also that INGRES did not print anything after the query.
This is true for all update commands.

L~t's give everyone in overpaid a 10~ raise.
to replace o.salary by 1.1 times its value.

To do this we want
Type the query:

* range of o is overpaid
* repla'e o(salary = a.salary* 1.1)
* \g
Executing • . •

continue
*
While the append command requires that you give a relation name
(e.g. append to overpaid), the replace and delete commands re­
quire a tuple variable. Note that the command is:

and not:

r~place o (• . .)
where .

replace overpaid (• . .)
where • • •

Print the results of these last two updates:

* print overpaid
* \g
Exe cu ting . . .

overpaid relation

:number:name :salary:mar.agelbirthd:startdl
I I .---· 10 Ross, Stanley 17498: 199: 1927: 1945:

11 Ross, Stuart 13273: o: 1931: 1932:
13 Edwards, Peter 9899: 199: 1928l 1958l
26 Thompson, Bob 14299: 199 I 1930 I 1970 l
32 Smythe, Carol 9954: 199: 19291 19671
33 Hayes, Evelyn 11109: ·199: 1931: 1963:
37 Raveen, Lemont 131831 26l 1950: 1974:
55 James, ~ary 13199: 199l 1920: 1969:
98:Williams, Judy 98991 199: 1935: 1969l

A Tutorial on INGRES Page 29

129:Thomas, Tom 10999: 199 1941 1962
157lJones, Tim 13199: 199 1940 1960
1991Bullock, J.D. 29699: 0 1920 1920
430'Brunet, Paul C. 19 441 : 129 1938 1959
843 Schmidt, Herman 12324l 26 1936 1956
994 Iwano, Masahiro 17 205: 129 1944 1970

1330 Onstad, Richard 9656' 13 19521 1971
1523 Zugnoni, Arthur A. 21854 129 1928 1949
1639 Choy, Wanda 12275 55 1947 1970
4901 Bailey, Chas M. 9214 32 1956 1975

I 5119 Ferro, Tony 14983 55 1939 1963 I
I 5219 Williams, Bruce 14711 33 1944 1959 I
I 0 Terrific, Tom 11000 0 0 0 I
I ,---
continue
*
Let's fire whoever has the smallest salary:

* delete o where o.salary = min(o.salary) \g
Executing . . .

continue
~

Not i c e th at the de 1 et e co mm a n d re q u i r e s a t u p 1 e v a r i a b 1 e (e g •
delete o) and not a relation name.

What if we wanted to know who makes more th3t Tom Terrific? The
query to do this is very subtle. First we use a new tuple vari­
a b 1 e ca 11 e d " V' w h i ch r a r. g es o v er o v er pa i d , an d w i 11 be us e J to
refer to Tom. t.name must equal "Terrific, Tom". Next, we use a
tuple variable called 11 0 11 which will scan the whole relation. If
we ever find an o. salary > t. salary then o. name must make more
than Tom.

The co~plete query is:

* range of t is overpaid
* retrieve Co.name, osal=o.salary, tomsal = t.salary)
* where o.salary > t.salary
* and t.name = "Terrific, Torn"
ii \ g .. Executing . . .

:name losal ltomsall
I I ·----------------------------------, :Ross, Stanley l 192471 11000:
lRoss, Stuart : 14600: 11000:

A Tutorial on INGRES Page 30

: Thompson, Bob 15728: 11000 l
:Hayes, Evelyn 122191 11000:
:Raveen, Leruont 14501: 11000:
lJa:nes, Mary 14518l 11000l
lThomzs, Tom 120981 11000l
lJones, Tim 14518: 11000:
lBullor:k, J.D. 32668: 11000:
:Brunet, Paul C. 21385: 11000:
: Schmidt, Herman 13556: 11000 I
IIwano, Masahiro 18925: 11000l
IZugnoni, Arthur A. 24039l 11000:
lChoy, Wanda 13502: i1000:
lFerro, Tony 16481l 110001
1Wi 1 liams, Bruce 161821 11000l
I I ·----------------------------------·
continue
*
If we wanted to give Tom Terrific. $50 nore _than anyone else, the
query would be:

~ replace o(salary = max(o.salary) + 50)
* where o.narne = "Terrific, Torn"
w \g
Exec.uting .••

-:or:tino..:e
*
Finally, to destroy a relation owned ty yourself, type the com­
rnc:i rid :

* destroy overpaid
* \g
Ex€cuting •••

Continue
*
We are now ready to leave INGRES. This is done either by typing
an end-of-file (e:ontrol/d) or more ty;:>ically use the 11 \q" com­
mand:

ii \q
INGRES vers 6.1/0 logout
Tue Aug 30 14:55:20 1977
goodbye bob -- come again

A Tutorial on INGRES Page 31

Berkeley Pascal User's Manual
Version 1.1 - April, 1979

William N. Joye

Susan L Graham­

Charles B. Hakya•

Computer Science Division
Department. of Electrical En1ineerin1 and Computer Science

University of Calif omia, Berkeley
Berkeley, California 94720

ABSTRACT

Berkeley Pascal is desianed for interactive instructional use and runs on
the Pt>P/11 and VAx/11 computers. It produces interpretive code, providing fast
translation at the expense of slower execution speed. An execution profiler and
Wirth's cross reference program are also available with the system.

The system supports full Pascal, with the exception of procedure and
function names as parameters. The lan1uage accepted is very close to 'Stan·
dard' Pascal. with only a small number of extensions.

The User's Manual gives a list of sources relating to the UNDCt system, the
Pascal language, and the Berkeley Pascal system. Basic usage examples are pro·
vided for the Pascal interpreter components pi, ~ pix, and p:xp. Errors com·
monly encountered in these programs are discussed. Details are given of spe·
ciaJ considcranons due to the interactive implementation. A number of enm·
pies are provided including many dealing with input/ output. An appendix sup­
pLements Wirth's POJCal Report to form the full definition of the Berkeley
implementation of the languaae.

December 11, 1979

This Manual can be used with Berkeley
Pascal Version 1.2, which is currently
running on our systems. Changes between
Versions 1.1 and 1.2 were mostly bug
fixes, so there is no new documentation.

co 1977. 1979 William N. Joy, Susan L. Graham. Charles B. Haley
•Author's current address: S .t B Associates. 1110 CentcMial Ave .• Piscaiaway, NJ 01854
tUNOC is a Trademark or Bell Laboratories.

Introduction

Berkeley Pascal User's Manual
Version 1.1 - April, 1979

William N. Joye

Susan L. Graha,,,.

Charles B. Ha/eye•

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

The Berkeley Pascal User's Manual consists of five major sections and an appendix. In
section l we give sources of information about UNIX, t about the programming language Pascal,
and about the Berkeley implementation of the language. Section 2 introduces the Berkeley
implementation and provides a number of basic examples. Section 3 discusses the error diag­
nostics produced by the translator pi and the runtime interpreter px. Section 4 describes
input/output with special attention given to features of the interactive implementation and to
features unique to UNIX. Section S gives details on the components of the system and explana­
tion of all relevant options. The User's Manual concludes with an appendix to Wirth' s Pascal
Report with which it forms a precise definition of the implementation.

History of the implementation
The first Berkeley system was written by Ken Thompson in early 1976. The main

features of the present system result from the work of Charles Haley and William Joy during
the latter half of 1976. Earlier versions of this system have been in use since January, 1977.

The system was moved to the v AX· 11 by Peter Kessler and Kirk McKusick in the spring
of 1979.

• The ftnanciaJ suJIPC)rt of the first and second authors' wort by the National Science Foundation under
sranu MCS74-07644-A03 and MCS78-07291, and tbe first author's work by an llM Graduate Fellowship are
sratefully acknowledged.
- Author's present address: Bell Laboratories, Murray Hill. NJ 07974.
tUNIX is a Trademark of Bell Laboratories.

. 2 -

1. Sources of information

This section lists the resources available on the UC Berkeley campus for information
about general features of UNIX, text editing, the Pascal language, and the Berkeley .Pascal imple­
mentation, concluding with a list of references. The available documents include both so-called
standard documents - those distributed with all UNIX system - and documents (such as this
one) written at Berkeley.

1.1. Where to get documentation

On the UC Berkeley campus, documentation is available at the Computer Center Library,
room 218B Evans Hall. The library is open from 8:00 A.M. to 5:00 P.M. Monday through Fri·
day. Current documentation for most of the UNIX system is also available "on line" at your
terminal. Details on getting such documentation interactively are given in section 1.3.

1.2. Computer Center short courses

For those not enrolled in Computer Science Division courses, and who have no prior
experience using UNIX, the short-courses offered by the staff of the Computer Center are highly
recommended. These courses are offered free of charge, and are usually held at the beginning
of each quarter. The two most valuable short courses for the Berkeley Pascal user are the ones
dealing with basic use of UNIX, and with text editing. If you are unable to attend the short
courses, documents for these courses are available at the Computer Center Library, and are
recommended. The documents are in a tutorial format, so it is possible to use them on your
own.

1.3. Documentation describing UNIX
The following documents are those recommended as tutorial and reference material about

the UNIX system. We give the documents with the introductory and tutorial materials first, the
reference materials last.

UNIX For Beginners - Second Edition

This document is the basic tutorial for UNIX available with the standard system.

Communicating with UNIX
This is aiso a basic tutorial on. the system and assumes no previous familiarity with com­

puters; it was written at Berkeley and is used in the short courses.

An Introduction to the C shell
This document introduces csh, the shell in common use at Berkeley, and provides a good

deal of general description about the way in which the system functions. It provides a useful
glossary of terms used in discussing the system.

UNIX Programmer's Manual
This manual is the major source of details on the components of the UNIX system. It con­

sists of an Introduction. a permuted index. and eight command sections. ~on l consists of
descriptions of most of the "commands0 of UNIX. Most of the orher scttions have limited
relevance to the user of Berke.icy Pascal, being of interest mainly to system programmers. The
manual is available from the Computer Center Library.

UNIX documentation o_ften refers the reader to sections of the manual. Such a reference
consists of a command name and a section number or name. An example of such a reference
would be: ed (1). Here ed is a command name - the standard UNIX text editor, and '(l)' indi­
cates that its documentation is in section 1 of the manual.

The pieces of the Berkeley Pascal system are pi (1), px (1), the combined Pascal translator
and interpretive executor pix (1), the Pascal execution profiler pxp (1), and the Pascal cross-

• 3 •

reference generator pxref (1).

It is possible to obtain a copy of a manual section by using the man (1) command. To get
the Pascal documentation just described one could issue the command:

% man pi

to the shell. The user input here is shown in bold face~ the '% ', which was printed by the shell
as a prompt, is not. Similarly the command:

% man man

asks the man command to describe itself.

1.4. Text editing documents

The following documents introduce the various UNIX text editors. Most Berkeley users
will use a version of the text editor ex; either edit, which is a version of ex for new and casual
users, ex itself, or vi (visual) which focuses on the display editing portion of ex.

A Tutorial Introduction to the UNIX Text Editor

This document, written by Brian Kernighan of Bell Laboratories, is a tutorial for the Stan·
dard UNIX text editor ed. It introduces you to the basics of text editing, and provides enough
information to meet day-to-day editing needs, for ed users.

Edit: A tutorial

This introduces the use of edit, an editor similar to ed which provides a more hospitable
environment for beginning users. The short courses on editing taught by the Computer Center
use this document.

Ex/edit Command Summary

This summarizes the features of the editors ex and edit in a concise form. If you have
used a line oriented editor before this summary alone may be enough to get you started.

Ex Reference Manual - Version 3.1

A complete'lref erence on the features of ex and edit.

An Introduction to Display Editing with Vi

Vi is a display oriented text editor. It can be used on most any CRT terminal, and uses the
screen as a window into the file you are editing. Changes you make to the file are reflected in
what you see. This manual serves both as an introduction to editing with vi and a reference
manual.

Vi Quick Reference

This reference card is a handy quick guide to vi; you should get one when you get the
introduction to vi.

1.5. Pascal documents - The language
This section describes the documents on the Pascal language which are likely to be most

useful to the Berkeley Pa.seal user. Complete references for these documents are given in sec­
tion 1.7.

Pascal User Manual

By Kathleen Jensen and Niklaus Wirth. the User Manual provides a tutorial introduction
to the features of the language Pascal. and serves as an excellent quick-ref E;rence to the
language. The reader with no familiarity with Algol-like languages may pref er one of the ·Pascal
text books listed below, as they provide more examples and explanation. Particularly important
here are pages 116-118 which define the syntax of the language. Sections 13 and 14 and
Appendix F pertain only to the 6000-3.4 implementation of Pascal.

Pascal Report

By Niklaus Wirth, this document is bound with the User Manual. It is the guiding ref er­
ence for implementors and the fundamental definition of the language. Some programmers
find this report too concise to be of practical use, preferring the User Manual as a reference.

Books on Pascal

Several good books which teach Pascal or use it as a medium are available. The books by
Wirth Systematic Programming and Algorithms+ Data Structures - Programs use Pascal as a vehi·
cle for teaching programming and data structure concepts respectively. They are both recom­
mended. Other books on Pascal are listed in the references below.

1.6. Pascal documents - The Berkeley Implementation

This section describes the documentation which is available describing the Berkeley imple·
mentation of Pascal.

User's Manual
The document you are reading is the User's Manual for Berkeley Pasc:at. We often refer

the reader to the Jensen· Wirth User Manual mentioned above, a different document with a
similar name.

Manual sections
I

The sections relating to Pascal in the UNIX Programmer's Manual are pix (1), pi (1), px
(1), pxp (1), and pxref (1). These sections live a description of each program, summarize the
available options, indicate files used by the program, sjve basic information on the diagnostics
produced and include a list of known bugs.

Implementation notes
For those interested in the internal organization of the Berkeley Pascal system there are a

series of /mplementalion Notes de.scribing these details. The Berkeley Pascal PXP Implementation
Notes describe the Pucal interpreter px; and the Berkeley Pascal PX Implementation Notes
describe the structure of the execution profiler pxp.

1. 7. References

UNIX Documents

Communicating With UNIX
Computer Center
University of California. Berkeley
January, 1978.

-s -

Edit: "' 1uwrial
Ricki Blau and James Joyce
Computing Services Division. Computing Affairs
University of California, Berkeley
January, 1978.

Ex/ edit Command Summary
Computer Center
University of California, Berkeley
August, 1978.

Ex Reference Manual - Version 3.1
An Introduction to Display Editing with Vi
Vi Quiclc Reference
William Joy
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
April, 1979.

An Introduction to the C shell
William Joy
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
January, 1979.

Brian W. Kernighan
UNIX for Beginners - Second Edition
Bell Laboratories
Murray Hill, New Jersey.

Brian W. Kerni&han
A Tutorial Jnuoduction to tlw UNIX Text Editor
Bell Laboratories
Murray Hill. New Jersey.

Dennis M. Ritchie and Ken Thompson
The UNIX Time Sharing System
Communications of the ACM
July 1974
365-378.

B. W. Kernighan and M. D. Mcilroy
UNIX PfOITammer '.s Manual - ~nch Edition
Bell Laborarories
Murray Hill. New Jersey
December, 1978.

Pascal Language Documents

Conway, Gries and Zimmerman
A Primer on PASCAL
Winthrop, Cambridge Mass.
1976, 433 pp.

Kathleen Jensen and Niklaus Wirth
Pascal - User Manual and Report
Springer· Verlag.. New York.
1975, 167 pp.

C. A. G. Webster
Inrroducrion to Pascal
Heyden and Son, New York
1976, 1~9pp.

Niklaus Wirth
Algorithms+ Data structures - Programs
Prentice-Hall, New York.
1976, 366 pp.

Nildaus Winh
Systematic Programming
Prentice·Hall, New York.
1973, 169 pp.

Berkeley Pascal documents

- 6 -

The following documents are available from the Computer Center Library at the Univer­
sity of California., Berkeley.

William N. Joy, Susan L. Graham, and Charles B. Haley
Berkeley Pascal User's Manual - Version 1.1
Ap~ 1979.

William N. Joy
Berkeley Pascal PX Jmplemenrarion Notes
Version 1.1, April 1979.
{Vax-11 Version By Kirk McKusick, December, 1979)

William N. Joy
Berlceiey Pascal PXP /mplemetarion No~
Version 1.1, April 1979.

• 7 •

l. Basic UNIX Pascal

The following sections explain the basics of using Berkeley Pascal. In examples here we
use the text editor ex (1). Users of the text editor ed should have little trouble following these
examples, as ex is similar to ed. We use ex because it allows us to make clearer examples.t The
new UNIXt user will find it helpful to read one of the text editor documents described in section
1.4 before continuing with this section.

l.l. A first proeram

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and to
'login' to the system on this account. These procedures are described in the documents Com­
municating with UNIX and UNIX for Beginners.

Once we are logged in we need to choose a name for our program; let us call it 'first' as
this is the first example. We must also choose a name for the file in which the program will be ·
stored. The Berkeley Pascal system requires that programs reside in files which have names
ending with the sequence • .p' so we will call our file •first.p'. ·

A sample editing session to create this file would begin:

% ex first.p
•first.p" No such file or directory

We didn't expect the file to exist, so the error diagnostic doesn't bother us. The editor now
knows the name of the file we are creating. The ':' prompt indicates that it is ready for com·
mand input. We can add the text for our program using the 'append' command as follows.

:append
program first (output)
bqin

writelnC'Hello, world!')
end.

The line containing the single•: character here indicated the end of the appended text. The ':'
prompt indicates that ex is ready fot another command. As the editor operates in a temporary
work space we must now store the contents of this work space in the file 'first.p' so we can use
the Pascal translator and executor pix on it.

:write
•first.p" 4 lines. 59 characters
:quit
%

We wrote out the file from the edit buifer bere with the 'write' command, and ex indicated the
number of lines and characters written. We then quit the editor, and now have a prompt from
the shell.*

t Usen with en terminals should ftnd the editor vi more pleasant to use; we do not show its use here be·
cause its display oriented nature makes it dil!icult to illustrate.
tUNtX is a Trademark of Bell Laboratories.
• Our eumples here assume you are usin& csh.

- 8 •

We are ready to try to translate and execute our program.

% pix first. p
2 begin

e ·---T --- Inserted '; ·
Execution begins ...
Hello, world!
Execution terminated
1 statement executed in 0.04 seconds cpu time
%

The translator first printed a syntax error diagnostic. The number 2 here indicates that
the rest of the line is an image of the second line of our program. The translator is saying that
it expected to find a ';' before the keyword begin on this line. If we look at the Pascal syntax
charts in the Jensen-Wirth User Manua~ or at some of the sample programs therein, we will see
that we have omitted the terminating ';' of the program statement on the first line of our pro­
gram.

One other thing to notice about the error diagnostic is the letter 'e' at the beginning. It
stands for 'error', indicating that our input was not legal Pascal. The fact that it is an 'e' rather
than an 'E' indicates that the translator managed to recover from this error well enough that
generation of code and execution could take place. Execution is possible whenever no fatal 'E'
errors occur during translation. The other classes of diagnostics are 'w' warnings, which do not
necessarily indicate errors in the program, but point out inconsistencies which are likely to be
due to program bugs, and 's' standard-Pascal violations. t

After completing the translation of the program to interpretive code, the Pascal system
indicates that execution of the translated program began. The output from the execution of the
program then appeared. At program termination, the Pascal runtime system indicated the
number of statements executed, and the amount of cpu time used, with the resolution of the
latter being l/60'th of a second.

Let us now fix the error in the program and translate it to a permanent object code file obj
using pi. The program pi translates Pascal programs but stores the object code instead of exe·
cuting iti.

% ex first.p
"first.p" 4 lines, 59 characters
:1 print
program first(output)
:s/S/;
program first (output};
:write
"first.p" 4 lines, 60 characters
:!pi 'la
!pi first.p
!
:quit
%

tThe standard Pascal waminp occur only wheil the as.wci.1r:d Ji !nmlator option is enabled. The s option is
discu5sed in sections S. l and A.6 below. Wa.min1 oia1nosiics are discussed at the end of section 3.2, the as­
sociated " option is described in section 5.l.
*This script indicates some other useful approaches to debugging Pascal programs. As in td we <:an shorten
commands in t::c to an initial prefix of the command name as we did with the substitllct command here. We
have also used the "!' shell escape command here to execute other commands with a shell without leaving
the editor.

• 9 •

t>.; first comll1l1.i;.j issued from ex with the •!' involved the use of the '%' character which
:::11.ii ls in \bs command for the file we are editing. Ex made this substitution, and then echoed
ba ... k l,1e e:~µ; nded line before executing the command. When the command finished, the edi·
tor echoed the character '!' so that we would know it was done.

If we now use the UNIX Is list files command we can see what files we have:

% Is
first.p
obj
%

The file 'obj' here contains the Pascal interpreter code. We can execute this by typing:

% ps obj
Hello, world!
1 statement executed in 0.02 seconds cpu time
%

Alternatively. the command:

% obj

will have the same effect. Some examples of different ways to exc:cute the proeram follow.

%px
Hello, world!
1 statement executed in 0.02 seconds cpu time
% pl -p ftrst.p
% ps obj
Hello, world!
% pix -p flrst.p
Hello. world!
%

Note that px will assume that 'obj' is the file we wish to execute if we don't tell it other­
wise. The last two translations use the -p no-post-mortem option to eliminate execution
statistics and •Execution begins' and 'Execution terminated' messages. See section S.2 for
more details. If we now look at the files in our directory we will see:

% Is
ftnt.p
obj
%

We can give our object program a name other than 'obj' by using the move command mv (1).
Thus to name our program 'hello':

% mT obj hello
% laello
·Hello, world!
Ci Is
first.p.
bello
~

- 10 -

Finally we can get rid of the Pascal object code by using the
rm
(1) remove file command. e.g.:

o/o rm hello
o/ols
ftrst.p
%

For small programs which are being developed pix tends to be more convenient to use
than pi and px. Except for absence of the obj file after a pix run, a pix command is equivalent to
a pi command followed by a px command. For larger programs. where a number of runs testing
different parts of the program are to be made, pi is useful as this obj file can be executed any
desired number of times.

l.l. A larger program

Suppose that we have used the editor to put a larger program in the file 'bigger.p'. We
can list this program with line numbers by using the program num i.e.:

o/o num bi11er.p
1 {•

o/o

2 • Graphic representation of a function
3 • f(x) - exp(-x) • sin(2 •pi • x)
4 •)
S program graph! (output);
6 const
7 d - 0.0625; (• 1/16, 16 lines for interval [x, x+l] •)
8 s - 32; (• 32 character width for interval [x. x+l]
9 h - 34~ { • Character position of x-axis •)

10 c - 6.28138; (• 2. pi•)
11 lim - 32;
12 var
13 x, y: real;
14 i, n: integer,
lS begin
16 for i :- 0 to lim begin
17 x:-d/i;
18 1 :- exp(-x9 • sin(i • x);
19 n :- Round(s • y) + h;
20 repeat
21 write(' ');
22 n :- n - 1
23 writeln (' •')
24 end.

This program is similar to program 4.9 on page 30 of the Jensen·Wirth User Manual. A
number of problems have been introduced into this example for pedagogical reasons.

- 11 -

If we attempt to translate and execute the program using pix we get the following
response:

% pix bigger.p
9 h - 34; (• Character position of x-axis •)

w ---------------------1- (• in a (• ... •) comment
16 for i :- 0 to lim begin

e -----------------------------T ------ Inserted keyword do
18 y :- exp(-x9 • sin(i • x);

E ----·------------------------ t -----· Undefined variable
e -·----·-----------------------------T----- Inserted')'

19 n :- Round(s • y) + h;
E ·-------------T ----- Undefined function
E ----------------------------! ·----- Undefined variable

23 writein (' •')
e ------------T --- Inserted ·;'

24 end.
E -----T ---- Expected keyword until
e ------T--- Inserted keyword end matching begin on line 15
In program graph!:

w - constant c is never used
E - x9 undefined on line 18
E - Round undefined on line 19
E - h undefined on line 19

Execution suppressed due to compilation errors
%

Since there were fatal 'E' errors in our program, no code was generated and execution was
necessarily suppressed. One thing which would be useful at this point is a listing of the pro­
gram with the error messages. We can get this by using the command:

% pi -1 bigger.p

There is no point in using pix here, since we know there are fatal errors in the program. This
command will produce the output at our terminal. If we are at a terminal which does not pro­
duce a hard copy we may wish to print this listing off-line on a line printer. We can do this
with the command:

% pi -l bigger.p I lpr

In the next few sections we will illustrate various aspects of the Berkeley Pascal system by
correcting this program.

2.3. Correcting the first errors

Most of the errors which occurred in this program were syntactic errors, those in the for­
mat and structure of the program rather than its content. Syntax errors are flagged by printing
the off ending line, and then a line which flags the location at which an error was detected. The
flag line also gives an explanation stating either a possible cause of the error, a simple action
which can be taken to recover from the error so as to be able to continue the analysis, a symbol
which was expected at the point of error, or an indication that the input was 'malformed'. In
the last case, the recovery may skip ahead in the input to a point where analysis of the progra~
can continue.

In this example, the first error diagnostic indicates that the translator detected a comment
· within a comment. While this is not considered an error in 'standard' Pascal, it usually

corresponds to an error in the program which is being translated. In this case, we have acciden­
tally omitted the trailing '•)' of the comment on line 8. We can begin an editor session to

correct this problem by doing:

% ex bigger. p
"bigger.p" 24 lines, 512 characters
:Ss/S/ •)

- 12 -

s - 32; (• 32 character width for interval [x, x+ 11 •)

The second diagnostic. given after line 16, indicates that the keyword do was expected ·
before the keyword begin in the for statement. If we examine the statement syntax chart on
page 118 of the Jensen-Wirth User Manual we will discover thal do is a necessary part of the for
statement. Similarly, we could have referred to section C.3 of the Jensen-Wirth User Manual
to learn about the for statement and gotten the same information there. It is often useful to
ref er to these syntax chans and to the relevant sections of this book.

We can correct this problem by first scanning for the keyword for in the file and then sub­
stituting the keyword do to appear in front of the keyword begin there. Thus:

:/for
for i :- 0 to lim begin

:s/begio/do &
for i :- 0 to lim do begin

The next error in the program is easy to pinpoint. On line 18, we didn't hit the shift key and
1ot a •9• instead of a •)'. The translator diagnosed that •x9' was an undefined variable and,
later, that a •)• was missing in the statement. It should be stressed that pi is not suggesting that
you should insert a•)' before the •;•. It is only indicating that malcing this change will help it to
be able to continue analyzing the program so as to be able to diagnose further errors. You
must then determine the true cause of the error and make the appropriate correction to the
source text.

This error also illustrates the fact that one error in the input may lead to multiple error
diagnostics. Pi attempts to give only one diagnostic for each error, but single errors in the
input sometimes appear to be more than one error. It is also the case that pi may not detect an
error when it occurs, but may detect it later in the input. This would have happened in this
example if we had typed 'x' instead of 'x9'.

Tbe translator next detected. on line 19, that the function Round and the variable h were
undefined. It does not know about Round because Berkeley Pascal normally distinguishes
between upper- and lower-case. On UNtX lower-ase is preferredt, and all keywords and built­
in procedure and function names are composed of lower-ase letters, just as they are in the
Jensen-Winh Pascal Report. Thus we need to use the function round here. As far as h is con­
cerned, we can see why it is undefined if we look back to line 9 and note that its definition was
lost in the non-terminated comment. This diagnostic need not, therefore, concern us.

The next error which occurred in the program caused the translator to insert a •;' before
the statement calling writeln on line 23. If we examine the program around the point of error
we will see that the actual error is that the keyword until and an associated expression have
been omitted here. Note that the diagnostic from the translator does not indicate the actual
error. and is somewhat misleadin&- The tnnslator made the correction which seemed to be
most plausible: As the omission of a. ·~ • character is a common mistake, the translator chose to
indicate this as a possible ftx here. It later detected that the keyword until was missing, but not
until it saw the keyword end on line 24. The combination of these diagnostics indicate to us
the true problem.

tOne &ood reason for using lower-cue is thll it is easier to type.

- 13 -

The final syntactic error message indicates that the translator needed an end keyword to
match the begin at line 15. Since the end at line 24 is supposed to match this begin, we can
inf er that another begin must have been mismatched, and have matched this end. Thus we see
that we need an end to match the begin at line 16, and to appear before the final end. We can
make these corrections:

:/x9/s//x)
y :- exp(-x) • sin(i • x);

:+s/Round/round

:/write

:/

:insert

:S
end.
:insert

end

n :- round(s • y) + h;

writer');

writeln (' •')

until n - O;

At the end of each procedure or function and the end of the program the translator sum­
marizes references to undefined variables and improper usages of variables. It also gives warn­
ings about potential errors. In our program, the summary errors do not indicate any further
problems but the warning that c is unused is somewhat suspicious. Examining the program we
see that the constant was intended to be used in the expression which is an argument to sin, so
we can correct this expression, and translate the program. We have now made a correction for
each diagnosed error in our program.

:?l ?s//c I
y :- exp(-x) • sin(c • x);

:write
"biuer.p" 26 lines, 538 characters
:!pi Oft
!pi biger.p
!
:quit
%

It should be noted that the transJaror suppresses warning diagnostics for a particular procedure,
function or the main program when it finds severe syntax errors in that part of the source text.
This is to prevent possibly confusing and incorrect warning diagnostics from being produced.
Thus these warning diagnostics may not appear in a program with bad syntax errors until these
errors are corrected.

• 14 -

We are now ready to execute our program for the first tir
section after giving a listing of the corrected program for referen·

% number bigaer.p
1 (•
2 • Graphic representation of a function
3 • f(x) • exp(-x) • sin(2 • pi • x)
4 •)
5 program graphl (output);

:.re will do so in the next
ur i)oses.

6 const
7 d • 0.0625; (• 1/16, 16 lines for interval [x, x+ll •)
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

var

end.

s • 32; (• 32 character width for interval [x, x+l] •)
b - 34; (• Character position of x-axis •)
c - 6.28138; (· 2 • pi •)
lim - 32;

x. y: real;
i, n: integer,

for i :- 0 to lim do begin
x :- d Ii~

end

y :.- exp(-x) • sin(c • x);
n :- round(s • y) + h;
repeat

write{' ');
n :- n -1

until n • 0;
write!n (' •')

1.4. Exec:utin& the second example

We are a.ow ready to execute the second exampie.. The following output was produced by
our first run.

% px
Execution begins ..•
Floating divide by zero

Execution terminated abnormally
2 swements executed in 0.04 sea>mis cpu time
%

Here the interpreter is presenting us with a runtime error diagnostic. It detected a 'division by
zero' at line 17. Examining line 17. we see that we have written the statement ·x :- d I i'

• 15 -

instead of 'x :• d • i'. We can correct this and rerun the program:

% ex bigaer.p
"bigger.p" 26 lines, 538 characters
:17

x :• d Ii
:s·r·

x :- d. i
:write
"bigger.p" 26 lines, 538 characters
:!pix~

!pix bigger.p
Execution begins ...

•
•
•
•

•

•
•

•
•
•
•
•

•
•

Execution terminated

•

•
•

•
•

•
•
•
•

•
•

•

•

•
•

•
•

•
•

2550 statements executed in 0.21 seconds cpu time

:q
%

- 16 •

This appears to be the output we wanted. We could now save the output in a file if we
wished by using the shell to redirect the output:

% px >graph

We can use car (1) to see the contents of the file graph. We can also make a listing of the
graph on the line printer without putting it into a file, e.g.

% px I lpr
Execution begins ...
Execution terminated
2550 statements executed in 0.31 seconds cpu time
%

Note here that the statistics lines came out on our terminal. The statistics line comes out on
the diagnostic output (unit 2.) There are two ways to get rid of the statistics line. We can
redirect the statistics message to the printer using the syntax i&' to the shell rather than '!', i.e.:

% px I& lpr
%

or we can translate the program with the p option disabled on the command line as we did
above. This will disable all post-mortem dumping including the statistics line, thus:

% pi -p bigger.p
% px I Ipr
%

This option also disables the statement limit which normally guards against infinite looping.
You should not use it until your program is debugged. Also if p is specified and an error
occurs, you will not get run time diagnostic information to help you determine what the prob­
lem is.

2.S. Formatting the program listing

It is possible to use special lines within the source text of a program to format the pro·
gram listing. An empty line (one with no characters on it) corresponds to a 'space' macro in an
assembler, leaving a completely blank line without a line number. A line containing only a
control-I (form-feed} character will cause a page eject in the listing with the corresponding line
number suppressed. This corresponds to an •eject' pseudo-instruction. See also section 5.2 for
details on the n and i options of pi.

2.6. Exe<:ution profiling

An execution profile consists of a structured listing of (all or part of) a program with
information about the number of times each statement in the program was executed for a par­
ticular run of the program. These profiles can be used for several purposes. In a program
which was abnormally terminated due to excessive looping or recursion or by a program fault,
the counts can faciiitate location of the error. Zero counts mark portions of the program which
were not executed; during the early debugging stages they should prompt new test data or a re·
examination of the program logic. The profile is perhaps most valuable, however, in drawing
attention to the (typically smaJH portions of the program that dominate execution time. This
information can be used for source level optimization.

An example

A prime number is a number which is divisible only by itself and the number one. The
program primes, written by Nikia us Wirth, determines the first few prime numbers. In translat­
ing the program we have specified the z option to pL'C. This option causes the translator to gen­
erate counters and count instructions sufficient in number to determine the number of times

- 17 •

each statement in the program was executed. t When execution of the program completes,
either normally or abnormally, this count data is written to the file pmon.out in the current
directory.; It is then possible to prepare an execution profil~ by giving pxp the name of the file
associated with this data, as was done in the following example.

% pix -l -z primes.p
Berkeley Pascal PI - Version 1.1 (January 4, 1979)

Sat Mar 31 11:50 1979 primes.p

1
2
3
4
5
6
7
8
9

10
11
12
13

program primes(output);
canst n - 50; nl - 7; (•nl - sqrt(n)•)
var i,k,x,inc,lim,square,l: integer;

prim: boolean;
p, v: array[l..nl] of integer;

begin
write(2:6, 3:6); I :- 2;
x :- l; inc:- 4; lim :- l; square :- 9;
for i :- 3 to n do
begin (•find next prime•)

repeat x :- x + inc; inc :- 6-inc;
if square < - x then

begin lim :- lim+ 1;
14 vUiml :- square; square :- sqr(p[lim+l])
15
16
17
18

end;
k :- 2; prim :- true;
while prim and (k < lim) do
begin k :- k+l;

19
20

if v[k} < x: then v[k] :- v[k] + 2•p[k];
prim :- x < > v[k]

21
22
23
24
25
26
27

end
until prim;
if i <- nl then p[iJ :- x;
wriu~(x:6); l :- l+l;
if l - 10 then

begin writeln; l :- 0
end

28 end ;
29 writeln;
30 end.

Execution begins ...
2 3

31 37
73 79

127 131.
179 181

5
41
83

137
191

Execution terminated

7
43
89

139
193

H
47
97

149
197

13
53

101
151
199

17
59

103
157
211

19
61

107
163
223

23
67

109
167
227

29
71

113
173
229

tThe counts are completely aa:urar.e only in the absence of runtime errors and nonlocal 1oto statements.
This is not generally a problem. however, as in structured programs nonlocal aoto statement5 e<:eur infre·
quently. and counts are incorrect after abnormal termination only when the up .. ·ard look described below to
get a count passes a suspended call point.
tPmon.ou1 has a name similar to man.out the monitor file produced by the profiling facility of the C compiler
cc (I l. See prof (J) for a discussion of the C compiler profiling facilities.

- 18 -

1404 statements executed in 0.16 seconds cpu time
%

Discussion

The header lines of the outputs of pix and pxp in this example indicate the version of the
translator and execution profiler in use at the time this example was prepared. The time given
with the file name (also on the header line) indicates the time of last modification of the pro­
aram source tile. This time serves to version szamp the input program. Pxp also indicates the
time at which the profile data was gathered.

% pxp -z primes.p
Berkeley Pascal PXP - Version 1.1 (November 6, 1978)

Sat Mar 31 11:50 1979 primes.p

Profiled Sal Mar 31 13:02 1979

1
2
2
2
3
3
4
s
6
7
7
8
8
8
8
9
9

11
11
12
13
14
14
14
16
16
17
u
19
19
20
20
20
23
23
24
24

1.---lProgram primes{output);
~onst
l n - SO;
I nl - 7; (•nl - sqrt(n)•)
Ivar
I i. k. x. inc, lim, square, 1: integer;
I prim: boolean;
I p, v: array [1..nll of integer;
~gin
I write<2: 6, 3: 6);
I I:- 2;
I x :- 1;
I inc:- 4;
I lim :- I;
I square :- 9;
I for i :- 3 to a do begin (•find next prime•)

48.--i repeat
76.---I x :- x + inc;

I inc :- 6 - inc;
I if square < - x then begin

s.---1 lim :- lim + l;

l
I vOim] :- square;
I square :- sqr(p[lim + l])

end;
Jc:- 2~

I prim :- true~
I while prim and (k < lim) do begin

157.--~ t :- k: + l;
I if v{k] < x then

42.--1 v[k] :- v(k] + 2 • p[k];
I prim :- x < > v[k]

I end
!until prim;

I if i < - n 1 then
s.--1 p[iJ :- x;
I write(x: 6);
I I :- I+ 1;

25
26
26
26
26
29
29

I er.1\:
I · ... T.r .,,
~nd.

9 .

'1en b¢gin
!In;

1 ~- 0

To determine the number of times a statement was executed, one looks to the left of the
statement and finds the corresponding vertical bar 'f. If this vertical bar is labelled with a count
then that count gives the number of times the statement was executed. If the bar is not
labelled, we look up in the listing to find the first 'f which directly above the original one which
has a count and that is the answer. Thus, in our example, k was incremented 157 times on line
18, while the write procedure call on line 24 was executed 48 times as given by the count on the
repeat.

More information on pxp can be found in its manual section pxp (1) and in sections 5.4,
S.S and S.10.

- 20 -

3. Error diagnostics

This section of the User's Manual discusses the error diagnostics of the programs pi and
px. Pix is a simple but useful program which invokes pi and px to do all the real processing.
See its manual section pix (1) and section 5.2 below for more details.

3.1. Translator syntax errors

A few comments on the general nature of the syntax errors usually made by Pascal pro­
grammers and the recovery mechanisms of the current translator may help in using the system.

Illegal characters

Characters such as 'S', '!',and '@' arc not part of the language Pascal. If they are found
in the source program, and are not part of a constant string, a constant character, or a com­
ment, they are considered to be 'iUegal characters'. This can happen if you leave off an open­
ing string quote •••. Note that the character '"', although used in English to quote strings, is
not used to quote strings in Pascal. Most non-printing characters in your input are also illegal
except in character constants and character strings. Except for the tab and form feed charac­
ters, which are used to ease formatting of the program, non-printing characters in the input file
print as the character '?' so that they will show in your listing.

String errors
There is no character string of length 0 in Pascal. Consequently the input ,,,, is not

acceptable. Similarly, encountering an end-of-line after an opening string quote ''' without
encountering the matching closing quote yields the diagnostic "Unmatched · for string". It is
permissible to use the character '#' instead of ••• to delimit character and constant strings for
portability reasons. For this reason, a spuriously placed '#' sometimes causes the diagnostic
about unbalanced quotes. Similarly, a '#' in column one is used when preparing programs
which are to be kept in multiple files. See section 5.9 for details.

Comments in a comment, non-terminated comments

As we saw above, these errors are usually caused by leaving off a comment delimiter.
You can convert parts of your program to comments without generating this diagnostic since
there are two different kinds of comments - those delimited by '{' and •} ', and those delimited
by ' (•' and '•) '. Thus consider:

{This is a comment enclosing a piece of program
a:• functioncall~ (• comment within comment •)
procedurccall;
lhs :• rhs; (• another comment •)
}

By using one kind of comment exclusively in your program you can use the other delim$
iters when you need to "comment out" parts of your programt. In this way you will also allow
the translator to help by detecting statements accidentally placed within comments.

If a comment docs n.ot terminate before the end of the input file, the translator will point
to the beginning of the comment, indicating that the comment is not terminated. In this case
processing wiJI terminate immediately. See the discussion of "QUIT" below.

tlf you wish to ll'anspon your program. especially to the 6000-3.4 implementation. you should use the char·
acter sequence '(•' to delimit commentS. For transportation over the rcslink to Pascal 6000-3.4, the character
'#"should be used to delimit characters and constant strings.

Digits in numbers

This part of the language is a minor nuisance. Pascal requires digits in real numbers both
before and after the decimal point. Thus the following statements, which look quite reasonable
to FORTRAN users, generate diagnostics in Pascal:

4 r :- o.~
e -----T-·-· Digits required after decimal point

5 r :- .o~
e --------T---- Digits required before decimal point

6 r :- l.elO~

e ----------T----- Digits required after decimal point
7 r :- .OSe-10;

e -----·T---- Digits required before decimal point

These same constructs are also illegal as input to the Pascal interpreter px.

Replacements, insertions, and deletions
When a syntax error is encountered in the input text, the parser invokes an error recovery

procedure. This procedure examines the input text immediately after the point of error and
considers a set of simple corrections to see whether they will allow the analysis to continue.
These corrections involve replacing an input token with a different token, inserting a token, or
replacing an input token with a different token. Most of these changes will not cause fatal syn­
tax errors. The exception is the insertion of or replacement with a symbol such as an identifier
or a number; in this case the recovery makes no attempt to determine which identifier or what
number should be inserted, hence these are considered fatal syntax errors.

Consider the following example.

% pix -I synerr.p
Berkeley Pascal PI -- Version 1.1 (January 4, 1979)

Sat Mar 31 11 :50 1979 synerr.p

1 progran syn(output);
e -···T·- Replaced identifier with a keyword program

2 var i, j are integer,
e --t- Replaced identifier with a':'

3 begin
4 for j :• 1 to 20 begin

e ····--------T··· Replaced·.- with a·-·
e ----------------------T-- Inserted keyword do

5 write(j);
6 i - 2 •• j;

e ---· ·• --------T ••• Inserted • :'
E --- --i-- Inserted identifier

7 writeln (i))
E - --------t-- Deleted ')'

8 end
9 end.

%

The only surprise here may be that Pascal does not have an exponentiation operator. hence the
complaint about '••'. This error illustrates that, if you assume that the language has a feature
which it does not, the translator diagnostic may not indicate this, as the translator is unlikely to
recognize the construct you supply.

- 22 -

Undefined or improper identifiers

If an identifier is encountered in the input but is undefined, the error recovery will replace
it with an identifier of the appropriate class. Further references to this identifier will be sum­
marized at the end of the containing procedure or function or at the end of the program if the
reference occurred in the main program. Similarly, if an identifier is used in an inappropriate
way, e.g. if a type identifier is used in an assignment statement, or if a simple variable is used
where a record variable is required, a diagnostic will be produced and an identifier of the
appropriate type inserted. Further incorrect references to this identifier will be flagged only if
they involve incorrect use in a different way, with all incorrect uses being summarized in the
same way as undefined variable uses are.

Expected symbols, malformed constructs

If none of the above mentioned corrections appear reasonable, the error recovery will
examine the input to the left of the point of error to see if there is only one symbol which can
follow this input. If this is the case, the recovery will print a diagnostic which indicates that the
given symbol was 'Expected'.

In cases where none of these corrections resolve the problems in the input, the recovery
may issue a diagnostic that indicates that the input is "malformed". If necessary, the translator
may then skip forward in the input to a place where analysis can continue. This process may
cause some errors in the text to be missed.

Consider the following example:

% pix -I synerr2. p
Berkeley Pascal PI - Version 1.1 (January 4, 1979)

Sat Mar 31 11 :SO 1979 synerr2.p

1 program synerr2 (input,outpu);
2 integer a(lO)

-E -·f-·-·· Malformed declaration
3 begin
4 read(b);

E -------t--- Undefined variable
5 for c :- 1 to 10 do

E --- •. -.-.-1- Undefined variable
6 a(c) :- b • c;

E -------------·-T--- Undefined procedure
E ----------T-·-·- Malformed statement

7 end.
E 1 - File outpu listed in program statement but not declared
e 1 - The file output must appear in the program statement file list
In program synerr2:

E - a undefined on line 6
E -:- b undefined on iine 4
E - c undefined on lines 5 6

Execution suppressed due to compilation errors
%

Here we misspelled input and gave a FORTRAN style variable declaration which the translator
diagnosed as a 'Malformed declaration'. When, on line 6, we used '(' and ')' for subscripting
(as_ in FORTRAN) rather than the '[' and ']' which are used in Pascal, the translator noted that a
was not defined as a procedure. This occurred because procedure and function argument lists
are delimited by parentheses in Pascal. As it is not permissible to assign to procedure calls the
translator diagnosed a malformed statement at the point of assignment.

• 23 •

Exp~ted and unexpected end-of -file, "QUIT ..

If the translator finds a complete program, but there is more non-comment text in the
input file, then it will indicate that an end-of ·file was expected. This situation may occur after a
bracketing error, or if too many ends are present in the input. The message may appear after
the recovery says that it .. Expected ·:" since • .' is the symbol that terminates a program.

If severe errors in the input prohibit further processing the translator may produce a diag­
nostic followed by .. QUIT". One example of this was given above - a non-terminated com­
ment~ another example is a line which is longer than 160 characters. Consider also the follow­
ing example.

% pix -1 mism.p
Berkeley Pascal PI - Version 1.1 (January 4, 1979)

Sat Mar 31 11:50 1979 mism.p

1 program mismatch(output)
2 begin

e --T -- Inserted ·; •
3 writeln('• .. ');
4 { The next line is the last line in the file }
S writeln

E -----T-- Unexpected end-of-file - QUIT
%

3.2. Translator semantic errors
The extremely large number of semantic diagnostic messages which the translator pro­

duces make it unreasonable to discuss each message or group of messages in detail. The mes­
sages are, however, very informative. We will here explain the typical formats and the termi­
nology used in the error messages so that you will be able to make sense out of them. In any
case in which a diagnostic is not completely comprehensible you can refer to the User Manual
by Jensen and Wirth for examples.

Format of the error diqnostics
As we saw in the example program above, the error diagnostics from the Pascal translator

include the number o(a line in the text o(the program as well as the text of the error message.
While this number is most often the line when: the error occurred, it is occasionally the
number of a line containing a bracketing keyword like Hd or until. In this case. the diagnostic
may refer to the ptev\ous statement. This occurs because of the method the translator uses for
sampling line numbers. The absence of a trailing ';' in the previous statement causes the line
number corresponding to the end or until. to become associated with the satement. As Pascal
is a free-format language, the line number associations can only be approximate and may seem
arbitrary to some users. This is the only notable exception, however. U> reasonable associa­
tions.

Incompatible types

Since Pascal is a strongly typed language, many semantic errors manifest themselves as
type errors. These are called •type clashes' by the translator. The types allowed for various
operators in the language are summarized on page 108 of the Jensen· Wirth User Manual. "It is
important to know that the Pascal translator, in its diagnostics, distinguishes between the fol­
lowing type •classes':

<" 24 -

array Bo9lean cLar file integer
pointer . real record scalar string

These words are plugged into a great number of error messages. Thus, 1f you tried to assign an
integer value to a char variable you would receive a diagnostic like the following:

E 7 - Type clash: integer is incompatible with char
... Type of expression clashed with type of variable in assignment

In this case, one error produced a two line error message. If the same error occurs more than
once, the same explanatory diagnostic will be given each time.

Scalar
The only class whose meaning is not self-explanatory is 'scalar'. Scalar has a precise

meaning in the Jensen-Wirth. User Manual where, in f~ it refers to char, inieger, real, and
Boolean types as well as the enumerated types. For the purposes of the Pascal translator, scalar
in an error message refers to a user-defined, enumerated type, such as ops in the example
above or color in

type color - (red, green, blue)

For integers, the more explicit denotation integer is used. Although it would be correct, in the
context of the User Manual to refer to an integer variable as a scalar variable pi prefers the
more specific identification.

Function and procedure type errors

For built-in procedures and functions, two kinds of errors occur. If the routines are called
with the wrong number of arguments a message similar to:

E 12 - sin takes exactly one argument

is given. If the type of the argument is wrong, a message like

E 12 - sin's argument must be integer or real, not char

is produced. A few functions and procedures implemented in Pascal 6000-3.4 are diagnosed as
unimplemented in Berkeley Pascal, notably those related to seamented files.

Can't read and write scalars, etc.
The messages which state that sea.Jar (user-defined) types cannot be written to and from

files are often mysterious. It is in fact the case that if you define

type color - (red, green, blue)

the translator does not associate these constants with the strings 'red', 'green', and 'blue' in any
way. If you wisb such an association to be made, you will have to write a routine to make it.
Note, in particular, that you can only read characters. integers and real numbers from text files.
You cannot read stri~ or Booieans. It is possible to make a

file of color

but the representation is binary rather than string.

Expression dla1nostics
The diagnostics for semantically ill-formed expressions are very explicit. Consider this

sample translation:

% pl -I expr.p
Berkeley Pascal PI -- Version 1.1 (January 4, 1979)

Sat Mar 31 11:50 1979 expr.p

1 program x(output);
2 var
3 a: set of char;
4 b: Boolean;
5 c: (red, green. blue);
6 p: T integer;
7 A: alf~

• 25 -

8 B: packed array [1..5] of char;
9 begin
10 b :- true;

- 11 c :- red;
12 new(p);
13 a :• [];
14 A :- 'Hello, yellow';
15 b :- a and b;
16 a:• a• 3;
17 if input < 2 then writeln('boo');
18 if p <- 2 then writeJn('sure nuff");
19 if A - B then writeln('same');
20 if c - true then writelnC'hue"s and color"s')
21 end.

E 14 - Constant string too long
E 15 - Left operand of and must be Boolean, not set
E 16 - Cannot mix sets with integers and reals as operands of•
£ 17 - files may not participate in comparisons
E 18 - pointers and integers cannot be compared - operator was <­
E 19 - Strings not same length in - comparison
E 20 - scalars and Booleans cannot be compared - operator was -
e 20 - Input is used but not defined in the program statement
In program x:

w - constant green is never used
w - constant blue is never used
w - variable B is used but never set

%

This example is admittedly far·f etched, but illustrates that the error messages are sufficiently
clear to allow easy determination of the problem in the expressions.

Type equinlence
Several diagnostics produced by the Pascal translator complain about 'non-equivalent

types'. In general, Berkeley Pascal considers variables to have the same type only if they were
declared with the same constructed type or with the same type identifier. Thus, the variables x
and y declared as

TU

z: l integer.
Y:. t inteaer;

do not have the same type. The assignment

x :-y

thus produces the diagnostics:

E 7 - Type clash: non-identical pointer types

~ 26 -

... Type of expression clashed with type of variable in assignment

Thus it is always necessary to declare a type such as

type intptr - T integer;

and use it to declare

var x: intptr; y: intptr;

Note that if we had initially declared

var x. y: T integer;

then the assignment statement would have worked. The statement

xf :- Yl
is allowed in either case. Since the parameter to a procedure or function must be declared with
a type identifier rather than a constructed type, it is always necessary, in practice, to declare any
type which will be used in this way.

Unreachable statements

Berkeley Pascal flags unreachable statements. Such statements usually correspond to
errors in the program logic. Note that a statement is considered to be reachable if there is a
potential path of control, even if it can never be taken. Thus, no diagnostic is produced for the
statement:

if false then
writeln ('impossible!')

Goto's into structured statements

The translator detects and complains about goto statements which transfer control into
structured statements (for, while, etc.) It does not allow such jumps, nor does it allow branch­
ing from the then part of an if statement into the else part. Such checks are made only within
the body of a single procedure or function.

Unused variables, never set variables

Although Berkeley Pascal always clears variables to 0 at procedure and function entry. it is
not good programming practice to rely on this initialization. To discourage this practice, and to
help detect errors in program logic, pi flags as a 'w' warning error:

1) Use of a variable which is never assignt:d. a value.

2) A variable which is declared but never used, distinguishing between those variables
for which values are computed but which are never used, and those' completely
unused.

In fact, these diagnostics are applied to all declared items. Thus a constant or a procedure
which is declared but never used is flagged. The " option of pi may be used to suppress these
warnings; see sections 5.1 and 5.2.

3.3. Tnnslator panics, i/o errors

Panics

One class of error which rarely occurs, but which causes termination of all processing
when it does is a panic. A panic indicates a translator-detected internal inconsistency. A typical
panic message is:

snark (rvalue) line-110 yyline-109

Snark in pi

If you receive such a message, the translation will be quickly and perhaps ungracefully ter­
minated. You should contact a teaching assistant or a member of the system staff, after saving
a copy of your program for later inspection. If you were making changes to an existing program
when the problem occurred, you may be able to work around the problem by ascertaining
which change caused the snark and making a different change or correcting an error in the pro­
gram. You should report the problem in any case. Pascal system bugs cannot be fixed unless
they are reported.

Out of memory

The only other error which will abort translation when no errors are detected is running
out of memory. All tables in the translator, with the exception of the parse stack, are dynami­
cally allocated, and can grow to take up the full available process space of 64000 bytes on the
PDP-11. On the v AX· 11, table sizes are extremely generous and very large (10000) line pro­
grams have been easily accomodated. For the PDP-11, it is generally true that the size of the
largest translatable program is directly related to pr~ure and function size. A number of
non-trivial Pascal programs, including some with more than 2000 lines and 2500 statements
have been translated and interpreted using Berkeley Pascal on PDP· 11 's. Notable among these
are the Pascal-S interpreter, a large set of programs for automated generation of code genera­
tors, and a general context-free parsing program which has been used to parse sentences with a
grammar for a superset of English.

If you receive an out of space message from the translator during translation of a large
procedure or function or one containing a large number of string constants you may yet be able
to translate your program if you break this one procedure or function into several routines.

1/0 errors
Other errors which you may encounter when running pi relate to input-output. If pi can­

not open the file you specify, or if the file is empty, you will be so informed.

3.4. Run-time errors
We saw. in our second example, a run-time error. We here give the general description

of run-time errors. The more unusual interpreter error messages are explained briefly in the
manual section for px (1).

Start-up errors
These errors occur when the object file to be executed is 11ot available or appropriate.

Typical errors here are caused by the specified object file not existing, not being a Pascal object,
or being inaccessible to the user.

Program execution errors

These errors occur when the program interacts with the Pascal runtime environment in an
inappropriate way. Typical errors are values or subscripts ou! of range, bad arguments to built.·
in functions, exceeding the statement limit because of an infinite loop, or running out of
memory;. The interpreter will produce a backtrace aftet the error occurs, showing all the active
routine calls, unless the p option was disabled when the program was translated. Unfortunately,
no variable values are given and no way of extracting them is available.•

*The checks for running out of memory arc not foolproof and there is a chance that the intc11Jrctcr will fault,
producing a core image when it runs out of memory. This situation oci::urs very rarely .

. • On the VAX·l l. each stack frame. and each variable allocated with new is restricted to allocate at most
32000 bytes of storage (tnis is a POP.1 lism ttlat has survived to tnc VAXJ The compiled version of tne sys·
tern. wnich is currently under development. will remove this restriction.

. 28 -

As an example of such an error, assume that we have accidentally declared the constant
nl to be 6, instead of 7 on line 2 of the program primes as given in section 2.6 above. If we
run this program we get the following response.

% pix priDies.p
Execution begins ...

2 3 5 7 11 13 17
31 37 41 43 47 53 59
73 79 83 89 97 101 103

127 131 137 139 149 151 157

Error at "primes"+& near line 14

Execution terminated abnormally
941 statements executed in 0.12 seconds cpu time
%

19 23 29
61 67 71

107 109 113
163 167Subscript out of range

Here the interpreter indicates that the program terminated abnormally due to a subscript
out of range near line 14, which is eight lines into the body of the program primes.

Interrupts

If the program is interrupted while executing and the p option was not specified, then a
backtrace will be printed. t The file pmon.out of profile information will be written if the pro­
gram was translated with the z option enabled to pi or pix.

1/0 interaction errors
The final class of interpreter errors results from inappropriate interactions with files,

including the user's terminal. Included here are bad formats for integer and real numbers
(such as no digits after the decimal point) when reading.

Panics
A small number of panics are possible with px. These should be reported to a teaching

assistant or to the system staff if they occur.

tOccasionally. the Pascal system will be in an inconsistent state when this occurs. e.g. when an interrupt ter·
minates a proadure or function entry or exit. In this case. the backtrace will only contain the current line.
A reverse call order list of proceaures will not be given.

• 29 -

4. Input/ output

This section describes features of the Pascal input/output environment, with special con­
sideration of the features peculiar to an interactive implementation.

'

4.1. Introduction

Our first sample programs, in section 2, used the file output We gave examples there of
redirecting the output to a file and to the line printer using the shell. Similarly, we can read the
input from a file or another program. Consider the following Pascal program which is similar to
the program cat (1).

% pix -1 kat.p <primes
Berkeley Pascal PI - Version 1.1 (January 4, 1979)

Sat Mar 31 11:50 1979 kat.p

1 program kat (input, output);
2 var
3 ch: char;
4 begin
5 while not eof do begin
6 while not eoln do begin
7 read(ch);
8 write(ch)
9 end;

10 readln;
11 writeln
12 end
13 end I kat }.

Execution begins ...
2 3 5 7 11 13 17

31 37 41 43 47 53 59
73 79 83 89 97 101 103

127 131 137 139 149 151 157
179 181 191 193 197 199 211

Execution terminated.
925 statements executed in 0.11 seconds cpu time
%

19 23 29
61 67 71

107 109 113
163 167 173
223 227 229

Here we have used the shell's syntax to redirect the program input from a file in primes in
which we had p!8.ced the output of our prime number program of section 2.6. It is also possible
to 'pipe' input to this program much as we piped input to the line printer daemon /pr (1)
before. Thus, the same output as above would be produced by

% cat primes I pix -I kat.p

All of these examples use the shefJ to control the input and output from files. One very
simple way to associate Pascal files with named UNixt files is to place the file name in the pro­
gram statement. For example, suppose we have previously created the file data. We then use
it as input to another version of a listing program.

tUNIX is a Trademark of Bell laboratories.

% cat data
line one.
line two.
line three is the end.
% pix -1 copydata.p

- 30 -

Berkeley Pascal PI - Version 1.1 (January 4, 1979)

Sat Mar 31 11 :50 1979 copydata.p

1 program copydata(data, output);
2 var
3 ch: char;
4 data: text;
S begin
6 reset(data);
7 while not eofCdata) do begin
8 while not eoln (data) do begin
9 read(data, ch);

10 write(ch)
11 end;
12 readln(data);
13 writeln
14 end
1 S end (copydata) .

Execution begins ...
line one.
line two.
line three is the end.
Execution terminated
134 statements executed in 0.01 seconds cpu time
%

By mentioning the file data in the program statement, we have indicated that we wish it to
correspond to the UNIX file data. Then, when we 'reset(data)', the Pascal system opens our file
'data' for reading. More sophisticated, but less portable, examples of using UNIX files will be
aiven in sections 4.5 and 4.6. There is a portability problem even with this simple example.
Some Pascal systems attach meaning to the ordering of the file in the program statement file
list. Berkeley Pascal does not do so.

4.2. Eof and eoln

An extremely common problem encountered by new users of Pascal, especially in the
interactive environment offered by UNIX, relates to the definitions of eofand eoln. These func­
tions are supposed to be defined at the beginning of execution of a Pascal program, indicating
whether the input device is at the end of a line or the end of a ti.le. Setting eof or eoln actually
corresponds to an implicit read in wb.ich the input is inspected, but no input is "used up". In
fact, there is no way the system can know whether the input is at the end-of-file or the end-of­
line unless it attempts to read a line from it. If the input is from a previously created file, then
this reading can take place without run-time action by the user. However, if the input is from a
terminal. then the input is what the user types. t If the system were to do an initial read
automatically at the beginning of program execution, and if the input were a terminal, the user
would have to type some input before execution could begin. This would make ic impossible

+It is not possible to detennine whether the input is a terminal as the input may appear to be a ftle but ac:tu­
ally be a pi~. the ou1pu1 of a program which is readin1 from the terminal.

for the program to begin by prompting for input or printing a herald.

Berkeley Pascal has been designed so that an initial read is not necessary. At any given
time, the Pascal system may or may not know whether the end-of-file or end-of-line conditions
are true. Thus, internally, these functions can have three values - true, false, and "I don't
know yet; if you ask me I'll have to find out". All files remain in this iast, indeterminate state
until the Pascal program requires a value for eof or eoln either explicitly or implicitly, e.g. in a
call to read. The important point to note here is that if you force the Pascal system to deter­
mine whether the input is at the end-of-file or the end-of-line, it will be necessary for it to
attempt to read from the input.

Thus consider the following example code

while not eof do begin
writeCnumber, please? ');
read(i);
writeln {'that was a ·, i: 2)

end

At first glance, this may be appear to be a correct program for requesting, reading and echoing
numbers. Notice, however, that the while loop asks whether eof is true before the request is
printed. This will force the Pascal system to decide whether the input is at the end-of-file. The
Pascal system will give no messages; it will simply wait for the user to type a line. By produc­
ing the desired prompting before testing eof, the following code avoids this problem:

write{'number, please ?');
while not eof do begin

read(i);
writeln('that was a·, i:2);
write{'number, please ?')

end

The user must still type a line before the while test is completed, but the prompt will ask for it.
This example, however, is still not correct. To understand why, it is first necessary to know, as
we will discuss below, that there is a blank character at the end of each line in a Pascal text file.
The read procedure, when reading integers or real numbers, is defined so that, if there are only
blanks left in the file, it will return a zero value and set the end-of-file condition. If, however,
there is a number remaining in the file, the end-of-file condition will not be set even if it is the
last number, as read never reads the blanks after the number, and there is always at least one
blank. Thus the modified c:ode will still put out a spurious

that was a 0

at the end of a session with it when the end-of-file is reached. The simplest way to correct the
problem in this example is to use the procedure readln instead of read here. In general, unless
we test the end-of-file condition both before and after calls to read or readln, there will be
inputs for which our program will attempt to read past end-of -file.

4.3. More about eoln

To have a good understanding of when eoln will be true it is necessary to know that in any
file there is a special character indicating end-of-line, and that, in effect, the Pascal system
always reads one character ahead of the Pascal read commands. t For instance, in response to
'read (ch)', the system sets ch to the current input character and gets the next input character.
If the current input character is the last character of the line, then the next input character
from the file is the new-line character, the normal UNIX line separator. When the read routine
gets the new-line character, it replaces that character by a blank (causing every line to end with

tin P:iscal terms, 'read(chl' corresponds to 'ch :- input": 1et(inpu1l'

- 32 -

a blank) and sets eoln to true. £oln will be true as soon as we read the last character of the line
and before we read the blank character corresponding to the end of line. Thus it is almost
always a mistake to write a program which deals with input in the following way:

read(ch);
if eoln then

Done with line
else

Normal processing

as this will almost surely have the effect of ignoring the last character in the line. The
'read(ch)' belongs as part of the normal processing.

Given this framework, it is not hard to explain the function of a read In call, which is
defined as:

while not eoln do
get(input);

get (input);

This advances the file until the blank corresponding to the end-of-line is the current input sym­
bol and then discards this blank. The next character available from read will therefore be the
first character of the next line, if one exists.

4.4. Output buffering

A final point about Pascal input-output must be noted here. This concerns the buffering
of the file output. It is extremely inefficient for the Pascal system to send each character to the
user's terminal as the program generates it for output; even less efficient if the output is the
input of another program such as the line printer daemon !pr (1). To gain efficiency, the Pascal
system "buffers" the output characters (i.e. it saves them in memory until the buffer is full and
then emits the entire buffer in one system interaction.) However, to allow interactive prompt­
ing to work as in the example given above, this prompt must be printed before the Pascal sys­
tem waits for a response. For this reason, Pascal normally prints all the output which has been
generated for the file output whenever

1) A wrireln occurs, or

2) The program reads from the terminal, or

3) The procedure message or flush is called.

Thus, in the code sequence

for i :- 1 to S do begin
write{i: 2);
Compute a lot with no output

enci;
writein

the output integers wHl not print until the writetn occurs. The delay can be somewhat discon­
certing, and you should be aware that it will occur. By setting the b option to 0 before the pro­
&r:im statement by inserting a comment of the form

(•SbO•)

we can cause output to be completely unbuffered, with a corresponding horrendous degradation
in program efficiency. Option control in comments is discussed in section 5.

- 33 •

4.S. Files, reset, and rewrite
It is possible to use extended forms of the built-in functions reset and rewrite to get more

general associations of UNIX file names with Pascal file variables. When a file other than input
or output is to be read or written, then the reading or writing must be preceded by a reset or
rewrite call. In general, if the Pascal file variable has never been used before, there will be no
UNIX filename associated with it. As we saw in section 2.9, by mentioning the file in the pro­
gram statement, we could cause a UNIX file with the same name as the Pascal variable to be
associated with it. If we do not mention a file in the program statement and use it for the first
time with the statement

reset(f)

or

rewrite(f)

then the Pascal system will generate a temporary name of the form •tmp.x' for some character
•x', and associate this UNIX file name name with the Pascal file. The first such generated name
will be 'tmp. l' and the names continue by incrementing their last character through the ASCII
set. The advantage of using such temporary files is that they are automatically removed by the
Pascal system as soon as they become inaccessible. They are not removed, however, if a run­
time error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable we can
give that name in the reset or rewrite call, e.g. we could have associated the Pascal file data with
the file •primes' in our example in section 3.1 by doing:

reset(data, ·primes')

instead of a simple

reset(data)

In this case it is not essential to mention •data' in the program statement, but it is still a good
idea because is serves as an aid to program documentation. The second parameter to reset and
rewrite may be any string value, including a variable. Thus the names of UNIX files to be associ­
ated with Pascal file variables can be read in at run time. Full details on file name/file variable
associations are given in section A.3.

4.6. Arac and arav
Each UNIX process receives a variable length sequence of arguments each of which is a

variable length character string. The built-in function argc and the built-in procedure argv can
be used to access and process these arguments. The value of the function argc is the number
of arguments to the process. By convention, the arguments are treated as an array, and
indexed from 0 to argc-1, with the zeroth argument being the name of the program being exe­
cuted. The rest of the arguments are those passed to the command on the command line.
Thus, the command

% obj /etc/motd /usr/dlct/words hello

will invoke the program in the file obj with argc having a value of 4. The zeroth element
accessed by argvwill be •obf, the first •/etc/motd', etc.

Pascal does not provide variable size arrays, nor does it allow character strings of varying
length. For this reason, argv is a procedure and has the syntax

argv(i, a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly trun­
cated or blank padded) i'th argument of the current process to the string variable a. The file
manipulation routines reset and rewrite will strip trailing blanks from their optional second

- 34 -

arguments so that this blank padding is not a problem in the usual case where the arguments
are file names. ·

We are now ready to give a Berkeley Pascal program 'kat', based on that given in section
3.1 above, which can be used with the same syntax as the UNIX system program cat (1).

% cat kat.p
program kat (input, output);
var

ch: char;
i: integer;
name: packed array (1..100] of char~

begin
i :- 1;
repeat

if i < argc then begin
argv(i, name);
reset (input, name);
i :- i + 1

end;
while not eof do begin

while not eoln do begin
read(ch);
write(ch)

end;
readln;
writeln

end
until i >- argc

end [kat }.
%

Note that the reset call to the file input here, which is necessary for a clear program, may be
disallowed on other systems. As this program deals mostly with argc and argv and UNIX system
dependent considerations, portability is of little concern.

If this program is in the file 'kat.p', then we can do

% pi kat.p
% mv obj kat
% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

930 statements executed in 0.24 seconds cpu time
% kat
This is a line of text..
This is a line of text.
The next line contains only an end-of-file (an invisible control-d!)
The next line contains only an end-of-file (an invisible control-d!)
287 statements executed in 0.02 seconds cpu time
%

Thus we see that, if it is given arguments, 'kat' will, like car. copy each one in tum. If no
arguments are given, it copies from the standard input. Thus it will work as it did before, with

% kat < primes

now equivalent to

% kat primes

- 35 -

although the mechanisms are quite different in the two cases. Note that if 'kat' is given a bad
file name, for example:

o/o kat xxxxqqq
xxxxqqq: No such file or directory

Error at "kat"+5 near line 11

4 statements executed in 0.01 seconds cpu time
%

it will cive a diacnostic and a post-mortem control flow backtrace for debugging. If we were
going to use 'kat', we might want to translate it differently, e.g.:

% pi -pb kat.p
% mv obj kat

Here we have disabled the post-mortem statistics printing, so as not to get the statistics or the
traceback on error. The b option will cause the system to block buffer the input/output so that
the program will run more efficiently on large files. We could have also specified the t option
to tum off runtime tests if that was felt to be a speed hindrance to the program. Thus we can
try the \ast examples again:

% kat xxx:tqqq
xxxxqqq: No such file or directory
% kat primes

2 3 s 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

The interested reader may wish to try writing a program which accepts command line
arguments like pi does, using argc and argv to process them.

• 36 •

S. Details on the components of the system

S.1. Options

The programs pi and pxp take a number of options. t There is a standard UNIXt convention
for passing options to programs on the command line, and this convention is followed by the
Berkeley Pascal system programs. As we saw in the examples above, option related arguments
consisted of the character ' - ' followed by a single character option name. In fact, it is possible
to place more than one option letter after a single ' - ', thus

% pi -lz foo.p

and

% pi -I -z foo.p

are equivalent.

There are 26 options, one corresponding to each lower case letter. Except for the b
option which takes a single digit value, each option may be set on (enabled) or off (disabled.)
When an on/off valued option appears on the command line of pi or it inverts the default set·
ting of that option. Thus

% pi -I foo.p

enables the listing option l, since it defaults off, while

% pi -t foo.p

disables the run time tests option t, since it defaults on.

In additon to inverting the default settings of pi options on the command line, it is also
possible to control the pi options within the body of the program by using comments of a spe­
cial form illustrated by

{SI-}

Here we see that the opening comment delimiter (which could also be a ' (• ') is immedi­
ately followed by the character ·s·. Afler this 'S\ wil.ich signals the start of the option list, we
can place a sequence of letters and option controls, separated by ',' c.haracters:i. The most basic
actions for options are to set them, thus

(SJ+ Enable listing}

or to clear them

{St-,p- No run-time tests, no post mortem analysis}

Notice that '+' always enables an option and '-' always disables it, no matter what the default
is. Thus • - ' has a different meaning in an option comment than it has on the command line.
As shown in the examples, normal comment text may follow the option list.

tAs pix uses p110 translate Pasal programs. it talces the options o(p1 also. We refer 10 them here. however.
as p1 options.
tUNIX is a Trademark of Bell Laboratories.
*This format was chosen because it is used by Pascal 6000..J.4. In general the options common to both im·
plementations are controlled in the same way so that comment control in options is mostly portable. It is
recommended. however. that only one control be put per comment for maximum portability, as the Pascal
6000-JA implementation will ignore controls after the first one which it does not recognize.

• 37 •

S.2. Pi (and pix)

We now summarize the options of pi. These options may also be specified on the com­
mand line to pix before the name of the file to be translated. Arguments to pix after the name
of the file to be translated are passed to the executed program run by px. With each option we
&ive its default setting, the setting it would have if it appeared on the command line, and a
sample command using the option. Most options are on/off valued, with the b option taking a
single digit value.

Buffering of the file output - b

The b option controls the buffering of the tile output The default is line buffering, with
flushing at each reference to the file input and under certain other circumstances detailed in sec­
tion 5 below. Mentioning b on the command line, e.g.

% pi -b assembler.p

causes standard output to be block buffered, where a block is 512 characters. The b option may
also be controlled in comments. It, unique among the Berkeley Pascal options, takes a single
digit value rather than an on or off setting. A value of 0, e.g.

(SbOJ

causes the tile output to be unbuffered. Any value 2 or greater causes block buffering and is
equivalent to the flag on the command line. The option control comment setting b must pre­
cede the program statement.

Include file llstina i

The i option takes a list of include files, procedure and function names and causes these
portions of the program to be listed while translatingt. All arguments after the -i flag up to
the name of the file being translated, which ends in •.p', are in this list. Typical uses would be

% pix -1 scanner.i compiler.p

to make a listing of the routines in the tile scanner .i, and

% pix -i scanner compiler.p

to make a listing of only the routine scanner. This option is especially useful for conservation­
minded programmers ma.kins partial program listings.

Make a llstina - 1
The l option enables a listing of the program. The I option defaults off. When specified

on the command line, it causes a header line identifying the version of the translator in use and
a line giving the modification time of the tile being translated to appear before the actual pro·
gram listing. The _l option is pushed and popped by the l option at appropriate points in the
program.

Eject new paaes for include flies - n
The n option causes pi to eject a new page in the listing and print a header line at include

tile boundaries, providing automatic pagination control. To have effect, either the 1 or i option
should also be specified, or the input should contain listing control in comments. An example
would be

% pi -ln scan.i c.p

tlnclude files are discussed in section 5.9.

- 38 -

Post-mortem dump - p

The p option defaults on, and causes the runtime system to initiate a post-mortem back­
trace when an error occurs. It also cause px to count statements in the executing program,
enforcing a statement limit to prevent infinite loops. Specifying p on the command line dis­
ables these checks and the ability to give this post-mortem analysis. It does make smaller and
faster programs, however. It is also possible to control the p option in comments. To prevent
the post-mortem backtrace on error, p must be off at the end of the program statement. Thus,
the Pascal cross-reference program was translated with

% pi -pbt pxref .p

Standard Pascal only - s

The s option causes many of the features of the UNIX implementation which are not
found in standard Pascal to be diagnosed as 's' warning errors. This option defaults off and is
enabled when mentioned on the command line. Some of the features which are diagnosed are:
non-standard procedures and functions. extensions to the procedure write, and the padding of
constant strings with blanks. In addition, all letters are mapped to lower case except in strings
and characters so that the case of keywords and identifiers is effectively ignored. The s option
is most useful when a program is to be transported, thus

% pi -s lsitstd.p

Runtime tests - t

The t option controls the generation of tests that subrange variable values are within
bounds at run time. By default these tests are generated. If the t option is specified on the
command line, or in a comment which turns it off. then the tests.are not generated. Thus the
first line of a program to run without tests mi&ht be

(St- No runtime tests}

Disabling runtime tests also causes assert statements to be treated as comments. t

Card image, 72 column input - u
Turning the u option on. either on the command line or in a comment causes the input to

be treated as card images with sequence numbers and truncated to 72 columns. Thus

% pix -u cards.p

Suppress warnina diagnostics - w

The w option. which defaults on. allows the translator to print a number of warnings
about inconsistencies it finds in the input program. Turning this option off with a comment of
the form

[Sw-}

or on the command liae

% pi -w tryme. p

suppresses these usually useful diagnostics.

tsee section A. I for a description of usen statements.

• 39.

Generate counters for an e:ncution profile - z

The z option, which defaults off, enables the production of execution profiles. By specify­
ing z on the command line, i.e.

% pi -z foo.p

or by enabling it in a comment before the program statement we cause pi to insert operations in
the interpreter code to count the number of times each statement was executed. An example
of using pxp was given in section 2.6; its options are described in section 5.5.

5.3. Px
The first argument to px is the name of the file containing the program to be interpreted.

If no arguments are given, then the file obj is executed. If more arguments are given, they are
available to the Pascal program by using the built-ins argc and argv as described in section 4.6.

Px may also be invoked automatically. In this case, whenever a Pascal object file name is
given as a command, the command will be executed with px prepended to it; that is

% obj primes

will be converted to read

% px obj primes

5.4. Pxp

Pxp takes, on its command line, a list of options followed by the program file name, which
must end in '.p' as it must for pi and pix. pxp will produce an execution profile if any of the z t
or c options are specified on the command line. If none of these options are specified, then p."'Cp
functions as a program reformatter. See section S.5 for more details.

It is important to note that only the z option of pxp, and the n, u, and w, options, which
are common to pi and pxp can be controlled in comments. All other options must be specified
on the command line to have any eff'ect.

The following options are relevant to profiling with pxp:

Include the bodies of all routines in the profile - a

Pxp normally suppresses printing the bodies of routines which were never executed, to
make the profile more compact. This option forces all routine bodies to be printed.

Extract profile data from the file core - c

This option causes pxp to extract the data from the file core in the current directory. This
is used in debugging the Pascal system, and should not normally be needed. When an abnor­
mal termination occurs in px it writes the data to the file pmon.ouL The z option enables
profiling with data from this file. ·

Suppress declaration parts from a prolile - d

Normally a profile includes declaration parts. Specifying d on the command line
suppresses declaration parts.

Eliminate include directives - e
Normally, pxp preserves include directives to the output when reformatting a program. as

though they were comments. Specifying -e causes the contents of the specified files to be
·reformatted into the output stream instead. This is an easy way to eliminate include directives.
e.g. before transporting a program.

- 40.

Fully parenthesize expressions - f

Normally pxp prints expressions with the minimal parenthesization necessary to preserve
the structure of the input. This option c:auses pxp to fully parenthesize expressions. Thus the
statement which prints as

d :- a + b mod c I e

with minimal parenthesization, the default, will print as

d :- a + ((b mod c) I e)

with the f option specified on the command line.

Left justify all procedures and functions - j

Normally, each procedure and function body is indented to reflect its static nesting depth.
This option prevents this nesting and can be used if the indented output would be too wide.

Print a table summarizing procedure and function calls - t

The t option causes pxp to print a table summarizing the number of calls to each pro­
cedure and function in the program. It may be specified in combination with the z option, or
separately.

Enable and control the profile - z

The z profile option is very similar to the 1 listing control option of pi. If z is specified on
the command line, then all arguments up to the source file argument which ends in '.p' are
taken to be the names of procedures and functions or include files which are to be profiled. If
this list is null, then the whole file is to be profiled. A typical command for extracting a profile
of part of a large program would be

% pxp -z test parser.I compiler.p

This specifies that profiles of the routines in the file parser.i and the routine tesr are to be made.

5.5. Formatting programs using pxp

The program pxp can be used to reformat programs, by using a command of the form

% pxp dirty.p > clean.p

Note that since the shell creates the output file 'ctean.p' before pxp executes, so 'clean.p' and
'dirty.p' must not be the same file.

Pxp automatically paragraphs the program, performing housekeeping chores such as com­
ment alignment, and treating blank lines, tines containing exactly one blank and lines contain­
ing only a form-feed character as though they were comments, preserving their vertical spacing
effect in the output. Pxp distinguishes between four kinds of comments:

1) Left marginal comments, which begin in the first column of the input line and are
p.laced in the first column of an output Hne.

2} Aligned ro.mrnenrs, which are preceded by no input tokens on the input line. These
are aligned in the output with the running program text.

3) Trailing comments, which are preceded in the input line by a token with no more
than two spaces separating the token from the comment.

4) Right marginal comments, which are preceded in the input line by a token from
which they are separated by at least three spaces or a tab. These are aligned down
the right margin of the output, currently to the first tab stop after the 40th column
from the current "left margin".

Consider the following program.

% cat ct>mments.p
{ This is a left marginal comment. J
program hello(output);

- 41 -

var i : integer; !This is a trailing comment}
j : integer; {This is a right marginal comment)
k: array [1..10] of array [l..10] of integer; !Marginal, but past the margin}
{

An aligned, multi-line comment
which explains what this program is
all about

}
begin
i :- l; {Trailing i comment)
{A left marginal comment)
{An aligned comment}

j :- 1; {Right marginal comment}
k[l] :- l;
writeln(i, j, k[l])
end.

When formatted by pxp the following output is produced.

% pxp comments. p
{ This is a left marginal comment. }

program hello {output);
var

i: integer; {This is a trailing comment}
j: integer;
k: array [1..10] of array [l..10} of integer.

An aligned, multi-line comment
which explains what this program is
all about

}
begin

i :- l; {Trailing i comment}
{A left marginal comment}

{An aligned comment)
j :- 1~
klll :- 1;
write!n(i, j, k[l])

end.
%

{This is a right marginal comment}
{Marginal, but past the margin}

(Right marginal comment}

The following formatting related options· are currently available in pxp. The options r and j
described in the previous section may also be of interest.

Strip comments -s

The s option causes p:i::p to remove all comments from the input text.

• 42 -

Underline keywords - _

A command line argument of the form - _ as in

% pxp - _ dirty.p

can be used to cause pxp to underline all keywords in the output for enhanced readability.

Spedfy indenting unit - (23456789)

The normal unit which pxp uses to indent a structure statement level is 4 spaces. By giv­
ing an argument of the form - d with d a digit, 2 ~ d ~ 9 you can specify that d spaces are to
be used per level instead.

5.6. Pee and carriage control

The UNIX system printer driver does not implement FORTRAN style carriage control. Thus
the function page on UNIX does not output a character '1' in column l of a line, but rather puts
out a form-feed character. For those who wish to use carriage control, the filter pee is available

' which interprets this control. A sample usage is:

% px I pee:

or

% pix prog.p I pee I lpr

for printer copy. Pee is fully described by its manual documentation pee (1).

5.7. Pxref

The cross-reference program pxrefmay be used to make cross-referenced listings of Pascal
programs. To produce a cross-reference of the program in the file 'foo.p' one can execute the
command:

% pxref foo.p

The cross-reference is, unfortunately, not block structured. Full details on pxrefare given in its
manual section pxref (1).

5.8. P2scals

A version of Wirth 's subset Pascal translator pascals is available on UNIX. It was translated
to interpreter code by pi and is invoked by a command of the form:

% pascals prog.p

The program in the file given is translated to interpretive code which is then immediately exe­
cuted. Pascals is thus similar to pix. Only small programs can be handled. Pascals is most
interesting to those wishing to study its error recovery techniques, which are described in
Winh's book Algorithms+ Data Structures - Programs.

5.9. Multi-file prognms

A text inclusion facility is available with Berkeley Pascal. This facility allows the interpo·
lation of source text from other files into the source stream of the translator. It can be used to
divide large programs into more manageable pieces for ease in editing, listing, and maintenance.

The Include facility is based on that of the UNIX C compiler. To trigger it you can place
the character '#' in the first portion of a line and then, after an arbitrary number of blanks or
tabs, the word 'include' followed by a filename enclosed in single •'' or double '"' quotation
marks. The file name may be followed by a semicolon ';' if you wish to treat this as a pseudo­
Pascal statement. The filenames of included files must end in '.i'. An example of the use of
included files in a main program would be:

• 43 •

program compiler(input, output, obj);

#include "globals.i"
#include "scanner.i''
#include "parser.i"
#include "semantics.i"

begin
{ main program J

end.

At the point the include pseudo-statement is encountered in the input, the lines from the
included file are interpolated into the input stream. For the purposes of translate- and run-time
diagnostics and statement numbers in the listings and post~mortem backtraces, the lines in the
included file are numbered from 1. Nested includes are possible up to 10 deep.

See the descriptions of the i and n options of pi in section 5.2 above: these can be used to
control listing when include files are present.

Include control lines are never printed in a listing. If the n option is not set, they are
replaced by a line containing the file name and a ':' character. This is the default setting. If the
n new page option is enabled then the include line is replaced with a banner line similar to the
first line of a listing. This line is placed on a new page in the listing.

When a non-trivial line is encountered in the source text after an include finishes, the
'popped' filename is printed, in the same manner as above.

For the purposes of error diagnostics when not making a listing, the filename will be
printed before each diagnostic if the current filename has changed since the last filename was
printed.

- 44 -

A. Appendix to Wirth's Pascal Report

This section is an appendix to the definition of the Pascal language in Niklaus Wirth's
Pascal Report and, with that Report, precisely defines the Berkeley implementation. This
appendix includes a summary of extensions to the language, gives the ways in which the
undefined specifications were resolved, gives limitations and restrictions of the current imple­
mentation, and lists the added functions and procedures available. It concludes with a list of
differences with the commonly available Pascal 6000-3.4 implementation, and some comments
on standard and portable Pascal.

A.l. Extensions to the language Pascal

This section defines non-standard language constructs available in Berkeley Pascal. The s
standard Pascal option of the translator pi can be used to detect these extensions in programs
which are to be transported.

Strini padding
Berkeley Pascal will pad constant strings with blanks .in expressions and as value parame-

ters to make them as long as is required. The following is a legal Berkeley Pascal program:

pro1ram x(output);
var z : packed array [1 .. 13] of char,
begin

z :- 'red';
writeln(z)

end;

The padded blanks are added on the right. Thus the assignment above is equivalent to:

z :- 'red

which is standard Pascal.

Octal constants, octal and hexadecimal write
Octal constants may be given as a sequence of octal digits followed by the character 'b' or

·a·. The forms

write(a:n oct)

and

write (a:n hex)

cause the internal representation of expression a. which must be Boolean, character, integer,
pointer, or a user-de.fined enumerated type, to be written in octal or hexadecimal respectively.

Assert statement .
An assert statement causes a Boolean expression to be evaluated each time the statement

is executed. A runtime error results if any of the expressions evaluates to be false. The assert
statement is treated as a comment if run-time tests are disabled. The syntax for assert is:

assert < expr >

A.2. Resolution of the undefined specifications

File name - file variable associations

Each Pascal file variable is associated with a named UNIXt file. Except for input and out­
put, which are exceptions to some of the rules, a name can become associated with a file in any
of three ways:

1) If a global Pascal file variable appears in the program statement then it is associated
with UNIX file of the same name.

2) If a file was reset or rewritten using the extended two-argument form of reset or
rewrite then the given name is associated.

3) If a file which has never had UNIX name associated is reset or rewritten without
specifying a name via the second argument, then a temporary name of the form
'tmp.x' is associated with the file. Temporary names start with 'tmp.1' and continue
by incrementing the last character in the USASClI ordering. Temporary files are
removed automatically when their scope is exited.

The program statement

The syntax of the program statement is:

program <id> (<file id> ! , <file id > }) ;

The file identifiers (other than input and output) must be declared as variables of file type in the
global declaration part.

The files input and output

The formal parameters input_ and output are associated with the UNIX standard input and
output and have a somewhat special status. The following rules must be noted:

1) The program heading must contains the formal parameter output. If input is used,
explicitly or implicitly, then it must also be declared here.

2) Unlike all other files, the Pascal files input and output must not be defined in a
declaration, as their declaration is automatically:

Tar input, output: text

3) The procedure reset may be used on input. If no UNIX file name has ever been asso­
ciated with input, and no file name is given, then an attempt will be made to 'rewind'
input. If this fails, a run time error will occur. Rewrite calls to output act as for any
other file, except that output initially has no associated file. This means that a simple

rewrite (output)

associates a temporary name with output.

Details for files

If a file other than input is to be read, then reading must be initiated by a call to the pro­
cedure reset which causes tbe Pascal system to attempt to open the associated UNIX file for read­
ing. If tbis fails, then a runtime error occurs. Writing of a file other than 1Jutput must be ini­
tiated by a rewrite call, which causes the Pascal system to create the associated UNIX file and to
then open the file for writing only.

tUNIX is a Trademark of Bell Laboratories.

• 46 -

Buffering

The buffering for ourpur is determined by the value of the b option at the end of the pro­
gram statement. If it has its default value 1, then output is buffered in blocks of up to 512
characters, flushed whenever a writeln occurs and at each reference to the file input. If it has
the value 0, output is unbuffered. Any value of 2 or more gives block buffering without line or
input reference flushing. All other output files are always buffered in blocks of 512 characters.
All ()Utput buffers are flushed when the files are closed at scope exit, whenever the procedure
message is called, and can be flushed using the built-in procedure flush.

An important point for an interactive implementation is the definition of 'inputj'. If input
is a teletype, and the Pascal system reads a character at the beginning of execution to define
'inputf ', then no prompt could be printed by the program before the user is required to type
some input. For this reason, 'inputf' is not defined by the system until its definition is needed,
reading from a file occurring only when necessary.

The character set

Seven bit USASCII is the character set used on UNIX. The standard Pascal symbols 'and',
'or', 'not','<-','>-','<>', and the uparrow T (for pointer qualification) are recognized.t
Less portable are the synonyms tilde ·-· for not, •&'for and, and f for or.

Upper and lower case are considered distinct. Keywords and built-in procedure and func­
tion names are composed of ail lower case letters. Thus the identifiers GOTO and GOto are
distinct both from each other and from the keyword goto. The standard type 'boolean' is also
available as 'Boolean'.

Character strings and constants may be delimited by the character "' or by the character
'#'; the latter is sometimes convenient when programs are to be transported. Note that the '#'
character has special meaning when it is the first character on a line - see Multi-file programs
below.

The standard types

The standard type integer is conceptually defined as

type integer - minint .. maxint;

Integer is implemented with 32 bit twos complement arithmetic. Predefined constants of type
integer are:

const maxint - 2147483647; minint - -2147483648;

The standard type char is conceptually defined as

type char - minchar .. maxchar;

Built-in character constants are 'minchar' and 'maxchar', 'bell' and 'tab'; ord(minchar) - 0,
ord(maxchar) - 127.

The type real is implemented using 64 bit floating point arithmetic. The floating point
arithmetic is done in 'rounded' mode, and provides approximately 17 digits of precision with
numbers as small as 10 to the negative 38th power and as large as 10 to the 38th power.

Comments

Comments can be delimited by either 'I' and '}' or by '(•' and '•)'. If the character '('
appears in a comment delimited by '{' and •}', a warning diagnostic is printed. A similar warn­
ing will be printed if the sequence '(•' appears in a comment delimited by '(•' and '•)'. The

tOn many terminals and printers. the up arrow is represented as a circumflex •••. These are not distinct
characters. but rather different graphic: representauons of the same internal codes.

• 47.

restriction implied by this warning is not part of standard Pascal, but detects many otherwise
subtle errors.

Option control

Options of the translator may be controlled in two distinct ways. A number of options
may appear on the command line invoking the translator. These options are given as one or
more strings of letters preceded by the character • - ' and cause the default setting of each given
option to be changed. This method of communication of options is expected to predominate
for UNIX. Thus the command

% pl - ls foo.p

translates the file f oo.p with the listing option enabled (as it normally is off), and with only
standard Pascal features available.

If more control over the portions of the program where options are enabled is required,
then option control in comments can and should be used. The format for option control in
comments is identical to that used in Pascal 6000-3.4. One places the character 'S' as the first
character of the comment and follows it by a comma separated list of directives. Thus an
equivalent to the command line example given above would be:

{Sl+,s+ listing on1 standard Pascal}

as the first line of the program. The 'l' option is more appropriately specified on the command
line, since it is extremely unlikely in an interactive environment that one wants a listing of the
program each time it is translated.

Directives consist of a letter designating the option, followed either by a •+• to tum the
option on, or by a·-· to tum the option off. The b option takes a single digit instead of a'+'
or·-·.

Notes on the listings
The first page of a listing includes a banner line indicating the version and date of genera·

tion of pi. It also includes the UNlX path name supplied for the source file and the date of last
modification of that file.

Within the body of the listing, lines are numbered consecutively and correspond to the
line numbers for the editor. Currently, two special kinds of lines may be used to format the
listing: a line consisting of a f orm·f eed character, control· I, which causes a page eject in the list·
ing, and a line with no characters which causes the line number to be suppressed in the listing,
creating a truly blank line. These lines thus corre5pond to 'eject' and 'space' macros found in
many assemblers. Non-printing characters are printed as the character '?' in the listing. t

Multi-tile programs
It is also possible to prepare programs whose parts are placed in more than one file. The

files other than the main one are called include files and have names ending with • .i'. The con·
tents of an lndude file are referenced through a pseudo-statement of the form:

#include •file.i•

The •#' character must be the first character on the line. The file name may be delimited with
••• or "1 characters. Nested includes are possible up to 10 deep. More details are given in sec·
tions S.9 and S.10.

tThe character 1enerated by a control·i indenlS to the next 'tab stop'. Tab stops are set every 8 columns in
c:-11x. Tabs thus pro\'ide a quick way of indentin& in the pro1ram.

- 48 -

The standard procedure write

If no minimum field length parameter is specified for a write, the following default values
are assumed: ·

integer 10
real 22
Boolean 10
char 1
string length of the string
oct 11
hex 8

The end of each line in a text file should be explicitly indicated by 'writeln (f) ', where
'writeln{output)' may be written simply as 'writeln'. For UNIX, the built-in function 'page([)'
puts a single ASCII form-feed character on the output file. For programs which are to be tran­
sported the filter pee can be used to interpret carriage control, as UNIX does not normally do so.

A.3. Restrictions and limitations

Files

Files cannot be members of files or members of dynamically allocated structures.

Arrays, sets and strings

The calculations involving array subscripts and set elements are done with 16 bit arith­
metic. This restricts the types over which arrays and sets may be defined. The lower bound of
such a range must be greater than or equal to -32768, and the upper bound less than 32768.
In particular, strings may have any length from 1 to 32767 characters, and sets may contain no
more than 32767 elements.

Line and symbol length

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be dis­
tim:t if they differ in any single position over their entire length. There is a limit, however, on
the maximum input line length. This is quite generous however, currently exceeding 160 char­
acters.

Procedure and function nesting and program size

At most 20 levels of procedure and function nesting are allowed. There is no fundamen­
tal. translator de.fined limit on the size of the program which can be translated. The ultimate
lirrut is supplied by the hardware and thus, on the PDP-11, by the 16 bit address space. If one
runs up against the •ran out of memory' diagnostic the program may yet translate if smaller
procedures are used, as a lot of space is freed by the translator at the completion of each pro­
cedure or function in the current implementation.

On the VAX-11, there is an implementation defined limit of 32000 bytes in a stack frame
and in a variable allocated by new. This restriction will not exist in the compiled version of
Pascal. which is currently under development.

Overflow

There is currently no checking for overflow on arithmetic operations at run-time on the
PDP-11. Overflow checking is performed on the v AX· 11 by the hardware.

• 49 -

A.4. Added types, operators, procedures and functions

Additional predefined types

The type a/fa is predefined as:

type alfa - packed array [1..10 1 of char

The type intset is predefined as:

type in tset - set of 0 .. 127

In most cases the context of an expression involving a constant set allows the translator to
determine the type of the set, even though the constant set itself may not uniquely determine
this type. In the cases where it is not possible to determine the type of the set from local con­
text, the expression type defaults to a set over the entire base type unless the base type is
integert. In the latter case the type defaults to the current binding of inrset, which must be
"type set of (a subrange of) integer" at that point.

Note that if intset is redefined via:

type intset - set of 0 .. 58~

then the default integer set is the implicit intser of Pascal 6000- 3.4

Additional predefined operators

The relationals '<' and '>' of proper set inclusion are available. With a and b sets, note
that

(not (a< b)) <>(a>- b)

As an example consider the sets a - [0,2] and b - [l]. The only relation true between these
sets is • < > '.

Non-standard procedures

argv(i,a)

date(a)

flush(f)

halt

line limit (f~xH

message(x, .. .)

where i is an integer and a is a string variable assigns the (possibly
truncated or blank padded) i'th argument of the invocation of the
current UNIX process to the variable a. The range of valid i is 0 to
argc-1.
assigns the current date to the alfa variable a in the format 'dd
mmm yy ', where 'mmm' is the first three characters of the month,
i.e. 'Apr'.

writes the output buffered for Pascal file f into the associated UNIX

file.
terminates the execution of the program with a control flow back­
trace.
with fa textfile and x an integer expression causes the program to
be abnormally terminated if more than x lines are written on file f
If xis less than 0 then no limit is imposed.

causes the parameters, which have the format of those to the built­
in procedure write, to be written unbuffered on the diagnostic unit
2, almost always the user's terminal.

tThe current translator makes a special case of the construct 'if ... in [...)' and enforces only the more lax
restriction on 16 bit arithmetic given above in this case.
icurrently ignored by p:c.

null

remove(a)

reset(f,a)

rewrite (f ,a)

stlimit(i)

time(a)

Non-standard functions

argc

card(x)

clock

expo(x)

random{x)

seed(i)

sysclock

undefined(x)

wallclock

. so.

a procedure of no arguments which does absolutely nothing. It is
useful as a place holder, and is generated by pxp in place of the
invisible empty statement.

where a is a string causes the UNIX file whose name is a, with trail­
ing blanks eliminated, to be removed.

where a is a string causes the file whose name is a (with blanks
trimmed) to be associated with fin addition to the normal function
of reset.

is analogous to 'reset' abQve.

where i is an integer sets the statement limit to be i statements.
Specifying the p option to pc disables statement limit counting.

causes the current time in the form ' bh:mm:ss ' to be assigned to
the alf a variable a. · ·

returns the count of arguments when the Pascal program was
invoked. Argc is always at least 1.

returns the cardinality of the set x, i.e. the number of elements con­
tained in the set.

returns an integer which is the number of central processor mil­
liseconds of user time used by this process.

yields the integer valued exponent of the floating-point represen.ta­
tion of ~ expo (x) - entier(log2 (abs (x))).

where x is a real parameter, evaluated but otherwise ignored,
invokes a linear congruential random number generator. Successive
seeds are generated as (seed•a + c) mod m and the new random
number is a normalization of the seed to the range 0.0 to 1.0; a is
62605, c is 113218009, and m is 536870912. The initial seed is
7774755.
where i is an integer sets the random number generator seed to i
and returns the previous seed. Thus seed(seed(i)) has no effect
except to yield value i.

an integer function of no arguments returns the number of central
processor milliseconds of system time used by this process.

a Boolean function. Its argument is a real number and it always
returns false.

an integer function of no arguments returns the time in seconds
since 00:00:00 GMT January l, 1970.

A.S. Remarks on standard and portable Pascal

It is occasionally desirable to prepare Pascal programs which will be acceptable at other
Pascal installations. While certain system dependencies are bound to creep in, judicious design
and programming practice can usually eliminate most of the non-portable usages. Wirth's Pas­
cal Report concludes with a standard for implementation and program exchange.

In particular, the following differences may cause trouble when attempting to transport
programs between this implementation and Pascal 6000-3.4. Using the s translator option may
serve to indicate many problem areas. t

tThe s option does not. however. check that identifiers differ in the first 8 c:hara.c:ters. Pi also does not c:hec:k
the semantics of packed.

- 51 -

Features not available in Berkeley Pascal

Formal parameters which are procedure or function.

Segmented files and associated functions and procedures.

The function rrunc with two arguments.

Arrays whose indices exceed the capacity of 16 bit arithmetic.

Features available in Berkeley Pascal but not in Pascal 6000-3.4

The procedures reset and rewrite with file names.

The functions argc, seed, sysclock, and wallclock.

The procedures argv, flush, and remove.

Message with arguments other than character strings.

Write with keyword hex.

The assert statement.

Other problem areas

Sets and strings are more general in Berkeley Pascal; see the restrictions given in the
Jensen-Wirth User Manual for details on the 6000-3.4 restrictions.

The character set differences may cause problems, especially the use of the function chr,
characters as arguments to ord, and comparisons of characters, since the character set ordering
differs between the two machines.

The Pascal 6000-3.4 compiler uses a less strict notion of type equivalence. In Berkeley
Pascal, types are considered identical only if they are represented by the same type identifier.
Thus, in particular, unnamed types are unique to the variables/fields declared with them.

Pascal 6000-3.4 doesn't ~ecognize our option flags, so it is wise to put the control of
Berkeley Pascal options to the end of option lists or, better yet, restrict the option list length to
one.

For Pascal 6000-3.4 the ordering of files in the program statement has significance. It is
desirable to place input and output as the first two files in the program statement.

Network System Manual

Erit Schmidt

Introduction

This documentation should be re:id by people responsible for maintaininc the network (and the
systems1t runs on). It is divided into the (ollowing sections:

Maintaining the Network
Setting up lhe Network
Future Plans
for Berkeley
Buis

Besides the commands described in the net introduction.. there are a number of network­
internal commands and statistics files.

Maintafoin; the Network

1. Check the network:

a) See if the network ~emons arc running with the comm.ind

" ps ax I crep net

Jr not runnina, see below.

b) Check the network queue to see how long commands have been waiting to be sent.

2. To restart the network daemons. try

a) See if they .ire runnin&. as above.

b) If so, there shou1" be two aaet Ja\.lnon lh"CC~es ..,er r.1:1c.1inc conn~c:tir.. n- - · kill
-9" the child named "netdaemon" and the p:irent .. netstart" will St.'lrt a new one.

c) If there are ~o "netstart's" or .. netdaemon's", executing

ti /usr/net/bin/st.irt

will start up all the daemons on your machine.

d) To have two .. netdaemons .. pointinc to the same machine is to invite dis:ister.
What h:ippens is that a few small requests cet throu£h, and then the error rate goes
up by a factor of a hundred. The first thin& to do when you see thili is to check the
number of net daemons.

(AD this must be done as super-user).

3. There are files /usr/net/plogfile? with a log ror each directl)·-connected machine. Exam­
ple:

t)(t tail /usr/net/plosfitey

win tell you in a cryptic form what the network has done on the Cory m:ichine. This is :s
aood file to inspect to see i(transmissions are failin;. etc. It is r~doible only by
.. scbmidl" Md "root .. (and .. Slafl" .. on Cory).

-2·

Basically. ••sends" begin ···s·· and end ••..,-. Jr a send rails ror some reason, ... F .. is
printed instead or .. ,.... ...R .. is printed when I re1:eive bqins. "RCV .. is entered
when the command is received and exeaned. ... p .. indic:ues a ~ throu;h.

The ftle /usr/net/netstat?. one per direaly-<'Onnected machine. have various statistics
about the us:iae or the network. and the system load •

. 4. The overloadina on various machines is ousins hi;h error races. U' these rates persist.
the network =n overload to the point where the queues are immense and nothing gets
through. The only thine that can be done at this point is to remove the fiJes (usin1 mmm
u super-user) and adjust the deby limes in the •midllc' •.

5. If free space is a sc:aree commodity, trunote logfile and plosifite?, and check
/usr/net/send and /usr/nct/rcv. IC 1here are any tiles there which are quite old, use your
judaement to remove them.

'· Net news should be proYided periodic:a.IJy (usually in '/usr/help' or '/usr/news') ..

Seufn, up the Network

l. Hardware
For another machiae to join the network. there rrust be some hardware link. such

as tty lines, special character-oriented hardware. or OMA lines between the two machines.
The software does not require the link to be reiiable or fast. The best way to start is with
slow-speed ITY lines (say 1200 baud) which demonstrate the network's use(ulness at low
cost. The hi1hest transfer speed on a 1TY link is about one·halr the link speed {.it best),
because or proccssina time, the l - 4 character expansion from I bits to 6, and the
responses.

2. Software
There is a subdirectory .. sre/net .. with all the ne1work source files and a .. makefile".

The file "READ ME" has inrorm:ation about the different condilion:al compihnion option
avail:able, and tabie entries which must be made in the '.c' fiJes. ·

Assumina the options have been spcc:ilicd in the makefile. the command

~ m:ake an
wm make all the necessary files. Then the command

~make install DESTOIR.•

wm install the user comm:ands and service prosrams. The dire1:tories are specified as
options in the makefile. Fi~ly,

~make dean

removes all the • .o • and uecub.ble &Jes.
There are aJso other little-used pro1rams. made by '"m:ake othernet••. Included are

programs to send and r"eive packets and fUe:s. and a procram to simul•ue TTY lines usina
pipes. It should not be necessary to run these.

l. Directories and Files.
The central directory Is '/usr/net'. which h~ subdirectories 'bin'. 'rev'. and 'send?',

where the •1• represents the one-letter codes of the directJy-connected machines. For
YDrious re:isons, the support procrams (n~r1/an10n, n~rJJart. nrmail. 111wri1~. etc.> must be in
•bift'. The user proar:ims may be anywhere but the pathn:ames in •p;;uhs.h• must be reset
c:orrectJy.

The lo1files are '1ocf'Je' and 'plogtilc? .. one ror e:ach direaJy-connected machine. If
llOC present in 1 /usr/ne1'. they are noc createc1 ·

The file 'bin/start' should st:in up all the net duemons on the current m~chine. This

Ille is normall)· heaned ~ '/etc/re'. The file. 'initfile' has a rorm;:it similar to •.netrc' but
is read b)· the net d.:iemons when they are started. It has the network device names,
~and various luning par.ameters. The complete list is in the source ftle ·~ub.c:'. It is
aenerally possible to c:hanie almost anythin& about the network through the 'initfile • and
restartin& the daemon.

The proaram 'bin/netstart' is a simple program to start up a net daemon and if it ' . should :ibon for any r=son. rest:in iL

There must be an llCC'Ount 'network', which exeeutc:s all responses and the free com­
mands. Its login directory should be '/use/net/network' and tor.in shell should be 'nsh' in
that directory. The list of free commands can be chanced in 'nSh.c:'.

· The 'cat' command must be in '/bin' (used by n~ttp).
At Berkeley, we follow the convention that the 1TY special files are named

•/dev/net-X', where 'X' is the remote machine name.

·The mail program should be modified to recognize remote names and to fork a
.. sendmail .. command. It possible, a • - r' option should be added (see mmail.c:)

Future Pl:ins
It is important to understand the scope of this network~ what it is and wh:it it is noL

Since it is .. batched'\ there are a lot of thinp it cannot do. Our ex1;~rience is lh:it remote file
copying. ~iling and printing between machines are adeQuate ror our immediate needs.

Jn the future. we wm concentrate on improvin1 the hardware and speedin& up the net·
wor"' rather than major user-interface changes.

This is I list Of the things that have been planned for the future for th~ network.
1. Use Bill Joy's retrofit library to simulate the version .7 system calls. This would reduce

the dependence on conditional compilation for V6 code.

2. The file len&lh restriction is a m:ijor inconvenience. One way to :i11ow large files would be
to send larse files (over 100,000 chars) only when there are no sm3lfcr ones. This would
be non·preemptive, but might be workable. Another way would be lO have two hardware
links, and two sets or daemons, one for large files and one for sm31l ones.

3. 1!ob Fabry has suggested generalizing the machine name to be user-definable as a
login/machine pair, '° make it easier for people with multiple accountS on multiple
m:u.hine.s.

4. It is possible to share binaries between alt the similar machine confisur:itions (e.i;. the
Comp. Center machines>. This involves Hpntching" the loal machine in the binary.

S. Ed Gould suuested that the notion or .. default" machine was too restrictive- th:it an
appropriate defauJt for, say, "oetlpr" WU I nearby machine wilh I quality printer,
whereas the default for ~t" should be the Jogic:il most useful machine.

6. Security - J have just ~ntly buHet-proofed the network so •root• commands are very
restricted. However. the presence or passwords in the ·.netre' files poses a hazard to other
machines when one machine is broken into. As long as the root password is not in a file.
the root is sate. I am fairly convinced there is no way usin& encryption lO handle the
• .netrc' files. The introductory documentation i.s very explicit about the thre:it these p:iss­
words pose.

7. Certain other more exotic requests are unlikely to &et done until things chan;e:

a) Havinc the same user·id's ACrOSS m:>.ehines.
b) Addins an option ID .. ne1•• to w:iit until :i response has been received.

-··
c) There should be a net status com~nd which would ;ive thinp like lo:id aver:iges,

the number or users. etc.

d) The notion or a loc:4l1 queue is not Jenera.I enou;h- n~tq sbould print out relev:int
queues on other machines.

e) Files on intermediate m:icbines can't be nnrm"ed . .

· For Berkeley

1. The root-ownership or 1wtlfll' queue tiles is a problem. No easy solution to this problem is
known at this time.

2. There are hooks in ror the 1·. INGRES. and Q machines. and I would love to have them
1dded to the network.

l. I'd like to see the ronowin& thincs happen:

Bucs

A driver (or the network links to avoid character processin&. which would make 9600-
baud practical

On the Computer Center machines:

I) The mail program should be modified as it was on Cory and VAX 10 handle remote
names (this is hi&h priority}.

b) A high speed link through the Bussiplexor.

c) The remote 11o.ff command should be modified to work on Cory and VAX.

It has also been suuested that aJJ the mail progr.ims look at a file to see iI they should
Forward this message to an account on another machine. This would allow people to get
all their mail on one machine.

1. Extra files bqjnning with 'df _. • are created in the •send?• directories. with no control files
c·cr ... '). They should be removed periodically. nrtrm will remove them.

2. Nrtcp creates files with filen:imes u Jo&in names. They witJ never be sent and subsequent
requests "ill be blocked. Their net queue files should be re~oved.

3. In 1eneral, some requests can block the queue until removed. Shorter requests will gel
thrOl'Jtt. and lon;fl': o,,es will not. Acain, their n.-• queue files should be removed.

CREATING AND MAINTAINING A DATABASE USING INGRES

by
Robert Epstein

Memorandum tlo. ERL - M77-71
December 16, 1977

Electronics Research Laboratory
College of Engineering

University of California, Berkeley
94720

DA.TA BASE INGRES Page 1

CREATING AND MAINTAINING A DATABASE USING INGRES

1. INTRODUCTION

In this paper we dese;ribe how to create, structure and maintain
relations in INGRES. It is assumed that the reader is familiar
with INGRES and understands QUEL, the INGRES query language. It
is s tr on gl y suggested that the document "A Tu tori al on ING RES 11

(ERL M77/25) be read first.

This paper is divided into six see;tions

1. Introduction

2. Creating a Relation

3. Using Copy

4 . Storage Structures

5. See;ondary Indices

6. Recovery and Data Update

To creat€' a new data base you must t~ a valid INGRES user and
ha•.:e "create data base" permission. T!:ese permissions are grant­
ed by the "ingres" superuser. If you pass those two requirements
you can create a data base using the command to the Unix shell:

3 t".:reatdb mydata

where "mydc-ta" is the nC1me of the d;;t.a base. You become the
"data base administrator" (DBA) for rnydata. As the DBA you have
certain special powers.

1. Any relation created by you can be ae;e;essed by anyone else
using "mydata". If any other user- creates a relation it is
strictly private and cannot be accessed by the DBA or any
other user.

2. You can use the 11 -u" flag in ingres and printr. This enables
you to use ingres on 11 mydata 11 with someone else's id. Refer
to the INGRES reference manual under sections ingres(unix)
and u~ers(files) for details.

3. You can r·un sysmod, restore and purge on "mydata".

4. The data hase by default is created to allow for multiple
concurrent users. If only one user will ever use the data
base at a time, the data base administrator can turn off the
e:oncurrene;y control. Refer to e;r-eatdb (uni x) in the ING RES
reference manual.

DATA BASE INGRES Page 2

Once a data base has been created you should immediately run

~ sy srnod myda ta

This program will convert the system :elations to their "best"
structure for use in INGRES. Sysmod will be explained further in
section 4.

As a OBA or as a user you can create and structure new relations
in any data base to which you have access. The remainder of this
paper describes how this is done.

D A BASE INGRES

2. CREATING NEW RELATIONS IN INGRES

There are two ways to create new relatio~s in INGRES.

create
retrieve into

Page 3

"Retrieve. into" is used to form a new relation from one or more
existing relations. "Create" is used to create a new relation
with no tuples in it.

example 1:

range of p is parts
range of s is supply
retrieve into newsupply(

number = s.snum,
p.pname,
s.shipdate)

where s.pnum = p.pnum

example 2:

create newsupply(
number = i2,
pname = e:.20,
shipdate = c8)

In example 1 INGRES creates a new relation called "newsupply",
computing what the format of each domai~ should be. The query is
then run and newsupply is modified to "cheapsort". (This will be
covered in more detail in section 4.)

In example 2 "newsupply" is created an~ the name and format for
each domain is given. The format types ~hie:.h are a:lowed are:

i1 1 byte integer
'i2 2 II II

i4 4 " "
f 4 4 byte floating point n.umber
f 8 8 II If II If

c 1 ' c2 ' •• ' c25 5 , '2' •• '25 5 byte character

In example 2, the width of an individual tuple is 30 bytes (2 +
20 + 8), and the relation has three do=ains. Beware ~hat INGRES
ha~ limits. A relation cannot have ~ore than 49 domains and the
tuple width cannot exceed 498 bytes.

UNIX allocates space on a disk in u:'li ts of 512 byte pages.
INGRES gets a performance advantage ~Y :oing 1/0 in one block un­
its. Therefore relations are divide1 into 512 byte pages.
Il~GRES never splits a tuple between tw:::> pages. Thus some space
can be wasted. There is an overhead of 12 bytes per page plus 2
bytes for every tuple on the page. The formulas are:

Dt'l.I'l BASE INGRES

number tuples per page = 500/(tuple width + 2)

wasted space = 500 - number of tuples per page
*(tuple width +2)

for our example there are

22 = 500/(20 + 2)

16 = 5CO - 22 * (20 + 2)

Page 4

22 tuples per page and 16 bytes wasted per page. These computa­
tions are valid only for uncompressed relations. We will return
to this subject in section 4 when we discuss compression.

If you forget a domain name or format, use the "help" command.
For example if you gave the INGRES command:

help newsupply

the following would be printed:

Relation:
OwnE:r: •
Tuple width:
Saved until:
Number of tuples:
Storage structure:
F'.elation type:

attribute name

nurr.ber
µname
shipdate

newsupply
bob
30
Thu Nov 10 16:17:06 1977
0
paged heap
user relation

type length keyno.

i
c
C;

2
20

8

l~otie:e that every relation has an ex;>iration date. This is set
to be one week from the time when it was created. The 11 save"
command can be used to save the relation longer. See
nsave(quel)" and 11 purge(unix)" in the INGRES reference manual.

DATA BASE INGRES Page 5

3. COPYING DATA TO AND FROM INGRES

Once a relation is created, there are two mechanisms for insert­
ing new data:

append command
copy command

Append is used to insert tuples one at a time, or for filling one
relation from other relations.

Copy is used for copying data from a max file into a relation.
It is used for copying data from another program, or for copying
data from another system. It is also the most convenient way to
copy any data larger than a few tuples.

Let's begin by creating a simple relation and loading data into
it.

Example:

create donation (name = c10, amount = f4, ext = i2)

Now suppose we have two people to enter. The simplest procedure
i.s probably to run the two queries ir. INGRES using the append
command.

append to donation (name="frank'',a=ount = 5,ext = 204)

~ppend to donation (name="harry 11 ,ext = 209,amount = 4.50)

Note that the order in which the do~ains are given
matter. INGRES matches by recognizing attribute names
.1ot care in what order ntt:""ibutes are listed. Here. is
relation "donation" looks like now:

donation relation

I name I amount I ext
I I ·----------------------------· I frank 15.000 1204
I harry 14.500 1209
I I ·----------------------------·

does not
and does
what t.he

We now have two people entered into the donation relation. Sup­
pose we had fifty more to enter. Using the append command is far
too tedious since so much typing is involved for each tuple. The
copy command will better suit our purpcses.

Copy can take data from a r~gular Unix .file in a variety of for­
mats and append it to a relation. To use the copy command first
create a Unix file (typically using "ec") containing the data.

For example, let's put five new names 1~ a file using the editor.

DATA BASE

% ed
a
bill,3.50,302
sam,10.00,410
susan,, 100
sally,.5,305
george,4.00,302

w newdom
68

INGRES Page 6

The format of the above file is a name followed by a comma, fol­
lowed by the amount, then a comma, then the extension, and final­
ly a newline. Null entries, for example the amount for susan,
are perfectly legal and default to zero for numerical domains and
blanks for character domains.

To use copy we enter INGRES and give the copy command.

copy donation (name = co, amount = co, ext = cO)
from "/mnt/bob/newdom"

Here is how the copy command works:

copy relname (list of what to copy) from "full pathname"

In the case above we wrote:

copy donation (••.) from 11 /mnt/b=ib/newdom''

Although amount
ir.g point) and
as characters.
cepts:

and ext are stored in the relation as fl+ (float­
i2 (intecser), in the IJl"'!ix file they were entered
In specifying the format of the domain, copy a(;-

domain = format

where domain is the domain name and the format in the UNIX file
is en e of

i 1 '
f4'
C; 1 '
co

i2' i4
f 8
c2, c3, ... c255

In the example we use

(true binary integer of size 1, 2, or 4)
(true binary float point of size 4 or 8)
(a fixed length character string)
(a variable length character string de­
limited by a co1~a, tab or new line)

name = co, amount = cO, extension = cO

This means that each of the domains was stored in the Unix file
as variable length character strings. Copy takes the first com-

DATA BASE INGRES Page 7

ma, tab, or ne~ line character as the end of the string. This by
far is the most common use of copy when the data is being entered
into a relation for the first time.

Copy can also be used to copy data from a relation· into a Unix
file. For example:

copy donation {name = c10, amount = c10, ext = c5)
into "/mnt/bob/data"

This w~ll cause the following to happen:

1. If the file /mnt/bob/data already exists it will be des­
troyed.

2. !he file is created in mode 600 (read/write by you only)

3. Name will be copied as a 10 character field, immediately fol­
lowed by amount, immediately followed by ext. Amount will be
converted to a character field 10 characters wide. Ext will
be conver.ted to a· character field 5 characters wide.

The file "/mnt/bob/data" would be a stream of characters looking
lH:e this:

frank 5.000 204harry
3.500 302sam

0.000 100sally
4.000 302

4 .500 209bill
10.000 410susan

0.500 3J5george

The output was broken into four lines to make it fit on this
page. In actuality the file is a single line. Another example:

copy (name= co, colon= d1, ext= co, comma= d1
amt= cO, nl = d1) into 11 /:nnt/bob/data"

In this example "cO" is interpreted to rr.~an "use the appropriate
character format". For character domai~s it is the width of the
domain. Numeric domains are converted to characters according to
the INGRES defaults (see ingres(unix)).

The statements:

colon = d1
comma = d1
nl = d1

are used t~ insert one colon, comma, a~d newline into the file.
The format "d1" is interpreted to mean o~e dummy character. When
copyinG into a Unix file, a selected set of characters can be in­
serted into the file using this "dumm:; domain" specification.
Here is what the file 11 /mnt/bob/data'' wo~ld look like:

DATA BASE

frank
harry
bill
sam
susan
sally
george

204,
209 1

302'
. 410 '
100,
305'
302,

5.000
4.500
3.500

10.000
0.000
0.500
4.000

INGRES

If you wanted ·a file with the true bi;iary representation of the
numbers you would use:

copy (name = c10, amount = f4, ext = i2)

Ttis would create a file with the exact copy of each tuple, one
afte: the other. This is frequent 1 y des i r ea bl e for temper a ry
backup purposes and it guarantees that floating point domains
will be exact.

TYPICAL ERRORS

There are 17 different errors that can occur in copy. We will go
through the most common ones.

Suppose you have a file with

bill,3.5,302
sam,10,410,
susan,3, 100

and run the copy command

copy donation (name = co, amount = cO, ext = cO)
from 11 /mnt/bob/datan

You would get the error message

5809: COPY: bad input string for dorr:ain amount. Input was "susan".
There were 2 tuples sucessfully copied from /mnt/bob/data into
donation.

What happened is that line 2 had an extra comma. The first two
tuples were copied correctly. For t!le next tuple, name = ""
(blank), amount= "susan", and ext= 11 3 11 • Since 11 susan 11 is not a
proper floating point numbe~, an error w2s generated and process­
ing was stopped after two tuples.

If you tried to copy the file with a file such as

nane;y,5.0,35000

you would get the error message

5809: COPY: bad input string for do~ain
r;1ere were 0 tuples successfully copiec
donation.

.. Input was "35000".
Jffi /mnt/bob/data into

Here, since ext is an i2 (integer) dor:i;.···', it cannot exceed the
value 32767.

There are numerous other error messages 1 roost of which are self­
e;{planatory.

In addition there are three, non-fatal warnings which may appear
on a copy "from".

If you are copying from a file into a relation which is ISAM or
hash, a count of the number of duplicate tuples will appear, (if
there were any). This will never appear on a "heap" because no
duplicate checking is performed.

INGRES does not allow control characters (such as "bell" etc.) to
be stored. If copy reads any control characters, it converts
them to blanks and repQrts the numbe~ of domains that had control
characters in them.

If you are copying using the co optic~, copy will report if any
character strings were longer than their domains and had to be
truncated.

SPECIAL FEATURES

'fhere are a few special functions that make copy a little
easier to use

Bulk copy

If you ask for:

copy relname () from "file"
or

copy relname () into "file"

copy expands the statement to mean:

copy each domain in its proper order according to its proper
format.

So, if you said

copy donation () into 11 /mnt/bob/donation"

it would be the same as asking for:

copy donation (name= c10, amount= f4, ext= i2)
into "/rant/bob/donation"

DATA BASE INGRES Page 10

This provides a convenient way to copy whole re 1 at ions to and
from INGRES.

2. Dummy Domains

If you are copying data from another computer or program, fre­
quently there will be a portion of data that you will want to ig­
nore. This can be done using the dummy domain specifications dO,
d1, d2 ••• d511. For example

copy rel (dom1 = c5, dummy= d2, dom2 = i4,
dumb = dO) from "/1nnt/me/data 11

The first five characters are put in dom1, the next two charac­
ters are ignored. The next four bytes are an i4 (integer) and go
in dom2, and the remaining delimited string is ignored. The name
given to a dummy specifier is ignored.

As mentioned previously, dummy domains can be used on a copy
"into" a Unix file for inserting special characters. The list of
recognizable names includes:

nl newline
tab tab character
sp space
nul a zero byte
null a zero byte
CO!:Uii8

dash
colon :
lparen (
rparen)

3. Truncation

It is not uncommon to have a mistake occur and need to start
o-.1er. The simplest way to do that is to "truncate" the relation.
This is done by the command:

modify relname to truncated

This has the effect of removing all tuples in.relname, releasing
all disk space, and makin~ relname a heap again. It is the logi­
cal equivalent of a destroy followed by a create (but with a lot
less typing).

Sin~e formatting mistakes are possible with copy, it is not gen­
erally a good idea to copy data into a relation that already has
valid data in it. The best procedure is to create a temporary
relation with the same domains as the Existing relation. Copy
data into the temporary relation and then append it to the real
relation. For example:

DATA BASE INGRES

create tempdom(name:c10,amount:f4,ext=i2)

copy tempdom(name=cO,amount=cO,ext=cO)
from "/mnt/bob/data"

range of td is tempdom
append to donation(td.all)

4. Specifing Delimitors.

r' age •. 1

Sometimes it is desirable to specify what the delimiting charac­
ter should be on a copy "from" a file. This can be done by
specifing:

domain = cOdelim

where "delim" is a valid delimitor taken from the list of recog­
nizable names. This list was summarized on the previous page
under "dummy domains". For example:

copy donation (name = cOnl) from "/mnt/me/data"

will copy names from the file to the relation. Only a new line
will delimit the names so any commas or tabs will be passed along
as part of the name.

When copying "into" a Unix file, the "delim" is actually written
into the file, so on a copy "into" the specification:

copy donation (name = cOnl) into "/mnt/me/file"

will cause "name" to be written followed by a new line character.

DATA BASE INGRES Page 12

4. CHOOSI JG T~~ BEST STORAGE STRUCTURES

We now turn to the issue of efficiency. Once you have created a
relation and inserted your data using either copy or append,
INGRES can process any query on the relation. There are several
things you can do to improve the speed at which INGRES can pro­
cess a query.

INGRES can store a relation in three different internal struc­
tures. These are called "heap 11 , 11 isarr: 11 , and "hash". First we
will briefly describe each structure and then later expand our
discussion.

HEAF

When a relation is first created, it is created as a "heap".
There 3re two important properties about a heap: duplicate tuples
are not removed, and nothing is known ;:bout the location of the
tuples. If you ran the query:

range of d is donation
retrieve Cd.amount) where d.name = "bill"

INGRES would have to re~d every tuple i~ the relati~n looking for
those with name "bill". If the relation is small this isn't a
serious watter. But if the relation is very large, this can take
minutes (or even hours!).

HASH

A relation whose structure is "hash" can give fast access to
searches on certain domains. (Those do=ains are usually referred
to as "keyed donains".) I':'" addition, a "he.shed" rel?tion contai11s
no duplicate tuples. For example, suppose the donation relation
is stored hashed on domain "name". Then the query:

retrieve (d.amount) where d.name = "bill"

will run quickly since INGRES knows ap;:>roximately where on disk
the tuple is stored. If the relation contains only a few tuples
you won't notice the difference between a "heap" and a "hash"
structure. But as the relation becomes larger, the difference in
speeci becomes much more noticeable.

ISAM

An isam structure is one where the relation is sorted on one or
more comains, (also called keyed domains). Duplicates are also
removed on "is am relations". When new tuples are appended they
are placed "approximately" in their so:ted position in the rela­
tion. (The "approximately" will be explained a bit later.)

Suppose donation is isarn on name. To p~ocess the query

DATA BASE INGRES Page 13

retrieve (d.amount) where d.name = "bill"

INGRES will determine where in the sorted order the name "bill"
would be and read only those portions of the relation.

Since the relation is approximately sorted, an isam strue:ture is
also efficient for proe:essing the query:

retrieve Cd.amount) where d.name >= "b" and d.name < "g"

This query would retrieve all names beginning with "b" through
"f". The entire relation would not have to be seare:hed since it
is isam on name.

SPECIFYING THE STORAGE STRUCTURE

Any user created relation can be converted to any storage struc-
tu re using the "modify" command. For example

modify donation to hash on name
or

modify donation to is am on name

or even

modify donation to heap _

PRIMARY AND OVERFLOW PAGES

At this point it is necessary to introduce the e:oncepts of pri­
mary and overflow pages on hash and isam structures. Both hash
and isam are techniques for assigning specific tupl~s to specific
pages of a relation based on the tuple's keyed domains. Thus
each page will contain only a certain specified subset of the re­
lation.

When a new tuple is appended to a hash or isam relation, INGRES
first determines what page it belongs to, and then looks for room
on that page. If there is space then the tuple is placed on that
page. If not, then an "over flow" page is created and the tuple
is placed there.

The overflow page is linked to the original page. The original
page is called the "primary" page. If the overflow page became
full, then INGRES would connect an overflow page to it. We would
then have one primary page linked to an overflow page, linked to
another overflow page. Overflow pages are dynamically added as
needed.

SPECIFYING FREE SPACE

DATA BASE INGRES Page 14

The modify command also lets you specify how much room to leave
for the relation to grow. As was mentiond in "create", relations
are divided into pages. A "fillfactor" can be used to specify
haw fu 11 to make each primary page. This dee is ion should be
based only on whether more tuples will be appended to the rela­
tion. For example:

modify donation to isam on name where fillfactor = 100

This tells modify to make each page 100~ full if at all possible.

modify donation to isam on name where fillfactor = 25

This will leave each page 25~ full or, in other words, 75~ empty.
We would do this if we had roughly 1/4 of the data already loaded
and it was fairly well distributed about the alphabet.

Keep in mine that if you don't specify the fill factor, INGRES
will typically default to a reasona~le choice. Also when a page
becomes full, INGRES automatically creates an "overflow"· page so
it is never the case that a relation will be unable to expand.

When modifying a relation to hash, an additional parameter "min­
pages" can be specified. Modify will guarantee that at l~ast
"minpage" primary pages will be allocated for the relation.

Modify com?utes how may primary pages ~ill be needed to store the
existing tuples at the specified fillfactor assuming that no
overflow pages will be necessary origi:"lally. If that number is
-.~ss than minpages, then minpages is used instead.

For example:

modify d~~dtion to tush on name wher~ fillf~ct~r = 50,
minpages = 1

modify donation to hash on name where minpages = 150

In the first case we guarantee that no more pages than are neces­
sary will be used for 50$ occupancy. The second case is typical­
ly used for modifying an empty or nea!"' empty relation. If the
approximate maximum size of the relation is known in advance,
minpages can be used to guarantee that the relation will have its
expected maximum size.

There is one other option available for hash called 11 maxpages 11 •

I ts .syntax is the same as mi npages. It can be used to specify
the maximuM number of primary pBges to use.

COMPRESSION

The three storage structures (heap, hash, is am) can optionally
have "compression" applied to therr.. To do this, refer to the
storage structures as cheap, chash, and cisam. Compression

DATA BASE INGRES Page 15

reduces the amount of space needed to store each tuple internal­
ly. The current compression technique is to suppress trailing
blanks in character domains. Using compression will never re­
quire more space and typically it can save disk space and improve
performance. Here is an example:

modify donation to cisam on name where fillfactor = 100

This will make donation a compressed isam structure and fill
every page as full as possible. With c~mpression, each tuple can
have a different compressed length. Thus the number of tuples
that can fit on one page will depend on how successfully they can
be compressed. ·

Compressed relations can be more expensive to update. In partic­
ular if a replace is done on one or more domains and the
compressed tuple is no longer the same length, then INGRES must
look for a new place to put the tuple.

TWO VARIATIONS ON A THEME

f..s mentioned, duplicates are not removed from a relation stored
as a heap. Frequently it is desirable to remove duplicates and
sort a heap relatiorr. One way of doing this is to modify the re­
lation to isam specifying the order i:i which to sort the rela­
tion. An alternative to this is to use either "hea psort" or
"cheapsort". For example

modify donation to heapsort on na~e, ext

This will sort the relation by name then ext. The tuples are
further sort~d on the remaining domair.s, in the order they were
~isted in t~e original crente statement. So in t~i~ case the re­
lation will be sorted on name then ex":. and then amount. Dupli­
cate tuples are always removed. The ~elation will be left as a
heap. Heap sort and cheapsort are intended for sorting a tem­
porary relation before printing and destroying it. It is more
efficient than modifying to isam because with isam INGRES creates
a "d iree; tory" cont ai ni ng key in formation about ea ch page. The
relation will NOT be kept sorted when f~rther updates occur.

Examples:

Here are a collee;tion of examples and comments as to the effi­
ciency of each query. The queries are based on the re 1 at ions:
parts(pnum, pname, color, weight, qoh)
supply(snum, pnurn, jnum, shipdate, quan)

range of p is parts
range of s is supply

modify p~~ts to hash on pnum
modify supply to hash on snum,jnum

DATA BASE INGRES Page 16

retrieve {p.all) where p.pnum = 10

INGRES will recognize that parts is hashed on pnum and go direct­
ly to the page where parts with number 10 would be stored.

retrieve {p.all) where p.pname = "tape drive"

INGRES will read the entire relation looking for matching pnames.

retrieve {p.all) where p.pnum < 10 and p.pnum > 5

INGRES will read the entire relation because no exact value for
pnum was given.·

retrieve {s.shipdate) where s.snum = 471 and s.jnum = 1008

INGRES will recognize that supply is hashed on the combination of
snum and jnum and will go directly to the correct page.

retrieve (s.shipdate) where s.snum = 471

INGRES will read the entire relation. Supply is hashed on the
C;Ombination of snum and jnum. Unless INGRES is given a unique
value for both, it cannot take adv a r.i t age of the storage s truc­
ture.

retrieve {p.pname, s.shipdate) ~here
p.pnum = s.pnum and s.snum = 471 and s.jnum = 1008

PlGRES will take advantage of both storage structures. It will
first find all s. pnum and s. shipda te where s. snum = 471 and
s.jnum = 1008. After that it will look for all p.pname where
p.)num is equE.l to the ccrr!:t value.

This example illustrates the idea that it is frequently a good
idea to hash a relation on the domains where it is 11 joined 11 with
another relation. For example, in this case it is very common tu
ask for p.pnum = s.pnum

To summarize:

To take advantage of a hash structure, INGRES needs an exact
value for each key domain. An exact value is anything such as:

s.snum = 471
s.pnum = p.pnum

An exact value is not

s.snum >= 471
(s.snum = 10 or s.snum = 20)

Now let's consider some cases using isa~

DATfl. BASE INGRES

modify supply to isam on snum,shipdate
retrieve Cs.all) where s.snum = 471
and s.shipdate > "75-12-31 11

and s.shipdate < "77-01-01"

Since supply is sort~d first on snum 2nd then on shipdate, INGRES
can take full advantage of the isam structure to locate the por­
tions of supply which satisfy the query.

retrieve Cs.all) where s.snum = 471

Unlike hash, an isam structure can still be used if only the
first key is provided.

retrieve Cs.all) where s.snum > 400 and s.snum < 500

Again INGRES will take advantage of the structure.

retrieve Cs.all) where s.shipdate >= "75-12-31" and
s.shipdate <= "77-01-01"

Here INGRES will read the entire relation. This is bee:ause the.
first key (snum) is not provided in the query.

To summarize:

Iszm can provide improved acQess on eit~er exact values or ranges
of v::!lues. It is useful as long as at least the first key is
provided.

To -locate where the tuples are in an isam relation, INGRES
searches the isam directory for that relation. When a relation
is modified to isam, the tuples are first sorted and duplicates
are removed. Next, the relation is filled (according to the
fillf ae:tor) starting at ~age 0, 1, 2 .•. for as many pages as are
needed.

Now the directory is built. The key domains from the first tuple
on each page are collected and organized into a diree:tory (stored
in the relation on disk). The diree:tcry is never changed until
the next time a modify is done.

Whenever a tuple is added to the relation, the diree:tory is
searched to find wh ie:h page the new tuple belongs on. Within
that page, the individual tu pl es are ?!OT kept sorted. This is
what is meant by "approximately" sortec.

HEAP v. HASH v. ISAM

Let's now compare the relative advantages and disadvantages of
each option. A relation is always created as a heap. A heap is
the most efficient structure to use to initially fill a relation
using copy or append.

DATA BASE

Space from de)~t ·
page. No 1upl1c~i

INGRES Page 18

:.uples of a heap is only reused on the last
':hecking is done on a heap relation.

Hash is advani·.c;g,~r '.~s for locating tuples referenced in a qualifi­
cation by an e·~ac:t value. The primary page for tuples with a
specific value can be easily computed.

Isam is useful for both exact values and ranges of values. Since
the isam directory must be searched to locate tuples, it is never
as efficient as hash.

OVERFLOW PAGES

When a tuple is to be inserted and there is no more room on the
primary page of a relation, then an overflow page is created. As
more tuples are inserted, additional overflow pages are added as
needed. Overflow pages, while necessary, decrease. the system
performance for retrieves and updates.

For example, let's suppose that supply is hashed on snum and has
10 primary pages. Suppose the value snum = 3 fralls on page 7.
To find all snum = 3 requires INGRES to seQrch primary page 7 and
all overflow pages of page 7 (if any). As more overflow pages
are added the time needed to search for s~um = 3 will increase.
Since duplicates are removed on isam ar.d hash, this search must
be performed on appends and replaces also.

When a hash or isam relation has too many overflow pages it
3houlc be remodified to hash or isam again. This will clear up
the relation and eliminate as many overflow pages as possible.

UN:i.QUE KEYS

When choosing key domains for a relation it is desirable to have
each set of key domains as unique as possible. For example, em­
~loyee id numbers typically have no duplicate values, while so~e­
thing like color is likely to have only a few distinct values,
and something like sex, to the best of our knowledge, has only
two values.

If a relation is hashed on domain sex then you can expect to have
all males on one primary page and all its over flow pages and a
corresponding situation with females. ~ith a hash relation there
is no solution to this problem. A trade-off must be made betwee~
the most desirable key domains to use in a qualification versus
the uniqueness of the key values.

Since i~am structure can be used if at ieast the first key is
provided, extra key domains can someti!'!les be added to increase
uniq11e:less. For example, suppose the supply relation has only 10
unique supplier numbers but thousands of tuples. Choosing an
isam structure with the keys snurn and jnum will probably give

DATA BASE INGRES Page 19

many more unique keys. However, the directory size· will be
larger and consequently it will take longer to search. When pro­
v; ding additional keys just for the s2~e of increasing unique­
ne5~, try to use the smal~~st possible d~mains.

I_

SYSTEM RELATIONS

INGRES uses three relations ("relation", "attribute", and
"indexes") to maintain and organize a data base. The "relation"
r~lation has one tuple for each relatio~ in the data base. The
"attribute" relation has one tuple for each attribute in each re­
lation. The "indexes" relation has one tuple for each secondary
index.

INGRES accesses these relations in a very well defined manner. A
program called "sysrnod" should be used to modify these relations
to hash on the appropriate domains. To use sysmod the data base
administrator types

i sysmod data-base-name

Sysmod should be run initially after the data base is created and
su!Jseq1Jently as relations are created and the data base grows. ·
It is insufficient to run sysmod only cnce and forget about it.
Re,..unning sysrr.od will cause the systerr. relations to be remodi­
fied. This will typically remove most overflow pages and improve
system response time for ever~thing.

DATA BASE iNG i: Page 20

5. SECONDARY INDICES

Using an isam or hash structure
ples in a relation given values
this is not enough. For example i

relation

ovides a fast way to find tu­
;, tr.e key domains. Sometimes
suppose we have the donation

donation(name, amount, ext)

hashed on name. This will provide fast access to queries where
the qualification has an exact value for name. What if we also
will be doing queries giving exact values for ext?

Donation can be hashed either on name or ext, so we would have to
choose which is more common and hash donation on that domain.
The other domain (say ext) can have a secondary index. A secon­
dary index is a relation which contains each "ext" together with
the exact location of where the tuple is in the relation dona­
tion.

The command to create a secondary incex is:

index on donation is donext (ext)

The general format is:

index on relation name is secontary index name (domains)

Here we are asking INGRES to create 2 secondary index on the re­
lation donation. The domain being indexed is 11 ext 11 • Indices are
formed in three steps:

1 •
2 .

3.

11 Donext 11 is created as a heap.
For each tuple in donation, a t~pl~ is inserted in
with the value for ext and the exact location
corresponding tuple in donation.
By default "donext" is modified to isam.

Now if you run the query

range of d is donation
retrieve(d.amount) where d.ext = 207

"donext"
of the

INGRES will automatically look first in 11 donext 11 to find ext =
207. When it finds one it then goes directly to the tuple in the
donation relation. Since 11 dor.ext 11 is is::m on ext, search for ext
= 207 can typically be done rapidly.

If you run the query

retrieve(d.arnount) where d.name = "frank"

then INGRES will continue to use the hash structure of the rela­
tion "donation" to locate the qualifying tuples.

UATA eASE I!~G RES Page 21

Since secondary indices are themselves relations, they also can
be either hash, isam, chash or cisam. It never makes sense to a
secondary index a heap.

1i1e decision as to what structure to rr.ake them on involves the
same issues as were discussed before:

Will the domains be referenced by exact value?
Will they be referenced by ranges of value?
etc.

In this case the "ext" domain will be referenced by exact values,
and since the relation is nearly full we will do:

modify donext to hash on ext where fillfactor = 100
and minpages = 1

Secondary indices provide a way for INGRES to access tuples based
on domains that are not key domains. A relation can have ar.y
number of secondary indices and in addition each secondary index
can be an index on up to six domains of the primary relation.

Whenever a tuple is replaced, deleted or appended to a primary
relation, all secondary indices must also be updated. Thus secon­
dary indices are "not free". They increase the cost of updating
the primary relation, but can decrease the cost of finding tuples
in the primary relation.

Whether a secondary index will improve performance or not strong­
ly depends on the uniqueness of the values of the domains being
indexed. The primary concern is whet:-ier searching through the
secondary index is more efficient tha~ simply reading the entire
primary relation. In general it is if the number of tuples which
satisfy the qualification is less than the number of total pages
(both primary and overflow) in the pri~ary relatiun.

For example if we frequently want to find all people who donated
less than five dollars, consider creating

indAx on donation is donamount (a~ount)

By default donamount will be isam on a~ount. IF INGRES processes
the query:

retrieve(d.name) where d.amount < 5.0

it will locate d.amount < 5.0 in the secondary index and for each
tuple it finds wili fetch the corresponding tuple in donation.
The tuples in donamount are sorted by. amount but the tuples in
d0nation are not. Thus in general each tuple fetch from don2tion
via dona~ount will be on a different page. Retrieval using the
secondary index can then cause more page reads than simply read­
ine all of donation sequentially! So in this example it would be
a bad idea to create the secondary index.

DATA BASE I HG RES

6. RECOVERY AND DATA UPDATE

INGRES has been carefully designed to protect the integrity of a
data base against certain classes of system failures. To do this
INGRES processes changes to a relatio:i using what 'we call "de­
ferred update" or "batch file update 11 ~ In addition there are two
INGRES programs "restore" and "purge" that can be used to check
out a data base after a system failu:e. We will first discuss
how deferred updates are created a:;d processed, and second ',Je

will discuss the use of purge and restcre.

DEFERRED UPDATE (Batch update)

An append, replace or delete command is run in four steps:

1. An empty batch file is created.
2. The command is run to comp let ior. and each change to the

result relation is written into the batch file.
3. The batch file is read and the relation and its secondary in­

dices (if any) are actually upda~ec.
4. The batch file is destroyed anc r:GRES returns back to the

user.

Deferred upaate defers all actual upda~ing until the very end of
the query. There are three advantages to doing this.

1. Provides recovery from s~stem fail~rcs

If the system "crashes" during an
:.irogram will decioe to either run
else "back out" the update, leaving
fore the update was started .
..., ... Prevent~ infinite qur~ies

up:ate, the IMGRES recovery
the update to completion or

the relation as it looked be-

If "donation" were a heap and the query

range of d is donation
append to donation(d.all)

were run without deferred update, it wc~ld terminate only when it
ran out of space on disk! This is tecau se I NG R!::S \Jou ld start
reading the relation from the beginning and appending each tuple
at the end. It would soon start readi:1g the tuples it had just
previously appended and continue inr:efinitely to "chase its
tail 11 •

\\hile this query is certainly not ty;'.)ical, it illustrates the
point. There are certain classes of queries where problems occur
if WHEN an update actually occurs is n:t precisely defined. With
deferred update we can guarantee consistent and logical results.

3. Speeds up processing of secondary i~dices

DATA BASE INGRES Page.23

Secondary indices can be updated faster if they are done one at a
time instead of all at once. It also insures protection against
the secondary index becoming inconsistent with its primary rela­
tion.

TURNING DEFERRED UPDATE OFF

If you are not persuaded by any of these arguments, INGRES allows
you to turn deferred update off! Indeed there are certain cases
when it is appropriate (although certainly not essential) to per­
form updates directly, that is, the relation is updated while the
query is being processed.

To use direct update, you must be given permission by the INGRES
super user. Then when invoking INGRES specify the 11 -b" flag
which turns off batch update.

$ ingres mydate -b

INGRES will use direct update on any relation without secondary
indices. It will still silently use deferred update if a relation
has any secondary indices. By using the 11 -b" flag you are sac­
rificing points 1 and 2 above. In most cases you SHOULD NOT use
the -b flag.

If you are using INGRES to interactively enter or change one tu­
ple at a time, it is slightly more efficient to have deferred up­
dat.e turnec off. If the system era.shes during 2n u;:idate the per­
s~n entering the data will be aware of the situation and can
check whether the tuple was updated or not.

R~STORE

Ii;GRES is designed to recover from the common types of system
crashes which leave tht Unix file system intact. It can rec~ver
from updates, creates, destroys, modifies and index commands.

I!lGRES is designed to "fail safe". If any inconsistane:ies are
discovered or any failures are returned from Unix, INGRES will
generate a system error message (SYSER?.) and exit.

Whenever Unix crashes while INGRES is running or whenever an
!:!GRES syserr occurs, it is generally a good idea to have the
date base administrator run the e:omnianc

$ restore data_base_name

Tte restore program performs the follo~ing functions:

1. Looks for bate:h update files. If any are found, it examines
each one to see if it is complete. If the system crash 0(­
e:ured while the batch file was being read and the data base
being updated, then restore will complete the update. Other­
wise the batch file was not completed and it is simply des-

DAT/I. BASE INGRES Page 24

troyed; the effect is as though the query had never been run.

2. Chec:;ks for uncompleted modify commands. This step is cru­
cial. It guarantees that you will either have the relation
as it existed before the modify, or restore will.complete the
modify command. Modify works by creating a new copy of the
relation in the new structure. Then when it is readv to re­
plae:e the old relation, it stores the new information in a
"modify batch file". This enables restore to determine the
state of uncompleted modifies.

3. Checks consistency of system relations. This check is used
to complete "destory" commands, back out "create" commands,
and back out or complete "index" e:omrnands that were inter­
rupted by a system crash.

4. ?urges temporary relations and files. Restore executes the
"purge" program to remove temporary relations and temporary
files created by the system. Purge will be discussed in more
detail a bit later.

Restore cannot tell the user which queries· have run and which
havi: not. It can only identify those queries which were in the
process of being run when the er a sh occure d. When bat chi ng
~ueries together, it i~ a good idea to save the output in a file.
By having the monitor print out each ~uery or set of qtleries, the
user can later identify which queries were run.

Restore has several options to increase its usability. They are
spec~fied by "flags". The options include:

-a
-f
-p

no database

ask before doing
passed to purge.
passed to purge.
tions.

anything
used to remove temporary files.

used to destory expired rela-

restores all data bases for which you are the
dba.

Of these options the 11 -a" is the most important. It can happen
that a Unix crash can cause a page of the system catalogues to be
incorrect. This might cause restore to destory a relation. In
fnct, you might want to "patch" the system relations to correct
the problem. No re store pro gr am can account for a 11 poss i bi 1 i­
ties. It is therefore no replacement (fortunately) for a human.

:r:r 11 -a" is ~pecified, restore will state what it wants to do and
then ask for permission. It reads standard input and accepts "y"
to mean go ahead and anything else to ~ean no. For example, to
have restore ask you before doing anything

restore -a mydatabase

To have it take "no" for all its questions

DATA BASE INGRES Page 25

restore -a mydatabase <ldev/null

u~ing the -a flag, restore might as".< :or permission to perform
some cleanup; for example, if it fines an attribute for which
there is no corresponding relation, or if it finds a secondary
index for which there is no primary rel2tion, etc.

To date, we have never had a system crash which INGRES could not
recover from. This does not mean tr.at it will never happen, but
rather that it shouldn't be too gr eat a con e:e rn for you. It
should be mentioned that restore is no~ a substitution for doing
periodic backing up, nor does it ever p~rform sue:h a function.

PUflGE

Purge can be used to report expired re~ations, destroy temporary
system relations, remove extraneous f!.les, and destory expired
relations. To use purge you must be tr.~ DBA for the data base.

I purge mydatabase

Purge has several options which are specified by flags which are
worth noting:

-f (default is off) remove all ext;ar;eous files.
Ea.ch file is reported and then r-er:,:Jved. If 11 -f"
is not specified then the file is ~nly reported.

-p (default is off) destroy all ex~ired relations.
Each expired relation is reported ~nd if "-p"
was specified the relation is dest~cyed.

Purge always destroys relations and files which are known to be
L~GRES system temporc:ri?s. When ;:irocessinr; mu1..ti-variable
queries and queries with aggregate functions, INGRES will usually
create temporary relations with intercediate results. These re­
lations always begin with the cha;ac:ers " SYS". Other INGRES
e:ommands create temporary files wtict also begin with 11 SYS".
Under normal processing they are a lwc:::s destroyed. If a system
crash occurs, they might be left. Purge will always clean up the
temporary system files. It cleans u;: the user relations only
when specifically asked to.

Ex Reference Manual
Version 3.5/2.13 - September, 1980

William Joy

Revised.for versions 3. 512. 13 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94 720

ABSTRACT

Ex a line oriented text editor, which supports both command and display
oriented editing. This reference manual describes the command oriented part
of ex; the display editing features of ex are described in An Introduction to
Display Editing with Vi. Other documents about the editor include the introduc­
tion Edit: A tutorial, the Ex/edit Command Summary, and a Vi Quick Reference
card.

September 16, 1980

1. Starting ex

Ex Reference Manual
Version 3.5/2.13 - September, 1980

William Joy

Revised.for versions 3.512.13 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

Each instance of the editor has a set of options, which can be set to tailor it to your liking.
The command edit invokes a version of ex designed for more casual or beginning users by
changing the default settings of some of these options. To simplify the description which fol­
lows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ­
ment. It there is a TERMCAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the TERMCAP
variable contains a pathname (beginning with a /) then the editor will seek the description of
the terminal in that file (rather than the default /etc/termcap.) If there is a variable EXINIT in
the environment, then the editor will execute the commands in that variable, otherwise if there
is a file .exrc in your HOME directory ex reads commands from that file, simulating a source com­
mand. Option setting commands placed in EXINIT or .exrc will be executed before each editor
session.

A command to enter ex has the following prototype:t

ex [-] [-v] [-t tag] [-r] [-I] [-w n] [-x] [-R] [+command] name ...

The most common case edits a single file with no options, i.e.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The -v option is equivalent to using vi rather than
ex. The -t option is equivalent to an initial tag command, editing the file containing the tag
and positioning the editor at its definition. The -r option is used in recovering after an editor
or system crash, retrieving the last saved version of the named file or, if no file is specified,
typing a list of saved files. The -I option sets up for editing LISP, setting the showmatch and
lisp options. The -w option sets the default window size to n, and is useful on dialups to start
in small windows. The -x option causes ex to prompt for a key, which is used to encrypt and
decrypt the contents of the file, which should already be encrypted using the same key, see
crypt(l). The - R ·option sets the readonly option at the start. * Name arguments indicate files
to be edited. An argument of the form +command indicates that the editor should begin by

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.
t Brackets '(' ')' surround optional parameters here.
i Not available in all v2 editors due to memory constraints.

- 2 -

executing the specified command. If command is omitted, then it defaults to "$", positioning
the editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form "/pat" or line numbers, e.g. "+100" starting at line 100.

2. File manipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the current
file name. Ex performs all editing actions in a buff er (actually a temporary file) into which the
text of the file is initially read. Changes made to the buff er have no effect on the file being
edited unless and until the buff er contents are written out to the file with a write command.
After the buff er contents are written, the previous contents of the written file are no longer
accessible. When a file is edited, its name becomes the current file name, and its contents are
read into the buffer.

The current file is almost always considered to be edited. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not edited
then ex will not normally write on it if it already exists.•

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is
saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conven­
tions. In addition, the character '%' in filenames is replaced by the current file name and the
character '#' by the alternate file name. t

2.4. Multiple files and named buffers
If more than one file is given on the command line, then the first file is edited as

described above. The remaining arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args command. The next file in the argu­
ment list may be edited with the next command. The argument list may also be respecified by
specifying a list of names to the next command. These names are expanded, the resulting list
of names becomes the new argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file, ex
has a group of named buffers. These are similar to the normal buff er, except that only a lim­
ited number of operations are available on them. The buffers have names a through z.:t

2.5. Read only
It is possible to use ex in read only mode to look at files that you have no intention of

modifying. This mode protects you from accidently overwriting the file. Read only mode is on
when the readonly option is set. It can be turned on with the - R command line option, by the
view command line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. It is possible to write, even while in read only mode, by indicating that you really

• The file command will say "(Not edited)" if the current file is not considered edited.
t This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied
on an edit command after a No write since last change diagnostic is received.
* It is also possible to refer to A through Z; the upper case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper case names are used.

- 3 -

know what you are doing. You can write to a different file, or can use the ! form of write, even
while in read only mode.

3. Exceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error
diagnostic. If the primary input is from a file, editor processing will terminate. If an interrupt
signal is received, ex prints "Interrupt" and returns to its command level. If the primary input
is a file, then ex will exit when this occurs.

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buff er has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be able
to recover the work you were doing, losing at most a few lines of changes from the last point
before the hangup or editor crash. To recover a file you can use the -r option. If you were
editing the file resume, then you should change to the directory where you were when the crash
occurred, giving the command

ex -r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

ex -r

will print a list of the files which have been saved for you. On the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes
Ex has five distinct modes. The primary mode is command mode. Commands are entered

in command mode when a ':' prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append, insert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. This mode is left by typing a • .' alone at the beginning of a line, and command mode
resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visual works on CRT terminals with random positioning
cursors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction to Display Editing with Vi.

S. Command structure
Most command names are English words, and initial prefixes of the words are acceptable

abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.•

• As an example, the command substitute can be abbreviated 's' while the shortest available abbreviation for
the set command is 'se'.

- 4 -

S.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses will be discussed below. A number of com­
mands also may take a trailing count specifying the number of lines to be involved in the com­
mand. t Thus the command "!Op" will print the tenth line in the buffer while "delete 5" will
delete five lines from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command name.:t:

S.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an '!' immediately after the command name. Some of the default variants
may be controlled by options~ in this case, the '!' serves to toggle the default.

S.3. Flags after commands

The characters '#', 'p' and 'l' may be placed after many commands.•• In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, 'p' is rarely necessary. Any number of
'+' or ' - ' characters may also be given with these flags. If they appear, the specified off set is
applied to the current line value before the printing command is executed.

S.4. Comments

It is possible to give editor commands which are ignored. This is useful when making
complex editor scripts for which comments are desired. The comment character is the double
quote: ". Any command line beginning with" is ignored. Comments beginning with" may also
be placed at the ends of commands, except in cases where they could be confused as part of
text (shell escapes and the substitute and map commands).

S.S. Multiple commands per line
More than one command may be placed on a line by separating each pair of commands by

a 'I' character. However the global commands, comments, and the shell escape '!' must be the
last command on a line, as they are not terminated by a 'I'.

S.6. Reporting large changes

Most commands which change the contents of the editor buff er give feedback if the scope
of the change exceeds a threshold given by the report option. This feedback helps to detect
undesirably large changes so that they may be quickly and easily reversed with an undo. After
commands with more global effect such as global or visual, you will be informed if the net
change in the number of lines in the buffer during this command exceeds this threshold.

6. Command addressing

6.1. Addressing primitives
The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the current
line, thus '.' is rarely used alone as an address.

t Counts are rounded down if necessary.
*Examples would be option names in a set command i.e. "set number", a file name in an edit command. a
regular expression in a substitute command, or a target address for a copy command, i.e. "l,5 copy 25".
•• A 'p' or 'I' must be preceded by a blank or tab except in the single special case 'dp'.

11

s
%

- 5 -

The nth line in the editor's buffer, lines being numbered sequentially
from 1.

The last line in the buffer.

+n -n

/pat! ?pat?

An abbreviation for "1,$", the entire buffer.

An off set relative to the current buff er line. t
Scan forward and backward respectively for a line containing pa1, a regu­
lar expression (as defined below). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line containing
pat, then the trailing I or ? may be omitted. If pal is omitted or expli­
citly empty~ then the last regular expression specified is located.i

,, , x Before each non-relative motion of the current line • .', the previous
current line is marked with a tag, subsequently referred to as , .. , . This
makes it easy to refer or return to this previous context. Marks may
also be established by the mark command, using single lower case
letters x and the marked lines ref erred to as "x'.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ',' or ';'.
Such address lists are evaluated left-to-right. When addresses are separated by ';' the current
line '.' is set to the value of the previous addressing expression before the next address is inter­
preted. If more addresses are given than the command requires, then all but the last one or
two are ignored. If the command takes two addresses, the first addressed line must precede the
second in the buff er. t

7. Command descriptions

The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ":" preceding any com­
mand.

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as a complete word, it will be changed to rhs.

(.) append
text

abbr: a

Reads the input text and places it after the specified line. After the command, '.'
addresses the last line input or the specified line if no lines were input. If address 'O' is
given, text is placed at the beginning of the buff er.

t The forms •. + 3' '+ 3' and • + + +' are all equivalent; if the current line is line 100 they all address line
103. * The forms \I and \? scan using the last regular expression used in a scan; after a substitute II and ? ?
would scan using the substitute's regular expression.
t Null address specifications are permitted in a list of addresses. the default in this case is the current line'.';
thus ',100' is equivalent to • •• 100'. It is an error to give a prefix address to a command which expects none.

a!
text

args

- 6 -

The variant flag to append toggles the setting for the autoindent option during the input of
text.

The members of the argument list are printed, with the current argument delimited by '['
and']'.

(. , .) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

The variant toggles autoindent during the change.

(. , •) copy addr flags abbr: co

A copy of the specified lines is placed after addr, which may be 'O'. The current line '.'
addresses the last line of the copy. The command t is a synonym for copy.

(. , .) delete buffer count flags abbr: d

Removes the specified lines from the buff er. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end, the new last line becomes
the current line. If a named buffer is specified by giving a letter, then the specified lines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file
ex file

abbr: e

Used to begin an editing session on a new file. The editor first checks to see if the buff er
has been modified since the last write command was issued. If it has been, a warning is
issu~d and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non­
ASCII high bits, and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the last line of the input file is missing the trail­
ing newline character, it will be supplied and a complaint will be issued. This command
leaves the current line '.' at the last line read.i

t I.e., that it is not a binary file such as a directory, a block or character special file other than /devltty, a ter­
minal, or a binary or executable file (as indicated by the first word).
i If executed from within open or visual, the current line is initially the first line of the file.

- 7 -

e! file

The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

e +nfile

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g.: "+/pat".

abbr: f

Prints the current file name, whether it has been '[Modified]' since the last wrile com­
mand, whether it is read only, the current line, the number of Jines in the buffer, and the
percentage of the way through the buff er of the current line."

file file

The current file name is changed to file which is considered '[Not edited]'.

(1 , $)global /pat/ cmds abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with '.' initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a '\'. If cmds (and pos­
sibly the trailing I delimiter) is omitted, each line matching par is printed. Append, inserl,
and change commands and associated input are permitted; the '.' terminating input may
be omitted if it would be on the last line of the command list. Open and visual commands
are permitted in the command list and take input from the terminal.

The global command itself may not appear in cmds. The undo command is also not per­
mitted there, as undo instead can be used to reverse the entire global command. The
options autoprint and autoindenr are inhibited during a global, (and possibly the trailing I
delimiter) and the value of the report option is temporarily infinite, in deference to a
report for the entire global. Finally, the context mark '"' is set to the value of '.' before
the global command begins and is not changed during a global command, except perhaps
by an open or visual within the global.

g! /pat/ cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(.) insert
text

abbr: i

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line. This com­
mand differs from append only in the placement of text.

• In the rare case that the current file is '[Not edited]' this is noted also; in this case you have to use the
form w! to write to the file, since the editor is not sure that a write will not destroy a file unrelated to the
current contents of the buffer.

- 8 -

. ' I.
text

The variant toggles autoindent during the insert.

(. , . + 1) join count flags abbr: j

. ,
J.

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a '.' at
the end of the line, or none if the first following character is a ') '. If there is already
white space at the end of the line, then the white space at the start of the next line will be
discarded .

The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

(.) k x

The k command is a synonym for mark. It does not require a blank or tab before the fol­
lowing letter.

(. , .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as 'T and the end
of each line is marked with a trailing '$'. The current line is left at the last line printed.

map lhs rhs

The map command is used to define macros for use in visual mode. Lhs should be a sin­
gle character, or the sequence "#n", for n a digit, referring to function key n. When this
character or function key is typed in visual mode, it will be as though the corresponding
rhs had been typed. On terminals without function keys, you can type "#n". See section
6.9 of the "Introduction to Display Editing with Vi" for more details.

(.) mark x

Gives the specified line mark x, a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form "x' then addresses this line. The current line is not
affected by this command.

(. , .) move addr abbr: m

The move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

next abbr: n

n!

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes which may have been made.

n filelist
n +command filelist

- 9 -

The specified filelist is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(. , .) number count ./fags abbr:# or nu

Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(.) open flags abbr: o
(.) open I pat I ./fags

Enters intraline editing open mode at each addressed line. If pat is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An Introduction to Display Editing with Vi for more details.
:j:

preserve

The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
don't know how to save your work. After a preserve you should seek help.

(. , .) print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters 'Ax';
delete (octal 177) is represented as 'A?'. The current line is left at the last line printed.

(.) put buffer abbr: pu

quit

q!

Puts back previously deleted or yanked lines. Normally used with delete to effect move­
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then the
last deleted or yanked text is restored.• By using a named buff er, text may be restored that
was saved there at any previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buff er to a file is performed.
However, ex issues a warning message if the file has changed since the last write command
was issued, and does not quit. t Normally, you will wish to save your changes, and you
should give a write command; if you wish to discard them, use the q! command variant.

Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current file name is used. The current file name is not changed unless
there is none in which case file becomes the current name. The sensibility restrictions for
the edit command apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

* Not available in all v2 editors due to memory constraints.
• But no modifying commands may intervene between the delete or yank and the put, nor may lines be
moved between files without using a named buffer.
t Ex will also issue a diagnostic if there are more files in the argument list.

- 10 -

Address 'O' is legal for this command and causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit command when the read successfully ter­
minates. After a read the current line is the last line read.t

(.) read !command

Reads the output of the command command into the buffer after the specified line. This
is not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone••
or a system crash** or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

shell

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a '?' causes the current value of that option to be
printed. The '?' is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to turn them on or 'set nooption' to turn them
off; string and numeric options are assigned via the form 'set option=value'.

More than one parameter may be given to set; they are interpreted left-to-right.

abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be nested.

(. , .) substitute I pat I rep/ I options count ./fags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pattern
rep/. If the global indicator option character 'g' appears, then all instances are substituted;
if the confirm indication character 'c' appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with 'l' characters. By typing
an 'y' one can cause the substitution to be performed, any other input causes no change
to take place. After a substitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in rep/
must be escaped by preceding it with a '\'. Other metacharacters available in pat and rep/
are described below.

* Within open and visual the current line is set to the first line read rather than the last.
•• The system saves a copy of the file you were editing only if you have made changes to the file.

stop

- 11 -

Suspends the editor, returning control to the top level shell. If autowrite is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supported by the teletype driver and operating system.

(. , .) substitute options count ./fags abbr: s

If pat and rep/ are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(• , .) t addr ./fags

The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.*

The tags file is normally created by a program such as crags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address­
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using 'I pat/' to be immune to minor changes in the file. Such scans are always per­
formed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically. *

unabbreviate word abbr: una

Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the file system cannot
be undone. Undo is its own inverse.

Undo always marks the previous value of the current line '.' as '"'. After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as global and visual the
current line regains it's pre-command value after an undo.

unmap lhs

The macro expansion associated by map for lhs is removed.

(1 , $) v I pat I cmds

A synonym for the global command variant g!, running the specified cmds on each line
which does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed.

* If you have modified the current file before giving a tag command, you must write it out; giving another
tag command, specifying no tag will reuse the previous tag.
* Not available in all v2 editors due to memory constraints.

- 12 -

(.) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be ' - ' , T or '.' as in
the z command to specify the placement of the specified line on the screen. By default, if
type is omitted, the specified line is placed as the first on the screen. A count specifies an
initial window size; the default is the value of the option window. See the document A 11

Introduction to Display Editing with Vi for more details. To exit this mode, type Q.

visual file
visual + n file

From visual mode, this command is the same as edit.

(1 , $) write file abbr: w

Writes changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file.* If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never
changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been "No write since last change" even if the buff er had not previously been
modified.

(1 , $) write> > file abbr: w> >

Writes the buff er contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1 , $) w !command

Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name

Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changes have been made and not written, writes the buff er out. Then, in any case,
quits.

(. , .) yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buff er name
is specified, the lines go to a more volatile place; see the put command description.

• The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the file is
actually a teletype, /devltty, /dev/null. Otherwise, you must give the variant form w! to force the write.

- 13 -

(.+l) z count

Print the next count lines, default window.

(•) z type count

Prints a window of text with the specified line at the top. If type is ' - ' the line is placed
at the bottom; a '.' causes the line to be placed in the center.* A count gives the number
of lines to be displayed rather than double the number specified by the scroll option. On a
CRT the screen is cleared before display begins unless a count which is Jess than the
screen size is given. The current line is left at the last line printed.

! command

The remainder of the line after the '!' character is sent to a shell to be executed. Within
the text of command the characters '%' and '#' are expanded as in filenames and the char­
acter '!' is replaced with the text of the previous command. Thus, in particular, '!!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been "[No write]" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning. A
single '!' is printed when the command completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command; the result­
ing output then replaces the input lines.

($) =
Prints the line number of the addressed line. The current line is unchanged.

(. , .) > count flags
(. , .) < count flags

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white char­
acters are discarded in a left-shift. The current line becomes the last line which changed
due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+1,.+l)
<.+1,.+1)!

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

•Forms ·z-' and 'zl' also exist; 'z-' places the current line in the center. surrounds it with lines of'-'
characters and leaves the current line at this line. The form 'zl' prints the window before 'z-' would. The
characters • + '. T and ' - ' may be repeated for cumulative effect. On some v2 editors. no type may be
given.

- 14 -

(. , .) & options count flags

Repeats the previous substitute command.

(. , .) - options count flags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a substitute command and the previous reg­
ular expression used elsewhere {referred to as the previous scanning regular expression.) The
previous regular expression can always be ref erred to by a null re, e.g. '11' or '?? '.

8.2. Magic and nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default setting of magic gives quick access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede them with the character '\' to
use them as "ordinary" characters. With nomagic, the default for edit, regular expressions are
much simpler, there being only two metacharacters. The power of the other metacharacters is
still available by preceding the (now) ordinary character with a'\'. Note that '\'is thus always
a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic. t

8.3. Basic regular expression summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters T at the beginning of a
line, '$' at the end of line, '*' as any character other than the first, '. ', '\', '[',
and ,-, are not ordinary characters and must be escaped (preceded) by '\' to be
treated as such.

T At the beginning of a pattern forces the match to succeed only at the begin­
ning of a line.

$ At the end of a regular expression forces the match to succeed only at the end
of the line.

\<

\>

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word";
that is, either at the beginning of a line, or just before a letter, digit, or under­
line and after a character not one of these.

Similar to '\ < ', but matching the end of a "variable" or "word", i.e. either
the end of the line or before character which is neither a Jetter, nor a digit, nor
the underline character.

t To discern what is true with nomagic it suffices to remember that the only special characters in this case will
be T at the beginning of a regular expression, '$' at the end of a regular expression, and '\'. With nomagic
the characters ,-, and '&'also lose their special meanings related to the replacement pattern of a substitute.

I string]

- 15 -

Matches any (single) character in the class defined by string. Most characters
in string define themselves. A pair of characters separated by ' - ' in str111g
defines the set of characters collating between the specified lower and upper
bounds, thus '[a- z]' as a regular expression matches any (single) lower-case
letter. If the first character of string is an T then the construct matches those
characters which it otherwise would not; thus '[Ta-z]' matches anything but a
lower-case letter (and of course a newline). To place any of the characters T,
'[', or ' - ' in string you must escape them with a preceding '\'.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the (single character matching) regular expressions men­
tioned above may be followed by the character '*' to form a regular expression which matches
any number of adjacent occurrences (including 0) of characters matched by the regular expres­
sion it follows.

The character ,-, may be used in a regular expression, and matches the text which defined
the replacement part of the last substitute command. A regular expression may be enclosed
between the sequences '\ (' and '\)' with side effects in the substitute replacement patterns.

8.5. Substitute replacement patterns

The basic metacharacters for the replacement pattern are '&' and ·-•; these are given as
'\&' and '\-' when nomagic is set. Each instance of '&' is replaced by the characters which the
regular expression matched. The metacharacter ,_, stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character '\'. The sequence '\n' is replaced by the text matched by the n-th regular
subexpression enclosed between '\(' and '\)'.t The sequences '\u' and '\!' cause the immedi­
ately following character in the replacement to be converted to upper- or lower-case respectively
if this character is a letter. The sequences '\U' and '\L' turn such conversion on, either until
'\E' or '\e' is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of each
append, change or insert command or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual mode, ex looks at the line being
appended after, the first line changed or the line inserted before and calculates the
amount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following line
will start aligned with the first non-white character of the previous line. To back the cur­
sor up to the preceding tab stop one can hit AD. The tab stops going backwards are
defined at multiples of the shiftwidth option. You cannot backspace over the indent,
except by sending an end-of-file with a AD.

t When nested, parenthesized subexpressions are present, n is determined by counting occurrences of '\ ('
starting from the left.

- 16 -

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the autoindent is discarded.) Also spe­
cially processed in this mode are lines beginning with an T and immediately followed by
a AD. This causes the input to be repositioned at the beginning of the line, but retaining
the previous indent for the next line. Similarly, a 'O' followed by a AD repositions at the
beginning but without retaining the previous indent.

A utoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy, join, move, substitule, t, undo
or shift command. This has the same effect as supplying a trailing 'p' to each such com­
mand. Autoprint is suppressed in globals, and only applies to the last of many commands
on a line.

autowrite, aw default: noaw

Causes the contents of the buff er to be written to the current file if you have modified it
and give a next, rewind, stop, tag, or ! command, or a Al (switch files) or Al (tag goto)
command in visual. Note, that the edit and ex commands do not autowrite. In each case,
there is an equivalent way of switching when autowrite is set to avoid the autowrite (edit
for next, rewind! for .I rewind , stop! for stop, tag! for tag, shel!for !, and :e #and a :ta!
command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beaut{/}'
does not apply to command input.

directory, dir default: dir=/tmp

Specifies the directory in which ex places its buffer file. If this directory in not writable,
then the editor will exit abruptly when it fails to be able to create its buff er there.

edcompatible default: noedcompatible

Causes the presence of absence of g and c suffixes on substitute commands to be remem­
bered, and to be toggled by repeating the suffices. The suffix r makes the substitution be
as in the - command, instead of like &. :j::j:

errorbells, eh default: noeb

Error messages are preceded by a bell.* If possible the editor always places the error mes­
sage in a standout mode of the terminal (such as inverse video) instead of ringing the
bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

U Version 3 only.
• Bell ringing in open and visual on errors is not suppressed by setting noeb.

- 17 -

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition, all upper case characters in regular expressions are mapped to
lower case except in character class specifications.

lisp default: nolisp

Autoindent indents appropriately for lisp code, and the () { } ((and II commands in open
and visual are modified to have meaning for lisp.

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines
as in the list command.

magic default: magic for ex and vit

mesg

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with
only T and '$' having special effects. In addition the metacharacters ,_, and '&' of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a '\'.

default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomesg is set. U

number, nu default: nonumber

open

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have.

default: open

If noopen, the commands open and visual are not permitted. This is set for edit to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para= IPLPPPQPP Llbp

Specifies the paragraphs for the { and } operations in open and visual. The pairs of charac­
ters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a ':'.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

t Nomagic for edit.
U Version 3 only.

- 18 -

remap default: remap

If on, macros are repeatedly tried until they are unchanged. U For example, if o is
mapped to 0, and 0 is mapped to I, then if remap is set, o will map to I, but if noremap is
set, it will map to 0.

report default: report=St

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visual which have potentially more far
reaching scope, the net change in the number of lines in the buff er is presented at the end
of the command, subject to this same threshold. Thus notification is suppressed during a
global command on the individual commands performed.

scroll default: scroll= 1/2 window

Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in command mode, and the number of Jines printed by a command mode z
command (double the value of scrol/).

sections default: sections=SHNHH HU

Specifies the section macros for the 11 and 11 operations in open and visual. The pairs of
characters in the options's value are the names of the macros which start paragraphs.

shell, sh default: sh= /bin/sh

Gives the path name of the shell forked for the shell escape command '! ', and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw=8

Gives the width a software tab stop, used in reverse tabbing with AD when using auroin­
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or {
for one second if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and unin­
telligent. See An Introduction to Display Editing with Vi for more details.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display.

taglength, ti default: tl=O

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant

U Version 3 only.
t 2 for edit.

tags

- 19 -

default: tags==tags /usr/lib/tags

A path of files to be used as tag files for the tag command. U: A requested tag is searched
for in the specified files, sequentially. By default (even in version 2) files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire system.)

term from environment TERM
The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been '[No write since last change]' before a'!' command escape.

window default: window== speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed 0200 baud), and the full screen (minus
one line) at higher speeds.

w300, wl200, w9600

These are not true options but set window only if the speed is slow (300), medium
0200), or high (9600), respectively. They are suitable for an EXINIT and make it easy
to change the 8/16/full screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: wm-0

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction to Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line,
256 characters per global command list, 128 characters per file name, 128 characters in the pre­
vious inserted and deleted text in open or visual, 100 characters in a shell escape command, 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines
in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the
total number of characters in macros to be less than 512.

Acknowledgments.· Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2. 7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals and
Unix systems.

U Version 3 only.

-21-

Appendix: List of Changes from Version 3.5 to Version 3.6
of the Text Editor ex/vi

• A kernel problem on the version 7 PDP-11 overlay systems which causes bad EMT traps to
happen randomly, core dumping the editor, has been programmed around by catching E~1T
traps.

• A bug which prevented using a screen larger than 48 lines has been fixed.

• A bug which allowed you to set window to a value larger than your screen size has been
fixed.

• The screen size limit on non-VM UNIX systems has been increased to 66 lines or 5000 char­
acters, to allow the Ann Arbor Ambassador terminal to be used.

• A bug which caused hangups to be ignored on USG systems has been fixed.

• A bug which caused maps with multiple changes on multiple lines to mess up has been
fixed.

• If you get 1/0 errors, the file is considered "not edited" so that you don't accidently
clobber the good file with a munged up buff er.

• An inefficiency in 3.5 which caused the editor to always call ttyname has been fixed.

• A bug which prevented the source <.so) command from working in an EXINIT or from
visual has been fixed.

• A bug which caused readonly to be cleared when reading from a writable file with r has
been fixed.

• The name suspend has been made an alias for stop.

• The stop command now_ once again works correctly from command mode.

• On a dumb terminal at 12_00 baud, slowopen is now the default.

• A bug in the shell script makeoptions which searched for a string that appeared earlier in a
comment has been fixed.

• A bug that caused an infinite loop when you did :s/ <I &lg has been fixed.

• A bug that caused & with no previous substitution to give "re internal error" has been
fixed.

• A bug in the binary search algorithm for tags which sometimes prevented the last tag in the
file from being found has been fixed.

• Error messages from ex preserve no longer output a linefeed, messing up the screen.

-22-

• The message from expreserve telling you a buffer was saved when your phone was ·hung up
has be amended to say the "editor was terminated,,. since a kill can also produce that mes­
sage.

• The directory option, which has been broken for over a year, has been fixed.

• The r command no longer invokes input mode macros.

• A bug which caused strangeness if you set wrapmaqin to 1 and typed a line containing a
backslash in column 80 has been fixed.

• A bug which caused the r<RETURN> at the wrapmargin column to mess up has been
fixed.

• On terminals with both scroll reverse and insert line, the least expensive of the two will be
used to scroll up. This is usually scroll reverse, which is much less annoying than insert
line on terminals such as the mime I and mime 2a.

• A bug which caused vi to estimate the cost of cursor motion without taking into account
padding has been fixed.

• The failure of the editor to check counts on '"F and '"B commands has been fixed.

• The remap option failed completely if it was turned off. This has been fixed.

• A check of the wrong limit on a buffer for the right hand side of substitutions has been
fixed. Overflowing this buff er could produce a core dump.

• A bug causing the editor to go into insen mode if you pressed the RETURN key during an
R command has been fixed.

• A bug preventing the +command from working when you edit a new file has been fixed
by making it no longer an error to edit a new file (when you first enter the editor>. Instead
you are told it is a new file.

• If an error happens when you are writing out a file, such as an interrupt, you are warned
that the file is incomplete.

-ME REFERENCE MANUAL

Release 1.1125

Eric P. Allman

Electronics Research Laboratory
University of Californ~a, Berkeley

Berkeley, California 94 720

This document describes in extremely terse form the features of the -me macro package
for version seven NROFF /TROFF. Some familiarity is assumed with those programs,
specifically, the reader should understand breaks, fonts, pointsizes, the use and definition of
number registers and strings, how to define macros, and scaling factors for ens, points, v's
(vertical line spaces), etc.

For a more casual introduction to text processing using NROFF, refer to the document
Writing Papers with NROFF using -me.

There are a number of macro parameters that may be adjusted. Fonts may be set to a
font number only. In NROFF font 8 is underlined, and is set in bold font in TROFF (although
font 3, bold in TROFF, is not underlined in NROFF). Font 0 is no font change; the font of the
surrounding text is used instead. Notice that fonts 0 and 8 are "pseudo-fonts"; that is, they
are simulated by the macros. This means that although it is legal to set a font register to zero
or eight, it is not legal to use the escape character form, such as:

\f8

All distances are in basic units, so it is nearly always necessary to use a scaling factor. For
example, the request to set the paragraph indent to eight one-en spaces is:

.nr pi 8n

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch. Default parame­
ter values are given in brackets in the remainder of this document.

Registers and strings of the form $x may be used in expressions but should not be
changed. Macros of the form $x perform some function (as described) and may be redefined to
change this function. This may be a sensitive operation; look at the body of the original macro
before changing it.

AU names in - me follow a rigid naming convention. The user may define number regis­
ters, strings, and macros, provided that s/he uses single character upper case names or double
character names consisting of letters and digits, with at least one upper case letter. In no case
should special characters be used in user-defined names.

On daisy wheel type printers in twelve pitch, the -r:xl flag can be stated to make lines
default to one eighth inch (the normal spacing for a newline in twelve-pitch). This is normally

tNROFF and TROFF are Trademarks of Bell Laboratories.

-ME REFERENCE MANUAL 1

-ME REFERENCE MANUAL 2

too small for easy readability, so the default is to space one sixth inch.

This documentation was TROFF'ed on December 14, 1979 and applies to version 1.1/25
of the - me macros.

1. Paragraphing

These macros are used to begin paragraphs. The standard paragraph macro is .pp; the
others are all variants to be used for special purposes.

The first call to one of the paragraphing macros defined in this section or the .sh macro
(defined in the next session) initializes the macro processor. After initialization it is not possible
to use any of the following requests: .sc, .lo, .th, or .ac. Also, the effects of changing parame­
ters which will have a global effect on the format of the page (notably page length and header
and footer margins) are.not well defined and should be avoided .

.Ip Begin left-justified paragraph. Centering and underlining are turned off
if they were on, the font is set to \n(pf [1] the type size is set to \n(pp
[lOp], and a \n(ps space is inserted before the paragraph [0.3Sv in
TROFF, 1 v or O.Sv in NROFF depending on device resolution]. The
indent is reset to \n(Si [0] plus \n(po [0] unless the paragraph is inside
a display. (see .ba). At least the first two lines of the paragraph are
kept together on a page.

.pp

.ip TI

.np

2. Section Headings

Like .Ip, except that it puts \n (pi [Sn] units of indent. This is the stan­
dard paragraph macro.

Indented paragraph with hanging tag. The body of the following para­
graph is indented I spaces (or \n (ii [Sn] spaces if I is not specified)
more than a non-indented paragraph (such as with .pp) is. The title T
is exdented (opposite of indented). The result is a paragraph with an
even left edge and T printed in the margin. Any spaces in T must be
unpaddable. If Twill not fit in the space provided, .ip will start a new
line.

A variant of .ip which numbers paragraphs. Numbering is reset after a
.Ip, .pp, or .sh. The current paragraph number is in \n (Sp.

Numbered sections are similiar to paragraphs except that a section number is automati­
cally generated for each one. The section numbers are of the form 1.2.3. The depth of the sec­
tion is the count of numbers (separated by decimal points) in the section number.

Unnumbered section headings are similar, except that no number is attached to the head-
ing.

.sh + N Ta b c d e f Begin numbered section of depth N. If N is missing the current depth
(maintained in the number register \n ($0) is used. The values of the
individual parts of the section number are maintained in \n(Sl through
\n($6. There is a \n(ss (Iv] space before the section. Tis printed as a
section title in font \n (sf [8] and size \n (sp [1 Op]. The "name" of the
section may be accessed via *(Sn. If \n(si is non-zero, the base
indent is set to \n (si times the section depth, and the section title is
exdented. (See .ba.) Also, an additional iJ1dent of \n (so [0] is added to
the section title (but not to the body of the section). The font is then
set to the paragraph font, so that more information may occur on the
line with the section number and title. .sh insures that there is enough
room to print the section head plus the beginning of a paragraph (about
3 lines total). If a through fare specified, the section number is set to
that number rather than incremented automatically. If any of a
through f are a hyphen that number is not reset. If T is a single

-ME REFERENCE MANUAL 3

.sx +N

.uh T

. Sp TB N

• $0 TB N

• $1 - .$6

underscore ("_") then the section depth and numbering is reset, but
the base indent is not reset and nothing is printed out. This is useful to
automatically coordinate section numbers with chapter numbers.

Go to section depth N [-1], but do not print the number and title, and
do not increment the section number at level N. This has the effect of
starting a new paragraph at level N.

Unnumbered section heading. The title T is printed with the same
rules for spacing, font, etc., as for .sh .

Print section heading. May be redefined to get fancier headings. T is
the title passed on the .sh or .uh line; Bis the section number for this
section, and N is the depth of this section. These parameters are not
always present; in particular, .sh passes all three, .uh passes only the
first, and .sx passes three, but the first two are null strings. Care
should be taken if this macro is redefined; it is quite complex and sub­
tle .

This macro is called automatically after every call to .$p. It is normally
undefined, but may be used to automatically put every section title into
the table of contents or for some similiar function. Tis the section title
for the section title which was just printed, B is the section number,
and N is the section depth .

Traps called just before printing that depth section. May be defined to
(for example) give variable spacing before sections. These macros are
called from .Sp, so if you redefine that macro you may lose this feature.

3. Headers and Footers

Headers and footers are put at the top and bottom of every page automatically. They are
set in font \n(tf (3] and size \n(tp [lOp]. Each of the definitions apply as of the next page.
Three-part titles must be quoted if there are two blanks adjacent anywhere in the title or more
than eight blanks total.

The spacing of headers and footers are controlled by three number registers. \n(hm [4v]
is the distance from the top of the page to the top of the header, \n(fm [3v] is the distance
from the bottom of the page to the bottom of the footer, \n(tm [7v1 is the distance from the
top of the page to the top of the text, and \n(bm [6v} is the distance from the bottom of the
page to the bottom of the text (nominal). The macros .ml, .m2, .m3, and .m4 are also sup­
plied for compatibility with ROFF documents.

• he 'f'm'r'

• fo 'rm' r'
• eh' rm' r'

• oh 'J'm'r'

.ef 'rm' r'

• of' /'m'r'

• bx

.ml +N

• m2 +N
. m3 +N
.m4 +N

.ep

Define three-part header, to be printed on the top of every page .

Define footer, to be printed at the bottom of every page .

Define header, to be printed at the top of every even-numbered page .

Define header, to be printed at the top of every odd-numbered page .

Define footer, to be printed at the bottom of every even-numbered
page.

Define footer, to be printed at the bottom of every odd-numbered page .

Suppress headers and footers on the next page .

Set the space between the top of the page and the header [4v1.

Set the space between the header and the first line of text [2v J .
Set the space between the bottom of the text and the footer [2v J .
Set the space between the footer and the bottom of the page [4v].

End this page, but do not begin the next page. Useful for forcing out
footnotes, but other than that hardly every used. Must be followed by

-ME REFERENCE MANUAL 4

.Sh

• Sf

. SH

4. Displays

a .bp or the end of input.

Called at every page to print the header. May be redefined to provide
fancy (e.g., multi-line) headers, but doing so loses the function of the
.be, .fo, .eh, .oh, .ef, and .of requests, as well as the chapter-style title
feature of. +c .

Print footer; same comments apply as in .Sh .

A normally undefined macro which is called at the top of each page
(after outputing the header, initial saved floating keeps, etc.); in other
words, this macro is called immediately before printing text on a page.
It can be used for column headings and the like.

All displays except centered blocks and block quotes are preceeded and followed by an
extra \n (bs [same as \n (ps] space. Quote spacing is stored in a separate register; centered
blocks have no default initial or trailing space. The vertical spacing of all displays except quotes
and centered blocks is stored in register \n (SR instead of \n (Sr .

• (I m f Begin list. Lists are single spaced, unfilled text. If f is F, the list will
be filled. If m [I] is I the list is indented by \n(bi [4n]; if M the list is
indented to the left margin; if L the list is left justified with respect to
the text (different from M only if the base indent (stored in \n (Si and
set with .ba) is not zero); and if C the list is centered on a line-by-line
basis. The list is set in font \n (df (OJ. Must be matched by a .)I. This
macro is almost like . (b except that no attempt is made to keep the
display on one page .

•)I End list.

.(q

•)q

• (b mf

.)b

.(z mf

•)z

.(c

Begin major quote. These are single spaced, filled, moved in from the
text on both sides by \n(qi [4n], preceeded and followed by \n(qs
[same as \n(bs] space, and are set in point size \n(qp [one point
smaller than surrounding text] .

End major quote .

Begin block. Blocks are a form of keep, where the text of a keep is
kept together on one page if possible (keeps are useful for tables and
figures which should not be broken over a page). If the block will not
fit on the current page a new page is begun, unless that would leave
more than \n (bt [OJ white space at the bottom of the text. If \n (bt is
zero, the threshold feature is turned off. Blocks are not filled unless f
is F, when they are filled. The block will be left-justified if m is L,
indented by \n (bi [4n] if m is I or absent, centered (line-for-line) if m
is C, and left justified to the margin (not to the base indent) if m is M.
The block is set in font \n (df [OJ.

End block.
Begin floating keep. Like . (b except that the keep is floated to the bot­
tom of the page or the top of the next page. Therefore, its position
relative to the text changes. The floating keep is preceeded and fol­
lowed by \n(zs [lv] space. Also, it defaults to mode M .

End floating keep.
Begin centered block. The next keep is centered as a block, rather than
on a line-by-line basis as with • (b C. This call may be nested inside
keeps.

-ME REFERENCE MANUAL 5

Jc

5. Annotations

.(d

.)d n

• pd

.(f

•)f n

. Ss

• (xx

.)x PA

.xp x

6. Columned Output

.2c +s N

. le

.be

7. Fonts and Sizes

.sz +P

End centered block.

Begin delayed text. Everything in the next keep is saved for output
later with .pd, in a manner similar to footnotes .

End delayed text. The delayed text number register \n ($d and the
associated string \ • # are incremented if \ • # has been referenced.

Print delayed text. Everything diverted via . (d is printed and truncated .
This might be used at the end of each chapter.

Begin footnote. The text of the footnote is floated to the bottom of the
page and set in font \n(ff [l] and size \n(fp [8p]. Each entry is pre­
ceeded by \n(fs [0.2v] space, is indented \n(fi [3n] on the first line,
and is indented \n (fu [0] from the right margin. Footnotes line up
underneath two columned output. If the text of the footnote will not
all fit on one page it will be carried over to the next page .

End footnote. The number register \n (Sf and the associated string \ **
are incremented if they have been referenced .

The macro to output the footnote seperator. This macro may be
redefined to give other size lines or other types of separators.
Currently it draws a I.Si line .

Begin index entry. Index entries are saved in the index x [x] until
called up with .xp. Each entry is preceeded by a \n(xs [0.2v] space.
Each entry is "undented" by \n(xu [O.Si]; this register tells how far the
page number extends into the right margin .

End index entry. The index entry is finished with a row of dots with A
[null] right justified on the last line (such as for an author's name), fol­
lowed by P [\n%]. If A is specified, P must be specified; \n% can be
used to print the current page number. If Pis an underscore, no page
number and no row of dots are printed.

Print index x [x]. The index is formated in the font, size, and so forth
in effect at the time it is printed, rather than at the time it is collected.

Enter two-column mode. The column separation is set to +S [4n, O.Si
in ACM mode] (saved in \n($s). The column width, calculated to fill
the single column line length with both columns, is stored in \n ($1.
The current column is in \n (Sc. You can test register \n ($m [1] to see
if you are in single column or double column mode. Actually, the
request enters N [2] columned output.

Revert to single-column mode .
Begin column. This is like .bp except that it begins a new column on a
new page only if necessary, rather than forcing a whole new page if
there is another column left on the current page.

The pointsize is set to P [1 Op], and the line spacing is set proportion­
ally. The ratio of line spacing to pointsize is stored in \n (Sr. The ratio
used internally by displays and annotations is stored in \n (SR (although
this is not used by .sz).

-ME REFERENCE MANUAL 6

.r WX

.i w x

.b wx

.rb WX

.u wx

.q wx

.bi wx

.bx WX

8. Roff Support

.ix +N

.bl N

. pa +N

.ro

. ar

. nl

• n2 N

.sk

Set Win roman font, appending X in the previous font. To append
different font requests, use X - \c. If no parameters, change to roman
font.

Set W in italics, appending X in the previous font. If no parameters,
change to italic font. Underlines in NROFF.

Set W in bold font and append X in the previous font. If no parame­
ters, switch to bold font. In NROFF, underlines.

Set W in bold font and append X in the previous font. If no parame­
ters, switch to bold font. .rb differs from .b in that .rb does not under­
line in NROFF.

Underline W and append X This is a true underlining, as opposed to
the .ul request, which changes to "underline font" (usually italics in
TROFF). It won't work right if W is spread or broken (including
hyphenated). In other words, it is safe in nofill mode only.

Quote Wand append X In NROFF this just surrounds W with double
quote marks (' • '), but in TROFF uses directed quotes.

Set Win bold italics and append X Actually, sets Win italic and over­
strikes once. Underlines in NROFF. It won't work right if Wis spread
or broken (including hyphenated). In other words, it is safe in nofill
mode only.

Sets Win a box, with X appended. Underlines in NROFF. It won't
work right if W is spread or broken (including hyphenated). In other
words, it is safe in nofill mode only.

Indent, no break. Equivalent to 'in N .

Leave N contiguous white space, on the next page if not enough room
on this page. Equivalent to a .sp N inside a block.

Equivalent to .bp .

Set page number in roman numerals. Equivalent to .af % i.

Set page number in arabic. Equivalent to .af % 1 .

Number lines in margin from one on each page .

Number lines from N, stop if N - 0 .

Leave the next output page blank, except for headers and footers. This
is used to leave space for a full-page diagram which is produced exter­
nally and pasted in later. To get a partial-page paste-in display, say
.sv N, where N is the amount of space to leave; this space will be out­
put immediately if there is room, and will otherwise be output at the
top of the next page. However, be warned: if N is greater than the
amount of available space on an empty page, no space will ever be out­
put.

9. Preprocessor Support

.EQ m T Begin equation. The equation is centered if m is C or omitted,
indented \n(bi [4n] if m is I, and left justified if mis L. Tis a title
printed on the right margin next to the equation. See Typesetting
Mathematics - User's Guide by Brian W. Kernighan and Lorinda L.
Cherry.

-ME REFERENCE MANUAL 7

.EN c

.TS h

. TH

. TE

10. Miscellaneous

• re

.ba +N

.xi +N

.ll +N

.bl

.Io

11. Standard Papers

.tp

.th

. ++ mH

End equation. If c is C the equation must be continued by immediately
following with another .EQ, the text of which can be centered along
with this one. Otherwise, the equation is printed, always on one page,
with \n (es [0.5v in TROFF, 1 v in NROFF] space above and below it.

Table start. Tables are single spaced and kept on one page if possible.
If you have a large table which will not fit on one page, use h == H and
follow the header part (to be printed on every page of the table) with a
.TH. See Tb/ - A Program to Format Tables by M. E. Lesk .

With .TS H, ends the header portion of the table .

Table end. Note that this table does not float, in fact, it is not even
guaranteed to stay on one page if you use requests such as .sp inter­
mixed with the text of the table. If you want it to float (or if you use
requests inside the table), surround the entire table (including the . TS
and • TE requests) with the requests . (z and .) z.

Reset tabs. Set to every O.Si in TROFF and every 0.8i in NROFF .

Set the base indent to + N [0] (saved in \n ($i). All paragraphs, sec­
tions, and displays come out indented by this amount. Titles and foot­
notes are unaffected. The .sh request performs a .ba request if \n (si
[0] is not zero, and sets the base indent to \n (si*\n ($0.

Set the line length to N [6.0i]. This differs from .II because it only
affects the current environment.

Set line length in all environments to N [6.0il. This should not be used
after output has begun, and particularly not in two-columned output.
The current line length is stored in \n ($1.

Draws a horizontal line the length of the page. This is useful inside
floating keeps to differentiate between the text and the figure.

This macro loads another set of macros (in /usr/lib/me/local.me)
which is intended to be a set of locally defined macros. These macros
should all be of the form . • X, where X is any letter (upper or lower
case) or digit.

Begin title page. Spacing at the top of the page can occur, and headers
and footers are supressed. Also, the page number is not incremented
for this page.

Set thesis mode. This defines the modes acceptable for a doctoral
dissertation at Berkeley. It double spaces, defines the header to be a
single page number, and changes the margins to be 1.5 inch on the left
and one inch on the top. . + + and . +c should be used with it. This
macro must be stated before initialization, that is, before the first call of
a paragraphing macro or .sh.

This request defines the section of the paper which we are entering .
The section type is defined by m. C means that we are entering the
chapter portion of the paper, A means that we are entering the appen­
dix portion of the paper, P means that the material following should be
the preliminary portion (abstract, table of contents, etc.) portion of the
paper, AB means that we are entering the abstract (numbered indepen­
dently from 1 in Arabic numerals), and B means that we are entering
the bibliographic portion at the end of the paper. Also, the variants RC

-ME REFERENCE MANUAL 8

. +c T

.Sc T

.SC KN T

.ac AN

12. Predefined Strings

**

*#
*(

*)

*<

*>

and RA are allowed, which specify renumbering of pages from one at
the beginning of each chapter or appendix, respectively. The H param­
eter defines the new header. If there are any spaces in it, the entire
header must be quoted. If you want the header to have the chapter
number in it, Use the string \ \ \ \n (ch. For example, to number appen­
dixes A.1 etc., type.++ RA "'\\\\n(ch.%'. Each section (chapter,
appendix, etc.) should be preceeded by the . +c request. It should be
mentioned that it is easier when using TROFF to put the front material
at the end of the paper, so that the table of contents can be collected
and output; this material can then be physically moved to the beginning
of the paper.

Begin chapter with title T. The chapter number is maintained in \n (ch .
This register is incremented every time . +c is called with a parameter.
The title and chapter number are printed by .Sc. The header is moved
to the footer on the first page of each chapter. If T is omitted, .Sc is
not called; this is useful for doing your own "title page" at the begin­
ning of papers without a title page proper. .Sc calls .SC as a hook so
that chapter titles can be inserted into a table of contents automatically.
The footnote numbering is reset to one.

Print chapter number (from \n(ch) and T. This macro can be
redefined to your liking. It is defined by default to be acceptable for a
PhD thesis at Berkeley. This macro calls SC, which can be defined to
make index entries, or whatever.

This macro is called by .Sc. It is normally undefined, but can be used
to automatically insert index entries, or whatever. K is a keyword,
either "Chapter" or "Appendix" (depending on the . + + mode); N is
the chapter or appendix number, and Tis the chapter or appendix title.

This macro (short for .acm) sets up the NROFF environment for
photo-ready papers as used by the ACM. This format is 25% larger,
and has no headers or footers. The author's name A is printed at the
bottom of the page (but off the part which will be printed in the confer­
ence proceedings), together with the current page number and the total
number of pages N. Additionally, this macro loads the file
/usr/lib/me/acm.me, which may later be augmented with other macros
useful for printing papers for ACM conferences. It should be noted
that this macro will not work correctly in TROFF, since it sets the page
length wider than the physical width of the phototypesetter roll.

Footnote number, actually *(\n(St*I. This macro is incremented
after each call to .) f.

Delayed text number. Actually [\n ($d].

Superscript. This string gives upward movement and a change to a
smaller point size if possible, otherwise it gives the left bracket charac­
ter (' ('). Extra space is left above the line to allow room for the super­
script.

Unsuperscript. Inverse to *I. For example, to produce a superscript
you might type x\ *(2\ •), which will produce x2.

Subscript. Defaults to '< ' if half-carriage motion not possible. Extra
space is left below the line to allow for the subscript.

Inverse to \ • <.

- ME REFERENCE MANUAL

The day of the week, as a word.

The month, as a word.

9

*(dw
*(mo

*(td Today's date, directly printable. The date is of the form December 14,
1979. Other forms of the date can be used by using \n (dy {the day of
the month; for example, 14), *(mo (as noted above) or \n(mo (the
same, but as an ordinal number; for example, December is 12), and
\n {yr {the last two digits of the current year).

*(lq
*(rq

*-

Left quote marks. Double quote in NROFF.

Right quote.

·3/4 em dash in TROFF; two hyphens in NROFF.

13. Special Characters and Marks
There are a number of special characters and diacritical marks (such as accents) available

through -me. To reference these characters, you must call the macro .sc to define the charac­
ters before using them .
. sc Define special characters and diacritical marks, as described in the

remainder of this section. This macro must be stated before initializa­
tion.

The special characters available are listed below.
Name Usage Example
Acute accent \ •· a\•· a
Grave accent \•' e\•' e
Umlat \•: u\•: U
Tilde \ •- n\ •- ii
Caret \ •· e\ •· e
Cedilla \ •, c\ •, ~
Czech \ •v e\ •v e
Circle \•o A*o A
There exists \ • (qe 3
For all *{qa V

Acknowledgments
I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use

the - me macros to produce non-trivial papers during the development stages; Ricki Blau,
Pamela Humphrey, and Jim Joyce for their help with the documentation phase; and the
plethora of people who have contributed ideas and have given support for the project.

FSCK-The U1'1IX File System Check Program

T J. Kowalski

Bell Laboratories
Murray Hill. New Jersey 07974

ABSTRACT

The UNIXt File System Check Program (/5c/d is an interactive file system check and
repair program. Fsck uses the redundant structural information in the UNIX file sys­
tem to perform several consistency checks. If an inconsistency is detected. it is
reported to the operator. who may elect to fix or ignore each inconsistency. These
inconsistencies result from the permanent interruption of the tile system updates.
which are performed every time a tile is modified. Fsck is frequently able to repair
corrupted file systems using procedures based upon the order in which UNIX honors
these file system update requests.

The purpose of this document is to describe the normal updating of the file system.
to discuss the possible causes of file system corruption. and to present the corrective
actions implemented by fsck. Both the program and the interaction between the pro­
gram and the operator are described.

1. I '.\TRODl'CTIO'O

When a UNIX operating system is brought up, a consistency check of the file systems should
always be performed. This precautionary measure helps to insure a reliable environment for
file storage on disk. If an inconsistency is discovered, corrective action must be taken. 1'o
changes are made to any file system by .lkk without prior operator approval.

The purpose of this memo is to dispel the mystique surrounding file system inconsistencies. It
first describes the updating of the file system (the calm before the storm) and then describes
file system corruption (the storml. Finally, the set of heuristically sound corrective actions
used by .tsL'k (the Coast Guard to the rescue) is presented.

2. l 1PDATE OF THE FILE SYSTEM

Every working day hundreds of tiles are created, modified, and removed. Every time a file is
modified. the UNIX operating system performs a series of file system updates. These updates.
when written on disk, yield a consistent file system. To understand what happens in the event
of a permanent interruption in this sequence, it is important to understand the order in which
the update requests were probably being honored. Knowing which pieces of information were
probably written to the file system first, heuristic procedures can be developed to repair a cor­
rupted file system.

There are five types of file system updates. These involve the super-block, inodes, indirect
blocks. data blocks (directories and files>, and free-list blocks.

1.1 Super-Block

The super-block contains information about the size of the fife system, the size of the inode
list. part of the free-block list, the count of free blocks, the count of free inodes, and part of
the free-inode list.

The super-block of a mounted file system (the root file system is always mounted> is written to
the file system whenever the file system is unmounted or a sync command is issued.

t llf>.ilX is a Trademark of Bell Telephone L11bor111ories.

2 Fsc·1.;

2.2 lnodes

An inode contains information about the type of inode (directory. data, or special). the number
of directory entries linked to the inode. the list of blocks claimed by the inode. and the size of
the inode.

An inode is written to the file system upon closure 1 of the file associated with the inode.

2.3 Indirect Blocks

There are three types of indirect blocks: single-indirect, double-indirect and triple-indirect. A
single-indirect block contains a list of some of the block numbers claimed by an inode. Each
one of the 128 entries in an indirect block is a data-block number. A double-indirect block
contains a list of single-indirect block numbers. A triple-indirect block contains a list of
double-indirect block numbers.

Indirect blocks are written to the file system whenever they have been modified and released;
by the operating system.

2.4 Data Blocks

A data block may contain file information or directory entries. Each directory entry consists of
a file name and an inode number.

Data blocks are written to the file system whenever they have been modified and released by
the operating system.

2.5 First Fr~-List Block

The super-block contains the first free-list block. The free-list blocks are a list of all blocks that
are not allocated to the super-block. inodes, indirect blocks. or data blocks. Each free-list block
contains a count of the number of entries in this free-list block, a pointer to the next free-list
block, and a partial list of free blocks in the file system.

Free-list blocks are written to the file system whenever they have been modified and released
by the operating system.

3. CORRUPTION OF THE FILE SYSTEM

A file system can become corrupted in a variety of ways. The most common of these ways are
improper shutdown procedures and hardware failures.

3.1 Improper System Shutdown and Startup

File systems may become corrupted when proper shutdown procedures are not observed. e.g ..
forgetting to sync the system prior to halting the CPU, physically write-protecting a mounted
file system, or taking a mounted file system off-line.

File systems may become further corrupted if proper startup procedures are not observed, e.g ..
not checking a file system for inconsistencies, and not repairing inconsistencies. Allowing a
corrupted file system to be used (and, thus. to be modified further) can be disastrous.

3.2 Hardware Failure

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a disk
pack, or as blatant as a non-functional disk-controller .

... DETECTION AND CORRECTI01'1 OF CORRUPTJO!"ll

A quiescentJ file system may be checked for structural integrity by performing consistency

I. All in core blocks are also written to the tile S)Stem upon issue of a sr111· system call.

2. More precisely. they are queued for eventual writing. Physical 1/0 is deferred until the buffer is needed b~ l''l\
or a -':''"'. command is issued.

3. I.e .• unmounted and not being wriuen on.

FSCK

checks on the redundant data intrinsic to a tile system. The redundant data is either read from
the file system or computed from other known values. A quiescent state is important during
the checking of a file system because of the multi-pass nature of the jscf.. program.

When an inconsistency is discovered .tscf.. reports the inconsistency for the operator to chose a
corrective action.

Discussed in this section are how to discover inconsistencies and possible corrective actions for
the super-block. the inodes. the indirect blocks. the data blocks containing directory entries.
and the free-list blocks. These corrective actions can be performed interactively by the .tsc/..
command under control of the operator.

4.1 Super-Block

One of the most common corrupted items is the super-block. The super-block is prone to corr­
uption because every change to the file system's blocks or inodes modifies the super-block.

The super-block and its associated parts are most often corrupted when the computer is halted
and the last command involving output to the file system was not a ~1·11c command.

The super-block can be checked for inconsistencies involving tile-system size. inode-list size.
free-block list, free-block count, and the free-inode count.

4.1. 1 File-System Size and /11ode-Lis1 Size. The file-system size must be larger than the number
of blocks used by the super-block and the number of blocks used by the list of inodes. The
number of inodes must be less than 65.535. The file-system size and inode-list size are critical
pieces of information to the .fsc/.. program. While there is no way to actually check these sizes.
Jsck can check for them being within reasonable bounds. All other checks of the tile system
depend on the correctness of these sizes.

4.1.2 Free-Block List. The free-block list starts in the super-block and continues through the
free-list blocks of the file system. Each free-list block can be checked for a list count out of
range, for block numbers out of range. and for blocks already allocated within the file sy~tem.
A check is made to see that all the blocks in the file system were found.

The first free-block list is in the super-block. Fsck checks the list count for a value of less than
zero or greater than fifty. h also checks each block number for a value of less than the first
data block in the file system or greater than the last block in the file system. Then it compares
each block number to a list of already allocated blocks. If the free-list block pointer is non­
zero, the next free-list block is read in and the process is repeated.

When all the blocks have been accounted for. a check is made to see if the number of blocks
used by the free-block list plus the number of blocks claimed by the inodes equals the total
number of blocks in the file system.

If anything is wrong with the free-block list, then .tsck may rebuild it. excluding all blocks in the
list of allocated blocks.

4. 1.3 Free-Block Cou111. The super-block contains a count of the total number of free blocks
within the file system. Fsck compares this count to the number of blocks it found free within
the file system. If they don't agree, then .fsck may replace the count in the super-block by the
actual free-block count.

4.1.4 Free-Jnode Coum. The super-block contains a count of the total number of free inodes
within the file system. Fsck compares this count to the number of inodes it found free within
the file system. If they don't agree, then .fkk may replace the count in the super-block by the
actual free-inode count.

4.2 lnodes

An individual inode is not as likely to be corrupted as the super-block. However. because of
the great number of active inodes, there is almost as likely a chance for corruption in the inode
list as in the super-block:

4 FSCK

The list of inodes is checked sequentially starting with inode I lthere is no inode Ol and going
to the last inode in the file system. Each inode can be checked for inconsistencies involving
format and type, link count, duplicate blocks. bad blocks. and inode size.

4.2. I Format and Type. Each inode contains a mode word. This mode word describes the type
and state of the inode. Inodes may be one of four types: regular inode. directory inode. special
block inode. and special character inode. If an inode is not one of these types. then the inode
has an illegal type. Inodes may be found in one of three states: unallocated. allocated. and nei­
ther unallocated nor allocated. This last state indicates an incorrectly formatted inode. An
inode can get in this state if bad data is written into the inode list through. for example. a
hardware failure. The only possible corrective action is for .fkk is to clear the inode.

4.2.2 Li11k Coum. Contained in each inode is a count of the total number of director}· entries
linked to the inode.

Fsck verifies the link count of each inode by traversing down the total directory structure. start­
ing from the root directory. calculating an actual link count for each inode.

If the stored link count is non-zero and the actual link count is zero, it means that no ·directory
entry appears for the inode. If the stored and actual link counts are non-zero and unequal. a
directory entry may have been added or removed without the inode being updated.

If the stored link count is non-zero and the actual link count is zero . .lkk may link the discon­
nected file to the lnst+,/01111d directory. If the stored and actual link counts are non-zero and
unequal • ./kk may replace the stored link count by the actual link count.

4.2.3 Duplicate Blocks. Contained in each inode is a list or pointers to lists (indirect blocks l of
all the blocks claimed by the inode.

Fsck compares each block number claimed by an inode to a list of already allocated blocks. If a
block number is already claimed by another inode, the block number is added to a list of dupli­
cate blocks. Otherwise, the list of allocated blocks is updated to include the block number. If
there are any duplicate blocks, .fkk will make a partial second pass of the inode list to find the
inode of the duplicated block, because without examining the files associated with these inodes
for correct content, there is not enough information available to decide which inode is cor­
rupted and should be cleared. Most times. the inode with the earliest modify time is incorrect.
and should be cleared.

This condition can occur by using a file system with blocks claimed by both the free-block list
and by other parts of the file system.

If there is a large number of duplicate blocks in an inode. this may be due to an indirect block
not being written to the file system.

Fsck will prompt the operator to clear both inodes.

4.2.4 Bad Blocks. Contained in each inode is a list or pointer to lists of all the blocks claimed
by the inode.

Fsck checks each block number claimed by an inode for a value lower than that of the first data
block. or greater than the last block in the file system. If the block number is outside this
range, the block number is a bad block number.

If there is a large number of bad blocks in an inode. this may be due to an indirect block not
being written to the file system.

Fsck will prompt the operator to clear both inodes.

4.2.5 Size Checks. Each inode contains a thirty-two bit (four-byte) size field. This size indi­
cates the number of characters in the file associated with the inode. This size can be checked
for inconsistencies. e.g.. directory sizes that are not a multiple of sixteen characters. or the
number of blocks actually used not matching that indicated by the inode size.

FSCK

A directory inode within the UNIX file system has the directory bit on in the inode mode word.
The directory size must be a multiple of sixteen because a directory entry contains sixteen bytes
of information hwo bytes for the inode number and fourteen bytes for the file or directory
namel.

Fsck will warn of such directory misalignment. This is only a warning because not enough
information can be gathered to correct the misalignment.

A rough check of the consistency of the size field of an inode can be performed by computing
from the size field the number of blocks that should be associated with the inode and comp.ir­
ing it to the actual number of blocks claimed by the inode.

Fse"k calculates the number of blocks that there should be in an inode by dividing the number
of characters in a inode by the number of characters per block (512 l and rounding up. Fs('J..
adds one block for each indirect block associated with the inode. If the actual number of blocks
does not match the computed number of blocks, .tkk will warn of a possible file-size error.
This is only a warning because LINJX does not fill in blocks in files created in random order.

4.J Indirect Blocks

Indirect blocks are owned by an inode. Therefore. inconsistencies ·in indirect blocks directly
affect the inode that owns it.

Inconsistencies that can be checked are blocks already claimed by another inode and block
numbers outside the range of the file system.

For a discussion of detection and correction of the inconsistencies associ<1ted with indirect
blocks. apply iteratively Sections 4.2.3 and 4.2.4 to each level of indirect blocks.

4.4 Data Blocks

The two types of data blocks are plain data blocks and directory data blocks. Plain data blocks
contain the information stored in a file. Directory data blocks contain directory entries. Fsi·k
does not attempt to check the validity of the contents of a plain data block.

Each directory data block can be checked for inconsistencies involving directory inode numbers
pointing to unallocated inodes. directory inode numbers greater than the number of inodes in
the file system. incorrect directory inode numbers for ... " and ". and directories which are
disconnected from the file system.

If a directory entry inode number points to an unallocated inode. then .tkk may remove that
directory entry. This condition probably occurred because the data blocks containing the direc­
tory entries were modified and written to the file system while the inode was not yet written
out.

If a directory entry inode number is pointing beyond the end of the inode list • . fsck may remove
that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for ... •• should be the first entry in the directory data block.
Its value should be equal to the inode number for the directory data block.

The directory inode number entry for •• •• " should be the second entry in the directory data
block. Its value should be equal to the inode number for the parent of the directory entry (or
the inode number of the directory data block if the directory is the root directory I.

If the directory inode numbers are incorrect • . f5ck may replace them by the correct values.

Fsi·k checks the general connectivity of the file system. If directories are found not to be linked
into the file system • .tsck will link the directory back into the file system in the lost +.timncl direc­
tory. This condition can be caused by inodes being written to the file system with the
corresponding directory data blocks not being written to the file system.

6 FSCA.

4.5 Frt>e-List Blocks

Free-list blocks are owned by the super-block. Therefore. inconsistencies in free-list blocks
directly affect the super-block.

Inconsistencies that can be checked are a list count outside of range. block numbers outside of
range. and blocks already associated with the tile system.

For a discussion of detection and correction of the inconsistencies associated with free-list
blocks see Section 4.1.2.

ACK"IOWLEDGEME"lT

I would like to thank Larry A. Wehr for advice that lead to the first version of /kl.. and Rick B.
Brandt for adapting .tsc/.; to UNIX/TS.

REFERE"ICES

(I] Ritchie, 0. M .• and Thompson. K., The UNIX Time-Sharing System, The Bell System
Tech11ical Journal 57. 6 (July-August 1978, Part 2), pp. 1905-29.

[2] Dolotta, T. A., and Olsson, S. B. eds., UNIX User's Ma1111al, Edition I. I <January 1978).

[3] Thompson, K., UNIX Implementation. The Bell Sys1em Ted111irnl Joumal 57, 6 <July­
August 1978. Part 2), pp. 1931-46.

, ,

FSCK 7

Appendix-FSCK ERROR CO"IDITIO"IS

1. CO"l\'E"ITIO"lS

Fsck is a multi-pass file system check program. Each file system pass invokes a different Phase
of the ./kk program. After the initial setup . ./kk performs successive Phases over each tile sys­
tem. checking blocks and sizes. path-names. connectivity. reference counts. and the free-block
list (possibly rebuilding it). and performs some cleanup.

When an inconsistency is detected, ./kk reports the error condition to the operator. If a
response is required . ./Sek prints a prompt message and waits for a response. This appendix
explains the meaning of each error condition, the possible responses, and the related error con­
ditions.

The error conditions are organized by the Phase of the fsc/.. program in which they can occur.
The error conditions that may occur·in more than one Phase will be discussed in initialization.

2. 11\llTIALIZATJO"l

Before a file system check can be performed, certain tables have to be set up and certain files
opened. This section concerns itself with the opening of files and the initialization of tables.
This section lists error conditions resulting from command line options. memory requests.
opening of files, status of files, tile system size checks. and creation of the scratch tile.

C option?

C is not a legal option to.tsck:. legal options are -y. -n. -s. -S. and -t. F\c/.. terminutes on
this error condition. See the .tsd(JM) manual entry for further detail.

Bad -t option

The -t option is not followed by a file name. Fsd• terminates on this error condition. See the
./.SL-k(1 M) manual entry for further detail.

Invalid -s araument, defaults assumed

The -s option is not suffixed by 3. 4, or blocks-per-cylinder:blocks-to-skip. Fsc/.. assumes a
default value of 400 blocks-per-cylinder and 9 blocks-to-skip. See the /S"k(l M J manual entry
for more details.

Incompatible options: -n and -s

It is not possible to salvage the free-block list without modifying the file system. Fsck ter­
minates on this error condition. See the ./kkO M> manual entry for further detail.

Can't get memory

Fsck's request for memory for its virtual memory tables failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can't open checklist file: F

The default file system checklist file F (usually letdchecklist) can not be opened for reading.
Fsck terminates on this error condition. Check access modes of F.

Can't stat root

Fsck's request for statistics about the root directory "/" failed. This should never happen.
Fsck terminates on this error condition. See a guru.

8 Fsc·J.:

Can't stat F

Fsck's request for statistics about the file system F failed. It ignores this file system and contin­
ues checking the next file system given. Check access modes of F.

F is not a block or character de,·ic:e

You have given ./s£'k a regular file name by mistake. It ignores this file system and continues
checking the next file system given. Check file type of F.

Can't open F

The file system F can not be opened for reading. It ignores this tile system and continues
checking the next file system given. Check access modes of F.

Size check: fsize X isize Y

More blocks are used for the inode list Y than there are blocks in the file system X. or there
are more than 65,535 inodes in the file system. It ignores this file system and continues check­
ing the next file system given. See Section 4.1.1.

(.'an 't create F

F\,·J.. 's request to create a scratch tile F failed. It ignores this tile system and continues checking
the next file system given. Check access modes of F.

("A 'I 'OT SEEK: BLK B (CO,Tl"llE)

Fsck's request for moving to a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often. however the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of ./sd• should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, .fkk will terminate with the message .. Fatal 1/0
error".

NO terminate the program.

CA"' "IOT READ: BLK B <CO~Tl1':l1'E)

Fs<·k's request for reading a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however. the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of .fs<·k should be made to re-check this file system. If the block was part
of the vinual memory bu.ff er cache • . lkk will terminate with the message "Fatal 1/0
error".

NO terminate the program.

FSCK 9

CA"I 1'10T WRITE: BLK B (CO"ITl"ll'E)

Fsc/...'s request for writing a specified block number B in the file system failed. The disk 1s
write-protected. See a guru.

Possible responses to the COT\Tll'UE prompl are:

YES attempt to continue to run the file system check. Often. however. the prohlem will
persist. This error condition will not allow a complete check of the tile system. :'\
second run of ./k/... should be made to re-check this file system. Jf the block was part
of the virtual memory buffer cache. fsc/... will terminate with the message "Fatal 1/0
error".

NO terminate the program.

3. PHASE 1: CHECK BLOCKS A'iD SIZES

This phase concerns itself with the inode list. This section lists error conditions resulting from
checking inode types. setting up the zero-link-count table. examining inode block numhers for
bad or duplicate blocks, checking inode size. and checking inode format.

llNK"l.lOW1'i FILE TYPE l•I (CLEAR)

The mode word of the inode I indicates that the inode is not a special character inode. special
character inode, regular inode. or directory inode. See Section 4.2.1.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. This will always invoke the l:J\ALLO­
C ATED error condition in Phase 2 for each directory entry pointing to this inode.

NO ignore this error condition.

LINK C0l1NT TABLE OVERFLOW (CO"l.lTl"lll[)

An internal table for .fsd• containing allocated inodes with a link count of zero has no more
room. Recompile fsc/... with a larger value of MAXLNCNT.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of
the tile system. A second run of /k/.; should be made to re-check this tile system.
If another allocated inode with a zero link count is found. this error condition is
repeated.

NO terminate the program.

B BAD 1•1

lnode 1 contains block number B with a number lower than the number of the first data block
in the file system or greater than the number of the last block in the file system. This error
condition may invoke the EXCESSIVE BAD BLKS error condition in Phase I if inode I has
too many block numbers outside the file system range. This error condition will always invoke
the BAD/DUP error condition in Phase 2 and Phase 4. See Section 4.2.4.

10 FSCK

EXCESSIVE BAD BLKS I •I <CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number lower than the
number of the first data block in the lile system or greater than the number of last block in the
file system associated with inode I. See Section 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode
in the file system. This error condition will not allow a complete check of the tile
system. A second run of./5ck should be made to re-check this tile system.

NO terminate the program.

B DUP J•J

]node I contains block number B which is already claimed by another inode. This error condi­
tion may invoke the EXCESSIVE DUP BLKS error condition in Phase I if inode I has too
many block numbers claimed by other inodes. This error condition will always invoke Phase lb
and the BAD/DUP error condition in Phase 2 and Phase 4. See Section 4.2.3.

EXCESSIVE DUP BLKS I•I <CO""iTI"IUEl

There is more than a tolerable number (usually 10) of blocks claimed by other inodes. See
Section 4.2.3.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode
in the file system. This error condition will not allow a complete check of the tile
system. A second run of fsd should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in .tsck containing duplicate block numbers has no more room. Recompile
.Jkk with a larger value of DUPTBLSIZE.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of
the file system. A second run of ./Sek should be made to re-check this file system.
If another duplicate block is found, this error condition will repeat.

NO terminate the program.

POSSIBLE FILE SIZE ERROR l•I

The inode I size does not match the actual number of blocks used by the inode. This is only a
warning. See Section 4.2.5.

DIRECTORY MISALIGNED l•I

The size of a directory inode is not a multiple of the size of a directory entry (usually 16). This
is only a warning. See Section 4.2.5.

PARTIALLY ALLOCATED INODE l•J (CLEAR)

Jnode I is neither allocated nor unallocated. See Section 4.2.1.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

FSCK 11

4. PHASE 18: RESCA1'1 FOR MORE DUPS

When a duplicate block is found in the file system, the file system is rescanned to find the
inode which previously claimed that block. This section lists the error condition when the
duplicate block is found.

B DUP l•I

lnode I contains block number B which is already claimed by another inode. This error condi­
tion will always invoke the BAD/DUP error condition in Phase 2. You can determine which
inodes have overlapping blocks by examining this error condition and the DUP error condition
in Phase 1. See Section 4.2.3.

5. PHASE 2: CHECK PATH-NAMES

This phase concerns itself with removing directory entries pointing to error conditioned inodes
from Phase 1 and Phase 1 b. This section lists error conditions resulting from root inode mode
and status, directory inode pointers in range, and directory entries pointing to bad inodes.

ROOT JNODE UNALLOCATED. TERMINATING.

The root inode (usually inode number 2) has no allocate mode bits. This should never happen.
The program will terminate. See Section 4.2.1.

ROOT P\jODE 1'iOT DIRECTORY ffJX)

The root inode (usually inode number 2> is not directory inode type. See Section 4.2.1.

Possible responses to the FIX prompt are:

YES replace the root inode's type to be a directory. If the root inode's data blocks are
not directory blocks, a VERY large number of error conditions will be produced.

NO terminate the program.

DUPS/BAD JN ROOT INODE (CONTINUE>

Phase 1 or Phase lb have found duplicate blocks or bad blocks in the root inode (usually inode
number 2) for the file system. See Section 4.2.3 and 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to
run the file system check. If the root inode is not correct, then this may result in a
large number of other error conditions.

NO terminate the program.

I OUT OF RANGE J•I NAME•F (REMOVE)

A directory entry F has an inode number I which is greater than the end of the inode list. See
Section 4.4.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

12

l'"IALLOCATED l•I OW"IER=O MODE=M SIZE-S MTIME=T "IAME=F <REMOYEl

A directory entry F has an inode I without allocate mode bits. The owner 0. mode M. size S.
modify time T. and file name Fare printed. See Section 4.4.

Possible responses to the REMOVE prompt are:

YES the directory entry Fis removed.
r-.;o ignore this error condition.

DUP/BAD l=I OW"IER=O MODE=M SIZE•S MTIME=T DIR=F <RE!\10\'EI

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directon entn
F, directory inode I. The owner 0, mode M, size S. modify time T. and directory nam~ Far~
printed. See Section 4.2.3 and 4.2.4.

Possible responses to the REMOVE prompt are:

YES the directory entry Fis removed.
NO ignore this error condition.

Dl'P/BAD J=I OW'li;ER=O MODE=M SIZE=S MTIME=T FILE•F CREMO\'El

Phase I or Phase I b have found duplicate blocks or bad blocks associated with directory entry
F. inode I. The owner O. mode M. size S. modify time T. and file name F are printed. See
Section 4.2.3 and 4.2.4.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

6. PHASE 3: CHECK CO"l"IECTIVITY

This phase c.oncerns itself with the directory connectivity seen in Phase 2. This section lists
error conditions resulting from unreferenced directories, and missing or full lost +.tnwul direc­
tories.

U"IREF DIR l•I OW"IER•O MODE=M SIZE=S MTIME=T (RECO""l'li;ECTl

The directory inode I was not connected to a directory entry when the file system was
traversed. The owner O. mode M, size S. and modify time T of directory inode I are printed.
See Section 4.4 and 4.2.2.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode I to the file system in the directory for lost files (usually
/os1+.to1111d>. This may invoke the los1+.tou11d error condition in Phase 3 if there are
problems connecting directory inode I to Inst +.found. This may also invoke the
CONNECTED error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in
Phase 4.

SORRY. 1'10 lost+found DIRECTORY

There is no Josr+./nund directory in the root directory of the file system; .tsc/.: ignores the
request to link a directory in /nst+.tound. This will always invoke the UNREF error condition in
Phase 4. Check access modes of /os1+.tin111d See .f.kk(l M) manual entry for further detail.

FSCK

SORRY. NO SPACE 11'1 lost+found DIRECTORY

There is no space to add another entry to the los1+.th111ul directory in the root directory of the
file system; .tkk ignores the request lo link a directory in /ost+./hwul. This will always invoke
the UN REF error condition in Phase 4. Clean out unnecessary entries in lo::;t +.to1111d or make
lost +.thuml larger. See fsck(1 M) manual entry for further detail.

DIR 1=11 C01'j"IECTED. PARE"IT \\'AS 1=12

This is an advisory message indicating a directory inode 11 was successfully connected to the
lnsr+.tound directory. The parent inode 12 of the directory inode 11 is replaced by the inode
number of the los1+jo1111d directory. See Section 4.4 and 4.2.2.

7. PHASE 4: CHECK REFERE"ICE COU"ITS

This phase concerns itself with the link count information seen in Phase 2 and Phase 3. This
section lists error conditions resulting from unreferenced files, missing or full los1+.ti"'11d direc­
tory, incorrect link counts for files, directories, or special files, unreferenced tiles and direc­
tories, bad and duplicate blocks in tiles and directories, and incorrect total free-inode counts.

U'!'IREF FILE J=J OW"IER=O MODE=M SIZE=S MTIME=T <RECO"l"llECT)

)node I was not connected to a directory entry when the tile system was traversed. The owner
0. mode M, size S, and modify time T of inode I are printed. See Section 4.2.2.

Possible responses to the RECONNECT prompt are:

YES reconnect inode I to the tile system in the directory for lost tiles (usual!~
losr+fowufJ. This may invoke the losr+fo11/I{/ error condition in Phase 4 if there are
problems connecting inode I to lost +.tou11d.

NO ignore this error condition. This will always invoke the CLEAR error condition in
Phase 4.

SORRY. NO lost+found DIRECTORY

There is no losr+.to1111d directory in the root directory of the file system; ./kk ignores the
request to link a file in lost +.tnmul. This will always invoke the CLEAR error condition in
Phase 4. Check access modes of /osr+.tn1111d.

SORRY. NO SPACE JN lost+found DIRECTORY

There is no space to add another entry to the lost +.ti11111d directory in the root directory of the
file system; fsck ignores the request to link a file in lost+.tnuncl. This will always invoke the
CLEAR error condition in Phase 4. Check size and contents of losr+.tnwul.

(CLEAR)

The inode mentioned in the immediately previous error condition can not be reconnected. See
Section 4.2.2.

Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error condition by
zeroing its contents.

NO ignore this error condition.

14 Fsc;.:

Ll"'\I\ COF"IT FILE l•I OW"'\ER=O MODE=M SIZE::sS MTIME=T COl"\T=X SHOl LO
BE Y <ADJ l'ST>

The link count for inode I which is a tile, is X but should be Y. The owner 0. mode M. size
S. and modify time T are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of tile inode I with Y.
NO ignore this error condition.

Ll'll\ C0l11';T DIR l•I OW'lER-0 MODE==M SIZE=S MTIME=T COl'lT=X SHOl LD
BE Y <ADJUST>

The link count for inode I which is a directory, is X but should be Y. The owner 0, mode M.
size S. and modify time T of directory inode I are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of directory inode I with Y.
NO ignore this error condition.

Ll"ll\ COl''lT F l=I OW'lER==O MODE=M SIZE=S MTIME-T COl1'lT=X SHOlLD RE
Y (ADJl 1ST>

The link count for F inode I is X but should be Y. The name F, owner 0. mode M. size S.
and modify time Tare printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of inode I with Y.
NO ignore this error condition.

l 11';REF FILE l•I OW'lER•O MODE=M SIZE=S MTIME•T <CLEAR}

Inode I which is a file. was not connected to a directory entry when the file system was
traversed. The owner O. mode M. size S. and modify time T of inode I are printed. See Sec­
tion 4.2.2 aRd 4.4.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

llNREF DIR 1•1 OW'lER•O MODE=M SIZE•S MTIME=T (CLEAR)

I node 1 which is a directory, was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode I are printed. See Sec­
tion 4.2.2 and 4.4.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

FSCK 15

BAD/DUP FILE 1==1 OW~ER==O MODE•M SIZE==S MTIME==T (CLEAR)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with file inode I, The
owner 0, mode M. size S. and modify time T of inode I are printed. See Section 4.2.3 and
4.2.4.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

BAD/DUP DIR l•I OW~ER•O MODE•M SIZE=S MTIME==T CCLEARl

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directory inode
I. The owner 0, mode M, size S. and modify time T of inode I are printed. See Section 4.2.3
and 4.2.4.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

FREE J~ODE COFl\T WRO~G Ill\ Sl1PERBLK <FIXl

The actual count of the free inodes does not match the count in the super-block of the file sys­
tem. See Section 4.1.4.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.
NO ignore this error condition.

8. PHASE 5: CHECK FREE LIST

This phase concerns itself with the free-block list. This section lists error conditions resulting
from bad blocks in the free-block list, bad free-blocks count. duplicate blocks in the free-block
list, unused blocks from the file system not in the free-block list, and the total free-block count
incorrect.

EXCESSIVE BAD BLKS I~ FREE LIST <CO'l\Tl~l1 E)

The free-block list contains more than a tolerable number (usually 101 of blocks with a value
less than the first data block in the file system or greater than the last block in the file system.
See Section 4.1.2 and 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution of ,lkk. This error
condition will always invoke the BAD BLKS IN FREE LIST error condition in Phase
5.

NO terminate the program.

16 r .)t f\

EXCESSIVE DUP BLKS 11'1 FREE LIST (CO"ITl"lliE)

The free-block list contains more than a tolerable number (usually I 0 J of blocks claimed by
inodes or earlier parts of the free-block list. See Section 4.1.2 and 4.2.3.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution of /sc/... This error
condition will always invoke the DUP BLKS 11"'-i FREE LIST error condition in Pha~e
5.

NO terminate the program.

BAD FREEBLK C0l1"1T

The count of free blocks in a free-list block is greater than 50 or less than zero. This error con­
dition will always invoke the BAD FREE LIST condition in Phase 5. See Section 4.1.2.

X BAD BLKS JN FREE LIST

X blocks in the free-block list have a block number lower than the first data block in the tile
system or greater than the last block in the tile system. This error condition will always invoke
the BAD FREE LIST condition in Phase 5. See Section 4.1.2 and 4.2.4.

X Dl!P BLKS J"I FREE LIST

X blocks claimed by inodes or earlier parts of the free-list block were found in the free-block
list. This error condition will always invoke the BAD FREE LIST condition in Phase 5 See
Section 4.1.2 and 4.2.3.

X BLK(S) MJSSJ"IG

X blocks unused by the file system were not found in the free-block list. This error condition
will always invoke the BAD FREE LIST condition in Phase 5. See Section 4.1.2.

FREE BLK COU"IT WRO"IG 11'1 SllPERBLOCK (FIX)

The actuar·count of free blocks does not match the count in the super-block of the file system:
See Section 4.1.3.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual counL
NO ignore this error condition.

BAD FREE LIST (SALVAGE>

Phase 5 has found bad blocks in the free-block list, duplicate blocks in the free-block list, or
blocks missing from the file system. See Section 4.1.2, 4.2.3, and 4.2.4.

Possible responses to the SALVAGE prompt are:

YES replace the actual free-block list with a new free-block list. The new free-block list
will be ordered to reduce time spent by the disk waiting for the disk to rotate into
position.

NO ignore this error condition.

FSCK 17

9. PHASE 6: SAL\' AGE FREE LIST

This phase concerns itself with the free-block list reconstruction. This section lists error condi­
tions resulting from the blocks-to-skip and blocks-per-cylinder values.

Default free-bloc:k list spacini,t assumed

This is an advisory message indicating the blocks-to-skip is greater than the blocks-per-cylinder.
the blocks-to-skip is less than one. the blocks-per-cylinder is less than one. or the blocks-per­
cylinder is greater than 500. The default values of 9 blocks-to-skip and 400 blocks-per-cylinder
are used. See the .fkkO M) manual entry for further detail.

10. CLEANUP

Once a file system has been checked. a few cleanup functions are performed. This section lists
advisory messages about the file system and modify status of the file system.

X flies Y blocks Z free

This is an advisory message indicating that the file system checked contained X files using Y
blocks leaving Z blocks free in the file system.

••••• BOOT UNIX (NO SY"IC!) •••••

This is an advisory message indicating that a mounted file system or the root file system has
been modified by ./k/.:.. If UNIX is not rebooted immediately. the work done by fscJ. .. may he
undone by the in-core copies of tables UNIX keeps.

••••• FILE SYSTEM WAS MODIFIED •••••

This is an advisory message indicating that the current file system was modified by .fkk. If this
file system is mounted or is the current root file system, .ts,·k should be hailed and UNIX
rebooted. If UNIX is not rebooted immediately. the work done by ./Sek may be undone by the
in-core copies of tables UNIX keeps.

May 1979

18

J'llTIALIZATIO"I

Bad -t option ...

INDEX OF MESSAGES
(Alphabetically within each section)

('option'!
CAI\ !\OT READ: Bl K 8 (C01'TIM:E1
CAI\ 1'0T SEEK BLK 8 tCOl'\TIM'El .
CAI' 1'0T WRITE: BLK 8 (("01'TIM'El
Can·1 i.:reate F
Ca11·1 11-ct memory
Can"t open i.:hei.:klis1 tile: F
C;m"t open F
Can't stat F
Can't stat root
f i' not a hloi.:k or character device
lncompatihle options: -n and -s .
lmalid -~argument. defaults assumed
Size i.:hcck · fsizc X isize Y

PHASE 1: CHECK BLOCKS A'ID SIZES

RBADl•I
RIHl'l-1
DIRLClOR't ~llS.\l ICil\l:D 1-1
Dl I' TABI E O\FRHOW IC01'Tll'\l'I::1
EXCl:SSI\ I: BAD Bl KS 1-1 (COl'\Tl1'l'E1
EXCTSSl\'E Dl P Bl KS 1-1 <COl'\TIM'El
Lll'\K copq TABl E O\'ERHOV.' (('01'Tl1'l:El
PARTIALLY Al.LOCATED 11'0DE 1-1 ICLEARI
POSSIB! E FILE SIZE ERROR 1-1
l'1'K1'0Wl\ Fil E TYPE 1-1 ICLEARI

PHASE 18: RESCA'l FOR MORE DUPS

B Dl"P 1-1 .

PHASE 2: CHECK PATH-'lAMES

Dl'P/BAD 1-1 OWl\ER-0 MODE-M SIZE-S MTIME-T DIR-f tREMO\'E1
Dl'P/BAD 1-1 OW!\ER-0 MODE-M SIZE-S MTIME•T FILE•F IREMO\'El
Dl'PS/BAD ll'\ ROOT ll'\ODE fCOl'\Tl1'l'El
I Ol'T OF RAMiE l•l Jl.IAME•F fREMOVEl
ROOT 11\0DI: !'OT DIRECTORY IFIXI
ROOT 11\0DE l'1'ALL<X"ATED. TERMll\ATIMi.
l'l\Al.LOCATED 1•1 OWJl.IER-0 MODE•M SIZE•S MTIME•T l\AME•F IREMO\'El

PHASE 3: CHECK COl\ill'l,jECTl\'ITY

DIR 1•11 C0!\1'ECTED. PARE!\T WAS 1•12
SORRY. 1\0 SPACE 11' lost+found DIRECTORY
SORRY. 1\0 lost+found DIRECTORY
l'1'REF DIR l•I OWl\ER•O MODE•M SIZE•S MTIME•T IREC0!\1'ECT1

FS<·A:

8
x
7

x
i

7
x

9

JO
Iii
!fl

Jll

Iii
9

10
10

9

11

I.:'
12
11
11
11
11
12

l J
IJ
I]

J 1

FSCK 19

PHASE 4: CHECK REFERE~CE COl'~TS
-

BAD/Dl:P DIR l•I OWl\ER•O MODE•M SIZE•S MTIME•T ICl.EAIO I~

BAD/Dl'.P FILE l•I OWl\ER•O MODE•l\1 SIZE•S MTIME•T !CLEAR> I'
ICLEARI . 1;
FREE 11\0DE cm:!\T WROMi 11' Sl"PERBl.K IFIXI I'
Lll\K COL"!\T DIR 1•1 OW!\ER•O MODE•'.\·1 SIZE•S MTIME•T COl"!\T-X SllCH"I D RI\' 1.-\DJt Sl 1 I-<
ll1'K COl'!\T FILE l•I OV.'!\ER•O ~IODE•'.\I SIZl:•S MTl~IE•T Cot"!\T•X SllOl"I D Bl \' 1.\DJl Sl • 1-<
Ll1'K COl'l\T f 1•1 OV.',ER•O MODE•\I SIZE•S MTll\fl:•T COl.,T•X SllOl'I D Bl\ L\DJl Sl • 1 ..
SORRY. Ml SPACE 11' lost+found DIRECTOR\' I;
SORR'r'. 1\0 lost+found DIRECTOR\' . 1.;
l'NREF DIR l•I OWl\ER•O MODE•!\t SIZE•S MTIME•T ICLEARl I_.
UJ\REF FILE l•I OW!\ER•O MODE•'\t SIZE•S MTIME•T ICLf.ARI I_.
Ul\REF FILE l•I OWl\ER•O MODE•l\t SIZE•S MTIME•T IRECOl\1\EC'TI 13

PHASE 5: CHECK FREE LIST

BAD FREE LIST ISAL\'ACiEI
BAD FREEBLK COL'l\T
EXCESSIVE BAD Bl.KS 11\ FREE LIST ICOl\Tll\l'El
EXCESSIVE Dl'P Bl.KS 11\ FREE LIST IC01\Tll\l:E1
FREE BLK cOl;l\T WROl\Ci I!\ Sl'PERBtOCK IFIXI
X BAD BLKS 11\ FREE LIST
X BLKISI MISS!l\Ci
X Dl1P BLKS 11\ FREE LIST

PHASE 6: SAL\' AGE FREE UST

Default free-l'>lock list spai:ing as~umcd

CLEA~l'P

••••• BOOT l'l\IX (1\() S\'1\C! I •••••
••••• FILE SYSTEM WAS MODIFIED •••••
X tiles Y blocks Z free

l(i
In
15
Iii
Iii
lh
Iii
16

	00-00
	00-01
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	03-73
	03-74
	03-75
	03-76
	03-77
	03-78
	03-79
	03-80
	03-81
	03-82
	03-83
	04-000
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	13-49
	13-50
	13-51
	14-01
	14-02
	14-03
	14-04
	15-00
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	16-00
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-21
	16-22
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19

