DOCUMENTS

PDP—11 Version 2.9

Juldy, 1983

Second Berkeley Software Distribution
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

DOCUMENTS

PDP—11 Version 2.9

Second Berkeley Software Distribution

Installing and Operating 2.9BSD
March 26, 1984

Michael J. Karels
Carl F. Smith

University of California
Berkeley, California 94720

ABSTRACT

This document contains instructions for installation and operation of the
Second Berkeley Software Distribution’s 2.9BSD release of the PDP-111 UNIX}
system. It is adapted from the paper Installing and Operating 4.1bsd by Bill Joy.

This document explains the procedures for installation of Berkeley UNIX on
a PDP-11 or to upgrade an existing Berkeley PDP-11 UNIX system to the new
release. It then explains how to configure the kernel for the available devices and
user load, lay out file systems on the available disks, set up terminal lines and
user accounts, and do system specific tailoring. It also explains system operations
procedures: shutdown and startup, hardware error reporting and diagnosis, file
system backup procedures, resource control, performance monitoring, and pro-
cedures for recompiling and reinstalling system software. Technical details on the
kernel changes are presented in the accompanying paper, ‘‘Changes in the Kernel
in 2.9BSD.”

The 2.9BSD release, unlike previous versions of the Second Berkeley
Software Distribution, is a complete Version 7 UNIX system with all of the stan-
dard\UND(tools and utilities, with or without Berkeley modifications. Therefore,
it does not need to be layered onto an existing Version 7 system; because of the
many changes and additions throughout the system, it would require a substan-
tial effort to merge into most earlier systems.

TDED, MASSBUS, FDP, and UNIBUS are trademarks of Digital Equipment Corporaticn.
tUND(is a trademark of Bell Laboratories.

March 26, 1984

Installing /Operating 2.9BSD -2- Introduction

1. INTRODUCTION

This document explains how to install the 2.9BSD release of the Berkeley version of UNIX
for the PDP-11 on your system. If you are running the July 1981 release of the system, which
was called 2.8BSD, you can avoid a full bootstrap from the new tape by extracting only the
software that has changed. Be warned, however, that there are a large number of changes.
Unless you have many local modifications it will probably be easier to bring up an intact 2.9BSD
system and merge your local changes into it. If you are running any other version of UNIX on
your PDP-11, you will have to do a full bootstrap. This means dumping all file systems which are
to be retained onto tape in a format that can be read in again later (far format is best, or V7
dump if the file system configuration will be the same). A new root file system can be made and
read in using standalone utilites on the tape. The system sources and the rest of the /usr file sys-
tem can then be extracted. Finally, old file systems can be reloaded from tape.

To get an overview of the process and an idea of some of the alternative strategies that are
available, it is wise to look through all of these instructions before beginning.

1.1. Hardware supported

This distribution can be booted on a PDP-11/23, 24, 34, 34A, 40, 44, 45, 55, 60, or 70 CPU
with at least 192 Kbytes of memory and any of the following disks?:

DEC MASSBUS: RMO03, RM05, RP04, RP05, RP06
DEG UNIBUS: RK05, RK06, RK07, RL01, RL02,
RMO02, RP03, RP04, RP05, RP06
AED 8000 UNIBUS: AMPEX DM980 (emulating RP03)
AED STORM-II AMPEX DM980 (emulating RM02)
DIVA COMP V MASSBUS: AMPEX 9300
EMULEX SC-21 UNIBUS: AMPEX 9300, CDC 9766 (emulating RM05)

EMULEX SC-11 or SC-21 UNIBUS: CDC 9762, AMPEX DM980
The tape drivest supported by this distribution are:

DEC MASSBUS: TE16, TU45, TU77

DEC UNIBUS: TE10, TE16, TS11, TU45, TU77
DATUM 15X20 UNIBUS: KENNEDY 9100 (emulating TE10)
EMULEX TC-11 UNIBUS: KENNEDY 9100, 9300 (emulating TE10)

1.2. Distribution format

The distribution format is two 9-track 800bpi or one 1600bpi 2400’ magnetic tape(s). If you
are able to do so, it is a good idea to immediately copy the tape(s) in the distribution kit to guard
against disaster. The first tape contains some 512-byte records, some 1024-byte records, followed
by many 10240-byte records. There are interspersed tape marks; end-of-tape is signaled by a dou-
ble end-of-file. The second tape contains only 10240-byte records with no interspersed tape
marks.

The boot tape contains several standalone utility programs, a dump image of a root file sys-
tem, and a tar image of part of the /usr file system. The files on this tape are:

T Other controllers and drives may be easily usable with the system, but might require minor modifications to
the system to allow bootstrapping. The controllers and the drives shown here are known to work as bootstrap
devices.

March 26, 1984

Installing /Operating 2.9BSD

File

Contents

boot block

(EOR)

boot block

(EOR)

Standalone Boot
(EOF)

Standalone cat
(EOF)

This index

(use cat to read)
(EOF)

Standalone mkfs
(see mkfs(8)1)
(EOF)

Standalone restor
(see restor(8))
(EOF)

Standalone icheck
(see icheck(8))
(EOF)

Dump of small “root” file system
(217 10K-byte blocks; see dump(8))

(EOF)

Tar archive of [usr files
(most of the tape; see tar(1))

(EOF)
(EOF)

Introduction

Record Size
512
512
512
1024

1024

1024

1024

1024

10240

10240

The last file on the 800bpi tape is a tar image of most of the /usr file system except for sources

(relative to [usr; see tar(1)).

It contains most of the binaries and other material which is nor-

mally kept on-line, with the following directories: 70 adm bin contrib dict doc games include
lib local man msgs preserve public spool sys tmp ucb. It contains 1785 10K byte blocks.
The second 800bpi tape contains one file in tar format, again relative to [usr, consisting of 1903
10K byte blocks and containing the source tree with all command and kernel sources. It contains
the directories ingres, net, and sre, and includes the Berkeley additions (which are in
[usr/src/ucb and [usr/ingres). The net directory contains sources for the TCP/IP system. On
the 1600bpi tape, the two tar images are combined into one tape file of 3687 10K byte blocks.

1.3. UNIX device naming

UNIX has a set of names for devices that are different from the DEC names for the devices.

The disk and tape names used by the bootstrap and the system are:

TReferences of the form X(Y) mean the subsection named X in section Y of the Berkeley FDR11 UNIX

Programmer’s manual.

March 26, 1984

Installing/Operating 2.9BSD -4- Introduction

RKO5 disks rk
RKO06, RK07 disks hk
RLO1, RLO02 disks rl

RP02, RP03 disks rp
TE16, TU45, TU77/TM02, 3 tapes ht
TE10/TM11 tapes tm
TS11 tapes ts

There is also a generic disk driver, xp, that will handle most types of SMD disks on one or
more controllers (even different types on the same controller). The xp driver handles RM02,
RMO03, RMO05, RP04, RP05 and RPO06 disks on DEC, Emulex, and Diva UNIBUS or MASSBUS
controllers. '

The standalone system used to bootstrap the full UNIX system uses device names of the
form:

zz(y,2)

where zz is one of hk, ht, rk, rl, rp, tm, ts, or xp. The value yspecifies the device or drive unit
to use. The z value is interpreted differently for tapes and disks: for disks it is a block offset for a
file system and for tapes it is a file number on the tape.

Large UNIX physical disks (hk, rp, xp) are divided into 8 logical disk partitions, each of
which may occupy any consecutive cylinder range on the physical device. The cylinders occupied
by the 8 partitions for each drive type are specified in section 4 of the Berkeley PDP-11 UNIX
Programmer’s manual.t Each partition may be used for either a raw data area such as a swapping
area or to store a UNIX file system. It is conventional for the first partition on a disk to be used
to store a root file system, from which UNIX may be bootstrapped. The second partition is tradi-
tionally used as a swapping area, and the rest of the disk is divided into spaces for additional
“mounted file systems’’ by use of one or more additional partitions.

The disk partitions have names in the standalone system of the form ‘“‘zz(y,z)"’ as described
above. Thus partition 1 of an RK07 at drive 0 would be ‘hk(0,5940)’. When not running stan-
dalone, this partition would normally be available as ‘‘/dev/hkOb’’. Here the prefix “‘/dev’’ is the
name of the directory where all “‘special files” normally live, the “hk’’ serves an obvious purpose,
the ‘0"’ identifies this as a partition of hk drive number ‘0"’ and the ‘‘b” identifies this as parti-
tion 1 (where we number from 0, the Oth partition being ‘“hk0a”). Finally, ‘5940” is the sector
offset to partition 1, as determined from the manual page hk(4).

Returning to the discussion of the standalone system, we recall that tapes also took two
integer parameters. In the case of a TE16/TU tape formatter on drive O, the files on the tape
have names ‘“ht(0,0)’, “ht(0,1)", etc. Here ‘file’’ means a tape file containing a single data
stream separated by a single tape mark. The distribution tapes have data structures in the tape
files and though the first tape contains only 8 tape files, it contains several thousand UNIX files.

1.4. UNIX devices: block and raw

UNIX makes a distinction between ‘‘block” and “character” (raw) devices. Each disk has a
block device interface where the system makes the device byte addressable and you can write a
single byte in the middle of the disk. The system will read out the data from the disk sector,
insert the byte you gave it and put the modified data back. The disks with the names
“/dev/zz0a”’, etc. are block devices and thus use the system’s normal buffering mechanism.
There are also raw devices available, which do physical I/O operations directly from the
program’s data area. These have names like ‘‘/dev/rzz0a”, the ‘‘r’’ here standing for “‘raw.” In
the bootstrap procedures we will often suggest using the raw devices, because these tend to work

Tit is possible to change the partitions by changing the values in the disk’s sizes array in ioconf.c.

March 26, 1984

Installing /Operating 2.9BSD -5- Introduction

faster. In general, however, the block devices are used. They are where file systems are
“mounted.” The UNIX name space is increased by logically associating (mounting) a UNIX file
system residing on a given block device with a directory in the current name space. See mount(2)
and mount(8). This association is severed by umount.

You should be aware that it is sometimes important to use the character device (for
efficiency) or not (because it wouldn’t work, e.g. to write a single byte in the middle of a sector).
Don’t change the instructions by using the wrong type of device indiscriminately.

1.5. Reporting problems or questions

Problems with the software of this distribution, or errors or omissions in the documentation,
should be reported to the 2BSD group. For bug reports and fixes, the address is:

2bsd-bugs@berkeley (by ARPAnet)
or
ucbvax!2bsd-bugs (by UUCP)

These reports or fixes are expected to be in the format generated by the sendbug(1) program. For
administrative concerns, use:

2bsd@berkeley (by ARPAnet)
or
ucbvax!2bsd (by UUCP)

A redistfiBMion list of users who have indicated that they would like to receive bug reports is also
maintained:

2bsd-people@berkeley (by ARPAnet)
or
ucbvax!2bsd-people (by UUCP)

This list may also be used as a general forum for help requests, sharing common experiences, etc.
Requests to be added to or deleted from this list should be made to the 2bsd address above. If it
is not possible to use electronic mail, then call or write the 2BSD office. Although there is seldom
someone there to take your call, there is an answering machine, and your request will be for-
warded to the appropriate person. The phone number and mailing address are:

Berkeley PDP-11 Software Distribution — 2BSD
Computer Science Division, Department of EECS
573 Evans Hall

University of California, Berkeley

Berkeley, California 94720

(415) 642-6258

March 26, 1984

Installing/Operating 2.9BSD -6- Bootstrapping

2. BOOTSTRAP PROCEDURES

This section explains the bootstrap procedures that can be used to get one of the kernels
supplied with this tape running on your machine. If you are not yet running UNIX or are running
a version of UNIX other than 2.8BSD, you will have to do a full bootstrap.

If you are running 2.8BSD you can use the update procedure described in section 4.2 instead
of a full bootstrap. This will affect modifications to the local system less than a full bootstrap.
Note, however, that a full bootstrap will probably require less effort unless you have made major
local modifications which you must carry over to the new system.

If you are already running UNIX and need to do a full bootstrap you should first save your
existing files on magnetic tape. The 2.9BSD file system uses 1K-byte blocks by clustering disk
blocks (as did the 2.8BSD system); file systems in other formats cannot be mounted. Those
upgrading from 2.8 should note that 2.9BSD uses generally different file system parti-
tion sizes than 2.8BSD, and that a few of the major device numbers have changed (in
particular, that for the hk). The easiest way to save the current files on tape is by doing a
full dump and then restoring in the new system. This works also in converting V7, System-III, or
System-V 512-byte file systems. Although the dump format is different on V7, System-III, and
System-V, 512restor(8) can restore old format V7 dump image tapes into the file system format
used by 2.9BSD. Tar(1) can also be used to exchange files from different file system formats, and
has the additional advantage that directory trees can be placed on different file systems than on
the old configuration. Note that 2.9BSD does not support cpio tape format.

The tape bootstrap procedure involves three steps: loading the tape bootstrap monitor,
creating and initializing a UNIX ‘‘root’’ file system system on the disk, and booting the system.

2.1. Booting from tape

To load the tape bootstrap monitor, first mount the magnetic tape on drive 0 at load point,
making sure that the write ring is not inserted. Then use the normal bootstrap ROM, console
monitor or other bootstrap to boot from the tape. If no other means are available, the following
code can be keyed in and executed at (say) 0100000 to boot from a TM tape drive (the magic
number 172526 is the address of the TM-11 current memory address register; an adjustment may
be necessary if your controller is at a nonstandard address):

012700 (mov $172526, r0)
172526

010040 (mov r0, —(r0))
012740 (mov $60003, —(r0))
060003

000777 (br .)

When this is executed, the first block of the tape will be read into memory. Halt the CPU and
restart at location O.

The console should type

nnBoot

where nn is the CPU class on which it believes it is running. The value will be one of 24, 40, 45
or 70, depending on whether separate instruction and data (separate I/D) and/or a UNIBUS map
are detected. The CPUs in each class are:

March 26, 1984

Installing/Operating 2.9BSD -7- Bootstrapping

Class PDP11s Separate I/D UNIBUS map
24 24 - +
40 23,34, 34A, 40, 60 - -
45 45, 55,73, 83 + -
70 44,70, 84 + +

The bootstrap can be forced to set up the machine as for a different class of PDP11 by placing an
appropriate value in the console switch register (if there is one) while booting it. The value to use
is the PDP11 class, interpreted as an octal number (use, for example, 070 for an 11/70). Warn-
ing: some old DEC bootstraps use the switch register to indicate where to boot from. On such
machines, if the value in the switch register indicates an incorrect CPU, be sure to reset the
switches immediately after initiating the tape bootstrap.

You are now talking to the tape bootstrap monitor. At any point in the following procedure
you can return to this section, reload the tape bootstrap, and restart.

To first check that everything is working properly, you can use the cat program on the tape
to print the list of utilities on the tape. Through the rest of this section, substitute the correct
disk type for dk and the tape type for f{p. In response to the prompt of the bootstrap which is
now running)type

tp(0,1) (load file 1 from tape 0)
Cat will respond

Cat
File?

The table of contents is in file 2 on the tape, therefore answer
tp(0,2)
The tape will move, then a short list of files will print on the console, followed by:

exit called
nnBoot

After cat is finished, it returns to the bootstrap for the next operation.

2.2. Creating an empty UNIX file system

Now create the root file system using the following procedures. First determine the size of
your root file system from the following table:

Disk Root File System Size
(1K-byte blocks)

hk 2970

rkt 2000

rlo1+ 4000

rl02t 8500

rp 5200

Xp 4807 (RP04/RP05/RP06)
2400 (RMO02/RMO03)
5168 (RMO5)
4702 (DIVA)

TThese siges are for full disks less some space used for swapping.

March 26, 1984

Installing/Operating 2.9BSD . -8- Bootstrappirg

If the disk on which you are creating a root file system is an xp disk, you should check the
drive type register at this time to make sure it holds a value that will be recognized correctly by
the driver. There are numbering conflicts; the following numbers are used internally:

Drive Type Register Drive Assumed
Low Byte
(nominal address: 0776726)
022 RP04/05/06
025 RMO02/RM03
027 RMO05
076 Emulex SC-21/300 Mb 815 cylinder RM05 emulation
077 Diva Comp-V /300 Mb SMD

Check the drive type number in your controller manual, or halt the CPU and examine this regis-
ter. If the value does not correspond to the actual drive type, you must place the correct value in
the switch register after the tape bootstrap is running and before any attempt is made to access
the drive. This will override the drive type register. This value must be present at the time each
program (including the bootstrap itself) first tries to access the disk. On machines without a
switch register, the zpfype variable can be patched in memory. After starting each utility but
before accessing the disk, halt the CPU, place the new drive type number at the proper memory
location with the console switches or monitor, and then continue. The location of zptype in each
utility is mkfs: 032724, restor: 031614, icheck: 030174 and boot: 0430000 (the location for boot
is higher because it relocates itself). Once UNIX itself is booted (see below) you must patch it
also. :

Finally, determine the proper interleaving factors m and n for your disk and CPU combina-
tion from the following table. These numbers determine the layout of the free list that will be
constructed; the proper interleaving will help increase the speed of the file system. If you have a
non-DEC disk that emulates one of the disks listed, you may be able to use these numbers as
well, but check that the actual disk geometry is the same as the emulated disk (rather than the
controller mapping onto a different physical disk). Also, the rotational speed must be the same as
the DEC disk for these numbers to apply.

Disk Interleaving Factors for Disk/CPU Combinations (m/n)
CPU RKO05 RKO06/7 RL01/2 RMO02 RM03 RM05 RP03 RP04/5/6

11/23 X/12 X/33 X/10 X/80 - - X/100 X/209
11/24 X/12 7/33 X/10 10/80 - - X/100 10/209
11/34 X/12 6/33 X/10 8/80 - - 3/100 8/209
11/40 2/12 6/33 X/10 8/s0 - - '3/100 8/209
11/44 X/12 4/33 X/10 6/80 - - 2/100 6/209
11/45 2/12 5/33 X/10 7/80 - - 3/100 7/209
11/55 X/12 5/33 X/10 7/80 - - 3/100 7/209
11/60 X/12 5/33 X/10 7/80 - - 3/100 7/209
11/70 X/12 3/33 X/10 5/80 7/80 7/304 X/100 5/209

For example, for an RP06 on an 11/70, m is 5 and n is 209. See mkfs(8) for more explanation of
the values of m and n. An X entry means that we do not know the correct number for this com-
bination of CPU and disk. If you do, please let us know. If m is unspecified or you have a disk
which emulates a DEC disk, use the number for the most similar disk/CPU pair. If n is
unspecified, use the cylinder size divided by 2.

Then run a standalone version of the mkfs (8) program. In the following procedure, substi-
tute the correct types for tp and dk and the size determined above for size:

March 26, 1984

Installing /Operating 2.9BSD -9- Bootstrapping

:tp(0,3)

Mkfs

file system: dk(0,0) (root is the first file system on drive 0)
file system size: size (count of 1024 byte blocks in root)
interleaving factor (m, 5 default): m (interleaving, see above)
interleaving modulus (n, 10 default): n (interleaving, see above)

Isize = XX (count of inodes in root file system)
m/n=mn (interleave parameters)

Exit called

nnBoot

: (back at tape boot level)

You now have an empty UNIX root file system.

2.3. Restoring the root file system
To restore a small root file system onto it, type

:tp(0,4)

Restor

Tape? tp(0,6) (unit 0, seventh tape file)
Disk? dk(0,0) (into root file system)

Last chance before scribbling on disk. (just hit return)
(30 second pause then tape should move)
(tape moves for a few minutes)
end of tape
Exit called
nnBoot
: (back at tape boot level)

If you wish, you may use the icheck program on the tape, tp(0,5), to check the consistency of the
file system you have just installed.

2.4. Booting UNIX

You are now ready to boot from disk. It is best to read the rest of this section first, since
some systems must be patched while booting. Then type:

:dk(0,0)dkunix (bring in dkunix off root system)

The standalone boot program should then read dkunix from the root file system you just created,
and the system should boot:

Berkeley UNIX (Rev. 2.9.1) Sun Nov 20 14:55:50 PST 1983
mem = xxXx

CONFIGURE SYSTEM:

(Information about various devices will print;
most of them will probably not be found until
the addresses are set below.)

erase="?, kill="U, intr="C

#

If you are booting from an zp with a drive type that is not recognized, it will be necessary to
patch the system before it first accesses the root file system. Halt the processor after it has begun
printing the version string but before it has finished printing the ‘‘mem = xxx’’ string. Place the

March 26, 1984

Installing/Operating 2.9BSD -10- Bootstrapping

drive type number corresponding to your drive at location 061472; the addresses for drives 1, 2
and 3 are 061506, 061522 and 061536 respectively. If you plan to use any drives other than 0
before you recompile the system, you should patch these locations. Make the patches and con-
tinue the CPU. The value before patching must be zero. If it is not, you have halted too late
and should try again.

UNIX begins by printing out a banner identifying the version of the system that is in use
and the date it was compiled. Note that this version is different from the system release number,
and applies only to the operating system kernel.

Next the mem message gives the amount of memory (in bytes) available to user programs.
On an 11/23 with no clock control register, a message ‘‘No clock???”’ will print next; this is a rem-
inder to turmon the clock switch if it is not already on, since UNIX cannot enable the clock itself.
The information about different devices being attached or not being found is produced by the
autoconfig(8) program. Most of this is not important for the moment, but later the device table
can be edited to correspond to your hardware. However, the tape drive of the correct type should
have been detected and attached.

The ‘“‘erase=..."" message is part of /.profile that was executed by the root shell when it
started. The file /.profile contained commands to set the UNIX erase, line kill and interrupt char-
acters to be what is standard on DEC systems so that it is consistent with the DEC console inter-
face characters. This is not normal for UNIX, but is convenient when working on a hardcopy
comnsole; change it if you like.

UNIX is now running, and the Berkeley PDP-11 UNIX Programmer’s manual applies. The
‘#’ is the prompt from the Shell, and lets you know that you are the super-user, whose login
name is ‘‘root.”

There are a number of copies of uniz on the root file system, one for each possible type of
root file system device. All but one of them (zpuniz) has had its symbol table removed (i.e. they
have been “stripped’’; see strip(1)). The unstripped copy is linked (see In(1)) to /uniz to provide
a system namelist for programs like ps(1) and autoconfig(8). All of the systems were created from
[uniz by the C shell script /genallsys.sh. If you had to patch the zp type as you booted, you may
want to use adb (see adb(1)) to make the same patch in a copy of zpuniz. If you are short of
space, you can patch a copy of /uniz instead (setting the rootdev, etc.) and install it as [uniz
after verifying that it works. See [genallsys.sh for examples of using adb to patch the system.
The system load images for other disk types can be removed. Do not remove or replace the
copy of [uniz, however, unless you have made a working copy of it that is patched for
your flle system configuration and still has a symbol table. Many programs use the sym-
bol table of /uniz in order to determine the locations of things in memory, therefore /uniz should
always be an unstripped file corresponding to the current system. If at all possible, you should
save the original UNIX binaries for your disk configuration (dkunix and unix) for use in an emer-
gency.

There are a few minor details that should be attended to now. The system date is initially
set from the root file system, and should be reset. The root password should also be set:

date yymmddhhmm (set date, see date(1))
passwd root (set password for super-user)
New password: (password will not echo)

Retype new password:

2.5. Installing the disk bootstrap

The disk with the new root file system on it will not be bootable directly until the block 0
bootstrap program for the disk has been installed. There are copies of the bootstraps in /mdec.
This is not the usual location for the bootstraps (that is [usr/src/sys/mdec), but it is convenient
to be able to install the boot block now. Use dd(1) to copy the right boot block onto the disk;

March 26, 1984

Installing /Operating 2.9BSD -11- Bootstrapping

the first form of the command is for small disks (rk, rl) and the second form for disks with multi-
ple partitions (hk, rp, xp), substituting as usual for dk:

dd if=dkuboot of=/dev/rdk0 count=1
or

dd if=dkuboot of=/dev/rdk0a count=1

will install the bootstrap in block 0. Once this is done, booting from this disk will load and exe-
cute the block 0 bootstrap, which will in turn load /boot (actually, the boot program on the first
file system, which is root). The console will print

>boot (printed by the block 0 boot)

nnBoot (printed by /boot)

The ">’ is the prompt from the first bootstrap. It automatically boots [boot for you; if [boot is

not found, it will prompt again and allow anothér name to be tried. It is a very small and simple
\.

program, however, and can only boot the second-stage boot from the first file system. Once /boot

w1

is running and prints its ‘‘: '’ prompt, boot unix as above, using dkunix or unix as appropriate.

2.8. Checking the root flle system

Before continuing, check the integrity of the root file system by giving the command
fsck [dev/rdkOa
(omit the a for an RKO05 or RL). The output from fsck should look something like:

/dev /rzz0a
File System: /

** Checking /dev/rzz0a

s Phase 1 - Check Blocks and Sizes
% Phase 2 - Check Pathnames

#% Phase 3 - Check Connectlvity

¢3 Phase 4 - Check Reference Counts
*s Phase 5 - Check Free List

238 files 1916 blocks xxxxx free

If there are inconsistencies in the file system, you may be prompted to apply corrective

action; see the document describing fsck for information. The number of free blocks will vary
depending on the disk you are using for your root file system.

March 26, 1984

Installing/Operating 2.9BSD -12- Device and file system configuration

3. DEVICE AND FILE SYSTEM CONFIGURATION

This section will describe ways in which the file systems can be set up for the disks avail-
able. It will then describe the files and directories that will be set up for the local configuration.
These are the /dev directory, with special files for each peripheral device, and the tables in /etc
that contain configuration-dependent data. Some of these files should be edited after reading this
section, and others can wait until later if you choose. The disk configuration should be chosen
before the rest of the distribution tape is read onto disk to minimize the work of reconfiguration.

3.1. Disk conflguration

This section describes how to lay out file systems to make use of the available space and to
balance disk load for better system performance. The steps described in this section (3.1) are

optional.

3.1.1. Disk naming and divisions

Each large physical disk drive can be divided into up to 8 partitions; UNIX typically uses
only 3 to 5 partitions. For instance, on an RMO03 the first partition, rm0a, is used for a root file
system, a backup thereof, or a small file system like /tmp; the second partition, rmOb, is used for
swapping or a small file system; and the third partition, rmOc, holds a user file system. Many
disks can be divided in different ways; for example, the third section (e¢) of the RM03 could
instead be divided into two file systems, using the rmOd and rmOe partitions instead, perhaps
holding [usr and the user’s files. The disk partition tables are specified in the ioconf.c file for
each system, and may be changed if necessary. The last partition (h) always describes the entire
disk, and can be used for disk-to-disk copies.

Warning: for disks on which DEC standard 144 bad sector forwarding is supported, the
last track and up to 126 preceeding sectors contain replacement sectors and bad sector lists.
Disk-to-disk copies should be careful to avoid overwriting this information. See bad144(8). Bad
sector forwarding is optional in the hk, hp, rm, and xp drivers. It has been only lightly tested in
the latter three cases.

3.1.2. Space available

The space available on a disk varies per device. The amount of space available on the com-
mon disk partitions for /usr is listed in the following table. Not shown in the table are the parti-
tions of each drive devoted to the root file system and the swapping area.

Type Name Size

RKO06 hk?d 9.2 Mb
RKO07 hk?c 22.4 Mb
RMO02, RM03 rm?c 60.2 Mb
RMO02, RM03 rm?d 30.9 Mb
RPO03 rp’c 33.3 Mb
RPO0O4, RP05, RP06 hp?c 74.9 Mb
RPO06 hp?d 158.9 Mb
RMO05 xp?c 115.4 Mb
RMO05 xp?e 80.9 Mb

Each disk also has a swapping area and a root file system. The distributed system binaries
and sources occupy about 38 megabytes.
The sizes and offsets of all of the disk partitions are in the manual pages for the disks; see

section 4 of the Berkeley PDP-11 UNIX Programmer’s manual. Be aware that the disks have their
sizes measured in ‘‘sectors’” of 512 bytes each, while the UNIX file system blocks are 1024 bytes

March 26, 1984

Installing /Operating 2.9BSD -13- Device and file system configuration

each. Thus if a disk partition has 10000 sectors (disk blocks), it will have only 5000 UNIX file
system blocks, and you must divide by 2 to use 5000 when specifying the size to the mkfs com-
mand. The sizes and offsets in the kernel (ioconf.c) and the manual pages are in 512-byte blocks.
If bad sector forwarding is supported for your disk, be sure to leave sufficient room to contain the
bad sector information when making new file systems.

3.1.3. Layout conslderations

There are several considerations in deciding how to adjust the arrangement of things on
your disks: the most important is making sure there is adequate space for what is required; secon-
darily, throughput should be maximized. Swapping space is an important parameter. Since run-
ning out of swap space often causes the system to panic, it must be large enough that this does
not happen. '

Many common system programs (the C compiler, the editor, the assembler etc.) create inter-
mediate files in the /tmp directory, so the file system where this is stored also should be made
large enough to accommodate most high-water marks; if you have several disks, it makes sense to
mount this il a “root” or “swap’’ (i.e. first or second partition) file system on another disk. On
RKO06 and RKO07 systems, where there is little space in the hk?c or hk?d file systems to store the
system source, it is normal to mount /tmp on /dev/hkla.

The efficiency with which UNIX is able to use the CPU is often strongly affected by the
configuration of disks. For general time-sharing applications, the best strategy is to try to split
the most actively-used sections among several disk arms. There are at least five components of
the disk load that you can divide between the available disks:

1. The root file system.
2. The swap area.

3. The /tmp file system.
4. The [usr file system.
5. The user files.

Here are several possibilities for utilizing 2, 3 and 4 disks:

disks
3

what

root

tmp

usr
swapping
users
archive

LI SR N e el L)
I JSCRN CRNCR
N R N S

The most important consideration is to even out the disk load as much as possible, and to
do this by decoupling file systems (on separate arms) between which heavy copying occurs. Note
that a long term average balanced load is not important; it is much more important to have
instantaneously balanced load when the system is busy. When placing several busy file systems
on the same disk, it is helpful to group them together to minimize arm movement, with less
active file systems off to the side.

Intelligent experimentation with a few file system arrangements can pay off in much
improved performance. It is particularly easy to move the root, the /tmp file system and the
swapping areas. Note, though, that the disks containing the root and swapping area can never be
removed while UNIX is running. Place the user files and the [usr directory as space needs dictate
and experiment with the other, more easily moved file systems.

As an example, consider a system with RM03s. On the first RM03, rm0, we will put the
root file system in rmOa, and the fusr file system in rmOe, which has enough space to hold it
and then some. If we had only one RM03, we would put user files in the rmOec partition with the

March 26, 1984

Installing/Operating 2.9BSD -14 - Device and file system configuration

system source and binaries, or split them between rm0Od and rm@a. The /tmp directory will be
part of the root file system, as no file system will be mounted on /tmp.

If we had a second RM03, we would create a file system in rmlec and put user files there,
calling the file system /mnt. We would keep a backup copy of the root file system in the rmia
disk partition, a file system for /tmp on rmOb, and swap on rmib.

3.1.4. Implementing a layout

Once a disk layout has been chosen, the appropriate special files for the disk partitions must
be created (see Setting up the /dev directory, below). Empty file systems will then be created in
the appropriate partitions with mkfs(8), and the files belonging in the file system can then be
restored from tape. The section on setting up the /usr file system contains detailed information
on this process. The swap device is specified when the kernel is configured, which is also dis-
cussed later. At that time, you may also want to consider whether to use the root device or
another file system (e.g. /tmp) for the pipe device (the pipe device is a file system where the ker-
nel keeps temporary files related to pipe I/O; it should be mounted before any I/O through pipes
is attempted).

3.2. Setting up the /dev directory

Devices are accessed through special files in the file system, made by the mknod(8) program
and normally kept in the /dev directory. Devices to be supported by UNIX are implemented in
the kernel by drivers; the proper driver is selected by the major device number and type specified
to mknod. All devices supported by the distribution system already have nodes in /dev. They
were created by the /dev/MAKE shell script. It is easiest to rebuild this directory from the
beginning with the correct devices for your configuration. First, determine the UNIX names of
the devices on your system (e.g. dh, lp, zp). Some will be the same as the names of devices on the
generic system. Others need not be. See section 4 of the UNIX Programmer’s Manual. Next
create a new directory /newdev, copy /dev/MAKE into it, edit MAKE to provide an entry for
local needs, replacing the case LOCAL, and run it to generate the desired devices in the /newdev
directory. The LOCAL entry can be used for any unusual devices, and to rename standard dev-
ices as desired. It should also move the node for the disk partition being used as the swap area to
swap (or, if swap is after a file system as on RKO05 or RL disks, link the other node to swap).
Different devices are specified to MAKE in various ways. Terminal multiplexors (DZ and DH) are
specified by boards, and 8 or 16 nodes will be made, as appropriate. Disks are made by partition,
for example xpOc, so that you may make the nodes corresponding to the file systems that you
intend to use. Note that hp, rm and zp are actually synonyms, but you should use the name
corresponding to the driver you plan to use. The kernel configuration section (section 5.4.1) has
more information. For tape drives, there are different invocations for different types of controll-
ers, although the nodes produced will have the same names. The different types are At, tm and fs,
as above, and also ut, which is used for the Emulex TC-11 and other TM-11 emulations that are
also capable of selecting 1600 or 800 bpi under software control. Making At0 or ut0 will result in
nodes mt0 and mt! (800 and 1600 bpi, respectively) and parallel nodes for other options; At uses
the names mt2 and mt9. See ht(4) and ¢tm(4). In contrast, the MAKE script makes only one set
of nodes for tm or ts, without changing the unit number specified. Different sites use different
naming conventions for tapes; you could use the LOCAL entry in MAKE to move the tape files
to your favorite names.

As an example, if your machine had a single DZ-11, two DH-11s, an RP03 disk, two RP06
disks, and a TMO03 tape formatter you would do:

March 26, 1984

Installing/Operating 2.9BSD -15- Device and file system configuration

#cd/

mkdir newdev

cp /dev/MAKE /newdev/MAKE

cd newdev

./MAKE dz0 dh1 ht0 std LOCAL

./MAKE rp0Oa rpOb rpOc hpOa hpOb hpOc hpla hplb hpld hple

Note the ‘‘std” argument here that causes standard devices such 2s console, the console terminal,
to be created.

You can then do

fed/
mv dev genericdev ; mv newdev dev
sync

to install the new device directory. Once you are confident that the new directory is set up prop-
erly, you can remove /genericdev.

3.3. Editing system-dependent configuration files

There are a number of small files in /etc that are used by various programs to determine
things about the local configuration. At this point, several of these should be edited to describe
the local configuration. You may have old versions of some of them which you may want to use,
or you may edit the files that are provided as examples. Some of this may be done later at your

convenience, but is presented here for organization. Both /ete/dtab and /etc/fstab should be
edited now.

3.3.1. /etc/dtab

This file contains the list of devices which will be checked at boot time by autoconfig(8).
The devices that are listed are tested to see whether they exist and have the correct register
addresses and interrupt vectors. If they do, and the kernel has a corresponding driver routine,
autoconfig notifies the driver that the device exists at that address. In this way, the addresses and
vectors of most devices do not need to be compiled into the operating system. The exception is
that disks must be preconfigured if they are to be used as root file systems.

This file should be edited to include all of the devices on the system with the exception of
the clock and console device. Other device entries can be deleted or commented out with a '#’ at
the beginning of the line. The format of the entries is defined in dtad(5). Autoconfig(8) describes
the autoconfiguration process. One word of caution: if a device fails to interrupt as expected,
and if its unit number is specified (not a '?’ wildcard), autoconfig will notify the driver that the
device is not present, and preconfigured devices (like root disks) could be disconnected. Thus, it
is probably best to use a '?’ instead of a unit number for your root disks until you are confident
that the probe always finds that disk, especially if your disk controller is an emulation of another
disk type. Disks that are not used as boot devices for UNIX can be properly listed with unit
numbers.

3.3.2. [etc/fstab

This file contains the list of file systems normally mounted on the system. Its format is
defined in fstab(5). Programs like df(1) and fsck(8) use this list to control their actions. Each
disk partition that has been assigned a function should be listed here. See the manual pages for
specifics on how to configure this file.

3.3.3. /etc/ident

The banner printed by getty(8) is read from [etc/ident. Edit this file to the banner you
wish to use. It may contain special characters to clear terminal screens, etc., but note that the
same file is used for all terminals.

March 26, 1984

Installing /Operating 2.9BSD -16 - Device and file system configuraticn

3.3.4. [etc/motd

The contents of /etc/motd, the “message of the day,’
user is logged in by login(1).

7

is displayed at the terminal when a

3.3.5. /etc/passwd, [etc/group

These files obviously need local modifications. See the section on adding new users. Entries
for pseudo-users (user IDs that are not used for logins) have password fields containing ‘‘***,
since encrypted passwords never not contain asterisks.

3.3.6. /etc/re

As the system begins multiuser operations, it executes the commands in /etc/rc (see init(8)).
Most of the commands in this file are standard and should not be changed, including the section
for checking file systems after a reboot. These commands will be ignored if autoreboot is not
enabled. You should edit /etc/rc to set your machine’s name. Look for the line

/etc/hostname hostnameunknown

and change hostnameunknown to the name of your machine. This name will be used by Mail(1)
and uucp(1) (among others) and should correspond to the name by which your machine is known
to external networks (if any). At this time you may wish to add additional commands to this file
if you need to start additional daemons, remove old lock files, or perform any other cleanup as the
system comes up.

3.3.7. Configuring terminals

If UNIX is to support simultaneous access from more than just the console terminal, the file
[ete/ttys (ttys(5)) has to be edited.

Terminals connected via DZ interfaces are conventionally named ttydd where dd is a
decimal number, the ‘“minor device’” number. The lines on dz0 are named /dev/tty0O,
/dev /ttyOl, ... /dev/tty07. Lines on DH interfaces are conventionally named ttyhz, where zis a
hexadecimal digit. If more than one DH interface is present in a configuration, successive termi-
nals would be named ttylz, ttyjz, etc.

To add a new terminal be sure the device is configured into the system, that the special file
for the device has been made by /dev/MAKE, and the special file exists. Then set the first char-
acter of the appropriate line of /etc/ttys to 1 (or add a new line). The first character may also be
3 if the line is also to be used in maintenance mode (see inst(8)).

The second character of each line in the [etc/ttys file lists the speed and initial parameter
settings for the terminal. The most common choices, from getty(8), are:

300-1200-150-110
1200-300

300 (e.g. console)
300-1200

1200

2400

4800

9600

autobaud

R R R A =)

Here the first speed is the speed a terminal starts at, and ‘“‘break’ switches speeds. Thus a newly
added terminal /dev/tty00 could be added as

19tty00

if it was wired to run at 9600 baud. The “B” indicates that getty should attempt to guess a line’s
speed when the user types a carriage return or control-C. Note that this requires kernel support.

March 26, 1984

Installing/Operating 2.9BSD -17 - Device and file system configuration

See section 5.3.6 below.

Dialup terminals should be wired so that the carrier is asserted only when the phone line is
dialed up. For non-dialup terminals from which modem control is not available, you must either
wire back the signals so that the carrier always appears to be present, or (for lines on a DH-11 or
DZ-11) add 0200 to the minor device number to indicate that carrier is to be ignored. See dh(4)
and dz(4) for details.

You should also edit the file /etc/ttytype placing the type of each terminal there (see
ttytype(5)).

When the system starts running multi-user, all terminals that are listed in /etc/ttys having
a 1 or 3 as the first character of their line are enabled. If, during normal operations, it is desired
to disable a terminal line, the super-user can edit the file /etc/ttys, change the first character of

the corresponding line to 0 and then send a hangup signal to the init process, by typing (see
kill(1))
F#kill -11

or

kill -HUP 1
Terminals can similarly be enabled by changing the first character of a line from a 0 to a 1 and
sending a hangup to init.

Note that if a special file is inaccessible when init tries to create a process for it, init will
print a message on the console and try to reopen the terminal every minute, reprinting the warn-
ing message every 10 minutes.

Finally note that you should change the names of any dialup terminals to ttyd? where ? is
in [0-9a-f] since some programs use this property of the names to decide whether a terminal is a
dialup. Shell commands to do this should be put in the /dev/MAKE script under case LOCAL.

March 26, 1984

Installing/Operating 2.9BSD -18 - [usr setup

4. SETTING UP THE /usr FILE SYSTEM

The next step in bringing up the 2.9BSD distribution is to read in the binaries and sources
on the /usr file system. This will also demonstrate how to add new file systems in general, and
the overall procedure can be repeated to set up additional file systems. There are two portions of
the /usr file system, one on each tape. The first tape contains the binary directories, manual
pages and documentation, as well as skeletal directories such as spool and msgs. If you have
room, it is easiest to extract everything. The size of the entire /usr file system image on the dis-
tribution tapes is 38 megabytes. It will not fit on a single RK05, RK06/7 or RL01/2. In these
cases, the /usr file system will have to be extracted in sections or split across multiple disks. The
bin, include, lib, and ucb subdirectories are essential. The system sources will also be needed to
reconfigure the kernel; they are in /usr/src/sys. The adm, dict, msgs, preserve, spool, sys and tmp
directories may also be extracted to provide a skeletal system. The first part of this section
describes how to extract /usr as part of a full bootstrap; the second part explains how to install
2.9BSD as an upgrade to a 2.8BSD system if you decide not to perform a full bootstrap.

4.1. Full bootstrap procedure

This procedure will create a new file system and extract the /usr directory into it. First
determine -the name of the disk on which you plan to place the new file system, for example rmOc,
and substitute it for disk throughout this section. You may want to create a small ‘“‘prototype’’
file to describe the file system (see mkfs(8)) in order to change the size of the inode list. This is
the same as the maximum number of files that can be created on the file system. The default is
to allow 16 inodes (occupying one block) per 24 file system blocks, allowing the file system to be
completely filled with small files (1-2 blocks). This is more than required for /usr and other file
systems which have larger average file size. If you decide to set up a prototype file for mkfs, use
its name for proto below. The prototype file needs to contain only the name of the bootstrap, the
sizes, and the line for the root directory (don’t forget the '$’ to terminate). Look up the correct
size for this file system in the manual section for the disk. Note that the size given to mkfs is in
file system blocks of 1024 bytes, and thus the sizes in the manual page will have to be divided by
2. If not using a prototype file, substitute the size for proto in the mkfs command below. Finally,
recall the interleaving parameters m and n that you used in making the root file system. They
are in the table in section 2.2. Comments are enclosed in {); don’t type these. Then execute the
following commands (substituting rmt! and nrmt! for rmt0 and nrmt0 respectively if you have a
1600 bpi tape on an ht or tm controller):

/etc/mkfs /dev/rdisk proto m n (create empty user file system)

isize = nnnnn (the count of available inodes)
m/n=mn (free list interleave parameters)

(this takes a few minutes)
[etc/mount /dev/disk [usr (mount the usr file system)
cd [usr (make /usr the current directory)

(make sure that the first tape is mounted)
mt -t /dev/nrmtO fsf 7 (skip first seven tape files)
tar xpf /dev/rmt0 (extract the /usr file system binaries)

(this takes about 20 minutes)
(now mount the second tape)

tar xpf /dev/rmt0 (extract the /usr file system sources)
(this takes another 20 minutes)

You can now check the consistency of the /usr file system by doing

March 26, 1984

Installing/Operating 2.9BSD -19- [usr setup

#cd/ (back to root)
[etc/umount /dev/disk (unmount /usr)
fsck [dev/rdisk

To use the [usr file system, you should now remount it by saying
[etc/mount [dev/disk [usr

If you are installing the distribution on a PDP11/44, 11/45, 11/70, 11/73, 11/83, or 11/84
(machines with separate instruction and data space) you should test and install the separate I/D
versions of csh, ex, etc. in [usr/70. Note, however, that these binaries assume the existence of
hardware floating point support.

4.2. Bootstrap path 2: upgrading 2.8BSD

Begin by reading the other parts of this document to see what has changed since the last
time you bootstrapped the system. Also look at the new manual sections provided to you. If you
have local system modifications to the kernel to install, look at the document ‘“‘Changes in the
Kernel in 2.9BSD”’ to get an idea of how the system changes will affect your local mods. Disclai-
mer: there are a very large number of changes from 2.8BSD to 2.9. This section may not be
complete, and if a new program fails to work after being recompiled, you may find that additional
libraries or other components may also need to be updated.

There are 6 major areas of changes that you will need to incorporate to convert to the new
system:

1. The new kernel and the associated programs that implement job control or read kernel
memory: autoconfig, csh, the jobs library, login, ps, pstat, w, etc.

The programs related to system reboots and shutdowns.

The programs directly related to user text overlays: adb and Id.
The C compiler driver, C preprocessor, and assembler.

The new version of the standard I/O library.

SN

Other programs with significant bug fixes, significant improvements, or which were previ-
ously unavailable because they had not been overlaid.

Here is a step-by-step guide to converting. Before you begin you should do a full backup of
your root and /usr file systems as a precaution against irreversible mistakes.

1. Set the shell variable “nbsd’’ to the name of a directory where an empty file system can be
mounted and a quantity of material from the tape (you should allow for about 38 mega-
bytes) can be extracted. Choose a disk of sufficient size to hold this quantity of material,
make a file system, and mount $nbsd on this disk. Next, restore (see restor(8)) the root file
system dump image to this disk. Finally, change directory to ‘‘$nbsd/usr’’, and extract the
eighth file from the first distribution tape and all of the second tape using tar (see tar(1)).

2. Install the new include files by copying $nbsd/usr/include/*.h to [usr/include and
$nbsd /usr/include/sys/*.h to [usr/include/sys. Install the C compiler driver from the new
system by copying $nbsd/bin/cc to /bin/cc. Install the assembler from the new system by
copying $nbsd/bin/as to /bin/as and $nbsd/lib/as2 to [lib/as2. Install the new C prepro-
cessor by copying $nbsd/lib/cpp to /lib/cpp. Install the new versions of adb and 1d by
copying $nbsd/bin/adb and $nbsd/bin/Id to /bin.

3. Reconfigure the system in $nbsd/usr/src/sys to correspond to your configuration according
to the instructions in section 5.

4. Put in the new versions of the following programs:

/bin: csh, kill, login, iostat, ps, pstat, vmstat

March 26, 1984

Installing /Operating 2.9BSD -20- [usr setup

/etc: autoconfig, fsck, init, mount, reboot, savecore, shutdown, umount

[usr/ucb: ex, w

Merge any local changes to /etc/rc into $nbsd/etc/rc. Put the resulting file in /etc/rc.
Create the directory /usr/sys and perhaps some files in this directory (read savecore(8)).
Make a device description file for autoconfig. See dtab(5) and autoconfig(8).

5. Try bootstrapping the new system; it should now work. Make sure to write new instruc-
tions to your operators.

a)

b)

)

d)
e)
f)

g)

h)

k)

D)

q)

Incorporate some other important bug fixes or enhancements:

Replace the file tmac.an in the directory [usr/lib/tmac with the version from
$nbsd/usr/lib/tmac. Replace the file [usr/lib/me/local.me with the version from
$nbsd/usr/lib/me; copy $nbsd/usr/lib/me/refs.me to /usr/lib/me.

Install the new C library source, fusr/src/lib/c, rebuild and reinstall /lib/libc.a and
[usr/lib/libove.a.

Install the jobs library, [usr/src/lib/jobs and build and install /usr/lib/libjobs.a and
/ust /lib/libovjobs.a.

Replace the directory [usr/src/cmd/refer. Then rebuild and reinstall the programs.
Install the new Mail source, /usr/src/ucb/Mail and reinstall /usr/ucb/Mail.

If the target machine is a nonseparate I/D CPU, install the new lez and yacc direc-
tories, compile and install the programs.

Install the new version of tar from $nbsd/usr/src/cmd/tar.c and also the program mt
from $nbsd /usr/src/ucb/mt.c.

Merge your changes to [usr/src/ucb/termcap/reorder and reinstall the terminal data
base, [etc/termcap. Install the new terminal library, [usr/src/ucb/termlib, remake
and reinstall /usr/lib/libtermcap.a and [usr/lib/libovtermcap.a. Then make and
install the new version of ez.

If you want the new version of the Pascal system incorporating overlays (for non-
séparate I/D CPUs), remake the directories pi and pz in $nbsd/usr/src/cmd and
install the programs.

Install the new F77 compiler, [usr/src/cmd/f77, and the new libraries,
[usr/src/lib/lib*77. Then remake and reinstall them.

Install the new library sources, [usr/src/lib/{ape,curses,m,mp,plot} and remake and
reinstall the new libraries.

Install new versions of as many of the following programs as you choose: 512dumpdir,
512restor, atrun, cat, catman, ccat, compact, checkobj, ctags, df, diff, du, egrep, error,
expand, fgrep, find, from, grep, hostname, jove, 111, lint, In, lock, login, lpr, Is, m11,
make, man, mkfs, more, msgs, mv, ncheck, printenv, pq, ranm, rewind, rm, rmdir,
sed, setquota, size, sort, split, sq, strings, strip, stty, sysline, tail, tbl, tset, ul, uncom-
pact, unexpand, vsh, wc.

Install the modified or new administrative programs: ac, getty, last.

Install some security fixes in the mail systems by installing new sources for berknet
(/usr/src/ucb/berknet), delivermail (/usr/src[ucb/delivermail), mail
(/usr/src/cmd/mail.c), and secret mail (/usr/src/cmd/xsend), and remaking and rein-
stalling the new binaries.

Install the new version of uucp (/usr/src/cmd/uucp).

Install the news (/usr/contrib/news) or notes (/usr/contrib/notes) bulletin board sys-
tem if you wish.

Install the new egn(1) symbol macros, [usr/public/eqnSyms.

March 26, 1984

Installing/Operating 2.9BSD -21- [usr setup

r) Install manual pages corresponding to the new and changed programs.

s) Remove the old programs /bin/ovas, /bin/ovld, /lib/ovas2, and /bin/ovadb. Remove
the libucbpath library. Remove the old version of reset and link the new version of
tset to reset.

March 26, 1984

Installing/Operating 2.9BSD -22- Kernel configuration

5. CONFIGURING AND COMPILING TE KERNEL

This section describes procedures used to set up a PDP-11 UNIX kernel (operating system).
It explains the layout of the kernel code, compile time options, how files for devices are made and
drivers for the devices are configured into the system and how the kernel is rebuilt to include the
needed drivers. Procedures described here are used when a system is first installed or when the
system configuration changes. Procedures for normal system operation are described in the next
section. We also suggest ways to organize local changes to the kernel.

5.1. Kernel organization

The kernel source is kept in the subdirectories of /[usr/src/sys. The directory
[usr[src/sys/sys contains the mainline kernel code implementing system calls, the file system,
memory management, etc. The directory /usr/src/sys/dev contains device drivers and other
low-level routines. The header files and scripts used to compile the kernel are kept in
[usr/src/sys/conf, and are copied from there into a separate directory for each machine
configuration. It is in this directory, /usr/src/sys/machine, that the kernel is compiled.

5.2. Configuring a System

Thé'ke[nel configuration of each PDP-11 UNIX system is described by a set of header files
(one for each device driver) and one file of magic numbers (ioconf.c) stored in a subdirectory of
[usr/src/sys for each configuration. Pick a name for your machine (call it PICKLE). Then in the
/usr[src/sys/conf directery, create a configuration file PICKLE describing the system you wish to
build, using the format in config(8). This is most easily done by making a copy of the GENERIC
file used for the distributed UNIX binary. Many of the fields in the configuration file correspond
to parameters listed in the remainder of this section, which should be scanned before proceeding.
See especially section 5.4.3 on how to set up automatic reboots and dumps. Then use config to
create a system directory ../PICKLE with ‘“‘config PICKLE.” Note the difference between config
and autoconfig. Config sets up a directory in which the kernel will be compiled, with all of the
system-specific files used in compilation, and specifies what devices will potentially be supported.
Autoconfig adapts the running kernel to the hardware actually present, by testing and setting the
register addresses and interrupt vectors.

Config does most of the work of configuration, but local needs will dictate some changes in
the options and parameters in the header files. All of the options are listed in the next section.
Examine whoami.h, localopts.h, param.h, and param.c and make any changes required; it might
also be wise to look through the header files for the devices that you have configured, to check
any options specific to the device drivers that are listed there. After you have finished configuring
a kernel and tested it, you should install whoami.h in [usr/include, and copy localopts.h and
param.h into /usr/include/sys. This will allow user-level programs to stay in sync with the run-
ning kernel.

If you wish to change any disk partition tables or device control status register addresses
(other than those configured at boot time by autoconfig(8)), edit ioconf.c and change the appropri-
ate line (s). The file l.s contains the interrupt vectors and interface code and may also be edited if
necessary, but usually will require no change. Both c.c and ls include support for all normal dev-
ices according to the header files per device, and with autoconfiguration, the actual vectors need
not be specified in advance. Finally, examine the Makefile, especially the options near the top
and the load rules. If you have placed the include files in the standard directories, you shouldn’t
have to make any changes to the options there.

The following sections give short descriptions of the various compile-time options for the
kernel, and more extensive information on the autoreboot and disk monitoring setup. After veri-
fying that those features are configured correctly for your system, you can proceed to kernel com-
pilation.

March 26, 1984

Installing/Operating 2.9BSD -23- Kernel configuration

5.3. Compile Time Options

The 2.9BSD kernel is highly tunable. This section gives a brief description of the many
compile-time options available, and references to sections of the Berkeley PDP-11 UNIX
Programmer’s manual where more information can be found. Options fall into four categories;
the letters following each will be used to mark the options throughout the rest of this section.

Standard (S) These include options which we consider necessary for reasonable
system performance or resiliency.

Desirable (D) These include many other features that are convenicnt but which
may be turned off if system size is critical. The user programs
and libraries distributed with 2.9BSD generally assume that these
are turned on, so turning them off may necessitate recompiling
libraries or programs. These options, along with those designated
“standard,” have received the most thorough testing.

Configuration Dependent (C) Options that depend on such things as the physical configuration
or speed issues fall into this category.

Experimental (X) New features that have not been well tested, options that have
known problems, or ones that we do not normally use are listed as
experimental. You should not use such options unless the prob-
lems listed are not considerations for your system, or you are wil-
ling to watch things closely and possibly do some debugging.

The following sections list the parameters and options used in the kernel. The parameters
(section 5.3.2) have numeric values, usually table sizes, and most of them are in param.h or
param.c. Those that are in param.h are typically not changed, with the possible exception of
MAXMEM, as their values are set by convention. The option flags are either defined or
undefined to enable or disable the corresponding feature, with the exception of UCB_NKB,
which is unlikely to change. Each option is marked with a letter to indicate into which of the
four categorigs above it falls.

5.3.1. Hardware

ENABLE34 C Automatically detect and support Able Computer's ENABLE/34¢t
memory management board. This option implies UNIBUS_MAP.

NONFP C Do not compile in code to automatically detect and support an
FP11 floating point processor. Also, include a fast illegal-
instruction trap handler and modify the signal routines to make it
possible to run programs using the floating-point interpreter under
trace.

NONSEPARATE C Do not attempt to support separate I/D user programs.
PARITY

PDP11 C This should be set to the CPU type of the target machine (23, 24,
34, 40, 44, 45, 60, 70, 73, or GENERIC). You should use 34 for an
11/34A, 45 for an 11/55, and 73 for an 11/74. GENERIC should
be used to build a system which runs on a variety of CPUs. It was
used to make the distributed kernels. MENLO_KOYV and NON-
SEPARATE are defined if PDP11 is 23, 24, 34, 40, or 60.
MENLO_KOV is also defined if PDP1l1 is GENERIC.
UNIBUS_MATP is defined if PDP11 is 44, 70, 84, or GENERIC.

SMALL C Use smaller (by about a factor of 8) queues and hash tables.

Q

Recognize and deal with cache and memory parity traps.

TE‘XAELE‘/:M is a trademark of Able Computer, Inc.

March 26, 1984

Installing/Operating 2.9BSD -24- Kernel configuration

UNIBUS_MAP C Compile in code to detect (and support if present) a UNIBUS map.
5.3.2. Parameters

5.3.2.1. Global configuration

MAXUSERS This is the maximum number of users the system should normally
expect to support. Config sets this from the corresponding field in
the description file; the definition is copied into the system Makefile
rather than a header file. It is not intended to be a hard limit. It
is used in sizing other parameters (CMAPSIZ, NFILE,
NINODE, NPROC, NTEXT, and SMAPSIZ). The formulae
are found in param.c. Reasonable values for MAXUSERS might
be 3 or 4 on a small system (11/34, 11/40), 15 for an 11/44 with a
reasonable amount of memory, and 15-30 for an 11/70 system.

TIMEZONE The number of minutes westward from Greenwich. Config sets this
from the corresponding field in the description file. Examples: for
Pacific Standard time, 8 (* 60); for EST, 5.

DSTFLAG Should be 1 if daylight savings time applies in your locality and 0
otherwise. Config sets this from the field in the description file.
HZ This is the line clock frequency (e.g. 50 for a 50 Hz. clock).

5.3.2.2. Tunable parameters

CMAPSIZ This is the number of fragments into which memory can be broken.
If this number is too low, the kernel's memory allocator may be
forced to throw away a section of memory being freed because
there is no room in the map to hold it. In this case, a diagnostic
message is printed on the console. Normally scaled automatically
according to MAXUSERS.

MAXMEM This sets an administrative limit on the amount of memory a pro-
cess may have. It is specified as (nn*16), where the first number is
the desired value in kilobytes (the product is in clicks). This
number is usually considerably lower than the theoretical max-
imum (304 Kb for a nonseparate I/D CPU, 464 Kb for a separate
I/D CPU, assuming MENLO_OVLY is defined). Normal values
are 128 Kb if there is no UNIBUS map (maximum physical
memory 248 Kb), otherwise 200 Kb.

NBUF This sets the size of the system buffer cache. It can be no greater
than 248. If UCB_NKB is defined, these are 1024 byte buffers.
Otherwise, they are 512 byte buffers. The buffers are not in kernel
data space, but are allocated at boot time. Normally scaled
automatically according to MAXUSERS, but should be examined
in the light of the disk load and amount of memory. For a small
to medium system, around 20 buffers should be sufficient; a large
system with many disks might use 40 to 60 or more.

NCALL This is the maximum number of simultanecus callouts (kernel
event timers). Callouts are used to time events such as tab or car-
riage return delays. Normally scaled automatically according to
MAXUSERS.

NCLIST This is the maximum number of clist segments. Clists are small
buffer areas, used to hold tty characters while they are being pro-
cessed. If UCB_CLIST is defined, they are not in kernel data
space, and this number must be less than 512 if you are using 14

March 26, 1984

Installing /Operating 2.9BSD

NDISK

NFILE

NINODE

NMOUNT

NPROC

NTEXT

SMAPSIZ

-25- Kernel configuration

character clists (the default), or 256 for 30 character clists. (The
clist size, CBSIZE, is in param.h.)

This is the maximum number of disks and controllers for which
I/O statistics can be gathered. See iostat(8). Care must be taken
that this is large enough for the parameters for each disk
(XX_DKN and number of disks; see the section on disk monitor-
ing).

This sets the maximum number of open files. An entry is made in
this table each time a file is ‘‘opened” (see creat(2)), open(2)).
Processes share these table entries across forks (see fork(2),
vfork(2)). Normally scaled automatically according to
MAXUSERS.

This sets the size of the inode table. There is one entry in the
inode table for each open file or device, current working or root
directory, saved = text segment, active quota node (if
UCB_QUOTAS is defined), and mounted file system. Normally
scaled automatically according to MAXUSERS.

This indicates the maximum number of mountable file systems. It
should be large enough that you don’t run out at inconvenient
times.

This sets the maximum number of active processes. Normally
scaled automatically according to MAXUSERS.

This sets the maximum number of active shared text images
(including inactive saved text segments). Normally scaled
automatically according to MAXUSERS.

This is the analogy of CMAPSIZ for secondary memory (swap
space). Normally scaled automatically according to MAXUSERS.

5.3.2.3. Parameters that are set by convention

CANBSIZ

MAXSLP

MAXUPRC

MSGBUFS

NCARGS

NOFILE

SINCR

This sets the maximum size of a terminal line input buffer. If
using the old tty line discipline, exceeding this bound causes all
characters to be lost. In the new tty line discipline, no more charac-
ters are accepted until there is room. Normally 256.

This is the maximum time a process can sleep before it is no longer
considered a ‘‘short term sleeper.”” It is wused only if
UCB_METER is defined. Normally 20.

This sets the maximum number of processes each user is allowed.
Normally 20, but can be lower on heavily loaded systems.

This is the number of characters saved from system error messages.
It is actually the size of circular buffer into which messages are
temporarily saved. It is expected that dmesg(8) will be run by
cron(8) frequently enough that no message is overwritten before it
can be saved in the system error log. Normally 128.

This is the maximum size of an ezec(2) argument list (in bytes).
Normally 5120.

This sets the maximum number of open files each process is
allowed. Normally 20.

The increment (in clicks) by which a process’s stack is expanded
when a stack overflow segmentation fault occurs. Normally 20.

March 26, 1984

Installing/Operating 2.9BSD

SSIZE

5.3.3. General Options
ACCT D

CGL_RTP C

DIAGNOSTIC C

INSECURE C

MENLO_JCL D

MENLO_KOV C

MENLO_OVLY D

OLDTTY C

UCB_AUTOBOOT D

UCB_CLIST C

UCB_GRPMAST C

UCB_NET X

UCB_NTTY S

UCB_PGRP C

-26- Kernel configuration

The initial size (in clicks) of a process’s stack. This should ke
made larger if commonly run processes have large data areas on
their stacks. Normally 20.

Enable code which (optionally) writes an accounting record for
each process at exit. See lastcomm(1), sa(1), acct(2), accton(8).

Support a system call which marks a process as a “‘real time’’ pro-
cess, giving it higher priority than all others. See rip(2).

Turn on more stringent error checking. This enables various kernel
consistency checks which are considered extremely unlikely to fail.
It is useful when the system is inexplicably crashing.

Do not turn off the set-user-id or set-group-id permissions on a file
when it is written.

Support reliable signal handling and enhanced process control
features. See sigsys(2j), jobs(3]), sigset(3j). This option requires
UCB_NTTY.

Support automatic kernel text overlays. This is required for non-
separate I/D systems and is defined automatically if PDP11 is
defined to be 23, 24, 34, 40, 60, or GENERIC.

Support automatic user text overlays. This is required in order to
run certain programs (e.g. ez version 3.7 or, on nonseparate I/D
systems, the process control C shell).

Support the standard V7 tty line discipline (see t¢ty(4)). This must
be defined if UCB_NTTY is not defined.

Allows the kernel to automatically reboot itself, either on demand
(see reboot(2) and reboot(8)) or after panics. This option requires a
little planning; see section 5.4.3. This option requires
UCB_FSFIX.

Map clists out of kernel virtual data space. If there is sufficient
space in kernel data for an adequate number of clists, this option
should not used. Mostly used on large systems, or on systems
where kernel data space is tight.

Allow one user to be designated a ‘‘group super-user,” able to per-
form various functions previously restricted to root or the file's
owner alone. In the kernel, users whose group and user ids are the
same are granted the same permissions with respect to files in the
same group as is the owner. User level software implements other
permissions, allowing the group super-user to change the password
of a user in the same group. The most common use for this is in
allowing teaching assistants to oversee students.

Enable code implementing a PDP-11 port of Berkeley’s version of
TCP/IP. The code is experimental and the implementation is
incomplete.

Support the Berkeley tty line discipline {see tty(4) and newtty(4)).
This must be defined if OLDTTY is not defined.

Fix a bug in the way standard V7 counts a user’s processes. This
should be enabled only if MENLO_JCL is undefined, since the

notion of process groups is completely different in the two cases. If
UCB_PGRP and MENLO_JCL are both defined, the limit on

March 26, 1984

Installing/Operating 2.9BSD

UCB_SCRIPT

UCB_UPRINTF

UCB_VHANGUP

VIRUS_VFORK

5.3.4. File system

INTRLVE
MPX_FILS

UCB_FSFIX

UCB_SYMLINKS

UCB_NKB

UCB_QUOTAS

C

-27 - Kernel configuration

the number of processes allowed per user (MAXUPRC) is
effectively eliminated.

Allow scripts to specify their own interpreters. For example, exe-
cuting a script beginning with ‘‘#! /bin/sh” causes /bin/sh to be
executed to interpret the script. This is not the same as the facil-
ity on 4.1BSD VMUNIX, and probably needs a little work. The
Bourne shell, /bin/sh, would need modification also.

Write error messages directly on a user’s terminal when the user
causes a file system to run out of inodes or free blocks, or on cer-
tain mag tape errors.

Support a system call which allows init(8) to revoke access to a
user’s terminal when the user has logged out. This is used to give
new users ‘‘clean’’ terminals on login.

Implement a much more efficient version of fork in which parent
and child share resources until the child ezecs. See vfork(2). Note
that this changes the way processes appear in memory. It makes
swap operations slower, and thus might not be desirable on systems
which swap heavily.

Allows interleaving of file systems across devices. See intrive(4).

Include code for the V7 multiplexer. The code is buggy and unsup-
ported.

Ensure that file system updates are done in the correct order, thus
making damaged file systems less likely and more easily repairable.
This option is required by UCB_AUTOBOOT (actually, by
the —p option of fsck(8), which makes certaln assumptions
about the state of the flle systems).

Add a new inode type to the file system: the symbolic link. Sym-
bolic links cause string substitution during the pathname interpre-
tation process. See In(1), readlink(2), and symlink(2).

Use file system blocks of N KB, normally 1. Changes the funda-
mental file system unit from 512 byte blocks to 1024 byte blocks
(with a corresponding reduction in the size of in-core inodes). This
increases file system bandwidth by 100%. Note that UCB_NKB
is not boolean, but is defined as 1 for 1KB blocks. Other values are
possible, but require additional macro definitions. All file systems
would have to be remade with new versions of mkfs and restor.
All supplied software expects UCB_NKB to be deflned and
equal to 1.

Support a simplistic (and easily defeated) dynamic disk quota
scheme. See l3(1), pg(1), quota(2), and setquota(8).

5.3.5. Performance Monitoring

DISKMON
UCB_LOAD

UCB_METER

C

D

Keep statistics on the buffer cache. They are printed by the -b
option of iostat(8).

Enable code that computes a Tenex style load average. See la(1),
gldav(2), loadav(3).

Keep statistics on memory, queue sizes, process states, interrupts,
traps, and many other (possibly useful) things. See vmstat(1) and

March 26, 1984

Installing/Operating 2.9BSD -28 - Kernel configuration

section 7.5 of this paper.

5.3.6. Device Drivers

In this section, an XX _ prefix refers to the UNIX name of the device for which the option is
intended to be enabled. For example, TM_IOCTL refers to mag tape toctls in tm.c. Most of
these definitions go in the header file zz.h for the device. The exceptions are BADSECT, MAX-
BAD, UCB_DEVERR, and UCB_ECC.

BADSECT C Enable bad-sector forwarding. Sectors marked bad by the disk for-
matter are transparently replaced when read or written. Currently,
only the hk driver’s code has been thoroughly tested.

DDMT C Currently used only by the tm driver. Should be defined if you
have a TM-11 emulator which supports 800/1600 bpi dual density
drives with software selection.

DZ_PDMA C Configure the dz driver to do pseudo-dma.

MAXBAD C This sets the maximum number of replacement sectors available on
a disk supporting DEC standard bad sector forwarding. It can be
no larger than 126 but may be smaller to reduce the size of kernel
data space. See the include file /usr/include/sys/dkbad.h.

TEXAS_AUTOBAUD C Support an ioctl which defeats detection of framing or parity
errors. This is used by getty(8) to accurately guess a line’s speed
when a carriage return is typed.

UCB_DBUF C If defined for a given disk driver, the driver will use one raw buffer
per drive rather than one per controller. This increases throughput
for controllers that are capable of seeking on one drive while simul-
taneously transferring on another.

UCB_DEVERR D Print device error messages in a human readable (mnemonic) for-
mat.
UCB_ECC C Recognize and correct soft ecc disk transfer errors.

VP_TWOSCOMPL C Used in the Versatec (vp) driver. If defined, the byte count register
will be loaded with the twos-complement of the byte count, rather
than the byte count itself. Check your controller manual to see
whether your controller requires this.

XX_1I0CTL D Turn on optional foctls for the corresponding device. See section 4
of the Berkeley PDP-11 UNIX Programmer’s manual for details.

XX_SILO D Used in the dh and dz drivers. If defined, the drivers will use silo
interrupts to avoid taking an interrupt for each character received.

XX_SOFTCAR C Currently used only by the dh and dz drivers. Should be defined if

not all of the lines on a DH-11 or DZ-11 use modem control. It
allows one to select lines on which modem control will be disabled.
See dh(4) and dz(4). It can also be used with escape-code autodi-
alers to allow modem control to be ignored while talking to the
dialer.

XX_TIMEOUT D Enable a watchdog timer. This is used to kick devices prone to los-
ing interrupts. It is currently available only for the tm driver.

5.3.7. Miscellaneous System Calls

UCB_LOGIN C Support a system call which can mark a process as a “login pro-
cess”’ and set its recharge number (for accounting purposes). This
is usually done by login(1). See login(2).

March 26, 1984

Installing /Operating 2.9BSD -29- Kernel configuration

UCB_RENICE D Support a system call which allows a user to dynamically change a
process’s ‘“‘nice’’ value over the entire range (-127 to 127) of values.
See renice(1) and renice(2).

UCB_SUBM C Support a system call to mark a process as having been ‘“‘submit-
ted,” permitting it to run after the user has logged out and ena-
bling special accounting for its CPU use. See submit(1) and sub-
mit(2). If this option is enabled, init(8) sends a SIGKILL signal to
a user’s unsubmitted processes when that user logs out. It is
ineffective if MENLO_JCL is defined.

5.3.8. Performance Tuning

NOKAS C Simplify the code for kernel remapping by assuming that KDSAS
will not be used for normal kernel data. Kernel data space must
end before 0120000 if this option is enabled. It is unfortunate but
unavoidable that one must first make a kernel and size it to deter-
mine whether this option may be safely defined. It is usually possi-
ble on all but the largest separate I/D kernels, and on the small-
to-medium nonseparate, overlaid kernels. The checksys utility will
print a warning message if the data limit is exceeded when a new
kernel is loaded.

PROFIL C Turn on system profiling. This requires a separate I/D cpu
equipped with a KW11-P clock. It cannot be used on machines
with ENABLE/34 boards since they have no spare page address
registers. If profiling is enabled, you should change the definition
of SPLFIX in the corresponding machine Makefile to :splfiz.profi.
The directory [usr/contrib/getsyspr contains a program for extract-
ing the profiling information from the kernel.

UCB_BHASH D Compile in code to hash buffer headers (and cut the time required
by the getblk routine by 50% or more on large systems).
UCB_FRCSWAP C Force swaps on all forks and expands (but not vforks). This is

used to transfer some of the load from a compute-bound CPU to an
idle disk controller. This is probably not a good idea with
VIRUS_VFORK defined, but then the load is better reduced by
using vfork instead of fork.

UCB_IHASH D Compile in code to hash in-core inodes (and cut the time required
by the iget routine by 50% or more on large systems).

UNFAST C Do not use inline macro expansions designed to speed up file sys-
tem accesses at the cost of a larger text segment.

5.4. Additional configuration detalls

A few of the parameters and options require a little care to set up; those considerations are
discussed here.

5.4.1. Alternate disk drivers

There are several disk drivers provided for SMD disks. The hp driver supports RP04/05/06
disks; rm supports RM02/03 disks, and dvhp supports 300 Mbyte drives on Diva controllers. In
addition, there is an xp driver which handles any of the above, plus RMO05 disks, multiple con-
trollers, and disks which are similar to those listed but with different geometry (e.g. Fujitsu 160
Mbyte drives). It can be used with UNIBUS or MASSBUS controllers or both. In general, if you
have only one type of disk and one controller, the hp, rm or dvhp drivers are the best choices,
since they are smaller and simpler. If you use the xp driver, it can be set up in one of two ways.
If XP_PROBE is defined in xp.h, the driver will attempt to determine the type of each disk and

March 26, 1984

Installing/Operating 2.9BSD -30- Kernel configuratio~

controller by probing and using the drive type register. To save the space occupied by this rou-
tine, or to specify different drive parameters, the drive and controller structures can be initialized
in ioconf.c if XP_PROBE is not defined. The controller addresses will have to be initialized in
either case (at least the first, if it is a boot device). The file /usr/include/sys/hpreg.h provides
the definitions for the flags and sizes. loconf.c has an example of initialized structures. Xp(4)
gives more information about drive numbering, etc.

5.4.2. Disk monitoring parameters

The kernel is capable of maintaining statistics about disk activity for specified disks; this
information can be printed by fostat(8). This involves some setup, however, and if parameters
are set incorrectly can cause the kernel monitoring routines to overrun their array bounds. To set
this up correctly, choose the disks to be monitored. Iostat is configured for a maximum of 4
disks, but that could be changed by editing the headers. The drivers that do overlapped seeks
(hk, hp, rm and xp) use one field for each drive (NXX) plus one for the controller; the others use
only one field, for the controller. When both drives and controllers are monitored, the drives
come first, starting at XX_DKN, followed by the controller (or controllers, in the case of xp).
Then set NDISK in param.c to the desired number. The number of the first slot to use for each
driver is defined as XX_DKN in the device’s header file, or is undefined if that driver is not using
monitoring. lostat currently expects that if overlapped seeks are being metered, those disks are
first in the array (i.e., XX_DKN for that driver is 0). As an example, for 3 RP06 disks using the
hp driver plus 1 RL02, HP_DKN should be 0, RL_DKN should be 4, and NDISK should be 5 (3
hp disks + 1 hp controller + 1 rl). The complete correspondence for iostat would then be:

0 (HP_DKN + 0) hpO seeks

1 (HP_DKN + 1) hp1 seeks

2 (HP_DKN + 2) hp2 seeks

3 (HP_DKN + NHP) hp controller transfers
4 (RL_DKN + 0) rl transfers

It is very important that NDISK be large enough, since the drivers do not check for
overflow.

After the kernel disk monitoring is set up, sostat itself needs to be edited to reflect the
numbers and types of the disks. The source is in fusr/src/cmd.

5.4.3. Automatic reboot

The automatic reboot facility (UCB_AUTOBOOT) includes a number of components,
several of which must know details of the boot configuration. The kernel has an integral boot
routine, found in boot.s in the configuration directory for the machine, which reads in a block 0
bootstrap from the normal boot device and executes it. The block 0 bootstrap normally loads
boot from the first file system on drive 0 of the disk; this can be changed if necessary. The
second-stage bootstrap, /boot, needs to know where to find unix.

The first step is to determine which kernel boot to use. Currently, there are boot modules
supplied for the following disk types: hk, rl, rm, rp, dvhp, scll and sc21 (the last two are for
Emulex SC11 and SC21 controllers, using the boot command). If one of these will work with
your boot disk, place that entry in the bootdev field in the device configuration file before run-
ning config, or simply copy ../conf/dkboot.s to boot.s in the machine configuration directory. If
no boot module supplied will work, it is not too difficult to create one for your machine. The
easiest way to do this is to copy one of the other boot modules, and modify the last section which
actually reads the boot block. If you have a bootstrap ROM, you can simply jump to the correct
entry with any necessary addresses placed in registers first. Or, you can write a small routine to
read in the first disk block. If you don’t have a boot module, bootdev in the configuration file
should be specified as none, and noboot.s will be installed. This is a dummy file that keeps the
load rules from changing. The UCB_AUTOCBOOT option should not be defined until a boot

March 26, 1984

Installing /Operating 2.9BSD -31- Kernel configuration

module is obtained.

The other change that is normally required is to specify where /unix will be found. This is
done by changing the definition of RB_DEFNAME in /usr/include/sys/reboot.h. The definition
is a string in the same format as the manual input to boot, for example "xp(0,0)unix”. After
making this change, boot will need to be recompiled (in /usr/src/sys/stand/bootstrap) and
installed. It can be installed initially as /newboot, and the original boot can be used to load it for
testing:

>boot

nnBoot
: dk(0,0)newboot

nnBoot
¢ dk(0,0)unix

If you want to have core dumps made after crashes, this must be specified in the
configuration file as well. Dumps are normally taken on the end of the swap device before reboot-
ing, and after the system is back up and the file systems are checked, the dump will be copied
into /usr/sys by savecore(8). Dump routines are available for the hk, hp, rm and xp drivers. To
install, change the dumpdev entry to the same value as the swap device. Then set dumplo to a
value that will allow as much as possible of memory to be saved. The dump routine will start the
dump at dumplo and continue to the end of memory or the end of the swap device partition,
whichever comes first. Dumplo should be larger than swplo so that any early swaps will not
overwrite the dump, but if possible, should be low enough that there is room for all of memory.
The dumproutine entry in the configuration file is then set to dkdump, where dk is the disk
type. Finally, after running config, edit the header file dk.h in the new configuration directory to
define DK_DUMP, so that that dump routine will be included when the driver is compiled.

5.4.4. Considerations on a PDP-11/23

If setting up a kernel on a PDP-11/23, it is necessary to consider the interrupt structure of
the hardware. If there are any single-priority boards on the bus, they must be behind all
multiple-priority devices. Otherwise, they may accept interrupts meant for another, higher-
priority device farther from the processor, at a time when the system has set the processor prior-
ity to block the single-level device. The alternative is to use spl6 uniformly for any high proces-
sor priority (spl4, spl5, spl6). This may be accomplished by changing the _spl routines in mch.s,
the definitions of br4 and br5 in L.s, and by changing the script :splfix.mtps (in the conf directory).

Berkeley UNIX does not support more than 256K bytes of memory on the 11/23. If you have
extra memory and a way to use it (e.g. a disk driver capable of 22-bit addressing) you will want
to change this.

5.5. Compliling the kernel

Once you have made any local changes, you are ready to compile the kernel. If you have
made any_changes which will affect the dependency rules in the Makefile, run “make depend”
(N.B.: the cutput of this command is best appreciated on a crt). Then, ‘“make unix.”” Note:
although several shortcuts have been built into the makefile, the nonseparate I/D make occasion-
ally runs out of space while recompiling the kernel. If this happens, just restart it and it will gen-
erally make it through the second time. The separate I/D version of make in [usr/70 should have
no problem. Also note, it is imperative that overlaid kernels be compiled with the 2.9BSD ver-
sions of cc, as (and as2) and /d. Use of older C preprocessors or assemblers will result in compile-
time errors or (worse) systems that will almost run, but crash after a short time.

After the unix binary is loaded, the makefile runs a small program called checksys which
checks for size overflows. If you are building an overlaid system, check the size of the object file
(see size(1)) and overlay layout. The overlay structure may be changed by editing the makefile.

March 26, 1984

Installing/Operating 2.9BSD -32- Kernel configuration

For a nonseparate I1/D system, the base segment size must be between 8194 and 16382 bytes 2nd
each overlay must be at most 8192 bytes. If you are building an overlaid system with
ENABLE/34 support, note that the object module enableS4.0 must be loaded in the base segment.
The final object file “unix’ should be copied to the root, and then booted to try it out. It is best
to name it /newunix so as not to destroy the working system until you're sure it does work:

cp unix /newunix

#f sync
It is also a good idea to keep the old system around under some other name. In particular, we
recommend that you save the generic distribution version of the system permanently as /generi-
cunix for use in emergencies.

To boot the new version of the system you should follow the bootstrap procedures outlined

in section 2.4 above. A systematic scheme for numbering and saving old versions of the system is
best.

You can repeat these steps whenever it is necessary to change the system configuration.

5.8. Making changes to the kernel
If you wish to make local mods to the kernel you should bracket them with

#ifdef PICKLE

#endif
perhaps saving old code between

#ifndef PICKLE

#endif

This will allow you to find changed code easily.

To add a device not supported by the distribution system you will have to place the driver
for the device in the directory [usr/src/sys/dev, edit a line into the block and/or character device
table in /usr/src/sys/PICKLE/c.c, add the name of the device to the OPTIONAL line of the file
Depend, and to the makefile load rules. Place the device’s address and interrupt vector in the
files ioconf.c and l.s respectively if it is not going to be configured by autoconfig(8); otherwise, l.s
will only need the normal interface to the C interrupt routine. If you use autoconfiguration, you
will need an attach routine in the driver, and a probe routine in the driver or in autoconfig. Use
the entries for a similar device as an example. If the device driver uses the UNIBUS map or sys-
tem buffers, it will probably need modifications. Check ‘“Changes in the Kernel in 2.9BSD” for
more technical information regarding driver interfacing. You can then rebuild the system (be sure
to make depend first). After rebooting the resulting kernel and making appropriate entries in the
/dev directory, you can test out the new device and driver. Section 7.1 explains shutdown and
reboot procedures.

March 26, 1984

Installing/Operating 2.9BSD -33- Recompiling system software

6. RECOMPILING SYSTEM SOFTWARE

We now describe how to recompile system programs and install them. Some programs must
be modified for the local system at this time, and other local changes may be desirable now or
later. Before any of these procedures are begun, be certain that the include files <whoami.h>,
<sys/localopts.h> and <sys/param.h> are correct for the kernel that has been installed. This
is important for commands that wish to know the name of the local machine or that size their
data areas appropriately for the type of CPU. The general procedures are given first, followed by
more detailed information about some of the major systems that require some setup.

8.1. Recomplling and reinstalling system software

It is easy to regenerate the system, and it is a good idea to try rebuilding pieces of the sys-
tem to build confidence in the procedures. The system consists of three major parts: the kernel
itself, along with the bootstrap and standalone utilities (/usr/src/sys), the user programs
(/usr/src/cmd, [usr/src/ucb, and subdirectories), and the libraries (/usr/src/lib). The major part
of this is /usr/src/cmd.

We have already seen how to recompile the system itself. The commands and libraries can
be recompiled in their respective source directories using the Makefile (or Ovmakefile if there are
both overlaid and non-overlaid versions). However, it is generally easier to use one of the MAKE
scripts set up for [usr/src/lib, [usr/src/cmd, and [usr/src/ucb. These are used in a similar
fashion, such as

./MAKE 40 [—p] [-f] fie ...

The first, required fiag sets the CPU class for which to compile. Three classes are used to used to
set requirements for separate instruction and data and for floating point. “MAKE -40’’ makes
nonseparate I/D versions that load the floating point interpreter as required. “MAKE -34” is
similar but assumes a hardware floating point unit. “MAKE -70" is used for separate I/D
machines and also assumes floating point hardware. “MAKE -70 -f” is used for separate I/D
machines without floating point hardware. The use of these MAKE scripts automates the selec-
tion of CPU-dependent options and makes the optimal configuration of each program for the tar-
get computer. The optional argument —cp causes each program to be installed as it is made.
They are installed in the normal directories, unless the environment variable DESTDIR is set, in
which case the normal path is prepended by DESTDIR. This can be used to compile and create a
new set of binary directories, e.g. /nbsd/bin, /nbsd/lib, etc. Running the command “MAKE
-70 —cp *” in [usr/src/lib, /usr/src/cmd and [usr/src/ucb would thus create a whole new tree of
system binaries. The six major libraries are the C library in /usr/src/lib/c, the jobs library,
[ust/src/lib/jobs, the FORTRAN libraries /[usr/src/lib/libF77, [usr/src/lib/libI77, and
/usr/src/lib/1ibU77, and the math library /usr/src/lib/m. Most libraries are made in two ver-
sions, one each for use with and without process overlays. In each case the library is remade by
changing into /usr/src/lib and doing

./MAKE -cpu libname
or made and installed by

./MAKE -cpu —cp libname
Similar to the system,

make clean

cleans up in each subdirectory.

To recompile individual commands, change to fusr/src/cmd or [usr/src/ucb, as appropriate,
and use the MAKE script in the same way. Thus to compile adb, do

March 26, 1984

Installing /Operating 2.9BSD -34- Recompiling system software

./MAKE -cpu adb
where cpu is 34, 40, or 70. To recompile everything, use
./MAKE -cpu *

After installing new binaries, you can use the script in /usr/src to link files together as necessary
and to set all the right set-user-id bits.

cd [usr/src
./MAKE aliases
./MAKE modes

8.2. Making local modifications

To keep track of changes to system source we migrate changed versions of commands in
[usr/src/cmd in through the directory /usr/src/new and out of /usr/src/cmd into [usr/src/old for
a time before removing them. Locally written commands that aren’t distributed are kept in
[usr/src/local and their binaries are kept in /usr/local. This allows /usr/bin, /usr/ucb, and /bin
to correspond to the distribution tape (and to the manuals that people can buy). People wishing
to use [usr/local commands are made aware that they aren’t in the base manual. As manual
updates incorporate these commands they are moved to fusr/ucb.

A directory [usr/junk to throw garbage into, as well as binary directories [usr/old and
[usr/new are useful. The man(1) command supports manual directories such as /usr/man/mann
for new and /usr/man/manl for local to make this or something similar practical.

6.3. Setting up the mail system

The mail system can be set up in at least two ways. One strategy uses the delivermail(8)
program to sort out network addresses according to the local network topology. It is not perfect,
especially in the light of changing ARPAnet conventions. However, if you use the Berkeley net-
work or are connected directly or indirectly to the ARPAnet, it is probably the method of choice
for the time being. On the other hand, if you use only local mail and UUCP mail, /bin/mail
(masl(1)) will suffice as a mail deliverer. In that case, you will only need to recompile mail(1) and
Mail(1).

The entire mail system consists of the following commands:

/bin /mail old standard mail program (from V7 or System III)
/usr/ucb/Mail UCB mail program, described in Mail{1)
[usr/lib/Mail.rc aliases and defaults for Mail(1)

[ete [delivermail mail routing program

[usr/net/bin/v6mail local mailman for berknet

/usr [spool/mail mail spooling directory

[usr/spool/secretmail secure mail directory

[usr /bin/xsend secure mail sender

[usr/bin/xget secure mail receiver

[usr/lib/aliases mail forwarding information for delivermail
[usrt /ucb/newaliases command to rebuild binary forwarding database

Mail is normally sent and received using the Mail(1) command, which provides a front-end to edit
the messages sent and received, and passes the messages to delivermail(8) or mail(1) for routing
and/or delivery.

Mail is normally accessible in the directory /usr/spool/mail and is readable by all users.t To

T You can makd.your mail unreadable by others by changing the mode of the file /usr/spool/mail/yourname to
600 and putting the line “set keep” in your .mailrc file. The directory /usr/spool/mail must not be writable
(mode 755) for this to work.

March 26, 1984

Installing /Operating 2.9BSD -35- Reccmipiling system software

send mail which is secure agzinst any possible perusal (except by a code-breaker) you should use
the secret mail facility, which encrypts the mail so that no one can read it.

8.3.1. Setting up malil and Mall

Both /bin/mail and /usr/ucb/Mail should be recompiled to make local versions. Remake
mail in /usr/src/cmd with the command

./MAKE -cpu mail

Install the new binary in /bin after testing; it must be setuserid root. Section 6.1 gives more
details on the use of the MAKE scripts. To configure Mail, change directories to
[usr/src/ucb/Mail. Edit the file v7.local.h to assign a letter to your machine with the definition
of LOCAL; if you do not have a local area network, the choice is arbitrary as long as you pick an
unused letter. If you wish to use delivermail, the definition of SENDMAIL should be uncom-
mented. Then add your machine to the table in config.c; configdefs.h gives some information on
this. The network field should specify which networks (if any) you are connected to (note: the
Schmidt net, SN, is Berknet). After the changes are made, move to fusr/src/ucb and

./MAKE -40 Mail (on a nonseparate I/D machine)
or

./MAKE -70 Mail (on a separate I/D machine)

Install Mail in [usr/ucb; it should not be setuserid. The Mail.rc file in /usr/lib can be used to set
up limited distribution lists or aliases if you are not using delivermail.

8.3.2. Setting up delivermail

To set up the delivermail facility you should read the instructions in the file READ_ME in
the directory [usr/src/ucb/delivermail and then adjust and recompile the delivermail program,
installing it as /etc/delivermail. The routing algorithm uses knowledge of network name syntax
built into its tables and aliasing and forwarding information built into the file /usr/lib/aliases to
process each piece of mail. Local mail is delivered by giving it to the program
/usr/net/bin/v6mail which adds it to the mailboxes in the directory /usr/spool/mail/username,
using a locking protocol to avoid problems with simultaneous updates. You should also set up the
file /usr/lib/aliases for your installation, creating mail groups as appropriate.

68.4. Setting up a uucp connection

The version of uucp included in 2.9BSD is an enhanced version of that originally distributed
with V7*, The enhancements include:

e support for many auto call units other than the DEC DN11,
e breakup of the spooling area into multiple subdirectories,

e addition of an L.cmds file to control the set of commands which may be executed by a remote
site,

e enhanced ‘‘expect-send’”’ sequence capabilities when logging in to a remote site,
e new commands to be used in polling sites and obtaining snap shots of uucp activity.

This section gives a brief overview of uucp and points out the most important steps in its installa-
tion.

To connect two UNIX machines with a uucp network link using modems, one site must have
an automatic call unit and the other must have a dialup port. It is better if both sites have both.

You should first read the paper in volume 2B of the Unix Programmers Manual: ‘“Uucp
Implementation Description”. It describes in detail the file formats and conventions, and will give

¢ The uucp included in this distribution is the result of work by many people; we gratefully acknowledge their
contributions, but refrain from mentioning names in the interest of keeping this document current.

March 26, 1984

Installing/Operating 2.9BSD -36 - Recompiling system scitware

you a little context. In addition, the document setup.tblms, located in the directory
[usr/srefusr.bin/uucp /UUAIDS, may be of use in tailoring the software to your needs.

The uucp support is located in three major directories: /usr/bin, /usr/lib/uucp, and
[usr [spool/uucp. User commands are kept in /usr/bin, operational commands in /usr/lib/uucp,
and /usr/spool/uucp is used as a spooling area. The commands in /usr/bin are:

[usr /bin/uucp file-copy command
/usr /bin/uux remote execution command
/usr/bin/uusend binary file transfer using mail

[usr/bin/uuencode binary file encoder (for uusgend)
[usr/bin/uudecode binary file decoder (for uusend)

[usr/bin/uulog scans session log files
/usr/bin/uusnap gives a snap-shot of uucp activity
/usr/bin/uupoll polls remote system until an answer is received

The important files and commands in /usr/lib/uucp are:

/usr /lib/uucp/L-devices list of dialers and hardwired lines
[usr/lib/uucp/L-dialcodes dialcode abbreviations

/usr/lib/uucp/L.cmds commands remote sites may execute

[usr/lib/uucp/L sys systems to communicate with, how to connect, and when
[usr/lib/uucp/SEQF sequence numbering control file
[usr/lib/uucp/USERFILE remote site pathname access specifications
/usr/lib/uucp/uuclean cleans up garbage files in spool area
/usr/lib/uucp/uucico uucp protocol daemon

[ust /lib/uucp/uuxqt uucp remote execution server

while the spooling area contains the following important files and directories:

[ust [spool /uucp/C. directory for command, “‘C.” files
[usr [spool/uucp/D. directory for data, “D.”, files
/usr/spool/uucp /X. directory for command execution, ‘*“X.”, files

[usr [spool/uucp /D.machine directory for local “D.” files
[usr/spool/uucp/D.machineX directory for local “X.” files
[usr/spool/uucp /TM. directory for temporary, “TM.”, files
/usr /spool/uucp /[LOGFILE log file of uucp activity
/usr/spool/uucp/SYSLOG log file of uucp file transfers

To install uucp on your system, start by selecting a site name (less than 8 characters). A
uucp account must be created in the password file and a password set up. Then, create the
appropriate spooling directories with mode 755 and owned by user uucp, group daemon.

If you have an auto-call unit, the L.sys, L-dialcodes, and L-devices files should be created.
The L.sys file should contain the phone numbers and login sequences required to establish a con-
nection with a uucp daemon on another machine. For example, our L.sys file looks something
like:

adiron Any ACU 1200 out0123456789- ogin-EOT-ogin uucp
cbosg Never Slave 300

cbosgd Never Slave 300

chico Never Slave 1200 out2010123456

The first field is the name of a site, the second indicates when the machine may be called, the
third field specifies how the host is connected (through an ACU, a hardwired line, etc.), then
comes the phone number to use in connecting through an auto-call unit, and finally a login
sequence. The phone number may contain common abbreviations which are defined in the L-

March 26, 1984

Installing /Operating 2.9BSD -37- Recompiling system software

dialcodes file. The device specification should refer to devices specified in the L-devices file. Indi-
cating only ACU causes the uucp daemon, uucico, to search for any available auto-call unit in L-
devices. Our L-dialcodes file is of the form:

ucb 2
out 9%

while our L-devices file is:
ACU culO unused 1200 ventel

Refer to the README file in the uucp source directory for more information about installation.

As uucp operates it creates (and removes) many small files in the directories underneath
[usr/spool/uucp. Sometimes files are left undeleted; these are most easily purged with the
uuclean program. The log files can grow without bound unless trimmed back; uulog is used to
maintain these files. Many useful aids in maintaining your uucp installation are included in a sub-
directory UUAIDS beneath /usr/src/usr.bin/uucp. Peruse this directory and read the “setup”
instructions also located there.

8.5. Miscellaneous software

The directory [usr/contrib contains programs and packages that you may wish to install on
your system. Some were directly contributed; others were collected from the usenet news group
net.sources. Also, some programs or libraries in other directories are sufficiently unique to be
noteworthy. Here is a brief summary.

8.5.1. Ape

Ape (Arbitrary Precision Extended) is a replacement for the multiple precision arithmetic
routines (mp(3)). It is much faster and contains numerous bug fixes.

6.5.2. L11,M11

M11 is a Macro-11 assembler. It recognizes and emulates almost all of the directives of
standard DEC Macro-11 assemblers. L11 is its loader.

6.5.3. Jove

Jove (Jonathan’s Own Version of EMACS) is an EMACS style editor developed at Lincoln
Sudbury Regional High Schcol.

8.5.4. Kernel scheduler modifications

The scheduler modifications made by Darwyn Peachey at the University of Saskatchewan
are included here but have not been incorporated into the distribution kernel (although it would
not be hard). It improves the response of interactive jobs and provides a real time facility
different from the one currently implemented.

6.5.5. News

The network bulletin board system developed at Duke University and the University of
North Carolina and since heavily modified at Berkeley.

8.5.6. Notes

The network bulletin board system developed at the University of Ilinois. This version con-
tains many enhancements and clean news interfaces.

March 26, 1984

Installing/Operating 2.9BSD -38- Recompiling system sciiware

8.5.7. Ranm
Ranm is a fast uniform pseudorandom number generator package developed at Berkeley.

March 26, 1984

Installing /Operating 2.9BSD -39 - System Operation

7. SYSTEM OPERATION

This section describes procedures used to operate a PDP-11 UNIX system. Procedures
described here are used periodically, to reboot the system, analyze error messages from devices, do
disk backups, monitor system performance, recompile system software and control local changes.

7.1. Bootstrap and shutdown procedures

The system boot procedure varies with the hardware configuration, but generally uses the
console emulator or a ROM routine to boot one of the disks. /boot comes up and prompts (with
“: ") for the name of the system to load. Simply hitting a carriage return will load the default
system. The system will come up with a single-user shell on the console. To bring the system up
to a multi-user configuration from the single-user status, all you have to do is kit "D on the con-
sole (you should check and, if necessary, set the date before going multiuser; see date(1)). The
system will then execute /etc/rc, a multi-user restart script, and come up on the terminals listed
as active in the file /etc/ttys. See init(8) and ttys(5). Note, however, that this does not cause a
file system check to be performed. Unless the system was taken down cleanly, you should run
“fsck —p”’ or force a reboot with reboot(8) to have the disks checked.

In an automatic reboot, the system checks the disks and comes up multi-user without inter-
vention at the console. If the file system check fails, or is interrupted (after it prints the date)
from the console when a delete/rubout is hit, it will leave the system in special-session mode,
allowing root to log in on one of a limited number of terminals (generally including a dialup) to
repair file systems, etc. The system is then brought to normal multiuser operations by signaling
init with a SIGINT signal (with “kill -INT 1”).

To take the system down to a single user state you can use
kill 1

or use the shutdown(8) command (which is much more polite if there are other users logged in)
when you are up multi-user. Either command will kill all processes and give you a shell on the
console, almost as if you had just booted. File systems remain mounted after the system is taken
single-user. If you wish to come up multi-user again, you should do this by:

#cd/
/etc/umount -a
D
The system can also be halted or rebooted with reboot(8) if automatic reboots are enabled. Oth-

erwise, the system is halted by switching to single-user mode to kill all processes, updating the
disks with a ‘‘sync’”’ command, and then halting.

Each system shutdown, crash, processor halt and reboot is recorded in the file
[usr/adm/shutdownlog with the cause.

7.2. Device errors and diagnostics

Wh‘en,ggmrs occur on peripherals or in the system, the system prints a warning diagnostic
on the console. These messages are collected regularly and written into a system error log file
[usr/adm/messages by dmesg(8).

Error messages printed by the devices in the system are described with the drivers for the
devices in section 4 of the Berkeley PDP-11 UNIX Programmer’s manual. If errors occur indicating
hardware problems, you should contact your hardware support group or field service. It is a good
idea to examine the error log file regularly (e.g. with “‘tail -r /usr/adm/messages”).

If you have DEC field service, they should know how to interpret these messages. If they do
not, tell them to contact the DEC UNIX Engineering Group.

March 26, 1984

Installing /Operating 2.9BSD - 40 - System Operation

7.3. File system checks, backups and disaster recovery

Periodically (say every week or so in the absence of any problems) and always (usually
automatically) after a crash, all the file systems should be checked for consistency by fsck(8).
The procedures of boot(8) or reboot(8) should be used to get the system to a state where a file
system check can be performed manually or automatically.

Dumping of the file systems should be done regularly, since once the system is going it is
easy to become complacent. Complete and incremental dumps are easily done with dump(8).
You should arrange to do a towers-of-Hanoi dump sequence; we tune ours so that almost all files
are dumped on two tapes and kept for at least a week in almost every case. We take full dumps
every month (and keep these indefinitely).

Dumping of files by name is best done by tar(1) but the amount of data that can be moved
in this way is limited to a single tape. Finally, if there are enough drives, entire disks can be
copied with dd(1) using the raw special files and an appropriate block size.

It is desirable that full dumps of the root file system are made regularly. This is especially
true when only one disk is available. Then, if the root file system is damaged by a hardware or
software failure, you can rebuild a workable disk using a standalone restore in the same way that
restor was used to build the initial root file system.

Exhaustion of user-file space is certain to occur now and then; the only mechanisms for con-
trolling this phenomenon are occasional use of df(1), du(1), quot(8), threatening messages of the
day, personal letters, and (probably as a last resort) quotas (see setquota(8)).

7.4. Moving file system data

If you have the equipment, the best way to move a file system is to dump it to magtape
using dump (8), to use mkfs(8) to create the new file system, and restore, using restor(8), the tape.
If for some reason you don’t want to use magtape, dump accepts an argument telling where to
put the dump; you might use another disk. Sometimes a file system has to be increased in logical
size without copying. The super-block of the device has a word giving the highest address that
can be allocated. For small increases, this word can be patched using the debugger adb(1) and
the free list reconstructed using fsck(8). The size should not be increased greatly by this tech-
nique, since the file system will then be short of inode slots. Read and understand the description
given in filsys(5) before playing around in this way.

If you have to merge a file system into another, existing one, the best bet is to use tar(1). If
you must shrink a file system, the best bet is to dump the original and restor it onto the new file
system. However, this will not work if the i-list on the smaller file system is smaller than the
maximum allocated inode on the larger. If this is the case, reconstruct the file system from
scratch on another file system (perhaps using tar(1)) and then dump it. If you are playing with
the root file system and only have one drive the procedure is more complicated. What you do is
the following:

1. GET A SECOND PACK!!!!

Dump the root file system to tape using dump(8).

Bring the system down and mount the new pack.

Load the standalone versions of mkfs(8) and restor(8) as in sections 2.1-2.3 above.

ARl

Boot nqrmally using the newly created disk file system.

Note that if you add new disk drivers they should also be added to the standalone system in
Jusr [src/sys/[stand.

7.5. Monitoring System Performance

The io0stat(8) and vmstat(8) programs provided with the system are designed to aid in moni-
toring systemwide activity. By running them when the system is active you can judge the system
activity in several dimensions: job distribution, virtual memory load, swapping activity, disk and

March 26, 1984

Installing /Operating 2.9BSD - 41 - System Operaticn

CPU utilization. Ideally, there should be few blocked (DW) jobs, there should be little swapping
activity, there should be available bandwidth on the disk devices (most single arms peak out at
30-35 tps in practice), and the user CPU utilization (US) should be high (above 60%).

If the system is busy, then the count of active jobs may be large, and several of these jobs
may often be blocked (DW).

If you run vmstat when the system is busy (a ‘‘vmstat 5 gives all the numbers computed
by the system), you can find imbalances by noting abnormal job distributions. If many processes
are blocked (DW), then the disk subsystem is overloaded or imbalanced. If you have several
non-DMA devices or open teletype lines that are ‘‘ringing’’, or user programs that are doing high-
speed non-buffered input/output, then the system time may go high (60-70% or higher). It is
often possible to pin down the cause of high system time by looking to see if there is excessive
context switching (CS), interrupt activity (IN) or system call activity (SY).

If the system is heavily loaded, or if you have little memory for your load (248K is little in
almost any case), then the system will be forced to swap. This is likely to be accompanied by a
noticeable reduction in system performance and pregnant pauses when interactive jobs such as
editors swap out. If you expect to be in a memory-poor environment for an extended period you
might consider administratively limiting system load.

7.8. Adding users

New users can be added to the system by adding a line to the password file /etc/passwd.
You should add accounts for the initial user community, giving each a directory and a password,
and putting users who will wish to share software in the same group. User id’s should be assigned
starting with 16 or higher, as lower id’s are treated specially by the system. Default startup files
should probably provided for new users and can be copied from /usr/public. Initial passwords
should be set also.

A number of guest accounts have been provided on the distribution system; these accounts
are for people at Berkeley and at Bell Laboratories who have done major work on UNIX in the
past. You can delete these accounts, or leave them on the system if you expect that these people
would have occasion to login as guests on your system.

7.7. Accounting

UNIX currently optionally records two kinds of accounting information: connect time
accounting and process resource accounting. The connect time accounting information is nor-
mally stored in the file /usr/adm/wtmp, which is summarized by the program ac(8). The process
time accounting information is stored in the file fusr/adm/acct, and analyzed and summarized by
the program sa(8).

If you need to implement recharge for computing time, you can implement procedures based
on the information provided by these commands. A convenient way to do this is to give com-
mands to the clock daemon /etc/cron to be executed every day at a specified time. This is done
by adding lines to /usr/adm/crontab; see cron(8) for details.

7.8. Resource control

Resource control in the current version of UNIX is rather primitive. Disk space usage can
be monitored by du(l) or quot(8) as was previously mentioned. Disk quotas can be set and
changed with setquota(8) if the kernel has been configured for quotas. Our quota mechanism is
simplistic and easily defeated but does make users more aware of the amount of space they use.

7.9. Files which need periodic attention

We coirclude the discussion of system operations by listing the files and directories that con-
tinue to grow and thus require periodic truncation, along with references to relevant manual
pages. Cron(8) can be used to run scripts to truncate these periodically, possibly summarizing
first or saving recent entries. Some of these can be disabled if you don’t need to collect the

March 26, 1984

Installing /Operating 2.9BSD

information.

[usr/adm/acct
Jusr/adm/messages
/usr/adm/shutdownlog
[usr/adm/wtmp
/usr/spool/uucp/LOGFILE
/usr /spool/uucp/SYSLOG
Jusr/dict/spellhist
[usr/lib/learn/log

[usr/sys

-42 -

sa(8)
dmesg(8)
shutdown(8)
ac(8)
uulog(1)
uulog(1)
spell(1)
learn(1)
savecore(8)

March 26, 1984

System Cperation

raw process account data
system error log

log of system reboots
login session accounting
uucp log file

more uucp logging

spell log

learn lesson logging
system core images

Installing /Operating 2.9BSD -43 - Magic nembers

8. KERNEL MAGIC NUMBERS

This sections contains a collection of magic numbers for use in patching core or an execut-
able unix binary. Some of them have also been mentioned earlier in this paper. With the excep-
tion of the zp_typefi] variables (which hold bytes) and swplo (which is a long) all locations given
contain short integers. N.B.: in the case of paired interrupt vectors (for DHs and DZs) the
address of the second vector of the pair is four more than the address of the first vector.

Interrupt Vectors

Vector Handler Contents Block device Character device

0160 rlio 01202 8 18
0210 hkio 01142 4 19
0220 rkio 01172 0 9
0224 tmio 01222 3 12
0224 htio 01152 7 15
0224 tsio 01232 9 20
0254 Xxpio 01242 6 14
0260 rpio 01212 1 11
t dzin 01132 - 21
t dzdma 02202 - 21
t dhin 01112 - 4
t dhou 01122 - 4
t lpio 01162 - 2

Tset by autoconfig(8).

March 26, 1984

Installing/Operating 2.9BSD

t Set by autoconfig(8).

$ Set by reading the corresponding drive type register.

¢ System dependent.

- 44 -
Other Variables

Name Address
xp_addr 061464
xp_type[0] 061472
xp_type[l] 061506
xp_type[2] 061522
xp_type[3] 061536
HKADDR 061006
HTADDR 0114226
RKADDR 061152
RLADDR 061154
RPADDR 061236
TMADDR 0113320
TSADDR 0113612
dz_addr 0113324
dh_addr 0114136
Ip_addr 0113452
rootdev 060772
pipedev 060776
swapdev 060774
swplo 061000
nswap 061004

March 26, 1684

Contents
0176700

¥

}

$

}
0177440

t
0177400
0174400
0176710

R R R K —b —b—b —

Magic numbers

Changes in the Kernel in 2.9BSD

Michael J. Karels

Department of Molecular Biology
University of California, Berkeley
Berkeley, California 94720

Carl F. Smith

Department of Mathematics
University of California, Berkeley
Berkeley, California 94720

William F. Jolitz

Symmetric Computer Systems
Los Gatos, California

This document summarizes changes in the PDP-111 UNIX} kernel between the July 1981
2.8BSD release and the July 1983 2.9BSD distribution. The kernel remains highly tunable, and
changing #defined options may affect the validity of remarks in this paper.

The major changes fall into these categories:

[1] The new signal mechanism needed for process control has been added to the system, making
the job control facilities of 4.1BSD available.

[2] Vfork, a form of fork which spawns a new process without fully copying the address space of
the parent, is available to create a new context for an ezec much more efficiently.

[3] The system can reboot itself automatically, after crashes or manually. The system is more
crash-resistant and is able to take crash dumps before rebooting.

[4] A fast and reliable method of accessing mapped buffers and clists without increasing proces-
sor priority is now available.

[5] The protocols for allocation of the UNIBUS map have been changed, and DMA into system
buffers with 18-bit addressing devices is also different.

[6] Changes have been made in code organization, so that more than one system configuration
may be built from a single set of sources. Each system is described by a single file that
includes parameters such as system size, devices, etc. Most of the ‘‘magic numbers’’ such as
device register addresses and disk partitions are in one file, ioconf.c, and the number of dev-
ices of each type are in header files local to that system.

[7] Most devices are configured at boot time rather than at compilation time, reducing the work
in system configuration and making it possible for one binary to work on several similar sys-
tems. References to nonexistent devices are now rejected rather than causing a crash.

[8] System diagnostics have been changed to a standard, readable format; file system diagnos-
tics refer to file systems by name rather than device number. Device diagnostics refer to
devices by name and print error messages mnemonically as well as in octal.

TFDP-IL, DEC, UNIBUS and MASSBUS are trademarks of Digital Equipment Corporation.
is a trademark of Bell Laboratones.

-92.-

Many other performance enhancements and bug fixes have been made. Some conditional
compilation flags have been removed because the feature they control is now considered standard
(e.g. UCB_BUFOUT). Other features have been grouped together and are now controlled by the
same flag (e.g. code previously conditional on UCB_SMINO now depends on UCB_NKB).

Many of the changes in 2.9BSD are based on work by many other people. Several features
are modeled on those of the 4.1BSD VMUNIX system, and much of the code comes directly from
that source.

Converting local software

Most local changes should be easily perted to the new system. The actual system
configuration is much simpler than with previous kernels.

There are many changes that affect the device drivers. The appendices give the details of
the conversions necessary. Device drivers that used the kernel’s in-address-space buffers must be
rewritten to use mapped buffers or their own dedicated buffers. ‘‘Abuffers’’ have been removed
from the curgent system.

Appendix A contains a description of the new data mapping protocols used to access
mapped buffers, clists, and some tables.

The UNIBUS map is allocated dynamically. Kernel data space is no longer guaranteed to
be mapped by any portion of the UNIBUS map. Any local software making such assumptions
must now explicitly allocate a section of the UNIBUS map; mapalloc and mapfree may be used for
objects with buffer headers. See Appendix B for a description of the new UNIBUS map protocols.

The line discipline switch has been reorganized slightly to make it cleaner. Some unused
fields in the /linesw structure have been removed. There is a default line discipline,
DFLT_LDISC, which may not be assumed to be 0. See Appendix C for a description of the new
terminal and line discipline protocols.

As part of the implementation of ufork, process images are scatter loaded. Standard system
monitoring programs (e.g. ps and w) have been modified. Local software must be changed accord-
ingly. See Appendix D for a more detailed description of vfork.

Sites may wish to convert their device drivers to use the new autoconfiguration features
described in Appendix E.

Processors are described by capabilities rather than cpu type. Separate I/D spaces and
UNIBUS maps are detected and supported independently. Thus it is much easier to describe
machines with foreign hardware enhancements. In particular, the Able ENABLE /34t is automat-
ically detected and supported.

A new bootstrap loader that loads all object files except 0405 replaces the old version that
loaded only 0407, 0411, and 0430. The kernel assumes that boot has already set the kernel mode
segmentation registers and cleared bss. Other bootstraps that do not do so will not work.

Organizational changes

The system compilation procedure has been changed so that more than one set of binaries
may be made with a single set of source code. System sources are kept in the directories sys/sys
and sys/dev. No binaries are kept in either of these directories.

The directory sys/conf contains several files related to system configuration. For each
machine to be configured, a single file should be created in this directory. Each such file describes
all the parameters of the machine necessary for building a system. The format of the
configuration files is described in config(8)}. This procedure is more fully described in ‘‘Installing
and Operating 2.9BSD.”

TEQAELE/:M is a trademark of ABLE Computer, Inc.
References of the form X(Y) mean the subsection named X in section Y of the Berkeley FDR11 UNIX
Programmer’s manual.

-3-

Corresponding to each system to be configured, there is a subdirectory of sys. One proto-

type directory, GENERIC, is already there. This directory is created and the appropriate files
are installed by config, based on information in the machine description file. The configuration
program processes the information in the configuration file and produces:

1)

2)
3)

1)

5)

A set of header files (e.g. dh.h) which contain the number of devices available to the target
system. These definitions force conditional compilation of drivers, resulting in the inclusion
or exclusion of driver code and the sizing of driver tables. This technique, based on compi-
lation, is more powerful than a loader-based technique, since small sections of code may be
easily conditionalized. Only drivers that are needed are included in the resulting system.
Option flags that are specific to individual drivers are also placed in these header files.

The assembly language vector interface, l.s, which turns the hardware generated UNIBUS
interrupt sequences into C calls to the driver interrupt routines.

A table file, loconf.c, which defines controller addresses for each disk controller in the
configured system, and the partition tables for the larger disks.

The. files localopts.h, param.c, param.h, and whoami.h. These can be edited if local
taste so-dictates. Whoaml.h contains the definition of PDP11, which will have one of the
following values: 23, 34, 40, 44, 45, 60, 70, or GENERIC. The distributed binary is com-
piled with PDP11=GENERIC, allowing the system to support most of the hardware on any
supported processor. The definitions for the optional features of the system are in
localopts.h. Finally, the files param.c and param.h contain the tunable sizes and
parameters. These are mostly dependent on the definitions of PDP11 and MAXUSERS (in
the Makefile). Param.c contains most of the commonly-changed parameters, so that only
this file need be recompiled to retune the system. Also, because these parameters are now in
global variables, system utilities may easily determine the current values by examining the
running system.

The Makefile contains the default compilation and load rules for the type of kernel being
made (overlaid or not overlaid). It also contains the specification of an editor script that
implements in-line expansions of calls to spl, depending on the instruction set available.
The makefile may need editing to change the overlay structure or to include optional device
drivers in the load rules. MAXUSERS is defined here and used in param.c to gauge the
sizes of data structures.

In order to add new files or device drivers to the system, it is necessary to explicitly add

them to the Makefile load rules, to its extension Depend (used in the ‘“make depend’” command to
rebuild the Makefile dependency rules), to the configuration file c.c and optionally to
autoconfig(8) and config(8) or Ls.

Header files

Many new files have been added for use in device drivers. They contain definitions of the

device structure and mnemonics used in referencing registers and printing diagnostics. Most files
have been reorganized slightly to improve modularity or readability.

acct.h The UCB_XACC option has been separated into UCB_LOGIN and
UCB_SUBM.
buf.h Unused flags have been deleted and the others compacted. Two flags

have been added. B_RH70 indicates that a device is on an RH70 con-
troller. B_LUBAREMAP indicates that the buffer’s address is being inter-
preted as UNIBUS virtual, not physical.

conf.h A d_root field has been added to the bdevsw structure. The unused fields

[_rend and |_meta have been deleted from the linesw structure. L_rint
has been remamed [_input. L_start has been deleted and a new field,
I_output added for uprintf. See Appendix C.

cpu.h
dkbad.h

fillsys.h

inline.h

Istat.h

koverlay.h

mtio.h

param.h

proc.h

qstat.h

reboot.h
reg.h

seg.h
trap.h
tty.h

types.h
uba.h

user.h

vemd.h

System files: sys/sys

New file. Contains mnemonics for fields in the cache and memory con-
trol registers of various processors.

New file. Ccntains mnemonics and structures used to implement DEC
standard 144 bad sector forwarding.

Two fields in the filsys structure, s_fname and s_fpack, have been
replaced by s_fsmnt. The new field is used by the kernel to print diag-
nostics and by fsck(8).

New file. Definitions of inline expansions and macro replacements
designed to speed up file system accesses at the cost of code expansion.
Renamed gstat.h. The structure previously names [sfat is now names
gstat and all structure fields previously named {s_# have been renamed
q8_*

New file. Contains definitions relating to kernel text overlays. Both non-
separate I/D (0430) and separate I/D (0431) kernels can be overlaid.
Most of the information in this file cannot be changed easily. It is pro-
vided to clarify the way kernel overlays work.

An mi_type field has been added to the mtget structure. Tape drivers
may be interrogated to determine formatter type. See mt(4).

Many configuration constants (e.g. NINODE, NPROC) have moved from

here to param.c and are referenced by global variables rather than mani-
fest constants. Thus only one file need be recorpiled to change them.

Numerous changes have been made to support job control and uforks.
The zproc structure is in a union in the proc structure so that it is easily
possible to determine which fields are overlaid.

Used to be called {stat.h. Contains declarations for the g¢stat and ¢fstat
system calls (for quotas).

New file. Contains options for the reboof system call.
The (unused) definition of ROV has been deleted.

New macros and definitions have been added to support the remapping of
kernel data to access buffers and clists. Changes have been made to
allow dynamic support of the ENABLE/34.

New file. Used in l.s, mch.s, and trap.c to encode trap types mnemoni-
cally.

Contains a macro for lookc if UCB_NTTY is defined and UCB_CLIST is
not defined.

More typedefs have been added.

New file. Most UNIBUS map specific structures and macros are collected
here.

Numerous changes have been made to support job control and vyforks.
New file. Contains commands used by the vp driver and user icctl
definitions.

Major changes have taken place to support job control and uvforks. The file, proc, and tezt
tables have been moved to the end of kernel data space (possibly in the region into which buffers
and clists are mapped) and thus are not necessarily accessible at interrupt time; those functions
that need to access these tables or the u. from interrupt level (currently clock, gsignal, and
wakeup) must save and restore kernel mapping registers.

-5-

Inclusion of both the multiplexer and floating point support is conditional, reducing the size
of systems that do not require them. Some consistency checks that we consider extremely
unlikely to fail, and the accompanying panics, are uniformly conditional on the definition of
DIAGNOSTIC. Calls to spIN (where Nis O, ..., 7) that do not require the previous priority to be
returned have been changed to _sp//N and are expanded in-line by editing the compiler’s output.

acct.c
alloc.c

clock.c

enable34.c

fakemx.c

flo.c

iget.c

machdep.c

The sysphys routine has been moved from here to machdep.c.

File system error messages are identified by file system name rather than
major/minor device number. They are printed directly on a user’s termi-
nal if that user causes a file system to run out of free space. Getfs no
longer panics if it cannot find a device in the mount table. Callers of
getfs have been modified to check for a NULL return value. This,
together with a change to pipe.c, avoids a panic if pipedev is a file system
that is not currently mounted.

Clock has been modified to use the new remapping protocols. Disk moni-
toring has been simplified and can monitor more (or fewer) than three
disks. Free memory averaging is calculated in kilobytes, avoiding
overflow.

New file. Contains support routines for the ENABLE/34. Two routines,
fiobyte and fioword are used to help solve the problem of probing the I/O
page on machines with ENABLE /34 boards. Wherever fuibyte and fui-
word would be used to probe a location possibly on the I/O page, these
routines should be used instead.

This file is no longer necessary and has been deleted.

Falloc uses the tablefull routine. A bug in the access system call with the
UCB_GRPMAST option has been fixed.

After reading blocks of inodes, both the error flag and the residual count
are checked. This avoids destroying whole blocks of inodes on failure.
The residual count is also checked in other places in the kernel (bmap,
etc.). If an error occurs in iget, iput is not called for an invalid inode.
Iget uses the tablefull routine.

Both l.s and the old 140.s are merged into this file. The code is prepro-
cessed with cpp, allowing consistency with C files for conditional compila-
tion.

A boot function has been added to cause the system to reboot itsell and
(optionally) take a crash dump automatically. The type of reboot is
passed to /etc/init as an argument. Mapalloc and mapfree use a resource
map to dynamically allocate sections of the UNIBUS map. Mapalloc
translates physical addresses in buffer headers for cache buffers to
UNIBUS addresses for transfers on UNIBUS devices. Mapalloc is thus
called for both buffered and raw transfers now. Ubinit initializes the
UNIBUS map and the resource map describing it. Mapin and mapout no
longer run at elevated priorities to block interrupts. Mapout is elim-
inated if the kernel data segment is sufficiently small.

A new function, dorti, which is used by the new signal mechanisms has
been added.

Buffer space is uniformly malloced in startup rather than in start (mch.s)
The same is true for clists if UCB_CLIST is defined.

On machines without UNIBUS maps, no attempt is made to detect
memory past 0760000, avoiding crashes when device registers are found
at this address.

malin.c

malloc.c

mch.s

nami.c

pipe.c

prf.c

Clkstart calls fioword to probe for the line clock register. It is not a panic
if no clock register is found since 11/23s may not have one; a message is
printed in this case.

The name of the root file system (‘‘/”) is copied into its superblock so
that the name will be available for error messages (e.g. if the root file sys-
tem becomes full).

All addresses and sizes in malloc.e have been typedefled and are
unsigned. This makes it possible to use more than two megabytes of
memory. A new function, malloc8, efficiently allocates memory for
scatter loading, minimizing the cost of failing. Mfree contains many
more consistency checks. Resource maps have a new structure that
includes a limit. Mjfree prints a console error message when it must dis-
card a piece of a map because of fragmentation instead of overrunning
the map or panicing. When malloc cannot allocate enough swap space, it
frees the swap space belonging to saved text segments, possibly avoiding
panics caused by running out of swap space.

Both m40.s and the old mch.s have been merged into this file. The C
preprocessor is used to produce the right code for different CPUs, includ-
ing GENERIC. It is able to reboot after power failures if the contents of
memory are intact.

Copyseg and clearseg have been converted to copy and clear respectively.
They take an additional argument, a count of the number of clicks to
copy or clear. They remap the kernel to access the source and target
more efficiently. If real-time support is enabled, both are preemptible. A
new routine, copyu, is available to copy the «. in non-preemptible mode.

Most spl calls are now done in-line; the old priorities are saved and
restored as bytes (to allow the use of mfps/mips instructions where avail-
able). Kernel red stack violations are detected, allowing normal panics.

System call traps are handled separately from other processor traps.
This results in a 22% decrease in system call overhead. Emulator traps
(used in automatic text overlays) are also handled separately from gen-
eral traps. This decreases overlay switch overhead by 45%. On
machines without hardware floating point, a fast illegal instruction trap
routine reduces system overhead for interpreted floating point by 90%.

The kernel overlay support has been changed to use new, smaller subrou-
tine entries (‘‘thunks’) in the base segment that are compatible with the
loader used for user-level overlaid programs. The management of the
kernel stack in the trap/interrupt code is simpler and faster.

The kernel text relocation that was done in mch.s if UCB_CLIST or
UCB_BUFOUT were defined is no longer necessary and has been
replaced by calls to malloc in startup.

File names are not allowed to contain characters with the parity bit
(0200) set. File name comparisons stop at the first null. A bug that
caused permissions to be checked incorrectly when searching to *..”’ from
the root of a mounted filesystem has been fixed.

Allocates inodes for pipes on the root device if iallocs on pipedev fail.
Inodes for pipes are marked for special handling.

Panic causes the system to reboot. A function, uprintf, has been added
to print error messages on the terminal of the user causing the error
rather than the console. Printf no longer uses recursion. It supports a
%c format to print a single character, a %b format used to print register

prim.c

rdwrl.c

sig.c

sigjcl.c

signojclic

slp.c

subr.c
sysl.c

sys3.c

sys4.c

-7-

values mnemonicaliy, and a %X format for long hexadecimal. Prdev has
been eliminated. Deverror is included only if UCB_DEVERR is
undefined.

The routines prdev and deverror, that printed diagnostics that were
difficult to interpret, are replaced by harderr, that begins a message
about an unrecoverable device error, and the %b format mentioned
above. Tablefull is a new function used to report that a table is full.

Uses new mapping protocols for CMAPIN and CMAPOUT. Getw has
been discarded. Putw is included only if needed for the multiplexer
driver. Cpaddr has been deleted. It is now a macro in dh.c. Other rou-
tines that are used only by the dh driver are eliminated if there are no

dh’s on a system. Lookc is eliminated (replaced by a macro) if
UCB_CLIST is not defined.

Inodes allocated for pipes receive special handling: writei always uses
bdwrite and reads cancels the disk write if it has not yet occurred. This
results in a large improvement in pipe throughput, especially if the
UCB_FSFIX option is in use (for more robust file systems).

This is now a dummy file that includes either sigjcl.c or signojcl.c
depending on whether MENL O_JCL is defined.

A new file that supports the signal mechanisms necessary for job control.
The changes listed under stgnojecl.c are also included.

Used to be called sig.c. A race condition that occasionally caused ignored
signals to generate bus errors has been fixed. Ptrace supports overlay
changes, allowing breakpointing of overlaid subprocesses. If floating
point arithmetic is being simulated by catching illegal instruction traps,
traced subprocesses are allowed to process the signal normally without
stopping. Stack growth is rounded to 8K boundaries, to allow the max-
imum theoretical stack size.

There are major changes in the sleep/wakeup mechanism for process con-
trol. Swapped processes are no longer kept on the run queue. Newproc
has been modified to allow vforks. The scheduling algorithm has been
modified to avoid deadlocks possible with ufork. Processes are scatter
loaded in three pieces (data, stack and u. area; text is handled
separately), with changes in newproc, ezpand and swapin.

The unused routine dequeue has been removed.
Becopy may now be called with a count of 0.

Fork has been modified to allow yforks and uses the tablefull routine.
Support has been added for wait2, used in job control. Bdwrite is used
instead of bawrite when copying out argument lists in ezece, in an
attempt to avoid disk I/O. A pointer to the last used proc table slot,
lastproc, is used to shorten searches for processes. A message is printed if
/etc/init cannot be executed.

Smount copies the mounted file system’s name (e.g. ‘‘/usr’) into the
s_fsmnt field of the superblock. The in-address-space buffers (abuffers)
have been removed, and the superblocks of mounted file systems are in
the mount table itself.

The mechanism for sending signals to all processes has been changed so
that the process broadcasting the signal does not receive it itself. This
allows reboot(8) to shut down the system cleanly before rebooting.

The #ifdef for UCB_STICKYDIR has been removed. This is now stan-
dard. Setpgrp is included to support job control. A bug in utime has

been fixed.

syslocal.c The old setpgrp is replaced by the job control version. Chfile and iwait
have been removed. A new system call, vhangup, is used by init to
revoke access to terminals after logouts. Another new system call, ucall,
allows autoconfig(8) to call internal kernel routines. Support for gstat,
and ¢fstat (formerly Istat and Ifstat respectively) is conditional on
UCB_QUOTAS.

text.c Xswap has been modified for scatter loading. Xumount frees all saved
text segments if called with argument NODEV. Malloc uses this to
attempt to avoid panics when swap space is exhausted. Xalloc uses the
tablefull routine.

trap.c Trep no longer handles system calls. Instead, a new routine, syscall, is
called from mch.s when a system call trap occurs. Trap saves the previ-
ous kernel mapping on kernel faults.

ureg.c A new routine, choverlay, has been added to change overlays for user
processes. It is called from mch.s when an overlay switch trap occurs.
The units of the variables describing the overlay region (ovbase and
dbase) have changed. Segmentation register prototypes are no longer
maintained for the overlay region, necessitating a call to choverlay from
sureg. Estabur and sureg support scatter loading. A bug has been fixed
that caused overlaid processes to fail when the base segment length was a
multiple of 8192. On machines without separate I/D space, estabur is
simplified.

Device support: sys/dev

All of the drivers have been modified to support autoconfiguration. They have attach rou-
tines to record the csr addresses after the device has been probed by autoconfig(8). Appendix E
describes the strategy. Drivers with attach routines properly reject attempts to access nonexistent
controllers (instead of causing a crash). Each device driver has a corresponding header file indi-
cating the number of such devices present and other configuration dependent options.

Devices that do DMA on machines with UNIBUS maps must ensure that their data areas
are accessible through the UNIBUS map; UNIBUS addresses are not necessarily the same as physi-
cal addresses. see Appendix B. Only buffers and clists are statically mapped. It is possible to
map in out-of-address space data at interrupt level (this was previously risky) provided the previ-
ous map is saved and restored; a mechanism is provided for this, as described in Appendix A.
The structure of the line switch has been reorganized and the protocol to be used in opening a
device and setting up a line discipline is well defined. See Appendix C.

Disks that are potentially RH70 MASSBUS disks have been provided with attach routines
that detect RH70s, as well as root attach routines that force attachment before autoconfiguration
occurs. Some disk drivers have been provided with crash dump routines. See rmdump in rm.c or
hkdump in hk.c for examples.

The format of device option flags is now consistent. Optional device ioctls are enabled by
XX_IOCTL (e.g. DH_IOCTL). Optional watchdog timers are enabled by XX_TIMER (e.g.
TM_TIMER). The dh (respectively dz) driver, which is capable of managing the input siilo to
reduce interrupts, does so if DH_SILO (respectively DZ_SILO) is defined. The disk cache moni-
toring numbers used by iostat(8), formerly called DK_N, have been renamed XX_DKN (e.g.
HP_DKN) so that they can be placed in the header files.

All drivers use include files to define the device structures and register constants. The
drivers themselves uniformly use mnemonics rather than magic numbers in device registers and
error messages. Initialized device register addresses and disk driver partition tables reside in
ioconf.c.

blo.c

bk.c

dh.c

dhdm.c
dhfdm.c
dvhp.c

dz.c

hk.c

hp.c

ht.c

kl.c

mem.c
ml.c

mux.c
rf.c
rk.c
rle

rm.c

-9-

Iodone reverses the translation of buffer addresses (done by mapalloc)
from physical to UNIBUS virtual when doing block I/O on UNIBUS
disks. Buwrite now correctly supports the B_AGE flag on asynchronous
writes. A portion of the disk monitoring code that was of questionable
usefulness has been discarded. The physio subroutine has been divided
into separate routines, allowing use of bphysio by drivers that allow
byte-oriented rather than word-oriented transfers or don’t use buffer
headers.

The Berknet line discipline has been changed to use dedicated buffers
instead of abuffers. It is still untested.

Changed to use the new UNIBUS map location of clists. loctls for setting
and clearing break and dir have been added. If DH_SOFTCAR is
defined, modem control is ignored for lines whose minor device number is
greater than or equal to 0200. Dhdm.c is now part of dh.c; the appropri-
ate dm support is included only if needed.

This is now part of dh.c.
This file is no longer necessary and has been deleted.

This driver is simplified if there is only one drive, as no seek is needed
before a transfer. Error correction code has been added.

Optionally uses the dz silo. Ioctls for setting and clearing break and dir
are available. If DZ_SOFTCAR is defined, modem control is ignored for
lines whose minor device number is greater than or equal to 0200.
Pseudo-dma has been implemented.

New version of the RK06/7 driver. Now performs disk sorts, ECC
corrections, and DEC standard 144 bad sector forwarding. A dump rou-
tine has been added.

This driver is simplified if there is only one drive, since no search is
needed before a transfer. Error correction code works with mapped
buffers and 1024 byte blocks. The driver waits for Drive Ready when
doing positioning commands. A dump routine has been added. A prel-
iminary, lightly tested version of DEC standard 144 bad sector forward-
ing has been added.

Tape ioctls are supported. Uses bphysio for byte-oriented transfers.
Clrbuf is no longer called from interrupt level.
Putchar has been modified to support uprintf.

Some unneeded spls have been deleted. Routines used to read and write
memory set page protections correctly.

New file. A driver for the DEC ML11 solid state disk courtesy of the
DEC UNIX Engineering Group.

Dropped from this distribution.

New version of an old driver missing from 2.8BSD.

Properly recovers the residual byte count at the end of a transfer.
Properly recovers the residual byte count at the end of a transfer.

This driver is simplified if there is only one drive; the rmustart routine is
merged with rmstart, and no search is needed before a transfer. Error
correction code works with mapped buffers and 1024 byte blocks. The
software simulation of the current cylinder register has been fixed. The
driver waits for Drive Ready when doing positioning commands. A
dump routine has been added. A preliminary, lightly tested version of
DEC standard 144 bad sector forwarding has been added.

rp.c

rx2.c

rx3.c

tm.c

ts.c

tty.c

ttynew.c

xp.c

-10 -

Properly recovers the residual byte count 2t the end of a transfer.

New file. A driver for the DEC RX211 floppy disk controller courtesy of
the DEC UNIX Engineering Group.

New file. A driver for the DSD480 floppy disk coatroller courtesy of Tek-
tronix.

Uses bphysio for byte-oriented transfers. Clrbuf is no longer called from
interrupt level. Contains code for an optional watchdog timer. Checks
for density changes in mid-tape.

Tape ioctls are supported. Uses bphysio for byte-oriented transfers.
Clrbuf is no longer called from interrupt level.

The ttioct! subroutine calls the line discipline’s ioctl before any other pro-
cessing. Ttioctl has also been changed to eliminate code for the old line
discipline if it is not present, and when changing disciplines it checks that
the new discipline is supported. These changes allow the old line discip-
line to be omitted. It is possible to flush either the input or output
queues (or both) using TIOCFLUSH.

Tandem mode is supported with raw mode in the new tty driver. The
t_char field is no longer disturbed by flow control in tandem mode.
Backslashes are no longer printed before capital letters on upper-case-
only terminals.

This driver (which supports an assortment of RP04/05/06, RM02/03/05,
Diva and other disks) now is able to manage more than one controller.
The probe routine is optional if the drive and controller structures are
initialized. It is simplified if there is only one drive; no search is needed
before a transfer. Error correction code works with mapped buffers and
1024 byte blocks. The driver waits for Drive Ready when doing position-
ing commands. A dump routine has been added. A preliminary, lightly
tested version of DEC standard 144 bad sector forwarding has been
added.

-11 -

Appendiz A: Kernel Data Mapping Protocols

1. Introduction

These protocols ultimately address the question of how to “expand” the kernel’s data space
beyond the severe limitations imposed by the PDP-11 hardware. This concern about methods of
expanding kernel data space stems from the desirability of retaining large system buffer pools and
clist areas despite hardware limitations. We do this by keeping certain data objects resident in
core but without guaranteeing that they will be accessible through kernel virtual data space at 2!l
times. In thjs way the same virtual address range can be used for several different objects.

1.1. History

The original Berkeley PDP-11 kernel distribution (2.8BSD) provided the ability to move
buffers and clists out of kernel data space. Buffers were accessed by mapping them in through
KDSAS. A side eflect was that the data that normally resided there were unavailable until buflers
were mapped out again. Clists were mapped in through KDSA1 with the same side effect.

Because of this restriction, and the possibility of interrupts at any time, sections in which a
kernel data register was repointed generally had to be protected by spl6()/spiz() pairs. (The
exception is that spls were unnecessary for buffer mapping if KDSAS5 was used only for that pur-
pose, and this was not done from interrupt level.) This inevitably led to increased interrupt
latency and sometimes caused the system clock to lose time perceptibly.

It is not at all clear why these registers were special. They were chosen after careful exami-
nation of the system namelist. On our 11/70s, the inode table used all virtual addresses refer-
enced through KDSA1 and it was known that no part of the kernel required simultaneous access
to clists and inodes. Similarly, it was observed that data referenced through KDSAS typically
consisted of tty structures and the kernel did not require simultaneous access to tty structures and
buffers.

It should be obvious how vulnerable this method is to even the most trivial changes such as
system load order or table sizes. Clearly something better was needed.

1.2. 2.9BSD Methods

We chose four goals for our new remapping protocols:

[1] They must be fast. Interrupt latency should not be increased by elevating the processor
priority.

[2] They should be flexible, allowing objects other than buffers and clists to be remapped easily.

[3] Interrupt service routines should not be slowed unnecessarily by requiring that the map be
changed on all interrupts.

[4) There must be a well-defined class of objects that the remapping will make inaccessible.
Furthermore, any section of code that requires access to one of these objects during inter-
rupt processing must itself ensure that the object is mapped in.

The implementation we chose uses KDSAS5 as the primary mapping register. The only
normally-resident objects allowed in this region (0120000 to 01400C0) are the proc, file, and tezt
tables. These objects were chosen because they are rarely accessed {rom interrupt level. If kernel
data space is small enough that these tables end before this region, the code can be further
simplified by defining the conditional-compilation flag NOKAS5. In general, kernel functions are
able to map in external data at will, with the caveat that interrupt routines must save the previ-
ous map (which may already point at some mapped-in object).

-12-

To make copy (previously copyseg) as fast as possible, yet interruptible, we also zllow it to
use KDSA6 as a mapping register. This makes the normal kernel stack (which lies in the region
addressed by KDSAG6) inaccessible, so the kernel uses a temporary stack while in copy.

Most of the segmentation map switching is done by macros for speed; some of the macros
test whether any work need be done before calling a subroutine. The data structures and macros
used in this scheme are in the include file seg.h, with the subroutines in machdep.c. These macros
must be used for all kernel remapping or races will ensue (because the order in which registers are
set is critical to the protocol).

1.2.1. Top Level Protocol

A global prototype page address/descriptor pair is maintained (if necessary) for virtual
addresses from 0120000 to 0140000. It is initialized in startup. KDSAS5 may be repointed to
access other objects from the top level provided that the normal mapping is restored before the
next context switch. The contents of KDSA5/KDSD5 are changed by the macro call

mapseg5(addr, desc);

where addr is the new value for KDSAS5 and desc is the new value for KDSD5. The default map-
ping for this page is restored by the macro call

normalseg5();

The mapin and mapout functions use this method to provide access to a mapped buffer.

Unless the kernel data map has been explicitly reset by mapin or mapseg5, the proc, file, and
tezt tables are guaranteed to be mapped in when the kernel is not at interrupt level.

1.2.2. Interrupt Level Protocol

Interrupt-level routines may not assume that the range controlled by KDSAS or KDSA6
contains valid data unless the map is explicitly set to either the normal state (for the proc, tezt or
file tables, or for the u.) or to map external data.

Interrupt routines that wish to repoint KDSAS5 must first save the current contents of
KDSAS5 and KDSD5 in a local variable by

segm saveregs;
savesegS(saveregs);

before changing their contents with mapseg5. Before returning, the old contents must be restored
by the call

restorseg5(saveregs);

This method is used by getc and putc to access the clist area.

Note that mapin does not save the current map in this way. To use mapin and mapout
from interrupt level, it is necessary to save the map with saveseg5 before calling mapin, and then
restore it with restorseg5 after the last mapout.

If an interrupt routine must access either the u. or any of the tables, it must save the previ-
ous PARs and PDRs for pages 5 and 6 in a local variable and set the map to the normal state
using

mapinfo map;
savemap(map);

-13-

and restore the old contents with
restormap(map);

This mechanism is used by gsignal and wakeup, which are frequently called from interrupt level
and must access the proc table, and by clock, which needs access to the proc table and the user
structure. It is also used in frap, which saves the map data in the global map kernelmap on
kernel-mode traps for potential use in debugging.

-14 -

Appendiz B: UNIBUS Map Protocols

2. Introduction

UNIX as distributed by Bell Labs and in previous Berkeley releases made some tacit assump-
tions about the arrangement of kernel data space and the use of the UNIBUS map (or machines
with 22-bit addressing):

° All kernel data space was statically covered by some portion of the UNIBUS map. This
included mapped out objects such as buffers and clists. Kernel virtual data space addresses
needed no conversion to UNIBUS or physical addresses. Thus no special action was taken
on, for example, DMA transfers from kernel data space to ensure that the source or target
area was accessible through the UNIBUS map.

. The remaining portion of the UNIBUS map was dedicated tc only one I/O request at a
time. Thus a fixed portion of the UNIBUS map was used for each physical I/O request.

Although these assumptions did result in much simpler code, they had the unfortunate side
effect of degrading system performance. Two swaps could not occur simultaneously. When a
slow device such as a tape drive was used for physical I/O, all other physical I/O suffered
severely. This was most noticeable when file system dumps were occurring. It also made the use
of raw I/O for real-time data acquisition impossible.

2.1. 2.9BSD Methods

The solution is to manage the UNIBUS map with a resource map, allocating and freeing
groups of registers as required by the size of the I/O request. This has already been implemented
independently at some sites. Our code is modeled after several of these.

In an effort to have as many UNIBUS map registers as possible available for allocation, only
the clist area and buffer pool have statically allocated UNIBUS map registers. The clist area is
mapped through UNIBUS register 0. It may therefore be at most 8192 bytes long, and begins at
UNIBUS virtual address 0. The global variable clstaddr contains the UNIBUS address {in bytes)
of clists (even if a UNIBUS map is not present). The appropriate number of registers is dedicated
to the buffer pool at boot time and the rest are made available for allocation. When there is a
UNIBUS map, the buffers begin at UNIBUS byte address BUF_UBADDR, whereas their physical
address (in clicks) is bpaddr.

Routines that manipulate the UNIBUS map must be prepared to be called even if no
UNIBUS map exists. They should check the boolean variable ubmap, which is nonzero if a
UNIBUS map is present. For convenience, several useful macros have also been provided. See
the include file uba.h.

The code for block I/O dynamically supports both MASSBUS and UNIBUS controllers. A
buffer header associated with the buffer cache used for block I/O normally contains the physical
address of the buffer area. This is translated into a UNIBUS address before beginning the I/O
operation if the device does not use 22-bit addressing. This translation is performed by mapalloc;
thus, UNIBUS disk and tape drivers should call mapalloc for both raw operations (B_PHYS set)
and those in the buffer cache. While a buffer header contains the UNIBUS virtual address of the
buffer area instead of the physical address, the B_UBAREMAP flag is set in its b_flags field.
After the transfer is finished, todone restores the physical address in the buffer header. Drivers for
disks that may be either MASSBUS or UNIBUS generally set the B_RH70 flag in the 5_flags of
their devtab structures if they are 22-bit MASSBUS devices and test it before calling mapalloc.

-15-

Appendiz C: Terminal and Line Discipline Changes

3. Introduction

There have been several changes in the kernel terminal-handling routines. The initial incen-
tive for these changes was to allow the old tty discipline to be removed. This required that line
disciplines be symmetric and equivalent. Previously, line discipline 0 (the old tty driver) was
treated specially and was assumed to exist.

3.1. Ttyopen and Ttyclose

The first group of changes is in the open and close sections. The routines ¢fyopen and tty-
close are no longer part of any discipline, but do the necessary initialization at the first open and
the breakdown at the final close. They call the line discipline-specific open or close routine, and
all the drivers (dh, dz, kl etc.) need do is call ttyopen and ttyclose from their open and close rou-
tines.

3.2. Ioctl Protocols

The second set of changes is in the ioctl-handling sections. The line disciplines are given the
opportunity to reject or modify any ioct! call, or to do it themselves, before the common code is
reached. Again, all the work is done by the discipline-independent routine, ttioctl, which calls the
line discipline’s ioctl routine. The device drivers thus call only ttioctl There are three possible
return conditions from ttioctl:

° a command is returned that the device driver is expected to execute
° 0 is returned with u.u_error clear, meaning that the command completed successfully
° 0 is returned with u.u_error set, meaning that the command completed abnormally

The typical device driver ioctl routine will thus look like this:

switch (ttioctl(tp, cmd, addr, flag)) {
case TIOCSETP:
case TIOCSETN:
setparam(unit);
break;
case other_known_command:
implement the command;
break;
default:
u.u_error = ENOTTY;
case 0:
break;

}

3.3. Line Switch Changes

There are a few other differences in the terminal handlers from previous systems. The
line discipline switch is no longer optional (the defined constant UCB_LDISC is gone). The
linesw can have unused discipline entries in it, so that line discipline numbering is indepen-
dent of the disciplines supported at any time; unused disciplines are marked by using nodev
as their open routines, thus preventing entrance into them. This necessitates a new defined
constant, DFLT_LDISC, which is the line discipline that device drivers should set on initial

-16 -

open. Finally, the line discipline switch itself has been reorganized, with three entries being
deleted and one field added. The previously-unused [_rend and [_meta pointers have been
removed, and calls to _start have been replaced with calls to ttstart. The [_rint entry has
been renamed /_input and an !_output pointer has been added for the use of uprintf.

-17 -

Appendiz D: Vfork Implementation Notes

The kernel changes for the yfork system call are major and deserve a few notes.
Processes are no longer in one piece, but instead the user structure, data segment, and stack
segment are separate. They are located at p->p_addr, p->p_daddr, and p->p_saddr
respectively (where p is a pointer to a proc entry) and their sizes are USIZE, p->p_dsiz and
p->p_ssiz. The latter two are copies of the entries in the user structure. All segments are
swapped if any are, and there is a new routine, mallocS, to allocate memory or swap for all
three segments at once. When a yfork occurs, the u. is copied, and the data and stack are
passed to the child. The parent sleeps until the child calls ezec or ezst. At that time, the
child locks itself in core and waits for the parent to reclaim the data and stack.

The major advantages of these changes are the efficiency of avoiding the copy in fork,
and more efficient utilization of memory, as processes are in smaller segments. The disad-
vantage is that swaps require three separate transfers in each direction. Except on heavily
loaded systems with small main memory, the result should be a net gain. There is a poten-
tial for deadlock since the child must lock itself into core; this can only be a problem with
small memories when the parent has been swapped out. To help avoid problems, the swap-
ping algorithm has been changed to swap in the parent process in a vfork before any others.

- 18 -

Appendiz E: Autoconfiguration

The kernel changes to add autoconfiguration are fairly small. The most global change
is that device CSR addresses and interrupt vectors must be initialized only for disk drivers
which service root devices. Most of the work of autoconfiguration is done in user mode by
autoconfig(8). It reads the device table [etc/dtad, then verifies the CSR address by reading
from it (through /dev/kmem). If the CSR is present, autoconfig then tries to make the dev-
ice interrupt in order to check that the vector specified is correct. To facilitate this check,
l.s has two interrupt catchers, CBAD and CGOOD, that set the global variable _conf_int to
-1 and 1 respectively when called. Autoconfig sets all unused vectors to CBAD, then sets
the expected vector to CGOOD. After the probe, autoconfig checks the contents of
_conf_int to see whether the device interrupted and whether it was through the expected
vector. If everything is correct to this point, autoconfig calls the device driver’s attach rou-
tine with the unit number and address, then sets up the interrupt vector.

The kernel support for autoconfiguration consists of two parts. The first includes the
interrupt catchers in l.s and a new routine in syslocal.c that allows autoconfig to call the
driver attach routines. This new system call, ucall (see ucall(2)), calls a specified kernel rou-
tine (by address) at a specified priority with two user-supplied arguments. The other group
of changes is in the drivers. Most drivers have new attach routines which simply place the
address specified into their address arrays, checking that the unit number is in range. Dev-
ice open and/or strategy routines have been modified to test that the device address has
been set before allowing the open, read, or write to succeed. Drivers that need to probe the
hardware to test its type may do that as well in the attach routine. The drivers that handle
both MASSBUS and UNIBUS devices check for bus address extension registers at this time.
A new routine, floword, is provided to read a word from the I/O page, returning -1 if the
address does not exist. Because the disks must be attached before autoconfig runs if they
are to be used for root file systems, their addresses and vectors are still initialized. A new
entry in the block device switch, d_root, is used at boot time to call driver routines which
disk drivers may use to attach all known devices before sinif. This allows them to deter-
mine controller and drive types. Drivers currently fall into three classes: UNIBUS only
disks, MASSBUS /UNIBUS disks, and others. Prototypes of the attach and d_root routines
for each class follow.

The probe routines that are used to make the devices interrupt may be either in
autoconfig or in the kernel. If the kernel has a probe routine, that will be used, otherwise
autoconfig will use its own probe. This mechanism is provided because it may be difficult to
address some devices properly by reading and writing /dev/kmem. All current probe rou-
tines are internal to autoconfig.

Device drivers that have no attach routines are ignored by autoconfig. Old drivers that
have not been converted to use autoconfiguration will thus work properly.

-19 -

/t
* Example 1: autoconfiguration prototype for devices other
* than disks. Xxattach will be called by autoconfig(8).

*/

xxattach(addr, unit)
struct xxdevice *addr;

if ((unsigned) unit >= NXX)
return(0);

xx_addr[unit] = addr;

return(1);

/+*ARGSUSED#/
xxopen(dev, flag)
dev_tdev;

int flag;

{

register int unit = XXUNIT(dev);

if (xx_addr[unit] == (struct xxdevice *) NULL) {
u.u_error = ENXIO;
return;

}

if (unit >= NXX) {
u.u_error = EINVAL;
return;

-20-

* Example 2: autoconfiguration prototype for UNIBUS disks.
* Xxattach will be called by autoconfig(8).

*/

xxattach(addr, unit)
struct xxdevice *addr;

{
if (unit != 0)
return(0);
XXADDR = addr;
return(1);
xxstrategy(bp)

register struct buf *bp;

if (XXADDR == (struct xxdevice *) NULL) {
bp->b_error = ENXIO;
goto errexit;

}
if (bp->b_blkno >= NXXBLK) {
bp->b_error = EINVAL;

errexit:
bp->b_flags |= B_LERROR;
iodone(bp);
return;

-21-

Example 3: autoconfiguration prototype for disks
possibly on the MASSBUS. Xxroot will be called
from binit (main.c).

. * o

*/

void
xxroot()

{
}

xxattach(addr, unit)
register struct xxdevice *addr;

xxattach(XXADDR, 0);

if (unit !=0)
return(0);
if ((addr != (struct xxdevice *) NULL) && (fioword(addr) != -1)) {
XXADDR = addr;
#if PDP11 == 70 || PDP11 == GENERIC
if (fioword(&(addr->xxbae)) != -1)
xxtab.b_flags |= B_RH70;

Ftendif
return(1);
}
XXADDR = (struct xxdevice *) NULL;
return(0);
xxstrategy(bp)
register struct buf *bp;
{

register unit;
long bn;

if (XXADDR == (struct xxdevice *) NULL) {
bp->b_error = ENXIO;
goto errexit;

}

unit = minor(bp->b_dev) & 077,
if (unit >= (NXX << 3) || bp->b_blkno < 0 ||
(bn = dkblock(bp)) + ((bp->b_bcount + 511) >> 9)
> xx_sizes|unit & 07].nblocks) {
bp->b_error = EINVAL;

errexit:
bp->b_flags |= B_LERROR;
iodone(bp);
return;

INGR.

VERSION 6.3
REFERENCE MANUAL

L=

N

4/2/81

by

John Woodfill
Nick Whyte
Mike Ubell
Polly Siegal

Dan Ries
Marc Meyer
Paula Hawtho-n

Bob Epstein

Rick Berman
Eric Allman

INTRODUCTION (iNGRES) 3/15/79 INTRODUCTION (INGRES)

This manual is a reference manual for the INGR=S data base system. It docu-
ments the use of INGRES in a very terse manner. To learn how to use INGRES, refer
to the document called ““A Tutorial on INGR=S"'.

The INGRzS reference manual is subdivided into four parts:
Quel describes the commands and features which are used inside of INGRES.
Unix describes the INGRZS programs which are executable as UNIX commands.
Files describes some of the important files used by INGRES.
Error lists all the user generatable error messages along with some elabora-
tion as to what they mean or what we think they mean.

Each entry in this manual has one or more of the following sections:

NAME section
This section repeats the name of the entry and gives an indication of
its purpose.

SYNOPSIS section
This section indicates the form of the command (statement). The con-
ventions which are used are as follows:

Bold face names are used to indicate reserved keywords.

Lower case words indicate generic types of information which
must be supplied by the user; legal values for these
names are described in the DESCRIPTION section.

Square brakets ([]) indicate that the enclosed item is optional.

Braces ({}) indicate an optional item which may be repeated. In
some cases they indicate simple (non-repeated)
grouping; the usaze should be clear from context.

When these conventions are insufficieat to fully specify the legal format
of a command a more general form is given and the allowable subsets
are specified in the DESCRIPTION section.

DESCRIPTION section
This section gives a detailed description of the entry with references to
the generic names used in the SYNOPSIS section.

EXAMPLE section
This section gives one or more examples of the use of the entry. Most
of these examples are based on the following relations:
emp(name,sal,mgr,bdate)
and
newemp(name,sal,age)
and
_ parts(pnum, pname, cclor, weight, goh)
SEE ALSO section
This section gives the names of entries in the manual which are closely
related to the current entry or which are referenced in the description
of the current entry.
BUGS section
This section indicates known bugs or deficiencies in the command.
To start using INGRES you must be entered as an INGRES user; this is done by the

INGRES administrator who will enter you in the “‘users” file (see users(files)). To
start using ingres see the section on ingres(unix), quel{quel), and monitor(gquel).

ACKNCYLEDGEMENTS)
We would like to acknowledge the people who have worked on INGRES in the past:

INTRODUCTION (INGRES) 3/15/79 INTRODUCTION (INGRES)

Villiam Zook
Karel Youssefi
Peter Rubinstein
Peter Kreps
Gerald Held
James Ford

FOOTNOTE
UNIKX is a trademark of Bell Laboratories.

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (INGRES)

APPEND(QUEL) — append tuples to & relation
append [to] relname (target_list) [where qual]
COPY(QUEL) — copy data into/from a relation from/into a UNIX file.
copy relname (domname = format {, domname = format })
direction "filename”
CREATE(QUEL) — create a new relation
create relname (domname? = format {, domnameZ2 = format })
DEFINE(QUEL) — define subschema
define view name (target list) [where qual]
define permit oplist { on | of | to] var [(attlist)] to name [at term] [
from time to time] t on day to day] [where qual]
define integrity on var is qual
DELETE(QUEL) — delete tuples from a relation
delete tuple_variabie [where qual’
DESTROY(QUEL) — destroy existing relaticn(s)
deslroy relname §{, relname]
destroy [permit | integrity] relname [integer {, integerj! all]

HELP(QUEL) — get information about how to use INGRES or about relations in the
database.
help [relname] [""section"] {, relname]}{, “section"}
help view relname §{, relname}
help permit relname §{, relname}
hclp integrity relnarne §, relname;j

INDEX(QUEL) — create a secondary index on an existing relation.
index or relname is indexname (domain? §{ ,domaing})

INTEGRITY(QUEL) — define iniegrity constraints

' define integrity on var is qual

MACROS(QUEL) — terminal monitor macro facility

MODIFY(QUEL) — convert the storage structure of a relation
modify relname to storage-structiire [on keyl [: sortorder] [§{, key? [:

sortorder] }] | [where [fillfactor =n | [, minpages =n] [,
maxpages =1
MONITOR(QUEL) — intcractive terminal monitor
PERMIT(QUEL) — add permissions to a relation
define permit oplist { on | of | to] var [(attlist)]
to name fat term] [from time to time
[on day to day] [where qual]

PRINT{QUEL) — print relation(s)
print relname §{, relname]

QUEL(QUEL) — QUEry Language for INGRZS

RANGE(QUEL) — declare a variable to range over a relation
range of variable is relname

REPLACE(QUEL) — replace values of domains in a relation
replace tuple_variable (target_list) [where qual]

RETRIEVE(QUEL) — retrieve tuples from a relation
retrieve [[into] relname] (target_list) [where qual]
retrieve unique (target list) [::-rhere qual]

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS(INGRES)

SAVE(QUEL) — save a relation until a date.
save relname until month day year

VIEW(QUEL) — define a virtual relation
define view name (target-list) [where qual]

CREATDB(UNIX) — create a data base
creatdb|[—uname][—e][—m][zc][+q] dbname

DESTROYDB(UNIX) — destroy an existing database
destroydb [—s] [—m] dbname

EQUEL(UNIX) — Embedded QUEL interface to C
equel[d][—{][-r]fieq..

HELPR(UNIX) — get information about a database.
helpr [—uname] [+w] database relation ...

INGRES(UNIX) — INGRES relational data base management system
ingres [flags] dbname [process_table]

PRINTR(UNIX) — print relations
printr [flags] database relation

PURGE(UNIX) — destroy all expired and temporary relations
purge[f]1[—pi[—a][—s][=w]! database ...]

RESTORE(UNIX) — recover from an INGRZS or UNIX crash.
restore[—a][—s][=w] [database ...]

SYSMOD(UNIX) — modify system relations to predetermined storage structures,
sysmod | —s] [—=w] dbname | relation] [attribute] [indexes] [trec][
protect | [integrities |

USERSETUP(UNIX) — setup users file _

.../bin/uscrsetup | pathname !

DAYFILE(FILES) — INGRES login message
DBTHMPLT(FILES) — database template
ERROR(FILES) — files with INGRES errors
LIBQ(TILES) — Equel run-time support library
PROCTAB(FILES) — INGR3S runtime configuration informatinn
STARTUP(FILES) — INGRS startup file
USERS(FILES) — INGRES user codes and parameters
INTRODUCTION(ERROR) — Error messages introduction
EQUEL(ERROR) — EQUEL error message surnmary

Error numbers 1000 — 1999.

PARSER(ERROR) — Parser error message summary
Error numbers 2000 — 2599.

QRYMOD(ERROR) — Query Modification error message summary
Error numbers 3000 — 3599.

OVQP(ERROR) — One Variable Query Processor error message summary
Error nurnbers 4000 — 4499.

DECOMP(ERROR) — Decomposition error message summary
Error numbers 4500 — 4999.

DBU(ERROR) — Data Base Utility error message summary
Error numbers 5000 — 5999

APPEND (QUEL) 1/26,/79 APPEND(QUEL)

NAKR
apprend — append tuples to a relation
SYNOPSIS
append [to] relname (target_list) [where qual]
DESCRIPTION
Append adds tuples which satisfy the qualificetion to relname. Relname must be
the name of an existing relation. The target_list specifies the values of the attri-
butes to be appended to relname, The domeains may be listed in any order. At-
tributes of the result relation which do not appear in the targef_list as
result_attnames (either explicitly or by defauit) are assigned default values of 0,
for numeric attributes, or blank, for character attributes.
Values or expressions of any numeric type may be used to set the value of a
numeric type domain. Conversion to the result domain type takes place.
Numeric values cannot be directly assigned to character domains. Conversion
from numeric to character can be done using the ascii operator (see
quel(quel)). Character values cannot be directly assigned to numeric domains.
Use the intl, int2, etc. functions to convert character values to numeric (see
quel(quel)). .
The keyword all can be used when it is desired to append all domains of a rela-
tion.
An cppend may only be issued by the owner cf the relation or a user with append
permission on the given relation.
EXAYPLE
/* Make new employee Jones work for Smith */
range of n is newemp
append to emp(n.name, n.sal, mgr = "SmitL", bdate = 1975—n.age)
where n.name = "Jones"
/* Append the newemp1 relation to newemp */
range of nl is newemnp1
append to newemp(n1.all)
SEE ALSO ’
copy(quel), permit{quel), quel{quel), retrieve(quel)
DIAGNGSTICS '))
Use of a numeric type expression to set a character type domiain or vice versa
will produce diagnostics.
BUGS

Duplicate tuples appended to a relation stored as a **paged heap"” (unkeyed, un-
structured) are not removed.

COPY (QUEL) 1/19/79 COPY (QUEL)

NAME
copy — copy data into/from a relation from/into a UNKX file.
SYNOPSIS
copy relname (domname = format {, domname = format })
direction "filename"
DESCRIPTION

Copy moves data between INGRES relations and standard UNKX files. Relname is
the name of an existing relation. In general domname identifies a domain in rel-
namsg, Format indicates the format the UNKX file should have for the correspond-
ir;gt}cliorglain. Direction is either into or from. Filename is the full UNIX pathname
of the file.

On a copy from a file to a relation, the relaticn cannot have a secondary index, it
must be owned by you, and it must be updatable (not a secondary index or sys-
tem relation).

Copy cannot be used on a relation which is a view. For a copy into a UNKX file, you
must either be the owner of the relation or tre relation must have retrieve per-
mission for all users, or all permissions for all users.

The formats allowed by copy are:

i1,i2,i4 — The data is stored as an integer of length 1, 2, or 4 bytes in the UNX
file.

f4,I8 — The data is stored as a floating poirni number (either single or double
precision) in the UNK file.

cl,c2.....c255 — The data is stgred as a fixed length string of characters.
c0 — Variable length character string.

do,d1,...,d255 — Dummy domain.

Corresponding domains in the relation and the UNIX file do not have to be the
same type or length. Copy will convert as necessary. When converting anything
except character to character, copy checks for overflow. When converting from
character to character, copy will blank pad or truncate on the right as neces-
sary.

The domains should be ordered according to the way they should appear in the
UNKX file. Domains are matched according to name, thus the order of the
domains in the relation and in the UNKX file does not have to be the same.

Copy also provides for variable length strings and dummy domains. The action
taken depends on whether it is a copy into or a copy from. Delimitors for vari-
able length strings and for dummy domains can be selected from the list of:

nl — new line character

tab — tab character

sp — space

nul or null — null character
comma — comma

colon — colon

dash — dash

lparen — left parenthesis
rparen — right parenthesis
x — any single character 'x’

The special meaning of any delimitor can be turned ofl by preceeding the delimi-
tor with a ‘\'. The delimitor can optionally be in guotes g"delim"). This is useful-
ly if vou wish to use a single character delirnitor which has special meaning to

-1-

COPY (QUEL) 1/19/79 COPY (QUEL)

the QUEL parser.

When the direction is from, copy appends data into the relation from the UNIX

file. Domains in the INGRES relation which are not assigned values from the UNXX

file are assigned the default value of zero for numeric domains, and blank for

character domains. When copying in this direction the following special mean-

ings apply:

c0delim — The data in the UNKX file is a variable length character string terminat-
ed by the delimitor delim. If delim is missing then the first comma,

tab, or newline encountered will terminate the string. The delimitor is
not copied.

For example:
pnum=c0 — string ending in comma, tab, or nl.
pnum=cOnl — string ending in nl.
pnum=c0sp — string ending in space.
pnum=c0"Z" — string ending in the character 'Z’.
pnum=c0"7%" — string ending in the character ‘'%’.

A delimitor can be escaped by preceeding it with a ‘\'. For example,
using name = c0, the string ‘‘Blow\, Joe,” will be accepted into the
domain as ‘‘Blow, Joe''..

dOdelim — The data in the UNKX file is a variable length character string delimited
by delim. The string is read and discarded. The delimitor rules are
identical for c¢0 and d0. The domain name is ignored.

d1,d2,...,d255 — The data in the UNKX file is a fixed length character string. The
string is read and discarded. The dornain name is ignored.

When the direction is into, copy transfers data into the UNX file from the rela-
tion. If the file already existed, it is truncated to zero length before copying be-
gins. When copying in this direction, the follcwing special meanings apply:

c0 — The domain value is converted to a fixed length character string and writ-
ted into the UNIX file. For character domains, the length will be the
same as the domain length. For numeric domains, the standard INGRES
conversions will take place as specified by the ‘—’, ‘', and ‘—c’ flags
(see ingres(unix)).

cGdelim — The domain will be converted according to the rules for c¢0 above. The
one character delimitor will be inserted immediately after the domain.

di,d2,...,d255 — The domain name is taken to be the name of the delimitor. Itis
written into the UNIX file 1 time for di, 2 times for d2, etc.

@0 — This format is ignored on a copy into.

d0delim — The delim is written into the file. The domain name is ignored.

If no domains appear in the copy command (i.e. copy relname () into/from
"filename") then copy automatically does a **bulk’ copy of all domains, using the
order and formal of the domains in the relation. This is provided as a con-
venient shorthand notation for copying and restoring entire relations.

To copy into a relation, you must be the owner or all users must have all permis-
sions set. Correspondingly, to cspy from a relation you must own the relation or
all users rnust have at least retrieve permission on the relation. Also, you may
not copy a view.

EXAMPLE) ‘
/* Copy data into the emp relation */
copy emp (namezc10,sa1=f4,bdate=iz,mgr=c10.xxx:d1)

-2-

COPY (QUEL) 1/19/79 'COPY (QUEL)

from ”/mnt/me/myfile”

/* Copy employee names and their salaries into a file */
copy emp (name=c0,comma=d1,sal=c0,nl=d1)
into " /mnt/you/yourfile"

/* Bulk copy employee relation into file */
copy emp
"~ into"/mnt/ours/ourfile"

/* Bulk copy employee relation from file »/
copy emp ()
from "/mnt/thy/thyfile"”

SEE ALSO

BUGS

append{quel), create{quel), quel{quel), permit(quel), view(quel), ingres(unix)

Copy stops operation at the first error.

When specifying filename, the entire UNIX dirsct-~y pathname must be provided,
since INGRES operates out of a difierent director; than the user’s working direc-
tory at the time INGRES is invoked.

CREATE (QUEL) 1/26/79 CREATE (QUEL)

NAKE

create — create a new relation
SYNOPSIS

create relname (domname ! = format {, domname2 = format })
DESCRIPTION

Create will enter a new relation into the data base. The relation will be “owned”
by the user and will be set to expire after seven days. The name of the relation
is relname and the domains are named domnamel, domname?2, etc. The
domains are created with the type specified by format. Formats are described
in the quel(quel) manual section.

The relation is created as a paged heap with no data initially in it.

A relation can have no more than 49 domains. A relation cannot have the same-
name as a system relation.
EXAMPII
/* Create relation emp with domains name, sal and bdate */
create emp (name = c10, salary = f4, bdate = i2)

SEE ALSO
append{quel), copy(quel), destroy(quel), save{quel)

BUGS

DEFINE (QUEL) 2/7/79 DEFINE (QUEL)

NAME
define — define subschema

SYNOPSIS
define view name (target list) [where qual]
define permit oplist { on | of | to} var [(attlist)] to name [at term][from time
totime][on day today] [where qual]
define integrity on var is qual

DESCRIPTION
The define statement creates entries for the subschema definitions. See the
manual sections listed below for cornplete descriptions of these commands.

SEE ALSO
integrity(quel), permit(quel), view(quel)

DELETE (QUEL) > 1/26/72 DELETE (QUEL)

NAME

delete — delete tuples from a relation
SYNOPSIS

delete tuple_variable [where qual]
DESCRIPTION

Delete removes tuples which satisfy the qualification qual from the relation that
they belong to. The fuple_variable must have been declared to range over an
existing relation in a previous range statement. Delefe does not have a
target_list. The delete command requires a tuple variable from a range state-
ment, and not the actual relation name. If the qualification is not given, the
effect is to delete all tuples in the relation. The result is a valid, but empty rela-
tion.

To delete tuples from a relation, you must be the owner of the relation, or have
delete permission on the relation.

EXANPLE
/* Remove all employees who make over $3C,000 */
range of e is emp
delete e where e.sal > 30000

SUE ALSO
destroy(quel), permit{quel), quel{quel), range(quel)

BUCS

DESTROY (QUEL) 2/21/79 DESTROY (QUEL)

N:ME
destroy — destroy existing relation(s)

SYNOPSIS
destroy relname ? . relname }
destroy [permit | integrity] relname [integer {, integer } | all]

DESCRIPTION
Destroy removes relations from the data tase, and removes constraints or per-
missions from a relation. Only the relation owner may destroy a relation or its
permissions and integrity constraints. A relation may be emptied of tuples, but
not destroyed, using the delete statement or the modify statement.

If the relation being destroyed has secondary indices on it, the secondary in-
dices are also destroyed. Destruction of just a secondary index does not affect
the prirnary relation it indexes.

To destroy individual permissions or constraints for a relation, the integer argu-
ments should be those printed by a help permit (for destroy permit) or a help
integrity (for destroy integrity) on the same relation. To destroy all constraints
or permissions, the all keyword may be usezd in place of individual integers. To
destroy constraints or permissions, either the infeger arguments or the all key-
word must be present.

AMPLE
/* Destroy the emp relation »/
destroy emp
destroy emp, parts

/* Destroy some permissions on parts, and all in*egrity
*/constra'mts on employee -
»

destroy permit parts 0, 4, 5

destroy integrity employee

SIE ALSO
create{(quel), delete{quel), help(quel), index(quel), modify(quel)

EELP (QUEL) 2/21/79 . HELP(QUEL)

NAME ’
gelp — get information about how to use NGRES or about relations in the data-
ase. .
SYNOPSIS

help [relname] ["section”] {, relname}{, "'section"}
help view relname {, relname]

help permit relname §, relname]

help integrity relname §{, relname]

DESCRIPTION
Help may be used to obtain sections of this manual, information on the content
of the current data base, information about specific relations in the data base,
view definitions, or protection and integrity constraints on a relation. The legal
forms are as follow:

help "section " — Produces a copy of the specified section of the INGRES Refer-
ence Manual, and prints it on the standard output device.

help — Gives information about all relations that exist in the current database.

help relname §{, relname} — Gives information about the specified relations.

help """ — Gives the table of contents.

help view relname {, relname} — Prints view definitions of specified views.

help permit relname §, relname} — Prints permissions on specified relations.

help integrity relname {, relname] — Prints integrity constraints on specified
relations.

The permit and integrity forms print out unique identifiers for each constraint.
These identifiers may be used to remcve the constraints with the destroy state-
ment.

EXAKPLE
help
help help /* prints this page of the manual */
help quel
help emp
help emp, parts, "help”, supply
help viev overp_view
help permit parts, employee
help integrity parts, employee

SEE ALSO
destroy(quel)

BUGS
Alphabetics appearing within the section name must be in lower-case to be
recognized.

INDEX (QUEL) 2/21/79 "~ INDEX(QUEL)

NANT
index — create a secondary index on an existing relation.

SYNOPSIS
index on relname is indexname (domain? { ,domaingj)

DESCRIPTION
Indezx is used to create secondary indices on existing relations in order to make
retrieval and update with secondary keys more efficient. The secondary key is
constructed from relname domains 1, 2,...,6 in the order given. Only the owner
of a relation is allowed to create secondary indices on that relation.
In order to maintain the integrity of th= index, users will NOT be allowed to
directly update secondary indices. Fowever, whenever a primary relation is
changed, its secondary indices will be automatically updated by the system.
Secondary indices may be modified to further increase the access efficiency of
the primary relation. When an index is first created, it is automatically modified
to an isam storage structure on all its domains. If this structure is undesirable,
the user may override the default isam siructure by using the —a switch (see
ingres{unix)), or by entering a modify command directly.
If a modify or desiroy command is used on relname, all secondary indices on
relname are destroyed.
Secondary indices on other indices, or on system relations are forbidden.

EXAWPLE
/* Create a secondary index called *'x’’ on relation “‘emp’ */

index on emp is x{rngr,sal)

SEB ALSO

ccpy{quel), destroy(quel), modify(quel)

At most 6 domains may appear in the key.

The copy command cannot be used to copy into a relation which has secondary
indices.

The default structure isam is a poor choice for an index unless the range of re-
trieval is small.

INTEGRITY (QUEL) 2/7/79 INTEGRITY (QUEL)

NAME

integrity — define integrity constraints
SYNOPSIS

define integrity on var is qual
DESCRIPTION

The integrity statement adds an integrity constraint for the relation specified
by var. After the constraint is placed, all updates to the relation must satisfy
gqual. Qual must be true when the integrity statement is issued or else a diag-
nostic is issued and the statement is rejected.

In the current implementation, integrify constraints are not flagged — bad up-
dates are simply (and silently) not performed.

Qual must be a single variable qualification and may not contain any aggre-
gates.

integrity statemer . may be issued only by the relation owner.

EXAMPLE
/* Ensure all employees have positive salaries */
range of e is employee
define integrity on e is e.salary > 0

SEE ALSO
destroy(quel)

MACROS (QUEL) 2/19/79 MACROS (QUEL)

NANME
macros — terminal monitor macro facility

DESCRIPTION
The terminal monitor macro facility provides the ability to tailor the QUEL
language to the user's tastes. The macro facility allows strings of text to be re-
moved from the query stream and replaced with other text. Also, some buill in
macros change the environment upon execution.

Basic Concepts

All macros are composed of two parts, tae template part and the replacement
part. The template part defines when the macro should be invoked. For exam-
ple, the template *‘ret” causes the corresponding macro to be invoked upon en-
countering the word ‘‘ret’” in the input siream. When a macro is =“ncountered,
the template part is removed and replacsd with the replacement part. For ex-
ample, if the replacement part of the “ret"” macro was ‘‘retrieve’, then all in-
stances of the word *‘ret’” in the input text would be replaced with the word ‘“‘re-
trieve”, as in the statement

ret (p.all)

Macros may have parameters, indicated ty a dollar sign. For example, the temn-
plate *“‘get $1"" causes the macro to be triggered by the word '‘get” followed by
any other word. The word following ‘‘get’” is remembered for later use. For ex-
ample, if the replacement part of the ‘‘get’” macro where

retrieve (p.all) where p.pnum = $1
then typing *“get 35" would retrieve all information about part number 35.

Defining Macros

Macros can be defined using the special macro called ‘‘define’’. The template for
the define macro is {roughly)

f{define; $t; $r}
where $t and $r are the template and reclacement parts of the macro, respec-
tively.
Let’s look at a few examples. To define the ‘“‘ret’” macro discussed above, we
would type:

{define; ret; retrieve}

Whern this is read, the macro processor removes everything between the curly
braces and updates some tables so that ‘ret’” will be recognized and replaced
with the word ‘‘retrieve’”. The define meacro has the null string as replacement
text, so that this macro seems to disappear.

A useful macro is one which shortens rangs statements. It can be defined with
{define; rg 8v $r; range of §vis Sr)
This macro causes the word “‘rg’’ followed by the next two words to be removed
and replaced by the words ‘‘range of"’, follcwed by the first word which followed
“rg', followed by the word “is"”, followed by the second word which followed
“rg'. For example, the input
rg p parts
becomes the same as

range of p is parts

MACRGCS (QUEL) 2/19,/79 'MACROS (QUEL)

Evaluation Times

When you type in a define statement, it is not processed immediately, just as
queries are saved rather than executed. No macro processing is done until the
query buffer is evaluated. The commards \go, \list, and \eval evaluate the
query buffer. \go sends the results to NG2=s, \list prints them on your terminal,
and \eval puts the result back into the query buffer.

It is important to evaluate any define stztements, or it will be exactly like you
did not type them in at all. A common way to define macros is to type

{define ...}

\eval

\reset
If the \eval was left out, there is no effect at all.
Quoting

Sometimes strings must be passed through the macro processor without being
processed. In such cases the grave and acute accent marks (* and ‘) can be
used to surround the literal text. For example, to pass the word “‘ret’ through
without converting it to *'retrieve’ we could type

‘ret’

Another use for quoting is during parameter collection. If we want to enter
more than one word where only one was expected, we can surround the parame-
ter with accents.

The backslash character quotes only the next character (like surrounding the
character with accents). In particular, a grave accent can be used literally by
preceeding it with a backslash.

Since macros can normelly only be on ore line, it is frequently useful to use a
backslash at the end of the line to hide the newline. For example, to enter the
long *‘get’” macro, you might type:

{define; get Bn; retrieve é.all) \

where e.name = "3n"

The b ickslash always quotes the next c"aracter even when it is a backslash. So,
to get a real backslash, use two backslashes. :
More Parameters

Parameters need not be limited to the werd following. For example, in the tem-
plate descriptor for define:

{define; $t; $r]

the $t parameter ends at the first semicolon and the 3r parameters ends at the
first right curly brace. The rule is that the character which follows the parame-
ter specifier terminates the parameter; if this character is a space, tab, newline,
or the end of the template then one word is collectecd.

As with all good rules, this one has an exception. Since system macros are al-
ways surrounded by curly braces, the macro processor knows that they must be
properly nested. Thus, in the statement

fdefine; x; §sysfn}}

The first right curly brace will close the “'sysfn’ rather than the *“‘define™. Oth-
erwise this would have to be typed

{define; x; ‘{sysfnj’}

MACROS (QUEL) 2/19/79 - MACROS(QUEL)

Words are defined in the usual way, as strings of letters and digits plus the un-
d:erscore character.

Other Builtin Macros

There are several other macros built in to the macro processor. In the following
description, some of the parameter specifiers are marked with two dollar signs
rather than one; this will be discussed irn the section on prescanning below.

{cefine: 8$t; $3r] defines a macro as discussed above. Special processing occurs
on the template part which will be discussed in a later section.
frawdefine; $8t; $8r} is another form of define, where the special processing does
not take place.
{remove; 38n] removes the macro with name $n. It can remove more than one
macro, since it actually removes all macros which might conflict with $n under
some circumstance. For example, typirg

define; get part 3n; . .. }

define; get emp $x; . . .
remove; get}

wouid cause both the get macros to be removed. A call to
{remove; get part}

would have only removed the first macro.

ftype $3s{ types 8s onto the terminal.

{read $3%s] types Bs and then reads a lins from the terminal. The line which was
typed replaces the macro. A macro cailed '‘{readcount]’ is defined containing
the number of characters read. A control-D (end of file) becomes -1, a single
newline becomes zero, and so forth.

freaddefine; $3n; $%s} also types $s and reads a line, but puts the line into a
macro named 3n. The replacement text is the count cf the number of charac-
tersin the line. {readcount] is still defined.

fifsame; $8a; $Sb; $t; 8] compares the strings $a and $b. If they match exactly
ther the replaceme.it L2t becomes S{, otherwise it bccomes $f.

fifeq; 3%a; $8b; St; $f] is similar, but the comparison is numeric.

fifgt; 83a; $3b; St; &f} is like ifeq, but the test is for Sa strictly greater than 3b.
isubstr; $&f; 3St; 88s] returns the part of Ss between characler positions $f and
3t, numbered from one. If $f or $t are out of range, they are moved in range as
1nuch as possible.

fdump; $$n} returns the value of the macro {or macros) which match $n (using

the same algorithm as remove). The output is a rawdefine statement so that it
can be read back in. {dump} without arguments dumps all macros.

Melacharacters

Certain characters are used internally. Normally you will not even see them,
but they can appear in the output of a dump command, and can sometirnes be
used to create very fancy macros.

\| matches any number of spaces, tabs, or newlines. It will evenn match zero, but
only between words, as can occur with punctuation. For example, \| will match
the spot between the last character of a word and a cornma following it.

\~ matches exactly one space, tab, or newline.

MACROS (QUEL) 2/19/79 'MACROS(QUEL)

\& matches exactly zero spaces, tabs, or newlines, but only between words.
The Define Process

When you define a macro using define, a lot of special processing happens. This
processing is such that define is not functionally complete, but still adequate for
most requirements. If more power is nesded, rawdefine can be used; however,
rawdefine is particularly difficult to use correctly, and should only be used by
gurus.

In defire, all sequences of spaces, tabs, and newlines in the template, as well as
all ““non-spaces” between words, are turned into a single \| character. If the
template ends with a pararmneter, the \& character is added at the end.

If you want to match a real tab or newline, you can use \t or \n respectively.
For example, a macro which reads an entire line and uses it as the name of an
employee would be defined with

{define; get Sn\n; \
ret (e.all) where e.name = "8n"}

This macro rnight be used by typing
get *Stan*

to get all information about everyone with a name which included *‘Stan’”. By
the way, notice that it is ok to nest the “ret’” macro inside the *“get’ macro.

Parameter Prescan

Sometimes it is useful to macro process a parameter before using it in the re-
placement part. This is particularly important when using certain bu''lin mac-
ros.

For prescan to occur, two things must e true: first, the parameter must be
specified in the template with two dollar signs instead of one, and second, Lhe
actual parameter must begin with an “‘at’ sign (**@") (which is stripped off).

For an example of the use of prescan, see **Special Macros’ below.

Special Macros

Some special macros are used by the lerminal monitor to control the environ-
ment and return results to the user. '

{begintrap] is executed at the beginning cf a query.
{endlrap] is executed after the body of a query is passed to INGRES.

fcontinuetrap} is executed after the query completes. The difference between
this and endtrap is that endtrap occurs aiter the query is submitted, but before
the query executes, whereas continuetrag is executed after the query executes.

feditor] can be defined to be the pathname of an editor to use in the \edit com-
mand.

{shell] can be defined to be the pathname of a shell to use in the \shell comn-
mand.

ftuplecount] is set after every query (bt before continuetrap is sprung) to be
the count of the number of tuples which satisfied the qualification of thc query
in a retrieve, or the number of tuples changed in an update. It is nol set for DBU
functions. If multiple queries are run at cnce, it is set to the number of Luples
which satisfied the last query run.

For example, to print out the number of tuples touched automatically after each
query, you could enter:
{define; {begintrap}; {remove; {tuplecounti}}

-4 -

MACRCS (QUEL) 2/19/79 " MACROS{ QUEL)

{define; {continuetrap}; \ '
fifsame; @{tuplecount]; {tuplecount};; \
{type @{tuplecount] tuples touched}}}

SEE ALSO
monitor(quel)

MODIFY (QUEL) 2/23/79 " MODIFY (QUEL)

NAME
modify — convert the storage structure of a relation

SYNOPSIS
modify relname to storage-structure [on keyl [: sortorder] H&. key2 [: sor-

torder]}]][where [fillfactor =n] [, minpages =n maxpages =
n

DESCRIPTION
Relname is modified to the specified storage structure. Only the owner of a re-
lation can modify that relation. This command is used to increase performance

when using large or frequently referenced relations. The storage structures are
specified as follows:

isam — indexed sequential storage structure

cisam — compressed isam

hash — random hah storage structure

chash — compressed hash

heap — unkeyed and unstructured

cheap — compressed heap

heapsort — heap with tuples sorted and duplicates removed
cheapsort — compressed heapsort

truncated — heap with all tuples deleted

The paper ““Creating and Maintaining a Database in INGRES™ (ERL Memo M77-71)
discusses how to select storage structures based on how the relation is used.

The current compression algorithm only suppresses trailing blanks in character
fields. A more effective compression scheme may be possible, but tradeofls
between that and a larger and slower compression algorithm are not clear.

If the on phrase is omitted when modifyving to isam, cisam, hash or chash, the
relation will automatically be keyed onr the first domain. When modifying to
heap or cheap the on phrase must be cmitted. When modifying to heapsort or
cheapsort the on phrase is optional.

When a relation is being sorted (isam, cisam, hcapsort and cheapsort), the pri-
mary sort keys will be those specified in the on phrase (if any). The first key
after the on phrase will te the most siynificant sort key and each successive key
specified will be the next most significant sort key. Any domains not specitied in
the on phrase will be used as least significant sort keys in domain number se-
quence.

When a relation is modified to heapsort or cheapsort, the sortorde~ can be
specified to be ascending or descending. The default is always ascending. Each
key given in the on phrase can be optiorzally modified to be:

key:descending

which will cause that key to be sorted in descending order. For compieteness,
ascending can be specified after the colon (‘:'), although this is unnecessary
since it is the default. Descending cz2n be abbreviated by a single ‘d’ and,
correspondingly, ascending can be abreviated by a single ‘a’.

Fillfactor specifies the percentage {frcm 1 to 100) of each primary data page
that should be filled with tuples, under :deal conditions. Fillfactor may be used
with isam, cisam, hash and chash. Care should be taken when using large fillfac-
tors since a non-uniform distribution of key values could cause overflow pages to
be created, and thus degrade access performance for the relation.

Minpages specifies the minimum number of primary pages a hash or chash rela-
tion must have. Moxpages specifies the maximum number of primary pages a
hash or chash relation may have. Jfinpzges and mazpages must be at least one.

-1-

MODIFY (QUEL) 2/23/79 " MODIFY (QUEL)

If both minpages and maxpages are specified in a modify, minpages cannot

exceed maxpages.
Default values for fillfactor, minpages, end maxpages are as follows:
FILLFACTOR MINPACES MAXPAGES
hash 50 10 no limit
chash 75 1 no limit
isam 80 NA NA
cisam 100 NA NA

EXAMPLES |

/* modify the emp relation to an indexed
sequential storage structure with
"name’ as the keyed domain */

modify emp to isam on name

/* if "name" is the first domain of the emp relation,
the same result can be achieved by */

modify emp to isam

/* do the same modify but request a 607 occupancy
on all primary pages */

modify emp to isam on name where fllfactor = 80

/* modify the supply relation to compressed hash
storage structure with "num" and "quan”
as keyed domains */

modify suppiy to chash on num, quan

/* now the same modify but also reques: 75% occupancy
on all primary, a minimum of 7 primary pages
pages and a maximum of 43 prirnary pages */

mod.fy suppiy to chashl: on num, quan
where fillfactor = 75, minpages = 7.
maxpages = 43

/* again the same modify but only requzst a minimum
of 16 primary pages */

modify supply to chash on num, quan
where minpages = 18

/* modify parts to a heap storage structure */
modify parts to heap

/* modify parts to a heap again, but have tuples
sorted on "pnum" domain and have any duplicate
tuples removecd */ |

modify parts to heapsort on pnum

/* modify employee in ascending order by manager,
descending order by salary and have any
duplicate tuples removed */

MODIFY (QUEL) 2/23/79 - MODIFY (QUEL)

modify employee to heapsort on manager, salary:descending

SEE ALSO
sysmod(unix)

MONITOR (QUEL) 2/23/79 * MONITOR (QUEL)

NAME
monitor — interactive terminal monitor

DESCRIPPTION
The interactive terminal monitor is the primary front end to INGRES. It provides
the ability to formulate a query and review it before issuing it to INGRzs. If
changes must be made, one of the UNX text editors may be called to edit the

query buffer.
Messages and Prom pts.

The terminal monitor gives a variety of messages to keep the user informed of
the status of the monitor and the query buffer.

As the user logs in, a login message is printed. This typically tells the version
number and the login time. It is followed by the dayfile, which gives information
pertinant to users.

When INGRES is ready to accept input, the message *‘go” is printed. This means
that the query buffer is empty. The message *‘continue” means that there is in-
formation in the guery bufer. After a \go cornmand the query buffer is au-
tomatically cleared if another query is typed in, unless a command which affects
the query buffer is typed first. These commands are \append, \edit, \print,
\list, \eval, and \go. For example, typing

help parts

\go

print parts
results in the query buffer containing
print parts
whereas -

help parts

\go

\print

print parts
results in the query buffer containing

help parts

print parts
An asterisk is printed at the beginning of each line when the monitor is waiting
for the user to type input.

Commangds

There are a number of commands which may be entered by the user to affect
the query buffer or the user's environment. They are all preceeded by a
backslash (*\'), and all are executed immediately (rather than at execution time
like queries).
Some commands may take a filename, which is defined as the first significant
character after the end of the command until the end of the line. These com-
mands may have no other commands on the line with them. Commands which
do nct take a filenarne may be stacked on the line; for example

\date\go\date
will give the tirne before and after execution of the current query buffer.

\r

\reset Erase the entire query (reset the query buffer). The former contents
of the buffer are irretrieveably lost. :

\p

\print Print the current query. The contents of the buffer are printed on the
user’s terminal.

MONITOR (QUEL) 2/23/79 "~ MONITOR(QUEL)

\1
\list

\eval

\e

\ed
\edit
\editer

\g
\go

\a
\append

\time
\date

\s
\sh
\shell

\q

\quit
\cd
\chdir
\i
\include
\read

\w
\write

\branch

\mark

I’_Ijint the current query as it will appear after macro processing. Any
side effects of macro processing, such as macro definition, will occur.

Macro process the query buffer and replace the query buffer with the
result. This is just like \list except that the output is put into the
query buffer instead of to the terminal.

Enter the UNIX text editor (see ED in the UNX Programmer’s Manual);
use the ED command 'w’ followed by 'q’ to return to the INGRES monitor.
If a filename is given, the editor is called with that file instead of the
query buffer. If the macro ‘‘{editor}” is defined, that macro is used as
the pathname of an editor, otherwise *'/bin/ed" is used. It is impor-
tant that you do not use the "e’' command inside the editor; if you do
the (obscure) name of the query buffer will be forgotten.

Process the current query. The contents of the buffer are macro pro-
cessed, transmitted to INGRZS, and run.

Append to the query buffer. Tvping \a after completion of a query will
override the auto-clear featurs and guarantees that the query buffer
will not be reset.

Print out the current time of day.

Escape to the UNIX sheil. Typing a control-d will cause ycu to exit the
shell and return to the INGX=S rnonitor. If there is a filename specified,
that filename is taken as a shell file which is run with the query bufler
as thc parameter *$1"". If no filename is given, an interactive shell is
forked. If the macro “‘{shell]" is defined, it is used as the pathname of
a shell; otherwise, **/bin/sbk’" is used.

Exit from INGRES.

Change the working directory of the monitor to the named directory.

Switch input to the named file. Backslash characters in the file will be
processed as read.

Write the contents of the query buffer to the named file.

Transfer control within a \include file. See the section on branching
below.

Set a label for \branch.

\<any other character>

Ignore any possible special meaning of character following "\". This al-
lows the *\' to be input as a literal character. (See also quel(quel) -
strings). It is important to note that backslash escapes are sometimes
eaten up by the macro processor also; in general, send two backslashes

-2-

MONITOR (QUEL) 2/23/79 . MONITOR (QUEL)

if you want a backslash sent (even this is too simplistic [sigh] — try to
avoid using backslashes at all). -

Macros
For simplicity, the macros are described in the section macros{quel).

Branching
The \branch and \mark commands permit arbitrary branching within a \include
file (similar to the *“'goto’’ and *:"" commands in the shell). \mark should be fol-

lowed with a label. \branch should be followed with either a label, indicating un-
conditione! branch, or an expression preceeded by a question mark, followed by
a label, indicating a conditional branch. The branch is taken if the expression is
greater than zero. For example,

\branch ?{tuplecount]<=0 notups
branches to label “‘notups” if the *‘{tuplecount]” macro is less than or equal to
zero.

The expressions usable in \tranch statements are somewhat restricted. The
operators +, —, *, /, <=, >=, <, >, =, and != are all defined in the expected way.
The left unary operator **!"’ can be used as to indicate logical negation. There
may be no spaces in the expression, since a space terminates the expression.
Initializaticn

At initialization (login) time a number of initializations take place. First, a mac-
ro called ‘‘{pathname}’ is defined which expands to the pathname of the INGRES
subtree (normally ‘‘/mnt/ingres’); it is used by system roulines such as
demodb. Second, the initialization file .../files/startup is read. This file is in-
tended to define system-dependent parameters, such as the default editor and
shell. Third, a user dependent initialization file, specified by a field in the users
file, is read and executed. This is normally set to the file ‘".ingres’ in the user's
home directory. The startup file might be used to define certain macros, exe-
cute common range statements, and soforth. Finally, control is turned over to
the user’'s terminal.

An interrupt while executing either of the initialization files restarts execution of
that step.

Flags

Certain flags may be included on the command line to INGR=S which affect the
operation of the terminal monitor. The —a flag disables the autoclear function.
This means that the query buffer will never be automatically cleared; equivalent-
ly, it is as though a \append command were inserted after every \go. Note that
this means that the user must explicitly clear the query buffer using \reset
after every query. The —d flag turns o5 the printing of the dayfile. The —s flag
turns off printing of all messages (except errors) from the monitor, including
the login and logout messages, the dayfile, and prompts. It is used for executing
*canned queries’’, that is, queries redirected from files.

SEL ALSO
ingres(unix), quel(quel), macros(quel)
DL.GNOSTICS
go You may begin a fresh query.
continue The previous query is finished and you are back in the rnoni-
tor.
Executing . .. The query is being processed by INGRES.

MONITOR (QUEL) | 2/23/79 MONITOR (QUEL)

>>ed You have entered the UNIX text editor.
>>sh You have escaped to the UNIX shell.

Funny character nnn converted to blank

INGRES maps non-printing ASCIl characters into blanks; this

message indicates that one such conversion has just been
made.

INCOMPATIBILITIES
Note that the construct
\rprint parts
(intended to reset the query buffer ard then enter '‘print parts’) no longer
works, since '‘rprint’’ appears to be one word.

BUGS

PERMIT (QUEL) 2/7/79 ' PERMIT (QUEL)

NHAME
permit — add permissions to a relation
SYNOPSIS '
define permit oplist { on | of | to } var [(attlist)]
to name Fat term] { from time to time]
[on day to day] [where qual]
DESCRIPTION
The permit statement extends the current permissions on the relation specified
by var. Oplist is a comma separated list of possible operations, which can be re-
trieve, replace, delete, append. or all; all is a special case meaning all permis-
sions. Name is the login name of a user or the word all. Term is a terminal
name of the form ‘ttyz’ or the keyword all; omitting this phrase is equivalent to
specifying all. Times are of the form ‘hh:mm’ on a twenty-four hour clock which
limit the times of the day during which this permission applies. Dcys are three-
character abbreviations for days of the week. The gqual is appended to the
qualification of the query when it is run.
Separate parts of a single permit statement are conjcined {ANDed). Different
permit statements are disjoined (ORed). For example, if you include
...toericattty4...
the permit applies only to eric when logged in on tty4, but if you include two per-
mit statements
...toericatall...
...toallat tty4...
then when eric logs in on tty4 he will get the union of the permissions specified
by the two statements. If eric logs in on ttyd he will get only the permissions
specified in the first permit statement, and if bob logs in on tty4 he will get only
the permissions specified in the second permit statment.
The permit statement may only be issued by the owner of the relation. Although
a user other than the DBA may issue a permit statement, it is useless because
noone else can access her relations anyway.
Permit statements do not apply to the owner of a relation or to views.
The statements
define permit all on x to all
define permit retrieve of x to all
with no further qualification are handled as special cases and are thus particu-
larly cfficient.
EXAMPLES
range of e is employee
define permit retrieve of e (name, sal) to marc
at ttyd from 8:00 to 17:00
on Mon to Fri
where e.mgr = "marc”
range of p is parts
define permil retrieve of e to all
SEE AISO

destroy{quel)

PRINT(QUEL) 1/26/79 - PRINT (QUEL)

NAME
print — print relation(s)

SYNOPSIS
print relname §, relname]

DESCRIPTION
Print displays the contents of each relation specified on the terminal (standard
output). The formats for various types of domains can be defined by the use of
switches when ingres is invoked. Domain names are truncated to fit into the
specified width.

To print a relation one must either be the owner of the relation, or the relation
must have *'retrieve to all” or '‘all to all’’ permissions.

See ingres{quel) for details.

EXAMPLE
/* Print the emp relation */
print emp
print emp, parts

SEE ALSO :
permit{quel), retrieve{quel), ingres{unix), printr(unix) handle long lines of out-
put correctly — no wrap around.

Print should have more formating features to make printouts more readable.
Print should have an option to print on the line printer.

QUEL(QUEL) 2/23/79 ' QUEL(QUEL)

NAME
quel — QUEry Language for INGRES

DESCRIPTION
The following is a description of the general syntax of QUEL. Individual QUEL state-
ments and commands are treated separately in the document; this section
describes the syntactic classes from which the constituent parts of QUEL state-
ments are drawn.

1. Comments

A comment is an arbitrary sequence of characters bounded on the left by ** /+"
and on the right by ***/"’:

/* This is a comment */
2. Names

Names in QUEL are sequences of no more than 12 alphanumeric characters,
starting with an alphabetic. Underscore () is considered an alphabetic. All
upper-case alphabetics appearing anywhere except in strings are automatically
and silently mapped into their lower-case counterparts.

3. Keywords
The following identifiers are reserved for use as keywords and may not be used

otherwise:
abs all and
any append ascii
at - atan avg
avgu by coacat
copy cos count
countu create define
delete destroy exp
float4 float8 from
gamma help in
index intl int2
int4 intcogrity into
is log max
roin raod modify
not of on
onto or permit
print range replace
retrieve save sin
sgrt sum sumu
to unique until
view where

4. Constants

There are three types of constants, corresponding to the three data types avail-
able in QUEL for data storage.

4.1. String constants

Strings in QUEL are sequences of no more than 255 arbitrary ASCII characters
bounced by double quotes (" "). Upper case alphabetics within strings are ac-
cepted literally. Also, in order to imbed quotes within strings, it is necessary to
prefix thern with ‘\' . The same converiion applies to *\' itself.

QUEL(QUEL) 2/23/79 : QUEL(QUEL)

Only printing characters are allowed within strings. Non-printing characters
(i.e. control characters) are converted to blanks. ’

4.2. Integer constants

Integer constants in QUEL range from —2,147,483,647 to +2,147,483,647. Integer
constants beyond that range will be converted to floaling point. If the integer is
greater than 32,767 or less than —32,767 then it will be left as a two byte integer.
Otherwise it is converted to a four byte integer.

4.3. Floating point constants

Floating constants consist of an integer part, a decimal point, and a fraction
part or scientific notation of the following format:

f<dig>] [.<dig>] [eE [+-] {<dig>]]
Where <dig> is a digit, [] represents zero or one, {] represents zero or more, and
| represents alternation. An exponent with a missing mantissa has a mantissa of

1 inserted. There may be no extra characters embedded in the string. Floating
constants are taken to be double-precision quantities with a range of approxi-

mately —10% to 10% and a precision of 17 decimal digits.

5. Attributes

An attribute is a construction of the form:
variable.domain

Variable identifies a particular relation and can be thought of as standing for the
rows or tuples of that relation. A variable is associated with a relation by means
of a range statement. Domain is the name of one of the columns of the relation
over which the variable ranges. Together they make up an attribute, which
represents values of the named domain.

6. Arithmetic operators

Arithmetic operators take numeric type expressions as operands. Unary opera-
‘tors group right to left; binary operators group left to right. The operators (in
order of descending precedence) are:

+,— (urary) plus, minus

b exponentiation

»,/ multiplication, division

+,— (binary) addition, subtraction

Parentheses may be used for arbitrary grouping. Arithmetic overflow and divide
by zero are not checked on integer operations. Floating point operations are
checked for overflow, underflow, and divide by zero only if the appropriate
machine hardware exists and has been enabled.

7. Expressions (a_expr)

An expression is one of the following:

constant

attribute

functional expression

aggregate or aggregate function

a combination of nurneric expressions and arithmetic operators

For the purposes of this document, an arbitrary expression will be refered to by
the name a_ezpr.

8. Formats
Every o_expr has a format denoted by a letter (e, i, or f, for character, integer,

-2-

QUEL(QUEL) 2/23,/79 . QUEL(QUEL)

or floating data types respectively) and a number indicating the number of
bytes of storage occupied. Forrnats currently supported are listed below. The
ranges of numeric types are indicated in parentheses. '

cl —c255 character data of length 1-255 characters

i1 1-byte integer (—128 to +127)

i2 2-byte integer (—32768 to +32767)

i4 4-byte integer (—2,147,483,648 to +2,147,483,647)

f4 4-byte floating (—10°¢ to +10%, 7 decimal digit precision)

f4 B-byte floating (—10%° to +10%, 17 decimal digit precision)
fOne n;:meric format can be converted to or substituted for any other numeric
ormadt.

9. Type Conversion.

When operating on two numeric domains of different types, INGRES converts as
necessary to make the types identical.

When operating on an integer and a floating point number, the integer is con-
verted to a floating point number before the operation. When operating on two
integers of different sizes, the smaller is converted to the size of the larger.
When operating on two floating peint number of different size, the larger is con-
verted to the smaller.

The following table summarizes the possible combinations:
i1 i2 i4 f4 f8
il- 11 i2 14 f4 8
i - i2 ie i4 f4 f8
i4- 4 i4 i4 f4 f3
f4— f4 f4 f4 f4 f4
fa— 8 8 8 f4 f8

INGRES provides five type conversion operators specifically for overriding the de-
fault actions. The operators are:

intlga_exprg result type il

int2(a_expr result type i2
int4(a_expr result type i4
float4(a_expr result type f4
float8(a_expr result type {8

The type conversion operators convert their argument a_expr to the requested
type. A expr can be anything including character. If a character value cannot
be converted, an error occures and processing is halted. This can happen only if
the syntax of the character value is incorrect.

Overflow is not checked on conversion.

10. Target list

A target list is a parenthesized, comma separated list of one or more elements ,
each of which must be of one of the following forms:

a) result_ottname is a_exrpr

Result_attname is the name of the attribute to be created (or an already exist-
ing attribute name in the case of update statements.) The equal sign (*'="") may
be used interchangeably with is. In the case where a_expr is anything other
than a single attribute, this form must be used to assign a result name to the ex-
pression.

QUEL(QUEL) 2,/23/79 QUEL(QUEL)

b) attribute

In the case of a retrieve, the resultant domain will acquire the same name as
that of the attribute being retrieved. In the case of update statements (append,
replace), the relation being updated must have a domain with exactly that name.

Inside the target list the keyword all can be used to represent all domains. For
example:

range of e is employee
retrieve (e.all) where e.salary > 10000

will retrieve all domains of employee for those tuples which satisfy the
qualification. All can be used in the target list of a refrieve or an append. The
domains will be inserted in their *“create’ order, that is, the same order they
were listed in the create statement.

11. Comparison operators
Comparison operators take arbitrary expressions as operands.

< less than)

<= less than or equal)

> greater than)

>= greater than or equal)
= equal to)

1= not equal to)

They are all of equal precedence. When comparisons are made on character at-
tributes, all blanks are ignored.

12. Logical operators
loogical operators take clauses as operands and group left-to-right:

not logical not; negation)
and logical and; conjunction)
or logical or; disjuncticn)

Not has the highest precedence of the three. And and or have equal precedence.
Parentheses may be used for arbitrary grouping.

13. Qualification {qual)

A gualificction consists of any number of clauses connected by logical opera-
tors. A clause is a pair of expressions connected by a comparison operator:

a_expr comparison_operator a_expr
Parentheses may be used for arbitrary grouping. A qualification may thus be:

clause

not gqual

qual or qual
ual and qual

? qual)

14. Functional expressions

A functional expression consists of a Zunction name [ollowed by a parenthesized
(bst of) operand(s). Functional expressions can be nested to any level. In the
following list of functions supported {n) represents an arbitrary numeric type
expression. The format of the result is indicated on the right. :

abs(n) — same as n (absclute value)
ascii{n) — character string (converts numeric to character)
atan(nj — f8 (arctangent)

concat(a,b) —character (character concatenation. See 16.2)

-4 -

QUEL{QUEL) 2/23/79 : QUEL(QUEL)

cos&ng— f8 (cosine)

exp(n) — f8 (exponential of n)

gamma(n) — 8 (log gamma)

log(n) — f8 (natural logarithm)

mod(n.b) — same as b (n modulo b. n and b must be i1, i2, or i4)
sin(n) — f8 gsine)

sqrt(n) — f8 (square root)

15. Aggregate expressions

Aggregate expressions provide a way to aggregate a computed expression over a
set of tuples.

15.1. Aggregation operators :
The definitions of the aggregates are listed below.

count — §i42 count of occurrences

countu — i4) count of unique occurrences

sum — summation

sumu — summation of unique values

avg — éfB) average (sum,count)

avgu — f8) unique average (sumu/countu)

max — maximum

min — minimum

any — (i2) value is 1 if any tuples satisfy the qualification, else it is 0

15.2. Simple aggregate
aggregation_operator (o_expr [where qual])

A siviple aggregate evaluates to a sinzle scalar value. A_expr is aggregated over
the set of tuples satisfying the qualifization {(or all tuples in the range of the ex-
pression if no qualification is present}. Operators sum and aug require numeric
type a_expr; count, any, mox and min permit a character type attribule as well
as numeric type a_ezpr.

Simple aggregates are completely lscal. That is, they are logically removed
from the query, processed separately, and replaced by their scalar value.

15.3. “any’’ aggregate

It is sometimes useful to know if anv tuples satisfy a particular qualification.
One way of doing this is by using the aggregate count and checking whether the
return is zero or non-zero. Using any instead of count is more e{fcienl since
processing is stopped, if possible, the first time a tuple satisfies a qualification.

Anyreturns 1 if the qualification is true and 0 otherwise.

15.4. Aggregate functions

aggregation_operator {a_expr by by _domain
{, by_domain] [where cuzl

Aggregate functions are extensions of simple aggregates. The by operator
groups (i.e. partitions) the set of gualifying tuples by by domain values. TFor
more than one by_domain, the values which are grouped by are the concatena-
tion of individual by_domain values. 4 ezor is as in simple aggregates. The ag-
gregate function evaluates to a set of aggregate results, one for each partition
into which the set of qualifying tuples has been grouped. The aggregate value
used during evaluation of the query is the value associated with the partition
into which the tuple currently being processed would fall.

QUEL(QUEL) 2/23/79 ’ QUEL(QUEL)

Unlike simple aggregates, aggregate functions are not complctely local. The
by_tist, which differentiates aggregate functions from simple aggregates, is glo-
bal to the query. Domains in the by_list are automatically linked to the other
domains in the query which are in the same relation.
Example:

/* retrieve the average salary for the employees

working for each manager */

range of e is employee

retrieve (e.manager, avesal=avg(e.salary by e.managcr))

15.5 Aggregates on Unique Values.

It is occasionally necessary to aggrezate on unique values of an expression. The
avgu, sumu, and countu aggregates all remove duplicate values before perform-
ing the aggregation. For example: :

count{e.manager)

would tell you how many occurrences of e.manager exist. But
coui:tu{e.manager)

would tell you how many unique values of e.manager exist.

16. Special character operators

There are three special features which are particular to character domains.

16.1 Pattern matching characters

There are four characters which take on special meaning when used in charac-
ter constants (strings):

* matches any string of zero cr more characters.
? matches any single character.
[..] matches any of characters in the brackets.

These characters can be used in any combination to form a variety of tests. Feor
example:

where e.name =

where e.name = "E*’ — matches any name starting with "E".

where e.name = "*ein’"' — matches all names ending with "ein”

where e.name = "*[aeiou]*’' — matches any name with at least one vowel.

where e.name = "Allman?"’ — matches any seven character name starting
with "Allman'.

where e.name = "[A-J]*' — matches any name starting with A,B,..,J.

"*' — matches any name.

The special meaning of the pattern matching characters can be disabled by
preceding them with a ‘\'. Thus ***" refers to the character **". When the spe-
cial characters appear in the target list they must be escaped. For example:

title = "*** ingres \»\"*"
is the correct way to assign the string “*#**ingres ***'’ to the domain “‘title’.

16.2 Concatenation

There is a concatenation operator which can form one character string from
two. Its syntax is ‘‘concat(fieldl. fieid2)". The size of the new character string
is the sum of the siz=s of the origina! two. Trailing blanks are trimraad from the
first field, the second field is concatenated and the remainder is blank padded.
The result is never trimmed to O length, however. Concat can be arbitrarily
nested inside other concats. For example:

QUEL (QUEL) 2/23/79 . QUEL (QUEL)

name = concat(concat(x.lastrzme, ","), x.firstname)

will concatenate x.lastname with a comma and then concatenate x.firstname to
that.

16.3 Ascii (numeric to character trarslation)

The ascii function can be used to convert a numeric field to its character
representation. This can be useful when it is desired to compare a numeric

" value with a character value. For exzmple:

retrieve (...)
where x.chardomain = ascii{x.numdomain)

Ascii can be applied to a character value. The result is simply the character
value unchanged. The numeric conversion formats are determined by the print-
ing formats (see ingres(unix)).

SEE ALSO

BUGS

append(quel), delete(quel), ranze(quel), replace(quel), retrieve(quel),
ingres(unix)

The maximum number of variables waich can appear in one query is 10.
Numeric overflow, underflow, and divide by zero are not detected.
Y¥hen converting between numeric types, overflow is not checked.

RANGE (QUEL) 2,/29/79 ' RANGE (QUEL)

NAME

range — declare a variable to range over a relation
SYNOPSIS

range of variable is relname
DESCRIPTION

- Range is used to declare variables which will be used in subsequent QUEL state-

" ments. The variable is associated with the relation specified by relname. When
the wariable is used in subsequent statements it will refer to a tuple in the
named relation. A range declaration remains in effect for an entire INGRES ses-
sion (until exit from INGRES), until the variable is redeclared by a subsequent
range statement, or until the relation is removed with the destroy command.

EXAMPLE
/* Ueclare tuple variable e to range over relation emp */
range of e is emp

SEE ALSO
quel{quel), destroy(quel)

BUGS
Only 10 variable declarations may be in effect at any time. After the 10th range
statement, the least recently referenced variable is re-used for the next range
statement.

REPLACE (QUEL) . 2/29/79 " REPLACE(QUEL)

NAME

replace — replace values of domains in a relation
SYNOPSIS

replace tuple_variable (target_list) [where qual]
DESCRIPTION

Replace changes the values of the domains specified in the target_list for all tu-
ples which satisfy the qualification gual. The fuple_variable must have been de-
clared to range over the relation which is to be modified. Note that a tuple vari-
able is required and not the relation name. Only domains which are to be
modified need appear in the farget_list. These domains must be specified as
result_attnames in the target_list either explicitly or by default (see quel{quel)).

Numeric domains may be replaced by values of any numeric type (with the ex-
ceplion noted below). Replacement values will be converted to the type of the
result domain.

Only the owner of a relation, or a user with replace pemission on the relalion can
do replace.

If the tuple update would violate an integrity constraint (see integrity{quel)), it
is not done.

EXAMPLE
/* Give all employees who work for Smith a 10% raise */
range of e is emp
replace e(sal = 1.1 * e.sal) where e.mgr = "Smith"

SEE ALSO
integrity(quel), permit(quel), quel(quel), range(quel)

DIAGNOSTICS
Use of a numeric type expressicn to replace a character type domain or vice
versa will produce diagnostics.

BUGS

RETRIEVE (QUEL) 2/29/79 ~ RETRIEVE(QUEL)

NAYE
retrieve — retrieve tuples from a relation
SYNOFSIS
retrieve [[into] relname] (target_list) [where qual]
retrieve unique (target_list) [where qual]
DESCRIPTION .
 FRetrieve will get all tuples which satisfy the qualification and either display them
on the terminal (standard output) or store them in a new relation.
If a relname is specified, the result of the query will be stored in a new relation
with the indicated name. A relation with this name owned by the user must not
already exist. The current user will be the owner of the new relation. The rela-
tion will have domain names as specified in the targef_list result_attnames. The
new relation will be saved on the system for seven days unless explicitly saved
by the user until a later date.
If the keyword unique is present, tuples will be sorted on the first domain, and
duplicates will be removed, before being displayed.
The keyword all can be used when it is desired to retrieve all domains.
If no result relname is specified then the result of the query will be displayed on
the terminal and will not be saved. Duplicate tuples are not removed when the
result is displayed on the terminal.
The forinat in which domains are printed can be defined at the time ingres is in-
voked (see ingres(unix)).
If a result relation is specified then the default procedure is to modify the result
relation to an cheapsort storage structure removing duplicate tuples in the pro-
cess.
If the default cheapsort structure is not desired, the user can override this at
the tirme INGRZS is invoked by using thz —r switch (see ingres{unix)).
Only the relation’s owner and users with retrieve permission may relrieve from
it.
EXAMPLE)
/* Find all employees who make more than their manager */
range of e is emp
range of m is emp
retrieve (e.name) where e.mgr = m.name
and e.sal > m.sal
/* Retrieve all domains for those who make more
than the average salary */
retrieve into temp (e.all) where e.szl > avg(e.sal)
/* retrieve employees’s names sortec » ‘
retrieve unique {e.name)
VB ATSO . . .
modify(quel), permit{quel), quel{quel;, range(quel), save(quel), ingres(unix)
DIACNGSTICS
BUGS

SAVE (QUEL) 3/10/77 ' SAVE (QUEL)

NAUE
save — save a relation until a date.

SYNOPSIS
save relname until month day year

DESCRIPTION
. Sawe is used to keep relations beyond the default 7 day life span.

Month can be an integer from 1 through 12, or the name of the month, either ab-
breviated or spelled out.
Only the owner of a relation can save that relation. There is an INGREZS process
which typically removes a relation irnmediately after its expiration date as
passed.
The actual program which destroys relations is called purge. It is not automati-
cally run. It is alocal decision when expired relations are removed.

System relations have no expiration date.
EXANPLE
/* Save the emp relation until the end of February 1987 */
save emp until feb 28 1987

SEE AISO
create{quel), retrieve(quel), purge(unix)

VIEW (QUEL) 2/7/79 VIEW (QUEL)

NAME
view — define a virtual relation

SYNOPSIS
define view name (target-list) [where qual]

DESCRIPTION
The syntax of the view statement is almost identical to the retrieve into stat-
ment; however, the data is not retrieved. Instead, the definition is stored. When
the relation name is later used, the query is converted to operate on the rela-
tions specified in the farget-list.
All forms of retrieval on the view are fully supported, but only a limited set of
updates are supported because of anomolies which can appear. Almost no up-
dates are supported on views whick span more than cne relation. No updates
are supported that affect a domain in the qualification of the view or that affect
a domain which does not translate into a simple attribute.
In general, updates are supported f and only if it can be guaranteed (without
looking at the actual data) that the result of updating the view is identical to
that of updating the corresponding real relation.
The person who defines a view must own all relations upon which the view is
based.

BXAMPLE
range of e is employee
range of d is dept
define view empdpt (ename = e.nam2, e.sal, dname = d.name)

where e.mgr = d.mgr
SEF ALSG

retrieve(quel), destroy(quel)

CREATDB (UNIX) 11/6/79 CREATDB(UNIX)

NAME

creatdb — create a data base
SYNOPSIS '

creatdb [—uname][—e][—m][+c][+q] dbname
DESCRIPTION

Creatdb creates a new INGRES database, or modifies the status of an existing da-
tabase. The person who executes this command becomes the Database Adminis-
trator (DBA) for the database. The DBA has special powers not granted to ordi-
nary users.

Dbname is the name of the database to be created. The name must be unique
among all INGRES users.

The flags +c and xq specify options on the database. The form +z turns an op-
tion on, while —z turns an option off. The —c flag turns off the concurrency con-
trol scheme (default on). The +q flag turns on query modification (default on).

Concurrency control should not be turned off except on databases which are
never accessed by more than one user. This applies even if users do not share
data relations, since system relations are still shared. If the concurrency con-
trol scheme is not installed in UNIX, or if the special file /dev/lock does not exist
or is not accessible for read-write by INGRZS, concurrency control acts as though
it is) off {(although it will suddenly come on when the lock driver is installed in
UNIX).

Query modification must be turned on for the protection, integrity, and view
subsystems to work, however, the system will run slightly slower in some cases if
it is turned on. It is possible to turn query modification on if it is already off in
an existing database, but it is not possible to turn it off if it is already on.

Databases with query modification turned off create new relations with all access
permitted for all users, instead of no access except to the cwner, the default for
databases with query modification enabled.

Database options for an existing database may be modified by stating the —e
flag. The database is adjusted to conform to the option flags. For example:

cr-eavdb —e +q mydb

turns query modification on for database *'mydb’’ (but leaves concurrency con-
trol alone). Only the database administrator {(DBA) may use the —e flag.

When query modification is turned on, new relations will be created with no ac-
cess, but previously created relations will still have all access to everyone. The
destroy command may be used to remove this global permission, after which
more selective permissions may be specified with the permil command.

The INGRES user may use the —u flag to specify a different DBA: the flag should be
immediately followed by the login name of the user who should be the DBA.

The —m flag specifies that the UNIX directory in which the database is to reside
already exists. This should only be needed if the directory if a mounted file sys-
tem, as might occur for a very large database. The directory must exist (as
.../data/base/dbname), must be mode 777, and must be empty of all files.

The user who executes this command must have the U_CREATDB bit set in the
status field of her entry in the users file.

The INGRZS superuser can create a file in .../data/base containing a single line
which is the full pathname of the location of the database. The file must be
owned by INGRZS and be mode 600. When the database is created, it will be creat-
ed in the file named, rather than in the directory .../data/base. For example, if

-1-

CREATDE (UNIX) 11/6/79 CREATDB (UNIX)

the file .../data/base/ericdb contained the line
/mnt/eric /database

then the database called “‘ericdb’ would be physically stored in the directory
/mnt/eric/database rather than in the directcry .../data/base/ericdb.

EXAMPLE
creatdb demo
creatdb —ueric —q erics_db
creatdb —e +q —c —wav erics_db

FILES
.../files/dbtmplt6.3
.../files/data/base/*
.../files/datadir/* (for compatibility with previous versions)
SEE ALSO
demodb(unix), destroydb(unix), users(files), chmod(l), destroydb{quel),
permit{quel)
DIAGNGSTICS

No database name specified.
You have not specified the name of the database to create {or modify)
with the command. '

You may nct access this database
Your entry in the users file says you arz not authorized to access this da-
tabase.

You are not a valid INGRES user
You do not have a users file entry, anc can not do anything with INGRES at
all.

You are not allowed this command
The U_CREATDB bit is not set in your users file entry.

You may not use the —u flag
Only the INGRES superuser may become someone else.

<name> does not exist
With —e¢ or —m, the directory does not exist.

<name> already exists
Without either —e or —m, the database (actually, the directory) alreauy
exists.

<name> is not empty
VWith the —m flag, the directory you named must be empty.

You are not the DBA for this database
¥With the —e flag, you must be the database administrator.

DESTROYDB (UNIX) 3/14/79 DESTROYDB (UNIX)

NAME

destroydb — destroy an existing database
SYNOPSIS

destroydb[—s] [—m] dbname
L¥SCPIPTION

Destroydb will remove all reference to an existing database. The directory of the
database and all files in that directory will be removed.

To execute this command the current user must be the database administrator
for the database in question, or must be the INGRES superuser and have the —s
flag stated.

The —m flag causes destroydb not to remove the UNIX directory. This is useful
when the directory is a separate mounted UNX file system.

EXAVPLE
destroydb derno
destroydb —s erics_db

FILES
.../data/base/*
.../datadir/* (for compalibility with previous versions)

SEE ALSO
creatdb(unix)

DIAGNOSTICS

invalid dbname — the database name specified is not a valid name.

you rnay not reference this database — the database may exist, but you do not
have permission to do anything with it.

you may not use the —s flag — you have tried to use the --s flag, but you are not
the INGRES superuser.

you are not the dba — someone else created this database.

database does not exist — this database does not exist.

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

NAME

equel — Embedded QUEL interface to C
SYNOPSIS

equel[d][][—r]fieq..
DESCRIPTION

Equel provides the user with a method of inierfacing the general purpose pro-
gramming language "“C'* with INGRES. It consists of the EQUEL pre-compiler and
the EQUEL runtime library.

Compilation

The precompiler is invoked with the statemenr::
equel [<fiags>] filel.q [<flags>] file2.q ...

where fllen.q are the source input file names, which must end with .q. The out-

put is written to the file ‘filen.c’’. As many fics as wished may be specified.
The flags that may be used are:

—d Generate code to print source listing £e name and line number when a

run-time error occurs. This can be usefu! for debugging, but takes up pro-
cess space. Defauits to off.

—f Forces code to be on the same line in the output file as it is in the input file
to ease interpreting C diagnostic messazes. EQUEL will usually try to get all
C code lines in the output file on the szme lines as they were in the input
file. Sornetimes it must break up gueries into several lines to avoid C-
preprocessor line overflows, possibly rmo+ing some C code ahead some lines.
With the —f flag specified this will never ~appen and, though the line buffer
may overflow, C lines will be on the righ: line. This is useful for finding the
line in the source file that C error diagncstics on the output file refer to.

—r Resets flags to default values. Used to supress other flags for some of the
files in the argument list.

The output files may than be compiled using the C compiler:
cc filel.c file2c. —gq
The —1q requests the use of the EQUEL object licrary.

All EQUEL routines and globals begin with the characters "II", and so all globals
variables and procedure names of the forrn lrxx are reserved for use by EQUEL
and should be avoided by EQUEL users.

Basic Syntax

EQUEL commands are indicated by lines whicz begin with a double pound sign
("“##'). Other lines are simply copied as is. 21 normal INGRES commands may be
used in EQUEL and have the same effect as if invoked through the interactive ter-
minal monitor. Only retrieve commands withk no result relation specified have a
different syntax and meaning.

The format of retrieve without a result relaticn is modified to:
retrieve (C-variable = a_fcn { , C-variable = a_fcn §)
optionally followed (immediately) by:
f1# [where gqual]
#
3

/* C-code */

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

This statement causes the *‘C-code’ to be executed once for each tuple re-
trieved, with the ‘‘C-variable’'s set appropriately. Numeric values of any type
are converted as necessary. No conversion is done between numeric and char-
acter values. (The normal INGRES ascii function may be used for this purpose.)

Also, the following EQUEL commands are permitted.

ingres [ingres flags] data_base_name
This command starts INGRES running, and directs all dynamically follow-
ing queries to the database data base_name. It is a run-time error to
execute this command twice without an intervening "'## exit”, as well
as to issue queries while an *'## ingres” statement is not in effect.
Each flag should be enclosed in quotes to avoid confusion in the EQUEL
parser:

ingres "—f4£10.2" "—i212" demo

exit
Exit simply exits from INGRES. It is eguivalent to the \q command to the
teletype monitor.

Parametrized Quel Statements

Quel statements with target lists may be “‘parametrized’. This is indicated by
preceding the statement with the keyword *‘param’. The target list of a
parametrized statement has the form:

(tt_vaor, argv)

where tl_var is taken to be a string pointer at execution time (it may be a string
constanfy and interpreted as follows. For anv parametrized ZQUEL statement ex-
cept a retrieve without a result relation (no “into rel) (i.e. append, copy.
create, replace, retrieve into) the string t!_var is taken to be a regular target
list except that wherever a ‘%’ appears a valid INGRES type (f4, {8, i2, i4, c) is ex-
pected to follow. Each of these is replaced by the value of the corresponding en-
try into argv (starting at 0) which is interpreted to be a pointer to a variable of
the type indicated by the ‘%’ sequence. Neither argv nor the variables which it
points to need be declared to EQUEL. For example:

char *argv[1C];
argv{O] = &double_var;

argvi 1] = &int_var;
param append to rel
("dom1 = %f8, dom2 = %i2", argv)
{H# /* to escape the "%<ingres_type>'' mechanism use "%%'" */
/* This places a single ‘%’ in the string. */

On a retrieve to C-variables, within tl_var, instead of the C-variable to retrieve
into, the same ‘%' escape sequences are used to denote the type of the
corresponding argv entry into which the value will be retrieved.

The qualification of any query may be replaced by a string valued variable,
whose contents is interpreted at run timme as the text of the qualification.

The copy statement may also be parametrized. The form of the parametrized
copy is analogous to the other parametrized statements: the target list may be
parametrized in the same manner as the cppend statements, and furthermore,
the from/into keyword may be replaced by a string valued variable whose con-
tent at run time should be into or from.

Declaraticns
Any valid C variable declaration on a line beginning with a *‘##" declares a C-

-2-

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

variable that may be used in an EQUEL statement and as a normal variable. All
variables must be declared befcre being used. Anywhere a constant may appear
in an INGRES comraand, a C-variable may appear. The value of the C-variable is
substituted at execution time.

Neither nested structures nor variables of ‘ype char (as opposed to pointer to
char or array of char) are allowed. Furthermore, there are two restrictions in
the way variables are referenced within 2QUI. statements. All variable usages
must be dereferenced and/or subscripted (for arrays and pointers), or selected
(for structure variables) to yield lvalues (sczlar values). Char variables are used
by EQUEL as a means to use strings. Therefore when using a char array or
pointer it must be dereferenced only to a *“char *'. Also, variables may not
have parentheses in their references. For example:

struct xxx

#l ,
int i;
int *ip;
##1 esstruct_var;
/* not allowed */
delete p where p.ifield = *(*s:ruct_var)->ip

/* allowed */
delete p where p.ifield = *struct_var[0]->ip
C variables declared to EQUEL have either glc>al or local scope. Their scope is io-

cal if their declaration is within a free (not bound to a retrieve) block declared
to EQUEL. For example:

/* globals scope variable */
int Gint;

func(i)
int i;
¢

/* local scope variable */
int *gintp;

3
If a variable of one of the char types is used almost anywhere in an EQUEL state-
ment the content of that variable is used at run time. For example:
char #*dbname[MAXDATABASES + 1};
int current_db;

dbname[current_db] = "dero";
ingres dbname[current_db)]

will cavse INGRES to be invoked with data base ‘““demo’. However, if a variable's
name is to be used as a constant, then the non-referencing operator ‘# should
be used. For example: :

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

char *demo;
demo = "my_database";

/*ingres —d my_database */
ingres "—d" demo

/*ingres —d demo */
ingres "—d" #demo

The C-preprocessor’s f#include feature may be used on files containing equel
statements and declarations if these files are named anything.q.h. An EQUEL
processed version of the file, which will be fincluded by the C-preprocessor, is
left in anything.c.h.

¥rrors and Interrupts

INGRES and run-time EQUEL errors cause the routine Ilerror to be called, with the
error number and the parameters to the error in an array of string pointers as
in a C language main routine. The error message will be looked up and printed.
before printing the error message, the routine ‘Z*I]print_err)() is called with the
error number that ocurred as its single argument. The error message
corresponding to the error number returned by (*llprint_err)() will be printec.
Printing will be supressed if (*llprint_err)() returns 0. llprint_err may be reas-
signed to, and is useful for programs which map INGRES errors into their own er-
ror messages. In addition, if the **—d’* flag was set the file name and line number
of the error will be printed. The user may write an llerror routine to do other
tasks as long as the setting of llerrflag is nol modified as this is used to exit re-
trieves correctly.

Interrupts are caught by equel if they are not being ignored. This insures that
the rest of INGR=S is in sync with the EQUZL process. There is a function pointer,
Ninterrupt, which points to a function to call after the inlerrupt is caught. The
user may use this to service the interrupt. It is initialized to "exit()” and is
called with —1 as its argument. For example:

extern int {(*Ilinterrupt)();
extern reset();

setexit();

llinterrupt = reset;

mainloop();
To ignore interrupts, signal() should be called before the ## ingres statement is
executed.

FILES
.../files/error6.3_*
Can be used by the user to decipher NGRES error numbers.
/lib/libg.a
Run time library.
SER AISO
.../doc /other/equeltut.q, C reference manual. ingres(UNIX), quel{(QUEL)
BUGS

The C-code embedded in the tuple-by-tuple retrieve operation may not contain
additional QUEL statements or recursive invocations of INGRES.

There is no way to specify an il format C-variable.

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

Includes of an equel file within a parameterized target list, or within a C
veriable's array subscription brackets, isn't done correctly.

HELPR (UNIX) 3/14/79 HELPR { UNIX)

NAWE
helpr — get information about a database.
SYNOPSIS
helpr [—uname] [+w] database relation ...
DESCRIPTIGN
Helpr gives information about the named relation(s) out of the database
specified, exactly like the help command.
Flags accepted are —u and +u. Their meanings are identical to the meanings of
the same flags in INGRES.
SEE ALSO
ingres(unix), help{quel)
DLAGNOSTICS

bad flag — you have specified a flag which is not legal or is in bad format.

you may not access database — this database is prohibited to you based on
status information in the users file.

cannot access database — the database does not exist.

INGRES (UNIX)

NANE

3/14/79 INGRES (UNIX)

ingres — INGRES relational data base management system

SYNOPSIS

ingres [flags] dbname [process_table]

DESCRIPTION

This is the UNIX command which is used to invoke INGRES. Dbname is the name of
en existing data base. The optional fiags have the following meanings {a "'+
means the flag may be stated ‘‘+z' to set option z or “—z'" to clear option z.
“—' alone means that ‘'—z"" must be stated to get the z function):

+U

—uaname

N
—ilN
—flzM.N

—wX
-rM

ta

+b

C+d

+s

W

~ Enable/disable direct update of the system relations and secondary in-

dicies. You must have the 000004 bit in the status field of the users file
set for this flag to be accepted. This option is provided for system de-
bugging and is strongly discouraged for normal use. _
Pretend you are the user with login name name (found in the users
file). If name is of the form :zz, zz is the two character user code of a
user. This may only be used by the DBA for the database or by the
INGRES superuser.

Set the minimum field width for printing character domains to N. The
default is 6.

Set integer output field width to N. I may be 1, 2, or 4 for il's, i2's, or
i4's repectively.

Set floating point output field width to M characters with N decimal
places. Il may be 4 or 8 to apply to i4’s or f8’s respectively. x may be
e, E I, F, g. G, n, or N to specify an output format. E is exponential
form, F is floating point form, and G and N are identical to F unless the
number is too big to fit in thal field, when it is output in I forrnat. G
format guarantees decimal point alignment; N does not. The default
format for both is n10.3.

Set the column seperator for retrieves to the terminal and print com-
mands to be X. The default is vertical bar.

Set modify mode on the refrieve command to /. # may be isam,
cisam, hash, chash, heap, cheap, heapsort, or cheapsort, for ISAM,
compressed ISAM, hash table, compressed hash table, heap,
compressed heap, sorted heap, or compressed sorted heap. The de-
fault is “cheapsort”.

Set modify mode on the index command to /. /{ can take the same
values as the —r flag above. Default is *‘isam"’.

Set/clear the autoclear option in the terminal monitor. It defaults to
set.

Set/reset batch update. Users must the 000002 bit set in the status
field of the users file to clear this flag. This flag is normally set. When
clear, queries will run slightly faster, but no recovery can take place.
Queries which update a secondary index automatically set this flag for
that query only.

Print/don't print the dayfile. Normally set.

Print/don't print any of the monitor messages, including prompts.
This flags is normally set. If cleared, it also clears the —d flag.
Wait/don’t wait for the database. If the +w flag is present, INGRES will
wait if certain processes are running (purge,restore, and/or sysmod)
on the given data base. Upon completion of those processes INGRES will
proceed. If the —w flag is presant, a message is returned and execution
stopped if the data base is not available. If the =w flag is omitted and
the data base is unavailable, tt.e error message is returned if INGR=S is
running in foreground (more precisly if the standard input is from a
terminal), otherwise the wait option is invoked.

-1-

INGRES { UNIX) 3/14/79 INGRES (UNIX)

Process_table is the pathname of a UNX file which may be used to specify the
run-time configuration of INGRES. This feazture is intended for use in system
maintenance only, and its unenlightened use by the user community is strongly
discouraged.

Note: It is possible to run the monitor as a batch-processing interface using the
‘<’, >’ and ‘| operators of the UNKX shell, provided the input file is in proper
monitor-format.

EXANPLE
. ingres demo
ingres —d demo
ingres —s demo < batchfile
ingres —f4g12.2 —i13 +b —rhash demo

.../fiies/users — valid INGRES users

.../data/base/* — data bases

.../datadir/* — for compatability with previcus versions
.../files/proctab8.3 — runtime configuration file

SEF, ALSC
monitor{quel)

DIAGNGSTICS

Too many options to INGRES — you have stated too many flags as INGRES options.

Bad flag format — you have stated a flag in e forrnat which is not intelligible, or a
bad flag entirely.

Too many parameters — you have given a cdatabase name, a process table name,
and '‘something else’’ which INGRES doesn’t know what to do with.

No database narne specified

Improper database name — the database nzme is not legal.

You may not access database name — according to the users file, you do not
have permission to enter this database.

You are not authiorized to use the flag flaz — the flag specified requires some
special authorization, such as a bit in th2 users file, which you do not have.

Datahuse ncme does not exist

You are not a valid INGRES user — you have not been entered into the users file,
which means that you may not use INGRZS at all.

You may not specify this process table — special authorization is needed to
specify process tables.

Database temporarily unavailable — somecne else is currently performing some
operation on the database which makes it impossible for you to even log in.
This condition should disappear shortly.

PRINTR (UNIX) 3/14/79 PRINTR (UNIX)

NANE
printr — print relations

SYNOPSIS)
printr [flags] database relation ...

DESCRIPTION :
Printr prints the named relation(s) out of the database specified, exactly like

the print command. Retrieve permission must be granted to all people to exe-
cute this command.

Flags accepted are —u, +w, —¢, —i, —f, and —v. Their meanings are identical to
the meanings of the same flags in INGRES.

SEE ALSO
ingres{unix), print{quel)

DIAGNOSTICS
bad flag — you have specified a flag which is not legal or is in bad format.
you may not access database — this database is prohibited tc you based on
status information in the users file.
cannot access database — the database does not exist.

PURGE (UNIX) 3/14/79 , PURGE (UNIX)

NAME

purge — destroy all expired and temporary relations
SYNOPSIS

purge[L][—pl[—=a][—s][+w][datatase ...]
DESCRIPTION

Purge searches the named databases deleting system temporary relations.
When using the —p flag, expired user relaticns are deleted. The —f flag will cause
unrecognizable files to be deleted, normally purge will just report these files.

Only the database administrator (the DBA) for a database may run purge, except
the INGRES superuser may purge any database by using the —s flag.

If no databases are specified all databases for which you are the DBA will be
purged. All databases will be purged if the INGRES superuser has specified the
—s flag. The —a flag will cause purge to prirt a message about the pending opera-
tion and execute it only if the response if 2 'y’. Any other response is interpret-
ed as ‘‘no’’.

Purge will lock the data base while it is being processed, since errors may occur
if the database is active while purge is working on the database. If a data base is
busy purge will report this and go on to tze next data base, if any. If standard
input is not a terminal purge will wait for the data base to be free. If —w flag is
stated purge will not wait, regardless of standard input. The +w flag causes
purge to always wait.

EXAMPLES
purge —p +w tempdata
purge —a —f

SER ALSO
save(quel), restore{unix)

LIAGNOSTICS
who are you? — you are not entered into the users file.
rol ingres superuser — you have tried tc use the —s flag but you are not the
INGRES superuser.
you are not the dba — sou have tried *o purge a database for which you are not
the DBA.
cannot access database — the database dc=s not exist.

BUGS
If no database names are given, only the databases located in the directory
data/base are purged, and not the old dztabases in datadir. Explicit database
names still work for databases in either cirectory.

RESTORE (UNIX) 3/14/79 RESTORE (UNIX)

NAME
restore — recover from an INGRES or UNIX crash.

SYNOPSIS
restore[—a][—s][+w] [database ...]

DESCRIPTION
Restore is used to restore a data base after an INGRZS or UNIX crash. It should al-

gays be run after any abnormal termination to ensure the integrity of the data
ase.

In order to run restore, you must be the DBA for the database you are restoring
or the INGRES superuser and specify the —s flag.

If no databases are specified then all databases for which you are the DBA are
restored. All databases will be restored if the INGRES superuser has specified the
—s flag.

If the —a flag is specified you will be asked before restore takes any serious ac-
tions. It is advisable to use this flag if you suspect the database is in bad shape.
Using /dev/null as input with the —a flag will provide a report of problems in the
data base. If there were no errors while restoring a database, purge will be
called, with the same flags that were given to restore, to remove unwanted files
and system temporaries. Restore may be called with the —f and/or —p flags for
purge. Unrecognized files and expired relations are not removed unless the
proper flags are given. In the case of an incomplete destroy, create or index re-
store will not delete files for partially created or destroyed relations. Purge
musl be called with the —f flag to accomplish this.

Restore locks the data base while it is being processed. If a data base is busy re-
stere will report this and go on to the next data base. If standard input is not a
terminal restore will wait for the data base to be {ree. If the —w flag is set re-
store will not wait regardless of standard input. If +wis set it will always wait.

Kestorc can recover a database from an update which had finished filling the
batch file. Updates which did not make it to this stage should be rerun. Similar-
ly modifies which have finished recreating the relation will be completed (the re-
lation relation and attribute relations will be updated). If a destroy was in pro-
grese it will be carriel to completiona, while a create will almost always be
backed out. Destroying a relation with an index should destroy the index so re-
store may report that a secondary relation has been found with no primary.

If interrupt (signal 2) is received the current database is closed and the next, if
any, is processed. Quit (signal 3) will cause restore to terminate.

EXAHPLE
restore —f demo
restore —a grants < /dev/null

DIAGNCSTICS
All diagnostics are followed by a tuple from a system relations.

“No relation for attribute(s)”” — the attributes listed have no corresponding en-
try in the relation relation '

“No primary relation for index’ — the tuple printed is the relation tuple for a
secondary index for which there is no primary relation. The primary
probably was destroyed the secondary will be.

“No indexes entry for primary relation” — the tuple is for a primary relation,
the relindxd domain will be set to zero. This is the product of an in-
complete destroy.

“No indexes entry for index’ — the tupie is for a secondary index, the index will
be destroyed. This is the product of an incomplete destroy.

-1-

RESTORE{ UNIX) 3/14/79 RESTORE (UNIX)

“relname is index for"” — an index has bzen found for a primary which is not
marked as indexed. The primary will be so marked. This is probably
the product of an incomplete index command. The index will have
been created properly but not mecdified.

“No file for"”” — There is no data for this reation tuple, the tuple will be deleted.
If, under the —a option, the tuple is not deleted purge will not be called.

“No secondary index for indexes entry” — An entry has been found in the
indexes relation for which the secondary index does not exist (no rela-
tion relation tuple). The entry wil be deleted.

SEE ALSO
purge(unix)

If no database names are given, only the databases located in the directory
data/base are restored, and not the old dztabases in datadir. Explicit database
names still work for databases in either dirzctory. ‘

SYSMOD { UNIX) 3/14/79 SYSMOD (UNIX)

NAYE ,
sysmod — modify system relations to predetermined storage structures.

SYNOPSIS

sysmod [—s] [—w] dbname [relation] [attribute] [indexes] [tree] [pro-
tect] [integrities]

DESCRIPTION

Sysmod will modify the relation, attribute, indexes, tree, protect, and integrities
relations to hash unless at least one of the relation, attribute, indexes, tree,
protect, or integrities parameters are given, in which case only those relations
given as parameters are modified. The system relations are modified to gain
maximum access performance when running INGRES. The user must be the data
base administrator for the specified database, or be the INGR:ZS superuser and
have the —s flag stated.

Sysmod should be run on a data base when it is first created and periodically
thereafter to maintain peak performance. If many relations and secondary in-
dices are created and/or destroyed, sysmod should be run more often.

If the data base is being used while sysmod is running, errors will occur. There-

fore, sysmod will lock the data base while it is being processed. If the data base

is busy, sysmod will report this. If standard input is not a terminal sysmod will

wait for the dalta base to be free. If —w flag is stated sysmod will not wait, re-
. gardless of standard input. The +w flag causes sysmod to always wait.

The systemn relations are modified to hash; the relation relation is keyed on the
first domain, the indexes, attribute, protect, and integrities relations are keyed
on the first two domains, and the tree relation is keyed on domains one, two, and
five. The relation and attribute relations have the minpages option set at 10, the
indexes, protect, and integrities relations have the minpages value set at .

SEE AISO
modify(quel)

USERSETUP (UNIX) 3/14/79 USERSETUP (UNIX)

NAMIS

usersetup — setup users file

SYNOPSIS

.../bin/usersetup [pathname]

DESCRIPTION

FILFS

The /etc/passwd file is read and reformatted to become the INGRZS users file,
stored into .../files/users. If pathnome is specified, it replaces "...". If path-
name is *‘~’, the result is written to the standard ou‘put.

The user name, user, and group id's are initialized to be identical to the
corresponding entry in the /etc/passwd file. The status field is initialized to be
zero, except for user ingres, which is initialized to all permission bits set. The
“initialization file” parameter is set to the file .ingres in the user’s login directo-
ry. The user code field is initialized with sequential two-character codes. All
other fields are initialized to be null. ‘

After running usersefup, the users file must be edited. Any users who are to
have any special authorizations should have the status field changed, according
to the specifications in users(files). To disable a user from executing INGRES en-
tirely, completely remove her line frora the users file.

As UNIX users are added or deleted from the /etc/passwd file, the users file will
need to be editted to reflect the changes. For deleted users, it is only necessary
to delete the line for that user from the users file. To add a user, you must as-
sign thal user a code in the form "aa" and enter a line in the users file in the
form:
rame:cciuid:gid:status:flags:proctab:initfile::databases

where name is the user name (taken from the first field of the /elc/passtd file
entry for this user), cc is the user code assigned, which must be exactly two
characters long and must not be the same as any other existing user cedes, uid
and gid are the user and group ids (taker from the third and fourth fields in the
/etc/passwd entry), status is the status bits for this user, normally 000000,
flags are the default flags for INGRES (on a per-user basis), proctab is the default
process table for this user (which defaults to =proctab6.3), and datobases is a
list of the databases this user may enter. If null, she may use all databases. If
the first character it a lash ("—"’), the field is a commn.a szparated list ¢! data-
bases which she may not enter. Otherwise, it is a list of databases which she
may enter.

The databases field includes the names of databases which may be created.
Usersetup may be executed only once, to initially create the users file.

.../files/users
/etc/passwd

SEE ALSO

BUGS

ingres(unix), passwd{V), users(files)

It should be able to bring the users file up to date.

DAYFILE (FILES) 3/14/79 DAYFILE (FILES)

J

.../files/dayfileB.1 — INGRES login message

DESCRIPTION
The contents of the dayfile reflect user information of general system interest,
and is more or less analogous to /etc/motd i1 UNIX. The file has no set format; it
is simply copied at login time to the standzrd output device by the monitor if
the —s or —d options have not been requestec. Moreover the dayfile is not man-
datory, and its absence will not generate errors of any sort; the same is true
when the dayfile is present but not readable.

DBTMPLT(FILES) 3/14/79 DBTMPLT(FILES)

NAME
.../files/dbimplt6.3 — database template

DESCRIPTION
This file contains the template for a database used by creatdb. It has a set of en-
tries for each relation to be created in the database. The sets of entries are
separated by a blank line. Two blank lines or an end of file terminate the file.
The first line of the file is the database status and the default relation status,
separated by a colon. The rest of the file describes relations. The first line of
each group gives the relation name followed by an optional relation status,
separated by a colon. The rest of the lines in each group are the attribute name
and the type, separated by a tab character.
All the status fields are given in octal, and have a syntax of a single number fol-
lowed by a list of pairs of the form

+z+N

which says that if the + x flag is asserted on the creatdb commanad line then set
(clear) the bits specified by M.
The first set of entries must be for the relation catalog, and the second set rnust
be for the attribute catalog.

EXAMPLE
3—c—1+q+2:010023
relation:—c¢—20
relid c12
relowner c2
relspec il
attribute:—c—20
attrelid cl2
attowner c2
attname cl2

(other relation descriptors)
SE ALSO

creatdb(unix)

ERROR (FILES) 3/14/79 ERROR (FILES)

NAME
.../files/errorB.3_? — files with INGRES errors

DI"SCRIPTION
These files contain the INGRES error messages. There is one file for each
thousands digit; hence, error number 2313 will be in file error6.3_2.

Each file consists of a sequence of error messages with associated error
numbers. When an error enters the front end, the appropriate file is scanned for
the correct error number. If found, the message is printed; otherwise, the first
message parameter is printed.

Each message has the format

errnum <TAB> message tilde.
Messages are terminated by the tilde character (*~’). The message is scanned
before printing. If the sequence %n is encountered (where n is a digit from 0 to
9), parameter n is substituted, where %0 is the first parameter.

The parameters can be in any order. For example, an error message can refer-
ence %2 before it references 7%0.

STE ALSO
error{UTIL)

EXAPLE
1003 line %0, bad database name %1~
1005 In the purge of %1,
a bad %0 caused execution to halt~ -
1006 No process, try again.~

LIBQ(FILES)

NAME

3/14/79 ’LIBQ(F‘ILES)

libq — Equel run-time support library

DESCRIPTION

Libg all the routines necessary for an equel program to load. It resides in
/lib/libg.a, and must be specified when loading equel pre-processed object
code. It may be referenced on the command line of cc by the abbreviation —lq.

Several useful routines which are used by equel processes are included in the li-
brary. These may be employed by the equel programmer to avoid code duplica-
tion. They are:

int Tatoi(buf, i)
char f’buf;

int i

char *llbmove(source, destination, len)
char *source, *destination;

int len;

char *llconcatv(buf, argl, arg?, ..., 0)
char *buf, *argl, ...;

char *litos(i)

int i;

int llsequal(si, s2)

char *si,

*s2;

int Ilength(string)
char *string;

llsyserr(string, argl, arg?, ...);
char *string;

llatoi
IIbmove

Ilconcatv

llitos

IIsequal
Mlength
ilsyserr

There are
user:

int
char
char
int

Ilatoi is equivalent to atoi{UTIL).

Moves len bytes from source to destination, returning a pointer to
the location after the last byte moved. Does not append a nuil byte.

Concatenates into buf all of its arguments, returning a pointer to the
null byte at the end of the concatenation. Buf may not be equal to
any of the arg-n but argl.

Ilitos is equivalent to itoa(Ill).

Returns 1 iff strings s1 is identical to s2.

Returns max(length of string without null byte at end, 255)

Ilsyserr is diferrent from syserr{util) only in that it will print the
name in Ilproc_narne, and in that there is no 0 mode. Also, it will al-
ways call exit(—1) alter printing the error message.

also some global Equel variables which may be rananipulated by the

Ilerrflag;
*Imainpr;
(*llprint_err)();
llret_err();

LIBQ(FILES) 3/14/79 LIBQ(FILES)

int IIno_err();

Ilerrflag Set on an error from INGRES to be the error number (see the error
message section of the *‘INGRES Reference Manual’) that ocurred.
This remains valid from the time the error occurrs to the time when
the next equel statement is issued. This may be used just after an
equel statement to see if it succeded.

IImainpr This is a string which determines which ingres to call when a "##
ingres” is issued. Initially it is "' /usr,//bin/ingres".

llprint_err This function pointer is used to call a function which determines what
(if any) error message should be printed when an ingres error oc-
curs. It is called from Ilerror() with the error number as an argu-
ment, and the error message corresponding to the error number re-
turned will be printed. If (*lIprint_err)(<errno>) returns 0, then no
error message will be printed. Iritially llprint_err is set to llret_err() .
to print the error that ocurred.

liret_err Returns its single integer argument. Used to have (*lprint_err)()
cause printing of the error that ocurred.

Ilno_err Returns 0. Used to have (*llprint_err){) suppress error message
printing. Ilno_err is used when zn error in a parametrized equel sta-
temenr occurs to suppress printing of the corresponding parser er-
ror.

CRE ALSO
atoi(util), bmove(util), cc(l), equel(uniz), exit(Il), itoa(lll), length(util),

sequal(util), syserr(util

E:

PROCTAB(FILES) 3/14/79 PROCTAB(FILES)

NANE .
.../files /proctab8.3 — INGRES runtime configuration information

LESCRIPTION
The file .../files/proctabb.3 describes the runtime configuration of the INGRES
system.

The process table is broken up into logical sections, separated by lines with a
single dollar sign. The first section describes the configuration of the system
and the parameters to pass to each syster: module. All other sections contain
strings which may be macro-substituted into the first section.

Each line of the first section describes a single process. The lines consist of a
series of colon-separated fields.

The first field contains the pathname of the module to be executed.

The second field is a set of flags which allow the line to be ignored in certaih
cases. If this field is null, the line is accepted; otherwise, it should be a series of

iterns of the form *“+—=X", where any of *+—=" may be omitted, and X is a flag
which may appear on the INGRES command line. The characters *‘+—="" are inter-
preted as the sense of the flag: ‘““+'" will accept the line if the flag **+X" is stated
on the command line, "“—"" will accept if ““—=X " is stated, and ‘=" will accept if

the X" flag is not stated at all. These may be combined in the forms *“+="" and
**. For example, the field:

=&

will acept the line if the EQUEL flag (**&’") is stated as ‘‘+&" or is not stated, but
the line will be ignored if the *'—&’’ flag is stated.

o

If any flag item rejects the line, the entire line is rejected.

The third field is a status word. The number in this word is expressed in octal.
The bits have the following meaning:

000010 close diagnostic output

000004 close standard input

000602 run in user'’s directory, not database
000001 run as the user, not as 2NGR=S

The fourth field is a file name to which the standard output should be redirected. -
It is useful for debugging.

The fifth field describes the pipes which should be connected to this process.
The field must be six characters long, with the characters corresponding to the
internal variables R up, W _up, R_down, %_dcwn, R_front, and W_front respective-
ly. The characters may be a question mark, which leaves the pipe closed; a di-
git, which is filled in from the file descriptors provided by the EQUEL flag or the
“@" flag; or a lower case letter, which is connected via a pipe with any other
pipes having the same letter; this last action is done on the fly to conserve file
descriptors.

The sixth and subsequent fields are arbitrary parameters to be sent to the
modules. There must be a colon after the Afth field even if no parameters are
present, but there need not be a colon after the last parameter.

The last module executed {usually the last line in the first section) becomes the
parent of all the other processes.

The second through last sections of the process table consist of a single line
which names the section followed by arbitrary text. The pathname field and all
parameter fields of each line of the first section are scanned for strings of the
form “$name'’; this string is replaced by tte text from the corresponding sec-
tion. For convenience, the name $pathname is automatically defined to be the

-1-

PROCTAB(FILES) 3/14/79 PROCTAB(FILES)

pathname of the root of the INGRES subtree.

The DBU routines want to see two parameters. The first parameter is the path-
name of the *‘ksort’ routine. The second parameter is a series of lines of the
form: ‘

command_name:place_list

where command_name is the name of one cf the possible INGRES commands exe-
cuted by the DBU routines, and place_list is a comma-separated list of the actu-
al location(s) of that command. Each “‘place’ is a two-character descriptor: the
first character is the overlay in which thal command resides, and the second
character is the function within that overley. If a command is in more than one
place, INGRES will try to avoid calling in anotker overlay. For example:

create:a0,ml
means that the creafe command may be found in overlay **a’ function O or in

sy

overlay ““m’" function 1. If already in overlay ‘*a’’ or "‘m'’ the create command
resident in that overlay will be called; otherwise, overlay “*a’" will be called.

EXALIPLE
The following example will execute a three process system unless the &’ fiag is
specified (as "‘—&''), when a two-process system will be executed with the moni-
tor dropped out and the calling (EQUEL) program in its place. Notice that there
are two lines for the parser entry, one for the EQUEL case and one for the non-
EQUEL case. In the EQUEL case, output {rom the parser is diverted to a file
called *"debug.out’.

$pathname/bin/overlaya::000014::£2??23:8pathname/bin/ksort:8dbutab
$pathnamne/bin/parser:+=&:000014::adcb??:
$pathrame/bin/parser:—&:000014:c=bug.out:01cb??:
$pathname,/bin/monitor:+=&:00000%:??da??:Spathname /files/startup

dbutab
create:a0,m1l
destroy:al,m2
modify:m0
nelp:a2

$

STARTUP (FILES) 3/14/79 STARTUP (FILES)

>

.../files/startup — INGRES startup file

DESCRIPTION
This file is read by the monitor at login tirme. It is read before the user startup
file specified in the users file. The primary purpose is to define a new editor
and/or shell to call with the \e or \s corumands.

SEE ALSO
monitor(quel), users(files)

USERS (FILES) 3/14/79 USERS (FILES)

NAME :
.../files/users — INGRES user codes and parameters

DESCRIPTION
This file contains the user information in fields seperated by colons. The fields
are as follows:
* User name, taken directly from /etc/passwd file.
* User code, assigned by the INGRES super-user. It must be a unique two charac-
ter code.
* UNIX user id. This MUST match the entry in the /etc/passwd file.
* UNIX group id. Same comment applies.
* Status word in octal. Bit values are:

0000001 creatdb permission

0000002 permits batch update override
0000004 permits update of system catalogs
0000020 can use trace flags

0000040 can turn off grymod

0000100 can use arbitrary proctabs

0000200 can use the =proctab form
0100000 ingres superuser
* A list of flags automatically set for this user.
* The process table to use for this user.
* An initialization file to read be read by the monitor at login time.
* Unassigned.
* Comma seperated list of databases. If this list is null, the user may enter any

database. If it begins with a ‘=’, the user may enter any database except
the named databases. Otherwise, the user may only enter the named da-
tabases.

EXAYVPLE
ingres:aa:5:2:177777:—d:=special:/mnt /ingres/.ingres::
guest:ath:35:1:000000:::::demo,guest

SHTS ALSO
initiicode(utit)

INTRODUCTION (ERROR) 3,/30,/79 INTRODUCTION (ERROR)

NANE
Error messages introduction

DESCRIPTION
This document describes the error returns which are possible from the INGRES
data base system and gives an explanation of the probable reason for their oc-
currence. In all cases the errors are numbered nrzz where n indicates the
source of the error, according to the following table:

1 = EQUEL preprocessor
= parser

3 = query modification

4 = decomposition and one variable query processor
= data base utilities

30 = GEO-QUEL errors

For a description of these routines the reader is referred to 7he JJesign and Im-
plementation of INGRES. The zzx in an error number is an arbitrary identifier.

The error messages are stored in the file .../files/error8.3 n, where n is defined
as above. The format of these files is the error number, a tab character, the
message to be printed, and the tilde character (**~") to delimit the message.

In addition many error messages have “7%i'" in their body where i is a digit inter-
preted as on offset into a list of parameters returned by the source of the error.
This indicates that a parameter will be inserted by the error handler into the er-
ror return. In most cases this parameter will be self explanatory in meaning.

Where the error message is thought to be completely self explanatory, no addi-
tionai description is provided.

EQUEL (ERROR) 3,/30,/79 EQUEL (ERROR)

EQUEL error message summary

Error numbers 1000 — 1999.

The following errors can be generated at run time by EQUEL programs.

NAME
SYNOPSIS
DRSCRIPTION
ERRORS
1000
1001
1002
1003
1004

In domain %0 numeric retrieved into char field.

Equel does not support conversion at run-time of numeric data from the
data base to character string representation. Hence, if you attempt to
assign a domain of numeric type to a C-variable of type character string,
you will get this error message. To cocnvert numerics to characters use
the "ascii"” function in QUEL.

Numeric overflow during retrieve on dcmain %0.

You will get this error if you attemrpt to assign a numeric data base
domain to a C-variable of a numeric {ype but with a shorter length. In
this case the conversion routines may generate an overfiow. For exam-
ple, this error will result from an atiempt to retrieve a large floating
point number into a C-variable of type integer.

In domain %0, character retrieved into numeric variable.
This error is the converse of error 10CC.

Bad type in target list of parameterizez retrieve "%0".
Valid types are %f8, %f4, %i4, %i2, Zc.

Bad type in target list of parameterized statement "7%0".
Valid types are %f8, 7%f4, %i4, %i2, %il, Zc.

PARSER (ERROR) 3/30/79 PARSER (ERROR)

NAME

Parser error message summary
SYNOPSIS

Error numbers 2000 — 2999.
DESCRIPTION

The following errors can be generated by the parser. The parser reads your
gaery and translates it into the appropriate internal form; thus, almost all of
these errors indicate syntax or type conflict problems.

ERRORS
2100 line %0, Attribute “%1’ not in relation "%2’

This indicates that in a given line of the executed workspace the indicat-
ed attribute name is not a domain in the indicated relation.

2163 line %0, Function type does not match type of attribute ‘%1’

This error will be returned if a function expecting numeric data is given a
character string or vice versa. For example, it is illegal to take the SIN
of a character domain.

2106 line %0, Data base utility command buffer overflow

This error will result if a utility command is too long for the buffer space
alloceted to it in the parser. You must shorten the command or recom-
pile the parser.

2107 line %0, You are not allowed to update this relation: %1

This error will be returned if you attempt to update any system relation
or secondary index directly in QUZL {such as the RELATION relation).
Such operations which compromise the integrity of the data base are not
ellowed.

2108 line %0, Invalid result relation for APPEND "‘%1°

This error message will occur if you execute an append command to a re-
lation that does not exist, or that you cannot access. For example, ap-
pend to junk(...) will fail if junk does not exist.

2109 line %0, Variable ‘%1’ not declared in RANGE statement

Here, a symbol was used in a QUZL expression in a place where a tuple
variable was expected and this symbo! was not defined via a RANGE state-
ment.

2111 line %0, Too many attributes in key for INDEX
A secondary index may have no more than 6 keys.
2117 line %0, Invalid relation name ‘%1’ in RANGE statement

You are declaring a tuple variable whkich ranges over a relation which
do=s not exist. ,
2118 line %0, Out of space in query tree - Query too long

You have the misfortune of creating a gquery which is too long for the
parser to digest. The only options are to shorten the query or recompile
the parser to have more buffer space for the query tree.

2119 line %0, MOD operator not defined for flocating point or character attri-
butes

PARSER (ERROR) 3/30/79 PARSER (ERROR)

2120

2121
2123

2125
2126
2127

2128
2129

2130

2132

2133

2134

2135

2136
2137
2138

2139

2500

The mod operator is only defined for irtegers.
line Z0, no pattern match operators allowed in the target list

Pattern match operators (such as **') can only be used in a
qualification.

line %0, Only character type domains zre allowed in CONCAT operator
line %0, “%1.all’ not defined for replace '

line %0, Cannot use aggregates é"avg" or "avgu") on character values

line %0, Cannot use aggregates ("sum" or “sumu'") on character values
line %0, Cannot use numerical functions (ATAN, COS, GAMMA, LOG, SIN,
SQRT, EXP, ABS) on character values

line %0, Cannot use unary operators ("+" or ""=") on character values
line %0, Numeric operations {(+ — * /) not allowed on character values

Many functions and operators are mezningless wken applied to character .
values.

line %0, Too many result domains in target list
Maximum number of result domains is MAXDOM (currently 49).
line %0, Too many aggregates in this query

Ma)xirnum number of aggregates allowad in a query is MAXAGG (carrently
49).

line %0, Type conflict on relational operator
It is not legal to compare a character {ype to a numeric type.

line %0, ‘%1’ is not a constant operator.
Only ‘dba’ or ‘usercode’ are allowsd.

line %0, You cannot duplicate the namz of an existing relation(%1)

You have tried to create a relation wkich would redefine an existing rela-
tion. Choose another name.

line %0, There is no such hour as %Z1, use a 24 hour clock system
line %0, There is no such minute as %1, use a 24 hour clock system
line %0, There is no cuch time as 24:73:%, use a 24 hour clozk system

Errors 2136-38 indicate that you have used a bad time in a permit state-
ment. Legal times are from 0:00 to 24:00 inclusive.

line %0, Your database does not suppecrt query modification

You have tried to issue a query modiZcation statement (define), but the
database was created with the —q flaz. To use the facilities made avail-
able by query modification, you must say:

creatdb —e +q dbname
to the shell.

syntax error on line %0
last symboi read was: 7%1

A 2500 error is reported by the parser if it cannot otherwise classify the
error. One common way to obtain tais error is to omit the required
parentheses around the target list. “he parser reports the last symbol
which was obtained from the scanner. Sornetimes, the last symbol is far
ahead of the actual place where the error occurred. The string "EOF" is
used for the last symbol when the parszr has read past the query.

PARSER(ERROR) 3/30/79 PARSER(ERROR)

2700

2701

2702

2703

2704

2705

2707

line %0, The word ‘%1’, cannot follow a RETRIEVE command, therefore the
command was not executed.)

line %0, The word ‘%1’, cannot follow an APPEND command, therefore the
command was not executed.

line %0, The word ‘%1’, cannot follow 2 REPLACE command, therefore the
command was not executed.

line %0, The word ‘%1’, cannot follow a DELETE command, therefore the
command was not executed.

line %0, The word ‘%1’, cannot follow a DESTROY command, therefore the
command was not executed.

line %0, The word °%1’, cannot follow a HELP command, therefore the
command was not executed.

line %0, The word ‘%Z1’, cannot follow a MODIFY command, therefore the
command was not executed.

line %0, The word ‘%1’, cannot follow a PRINT command, therefore the
cornmand was not executed. :
line %0, The word ‘%1’, cannot follow a RETRIEVE UNIQUE command,
therefore the command was not executed.

line %0, The word “%1i’, cannot follow a DEFINE VIEW command, therefore
the command was not executed.

line %0, The word ‘%1’, cannot follow a EELP VIEW, HELP INTEGRITY, or
HELP PERMIT command, therefore the command was not executed.

line %0, The word "%1°, cannot follow a DEFINE PERMIT command, there-
fore the command was not executed.

line %0, The word ‘%1°, cannot follecw a DEFINE INTEGRITY commang,
therefore the eomrmnand was not executed.

line %0, The word “%1’, cannot follcw a DESTROY INTEGRITY or DESTROY
PERMIT command, therefore the command was not executed.

Errors 2502 through 2515 indicete that after an otherwise valid query, -
there was something which couid not begin another command. The
query was therefore aborted, since this could have been caused by
misspelling where or something equally as dangerous.

line %0, non-terminated string
You have omitted the required string terminator ().
line %0, string too long

Somehow, you have had the persistence or misfortune to enter a charac-
ter string constant longer than 255 characters.

line %0, invalid operator

You have entered a character which is not alphanumeric, but which is
not a defined operator, for example, "?".

line %0, Name too long ‘%1’
In INGRES relation names and domain names are limited to 12 characters.
line %0, Out of space in symbol table - Query too long

Your query is too big to process. Try breaking it up with more \go com-
mands.

line %0, non-terminated comment
You have left off the comment terminator symbol (*'*/").
line %0, bad floating constant: 7Z1

Eitner your floating constant was incorrectly specified or it was too large
or too small. Currently, overflow and underflow are not checked.

PARSER (ERROR) 3/30/79 PARSER (ERROR)

2708

2709

line 7Z0, control character passed in pre-converted string

In EQUEL a control character became embedded in a string and was not
caught until the scanner was processing it.

line 7%0, buffer overflow in converting a number

Numbers cannot exceed 256 characters in length. This shouldn’t become
a problem until number formats in INGRZS are increased greatly.

QRYMOD (ERROR) 3/30/7S QRYMOD (ERROR)

NAKE

Query Modification error message summeary
SYWGPSIS

Error numbers 3000 — 3999.
DESCRIPTION

These error rnessages are generated by the Query Modification module. These
errors include syntactic and semantic problems from view, integrity, and pro-
tection definition, as well as run time errors — such as inability to update a view,
or a protection violation.

FRRORS - :
3310 %0 on view %1: cannot update some domain

You tried to perform operation %0 on a view; however, that update is not
defined.

3320 %0 on view %Z1: domain occurs in gualification of view

It is not possible to update a domain in the qualification cf a view, since
this could cause the tuple to disappear from the view.

3330 7o on view %1: update would result in more than one query

You tried to perform some update on a view which would update two
underlying relations.

3340 70 on view Z1: views do not have TID’'s
You tried to use the Tuple IDentifier field of a view, which is undefined.
3350 70 on view %1: cannot update an zggr=gate value

You cannot update a value which is defined in the view definition as an
aggregate.

3380 %0 on view 7%Z1: that update might be non-functional

There is a chance that the resulting update would be non-functional, that
is, that it may have some unexpected side effects. INGRES takes the atti-
tude that it is better to not try tke update.

3490 INTEGRITY on %1: cannot handle aggregates yet

You cannot define integrity constraints which include aggregates.
3491 INTEGRITY on %1: cannot handle rauitiveriable conslraints

You cannot define integrity constraints on more than a single variable.
3492 INTEGRITY on %1: constraint does not initially hold

When you defined the constraint, there were already tuples in the rela-
tion which did not satisfy the constraint. You must fix the relation so
that the constraint holds before you can declare the constraint.

3493 INTEGRITY on %1: is a view

You can not define integrity constraints on views.
3494 INTEGRITY on %1: You must own “Z1°

You must own the relation when you ceclare integrity constraints.
3500 %0 on relation %1: protection violztion

You have tried to perform an operation which is not permitted to you.

QRYMOD (ERROR) 3/30/79 QRYMOD (ERROR)

3590

3591

3592

3593

3594

3595

3700
3701

PERMIT: bad terminal identifier "%2"

In a permit statement, the terminal identifier field was improper.
PERMIT: bad user name "%2"

You have used a user narne which is r.ot defined on the system.
PERMIT: Relation ‘%1’ not owned by you

You must own the relation before isszing protection constraints.
PERMIT: Relation ‘%1’ must be a real relation (not a view)

You can not define permissions on views.

PERMIT on %Z1: bad day-of-week “%2’

The day-of-week code was unrecognized.

PERMIT on %1: only the DBA can use the PERMIT statement

Since only the DBA can have shared relations, only the DBA can issue per-
mit statements.

Tree buffer overflow in query modification
Tree build stack overflow in query mcdification

Bad news. An internal buffer has cverflowed. Some expression is too
large. Try making your expressions smaller.

OVQP (ERROR) 3,/30/79 OVQP (ERROR)

NAME

One Variable Query Processor error message summary
SYNOPSIS

Error numbers 4000 — 4499.
DESCRIPTION

These error messages can be generated at run time. The One Variable Query
Processor actually references the data, processing the tree produced by the
parser. Thus, these error messages are associated with type conflicts detected
at run time.

ERRORS
4100 OVQP query list overflowed

This error is produced in the unlikely event that the internal form of
your interaction requires more space in the one variable query proces-
sor than has been allocated for a query buffer. There is not much you
can do except shorten your interaction or recompile OVQP with a larger
query bufler.

4101 numeric operation using char anc numeric domains not allowed

Occasionally, you will be notified by OVQP of such a type mismatch on ar-
ithmetic operations. This only happens if the parser has not recognized
the problem.

4102 unary operators are not allowed cn character values

4103 binary operators cannot accept combinations of char and numeric fields
4104 cannot use aggregale operator "sum” on character domains

4105 cannot use aggregate operator "avg"” on character domains

These errors indicate type mismetches — such as trying to add a number
to a character string.

4106 the interpreters stack overflowed -- query too long
4107 the buffer for ASCIl and CONCAT commands overflowed

More buffer overflows.

4108 cannot use arithmetic operators on two character fields
4109 cannot use numeric values with CONCAT operator

You have tried to perform a numszric operation on character ficlds.
4110 floating point exception occurrec.

if you have floating point hardware instead of the fiocating point software
interpreter, you will get this errcr upon a floating point exception
(underflow or overflow). Since the software interpreter ignores such ex-
ceptions, this error is only possible with floating point hardware.

4111 character value cannot be convertecd to numeric due to incorrect syntax.

When using intl, int2, int4, float4, or floatB8 tc convert a characler to
value to a numeric value, the character value must have the preoper syn-
tax. This error will occur if the character value contained non-numeric
characters.

4112 ovgp query vector overflowed
Similar to error 4100.
4159 you must convert your 6.0 seconcdary index before running this query!

GVQP (ERROR) 3,/30/79 OVQP (ERROR)

The internal format of secondary indices was changed between versions
6.0 and 8.1 of INGRZS. Before deciding to use a secondary index OVQP

checks that it is not a 6.0 index. The solution is to destroy the secondary
index and recreate it. ‘

DECOMP (ERROR) 3/30/79 DECOMP (ERROR)

NAME
Decomposition error message summary

SYNOPSIS
Error numbers 4500 — 4999.

DESCRIFPTION
These error messages are associated with the process of decomposing a multi-
variable query into a sequence of one variable queries which can be executed by
OVQP.

ERRORS

4602 query involves too many relations to create aggregate function inter-
mediate result. : '

In the processing of aggregate functions it is usually necessary to create
an intermediate relation for cack aggregate function. However, no query
may have more than ten variables. Since aggregate functions implicitly
increase the number of variables in the query, you can exceed this limit.
You must either break the interaction apart and process the aggregate
functions separately or you must recompile INGRES to support more vari-
ables per query.

4610 Query too long for available buffer space (gbufsize).

4811 Query too long for available buffer szace (varbufsiz)

4612 Query too long for available buffer scace (sgsiz)

4613 Query too long for available buffer sgace (stacksiz

4614 Query too long for available buffer space (agbufsiz).
These will happen if the internel focrm of the interacticn processed by
decomp is too long for the availeble buffer space. You must either shor-
ten your interaction or recompile decomp. The name in parenthesis
gives the internal name of which buffer was too small.

4815 Aggregate function is too wide or has too many domains.

The internal form of an aggregate function must not contain more than
49 domains or be more than 455 bytes wide. Try breaking the aggregate
f2nction into twc or more parts.

4620 Target list for "retrieve unique” has more than 49 domains or is wider
than 498 bytes.

DrU(ERROR) 3/30/79 DBU (ERROR)

NAKE

Data Base Utility error message summary
SYNOPSIS

Error numbers 5000 — 5999
DESCRIPTION

The Data Base Utility functions perform almost all tasks which are not directly
associated with processing queries. The error messages which they can gen-

erate result from some syntax checking ard a considerable amount of semantic
checking.

IERORS
5001 PRINT: bad relation name %0
You are trying to print a relation which doesn't exist.
5002 PRINT: %0 is a view and can't be priried
The only way to print a view is by retrieving it.
5003 PRINT: Relation %0 is protected.
You are not authorized to access this relation.
5102 CREATE: duplicate relation narne %C
You are trying to create a relation waich already exists.
5103 CREATE: %0 is a system relation

You cannot create a relation with {22 sarme name as a system relation.
The system depends on the fact tha: the system relations are unique.

5104 CREATE #%0: invalid attribute name =1

This will happen if you try to crea‘s a relation with an attribute longer
than i2 characters.
5105 CREATE %0: duplicate attribute nam.= %1

Attribute names in a relation must be unique. You are trying to create
onz with a dupli~ated name.

5106 CREATE %0: invalid attribute format “%2" on attribute %1

The allowed formats for a domain are c1—c255, i1, i2, i4, f4 and 8. Any
other format will generate this error.

5107 CREATE %0: excessive domain count on attribute %1

A relation cannot have more thzn 43 domains. The origin of this magic
number is obscure. This is very diff cult to change.

5108 CREATE %C: excessive relation width on attribute %1
The maximum number of bytes al’owed in a tuple is 498. This results
from the decision that a tuple must fit on one UNX "page". Assorted

pointers require the 14 bytes which separates 498 from 512. This "magic
number" is very hard to change.

5201 DESTROY: %0 is a system relation

The system would immediate!y ster working if you were allowed to do
this.

5202 DESTROY: %0 does not exist or is nol owned by you

DBU(ERROR) ‘ 3/30,/79 DBU (ERROR)

To destroy a relation, it must exist, and you must own it.
5203 DESTROY: %0 is an invalid integrity constraint identifier

Integers given do not identify intezrity constraints on the specified rela-
tion. For example: If you were to type ''destroy permit parts 1, 2, 3", and
1, 2, or 3 were not the numbers "help permit parts” prints out for per-
missions on parts, you would get this error.

5204 DESTROY: %0 is an invalid protection constraint identifier

Integers given do not identify protection constraints on the specified re-
lation. Example as for error 5203.

5300 INDEX: cannot find primary relation

The relation does not exist — check your spelling.
5301 INDEX: more than maximum number of domains

A secondary index can be created on at most six domains.
5302 INDEX: invalid domain %0 |

You have tried to create an index cn a domain which does not exist.
5303 INDEX: relation %0 not owned by you

You must own relations to put indicies on them.
5304 INDEX: relation %0 is already an index

INGRES does not permit tertiary indicies.
5305 INDEX: relation %0 is a system relation

Secondary indices cannot be created on system relations.
5306 INDEX: %0 is a view and an index can't be built on it

Since views are not physically stored in the database, you cannot build
indicies on them.

5401 HELP: relation %0 does not exist
5402 HELP: cannot find manual section "%Z0"

fiither the desired manual section does not exist, vr your system does
not have any on-line documentation.

5403 HELP: relation %Z0 is not a view

Did a "help view” {(which prints view definition) on a nonview. For exam-
ple: "help view overpaidv' prints out overpaidv’s view definition.

5404 HELP: relation %0 has no permissions on it granted
5405 HELP: relation %0 has no integrity constraints on it

You have tried to print the permissions or integrity constraints on a rela- -
tion which has none specified.

5410 EELP: tree buffer overflowed
5411 HELP: tree stack overflowed

Still more bufier overflows.
5500 MODIFY: relation %0 does not exist
5501 MODIFY: you do not own relation %0
You cannot modify the storage siructure of a relation you do not own.

DBU { ERROR) 3/30/79 DBU (ERROR)

5502 MODIFY %0: you may not provide keys on a heap
By definition, heaps do not have kevs.

5503 MODIFY Z%0: too many keys provided
You can only have 49 keys on any re=lation.

5504 MODIFY %0: cannot modify system relation

System relations can only be modiied by using the sysmod command to
the shell; for example

sysmod dbname
5507 MODIFY %0:.duplicate key "%1"
You may only specify a domain as a2 key once.
5508 MODIFY %0: key width (%1) too large for isam

When modifying a relation to isam. the sum of the width of the key fields
cannot exceed 245 bytes.

5510 MODIFY %Z0: bad storage structure "%1"

The valid storage structure names are heap, cheap, isam, cisam, hash,
and chash.

5511 MODIFY %0: bad attribute name "71"
You have specified an attribute that does not exist in the relation.
5512 MODIFY %0: "%1" not allowed or specified more than once

You have specified a parameter which conflicts with another parameter,
is inconsistant with the storagze mode, or which has already been
specified. '

5513 MODIFY Z0: fillfactor value %1 out of bounds
- Fillfactor must be between 1 and 100 percent.

5514 MODIFY %0: minpages value %1 out of bounds
Minpages must be greater than zzro.

5515 MODIFY %0: '%1’ should be "fillfactor”, "maxpages”, or "minpages”
You have specified an unknown parameter to modify.

5516 MODIFY %0: maxpages value %1 out of bounds

5517 MODIFY %Z0: minpages value exceeds maxpages value

5518 MODIFY %0: invalid sequence specifier "% 1" for domain %Z2.

Sequence specifier may be ‘‘ascending” (or **a’") or ‘‘descending"” (or
**d”) in a modify. For example:

modify parts to heapsort on
pnum:ascending,
pname:descending

5519 MODIFY: %0 is a view and can't bs modified
Only physical relations can be modified.

5520 MODIFY: %0: sequence specifier "%1" on domain %2 is not allowed with the
specified storaze structure.

Sortorder may be supplied ornly when modifying to heapsort or cheap-
sorl.

DBU (ERROR) 3,/30/79 DBU (ERROR)

5600 SAVE: cannot save system relation "%0"

System relations have no save date and are guaranteed to stay for the
lifetime of the data base.

5601 SAVE: bad month "%0"
5602 SAVE: bad day "%0"
5603 SAVE: bad year "%0"

This was a bad month, bad day, or maybe even a bad year for.
5604 SAVE: relation %0 does not exist or is not owned by you
5800 COPY: relation %0 doesn’t exist
5801 COPY: attribute %0 in relation %1 doesn't exist or it has been listed twice
5803 COPY: too many attributes

Each dummy domain and real domain listed in the copy statement count
as one attribute. The limit is 150 attributes.

5804 COPY: bad length for attribute %0. Length="%1"
5805 COPY: can’t open file %0 '

On a copy "from", the file is not readabte by the user.
5806 COPY: can't create file %0

On a copy "into", the file is not creatable by the user. This is usually
caused by the user not having write permission in the specified directo-

ry. :
5807 COPY: unrecognizable dummy domain "%0"

On a copy "into", a dummy domain name is used to insert certain char-
acters into the umx file. The domain. name given is not valid.

5808 COPY: domain %0 size too small for conversion.
‘ There were %2 tuples successfully copied from %3 into %4

When doing any copy except character to character, copy checks that
the field is large enough to hold the value being copied.

5809 COPY: bad input string for domain %0. Input was "%1". There were %2 tu-
ples successfully copied from %3 into %4

This occurs when converting chara;t:tei" strings to integers or floating
point numbers. The character strirg-contains something other than
numeric characters (O 9,+,— blank,etc._)‘.

5810 COPY: unexpected end of file while filling domain %0.
There were %1 tuples successfully copied from %2 into %3

5811 COPY: bad type for attribute %0. Type="%1"
The only accepted types are i, f, c, and d.

5812 COPY: The relation "%0" has a secondary index. The index(es) must be
destroyed before doing a copy "'from"

Copy cannot update secondary indices. 'Therefore, a copy "from' cannot
be done on an indexed relation.

5813 COPY: You are not allowed to update the relation %0
You cannot copy into a system relation or secondary index.
5814 COPY: You do not own the relation %0.

DBU (ERROR) 3/30,/79 DBU (ERROR)

You cannot use copy to update a relation which you do not own. A copy
"into" is allowed but a copy "“from" is not. '

5815 COPY: An unterminated "c0" fisld occurred while filling domain %0.
There were 71 tuples successfully copied from %2 into %3

A string read on a copy "from" tsing the "c0" option cannot be longer
than 1024 characters.

5816 COPY: The full pathname must be specified for the file Z0
The file name for copy must start with a "'/"".

5817 COPY: The maximum width of the output file cannot exceed 1024 bytes
per tuple

The amount of data to be output to the file for each tuple exceeds 1024.
This usually happens only if a format was mistyped or a lot of large dum-
my domains were specified.

5818 COPY: %0 is a view and can't be ccpied
Only physical relations can be copied.
5819 COPY: Warning: %0 duplicate tuples were ignored.
On a copy "from", duplicate tuples were present in the relation.

5820 COPY: Warning: %0 domains had control characters which were converted
to blanks.

5821 COPY: Warning: %0 c0 character Zomains were truncated.

Character domains in c0 format are of the same length as the domain
length. You had a domain value zreater than this length, and it was trun-
cated.

5822 COPY: Relation %0 is protected.
You are not authorized to access this relation.

Screen Updating and Cursor Movement Optimization:
A Library Package

Kenneth C. R. C. Arnold

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes a package of C library functions which allow the user to:
® update a screen with reasonable optimization,

get input from the terminal in a screen-oriented fashion, and

independent from the above, move the cursor optimally from one point to another.

These routines all use the /etc/termcap database to describe the capabilities of the
terminal.

Acknowledgements

This package would not exist without the work of Bill Joy, who, in writing his editor,
created the capability to generally describe terminals, wrote the routines which read this data-
base, and, most importantly, those which implement optimal cursor movement, which routines
I have simply lifted nearly intact. Doug Merritt and Kurt Shoens also were extremely impor-
tant, as were both willing to waste time listening to me rant and rave. The help and/or support
of Ken Abrams, Alan Char, Mark Horton, and Joe Kalash, was, and is, also greatly appreciated.

Contents

1 Overview

Screen Package

..

1.1 Terminology (or, Words You Can Say to Sound Brilliant)

1.2 Compiling Things

1.3 Screen Updating

1.4 Naming Conventions

2 Variables
3 Usage ...
3.1 Starting up

3.2 The Nitty-Gritty

3.2.1 Output

3.2.2 Input

..

..

..

..

...

..

..

3.2.3 MISCEIIAMEOUS ..ottt e e e e et e e e e e e e aeeereeaes

3.3 Finishing up
4 Cursor Motion Optimization: Standing Alone

..

4.1 Terminal INTOTMALION ... e et e e e e e e e e e s reeeans
4.2 Movement Optimizations, or, Getting Over Yondercccoevevieeeeeveviiinnne.n.

5 The Functions ...

5.1 OULPUL FUNCUOMNS oottt ettt e et ae e e e e et tbenaeae e s
S.2 INPUL FUNCUOMS .oiiiiiiiiiiieeec et eecit e ettt e ettt e e e e s ein e aaeaesenanasneeeeeeaes
5.3 Miscellaneous FUNCUOMNSoiiiiiiiiiiiitieee et e e e e e ee e ee s e e e aeenannen

5.4 Deazails ..

Appendixes

Appendix A ...

...

1 Capabilities fTOM LEIMICADcccvieeeriirieirieerieeeiete e ee st certes e esaa e s rar e e e aae e ebaa e e eaaeeesaaeanes
U I 0 1T 1 o 1-3 S ORI
1.2 OVEIVIEW oooiiiiieeeeieeeeceeteeeeeeesesssstaeseeesassssssraseesssassrnaeeesaasabaneeeeaeseesansasransasseesens
1.3 Variables Set By SEHEIM() ..ooeovivrieiieieiieeieeceetereteeeertecenet st sas e
1.4 Variables Set By gettmode () ...coceeveiiereenienieieiiiciinicne e

Appendix B

...

1 The WINDOW SITUCLUTE ..oeoeecereeeessoeeesssreseeeesessesssssssesssssssssessasesssasesnssntaseesseesesssssssnses

Appendix C
1 Examples

2 Screen Updating
2.1 Twinkle

2.2 Life

...

..

...

...

..

3 MOtioN OPUMIZALIONeivieieeiericceeeereeeeeeterite e ste e ss sttt st s a st

3.1 Twinkle

...

W O O ONON W &b b b bW W LW WA R e e

14
14
14
14
14
15
16
16
17
17
17
17
19
22
22

Screen Package

1. Overview

In making available the generalized terminal descriptions in /etc/termcap, much informa-
tion was made available to the programmer, but little work was taken out of one’s hands. The
purpose of this package is to allow the C programmer to do the most common type of terminal
dependent functions, those of movement optimization and optimal screen updating, without do-

ing any of the dirty work, and (hopefully) with nearly as much ease as is necessary to simply
print or read things.

The package is split into three parts: (1) Screen updating: (2) Screen updating with user
input; and (3) Cursor motion optimization.

It is possible to use the motion optimization without using either of the other two, and

screen updating and input can be done without any programmer knowledge of the motion op-
timization, or indeed the database itself.

1.1. Terminology (or, Words You Can Say to Sound Brilliant)
In this document, the following terminology is kept to with reasonable cconsistency:

window. An internal representation containing an image of what a section of the terminal screen
may look like at some point in time. This subsection can either encompass the entire ter-
minal screen, or any smaller portion down to a single character within that screen.

terminal Sometimes called terminal screen. The package’s idea of what the terminal’s screen
currently looks like, i.e., what the user sees now. This is a special screen:

screen: This is a subset of windows which are as large as the terminal screen, i.e., they start at
the upper left hand corner and encompass the lower right hand corner. One of these.
sidscr, is automatically provided for the programmer.

1.2. Compiling Things

In order to use the library, it is necessary to have certain types and variables defined.
Therefore, the programmer must have a line:

#include <curses.h>

at the top of the program source. The header file <curses.h> needs to include <sgtty.h>,
so the one should not do so oneself'. Also, compilations should have the following form:

cc [flags] file ... =lcurses —Itermlib

1.3. Screen Updating

In order to update the screen optimally, it is necessary for the routines to know what the
screen currently looks like and what the programmer wants it to look like next. For this pur-
pose, a data type (structure) named WINDOW is defined which describes a window image to
the routines, including its starting position on the screen (the (y, x) co-ordinates of the upper
left hand corner) and its size. One of these (called curscr for current screen) is a screen image
of what the terminal currently looks like. Another screen (called stdscr, for standard screen) is
provided by default to make changes on.

A window is a purely internal representation. It is used to build and store a potential im-
age of a portion of the terminal. It doesn’t bear any necessary relation to what is really on the
terminal screen. It is more like an array of characters on which to make changes.

When one has a window which describes what some part the terminal should look like,
the routine refresh() (or wrefresh() if the window is not stdscr) is called. refresh() makes the ter-

! The screen package also uses the Standard 1/0 library, so <curses.h> includes <stdio.h>. It is redundant
(but harmless) for the programmer to do it, too.

Screen Package

minal, in the area covered by the window, look like that window. Note, therefore, that chang-
ing something on a window does not change the terminal. Actual updates to the terminal screen
are made only by calling refresh() or wrefresh(). This allows the programmer to maintain
several different ideas of what a portion of the terminal screen should look like. Also, changes
can be made to windows in any order, without regard to motion efficiency. Then, at-will, the
programmer can effectively say ‘‘make it look like this,”’ and let the package worry about the
best way to do this.

1.4. Naming Conventions

As hinted above, the routines can use several windows, but two are automatically given:
curscr, which knows what the terminal looks like, and sidscr, which is what the programmer
wants the terminal to look like next. The user should never really access curscr directly.
Changes should be made to the appropriate screen, and then the routine refresh() (or
wrefresh()) should be called.

Many functions are set up to deal with stdscr as a defanlt screen. For example, to add a
character to stdscr, one calls addch() with the desired character. If a different window is to be

used, the routine waddch() (for window-specific addch()) is provided?. This convention of
prepending function names with a ‘‘w’’ when they are to be applied to specific windows is con-
sistent. The only routines which do nor do this are those to which a window must always be
specified.

In order to move the current (y, x) co-ordinates from one point to another, the routines
move() and wmove() are provided. However, it is often desirable to first move and then per-
form some 1/0 operation. In order to avoid clumsyness, most I/0 routines can be preceded by
the prefix ‘““mv’’ and the desired (y, x) co-ordinates then can be added to the arguments to the
function. For example, the calls

move(y, x);
addch(ch);

can be replaced by
mvaddch(y, x, ch);
and

wmove(win, y, x);
waddch (win, ch);

can be replaced by
mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If
such pointers are need, they are always the first parameters passed.

2. Variables

Many variables which are used to describe the terminal environment are available to the
programmer. They are:

type name description

WINDOW * curscr current version of the screen (terminal screen).
WINDOW * stdscr standard screen. Most updates are usually done here.
char * Def_term default terminal type if type cannot be determined

2 Actually, addch() is really a *‘#define’ macro with arguments, as are most of the "functions” which deal with
sidscr as a default.

Screen Package

bool My_term use the terminal specification in De/_term as terminal,
irrelevant of real terminal type

char * ~ o ttytype full name of the current terminal.

int LINES number of lines on the terminal

int COLS number of columns on the terminal

int ERR error flag returned by routines on a fail.

int OK error flag returned by routines when things go right.

There are also several ‘‘#define’” constants and types which are of general usefulness:

reg storage class ‘‘register’’ (e.g., reg int i;)

bool boolean type, actually a *‘char’’ (e.g., bool doneit;)
TRUE boolean ‘“‘true”’ flag (1).

FALSE boolean *‘false’’ flag (0).

3. Usage

This is a description of how to actually use the screen package. In it, we assume all up-
dating, reading, etc. is applied to stdscr. All instructions will work on any window, with chang-
ing the function name and parameters as mentioned above.

3.1. Starting up

In order to use the screen package, the routines must know about terminal characteristics.
and the space for curscr and stdscr must be allocated. These functions are performed by in-
itscr(). Since it must allocate space for the windows, it can overflow core when attempting to do
so. On this rather rare occasion, initscr() returns ERR. initscr() must ahways be called before
any of the routines which affect windows are used. If it is not, the program will core dump as
soon as either curscr or stdscr are referenced. However, it is usually best to wait to call it until
after you are sure you will need it, like after checking for startup errors. Terminal status
changing routines like n/() and crmode() should be called after initscr().

Now that the screen windows have been allocated, you can set them up for the run. If
you want to, say, allow the window to scroll, use scrollok(). If you want the cursor to be left
after the last change, use leaveok(). If this isn’t done, refresh() will move the cursor to the
window’s current (y, x) co-ordinates after updating it. New windows of your own can be creat-
ed, too, by using the functions newwin() and subwin(). delwin() will allow you to get rid of old
windows. If you wish to change the official size of the terminal by hand, just set the variables
LINES and COLS to be what you want, and then call initser(). This is best done before, but can
be done either before or after, the first call to initscr(), as it will always delete any existing stdscr
and/or curscr before creating new ones.

3.2. The Nitty-Gritty

3.2.1. Output

Now that we have set things up, we will want to actually update the terminal. The basic
functions used to change what will go on a window are addch() and move(). addch() adds a
character at the current (y, x) co-ordinates, returning ERR if it would cause the window to ille-
gally scroll, i.e., printing a character in the lower right-hand corner of a terminal which au-
tomatically scrolls if scrolling is not allowed. move() changes the current (y, x) co-ordinates to
whatever you want them to be. It returns ERR if you try to move off the window when scrol-
ling is not allowed. As mentioned above, you can combine the two into mvaddch() to do both
things in one fell swoop.

The other output functions, such as addstr() and printw(), all call addch() to add characters
to the window.

After you have put on the window what you want there, when you want the portion of
the terminal covered by the window to be made to look like it, you must call refresh(). In order

-3 -

Screen Package

to optimize finding changes, refresh() assumes that any part of the window not changed since
the last refresh() of that window has not been changed on the terminal, i.e., that you have not
refreshed a portion of the terminal with an overlapping window. If this is not the case, the rou-
tine rouchwin() is provided to make it look like the entire window has been changed, thus mak-
ing refresh() check the whole subsection of the terminal for changes.

. If you call wrefresh() with curscr, it will make the screen look like curscr thinks it looks
like. This is useful for implementing a command which would redraw the screen in case it get
messed up.

3.2.2. Input

Input is essentially a mirror image of output. The complementary function to addch() is
getch() which, if echo is set, will call addch() 1o echo the character. Since the screen package
needs to know what is on the terminal at all times, if characters are to be echoed. the tty must
be in raw or cbreak mode. If it is not, gerch() sets it to be cbreak, and then reads in the charac-
ter.

3.2.3. Miscellaneous

All sorts of fun functions exists for maintaining and changing information about the win-
dows. For the most part, the descriptions in section 5.4. should suffice.

3.3. Finishing up

In order to do certain optimizations, and. on some terminals, to work at all, some things
must be done before the screen routines start up. These functions are performed in getirmode ()
and serterm(), which are called by /nitscr(). In order to clean up after the routines, the routine
endwin() is provided. It restores tty modes to what they were when initscr() was first called.
Thus, anytime after the call to initscr, endwin() should be called before exiting.

4. Cursor Motion Optimization: Standing Alone

It is possible to use the cursor optimization functions of this screen package without the
overhead and additional size of the screen updating functions. The screen updating functions
are designed for uses where parts of the screen are changed, but the overall image remains the
same. This includes such programs as eve and vi’. Certain other programs will find it difficult
to use these functions in this manner without considerable unnecessary program overhead. For
such applications, such as some ‘‘crr hacks’** and optimizing cat(1)-type programs, all that is
needed is the motion optimizations. This, therefore, is a description of what some of what goes
on at the lower levels of this screen package. The descriptions assume a certain amount of
familiarity with programming problems and some finer points of C. None of it is terribly
difficult, but you should be forewarned.

4.1. Terminal Information

In order to use a terminal’s features to the best of a program’s abilities, it must first know
what they are’. The /etc/termcap database describes these, but a certain amount of decoding is
necessary, and there are, of course, both efficient and inefficient ways of reading them in. The

algorithm that the uses is taken from vi and is hideously efficient. It reads them in a tight loop
into a set of variables whose names are two uppercase letters with some mnemonic value. For

3 Eye actually uses these functions. vi does not.

4 Graphics programs designed to run on character-oriented terminals. I could name many, but they come and
80, so the list would be quickly out of date. Recently, there have been programs such as rocket and gun.

S If this comes as any surprise to you, there's this tower in Paris they're thinking of junking that I can let you
have for a song.

Screen Package

example, HQ is a.string. which moves the cursor to the "home" position®. As there are two
types of variables involving ttys, there are two routines. The first, gerrmode(), sets some vari-
ables based upon the tty modes accessed by gtty(2) and stty(2) The second, setterm(), a larger

task by reading in the descriptions from the /etc/termcap database. This is the way these rou-
tines are used by /nitscr():

if (isatty(0)) {

gettmode ();

if (sp=getenv("TERM"))
] setterm(sp);
else

setterm(Def_term);
_puts(Th);
_puts(VS);

isarty() checks to see if file descriptor O is a terminal’. If it is, getrmode() sets the terminal
cescription modes from a gtty(2) getenv() is then called 1o get the name of the terminal, and
tiat value (if there is one) is passed to serrerm(), which reads in the variables from
/etc/termcap associated with that terminal. (gerenv() returns a pointer to a string containing
the name of the terminal, which we save in the character pointer sp.) If isarry() returns false,
the default terminal Def_term is used. The T/ and VS sequences initialize the terminal (_purs()
is a macro which uses tputs() (see termcap(3)) to put out a string). It is these things which
endwin() undoes.

4.2. Movement Optimizations, or, Getting Over Yonder

Now that we have all this useful information, it would be nice to do something with it%.
The most difficult thing to do properly is motion optimization. When you consider how many
different features various terminals have (tabs, backtabs, non-destructive space, home se-
quences, absolute tabs,) you can see that deciding how to get from here to there can be a
decidedly non-trivial task. The editor vi uses many of these features, and the routines it uses
to do this take up many pages of code. Fortunately, 1 was able to liberate them with the
author’s permission, and use them here.

After using gertmode() and setterm() to get the terminal descriptions, the function mvcur()
deals with this task. It usage is simple: you simply tell it where you are now and where you
want to go. For example

mvcur(0, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, 0) to the middle of the screen. If you wish
to force absolute addressing, you can use the function tgoro() from the termlib(7) routines, or
you can tell mvcur() that you are impossibly far away, like Cleveland. For example, to abso-
lutely address the lower left hand corner of the screen from anywhere just claim that you are in
the upper right hand corner:

mvcur(0, COLS—1, LINES-1, 0)

¢ These names are identical to those variables used in the /etc/lermup Qntabase 1o describe each capability. See
Appendix A for a complete list of those read, and termecap(5) for a full description.

7 isany() is defined in the default C library function routines. It does a gtty(2) on the descriptor and checks the
return value.

$ Actually, it can be emotionally fulfilling just to get the information. This is usually only true, however, if you
have the social life of a kumquat.

Screen Package

5. The Functions

In the following definitions, ‘‘¢’" means that the *‘function”’ is really a ‘‘#define” macro
with arguments. This means that it will not show up in stack traces in the debugger, or, in the
case of such functions as addch(), it will show up as it’s ‘‘w’’ counterpart. The arguments are
given to show the order and type of each. Their names are not mandatory, just suggestive.

5.1. Output Functions

addch(ch) t
char ch;

waddch(win, ch)

WINDOW ‘*win;

char ch;
Add the character ch on the window at the current (y, x) co-ordinates. If the character is
a newline ('\n’) the line will be cleared to the end, and the current (y, x) co-ordinates will
be changed to the beginning off the next line if newline mapping is on, or to the next line
at the same x co-ordinate if it is off. A return ('\r’) will move to the beginning of the
line on the window. Tabs ("\t’) will be expanded into spaces in the normal tabstop posi-
tions of every eight characters. This returns ERR if it would cause the screen to scroll
illegally.

addstr(str) ¢

char *sir;

waddstr(win, str)
WINDOW *win;
char Sstr;

Add the string pointed to by str on the window at the current (y, x) co-ordinates. This re-
turns ERR if it would cause the screen to scroll illegally. In this case, it will put on as

much as it can.

box (win, vert, hor)

WINDOW ‘*win;

char vert, hor;
Draws a box around the window using ver as the character for drawing the vertical sides,
and hor for drawing the horizontal lines. If scrolling is not allowed, and the window en-
compasses the lower right-hand corner of the terminal, the corners are left blank to avoid
a scroll.

clear(¢

wclear(win)

WINDOW ‘*win;
Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will
cause a clear-screen sequence to be sent on the next refresh() call. This also moves the
current (y, x) co-ordinates to (0, 0).

Screen Package

clearok (scr, boolf) ¢
WINDOW ‘scr;
bool boolf;

Sets the clear flag for the screen scr. If boolfis TRUE, this will force a clear-screen to be
printed on the next refresh(), or stop it from doing so if boolfis FALSE. This only works
on screens, and, unlike clear(), does not alter the contents of the screen. If scris curscr.
the next refresh() call will cause a clear-screen, even if the window passed to refresh() is
not a screen.

clrtobot () ¢

wclrtobot(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does
not force a clear-screen sequence on the next refresh under any circumstances. This has
no associated ‘‘mv’’ command.

cirtoeol () t

wclrtoeol(win)
WINDOW ‘*win;

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This
has no associated ‘‘mv’’ command.

delch ()

wdelch(win)
WINDOW ‘*win;

Delete the character at the current (y, x) co-ordinates. Each character after it on the line
shifts to the left, and the last character becomes blank.

deleteln ()

wdeleteln(win)
WINDOW ‘*win;

Delete the current line. Every line below the current one will move up, and the bottom
line will become blank. The current (y, x) co-ordinates will remain unchanged.

erase() ¢

werase(win)
WINDOW ‘*win;

Screen Package

Erases the window to blanks without setting the clear flag. This is analagous to clear().
except that it never causes a clear-screen sequence to be generated on a refresh(). This
has no associated ‘‘mv’’ command.

insch(c)
char c

winsch (win, ¢)

WINDOW ‘*win;

char c
Insert ¢ at the current (y, x) co-ordinates Each character after it shifts to the right, and
the last character disappears.

insertln()

winsertln(win)

WINDOW ‘*win;
Insert a line above the current one. Every line below the current line will be shifted
down, and the bottom line will disappear. The current line will become blank, and the
current (y, x) co-ordinates will remain unchanged.

move(y, x) t
int »ox;

wmove(win, y, x)

WINDOW ‘*win;

int y X
Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it
would cause the screen to scroll illegally.

overlay(winl, win2)

WINDOW *winl, *win2;
Overlay winl on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done non-destructively, i.e., blanks on winl/
leave the contents of the space on win2 untouched.

overwrite (winl, win2)

WINDOW °*winl, *win2;
Overwrite winl on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done destructively, i.e., blanks on win/ become
blank on win2.

printw(fmt, argl, arg2, ...)
char *fmt;

Screen Package

wprintw(win, fmt, argl, arg2, ...)
WINDOW ‘*win;
char Sfmi;

Performs a print/T) on the window starting at the current (y, Xx) co-ordinates. It uses
addstr() 10 add the string on the window. It is often advisable to use the field width op-

tions of printf7) to avoid leaving things on the window from earlier calls This returns
ERR if it would cause the screen to scroll illegally.

refresh() ¢

wrefresh (win)
WINDOW ‘*win;

Synchronize the terminal screen with the desired window. If the window is not a screen,
only that part covered by it is updated. This returns ERR if it would cause the screen to
scroll illegally. In this case, it will update whatever it can without causing the scroll.

standout() t

wstandout (win)
WINDOW ‘*win;

standend () ¢

wstandend(win)
WINDOW *win;

Start and stop putting characters onto win in standout mode. standout() causes any charac-
ters added to the window to be put in standout mode on the terminal (if it has that capa-
bility). standend() stops this. The sequences SO and SE (or US and UE if they are not
defined) are used (see Appendix A).

§.2. Input Functions

crmode() t

nocrmode() t
Set or unset the terminal to/from cbreak mode.

echo() ¢

noecho() ¢
Sets the terminal to echo or not echo characters.

Screen Package

getch () ¢

wgetch(win)
WINDOW ‘*win;

Gets a character from the terminal and (if necessary) echos it on the window.. This re-
turns ERR if it would cause the screen to scroll illegally. Otherwise, the character gotten
is returned. If noecho has been set, then the window is left unaltered. In order to retain
control of the terminal, it is necessary to have one of noecho, cbreak, or rawmode set. If
you do not set one, whatever routine you call to read characters will set céreak for you.
and then reset to the original mode when finished.

getstr(str) t

char .

str;

wgetstr(win, str)

WINDOW *win,

char str;
Get a string through the window and put it in the location pointed to by str, which is as-
sumed to be large enough to handle it. It sets tty modes if necessary, and then calls
getch() (or wgerch(win)) 1o get the characters needed to fill in the string until a newline or
EOF is encountered. The newline stripped off the string. This returns ERR if it would
cause the screen to scroll illegally.

raw() ¢

noraw() ¢

Set or unset the terminal to/from raw mode. On version 7 UNIX® this also turns of new-
line mapping (see n/()).

scanw (fmt, argl, arg2, ...)
char *fmt;

wscanw (win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

Perform a scanf¥) through the window using fmt. It does this using consecutive getch()'s
(or wgerch(win)’s). This returns ERR if it would cause the screen to scroll iliegally.
8.3. Miscellaneous Functions

delwin(win)
WINDOW *win;

9 UNIX is a trademark of Bell Laboratories.

- 10 —

Screen Package

delwin(win)
WINDOW *win;

Deletes the window from existence. All resources are freed for future use by calloc(3).
If a window has a subwin() allocated window inside of i1, deleting the outer window the
subwindow is not affected, even though this does invalidate it. Therefore, subwindows
should be deleted before their outer windows are.

endwin ()

Finish up window routines before exit. This restores the terminal to the state it was be-
fore initscr() (or gettmode() and setrerm()) was called. It should always be called before
exiting. It does not exit. This is especially useful for resetting tty stats when trapping ru-
bouts via signal(2).

getyx(win, vy, x) ¢
WINDOW *win;
int A &

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a macro.
not a function, you do not pass the address of y and x.

inch(Q ¢

winch(win) ¢
WINDOW *win;

Returns the character at the current (y. x) co-ordinates on the given window. This does
not make any changes to the window. This has no associated ‘‘mv'’ command.

initscr()

Initialize the screen routines. This must be called before any of the screen routines are
used. It initializes the terminal-type data and such, and without it, none of the routines
can operate. If standard input is not a tty, it sets the specifications to the terminal whose
name is pointed to by Def_term (initialy "dumb"). If the boolean My_term is true,
Def_term is always used.

leaveok (win, boolf) ¢

WINDOW ‘*win;

bool boolf;
Sets the boolean flag for leaving the cursor after the last change. If boolfis TRUE, the
cursor will be left after the last update on the terminal, and the current (y, x) co-ordinates
for win will be changed accordingly. If it is FALSE, it will be moved to the current (y, x)
co-ordinates. This flag (initialy FALSE) retains its value until changed by the user.

longname (termbuf, name)
char “termbyf, *name;

-11 -

Screen Package

Fills in name with the long (full) name of the terminal described by the termcap entry in
termbyf. It is generally of little use, but is nice for telling the user in a readable format
what terminal we think he has. This is available in the global variable tryrype. Termbuf is
usually set via the termlib routine getent().

mvwin(win, y, x)
WINDOW ‘*win;
int » X

Move the home position of the window win from its current starting coordinates to (3, x).
If that would put part or all of the window off the edge of the terminal screen, mvwin() re-
turns ERR and does not change anything.

WINDOW *
newwin (lines, cols, begin_y, begin_x)
int lines, cols, begin_y. begin_x;

Create a new window with {ines lines and cols columns starting at position
(begin_y, begin_x). If either lines or colsis 0 (zero), that dimension will be set to (LINES
— begin_y) or (COLS — begin_x) respectively. Thus, to get a new window of dimen-
sions LINES x COLS, use newwm{(0, 0, 0, 0).

nl() ¢

nonl() ¢

Set or unset the termina! to/from ni mode, i.e., start/stop the system from mapping
<RETURN> to <LINE-FEED>. If the mapping is not done, refresh() can do more
oplimization, so it is recommended, but not required, to turn it off.

scrollok (win, boolf) ¢
WINDOW *win;
bool boolf;

Set the scroll flag for the given window. If boolfis FALSE, scroiling is not allowed. This
is its default setting.

touchwin (win)
WINDOW “*win;

Make it appear that the every location on the window has been changed. This is usually
only needed for refreshes with overlapping windows.

WINDOW *

subwin (win, lines, cols, begin_y, begin_x)
WINDOW *win;

int lines, cols, begin_y, begin_x;

Create a new window with lines lines and cols columns starting at position
(begin_y, begin_x) in the middle of the window win. This means that any change made to
either window in the area covered by the subwindow will be made on both windows.
begin_y, begin_x are specified relative to the overall screen, not the relative (0, 0) of win.
If either lines or cols is 0 (zero), that dimension will be set to (LINES — begin_y) or

-12 -

Screen Package

(COLS — begin_x) respectively.

unctrl(ch) ¢
char ch;

This is actually a debug function for the library, but it is of general usefulness. It returns
a string which is a representation of ch. Control characters become their upper-case
equivalents preceded by a "™". Other letters stay just as they are. To use wuncrr/(), you
must have #include <unctrl.h> in your file.

5.4. Details

gettmode ()
Get the tty stats. This is normally called by initscr().

mvcur (lasty, lastx, newy, newx)
int lasty, lastx, newy, newx,

Moves the terminal’s cursor from (lasn, lastx) to (newy, newx) in an approximation of op-
timal fashion. This routine uses the functions borrowed from ex version 2.6. It is possi-
ble to use this optimization without the benefit of the screen routines. With the screen
routines, this should not be called by the user. move() and refresh() should be used to
move the cursor position, so that the routines know what’s going on.

scroll (win)
WINDOW ‘*win;

Scroll the window upward one line. This is normally not used by the user.

savetty() ¢

resetty() t

saverry() saves the current tty characteristic flags. reserry() restores them to what saverry ()
stored. These functions are performed automatically by initscr() and endwin().

setterm (name)
char *name;

Set the terminal characteristics to be those of the terminal named name. This is normally
called by initscr().

tstp(

If the new tty(4) driver is in use, this function will save the current tty state and then put
the process to sleep. When the process gets restarted, it restores the tty state and thc_n
calls wrefresh(curscr) to redraw the screen. initscr() sets the signal SIGTSTP to trap to this
routine.

-13 -

Appendix A

1. Capabilities from termcap

1.1. Disclaimer

The description of terminals is a difficult business. and we only attempt to summarize the
capabilities here: for a full description see the paper describing termcap.

1.2. Overview

Capabilities from termcap are of three kinds: string valued options, numeric valued op-
tions, and boolean options. The string valued options are the most complicated, since they may
include padding information, which we describe now.

Intelligent terminals often require padding on intelligent operations at high (and some-
times even low) speed. This is specified by a number before the string in the capability, and
has meaning for the capabilities which have a P at the front of their comment. This normally is
a number of milliseconds to pad the operation. In the current system which has no true pro-
grammable delays, we do this by sending a sequence of pad characters (normally nulls, but can
be changed (specified by PC)). In some cases, the pad is better computed as some number of
milliseconds times the number of affected lines (to the bottom of the screen usually, except
when terminals have insert modes which will shift several lines.) This is specified as, e.g., 12*.
before the capability, to say 12 milliseconds per affected whatever (currently always line).
Capabilities where this makes sense say P*.

1.3. Variables Set By setterm()
variables set by setrerm()

Type Name Pad Description
char* AL p* Add new blank Line

bool AM Automatic Margins
char* BC Back Cursor movement
bool BS BackSpace works
char* BT P Back Tab

bool CA Cursor Addressable

char* CD pP* Clear to end of Display
char* CE P Clear to End of line
char* CL p* CLear screen

char* CM P Cursor Motion

char* DC p* Delete Character

char* DL P Delete Line sequence

char* DM Delete Mode (enter)

char®* DO DOwn line sequence

char®* ED End Delete mode

bool EO can Erase Overstrikes with *°

char* EIl End Insert mode

char* HO HOme cursor

bool HZ HaZeltine ~ braindamage

char* IC P Insert Character

bool IN Insert-Null blessing

char* IM enter Insert Mode (IC usually set, too)
char® [P P* Pad after char Inserted using IM+IE
char* LL quick to Last Line, column 0

char®* MA ctrl character MAp for cmd mode
bool Ml can Move in Insert mode

bool NC No Cr: \r sends \r\n then eats \n

Appendix A

variables set by setterm()

Type Name Pad Description

char®* ND Non-Destructive space

bool 0S OverStrike works

char PC Pad Character

char* SE Standout End (may leave space)
char* SF P Scroll Forwards

char* SO Stand Out begin (may leave space)
char®* SR P Scroll in Reverse

char®* TA P TADb (not “1 or with padding)

char* TE Terminal address enable Ending sequence
char* TI Terminal address enable Initialization
char* UC Underline a single Character

char®* UE Underline Ending sequence

bool UL UnderLining works even though '0S
char* UP UPline

char* US Underline Starting sequence'®

char®* VB Visible Bell

char* VE Visual End sequence

char* VS Visual Start sequence

bool XN a Newline gets eaten after wrap

Names starting with X are reserved for severely nauseous glitches

1.4.

Variables Set By gettmode ()
variables set by getimode ()

type name description

bool NONL Term can’t hack linefeeds doing a CR
bool GT Gtty indicates Tabs

bool UPPERCASE Terminal generates only uppercase letters

10 US and UE. if they do not exist in the termcap entry, are copied from SO and SE in serterm()

- 18 =

Appendix B

1.
The WINDOW structure

The WINDOW structure is defined as follows:

define WINDOW struct _win_st
struct _win_st {

short _cury, _curx;

short _maxy, _maxx;

short _begy, _begx;

short _flags;

bool _clear;

bool _leave;

bool _scroll;

char ey,

short «_firstch;

short =_lasich;
).
define _SUBWIN 01
define _ENDLINE 02
define _FULLWIN 04
define _SCROLLWIN 010
define _STANDOUT 0200

_cury and _ curx are the current (y, x) co-ordinates for the window. New characters ad-
ded to the screen are added at this point. _maxy and _maxx are the maximum values allowed
for (_cury, _curx). _begy and _ begx are the starting (y, x) co-ordinates on the terminal for the
window, i.e., the window’s home. _cury, _curx, _maxy, and _maxx are measured relative to
(_beg, _begx), not the terminal’s home.

_clear tells if a clear-screen sequence is to be generated on the next refresh() call. This is
only meaningful for screens. The initial clear-screen for the first refresh() call is generated by
initially setting clear to be TRUE for curscr, which always generates a clear-screen if set, ir-
relevant of the dimensions of the window involved. _/leave is TRUE if the current (y, x) co-
ordinates and the cursor are to be left after the last character changed on the terminal, or not
moved if there is no change. _scrollis TRUE if scrolling is allowed.

_yis a pointer to an array of lines which describe the terminal. Thus:
_vylil
is a pointer to the &h line, and
_ylilG}
is the Ah character on the &h line.

_flags can have one or more values or’d into it. _SUBWIN means that the window is a
subwindow, which indicates to de/win() that the space for the lines is not to be freed. _END-
LINE says that the end of the line for this window is also the end of a screen. _ FULLWIN
says that this window is a screen. _SCROLLWIN indicates that the last character of this
screen is at ‘the lower right-hand corner of the terminal; ie., if a character was put there, the
terminal would scroll. _STANDOUT says that all characters added to the screen are in stan-
dout mode.

V1 All variables not normally accessed directly by the user are named with an initial *_"" 1o avoid conflicts with
the user’s varisbles.

1. Examples

Here we present a few examples of how to use the package. They attempt to be represen-

Appendix C

tative, though not comprehensive.

2. Screen Updating

The following examples are intended to demonstrate the basic structure of a program us-
ing the screen updating sections of the package. Several of the programs require calculational
sections which are irrelevant of to the example, and are therefore usually not included. It is
hoped that the data structure definitions give enough of an idea to allow understanding of what
the relevant portions do. The rest is left as an exercise to the reader, and will not be on the fi-

nal.

2.1. Twinkle

This is a moderately simple program which prints pretty patterns on the screen that might
even hold your interest for 30 seconds or more. It switches between patierns of asterisks, put-
ting them on one by one in random order, and then taking them off in the same fashion. It is

more efficient to write this using only the motion optimization, as is demonstrated below.

include
include

f

<curses.h>
<signal.h>

* the idea for this program was a product of the imagination of
» Kurt Schoens. Not responsible for minds lost or stolen.

o/
define NCOLS 80
define NLINES 24
define MAXPATTERNS
struct locs |
char y, X;
).
typedef struct locs LOCS;
LOCS Layout[NCOLS = NLINES];
int Pattern,
Numstars;
main() {
char egetenv();
int die();
srand (getpid ());
initscr();
signal (SIGINT, die),
noecho();
nonl();
leaveok (stdscr, TRUE),

scrollok (stdscr, FALSE);

4

f current board layout «/

f current pattern number */
f number of siars in pattern */

f initia