

Cover Part No. 223 2342.00 0 1

UCSD p-System Assembler
Part No. 2232402-0001
Original Issue: 15 April 1983

Copyright © 1978 by the
Regents of the Universit y of California (San Diego)

All rights reserved.

All new material copyright © 1979, 1980, 1981, 1983
by SofTech Microsystems, Incorporated

All r ight s reserved.

All new material copyright © 1983
by Texas Instruments Incorporated

All Rights Reserved.

No part of this work may be reproduced in any form or by any
means or used to make a derivative work (such as a t ransla­
tion, transformation, or adaptation) without the permission in
writing of SofTech Microsystems, Inc.

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific
license only, and any unauthorized use is contrary to the laws
of the State of California.

Preface

This manual describes the UCSD p-System™ 8086/88/87 As­
sembler. It also describes the instruction set of the 8086/88
CPUs and the 8087 floating point processor. (SofTech Micro­
systems developed this assembler to support these three Intel
processors, but the 8087 is not necessarily supported on all
8086 based computers.) The p-System assembler is a powerful
tool for creating assembly routines to be run inside or outside
of the UCSD p-System environment.

To completely understand the 8086/88/87 assembly language,
use the Intel 8086 Family Users' Manual with this manual.
Refer also to the MCS 86 Assembly Language Reference
Manual from Intel.

Chapter 1, The UCSD p-System Assembler, of this manual
describes the UCSD p-System assembler. Note that the p-System
assembler differs substantially from the Intel assembler.

Chapter 2, Overview of the CPU, gives a brief overview of the
8086/88 CPU; it covers the registers, flags, and addressing
modes. For a more detailed description of the 8086/88 pro­
cessor see the Intel manual.

Chapter 3, Operators, lists the 8086/88 and 8087 operations
and gives a brief summary of their actions. Again, for more
detailed information, refer to the Intel manual. Chapter 3 also
describes assembler notational conventions and the differences
between the standard Intel mnemonics and the mnemonics
accepted by the UCSD p-System assembler.

UCSD p-System is a trademark of the Regents of the University of California.

iii

Appendix A describes the linker. The linker combines sepa­
rately assembled code files . It also can be used to link a high
level host program with assembled routines.

Appendix B describes the Compress Utility. This utility allows
you to produce relocatable or absolute assembled object code
files so that it can run outside of the p-System environment.

Appendix C lists the 8086/88/87 errors.

DISCLAIMER

This document and the software it describes are subject to
change without notice. No warranty expressed or implied
covers their use. Neither the manufacturer nor the seller is
responsible or liable for any consequences of their use.

iv

Contents

Preface iii

1 The UCSD p-System Assembler 1-1
Introduction 1-5
General Information ... 1-6
Assembler Directives .. 1-21
Conditional Assembly ... 1-37
Macro Language .. 1-39
Program Linking and Relocation 1-44
Operation of the Assembler ... 1-58
Assembler Output 1-64
Sharing PME Resources ... 1-67

2 Overview of the CPU ... 2-1
Introduction 2-3
General Registers .. 2-3
Segment Registers 2-6
Flags ... 2-7
Addressing Modes 2-9

3 Operators .. 3-1
Introduction ... 3-3
Syntax Conventions 3-3
The 8086/88 Instruction Set .. 3-7
8087 Floating Point Operators 3-34

v

Appendixes

A The Linker

B The Compress Utility

C Errors

Index

VI

1

The UCSD p-System Assembler

Introduction 1-5
Assembly Language Definition 1-5
Assembly Language Applications 1-6
General Information 1-6
Object Code Format 1-6

Byte Organization 1-6
Word Organization 1-6

Source Code Format 1-7
Character Set 1-7
Identifiers 1-7
Character Strings 1-8

Constants 1-8
Binary Integer Constants 1-8
Decimal Integer Constants 1-9
Hexadecimal Integer Contstants 1-9
Octal Integer Constants ... 1-10
Default Radix Integer Constants 1-10
Character Constants 1-10
Assembly Time Constants .. 1-10

Expressions 1-11
Relocatable and Absolute 1-11
Linking and Restrictions 1-12
Arithmetic and Logical Operators 1-12
Subexpression Grouping 1-13
Examples 1-14

Source Statement Format 1-15
Label Field 1-15
Opcode Field 1-17
Operand Field .. 1-17

---, Comment Field 1-17
Source File Format .. 1-18

Assembly Routines 1-18
Global Declarations 1-18
Absolute Sections 1-19

1-1

Assembler Directives .. . 1-21

Procedure-Delimiting Directives 1-22
Data and Constant Definitions 1-25
Location Counter Modification .. . 1-27
Listing Control Directives 1-28
Program Linkage Directives .. . 1-32
Conditional Assembly Directives .. . 1-34
Macro Definition Directives .. . 1-35
Miscellaneous Directives .. . 1-35
Conditional Assembly .. . 1-37
Conditional Expressions 1-38

Macro Language 1-39
Macro Definitions 1-40
Macro Calls 1-40
Parameter Passing .. . 1-41
Scope of Labels in Macros 1-42

Local Labels as Macro Parameters 1-43
Program Linking and Relocation 1-44
Program Linking Directives .. .

Host Communication Directives
1-46 \
1-46

External Reference Directives .. . 1-47
Program Identifier Directives 1-48

Linking Program Modules 1-49
Linking with a Pascal Program 1-49
Accessing Byte Array Parameters 1-52

Example of Linking to Pascal 1-53
Stand-Alone Applications .. . 1-55

Assembling 1-56
Executing Absolute Code Files 1-56

Operation of the Assembler 1-58
Support Files 1-59
Setting Up Input and Output Files 1-59
Responses to Listing Prompt .. . 1-60
Output Modes 1-61
Responses to Error Prompt 1-62

Miscellany 1-63

1-2

Assembler Output ... 1-64
Source Listing 1-64

~ Error Messages 1-65
Code Listing ... 1-65

Forward References 1-65
External References .. 1-66
Multiple Code Lines .. 1-66

Symbol Table 1-67
Sharing PME Resources ... 1-67
Calling and Returning 1-67
Accessing Parameters ... 1-67
Register Usage 1-68

1-3/1-4

INTRODUCTION

This chapter describes the UCSD p-System 8086/88/87 Assem­
bler. It covers assembler-related concepts, assembler directives,
and associated technical terms. Other topics covered here
include:

• Linking assembled routines with host compilation units

• Assembled listings

• Error messages

• Sharing machine resources with the Interpreter

Assembly Language Definition

An assembly language consists of symbolic names that
can represent machine instructions, memory addresses,
or program data. The main advantage of assembly lan­
guage programming over machine coding is that pro­
grams can be organized in a more readable fashion,
making them easier to understand.

An assembler translates an assembly language pro­
gram, called source code, into a sequence of machine in­
structions, called object code. Assemblers can create
either relocatable or absolute object code. Relocatable
code includes information that allows a loader to place
it in any available area of memory, while absolute code
must be loaded into a specific area of memory. Sym­
bolic addresses in programs that are assembled to relo­
eatable object code are called relocatable addresses.

1-5

Assembly Language Applications

Use the UCSD p-System to develop assembly language
programs to provide:

• Assembly language procedures to run under con­
trol of a host program

• Stand-alone assembly language programs to use
outside of the operating system's environment

The UCSD p-System 8086/88/87 Assembler, in conjunc­
tion with the system linker and some support pro­
grams, has been designed to meet these needs.

GENERAL INFORMATION

Object Code Format

1-6

Byte Organization

A byte consists of eight bits. These bits may
represent eight binary values or a single charac­
ter of data. The bits may also represent a one­
byte machine instruction or a number that is
interpreted as either a signed two's complement
number in the range of -128 to 127 or an un­
signed number in the range of 0 to 255.

Word Organization

A word consists of sixteen bits or two adjacent
bytes in memory. A word may contain a one­
word machine instruction, any combination of
byte quantities, or a number that may be inter­
preted as either a signed two's complement
number in the range of -32,768 to 32,767 or an
unsigned number in the range of 0 to 65,535.

Source Code Format

Character Set

Use the following characters to construct source
code:

• Uppercase and lowercase alphabetic char­
acters: A through Z, a through z

• Numerals: 0 through 9

• Special symbols: I @ # $ % '" & * () < >
- [].,/;:'" + - =?-

• Space (' ') character and tab character

Identifiers

Identifiers consist of an alphabetic character
followed by a series of alphanumeric characters
and/or underscore characters. The underscore
character is not significant. Only the first eight
characters of the label are significant. This defi­
nition of identifiers is equivalent to the Pascal
definition.

Use identifiers in:

• Label and constant definitions

• Machine instructions, assembler directives,
and macro identifiers

• Label and constant references

FormArray
FORM-1\RRA Y
form array

... all denote the same item.

1-7

Predefined Symbols and Identifiers
Predefined identifiers are reserved by the as­
sembler as symbolic names for machine instruc­
tions and registers. Do not use them as names
for labels, constants, or procedures. Also, the
dollar sign, $, is predefined to specify the loca­
tion counter. When used in an expression, the
dollar sign represents the current value of the
location counter in the program.

Character Strings

Write a character string as a series of ASCII
characters delimited by double quotes. A string
may contain up to 80 characters, but cannot
cross source lines. You can embed a double
quote in a character string by entering it twice;
for example, "This contains ""embedded""
double quotes." The assembler directive .ASCII
requires a character string for its operand.

Strings also have limited uses in expressions.

Constants

1-8

Binary Integer Constants

Write a binary integer constant as a series of
bits or binary digits (0 through 1) followed by
the letter T. The range of values is 0 to
1111111111111111, or 0 to 11111111, if this is a
byte constant.

OT
OlOOOlOOT
11lOlT

Decimal Integer Constants

Write a decimal integer word constant as a
series of numerals (0 through 9) followed by a
period. Its range of values is -32,768 to 32,767
as a signed two's complement number. As a
byte constant, its range of values is -128 to
127 as a signed two's complement number or 0
to 255 as an unsigned number.

OOL
256.
-4096.

Hexadecimal Integer Constants

Write a hexadecimal integer word constant as a
series of up to four significant hexadecimal
numerals (0 through 9, A through F) followed
by the letter H. The leading numeral of a hexa­
decimal constant must be a numeric character.
The range of values is 0 to FFFF. These are
examples of valid hexadecimal constants:

OAH
100H
OFFFE H ; leading zero is required here

Byte constants possess similar syntax, but can
have at most two significant hexadecimal nu­
merals, with a range of 0 to FF.

1-9

1-10

Octal Integer Constants

Write an octal integer word constant as a series
of up to six significant octal numerals (0
through 7) followed by the letter Q. Its range of
values is 0 to 177777. Byte constants can have
at most three significant octal numerals, with a
range of 0 to 477.

17Q
457Q
177776Q

Default Radix Integer Constants

The radix of an integer constant lacking a trail­
ing radix character is decimal on the p-System
8086/87 assembler.

Character Constants

Character constants are special cases of charac­
ter strings; you can use them in expressions.
The maximum length is two characters for a
word constant and one character for a byte con­
stant. Character constants are delimited by
single quotes.

'A'
'Be'
'YA'

Assembly Time Constants

Write an assembly time constant as an identi­
fier that the .EQU directive has assigned a con­
stant value. (Refer to the following section on
Data and Constant Definitions in this chapter.)
Its value is completely determined at assembly
time from the expression following the directive.
You must define assembly time constants be­
fore you refer to them.

Expressions

Use expressions as symbolic operands for machine in­
structions and assembler directives. An expression can
be:

• A label, which might refer to a defined address or
an address further down in the source code (imply­
ing that the label is presently undefined), an exter­
nally referenced address, or an absolute address

• A constant

• A series of labels or constants separated by arith­
metic or logical operators

• The null expression, which evaluates to a constant
of value 0

Relocatable and Absolute

An expression containing more than one label is
valid, only if the number of relocatable labels
added to the expression exceeds the number of
relocatable labels subtracted from the expres­
sion by zero or one. The expression result is ab­
solute if the difference is zero, and relocatable if
the difference is one. Do not use subexpressions
that evaluate to relocatable quantities as argu­
ments to a multiplication, division, or logical
operation. Also, do not apply unary operators to
relocatable quantities.

In relocatable programs, do not use absolute
expressions as operands of instructions that re­
quire location-counter-relative address modes.

1-11

1-12

Linking and Restrictions

An expression can contain no more than one ex­
ternally defined label, and its value must be
added to the expression. An expression contain­
ing an external reference cannot contain a
forward-referenced label, and the relocation sum
of any other relocatable labels in the expression
must be equal to zero.

An expression can contain no more than
one forward-referenced identifier. A forward­
referenced identifier is assumed to be a relo­
eatable label defined further down in the source
code; you must define any other identifiers
before using them in an expression. Also, do not
place an externally defined label in an expres­
sion containing a forward-referenced label.

Arithmetic and Logical Operators

You can use the following operators In ex­
pressions:

• Unary operations­
+ plus
- minus (two's complement negation)
- logical not (one 's complement negation)

• Binary operations­
+ plus
- minus
" exclusive or
* multiplication
/ signed integer division (DIV)
/ / unsigned integer division (DIV)
% unsigned remainder division (MOD)
I bitwise OR
& bitwise AND

• Use the following operators only with con­
ditional assembly directives-
= equal
< >not equal

• Use the following symbols as alternatives
to the single-character definitions pre­
sented above. Occurrences of these alter­
native definitions require at least single
blank characters as delimiters-
.OR = I
.AND &
.NOT =
.xOR = 1\

.MOD = %

The assembler evaluates expressions from left­
to-right; there is no operator precedence. All
operations are performed on word quantities.
Limit unary operators to constants and abso­
lute addresses and enclose subexpressions that
contain embedded unary operators with angle
brackets.

Subexpression Grouping

You may use angle brackets « and » in ex­
pressions to override the left-to-right evaluation
of operands. Subexpressions enclosed in angle
brackets are completely evaluated before
including them in the rest of the expression.
Angle brackets are used instead of the normal
parentheses to group expressions. Using paren­
theses to group expressions does not generate
an error but causes the assembler to interpret
the expression as an indirect addressing mode.

1-13

1-14

Examples

In the following examples of valid expressions,
the default radix is decimal:

MARK+4

BILL-2

2-BARRY

3*2 + MACRO

DAVID+3*2

650/2-RICH

-4*12 + < 6/2 >

85+2+ <-5>

; The sum of the value of
; identifier MARK plus 4

; The result of subtracting 2 from
; the value of identifier BILL.

; The result of subtracting the
; value of identifier BARRY
; from 2. BARRY must be absolute.

; The sum of the value of
; identifier MACRO plus the
; product of 3 times 2.

; 2 times the sum of the
; identifier DAVID and 3.
; David must be absolute.

; The result of dividing 650 by 2
; and subtracting the value of
; identifier RI CH from the
; quotient. RICH must be absolute

; Null expression: constant 0

; evaluates to - 45 Idecimal)

; evaluates to 82 Idecimal)

; evaluates to 1

o .OR 1 .AND <.NOT 0> ; is the same expression
; Iresult is 1)

Source Statement Format

An assembly language source program consists of
source statements that may contain machine instruc­
tions, assembler directives, comments, or nothing (a
blank line). Each source statement is defined as one line
of a text file.

Label Field

The assembler supports the use of both stan­
dard labels and local (that is, reusable) labels.
Begin the label field in the left-most character
position of each source line. Macro identifiers
and machine instructions must not appear in
the start of the label field, but assembler direc­
tives and comments can appear there.

Standard Label Usage - A standard label is an
identifier placed in the label field of a source
statement. You may terminate it with an op­
tional colon character, which is not used when
referencing the label. As in Pascal, only the first
eight characters of the label are significant; the
assembler ignores the rest. Also, as in Pascal,
the underscore character is not significant.

BIOS
L3456:
The_Kind
LONG~abel

; referenced as L3456

; last character is ignored

A standard label is a symbolic name for a
unique address or constant; declare it only once
in a source program. A label is optional for
machine instructions and for many of the as­
sembler directives. A source statement consist­
ing of only a label is a valid statement; it
effectively assigns the current value of the loca­
tion counter to the label. This is equivalent to
placing the label in the label field of the next

1-15

1-16

source statement that generates object code.
Labels defined in the label field of the .EQU
directive are assigned the value of the
expression in the operand field. (See the Data
and Constant Definitions section, presented
later in this chapter.)

Local Label Usage - Local labels allow source
statements to be labeled for other instructions
to reference, without taking up storage space in
the symbol table. They can contribute to the
cleanliness of source program design by allow­
ing nonmnemonic labels to be created for itera­
tive and decision constructs to use, thus
reserving the use of mnemonic label names for
demarking conceptually more important sec­
tions of code.

In local labels, you must place $ in the first
character position; the remaining characters
must be digits. As in regular labels, only the
first eight digits are significant. The scope of a
local label is limited to the lines of source state­
ments between the declaration of consecutive
standard labels; thus, the jump to label $4 in
the following example is illegal:

LABELl
ADC AX,8I

$3 MOV MEM,AX
JC $3 ; legal
NOP
JNC $4 ; illegal

LABEL2
ADC AX,8I

$4 MOV MEM, AX

You may define up to 21 local labels between 2
occurrences of a standard label. On encounter­
ing a standard label, the assembler purges all
existing local label definitions; hence, all local
label names may be redefined after that point.
Do not use local labels in the label field of the
.EQU directive. (See the Data and Constant
Definition section in this chapter.)

Opcode Field

Begin the opcode field with the first non blank
character following the label field; or with the
first nonblank character following the left-most
character position when the label is omitted.
Terminate it with one or more blanks. The op­
code field can contain identifiers of the fol­
lowing types:

• Machine instruction

• Assembler directive

• Macro call

Operand Field

Begin the operand field with the first nonblank
character following the opcode field; terminate
it with zero or more blanks. It can contain zero
or more expressions, depending on the require­
ments of the preceding opcode.

Comment Field

You can precede the comment field with zero or
more blanks, begin it with a semicolon (;), and
extend it to the end of the current source line.
The comment field can contain any printable
ASCII characters. It is listed on assembled
listings and has no other effect on the assembly
process.

1-17

Source File Format

1-18

You should use the system editor to produce assembly
source files and save them as text files. You can con­
struct a source file from the following entities:

• Assembly routines (procedures and functions)

• Global declarations

Assembly Routines

A source file may contain more than one assem­
bly routine. In this case, a routine ends when a
routine delimiting directive occurs (for example,
the start of the following routine). Each routine
in a source file is a separate entity which con­
tains its own relocation information. During
linking, a Pascal host program may refer to
each routine individually.

Begin assembly routines with a .PROC, .FUNC,
.RELPROC, or .RELFUNC directive. Terminate
the last routine in the source file with the .END
directive.

At the end of each routine, the assembler's sym­
bol table is cleared of all but predefined and
globally declared symbols, and the location
counter (LC) is reset to zero.

Global Declarations

An assembly routine cannot directly access ob­
jects declared in another assembly routine, even
if the routines are assembled in the same source
file; however, sometimes it is desirable for a set ~

of routines to share a common group of declara-
tions. Therefore, the assembler allows global
data declarations.

All subsequent assembly routines may reference
any objects declared before a .PROC or .FUNC
directive initially occurs in a source file. No
code may be generated before the first proce­
dure-delimiting directive; hence, the global ob­
jects are limited to the non-co de-generating
directives (.EQU, .REF, .DEF, .MACRO,
.LIST, and so on).

Absolute Sections

You will often have to access absolute addresses
in memory, regardless of where an assembly
routine is loaded in memory. For instance, a
program may need to access ROM routines.
Absolute sections allow you to define labels and
data space using the standard syntax and direc­
tives; this gives you the added capability of
specifying absolute (nonrelocatable) label ad­
dresses starting at any location in memory.

You should initiate absolute sections with the
directive .ASECT (for absolute section) and ter­
minate them with the directive .PSECT (for pro­
gram section, which is the default setting
during assembly). When the .ASECT directive
is encountered, the absolute section location
counter (ALC) becomes the current location
counter. Use the .ORG directive to set the ALC
to any desired value. Label definitions are non­
relocatable and are assigned the current value
of the ALC. The data directives .WORD,
.BLOCK, and .BYTE cause the ALC, instead of
the regular LC, to be incremented.

Data directives in an absolute section cannot
place initial values in the locations specified as
they can when used in the program section.
Thus, the absolute section serves as a tool for
constructing a template of label-memory ad­
dress assignments.

1-19

1-20

You can use the equate directive (.EQU) in an
absolute section, but restrict the labels to being
equated only to absolute expressions. The only
other directives allowed to occur within an abso­
lute section are .LIST, .NOLIST, .END, and the
conditional assembly directives.

Absolute sections may appear as global objects.

The following is a simple example of an abso­
lute section:

DSKOUT
DSKSTAT
CONS
BLAGUE

REMOUT
OFFSET

.ASECT ; start absolute
; section

.ORG ODFOOH ; set ALC to
; DFOO hex

.BYTE

.BYTE

.WORD

.BLOCK 4

.WORD

.EQU

.PSECT

; note - no data values
; assigned
; label assignments below

; DSKOUT = DFOO
; DSKSTAT = DFOI
; CONS = DF02
; BLAGUE = DF04
; (4 bytes)
; REMOUT = DF08

REMOUT + 2 ; OFFSET = DFOA

ASSEMBLER DIRECTIVES

Assembler directives (sometimes referred to as pseudo-ops) en­
able you to supply data to be included in the program and con­
trol the assembly process. Place assembler directives in the
source code as predefined identifiers preceded by a period (.).

The following metasymbols are used in the syntax definitions
for assembler directives:

• Special characters and items in capital letters must be en­
tered as shown.

• Items within angle brackets (< » are defined by the user.

• Items within square brackets ([]) are optional.

• The word or indicates a choice between two items.

• Items in lowercase letters are generic names for classes of
items.

The following terms are names for classes of items:

b

comment

expression

integer

label

value

The occurrence of one or more blanks.

Any legal comment. (Refer to the Com­
ment Field paragraph presented earlier in
this chapter.)

Any legal expression. (Refer to a prior
paragraph entitled Expressions.)

Any legal integer constant as defined ear­
lier in the section called Constants.

Any legal label. (Refer to the Label Field
paragraph earlier in this chapter.)

Any label, constant, or expression. Its de­
fault value is o.

1-21

value list A list of zero or more values delimited by
commas.

identifier A legal identifier as defined in a preced­
ing paragraph entitled Identifiers.}

idlist A list of one or more identifiers delimited
by commas.

id:integer list A list of one or more identifier-integer
pairs separated by a colon and delimited
by a comma. The colon:integer part is op­
tional; its default value is 1.

character string Any legal character
ceding paragraph
Strings.}

string. (See the pre­
entitled Character

file identifier Any legal name for a Pascal text file.

This example indicates that you may optionally include in the
label field, and that you must include a character string as an
operand.

[< label> 1 b .ASCII b < character string> [< comment> 1

Small examples are included after each definition to supply you
with a reference to the specific syntax of the directive.

Procedure-Delimiting Directives

1-22

Include at least one set of procedure-delimiting direc­
tives in every source program (including those intended
for use as stand-alone code files). The assembler is used
most frequently for assembling small routines intended
to be linked with a host compilation unit. Use the direc­
tives .PROC and .FUNC to identify and delimit assem­
bly language procedures; and .RELPROC and
.RELFUNC to identify and delimit dynamically relocat­
able procedures. Dynamically relocatable procedures

may reside in the code pool; they are subject to more of
the system's memory management strategies. (For
more detailed information about using these directives,
refer to the section, Program Linking and Relocation,
presented later in this chapter.)

.PROC

Form:

Example:

.FUNC

Form:

Example:

Identifies the beginning of an assem­
bly language procedure. The proce­
dure is terminated when another
delimiting directive occurs in the
source file.

[h] .PROC b < identifier > !. < integer > I [<comment > I

< identifier> is the name associated
with the assembly procedure.

< integer> indicates the number of
parameter words passed to this
routine. The default is O.

.PROC DLDRIVE.2

Identifies the beginning of an assem­
bly language function. The host com­
pilation unit expects a function to
return a result on the top of the
stack; otherwise, .FUNC is equivalent
to the .PROC directive.

[hI .FUNC b < identifier > !. <integer> I [< comment > I

<identifier> is the name associated
with the assembly procedure.

< integer> indicates the number of
parameter words passed to this
routine. The default is O.

.FUNC RANDOM

1-23

.RELPROC

Form:

Example:

.RELFUNC

Form:

Example:

1-24

Identifies the beginning of a dynami­
cally relocatable assembly language
procedure. Such assembly procedures
must be position-independent. (See
the Program Linking and Relocation
section In this chapter.) The proce­
dure is terminated when another de­
limiting directive occurs in the source
file .

[b] .RELPROC b < identifier> [, < integer>]
[<comment>]

< identifier> is the name associated
with the assembly procedure.

< integer> indicates the number of
parameter words passed to this
routine. The default is O.

.RELPROC POOF,3

Identifies the beginning of a dynami­
cally relocatable assembly language
function. The host compilation unit
expects this function to return a func­
tion result on top of the stack; other­
wise, .RELFUNC is equivalent to the
.RELPROC directive.

[b] .RELFUNC b <identifier> [, <integer>]
[< comment>]

< identifier> is the name associated
with the assembly function.

< integer> indicates the number of
parameter words passed to this
routine. The default is O.

.RELFUNC POOOF

~.

.END

Form:

Marks the end of an assembly source
file.

[<label>] [b].END

Data and Constant Definitions

.ASCII

Form:

Example:

.BYTE

Form:

Example:

Converts character strings to a series
of ASCII byte constants in memory.
The bytes are allocated sequentially
as they appear in the string. An iden­
tifier in the label field is assigned the
location of the first character allo­
cated in memory.

[< label>] b .ASCII b < character string>
[< comment>]

< character string> is any string of
printable ASCII characters delimited
by double quotes.

.ASCII "HELLO"

Allocates and initializes values in one
or more bytes of memory. Values
must be absolute byte quantities. The
default value is zero. An identifier in
the label field is assigned the location
of the first byte allocated in memory.

[<label>] [b] .BYTE b [valuelist] [<comment>]

TEMP .BYTE 4; code would be 04 hex

TEMPI .BYTE ; code would be 00 hex

1·25

.BLOCK

Form:

Example:

.WORD

Form:

Example:

1-26

Allocates and initializes a block of
consecutive bytes in memory. A byte
value must be an absolute quantity.
The default value is zero. An identi­
fier in the label field is assigned the
location of the first byte/word
allocated.

[<label>] [b] .BLOCK b <length>L <value>]
[<comment>]

< length> is the number of bytes to
allocate with the initial value
<value>.

TEMP .BLOCK 4,6H

The output code would be:

06 06 06 06 ;four bytes with value 06 hex

Allocates and initializes values in one
or more consecutive words of
memory. Values may be relocatable
quantities. The default value is zero.
An identifier in the label field is as­
signed the location of the first word
allocated.

[<label>] [b].WORD b <valuelist> [<comment>]

TEMP .WORD 0,2,,4

The output code would be:

0000
0002
0000 ; this is a default value.
000_4

Ll .WORD L2

.EQU

Form:

Example:

The output code would be a word con­
taining the address of the label L2.

Equates a value to a label. Labels
may be equated to an expression con­
taining relocatable labels, externally
referenced labels, and/or absolute con­
stants. The general rule is that labels
equated to values must be defined be­
fore use. The exception to this rule is
for labels equated to expressions con­
taining another label. Local labels
may not appear in the label field of an
equate statement.

<label> [b].EQU b <value> [<comment>]

BASE .EQU R6

Location Counter Modification

These directives affect the value of the location counter
(LC or ALC) and the location in memory of the code
being generated.

.ORG

Form:

Example:

.ALIGN

Form:

If used at the beginning of an abso­
lute assembly program, .ORG initial­
izes the location counter to < value> .
Using .ORG anywhere else generates
zero bytes until the value of the loca­
tion counter equals < value> .

[b].ORG b <value> [<comment>]

.ORG lOOOH

Outputs sufficient zero bytes to set
the location counter to a value that is
a multiple of the operand value.

[b] .ALIGN b <value> [<comment>]

1-27

Example: .ALIGN 2

This aligns the LC to a word
boundary.

Listing Control Directives

1-28

Use these directives to control the format of the as­
sembled listing file generated by the assembler. These
directives do not generate code, and their source lines
do not appear on assembled listings. (For a more de­
tailed description of an assembled listing, refer to the
Assembler Output paragraph, presented later in this
chapter.)

.TITLE

Form:

Example:

.ASCIILIST

Form:

Example:

Changes the title printed on the top
of each page of the assembled listing.
The title can be up to 80 characters
long. The assembler changes the title
to SYMBOLTABLE DUMP when
printing a symbol table; the title re­
verts back to its former value after
the symbol table is printed. The de­
fault value for the title is • '.

[b].TITLE b <character string> [<comment>]

.TITLE "MACROS"

Prints all bytes the .ASCII directive
generates in the code field of the
list file, creating multiple lines in the
list file if necessary. Assembly
begins with an implicit .ASCIILIST
directive.

[b].ASCIILIST [<comment>]

.ASCIILIST

.NOASCIILIST Limits the printing of data the
.ASCII directive generates to as
many bytes as will fit in the code
field of one line in the list file.

Form: [b] .NOASCIILIST [<comment>]

Example: .NOASCIILIST

.CONDLIST Lists source code contained in the
un assembled sections of conditional
assembly directives.

Form: [b] .CONDLIST [< comment >]

Example: .CONDLIST

.NOCONDLIST Suppresses the listing of source code
contained in the unassembled sections
of conditional assembly directives.
Assembly begins with an implicit
.NOCONDLIST directive.

Form: [b] .NOCONDLIST [<comment >]

Example: .NOCONDLIST

.NOSYMT ABLE Suppresses the printing of a symbol
table after each assembly routine in
an assembled listing.

Form: [b] .NOSYMTABLE [< comment >]

Example: .NOSYMTABLE

.PAGEHEIGHT Controls the number of lines printed
in an assembled listing between page
breaks. Assembly begins with an im­
plicit .PAGEHEIGHT 59 directive.

1-29

1-30

Form: [b] .PAGEHEIGHT < integer > [<comment >]

Example: .PAGEHEIGHT

.NARROWPAGE Limits the width of an assembled
listing to 80 columns. The symbol
table is printed in a narrow format,
source lines are truncated to a maxi­
mum of 49 characters, and title lines
on the page headers are truncated to
a maximum of 40 characters.

Form:

Example:

.PAGE

Form:

Example:

.LIST

Form:

Example:

[b] .NARROWPAGE [< comment >]

.NARROWPAGE

Continues the assembled listing on
the next page by sending an ASCII
form feed character to the assembled
listing.

[b] .PAGE

.PAGE

Enables output to the list file if a
listing is not already being generated.
You can use .LIST and .NOLIST to
examine certain sections of source
and object code without creating an
assembled listing of the entire pro­
gram. Assembly begins with an im­
plicit .LIST directive.

[b] .LIST

.LIST

.NOLIST Suppresses output to the list file, if it
is not already off.

Form: [b] .NOLIST

Example: .NOLIST

.MACROLIST Specifies that all subsequent macro
definitions have their macro bodies
printed when they are called in the
source program. Assembly begins
with an implicit .MACROLIST direc­
tive. The following section called
Macro Language, gives a detailed de­
scription of macro language.

Form: [b] .MACROLIST

Example: .MACROLIST

NOMACROLIST Specifies that all subsequent macro
definitions will not have their macro
bodies printed when they are called
in the source program. Only the
identified macro and parameter list
are included in the listing.

Form: [b] .NOMACROLIST

Example: .NOMACROLIST

.P A TCHLIST Lists occurrences of all back patches
of forward-referenced labels in the list
file. Assembly begins with an implicit
.P A TCHLIST directive. For a de­
tailed description of back patches,
refer to the paragraph, Forward Ref­
erences, in the section called Assem­
bler Output, presented later in this
chapter.

1-31

Form: [b].PATCHLIST

Example: .PATCHLIST

.NOPATCHLIST Suppresses the listing of back
patches of forward references.

Form: [b] .NOPATCHLIST

Example: .NOPATCHLIST

Program Linkage Directives

1-32

Linking directives enable communication between sepa­
rately assembled and/or compiled programs. The fol­
lowing section, Program Linking and Relocation, has a
detailed description of program linking .

. CONST

Form:

Example:

.PUBLIC

Form:

Example:

Allows the assembly procedure to ac­
cess globally declared constants in
the host compilation unit.

[b].CONSTb < idJist > [<comment >]

Each <id> is the name of a global
constant declared in the Pascal host.

.CONST LENGTH

Allows an assembly language routine
to reference variables declared in the
global data segment of the host com­
pilation unit.

[bj .PUBLIC b < idJist> [<comment >]

Each <id> is the name of a global
variable declared in the Pascal host.

.PUBLIC I,J ,LENGTH

.PRIVATE

Form:

Example:

.INTERP

Form:

Example:

.REF

Form:

Example:

Allows an assembly language routine
to store variables, which only the as­
sembly language routine can access,
in the global data segment of the host
compilation unit.

[b] .PRIVATE b <id:integer list> [<comment>]

Each < id > is treated as a label de­
fined in the source code. < integer>
determines the number of words of
space allocated for < id > .

.PRIVATE PRINT,BARRAY:9

Allows an assembly language proce­
dure to access code or data in the
p-code interpreter .. INTERP is a pre­
defined symbol for a processor­
dependent location in the resident
interpreter code; you may use offsets
from this base location to access any
code in the interpreter. To use this
feature correctly, you must know the
interpreter's jump vector for this lo­
cation. .INTERP is generally re­
stricted to systems applications.

valid when used in < expression>

ERR .EQU 12 ; hypothetical
; routine offset

BOMB .EQU .INTERP + ERR
JMP BOMBINT

Provides access to one or more labels
defined in other assembly language
routines.

[b] .REF <idlist> [<comment>]

.REF SCHLUMP

1-33

.DEF

Form:

Example:

Makes one or more labels, to be de­
fined in the current routine, available
for other assembly language routines
to reference.

[b] .DEF <idlist> [<comment»

.DEF FOON,YEEN

Conditional A ssembly Directives

1-34

A detailed description of conditional assembly features
is presented later in this chapter in the section, Con­
ditional Assembly.

.IF

Form:

Example:

.ENDC

Form:

Example:

.ELSE

Form:

Example:

Marks the start of a conditional sec­
tion of source statements.

[b] .IF b <expression> [= or < > <expression>]
[< comment>]

.IF DEBUG

Marks the end of a conditional sec­
tion of source statements.

[b].ENDC [<comment>]

.ENDC

Marks the start of an alternative sec­
tion of source statements.

[b).ELSE [<comment>]

.ELSE

Macro Definition Directives

A detailed description of macro language is presented
later in this chapter in the section, Macro Language.

.MACRO

Form:

Example:

. ENDM

Form:

Example:

Indicates the start of a macro
definition.

[b).MACRO b <identifier> [<comment»

<identifier> calls the macro which is
being defined.

.MACRO ADDWORDS

Marks the end of a macro definition .

[b).ENDM [<comment>]

.ENDM

Miscellaneous Directives

.INCLUDE Causes the assembler to start assem­
bling the file named as an argument
of the directive; when the end of this
file is reached, assembling resumes
with the source code that follows the
directive in the original file. This fea­
ture is useful for including a file of
macro definitions or for splitting up a
source program too large to be edited
as a single text file. You cannot use
.INCLUDE in an included source file
(that is, nested use of the directive)
and in a macro definition.

1-35

Form:

Example:

.ABSOLUTE

Form:

Example:

.ASECT

Form:

Example:

1-36

[b).INCLUDE b < file identifier > [< comment»

At least one blank character must
separate the comment field of the
.INCLUDE directive from the file
identifier.

.INCLUDE MYDISK:MACROS

Causes the following assembly
routine to be assembled without relo­
cation information. Labels become
absolute addresses and label arith­
metic is allowed in expressions .
. ABSOLUTE is valid only before the
first procedure-delimiting directive
occurs. Do not use .ABSOLUTE
when creating a Pascal external pro·
cedure. (Refer to the Program Linking
and Relocation section, presented
later in this chapter, for a detailed
description of absolute code files.)

[b) .ABSOLUTE [<comment »

.ABSOLUTE

Specifies the start of an absolute sec­
tion. For a detailed description of
.ASECT, refer to the Absolute Sec­
tions paragraph presented earlier in
this chapter.

[b) .ASECT [< comment»

.ASECT

.PSECT

Form:

Example:

.RADIX

Form:

Example:

Specifies the start of a program sec­
tion and terminates an absolute sec­
tion. (Refer to the Absolute Sections
paragraph presented earlier.)

[b].PSECT [<comment>]

.PSECT

Sets the current default radix to the
value of the operand. Allowable oper­
ands are: 2 (binary), 8 (octal), 10 (deci­
mal), and 16 (hexadecimal). The
default radix of an integer constant is
decimal with the 8086 Assembler.

[b].RADIX <integer> [<comment>]

.RADIX 10 ; decimal
; default radix

CONDITIONAL ASSEMBLY

Use conditional assembly directives to selectively exclude or
include sections of source code at assembly time. Initiate con­
ditional sections with the .IF directive and terminate them
with the .ENDC directive; they can contain the .ELSE direc­
tive. Use conditional expressions to control inclusion of con­
ditional sections. Conditional sections can contain other
conditional sections.

When the assembler encounters an .IF directive, it evaluates
the associated expression to determine the condition value. If
the condition value is false, the source statements following the
directive are discarded until a matching .ENDC or .ELSE is
reached. If you use the .ELSE directive in a conditional sec­
tion, source code before the .ELSE is assembled if the condi­
tion is true; and source code after the .ELSE is assembled if
the condition is false.

1-37

Overall syntax for a conditional section (using the meta lan­
guage described earlier in the Assemblers Directives para­
graph) is as follows:

.IF < conditional expression>
< source statements>

[.ELSE
< source statements> 1

.ENDC

Conditional Expressions

1-38

A conditional expression can take one of two forms: a
single expression or comparison of two character
strings or expressions. The first form is considered false
if it evaluates to zero; otherwise, it is considered true.
The second form of conditional expression compares for
equality or inequality (indicated by the symbols = and
< >, respectively).

Example:

.IF LABEL1-LABEL2 ; arithmetic expression

.IF %1 = "STUFF"

.ENDC

.ELSE

.ENDC

; This code is assembled only if
; difference is zero

; comparison expression

; This code is assembled only if
; outer condition is true and
; text of first macro parameter
; is equal to "STUFF".

; terminate nested section

; This code is assembled if outer
; condition is true

; This code is assembled if first
: condition is false

; terminate outer section

MACRO LANGUAGE

The assembler allows you to use a macro language in source
programs. This enables you to associate a set of source state­
ments with an identifying symbol. When the assembler
encounters this symbol (known as a macro identifier) in the
source code, it substitutes the corresponding set of source
statements (known as the macro body) for the macro identifier,
and assembles the macro body as if it had been included di­
rectly in the source program. You can use carefully designed
sets of macro definitions in all source programs to simplify
developing assembly language routines.

In addition, you can enhance the macro language by including
a mechanism for passing parameters (known as macro parame­
ters) to the macro body while it is being expanded. This allows
a single macro definition to be used for an entire class of
subtasks.

Here is a simple example:

: macro definition ...
. MACRO STRING : macro identifier is

t3}: Macro Body:

.BYTE %2

.ASCII %1

.ENDM

STRING
; %1 and %2 are

parameter
declarations

: 2nd parameter is
length byte

; 1 st parameter is
argument

; end macro definition

Further down in the source code,

STRING "WRITE",5. ; 1 st macro call
; parameters are

'"WRITE'''
and '5.'

STRING "TYPE SPACE",IO. ; 2nd macro call
; parameters are
: '''TYPE SPACE'"

and '10.'

1-39

this is what gets assembled:

.BYTE

.ASCII

.BYTE

. ASCII

5. ; data string declarations
"WRITE"

10 .
"TYPE SPACE "

Macro Definitions

You can place macro definitions anywhere in a source
program and delimit them with the directives .MACRO
and .ENDM. The macro identifier must be unique to
the source program, except when you redefine a pre­
defined machine instruction name as a macro identifier.
You should not include a macro definition within an­
other macro definition. However, you can include macro
calls. You can nest macro calls to a maximum depth of
five levels. A macro definition must occur before any
calls to that macro are assembled, but macro calls can
be forward referenced within the bodies of other macro
definitions.

Macro Calls

1-40

You can place macro calls anywhere in a source pro­
gram that code can be generated. A macro call consists
of a macro identifier followed by a list of parameters.
Delimit the parameters with commas and terminate
them with a carriage return or semicolon. Upon
encountering a macro call, source code is read from the
text of the corresponding macro body. Macro parame­
ters within the macro body are substituted with the
text of the matching parameter listed after the macro
identifier that initiated the call.

.-

Parameter Passing

You can reference macro parameters in a macro body
by using the symbol %n in an expression, where n is a
single nonzero decimal digit. Upon scanning this sym­
bol, the assembler replaces it with the text of the n'th
macro parameter. Note that macro parameters are not
expanded within the quotes of an ASCII data string.

Three cases are possible:

• The parameter exists - the substitution is made.

• The n'th parameter does not exist in the parame­
ter list being checked (less than n parameters were
passed); a null string is substituted.

• Another symbol in the form of %m is encountered
in the parameter list. If nested macro calls exist,
the text of the m'th parameter at the next higher
level of macro nesting is substituted; otherwise,
the symbol itself is assembled.

You must pass parameters without leading and trailing
blanks. You may pass all assembly symbols, except
macro calls, as parameters.

The following is an example of parameter passing m
macros:

.MACRO DOS
UNO %2.UN
SAR %1
.ENDM

.MACRO UNO
MOV %1.%2
SAL %2
.ENDM

1-41

In a program, the macro call,

DOS TROIS,DEUX

assembles as:

MOV DEUX,UN ; UNO got UN directly,
; but had to use DOS's
; 2nd param

SAL DEUX
SAR TROIS ; DOS used its own 1 st

; param

Scope of Labels in Macros

1-42

A problem arises in using macro language when the
definition of a macro body requires you to use branch
instructions and, thus, have labels. Declaring a regular
label in a macro body is incorrect if the macro is called
more than once, because the label would be substituted
twice into the source program and flagged by the as­
sembler as a previously defined label. You can use
location-counter-relative addressing, but it is prone to
errors in nontrivial applications. The best solution is to
generate labels that are local to the macro body; the as­
sembler 's local labels can do this.

Local label names that you declare in a macro body are
local to that macro; thus, a section of code that con­
tains a local label $1 and a macro call whose body also
has the local label $1, assembles without errors. (Con­
trast this with what happens when two occurrences of
$1 fall between two regular labels.) This feature allows
you to use local labels freely in macros without conflict­
ing with the rest of the program.

NOTE

Remember that a maximum of 21 local labels
can be active at any instant.

Local Labels as Macro Parameters

Passing local labels as parameters has a special
property. Unlike other macro parameters, local
labels are not passed as uninterpreted text. The
scope of a local label passed in a macro call does
not change as it is passed through increasing
levels of macro nesting, regardless of naming
conflicts along the way. One use of this prop­
erty is the passing of an address to a macro
that simulates a conditional branch instruction.

The following is an example of passing local
labels as macro parameters:

.MACRO EIN
JE $1
JNE %1

$1
.ENDM

In a program, the code,

TWIE
SUB ICHI.NI
EIN $1

RET
Sl

JMP SAN

assembles as:

TWIE
SUB
JE

JNE

S1

RET
81

JMP

ICHI.NI
$1 ; this references macro

local label
$1 : this references

outside $1
: macro local label

; outside $1
SAN

1-43

PROGRAM LINKING AND RELOCATION

The adaptable assembler produces either absolute or relocat­
able obj ect code that you may link, as required, to create exe­
cutable programs from separately assembled or compiled
modules. (The linker is described in Appendix A.)

Program linking directives generate information that the sys­
tem linker requires to link modules. Some of the advantages of
linking are:

• You can divide long programs into separately assembled
modules to avoid a long assembly, reduce the symbol
table size, and encourage modular programming
techniques.

• You can enable other linked modules to share modules.

• You can add utility modules to the system library for a
large number of programs to use as external procedures.

• Pascal programs can call assembly language procedures
directly.

The assembler generates linker information in both relocatable
and absolute code files. The system linker accesses this infor­
mation during linking and removes it from the linked code file.

Relocatable code includes information that allows a loader pro­
gram to place it anywhere in memory, while absolute (also
called core image) code files must be loaded into a specific area
of memory to execute properly. Assembly procedures running
in the Pascal system environment must always be relocatable;
the system interpreter performs loading and relocation at a
load address that the state of the system determines.

Absolute code will not run under the p-System environment -~
(under which high-level programs must run). However, relocat-
able code can run under the p-System. Code segments contain-
ing statically relocatable code remain in main memory

1-44

throughout the lifetime of their host program (or unit) and are
position-locked for that duration. Thus, relocatable code may
maintain and reference its own internal data space (or spaces).
In addition, statically relocatable code saves some space be­
cause its relocation information does not have to remain pres­
ent throughout the life of the program.

The directives .PROC and .FUNC designate statically relocat­
able routines; .RELPROC and .RELFUNC designate dynami­
cally relocatable routines. Code segments that contain
dynamically relocatable code do not necessarily occupy the
same location in memory throughout their host's lifetime, but
are maintained in the code pool along with other dynamic seg­
ments (mostly p-code); they can be swapped in and out of main
memory while the host program (or unit) is running. Thus, dy­
namically relocatable code cannot maintain internal data
spaces; data that is meant to last across different calls of the
assembly routine must be kept in your host data segments by
using .PRIVATEs and .PUBLICs. (You must make sure that
this is the case.)

• Data space is embedded in the code, but the code does not
move:

.PROC

.WORD

.END

FOON
SPACE

• The code moves, but data space is allocated in the host
compilation unit's global data segment:

.RELPROC

.PRIVATE

.END

FOON
SPACE

• Wrong: The code moves, and the data is embedded in the
code, so the data may be destroyed .

. RELPROC FOON

.WORD SPACE

.END

1-45

Code pool management is described in the UCSD p-System In­
ternal Architecture, TI part number 2232400-0001.

Program Linking Directives

1-46

This section describes the overall use of linking direc­
tives. All linking of assembly procedures involves word
quantities; it is not possible to externally define and
reference data bytes or assembly time constants. Argu­
ments of these directives must match the correspond­
ing name in the target module (a lowercase Pascal
identifier will match an uppercase assembly name, and
vice versa) and must not have been used before their
appearance in the directive. The assembler treats all
subsequent references to the arguments as special cases
of labels. The linker and/or interpreter resolves these
external references by adding the link-time and run­
time offsets to the existing value of the word quantity
in question. Thus, any initial offsets generated by
including external references and constants in expres­
sions are preserved.

Host Communicat ion Directives

Use the directives .CONST, .PUBLIC, and
.PRIV A TE to allow constants and data to be
shared between an assembly procedure and its
host compilation unit. For examples, see the
Program Linkage Directives paragraph in the
Assembler Directives section, presented pre­
viously in this chapter.

.CONST Allows an assembly procedure to
access globally declared con­
stants in the host compilation
unit. The linker patches all refer­
ences to arguments of .CONST
with a word containing the value
of the host's compile-time
constant.

.PUBLIC Allows an assembly procedure to
access globally declared vari­
ables in the host compilation
unit.

NOTE

You can use this directive to set up
pointers to the start of multiword
variables in host programs; it is not
limited to single word variables.

.PRIVATE Allows an assembly procedure to
declare variables in the global
data segment of the host compi­
lation unit that the host cannot
access. The optional length at­
tribute of the arguments allows
multiword data spaces to be allo­
cated; the default data space is
one word.

External Reference Directives

Use the directives .REF and .DEF to allow sep­
arately assembled modules to share data space
and subroutines. (For examples, refer to the
paragraph in this chapter entitled Example of
Linking to Pascal.)

.DEF

.REF

Declares a label to be defined in the
current program as accessible to
other modules. One restriction is im­
posed on its use; you cannot .DEF a
label that has been equated to a con­
stant expression or used in an expres­
sion containing an external reference.

Declares a label existing and .DEFed
in another module to be accessible to
the current program.

1-47

1-48

Program Identifier Directives

Use the directives .PROC, .FUNC, .RELPROC,
.RELFUNC, and .END as delimiters for source
programs. You must include at least one pair of
delimiting directives in every source program
(relocatable or absolute).

The identifier argument of the .PROC or
.RELPROC directive serves two functions: the
linker can reference it when linking an assembly
procedure to its corresponding host, and other
modules can reference it as an externally de­
clared label. Specifically, the declaration:

.PROC FOON ; procedure heading

in a source program is functionally equivalent in
the assembly environment to the following
statements:

.DEF FOON

FOON

; FOON may be externally
; referenced
; declare FOON as a label

This feature allows an assembly module to call
other (external and eventually linked in) assem­
bly modules by name. Use the .FUNC and
.RELFUNC directives when linking an assem­
bly function directly to a Pascal host program;
they are not intended for uses that involve link­
ing with other assembly modules.

The linker references the optional integer argu­
ment after the procedure identifier. It does this
to determine if the number of parameter words
passed by the Pascal host's external procedure
declaration matches the number specified by the
assembly procedure declaration. I t is not rele­
vant when linking with other assembly modules.

Linking Program Modules

For information on linking with the p-System's other
high-level languages, refer to the documentation on that
particular language.

Linking with a Pascal Program

External procedures and functions are assembly
language routines declared in Pascal programs.
To run Pascal programs with external declara­
tions, you must compile the Pascal program,
assemble the external procedure or function,
and link the two code files. You can simplify
linking by adding the assembled routine to the
system library with the librarian program.

A host program declares a procedure to be ex­
ternal in a syntactically similar manner to a for­
ward declaration. The procedure heading is
given (with parameter list, if any), followed by
the keyword EXTERNAL. Calls to the external
procedure use standard Pascal syntax. The com­
piler checks that calls to the external procedure
agree in type and number of parameters with
the external declaration. All parameters are
pushed on the stack in the order of their appear­
ance in the parameter list of the declaration;
thus, the right-most parameter in the declara­
tion will be on the top of the stack. (For a de­
tailed description of parameter passing
conventions, refer to the following paragraph
entitled Parameter Passing Conventions.)

You must make sure that the assembly lan­
guage routine maintains the integrity of the
stack. This includes removing all parameters
passed from the host, preserving the SS and SP
registers, and making a clean return to the
Pascal run-time environment using the return

1-49

1-50

address originally passed to it. A potentially
fatal system crash can occur if you do not do
this, since assembly routines are outside the
scope of the Pascal environment's run-time
error facilities. (For a detailed description of
Pascal/assembly language protocols, refer to the
section entitled Sharing PME Resources.)

An external function is similar to a procedure,
but has some differences that affect the way
that parameters are passed to and from the
Pascal run-time environment. First, the external
function call pushes one, two, or four words on
the stack before any parameters have been
pushed. Two or four words are pushed for a
function of type real, depending upon the real
size that your Texas Instruments Professional
Computer has been set to run on. One word is
pushed for all other types of functions. The
words are part of the p-machine's function call­
ing mechanism and are irrelevant to assembly
language functions; the assembly routine must
throw these away before returning the func­
tion's result. Second, the assembly routine must
push the proper number of words (two or four
for type real; one, otherwise) containing the
function result onto the stack before passing
control back to the host. The subsequent sec­
tion, Sharing PME Resources, describes a clean
way to do all of this without ever using an ac­
tual POP or PUSH operation.

Parameter Passing Conventions - The ability
of external procedures to pass any variables as
parameters gives you complete freedom to ac­
cess the machine-dependent representations of
machine-independent Pascal data structures;
however, with this freedom comes the responsi­
bility of respecting the integrity of the Pascal

run-time environment. To give you a better un­
derstanding of the Pascal/assembly language in­
terface, this section enumerates the p-machine's
parameter passing conventions for all data
types; it does not actually describe data repre­
sentations.

You may pass parameters by either value or by
reference (variable parameters). To manipulate
assembly language, variable parameters are
handled in a more straightforward fashion than
value parameters.

The word tas is used in the following sections
as an abbreviation for top of stack.

Variable Parameters - You should reference
variable parameters through a one-word pointer
passed to the procedure. Thus, the procedure
declaration:

procedure pass_by----.l1ame (var i.i : integer;
var q : some_type); external;

would pass three one-word pointers on the
stack; tos would be a pointer to q, followed by
pointers to j and i.

A Pascal external procedure declaration can
contain variable parameters lacking the usual
type declaration; this enables you to pass vari­
ables of different Pascal types through a single
parameter to an assembly routine. Untyped pa­
rameters are not allowed in normal Pascal pro­
cedure declarations.

The procedure declaration:

procedure untyped_var (var i; var q:
some_type); external;

contains the untyped parameter i.

1-51

1-52

Value Parameters - Value parameters are
handled according to their data type. Pass the
following types by pushing copies of their cur­
rent values directly on the stack: boolean, char,
integer, real, subrange, scalar, pointer, set, and
long integer. Other sections of this manual de­
scribe the number of words per data type and
the internal data format. For instance, the
declaration:

procedure pass_ by_value (i : integer; r : real);
external;

would pass two words on tos containing the
value of the real variable r followed by one word
containing the value of the integer variable i.

Pass variables of type record and array by
value in the same manner as variable parame­
ters; pointers to the actual variable are pushed
onto the stack. Pass variables of type P ACKED -~
ARRA Y OF CHAR and STRING by value with
a segment pointer (described in the next
section).

Pascal procedures protect the original variables
by using the passed pointer to copy their values
into a local data space for processing. You
should respect this convention and not alter the
contents of the original variables.

Accessing Byte Array
Parameters with a Segment Pointer

A segment pointer consists of two words on the
stack. The first word (tos) contains either NIL
or a pointer to a segment environment record.

If the first word is NIL, then the second word
(at tos-l) points to the parameter.

If the first word is not NIL, then to find the
parameter it is necessary to chain through some
records. The first word is a pointer and the
second word is an offset. The first word points
to a segment environment record. The second
word of this record contains a pointer to a
pointer which points to the base of the segment
where the parameter resides. The exact location
of the parameter is given by the second word on
the stack (tos-l), which is an offset into the code
segment.

This address chain may be described as follows
(offsets are word offsets):

(first_word + 1 l" "+ < contents of second_word >

For a full description of these mechanisms, refer
to the UCSD p-System Internal Architecture.

Example of Linking to Pascal

Note that in the following example the host program
passes control to the beginning of an assembly proce­
dure whether or not machine instructions are there.
Therefore, all data sections you allocate in the proce­
dure must either occur after the end of the machine in­
structions or have a jump instruction branch around
them.

PROGRAM EXAMPLE; { Pascal host program}
const size = 80;
var i.j.k; integer;

lstl: array [[0 .. 9) of char;
{ PRT and LST2 get allocated here}

procedure do--"othing; external;

function null_func(xxyxx.z:integerl
:integer; external;

1-53

1-54

begin
k:= 45;
do~othing;

j := null_func(k,size);
end.

.PROC DONOTHING ; underscores are not
significant in Pascal

.CONST SIZE

.PUBLIC I,LSTI

.DEF TEMPI

POP RETADR

; does nothing

PUSH RETADR

RETL

; can get at size
constant in host

; and also these two
; global vars
; this allows NULLFUNC

to get at tempi
; code starts here ...
; return addr pushed on

stack

; set up stack for
return

RETADR
TEMPI

.EQU

.wORD

; data area
TEMPI

.FUNC NULLFU l\:C.2

.PRIVATE PRT,LST2:9

.REF TEMPI

POP RETURN]
POP RETURN2

POP PRT
POP LST2+4

POP TEMPI

; performs null action

; end of procedure
DONOTHING

; 10 words of
private data

; references data temp
in DONOTHING

; code starts here

; save return address

; get parameter ' z'
; get parameter 'xxyxx'

; toss I word of junk

PUSH LST2+4 ; return xxyxx as
; result

PUSH RETURN2 ; restore subr link
PUSH RETURNI
RETL ; return to calling

; program
; data starts here

RETURN 1 .WORD
RETURN2 .WORD

; end of assembly
.END

Stand-Alone Applications

The UCSD p-System 8086/88/87 Assembler can produce
absolute (core image) code files for use outside of the
p-System's run-time environment.

The p-System does not include a linking loader or an
assembly language debugger, as the p-machine
architecture is not conducive to running programs
(whether high or low level) that must reside in a
dedicated area of memory. You are responsible for
loading and executing the object code file; do this by
using the p-System with the understanding that the
existing run-time environment may be jeopardized in
the process. (For some ideas on how to create a Pascal
loader program, refer in this chapter, to the paragraph
entitled Executing Absolute Code Files.)

Use the utility Compress for a much easier and more
versatile way of doing this task. It allows you to
relocate and compact code. Refer to the UCSD p­
System Program Development, TI part number
2232399-0001.

1-55

1-56

Assembling

Use the .ABSOLUTE and .ORG directives to
create an object code file suitable for use as an
absolute core image .. ABSOLUTE causes the
creation of nonrelocatable object code, and
.ORG can initialize the location counter to any
starting value. Limit a source file headed by
.ABSOLUTE to no more than one assembly
routine; sequential absolute routines do not
produce continuous object code and cannot be
successfully linked with one another to produce
a core image.

The code file format consists of a one-block code
file header followed by the absolute code. It is
terminated by one block of linker information;
thus, stripping off the first and last block of the
code file leaves a core image file. You should
use .ABSOLUTE in only one routine; though
linker information is generated, it is difficult to
link absolute code files to produce a correct core
image file.

Executing Absolute Code Files

The following section describes one method of
using the UCSD p-System to load and execute
absolute code files. The program outlined is not
the only solution. You can also use the system
intrinsics to read and/or move the code file into
the desired memory location; however, this
requires a knowledge of where the p-machine
emulator, operating system, and user program
reside in order to prevent system crashes by
accidentally overwriting them. The program
outlined below allows you the most freedom in
loading core images; the only constraint is that
the assembly code itself is not overwritten while

being moved to its final location. You can
detect this possibility before proceeding with
loading.

Note that in most cases, loading object code
into arbitrary memory locations while a Pascal
system is resident, adversely affects the sys­
tem; the absolute assembly language program is
then on its own, and rebooting may be neces­
sary to revive the Pascal system.

The loader program consists of:

• A Pascal host program that calls two ex­
ternal procedures

• One or more linkable absolute code files to
be loaded (.RELPROCs are not allowed)

• A small assembly procedure,
MOVE--..AND_GO, that moves the above
object code files from their system load
addresses to their proper locations and
then transfers control to them

• A small assembly language procedure,
LOAD--..ADDRESS, that returns the sys­
tem load addresses of the aforementioned
assembly code to the host program

1-57

The absolute code files are assembled to run at
their desired locations, and MOVE_AND_GO
contains the desired load addresses of each core
image. Both LOAD_ADDRESS and
MOVE_AND_GO have external references to
the core images; these are used to calculate the
system load address and code size of each image
file. The whole collection is linked and executed.
The Pascal host performs the following actions:

1. Prints the result of calling
LOAD_ADDRESS to determine whether
the area of memory in which the p-System
loaded the assembly code overlays the
known final load address of the core
images.

Issues a prompt to continue, so that the
program can be aborted if a conflict arises.

2. Calls MOVE~ND_GO.

OPERATION OF THE ASSEMBLER

You call the system assembler by pressing A with the oper­
ating system command menu displayed. This command exe­
cutes the file named SYSTEM.ASSMBLER. (Note the missing
E in the file name; this is required to conform to the file
system's restrictions on file name lengths.) If this is not the
name of the desired assembler version, be sure to save the
existing file SYSTEM.ASSMBLER under a different name
before changing the desired assembler ' s name to
SYSTEM.ASSMBLER. Assemblers that are not in use are
usually saved with the file name ASM8086.CODE.

1-58

Support Files

The UCSD p-System 8086/88/87 Assembler has three
associated support files: two opcodes files and an error
file. Always store these along with the assembler code
file.

In order for the assembler to run correctly, the proper
opcode files must be present on some on-line disk. The
assembler will search all units in increasing order of the
unit number until it finds them. The opcode files must
have the names 8086.0PCODES and 8087. FOPS. The
8087.FOPS file is neccessary only if you use 8087 in­
structions in your procedures. The opcode files contain
all predefined symbols (instruction and register names)
and their corresponding values for the associated as­
sembly language. If the 8086 .OPCODES file is not on­
line, the assembler writes <op{ilename> not on any
vol and aborts the assembly. (If 8086 .FOPS is not pres­
ent it will not abort the assembly.)

The assembler also has an error file that contains a list
of 8086/88/87 specific error messages. The error file
must have the name 8086.ERRORS. The error file need
not be present to run the assembler, but it can aid
greatly in eliminating syntax errors from a newly writ­
ten program.

Setting Up Input and Output Files

When you first call the assembler from the Command
menu, it attempts to open the work file as its input file;
if a work file exists, the first prompt will be the listing
prompt described in the next paragraph. Responses
to the listing prompt and the generated code file will
be named SYSTEM WRK.CODE. If not, the following
prompt appears:

Assemble ~hat text?

1-59

Enter the file name of the input file; then press the
RETURN key. Pressing only the RETURN key aborts
the assembly; otherwise, the following prompt appears:

To what codefi le?

Enter the desired name of the output code file, followed
by pressing the RETURN key.

Pressing only the RETURN key here causes the assem­
bler to name the output *SYSTEM. WRK.CODE, but
pressing $ causes the code file to be created with the
same file name prefix as the source file. The assembler
then displays its standard listing prompt.

Responses to Listing Prompt

1-60

Before assembling begins, the following prompt appears
on the console:

8086 Assembler
Output file for assembled listing: CR for n o n e

At this point, you may respond with one of the
following:

• Press the ESC key followed by the RETURN key
to abort the assembly and return to the command
menu

• CONSOLE: or #1:; this sends an assembled listing
of the source program to the screen during
assembly

• PRINTER: or #6:; this sends an assembled listing
to the printer unit

• REMOUT: or #8:; this sends an assembled listing
to the REMOTE unit

• A carriage RETURN; this causes the assembler to
suppress generation of an assembled listing and
ignore all listing directives.

• All other responses cause the assembler to write
the assembled listing to a text file of that name;
any existing text file of that name is removed in
the process. For instance, the following responses
cause a list file named LISTING. TEXT to be
created

65:listing.text
65:listing

In all cases, it is your responsibility to ensure that the
specified unit is on-line; the assembler will print an er­
ror message and abort if it is requested to open an off­
line I/O unit.

Output Modes

If you send an assembled listing to the console, then
that listing is displayed on the display unit during the
assembly process; however, if you send the listing to
some other unit or if no listing is generated, the assem­
bler writes a running account of the assembly process
to the display unit for your benefit. One dot is written
to the display unit for every line assembled; on every
50th line, the number of lines currently assembled is
displayed on the left side of the display unit (delimited
by angle brackets).

When the assembler processes an include file directive,
the console displays the current source statement:

• INCLUDE < fi l e name>

This allows you to keep track of which include file is
currently being assembled.

1-61

At the end of the assembly, the console displays the to­
tal number of lines assembled in the source program
and the total number of errors flagged in the source
program.

Responses to Error Prompt

1-62

When the assembler uncovers an error, it prints the er­
ror number and the current source statement (if appli­
cable to the error; this does not apply to undefined
labels and system errors). The assembler then attempts
to retrieve and print an error message from the errors
file. If the errors file cannot be opened, the file does not
exist or there is not enough memory, no message ap­
pears. This is followed by the menu:

<space>(continue). <esc>(terminate). E(dit

Pressing E calls the editor, pressing the space bar con­
tinues the assembly, and pressing the ESC key aborts
the assembly. The following restrictions exist when you
call the editor or attempt to continue:

• In most cases, pressing the space bar restarts the
assembly process with no problems; since assem­
bly language source statements are independent of
one another with respect to syntax, it is not diffi­
cult for the assembler to continue generating a
code file . Thus, a code file will exist at the end of
an assembly if you press the space bar for every
(nonfatal) error prompt that appears; of course, the
code produced may not be a correct translation of
your source program. The assembler considers cer­
tain system errors fatal; these errors abort the as­
sembly regardless of how you respond to the
preceding menu.

• If you press E, the system automatically calls the
editor, which opens the file containing the offend­
ing error and positions the cursor at the location
where the error occurred as long as you are assem­
bling the work file; otherwise the editor will
prompt for a file name. This feature always works
correctly when the source program is wholly con­
tained in one file. However, when you use include
files, set up the input and output files manually,
so the editor can position the cursor in the file
that contains the error. (Refer back to the para­
graph, Setting Up Input and Output Files.)

Miscellany

At the end of an assembly, an error message is
printed for each undefined label. In some cases,
you can ignore occurrences of undefined labels if
these labels are semantically irrelevant to the
desired execution of the code file. The resulting
code file will be perfectly valid, but the refer­
ences to the nonexistent labels will not be com­
pletely resolved.

In addition to generating a code file, the assem­
bler makes use of a scratch file, which is always
removed from the disk upon normal termination
of the assembly. Occasionally though, a system
error may occur that prevents the assembler
from removing this file; if this happens, a new
file named LINKER. INFO may appear. You
can easily remove it since it is entirely useless
outside of the assembler. This should occur
rarely, if at all.

1-63

ASSEMBLER OUTPUT

The assembler can generate two varieties of output files. It al­
ways produces a code file, but you can control whether or not
it generates an assembled listing of the source file.

An assembled listing displays each line of the source program,
the machine code generated by that line, and the current value
of the location counter. The listing may display the expanded
form of all macro calls in the source program. Any errors that
occur during assembly contain messages printed in the listing
file, usually immediately preceding the line of source code that
caused the error. A symbol table is printed at the end of the
listing; it is the directory for locating all labels declared in the
source program.

An assembled listing of a source program printed on hard copy
is one of the most effective debugging aids available for assem­
bly language programs; it is equally useful for off-line, mental
debugging and for use with system debuggers.

A description of the code file format is beyond the scope of this
document. See the UCSD p-System Internal Architecture.

Source Listing

1-64

When you respond to the assembler's listing prompt
with a list file name, a paginated assembled listing is
produced. The default listing is 132 characters wide and
55 lines per page. Each line of a source program, except
for source lines that contain list directives, is included
in the assembled listing. Source statements that con­
tain the equate directive, .EQU, have the resulting
value of the associated expression listed to the left of
the source line.

Macro calls are always listed including the list of macro
parameters and the comment field, if any. The macro is
expanded by listing the body (with all formal parame­
ters replaced by their passed values) if the macro list

option was enabled when the macro was defined. Macro
expansion text is marked in the assembled listing by
the character # just to the left of the source listing.
Comment fields in the definition of the macro body are
not listed in macro expansions.

Source lines with conditional assembly directives are
listed; however, source statements in an un assembled
part of a conditional section are not listed.

Error Messages

Error messages in assembled listings have the same
format as the error messages sent to the console, ex­
cept that the user menu is not included. (Refer to the
preceding section, Operation of the Assembler.)

Code Listing

The code field lies to the left of the source program
listing. It always contains the current value of the loca­
tion counter, along with either code generated by the
matching source statement or the value of an expres­
sion occurring in a statement that includes the equate
directive, .EQU. All are printed in the default list radix
of the assembler version being used in either hexa­
decimal or octal. (Refer in this chapter to the following
section, Sharing PME Resources.) Spaces delimit sepa­
rately emitted bytes and words of code on the same line.

Forward References

When the assembler is forced to emit a byte or
word quantity that is the result of evaluating
an expression that includes an undefined label,
it lists a * for each digit of the quantity printed
(for example, an unresolved hexadecimal byte is
listed as **, while an unresolved octal word ap­
pears as ******). If you use the .PATCHLIST

1-65

1-66

directive, the assembler lists patch messages
every time it encounters a label declaration that
enables it to resolve all occurrences of a forward
reference to that label. The messages (one for
every backpatch performed) appear before the
source statement that contains the label in
question; they look like this:

<location in codefile patched> * <patch value>

With this feature, the listing describes the con­
tents of each byte or word of emitted code. If
you want the assembled listing to be especially
clean and neat, use the .NOPATCHLIST direc­
tive to suppress the patch messages.

External References

When the assembler emits a word quantity that
results from evaluating an expression that con­
tains an externally referenced label, the value of
that label (which cannot be determined until
link time) is taken as zero. Therefore, the
emitted value reflects only the result of any as­
sembly time constants that were present in the
expression.

Multiple Code Lines

Sometimes, one source statement can generate
more code than can fit in the code field. In most
cases, the code is listed on successive lines of
the code field, with corresponding blank source
listing fields. Three exceptions are the .ORG,
.ALIGN, and .BLOCK directives; the code field
for these arguments is limited to as many bytes
as will fit in the code field of one line. This is
because most uses of these directives generate
large numbers of uninteresting byte values.

Symbol Table

The symbol table is an alphabetically sorted table of
entries for all symbols declared in the source program.
Each entry consists of three fields; the symbol identi­
fier, the symbol type, and the value assigned to that
symbol. The symbol identifiers are defined in a diction­
ary printed at the top of the symbol table. Symbols
equated to constants have their constant values in the
third field, while program labels are matched with their
location counter offsets; all other symbols have dashes
in their value field, as they possess no values relevant
to the listing.

SHARING PME RESOURCES

Calling and Returning

The p-machine emulator (PME) calls an assembly
routine using the call long (CALLL) operator (long re­
fers to intersegment). Thus, the top of the stack con­
tains a two-word return address upon entering into the
routine. In order to return from an assembly routine,
use the return long (RETL) operator. (Alternatively, the
return address can be popped and a jump long (JMPL)
operation used.)

Accessing Parameters

The 8086/88 processor contains instructions that facili­
tate accessing parameters passed to an assembly
routine. By moving the value of SP (which points to the
p-machine stack) into BP, you can access the parame­
ters by adding an offset of 4 bytes (to account for the
two-word return address). The first parameter, located
four bytes above the top of the stack, is actually the
last declared parameter in the host routine (the parame­
ters are pushed in the order that they are declared).

1-67

If a .FUNC assembly routine is to return a function
value, you should place it just above the last parameter
using the same accessing scheme. The size of the re­
turned function value is either one, two, or four words
as described in a previous paragraph called, Linking
with a Pascal Program.

You may give the RETL operator an operand that indi­
cates how many bytes to cut the stack back after pop­
ping its two-word return address. Use the size of the
data space occupied by the parameters. Thus, parame­
ters may be accessed and a clean return made without
ever using a specific POP or PUSH instruction.

The following is an example of this scheme of accessing
parameters and returning:

Mav BP,SP
Mav AX,(BP+4) ;Last Param
Mav BX,(BP+6) ;Middle Param
Mav CX,(BP+S) ;First Param

Mav (BP+IO),RSLT ;Function return val
; (if .FUNC)

RETL 6 ;Remove 3 params

Register Usage

1-68

All of the 8086/88 registers are available for use by
your assembly routines (the PME saves and restores
the register values that it needs). However, you must
preserve SS and SP. (You may create and use a private
stack if a minimum of 40 words is left available for
stack expansion during interrupts. This is a very dan­
gerous procedure, however, and is not recommended.)

NOTE

You must maintain the integrity of the
p-machine stack. If you do not, the results
cannot be predicted.

Upon entering into the assembly routine, SS points to
the base of the p-machine stack and data area. Also,
DS, ES, and CS are all equal to the base of the
p-System code segment.

Parameters that are passed as Pascal V AR variables
are p-System pointers to actual data. These pointers are
relative to SS. The following are examples.

MOV BX, (BP+4)
MOV AX, SS:(BX)

pick up parameter(pointer)
pick up V AR parameter value

.PRIV ATE and ,PUBLIC variables are also SS relative .

. BYTE quantities, .WORD quantities, and .REFed
labels are relative to CS, DS, or ES.

1-69/1-70

2

Overview of the CPU

Introduction 2-3

General Registers 2-3

Segment Registers 2-6

Flags 2-7

Addressing Modes 2-9
Register and Immediate Operands 2-9
Direct Addressing 2-9
Register Indirect Addressing 2-10
Based Addressing .. 2-10
Based Indexed Addressing 2-11
String Addressing 2-11

2-1/2-2

INTRODUCTION

This chapter briefly describes the registers, flags, and address­
ing modes of the 8086/88 CPU. For more detailed information
concerning the 8086/88 processor see the Intel 8086 Family
User's Manual.

GENERAL REGISTERS

The 8086/88 CPU contains eight 16-bit general registers. The
general registers are subdivided into two sets of four registers
each: the data registers, sometimes called the H and L group
for high and low; and the pointer and index registers, some­
times called the P and I group.

The data registers are unique because their upper (high) and
lower halves are separately addressable. This means that you
can use each data register interchangeably as a 16-bit register
or as two 8-bit registers. The other CPU registers always are
accessed as 16-bit units only. You can use the data registers
without constraint in most arithmetic and logic operations. In
addition, some instructions use certain registers implicitly;
thus allowing compact, yet powerful, encoding.

The pointer and index registers can also be used in most arith­
metic and logic operations. Except for BP, the P and I regis­
ters are also used implicitly in some instructions.

2-3

Data Register Group

Accumulator: AX (16 Bits)
AH (Bits 8-15)
AL (Bits 0-7)

Base: BX (16 Bits)
BH (Bits 8-15)
BL (Bits 0-7)

Count: CX (16 Bits)
CH (Bits 8-15)
CL (Bits 0-7)

Data: DX (16 Bits)
DH (Bits 8-15)
DL (Bits 0-7)

Pointer and Index Register Group Registers

SP Stack Pointer

BP Base Pointer

SI Source Index

DI Destination Index

2-4

Implicit Use of General Registers

AX Word Multiply
Word Divide
Word I/O

AL Byte Multiply
Byte Divide
Byte I/O
Translate
Decimal Arithmetic

AH Byte Multiply
Byte Divide

BX Translate

CX String Operations
Loops

CL Variable Shift and Rotate

DX Word Multiply
Word Divide
Indirect I/O

SP Stack Operations

SI String Operations

DI String Operations

2-5

SEGMENT REGISTERS

The megabyte of memory that the 8086/88 can address is
divided into logical segments of up to 64K bytes each.
(Memory segmentation is described in detail in the Intel 8086
Family User's Manual.) The CPU has access to four segments
at a time. Their base addresses (starting locations) are
contained in the segment registers. The following table lists the
segment registers:

Segment Registers

CS Code Segment

DS Data Segment

SS Stack Segment

ES Extra Segment

The CS register points to the current code segment; instruc­
tions are fetched from this segment. The SS register points to
the current stack segment; stack operations are performed on
locations in this segment. The DS register points to the current
data segment; it generally contains program variables. The ES
register points to the current extra segment, which also is typi­
cally used for data storage.

Programs can access the segment registers and several instruc­
tions can manipulate them. See the Intel 8086 Family User's
Manual for suggested guidelines for using segment registers.

2-6

FLAGS

The 8086/88 has six I-bit status flags that reflect certain prop­
erties of the result of an arithmetic or logic operation. A group
of instructions is available that allows a program to alter its
execution depending on the state of these flags; that is, depend­
ing upon the result of a prior operation. Different instructions
affect the status flags differently; in general, however, the flags
reflect the following conditions:

If AF (the auxiliary carry flag) is set, there has been a carry
out of the low nibble (4-bit) into the high nibble, or a borrow
from the high nibble into the low nibble of an 8-bit quantity.
This flag is used by decimal arithmetic instructions.

If CF (the carry flag) is set, there has been a carry out of, or a
borrow into, the high-order bit of the result (8- or I6-bit). The
flag is used by instructions that add and subtract multibyte
numbers. Rotate instructions can also isolate a bit in memory
or a register by placing it in the carry flag.

If OF (the overflow flag) is set, an arithmetic overflow has oc­
curred; that is, a significant digit has been lost because the size
of the result exceeded the capacity of its destination location.
An Interrupt On Overflow instruction is available that gener­
ates an interrupt in this situation.

If SF (the sign flag) is set, the high-order bit of the result is a
1. Since negative binary numbers are represented in the 8086/
88 in standard two's complement notation, SF indicates the
sign of the result (0 = positive, I = negative).

If PF (the parity flag) is set, the result has even parity, an even
number of I bits. This flag can be used to check for data trans­
mission errors.

If ZF (the zero flag) is set, the result of the operation is o.

To alter processor operations, programs can set and clear three
additional control flags:

2-7

Setting DF (the direction flag) causes string instructions to
auto-decrement; that is, to process strings from high addresses
to low addresses, or from right to left. Clearing DF causes
string instructions to auto-increment, or to process strings
from left to right.

Setting IF (the interrupt-enable flag) allows the CPU to recog­
nize external (maskable) interrupt requests. Clearing IF dis­
ables these interrupts. IF does not affect either nonmaskable
external or internally generated interrupts.

Setting TF (the trap flag) puts the processor into single-step
mode for debugging. In this mode, the CPU automatically gen­
erates an internal interrupt after each instruction, allowing a
program to be inspected as it executes instruction by instruc­
tion. The Intel 8086 Family User 's Manual contains an example
showing the use of TF in a single-step and breakpoint routine.

The following is a summary of the flags:

CF Carry

PF Parity

AF Auxiliary Carry

ZF Zero

SF Sign

OF Overflow

IF Interrupt-Enable

DF Direction

TF Trap

2-8

-----.

ADDRESSING MODES

............... The 8086/88 provides many different ways to access instruction
operands. Operands may be contained in registers, within the
instruction itself, in memory, or in I/O ports. In addition, the
addresses of memory can be calculated in several different
ways. This section briefly describes these addressing modes.
For a more complete description, see the Intel 8086 Family
User's Manual.

Register and Immediate Operands

Instructions that specify only register operands are
generally the most compact and fastest executing of all
instruction forms. This is because the register
addresses are encoded in instructions in just a few bits,
and because these operations are performed entirely
within the CPU (no bus cycles are run). Registers may
serve as source operands, destination operands, or both.

Immediate operands are constant data contained in an
instruction. The data may be either 8 or 16 bits long.
Immediate operands can be accessed quickly because
they are available directly from the instruction queue;
like a register operand, no bus cycles need be run to ob­
tain an immediate operand. Immediate operands are
limited because they may only serve as source operands
and they are constant values.

Direct Addressing

Direct addressing is the simplest memory addressing
mode; it involves no registers. The effective address is
taken directly from the displacement field of the in­
struction. (The effective address is the unsigned I6-bit
number that expresses the operand's distance in bytes
from the beginning of the segment in which it resides.)
The default segment is the current data segment. Di­
rect addressing is typically used to access simple vari­
ables (scalars).

2-9

Register Indirect Addressing

The effective address may be taken directly from one of
the base or index registers (BX, BP, SI, or DI). One in­
struction can operate on many different memory loca­
tions if the value in the base or index register is
updated appropriately. The Load Effective Address
(LEA) and arithmetic instructions can be used to
change the register value.

You can use any l6-bit general register for register indi­
rect addressing with the JMP or CALL instructions.

Based Addressing

2-10

In based addressing, the effective address is the sum of
a displacement value and the content of register BX or
register BP. Specifying BX as a base register directs
the Bus Interface Unit to obtain the operand from the
current data segment (DS), unless a segment override
prefix is present. Specifying BP as a base register di­
rects the Bus Interface Unit (see the Intel manual) to
obtain the operand from the current stack segment
(SS), unless a segment override prefix is present. This
makes based addressing with BP a very convenient
way to access stack data (the Intel manual contains
examples of this).

Based addressing also provides a straightforward way
to address structures that may be located at different
places in memory. You can point a base register to the
base of a structure and address elements of the struc­
ture by their displacements from the base. By simply
changing the base register, you can access a different
structure.

Based Indexed Addressing

Based indexed addressing generates an effective ad­
dress that is the sum of a base register, an index regis­
ter, and a displacement. Based indexed addressing is a
very flexible mode because two address components can
be varied at execution time.

Based indexed addressing provides a convenient way
for a procedure to address an array allocated on a
stack. Register BP can contain the offset of a reference
point on the stack, typically the top of the stack after
the procedure has saved registers and allocated local
storage. Using a displacement value, you can express
the offset of the beginning of the array from the refer­
ence point, and you can use an index register to access
individual array elements.

Based indexed addressing can also access arrays con­
tained in structures and matrices (two-dimensional
arrays).

String Addressing

String instructions do not use the normal memory ad­
dressing modes to access their operands. Instead, the
index registers are used implicitly. When a string in­
struction is executed, S1 is assumed to point to the
first byte or word of the source string in the current
data segment (DS), and DI is assumed to point to the
first byte or word of the destination string in the cur­
rent extra segment (ES). In a repeated string operation,
SI and D1 are automatically adjusted up or down ac­
cording to the direction flag (DF) to obtain subsequent
bytes or words.

2-11/2-12

3

Operators

Introduction 3-3

Syntax Conventions ... 3-3

The 8086/88 Instruction Set .. 3-7

8087 Floating Point Operators 3-34

3-1/3-2

3

Operators

Introduction 3-3

Syntax Conventions 3-3

The 8086/88 Instruction Set .. 3-7

8087 Floating Point Operators 3-34

3-1/3-2

INTRODUCTION

This chapter describes how the UCSD p-System 8086/88/87
Assembler notational conventions differ from the Intel stan­
dard assembler.

Also, each of the 8086/88 and 8087 operators is briefly de­
scribed. These descriptions are intended for quick reference use
only. For detailed information concerning the instruction set,
see the Intel 8086 Family User's Manual.

SYNTAX CONVENTIONS

The UCSD p-System 8086/88/87 Assembler differs in some re­
spects from the standard Intel assembler. This section lists
these differences.

Assembler Directives - None of the Intel assembler directives
or operators are implemented. Instead, the assembler directives
described in Chapter 1 of this manual are available.

Parentheses - Enclose index or base register references in a
memory operand in parentheses, not square brackets; for
example, FIRST(BX) rather than FIRST[BX].

Angle Brackets - Group expressions within angle brackets
« », not in parentheses.

Immediate Byte - Code ADD immediate byte to memory op­
erand as:

ADDBIM memop,immedbyte

to distinguish it from the ADD memop, immedword which is
the default. Similarly, MOVBIM, ADCBIM, SUBBIM,
SBBBIM, CMPBIM, ANDBIM, ORBIM, XORBIM, and
TESTBIM are added to the vocabulary.

3-3

Memory Byte - Code INC memory byte as:

INCMB memop

to distinguish it from INC memory word which is the default.
Similarly, DECMB, MULMB, IMULMB, DIVMB, IDIVMB,
NOTMB, NEGMB, ROLMB, RORMB, RCLMB, RCRMB,
SALMB, SHLMB, SHRMB, and SARMB are added to the vo­
cabulary to specify memory byte operands.

MUL and DIV Byte - In MUL, IMUL, DIV, and IDIV the
single memory operand form:

MUL me mop

implies a word operation. To specify a byte operation, you can
use either MULMB memop, or the form:

MUL AL,memop

The same holds true for IMUL, DIV, and IDIV. (Note that
DIV AL,memop is rather misleading, as the actual operation
would be AX/memory-byte.)

MOV Substitute for LEA - For LEA reg,label or LEA
reg,label + const the assembler substitutes MOV reg,immedval
where immedval = label or label + const. This saves four clock
times (four versus eight).

IN and OUT - The normal form of IN and OUT is IN ac,port
or IN ac,DX and OUT port,ac or OUT DX,ac where ac = AL
denotes an 8-bit data path and ac = AX denotes a 16-bit path.
Since the accumulator is the only possible register source/
destination (DX specifies port = address in DX), single operand
forms are also provided: INB and OUTB for byte data, and
INW and OUTW for 16-bit data. The syntax is INB port or
INB DX.

In the two-operand forms of IN and OUT, the order of the op­
erands is not important; thus OUT ac,DX or OUT ac,port will
be acceptable.

3-4

String Operations - The mnemonics for the string operations
are suffixed with B or W to denote byte or word operations:

.-... thus MOVSB and MOVSW, CMPSB and CMPSW, SCASB
and SCASW, LODSB and LODSW, and STOSB and STOSW
are in the vocabulary, but MOVS-STOS are not.

Segment Override - XLA T and the string instructions (nine)
have implied memory operands and nothing is required to be
coded in the operand field. However, to permit you to specify a
segment override prefix in the case of XLAT, MOVSBI
MOVSW, CMPSB/CMPSW, and LODSB/LODSW, the assem­
bler permits operand expressions for these instructions.

NOTE

Only the default segment for SI, namely DS, can be
overridden. The segment for DI is ES and cannot be
overridden. A segment override prefix of DS applied
to SI does not generate a segment override prefix.

If you were to write these operations with operands, they
would have this syntax:

XLAT
MOVS{B/W}
CMPS{B/W}
SCAS{B/W}
LODS{B/W}
STOS{B/W}

AL,(BX)
(DI),[seg:](SI)
(DI),[seg:](SI)
(DI),AX
AX,[seg:](SI)
(DI),AX

You may prefix the string instructions with a REP (repeat) in­
struction of some type. The assembler flags an error if you
specify both REP and a segment override.

In addition to the forms DS:memop, and so on, you may write
a separate mnemonic SEG followed by a segment register
name in a statement preceding the instruction mnemonic. For
example:

MOV AX,ES:A VALUE

3-5

is equivalent to

SEG ES MOV AX,AVALUE

Long Jumps, Calls, and Returns - Implement intersegment
CALL, RET, and JMP as follows:

1. The mnemonics CALLL, RETL, and JMPL specifically
designate intersegment operations.

2. An indirect address (for example, (reg) or (label)) is as­
sembled in standard fashion with a mod op rim effective
address byte possibly followed by displacement bytes. The
memory location referenced must hold the new IP, and
the next higher location must hold the new CS.

3. The direct address form must have two absolute operands:

CALLL exprl,expr2

where:

exprl is the new IP and expr2 becomes the new CS. Con­
stants or external symbols (for example, .REF definitions)
qualify as absolute operands.

8087 Mnemonics - Mnemonics for the 8087 floating point
operations are standard except for some of the memory refer­
ence operations, where a letter suffix is appended to denote the
operand size:

D Short real or short integer (double word)

Q Long real or long integer (quad word)

W Integer word

T Temporary real (ten byte)

3-6

The D and Q suffixes apply to the following real ops:

F ADD, FCOM, FCOMP, FDIV, FDIVR, FMUL,
FST,FSUB,FSUBR,FLD,FSTP

for example, FADDD, FADDQ, and so on.

The T suffix applies only to FLD and FSTP.

The W and D suffixes apply to the following integer ops:

FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FIMUL,
FIST, FISUB, FISUBR, FILD, FISTP

The Q suffix for long integers applies only to FILD and
FISTP.

THE 8086/88 INSTRUCTION SET

The following are the 8086/88 opcode mnemonics recognized by
the UCSD p-System 8086/88/87 Assembler. The differences be­
tween these mnemonics and the standard Intel mnemonics are
discussed in the beginning of this chapter. This is meant as a
quick reference list only. For a detailed description of the 8086/
88 operations, see the Intel 8086 Family Users' Manual.

NOTE

The special case mnemonics (which are not Intel
standard), such as ADDBIM, are listed with the
standard mnenonic to which they correspond; for
example, ADD. This does not mean that the special
case mnemonics indicate operations that take all of
the addressing modes listed. For example, ADDBIM
is meant for adding immediate bytes only. The mne­
monic ADD is meant to take any of the other ad­
dressing modes listed and defaults to a word add if
an immediate quantity is indicated.

3-7

The following list of 8086/88 code mnemonics includes a section
on flags which informs you of the effect each operation has on
the flags (discussed in Chapter 2). The following list explains
the codes used below.

u Flag is undefined after this operation

x Flag is affected after this operation

1 Flag is set after this operation

o Flag is cleared after this operation

blank Flag is unaffected

AAA (ASCII Adjust for Addition)

Form:

Flags:

Operands:

Coding Example:

AAA (no operands)

OD I TSZAPC
U UUXUX

None

AAA

AAD (ASCII Adjust for Division)

Form: AAD (no operands)

Flags:

Operands:

Coding Example:

ODI TSZAPC
U XXUXU

None

AAD

AAM (ASCII Adjust for Multiply)

Form:

Flags:

Operands:

Coding Example:

3-8

AAM (no operands)

ODITSZAPC
U XXUXU

None

AAM

AAS (ASCII Adjust for Subtraction)

Form: AAA (no operands)
.----,

Flags: o D I TSZAPC
U UUXUX

Operands: None

Coding Example: AAS

ADC (Add with Carry)
ADCBIM (Add with Carry, Immediate Byte)
ADCM (Add with Carry, Direct Addressing Mode)

Form: ADC destination, source

Flags: o D I TSZAPC
X XXXXX

Operands: register, register
register, memory
memory, register

~,

register, immediate
memory, immediate
accumulator, immediate

Coding Example: ADC AX,SI

ADD (Addition)
ADDBIM (Add Immediate Byte)
ADDM (Add Direct Addressing Mode)

Form: ADD destination, source

Flags: o D I TSZAPC
X XXXXX

Operands: register, register
register, memory
memory, register

.---, register, immediate
memory, immediate
accumulator, immediate

Coding Example: ADD DI,(BX).ALPHA

3-9

AND (Logical AND)
ANDBIM (Logical AND, Immediate Byte)
ANDM (Logical AND, Direct Addressing Mode)

Form:

Flags:

Operands:

Coding Example:

AND destination, source

ODr TSZAPC
o XXUXO

register, register
register, memory
memory, register
register, immediate
memory, immediate
accumulator, immediate

AND CX,FLAG_WORD

CALL (Call a Procedure)
CALLL (Long Call of a Procedure)

Form: CALL target

Flags: 0 D r T S ZAP C

Operands:

Coding Example:

near-proc
far-proc
memptr 16
regptr 16
memptr 32

CALL NEAR_PROC

CBW (Convert Byte to Word)

Form:

Flags:

Operands:

Coding Example:

3-10

CBW (no operands)

ODr TSZAPC

None

CBW

CLC (Clear Carry Flag)

Form:

Flags:

Operands:

Coding Example:

CLC (no operands)

ODI TSZAPC
o

None

CLC

CLD (Clear Direction Flag)

Form:

Flags:

Operands:

Coding Example:

CLD (no operands)

ODI TSZAPC
o

None

CLD

CLI (Clear Interrupt Flag)

Form:

Flags:

Operands:

Coding Example:

CLI (no operands)

ODI TSZAPC
o

None

CLI

CMC (Complement Carry Flag)

Form:

Flags:

Operands:

Coding Example:

CMC (no operands)

ODITSZAPC
X

None

CMC

3-11

CMP (Compare Destination to Source)
CMPBIM (Compare Immediate Byte)
CMPM (Compare Direct Addressing Mode)

Form:

Flags:

Operands:

Coding Example:

CMP destination, source

ODI TSZAPC
X XXXXX

register, register
register, memory
memory, register
register, memory
memory, immediate
accumulator, immediate

CMP (BP+2),SI

CMPSW (Compare String, Wordwise)
CMPSB (Compare String, Bytewise)

Form:

Flags:

Operands:

Coding Example:

CMPSB dest-string, source-string

ODI TSZAPC
X XXXXX

dest-string, source-string
(repeat) dest-string, source-string

COMPSB BUFF1, BUFF2

CWD (Convert Word to Double Word)

Form:

Flags:

Operands:

Coding Example:

3·12

CWD (no operands)

ODI TSZAPC

None

CWD

DAA (Decimal Adjust for Addition)

Form: DAA (no operands)

Flags:

Operands:

Coding Example:

ODI TSZAPC
X XXXXX

None

DAA

DAS (Decimal Adjust for Subtraction)

Form:

Flags:

Operands:

Coding Example:

DAS (no operands)

ODI TSZAPC
U XXXXX

None

DAS

DEC (Decrement by One)
DECMB (Decrement Memory Byte)

Form:

Flags:

Operands:

Coding Example:

DEC destination

ODI TSZAPC
X XXX X

reg16
reg8
memory

DEC AX

DIV (Division, Unsigned)
D IVMB (Division, Unsigned, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

DIV source

ODI TSZAPC
U UUUUU

reg8
reg16
mem8
mem16

DIV TABLE(SI)

3-13

ESC (Escape)

Form:

Flags:

Operands:

Coding Example:

HLT (Halt)

Form:

Flags:

Operands:

Coding Example:

ESC external-opcode, source

001 TSZAPC

immediate, memory
immediate, register

ESC 20, AL

HLT (no operands)

ODITSZAPC

None

HLT

IDIV (Integer Division)
IDIVMB (Integer Division, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

IDIV source

001 TSZAPC
U UUUUU

reg8
reg16
mem8
mem16

IDIV (BX).DIVISOR_ WORD

IMUL (Integer Multiplication)
IMULMB (Integer Multiplication Memory Byte)

Form:

Flags:

Operands:

Coding Example:

3-14

IMUL source

ODITSZAPC
X UUUUX

reg8
reg16
mem8
mem16

IMUL CL

IN (Input Byte or Word)
INB (Input Byte)
INW (Input Word)

Form:

Flags:

Operands:

Coding Example:

IN accumulator, port

ODI TSZAPC

accumulator, immed8
accumulator, DX

IN AX, DX

INC (Increment by One)
INCMB (Increment Memory Byte)

Form:

Flags:

Operands:

Coding Example:

INT (Interrupt)

Form:

Flags:

Operands:

Coding Example:

INC destination

ODI TSZAPC
X XXXXX

reg16
reg8
memory

INC CX

INT interrupt-type

ODI TSZAPC
o 0

immed8 (type=3)
immed8 (type < > 3)

INT 3

INTR (External Maskable Interrupt)

Form:

Flags:

Operands:

Coding Example:

Interrupt if INTR and IF= 1

ODI TSZAPC
o 0

None

Not applicable

3-15

INTO (Interrupt if Overflow)

Form:

Flags:

Operands:

Coding Example:

INTO (no operands)

ODI TSZAPC
o 0

None

INTO

IRET (Interrupt Return)

Form:

Flags:

Operands:

Coding Example:

IRET (no operands)

ODI TSZAPC
RRRRRRRRR

None

IRET

JA/JNBE (Jump if Above/Jump if not Below nor Equal)

Form: J A short-label
JNBE short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JA ABOVE

JAE/JNB (Jump if Above or Equal/Jump if not Below)

Form: J AE short-label
JNB short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JAE ABOVE_EQUAL

3-16

-----.

JB/JNAE (Jump if Below/Jump if not Above nor Equal)

Form: JB short-label
JNB short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JB BELOW

JBE/JNA (Jump if Below or Equal/Jump if not Above)

Form: JBE short-label
JNA short-label

Flags: ODITSZAPC

Operands: short-label

Coding Example: JNA NOT_ABOVE

JC (Jump if Carry)

Form: JC short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JC CARRY _SET

JCXZ (Jump if CX is Zero)

Form: JCXZ short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JCXZ COUNT_DONE

JE/JZ (Jump if Equal/Jump if Zero)

Form: JE short-label
JZ short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JZ ZERO

3-17

JG/JNLE (Jump if Greater/Jump if not Less nor Equal)

Form:

Flags:

Operands:

Coding Example:

JG short-label
JNLE short-label

ODITSZAPC

short-label

JG GREATER

JGE/JNL (Jump if Greater or Equal/Jump if not Less)

Form: JGE short-label
JNL short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JGE GREATER_EQUAL

JL/JNGE (Jump if Less/Jump if not Greater nor Equal)

Form: JL short-label
JNGE short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JL LESS

JLE/JNG (Jump if Less or Equal/Jump if not Greater)

Form: JLE short-label
JNG short-label

Flags: ODI TSZAPC

Operands: short-label

3-18

JMP (Jump)
JMPL (Jump Long)

Form:

Flags:

Operands:

Coding Example:

JMP target

ODI TSZAPC

short-label
near-label
far-label
memptr16
regptr16
memptr32

JMP NEAR_LABEL

JNC (Jump if not Carry)

Form: JNC short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example:

JNE/JNZ (Jump if not Equal/Jump if not Zero)

Form:

Flags:

Operands:

Coding Example:

JNE short-label
JNZ short-label

ODI TSZAPC

short-label

JNO (Jump if not Overflow)

Form:

Flags:

Operands:

Coding Example:

JNO short-label

ODITSZAPC

short-label

JNO NO_OVERFLOW

3-19

JNP/JPO (Jump if not Parity/Jump if Parity Odd)

Form: JNP short-label
JPO short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JPO ODD_PARITY

JNS (Jump if not Sign)

Form:

Flags:

Operands:

Coding Example:

JNS short-label

ODI TSZAPC

short-label

JNS POSITIVE

JO (Jump if Overflow)

Form: JO short-label

Flags: ODI TSZAPC

Operands: short-label

Coding Example: JO SIGNED_OVERFLOW

JP/JPE (Jump if Parity/Jump if Parity Even)

Form: JP short-label
JPE short-label

Flags:

Operands:

Coding Example:

JS (Jump if Sign)

Form:

Flags:

Operands:

Coding Example:

3-20

ODI TSZAPC

short-label

JS short-label

ODI TSZAPC

short-label

JS NEGATIVE

LAHF (Load AH from Flags)

Form: LAHF (no operands)

-------- Flags: o D I TSZAPC

Operands: None

Coding Example: LAHF

LDS (Load Pointer Using DS)

Form: LDS destination, source

Flags: ODI TSZAPC

Operands: reg16, memptr32

Coding Example: LDS SI,DATA.SEG(DI)

LEA (Load Effective Address)

Form: LEA destination, source

Flags: ODI TSZAPC

Operands: reg16, memptr16

Coding Example: LEA BX,(BP)(DI)

LES (Load Pointer Using ES)

Form: LES destination, source

Flags: ODI TSZAPC

Operands: reg16, memptr32

Coding Example: LES DI,(BX).TEXT_BUFF)

LOCK (Lock Bus)

Form: LOCK (no operands)

Flags: o D I TSZAPC

----- Operands: None

Coding Example: LOCK XCHGFLAG,AL

3-21

LODSB (Load String Bytewise)
LODSW (Load String W ordwise)

Form:

Flags:

Operands:

Coding Example:

LOOP (Loop)

Form:

Flags:

Operands:

Coding Example:

LODS source-string

ODI TSZAPC

source-string
(repeat) source-string

REP LODS NAME

LOOP short-label

ODI TSZAPC

short-label

LOOP AGAIN

LOOPE/LOOPZ (Loop if Equal/Loop if Zero)

Form:

Flags:

Operands:

Coding Example:

LOOPE short-label
LOOPZ short-label

ODITSZAPC

short-label

LOOPE AGAIN

LOOPNE/LOOPNZ (Loop if not Equal/Loop if not Zero)

Form: LOOPNE short-label
LOOPNZ short-label

Flags:

Operands:

Coding Example:

3-22

ODI TSZAPC

short-label

LOOPNE AGAIN

NMI (External Nonmaskable Interrupt)

Form:

Flags:

Operands:

Coding Example:

MOV (Move)

Interrupt if NMI=l

ODI TSZAPC
o

None

Not applicable

MOVBIM (Move Immediate Byte)
MOVM (Move Direct Addressing Mode)

Form:

Flags:

Operands:

Coding Example:

MOV destination, source

ODI TSZAPC

memory, accumulator
accumulator, memory
register, register
register, memory
memory, register
register, immediate
memory, immediate
seg-reg, reg16
seg-reg, mem16
reg16, seg-reg
memory, seg-reg

MOV BP,STACK_TOP

MOVSB (Move String Bytewise)
MOVSW (Move String Wordwise)

Form:

Flags:

Operands:

Coding Example:

MOVS dest-string, source-string

ODI TSZAPC

dest-string, source-string
(repeat) dest-string, source-string

MOVS LINE, EDIT_DATA

3-23

MOVSB/MOVSW (Move String (Byte/Word))

Form:

Flags:

Operands:

Coding Example:

MOVSB/MOVSW (no operands)

ODr TSZAPC

None

REP MOVSW

MUL (Multiplication, Unsigned)
MULMB (Multiplication, Unsigned, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

NEG (Negate)

MUL source

ODr TSZAPC
X UUUUX

reg8
reg16
mem8
mem16

MULCX

NEGMB (Negate Memory Byte)

Form:

Flags:

Operands:

Coding Example:

NOP (No Operation)

Form:

Flags:

Operands:

NEG destination

ODr TSZAPC
X XXXXl*

register
memory

NEGAL

NOP

ODr TSZAPC

None

Coding Example: NOP

* 0 if destination=O.

3-24

.....--..

NOT (Logical NOT)
NOTMB (Logical NOT, Memory Byte)

Form: NOT destination

Flags: o D r TSZAPC

Operands: register
memory

Coding Example: NOT AX

OR (Logical Inclusive OR)
ORBIM (Logical Inclusive OR, Immediate Byte)
ORM (Logical Inclusive OR, Direct Addressing Mode)

Form:

Flags:

Operands:

Coding Example:

OR destination, source

ODr TSZAPC
o XXUXO

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

OR FLAG_BYTE, CL

OUT (Output Byte or Word)
OUTB (Output Byte)
OUTW (Output Word)

Form:

Flags:

Operands:

Coding Example:

OUT port, accumulator

ODr TSZAPC

immed8, accumulator
DX, accumulator

OUTDX, AL

3-25

POP (Pop Word off Stack)

Form:

Flags:

Operands:

Coding Example:

POP destination

ODr TSZAPC

register
seg-reg (CS illegal)
memory

POPDX

POPF (Pop Flags off Stack)

Form:

Flags:

Operands:

Coding Example:

POPF (no operands)

ODr TSZAPC
RRRRRRRRR

None

POPF

PUSH (Push Word Onto Stack)

Form:

Flags:

Operands:

Coding Example:

PUSH source

ODr TSZAPC

register
seg-reg (CS legal)
memory

PUSH ES

PUSHF (Push Flags Onto Stack)

Form:

Flags:

Operands:

Coding Example:

3-26

PUSHF (no operands)

ODr TSZAPC

None

PUSHF

RCL (Rotate Left Through Carry)
RCLMB (Rotate Left Through Carry, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

RCL destination, count

ODr TSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

RCL AL, CL

RCR (Rotate Right Through Carry)
RCRMB (Rotate Right Through Carry, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

RCR destination, count

ODr TSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

RCR (BX).STATUS, 1

REP (Repeat String Operation)

Form:

Flags:

Operands:

Coding Example:

REP (no operands)

ODr TSZAPC

None

REP MOVS DEST,SRCE

REPE/REPZ (Repeat String Operation While Equal/While Zero)

Form: REPE/REPZ (no operands)

Flags: 0 D r T S ZAP C

Operands: None

Coding Example: REPE CMPS DAT A,KEY

3-27

REPNE/REPNZ (Repeat String Operation
While not Equal/not Zero)

Form:

Flags:

Operands:

Coding Example:

REPNEIREPNZ (no operands)

ODI TSZAPC

None

REPNE SCASW INPUT_LINE

RET (Return from Procedure)
RETL (Return Long from Procedure)

Form:

Flags:

Operands:

Coding Example:

ROL (Rotate Left)

RET optional pop value

ODI TSZAPC

(intra-segment, no pop)
(intra-segment, pop)
(inter-segment, no pop)
(inter-segment, pop)

RET4

ROLMB (Rotate Left, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

3·28

ROL destination, count

ODr TSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

ROL BX,l

ROR (Rotate Right)
RORMB (Rotate Right, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

ROR destination, count

ODI TSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

ROR CMD_ WORD, CL

SAHF (Store AH Into Flags)

Form:

Flags:

Operands:

Coding Example:

SARF (no operands)

ODI TSZAPC
RRRRR

None

SARF

SAL/SHL (Shift Arithmetic Left/Shift Logical Left)
SALMB/SHLMB (Shift Left, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

SALlSRL destination, count

ODI TSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

SAL AL, 1

3-29

SAR (Shift Arithmetic Right)
SARMB (Shift Arithmetic Right, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

SAR destination, count

ODI TSZAPC
X XXUXX

register, 1
register, CL
memory, 1
memory, CL

SAR DI, CL

SBB (Subtract with Borrow)
SBBBIM (Subtract with Borrow, Immediate Byte)
SBBM (Subtract with Borrow, Direct Addressing Mode)

Form:

Flags:

Operands:

Coding Example:

SBB destination, source

ODI TSZAPC
X XXXXX

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

SBB BX, CX

SCASB (Scan String, Bytewise)
SCASW (Scan String, Wordwise)

Form:

Flags:

Operands:

Coding Example:

3-30

SCASW dest-string

ODI TSZAPC
X XXXXX

dest-string
(repeat) dest-string

REPNE SCASB BUFFER

----,

SHR (Shift Logical Right)
SHRMB (Shift Logical Right, Memory Byte)

Form:

Flags:

Operands:

Coding Example:

STC (Set Carry Flag)

Form:

Flags:

Operands:

Coding Example:

SHR destination, count

ODI TSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

SHR SI, 1

STC (no operands)

o D I TSZAPC
1

None

STC

STD (Set Direction Flag)

Form: STD (no operands)

Flags: o D I TSZAPC
1

Operands: None

Coding Example: STD

STI (Set Interrupt Enable Flag)

Form: STI (no operands)

Flags: o D I TSZAPC
1

Operands: None

Coding Example: STI

3-31

STOSB (Store Byte String)
STOSW (Store Word String)

Form:

Flags:

Operands:

Coding Example:

SUB (Subtraction)

STOSB dest-string

ODI TSZAPC

dest-string
(repeat) dest-string

REP STOSB DISPLAY

SUBBIM (Subtraction, Immediate Byte)
SUBM (Subtraction, Direct Addressing Mode)

Form:

Flags:

Operands:

Coding Example:

SUB destination, source

ODI TSZAPC
X XXXXX

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

SUB CX, BX

TEST (Test or Nondestructive logical AND)
TESTBIM (Test, Immediate Byte)
TESTM (Test, Direct Addressing Mode)

Form:

Flags:

Operands:

Coding Example:

3-32

TEST destination, source

ODI TSZAPC
o XXUXO

register, register
register, memory
accumulator, immediate
register, immediate
memory, immediate

TEST SI, END_COUNT

WAIT (Wait While TEST Pin not Asserted)

Form: WAIT (no operands)

Flags: o D I TSZAPC

Operands: None

Coding Example: WAIT

XCHG (Exhange)

Form: XCHG destination, source

Flags: ODI TSZAPC

Operands: accumulator, reg16
memory, register
register, register

Coding Example: XCHG AX, BX

XLA T (Translate)

Form: XLA T (source-table)

Flags: ODI TSZAPC

Operands: source-table

Coding Example: XLAT ASCII_TAB

XOR (Logical Exclusive OR)
XORBIM (Logical Exclusive OR, Immediate Byte)
XORM (Logical Exclusive OR, Direct Addressing Mode)

Form:

Flags:

Operands:

Coding Example:

XOR destination, source

ODI TSZAPC
o XXUXO

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

XOR CL, MASK_BYTE

3-33

8087 FLOATING POINT OPERATORS

The following is a reference list of the 8087 floating point oper­
ators. (The introduction to this chapter describes the differ­
ences between the UCSD p-System 8087 Assembler mnemonics
suffixes and the standard Intel mnemonics.)

Key to 8087 Exception Codes

I = Invalid Operand
Z Zero Divide
D
o
U=
P =

Denormalized
Overflow
Underflow
Precision

Many instructions allow you to code their operands in more
than one way. For example, you can write F ADD (add real)
without operands, with only a source, or with a destination and
a source. The instruction descriptions in this section employ
the simple convention of separating alternative operand forms
with slashes; the slashes, however, are not coded. Consecutive
slashes indicate an option of no explicit operands. Thus, the
operands for F ADD are described as:

/ / source/destination, source

This means that you can write F ADD in any of three ways:

FADD
FADD source
F ADD destination,source

ST indicates the top of the stack. ST(i) indicates a stack element
where i is a three-bit quantity in the range zero to seven. (See
the Intel documentation for a complete description of this.)

3-34

F ABS (Absolute Value)

Form:

Operands:

Exceptions:

Coding Example:

F ADD (Add Real)

Form:

Operands:

Exceptions:

Coding Example:

F ABS (no operands)

None

I

FABS

F ADD Iisource/destination, source)

liST ,ST(i)/ST(i), ST
short-real
long-real

I, D, 0 , U, P

F ADD ST, ST(4)

F ADDP (Add Real and Pop)

Form:

Operands:

Exceptions:

Coding Example:

F ADDP destination, source)

ST(i),ST

I, D, 0, U, P

F ADDP ST(2), ST

FBLD (Packed Decimal (BCD) load)

Form:

Operands:

Exceptions:

Coding Example:

FBLD source

packed decimal

I

FBLD YTD SALES

FBSTP (Packed Decimal (BCD) Store and Pop)

Form:

Operands:

Exceptions:

Coding Example:

FBSTP source

packed decimal

I

FBSTP (BX).FORCAST

3-35

FCHS (Change Sign)

Form:

Operands:

Exceptions:

Coding Example:

FCHS (no operands)

None

I

FCHS

FCLEX/FNCLEX (Clear Exceptions)

Form: FCLEX/FNCLEX (no operands)

Operands: None

Exceptions: None

Coding Example: FCLEX

FCOM (Compare Real)

Form:

Operands:

Exceptions:

Coding Example:

FCOM //source

//ST(i)
short-real
long-real

I, D

FCOM ST(l)

FCOMP (Compare Real and Pop)

Form: FCOMP //source

Operands:

Exceptions:

Coding Example:

3-36

//ST(i)
short-real
long-real

I, D

FCOMP ST(2)

FCOMPP (Compare Real and Pop Twice)

Form: FCOMPP (no operands)

Operands:

Exceptions:

Coding Example:

None

I, D

FCOMPP

FDECSTP (Decrement Stack Pointer)

Form: FDECSTP (no operands)

Operands:

Exceptions:

Coding Example:

None

None

FDECSTP

FDISIIFNDISI (Disable Interrupts)

Form: FDISIIFNDISI (no operands)

Operands:

Exceptions:

Coding Example:

FDIV (Divide Real)

Form:

Operands:

Exceptions:

Coding Example:

None

None

FDISI

FD IV (/ / source/destination, source)

//ST(i), ST
short-real
long-real

I, D, Z, 0, U, P

FDIV ARC(DI)

FDIVP (Divide Real and Pop)

Form: FDIVP destination, source

Operands: ST(i), ST

Exceptions: I, D, Z, 0, U, P

Coding Example: FDIVP ST(4), ST

3-37

FDIVR (Divide Real Reversed)

Form:

Operands:

Exceptions:

Coding Example:

FDIVR destination, source

IIST,ST(i)/ST(i), ST
short-real
long-real

I, D, Z, 0, U, P

FDIVR ST(2), ST

FDIVRP (Divide Real Reversed and Pop)

Form: FDIVRP destination, source

Operands: ST(i), ST

Exceptions: I, D, Z, 0, U, P

Coding Example: FDIVRP STIll, ST

FENIIFNENI (Enable Interrupts)

Form: FENIIFNENI (no operands)

Operands: None

Exceptions: None

Coding Example: FENI

FFREE (Free Register)

Form: FFREE destination

Operands: ST(i)

Exceptions: None

Coding Example: FFREE

FIADD (Integer Add)

Form:

Operands:

Exceptions:

Coding Example:

3-38

FIADD source

word-integer
short-integer

I, D , 0 , P

FIADD DISTANCE TRAVELED

FICOM (Integer Compare)

Form:

Operands:

Exceptions:

Coding Example:

FICOM source

word-integer
short-integer

I, D

FICOM TOOL.N PASSES

FICOMP (Integer Compare and Pop)

Form:

Operands:

Exceptions:

Coding Example:

FICOMP source

word-integer
short-integer

I, D

FICOMP N SAMPLES

FIDIV (Integer Divide)

Form:

Operands:

Exceptions:

Coding Example:

FIDIV source

word-integer
short-integer

I, D, Z, 0 , U , P

FIDIV RELATIVE ANGLE(DI)

FIDIVR (Integer Divide Reversed)

Form:

Operands:

Exceptions:

Coding Example:

FIDIVR source

word-integer
short-integer

I, D, Z, 0, U, P

FIDIVR FREQUENCY

3-39

FILD (Integer Load)

Form:

Operands:

Exceptions:

Coding Example:

FILD source

word-integer
short-integer
long-integer

I

FILD (BX).SEQUENCE

FIMUL (Integer Multiply)

Form:

Operands:

Exceptions:

Coding Example:

FIMUL source

word-integer
short-in teger

I, D, 0, P

FIMUL BEARING

FINCSTP (Increment Stack Pointer)

Form:

Operands:

Exceptions:

Coding Example:

FINCSTP

None

None

FINCSTP

FINIT/FNINIT (Initialize Processor)

Form:

Operands:

Exceptions:

Coding Example:

3-40

FINIT

None

None

FNINIT

FIST (Integer Store)

Form:

-----... Operands:

Exceptions:

Coding Example:

FIST destination

word-integer
short-integer

I, P

FIST OBS.COUNT(SI)

FISTP (Integer Store and Pop)

Form:

Operands:

Exceptions:

Coding Example:

FISTP destination

word-integer
short-integer
long-integer

I, P

FISTP (BX).ALPHA_COUNT(SI)

FISUB (Integer Subtract)

Form:

Operands:

Exceptions:

Coding Example:

FISUB source

word-integer
short-integer

I, D, 0, P

FISUB BASE_FREQUENCY

FISUBR (Integer Subtract Reversed)

Form:

Operands:

Exceptions:

Coding Example:

FISUBR source

word-integer
short-integer

I, D, 0, P

FISUBR BALANCE

3-41

FLD (Load Real)

Form:

Operands:

Exceptions:

Coding Example:

FLD source

ST(i)
short-real
long-real
temp-real

I, D

FLD ST(O)

FLDCW (Load Control Word)

Form:

Operands:

Exceptions:

Coding Example:

FLDCW source

2-bytes

None

FLDCW CONTROL WORD

FLDENV (Load Environment)

Form:

Operands:

Exceptions:

Coding Example:

FLDENV source

14-bytes

None

FLDENV(BP+6)

FLDLG2 (Load Log (Base 10) of 2)

Form: FLDLG2

Operands:

Exceptions:

Coding Example:

None

I

FLDLG2

FLDLN2 (Load Log (Base E) of 2)

Form: FLDLN2

Operands:

Exceptions:

Coding Example:

3-42

None

I

FLDLN2

FLDL2E (Load Log (Base 2) of E)

Form: FLDL2E

Operands: None

Exceptions: I

Coding Example: FLDL2E

FLDL2T (Load Log (Base 2) of 10)

Form: FLDL2T

Operands: None

Exceptions: I

Coding Example: FLDL2T

FLDPI (Load Pi)

Form: FLDPI

Operands: None

Exceptions: I

Coding Example: FLDPI

FLDZ (Load +0.0)

Form: FLDZ

Operands: None

Exceptions: I

Coding Example: FLDZ

FLD 1 (Load + 1.0)

Form: FLDI

Operands: None

~, Exceptions: I

Coding Example: FLDI

3-43

FMUL (Multiply Real)

Form:

Operands:

Exceptions:

Coding Example:

FMUL Iisource/destination, source

I IST(i), ST 1ST, ST(i)
short-real
long-real

I, D, 0, U, P

FMUL SPEED_FACTOR

FMULP (Multiply Real and Pop)

Form:

Operands:

Exceptions:

Coding Example:

FNOP (No Operation)

Form:

Operands:

Exceptions:

Coding Example:

FMULP destination, source

ST(i),ST

I, D, 0, U, P

FMULP ST(1),sT

FNOP

None

None

FNOP

FP A TAN (Partial Arctangent)

Form:

Operands:

Exceptions:

Coding Example:

FPATAN

None

U, P (operands not checked)

FPATAN

FPREM (Partial Remainder)

Form:

Operands:

Exceptions:

Coding Example:

3-44

FPREM

None

I, D, U

FPREM

FPT AN (Partial Tangent)

Form: FPTAN

Operands:

Exceptions:

Coding Example:

None

I,P (operands not checked)

FPTAN

FRNDINT (Round to Integer)

Form: FRNDINT

Operands: None

Exceptions:

Coding Example:

I, P

FRNDINT

FRSTOR (Restore Saved State)

Form:

Operands:

Exceptions:

Coding Example:

FRSTOR source

94-bytes

None

FRSTOR (BP)

FSA VE/FNSA VE (Save State)

Form:

Operands:

Exceptions:

Coding Example:

FSCALE (Scale)

Form:

Operands:

Exceptions:

Coding Example:

FSA VE destination

94-bytes

None

FSAVE (BP)

FSCALE

None

I, 0, U

FSCALE

3-45

FSQRT (Square Root)

Form: FSQRT

Operands:

Exceptions:

Coding Example:

FST (Store Real)

Form:

Operands:

Exceptions:

Coding Example:

None

I, D, P

FSQRT

FST destination

ST(i)
short-real
long-real

I , 0, U , P

FST MEAN READING

FSTCW/FNSTCW (Store Control Word)

Form:

Operands:

Exceptions:

Coding Example:

FSTCW destination

2-bytes

None

FSTCW SA VE_CTRL

FSTENV/FNSTENV (Store Environment)

Form:

Operands:

Exceptions:

Coding Example:

3-46

FSTENV destination

14-bytes

None

FSTENV (BP)

FSTP (Store Real and Pop)

Form:

Operands:

Exceptions:

Coding Example:

FSTP destination

ST(i)
short-real
long-real
temp-real

1,0, U, P

FSTP ST(2)

FSTSW/FNSTSW (Store Status Word)

Form:

Operands:

Exceptions:

Coding Example:

FSTSW destination

2-bytes

None

FSTSW SA VE_ST ATUS

FSUB (Subtract Real)

Form:

Operands:

Exceptions:

Coding Example:

FSUB Iisource/dest ination, source

IIST,ST(i)/ST(i),ST
short-real
long-real

I, D, 0, U, P

FSUB BASE_VALUE

FSUBP (Subtract Real and Pop)

Form:

Operands:

Exceptions:

Coding Example:

FSUBP destination, source

ST(i),ST

I, D, 0, U, P

FSUBP ST(2),ST

3-47

FSUBR (Subtract Real Reversed)

Form:

Operands:

Exceptions:

Coding Example:

FSUB Iisource/destination, source

liST, ST(i)/ST(i), ST
short-real
long-real

I, D, 0, U, P

FSUBR (BX).INDEX

FSUBRP (Subtract Real Reversed and Pop)

Form:

Operands:

Exceptions:

Coding Example:

FSUBRP destination, source

ST(i),ST

I, D, 0, U, P

FSUBRP ST(2),ST

FTST (Test Stack Top Against 0.0)

Form: FTST

Operands:

Exceptions:

Coding Example:

None

I, D

FTST

FW AIT (CPU Wait While 8087 is Busy)

Form: FWAIT

Operands:

Exceptions:

Coding Example:

None

None (CPU instruction)

FWAIT

FXAM (Examine Stack Top)

Form: FXAM

Operands: None

Exceptions: None

Coding Example: FXAM

3-48

FXCH (Exchange Registers)

Form: FXCH Iidestination

Operands:

Exceptions:

Coding Example:

IIST(i)

I

FXCH ST(2)

FXTRACT (Extract Exponent and Significand)

Form: FXTRACT

Operands: None

Exceptions:

Coding Example:

I

FXTRACT

FYL2X (Y * Log (Base 2) of X)

Form: FYL2X

Operands:

Exceptions:

Coding Example:

None

P (operands not checked)

FYL2X

FYL2XPI (Y * Log (Base 2) of (X + 1))

Form:

Operands:

Exceptions:

Coding Example:

FYL2XPI

None

P (operands not checked)

FYL2XPI

3-49/3-50

A

The Linker

The linker is an item on the command menu which allows as­
sembled code to be linked into a Pascal program. The linker
may also be used to link together separately assembled pieces
of a single assembly program.

The linker is a program of the sort called a link editor. It
stitches code together by installing the internal linkages that
allow various pieces to function as a unified whole.

When a program that must be linked is R(un, the linker is
automatically called and searches *SYSTEM.LIBRARY for
the necessary external routines. If you use X(ecute, in­
stead of R(un, or the assembled routines are not in
*SYSTEM.LIBRARY, you are responsible for manually linking
the code before executing it.

When the linker is called automatically and cannot find the
needed code in *SYSTEMLIBRARY, it responds with the fol­
lowing error message.

Proc,
Func,
G l oba l ,

or Public < identifie r> undefin e d

In order to manually use the linker, select L(ink from the com­
mand menu.

A-I

USING THE LINKER

The linker displays prompts asking for several file names. It
reads and links code together and displays the names of the
routines it is linking. The following paragraphs list those
prompts and explain the use or responses.

Host fi Le?

Lib fi Le?

Example:

The host file should contain the code for
the high-level program which references
external routines. Alternatively, the
host file may contain an assembled
routine which references other assem­
bled routines. The .CODE suffix is auto­
matically appended to the file name that
you specify (unless you terminate that
name with a period). If you respond by
pressing the RETURN key, the linker
attempts to open the code work file as
the host file.

Any number of library files may be
specified. The prompt will keep re­
appearing until the user presses the
RETURN key. Responding * < return >
opens *SYSTEM.LIBRAR Y. The suc­
cessful opening of each library file is re­
ported. If the routines in a lib file
reference other routines, those other
routines are also linked into the output
file (assuming that they are found in one
of the lib files).

Lib f i l e? * < RETURN >
Opening *SYSTEM. LIBRARY
Lib f i l e? FIX.8<RETURN >
No f i l e FIX.B.CODE
Type <sp > (continue), < esc > (terminate)

A·2

Lib fi le? FIX.9 <RETURN >
Opening FIX.9.CODE
bad seg name
Type < sp > (continue). < esc > (terminate). < space >
Lib Fi le? _ _

When the names of all library files have been entered, the
linker reads all the necessary routines from the designated code
files. It then asks for a destination for the linked code output:

Output fi Le? Respond with a code file name (often the
same as the host file). The .CODE suffix
must be included. If the user presses the
RETURN key, *SYSTEM,WRK.CODE
becomes the output file.

After this last prompt, the linker commences actual linking.
During linking, the linker displays the names of all routines
being linked. A missing or undefined routine causes the linker
to abort with the < identifier> undefined message described
above.

NOTE

Since the files may be assembled files, they may be
of either byte sex. However, all files linked together
must be of the same byte sex. The linker produces a
correct code file regardless of which byte sex that is
or whether it is the same as the machine on which
the linker is running.

The code file produced by the linker contains routines in the
order in which they were given in the library files. This is
important to note if the program is an assembly language file.
The code file contains first routines from the host file and then
library file routines, all in their original order.

A-3/A-4

B

The Compress Utility

The Compress utility program takes input as code files consist­
ing of one or more linked assembly procedures and produces
object files suitable for applications outside the UCSD
p-System run-time environment.

Compress can produce either relocatable or absolute object
files. Absolute code files are relocated to the base address spec­
ified by you and contain pure machine code. Relocatable code
files include a simplified form of relocation information (a de­
scription of its format is in this appendix). Both kinds of out­
put files are stripped of all file information normally used by
the system and must be loaded into memory by a user program
in order to execute properly.

PREPARING CODE FILES

The assembly routines must be created with the assembler, and
linked with the linker. Code files containing anything other
than one segment of linked assembly code will cause Compress
to abort. Routines to be compressed should not contain any of
the following assembler directives .

• . ORG

• .ABSOLUTE

• .PUBLIC

• .PRIVATE

• .CONST

• .INTERP

B-1

The .ORG and .ABSOLUTE directives produce absolute code
files directly from the assembler. Code files that contain the
.ABSOLUTE directive can be compressed, but the resulting
code will be incorrect.

The .PUBLIC, .PRIVATE, .CONST, and .INTERP directives
are used to communicate between assembly procedures and a
host compilation unit (whether Pascal or some other language).
These have no use outside of the system's run-time environ­
ment. Their inclusion in an assembly program generates reloca­
tion information in formats that will cause Compress to abort.

RUNNING COMPRESS

In order to run Compress, you should execute
COMPRESS.CODE. It will respond with the following prompt.

Execute what fi le?

Enter COMPRESSOR.CODE and press the RETURN key. The
system will display the following prompt:

Assembly Code Fi l e Compressor <re l ease versi on>

Type 'I' to escape

Do you wish to produce a relocatable object fi l e? (YIN)

If you press N, the following prompt appears:

Base address of relocation (hex) :

This is the starting address of the absolute code file to be pro­
duced. Enter it as a sequence of one to four hexadecimal digits
and press the RETURN key. The prompt will reappear if an
invalid number is entered.

The following prompt always appears.

Fi le to compress:

B-2

Enter the name of the file to be compressed. It is not necessary
to enter the . CODE suffix. If the file cannot be found, the
prompt reappears.

Output fi le «ret> for same) :

Enter the name of the output file, which can be any legal file
name (Compress does not append a .CODE suffix). Pressing the
RETURN key causes the output file to have the same name as
the input file, thus eliminating the original input file. If the file
cannot be opened, Compress will print an error message and
abort.

In all the previous prompts, pressing the exclamation point
character (!) causes Compress to abort.

After receiving this information from you, Compress reads the
entire source file, compresses the procedures, and writes out
the entire destination file. Large code files may cause Compress
to abort if the system does not have sufficient memory space.

While running, Compress displays for each procedure the start­
ing and ending addresses (in hexadecimal) and the length in
bytes. At completion Compress displays the total number of
bytes in the output file. If an absolute code file is produced, the
system displays the highest memory address to be occupied by
the loaded code file.

Compress produces a file of pure code, which must be loaded
and executed directly by user software.

Action and Output Specification

Compress removes the following information from input
files.

• The segment dictionary (block 0 of code file)

• Relocation list and procedure dictionary pointers

B-3

B-4

• Symbolic segment name and code sex word

• Embedded procedure DATASIZE and EXITIC
words

• Procedure dictionary and number of procs word

• Standard relocation list

Procedure code in the output file is contiguous except
for pad bytes, which are emitted (when necessary) to
preserve the word alignment of all procedures. Code
files always contain integral numbers of blocks of data
and space between the end of the executable code. The
end of the code file is zero-filled.

Relocatable object files must be formatted in the fol­
lowing way. The relocatable code is immediately fol­
lowed by relocation information. The last word in the
last block of the code file contains the code-relative
word offset of the relocation list header. The following
lines are an example.

< starting byte address of loaded code > +
< word offset * 2 >

= < byte address of relocation list header word>

The list header word contains the decimal value 256.
The next-lower-addressed word contains the number of
entries in the relocation list. This word is followed (from
higher addresses to lower addresses) by the list of relo­
cation entries.

Beneath the last relocation entry is a zero-filled word,
which marks the end of the relocation information.
Each relocation entry is a word quantity containing a
code-relative byte offset into the loaded code. The fol­
lowing lines are an example.

< starting byte address of loaded code> +
< byte offset >

= < byte address of word to be relocated >

Each byte address pointed to by a relocation entry is a
word quantity that is relocated by adding the byte ad­
dress of the front of the loaded code.

NOTE

If the user relocates a file towards the high
end of the I6-bit address space, you must en­
sure that the relocated file will not wrap
around into low memory (that is, < relocation
base address> + < code file size> must be
less than or equal to FFFF (hexadecimal)).
Compress performs no internal checking for
this case.

B-5/B-6

c

Errors

0:
1: Undefined label
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

Operand out of range
Must have procedure name
Number of parameters expected
Extra symbols on source line
Input line over 80 characters
Unmatched conditional assembly directive
Must be declared in .ASECT before used
Identifier previously declared
Improper format
Illegal character in text
Must .EQU before use if not to a label
Macro identifier expected
Code file too large
Backwards .ORG not allowed

16: Identifier expected
17: Constant expected
18: Invalid structure
19: Extra special symbol
20: Branch too far
21: LC-relative to externals not allowed
22: Illegal macro parameter index
23: Illegal macro parameter
24: Operand not absolute
25: Illegal use of special symbols
26: Ill-formed expression
27: Not enough operands
28: LC-relative to absolutes unrelocatable
29: Constant overflow
30: Illegal decimal constant
31: Illegal octal constant
32: Illegal binary constant
33: Invalid key word

C-I

34: Unmatched macro definition directive
35: Include files may not be nested
36: Unexpected end of input
37: .INCLUDE not allowed in macros
38: Label expected
39: Expected local label
40: Local label stack overflow
41: String constants must be on single line
42: String constant exceeds 80 characters
43: Cannot handle this relocate count
44: No local labels in .ASECT
45: Expected key word
46: String expected
47: I/O - bad block, parity error (CRC)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: Nested macro definitions not allowed
66: = or < > expected
67: May not equate to undefined labels
68: .ABSOLUTE must appear before first proc
69: .PROC or .FUNC expected
70: Too many procedures
71: Only absolute expressions in .ASECT
72: Must be label expression
73: No operands allowed in .ASECT

C-2

74: Offset not word-aligned
75: LC not word-aligned
76: Had label, open parenthesis then illegality
77: Expected absolute expression
78: Both operands cannot be a seg register
79: Illegal pair of index registers
80: Have to use BX, BP, SI or D1
81: Illegal constant as first operand
82: The first operand is needed
83: The second operand is needed
84: Expected comma before second operand
85: Registers stand-alone except in indirect
86: Only two registers per operand
87: Expected label or absolute
88: Illegal to use BP indirect alone
89: Close parenthesis expected
90: Cannot POP CS
91: Cannot have xchg r8 with r16
92: Segment registers not allowed
93: ESC external operand on left must be constant < 64
94: Only one of operands can have segment override
95: Right operand must be a memory location
96: Left operand must be a 16 bit register
97: Left operand must be memory or register alone
98: Operand cannot be a segment or immediate
99: Count must be 1 or in CL

100: A byte constant operand is required
101: Operand must use () or be a label
102: LOCK followed by something illegal
103: REP precedes only string operations
104: Not implemented
105: Expected a label
106: Not implemented
107: Open parenthesis expected
108: Expected register alone as right operand
109: Segovpre then regalone, that is illegal
110: Only one operand allowed
111: Operands are AL,op2 for byte MUL, etc.
112: SP can only be used with the SS segment
113: MOVB1M only for immediate to memory

C-3

114: BIMs must be immediate bytes to memory
115: MOV immediate to Segment Register not allowed
116: Segment Register expected
117: (8087) Invalid two-operand format
118: (8087) Invalid single operand format
119: (8087) Improper operand field
120: (8087) Instruction has no operands
121: No override of ES on string destination
122: Intersegment jump or call needs 2 constant or ex-

ternaloperands
123: I/O port must be immediate byte or DX
124: I/O source/destination register must be AL or AX
125: Prefix must be on same line as code
126: Register expected as first token after (

C-4

Index

Title Page

0/0•..••••.•••.••••••••..................•.•••••••••.•••.••••••••••••••••••••...•..•.•. 1-12
& .. 1-12
* ... 1-12
+ ... 1-12

/
/ / .. .
=

I .. .

1-12
1-12
1-12
1-13
1-12
1-12
1-12

8086 CPU 2-3
8086.ERRORS ... 1-59
8086.FOPS ... 1-59
1 8086.0PCODES .. 1-59
8086 operators .. 3-3, 3-7
8087 mnenomics ... 3-6
8087 operators .. 3-3, 3-34
8088 operators 3-3, 3-7

A
AAA .. 3-8
AAD .. 3-8
AAM ... 3-8
AAS .. 3-8
.ABSOL UTE 1-36
Absolute sections ... 1-19
Accessing parameters .. 1-52, 1-67
Accumulator registers ... 2-4
ADC .. 3-9
ADCB 1M .. 3-9
ADCM 3-9

Index-1

Title Page

ADD .. 3-9
ADDBIM ... 3-9
Addressing modes 2-9
AF ... 2-8
ALC .. 1-19
.ALIGN .. 1-27
AND .. 3-10
.AND ... 1-13
ANDBIM ... 3-10
ANDM .. 3-10
Arithmetic operators ... 1-12
.ASCII .. 1-25
.ASCIILIST ... 1-28
.ASECT .. 1-36
Assembled listing ... 1-60, 1-64
Assembler directives .. 1-21, 3-3

Conditional assembly ... 1-34
Constant definitions ... 1-25
Data definitions .. 1-25
External reference 1-47
Host communication 1-46
Listing control .. 1-28
Location counter modification .. 1-27
Macro definitions ... 1-35
Miscellaneous 1-35
Procedure delimiters .. 1-22
Program delimiters 1-48
Program linkage ... 1-32

Assembler, operation of .. 1-58
Assembler output .. 1-64
Assembling stand-alone applications 1-56
Assembly language 1-5, 1-6
Assembly routines ... 1-18
Assembly time constants .. 1-10
Auxiliary carry flag ... 2-7

Index-2

Title Page

B
Base registers 2-4
Based addressing 2-10
Based indexed addressing ... 2-11
Binary integer constants ... 1-8
.BLOCK 1-26
Bus interface unit 2-10
.BYTE ... 1-25
Byte array parameters 1-52
Byte organization 1-6

C
CALL .. 3-10
Calling and returning 1-67
CALLL ... 3-10
Carry flag ... 2-7
CBW 3-10

-------. CF ... 2-8
Character constants ... 1-10
Character set .. 1-7
Character strings 1-8
CLC 3-11
CLD .. 3-11
CLI .. 3-11
CMC .. 3-11
CMP .. 3-12
CMPBIM 3-12
CMPM 3-12
CMPSB ... 3-12
CMPSW .. 3-12
Code listing, assembler ... 1-65
Comment field 1-17
Compress .. 1-55
Conditional assembly .. 1-37
Conditional assembly directives ... 1-34
Conditional expressions 1-38
.CONDLIST ... 1-29
.CONST .. 1-32

Index-3

Title Page

Constants 1-8
Count registers .. 2-4
CWD ... 3-12

D
DAA
DAS

3-13
3-13

Data and constant definitions .. 1-25
Data registers 2-4
DEC .. 3-13
Decimal integer constants .. 1-9
DECMB .. 3-13
.DEF ... 1-34
Default radix integer constants ... 1-10
DF ... 2-8
Direct addressing ... 2-9
Direction flag ... 2-8
DIV ... 3-13
DIVMB ... 3-13

E
.ELSE ... 1-34
.END ... 1-25
.ENDC .. 1-34
.ENDM ... 1-35
.EQU ... 1-27
Error messages 1-65
Error prompt 1-62
ESC ... 3-14
Executing absolute code files 1-56
Expressions 1-11
External reference directives .. 1-47

F
FABS .. 3-35
FADD ... 3-35
FADDP .. 3-35
FBLD .. 3-35

Index-4

Title Page

FBSTP .. 3-35
FCHS .. 3-36
FCLEX/FNCLEX .. 3-36
FCOM ... 3-36
FCOMP ... 3-56
FCOMPP .. 3-37
FDECSTP .. 3-37
FDISIIFNDISI .. 3-37
FDIV .. 3-37
FDIVP .. 3-37
FDIVR .. 3-38
FDIVRP ... 3-38
FENIIFNENI .. 3-38
FFREE ... 3-38
FIADD ... 3-38
FICOM ... 3-39
FICOMP ... 3-39
FIDIV ... 3-39
FIDIVR .. 3-39
FILD ... 3-40
FIMUL ... 3-40
FINCSTP ... 3-40
FINIT/FNINIT .. 3-40
FIST ... 3-41
FISTP ... 3-41
FISUB .. 3-41
FISUBR ... 3-41
Flags .. 2-7. 2-8
FLD .. 3-42
FLD1 .. 3-43
FLDCW .. 3-42
FLDENV .. 3-42
FLDL2E ... 3-43
FLDL2T 3-43
FLDLG2 ... 3-42
FLDLN2 ... 3-42
FLDPI 3-43
FLDZ .. 3-43

Index-5

Title Page

Floating point operators, 8087 3-34
FMUL 3-44
FMULP .. 3-44
FNOP .. 3-44
Format

Source code 1-7
Source file 1-18
Source statement 1-15

FPATAN .. 3-44
FPREM 3-44
FPTAN ... 3-45
FRNDINT 3-45
FRSTOR ... 3-45
FSA VE/FNSA VE 3-45
FSCALE 3-45
FSQRT 3-46
FST 3-46
FSTCW IFNSTCW 3-46
FSTENV/FNSTENV 3-46
FSTP 3-47
FSTSW IFNSTSW 3-47
FSUB 3-47
FSUBP ... 3-47
FSUBR 3-48
FSUBRP 3-48
FTST ... 3-48
.FUNC .. 1-23
FWAIT 3-48
FXAM 3-48
FXCH 3-49
FXTRACT 3-49
FYL2X 3-49
FYL2XPI 3-49

G
General registers 2-3
Global declarations 1-18

Index-6

Title Page

H
H and L group 2-3
Hexadecimal integer constants 1-9
HLT .. 3-14
Host communication directives 1-46

I
I den tifiers 1-7
IDIV 3-14
IDIVMB 3-14
IF 2-8
.IF ... 1-34
Immediate byte 3-3
Immediate operands 2-9
IMUL 3-14
IMULMB ... 3-14
IN 3-15

..--. INB 3-15
INC ... 3-15
.INCLUDE ... 1-35
INCMB 3-15
Index registers 2-4
Input and output files, setting up 1-59
INT ... 3-15
.INTERP 1-33
INTO 3-16
Interrupt enable flag ... 2-8
INTR .. 3-15
Instruction set, 8086/88 .. 3-7
INW .. 3-15
IRET 3-16

J
JAE/JNB .. 3-16
JA/JNBE .. 3-16
JBE/JNA .. 3-17
JB/JNAE .. 3-17
JC .. 3-17

Index-7

Title Page

JCXZ 3-17
JE/JZ .. 3-17
JGE/JNL .. 3-18
JG/JNLE 3-18
JLE/JNG .. 3-18
JL/JNGE 3-18
JMP 3-19
JMPL 3-19
JNC 3-19
JNE/JNZ .. 3-19
JNO 3-19
JNP/JPO 3-20
JNS 3-20
JO 3-20
JP/JPE ... 3-20
JS .. 3-20

L
Label .. . 1-11
Label field 1-15
LAHF ... 3-21
LDS 3-21
LEA ... 3-4, 3-21
LES 3-21
Linking 1-44
Linking program modules ... 1-49
Linking restrictions ... 1-12
Linking to Pascal ... 1-49, 1-53
.LIST .. 1-30
Listing 1-60, 1-64
Listing control directives .. 1-28
Listing prompt ... 1-60
Local labels in macros 1-43
Location counter modification .. 1-28
LOCK .. 3-21 \
LODSB 3-22
LODSW .. 3-22
Logical operators 1-12

Index-B

Title Page

LOOP .. 3-22
LOOPE/LOOPZ 3-22
LOOPNE/LOOPNZ 3-22

M
.MACRO 1-35
Macro calls 1-40
Macro definition directives ... 1-35
Macro definitions ... 1-40
Macro language 1-39
Macro parameters .. 1-43
.MACROLIST 1-31
Memory byte 3-4
Miscellaneous directives 1-35
.MOD 1-13
MOV ... 3-23
MOVBIM 3-23
MOVM 3-23
MOVSB 3-23
MOVSB/MOVSW 3-24
MOVSW 3-23
MUL 3-24
MULMB 3-24

N
.NARROWPAGE 1-30
NEG 3-24
NEGMB ... 3-24
NMI .. 3-23
.NOASCIILIST 1-29
.NOCONDLIST 1-29
.NOLIST 1-31
.NOMACROLIST 1-31
NOP 3-24
.NOPATCHLIST 1-32
.NOSYMTABLE ... 1-29
NOT 3-25

Index·9

Title Page

.NOT 1-13
NOTMB 3-25

o
Object code format 1-6
Octal integer constants 1-10
OF 2-8
Opcode field 1-17
Operand field 1-17
Operands

Immediate ... 2-9
Register ... 2-9

OR 3-25
.OR 1-13
ORBIM 3-25
.ORG 1-27
ORM ... 3-25
OUT 3-25
OUTB 3-25
Output modes 1-61
OUTW .. 3-25
Overflow flag 2-7

P
.PAGE 1-30
.PAGEHEIGHT .. 1-29
P and I group 2-3, 2-4
Parameter passing ... 1-40
Parameter passing conventions .. 1-50
Parentheses 3-3
Parity flag 2-7
.PATCHLIST 1-31
PF 2-8
PME resources 1-67
POP 3-26
POPF 3-26
Pointer registers 2-4
.PRIV A TE 1-33

Index-l0

Title

.PROC
Procedure-delimiting directives
Program-identifier directives
Program-linkage directives .. .
Program linking and relocation
.PSECT .. .
.PUBLIC
PUSH .. .
PUSHF

R

Page

1-23
1-22
1-48
1-46
1-44
1-37
1-32
3-26
3-26

Radix .. 1-10
.RADIX 1-37
RCL ... 3-27
RCLMB .. 3-27
RCR .. 3-27
RCRMB 3-27
.REF ... 1-33
Register indirect addressing ... 2-10
Register operands .. 2-9
Register usage .. 1-68
Registers ... 2-3

Accumulator ... 2-4
Base ... 2-4
Count ... 2-4
General ... 2-3, 2-5
Index ... 2-4
Pointer 2-4
Segment .. 2-6

.RELFUNC .. 1-24

.RELPROC ... 1-24
REP ... 3-5, 3-27
REPE/REPZ .. 3-27
REPNE/REPNZ .. 3-27
RET .. 3-27
RETL .. 3-27
ROL .. 3-27
ROLMB .. 3-28

Index-II

Title Page

ROR 3-29
RORMB .. 3-29

S
SAHF 3-29
SALMB/SHLMB 3-29
SAL/SHL 3-29
SAR 3-30
SARMB 3-30
SBB 3-30
SBBBlM .. 3-30
SBBM ... 3-30
Scalars .. 2-9
SCASB .. 3-30
SCASW ... 3-30
Segment registers 2-6
SF .. 2-8
SHR 3-31
SHRMB 3-31
Sign flag 2-7
Source code format 1-7
Source file format .. 1-18
Source statement format 1-15
Source listing, assembler 1-64
Stand-alone applications 1-55
STC 3-31
STl .. 3-31
STOSB 3-32
STOSW 3-32
String addressing 2-11,2-12
SUB 3-32
SUBBlM 3-32
SUBM 3-32
Support files 1-59
Symbol table 1-67
Syntax conventions 3-3

Index-l 2

T
TEST .. 3-32
TESTBIM .. 3-32
TESTM ... 3-32
TF ... 2-8
. TITLE 1-28
Trap flag ... 2-8

v
Value parameters 1-52
Variable parameters .. 1-51

W
WAIT ... 3-33
.WORD ... 1-26
Word organization .. . 1-6

X
XLAT ... 3-33
XOR 3-53
.XOR ... 1-13
XORBIM 3-33
XORM 3-33

Z
Zero flag 2-7

Index-13/Index-14

THREE-MONTH
LIMITED WARRANTY

TEXAS INSTRUMENTS
PROFESSIONAL COMPUTER

SOFTWARE MEDIA

TEXAS INSTRUMENTS INCORPORATED EXTENDS
THIS CONSUMER WARRANTY ONLY TO THE
ORIGINAL CONSUMER/PURCHASER.

WARRANTY DURATION

The media is warranted for a period of three (3) months from
the date of original purchase by the consumer.

Some states do not allow the exclusion or limitation of inciden­
tal or consequential damages or limitations on how long an im­
plied warranty lasts, so the above limitations or exclusions
may not apply to you.

WARRANTY COVERAGE

This limited warranty covers the cassette or diskette (media)
on which the computer program is furnished. It does not ex­
tend to the program contained on the media or the accompany­
ing book materials (collectively the Program). The media is
warranted against defects in material or workmanship. THIS
WARRANTY IS / VOID IF THE MEDIA HAS BEEN DAM­
AGED BY ACCIDENT, UNREASONABLE USE, NE­
GLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT
ARISING OUT OF DEFECTS IN MATERIALS OR
WORKMANSHIP.

PERFORMANCE BY TI UNDER WARRANTY

During the above three-month warranty period, defective media
will be replaced when it is returned postage prepaid to a Texas
Instruments Service Facility listed below or an authorized
Texas Instruments Professional Computer Dealer with a copy
of the purchase receipt. The replacement media will be war­
ranted for three months from date of replacement. Other than
the postage requirement (where allowed by state law), no
charge will be made for the replacement. TI strongly recom­
mends that you insure the media for value prior to mailing.

WARRANTY AND CONSEQUENTIAL
DAMAGES DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS
SALE INCLUDING, BUT NOT LIMITED TO, THE IM­
PLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIM­
ITED IN DURATION TO THE ABOVE THREE-MONTH
PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LI­
ABLE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES
INCURRED BY THE CONSUMER OR ANY OTHER USER
ARISING OUT OF THE PURCHASE OR USE OF THE
MEDIA. THESE EXCLUDED DAMAGES INCLUDE, BUT
ARE NOT LIMITED BY, COST OF REMOVAL OR REIN­
STALLATION, OUTSIDE COMPUTER TIME, LABOR
COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS
OF SAVINGS, OR LOSS OF USE OR INTERRUPTION OF
BUSINESS.

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also
have other rights which vary from state to state.

TEXAS INSTRUMENTS
CONSUMER SERVICE FACILITIES

u.s. Residents:

Texas Instruments
Service Facility

P.O. Box 1444, MS 7758
Houston, Texas 77001

Canadian Residents:

Geophysical Service Inc.
41 Shelley Road
Richmond Hill, Ontario
Canada L4C 5G4

Consumers in California and Oregon may contact the following
Texas Instruments offices for additional assistance or
information.

Texas Instruments
Consumer Service

831 South Douglas St.
Suite 119
EI Segundo, California 90245
(213) 973-2591

Texas Instruments
Consumer Service

6700 S.W. 105th
Kristin Square, Suite 110
Beaverton, Oregon 97005
(503) 643-6758

IMPORTANT NOTICE OF DISCLAIMER
REGARDING THE PROGRAM

The following should be read and understood before using the
software media and Program.

TI does not warrant that the Program will be free from error or
will meet the specific requirements of the purchaser/user. The
purchaser/user assumes complete responsibility for any deci­
sion made or actions taken based on information obtained
using the Program. Any statements made concerning the util­
ity of the Program are not to be construed as expressed or im­
plied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICU­
LAR PURPOSE, REGARDING THE PROGRAM AND
MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN
"AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LI­
ABLE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAM. THESE EXCLUDED DAMAGES INCLUDE,
BUT ARE NOT LIMITED BY, COST OF REMOVAL OR
REINSTALLATION, OUTSIDE COMPUTER TIME,
LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS,
LOSS OF SAVINGS, OR LOSS OF USE OR INTERRUP­
TION OF BUSINESS. THE SOLE AND EXCLUSIVE LIA­
BILITY OF TEXAS INSTRUMENTS, REGARDLESS OF
THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THE PROGRAM. TEXAS INSTRU­
MENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF
ANY KIND WHATSOEVER BY ANY OTHER PARTY
AGAINST THE PURCHASERIUSER OF THE PROGRAM.

COPYRIGHT

All Programs are copyrighted. The purchaser/user may not
make unauthorized copies of the Programs for any reason. The
right to make copies is subject to applicable copyright law or a
Program License Agreement contained in the software pack­
age. All authorized copies must include reproduction of the
copyright notice and of any proprietary rights notice.

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System Assembler
TI Part No. 2232402-0001

Original Issue: 15 April 1983

Your Name:

Company:

Telephone:

Department:

Address:

City/State/Zip Code: ________________ _

Your comments and suggestions assist us in improving our prod­
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing MIS 7896
P.O. Box 1444
Houston, TX 77001

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System Assembler
TI Part No. 2232402-0001

Original Issue: 15 April 1983

Your Name: __ __

Company:

Telephone:

Department:

Address: __ ___

City / State/Zip Code:

Your comments and suggestions assist us in improving our prod­
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank .

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing MIS 7896
P.O. Box 1444
Houston, TX 77001

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

.---..

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System Assembler
TI Part No. 2232402-0001

Original Issue: 15 April 1983

Your Name: _____________________ __

Company:

Telephone:

Department: _____________________ _

Address:

City/State/Zip Code: ________________ _

Your comments and suggestions assist us in improving our prod­
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO . 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing MIS 7896
P.O. Box 1444
Houston, TX 77001

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

NOTES

NOTES

Texas Instruments reserves the right to change
its product and service offerings at any time

without notice.

TEXAS
INSTRUMENTS

Part No. 2232402·0001 Printed in U.S.A.

