

UCSD Pascal
TI Part No. 2232401-0001
Original Issue: 15 April 1983

Copyright © 1982, 1983 by
Prentice Hall Inc., Englewood Cliffs, New Jersey 07632

All rights reserved.

No part of this book may be reproduced in any form or by any
means without permission in writing from the publisher.

Preface

This manual is a reference for the UCSD Pascal programming
language on the Texas Instruments Professional Computer.
UCSD Pascal™ differs in some details from the Pascal
language as originally designed by Professor Niklaus Wirth.
Compared to the original language, it is better adapted for
interactive use on a microcomputer.

The first part of this manual contains a detailed description of
UCSD Pascal. After an overview of the language for those not
already familiar with it, it takes a bottom-up approach, starting
with lexical details, data types, syntax and statements, and then
more advanced topics. The descriptions of Pascal written by Nik­
laus Wirth follow: we have found no reason to alter his approach.
The wealth of data types, Pascal's most salient and subtle fea­
tures, are presented as soon as possible.

The second part of this book is less formal. With the aid of ex­
amples, we have attempted to teach UCSD Pascal to a reader
with programming experience, but no knowledge of any Pascal
dialect. It should be useful to any readers with more knowledge
than this minimum, but by no means is it intended as a course for
beginning programmers. The text takes a conversational, prob­
lem-solving approach to the presentation of the language. Since
we have assumed a variety of readers , and tried to cover as much
of the language as possible, our examples include both numerical
and non-numerical problems. Not all of our examples are immedi­
ately practical programs, but all of them attempt to illustrate
practical techniques.

The sample programs in the second part of the book are printed
from program source that was actually run and tested. To the
best of our knowledge, they are correct.

Trademark of the Regents of the University of California.

iii

Although we describe aspects of the UCSD p-System™
throughout this manual, it is about the UCSD Pascal language.
For more complete information on the UCSD p-System itself,
please refer to the UCSD p-System Operating System Refer­
ence Manual (2232395-0001).

Tutorials on the filer, editor, and UCSD Pascal can be found in
Personal Computing with UCSD p-System (2232418-0001) by
Overgaard and Stringfellow.

Trademark of the Regents of the University of California.

IV

Contents

Preface .. III

PART 1 A DEFINITION OF UCSD
PASCAL

1 A Synopsis ... 1-1
The Form of a Program 1-4
Declaration 1-4
Evaluation 1-6
Action ... 1-7
Communication 1-9
Modularity ... 1-10
Miscellany .. 1-11
Execution ... 1-12

2 Lexical Conventions .. 2-1
Conventions of This Handbook 2-3
The Character Set .. 2-5
Symbols 2-6
Identifiers .. 2-7
Comments 2-11
Token Boundaries .. 2-12
Indentation and Legibility .. 2-13

3 Data Types and Operations 3-1
Introduction 3-5
Simple Data Types .. 3-10
Scalars and Subranges 3-33
Structured Types 3-38
Dynamic Types 3-59
Space Allocation for Data Types 3-71

v

4 Overall Program Syntax 4-1
The Outline of a Program 4-3
Structure and Scope 4-7
Restrictions 4-10
Units and Separate Compilation 4-11

5 Procedures and Functions 5-1
Procedure and Function Declarations 5-3
Calling P rocedures and Functions 5-7

6 Control Statements 6-1
Compound Statements 6-3
Conditional Statements 6-4
Repetition 6-8
Branching 6-12

7 Input and Output 7-1
Standard Pascal I/O 7-3
Handling External Files 7-9
The UCSD p-System Environment 7-16 \

8 Memory Management 8-1
The p-System Runtime Environment 8-3
Segmentation 8-4
Free Space 8-6
F ree Space on the Heap 8-7

9 Concurrency 9-1
Concurrent Execution 9-3
P rocesses 9-3
Init iating a Process 9-5
Process Synchronization 9-6
Event H andling 9-8

10 Compilation 10-1
Compiler Options 10-3
External Routines 10-12

vi

PART 2 A GUIDE FOR UCSD
PASCAL PROGRAMMERS

Introduction iii

1 Bootstrapping the Programmer 1-1

2 Data and Expressions 2-1
Expressions and Assignment 2-3
Declarations 2-4
Simple Types 2-5
Scalars and Subranges 2-13
Arrays 2-15
Strings 2-18
Sets and Records 2-21
Dynamic Variables and Pointers 2-28

3 Flow of Control 3-1
Functions and Procedures 3-4
Recursion 3-10

4 Input and Output 4-1
Character 110 4-4
Record 110 4-9
Block 110 4-25
Device 110 4-27

5 Concurrency .. 5-1

6 Units and Separate Compilation 6-1

7 Memory Management 7-1

vii

8 Advanced Techniques 8-1
Character Intrinsics 8-3
Record Variants 8-4
Memory Addresses 8-5
ORD(ODD) 8-9
Conclusion 8-10

Appendixes

A Lexical Standards

B UCSD Pascal Syntax

C Intrinsics

D Syntax Errors

E American Standard Code for
Information Interchange
(ASCII) Characters

Index

viii

Part 1

A Definition of UCSD Pascal

1

A Synopsis

The Form of a Program 1-4

Declaration 1-4
Evaluation 1-6

Action 1-7

Communication 1-9

Modularity .. 1-10

Miscellany 1-11

Execution 1-12

1-111-2

This chapter is an overview of Pascal for readers who are not
already familiar with the language. Those who have used UCSD
Pascal before can skip it. Those who have used only other lan­
guages, or other dialects of Pascal, should read it to receive a
general understanding for the language and the UCSD implemen­
tation.

A Pascal program is relatively formal, when compared with other
languages such as BASIC, FORTRAN, or PLiI. Pascal's restric­
tions require the programmer to be more disciplined, but the
advantages include:

• Syntax that is easily understood

• Implicit error-checking during compilation and runtime

• Freedom to concentrate on the algorithm rather than tricks
of the language

• Modularity of the program's structure

• Readability

All of these things tend to make a program less error-prone and
easier to maintain. Correctness and maintainability are the goals
of structured programming, and Pascal was designed to promote
such a style.

This chapter is informal, and is meant to convey the flavor of a
Pascal program without going into details. What we describe
here should give you an idea of what to expect in the chapters
that follow.

In our examples of Pascal source (and elsewhere), reserved words
are printed in boldface and predeclared identifiers are UNDER­
LINED and capitalized. This stresses the difference between
reserved, predeclared, and user-created identifiers. We realize
that program listings do not normally look like this.

1-3

THE FORM OF A PROGRAM

The text of a Pascal program begins with a heading, which is fol­
lowed by an optional sequence of declarations, and a list of state­
ments enclosed in the words begin and end. It ends with a period.

Here is a simple program:

program FirstOne;

begin
WRITELN(,Hello, out there!');

end.

DECLARATION

All data in a Pascal program has a given type. Some types are
part of the language (they are said to be predeclared). There are
the numeric types INTEGER, REAL, and long INTEGER. \
There is the logical type BOOLEAN, and the character type
CHAR. Sequences of characters can be represented by the type
STRING.

These are constants of various types:

1523
3.14159
'G'
'Hello, out there!'

INTEGER
REAL
CHAR
STRING

Constants can be given symbolic names (identifiers):

const

1-4

OneDate = 1523;
pi = 3.14159;

initial = 'G ';
message = 'Hello, out there! ';

In a Pascal program, all variables must be declared. The type of a
variable never changes:

var
Year: INTEGER;
factor: REAL;
letter: CHAR;
greeting: STRING;

(The type of a variable in Pascal is much stricter than in some
other languages (for example, FORTRAN, PL/I). For a program
to compile successfully, variables must be treated according to
the rules for their type.)

The programmer can define new scalar types. A scalar is a finite
sequence of values with symbolic names:

var WeekDay: (Sun, Man, Tue, Wed, Thu, Fri, Sat);

Subranges of scalars are also available:

WorkDay: Mon .. Fri; Subrange of WeekDay
Rating: 1 .. 10; Subrange of I TEGER

In addition to the simple types, scalars, and subranges, Pascal
provides the structured types array, record, and set. An array is a
table of values (all of one type) grouped under a single name. A
record is a group of values, possibly of different types. A set is a
collection of values taken from a single base type.

Dynamic structures such as linked lists and search trees can be
created using pointers. A pointer is a variable that points to
another variable of a given type. The variable pointed to has no
name; it is allocated or deallocated as needed.

Finally, long sequences of values can be contained in a file. In
------- UCSD Pascal, a file is associated with a physical entity such as a

disk file or a peripheral device.

1-5

EVALUATION

New values can be calculated by combining existing values in
expressions. The result of an expression is of a particular type.
Various operands are defined for different types.

Numeric expressions and numeric operators follow common
algebraic conventions:

a+b+c
1.5 * ((i - I) * 2)
1+2-3*4

Relational operators can be used. Expressions with relational
operators return a result of type BOOLEAN:

date = today
date < > yesterday
profit> 10000

< > means "not equal"

Pascal also provides some intrinsic functions, which appear in
expressions:

pi * SQR(radius)
SQRT(SQR(b) - 4*a*c)

ODD(factor) A Boolean function

Functions can also be defined by the user.

To initialize a variable or change its value, an assignment can
be used. The symbol for assignment is := . For example:

IsOdd: = ODD(factor) ;
area:= width * height;
RoundArea := pi*SQR(radius) ;

Each of these lines is called an assignment statement, The semi­
colon (;) is used to separate statements, as shown.

1-6

ACTION

In general, statements in Pascal are executed starting with the
first statement in the main program, and proceeding to the end.
Flow-of-control statements can be used to vary the order in which
statements are executed by providing for decisions and repeti­
tion. Functions and procedures can be used to break the program
into intelligible portions and improve its organization.

The if statement is used for a simple two-way (true/false) decision:

if profit> 10000 then
PlanParty;

if profit> 10000 then
PlanParty

else
CallMeeting;

~ The case statement is used for multiple-way decisions:

case month of
Apr, Jun, Sep, Nov: days:= 30;
Jan, Mar, May, Jul, Aug, Oct, Dec: days:= 31;
Feb: if leapyear then

end;

days:= 29
else

days:= 28;

There are three loop constructs in Pascal. The while statement is
the most general form:

while NotDone do
Fixlt;

1-7

The repeat statement is like a while, but always executes at least
once:

repeat
FixIt

until fixed;

The for statement uses a control variable, and repeats a given
number of times:

for i:= 1 to :1 0 do
clear;

Pascal also includes ways to perform branching as in BASIC or
FORTRAN, but these are typically used only in emergency situa­
tions, if at all.

A procedure is a self-contained portion of code, The form of a pro­
cedure is much like the form of a program:

procedure Greet;

begin
WRITELN('Hello, out there! ');

end;

It is called by a statement that simply consists of the procedure's
name:

Greet;

Parameters can be passed to a procedure when it is called:

procedure area (height, width: INTEGER; var result:

1·8

INTEGER);
begin

result: = height * width;
end;

This could be called by a statement such as:

area(12, 5, rectangle);

In this example, width and height are value parameters, while
result is a variable parameter. In the code that calls the proce­
dure, value parameters are unaffected, while variable parameters
may be changed by the procedure (in the example, rectangle will
be set to the area that the procedure calculates).

A function is much like a procedure, except that it returns a
result:

function area(height, width: INTEGER): INTEGER;
begin

area: = height * width;
end;

As we have seen, a function is called by using it in an expression:

rectangle:= area(12, 5);

or:

if area(NewHeight, NewWidth) < > 0 then PrintResult;

Pascal allows recursion. A procedure or function can call itself.
Some algorithms are much more elegant when expressed recur·
sively; Pascal can implement them directly.

COMMUNICATION

Simple (character) input/output (I/O) is accomplished with the
intrinsic procedures READ, READLN, WRITE, and
WRITELN. The intrinsic Boolean functions EOF (end of file) and
EOLN (end of line) are provided for control.

If no other file is specified, these I/O intrinsics refer to the stand­
ard files INPUT and OUTPUT. In UCSD Pascal, INPUT and
OUTPUT are both equivalent to the system's console.

1-9

File (record) I/O uses READ, WRITE, EOF, PUT, and GET. In
UCSD Pascal, a file used within a program may refer to a system
disk file or a peripheral I/O device. Random access is available
with the intrinsic SEEK.

UCSD Pascal allows devices to be controlled directly (and
swiftly) by a number of intrinsics including UNITREAD and
UNITWRITE.

Also in UCSD Pascal, a file can be declared without a type and
manipulated by the intrinsics BLOCKREAD and BLOCKWRITE.
These are mainly used to transfer large portions of data swiftly.
of data swiftly.

MODULARITY

Code that is to be used by more than one program can be sepa­
rately compiled. Such a code package is called a unit. A unit con-
sists of an interface part, an implementation part, and optional ~
initialization/termination code (units are a UCSD Pascal exten-
sion).

An interface part contains declarations and procedure or function
headings. These can be used by the program (or other unit) that
uses the unit.

An implementation part contains other declarations, and the
code for the procedures and functions that were declared in the
interface part. All of this information is strictly private to the
unit.

It is possible to change the implementation part of a unit (to
improve an algorithm, for example) and recompile it. If the inter­
face part has not been changed, programs and units that use the
unit may continue to do so; there is no need for them to be recom­
piled as well.

1-10

More than one unit can be grouped together in a single code file
(often called a library). This can be useful, but is outside the scope
of this book. Library handling is discussed in the UCSD
p-System Operating System Reference Manual.

Units can also be useful for breaking up a program that is too
long to compile in one piece.

MISCELLANY

This section describes some capabilities that pertain only to
UCSD Pascal.

A procedure or function can be declared a segment procedure or
function, in which case the system can swap it independently of
the main program. This can be useful when running large pro­
grams that occupy a lot of space at execution time.

It is possible to write a routine that runs concurrently (that is, it
shares processor time with other routines or programs). A routine
that runs concurrently is called a process. A process looks like a
procedure. It is not called, but an instance of it is set into execu­
tion by a call to the intrinsic START. Processes may be coordi­
nated by the intrinsics SIGNAL and WAIT. They are especially
useful for I/O and interrupt handling.

It is possible to write a procedure or function in assembly lan­
guage, and call it from a Pascal program. This is done by declar­
ing it external. The assembly language (native code) routine is
responsible for conforming to Pascal's calling conventions. Such
internal information is outside the scope of this handbook.

1-11

Finally, there are a number of compiler options that allow the
following:

• Control of the compiled listing

• Control of the compiler's output

• Insertion of a copyright notice

• Conditional compilation

• Turning 110 checking off/on

• Turning range checking off/on

• Specifying a library

• Control of include files

EXECUTION

After a UCSD Pascal program has been compiled, it is run on the
p-System by using the R(un or eX(ecute commands.

While a program is running, a number of things can cause a run­

time error. A runtime error can be caused by a bug in the pro­
gram, or by a mistake made by the person operating the program.
When a runtime error occurs, the system aborts the program and
displays a message that looks something like this:

Divide by zero Segment TEST
< space> to continue

Proc 1 Offset 6 Type

If the program is at fault, it must be fixed. If the program's
operator is at fault, the program can usually be started again by
the U(ser-restart command.

1-12

Descriptions of the p-System commands and the full list of pos­
sible runtime errors can be found in the UCSD p-System Operat­
ing System Reference Manual. In this manual we indicate
situations that will cause runtime errors, but the reader should be
aware that the text and format of such messages are subject to
change.

1-13/1-14

2

Lexical Conventions

Conventions of this Handbook 2-3
EBNF 2-4
The Character Set 2-5
Symbols 2-6

Special Symbols 2-6
Reserved Words 2-6
Identifiers 2-7
Definition 2-8
Uniqueness 2-8
Predeclared Identifiers .. 2-9
Comments 2-11

Token Boundaries .. 2-12
Indentation and Legibility ... 2-13

2-112-2

A UCSD Pascal source program is essentially a stream of charac­
ters contained in a text file. For the program to compile success­
fully, it must conform to both the lexical standards of the
language, and the syntactic (grammatical) rules. This chapter
describes lexical standards which cover the legal character set,
the formation of identifiers, the set of symbols and reserved
words, the formation of comments, and a few other topics.

The term token is a compiler-writer 's term that refers to a single
symbol or name in the source program. It can be a special­
character symbol, a reserved word, a constant, or an identifier.
Since it is a useful general-purpose word, it appears throughout
this chapter.

For a description of text files as they are maintained in the UCSD
p-System, please refer to the UCSD p-System Operating System
Reference Manual.

CONVENTIONS OF THIS HANDBOOK

We have used few conventions throughout this book. The intent
has been to clarify our topics, not obscure them. In some cases,
we use a form of EBNF (Extended Backus-Naur Form), already
familiar to many readers. A description of EBNF appears at the
end of this section.

A concise description of Pascal syntax in the form of railroad dia­
grams can be found in Appendix B.

Since UCSD Pascal is a particular dialect of the language, we
have attempted to indicate where it differs from standard Pascal.
When we say standard Pascal, we are referring to those features
of Pascal that are common to both the original definition by J en­
sen and Wirth and the current American National Standards
Institute (ANSI) draft standard. Where these two sources differ
from each other, we have attempted to state that explicitly. As of
this writing, the International Standards Organization (ISO) has
a draft standard that is very similar to the ANSI draft.

2-3

When we describe a subrange, we shorten the conventional ellip­
sis (...) to .. , as in the Pascal language itself. In other words, 1..6
represents the digits (or integers) one through six, as 1.. .6 would
indicate in common mathematical notation. The book uses this
notation because Pascal does.

In informal descriptions of syntax (and not in Pascal programs
themselves), words enclosed in angle brackets « » are names of
things; usually they represent non-printing characters such as
< return> and < esc> .

EBNF

2-4

As we use it in this book, an EBNF expression is a
description of some portion of Pascal syntax such as the
following:

assignment-statement =
variable-name ":=" expression

The EBNF expression consists of the name of some syn- \
tactic object, followed by an equal sign (=) and a descrip-
tion of the object.

Within the description, anything in quotes must appear
literally in the Pascal program. A name that is not in
quotes is the name of a syntactic object that is described
elsewhere. Square brackets ([]) surround portions of syn­
tax that are optional, and braces ({ }) surround portions
of syntax that may appear. A vertical bar W separates
different options, for example:

digit = "0" "I" "2" "3" "4" "5" "6" ' ''7''
"S" "g"

Here is a slightly more complicated example:

repeat-statement =
"repeat"

[statement {";" statement} I
"until" Boolean-expression

This EBNF expression tells you that a repeat statement
consists of the reserved word repeat, followed by an
optional statement list, the reserved word until, and a
Boolean expression. The statement list itself consists of a
single statement followed by zero or more instances of a
semicolon preceding another statement.

Note that this expression does not define the terms state­
ment or Boolean-expression as they are defined else­
where.

In this manual, we use EBNF to clarify the more confus­
ing parts of Pascal syntax, especially those that involve
recursive structures. Since we have not attempted to con­
struct a full axiomatic description of UCSD Pascal, we
did not provide EBNF descriptions of those objects that
appear in our EBNF descriptions.

THE CHARACTER SET

UCSD Pascal source files can contain the letters A .. Z, a .. z, the
digits 0 .. 9, and the following special characters:

() [] {} + * / < = > . , . , '/\

The underscore (_) can appear in identifiers.

The following characters can appear (along with all other print­
able characters) in comments or strings, but they have no particu­
lar meaning:

!@ #$%&?I \ "'\.,

Blanks (' ') and carriage returns « return» can also be present.
They serve to delimit identifiers, and format the file in a legible
way.

UCSD Pascal uses ASCII (the American Standard Code for
Information Interchange) to represent these characters. The
ASCII code is shown in Appendix E.

2-5

SYMBOLS

A source program can contain symbols that are part of the Pascal
language (special symbols and reserved words), identifiers that
have been declared within the system (predeclared identifiers),
identifiers that the user has defined, and literal text (contained
within comments or strings).

Symbols that are already part of the Pascal language can be
divided into special symbols of one or two characters, and
reserved words.

Special Symbols

These are the one-character symbols:

, () [1 {} + * / <>/\

These are the two-character symbols:

.. < = < > > = (* *)

The symbol *** may appear within the code portion of a
unit. This is not part of standard Pascal.

Reserved Words

2-6

Reserved words, like special symbols, are used in Pascal
to represent syntactic constructs, such as particular
kinds of declarations, particular forms of statements, and
groups of statements.

These are the reserved words in UCSD Pascal (an asterisk
indicates reserved words that are not part of standard
Pascal):

and goto record
array repeat

if
begin *implementation *segment

in *separate
case *interface set
const

label then
div to
do mod type
down to

not *unit
else until
end of *uses

*external or
var

file packed
for procedure while
forward *process with
function program

Note the absence of nil. In UCSD Pascal, it is predeclared
rather than reserved.

IDENTIFIERS

Identifiers represent constants, types, variables, and routines
(procedures, functions, and processes). Some identifiers are prede­
clared, that is, they represent constants, types, or routines (but
never variables) that the system has already defined.

2-7

Definition

An identifier consists of a letter, followed by an indefinite
number of letters or digits. Single-letter identifiers are
legal, and either upper- or lowercase, or a mixture of both,
can be used.

Identifiers can also contain the underscore character (_),
but it is not significant (its purpose is to make an identi­
fier more legible).

An identifier cannot be the same as a reserved word. An
identifier can be the same as another predeclared identi­
fier (this can lead to problems; see Chapter 4, Structure
and Scope).

These are legal identifiers:

i Parity try13 c2unit78 c2 unit_ 78

These are not legal identifiers:

4tran
c2.unit.78
try 13
_ Parity

Begins with a number
Contains special characters
Contains a space
Begins with an underscore

Uniqueness

2-8

Upper- and lowercase are not distinct.

These identifiers are equivalent:

moss MOSS Moss MosS

Only the first eight characters of an identifier determine
its uniqueness.

These two identifiers are equivalent:

lostinspace lostinspectionitem

Embedded and trailing underscores (_) are ignored.

These identifiers are equivalent:

find_ disk finddisk Find __ Disk f.-inLd_ isk
finddisk_

The Jensen and Wirth definition of identifiers does not
include the underscore character, but does specify eight­
character uniqueness. Both the underscore and the eight­
character stipulation conflict with the ANSI draft
standard, which states that all characters of an identifier
shall be significant.

Predeclared Identifiers

These are the predeclared identifiers in UCSD Pascal (an
asterisk indicates identifiers not in standard Pascal):

ABS *DELETE *IDSEARCH
ARCTAN DISPOSE INPUT

*ATAN *INSERT
*ATTACH EOF INTEGER

EOLN *INTERACTIVE
*BLOCKREAD *EXIT
*BLOCKWRITE EXP *IORESULT

BOOLEAN
FALSE *KEYBOARD

CHAR *FILLCHAR
CHR *LENGTH

*CLOSE GET LN
*CONCAT *GOTOXY *LOG
*COPY
COS *HALT

2-9

2-10

*MARK READ TEXT
l\.lAXINT READLN *TIME
*ME~IA V AIL REAL *THEESEAHCII
*l\.1E:\lLOCK *RELEASE TRUE
*MEMSWAP RESET TRUNC
*MOVELEFT REWRITE
*MOVERIGHT ROUND *UNITBUSY

*UNITCLEAH
NEW *SCAN *UNITREAD
~IL *SEEK *UNITSTATUS

*SEMAPHORE *UNITWAIT
ODD *SEMIKIT *UNITWRITE
ORD *SIGNAL
OUTPUT SI:\' *VARAVAIL

*SIZEOF *VARDISPOSE
PAGE SQR *VARNEW
*PMACHI~E SQRT
*POS *START *WAIT

PHED *STR WRITE
*PROCESSID *STRING WRITEL:\,
PUT SUCC

*PWROFTEi'.

Note the absence of the standard predeclared identifiers
PACK and UNPACK.

The routines IDSEARCH, PMACHINE, and
TREESEARCH are for the system's use, and are not
described in this handbook. The UCSD p-System Internal
Architecture Guide describes PMACHINE.

COMMENTS

A comment is a passage of text that is ignored by the Pascal
compiler. The purpose is to allow the programmer to explain the
actions of the program in a language other than Pascal.

Comments can appear virtually anywhere in a source program.
Like spaces or carriage returns, they delimit tokens, so they must
appear between them. A comment cannot appear in the middle of
an identifier, constant, reserved word, or two-character symbol.

A comment is any text enclosed by the delimiters { }, or (* *).

These are comments:

{ A comment with fancy delimiters! }
(* Another sort of comment, with less exuberance. *)

The delimiters cannot be mixed.

These are not comments:

(* Two kinds of delimiters here}
{ The same problem, in reverse *)

Comments with the same kind of delimiter cannot be nested.

This is not a legal comment:

{ This is an unsuccessful attempt {to create nested} comments. }

The compiler would read this as a comment ending with nested}.

A comment can contain a comment that uses the other type of
delimiters.

------- These are legal comments:

(* This is a comment {that contains another} *)
{and so (*is this*)}

2-11

This construct is not legal in standard Pascal.

Comments can be longer than one line of source. If the compiler
finds a comment that contains a semicolon (;), it issues a warning
in the program's listing file. It is a common error to begin a com­
ment, then forget to close it with a matching delimiter. The result
is a comment that may swallow many lines of Pascal code (pos­
sibly the entire remainder of a program!). Since Pascal state­
ments typically end with a semicolon, flagging semicolons within
comments is a good way for the compiler to notify the program­
mer of this potential error.

Comments that contain a dollar sign ($) immediately after the
first bracket are treated as instructions to the compiler. These
comments must conform to a special format. A comment should
not begin with a dollar sign unless the programmer wishes to
invoke a specific compiler option. See Chapter 10 on compilation.

These are compiler option comments:

(*$1 -*)
{$L list.5.text}

These are not compiler option comments:

{ $1 -} Space before the $
{$M + } NoM option at this time

TOKEN BOUNDARIES

Special-character symbols are tokens in themselves, but reserved
words, constants, and identifiers must be clearly delimited.
Except for special-character tokens, one token must be separated
from the next by a special character, space, comment, or by press­
ing the RETURN key.

No reserved word, constant, or identifier can contain a special
character, space, comment, or carriage return. This means, that
tokens cannot cross the end of a line of source code. (A comment
is not a token, and can cross the end of a line.)

2-12

INDENTATION AND LEGIBILITY

Aside from the restrictions mentioned in the previous section,
there are no restrictions on the way a program can be arranged in
the source file. However, there are some traditions concerning the
visual format of a structured program, especially a Pascal
program.

In general, a line of source code contains a single statement, or in
the case of large compound statements, a single phrase or
reserved word.

The hierarchy of statements that is implicit in a structured pro­
gram is indicated in the source by indentation. Two or three
spaces per level is usually favored. The begin end, then else, case
end, record end, and repeat until pairs are typically indented so
that they align vertically.

The last line of a program, or a relatively long routine, is usually a
single end. This is often augmented with a comment that simply
contains the name of the program or routine that is being ended.

This would not be considered a legible routine:

procedure decide;
var i: INTEGER; sortof: REAL;
begin
fori:=1 to81 do
if choose(i) then move: = 0 else begin
traverse(move,sortof);
respond(sortof)
end end;

2-13

This is the same routine, and would look acceptable to most
programmers:

procedure decide;

var i: INTEGER;
sortof: REAL;

begin
fori:= 1 to81 do

if choose(i) then
move:= 0

else
begin

traverse (move, sortof);
respond (sortof)

end;
end {decide};

However, we know programmers who would prefer to write it this
way:

procedure decide;

var i: INTEGER;
sortof: REAL;

begin
fori:= 1 to81 do

if choose(i) then
move:=O

else begin
traverse(move,sortof);
respond(sortof)

end
end {decide};

The important thing is that the programmer must consider the
future readers of the program. Even the person who writes a pro­
gram can be confused when he reads it some days (or hours) later.

2-14

3

Data Types and Operations

Introduction 3-5
Constants, Variables, and Expressions 3-5
Assignment 3-7
Evaluating Expressions 3-7
The Use of Data Types 3-9
Simple Data Types 3-10
Integer 3-10

Integer Format 3-10
Integer Comparisons 3-11
Integer Operations 3-11
Integer Routines 3-14

Real 3-15
Real Format 3-16
Real Comparisons 3-17
Real Operations .. . 3-17
Real Routines 3-18

Long Integer 3-22
Long Integer Format 3-22
Long Integer Comparisons 3-23
Long Integer Operations .. 3-23
Long Integer Routines .. 3-24

Boolean 3-24
Boolean Format 3-25
Boolean Comparisons 3-25
Boolean Operations ... 3-25
Boolean Routines 3-26

Characters 3-27
Character Format .. 3-27
Character Comparisons 3-28

..-... Character Operations 3-28
Character Routines 3-28

Special-Purpose Types ... 3-29
Type Conversions 3-29

Compatibility ... 3-29
Conversion Routines 3-30

3-1

Scalars and Subranges 3-33
Scalars 3-33
Subranges 3-34
Predeclared Standard Types 3-35
Scalar and Subrange Routines 3-36

ORD 3-36
PRED 3-37
SUCC 3-37

Structured Types 3-38
Arrays 3-38

Array Format 3-39
Array Comparisons 3-41
Array Operations 3-41
Array Routines 3-42

Strings 3-45
String Format 3-46
String Comparisons 3-47
String Operations 3-47
String Routines 3-47

Sets
Set Format .. .

3-51 \
3-51

Set Comparisons 3-52
Set Operations 3-53
Set Routines 3-53

Records 3-54
Record Format 3-54
Record Comparisons and Operations 3-56
Variant Records .. . 3-56
The With Statement 3-57

Dynamic Types 3-59
Files 3-59

Internal File Format 3-60
Standard File Handling 3-62

Pointers 3-66
Pointer Format 3-66
Building Data Structures 3-68
Standard Memory Management 3-70

3-2

Space Allocation for Data Types 3-71
Packed data 3-72
Simple Types .. 3-74

Integer .. 3-74
Real 3-74
Long Integer .. 3-75
Boolean ... 3-75
Character 3-75

Scalars and Subranges ... 3-76
Structured Types ... 3-76

Arrays 3-76
Strings 3-77
Sets 3-77
Records 3-77

Dynamic Types .. 3-78
Files 3-78
Pointers 3-78

The SIZEOF Intrinsic 3-78

3-3/3-4

UCSD Pascal provides a large number of data types, each appro­
priate to certain applications. This chapter is therefore the lon­
gest in the handbook. Each data type is described in terms of its
intended use, representation in the source program, limitations,
legal comparisons and operations, and the intrinsic routines that
operate on it. The internal representation of data types is dis­
cussed at the end of this chapter in the paragraph entitled Space
Allocation for Data Types. Input and output of data is described
in Chapter 7.

This chapter describes a number of intrinsic routines, but does
not group them together. Appendix C contains a complete alpha­
beticallist of the UCSD intrinsics.

INTRODUCTION

A Pascal program specifies a set of data, and a set of statements
that operate on that data. The format of data, the variables that

.....---,. contain it, and the algorithms that use and modify it must all be
specified explicitly.

Constants, Variables, and Expressions

In Pascal, the format of data is specified by its type. Pas­
cal offers a variety of predeclared types. Unlike many
languages, it also allows the user to define new types.
Identifiers are used as names of types.

A constant is an object in a Pascal program that is a spe­
cific value of a specific type. As the name implies, it can­
not be changed while the program is running. A constant
can be a literal representation of the value, or an identifier
that is declared as a constant.

A variable is an object in a Pascal program that is of a
specific data type, and contains a value. A variable can
contain only one value at any given time, but that value
can be modified by an assignment statement, a procedure
call, and so forth. Variables are represented by identi­
fiers.

3-5

3·6

Both constants and variables can appear in expressions.
An expression consists of constants, variables, and opera­
tors that yield new values. Operators are defined in cer­
tain ways for certain types, and the result of an
expression is either a value of a specific type, or is unde­
fined.

These are numeric expressions:

height+ 1
(width * height)/2
1 + 1 + 1-3+ 14/7

These are Boolean expressions:

glass=house
(EdgeTest and Emergency) < > finished

The identifiers in all of these examples might have been
declared as either constants or variables. All identifiers
must be declared prior to the body of the program, unit,
or routine that uses them (see Chapter 4).

A function is a kind of routine that returns a value of a
specific type. This value can be used in an expression, and
hence the function call can be embedded in the expression
itself:

a + 5*b + sqr(c)
not EOF(LinkFile)
not EOF
findpos(oper) /findpos(OpSum)

Functions are described in Chapter 5.

When a program runs, an expression can be evaluated,
yielding some value. This value can be inspected on the
spot and then forgotten, or it can be saved by assigning it
to a variable (or printing it out, and so forth).

Assignment

An assignment statement consists of a variable, followed
by the symbol: =, and an expression.

These are assignment statements:

x:= 6
graph: = picture_ file
dog:= eat(dog)
i:=i+1
muffle: = seeknoise(pipe,5)*2. 137

The action of an assignment changes the value of the var­
iable on the left of the : = to the value of the evaluated
expression. If the value of the expression is undefined or
if it is an incompatible type, then an error results.

The full semantics of expressions and assignments will
become clearer after the discussion of specific data types.

Evaluating Expressions

Two rules govern the order in which operators are evalu­
ated within an expression.

The first rule is operator precedence; certain operations
take precedence over other operations (they are evaluated
first). For example, multiplication and division opera­
tions precede addition and subtraction. Thus, the follow­
ing expression is TRUE:

5*3+4*6-2 = 37

The multiplication operations are evaluated first, fol­
lowed by the addition and subtraction.

3-7

3-8

The second rule is that subexpressions can be grouped
together by the use of parentheses. Subexpressions
within parentheses are evaluated before the rest of the
expression, and they can be nested. Thus, by modifying
the previous expression, we can produce the following
TRUE expressions:

5*(3+4)*6 - 2 = 208

or with nested parentheses:

5*((3+4)*6-2) = 200

Other than these two rules, the order in which operations
are evaluated is undefined. The actual order is determined
by the compiler.

If the result of an expression depends on the order in
which it is evaluated, parentheses should be used. Some­
times the result of an expression will be known before the
entire expression has been evaluated (for example, when a
subexpression is multiplied by zero). When this is the
case, it is possible that part of the expression will not be
evaluated. The programmer should never assume that all
operations in an expression will be carried out. This is
especially important when a function call appears in an
expression; since it will not necessarily be called, the pro­
gram should not depend on any side-effects of its call.

The precedence rules for the operators on a given data
type follow with the description of each type.

The Use of Data Types

There are two ways in which a program can be seen as a
model of the real world. In one respect, a program can lit­
erally be an implementation of a model used to manipu­
late that model (store and retrieve data, calculate results
from that data, and generate new data for other uses). In
another respect, programs are used to control the
machines on which they run (monitor input and output,
issue instructions to the user, and accept instructions
from the user).

In both of these cases, the data structures that the pro­
gram uses should mirror the real-world situation. The
more naturally data structures reflect the problem at
hand, the easier it is to code the program, and the easier it
is to use the program when it becomes a finished product.

Pascal presents a wide variety of data types for just this
purpose. Simple quantities, integers or floating point
numbers, can be represented by values of types
INTEGER or REAL. Yes/no states can be represented
by BOOLEAN values, and characters by values of type
CHAR. The user can define new types (scalars), and sim­
ple types can be combined into more complex structured
types that are richer and more useful representations of
the real-world data that the program must deal with.

A full description of a set of data, of course, includes not
only the data itself, but the possible actions that can be
performed upon it (that is, the interrelation of data
items). It is often the case that a single set of data-plus­
algorithms can be useful to more than one program. The
UCSD Pascal construct of the unit allows the program­
mer to define such a set; any number of programs (or
other units) can use a unit, and a unit can be compiled
separately from these clients.

3-9

SIMPLE DATA TYPES

The following paragraphs describe the simple data types that are
predeclared in UCSD Pascal. It ends with a section that describes
the routines that perform conversions from one data type to
another.

A variable or constant that is of a simple data type has only one
element. It is not a collection of values, either of the same simple
data type (see array) or of different data types (see record) (both
arrays and records are described in the paragraph entitled Struc­
tured Types).

Integer

3-10

The type INTEGER is used to represent integral values
(whole numbers and their negatives).

Integer Format

An integer value is represented by a sequence of
digits. It may be preceded by a - or + symbol. If
no sign is present, the integer is assumed to be
positive.

These are integers:

12345
51
+51
-51
-232

These are not integers:

1234.0
/51
89i5

Contains a decimal point
Contains a special character
Contains a letter

Integers are defined over the range - MAXINT
.. MAXINT. The MAXINT range is a predeclared
constant in each Pascal implementation; III

UCSD Pascal it is equal to 32.767.

Integer Comparisons

These are the legal comparisons on integers:

Equal to
< > Not equal to
> Greater than
> = Greater than or equal to
< Less than
< = Less than or equal to

Thus. the following comparisons are all TRUE:

17 = 17
32767 > -32767
32767 > = 0
13 < > 43
0 < = 0

Integer Operations

These operations yield results of type INTEGER.
The operands can be of type INTEGER or a sub­
range of INTEGER (see the paragraph entitled
Scalars and Subranges in this chapter). Integers
can also appear in expressions that yield results
of type REAL. These operations are described in
the subsection on real numbers below.

These are the legal operations on a single integer:

+ Unary plus (identity)
Unary minus (change sign)

3-11

3-12

These are the legal operations on two integers:

+

*
div
mod

Plus (addition)
Minus (subtraction)
Times (multiplication)
Integer divide (divide and truncate)
Modulo (remainder of integer division)

Thus, the following expressions are all TRUE:

+2 = 2
-2 =-2
5+6 = 11
5-6 = -1
5*6 = 30
33 div 5 = 6
33 mod 5 = 3

The second operand of a div cannot be a zero for it
causes a runtime error.

The operation div first performs the division,
then truncates the result toward zero.

The operation i mod j is defined by:

for i > = 0: i - ((i div j) * j)
fori< 0:i-(((i+1)divj)*j)+j

j cannot be less than or equal to zero.

When an expression is evaluated, the multiplica­
tive operators *, div, and mod take precedence
over the additive operators + and -.

The following expressions are all TRUE:

345+ 10 div 5=347
23*24*3+6= 1662
6+3*23*24= 1662

The div is performed first
The *. s are performed first
The *. s are performed first

A unary operator cannot be strung together with
a binary operator. The following expression is
illegal:

5*-4

whereas the following expression is legal and
TRUE:

5*(-4) = -20

To override operator precedence, subexpressions
may be grouped together with parentheses. If
there is any doubt about the order of the evalua­
tion of an expression. parentheses should be used
to ensure that the program states what the pro­
grammer intended.

The following expressions are all TRUE:

5+4+3+ 2 div 7=12
(5+4+3+2) div 7=2

5+4 - 3+ 17 = 23
(5+4) - (3+17) = -11

2+3 * 4 * 5+6=68
2+3 * 4 * (5+6)=134

The div is performed first
The portion in paren­
theses is evaluated first

2+3 * ((4 * 5)+6)=80 Nesting parentheses can
be useful

(2+3) * ((4 * 5)+6)=130

3-13

3-14

Integer Routines

The following paragraphs describe the two func­
tions, ABS and SQR, that can take an integer
value as an argument and return an integer value.

Some other intrinsic routines also deal with inte­
gers. The function ODD takes an integer value
and returns a Boolean; the procedure STR con­
verts an integer (or long integer) into a string;
these are described in the paragraphs entitled
Type Conversion at the end of this section. The
function ORD takes a scalar value and returns an
integer, as described in the paragraphs entitled
Scalars and Subranges. The function SQRT takes
either an integer or real value, and returns a real
value; it is described in the following paragraphs
on real numbers.

For information on the input and output of inte­
ger values, see Chapter 7.

ABS

ABS(I)

where:

I is an integer value (either a constant, variable,
or expression), that returns the absolute value of
I.

The following expressions are TRUE:

ABS(l5) = 15
ABS(-15) = 15
ABS(l2 - 45) = 33
ABS(-MAXINT) = MAXINT {= 32767}
96 = 12 * bBS(-13+5)

Real

SQR

SQR(I)

where:

I is an integer value, returns the square of 1.

The following expressions are TRUE:

SQR(l5) = 225
SQR(l) = 1
SQR(-6) = 36
SQR(SQR(3)) = 81

The type REAL is used to represent fractional numbers
and numbers of very large or very small magnitude.

Real numbers are represented by a numerical portion (the
mantissa), and an exponent that determines the position
of the decimal point. This representation is called a float­
ing point representation, and is similar to conventional
scientific notation. More information on the internal rep­
resentation of real numbers appears in the paragraph
entitled Space Allocation for Data Types, at the end of
this chapter.

Because the mantissa of a real number (as stored in the
computer) contains a limited number of digits, real values
must not be considered precise values; they are accurate
only to a certain level of precision. Some advice on the use
of real values in calculations and comparisons appears in
Part 2, Chapter 2.

3-15

3-16

Real Format

A real value is represented by:

• A sequence of digits that contains a decimal
point (.) (the decimal point must be preceded
and followed by at least one digit)

• An integer value followed by an exponent
(the letter ear E followed by an integer)

• A real value with a decimal point followed
by an exponent

A real value can be preceded by the + or - sym­
bols. In the absence of a sign, the value is
assumed to be positive.

The exponent stands for times ten to the power of
the integer that follows the letter ear E.

These are real numbers:

12345.0
1.2345
+12.4
-12.4
12e4
12.12e4
12.12e-4
12.12E - 4

The range of real numbers depends on whether
they are compiled into a two- or four-word format
(two-word reals is the default). See the section,
Space Allocation for Data Types, at the end of
this chapter.

Real Comparisons

The comparisons on real numbers are the same as
the comparisons on integers. The operands can be
real, an integer, or a subrange of integer (see the
subsection, Scalars and Subranges).

= Equal to
< > Not equal to
> Greater than
> = Greater than or equal to
< Less than
< = Less than or equal to

It is recommended that the = comparison not be
used since representations of real numbers can be
very close in value without being identical. Calcu­
lations and comparisons using real numbers are
discussed in Part 2, Chapter 2.

Real Operations

These operations yield results of type REAL. The
operands can be of type REAL, INTEGER, or a
subrange of INTEGER (see the section Scalars
and Subranges).

These are the legal operations on a single real
value:

+ Unary plus (identity)
Unary minus (change sign)

3-17

3-18

These are the legal operations on two real values:

+ Plus (addition)
Minus (subtraction)

* Times (multiplication)
Divide (division)

The second operand of a division (I) cannot be an
expression whose result is zero since it causes a
runtime error.

When an expression using REAL values is evalu­
ated, the * and / functions take precedence over
the + and - functions. As with integers, two real
operations cannot appear in a row. For example:

3.0 * - 5.6 is illegal

while:

3.0 * (-5.6) is legal

Real Routines

The functions that return a real value, ABS,
SQR, SQRT, SIN, COS, ARCTAN (or ATAN),
EXP, LN, and PWROFTEN, are described in the
following pages.

The functions TRUNC and ROUND are available
to convert a real value to an integer; they are
described in the paragraph entitled Type Conver­
sions.

For information on the input and output of real
values, see Chapter 7.

In the examples for the following function
descriptions, the = should be read as approxi­
mately equals since values are shown only to
three decimal places. Within memory, they would
be stored with greater precision.

ABS

ABS(X)

where:

X is a real value (either a constant, variable, or
expression), that returns the absolute value of X.

ABS(1.5) = 1.5
ABS(-1.5) = 1.5
ABS(-1.2*45) = 54.0

SQR

SQR(X)

where:

X is a real value, returns the square of X.

SQR(1.5) = 2.25
SQR(1.0) = 1.0
~R(-6.0) = 36.0

SQRT

SQRT(X)

where:

X is a real or integer value, returns the square
root ofX.

SQRT(4.0) = 2.000
SQRT(7.0) = 2.646

3-19

3-20

SIN

SIN

where:

X is a real value or an integer value (in radians),
returns the trigonometric sine of X.

SIN(l) = 0.841
SIN(3.14) = 0.002

COS

COS(X)

where:

X is a real value or an integer value (in radians),
returns the trigonometric cosine of X.

COS(l) = 0.540
COS(3.14) = -1.000

ARCTAN or ATAN

ARCTAN(X)

where:

X is a real value or an integer value (in radians),
returns the trigonometric arctangent of X. This
function can also be called by ATAN(X) (this is a
UCSD extension).

ARCTAN(O.3) = 0.291 {= ATAN (0.3)}
ARCT AN(O) = 0.000

EXP

EXP(X)

where:

X is a real value or an integer value that returns
the constant e to the power of X.

EXP(l) = 2.718
EXP(6) = 403.429

LN

LN(X)

where:

X is a real value or an integer value, returns the
natural logarithm of X (the logarithm with base
e).

LN(3) = 1.099
LN(l3) = 2.565

LOG

LOG (X)

where:

X is a real value or an integer value, that returns
the logarithm base 10 of X. This function is a
UCSD extension.

LOG(3) = 0.477
LOG(13) = l.114

3-21

PWROFTEN

PWROFTEN(I)

where:

I is an integer value that returns a real value
equal to 10 to the power of 1. This function is a
UCSD extension.

PWROFTf:N(O) = 1.000
PWBOFTEN(5) = 100000.0

Long Integer

3-22

Long integers are a UCSD extension to the type
INTEGER. They are used to represent integers with a
magnitude that can be greater than MAXINT or less
than - MAXINT (they can represent integers within
- MAXINT .. MAXINT as well).

Long Integer Format

A long integer constant is declared by simply
defining an integer constant with a magnitude
outside the range - MAXINT .. MAXI NT. For
example:

eonst HydbErg = 10973731

A long integer variable is declared by INTEGER
[n), where n, the length attribute, is an unsigned
integer < = 36. The n represents the maximum
number of decimal digits that the long integer
may contain. For example:

var HlgCount: I T}<,GbHI10]

specifies that BigCount contains no more than
ten decimal digits.

Long Integer Comparisons

The comparisons on long integers are the same as
the comparisons on integers. The operands can be
either integer or long integer values.

Equal to
< > Not equal to
> Greater than
> = Greater than or equal to
< Less than
< = Less than or equal to

Long Integer Operations

The operations defined on long integers are the
same as for integers, except that the mod opera­
tion is undefined:

+

+

*
div

Unary plus (identity)
Unary minus (change sign)
Plus (addition)
Minus (subtraction)
Times (multiplication)
Integer divide (divide and truncate)

When expressions using long integers are evaluated,
intermediate results are allocated the necessary amount
of space.

When a long integer is assigned the result of an expres­
sion that uses long integers, it must have been declared
with enough digits to contain the resulting value, other­
wise an overflow error occurs.

The compatibility of assignments using long integers is
described in the paragraph entitled Type Conversions.

3-23

Long Integer Routines

There are no long integer routines per se. The
function TRUNC can be used to convert a long
integer to an integer, and the procedure STR can
be used to convert a long integer to a string; see
the paragraph entitled Type Conversions.

Because Pascal requires that a parameter type be
declared by a type identifier, the following decla­
ration would cause a syntax error:

procedure Large (BigSum: INTEGER[lO])

To declare a parameter of type long integer, an
appropriate type identifier must be declared, as
follows:

type DigitlO = INTEGER[lO];

procedure Large (BigSum: DigitlO)

Long integers cannot be returned as function
results. In terms of standard Pascal, this means
that they are not a true simple type, although
they are used in a manner similar to the types
INTEGER and REAL.

For more information about procedures and func­
tions, refer to Chapter 5.

Boolean

3-24

The type Boolean is used to represent logical truth
values.

Boolean Format

A Boolean value can equal either TRUE or
FALSE (these values are predeclared). FALSE is
defined to be less than TRUE.

Boolean Comparisons

The following comparisons can be used with
Boolean operands:

Equals
< > Not equals (or XOR)
< = Implies
> = Is implied by
> Does not imply
< Is not implied by

Boolean Operations

The comparison operations that have already
been described for INTEGER, REAL and long
INTEGER all yield results of type BOOLEAN.
The operands can be of any compatible ordered
type (see the paragraphs entitled Type Conver­
sions).

The following are operations on Boolean values
only, and yield results of type BOOLEAN:

not Logical negation (a unary operator)
and Logical conjunction
or Logical union

In expressions, not has the highest precedence of
any Boolean operator, followed by and (at the
same level as the multipliers *, /, div, and mod),
followed by or (at the same level as + and -), fol­
lowed by all of the relational operators (=, < > ,
>, < , > =, < =, and in, which is described in the
subsection on Sets in the section on Structured
Types).

3-25

3-26

Since the value of a Boolean expression may be
known before the entire expression has been eval­
uated, the Pascal language does not require full
evaluation of Boolean expressions. For example:

flagl and flag2 and flag3

If flagl is FALSE, there is no need to check the
values of flag2 or flag3.

The order in which Boolean expressions are evalu­
ated is chosen by the compiler. The programmer
should be aware of this situation, and not write
code that depends on an entire Boolean expres­
sion being evaluated. In particular, a function call
that must be made (because of its side effects) for
the program to work should never be embedded in
a Boolean expression. (Conversely, the program­
mer should never assume that part of an expres­
sion will not be evaluated.)

Boolean Routines

The function ODD takes an integer value and
returns a Boolean; it is described in the paragraph
entitled Type Conversions.

The functions EOF and EOLN each return a
Boolean value based on file operations; these
functions are described in Chapter 7.

Boolean values cannot be written by any UCSD
Pascal intrinsic; this is contrary to standard
Pascal.

Characters

The type CHAR is used to represent individual charac­
ters. Character values are ordered. The digits 0 .. 9 and the
alphabets a .. z and A .. Z are contiguous within the charac­
ter set.

Characters are often used as elements of sets and strings;
the reader should refer to the paragraph entitled Struc­
tured Types.

Character Format

A printable character value is represented by a
single character, surrounded by single quotes
(apostrophes).

These are characters:

'a' 'B' 'r '7' '['

An apostrophe is represented by typing it twice:

UCSD Pascal represents characters by using the
ASCII character set. The ASCII characters are
shown in Appendix E.

ASCII contains many nonprintable characters,
Within the body of a program, a nonprintable
character can be represented by using the intrin­
sic function CHR. See the paragraph entitled
Type Conversions.

3-27

3-28

Character Comparisons

Character values have the same order as their
underlying representation (the ASCII character
set).

Because the character set is ordered, the numeric
comparisons (= , < >, >, > =, <, < =) can be used
on values of type CHAR.

Character Operations

Character values can be assigned to variables of
type CHAR, and parameters of type CHAR can
be passed, but there are no operations on charac­
ters.

Character Routines

There are no character routines per se. An integer
can be converted to a character with CHR, and a
character to an integer with ORD (see the para­
graph entitled Type Conversions).

Character values can be read or written using
READ and WRITE (see Chapter 7).

The intrinsics PRED and SUCC can be used with
character values. These are described in the sec-
tion on Scalars and Subranges.

For examples of converting characters to numeric
values, or lowercase to uppercase and vice versa,
see Part 2, Chapter 2.

Special-Purpose Types

UCSD Pascal defines two types that are used in the han­
dling of concurrent processes. They do not appear in the
standard language.

A PROCESSID is used by the system to distinguish con­
current processes. Every START process is assigned a
unique PROCESSID. The programmer can examine this
value, but cannot alter it.

A SEMAPHORE is used to synchronize concurrent pro­
cesses. The intrinsic procedures SIGNAL and WAIT
each depend on a parameter of type SEMAPHORE. A
SEMAPHORE is initialized by the procedure SEMINIT,
and can be associated with a hardware interrupt vector
by the procedure ATTACH.

Concurrent processes are described in Chapter 9.

Type Conversions

The following subsections describe some ways to convert
the type of a value. The first subsection describes the
compatibility between types across an assignment (:=),
and the second section describes intrinsic routines that
can be used to explicitly convert a value.

Compatibility

An INTEGER variable can be assigned an inte­
ger value, or the result of an expression that con­
tains (legal) operations on integers.

A REAL variable can be assigned a real value, an
integer value, or the result of an expression that
contains operations on real values or integers.

3-29

3-30

A long INTEGER variable can be assigned an
integer value, a long integer value, or the result of
an expression that contains operations on inte­
gers or long integers.

A BOOLEAN variable can be assigned the result
of a comparison, or the result of an expression
that contains operations on Boolean values.

Variables of type CHAR, PROCESSID, and
SEMAPHORE, can be assigned a value of the
same type, but are never operated on.

Subranges of the type INTEGER can be used
wherever it is legal to use integers, but the over­
flow conditions of an expression depends on the
subrange bounds. See the section on Scalars and
Subranges.

Conversion Routines

The following pages describe intrinsic functions
that can be used to convert a value of one type
into a value of a different type.

TRUNC

TRUNC(X)

where:

X is a real value that returns an integer value
equal to the whole part of X; the fractional part is
discarded.

The following expressions are TRUE:

TRUNC(12.3) = 12
TRUNC(-12.3) = -12
TRUNC(67.0) = 67

TRUNC(L)

where:

L is a long integer value returns an integer value
equal to L. If L is not in the range - MAXINT ..
MAXINT, an overflow results.

ROUND

ROUND(X)

where:

X is a real value that returns the integer value
nearest X.

The following expressions are TRUE:

ROUND(l2.3) = 12
ROUND(l2 .7) = 13
ROU D(4.5) = 5
ROUND(-4.5) = -5
ROUND(67 .0) = 67

ODD

ODD(I)

where:

I is an integer value, and returns a Boolean value
that is TRUE if I is odd, and FALSE if I is even.

3-31

3-32

ORD

where:

C is a character value, and returns an integer
value equal to the ordinal number of C within the
character set.

ORD applies to scalar and subrange types (in­
cluding BOOLEAN), as well as to CHAR (see the
paragraph entitled Scalars and Subranges).

CHR

CHR(I)

where:

I is an integer value, and returns a character
value equal to the character with ordinal number
I within the character set.

These functions are opposites:

ORD(CHR(I)) = I
CHR(ORD(C)) = C

The following expressions are true:

ORD(' A') = 65
ORD(") = 32

CHR(32) ="
CHR(93) = ']'
CHR(3) {= ETX (which is not printable)}

STR

The STR(L,S) procedure sets the string variable S
to a representation of the value of the integer or
long integer L.

SCALARSANDSUBRANGES

Scalars

Scalar types consist of an enumeration of values. The
name of the type is an identifier. You can define new sca­
lar types, whose values are represented by identifiers. A
user-defined scalar is usually declared as a type - it can
also be declared as a var, but this is less useful.

Here is a program fragment defining a few scalar types:

type
color = (red, yellow, blue, green, lavender, purple,

mauve, amber);
month = (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec);
sex = (male, female);
DoorState = (open, closed);

Within the scope of the type declaration (see Chapter 4), a
scalar value must be unambiguous; the same identifier
cannot appear in the definition of two different scalar
types.

The following program fragment is illegal:

type
DoorState = (open, closed);
LockState = (open, locked);

3-33

The values of a scalar type are ordered. The relational
operators (=, < >, >, > =, <, < =) are defined for scalar
types, and have their usual meanings, based on the order
in which the scalar values are declared.

U sing the (legal) types previously defined, the following
expressions would be TRUE:

Jan< > Feb
blue < = lavender
female> male

Subranges

3-34

The programmer can define a type or a variable that is a
subrange of a previously declared scalar type. The sym­
bol .. denotes intervening values (red .. green means red
through green).

Given our previous examples, these are legal declara­
tions:

type

var

winter = Jan .. ~lar;
spring = Mar .. J un;
primary = red .. blue;

summer: .1 un .. Aug;
palette: primar~ :

The following two declarations describe equivalent sub­
ranges:

tag: sex:
gender: male .. fema]p;

Note that subranges can overlap.

Subranges of predeclared scalar types are also frequently
used:

type

var

f_index = 1.. 77;

Kinsey: 1.. 7;
state: 0 .. 5;
grade: 'A' .. 'F'

Subrange of INTEGER

Subranges of INTEGER

Subrange of CHAR

Any legal operations on a predeclared type are always
legal on a subrange of that type, but the overflow condi­
tions may vary:

state: = 3;
state:= state+ 1;
state:= state-10;

This is ok
Result is 4; no problem
Result < 0; a value range
error occurs at runtime

Note that the types REAL and long INTEGER are not
considered scalar types, and cannot be used to construct
subranges.

Predeclared Standard Types

Some of the simple types we have discussed may be
thought of as scalar or subrange types, for example:

INTEGER = -MAXINT .. MAXINT

or

INTEGER = -32767 .. 32767

BOOLEAN = (FALSE. TRUE)

For UCSD Pascal,
this is an equivalent
declaration

3-35

This is not the way that these types are represented inter­
nally, but they do behave as if they were declared this
way.

Note that the types REAL and long INTEGER are not
considered scalar types.

Scalar and Subrange Routines

3-36

The following pages describe the three intrinsic functions
that are provided for manipulating scalar and subrange
values: ORD, PRED, and SUCC.

ORD

where:

V is a value of a scalar type and returns an integer
that is the ordinal value of V in the sequence of
values declared for that type.

All scalar types are ordered (as the name implies),
and their values are numbered starting from zero.

We have already seen (in the paragraph, Type
Conversions) ORD used to convert character val­
ues to integer values. This is a special case of the
use of the ORD function.

Given the declarations earlier in this section, the
following expressions are TRUE:

ORD('Z') = 90 (using ASCII characters)
ORD(blue) = 2
ORD(Jan) = 0
ORD(TRUEI = 1

Note that ORD has no inverse function, except
for the special case of CRR (see the description of
CRR).

PRED

SUCC

PRED(V)

where:

V is a value of a scalar or subrange type, and
returns the value that precedes that value. PRED
stands for predecessor.

Given the declarations earlier in this section, the
following expressions are TRUE:

PRED('Z') = 'Y'
PRED(blue) = yellow
PRED(Dec) = Nov
PRED(TRUE) = FALSE

If the value V is the first value in the scalar type
(that is, if ORD(V) = 0), then PRED(V) results in
a value range error at runtime (unless range­
checking has been turned off (see Chapter 10).

SUCC(V)

where:

V is a value of a scalar or subrange type, and
returns the value that SUCCEEDS that value.
SUCC stands for successor.

Given the declarations earlier in this section, the
following expressions are TRUE:

SUCC('A') = 'B '
SUCC(blue) = green
SUCC(Jan)= Feb
SUCC(FALSE) = TRUE

3-37

If the value V is the last value in the scalar type
(that is, if ORD (V) is the greatest possible value
for that type), then SUCC(V) results in a value
range error at runtime (unless range-checking has
been turned off-see Chapter 10).

STRUCTURED TYPES

A structured type in Pascal is a single type built out of simple
types in certain ways, and given a single name. The following
paragraphs discuss arrays, strings, records, and sets. Files are
discussed in the paragraph entitled Files.

An array is a table of values all of the same type. It corresponds
to the notion of a matrix in mathematics, and can have one or
more dimensions.

A string is a sequence of characters. Unlike an array, the length
of a string can change during the execution of a program. UCSD
Pascal provides several intrinsics for the manipulation of strings.

A record is a group of values of (possibly) mixed type. Records are
useful for maintaining information that is logically grouped
together, but best represented by a variety of types.

A set is, in the mathematical sense, the powerset of its base type.
In other words, a set value is an unordered collection of values
from the base type. Sets are useful for truth tables and tests of
membership.

Arrays

3-38

An array is a table of values. The values in an array must
all be of one type, the base type of the array.

An array can have one or more dimensions. The number
of dimensions and the size of each dimension cannot
change during the execution of the program.

The individual elements in an array are also called compo­
nents. Each individual element can be referenced in a
program by the name of the array, followed by an index
(also called a subscript) surrounded by square brackets
([]).

The following expressions reference array elements:

Directory[45]
Year[month]
TokenList[i+4]
CubePoints[O,O,O]
Hexagram [Upper3] [Lower3]

Array Format

An array is declared in the following way (using
Extended BNF):

array-type = "array" "[" ordinal-type {","
ordinal-type} "]''''of"'base-type

where:

the ordinal-type defines the bounds of the array,
and base-type is either a type declaration, or the
name of a type that has already been declared.

Each ordinal-type is a subrange expression, or the
identifier of a scalar or subrange type that is
called the index type of the array.

The base-type can be any type except a file type.
It may well be another array.

3-39

3-40

The following would be legal array declarations:

var
Students: array [1..ClassSize] of Grade;
logout: array [day] of time;
LastQue:" 'r: array [1..ClassSize] of Boo­
lean;

state: array [0 .. 49] of 1.. 7
schedule: array [day] of

array [9 .. 18] of initials;
Cube: array [0 .. 2, 0 .. 2, 0 .. 2] of color;

Arrays with multiple dimensions can be indexed
by the following:

schedule [monday] [13]

a shorter form:

schedule [monday, 13]
Cube[I,l,O]

an expression:

Cube[I,I,O]:=red

An array declaration can be preceded by the key­
word packed, as follows:

surname: packed array [0 .. 19] of CHAR

The semantics of using packed are described in
the paragraph Space Allocation for Data Types,
at the end of this chapter.

The size of an array is limited only by the maxi­
mum number of words that may be local to a rou­
tine or compilation unit (unit or main program).
This is currently 16,383 words.

Standard Pascal requires that a packed array of
CHAR have at least two elements. UCSD Pascal
does not have this restriction.

Array Comparisons

Two arrays can be compared using the operators
= (equal) and < > (not equal). This is not legal in
standard Pascal. The arrays must have the same
dimensions and same base type, and should not
be packed.

Any other comparisons involving arrays must be
done element-by-element, for example:

same: = TRUE;
i:= 0;
while (i < = maxelement) and same do

if ali] = b[i]
then i:= i+ 1
else same: = FALSE;

Array Operations

A single assignment can be used to assign an
entire array value to another array, provided both
arrays have the same dimensions and the same
base type. This is a UCSD extension.

A packed array of CHAR can be assigned another
packed array of CHAR value of the same length.

There are no Pascal operations that apply to
arrays. The individual elements of an array can be
operated upon, following the rules that apply to
the base type of the array.

For example:

vector[5]:= vector[5] + table[5, 12];
(the base type could be a numeric type or a
set)

3-41

3-42

Array Routines

UCSD Pascal provides four intrinsic routines for
the rapid manipulation of arrays. They are most
frequently used to handle packed arrays of char­
acter, but they do no type checking on their oper­
ands, and so are generally applicable. The
following pages describe the procedures
FILLCHAR, MOVELEFT, and MOVERIGHT,
and the function SCAN.

These four intrinsics have certain parameters
that can be of any type (much like parameters to
READ and WRITE). These are described below
(not quite accurately) as typeless parameters.
Because of Pascal syntax, these parameters must
be declared as having a specific type, but the
intrinsics merely operate on main memory at the
location of the parameter, and do not check what
type it is.

If a typeless parameter is an array, it can have a
subscript. If it is a record, it can have a field speci­
fication. These specify a location in memory
where the intrinsic will operate.

Because of the generality of these routines, and
because they do no type checking or range check­
ing whatsoever, they should used with extreme
caution, lest valuable information be destroyed.

FILLCHAR

The FILLCHAR (DESTINATION, LE NGTH,
CHARACTER) procedure fills an area of memory
with a single character.

DESTINATION is a typeless parameter.
LENGTH is an integer.

CHARACTER is a single CHAR, or an integer
(FILLCHAR ignores the eight most-significant
bits of the integer, so it should be in the range
0 .. 255).

The FILLCHAR procedure fills memory with
LENGTH instances of CHARACTER (two char­
acters per word), starting from DESTINATION.

For example, given the declaration:

var buf: packed array [0 .. 19] of CHAR;

the statements:

for i: = 0 to 19 do buf[i]: = ,* ';
FILLCHAR(buf, 10, 'e');

set buf to this value:

'eeeeeeeeee**********'

MOVELEFT

The MOVELEFT (SOURCE, DESTINATION,
LENGTH) procedure moves LENGTH bytes
from SOURCE to DESTINATION. The bytes
are moved from left to right.

SOURCE and DESTINATION are typeless pa­
rameters. LENGTH is an integer.

For example, given the array initializations:

src:= '1234567890';
dst:= '********** ';

the call:

MOVELEFT(src, dst, 5);

sets dst to: '12345*****'

3-43

3-44

MOVERIGHT

The MOVERIGHT (SOURCE, DESTINATION,
LENGTH) procedure moves LENGTH bytes
from SOURCE to DESTINATION. The bytes
are moved from right to left.

SOURCE and DESTINATION are typeless
parameters. LENGTH is an integer.

The MOVELEFT and MOVERIGHT procedures
both accomplish the same thing, except when
bytes are moved to an overlapping location
within the same array.

For example, given the same value of the array
src, the following call correctly sets src to
'1231234590'

MOVERIGHT(src, src[3], 5);

On the other hand, the following call sets src to
'1231231290' because bytes are modified before
they have been moved.

MOVELEFT(src, src[3], 5);

SCAN

The SCAN (LENGTH, < partial expression> ,
SOURCE) function returns the location of a char­
acter within an array.

LENGTH is an integer.

The < partial expression> is an = or < > symbol
followed by a single character expression.

SOURCE is a typeless parameter.

Strings

The SCAN function scans SOURCE until the
partial expression is satisfied or until LENGTH
characters have been scanned; whichever comes
first. It returns an integer value that is the offset
from the beginning of SOURCE to the point at
which it stopped scanning.

If LENGTH is negative, SCAN scans from right
to left rather than left to right, and returns a neg­
ative offset.

For example:

var test: STRING;

test:= 'For he on honey dew hath fed,';

index:= SCAN(10, ='h', test[ll]);
(index is set to 0)

index:= SCAN(lO, = 'h', test[12]);
(index is set to 9)

index:= SCAN(-9, = 'h', test[9]);
(index is set to -4)

index:= SCAN(lO, < > 'h', test[llJ);
(index is set to 1)

A string is a sequence of characters that has an asso­
ciated length. The length of a string can change during
the execution of a program.

Several intrinsics are provided to simplify the manipula­
tion of strings.

Strings and string intrinsics do not appear in standard
Pascal.

3-45

3-46

String Format

The STRING sequence is a predeclared type. A
string value is a sequence of characters with an
associated length. A string constant is typed as a
sequence of characters surrounded by single
quotes (apostrophes).

The following are string constants:

'hello there'
'And whether pigs have wings.'
{embedded quotes are typed twice:}
" " {a single apostrophe}
'The sixth sick sheik"s sixth sheep"s sick'
" {the empty string}

The empty string is allowed, and has a length of
zero.

Each string variable has a maximum length. The
default is 80 characters. This can be overridden
when the string is declared, by following the iden­
tifier STRING with a length attribute in brackets
([]) . A string cannot be declared longer than 255
characters.

The following are declarations of string variables:

heading: STRING;

graphline: STRING[200):

surname: STRING[20);
abbrev: STRING[3)

Default maximum
length is 80
Has a maximum
length of 200

String Comparisons

Strings are ordered, and can be compared with
any of the comparison operators. The ordering of
strings is lexicographical (dictionary order),
shorter strings precede longer strings, and upper­
case precedes lowercase.

String Operations

Strings can be assigned. No other operations are
defined on strings.

The characters in a string are indexed from one
up to the dynamic length of the string. The
dynamic length of the string cannot be greater
than the string's maximum length (its static
length).

If a string is indexed outside its bounds, a value
range error occurs when the program is executed
(unless range-checking is disabled: see Chapter
10). The empty string cannot be indexed at all.

String Routines

The simplest way to manipulate strings is to use
the string intrinsics. The following pages describe
the functions CONCAT , COPY, LENGTH, and
POS, and the procedures INSERT and DELETE.

CONCAT

The CONCAT (SOURCEl, SOURCE2, ... ,
SOURCEn) function returns a string that is the
value of the concatenation of strings SOURCEI ..
SOURCEn.

The SOURCE strings are string expressions, and
there can be any number of them, separated by
commas.

3-47

3-48

The length of the new string is the sum of the
lengths of the sources.

For example:

CONCAT('Allin ', 'a garden ' , 'green ... ')

returns the string:

'All in a garden green ... '

COr\CAT('There is a long poisonous "
COr\'CAT ('snake-like ', ' object'))

returns the string:

'There is a long poisonous snake-like object'

COpy

The COpy (SOURCE, INDEX, SIZE) function
returns a substring of SOURCE that is SIZE
characters long and starts at SOURCE[INDEX].
If SIZE is too long (INDEX + SIZE - 1 >
LENGTH(SOURCE)), then COPY does nothing.

SOURCE is a string variable; INDEX and SIZE
are integers.

For example, if:

Long: = 'Fortune my foe, why dost thou frown on
me? '

then:

COPY(Long, 17, 19)

returns the string:

'why dost thou frown'

DELETE

The DELETE (DESTINATION, INDEX, SIZE)
procedure removes SIZE characters from DES­
TINATION, starting from DESTINATION­
[INDEX]. If SIZE is too long (INDEX + SIZE
- 1 > LENGTH(SOURCE)) then DELETE does
nothing.

DESTINATION is a string variable; SIZE and
INDEX are integers.

For example:

DELETE(Long, 17, 19)

replaces Long with the string:

'Fortune my foe, on me?'

INSERT

The INSERT (SOURCE, DESTINATION,
INDEX) procedure inserts the string SOURCE
into the string DESTINATION, starting from
DESTINATION[INDEX]. The new length of
DESTINATION is its old length plus LENGTH
(SOURCE).

SOURCE is a string expression, and DESTINA­
TION is a string variable; INDEX is an integer.

For example, if:

Long:= 'There were three ravens,';
Short: = 'old'

3-49

3-50

then:

INSERT(Short, Long, 18)

replaces Long with the string:

'There were three old ravens,'

LENGTH

The LENGTH (SOURCE) function returns the
current (dynamic) length of the string SOURCE.

SOURCE is a string expression; LENGTH
returns an integer.

For example, if:

Long: = 'At noon Dulcina rested'

then:

LENGTH(Long)

returns the integer 22.

POS

The pas (PATTERN, SOURCE) function
returns an integer that is the location of the
string PATTERN in the string SOURCE.

The integer that pas returns is the index of the
first character of the matching substring.

If PA TTERN cannot be matched, pas returns o.

For example, if:

Long:= 'He that would an alehouse keep ';
Short:= 'use ':

Sets

then:

POS(Short, Long)

would return the integer 23.

A set value is a collection of members that are values
from some scalar or subrange type. In mathematical
terms, a set type is the powerset of its base type.

Set Format

A set is declared III the following way (using
extended BNF):

set-type = "set" "of" ordinal-type

where:

ordinal-type is a scalar type or a subrange.

These are some set variable declarations:

ASCII: set of CHAR;
palette: set of color;
attribute: set of l..5;
LowerCase: set of 'a' .. ' z';

The value of a set can be represented in the fol­
lowing way (again using EBNF):

set-value = 'T' [member {"," member } j "j"

member = expression [" .. " expression

3-51

3-52

In other words, a set value is an enumeration of
values or subranges of values, enclosed in square
brackets. The empty set is denoted by [J.

For example:

palette.- [red. yellow. blue];
attribute.= [1.31;
new t· [1 {the empty set}

The following expression is TRUE since set ele­
ments are not ordered:

[red. blue. green] = [green. red. blue]

A set can have up to 4.080 elements (16 bits/word
* 255 words). A set of a subrange of INTEGER
must have positive bounds, and the upper bound
must be no greater than 4,079, regardless of the
value of the lower bound. These restrictions apply
only to UCSD Pascal.

Set Comparisons

The following are legal comparisons on sets:

= Equal to
< > Not equal to
> = Includes (is a superset of)
< = Is included in (is a subset of)

The comparison in is also defined for sets.

< value> in < ~eL>

is a Boolean expression. < value> is a scalar or
subrange expression from the base type of
< set>. If < value > is indeed a member of this
< set> , the value of the expression is TRUE.

For example, if IsLetter is BOOLEAN and ch is a
CHAR, then:

IsLetter:= ch in ['A' .. 'Z', 'a' .. ' z']

determines whether ch is in the alphabet.

Comparisons of sets are only legal if the two sets
have the same base type (or if the subranges on
which they are based have the same base type).

Set Operations

The following operations are defined on sets:

+ Set union
* Set intersection

Set difference

The following expressions are TRUE:

['C', 'A', 'R'] + ['H'] = ['C', 'A', 'R', 'H']
['C', 'A', 'R'] * ['H'] = [] (the empty set)
['N', 'W'] * ['E', 'W', 'D'] = ['W']
['C', 'A', 'R']- ['H'] = ['C', 'A', 'R']
['N', 'W']- ['E', 'W', 'D' = ['N']
[blue, red, green] + [gold] = [blue, red, green,
gold]

As with set comparisons, set operations are only
legal if the sets or their base subranges have the
same base type.

Set Routines

There are no intrinsic routines for the manipula­
tion of sets. Nor is there any provision in Pascal
for the standard output of set values. The user
must create routines that are appropriate to the
purposes of a particular program.

3-53

Records

3-54

A record value is a collection of values that are possibly of
different types.

Record Format

The following expressions in EBNF describe the
declaration of a record:

record-type = "record" field-list "end"

field-list = fixed-part [";"]
variant-part [";"]

I fixed-part ";" variant part [";"]

fixed-part = id-list ":" type { ";" id-list ":" type}

variant-part = "case" ordinal-type "of" variant
I "case" tag ... " ordinal-type "of"
variant

variant =id-list ":" "(" field-list ")"
{ ";" id-list ":" "(" field-list ")" }

id-list =identifier { ... " identifier}

As indicated, variant-parts in a record must
always follow fixed-parts, and there is only one of
each at any given level of the record.

The id-lists in a variant must be constants of the
type designated in the case heading of the
variant-part.

Tag is an identifier.

Note that the keyword end pairs with the key­
word record.

The field-list cannot be empty although it can in
standard Pascal.

The following are some record type declarations:

type
complex = record

RealPart,
ImaginaryPart: REAL

end;

student = record
surname: STRING[30];
score 1 , score2: integer;
grade: 'A' .. 'F';
again: BOOLEAN

end;

disk = record
artist, composer: STRING[50];
size: (EightInch, Ten Inch, other);
release: integer;
condition:

end;

record
chipped,
humor,
jazz,
tradeable: BOOLEAN

end

It should be evident that records can be as simple
or as complex as you desire.

The elements of a record can be accessed by
< record name>.< field name>. Given the decla­
rations:

var
class: array [1..50] of student;
platter: disk

3-55

3-56

fields could be accessed by the following names:

class[lJ.surname
class[j J.grade
platter. release
platter.conditivi tradeable

Record Comparisons and Operations

As with arrays, the comparisons = and < > can
be used to compare records of the same type that
are not packed. No other comparisons are defined
for records.

No operations are defined on records. Fields of
records can be operated on, according to the type
of the field.

Variant Records

Here are some examples of records with variants:

entry = record
case head: BOOLEA~ of

THUE: (number: INTEGEH);
FALSE: (identifier: STHING[5));

end;

choice = (addr, bits);
trix = record

case choice of
addr: Oocn: INTEGEH);
bits: (bmap: packed array

[0 .. 15) of BOOLEAN);
end;

A variant record allows the programmer to treat
a single field (a single memory location) as a vari­
able that has a different type in different situa­
tions.

If the variant does not have a tag variable, then
the names of the fields within the variant list are
used as any other record field name. For example:

var
two_ way: trix

begin

two_ way.locn:= 17760;

two_ way.bmap[O]:= FALSE;

If the variant DOES have a tag variable, then the
tag variable is itself a field. For clarity, it can be
set to a particular value before the field corre­
sponding to that value is used. For example:

var node: entry;

begin

node. head: = TRUE;
node.number:= 57;

node.head:= FALSE;
node.identifier:= 'WOOFO';

Because variant records can treat the same area
of memory in different ways, their use can
become involved; variant records can be a means
of doing dirty tricks. See Part 2, Chapter 8.

The With St atement

Specifying an element of a record by enumerating
all of the appropriate fields can become tedious,
and interfere with the legibility of a program. The
wi th statement provides a shorthand means of
dealing with field names.

3-57

3-58

A with statement has the following form:

with < record name list> do < statement>

where:

< statement> is usually a compound statement;
see Chapter 6. < record name list> consists of one
or more identifiers of record variables (separated
by commas).

If multiple record names are used, the names of
their fields must be unambiguous (that is, a field
name cannot be used within the with statement if
it is common to more than one of the records). If a
simple variable has the same name as the field of
a record, then within the with statement, the field
name takes precedence (and the simple variable
cannot be used).

The following is an example of the with state­
ment:

with class[n] do
begin

surname: = buffer;
scorel:= 0; (initial values!)
score2:= 0;
grade:= 'A'; (benefit of a doubt)
again:= FALSE;

end;

The following is a slightly more complicated
example:

with platter. condition do
begin {initializations}

chipped:= FALSE;
humor: = FALSE;
jazz:= FALSE
tradeable:= FALSE

end {with}:

We could also have the (unlikely) example:

with class[n], platter do
begin

grade:= 'C';
artist: = 'Ellington';

end;

DYNAMIC TYPES

In Pascal, dynamic types are data structures whose size and con­
figuration may change during the execution of a program. This
section describes files, which store data serially, and pointers,
which are a means of indirectly referencing data. Pointers can be
used to build flexible data structures such as search trees.

Files

A file is a serial stream of data. The data can be read or
written from within a Pascal program.

In standard Pascal, files are restricted to serial access for
the .sake of simplicity. In the UCSD p-System, programs,
text, and data are all stored in random-access files on
some form of disk; therefore, UCSD Pascal provides for
random access. UCSD Pascal also deviates slightly from
standard Pascal in order to better handle interactive
terminals.

When we refer to an external file, we are talking about a
file on a disk, which has a name in the disk's directory.
When we refer to an internal file, we are talking about a
Pascal program's description of some file. The reason for
this distinction is that the file name in the program does
not need to be the same as the external file name; in fact,
when a program handles disk files, it is most useful to
make it capable of handling many different disk files with
different (external) names.

3-59

3-60

This section deals with internal files (that is, only with a
Pascal program's ways of handling a file). The way to
connect a program's file name with an external file name
is described in Chapter 7. Also see Part 2, Chapter 4.

Internal File Format

A file can be declared in the following manner:

file of < base type>

The base type of a file can be any type but
another file type (this restriction does not apply
in standard Pascal).

These are some file declarations:

var
Chapterl: file of CHAR;
enrollment: file of student;
seismic: file of IXTEGER;

A file consists of a serial stream of elements.

A file with no elements at all is allowed, and is
called an empty file.

A file can be modified only at a single location,
which is called the file window. The window is
associated with a window variable which contains
the value of the file element at the window's loca­
tion. If FileName is the name of a file,
FileName 1\ denotes the window variable.

The window variable can be modified just as an
ordinary variable (with an assignment, a routine
call, and so forth). It is initialized when the file is
opened, or by a call to the intrinsic GET. Its value
can be written to the file by a call to the intrinsic
PUT.

In standard Pascal, the window is always at the
end of the sequence of file elements. In UCSD
Pascal, files can be accessed randomly by reposi­
tioning the window with a call to the intrinsic
SEEK, which is described in Chapter 7.

The predeclared type TEXT is defined as:

TEXT = file of CHAR;

Files of type TEXT are usually saved as
p-System text files (a p-System text file must
have the suffix .TEXT in its external name).

In UCSD Pascal, a file can be declared without a
type, for example:

N oStructure: file;

Input and output to untyped files can only be
done with the UCSD intrinsics BLOCKREAD
and BLOCKWRITE; see Chapter 7.

Standard Pascal defines the predeclared files
INPUT and OUTPUT. In UCSD Pascal, these
files normally refer to the device console:, which is
an integral part of the p-System environment.
(This is a default which can be overridden by the
user - see the description of redirection in the
UCSD p-System Operating System Reference
Manual.)

Character-oriented devices (such as CONSOLE:,
SYSTERM:, PRINTER:, REMOUT:, and
REM IN:) are usually opened as text files when
they are used within a Pascal program (see the
REWRITE and RESET intrinsics in Chapter 7).

3-61

3-62

In UCSD Pascal, INPUT, OUTPUT, and the
predeclared file KEYBOARD are files of the pre­
declared file type INTERACTIVE. An INTER­
ACTIVE file has the same structure as a TEXT
file, but is treated somewhat differently by the
intrinsic routines READ, READLN, and RESET
(see Chapter 7) .

A programmer can define a new interactive file:

ExtraTerminal: INTERACTIVE

There are no inherent limits to the size of a file,
but the storage device on which a file resides will
be limited in size.

In UCSD Pascal, the restriction against a file of
file (or TEXT or INTERACTIVE) is a special
case of a general restriction against files being
declared within any structured type. A file cannot
be an element of an array, or a field within a
record. In standard Pascal, this would be allowed.
The chief reason for this restriction is so that the
compiler can easily generate code to automati­
cally close files when a program (or routine) termi­
nates.

Standard File Handling

The following pages describe the file-handling
routines that are part of standard Pascal: EOF,
EOLN, PUT, GET, RESET, and RE WRITE.
The RESET and REWRITE routines can also be
used to associate internal files with external files.
This use is nonstandard, and is described in Chap­
ter 7.

Files are frequently accessed by using the stand­
ard routines READ, READLN, WRITE, and
WRITE LN. These routines are described in
Chapter 7.

EOF

The EOF (FileName) routine returns a Boolean
value that is true if the window variable has been
moved beyond the end of file (EOF stands for
~nd Qf tile). When EOF is TRUE, the value of the
window variable is undefined.

If the FileName parameter IS absent, the file
INPUT is assumed.

If the file is INTERACTIVE, EOF becomes
TRUE when the CTRL-C keys have been pressed.

If the file is a p-System textfile, EOF=TRUE
implies EOLN=TRUE.

WARNING

If EOF (FileName) becomes TRUE
during a call to GET (FileName),
READ (FileName, ...), or READLN
(FileName, ...), the data obtained from
the get or read is not valid and must
not be used.

EOLN

The EOLN (FileName) routine is defined only if
the file is of type TEXT or INTERACTIVE. It
returns a Boolean value that is TRUE if a
< return> character (ASCII CR, CHR(l3)) has
just been read (EOLN stands for ~nd Qf !ine). The
window variable contains a blank (' ').

If the FileName parameter is absent, the file
INPUT is assumed.

If EOF is TRUE, EOLN is TRUE.

3-63

3-64

PUT

The PUT (FileName) routine writes the value of
the window variable to the file FileName.

The FileN arne parameter must be included.

In standard Pascal, PUT is only defined if EOF is
TRUE, in other words, one can only write to a file
by appending values to its end.

In UCSD Pascal, PUT can be performed any­
where in the file. If EOF is indeed TRUE, the
value of the window variable is appended. If EOF
is FALSE, the value of the current record in the
file is replaced by the value of the window varia­
ble. In other words, UCSD Pascal allows random­
access updates of file records; see the description
of SEEK in Chapter 7.

If PUT is used to append an element to the file,
and there is no more room on disk, a runtime error
occurs.

GET

The GET (FileName) routine is defined only if
EOF = FALSE. It advances the file window by
one file record; the value of the window variable is
replaced by the value of the next element in the
file sequence. If there is no following record, EOF
is set to TRUE, and the value of the window vari­
able is undefined.

The FileName parameter must be included.

RESET

The RESET (FileName) routine resets the file
window to the beginning of the file. If the file is
not empty, EOF is set to FALSE, and the win­
dow variable is set to the value of the first record
in the file.

The FileName parameter must be included.

If the file is empty, EOF remains TRUE, and the
value of the window variable is undefined.

If the file is INTERACTIVE, EOF is set to
FALSE, but the value of the window variable
remains undefined. The reason for this is that the
INTERACTIVE file might well be an input
device or an input/output device, and not have
any pending data. Trying to define the value of
the window variable before the user has typed in
any data would be difficult!

The RESET routine in UCSD Pascal can be called
with an optional second parameter that defines
an external p-System file to be associated with
the internal FileName. This use of RESET is
described in Chapter 7.

REWRITE

The REWRITE (FileName) routine clears the file
FileN arne by creating a temporary file that is
empty. The EOF routine is set to TRUE.

The FileName parameter must be included.

The temporary file can either replace the original
file, or be discarded. This disposition depends on
the way the file is closed (see Chapter 7).

3-65

As with RESET, in UCSD Pascal REWRITE can
be called with an optional second parameter that
associates an external file with FileName. This
use of REWRITE is defined in Chapter 7.

Pointers

3-66

Dynamic variables are allocated memory at runtime,
rather than compile time. A (nameless) variable of a given
type can be created by declaring a pointer to that type,
and then allocating space to the variable by calling the
intrinsic NEW. Once the variable has been created, it can
be referenced by pointers.

Pointers are used to build data structures such as linked
lists and trees. For this purpose, they are typically
embedded in record structures that contain both informa­
tion and pointers to other records of similar type.

Pointer Format

A pointer is declared in the following way:

< pointer type name> = /\ < type identifier>

such as:

PoolPtr =/\ STRING;

The pointer is said to be bound to the type named
by < type identifier> .

If we had variables of type PoolPtr:

var PooIP, NewPoolP: PoolPtr;

we could then reference a string indirectly:

PooIP/\ := 'isn"t this a nice test string'?' ;

In a Pascal program, the < pointer type name>
by itself refers to the pointer itself; the < pointer
type name> followed by a caret (1\) refers to the
object that is pointed to.

For example, if we made the following assign­
ment:

New PooIP: = PooIP;

then the following expression would be TRUE:

NewPoolP /\ = 'isn"t this a nice test string?';
{= PoolP I\}

The predeclared identifier NIL is a pointer to
nothing. It is usually used to signal the end of a
linked list. For example:

PoolP:= NIL;

At this point, PoolP 1\ would be undefined; a pro­
gram which tried to access PoolP /\ would abort
with a runtime error.

In standard Pascal, NIL is a reserved word, not a
predeclared identifier.

A pointer can be assigned the value of another
pointer provided both are pointers to the same
data type.

Pointers can be compared with = and < >. There
are no operations on pointers.

3-67

3-68

Building Data Structures

As we stated before, pointers are most frequently
used in conjunction with record structures that
carry other information as well. The following
paragraphs illustrate the use of pointers to con­
struct some familiar data structures.

Given the following declarations, we could con­
struct a linked list of names:

type

var

arrow m£> R£>c;
dme Rec record

name. STRI G1301:
n xt· arrow;

end,

h ad: arrow;

The beginning of the list is pointed to by the vari­
able head, and the pointer field (next) in the last
record of the list is equal to NIL.

Note that arrow was declared as a 1\ NameRec
before N ameRec itself was declared. This is legal
as long as both the pointer and the type it refer­
ences are declared in the same type declaration
part.

Note also that we did not declare any variables of
type N ameRec. Weare able to build the list by
allocating space that is pointed at by head and by
subsequent next fields. This is done with the
intrinsic NEW which is described later in this
chapter.

If the next field of the last record is changed to
equal head /\ instead of NIL, we can turn our
linear list into a circular queue.

By changing the declaration of NameRec, we can
make our list doubly-linked provided the pointers
are initialized correctly:

NameRec = record

end;

name: STRI~G[301;
fwd. back: arrow;

In the first record of this list (headl\), forward
points to a new record, and back=NIL. In the
last record of this list, back points to the previous
record, and forward equals either NIL or headl\,
depending on whether the list is linear or circular.

Here are the declarations for a weighted binary
tree:

type

var

edge = 1\ node;
node record

end;

Weight: INTEGER;
LLink. RLink: edge;

Root: edge;

In this example, the pointer called Root would be
the base of the tree, and in each node, LLink
would point to the left-hand subtree, and RLink
to the right-hand subtree.

These small examples should give the reader
some insight into how similar (and more complex)
data structures would be declared. The following
section explains how to allocate a new data object
to a pointer by using the intrinsic NEW. For a
program example that uses pointers, refer to Part
2, Chapter 2.

3-69

3-70

Standard Memory Management

The following pages explain how to allocate and
deallocate memory by using the standard proce­
dures NEW and DISPOSE. UCSD Pascal pro­
vides some further memory-management
intrinsics that are more powerful, but more error­
prone. These are described in Chapter 8.

NEW

The NEW (POINTER) intrinsic allocates space
for a variable of the type to which POINTER is
bound, and sets the value of POINTER equal to
the location of that variable.

If the bound type is a record with variants, NEW
allocates enough space for the largest possible
record of that type. This can be avoided by the
following form of a call to NEW:

NEW(POINTER, TAGl, TAG2, ... , TAGn);

where:

TAGl .. TAGn are the tag fields for particular
variants.

If there are more variants than tag fields speci­
fied, the remaining variants are allocated the
maximum necessary space.

WARNING

If a record has been allocated with a
particular variant, and the program
accesses the record using a larger var­
iant, the program will encounter incor­
rect data. In UCSD Pascal, there is no
runtime check to protect against this.

Note that a call to NEW with tag fields does not
initialize the record, it merely specifies which var­
iants will be used. The record must still be initial­
ized by a READ or an assignment to
POINTER".

DISPOSE

The DISPOSE (POINTER) intrinsic deallocates
the variable POINTER", and sets POINTER
equal to NIL.

If the program does not use much data space,
then DISPOSE is probably unnecessary, but if
the program's data occupies a lot of main mem­
ory, the use of DISPOSE, along with some other
memory management scheme, can be required
(see Chapter 8 and Part 2, Chapter 7).

The DISPOSE intrinsic can be called with case
variant tags, just as NEW. If fact, If NEW is
called with particular variant tags, then
DISPOSE must be called with the same variant
tags; otherwise, the heap can be damaged and a
runtime disaster (as opposed to an error) may
result (see Chapter 8).

SPACE ALLOCATION FOR DATA TYPES

The following paragraphs outline the space allocated to Pascal
data types, and their overall format. All information here applies
to UCSD Pascal, and not necessarily to any other implementa­
tion of Pascal. Finer details are not dealt with; programmers who
need more information on System internals should refer to the
UCSD p-System Internal Architecture Guide.

3-71

Packed Data

3-72

The declaration of an array or record can be preceded by
the reserved word packed, for example:

TITLE: packed array [v 9) of CHAR;

Declaring an array or record as packed does not alter the
semantics of a program, it merely alters the way in which
the data is stored.

Packed data is stored as tightly as possible. A single data
item is never split across a word boundary, and an array
or record within a packed array or record always begins
on a word boundary.

Here are some examples:

TITLE: packed array [0 .. 89) of CHAR:

The previous example occupies 45 words, rather than 90.
Characters are packed 2 per word.

AMPLE: packed array [0 .. 9) of
packed array 10 .. 91 of 0 .. 3:

This example occupies 20 words, rather than 100. Each
element of 0 .. 3 requires only 2 bits, so each row of the
matrix is 2 words long; 8 elements in the first word and 2
in the next, followed by blank space.

One\Vord: packed record

end:

choicel, choice2, choice3. choicc4.
choice5. choice6. choice7. choicc8:

BOOLEA :
initial: CHAR:

This example occupies 1 word, rather than 9. The 8 Boo­
lean bits are packed into one byte, and the character occu­
pies one byte.

If an element in a packed array or record is too large to be
effectively packed, the word packed is ignored. For ex­
ample:

packed array [1..51 of IKTEGER;

Since an integer must occupy 16 bits, the example con­
tains 5 words, just as it would if the word packed were
not present.

If a field in a packed record happens to be allocated a full
word (for example, the next field had to be word-aligned),
then the field is unpacked and occupies the whole word.

A packed variable cannot be compared to an unpacked
variable, even if the underlying type is identical.

An element of a packed array or record can never be
passed as a var parameter, but can be passed as a value
parameter.

If a packed record contains a case variant, enough space
is allocated for the largest possible variant.

In an array declaration, the appearance of the reserved
word array without the word packed in effect turns pack­
ing off. If the entire array must be packed, it is safest to
use packed in front of every instance of the reserved word
array.

Standard Pascal defines the intrinsic procedures PACK
and UNPACK. Since packing and unpacking are done
automatically in the UCSD p-System, there is no need for
these procedures, and they are not implemented.

3-73

Simple Types

Integer

Real

3-74

Integers are stored in l6-bit words (two 8-bit
bytes) in two's complement format. The constant
-32768 is illegal, and cannot be compiled.

When an operation on integers results in an over­
flow, a runtime error occurs. This can sometimes
be avoided by restructuring the expression, for
example:

bigl * big2 div big3
big2 div big3 * bigl

Causes an overflow
Does not overflow

Integers are packed one per word.

Real numbers are stored in either 2-word (32-bit)
or 4-word (64-bit) formats . If the 2-word format is
used, constants generated by the compiler are
also 2 words long. If the 4-word format is used,
constants generated by the compiler are from 4 to
6 words long. When a code segment is loaded into
memory, real constants are converted to the
standard real format for the 8088 processor.

When an integer is compared to a real constant,
the integer is converted to a real format without
changing its value.

Since integer values can appear in an expression
whose result is real, it is possible for an integer
overflow to occur while evaluating a real expres­
sion. This can be avoided by reordering the
expression.

As with integers, real values are packed at their
actual size (two or four words).

Long Integer

A long integer is always allocated an integral
number of words.

As with real expressions, it is possible for an inte­
ger overflow to occur while evaluating an expres­
sion whose result is a long integer.

Long integers are packed at their actual size.

Boolean

Boolean values are stored in a 16-bit word; a 0 is
FALSE and a 1 is TRUE.

The intrinsic function ODD does not generate
code to convert an integer to a Boolean; it merely
allows an integer value to be treated as a Boolean.
The low-order bit of the integer indicates whether
it is odd or not; the other 15 bits of the word are
left unchanged. See Part 2, Chapter 8.

A Boolean value is packed into one bit.

Character

A character is stored as an integer in the range
0 .. 255 (using the ASCII character set). An
unpacked character occupies the low-order byte
of a full word.

ASCII codes are only seven bits long. When
ASCII characters are used in I/O to or from a
character-oriented device, it is possible that the
system will strip the characters' high-order bit.

3-75

The intrinsic function eHR does not emit code to
change the contents of the integer value it is
passed; it merely allows that value to be treated
as a character.

A character value is packed into a single byte.

Scalars and Subranges

Scalar values are represented as integers; the first value
equals 0, the next 1, and so forth.

Values in a subrange are represented as the values of
their (scalar) base type; only the boundary conditions for
range-checking are altered.

The intrinsic function ORD does not emit code to change
the contents of the scalar value it is passed; it merely
allows that value to be treated as an integer.

When scalar and subrange values are packed, each value \
is allocated the minimum number of bits necessary to
store the maximum value of the type.

Structured Types

Arrays

3-76

The space allocated to an array depends on the
space needed to store its base type. All array
entries are aligned on word boundaries, unless the
array is packed. Elements in an array are stored
in row-major order; a single row is stored in
sequence, followed by the next row, and so forth.
This is opposed to storing the array by columns,
which is standard for some other languages.

Arrays are packed according to their base type. A
packed array of CHAR contains two I-byte char­
acters per word, and so forth.

Strings

Sets

A string is allocated enough words to contain its
static (maximum~ length. The first byte contains
the string's dynamic length (0 .. 255~. The rest of
the string consists of I-byte characters packed
two per word.

Since strings are already packed, packing does
nothing.

Each value that can be present in a set is repre­
sented by a single bit. The location of the bit cor­
responds to its ordinal value; bits are numbered
from zero, starting at the left. Zeroed bits are
padded on the right of the used bits, so that each
set occupies an integral number of words. The
length of a set is not normally allocated with the
set, but it is sometimes loaded with the set at
runtime.

A set can contain at most 4,080 elements
(255*16=4,080~, and 4,079 is the highest possible
ordinal value in a set. The set [4,078 .. 4,079] is a
full-sized set, not a set of one word.

Sets are already packed, so packing does nothing.

Records

Unless a record is packed, each field begins on a
word boundary. The space allocated to each field
depends on the type of the field.

Fields of a record are packed according to their
type, but never cross word boundaries.

3-77

Dynamic Types

Packing does nothing to dynamic types.

Files

Files are created as p-System disk files. If the
program does not explicitly associate a Pascal file
with an existing (or newly created) disk file, and
does not use CLOSE to save that file, a tempo­
rary disk file is created that is removed from the
directory when the scope of the file's declaration
is exited.

For a typed file, the system allocates a I-block
(5I2-byte) area of memory as a buffer. No buffer
is allocated for untyped files.

More details about disk files and disk directories
can be found in the UCSD p-System Operating
System Reference Manual and UCSD p-System \
Internal Architecture Guide, respectively.

Pointers

A pointer is an address of a physical location.
Since data items always begin on word bounda­
ries, a pointer is always a word pointer.

The SIZEOF Intrinsic

3-78

The SIZEOF (name) intrinsic, where name is the identi­
fier of any variable or data type, returns an integer that is
the number of bytes that have been allocated to that vari­
able or data type.

The SIZEOF intrinsic does not appear in standard
Pascal.

WARNING

The SIZEOF (ptrl\) intrinsic does not give the
size of the object pointed to, but the size of ptr
(always one word). To find the size of the object
pointed to, call SIZEOF with the name of the
object's type.

3-79/3-80

4

Overall Program Syntax

The Outline of a Program 4-3
Program Heading 4-4
Label Declarations 4-4
Constant Declarations 4-5
Type Declarations 4-5
Variable Declarations .. 4-6
Routine Declarations ... 4-6
The Main Body ... 4-7

Structure and Scope .. 4-7
Scope 4-8
Restrictions .. 4-10

Forward Declarations .. 4-10
------- Size Limits 4-11

Segment Routines 4-11
Units and Separate Compilation 4-11
The Uses Declaration 4-12
The Format of a Unit ... 4-14

Restrictions .. 4-15
Initialization and Termination Code 4-16

The Implementation of Units .. 4-17

4-1/4-2

This chapter describes several topics that apply to the overall
syntax of a program. First it covers a program's outline and dec­
larations, then the scope of identifiers, and various restrictions.
It ends with a discussion of units and separate compilation.

THE OUTLINE OF A PROGRAM

A Pascal program can be outlined in the following form (using
EBNF):

"program" program-name
[" (" identifier {"," identifier} ")") ";"

label-declarations)
constant-declarations
type-declarations)
variable-declarations J
routine-declarations)

"begin"
[statement { ";" statement})

"end" " ...

Every identifier that is used in a Pascal program must be
declared before it is used (predeclared identifiers are declared
global to the entire program). Declarations must appear in the
order they are shown. A particular kind of declaration does not
need to appear if it is not used (for example, a program can use
variables, but no constants; only the variable declarations need
be present).

UCSD Pascal allows one exception to the order of declarations.
One or more include files that contain only declarations (in their
proper order) can appear after any var or forward routine declara­
tions, and before any bodies of code. For more details, see Chap­
ter 10.

4-3

Program Heading

The first line in a Pascal program consists of the reserved
word program, followed by an identifier and a semicolon.
The following is an EBNF description:

"program" program-name
["C' identifier { "," identifier} ")'.] ";"

For example:

program sample;

A list of identifiers can follow the program name, for
example:

program sample(lNPUT, OUTPUT);

This feature is provided for compatibility with standard
Pascal. In UCSD Pascal, these identifiers can be present,
but they are ignored.

Label Declarations

4-4

In Pascal, a label is an integer in the range 0 .. 9999. Any
labels that a program uses must be declared in a label dec­
laration with the following scheme (using EBNF):

"label" [label { ", "label}] ";"

such as:

labell, 13:

A label is a way of tagging a statement so that the state­
ment can be jumped to by a goto statement elsewhere in
the program. The use of labels and gotos is described in
Chapter 6. Every label that is declared must be refer­
enced by at least one goto statement.

Constant Declarations

A constant declaration associates an identifier with a
value; this value does not change throughout the pro­
gram. Constants are declared according to the following
scheme (using EBNF):

"const" { identifier" =" value";" }

For example:

const
file_number = 77;
ListKey = 0;
inv _fnum = - file_number;
KEYLETTER = 'Y';

The value of a constant must be a numeric constant, a
Boolean, a character, or a string.

The length of a string constant is fixed; it can be assigned
to any string variable, or to a packed array of CHAR that
has the same length.

As shown, a numeric constant can be declared as the
opposite (-) of a numeric constant that has already been
declared. Other than this, no expressions or previously
defined constants are allowed as values in constant decla­
rations.

Type Declarations

Type declarations are similar to constant declarations.
They associate an identifier with a description of a type.
Here is a description in EBNF:

"type" { identifier" =" type-description ";" }

4-5

For example:

type
directions = (north, south, east, west);
link = 1\ tree;
tree = record

end;

height, girth: INTEGER;
locn: directions;
next: link

bulk = file of INTEGER;

Variable Declarations

A variable declaration associates an identifier with a
type. In EBNF, this is the scheme of a variable declara­
tion:

"var" { identifier-list":" type":" }

The type can either be the name of a type, or a type
description (which need not have appeared in the type
declarations).

For example:

var
compass: directions;
i, j, k, 1: INTEGER;
judgement: (bad, so_so, good);
in_file: bulk

Routine Declarations

4-6

The details of routine declarations (that is, declarations of
procedures, functions, or processes) appear in Chapter 5.
The scope of identifiers is affected by routine decl8ra­
tions, and is described in the following paragraphs. Some
restrictions on routine declarations are also described in
this chapter.

In general, the format of a routine declaration is similar
to the format of a program. It contains a heading, fol­
lowed by declarations, and a set of statements enclosed
by the reserved words begin and end.

A routine heading consists of procedure, function, or pro­
cess followed by an identifier, followed by an optional list
of parameters and a semicolon. The heading of a function
also contains the type of the value that is returned by the
function.

The following are some routine headings:

• procedure bean;

• function maximum(i,j: INTEGER): INTEGER;

• process cold;

• procedure greater (a,b: REAL; var c: REAL);

The Main Body

The main body of a program consists of the reserved word
begin, followed by a list of statements separated by semi­
colons, the reserved word end, and a period (.).

Every Pascal program must have a main body.

STRUCTURE AND SCOPE

Every routine in a Pascal program, and the Pascal program itself,
is said to be a block. A block consists of a heading (such as a pro­
gram heading or procedure declaration), a list of declarations (if
used), and a list of statements surrounded by the reserved words
begin and end.

4-7

This structure allows blocks to be nested. A program can contain
blocks in the form of routines, each routine can contain blocks in
the form of nested routines, and so forth.

The nesting of blocks governs the scope of variables and routines.

Scope

4-8

An item declared within a block is said to be local to
that block. An item that has been declared in the block
that contains a local block is said to be global to that
local block.

If two procedures are declared in a Pascal program in
the following way:

procedure initialize;
. . "

procedure terminate;
. .. ,

then each of them is an independent block, and neither
is local to the other (both of them are local to the pro­
gram in which they are declared).

On the other hand, if two procedures are nested, then
the nested procedure belongs to its global procedure:

procedure scan;

procedure get_char;

begin {get_char} ...
end; {get char}

begin {scan} ...
end; {scan}

In this example, get_char is local to scan, and scan is
global to get_char.

Any item (variable, type, routine, and so forth) that is
local to a block is invisible to all of a program except
that block itself and any blocks it may contain.

Thus, a procedure (or function, or process) can call any
procedures that are global to it, or any procedures that
are declared within it, but it cannot call procedures that
are local to other blocks in the program.

These rules apply to all identifiers. Identifiers declared
at the program level can be used anywhere in the pro­
gram; identifiers delcared local to a routine can be used
only within that routine and its nested routines, and so
forth. Predeclared identifiers are considered global to
the entire program.

A global identifier can be redefined within a subordi­
nate block; the local meaning supplants the global one.
For example:

program credits;

var COUNT: INTEGER;

procedure DEBITS;

var COUNT: REAL;

begin ... end.

The variable COUNT that is local to DEBITS is a dif­
ferent variable than the variable COUNT that is global
to the program. Note that it does not need to be of the
same type; in this example, it is not. Within the proce­
dure DEBITS, COUNT would always refer to the local
variable; the global COUNT could not be used.

Predeclared identifiers can be redefined just as user­
declared identifiers. The programmer should be
cautious about doing this, since it impairs a program's
readability.

4-9

A routine cannot call a routine whose declaration fol­
lows it in the source program. This restriction can be
circumvented by using the reserved word forward, as
described in the following paragraph.

RESTRICTIONS

Forward Declarations

4-10

It is sometimes necessary for two routines to call each
other. It is also sometimes desirable, in order to make a
program more readable, to list routine declarations in one
place, and the body of the routine code elsewhere. These
situations can be handled by use of forward declarations.

A routine can be declared with the reserved word forward
in place of its block (its declarations and statements). The
routine(s) that must call this routine (and be called by it)
can then be declared, followed by a second declaration of
the routine along with its full body.

If the routine has parameters, they must be specified in
the forward declaration, and not in the second declara­
tion.

Suppose the procedures grabl and grab2 must call each
other. The following declarations would allow this:

procedure grabl (x: INTEGER); forward;

procedure grab2 (x: INTEGER);
{declarations and body of grab2};

procedure grabl;
{ declarations and body of grab I} ;

Note that the parameters to grabl are declared in the
first declaration of grabl. They must not be included in
the second declaration of grabl.

Size Limits

These limits apply only to UCSD Pascal.

A routine can contain no more than 16,383 words of local
variable space.

A given segment (see the following subsection, also Chap­
ter 8) can contain up to 255 routines.

Segment Routines

A code segment is normally the object code (P-code) pro­
duced by a single compilation. A routine can be made to
occupy a code segment of its own by preceding its head­
ing with the reserved word segment. Code segments and
segment routines are discussed in more detail in Chapter
8.

Within a given code segment, the code bodies of all seg­
ment routines must precede the code bodies of all non­
segment routines.

If a segment routine must call a non-segment routine, the
non-segment routine must be declared by a forward decla­
ration that precedes the segment routine's declaration.

UNITS AND SEPARATE COMPILATION

Portions of a program in UCSD Pascal can be separately com­
piled, and packaged into a unit that can be used by programs or
by other units.

4-11

The UCSD Pascal Compiler will compile:

• A single Pascal program

• A single unit

• A number of units (separated by semicolons)

• A Pascal program with in-line units

A unit is not a complete program. Instead, it consists of an inter­
face part, whose declarations can be used by code that uses the
unit, and an implementation part, whose declarations and code
are private to the unit. It can also contain initialization and termi­
nation code.

A program or other unit can use the objects declared in a unit's
interface part by naming the unit in a uses declaration.

When a unit is declared within a program, it must appear after
the program heading and before any declarations. A number of
units can be declared in this way, each of them followed by a semi­
colon. This is a simple way to compile units, but it defeats the
advantages of separate compilation.

The Uses Declaration

4-12

All units that a program uses must be declared in uses
declarations. All of these declarations must follow the
program heading, and precede any other declarations
(such as label, const, and so forth).

For example:

program N otlnsane;
uses smallplot, Record_ Ops;

It is possible for a unit to use other units. Within a unit,
uses declarations immediately follow either the reserved
word interface or the reserved word implementation.

Within a uses declaration, the name of a unit can be fol­
lowed by a list of identifiers (enclosed in parentheses).
The identifiers are names of objects declared in the unit's
interface part; that is, the identifiers can be constants,
types, variables, or routines.

For example:

program theory;
uses Turtlegraphics(Move,Turn,PenMode,PenColor),

Record_ Ops;

This construct is called a selective uses.

Note that the parameters of each routine do not need to
be listed; the routine's name is enough. This also applies
to scalar (or subrange) types and records. Listing the
name of the type (or variable) in the selective uses decla­
ration will give the program that uses the unit access to
the names of the constants within a scalar, the field
names within a record, and so forth.

CAUTION

If a routine that is named in a selective uses
declaration depends on a type or variable that
is also declared in the unit's interface part,
that type or variable must also be named in the
uses declaration.

4-13

The advantage of a selective uses declaration is that it
can save memory space during compile time; only those
identifiers that are selected need appear in the program's
symbol table. The selective uses declaration is especially
useful if the unit has a very large interface part. It is also
a good form of documentation, since it explicitly identi­
fies those portions of a unit that the host program
requires.

The Format of a Unit

4-14

A unit has the following scheme (using EBNF):

"unit" identifier";"

"interface"
[uses-declarations]
[constant-declarations]
[type-declarations]
[variable-declarations 1
[procedure-and-function-headings 1

"implementation' .
[uses-declarations 1
[label-declarations 1
[constant-declarations 1
[type-declarations 1
[variable-declarations 1
[procedure-and-function-declarations 1

["begin"
[initialization-statements 1
["***;"

termination-statements 1
1 "end"

The data structures and routines declared in a unit's
interface part are global to the program or unit that uses
them; the data structures and routines declared in the
implementation part are strictly private to the unit, and
may not be used by any other code. This allows the pro­
grammer to separate the unit's interface (whose form is
determined by the problem to which the unit is applied)
from the implementation (which can vary from system to
system or be improved over time).

When a unit is changed, it must be recompiled. If its
interface section is not changed, the programs that use it
do not need to be recompiled. If the interface section is
changed, then all programs that use the unit must be
recompiled as well.

Restrictions

When a procedure or function is to be part of a
unit's interface, its heading must appear in the
interface part. This heading must include all of
the procedure's or function's parameters. The
actual code for the procedure must appear in the
unit's implementation part; the procedure or
function heading must reappear without any
parameters. This scheme is analogous to the dec­
laration of forward routines, although the word
forward is not used.

Segment procedures and functions must be
declared as such in the implementation part; the
reserved word segment must not appear in the
interface part. The same restriction applies to
procedures and functions that are declared
external.

An interface part cannot contain an include file
(see the string option $1, described in Chapter 10).

4-15

4-16

An include file can contain all of an interface part,
followed by the reserved word implementation,
and, possibly, the rest of the implementation part
as well. An interface part is treated by the com­
piler as if it were a single include file.

If uses declarations appear within the interface
part of a unit, they must be ordered correctly; if
unit first_level uses unit second_level, the inter­
face part must specify:

uses second_ level, first_level;

to avoid a compilation error.

Initialization and Termination Code

The main body of a unit can consist of a single
end, or a compound statement (with a begin end
pair).

The compound statement can contain the con­
struct:

***. ,

This pseudo-statement is used to separate initiali­
zation code from termination code. All state­
ments that precede ***; are initialization
statements, and all statements that follow ***;
are termination statements. If no ***; is present,
the entire compound statement is understood as
initialization code; if the entire compound state­
ment is intended to be termination code, ***;
must be the first statement to follow the begin.

Initialization code is executed before any code of
the host that uses the unit (whether that host is a
program or other unit).

Termination code is executed after the host's code
has terminated.

The compound statement should not contain
branches around ***;: branching past it from ini­
tialization to termination code has the effect of
executing the termination code and skipping the
host's code entirely, while branching from termi­
nation to initialization code has the effect of re­
executing the initialization code and locking the
host's execution in an endless loop!

If an EXIT (program) call appears in initializa­
tion code, the remainder of initialization code is
skipped, and so is the host's code. Execution pro­
ceeds with the unit's termination code. If an
EXIT(program) appears in termination code, the
remainder of the termination code is skipped (this
applies only to the unit in which the EXIT
appears; if the termination code of other units is
pending, it will still be executed). The call EXIT
« unit name» is not legal.

The syntax ***; was adapted from the Pascal dia­
lect called Pascal Plus, by Welsh and Bustard.

The Implementation of Units

When a program uses a unit, the code for that unit must
be either within the program itself, the file
*SYSTEM.LIBRARY, a user library file, or the operat­
ing system. If the system can find the unit's code, it is
automatically linked to the host's code.

If the unit is in a user library file, this file must be named
with the $U compiler option (see Chapter 10). Library
files are described in the UCSD p-System Operating Sys­
tem Reference Manual.

4-17/4-18

5

Procedures and Functions

Procedure and Function Declarations 5-3

Value Parameters 5-5
Variable Parameters 5-5
Procedures and Functions as Parameters 5-6
Calling Procedures and Functions 5-7

5-1/5-2

Routines are distinguished by the manner in which they are
called. A procedure is called by a statement that simply consists
of the procedure's name (and possibly a parameter list). A func­
tion is called from within an expression. A process is initiated by
a call to the intrinsic procedure START.

This chapter describes procedures and functions. Processes are
described in Chapter 9, which deals with concurrency.

PROCEDURE AND FUNCTION DECLARATIONS

In the previous chapter, we saw some examples of procedure and
function headings. They can be described by the following EBNF
expressions:

"procedure" identifier [
"C' ["var"] id-list ":" type-id

{ " " [" "] 'd l' t" .. t 'd } ; var 1 - IS :ype-l
")"] ";"

"function" identifier [
"(" ["var"] id-list ":" type-id

{ ";" ["var"J id-list ":" type-id }
")"] ":" type-id ";"

The list of parameters to a procedure or function is optional.
Parameters are a means by which a procedure or function can
communicate with other portions of a program.

The parameters declared in the routine heading are known as
formal parameters. When a routine is called, the program speci­
fies the values and variables that the routine should actually use;
these are known as actual parameters.

5-3

The following is an example:

procedure max (a,b: I TEGER; var Result: INTEGER);
{determines the maximum of two integers}
begin

if a > = b then
Result:= a

else
Result:= b;

end {max};

The preceding example could be called by the following state­
ments:

max(boundl, bound2, compare);

max(7,346,maxval);

Note that the declaration of the formal parameter Result is pre­
ceded by the reserved word var. This allows a value to be
assigned to Result, which changes the value of the actual parame­
ters used (in this example, compare and maxval). The var parame­
ters are discussed in more detail later in this chapter.

We could use a function to do the same calculation:

function max (a,b: INTEGER): INTEGER;
{finds the maximum of two integers and returns it}
begin

if a > = b then
max:= a

else
max:= b;

end {max};

Note in this example that the code is essentially the same, but the
result is assigned to the function name, rather than a parameter.
This is how a function's result is returned. The type of the value
assigned to the function name must be assignment-compatible
with the function's type, which is declared in the function head­
ing (for compatibility rules, see Chapter 3).

5-4

The function could be called in the following ways:

higher:= max(threshold, 100);

result:= 134 + max(term1,term2)* 2)/reduce;

if year < > max(date1, date2) then ...

In the routine heading, a parameter's type must be specified by a
type identifier (type-id in the EBNF), and not a type description.

Value Parameters

A value parameter is declared in a routine heading by
including the name of the parameter and its type.

Value parameters are used as local values for the purpose
of local calculations. If a value parameter is changed
within a routine, only the local copy of the parameter
changes.

An actual parameter that corresponds to a value parame­
ter may be either a constant or a variable, provided it is of
the correct type. If the actual parameter is a variable, its
value is not affected by the called routine.

Variable Parameters

A variable parameter or var parameter is declared in the
same way as a value parameter, but the declaration is
preceded by the reserved word var.

Variable parameters are used to pass the results of calcu­
lations from the routine (usually a procedure) to its caller.
If, within the routine, a value is assigned to the formal
name of a variable parameter, the value of the actual
parameter also changes. (This form of parameter passing
is also called call-by-reference.)

5-5

An actual parameter that corresponds to a variable para­
meter must be a variable of the proper type. The pro­
grammer should assume that its value will by changed by
the call to the routine.

The declarations of value and variable parameters can be
lumped together, for example:

procedure many_ parms (a, b, c, d: REAL;
var e, f, g, h, i: REAL;
j, k, 1, m, n: REAL);

The first and last groups of parameters declare value
parameters, and the middle group declares variable pa­
rameters. The var declaration applies to the declarations
that immediately follow it; its influence extends to the
next semicolon (;).

Constants, elements of a packed array, fields of a packed
record, and for loop counters cannot be passed as var
parameters.

A file can only be passed as a var parameter.

Range-checking is never performed on a STRING passed
as a var parameter.

Variable parameters, unlike value parameters, are not
copied into a routine's local area. When very large varia­
bles (such as arrays) must be passed to a routine, memory
space can be saved by passing them as var parameters,
even when the routine is not meant to change their
contents.

Procedures and Functions as Parameters

5-6

In UCSD Pascal, a procedure or function cannot be
passed as a parameter to another routine. This is allowed
in standard Pascal.

CALLING PROCEDURES AND FUNCTIONS

As already illustrated, a procedure is called by a single state­
ment, and a function is called by using it within an expression.

Procedures and functions can call themselves recursively. This is
illustrated in Part 2, Chapter 3. It is important that recursive
routines be written so that they will eventually terminate; the
calls must eventually reach a case where the procedure or func­
tion does not call itself. There is no way for the system to check
this, so the programmer must use caution. A runaway recursive
routine causes the program to halt with a stack overflow runtime
error.

When the code of a procedure or function has finished executing,
the procedure or function returns to the caller. Execution pro­
ceeds from the point at which the procedure or function was
called.

The user can cause a routine to return immediately, from any­
where in its code body, by calling the UCSD intrinsic procedure
EXIT, which is described in Chapter 6.

A function must contain at least one statement that assigns a
value to the name of the function, and at least one of these state­
ments must be executed. There is no runtime checking to see
whether this is done; it is the programmer's responsibility.

In a procedure or function call, the order of actual parameters,
their number, and their type must correspond exactly to the
order, number, and type of formal parameters.

Certain Pascal intrinsics have optional parameters that may be
omitted when the intrinsic is called, but this is a peculiarity of
intrinsic routines, and there is no way for a user-written routine
to specify optional parameters.

5-7/5-8

6

Control Statements

Compound Statements 6-3
Conditional Statements 6-4
The If Statement 6-4
The Case Statement 6-6
Repetition 6-8
The While Statement 6-8
The Repeat Statement 6-10
The For Statement 6-11
Branching 6-12
The Goto Statement 6-12
The Procedure EXIT 6-13
The Procedure HALT 6-14

6-1/6-2

This chapter discusses the statements that can be used to direct a
program's sequence of execution (its flow of control).

COMPOUND STATEMENTS

A group of statements can be made to appear as a single state­
ment by surrounding it with the reserved words begin and end.
Such a group is called a compound statement. Here is an EBNF
description:

compound-statement =
"begin" statement { ";" statement} "end"

As the expression shows, a semicolon serves to separate state­
ments rather than terminate them. Nonetheless, it is common
practice to put a semicolon after the last statement in the state­
ment list (it is considered to be followed by a null statement). This
simply makes it easier to add statements to the statement list
while debugging or maintaining the program. Most of the code
samples in this book show this optional semicolon.

These are compound statements:

begin
initialize;
calculate;
print report;
terminate;

end {outer proc}

begin

end

sum: = odd_int(sum,pile[i));
all:= all+ 1; choice[all):=i;
if pile[i) = 1 then ones:= ones+ 1
else

if pile[i) > 1 then p: = i;

6-3

A compound statement can appear anywhere a single statement
can.

CONDITIONAL STATEMENTS

Pascal provides two forms of decision-making statements; the if
statement, and the case statement.

The If Statement

6-4

An if statement has two forms. The following is an EBNF
description:

if-statement =
"if" Boolean-expression "then" statement

I
"if" Boolean-expression "then"

statement
"else"

statement

If the Boolean expression is TRUE, then the statement
that follows the reserved word then is executed. If the if
statement has an else part and the Boolean expression is
FALSE, then the statement that follows the reserved
word else is executed.

In the if then else form of the if statement, a semicolon
must not precede the reserved word else, since the semi­
colon indicates the end of the entire if statement.

The if statements are often nested, and this can appear to
be ambiguous:

if < Boolean exprl> then
if < Boolean expr2> then < statementl>
else < statement2> ;

Does the else pair with the first if or the second if? In
Pascal, the rule is that an else pairs with the closest
matching if. Thus, this example is indented correctly. An
equivalent statement would be:

if < Boolean exprl> then
begin

if < Boolean expr2> then < statementl>
else < statement2>

end;

If the outer if statement has an else part but the nested if
does not, then begin and end should be used:

if < Boolean expr 1 > then
begin

if < Boolean expr2> then < statementl>
end

else < statement2> ;

or the nested if should use a null else part:

if < Boolean exprl> then
if < Boolean expr2> then < statementl>
else < do nothing>

else < statement2> ;

The following examples contain if statements:

if found
then Classify:= sym_ tab[mJ.kind
else Classify: = symbol;

if sym_ name = sym_ tab[mJ.name
then found: = TRUE

else if symname < sym_ tab[mJ.name
thenr:= m-l

else if sym_ name > sYI1L-tab[mJ.name
then 1: = m+ 1;

6-5

It is common practice to indent long sequences of else ifs
so that they line up vertically to make them easier to
read, and emphasize the fact that they represent a series
of cases of which only one will be executed.

The Case Statement

6-6

A case statement has this form (using EBNF):

case-statement =
.. case" expression" of"

constant-list ":" statement
{ ":" constant-list ":" statement} [";"]

"end"

Note that the reserved word end pairs with the reserved
word case (just as an end pairs with record); there is no
begin.

The expression must evaluate to a scalar (or subrange)
value. Each constant-list consists of one or more con­
stants of the same type as the expression (if there is more
than one constant, they are separated by commas). No
constant can appear in more than one constant list.

If the value of the expression matches a constant in one
of the constant lists, the statement that follows that con­
stant list is executed.

The following is an example of a case statement:

READ(letter);
case letter of

'A': Assemble;
'C': Compile;
'D': Debug;
'E': Edit;
'F': File;
'H':HALT;
'I': Re_ Init;
'I..': Link;
'M': monitor: = TRUE;
'R': begin

end;

codefile:= ,* system.wrk.text';
Execute;

'U': Execute;
'X': begin get codefile; Execute end;
'end' {case}

We hasten to point out that this is merely an illustration,
and not a portion of the actual operating system! Similar
code is used to handle single-character commands at the
outer command level.

In UCSD Pascal, if the case expression does not evaluate
to one of the given options (for instance, in the example,
not all 26 letters are shown), then the case statement is
bypassed, and the next statement in sequence is exe­
cuted. The case is said to fall through. This is contrary to
standard Pascal, in which the result of a case is undefined
if a selected option is not present.

There must be at least one statement preceded by a con­
stant list. This is a restriction of UCSD Pascal, and is not
required in standard Pascal.

6-7

Here are examples of case statements with more than one
constant in a constant list:

case digit of
0: resume;
1: prompt;
2: restart;
3: quit;
4,5,6,

7,8,9: {do nothing};
end;

case color of
orange, brown: repaint;
red: touch_ up;
blue, yellow, green: mix;
end;

REPETITION

In Pascal, there are three forms of loops; while, repeat, and for.
The while and repeat loop statements execute indefinitely, until
some terminating condition is met. In a while statement, the con­
dition is tested before the loop is executed, while in a repeat state­
ment, the condition is tested after the loop. These two statements
complement each other. A for statement uses a variable as a
counter, and loops for a given number of times.

The While Statement

6-8

A while statement has the form (using EBNF):

while-statement =
"while" Boolean-expression "do"

statement

Before each iteration of the loop, the Boolean expression
is tested; if it is TRUE, the statement is executed, other­
wise the loop ends.

Clearly, unless the statement itself contains some code
that will eventually cause the Boolean expression to be
FALSE, the while loop will continue to execute indefi­
nitely.

Since the while statement tests the Boolean expression
before the statement is executed, it is often necessary to
initialize variables that appear in the Boolean expression.

Occasionally, it is desirable for a while to execute indefi­
nitely (for example, some kinds of concurrent processes
require this). In this case, the programmer can specify:

while TRUE do < statement> ;

Here are two examples of while statements:

go_on:= TRUE; {this initialization is necessary}
while go_on do

begin
GENERATE(half, whole);
if half < 1 then go_on: = FALSE;

end;

num_piles: = 0; {initialization}
while not EOLN and (num piles < pile _max) do

begin
num piles: = num piles + 1;
READ(pile[nuIIL-piles]);

end;

Note that the second example is guaranteed to terminate.
Presumably, the first example will terminate as well,
provided the procedure GENERATE does what it is sup­
posed to do.

6-9

The Repeat Statement

6-10

A repeat statement has the form (using EBNF):

repeat-statement =
"repeat"

statement (";" statement]
"until" Boolean-expression

The program executes the statement list, then tests the
Boolean expression. If the Boolean expression is TRUE,
the statement list is executed again, and so forth . If the
Boolean expression is FALSE, the loop ends.

Since the Boolean expression is tested after the state­
ment list is executed, there is usually no need to initialize
the variables used in the Boolean expression.

When a repeat must execute indefinitely, the program­
mer can use the form:

repeat < statement list> until FALSE;

Here are two examples:

repeat READ(remainder) until EOF;

repeat
num_piles:= num piles+ 1;
READ(pile[num pilesj);

until EOLN or (num piles> = pile max)

Note that the second repeat example accomplishes the
same thing as the second while example in the preceding
section, except that the assignment and the READ are
always executed at least once. Notice that the conditions
for terminating the loop have been inverted.

The For Statement

A for statement has two forms. Here is an EBNF descrip­
tion:

for-statement =
"for" var-id ":=" start-value "to"

stop-value "do"
statement

"for" var-id ":=" start-value "downto"
stop-value "do"

statement

The var-id is a variable of some scalar or subrange type.
It is called the index of the for loop. The start-value and
stop-value are values of the same type as the index vari­
able (typically INTEGER).

When a for to statement is executed, the start-value and
stop-value are evaluated once. The index is assigned the
value of the start-value. The statement is executed, and
then the index is replaced by its successor (if it is an inte­
ger, it is incremented by 1). This continues until the value
of the index is greater than the stop-value.

A for down to statement is executed in the same way as a
for to statement, except that before each iteration of the
loop, the index is replaced by its predecessor (if it is an
integer, it is decremented by 1). The loop ends when the
value of the index is less than the stop-value.

If the start-value is greater than the stop-value (or less
than, for the downto form), then the statement is not exe­
cuted at all. If the start-value equals the stop-value, the
statement is executed once.

The index must be a local variable. It cannot be a var
parameter.

6-11

After the for statement has executed, the value of its
index is undefined, and the programmer must reinitialize
the index variable if it is to be used again.

Here are some examples:

for weekday: = Mon to Sun do
print_schedule(weekday);

forj:= i-I downto2do
p[j]:= p[j] + p[j-I];

for j:= 1 to i do
begin

WRITE(j, ': ');
WRITELN(p[j]);

end;

BRANCHING

By branching we mean changing a program's flow of control by
some means other than the statements already described in this
chapter. This practice is discouraged in structured programming,
but there are times (usually error conditions) when it is the least
painful way to accomplish something. The goto statement allows
unconditional branching. UCSD Pascal also provides the intrin­
sic procedures EXIT and HALT to allow emergency termina­
tions.

The Goto Statement

6-12

A goto statement has the form (using EBNF):

goto-statement =
"goto"label

The label must be declared, and must be local to the block
(the routine or main program body) in which the goto
statement appears (see Chapter 3). A label has the form of
an integer in the range 0 .. 9999.

UCSD Pascal requires a goto statement to be in the same
block as the label it names; standard Pascal does not.

Execution proceeds from the labeled statement. This may
cause some statements to be skipped, or some statements
to be repeated.

Using EBNF, the form of a labeled statement is:

labeled-statement =
label ":" statement

For example:

· .. {program code}
goto 1558;
· .. {more program code ---- }

{ all of this is skipped}
1558: {execution continues here}

report disaster;

The Procedure EXIT

A routine or a program can be terminated immediately by
calling the UCSD intrinsic EXIT in three ways:

• EXIT« routine name>)

• EXIT« program name>)

• EXIT(program)

6-13

When EXIT is used in a procedure or function, execution
returns to the caller of that routine. Any local files still
open are closed and purged (see Chapter 7). If EXIT is
used within a function, and called before the value of that
function has been defined, the function returns an unde­
fined value. If EXIT is used in a procedure or function
that has been called recursively, control returns to the
previous call (the call stack is popped).

When an EXIT process occurs, its execution ends.

Within the initialization and termination code of a unit,
EXIT behaves in particular ways. These are described in
Chapter 4.

When EXIT is called with the name of the program or the
reserved word program, the program is terminated imme­
diately and control returns to the operating system. Any
open files are closed as if by a call to CLOSE(FileN arne,
normal) (see Chapter 7).

The Procedure HALT

6-14

A call to the UCSD intrinsic HALT causes the program
to abort with a runtime error. The effect is similar to that
of pressing the BRK/P A US key while a program is
running.

Control is transferred to the operating system unless the
debugger is running, in which case control is transferred
to the debugger. The debugger is described in the UCSD
p-System Operating System Reference Manual.

It should be evident that a call to HALT is either an
emergency measure or a means of deliberately invoking
the p-System debugger.

7

Input and Output

Standard Pascal 110 7-3
READ and READLN ... 7-3
WRITE and WRITELN ... 7-5

Field Specifications ... 7-7
EOF and EOLN .. 7-8
PAGE 7-8

Handling External Files .. 7-9
Opening and Closing Files 7-9

RESET 7-9
REWRITE ... 7-10
CLOSE ... 7-11

Random Access to Files 7-13
SEEK ... 7-13

Untyped Files 7-14
BLOCKREAD 7-14
BLOCKWRITE ... 7-15

The UCSD p-System Environment 7-16
Keyboard .. 7-16
Device I/O 7-17

UNITCLEAR 7-18
UNITREAD 7-18
UNITWRITE 7-19

The TIME Procedure ... 7-20
IORESULT .. 7-20
GOTOXY 7-22

7-1/7-2

This chapter first describes the standard Pascal 110 intrinsics. It
then covers 110 for external files, and finally device 110. Standard
110 for internal files is described in Chapter 3.

Standard input and output in Pascal is done with the intrinsics
READ, READLN, WRITE, . WRITELN, EOF, EOLN, and
PAG E (refer to the paragraph entitled Standard Pascal 110).

External files under the UCSD p-System can be opened with
extended calls to the intrinsics RESET and REWRITE. They
can be closed with the intrinsic CLOSE. Disk files can be
accessed randomly with the intrinsic SEEK. Untyped files are
handled with the intrinsics BLOCKREAD and BLOCKWRITE
(refer to the paragraph entitled Handling External Files).

In UCSD Pascal, device 110 can also be done with a group of
lower-level intrinsics: UNITCLEAR, UNITREAD, and
UNITWRITE (refer to the paragraph entitled USCD p-System
Environment).

ST ANDARD PASCAL 1/0

For examples of the use of these intrinsics, the reader should refer
to Part 2, Chapter 4.

READ and READLN

The READ(FILENAME, ITEMl, ITEM2, ... , ITEMn}
intrinsic reads characters from FILENAME, converts
them into values, and sequentially assigns them to the
variables ITEMl, ITEM2, through ITEMn.

The FILENAME parameter need not be present. If it is
absent, the standard file INPUT is used. In the p-System,
INPUT defaults to the device CONSOLE:, but this
default can be overridden by the user; see the description
of redirection in the UCSD p-System Operating System
Reference Manual .

7-3

7-4

If FILENAME has been associated with an external
file, it must be a text file (that is, a file of type TEXT,
INTERACTIVE, or file of CHAR).

There can be one or more ITEMs. Each is a variable. If
the type of the data read from the file does not match the
type of the corresponding variable, a runtime error
results.

An ITEM must be of type INTEGER (or subrange of
INTEGER), long INTEGER, REAL, CHAR (or sub­
range of CHAR), STRING, or packed array of CHAR.
Boolean values and structured types other than STRING
or packed array of CHAR cannot be read.

If the input file is INTERACTIVE, READ behaves a bit
differently than it would with a standard textfile. A
standard REAUFILENAME,ch) is defined as the
sequence:

ch:= FILENAME A; GET(FILE"\AME);

Since an INTERACTIVE file normally contains no val­
ues until the user has started typing them in, this stan­
dard definition would result in a runtime error. UCSD
Pascal therefore defines a READ on an INTERACTIVE
file to be the opposite sequence from the standard:

GET(FILENAME); ch:=FILENAME A

This altered order also affects the setting of EOLN.

When INTEGER or REAL values are read, leading
blanks and carriage returns « return>, ASCII CR) are
ignored until a non-blank character is read.

The entry of a value is terminated by a space (' '), press­
ing the RETURN key, or a character that is not a digit
(reals may be entered with an exponent such as e+24).
When entering a value from an interactive file, the user
can correct it before it has been terminated by using the
BACKSPACE key and retyping; once a value has been
read, there is no way to correct it.

When a STRING value is READ, it must be terminated
by pressing the RETURN key. For this reason, strings
should be read by READLN rather than READ.

The READLN (FILENAME, ITEM1, ITEM2,
ITEMn) intrinsic is identical to READ except that the
ITEM parameters are optional, and READLN expects to
read a < return> after all the ITEMs have been read;
READLN will wait until this < return> is read.

Since STRING values must be terminated by pressing
the RETURN key, READLN is the proper way to read
strings; only one STRING value per call to READLN.

A call to READLN without parameters can be used to
ignore the rest of a line. This is especially useful for step­
ping to the next line of a file after a series of READs:

n:= 0;
while not EOLN do

begin
READ(a[n));
n:= n+1;

end;
READLN;

WRITE and WRITELN

The WRITE (FILENAME, VALUE1, VALUE2, ... ,
VALUEn) intrinsic sequentially writes VALUE1,
VALUE2, through VALUEn to the file FILENAME.

7-5

7-6

The FILENAME parameter need not be present. If it
is absent, the standard file OUTPUT is used. In the
p-System, OUTPUT defaults to the device CONSOLE:,
but this default can be overridden by the user; see the
discussion of redirection in the UCSD p-System
Operating System Reference Manual.

If FILENAME is associated with an external file, it
must be a textfile (that is , a file of type TEXT,
INTERACTIVE, or file of CHAR).

There can be one or more values.

In UCSD Pascal, a value to be written must be of type
INTEGER, long INTEGER, REAL, CHAR, STRING,
or packed array of CHAR. Boolean values and structured
types other than STRING or packed array of CHAR
cannot be written. In standard Pascal, Boolean values
can be written.

The WRITELN(FILENAME, VALUE1, VALUE2,
V ALUEn) intrinsic is identical to WRITE, except that
the VALUE parameters are optional, and it writes a car­
riage return (the RETURN key) after all other VALUEs
have been written.

It is common practice to write several VALUEs to a sin­
gle line with repeated calls to WRITE, and then finish the
line by a call to WRITELN that has no parameters:

for i:= 1 to 10 do
WRITE(a[ij:5);

WRITELN;

Field Specifications

When a value is written, it is written within an
output field that is some number of characters
wide. The default width of an output field is auto­
matically wide enough to contain the value being
printed. The user can override the default field
width by explicitly specifying a field width within
the call to WRITE or WRITELN.

Values can be formatted by entering them in this
manner:

valuel:m
realvalue:m:n

where:

m is a positive integer that specifies the output
field width.

If the value is real, n can be included since it is a
positive integer that specifies the number of deci­
mal places to be written.

If the printed format of the value is shorter than
the field width m, the value is right-justified, and
blanks are written on the left. If the value is
numeric and m does not specify enough spaces,
the full value is written, and m is ignored.

Real values must have at least room for the num­
ber plus a sign on the left. If the real value is too
large for the specified format, it is written in
exponential form.

7-7

7-8

Values of type STRING are always written with
a field length equal to their dynamic length,
unless a field length m is specified. If m is greater
than the string's dynamic length, the string is
right-justified, and spaces are written on the left.
If m is less than the string's dynamic length, the
string is truncated on the right. The length of a
packed array of CHAR is not dynamic, but other­
wise it is written exactly as a STRING.

EOF and EOLN

The intrinsic functions EOF and EOLN have
already been described in Chapter 3. They are
both Boolean functions; EOF(FILENAME)
returns TRUE when the end of FILENAME has
been reached, and EOLN(FILENAME) returns
TRUE when a < return> character has just been
read.

The FILENAME parameter can be omitted, in
which case EOF and EOLN refer to the prede­
clared file INPUT.

When reading from an INTERACTIVE file,
EOLN is initially FALSE, and is set to TRUE
only when a < return> character is read. The
value received by the READ is a space (' ') rather
than a < return> character.

PAGE

The PAGE(FILENAME) intrinsic writes a form
feed character (ASCII FF, CHR(12)) to the text
file FILENAME.

HANDLING EXTERNAL FILES

Files in Pascal programs can be associated with external files in
the p-System. To the UCSD p-System, a file is any source of data
or sink for data. Thus, a file can be a file on a block-structured
device such as a floppy disk, an interactive device such as a ter­
minal, a write-only device such as a printer, and so forth.

More information on p-System files and devices can be found in
the UCSD p-System Operating System Reference Manual.

Opening and Closing Files

The following paragraphs explain how to open an exter­
nal file (whether a device or disk file) with the procedures
RESET and REWRITE. It also describes how to save or
remove a file with the CLOSE intrinsic. The standard use
of RESET and REWRITE is described in Chapter 3.

Files opened with RESET or REWRITE can be closed by
the intrinsic CLOSE, which is described in the paragraph
entitled CLOSE.

RESET

The RESET (FILENAME, EXT_FILE) intrin­
sic does a standard RESET on FILENAME, and
also associates the Pascal (internal) file FILE­
NAME with the p-System (external) file
EXT_FILE.

The parameter EXT_FILE is a string expres­
sion that specifies the name of a p-System file.

If EXT_FILE is nonexistent, or the device is off­
line, or the file is already open, a runtime error
results (unless lIO-checking has been disabled -
see Chapter 10).

7-9

7-10

If EXT_FILE is a write-only device (such as
PRINTER: or REMOUT:), a runtime error
results, because RESET attempts to initialize
FILENAMEAfor all files that are not INTER­
ACTIVE.

Here are some examples:

{ opening disk files: }
RESET(bookfile, 'CHAPTER2.TEXT');
RESET (seismic, '5:MARCH.12.DATA');

{opening an INTERACTIVE device:}
RESET(talk, 'CONSOLE:');

{opening a file with a variable name:}

REWRITE

userfile: = '*PROJECT. TEXT';
RESET(bookfile, userfile);

The REWRITE (FILENAME, EXT_FILE)
intrinsic does a standard REWRITE on FILE­
NAME, and also associates the Pascal (internal)
file FILENAME with the p-System (external) file
EXT_FILE.

The parameter EXT_FILE is a string expres­
sion that specifies the name of a p-System file.

If EXT_FILE is not the name of an existing file,
a new file is created with that name.

If EXT_FILE is a file that already exists,
REWRITE creates a temporary file to operate on
while the program executes. This temporary file
can supplant the original file (as with a
REWRITE in standard Pascal), be discarded, or
be saved under a new name. This depends on how
the CLOSE intrinsic is used.

If EXT_FILE is a device that is offline, or a file
that is already open, a runtime error results (un­
less VO-checking has been turned off - see Chap­
ter 10).

If there is no EXT_FILE parameter,
REWRITE (FILENAME) is equivalent to
REWRITE (FILENAME, 'FILENAME'), for
the first eight characters of the FILENAME
identifier.

CLOSE

Here are some examples:

{ clearing a disk file: }
REWRITE(bookfile, 'CHAPTER2.TEXT');

{ creating a new disk file: }
REWRITE(seismic, '5:MARCH.31.DATA');

'resetting an VO device:'
REWRITE(talk, 'REMOUT:');

{clearing a file with a variable name:}
userfile: = '*PROJECT. TEXT';
REWRITE(bookfile, userfile);

{creating a temporary file:}
REWRITE(scratch) {= REWRITE(scratch,

'scratch') }

The CLOSE(FILENAME I, OPTION)) intrinsic
closes the file FILENAME. After the close, the
value of FILENAME /\ is no longer defined.

7-11

7-12

If present, OPTION must be one of the following
words:

• Normal

• Lock

• Purge

• Crunch

The OPTION parameter can be omitted. If it is
not present, CLOSE(FILENAME) is equivalent
to CLOSE (FILENAME, normal).

The CLOSE (FILENAME, normal) intrinsic
closes FILENAME. If FILENAME was asso­
ciated with a disk file by a previous call to
REWRITE, then the call to CLOSE deletes the
temporary version from the directory, and the
original file is unaffected.

The CLOSE(FILENAME, lock) intrinsic is equiv­
alent to a normal CLOSE unless FILENAME
was associated with a disk file by a previous call
to REWRITE. In that case, the temporary file is
saved, and the original version deleted.

The CLOSE(FILENAME, purge) intrinsic is
equivalent to a normal CLOSE unless
FILENAME was associated with a disk file or
a device. If FILENAME is associated with a
disk file , that disk file is removed from the
directory. If FILENAME is associated with a
device, the device goes offline.

The CLOSE(FILENAME, crunch) intrinsic is
equivalent to a lock CLOSE, except that the file
is truncated where it was last accessed. The posi­
tion of the last GET, PUT, READ, or WRITE to
the file becomes the last record in the file.

When a Pascal program finishes its execution
normally (that is, no runtime error occurred), a
CLOSE (FILENAME, normal) is done on all files.
This does not affect files that have already been
closed by the programmer.

Random Access to Files

Unlike standard Pascal, where files are strictly sequen­
tial, UCSD Pascal allows file records to be accessed in
random order by use of the intrinsic SEEK, which fol­
lows.

SEEK

The SEEK (FILENAME, INDEX) intrinsic sets
the file window to the INDEX'th record in
FILENAME; EOF is set to FALSE.

FILENAME cannot be a textfile or an untyped
file. An internal file is a textfile if it is of type
TEXT, INTERACTIVE, or file of CHAR. Trying
to SEEK on a textfile or untyped file causes a
runtime error.

INDEX is an integer. File records are numbered
starting from zero. If INDEX is less than zero or
greater than the largest record index in the file,
SEEK accepts this; the next GET or PUT to
FILENAME will cause EOF to be set to TRUE.

A GET(FILENAME) or PUT(FILENAME) call
must be made between two consecutive calls to
SEEK. If this is not done, the contents of the
window will be undefined and unpredictable.

7-13

Note that SEEK does not set the value of the
window variable (FILENAME 1\). That must be
done by a call to GET or PUT.

Untyped Files

7-14

In UCSD Pascal, a file can be declared in the following
way:

FileN ame: file;

This is called an untyped file. An untyped file does not
have a window location or a window value. It must be
associated with an external file by RESET
or REWRITE, and the only way to manipulate it is by
the UCSD intrinsic functions BLOCKREAD and
BLOCKWRITE, which are described in this section.

The BLOCKREAD and BLOCKWRITE functions do no
type checking or range checking at all, so their use can
lead to errors. The programmer must take care that they
do not destroy any valuable data.

BLOCKREAD

The BLOCKREAD (FILENAME, BUFFER,
COUNT, RELBLOCK) intrinsic attempts to read
COUNT blocks from FILENAME into
BUFFER, starting from RELBLOCK. It returns
the number of blocks that were actually trans­
ferred.

FILENAME is an untyped file that has been
associated with an external file by a call to
RESET or REWRITE.

BUFFER is a typeless parameter (typeless pa­
rameters are described in Chapter 3).

COUNT is an integer.

RELBLOCK need not be present. If it is present,
it is a (zero-based) block index into FILENAME,
and indicates the location from which the read
should begin.

If the value returned by BLOCKREAD does not
equal COUNT, then either the end of the file was
encountered, or a read error occurred. The pro­
grammer should check these conditions. If the
end of file IS encountered, BLOCKREAD sets
EOFtoTRUE.

Successive BLOCKREADs on the same file will
continue to read blocks in sequence, unless
RELBLOCK is used to explicitly name a
location, or the file is reinitialized with RESET
or REWRITE.

BLOCKWRITE

The BLOCKWRITE (FILENAME , BUFFER,
COUNT, RELBLOCK) function attempts to
write COUNT blocks from BUFFER into
FILENAME, starting at RELBLOCK. It
returns the number of blocks that were actually
transferred.

FILENAME is an untyped file that has been
associated with an external file by a call to
RESET or REWRITE.

BUFFER is a typeless parameter.

COUNT is an integer.

7-15

RELBLOCK need not be present. If it is present,
it is a (zero-based) block index into FILENAME,
and indicates where the writing should begin.

If the value returned by BLOCKWRITE does not
equal COUNT, then either the end of the file was
encountered, or a write error occurred. The pro­
grammer should check these conditions. If the
end of file IS encountered, BLOCKWRITE sets
EOFtoTRUE.

Successive BLOCKWRITEs on the same file will
continue to write blocks in sequence, unless
RELBLOCK is used to explicitly name a location,
or the file is reinitialized with RESET or
REWRITE.

THE UCSD p-SYSTEM ENVIRONMENT

Keyboard

7-16

Files of type INTERACTIVE have already been
described (in the section, STANDARD PASCAL I/O, and
in Chapter 3). The standard predeclared files INPUT and
OUTPUT are interactive in UCSD Pascal; so is the prede­
clared file KEYBOARD.

When a character is read from the file INPUT, that char­
acter is also echoed on the CONSOLE:. The KEYBOARD
file, on the other hand, does not echo the character that is
typed. The most common use of KEYBOARD is in read­
ing a user's response to a promptline, since there is no
need to redisplay that character on the screen.

A read from INPUT (for example, READ(INPUT, char­
acter);) is equivalent to:

READ(KEYBOARD, character);
WRITE(OUTPUT, character);

Device 110

This section describes the UCSD intrinsics that can be
used to control peripheral devices directly. The use of
these intrinsics is somewhat error-prone, and the pro­
grammer should be cautious with them. On the other
hand, they can be much faster than the standard Pascal
110 intrinsics, and are therefore indispensable for some
applications.

For a programming example that uses these intrinsics,
the reader should refer to Part 2, Chapter 4.

All of these intrinsics require a parameter,
DEVICE_NUMBER, which specifies the peripheral
device that the routine call affects. DEVICE_NUMBER
must be in the range 1..8.

These are the current standard device numbers in the p­
System (they are also shown in the UCSD p-System Oper­
ating System Reference Manual):

1 CONSOLE: Screen and keyboard (echoes)
2 SYSTERM: Screen and keyboard (no echo)
4 < disk name> : A disk drive
5 < disk name> : An alternate drive disk
6 PRINTER: Line printer
7 REMIN: Serial line input
8 REMOUT: Serial line output

Because the device I/O intrinsics reference devices
directly, their I/O cannot be redirected (redirection is
described in the UCSD p-System Operating System Ref­
erence Manual).

7-17

7-18

UNITCLEAR

The UNITCLEAR(DEVICE_NUMBER) intrin­
sic resets the specified device to its power-up
state.

UNITREAD

The UNITREAD(DEVICE_NUMBER,
BUFFER, LENGTH, BLOCKNUMBER,
FLAG) intrinsic reads LENGTH bytes from the
specified device into BUFFER.

BUFFER is a typeless parameter. LENGTH is
an integer.

BLOCKNUMBER and FLAG are optional pa­
rameters. If they are not present, they default to
zero.

If BLOCKNUMBER is present, it indicates the
block of the specified device from which the read
will start (the offset is zero-based). If the device is
not block-structured, this parameter is ignored.

If FLAG is present and equal to 1, the transfer is
done asynchronously rather than synchronously.
If the hardware does not support asynchronous
I/O, FLAG is ignored.

If FLAG equals 2 and the device is block­
structured, UNITREAD transfers one physical
sector. BUFFER should be large enough to con­
tain this sector. LENGTH must be set to O.
BLOCKNUMBER is the relative sector number
(zero-based).

For other uses of FLAG, refer to the BIOS docu­
mentation in the UCSD p-System Internal Archi­
tecture Guide.

To specify FLAG but not BLOCKNUMBER,
simply precede FLAG with two commas:

UNITREAD(5, name_ array, count" 1);

UNITWRITE

The UNITWRITE(DEVICE_NUMBER,
BUFFER, LENGTH, BLOCKNUMBER,
FLAG) function writes LENGTH bytes from
BUFFER to the specified device.

BUFFER is a typeless parameter. LENGTH is
an integer.

BLOCKNUMBER and FLAG are optional pa­
rameters. If they are not present, they default to
zero.

If BLOCKNUMBER is present, it indicates the
block of the specified device where the write will
start (the offset is zero-based). If the device is not
block-structured, this parameter is ignored.

If FLAG is present and equal to 1, the transfer is
done asynchronously rather than synchronously.
If the hardware does not support asynchronous
I/O, FLAG is ignored.

If FLAG equals 2 and the device is block­
structured, UNITWRITE transfers one physical
sector. BUFFER should be large enough to
contain this sector. LENGTH must be set to o.
BLOCKNUMBER is the relative sector number
(zero-based).

For other uses of FLAG, refer to the BIOS docu­
mentation in the UCSD p-System Internal Archi­
tecture Guide.

7-19

To specify FLAG but not BLOCKNUMBER,
simply precede FLAG with two commas:

UNITWRITE(5, name array, count" 1);

The TIME Procedure

The TIME (HIWORD, LOWORD) procedure sets
HIWORD_LOWORD to a 32-bit unsigned integer that
contains the current value of the system's clock in six­
tieths of a second.

The programmer should be careful not to treat LOWORD
as a negative two's complement integer.

The value returned is not correlated to the time of day.
The TIME procedure is usually used for incremental time
measurements, such as measuring a program's perfor­
mance by calculating benchmarks.

IORESULT

7-20

The IORESULT intrinsic returns an integer that indi­
cates the status of the last I/O operation performed.

The compiler generates I/O checks for all I/O operations
except device I/O intrinsics. An I/O error at runtime
causes a program to abort. If the programmer would
rather that the program itself checked IORESULT and
took steps to correct an I/O error, I/O checking must be
turned off. This is done with the { $1 -} compiler direc­
tive (see Chapter 10).

The following list contains the possible values of
IORESULT:

0- No error
1 - Parity error (CRC)
2 - Illegal device number
3 - Illegal 110 request
4 - Data-com timeout
5 - Volume went offline
6 - File lost in directory
7 - Bad file name
8 - No room on volume
9 - Volume not found

10 - File not found
11 - Duplicate directory entry
12 - File already open
13 - File not open
14 - Bad input information
15 - Ring buffer overflow
16 - Write protect
17 - Illegal block
18 - Illegal buffer

Each process is saved with its own IORESULT, so the
IORESULT of one concurrent process does not interfere
with the IORESULTof another.

110 done by the p-System itself does not affect a user
program's IORESULT behind the user's back.

Note that the following:

WRITELN(ioresult is:, IORESULT);

is wrong, since writing the string constant will alter
IORESULT. The safest way to write an IORESULT is:

iocheck:= IORESULT;
WRITELN(ioresult is: ,iocheck);

7-21

GOTOXY

7-22

The following paragraphs describe GOTOXY, which
allows the user to position the cursor anywhere on the
CONSOLE: display unit. More sophisticated screen con­
trol can be accomplished by using the operating system's
display control unit, which is described in the UCSD
p-System Internal Architecture Guide).

The GOTOXY (x,y) intrinsic positions the CONSOLE:'s
cursor at (x,y)

where:

x indicates a column and y indicates a row. The x and y
are integers. The upper left corner of the screen is
assumed to be (0,0). If x or y is too large, the cursor is
placed at the edge of the screen. Your terminal displays
80 * 24 characters.

8

Memory Management

The p-System Runtime Environment 8-3
Segmentation 8-4
Code Segments 8-4
Controlling Segment Residence 8-4

MEMLOCK 8-5
MEMSW AP ... 8-5

Free Space 8-6
MEMA V AIL 8-6
VARAVAIL ... 8-6
Free Space on the Heap 8-7
VARNEW 8-7
VARDISPOSE 8-8
MARK and RELEASE ... 8-8

8-1;8-2

Please keep in mind that the information in this chapter applies
only to UCSD Pascal.

For further discussion of memory management critical to the
success of a program, see Part 2, Chapter 7.

These topics are also discussed in the UCSD p-System Operating
System Reference Manual and the UCSD p-System Internal
Architecture Guide.

THE p-SYSTEM RUNTIME ENVIRONMENT

There are three dynamic data structures that are used to manage
main memory while a program is running. These are the stack,
the heap, and the codepool.

The stack is a last-in-first-out stack that is used for procedure and
function calls, the storage of static variables, and temporary val-

-----... ues during expression evaluation.

The heap is essentially a last-in-first-out structure as well, but its
management is more complex. It is used to store dynamic vari­
ables , the stacks of subordinate processes, and non-relocatable
code segments.

The codepool is a collection of active code segments, including the
code segment that is currently running. A code segment is a por­
tion of a codefile. Code is swapped in and out of memory one seg­
ment at a time. Code segments are described in further detail in
the following section.

When extended memory is used, the stack and heap occupy one
area (one 64K page) of memory, and the codepool occupies a dif­
ferent area. This tends to improve performance for both user pro­
grams and the p-System itself.

8-3

SEGMENTATION

Code Segments

8-4

A code segment is typically the product of a single compi­
lation; a program or unit is compiled into a single code
segment. The code segment that contains a program or a
unit is called the principal segment; the segments that
contain segment routines are called subsidiary segments.

A programmer can also create a subsidiary segment that
contains a single routine (however complex) by use of the
reserved word segment. This word must be the first word
in a routine heading, for example:

segment procedure initialize;

segment function HandleStore
(priority: INTEGER): INTEGER;

segment process switching(light: SEMAPHORE);

As previously mentioned, program code is swapped in
and out of memory one segment at a time. Thus, a pro­
grammer can improve the memory utilization of a pro­
gram by designating certain routines as segment routines
which need not be in memory at all times. In particular,
routines which are only called once or twice during a pro­
gram (such as initialization and termination code) are
very good candidates for segment routines.

Within a program, the declaration of the code bodies of all
segment routines must precede the declaration of any
non-segment routine code. If a segment routine must call
a non-segment routine, the non-segment routine must be
declared by a forward declaration that precedes the seg­
ment routine's declaration.

The name of a code segment is the first eight characters
of either the program name, the unit name, or the seg­
ment routine name (depending on how the code segment
was created).

Controlling Segment Residence

This section describes the UCSD intrinsic procedures
MEMLOCK and MEMSW AP, which may be used to
control a segment's residence in main memory.

MEMLOCK

The MEMLOCK(SEGMENT_LIST) intrinsic
locks all of the segments named in
SEGMENT_LIST into main memory.

SEGMENT_LIST is a string that contains the
names of segments, separated by commas.
N ames of nonexistent segments are ignored.

All segments named in SEGMENT_LIST must
remain in the codepool until they are released by a
call to MEMSW AP. Until that time, they cannot
be swapped out of memory.

If a segment that is named is not in the codepool,
it is locked in memory the next time it is loaded.

MEMSWAP

The MEMSWAP(SEGMENT_LIST) intrinsic
unlocks all of the segments named in
SEGMENT_LIST.

SEGMENT_LIST is a string that contains the
names of segments, separated by commas.

8-5

All segments that are named in
SEGMENT_LIST and have been locked in the
codepool are released, and can now be swapped
out to disk (under the control of the operating
system).

If a segment that is named is not in the codepool,
or is in the codepool and has not been locked, the
name is ignored.

FREE SPACE

This section describes the UCSD intrinsic functions MEMA­
V AIL and V ARA V AIL, which allow a program to discover how
much free space remains in main memory.

MEMAVAIL

The MEMA V AIL intrinsic returns an integer which is
the number of unallocated words in main memory.

This number is the sum of the number of words between
the codepool and the stack, plus the number of words
between the codepool and the heap.

Note that the number returned by MEMAV AIL can be
less than the number of total available words of memory
space, since there may be segments in the codepool that
can be swapped out.

VARAVAIL

8-6

The VARAVAIL(SEGMENT_LIST) intrinsic returns
the number of available words of particular configuration
of main memory. It is typically used in conjunction with
VARNEW.

SEGMENT_LIST is a string that contains the names of
segments, separated by commas. These are segments for
which the user wants space to be available.

The V ARA V AIL intrinsic returns the number of words
that would be available if all of the segments named in
SEGMENT_LIST were loaded. It assumes that all
memory-locked segments remain in main memory, along
with all of the segments named in SEGMENT_LIST.

If a name in SEGMENT_LIST is not known to the oper­
ating system, it is ignored.

FREE SPACE ON THE HEAP

The following paragraphs describe a number of intrinsics that
allow a program to allocate and deallocate free space on the heap
(remember that the heap is used to store dynamic variables).

The NEW and DISPOSE intrinsics are the standard means of
allocating and deallocating dynamic variables on the heap.
VARNEW and VARDISPOSE can be used to allocate/deallocate
variable-sized areas. These are system-level intrinsics that do no
checking; they can cause problems if not used carefully. Finally,
MARK and RELEASE are a means of controlling still larger
portions of heap use: they are also system-level tools.

It is very important that the pairs VARNEW/v ARDISPOSE
and MARK/RELEASE match up correctly while the program is
running. If they do not, the integrity of the heap may be lost: this
usually causes the system to crash.

The NEW and DISPOSE intrinsics are described in Chapter 3.

VARNEW

The V ARNEW(POINTER, COUNT} intrinsic does a
NEW on COUNT words, and returns an integer that is
the number of words actually allocated.

8-7

POINTER is a pointer to any type (it should point to the
type of data for which space is being allocated). COUNT
is an integer.

If it is possible to allocate COUNT words, then the num­
ber returned by V ARNEW should equal COUNT. If
COUNT words are not available, then no space is allo­
cated, and V ARNEW returns zero.

VARDISPOSE

The V ARDISPOSE(POINTER, COUNT) intrinsic does a
DISPOSE on COUNT words.

POINTER is a pointer to any type; it should be the same
as the pointer in the V ARNEW that corresponds to this
VARDISPOSE. COUNT is an integer, and should be
equal to the COUNT in the corresponding VARNEW.

If either POINTER or COUNT is incorrect, the heap 's
integrity is destroyed.

MARK and RELEASE

8-8

The MARK(POINTER) intrinsic marks a location on the
heap by creating and allocating a Heap Mark Record
(HMR). POINTER is set to point to that record.

It is customary to declare POINTER as a 1\ INTEGER.

Note that the only heap space allocated by MARK is the
space occupied by the HMR itself. Space for dynamic var­
iables beyond the HMR must be allocated by other means
(such as NEW and V ARNEW); such space can be freed
by a subsequent call to RELEASE.

The RELEASE(POINTER) intrinsic cuts the heap bl1ck
to the HMR that POINTER points to.

Calls to MARK and RELEASE should come in pairs.
POINTER should equal the value of POINTER that was
set by the previous call to MARK.

POINTER is customarily declared as a /\ INTEGER.

All space on the heap that was allocated (by NEW or
V ARNEW) since the previous MARK is deallocated.

If MARK and RELEASE are not paired correctly, or
RELEASE is called with an incorrect pointer, the integ­
rity of the heap is destroyed.

8-9/8-10

9

Concurrency

Concurrent Execution 9-3

Processes 9-3

Initiating a Process ... 9-5
START 9-5
Process Synchronization ... 9-6

Semaphores 9-7
SEMINIT 9-7

SIGNAL and WAIT 9-8
Event Handling 9-8

9-1 /9-2

This chapter describes the management of concurrent routines
(processes).

Concurrency, like memory management, pertains more to the
p-System than to the UCSD Pascal language, and more informa­
tion about concurrency may be found in the UCSD p-System
Operating System Reference Manual and the UCSD p-System
Internal Architecture Guide.

For programming examples that use concurrency, refer to Part 2,
Chapter 5.

CONCURRENT EXECUTION

Your TI Professional Computer has only one processor. Pro­
cesses do not truly run at the same time, but share the processor,
which is switched between them. Thus, using processes can slow
a program down somewhat; there is usually a compensating gain
in logical consistency, or efficiency in handling certain problems
such as interrupts.

The interpreter controls concurrent processes, and initiates them
depending on their priority. Priority is discussed later. Once a
process is started, it continues to run until it is finished, until it is
interrupted, or until it must wait for another process. At this
point, the processor is given another process, and it runs in the
same manner. The p-System does not do any sort of time-slicing
or task-switching among ready processes that have equal
priority.

PROCESSES

A process is a form of routine, and is declared in the same general
way. Here is an EBNF description of a process heading:

"process" identifier [
"(" ["var"] id-list ":" type-id

{ ";" ["var"] id-list ":" type-id }
")"]";"

9-3

For example:

process example (var result: I1\'TEGER;
var pause: SEMAPHORE);

The remainder of a process declaration is identical to a procedure
or function declaration.

Processes must be declared global to a program; they cannot be
declared within a procedure, function, or other process.

A process is not called as a procedure or function would be called.
Instead, it is initiated by a call to the UCSD intrinsic procedure
START.

The same process can be started any number of times; each of
these instances is a concurrent process that runs independently
of any other process. It may by synchronized with other pro­
cesses (including other instances of the same process) by the use
of semaphores.

The p-System assigns each instance of a process its own
PROCESSID. PROCESSID is a predeclared type whose values
are represented by integers. A program can examine a process
PROCESSID (this can be useful for debugging purposes). There
are no operations for PROCESSID.

Each instance of a process is also assigned a priority and a stack­
size value.

A process priority determines its position in the queue of pro­
cesses that are waiting to be run. A priority is a value in the range
0 .. 255; the priority of a user program is 128. The default priority
is 128 for all user processes; this value can be changed by the user
in the call to START. A priority of 255 should not be used, as this
conflicts with the operating system's Faulthandler process.

9-4

Processes can have the same priority. If so, they are placed in the
queue in the order in which they were entered.

The stack for a process is allocated on the heap, rather than the
stack itself. The default size for this area is 200 words. This value
can also be changed by the user in the call to START.

INITIATING A PROCESS

As mentioned before, a single instance of a process is initiated by
a call to the UCSD intrinsic procedure START; the same process
can be initiated any number of times. The START procedure is
described in the following paragraphs.

START

The START« process call>, PROC_ID, STACKSIZE,
PRIORITY) procedure initiates the process named in
< process call> .

The term < process call> is the name of a process fol­
lowed by a parameter list, if necessary. It has the same
appearance as a procedure call.

The remaining three parameters are optional.

PROC_ID is of type PROCESSID. If present, it is set to
the processid value that is assigned to this instance of the
process.

ST ACKSIZE specifies the number of words that will be
allocated (on the heap) to the process stack. If not pre­
sent, a default of 200 is used.

9-5

A process stack must have enough room for:

• Five words

• The number of words occupied by the process's local
(static) variables

• Room for the activation records of all procedures
and functions that the process calls

• Room to evaluate expressions on most machines

Activation records are described in the UCSD p-System
Internal Architecture Guide.

An overflow on a process stack causes a runtime error.

The programmer should be cautious about using
RELEASE when the heap contains the stack of a START
process.

PRIORITY is in the range 0 .. 255. If not present, this
value defaults to the priority of its parent process (which
is a user program whose priority is 128). A priority of 255
should not be used.

PROCESS SYNCHRONIZATION

A process must often wait for some event to occur, or some other
process to complete an action. A process can also contain a
sequence of statements that must not be interrupted; such a
sequence is known as a critical section. The programmer can deal
with these situations by the use of semaphores and the intrinsic
routines that handle them.

9-6

Semaphores

A semaphore is a variable of type SEMAPHORE. A
semaphore consists of a queue of processes that are wait­
ing on that semaphore, and a count in the subrange
O .. MAXINT.

Such semaphores are called 'counting semaphores', as
opposed to Boolean semaphores. A Boolean semaphore
has only the values TRUE and FALSE, and can be simu­
lated by restricting a counting semaphore to the values 0
and 1.

When a process must wait for an event to occur, it calls
the UCSD intrinsic W AIT(SEM). This suspends the pro­
cess until the semaphore SEM allows it to continue. For
this to happen, another process must call the intrinsic
SIGNAL(SEM).

When the value of a counting semaphore is equal to zero,
it is unavailable, and a WAIT will continue to wait on
that semaphore until it becomes greater than zero.

Every semaphore that is used in a program must be ini­
tialized by a call to the UCSD intrinsic SEMINIT, which
is described below. If a program attempts to use a sema­
phore that has not been initialized, the results are unpre­
dictable.

SEMINIT

The SEMINIT(SEM, INITIAL) intrinsic initial­
izes the semaphore SEM, and sets its count equal
to the value INITIAL. INITIAL must be an inte­
ger in the range O •. MAXINT.

9-7

SIGNAL and WAIT

The following paragraphs describe the UCSD intrinsic
procedures SIGNAL and WAIT.

The SIGNAL(SEM) procedure signals the semaphore
SEM.

If no processes are waiting for SEM, the value of SEM is
incremented.

If one or more processes are waiting for SEM, then the
process at the head of SEM's queue is activated by add­
ing it to the queue of ready processes. (A task switch can
take place if the process at the head of SEM 's queue has a
higher priority than the process that was running.)

The W AIT(SEM) procedure waits on the semaphore
SEM.

If the count of SEM is greater than zero, then it is decre­
mented and the process that called WAIT continues.

If the count of SEM equals zero, then the process calling
WAIT is suspended until SEM is made available again
by a call of SIGNAL(SEM) in another process.

EVENT HANDLING

A program can associate a semaphore with an event (such as a
hardware interrupt) by means of the UCSD intrinsic procedure
ATTACH.

The ATT ACH(SEM, I_ VEC) intrinsic associates the semaphore
SEM with the external interrupt vector I_ VEC.

Whenever the hardware raises the interrupt in question, the sys­
tem automatically calls SIGNAL(SEM).

9-8

The possible values of 1_ VEC, and the hardware states they rep­
resent, vary widely from processor to processor. The user should
refer to machine-specific documentation for further information.

To detach a semaphore from an interrupt, and free it for other
use, the programmer may call attach in the following way:

A TT ACH(NIL, vector);

where:

the value of vector is the value that was previously attached to
SEM.

A vector must be attached to only one semaphore at a time, and
the semaphore must remain in memory for the entire time it is
attached.

9-9/9-10

10

Compilation

Compiler Options .. . 10-3

Stack Options 10-3
Switch Options 10-4
String Options .. 10-6
Conditional Compilation .. 10-10
External Routines 10-12

10-1/10-2

When a UCSD Pascal program is compiled, it can contain direc­
tions to the compiler that control the compiler's output. Separate
text files can be included in a single compilation, and portions of a
program can be conditionally compiled. Under the p-System, it is
also possible to call assembled routines (native code) from a Pas­
cal program with the external construct.

COMPILER OPTIONS

A compiler option appears in a p seudo-comment. A pseudo­
comment is a comment whose left delimiter ({ or (*) is immedi­
ately followed by a dollar sign ($). For example:

{$I +}
(*$Q-*)

A single pseudo-comment can contain several compiler options:

------, {$I + ,Q- }

If a pseudo-comment contains more than one option, only the last
option can be a string option.

The default options for a compilation are:

{$R+, 1 - , L-, U+, P+}

Unless these are explicitly overridden, they remain in effect
whenever a program is compiled. The meaning of each of these
letters is described in the following paragraphs.

Stack Options

The 1 (I/O-check), R (Range-check), and conditional com­
pilation flags are known as stack options. The on/off state
of these options can be nested up to 15 levels deep.

10-3

Each of these options (and each individual flag) has its
own stack. Whenever a + or - is specified in the pseudo­
comment for one of these options, that value is pushed
onto the stack. The stack can be popped by using the
character /\ in place of + or -.

If more than 15 values are pushed onto the stack, the bot­
tom of the stack is lost. If the stack is popped when it is
empty, the value is always - (off) .

Switch Options

10-4

Switch options are compiler options that have either an
on or off state, as indicated by a + or - when the option
appears in the text.

I - I/O check

This is a stack option. The default is 1+. When I - is
specified, the compiler stops generating the test code that
normally follows every 110 statement (except for
UNITREAD and UNITWRITE).

If the programmer wishes to test IORESULT explicitly
after an I/O operation, in order to correct any errors that
may have occurred, then I - must be specified before the
operation is done.

L -Listing

The default is L-. L+ causes the compiler to write a
source program listing to the file *SYSTEM.LST.TEXT.
L can also be used as a string option, in which case the
user can specify a different name for the list file .

N - Native Code

The default is N - . If you want native code to be gener­
ated for a routine, N + must appear in a pseudo-comment
before the first begin in that routine.

This option causes the compiler to generate special infor­
mation that is used by the CODEGEN utility. After a
program that contains one or more routines to be trans­
lated into native code has been compiled, CODEGEN
must be used. See the UCSD p-System Reference Manual
for more information.

P-Page

The default is P+. This causes the listing to be paginated
so that it can be legibly printed on paper that is 8-1/2
inches long.

A pseudo-comment that contains only P (for example,
{$ P}) forces the listing to start a new page.

Q - Quiet Compile

Q defaults to -.

Q+ suppresses the compiler's output to CONSOLE:,
except for error messages.

Q- allows the compiler to send information on its prog­
ress to CONSOLE:.

R - Range Check

This is a stack option. The default is R+. If R- is speci­
fied, the compiler stops emitting code to check the range
of array indices and subrange expressions, the type of
assignments, and so forth.

Programs compiled with R- run slightly faster, but
invalid assignments do not cause a runtime error, leading
to unpredictable and sometimes disastrous results.
Unless a program is extremely time-critical, and has been
thoroughly debugged, R- should not be used.

10-5

The letter R is also used for the Realsize option.

R -Realsize

Real numbers are either 32 bits (2 words) or 64 bits
(4 words) long. The p-System defaults to 2-word reals.
With the R option, a programmer can override this
default.

R4 causes the compiler to generate four-word real
numbers.

The pseudo-comment that contains this option must
appear before the reserved word program or unit.

U - User Program

The default is U +. U - specifies that the compilation may
use unit names that belong to the operating system. If
U -is specified, the pseudo-comment it appears in must
appear before the reserved word program or unit.

String Options

10-6

String options require the programmer to specify a string
that is used by the compiler. This is either the name of a
file, or text to be included in a file. The string can be pre­
ceded by zero or more spaces. Preceding it with a single
space is customary.

If the pseudo-comment uses (* *) delimiters. the enclosed
string cannot contain a *.

If the filename begins with a + or - (which is unlikely).
then there must be a space after the letter that indicates
the option; otherwise, the compiler will treat the option as
a switch option and not a string option.

C - Copyright

The string is placed in the copyright field of the codefil6
(this resides in the segment dictionary (see the UCSD
p-System Internal Architecture Guide).

For example:

{$C Copyright 1931 by Wholly Imaginary Systems}

I - Include File

The string is the name of a text file. The text of the speci­
fied file is compiled into object code at the position of the
pseudo-comment.

If the compiler cannot open the file under the name that is
given, it appends '.TEXT' to the name and tries again. If
the second attempt fails or an I/O error occurs while read­
ing the include file, the compiler generates a fatal syntax
error and aborts.

Include files can be nested up to three levels deep.

Include files can contain const, type, var, and routine dec­
larations (within the include file, they must be in their
proper order). If this is the case, the pseudo-comment
must precede any blocks of code that appear in the main
program file. There can be more than one such include
file; if so, only the last such include file can contain proce­
dure code.

Here is an example of a program with an include file that
contains declarations:

program Funny Declarations;

const a=1;
type guess = INTEGER;
var gosh: guess;

10-7

10-8

procedure fancy (p, q: INTEGER) ;
forward;

{SI MOREDECS}

procedure fancy ;
begin ... end;

begin {main program} .. . end.

These are the contents of MOREDECS:

const b=2;
type nonsense = 0, m, n);
var stuff: nonsense;

procedure plain;
begin

WRITELN('plain was called');
end;

L -Listing

This corresponds to the preceding switch option. The
string is the name of a text file to which the listing is writ­
ten. Note that this name can be any valid file name, but if
the user wishes to edit it later, it must be created with a
suffix of .TEXT.

--~

The following is an example of a program listing:

393 10 10:D 1 PROCEDURE IOCheck;
{.::ommented out ';' } {;
{ commented out ';'}This procedure will check the I/O
{ commented out '; ' } operations of the index as it is

rebuilding
397 10 lO:D I}
398 10 10:0 0 BEGIN
399 10 10:1 0 IF ioresult < > 0 THEN
400 10 10:2 6 BEGIN
401 10 10:3 6 pI ;\:= 'index I/O failure.';
402 10 10:3 32 prompt(errorline);
403 10 10:2 38 END;
404 10 10:0 38 END: {IOCheck}
405 10 10:0 50
406 10 ll:D 1 PROCEDURE DropIndex(position:

ISAM Cover);

The numbers that precede the actual lines of the Pascal
program show you:

• The line number

• The code segment number

• The routine number: the lexical level

• The number of words of data or code that have been
allocated to the routine so far

Lines that are declarations show a D instead of the lex
level number, and lines from a unit 's interface part show a
U.

These numbers can be replaced by the warning, { com­
mented out ';' }. This warns you that a semicolon appears
within a comment, which often happens when a comment
has accidentally swallowed some lines of Pascal code.

10-9

If there are errors during compilation, a message with the
error number appears below the offending line. If the file
*SYSTEM.SYNT AX is on line, the text of the error mes­
sage is printed as well. These syntax errors are also
shown in Appendix D of this manual.

T - Title

The string becomes the title of each new page in the list­
ing file.

U - Uses Library

The string is the name of a codefile. The compiler
searches that file for the code of any units used in
SUBSEQUENT uses declarations. See Part 2, Chapter 6,
for an example of the use of this option. Note that U is
also the name of a switch option.

Conditional Compilation

10-10

Code to be conditionally compiled is bracketed by the
options B and E (which are described later). Whether it is
compiled or not depends on the value of a flag, which is
set by the D option (also described later). The state of
each flag is saved on a stack, as described previously.

B -Begin

This is a string option. The string is the name of a flag
that has been defined by a previous D option. If only the
string appears, the following code is compiled if the flag is
true. If the string is followed by a -, the code is compiled
if the flag is false. If the string is followed by a + or 1\ ,

these characters are ignored.

The section of code to be conditionally compiled must be
delimited by a B option and an E option that names the
same flag. Sections to be conditionally compiled cannot
be nested.

D -Declare

This is a string option. The string is the name of a flag.
Its initial value is true unless its name is followed by a -.

All flags must be declared before the reserved word pro­
gram or unit. The D option can be used again in a subse­
quent portion of the program to redefine the value of a
flag: + pushes a true value, - pushes a false value, and
!\ pops the flag's stack.

The names of flags follow the rules for Pascal identifiers.

E-End

This is a string option. The string must be the name of a
flag used in a previous B option. Any characters that fol­
low the flag are ignored.

Here is a code fragment that illustrates conditional com­
pilation:

{$D DEBUG+}
program ToBeTested;

{$B DEBUG}
procedure test~outine;

begin ... end;
{$E DEBUG}

begin

{$B DEBUG}
test~outine;

{$E DEBUG}

end.

10-11

EXTERNAL ROUTINES

Under the p-System, a Pascal program can call an assembled rou­
tine. This routine must be declared as external in the Pascal
source, for example:

procedure native code (n: INTEGER); external;

function speed (rush: REAL, direct: BOOLEAN): status;
external;

This construction is analogous to the declaration forward.

The assembly-language routine itself must correspond to
standard P-code protocols; refer to the UCSD p-System 8086/88
Assembler Reference Manual for further information.

10-12

Part 2

A Guide for
UCSD Pascal Programmers

Introduction

The purpose of this guide is to introduce the reader to the tech­
niques of using UCSD Pascal, and present a number of program­
ming examples.

The programs in Chapters 1 through 4 illustrate basic topics that
are essentially common to all Pascal programmers, whether they
use UCSD Pascal or some other dialect, although it is always
UCSD Pascal that is described. The programs in Chapters 5
through 9 are more advanced, and present programming prob­
lems that are essentially unique to UCSD Pascal, the UCSD
p-System, and the microcomputer environment.

Chapter 1, Part 1 is a brief survey of the features of Pascal. You
may wish to read it before you read Chapter 1 of Part 2.

If you are not a programmer, you will probably find this guide
difficult and we recommend that you start with a simpler text.
We assume you know the basic concepts of programming, and
have written some programs of your own, probably in some other
language.

If you have programmed in a language which is not structured
(BASIC or FORTRAN, for instance), you will find that Pascal
requires you to pay more attention to the definition of data and
the form (the structure) of algorithms. When reading this guide,
pay special attention to the first three chapters. The payoff for
this extra effort results in programs that are more reliable and
easier to maintain.

We have tried to cover as much ground as possible, but this guide
does not describe all of UCSD Pascal. The details we have left out
can be found in Part 1.

iii

Our approach is to present working programs, and a working set
of programming concepts at each stage. Many samples introduce
a variety of concepts that in the definition would be listed under
separate headings. The intention is to provide you with the tools
to begin writing useful programs as soon as possible.

We do not guarantee that the sample programs are perfect, but
they have been formatted and printed from source code that was
actually tested. To the best of our knowledge, they run correctly.
The sample outputs were also printed directly from program
output.

IV

1

Bootstrapping the Programmer

This chapter introduces most of the topics involved in writing a
UCSD Pascal program, but does not discuss any of them in
detail. The intent is to illustrate the style of Pascal and the basic
form of Pascal programs. By the end of the chapter, you should
be able to write simple programs in UCSD Pascal, but you will
have to read further to learn about more powerful (and more sub­
tle) aspects of the language.

The first program is one that prints a table of factorials on the
console:

program Fact;
var

i: INTEGER
prod: REAL;

begin
WRITELl\'('n factorial of n Il;
prod:= 1.0;
for i:= 1 to 20 do

begin

end.

prod:= prod*i;
WRITELl\:(i, ' ',prod);

end;

1-1

The factorial of a positive non-zero integer n is defined to be the
product of all the integers between 1 and n. Fact prints the follow­
ing table:

n factorial of n
1 1.00000
2 2.00000
3 6.00000
4 2.40000El
5 1.20000E2
6 7.20000E2
7 5.04000E3
8 4.03200E4
9 3.62880E5

10 3.62880E6
11 3.99168E7
12 4.79002E8
13 6.22702E9
14 8.71783EI0
15 1.30767E12
16 2.09228E13
17 3.55687E14
18 6.40237E15
19 1.21645E17
20 2.43290E18

Program Fact is composed of three parts; a program heading, a
variable declaration part, and a program body.

Fact begins with the heading:

program Fact;

which notifies the compiler that the following text will define a
program, and that the program will have the name Fact.

The program heading ends with a semicolon. In Pascal, semi­
colons serve to end declarations and separate statements.

1-2

Following the program heading is the variable declaration part:

var
------- i: INTEGER;

prod: REAL;

All variables in a Pascal program must be declared before they
can be used. When a variable is declared it is given a name and a
type. In Program 1, two variables are declared; i is of type
INTEGER, and prod is of type REAL.

Various objects in a Pascal program (such as variables) are
named by user-defined identifiers. Identifiers begin with a letter
that is followed by any combination of letters, digits and the
underscore character (_). They can be any length (up to the
length of a source line), and can contain a mixture of upper- and
lowercase. However, the case of a letter is ignored, and so is the
underscore character. Also, identifiers are distinguished only by
their first eight characters (not counting underscores); identifiers
that contain the same first eight characters and differ after that
are considered the same identifier.

Certain identifiers are reserved for the Pascal language and can­
not be defined by the programmer; these are called reserved
words and appear in boldface throughout this book. Many more
identifiers are predeclared; these have the same status as user­
defined identifiers, but are standard to Pascal (or UCSD Pascal).
They are available to the programmer, and there is no need to
declare them explicitly. Throughout this book, predeclared vari­
ables appear in all capital letters and are UNDERLINED.

REAL, INTEGER, and long INTEGER (described in Chapter 2)
are the numeric types available in UCSD Pascal. A variable
of type INTEGER can take on any integral value between
- MAXINT and MAXI NT. The MAXINT constant is a prede­
clared constant in Pascal that can be different in each implemen­
tation. In UCSD Pascal, MAXI NT equals 32,767.

1-3

Real variables can take on a much wider range of values at a cost
of precision. A real variable consists of a mantissa part and a
scale factor (also called the exponent). The range of values of real
variables in UCSD Pascal varies with each implementation. Two­
word reals can have a maximum absolute magnitude of 1.0E+38,
with 7 digits of precision; for 4-word reals, the maximum absolute
magnitude is 1.0E + 308, with 16 digits of precision.

The body of Program 1 is the section of text between the first
begin and the last end. The final end is followed by a period to
indicate the end of the program.

The body of a program consists of a list of statements that are
executed essentially in order from top to bottom. Some state­
ments cause this straightforward order to change, and are called
flow of control statements.

Program 1 contains examples of three statement types: the
assignment statement, the WRITELN statement, and the for
statement. Each statement is separated from the following state­
ment by a semicolon (;).

The assignment statement is used to give a value to a variable.
For example:

prod:= 1.0

assigns prod the value 1.0. Further down in the program there is
another assignment statement:

prod:= prod*i

This statement assigns prod a new value that is the product of i
and the current value of prod. (The asterisk is used in Pascal to
indicate multiplication.)

The assignment symbol in Pascal (:=) differs from the compari­
son operator (=). Assignment and comparison are two fundamen­
tally different operations.

1-4

Another type of statement in Program 1 is the WRITELN state­
ment. The WRITELN statement is used to print data on the
user's console. The statement:

WRITELN('n factorial ofn')

causes the text between the apostrophes to be printed. The
WRITELN statement can take a list of items to be printed. Each
item must be separated from the next by a comma, as in:

WRITELN(i,' ' ,prod)

This prints the value of i, followed by a space (for legibility), fol­
lowed by the value of prod.

(The WRITELN statement is actually a call to a procedure; in
this case, a predeclared one. Procedure calls are discussed in
Chapter 3.)

Finally, Program 1 contains an example of a for statement. A for
statement causes the statement that follows the do to be exe­
cuted repeatedly for a given number of times. A for statement
has the form:

for< counter> : = < first> to < last> do < statement>

The index variable < counter> is assigned the value < first>. On
each execution of < statement> , the index variable < counter> is
replaced by its successor (if it is an integer, it is incremented by
1). When the value of < counter> is greater than the value of
< last> , the loop ends.

For example:

for i:= 1 to 10 do

prints ten lines on the console, numbered one through ten.

1-5

It is often the case that a whole group of statements must be exe­
cuted repeatedly. Pascal allows a group of statements to take the
place of < statement> through use of the compound statement. A
compound statement is a group of statements separated by semi­
colons and surrounded by a begin end pair.

The for statement in Program 1 contains a compound statement
that is made up of two statements:

for i:= 1 to 20 do
begin

prod:= prod*i;
WRITELN(i,' ',prod);

end

The semicolon following the WRITELN statement is optional.
However, programs are seldom static entities; they are con­
stantly changed to incorporate new features or to fix bugs, and a
programmer frequently needs to insert statements between the
last statement of a compound statement and its closing end. Typ- .~
ing a semicolon after the last statement eliminates the need to \
add one later (better yet, it forestalls the bug that would result
from forgetting to put one there later!). Thus, typing a semicolon
in the first place is a good habit to acquire. All of the sample pro-
grams contain this optional semicolon.

It should now be clear how program Fact works. First, a heading
is printed, and prod is assigned the initial value of 1.0. Then i
takes on the values 1 through 20, and for each value of i, two
statements are executed, prod is updated to have the previous
value of prod times the current value of i, and then i and prod are
printed. As the output listing shows, a table of twenty items is
printed. On the left are 1 to 20 (the values of i), and on the right
are the factorials of these numbers (the values of prod).

1-6

In Program 1, numeric expressions appeared in all three state­
ment types. Pascal expressions appear very much like standard
algebraic expressions. For integers, the following operations are
available.

+ Addition

*
div
mod

Subtraction
Multiplication
Integer division (truncated)
Remainder after division

For reals also, +, -, and * are available. Real division is repre­
sented by:

Division

Arbitrary expressions can be formed with these operators and
numeric constants and variables. As in algebra, the multiplica­
tion operators (*, div, mod, and /) have precedence over the addi­
tion operators (+ and -). Parentheses can be used to set apart
subexpressions, which are evaluated first.

In general, integers can be used anywhere in real expressions.
Type conversion from INTEGER to REAL is performed auto­
matically. However, reals cannot be used with so much freedom.
In order to use a REAL in an INTEGER expression, it is neces­
sary to convert the value to an integer by rounding or truncation.
Two functions are available for this purpose:

TRUNC(x)
ROUND(x)

Discards the fractional portion of x
Rounds x to the nearest integer

Here are a few assignment statements using the variables prod
and i as declared in our program.

prod:= (i+6) * prod
i:= i + TRUNC(prod/4.5)
i:= ROUND(prod)

1-7

As in the preceding example, and as in Program 1, numeric con­
stants (such as 6) can appear in expressions. Integer constants
are made up of one or more digits. Real constants must contain a
decimal point, a scaling factor, or both. The following assignment
contains a real constant with a scaling factor:

prod:= 10e-1

A scaling factor is similar to scientific notation, and should be
read as times ten to the power of the integer that follows the let­
ter e or E .

The WRITELN statement can contain a list of items to print. For
our present purposes, these items must be expressions that yield
a value of type INTEGER, REAL, CHAR (character), or
STRING.

The type STRING will be described in more detail later, but for
right now, string constants are a very useful way to print text on
the console. A string constant is formed by surrounding text by a
pair of apostrophes (single quotation marks). String constants
must not cross line boundaries. A single quotation character can
appear in a string constant by entering two quotation marks at
the desired position. For example:

'you can"t mean that'

is a string constant that contains the word can't,

1-8

The next example introduces several new constructs, including
input (READLN) and two new flow-of-control statements; the if,
which is a means of making simple decisions, and the while, which
is a loop like the for statement, but does not have a control
variable, and so repeats for some indefinite number of times.

program Factors:
{ Computes prime factors of an integer read from

the keyboard}
var

n,factor: INTI~~G E!{.:
begin

end.

WRITE('enter number to factor: ');
READLN(n);
factor:= 2;
while n > 1 do

if n mod factor = 0
then

begin
WRITE(factor,' ') ;
n: = n div factor;

end
else factor: = factor+ 1;

WRITELN:

Program 2

This program finds the prime factors of a number. It does this in
a rat her forceful way. A possible factor is chosen (starting with
2). and if that divides the number then the factor is printed. If the
possible factor does not divide the number, it is incremented (by
1), and the search continues. This ensures that factors are printed
in increasing order. The loop repeats until the last factor has been
divided out (n = 1).

~, The number to be factored is entered by the user (it is read into
the program). In this way, the program achieves some generality;
it will factor any integer, not merely integers that were chosen
when the program was compiled. Of course, the larger the num­
ber, the more time the program will take in figuring its prime
factors.

1-9

Both input and output are done on the console. Some runs of the
program might produce the following output:

enter number to factor: 36
223 3

enter number to factor: 1719
3 3 191

enter number to factor: 210
2 3 5 7

enter number to factor: 16384
2 2 222 2 2 2 2 2 2 2 2 2

Immediately following the program heading is a comment that
briefly describes what the program does. Comments are just that;
they are meant to be read by the programmer (either the original
programmer or someone else), and they are skipped over by the
compiler. A comment is any text enclosed in the delimiters (* *) or
{ }. Comments can cross line boundaries (as the one in the ex­
ample does), and can appear anywhere in the program, except in
the middle of a token such as an identifier or constant.

A comment at the beginning of a program or routine that
describes what that program or routine does is always a good
idea. A Pascal program is usually more readable if there are not
too many comments; it should make use of intelligible identifiers
and clear algorithms. Comments can then be judiciously used to
explain what a piece of code does, or better yet, why it does what
it does.

I t is also a good idea, especially in long programs, to accompany
variable (and constant) declarations with a comment that indi­
cates the intended use of each variable. This helps prevent abuses
of variables when the program is maintained later.

If several variables are of the same type, they can be declared
together, as illustrated in the example by:

n, factor: INTEGER;

1-10

- '.

The variable names must be separated by commas.

Within the example program's while loop, values are printed by a
call to WRITE rather than WRITELN. WRITE prints a new
value, but does not start a new output line. When a line of output
is complete, a new line can be started by the simple call:

WRITELN;

The effect of this can be seen III the sample output for the
program.

The call to READLN allows a value to be read from the console.
The READLN function can read REAL and INTEGER values (it
can read some other values as well; we will discuss these later).
Unlike some languages (such as BASIC), Pascal does not auto­
matically print a prompt when a value is to be read. The program­
mer should create a prompt appropriate to the situation. Thus, in
the example program, the call to READLN is immediately pre­
ceded by:

WRITE('enter number to factor: ');

The main loop of this program is a while statement. While a for
statement continues to execute a statement for a specific number
of times, a while statement continues indefinitely as long as some
condition is met. The while statement is thus a simpler, more
general construct than the for statement.

The general scheme of a while statement is:

while < Boolean expression> do < statement>

(Remember that the < statement> can be a compound state­
ment).

Each time through the loop, the < Boolean expression> is tested.
If it is TRUE, the < statement> is executed, and if it is FALSE,
the loop ends.

1-11

A < Boolean expression> is often (though not necessarily) a com­
parison of some sort:

n > 1 {as in the sample program}
(n> 1) and not EOLI\'
(date < = 0) or (date> = 4000)

A BOOLEAN value is equal to either TRUE or FALSE. These
are operators that can be used in Boolean expressions:

and Logical and
or Logical or
not Logical negation (a unary operator)

These are numeric comparisons as they appear in Pascal:

> Greater than
< Less than
> = Greater than or equal to
< = Less than or equal to

Equals
< > Not equals

The operands for these comparisons can be any numeric values.

The while statement in Program 2 contains a single if statement.
The if statement is a means of making a simple decision. The
form of an if statement is:

if < Boolean expression> then < statement>

or:

if < Boolean expression>
then

< statement 1>
else

< statement 2>

1·12

In the first form, < statement> is executed only if < Boolean
expression> is TRUE. In the second form, < statement 1> is
executed if < Boolean expression> is TRUE, and < statement 2>

----------- is executed if < Boolean condition> is FALSE.

Once again, < statement> can be a compound statement.

The indentation of the sample program indicates our preferred
indentation for both while and if statements. In general, indenta­
tion should be chosen to make the program legible, and reflect the
lexical nesting of the program. For example, the if appears within
the while, and therefore it is indented more deeply.

We have one further point to make about this program. If you
should run it and make a mistake while typing the value of n
(such as typing letters instead of numbers), you can be confronted
with a message such as this:

enter number to factor: v

User I/O error
Segment PASCAL ProcH 1 Offset# 15
Type < space> to continue

A number of things can cause a runtime error; reading an illegal
value is one of them. When a runtime error occurs, you must
press the space bar before using the system again, and the pro­
gram must be restarted. or corrected and recompiled. The com­
mand U(ser restart can (usually) be used to restart a program
that has just been run. Other situations that can result in run­
time errors will be mentioned throughout the manual.

1-13

The next sample program prints a Pascal's triangle. It introduces
the notion of constants, and the form of a structured variable
called an array.

program Pascal;
{ Pascal prints a Pascal's Triangle of size n

on the terminal. }
const

n = 10; {size oftriangle}
var

i,j: INTEGER;
p: array[l..n) of INTEGER;

begin
for i: = 1 to n do

begin

end.

p[i):= 1;
forj:= i-I downto2do

p[j):= p[j)+p[j -I);
forj:= 1 toido

WRITE(p[j):4);
WRITELN;

end;

Program 3

A Pascal's triangle is a triangular array, where the elements
along the outer edges are equal to I, and all other elements are
equal to the sum of the two elements above them. Readers famil­
iar with probability will recognize these values as the binomial
coefficients. The triangle was a discovery of Blaise Pascal. The
program's output appears as follows:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1-14

The program accomplishes this by an outer loop that is repeated
once for each line of the triangle. First the right edge of the line is
initialized to 1, then a backward loop generates the elements of
the line by summing elements from the previous line. Finally, a
forward loop writes the elements of the line (capped off by a sin­
gle WRITELN).

The size (the depth) of the triangle is declared as a constant:

const
n = 10; {size of triangle}

To create a Pascal's triangle of another size, the constant can be
changed. The program would have to be recompiled. Constants
can be constant values of type INTEGER, REAL, BOOLEAN,
CHAR, or STRING. Note the similarity to var declarations,
except that an equals sign (=) is used instead of a colon. All const
declarations must precede all var declarations.

Also note that the declaration of n is accompanied by a comment
that explains its use.

The program does not store the entire Pascal 's triangle; only one
line at a time. This is done with an array, which is a concept you
are probably familiar with from other languages. An array in
Pascal, like a matrix in mathematics, is a table of values grouped
together under a single name. Arrays can have one or more
dimensions. The array in our program is quite simple:

p: array [LnJ of INTEGER;

This declares p to be an array with a base type of INTEGER. The
bounds of the array are 1 and n. Since n is a constant equal to 10,
p contains 10 elements; each of them is an integer.

Note that the upper bound of the array is specified as a constant
n (n also appears in the outer for loop below). One advantage- of
using an identifier to name the constant is that when the value of
n is changed, no other part of the program need be changed. In
Pascal, array bounds must be constants, not variables.

1-15

We will encounter multidimensional arrays in Chapter 2.

Within the main body of the program, p refers to the entire array
(the program does not use this construct), and p followed by a
value in square brackets specifies an individual element of the
array. The value in brackets is called a subscript. Thus, we could
write:

p[lJ:= 1;

or, as in the program itself:

p[iJ:= 1

When a program specifies an array subscript that is out of range,
such as:

prO] (... or ... }
p[23J

a runtime error occurs, much like the one we illustrated for Pro­
gram 2. (This does not happen if the programmer has turned off
range-checking-see Part 1, Chapter 10).

Using variables as subscripts is a very important practice. Our
program does this in three statements:

p[iJ:= 1:
p[jJ:= p[jJ+p[j -1]:
WRITE(p[jJ:4):

The second for statement that appears in the program has the
form:

for j:= i-I downto 2 do

Note the reserved word downto instead of to. This is why this
loop was described as backward. The loop counter j is
DECREMENTED (by 1) rather than incremented. This is the
other form of the for statement, and is also frequently used.
We cannot use a forward loop here, because that would destroy
values in p before they were used.

1-16

The outer loop of the program contains two for loops nested
within it. The outer loop uses the index i, and the inner loops each
use the index j. This is a very common way of handling arrays.
The important thing to remember is that once a for loop has com­
pleted its execution, the value of the loop counter is
UNDEFINED; before the loop counter variable can be used
again, it must be reinitialized. In Program 3, this is accom­
plished by the second nested for statement itself.

In the call to write:

WRITE(p(jj:4);

the number that follows the array element expression (:4) is called
a field specification, and indicates that the value should be
printed within four spaces. If this specification were not there,
the number would be printed without any surrounding spaces,
and the Pascal 's triangle would be illegible. Numbers are always
right-justified within the output field. If the number is too large
for the output field (that is, if it were longer than four digits,
which would not occur in so small a Pascal 's triangle) the field
specification is ignored.

It is very important to remember that declarations do not initial­
ize variables. A declaration of an array does not initialize the
array; all elements of an array are undefined until they have been
initialized by a statement within the program.

An attempt to use an undefined (uninitialized) variable is not nec­
essarily detected by the system, but it frequently results in a run­
time error, since the space that is allocated to that variable
contains garbage values left over from previous programs. These
variables do not always correspond to what the programmer
intends to find there!

The situation can even be a bit more subtle than this. If you look
at Program 3, you may notice that the array p contains undefined
values all the way up to the last iteration of the outer loop. For
each pass through the loop, p[l] through p[i] are defined, while
p[i + 1] through p[n] are undefined. There is no problem with this,
since we never attempt to use the undefined values in an expres­
sion or a call to WRITE.

1-17

The other important point about Program 3 concerns the very
first iteration through the loop. In this case (as is evident from
the output), the output line (and hence the defined portion of p~ is
only one element long. Such a simple case of our loop (and it is
necessary for the initialization of the Pascal's triangle~ is called a
degenerate case.

The following steps occur on the first time through the loop:

1. i is set to 1.

2. p[l] is set to 1.

3. The next for loop specifies:

forj:= i-I downto2do ...

since i-I =0, which is already less than 2,
the loop is not executed.

4. The next for loop specifies:

for j:= 1 to i do ...

since i= I, this loop is executed only once.

5. WRITELN is called, which ends the output line
that contains only the single value p[l]= 1.

Something similar occurs in the second iteration, where only two
values are printed; again, the first nested for loop is skipped. You
may wish to work through the steps for this case.

It is always important to pay attention to degenerate cases while
programming. In some algorithms, such as this one, they are a
necessary part of the problem's solution. In some algorithms,
they are not crucial, but can be elegantly handled with no extra
code. In some algorithms, degenerate cases are a nuisance and

1-18

require that the programmer insert additional code to detect
them and correct for their effects. This latter sort of algorithm
should be avoided if at all possible. In addition to being inefficient
(because of the extra test and correction code), an algorithm that
must explicitly account for degenerate cases is frequently an
algorithm that is not a good solution to the problem at hand, and
often contains additional inefficiencies or bugs.

When an algorithm seems to be too complicated, it may be the
case that the data structures you are using are not quite appro­
priate. Remember that data structure and program structure are
two sides of the same coin.

The next sample tests a string to see whether it is a palindrome;
that is, a string that is the same both forwards and backwards,
such as the popular able was I ere I saw elba. It introduces
the UCSD type STRING, and some new uses of the type
BOOLEAN.

program Palin_ I;
{ Palin_ I tests to see if string s is a

palindrome (reads the same forwards and
backwards). }

var
s: STRING;
i: INTEGER;
is palindrome: BOOLEAN;

begin
WRITE('enter string to test: ');
READLN(s);
is_ palindrome: = TRUE;
for i:= 1 to LENGTH(s) div 2 do

if sri] < > s[LE GTH(s) + I-i]
then is palindrome: = FALSE;

if is palindrome

end.

then WRITELN (' a palindrome')
else WRITELN (' not a palindrome');

Program 4

1-19

The program prompts a user to enter a string, and then tests the
string to see whether it is a palindrome by comparing the charac­
ters in the string, starting at either end and working toward the
center. A Boolean variable is used to represent whether the string
is a palindrome or not; if any characters are not equal, the vari­
able is set to FALSE. Finally, a message is printed that reports
what the program found.

Some runs of the program might look like this:

• Enter string to test: aba
a palindrome

• Enter string to test: curious
not a palindrome

• Enter string to test: able was I ere I saw elba
a palindrome

The program input is contained in a variable of type STRING. A
STRING is a sequence of characters. Single characters are repre­
sented by the type CHAR, so a STRING is similar to an array of
CHAR. The difference is that an array must have a fixed length,
while a string has a dynamic length that can change during a
program's execution.

The individual characters in a string can be indexed by a sub­
script, just as the elements of an array. The index can range from
one up to the dynamic length of the string. This dynamic length
can be determined in the program by a call to the intrinsic func­
tion LENGTH. In the preceding program, the expression:

LENGTH(s) div 2

results in half the length (truncated) of the strings. The program
must use a construct like this, since the string itself is typed in by
the program's user, and we cannot know beforehand how long the
string might be.

1-20

All strings have a maximum length (also called the static length).
Unless the program specifies otherwise (Program 4 does not), it is
equal to 80 characters. If we wanted to limit the string S to 20
characters, we could have declared it in the following way:

s: STRING[20j;

In a string declaration, if the predeclared word STRING is fol­
lowed by a number in brackets, that number is the string's maxi­
mum length. No string can have a maximum length greater than
255.

The use of the function LENGTH is the first use of an intrinsic
function; there are many more of them. A programmer can also
write new functions as illustrated in Program 5.

When a string is read, as in the statement:

READLN(s);

the characters that the user types are placed in s, up to the
< return> character. While typing the string, the user can press
the BACKSPACE key to make corrections. Since the input of
a string must be terminated by pressing the RETURN key,
strings should always be read by a call to READLN, never
READ.

We encountered Boolean expressions in Program 3. A Boolean
value is equal to either TRUE or FALSE. Program 4 introduces a
Boolean variable called is_palindrome.

In the program, is_palindrome is initialized to TRUE, and only
set to FALSE if a non-matching pair of characters is encoun­
tered. We assume the string to be a palindrome unless proven
otherwise. The important comparison is:

sri) < > s[length(s)+ I - i]

which appears in the first if statement.

1-21

Boolean values cannot be printed in UCSD Pascal (in standard
Pascal they can). Thus, the last statement in our program tests
the value of is_palindrome, and prints a message accordingly.

Note that the for loop only loops for half of the length of the
string. The div operation is an integer divide, and truncates its
result. If the string has an odd number of characters, the center
character is ignored, which is as it should be, since the center
character will be the same either forward or backward, and has no
effect on whether the string is a palindrome or not.

Also note that we have decided that the null string /I is a palin­
drome; this keeps our algorithm simple. There is no question that
the null string is the same both forwards and backwards.

Here is the palindrome problem again, but this time we have
placed the palindrome test in a function. This is our first example
of an important technique; breaking a program down into inde­
pendent modules. This sample also introduces the repeat state­
ment, and more about Boolean expressions.

program Palin_ 2;
var

sample: STRING;

function Palindrome(s: STRING): BOOLEAN;

1-22

{ Palindrome returns true if s is a palindrome,
and false if not. }

var
is_pal: BOOLEAN;
i,j: INTEGER;

begin
is pal:= TRUE; {assume it is a palindrome}
i:= 1; j:= LENGTH(s);
while (i < j) and is_ pal do

if sri] < > s[j]
then is_pal: = FALSE
else

begin
i:=i+l;j:=j-l;

end;
Palindrome: = is_ pal;

end; {Palindrome}

begin
repeat

WRITE('enter string to test: ');
READLN(sample);
if Palindrome(sample)

then WRITELN(' a palindrome')
else WRITELN(' not a palindrome');

until sample = ";
end.

Program 5

It should be evident that this program is an elaboration on the
last program. The code that tests whether a string is a palin­
drome has been placed in the function palindrome, which returns
the result as a value (the test itself has been improved and we will
discuss it later).

The main program now has a loop, so instead of testing just one
string, we can test any number of strings. The loop ends when the
user enters the empty string. This is accomplished by pressing
the RETURN key when the prompt enter string to test: appears.

Here is the output from a sample run of the program:

Enter string to test: 12321
a palindrome

Enter string to test: drome
not a palindrome

Enter string to test: YREKA BAKERY
a palindrome

Enter string to test:
a palindrome

1-23

The loop in the main program is our first example of a repeat
statement. A repeat is similar to a while statement, but the test
for the loop's termination appears at the end of the loop rather
than the beginning. This is an important difference, because it
means that the statements within the loop are executed at least
once, no matter what. The scheme of a repeat statement is:

repeat
[< statement> {; < statement> } 1

until < Boolean condition>

Notice that there is no need to bracket the statements in a repeat
loop with begin and end, since the reserved words repeat and
until accomplish this.

The repeat statement is used when (as mentioned), we want the
statements to be executed at least once, and when (as in Program
5) the test for termination depends on a value that is assigned
within the loop.

It is customary to indent the statements within a repeat loop, as
illustrated in Program 5.

The main thing to describe about this program is the function
itself.

Creating a function (or a procedure) is basically a means of pack­
aging a code so that it can be accessed from several locations in
the program, or at several different times during execution (as in
the example). Packaging code in this way is an example of modu­
larity. Modularity is an important way of structuring programs,
by making code reusable in various contexts, and thus keeping
code independent and easier to debug.

Two means of packaging code are procedures and functions. The
distinctive feature of a function is that it returns a value; thus, a
function call must appear within an expression.

In Program 5, the function Palindrome returns a Boolean value,
and when it is called, it appears as a Boolean expression within an
if statement.

1-24

Within a sequence of declarations, procedure and function decla­
rations must appear after all variable declarations and before the
code body of the program or routine. The form of a procedure or
function declaration is similar to the form of a program itself;
there is a heading, a list of declarations, and then a body of state­
ments enclosed by a begin end pair.

The declarations within a procedure or function appear just like
declarations within the main program; they can even include
nested functions and nested procedures. All objects declared
within a procedure or function are considered local to the proce­
dure or function. No code in the program that is outside the pro­
cedure or function can use any identifiers that are declared within
it.

On the other hand, variables and so forth that were declared in
the main program are considered global to the procedure or func­
tion, and can be used within it. The scope of identifiers is
described in more detail in Part 1, Chapter 4.

In Program 5, the function palindrome contains the variables
is_pal, i, and j. These are local variables, and cannot be used by
the main program. The main program itself contains the variable
sample. This is global to palindrome, and could be used within the
function (though it is not).

Local variables allow us to hide the workings of a function or pro­
cedure from the rest of the program. This too is an important
aspect of modularity. Should we decide to change a function (for
example, to replace it with a better algorithm), we can do so with­
out affecting any of the program that calls it. It should be appar­
ent that this is useful.

This is the function heading in our sample program:

function palindrome (s: STRING): BOOLEAN;

Palindrome is the name of the function. BOOLEAN indicates the
type of value returned by the function, and s, which is a STRING,
is called a formal parameter.

1-25

A formal parameter is an identifier that takes on the value of the
actual parameter that is used when the function is called. In the
main program we have:

if Palindrome(sample) ...

Sample is the actual parameter that corresponds to s . When pal­
indrome is called, s takes on the value of sample.

Within a function, formal parameters are treated as local vari­
ables. The difference is that each takes its initial value from the
actual parameter that corresponds to it. These actual parameters
must be present when the function is called, and their type must
correspond to the type of the formal parameters as declared in the
function heading.

For the function to return a value, it must contain an assignment
statement that assigns a value to the function name itself. Palin­
drome contains the assignment:

Palindrome: = is_pal;

Note that both is_pal and the function itself are of type
BOOLEAN.

If this assignment to the function's name is absent (or the code
skips it for some reason), then the value of the function is unde­
fined, and the results (when the function is called) are unpredict­
able.

The algorithm used in the function itself is a bit different than the
one in Program 4. Instead of one index i, there are two indices, i
and j . Variable i is initialized to 1, and j is initialized to
LENGTH(s). Instead of the expression:

sri] < > s[LENGTH(s)+ I-i]

that appeared in the last program, we have:

sri] < > s[j]

1-26

which is much more readable. On each iteration through the loop,
i is incremented and j is decremented.

Weare able to do this in Program 5 by changing the condition of
the while loop to:

while (i < j) and is_ pal 30

This is a more complicated Boolean expression. The simple Boo­
lean expressions i< j and is_pal are combined with the operator
and. The and operator is one of the Boolean operators that were
introduced with Program 2. These operators have strict prece­
dence when an expression is evaluated, namely:

not
and

or

>,<,
>=,
<=,=,
<>,
and in

Highest precedence
High precedence

(equivalent to *, I, mod, or div)
Middle precedence

(equivalent to + or -)
Low precedence

(In is a relational operator that we will encounter when we discuss
sets.)

Because of this precedence of operators, we must put parentheses
in the expression:

(i < j) and is_ pal

because if we were to write:

this would be equivalent to:

i < (j and is_ pal)

1-27

which is definitely not what we intended (it is also illegal, since j
is an INTEGER and is_pal is BOOLEAN).

When in doubt, include parentheses in a Boolean expression to
make sure it says what you mean, and to make it more readable.

As the programs in this guide (and in your own work) grow more
complex, so will the Boolean expressions, but they should never
be so long or so obscure as to be unintelligible to someone reading
the program.

Another advantage of the algorithm in Program 5 is that the loop
ends as soon as a mismatch has been found. In Program 4, the for
loop tests the entire string, even if is_palindrome has already
been set to FALSE.

The last sample program in this chapter takes a year entered in
decimal form (such as 1956), and converts it to Roman numerals
(such as MCMLVI). This program introduces procedures, sub­
ranges, and the type CHAR.

program Roman;
type

digit = 0 .. 9; {decimal digit}
var

n: INTEGER;

1-28

procedure Write Digit(d: digit; units, fives, tens: CHAR);
{ Write digit d in Roman numerals, using the
characters units, fives, and tens. }
var

i: INTEGER;
begin

ifd = 9
then WRITE(units,tens)

else if d = 4
then WRITE(units,fives)

else
begin

if d > = 5
then WRITE(fives);

for i: = 1 to d mod 5 do
WRITE(units);

end;
end; {Write_ Digit}

procedure Write_ Date(date: INTEGER);
{ Write date in Roman numerals. Dates not in the

range 1..3999 are printed as ***. }
begin

if (date < = 0) or (date> = 4000)
then WRITE('***')

else
begin

Write_ Digit(date div 1000,'M','*','*');
Write Digit((date div 100) mod 10,'C','D','M');
Write_ Digit((date div 10) mod 10, 'X','U,'C');
Write_ Digit(date mod 10,'1', 'V','X');

end;
end; {Write_ Date}

begin
WRITE('enter date: ');
READLN(n);
WRITE('in Roman numerals: ');
W ri te_Date(n);
WRITELN;

end.

Program 6

:1-29

The main body of the program is quite simple. It reads a single
date and prints it in Roman form. You should now be able to con­
vert it so that it works on a series of dates, just as our last sample
program worked on a series of strings. In fact, some of our future
programming samples will show only the procedures and relevant
declarations, and dispense with the program heading and main
body, since we are concerned with the algorithms embodied in the
procedures and functions, not the program's superstructure,
which should be easy for the reader to supply.

The program accepts a year in the range 1 to 3,999, and converts
it to Roman numerals. As the comment in the procedure
Write_Date points out, dates outside this range are simply
printed as '***'. Restricting the range of allowable dates in this
way is necessary, otherwise the algorithm we use would become
too complicated (longer dates require some non-standard charac­
ters).

It is acceptable to restrict the range of allowable inputs to a pro­
gram, provided the program always tests the input to see that it
is valid. There is no way of knowing what the user of a program
will enter, so it is always a good idea to test input before trying to
operate on it. Bad input should not cause a program to generate
bad results.

Here is output from some sample runs of the program:

Enter date: 1492
in Roman numerals: MCDXCII

Enter date: 1981
in Roman numerals: MCMLXXXI

Enter date: 1957
in Roman numerals: MCMLVII

The procedure Write_Date is the first that is called. It checks
the input, and if this is within the accepted range, it then calls
Write_Digit four times: one each for the thousands, hundreds,
tens, and ones place of the date in decimal form.

1-30

Write_Digit is a bit complicated, because a single digit in a deci­
mal numeral can be as long as four letters in a Roman numeral.
Every digit in a Roman numeral is either:

• A string of 1..3 'units'

• A 'five' followed by 0 .. 3 'units'

• A 'five' preceded by a single 'unit'

• A 'ten' preceded by a single 'unit'

The actual characters for 'units', 'fives', and 'tens' are passed
from Write_Date to Write_Digit when Write_Digit is called.
For each decimal place, the characters vary.

I t should now be evident how the program works. If you are still
uncertain, try working through an example.

The two procedure headings in our program are:

procedure Write_ Digit (d: digit; units, fives, tens: CHAR);

procedure Write_ Date (date: INTEGER);

As mentioned before, a procedure is like a function, except that it
does not return a value. No type can be specified in a procedure
heading, and it is illegal to assign a value to the name of a proce­
dure.

1-31

Since procedures do not return a value, they are not called from
expressions, but instead from a single statement that consists
only of the procedure's name, followed by the list of actual pa­
rameters, if there are any. For example, the call to Write_Date
IS :

Write_ Date(n);

and the calls to Write_Digit are:

Write_Digit(date div 1000, 'M', '*', '*');
Write Digit((date div 100) mod 10, 'C', 'D', 'M');
Write_Digit((date div 10) mod 10, 'X', 'L', 'C');
Write_Digit(date mod 10, 'I ', 'V', 'X');

We have already seen calls to intrinsic procedures; WRITE ,
WRITELN, READ, and READLN are all examples of these.
Intrinsic routines can often be called with different numbers or
types of actual parameters. A user-written routine must always
be called with actual parameters that exactly match the formal
parameters.

One thing to notice about the calls to Write_Digit is that the
actual parameters passed to a procedure can be expressions as
well as variables or constants. Of course, the type of the actual
parameter must always be the same as the type of the value para­
meter. (There is another type of parameter called a variable para­
meter; an actual parameter that corresponds to a variable
parameter must be a variable. Variable parameters are described
in Chapter 2.)

Another thing to notice about Write_Digit is that in the first
call, the fives and tens parameters are specified as '*'. The thou­
sands place of the Roman numeral should not contain any fives or
tens. The reason we pass these characters is that we must pass
something, since actual parameters must match formal parame­
ters. We pass '*', because if by some error the procedure should
print out fives or tens in this place, we want the output to look
incorrect, so that we know there is a bug somewhere.

1-32

The formal parameters units, fives, and tens in Write_Digit are
declared to be of type CHAR. CHAR, short for CHARacter, is
another simple type like INTEGER, REAL, or BOOLEAN. The
calls to Write_Digit have some examples of character constants:
'M', 'C', 'L', 'D', 'X', 'V', 'I', and '*'. Character constants can in
fact be any printable character; letters (either upper or lower­
case), numerals, and special symbols. A character constant must
be enclosed in apostrophes (') to distinguish it from a single-letter
identifier or special symbol. A single apostrophe is represented
by"". It is also possible to declare variables of type CHAR, and
assign values to them or read them. There are no operations on
characters.

CHAR is the base type of the type STRING, so that a single
character in a string (such as sri]) is of type CHAR.

UCSD Pascal uses the ASCII character set; both printing and
non-printing characters are shown in Appendix E. The next chap­
ter discusses characters in greater detail.

In this program, we have declared a type:

type
digit = 0 .. 9; {decimal digit}

This declaration indicates that the program now has a new type
called digit, which can only take the integer values 0 through 9.

The expression 0 .. 9 is the first example of a type that is a sub­
range, that is, a restricted range of some other type; in this case,
INTEGER. The type INTEGER is itself an example of a scalar
type. A scalar type is a simple type whose values are both finite
and ordered. In Pascal, it is possible to declare subranges of any
scalar type.

So far, the scalar types we have seen are INTEGER, CHAR, and
BOOLEAN (BOOLEAN is a scalar type because by definition,
TRUE> FALSE). The types REAL and long INTEGER are not
scalar. Strings and arrays are structured types, not simple types,
so they are not considered scalar either.

1-33

For now, the important point is that in Pascal, new types can be
declared. The advantage is that the programmer can tailor the
structure of data to better match the problem at hand. The fol­
lowing chapter discusses this topic in much more detail.

New types can be associated with an identifier by defining them
in a type declaration. Type declarations must come after constant
declarations and before variable declarations.

In Program 6, the new type digit is used as the type of d, the first
parameter to Write_Digit. This has two effects. First, declaring
d as a digit makes the program more readable. Second, the com­
piler normally generates code to check for range errors (as we
have seen when using array indices), and should Write_Digit be
called with a parameter that is not in the range 0 .. 9, a runtime
error will be generated. Thus, declaring a new type buys us some
extra protection against programming mistakes.

We have some final observations about Program 6. Since
Write_Digit is only called from Write_Date, we could have
declared it within Write_Date, making it a local procedure. But
it is sometimes clearer not to nest things too deeply, and we feel
that the program, as written, is more readable.

Write_Digit is a good example of a procedure that can be used in
multiple ways, since it can write a Roman digit for a decimal
thousand's place, hundred's place, ten's place, or one's place, all
depending on the parameters it is passed.

This is the end of Chapter 1. If you have programmed before, you
should now be capable of writing some programs in Pascal. We
have touched on the basic tools, but have not gone into great
detail about the great variety and flexibility of data types, and
the aspects of UCSD Pascal that make it a separate dialect that
fits into the p-System. Chapter 2 discusses various data types
and how to use them.

1-34

2

Data and Expressions

Expressions and Assignment 2-3

Declarations 2-4

Simple Types 2-5

Scalars and Subranges 2-1 3

Arrays 2-1 5

Strings 2-18

Sets and Records 2-21

Dynamic Variables and Pointers 2-28

2-1/2-2

This chapter discusses various Pascal (and UCSD Pascal) data
types and ways to use them. We have already seen some types
and uses in Chapter 1, and since those are straightforward, we
will tend to skim over them and move on to newer topics.

An understanding of the material in this chapter is essential to
becoming a versatile Pascal programmer. Unfortunately, we can­
not cover all topics with equal depth, so we will refer you back to
Part 1 for full details.

EXPRESSIONS AND ASSIGNMENT

We have already seen a large number of expressions in the pre­
vious chapter, and can reiterate the following facts about them:

• An expression is code that returns a value of a particular
type, including INTEGER, long INTEGER, REAL,
CHAR, STRING, BOOLEAN, or a set.

• An expression can include constants, variables, and calls to
functions.

• These elements can be combined with operators. Different
operations are defined for different data types.

• Numeric expressions are similar to algebraic formulas, and
have much the same meaning. In the same way, Boolean
expressions are similar to logical formulas.

• The order in which an expression is evaluated depends on
the precedence of the operators used; certain operators have
higher precedence than others.

• Subexpressions can be grouped together with parentheses
in order to alter the order of evaluation.

2-3

We have also seen that a variable can be set to a value by an
assignment statement, which consists of the name of the vari­
able, followed by : = , and an expression of the appropriate type.
This can be used to initialize a variable or to change its value. The
new value can be based on the previous value, as in:

count: = count + 1;

DECLARATIONS

We have also seen that all identifiers used in a program must be
declared by the programmer (except for predeclared identifiers
such as WRITE). Declarations precede the main body of a pro­
gram, and must follow a particular order.

The first kind of declaration we have seen is the const declaration.
Constants are values that cannot be changed. They can be
numeric values, Boolean values, characters, or strings. The
advantages of using constants are:

• A constant name is easier to read than the value itself.

• If it is necessary to change a constant value, only the decla­
ration need be changed, rather than every occurrence of the
value within the program text.

Constant declarations cannot contain expressions, but a numeric
constant can be declared as the opposite of a numeric constant
that has already been defined, for example:

const
hi_ bound = 128;
lo_ bound = - hi_ bound;

There are also type declarations. Type declarations are essential
if more than one variable is to be of the new type, or the new type
is to be used for routine parameters.

2-4

This chapter will go into more detail on the subject of declaring
new types.

~ Next come var declarations. The name of each variable is asso­
ciated with a particular type. Variable declarations cause space to
be allocated for each variable, but do not assign it a value. Varia­
bles must be initialized before they are used.

Finally, routines can be declared. A routine is a procedure, func­
tion, or process. Processes are described in Chapter 5 on concur­
rency. Each routine has the same general format as the program
itself: a heading, a set of declarations, and a main body (enclosed
by begin and end). The declarations within a routine must be in
the same order as declarations for the main program, and can
include other routines.

The organization and nesting of routines determines the scope of
identifiers. Scope is discussed in Chapter 3. First we shall discuss
data types themselves, starting with the simple types that we
have already seen.

SIMPLE TYPES

In the previous chapter, we have already seen some use of the
types integer, REAL, BOOLEAN, and CHAR. This section does
not go into details about simple types, but presents examples of
the use of the types long INTEG ER, REAL, and CHAR.

Simple types and the intrinsic routines that handle them are
described fully in Part 1, Chapter 3.

Long integers can be used to represent integer values, including
values outside the range - MAXINT .. MAXINT. They are not
considered a scalar type, so they cannot be used where scalar val­
ues are required, such as subrange expressions or array indices.

2-5

A long integer is declared as an INTEGER with a length attri­
bute in brackets, for example:

var lengthy = INTEGER[20j;

The length attribute represents the maximum number of decimal
digits that the value of the long integer variable will contain.
Length attributes can be in the range 1..35. This example
declares a long integer that can contain up to 20 digits.

Long integers are used much as integers are, but the operation
mod is not available. The intrinsic function TRUNC can be used
to convert a long integer value into an integer value, provided the
long integer is in the range - MAXINT .. MAXINT.

As an example of programming with long integers, here is an
adaptation of the factorial program from Chapter 1:

program Fact_ Test;

2-6

type
long int = INTEGER[35j;

var
n: INTEGER;
fact: long_ int;

procedure FactoriaHn: INTEGER; var result: long_ int);
(computes the factorial of n and returns in result}
var

i: INTEGER;
begin

result:= 1;
for i:= 2 to n do

result: = result *i;
end; (Factorial}

begin
WRLTELN(' n n!');
for n:= 1 to 20 do

begin
F actoriaH n,fact);
WRITELN(n:2,' ',fact);

end;
end.

Program 7

As in Program 6, this program uses a type definition. To pass a
parameter of type long INTEGER, the type must be given a user­
defined name. A routine heading can contain type identifiers, but
not type descriptions.

In addition, a function cannot return a long integer value, so
instead we have a procedure with a var parameter. If a formal
parameter of a procedure is a variable parameter, and its value is
changed within the procedure, the value of the actual parameter
changes as well. For this reason, the actual parameter that corre­
sponds to the formal var parameter must be a variable.

2-7

Here is the program's output:

n n!
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000

To represent fractional values, or numbers of very small or very
large magnitude, the type REAL can be used. Because real val­
ues are imprecise by nature, they should never be compared with
an equals comparison (=). Instead, they should be compared
within some tolerance, for example:

const epsilon = le - 8;

if ABS(x-y) < epsilon then

is more correct than (x=y), if x and yare real values.

2-8

Furthermore, the order in which real expressions are evaluated
can greatly effect the accuracy of the result. This is illustrated by
our next sample program:

program Quadratic;

This program finds the roots (real or complex) of the poly­
nomial A*x*x + B*x + C = o. If A=O, then there are not
two roots, and an error message is displayed. }

var
A,B,C: REAL; {coefficients}
d: REAL; {discriminant}
large root: REAL; {real root with largest ABS. value}
small_ root: REAL; {root with smallest ABS. value}
real_ part: RE A L; {real part of imaginary roots}
imag_ part: REAL; {imaginary part of imaginary roots}

begin
WR1.TE('enter coefficients abc: ');
READLN(A,B,C);
if A = 0

then
WRITELN('does not have two roots')

else

begin
d := SQR(B) - 4*A*C;
if d > = 0

then {roots are real}
begin

WRITELN('roots are real');
ifB > = 0
then large_root: = -(B+SQRT(d))
1(2*A)
else large_ root: = (SQRT(d)-B)/(2*A);
small~oot: = C/(large_ root* A);
WRITELN(large xoot,', ',sm~root);

end

2-9

end;
end.

else (roots are complex J
begin

WRITELN('roots are imaginary');
real part: = - B (2* A);
imag part:= SQRT(-d) /(2*A);
WRITE(real part.' + ',imag part,'i,',
real_part,' - " imag_part,'i ');

end;

Program 8

Here is some output from sample runs of the program:

enter coefficients abc: 1 - 1 - 12
roots are real
4.00000, - 3.00000

enter coefficients abc: 5 2 1
roots are imaginary
- 2.00000E - 1 + 4.00000E-li, -2.00000E - 1 - 4.00000E - li

enter coefficients abc: 0 1 3
does not have two roots

The structure of this program is straightforward and by now
should be familiar; we wiIl not discuss it. The important thing to
observe is that it does not use the conventional formulas for find­
ing quadratic roots. The traditional formulas for finding the real
roots of the equation A *x*x + B*x + C = 0 are:

x1: = (- b+SQRT(d))/(2*a);
x2:= (- b - SQRT(d))/(2*a);

2-10

The problem with this lies in the nature of real representations.
Regardless of the number of digits of accuracy, these are always
finite. When two values of similar magnitude are subtracted,
there is a danger that precision will be lost (the same happens
when a number is added to a value of similar magnitude but
opposite sign) because the significant digits cancel each other,
and only the digits of low significance (which usually contain
roundoff error) remain. This cancellation error can propagate
through future calculations.

Thus, if band SQRT(d) have similar values, the formula for xl
can give drastically poor results.

The program deals with this problem by finding only the larger of
the two roots in this way:

large_ root:= -(B+SQRT(d))/(2*A)

or:

large_ root: = (SQRT(d) - B)/(2* A)

The smaller root is found by:

small_ root: = C/(large_ root * A)

which uses only multiplication and division. These operations
cannot cause cancellation errors of the kind we are worried about.

The point of Program 8 is that one should use caution in dealing
with real quantities. We will encounter another example of real
calculation in Program 18.

The type CHAR is used to represent single characters. In UCSD
Pascal, the character set is represented by the ASCII code, which
is shown in Appendix E.

In the ASCII code, digits, uppercase letters, and lowercase let­
ters are all in contiguous groups, and in their usual order. This is
required by standard Pascal, although the standard does not
actually stipulate a particular character code.

2-11

The next sample program is actually just a procedure that trans­
lates lowercase characters into uppercase:

procedure V_Case(var s: STRING);
{ converts all lowercase letters in s

to uppercase}
var

i: INTEGER;
begin

for i:= 1 to LENGTH(s) do
if (s[i] > = 'a') and (s[i] < = 'z')

then s[iJ:= CHR(ORD(s[i])
-ORD('a') + ORD('N));

Program 9

V_Case accepts a string and translates all of its lowercase char­
acters into their uppercase equivalent.

The algorithm does not assume that we are using ASCII. If it
were rewritten to avoid using the type STRING, it would work on
any standard Pascal implementation. This generality comes from
the (baroque) assignment:

s[i]:= CHR(ORD(s[i]) - ORD('a') + ORD('N));

The following information is true:

ORD(s[i])

is the numerical equivalent of a character in the string
(we know it is lowercase because of the if statement).

ORD(s[i]) - ORD('a')

2-12

results in an "offset" into the lowercase alphabet:

if s(i)='a', then this offset = 0,
if s(i)='b', then this offset = 1,
... and so forth up to 25.

ORD('N)

is the numerical equivalent of uppercase A.
This is the base of the uppercase alphabet.

ORD(s(ij) - ORD('a') + ORD('A')

converts to uppercase by adding the offset
into the alphabet (which has nothing to do
with case) to the base of the uppercase alphabet.

CHR(...)

converts the whole mess back into a character.

Note that throughout this exercise, we never depended on the
exact value returned by the calls to ORD, we simply assumed
that the uppercase alphabet and the lowercase alphabet were
each contiguous, and in normal alphabetical order.

SCALARSANDSUBRANGES

This section is an introduction to user-defined scalar and sub­
range types. Scalars and subranges are covered in Part 1, Chap­
ter 3.

2-13

The predeclared scalar types (INTEGER, BOOLEAN, and
CHAR) have already been introduced. The programmer can
also create new scaler types, with declarations similar to these
examples.

Phase = (new, quarterl, half, quarter2, full)
Grade = (A, B, C, D, E, F)
Knot = (square, granny, hitch, half_ hitch, cloverleaf)

A declaration of a scalar type is an enumeration of values,
enclosed in parentheses. The order of the values is the order in
which they are declared.

The advantage of declaring a scalar type is that both the variable
and the name of its possible values describe the data on which the
program is working.

Because scalar types are ordered, the comparisons = < > ,> ,
> =, < , and < = apply with their usual meanings.

User-defined scalar types cannot be read or written with the
standard Pascal procedures.

The standard functions on scalar types are:

• PRED(v) returns the predecessor of v, that is, the value that
precedes it

• SUCC(v) returns the successor of v, that is, the value that
follows it

If v is the first value in the scalar type, then PRED(v) causes a
runtime error, and if v is the last value, SUCC(v) causes a runtime
error.

The ORD(v) returns an integer that is the ordinal value of v in the
list of scalar values

2-14

Scalar values are numbered starting at O. For example, if we use
the type phase as declared above, ORD(new) = 0 and ORD(half)
= 2.

For user-defined scalars, there is no inverse of the ORD function.
For type CHAR, the function CHR is the inverse of ORD, as we
have seen.

For an example of a user-defined scalar type, refer to Programs
15 and 16.

We can define a subrange of any scalar type. For example:

Lcase = 'a' .. 'z'; {subrange of CHAR}
Mark = 10 .. 20; {of INTJ:<iGER}
Not_ new = quarter 1 .. full; {of phase}
Passing = A .. C; {of grade}

The scalar type from which a subrange is derived is called the
base type. Any input or output, operations, comparisons, proce­
dures, or functions that are defined for the base type are also
legal for the subrange, although the overflow conditions for calcu­
lations can vary.

Subranges are frequently used as the index type of an array.

Subranges are also useful for the automatic range checking they
provide. A subrange was used for this purpose in Program 6.

More examples of subranges will appear in future programs.

ARRAYS

Arrays were introduced in Chapter 1. Our next sample program
(actually a program fragment) introduces the notion of packed,
and an array of multiple dimensions:

const
max= 4; {adj ust for larger matrix size}

2-15

type
matrix= packed array[l..max,l..maxj of BOOLEA~;

procedure Sqr Matrix(var m: matrix);
{ squares Boolean matrix m }
var

n: matrix;
i.j,k: INTEGER;
s: BOOLEAN;

begin
n:=m;
for i:= 1 to max do

for j:= 1 to max do
begin

s:= FALSE;
for k:= 1 to max do

s:= s or (n[i,k] and n[k,j]);
m[i,j]:= s:

end;
end; {Sqr_Matrix}

Program 10

Program 10 squares a Boolean matrix. This is the same as squar­
ing a numerical matrix, that is, multiplying it times itself, except
that + is replaced by the Boolean operator or, and * is replaced
by and.

There are applications for this routine. Each entry of the array, if
TRUE, can represent a one-way route from, say, one city to
another. Squaring the matrix produces a table of cities that can
be reached by a road that passes through exactly one other city.

When a matrix M is squared, each element of the resulting matrix
M' is given by the formula:

M'[i,jj = SUM (M[i,k] * M[k,j])

2-16

or using Boolean elements:

M'[i,jj = OR (M[i,kj and M[k,jj)

SUM and OR are defined over all k, where 1 < = k < = max.

For example, if the matrix to be squared was:

100
001
110

the result would be:

100
1 1 0
101

Here is a matrix actually passed to Sqr_Matrix:

1 000
001 1
1 101
o 1 0 0

and the result is:

1 000
1 101
1 1 1 1
001 1

You should note that operations must be done element-by­
element. The two indices into the two-dimensional array are con­
trolled by nested for loops. This is a very common way of
handling multidimensional arrays.

2-17

The word packed only appears in the 'global declaration of the
array type matrix: it does not appear in the body of the program,
and has no effect on the algorithm. Packing is a means of reduc­
ing the storage space of an array or record. In a Boolean array
that is packed, each element consists of only one bit, so the array
occupies very little space.

STRINGS

The type STRING is another type that we have already encoun­
tered. A string is a sequence of characters whose length can
change dynamically. This is a UCSD Pascal extension, A number
of intrinsic routines are provided to handle strings. See Part 1,
Chapter 3,

All of the comparisons can be used on string values; the result
returned is based on lexicographic (dictionary) order.

Program 11 consists of two routines that demonstrate some
common conversions using strings:

function Str to_ Intis: STRING): INTEGER;
[converts s to an integer}
var

i, result: INTEG Ell;
begin

result:= 0;
for i:= 1 to LE:-\GT1I(s) do

result:= result*lO + ORD(s[i]) - ORD('O');
Str to_ Int:= result;

end; [Str to int 1

procedure lnt to Str(n: INTEGER: var s: STRING):
[converts integer n to a string returned as s 1
begin

s' == II .

while n > a do

2-18

begin
s := CONCAT(" ,s);
s[I] := CHR(n mod 10 + ORD('O'));
n:= n div 10;

end;
end; {InL_to Str}

Program 11

The way that these two routines operate should be familiar from
the uppercase conversion program (Program 9), and the Roman
numeral problem (Program 6). Int_to_Str must be a procedure,
because a string cannot be returned as a function result (only
simple variables can be returned from user-written functions).

The intrinsic LENGTH(S) was introduced in Program 4. It
returns an integer value that is the dynamic length of the string
S.

The intrinsic CONCA T is a function. It returns a string value
that is the concatenation of all the string values passed to it.

Since the parameters to CONCA T must be strings, it was not
possible to append the next digit by a call such as:

s:= CONCAT(CJ-LR(n mod 10 + ORD('O')),s);

Instead, it was necessary to append a dummy character:

s:= CONCAT(" ,s);

and then replace it with the desired character. (In this context, ' ,
is treated as a string constant of length 1.)

2-19

The intrinsic POS(SOURCE,PATTERN) attempts to match
PATTERN to a substring of SOURCE. If it succeeds, it returns
an integer that is the index in SOURCE of the first character of
the matched PATTERN. If it fails, it returns zero. Program 12
illustrates a way in which POS might be implemented:

function Position(s,p: STRI~G): INTEGER;
Finds first occurrence of p in s and returns the
start character position. Returns 0 if no
occurrence. }

var
a: INTEGER; {position in s of current search]
n: INTEGER; {offset in p of current search}
same so Jar: BOOLEAN; {TRUE until mismatch]

begin
a:= 1; same_so far:= FALSE;
while not same so far

and (a < = LENGTH(s)- LENGTH(p)+ 1) do
begin

n:= 0; same so_far:= TRUE;
while same_ so_far and (n < LENGTH(p)) do

if sIa+nJ = pII +nJ
then n:= n+ 1
else same_so far:= FALSE;

a:= a+l;
end;

if same_so_far and (LENGTH(p) > 0)
then Position:= a-I
else Position: = 0;

end; {Position}

Program 12

The techniques used here are ones we have seen before. Note how
the two nested search loops are controlled by a single Boolean
variable.

2-20

In the last if, Position is assigned a-I rather than a. This is
because the outer while loop increments a at the end of every pass
through the loop. I t is simpler to do this than to check the value
of same_so_far every time the loop is repeated. If
same_so_far ever becomes true, then the loop ends, and a -1 is
the solution.

SETS AND RECORDS

This section contains three sample programs that briefly intro­
duce sets and records that are data-structuring constructs that
we have not seen before.

A set value is similar to a mathematical set. It is a collection of
membership assertions about values from a base type. The base
type of a set is a scalar or subrange type. A value of the base type
is either in the set or not in the set.

Set constants are a list of elements or subranges enclosed in
brackets, such as:

[0 .. 9J {the set of digits}
['A' .. 'Z'J {the uppercase alphabet}
[new, half, full]

{some values from the type phases}
[9, 3, 5 .. 7) {some miscellaneous digits}

Set values of the same base type can be manipulated with these
operators:

+ Set union
Set difference

* Set intersection

and compared with these operators:

Equals
< > N at equals
in Membership

2-21

The in operator tests whether a value is in a set. It is illustrated in
Program 13.

Sets are described in Part I, Chapter 3.

The following rewrite of Program 9 illustrates the use of sets for
range-checking, and the comparison in:

procedure Ucase(var s: STHING);
[converts s to upper-case}
var

i: INTEGEH;
begin

for i:= 1 to LENGTH(s) do
if sri] in ['a'oo'z']

then s[i]:= CHR(OHD(s[ij)
-ORD('a') + ORD('A'));

end; {U case}

Program 13

The only difference from the previous Ucase is the line:

if sri) in ['a'oo'z'J

which tests if the character sri) is in the set of all lowercase
letters. This has the advantage of being easier to read than the
earlier construction.

The following is an example that also illustrates the use of sets,
and contains a very general function that you can be able to use in
more than one program (it appears again in Program 22):

program Prompt_ Test;

type
charset = set of CHAR;

function Prompt(line: STRING ;
legal_ commands: charset) : CHAH;

2-22

{ Prompt prints line, then waits for a
character in legal commands to be typed.
Its uppercase equivalent is returned. J

var
ch: CHAR;

begin
repeat

WRITE(line);
READ(ch);
WRITELN;
if ch in ['a ' .. 'z'J

then ch:= CHR(ORD(ch)
-ORD('a')+ORD('A '));

until ch in legal commands;
Prompt: = ch;

end; {Prompt I

begin
repeat

end.

case Prompt('G(urgle, W(hir, S(plat, Q(uit: "
['G ','W', 'S ','Q')) of

'G': WRITELN('gurrggle ');
'W ': WRLTEL ('wwhhhirrr ');
'S': WRITELN('sppplaaat '):
'Q': EXIT(program);

end;
until FALSE;

Program 14

The parameters to Prompt specify two things - the prompt line
to be displayed, and the set of characters that correspond to valid
commands. It reads characters indefinitely, until a valid com­
mand is typed, and then returns that character.

2-23

In the main program, the character that Prompt returns is used
as the selector in a case statement. We have not seen the case
statement before. It has the form:

case < selector> of
< constant list> : < statement>

end

The constant lists contain values of a particular scalar or sub­
range type, and can not overlap. The selector is a value of the
same type as the constants in the constant lists. If the value of
the selector matches one of the constants, the statement that fol­
lows the matching constant list is executed. If the value of the
selector does not match any constant, the case statement falls
through.

Note that the reserved word end pairs with the reserved word
case.

A case statement is a valuable way of handling a multi-way
branch. If you are a FORTRAN programmer, you can recognize
the similarity to an assigned GO TO.

In the set leg~commands that is passed to Prompt, only upper­
case characters need be specified. Prompt translates lowercase to
uppercase. If you wish to use both lower- and uppercase com­
mands, you can remove the if statement from Prompt.

Here is some output from the test program:

G(urgle, W(hir, S(plat, Q(uit: g
gurrggle
G(urgle, W(hir, S(plat, Q(uit: w
wwhhhirrr
G(urgle, W(hir, S(plat, Q(uit: G
gurrggle
G(urgle, W(hir, S(plat, Q(uit: s
sppplaaat
G(urgle, W(hir, S(plat, Q(uit: Q

2-24

A record value is a collection of values. Each value occupies a
field of the record, and each field has a name. Different fields in a
record can be of different types.

Here is an example of a record declaration:

type
date __ rec= record

day: day _Jange;
month: month __ type;
year: year_ range:

end; {date __ rec}

var date: date __ rec;

Note that the reserved word end pairs with the reserved word
record.

There are three fields in this record, each of a different type. Indi­
vidual fields in a record are referred to by the name of the record
variable, followed by a period (.), and the name of the field. For
example:

date.day:= 15;
date.month:= march;
WRIIE(date.year);

This sort of notation can get tedious, especially when you have
nested records, so Pascal provides the with statement. A with
statement names a record; within the with, the field names can be
used without their prefixes:

with date do
begin

day:= 15;
month: = march;
year:= 1905;

end;

2-25

A record is usually declared as a type rather than a var (though
either is possible). This way, more than one variable can be of the
same type of record; the record can even be the base type of an
array.

Users of FORTRAN or BASIC can be familiar with creating par­
allel arrays, where data about a set of objects is stored in several
arrays of different types. In Pascal, this construct can be simpli­
fied by declaring a record type that contains fields for the neces­
sary types, then declaring a single array whose elements are of
the record type.

A more complete description of records can be found in Part 1,
Chapter 3.

The next sample program fragment illustrates the use of a record
and the with statement. It is a procedure (with the necessary dec­
larations) that accepts a record that contains a date, and changes
it to the following date:

type
day range = 1 .. 31;
year range = 1980 .. 2050;
month_ type = (jan, feb, mar, apr, may, jun,

jul, aug, sep, oct, nov dec);
date_ rec = record

day: day_ range;
month: month_ type;
year: year range;

end; {date_ ree}

var date: date_ rec;

procedure Up_ Date(var date: date_ reel;

2-26

Up_ Date increments date to the next calendar day.
The eventual overflow on the last day of the last
year is ignored. }

var
last day: day range;

begin
with date do

begin
case month of

feb: if (year mod 4 = 0)
and (year mod 100 < > 0)
then last. day: = 29
else lasL_ day: = 28;

apr,jun,sep,nov: last _day:= 30;
jan,mar,may,jul,aug,oct,dec: last day:= 31;

end;
if day < last day

then day:= day+ 1
else

end;

begin
day:= 1;
if month < dec

end;

then month: = SUCC(month)
else

begin
month:= jan;
year:= year+ 1

end;

end; {Up_ Date]

Program 15

Note that the body of the procedure Up_Date is enclosed in a
with statement. The identifiers day, month, and year used within
that with are actually fields of the record date.

The algorithm first computes the last day of the current month.
If that is equal to the day passed it, it resets day (date.day) to 1,
and increments the month and year accordingly; otherwise, it
merely increments day.

2-27

One further flexibility of field types in the record construct is the
ability to create variants that allow a field to have more than one
format. Here is an example:

StockItem = record

end;

Name: STRING;
PartNum: INTEGER;
case InStock: BOOLEAN of

TRUE: (OnHand: INTEGER);
FALSE: (Ordered: BOOLEAN;

NumOrdered: INTEGER)

In a value of type Stockltem, the fields Name and PartNum are
always present. InStock is another field. If it is TRUE, then the
field OnHand is present and indicates the number of items in
stock. If it is FALSE, then the fields Ordered and NumOrdered
are both present; the first indicates whether replacements have
been ordered, and the second indicates the number of replace­
ments.

The variant field must be the last field in the record. Record var­
iants (also called case records) can be used for both clean and
dirty programming purposes; in either case, they must be used
with caution. We will not go into detail here; record variants are
fully described in Part I, Chapter 3. A clean use of a variant
appears in Program 22, and further examples of their use can be
found in Chapter 8.

DYNAMIC VARIABLES AND POINTERS

In Pascal, dynamic variables are variables that a program can
explicitly allocate and deallocate while it is running. They are
usually used to implement linked lists (such as queues), search
trees, and other (more or less complicated) data structures. This
is accomplished by using pointers to the dynamic variables.

2-28

A pointer is usually used as one field of a record that contains
other information; the pointer points to other records of the same
type, creating a list, a tree, or some other data structure.

The declaration of a pointer binds it to another type:

These pointers can now be used to dynamically reference (name­
less) integer variables. Within the program, i_ptr refers to the
pointer itself, while i_ ptr /\ refers to the variable it points to.

Since the variable that a pointer refers to is not declared, the
space it occupies must be allocated at runtime. This is done with
the intrinsic procedure NEW:

NEW(pointer) Allocates space for pointer /\
(that is, for a variable of
the pointer·s base type)

After a NEW procedure, it is still up to the programmer to initial­
ize the value of this new variable.

Thus, we could write:

NEW(i_ ptr);
i_ ptr/\:= 1812;
nu_ ptr: = i_ ptr;

{Creates an integer variable}
{Sets it equal to 1812}
{ nu_ ptr /\ now equals 1812}

In this example, both i_ptr and nu_ptr point to the same inte­
ger. But suppose we had written:

NEW(i_ ptr);
NEW(nu_ ptr);
i_ ptr/\:= 1812;
nu_ ptr /\ : = i_ ptr /\ ;

2-29

In this case, i_ptr and nu_ptr each point to a separate variable
and i_ptr is initialized to 1812, as before. The last assignment
sets the variable that nu_ptr points to equal to the variable that
i_ptr points to. In the first example, there was only one variable.
In the second example, there are two.

Pointer values can be assigned, and compared using = and < > ,
but cannot be operated.

It is possible (and sometimes necessary) to remove a dynamic
variable that has been allocated:

DISPOSE(pointer) Removes pointer 1\ from memory 1\

and sets pointer = NIL

The predeclared word NIL (a reserved word in standard Pascal)
represents a pointer to nothing, and is conventionally used to
mark the end of a list. A pointer value can be compared to NIL,
but an attempt to use it as a reference to a variable causes a run­
time error or an operation on garbage data.

The next sample program fragment uses pointers in records, and
a user-defined scalar type:

type

var

2-30

sym_kind = (not_ found,reserved,
predeclared, user_ defined);

sym rec = record
ID: STRING;
Kind: sym_ kind;
LLink,RLink: 1\ sym_ rec;

end; (sym_ rec}

tab head: 1\ sym rec;
i: INTEGER;
s: STRING;

fUllction Find Sym(s id: STRING): sym kind;
Find symbol s id in table. and return its kind. 1

var
found: BOOLEAr\;
p: sym ree;

begin
p: = tab_ head;
found: = FALSE;
while (p < > NIL) and not found do

with p l\ do
if ID = s id

then found: = TRUE
else if s id < ID

then p: = LLink
else p: = HLink;

if found
then Find Sym:= p l\ .Kind
else Find Sym:= not found;

end; (Find Sym}

procedure Enter_ Sym(s id: STRING; s kind: sym kind);
{ Enters symbol s _id in table and sets kind to s kind. 1
var

inserted: BOOLEA ' ;
p.q: 1\ sym rec;

begin
NE\y(q); {allocate record]
with ql\do

begin {ini tialize record]
ID:= sid; Kind:= s _ kind;
LLink:= NIL; RLink:= NIL;

end;
if tab head = ~IL

then tab head:= q
else

(enter record in table}

2-31

begin
p: = tab_ head;
inserted: = FALSE:
while not inserted do

end;

with p Ado
begin

if s_ id < ID
then

end;

if LLink = NIL
then

else

begin
LLink:= q:
inserted: = TRUE

end
else p: = LLink

if RLink = NIL
then

begin
RLink:= q;
inserted:= TRUE

end
else p: = RLink

end; {Enter_ Sym}

Program 16

Enter_Sym enters identifiers into a symbol table, and
Find_Sym finds identifiers in the table. The table itself is struc­
tured as a binary search tree. Each node of the tree is represented
by the record:

sym_ ree = record
ID: STRING;
Kind: sym_ kind;
LLink,RLink: sym_ ree;

end; {sym_ rec }

The ID field contains the identifier. The Kind field indicates what
sort of an identifier it is. The fields LLink and RLink point to a
left and right subtree, respectively. If no such subtree exists, the
pointer is equal to NIL.

One global pointer, tab_ head, points to the top of the tree. The
tree itself is allocated dynamically by Enter_Sym.

Enter_Sym firsts allocates a record for the tree. Then it initial­
izes the record. The identifier and its kind are passed to
Enter_Sym as parameters (s_id and s_kind), and the ID and
Kind fields of the new record are initialized with these values.
Both LLink and RLink are set to NIL.

If tab_head = NIL, then this is the first record in the tree, and
tab_head is set to point to it. If tab_head is not NIL,
Enter_Sym traverses the tree until it finds a record with a NIL
link, and places the new record there by updating the NIL link to
point to the new record. As it traverses the tree, it follows either
an LLink or an RLink.

Whether Enter_Sym chooses an LLink or an RLink depends on
the alphabetical order of the new identifier ('s_id < id'). The tree
is a common form of binary search tree. For any node, all the iden­
tifiers in the left subtree (alphabetically) precede the identifier at
the node, and all the identifiers in the right subtree follow the
identifier at the node. Thus, the structure of the tree is based on
the order in which identifiers are entered, but when the tree is
traversed, the identifiers always appear in alphabetical order.
Find_Sym assumes that the tree can be traversed in this way.

Find_Sym is passed an identifier, and returns its kind. It does
this by simply traversing the tree until it finds a record whose ID
field matches the parameter (s_id). If no identifier matches
s_id, Find_Sym eventually reaches a NIL pointer, and halts its
search, returning not_found as the symbol kind.

In both routines, note the use of a with statement to simplify the
code.

2-33

The identifier 's kind is the sort of information that could be used
by a compiler. We use it to illustrate the general technique of
associating information with an entry in a table by including that
information as a field in the record type.

These routines are derived from the program that we used to
format the sample programs before printing them.

2-34

Flow of Control

Functions and Procedures 3-4

Recursion .. 3-10

3-1/3-2

We have already encountered the major control constructs; if,
case, while, repeat, and for. This chapter will not go over them,
but will briefly deal with the goto statement, and the structure of
procedures and functions.

Unconditional branching in a program is generally discouraged,
because it is confusing to read and difficult to verify. Occasion­
ally it is useful, especially in dealing with emergency situations.
In Pascal, the goto statement causes an unconditional branch.

A goto or similar statement may be a familiar construct in the
programming language that you have been using. In Pascal, the
variety of flow-of-control statements we have already discussed
usually makes the goto unnecessary.

Program 17 consists of two code fragments that accomplish the
same thing; the second of the fragments uses a goto:

found: = FALSE;
i:= 0;
while not found and (i < n) do

if ali] = ,*,
then found: = TR DE
else i: = i + 1;

if found
then WRITELN('found at ',i)
elseWRITELN('not found');

... this code performs the same task as:

label 1;

for i: = 0 to n -1 do
if ali] = ,*,

then
begin

WRITELN('found at', i);
goto 1;

end;
WRITELN('not found');
1: {next statement}

Program 17

3-3

The destination of a goto is a labeled statement. Labels are repre­
sented by integers in the range 1..9999. Every label that appears
in a program must be declared. Label declarations precede con­
stant declarations.

In UCSD Pascal, a label must be within the same block as the
goto that names it (a block is the body of a main program or a
routine) . Standard Pascal does not have this restriction.

Virtually all Pascal programmers would describe the first ex­
ample as structured, and second as unstructured. Even though
using the go to saves us the use of a Boolean variable, the first
fragment would be preferable. It is easier to read because of the
Boolean, and because the order of execution does not jump about.
A program that is easier to read is easier to debug.

FUNCTIONS AND PROCEDURES

To illustrate the use of routines in structuring a program, we
have chosen a rather lengthy function. This function,
Parse_Group, contains three nested procedures and one nested
function.

Parse_Group accepts input that consists of integers or groups of
integers, and builds a set that contains them. The input format is
relatively loose - we attempt to compensate for the unpredicta­
bility of human operators or programmers. Parse_Group is a
simple illustration of the form of a recursive descent parser. Such
parsers are often important parts of compilers or interpreters for
high-level programming languages, including the Pascal compiler
itself.

3-4

Here is the program; it will be discussed in further detail:

const
item_ max = 100;

type
item_ range = Litem_ max;
item_ set = set of item range;

function Parse_ Group(var members: item_ set): BOOLEAN;
{ Parse a group, which consists of fields separated by

commas. The set of items selected is
passed back in item_ set. Parse_ Group returns TRUE
only if a legal group was parsed. }

const

var
EOS= '1';

s,prompt: STRING;
p: INTEGER;

procedure Parse_ Error(msg: STRING);
{ Points to the position in the line that the error

was detected, and prints the error message. }
begin

WRITELN(' ': p+ LENGTH(prompt),' -- ',msg)
EXIT(Parse_Group);

end; {Parse_Error}

procedure Skip_Spaces;
begin

while s[p] = "do
p:= p+l :

end; {Skip_ Spaces}

3-5

function Parse_Num: ite~range;

{ Scan off an integer between 1 and item_ max, and
return its value. }

var
n: INTEGER;

begin
Skip_Spaces;
if not (s[P] in ['0' .. '9'])

then Parse_ Error('expecting number');
n:= 0;
repeat

n:= n*10 + ORD(s[p]) - ORD('O');
p:= p+1;
if n > item_ max

then Parse_Error('number out of range');
until not (s[P] in ['0' .. '9 ']);
Parse_Num: = n;

end; {Parse_Num}

procedure Parse_Field;

3-6

{ Parse a field, and add indicated items to the
member set, provided there is no duplication. A
field consists of a number, or number .. number. }

var
item: INTEGER;
start~tem, end_item: item_ range;

begin
start_ item:= Parse_Num;
Skip_ Spaces;
if s[p] '.'

then end~tem:= start_ item
else

begin
p:= p+1;
if s[p] < > '.'

then Parse _ Error ('expecting ".'");
p:= p+l;
enLitem:= Parse_ Num;

end;
if start_ item> end_ item
then Parse_ Error ('subrange must be in order');

for item:= start_ item to end_ item do
if item in members

then Parse_ Error('duplicate item in list')
else members: = members + [item];

end; {Parse_ Field}

begin { Parse_ Group}
prompt:= 'enter group:';
WRITE (prompt);
READLN(s);
tack on termination character}
s:= CONCAT(s,EOS);
Parse_ Group:= FALSE;
p:= 1;
members: = [];

Skip_ Spaces;
if s[p] < > EOS

then
begin

Parse_ Field;
Skip_ Spaces;

end;

while s[p] < > EOS do
if s[p] < > ' "

then Parse_ Error('expecting ",'")
else

begin
p:= p+l;
Parse_ Field;
Skip_ Spaces;

end;

Parse_ Group: = TRUE;
end; {Parse_ Group}

Program 18

3-7

The legal input to Parse_Group is any list of integers or sub­
ranges of INTEGER, provided it does not contain duplicate
numbers or bad syntax.

These lists would be accepted by Parse_Group:

1,5,10
13,6 .. 9

These examples show bad input and the error message printed by
Parse_Group:

enter group: 7 . .4
- subrange must be in order

enter group: 1,3,5" 7
- expecting number

enter group: 2 .. 6,5,8
- duplicate item in list

Program 18 is the longest example we have seen so far, but it
should not be intimidating. In a brief outline, the function:

• Accepts a string from the user

• Tacks a termination character (EOS) onto the string

• Executes a loop that calls:

Parse_Field to read a single number or range of num­
bers

Skip_ Spaces to scan over any spaces that may inter­
vene before the next entry

The loop ends when the termination character is encountered.

3-8

It is the function Parse_Num (called by Parse_Field) that
actually converts a character string into an integer; Parse_Field
is the procedure that places that number in the set.

The way in which errors are handled is of special interest.
Parse_Group is a BOOLEAN function: if it returns FALSE,
then parsing has failed in some way.

The procedure Parse_Error is called from within Parse_Group.
It prints an error message, and then calls:

EXIT(Parse_ Group);

which aborts the parsing function.

The intrinsic EXIT is a UCSD Pascal extension. When it is
passed the name of a routine, the routine returns immediately. It
can also be called with:

EXIT« program name>);

or:

EXIT(program);

which causes the program to terminate.

Note that in the main body of Parse_Group, its return value is
initialized to FALSE, and is only set to TRUE when parsing is
completed and no error has occurred. If it were set before this
time, the call to EXIT might cause Parse_Group to incorrectly
return TRUE.

Note that Parse_Num and Parse_Field use local variables,
while the other nested routines do not. Parse_Error uses only a
parameter, and Skip_Spaces uses the string s and the integer p,
which are global to Skip_Spaces (but local to Parse_Group).

3-9

Program 18 uses sets in two ways. One is for range-checking, a
use we have already seen. The other is to build the set "mem­
bers". This is the main purpose of Parse_Group. The variable
"members" is actually used in only two statements; it is initial­
ized to the empty set in the main body of Parse_Group:

members: = [];

and only modified in the last line of Parse_Field:

else members: = members + [item];

By modifying members in only two places, we reduce the chance
of error.

RECURSION

Recursion refers to the ability of a procedure or function to call
itself. In Pascal this is possible, and can be a most powerful tool
for keeping program code brief, elegant, and intelligible.

The limitation of recursion is that there is a certain overhead
every time a procedure is called; parameters and addresses must
be pushed onto the stack.

The danger of recursion is that a procedure or function might go
on calling itself until the stack overflows. Our objective is to
write programs that terminate deanly and correctly. As with a
while or repeat statement, a recursive routine must contain code
that ensures its termination. In other words, there must be a
point at which it does not call itself recursively, but instead
returns in a normal fashion.

3-10

The scheme of a recursive routine that will terminate might be
sketched as:

procedure recurse;

begin
if < terminating case> then

{finish task} ...
else

begin

recurse;

end;
end {recurse};

Because of the overhead, recursive routines should only be ''{rit­
ten to solve problems that are naturally recursive problems that
lend themselves to a recursive solution, and that cannot be imple­
mented otherwise without a good deal of overhead (such as an
extra programmer- created stack).

Program 19 integrates a curve (finds the area under the curve) by
a technique called adaptive quadrature. Adaptive quadrature is a
naturally recursive algorithm that is relatively fast. In the parl­
ance of numerical analysis, it converges quickly.

In our program, the procedure Adap_Quad merely sets up the
problem and then calls Find_Area. It is Find_Area that
actually calculates area and calls itself recursively.

Find_Area first attempts to solve the integral using Simpson's
rule (this is a common means of calculating an integral by approx­
imating a curve with a parabola). If this result comes within the
given tolerance, Find_Area returns it (this is Find_Area's ter­
minating case). If the result is not good enough, Find_Area calls
itself again TWICE; once for the left half of the interval, and once
for the right half. This is often called double recursion.

3-11

The effect of Find_Area's algorithm is to spend more time inte­
grating a difficult interval of the curve, and less time on an inter­
val that converges quickly. This is why the algorithm is called
adaptive. If Find_Area were not recursive, writing an adaptive
algorithm would be very difficult (and very messy).

program Test;

const
min_ interval = 0.01:
{ the smallest interval which will

continue to recurse }

var
tol,a,b,area: HEAL;

function Func(x: REAL): REAL;
{ Replace this function with whatever function

is to be integrated. }
begin

Func:= SQHT(x);
end; {Func}

function Simpson

3-12

(a,fa: RE~~; var m,fm: REAL;
b,fb: REAL): REAL;

Compute the area of interval [a,b] by Simpson's rule.
The value of the area is returned as the function result,
and the mid-point (m) and associated function value (fm)
are returned through var parameters. }

begin
m:= (a+b) /2;
fm: = Func(m);
Simpson:= (b-a)*(fa+4*fm+fb)/6;

end; {Simpson}

function Find_ Area
(tol,aw,a,fa,m,fm,b,fb: REAL): REAL;

Compute the area of interval [a,b] by the method of Adap­
tive Quadrature. tol is the acceptable tolerance limit for
this interval. Aw is the area of the whole interval, as com­
puted by Simpson's method. If the computation is within
tolerance, then just return. Otherwise, recurse to compute
the area more accurately, or print a warning that area
cannot be computed within tolerance with the current
minimum interval. }

var
l,fl,r,fr: REAL;
{ 1 is mid-point of [a,m[,
r is mid-point of [m,b[}
al,ar: REAL;
{ areas of left and right intervals}

begin
al: = Simpson(a,fa,l,fl,m,fm):
ar:= Simpson(m,fm,r,fr,b,fb);
if ABS((aw-al-ar),aw) < = tol

then Find Area: = al + ar
else if 1-a < min interval

then
begin

end

Find Area: = al + ar;
WRITELN
('warning: region [',a,
' ,',b,'] not in tolerance '):

else Find_ Area:=
Find_ Area(toI /2,al,a,fa.l,fl,m,fm)
+ Find Area(tol /2,ar,m,fm,r,fr,b,fb);

end; {Find_ Area}

3-13

procedure Adap_ Quad
(tol,a,b: REAL; var area: REAL);

{ Compute area bounded by interval [a,b) by setting
up and calling the recursive Find_ Area routine. }

var
aw,fa,fb,m,fm: REAL;

begin
fa:= Func(a);
fb:= Func(b);
aw: = Simpson(a,fa,m,fm,b,fb);
area:= Find_Area(tol,aw,a,fa,m,fm,b,fb);

end; {Adap_Quad}

begin
WRITE('left bound: ');
READLN(a);
WRITE('right bound: ');
READLN(b);
WRITE('tolerance: ');
READLN(tol);
Adap_ Quad(tol,a,b,area);
WRITELN('area is: ',area);

end.

Program 19

For the function to be integrated, we have arbitrarily picked Pas­
cal's SQRT intrinsic (we could change Func to calculate some
other function, but we would have to recompile the program).

Here is output from some sample runs of the program:

left bound: 1
right bound: 5
tolerance: .001
area is: 6.78679

left bound: 0
right bound: 3
tolerance: .1
area is: 3.41141

3-14

left bound: 0
right bound: 3
tolerance: .01

.---." warning: region [0.00000, 2.34375E - 2] not in tolerance
area is: 3.46405

left bound: 0
right bound: 3
tolerance: .001
warning: region [0.00000, 2.34375E-2] not in tolerance
warning: region [2.34375E-2, 4.68750E-2] not in tolerance
warning: region [4.68750E-2, 7.03125E-2] not in tolerance
area is: 3.46405

One advantage of adaptive quadrature is that the function is
evaluated only once at any given point; the result is passed on as
a value parameter in further calls to Find_Area. Our version of
Func is very short, but if Func were a complicated calculation, we
would still be able to integrate it relatively quickly.

Note that the tolerance is entered by the user, but is divided by
two every time Find_Area calls itself. If we did not improve the
tolerance in this way, we would run the risk of converging too
quickly. Even with this precaution, we also set a minimum size
for the interval we can integrate, and FinLArea terminates on
this case as well, after printing a warning that says the value
returned may not be accurate.

The min_interval precaution is necessary because we do not
know beforehand what Func returns (it may not even be continu­
ous). We therefore give ourselves an escape route so that we do
not continue calling Find_Area forever.

The variable names in this program are short and not terribly
readable, but we kept them short because a call to FinLArea
has so many parameters. If the call were longer than one line of
code, it would be less readable, not more so! This was a tradeoff.
Note that the names of parameters and local variables in
Adap_Quad are the same as the parameters to FinLArea and
Simpson. This helps make them comprehensible, because they
correspond to the same objects; nevertheless, each is local to its
own procedure, and is not global.

3-15/3-16

4

Input and Output

Character I/O 4-4

Record I/O 4-9

Print Queueing 4-10
The Command Level .. 4-10
The Structure ofthe List 4-11
Clearing the List 4-12
Listing the List 4-13
Inserting File Names 4-14
Deleting File Names 4-15
The Main Program 4-17
The Whole Thing 4-20

Block I/O. 4-25
Device I/O 4-27

4-1/4-2

I/O is concerned with transferring information to and from files.
In the p-System, a file is either a file on a block-structured device
(such as a disk file), or a peripheral device (such as the console or a
printer). This chapter provides some practical illustrations of 110
operations.

UCSD Pascal provides four kinds of 110: character 110, record
110, block 110, and device 110. The first two are part of standard
Pascal, the second two are UCSD extensions that provide low­
level operations. The following is a summary of the four kinds:

• Character 110
- Deals with character strings (either numeric or literal)
- Is sequential
- Is automatically buffered

• Record I/O
- Deals with information stored in records on disk files
- Is either sequential or random-access
- Is automatically buffered

• Block 110
- Deals with blocks (512 bytes) of untyped files
- Is either sequential or random-access
- Is not buffered
- Is used when speed is important

• Device 110
- Deals with sequences of bytes
- Is either sequential or random-access
- Is not buffered
- Is used to directly control physical devices (when speed or

low-level control is important)

(Random-access is only available on disk files . In the p-System,
devices that are not block-structured are handled sequentially.)

4-3

The program examples illustrate the syntax for declaring files .
The standard Pascal intrinsics RESET and REWRITE can be
used to open scratch files. They are more frequently used in a way
that is peculiar to UCSD Pascal; associating an internal (Pascal)
file name to an external (p-System) file name. Files opened in this
way can be either discarded or saved with the UCSD intrinsic
CLOSE.

Remember that a physical file on the p-System can be either a
disk file or an actual device (for example, CONSOLE:,
PRINTER:, REMIN:, REMOUT:). This is described in the
UCSD p-System Operating System Reference Manual, and sum­
marized in Part 1, Chapter 7. We will illustrate some of this usage
in the following examples.

CHARACTER I/O

Character I/O consists of reading and writing information to and
from files and character-oriented (serial) devices. We have already
seen the intrinsics READ, READLN, WRITE, and WRITELN
used to perform I/O from the console. These intrinsics can be used
in much the same way when performing I/O from other devices or
disk files.

The two sample programs that follow deal with arbitrary files.
The user enters the names of the files that are to be used.

program Ie_ filter;

4-4

{ This program converts a text file to lowercase. }
var

i: INTEGER;
s: STRING;
in_ file,out_ file: TEXT;

begin
WRITE('input file: ');
READLN(s);
RESET(in file,s);
WRITE('output file: ');
READLN(s);
REWRITE(out_ file,s);
while not EOF(in_ file) do

begin
READLN(in_ file,s);
for i:= 1 to LENGTH(s) do

if sri) in [' N .. 'Z']
then s[i):= CHR(ORD(s[ij)

-ORD('A') +ORD('a'));
WRITELN(out_ file,s);

end;
CLOSE(out_ file,lock);

end.

Program 20

Program 20 converts a file of mixed upper- and lowercase charac­
ters to all lowercase. The mechanism that does this:

s[i):= CHR(ORD(s[ij)-ORD ('A')+ ORD('a /))

should be familiar from Program 14.

As shown, the names of both the input and output files are
entered by the user. Both of them are declared as TEXT, which is
equivalent to file of CHAR. In UCSD Pascal, a file of CHAR can
be either a serial device, or a .TEXT file on the p-System.

The input file can be either a device or a file that has already been
saved on disk. We open it with the call:

RESET(in_file, s);

4-5

The RESET function opens in_file, and associates it with the file
named in the string s. (If the user types an unusable filename, the
System responds with a runtime error.) RESET makes the file
available to the program, and sets the implicit buffer at the begin­
ning of the file, but it does not alter the file's contents.

The output file, on the other hand, is opened with:

REWRITE (out_file, s);

REWRITE not only makes the file available and restores the
buffer to the beginning, as RESET does, it also opens a new
(scratch) copy of the file that may supplant the old copy when the
file is closed. We presume that the name the user gives for the
output file will either be a new file, or an old file that is no longer
needed. It could also be an output device.

In both the call to RESET and the call to REWRITE, the second
parameter is optional (in standard Pascal, these intrinsics do not
have a second parameter at all). When these routines are called
without a second parameter, the p-System creates a scratchfile
that is deleted when the file is CLOSEd or when the program has
finished running. In actual practice, the second parameter is
usually used: we are reading from an existing disk file, or creating
a new one, or both, as in the sample program.

Note that once we have opened the files we need, READLN and
WRITELN are used just as they would be in console 110, except
that their first parameter is the name of a file.

The termination condition of the program's main loop is:

while not EOF(in_file) do

The intrinsic function EOF stands for End Of File. It returns
TRUE after the last record in a file has been read or written. In
other words, the program loops until all of in_file has been read.

4-6

When a routine or a program terminates, all files that were used
during its execution are automatically closed by the p-System. If
the files were new (such as scratchfiles), they are deleted. If they
already existed on disk, then they are left unchanged.

In our program, the file out_file was new, but since it contains
our program's output, we want to keep it. The system's auto­
matic housecleaning can be overridden by a call to the UCSD
intrinsic CLOSE. In Program 20, the call that is actually used is:

CLOSE(out. file,lock);

The parameter lock instructs CLOSE to save the file on disk
(under the name used to open it). The CLOSE intrinsic can also be
calledwith the parameter purge, which causes the file to be
deleted from the directory. (There are other possible parameters
to CLOSE detailed in the Part I, Chapter 7.)

For the file in_file, no call to CLOSE appears, since it is not
necessary.

Our next example of character 110 is a program that does a linear
regression on a file of numeric data:

program Linear_ Regression;
{ This program does a linear regression (closest line fit) on

data in a file. The input file must be a text file with two
items of data (x,y) on each line. }

var
s: STRING;
data: TEXT;
n,x,y,y intercept, slope,
sumx,sumy ,sumxy ,sumxsq, temp: REAL;

begin
WRITE('data file: ');
READLN(s);
RESET(data,s);
n:= 0; sumx:= 0; sumy:= 0;
sumxy:= 0; sumxsq:= 0;
while not EOF(data) do

4-7

begin
READLN(data,x,y);
n:= n+1; sumx:= sumx+x; sumy:= sumy+y;
sumxy:= sumxy+x*y; sumxsq:= sumxsq=x*x;

end;
temp: = n*sumxsq - sumx*sumx;
y_intercept:= (sumy*sumxsq - sumxy*sumx)/temp;
slope:= (n*sumxy - sumx*sumy)/temp;
WRITELN('closest fit: y = "

slope,'x + ',y_ intercept);
end.

Program 21

Instead of an output file, we write the results directly to the con­
sole. The input file is opened just as the input file in Program 20.
Like that file, it is declared as TEXT, but in this case each line of
the textfile consists of two real constants, separated by one or
more spaces.

If datal. text contains:

1 1
4 3
7 8.2
5 4

the program produces:

data file: datal.text
closest fit: y = 1.14933x + -8.34666E-1

If data2.text contains:

1 2
5 10
3 6
40 80
21 42

4-8

the program produces:

data file: data2. text
~ closest fit: y = 2.00000x + 0.00000

The first column of numbers contains values of x, and the second
column contains corresponding values of y. The closest fit to the
data is:

y = slope * x + intercept

where slope and intercept are calculated by the program. The
formulas for these are:

slope = (n*SUM(x*y) - SUM(x)*SUM(y))
/ (n*SUM(SQR(x)) - SQR(SUM(x)))

intercept = (SUM(y)*SUM(SQR(x)) - SUM(x*y)*SUM(x))
/ (n*SUM(SQR(x)) - SQR(SUM(x)))

SUM is defined over all x and all y. Therefore, the program keeps
a running total for each sum as it reads values from the disk file.
When all the values have been read and summed, the slope and
intercept are calculated using these formulas.

RECORD 110

While character I/O is performed on text files and character
devices, record I/O is performed on data files. The data is stored
in its internal form (for example, integers are 16-bit words, reals
are multiple-word floating point representations, and so forth).
Because of this, data files are not readable as text (the editor can­
not use them, for instance).

4-9

Print Queueing

Program 22 illustrates the use of the record I/O intrinsics.
It is a long program, and you should not feel obliged to
study all of it. We have included it because it illustrates
so many practices that are typical of applications and
systems programming in UCSD Pascal.

Print_Queuer maintains a file that is a queue (a first-in­
first-out list) of names of files that are waiting to be
printed. We presume that another program would do the
actual printing. (This method of building a print queue,
and then printing the files either later or concurrently, is
known as spooling).

The Command Level

4-10

Like the p-System itself, Print_Queuer is menu-driven.
When it is run, the first thing that appears on the screen
is:

L(ist, I(nsert, D(elete, C(lear, Q(uit

This prompt is controlled by the procedure command:

procedure Command;
var

done: BOOLEAN;
begin

done:= FALSE;
repeat

case Prompt('L(ist,I(nsert,D(elete,C(lear, Q(uit "
['L', 'I', 'D', 'C', 'Q']) of

'1/: List_Command;
'I': Insert_ Command;
'D ': Delete_Command;
'C': Clear_ Command;
'Q': done:= TRUE;

end;

until done;
end; {Command}

The function prompt was introduced in Program 14.
Command allows five different operations. The action of
Q(uit should be obvious. The other four are described
below. Before explaining them, we describe the structure
of the print queue itself.

The Structure of the List

The print queue is contained in a single file:

f: file of print. xec;

The file contains two lists; a list of allocated records, each
of which contains a filename, and a list of free records
that are available for allocation. Neither list needs to be
contiguous. Each record points to the record that follows
it, much as a dynamic list is constructed with pointers.
The pointers in f are simply integers that index records in
the file, and are used by the intrinsic SEEK.

Each record in the file is of type print-.-rec, which is a
type declared as:

print_ rec= record
case rec_ kind of

end;

info: (alloc_ tail,free_ tail,
last. block_ alloc: INTEGER);

alloc,free: (name: STRING[30];
link: INTEGER);

This is our first full example of a variant record. Each
print-.-rec record can have a group of three integers, or a
string of 30 characters followed by an integer.

4-11

The form each record takes is determined by the tag type
rec_ kind, which is declared as:

rec_kind = (info,alloc,free);

In practice, only the first record of the file is an info
record. All other records are either alloc(ated) or free. No
tag variable is needed for the field, since we can tell what
type the record is by its context.

The info record contains three integers:

• The alloc_tail integer points to the tail of the list of
allocated records. These allocated records are the
names of files to be printed.

• The free_tail integer points to the tail of the list of
free records. (Both of these values each point to the
tail, rather than the head, in order to make inserting
a record easier.)

• The last_block_alloc integer points to the last allo­
cated block in the file. This is so we can shrink the
file if this record is deleted.

The remaining records in the file simply consist of a
string of 30 characters, and an integer that points to the
following record in the list. If the record is allocated, then
the string is the name of a file to be printed. If the record
is free, then the string is never used (it contains garbage).

Clearing the List

4-12

The simplest command is C(lear. It calls the following
procedure:

procedure Clear_ Command;
{ Empties the queue. }

begin
f i\ .alloc. tail: = 0;
f i\ . free. tail:= 0;
f i\ .last. block_ alloc: = 0;
SEEK(f,O); PUT(f);
WRITELN;
WRITELN(' queue cleared');

end; {Clear Command}

The Clear_Command only alters the first (info) record of
the file. It may be that the other records in the file contain
information, but since the info record does not recognize
that, they will be ignored.

Listing the List

The L(ist command prints all of the names in the allo­
cated list. The procedure that does this is:

procedure List_ Command;
{ Lists the names of files in the queue in

reverse order (first file in the queue
is at the bottom of the list). }

var
i: I TEGER;

begin
SEEK(f,O); GET(f);
i:= f .alloc_ tail;
WRITELN;
WRITEL ('files queued: ');

while i < > ° do
begin

~EEK(f,i); GET(f);
WRITELN(",£ .name);
i:= f .link;

end;
end; {List Command}

4-13

Refer to the info record to find out the index of the tail of
the allocated list, and. then traverse the list, printing each
file name as you come across it. The link field of the head
of the list will be 0, and this terminates the loop. Note
that the files are printed in reverse order.

Inserting File Names

4·14

The I(nsert command has a much more complicated pro­
cedure:

procedure Insert_Command;
{ Inserts a file in the queue. If a free record is avail­

able, it is used. Otherwise a new block is allocated
at the end of the queue file. }

var
s: STRING[30j;
free_block, temp: INTEGER;

begin
WRITELN;
WRITE(' file to insert: ');
READLN(s);
SEEK(f,O); GET(f);
iff 1\ . free tail < > 0

then
begin

end

free block: = f 1\ .free tail;
SE E K(f.free_block); G ET(f);
temp:= fl\.link;
SEEK(f,O); GET(f);
f 1\ . free_tail: = temp;
SEEK(f,O); PUT(f);

else
begin

last block: = last block + 1;
free_block:- last_block;

end;

SEEK(f,O); GET(f);
temp: = f I\.alloc_tail;
f 1\ .alloc_tail: = free_block;
SEEK(f,O); PUT(f);
f 1\ .name: = s;
f I\.link:= temp;
SEEK(f,free_ block); PUT(f);

end; {Insert Command}

First, the procedure gets the name of the file to be added
to the list. It does not check whether this is a valid file
name, although that would not be a bad idea - the reader
may wish to contemplate how to write a file name­
checking procedure.

The info record is then examined to see if there is a free
record. If there is, it is removed from the free list, and
added to the tail of the alloc list. If there is not, the file is
extended by a single record.

Finally, the index of the new record is put in the info
block, and both the string and the link are put in the new
record. The value of the link is the previous tail of the
alloc list.

Note that if the free list is empty, the if statement only
updates some bookkeeping information. The final PUT
automatically extends the length of the file.

Deleting File Names

The D(elete command is a little more involved than
I(nsert, but performs the same basic operations:

procedure Delete Command;
{ Deletes a file from the queue. If the file deleted was

in the last block of the queue, last block is decre­
mented, to shorten the resulting queue. }

4-15

4-16

var
temp,prev,i: I~TEGER;
found: BOOLEAN;
s: STRI~G;

begin
WRITEL!\,;
WRITE(' delete what file: ');
READL~(s);

SEEK(f,O); GET(f);
prev:= 0; i:= fAalloc_ tail;
found:= FALSE;
while (i < > 0) and not found do

begin
SEEK(f,i); GET(f);
if f Aname = s

end;
if found

then

then found: = TRUE
else begin prev:= i; i:= f!\.link; end;

begin
temp:= f!\.link;
SEEK(f.prev); G ET(f);
if prey = 0

then f!\ . alloc . tail: = temp
else f!\ .link: = temp;

SEEK(f,prev); PUT(f);
if i = last_block

then last block:= last block-l
else

begin
SEEK(f,O); GET(f);
temp: = f!\. free tail;
f !\.free_tail:= i;
SEEK(f,O); PUT(£);
SEEK(f,i): GET(f);
f!\.name:= '< free> ';
f!\ .link: = temp;
SEEK(f,i): PUTt£);

end;

WRITELN(' file deleted ')
end

else
begin

WHITELN;
WHITELN(' not found ');

end;
end; {Delete Command}

After accepting a file name, the procedure must search
the alloc list for that record. If it is not there, it prints an
error message; otherwise, it places that record on the free
list (setting the filename to < free> to avoid confusion),
and updates the info record accordingly. Note that if the
name to be deleted is the last in the file, the variable
last_block is simply decremented.

The Main Program

Weare now ready to look at the main program:

begin
{$I -}
HESET(f,'PHINT.FILES');
if IOHESULT < > °

t hen
begin

HEWRITE(f,'PRINT.FILES');
Clear Command;

end;
SEEK(f,O); GET(f);
last_ block: = f /\ .last_ block_ alloc;
{SI +}
Command;
SEEK(f,O); GET(f);
f /\ .last.. block alloc: = last_ block;
SEEK(f,O); PU1Jf);
SEEK(f,last block alloc); G ET(f);
CLOSE(f,crunch);

end.

4-17

4-18

The first line of the main program is:

{SI -}

This is our first example of a compiler option. Normally,
the compiler generates code that automatically checks all
I/O operations. In this case, we want I/O checking turned
off so we can use the UCSD intrinsic function
IORESULT. When we finish initializing the print queue
file, we turn I/O checking back on with:

{SI +}

The full set of compiler options is described in Part 1,
Chapter 10.

We want to turn off I/O checking because we want to be
able to maintain the print queue file over several different
runs of the program. If the file already exists, we must
open it with a RESET (REWRITE would open a new
copy). But if the file does not exist, we are required to
open it with a REWRITE. The simplest way for the pro­
gram to tell if the file is already on disk is to try opening it
with a RESET. If that fails, IORESULT returns an error
number, and we know that we must use REWRITE.

If we did not turn off I/O checking, any error values
returned by IORESULT would be intercepted by the
program at runtime, and cause the program to halt.

After calling REWRITE, the program calls
Clear_Command to initialize the info record.

Once the file has been successfully opened, the
last_block variable is initialized, and then the command
is called. Command monitors most of the program's
work.

We use last_block to optimize the length of the file when
it is closed. This is why its value is maintained by the
I(nsert and D(elete commands. When the user Q(uit's and
Command terminates, last_block is used to update the
info record, and then we do a GET on the last_block
record. The only purpose of this GET is to set things up
for the call to CLOSE:

CLOSE(f,crunch);

Crunch is a close option we have not seen before. When a
file is closed with the crunch option, all records from the
last record accessed to the end of the file are deleted. If
there are any unused records between last_block and the
end of the file, they are deleted when the file is closed.
This is a way of saving disk space.

Notice that even though the program is more than 170
lines long, we have only two global variables: f and
last_block.

Here is output from a sample run:

L(ist, I(nsert, D(elete, C(lear, Q(uit i

file to insert: QUEUER.LST

L(ist, I(nsert, D(elete, C(lear, Q(uit i

file to insert: LINREG.OUT

L(ist, I(nsert, D(elete, C(lear, Q(uit I

files queued:
LINREG.OUT
QUEUER.LST

L(ist, I(nsert, D(elete, C(lear, Q(uit i

file to insert: OWL.TEXT

4-19

L(ist, I(nsert, D(elete, C(lear, Q(uit d

delete what file: LINREG.OUT
file deleted

L(ist, I(nsert, D(elete, C(lear, Q(uit I

files queued:
OWL.TEXT
QUEUER.LST

L(ist, I(nsert, D(elete, C(lear, Q(uit q

The Whole Thing

4-20

Here is a listing of the entire program:

program Print_Queuer;

type
charset = set of CHAR;
rec_ kind = (info,alloc,free);
print_rec = record
case rec_ kind of

info: (alloc_tail,free_ tail,
last block_ alloc: INTEGER);
alloc,free: (name: STRING[30j;

link: INTEGER);
end;

var
f: file of print_rec;
lasL block: INTEGER;

function Prompt
(line: STRING; legal_commands: charset): CHAR;

{ Prompt prints a promptline and returns a
response character in legal_ commands. }

var

ch:CHAR;
begin

repeat
WRITELN;
WRITE (line);
READ(ch);
WRITELN;
if ch in ['a' .. 'z ']

then ch:= CHR(ORD(ch)­
-ORD('a')+ ORD('A'));

until ch in legal_ commands;
prompt: = ch;

end; {prompt}

procedure List_ Command;
{ Lists the names of files in the queue in

reverse order (first file in the queue
is at the bottom of the list). }

var
i: INTEGER;
begin

SEEK(f,O); GET(f);
i:= f /\ .alloc_ tail;
WRITELN;
WRITELN('files queued: ');
while i < > 0 do

begin
SEEK(f,i); GET(f);
WRITELN(",f/\ .name);
i: = f /\ .link;

end;
end; {List_ Command}

procedure Insert_ Command;
{ Inserts a file in the queue. If a free

record is available, it is used. Otherwise
a new block is allocated at the end of the
queue file. }

var
s: STRING[30];
free_ block, temp: INTEGER;

4-21

4-22

begin
WRITELN;
WRITE(' file to insert: ');
READLN(s);
SEEK(f,O); GET(f);
iff A .free_ tail < > 0

then
begin

end
else

begin

end;

free_block: = fA .free_ tail;
SEEK(f,free_ block); G ET(f);
temp: = fA .link;
SEEK(f,O); GET(f);
fA.free_ tail:= temp;
SEEK(f,O); PUT(f);

last_ block: = last_block+ 1;
free_ block: = last_block:

SEEK(f,O); GET(f);
temp:= f A.alloc_tail;
fA.alloc_ tail:Q= free_ block;
SEEK(f,O); PUT(f);
fA .name: = s;
f A .link: = temp
SEEK(f,free_ block); PUT(f);

end; {Insert_ Command}

procedure Delete_ Command;
{ Deletes a file from the queue. If the file deleted was

in the last block of the queue, last_ block is decre­
mented, to shorten the resulting queue. }

var
temp,prev,i: INTEGER;
found: BOOLEAN;
s: STRING;

begin
WHITELN;
WHITE(' delete what file: ');
READLN(s);
SEEK(f,O); GE'!(f);
prev:= 0; i:= fA.alloc. tail;
found:= FALSE;
while (i < > 0) and not found do

begin
SEEK(f,i); GET(f);
if fA .name = s

end;
if found

then

then found: = THUE
else begin prey: = i; i: = f A .link; end;

begin
temp: = f A .link;
SEEK(f,prev); GET(f);
if prey = °

then fA.alloc_tail:= temp
else f A .link: = temp;

SEEK (f,prev); PUT(f);
if i = last_block

then last_block: = last_block-l
else

begin
SEEK(f,O); GET(f);
temp: = fA . free_tail;
fA.free tail:=i;
SEEK(f,O); PUT(f);
SEEK(f,i); GET(f);
f A.name:= '< free>';
f A .link: = temp;
SEEK (f,i); PUT(f);

end;
WHITELN(' file deleted')

end
else

4-23

4-24

begin
WRITELN;
WRITELN(' not found');

end;
end; (Delete_ Command}

procedure Clear_ Command;
{ Empties the queue. }
begin

fJ\.alloc_ tail:= 0;
fJ\.free_ tail:= 0;
fA .last block_ alloc:= 0;
SEEK(f,O); PUT(f);
WRITELN;
WRITELN(' queue cleared');

end; {Clear_ Command}

procedure Command;
var

done: BOOLEAN;
begin

done:= FALSE;
repeat

case Prompt('L(ist, I(nsert, D(elete, C(lear,
Q(uit' ,['L', 'I', 'D', 'C', 'Q']) of
'L': List_Command;
'I': Insert_Command;
'D': Delete_ Command;
'C': Clear_Command;
'Q': done:= TRUE;

end;
until done;

end; {Command}

begin
{$I -}
RESET(f,'PRINT.FILES');
if IORESULT < > 0

then
begin

REWRITE(f, 'PRINT.FILES');
Clear_ Command;

end;
SEEK(f,O); GET(f);
last_ block: = f /\ .last_ block_ alloc;
{$I +}
Command;
SEEK(f,O); GET(f);
f .last_ block alloc: = last_ block;
SEEK(f,O); PUT(f);
SEEK(f,last_ block_ alloc); G ET(f);
CLOSE(f,crunch);

end.

Program 22

BLOCK 110

Block I/O is used to transfer large portions of files . The block I/O
intrinsics deal with multiples of blocks. To the p-System, a block
is 512 bytes. It is the unit of storage on block-structured devices
such as floppy disks.

Block I/O is intentionally fast, simple, and does little error check­
ing. In other words, it is used when efficiency is important and
structure is irrelevant. It follows that block I/O should be used
with caution.

4-25

Program 23 simply compares two files one block at a time, and
prints a message that tells whether they are the same or different:

program File_Compare;
{ File_Compare compares two files

(of any type) for equality. }
type

var
block = packed array[0 .. 511] of CHAR;

a_file, b_file: file;
a_buf,b_buf: block;
s: STRING;
same: BOOLEAN;

begin

end.

4-26

repeat
WRITE('file a: ');
READLN(s);
{$I -} RESET(a_file,s); {$I +}

until IORESULT = 0;
repeat

WRITE('file b: ');
READLN(s);
{$I -} RESET(b_ file,s); {$I +}

until IORESULT = 0;
same:= TRUE;
while same and not EOF(a_file)

and not EOF(b_file) do
begin

same:= (1 = BLOCKREAD(a_file,a_buf,l))
and (1 = BLOCKREAD(b file,b_buf,l));

if same
then same:= (a buf = b buf);

end;
if not same or not EOF(a file)

or not EOF(b_file)
then WRITELN('files different')
else WRITELN('files same');

Program 23

Note that the files are declared without a type. The block 110
intrinsics can handle only untyped files. As the comment at the
beginning of the program indicates, the external files can be of
any kind.

The third parameter to BLOCKREAD is the number of blocks to
transfer. The BLOCKREAD function returns the number of
blocks that actually were transferred. If this number is not equal
to the parameter, then something went wrong. We infer from this
that the files are not the same.

For more information about block 110, refer to Part 1, Chapter 7.

DEVICE I/O

Device 110 is used for efficiency, or when direct control of a
peripheral device is required. The UCSD intrinsics that perform
device 110 are all described in Part 1, Chapter 7.

Program 24 copies all of track 0 from one disk to another. On
many implementations of the p-System, this track contains the
system bootstrap program (and nothing else):

program Boot_Copy;

const

var

sectors_ per track = 26;
bytes_per sector = 128;

i: INTEGER;
buf: packed array[l..bytes_per_sectorl of CHAR;

4-27

begin
WRITELN;
WRITELN('Bootstrap Copy Program');
WRITELN;
WRITELN('
WRITELN('
WRITELN;
WRITE('
READLN;

place source disk in drive 4');
and destination disk in drive 5');

press < return> to continue --'I;

for i: = 1 to sectors_ per _track do
begin

UNITREAD(4,buf,O,i -1,2);
UNITWRITE(5,buf,O,i -1,2);

end;
WRITELN;
WRITELN(' copy complete');

end.

Program 24

The parameters to UNITREAD and UNITWRITE indicate:

• Ahe device number

• The memory buffer

• The number of bytes to transfer (has no ,meaning when the
transfer is in physical sector mode)

• The block number (or sector number, III physical sector
mode)

• The mode (2 indicates physical sector mode)

This program will only work if both disks have the same format.
The format is hard coded in the form of constants. For the pro­
gram to run with disks of a different format, the values of
sectors_per_track and bytes_per_sector would have to be
changed.

Please note that this program is shown as a demonstration only,
and is not meant to be used with your Texas Instruments Profes­
sional Computer.

4-28

5

Concurrency

Code is said to execute concurrently when it runs at the same
time as another piece of code. In UCSD Pascal, a routine called a
process can be run concurrently with the main program and other
processes. For concurrent execution to truly happen, each pro­
cess must have its own processor. Since the p-System runs on
only one processor, concurrent execution must be simulated. The
system runs only one process at a time, but co-ordinates process
execution to achieve the appearance of concurrency.

On hardware with multiple processors, concurrency can be a
means of speeding up execution. This is not the case with the
p-System. Because of the overhead involved in switching pro­
cesses, using concurrency can even slow a program down some­
what. But concurrent algorithms can greatly improve the
conceptual organization of a program, and should not be over­
looked. Concurrency can be especially useful for systems pro­
gramming, I/O handling, and interrupt handling.

Concurrency is not available in standard Pascal. It is described in
Part 1, Chapter 9.

A process is not called. An instance of a process is started by a
call to the intrinsic START. The same process can be started a
number of times; each time, a new instance of the process is
begun.

When a process is STARTed, it is given a unique value of the type
PROCESSID. The program can examine this value, but cannot
change it. A START process is also given a stack of its own on
the heap and a priority. The priority is an integer in the range
0 .. 255.

A call to START may specify the size of the process's stack, and
the process 's priority. The default stack size is 200 words, and the
default priority is 128.

5-1

Once a START process begins, it either runs to completion, runs
until it must wait for another process to do something, or runs
until it is interrupted. When one of these events happens, the
processor is given to the waiting process with the highest
priority.

It is important that a process be able to communicate with other
processes in order to synchronize activity and ensure that one
process does not interfere with another 's operations. Process
communication is accomplished with SEMAPHOREs and the
intrinsics SIGNAL and WAIT.

A semaphore consists of a count, which is a positive integer
value, and a queue of processes that are waiting for that sema­
phore. If the count equals zero, a process waiting for the sema­
phore cannot run.

Before a semaphore may be used, it must be initialized by a call to
the intrinsic SEMINIT. For example:

SEM INIT(my _turn, 1):

The first parameter is the name of the semaphore, the second is
its count.

Once a semaphore has been initialized, two or more processes can
use it to co-ordinate their execution. The intrinsic procedures that
allow this are:

• WAIT(sem)
If sem is available (count > 0) then decrement count and
keep executing, otherwise wait until the count> O.

• SIGNAL(sem)
If count = 0 and a process is waiting, then start another
process, otherwise increment count.

The initial value of a semaphore's count can be thought of as the
number of resources the semaphore controls. A process WAITing
for a semaphore only stops executing if count = O.

5-2

It is common to initialize a semaphore's count to 0 or 1. This
implies that only one process at a time can use the semaphore's
resource. A semaphore with an initial count of 1 or 0 is often

~ called a Boolean semaphore.

One important use of Boolean semaphores is to ensure the mutual
exclusion of processes handling one resource. Suppose we have a
number of processes that all use the printer. Only one process
may do so at a time. We declare a semaphore printer_ avail, and
initialize it with:

SEMINIT(printer_avaiI. 1);

In each process, we bracket the printer-driving code with WAIT
and SIGNAL:

W AIT(printer_avail);
{code that uses the prin ter}
SIGNAL(printer_avail);

This ensures that no two processes will use the printer at the
same time. A portion of code that is protected against interfer­
ence in this way is called a critical section.

Boolean semaphores can also be used to synchronize the activity
of two co-operating processes (coroutines, as opposed to subrou­
tines). In the following sample program, there is a process called
Player. Player is STARTed twice, and each instance of Player
plays one side of a simple two-person game.

program Nim;
const

stack size = 2000;
pile_max = 10;

type

var

pos_int = O .. MAXINT;
pile_ range = O .. pile max;

turn_a,turn b: SEMAPIIOHE;
pid a,pid_b: PHOCESSID;
pile: array[pile range] of pos int;
num piles: pile range;

5-3

5-4

function Random(lob,hib: INTEGER): INTEGER;
{ Random returns a random number between

lob (low bound) and hib (high bound). }
begin

Random:= (lob+hib) div 2;
end; {Random}

functionOdd_ Int.(a,b: pos_int): pos_ int;
{ Odd_Int returns the exclusive-or of a and b. }
begin

Odd_ Int:= ORD((ODD(a) and not ODD(b))
or (ODD(b) and not ODD(a)));

end; {Odd_ Int 1

{======= === Player ========= = }

process Player

var

(name: STRING; var my_turn,
your_turn: SEMAPHORE);

Player mimics a player of the game of Nim.
Player is an expert at the game of Nim, and will force a
win whenever it is possible to do so. }

i,p,ones,all,x: pile_ range;
sum,c: pos_ int;
choice: array[pile_range] of pile_range;

begin
repeat

WAIT(my_ turn);

ones:= 0; all: = 0; sum:= 0;
for i:= 1 to num_ piles do

if pile[i] > 0 then
begin

sum: = Odd_ Int(sum,pile[i]);
all:= all+ 1; choice[all]:= i;
if pile[i] = 1 then ones:= ones+ 1;
if pile[i] > 1 then p:= i;

end:

{ only one pile non-one}
if all-ones = 1 then

if ODD(ones)
then c:= pile[pj
else c:= pile[pj-1

else if sum < > 0 then
{ can pick winning move}

begin
x:= 0;
for i:= 1 to num_ piles do

if pile[iJ > Odd_ Int(sum,pile[ij) then
begin

x:= x+1;
choice[x]:= i;

end;
p:= choice[Random(l,x)];
c:= pile[pJ - Odd_ Int(sum,pile[p]);

end
else if all > 0 then

{must make random move}
begin

p: = choice[Random(1 ,all)];
c:= Random(l,pile[p]);

end;

if all < > 0 then
begin

if (all = 1) and (ones = 1)
then WRITELN(name,': I lost')
else WRITELN(name,': pile=',p,',

count=',c);
pile[pj:= pile[pj - c;

end;

SIGNAL(your turn);

until all = 0;
end; {Player}

5-5

begin
WRITE('enter piles: ');
num _ piles: = 0;
while not EOLN and (num_piles < pile_max) do

begin
num_piles:= num_~ les+ 1;
REAQ(pile[num piles]);

end;
SEMINIT(turn_a,1);
SEM INIT(turn b,O);
START(Player('player a',turn_a,turn_b),

pid_ a,stack_size);
START(Player('player b', tur"-b, turn_a),

pid b,stacLsize);
end.

Program 25

The game this program plays is called Nim. The rules of Nim are
simple; there are a number of piles (up to ten) of matchsticks (the
quantity is represented by a positive integer). At each turn, a
player can remove as many matchsticks as he desires from a sin­
gle pile. The player who is forced to remove the last matchstick
loses the game.

The process Player is an expert at Nim. The main program
STARTs two instances of this process, and they play against
each other. Each instance does its best to win. The turns are coor­
dinated by the semaphores my_turn and your_ turn.

The semaphores are needed to ensure that each instance plays in
its proper turn. The turns are needed to ensure that the pro­
cesses' resource, the array of matchstick piles, is not tampered
with out of sequence.

5-6

The user determines the number of piles and the quantity of
matchsticks in each. The first thing the main program does is
read this data as a single input line of integers. Then it initializes
the appropriate semaphores and starts the two instances of
Player. Here is output from a sample run of Nim:

enter piles: 7 12 9
player a: pile=l, count=2
player b: pile=2, count=6
player a: pile=3, count=6
player b: pile=2, count=3
player a: pile=l, count=5
player b: pile = 2, count=2
player a: pile=3, count=3
player b: I lost

Each player waits on my_turn and signals your_turn. Note
that these are local to Player, and for the scheme to work, they
must be called with the GLOBAL semaphores turn_a and
turn_b. The main program must initialize turn_a and turn_b
correctly.

A single semaphore would not work; only one process at a time
would modify the piles, but there would be no guarantee that the
turns alternated. The outcome of the game would be at the whim
of the system's process queuing.

The purpose of Odd_lnt is to do a Boolean XOR of its two pa­
rameters. All the piles are summed in this way; the result is an
integer value where a 1 bit represents an odd number of l's in
that column. A winning move is one that makes all of the column
sums even.

5-7

The player's strategy (which is optimal) is as follows:

• If only one pile contains more than one matchstick, then
make an odd number of piles by taking either the whole pile,
or all but one.

• Use odd_int to sum the piles. If its result is not 0, then
choose a move that makes it O.

• Make a random move.

Odd_Int performs a trick that we will discuss in Chapter 8. The
function Random works, but does not pick a very random num­
ber; it could be replaced with a better algorithm.

Handling events (such as interrupts) is another use for sema­
phores. A semaphore can be bound to a hardware interrupt (or
other implementation- defined event) by a call to the intrinsic
ATTACH:

A TT ACH(sem, event_number);

The event numbers that you can use on the:"Texas Instruments
Professional Computer can be found in the UCSD p-System Inter­
nal A re hi tee ture Guide .

Once a semaphore has been attached to an interrupt, the sema­
phore must remain in main memory as long as it remains
attached.

5-8

Program 26 is a simple example of a semaphore attached to the
interrupt from a hardware clock. For the purpose of this example
pretend that the appropriate event number is 5:

program Clock;

const

var

clock_ vector = 5;

s: SEMAPHORE;
pid: PROCESSID;

process tick_ tock;
begin

repeat
WAIT(s);
WRITELN('tick');
WAIT(s);
WRITELN('tock');

until FALSE;
end; {tick_ tock}

begin
SEM INIT(s,O);
A TT ACH(s, clock_ vector);
START(tick_ tock,pid,500,200);
repeat
until FALSE;

end.

Program 26

5-9

The process notes the passage of two clock ticks, and prints an
appropriate message for each. Since its statements are enclosed
in a:

repeat

until FALSE;

loop, and since the program does not terminate (it uses the same
construct), tick_tock executes indefinitely.

The endless loop construct is actually quite common when writ­
ing processes that handle events such as I/O interrupts. We want
them to continue doing their job until the program terminates or
the system halts.

The only other thing to notice about this program is that we have
given tick_tock a larger stack and a higher priority than the
defaults. Having a high priority is common for an event­
controlled process. When the event occurs, we want the process
to do its job as soon as possible, and then go back to sleep. \

5-10

6

Units and Separate Compilation

Units in UCSD Pascal are a means of separate compilation. They
can be used to:

• Create library packages which can contain both declarations
and routines

• Reduce the amount of code that needs to be compiled at one
time

• Limit the amount of code that may need to be recompiled
during maintenance

• Improve communication when more than one programmer
is working on the same project

A good example of all of these advantages is the p-System's oper­
ating system, which is an extremely large program consisting of
more than 20 units.

For a full description of units, refer to Part 1, Chapter 4. Another
example of a unit appears in Chapter 8 as Program 30.

The sample program for this chapter is a small package of rou­
tines that handles an integer stack:

interface

procedure Push(n: INTEG ER);
function Pop: INTEGER;

6-1

6-2

implementation

const
max = 100; {size of stack}

var
tos: Il\TEGER;
stack: array[l..max) of INTEGER;

procedure Error(message: §TRING);
Prints message on stack overflow
or underflow. }

begin
WRITEI,N(message);
EXIT(program);

end; {Error]

procedure Push {n: integer};
{ Pushes n on stack. }
begin

iftos> = max
then Error('stack overflow');

tos:= tos+l;
stack[tos]:= n;

end; {Push}

function Pop{: integer};
{ Pops top of stack and returns value. }
begin

if tos < 1
then Error('stack underflow');

Pop:= stack[tos);
tos:= tos-l;

end; {Pop]

begin
tos: = 0; {initialize stack}

end.

Program 27

A program that uses Stack_Ops can use Push and Pop as
though they were declared within the program. The program
cannot use objects declared within the implementation part -
the constant max, the tos and stack variables, and the procedure
Error.

In the implementation part, the headings for Push and Pop show
the parameter list and function type surrounded by comment
delimiters. This is just a memory aid for the programmer and
program reader.

The initialization code sets up the stack by setting tos (the top of
stack) to zero.

Here is a brief program that uses this unit:

program Uses_ Unit;

uses {SU Stack_ Ops.CODE} Stack_ Ops;

begin
Push(4);
Push(5);
Push(6):
WRITELN(Pop,' ',Pop,' ' ,Pop);

end.

The uses declaration must appear immediately after the program
heading. In a unit that used this unit, the uses declaration could
appear immediately after the reserved word interface or the
reserved word implementation.

If we were to change the implementation part of Stack_Ops (for
example, we recompile it with max = 500), we would not need to
recompile Uses_Unit. If we changed the interface part, on the
other hand, Uses_Unit would need to be recompiled.

6-3

When a unit is in a particular codefile (a library) other than
*SYSTEM.LIBRARY, the program may specify this with the
$U compiler option, for example:

program Uses_Unit;

{$U STACK.CODE}
uses Stack_ Ops;

For further information regarding referencing libraries, refer to
Part 1, Chapter 4, and the UCSD p-System Operating System
Reference Manual.

6-4

7

Memory Management

Under the p-System, main memory is divided into three resources
that all compete for space. These resources are as follows:

• Stack - Used for storage of static variables, expression
evaluation, and bookkeeping information for procedure and
function calls; grows from high memory toward low memory

• Heap - Used for storage of dynamic variables, and stacks
of subordinate processes; grows from low memory toward
high memory

• Codepool - Contains code segments; floats between the
stack and the heap

When no more main memory space is available, a stack overflow
error occurs (even if it is the heap that needs more space). This is a
fatal error; the system halts and then reinitializes itself. Program
results may be lost.

Remember that if you are using extended memory, the codepool
occupies a different page (64K-byte area) than the stack and the
heap. This helps protect you against stack overflow errors; it also
improves the execution speed of the p-System and many pro­
grams.

7-1

Little can be done to manage stack and heap space; internal sys­
tem structures already attempt to be space-efficient. One thing a
program can do is allocate a data buffer whose size is variable. It
can also be helpful to pack records and arrays. For example, the
declaration:

example: array [1..1000] of BOOLEAN;

requires 1,000 words, while the declaration:

example: packed array [1..1000] of BOOLEAN;

requires only 63 words.

Often, the algorithm that the programmer chooses determines
how efficient the program will be, in terms of both time and
space.

In the codepool, the unit of code is the segment . Only the seg­
ment that is currently executing need be in memory, and the pro­
grammer can take care that other segments are swapped out and
do not occupy space that may be needed for data.

In general, a single program compilation creates a single code
segment. Likewise, a unit occupies a single segment. The pro­
grammer can place a routine in a code segment of its own by pre­
ceding the routine heading with the reserved word segment. For
example:

~egment procedure memory_ hog;

~egment function save space (size: INTEGER): INTEGER;

segment process seldom;

Since a segment routine must be read into memory whenever it is
needed, routines that are declared as segments should be routines
that are rarely called (perhaps just once per execution, or not dur­
ing every execution). Initialization and termination routines are
good candidates for this.

7-2

The programmer can further control the residence of segments by
using the following UCSD intrinsic procedures:

• MEMLOCK(seg_names)
Seg_names is a string of segment names, separated by
commas; segments that are named cannot be swapped out

• MEMSW AP(seg_names)
Allows the segments named in seg_names to again be
swapped out to disk

MEMLOCK can speed up a program, by forcing a segment that
is frequently used to remain in main memory. Unless
MEMLOCK is used, any segment is swappable. The programmer
should be careful to call MEMSW AP once a locked segment is no
longer needed; otherwise, it will remain in memory and can cause
a stack overflow.

The name of a segment is the name of the program, unit, or rou­
tine (only the first eight characters are used).

When a program must allocate a large data buffer, but is
intended to run on many different machines whose memory
requirements will differ, it is possible to make the buffer variable
in size by using the intrinsics V ARV AIL and V ARNEW. This is
illustrated by the next program:

program Myprog;

const
res_ segs = 'myprog.fileops,pascalio';
slop = 2000;

type

var

byte = 0 .. 255;
large buf = arrayI0 .. 32000) of INTEGER;

buf: /\ large buf;
buf_size: I ;\;TEQER;

7-3

begin

end.

buf_size:= VARAVAIL(res_ segs) - slop;
if V ARNEW(buf,buf_ size) = 0

then Error('problem in allocating buffer');

A buffer of bur size words has been allocated.
bufJ\[O] through buf [buf_size - 1] may

now be accessed. }

Program 28

The intrinsic function V ARA V AIL is passed a list of segment
names. It returns the number of words of memory that would be
available if main memory were to contain both the segments
named in the list, and any other segments that have already been
MEMLOCKed.

In Program 28, V ARA V AIL is passed the string myprog,
fileops,pascalio. Myprog is the program itself. FILEOPS and
PASCALIO are operating system segments that are frequently
called. If the buffer we wish to allocate were to prevent any of
these segments from being loaded into memory, the program
would have to halt with a stack overflow.

The buffer is allocated the number of words returned by V ARA­
V AIL, plus a slop of 2,000 words. The slop allows for other uses
of memory such as data space for the rest of the program, operat­
ing system overhead that we cannot predict, processes that
might compete with Myprog, and so forth.

The intrinsic function V ARNEW(POINTER, COUNT) simply
does a NEW(POINTER) on count words. It returns the number
of words allocated. If it cannot allocate the full count words, it
returns zero.

7-4.

We provide for a very large data buffer by the declaration:

large_ buf = array[O .. 32000j of INTEGER;

Note that this must be a type declaration. If it were a variable
declaration, the entire area would be allocated. Instead, we
declare:

buf: A large_ buf;

This allows us to allocate as much or as little as we want.

Note that we must reference the array as a dynamic variable, for
example:

buf A[O]:= 1;

7-5/7-6

8

Advanced Techniques

Character Intrinsics 8-3

Record Variants 8-4

Memory Addresses 8-5

ORD (ODD) 8-9

Conclusion .. 8-10

8-1/8-2

This chapter describes some techniques that are more powerful
than the (relatively) straightforward programming practices we
have already discussed. These techniques are crucial to systems
programmers and often to programmers of large applications. In
general, they provide more efficient ways of solving certain prob­
lems. Some of them might be considered dirty tricks.

The chief danger of these techniques is that they allow the pro­
grammer to write code that is almost unintelligible. This defeats
most of the reasons for using Pascal in the first place! Another
danger is that there is little error checking, so the programmer
must be quite cautious. Finally, because these techniques usually
depend on some detail of implementation, they are not likely to be
portable to other implementations of Pascal.

CHARACTER INTRINSICS

The UCSD intrinsics MOVELEFT, MOVE RIGHT,
FILLCHAR, and SCAN are provided for manipulating arrays of
characters-often large ones. In fact, they do no type checking on
their arguments, so they can be used with any type of data. They
are often used in conjunction with the SIZEOF intrinsic.

For example, FILLCHAR can be used to quickly initialize an
entire array:

FILLCHAR(A,SIZEOF(A),O);

This would fill the array A with zeroes.

In another example, MOVELEFT (or MOVERIGHT) can be
used to assign a value of one type to a value of any other type:

type
I: INTEGER;

~ TWOBYTES: packed array [0 .. 1] of 0 .. 255;

MOVELEFT(I,TWOBYTES,2);

8-3

This would assign the integer I to TWOBYTES, which is a pair of
bytes. This would allow the program to examine the high byte
and the low byte of the integer individually.

This technique requires both caution and a knowledge of how the
data types are represented internally (see Part 1, Chapter 3).

Further examples of these intrinsics appear in Program 30.

RECORD VARIANTS

Variant fields of a record can be used to convert data from one
type to another. This can be useful when Pascal does not support
a particular type conversion. A byte or a word can be constructed
out of individual sub-fields. This is especially useful when the full
word is to be used on the machine (or P-machine) level (for exam­
ple, the word is used as a single instruction or a memory address).

Program 29 is a procedure that shows a variant field used to con­
struct a hexadecimal value from an integer:

procedure Write_Hex(n: INTEGER);
{ Writes n as 4 hex digits. }

8-4

var
i: INTEGER;
hex: packed array[0 .. 15J of CHAR;
both: record case BOOLEAN of

TRUE: (w: INTEGER);
FALSE: (h: packed array[1..4] of 0 .. 15);

end; {bothJ
begin

hex:= '0123456789ABCDEF';
with both do

begin
w:=n;
for i:= 4 downto 1 do

WRITE(hex[h[ill);
end;

end; [Write_ Hex}

Program 29

The variant field describes a memory location as both an integer
(16 bits), and a packed array of four 4-bit fields.

Each 4-bit field is directly converted to a hex digit by using its
value to index the array hex.

MEMORY ADDRESSES

Pointers are implemented as 16-bit memory addresses. By using
them in a record variant as previously described, they can be
made to point at anything in memory. This is an important tech­
nique in systems programming. Its pitfalls should be apparent.

Program 30 is a screen-handling unit for a computer that has a
memory- mapped screen. The screen buffer is located at 1000H.
Each byte in the buffer represents a character on the screen. All
we need to do is update the buffer, and the hardware refreshes the
screen. The screen displays 24 * 80 characters, so the program
represents the buffer as an array of the same size.

unit Screen_ Routines;

interface

procedure Clear_ Screen;
procedure Set Cursor(r,c: INTEGER);
procedure Write Ch(ch: CHAR);
procedure New Line;
procedure Back Space;

8-5

8-6

implementation

const
row_max = 23;
col_max = 79;

type
screen_ map = packed array

[O .. row_ max,O .. col_ max] of CHAR;
var

screen: 1\ screen_map;
row, col: INTEG ER; {cursor position}

procedure Clear_Screen;
{ Fills screen with spaces and homes cursor. }
begin

FILLCHAR(screen /\, SIZEOF(screen_ map),' ') ;
row:= 0; col:= 0;

end; { Clear_ Screen}

procedure Scroll_Screen;
{ Scrolls screen up one line. }
begin

MOVELEFT(screen /\[1,0],
screen /\ [O,OJ,row _max*(col_max+ 1));
FILLCHAR(screen/\ [row_ max,OJ, col_max
+1,");
row: = row_max;

end;

procedure Set_Cursor{ r,c: integer};
{ Sets random cursor position. }
begin

row:= r;
col:= c;

end; {Set_Cursor}
procedure Write_Ch{ch: char};

{ Writes character on screen. }
begin

screen A[row,col]: = ch;
col:= (col+l) mod (coLmax+l);
if col = 0 then

begin
row:= (row+ 1) mod (row_max + 1);
if row = 0

then ScrolLScreen;
end;

end; {Write_Ch}

procedure New_Line;
{ Performs carriage-return and

line-feed on screen. }
begin

col:= 0;
row: = (row + 1) mod (row_max + 1);
if row = 0

then Scroll_Screen;
end; {New_Line}

procedure Back_Space;
{ Moves cursor back one space on line}
begin

if col> 0
then col:=col-l;

end; {Back_Space}

8-7

procedure Init_Screen;
{ Sets screen to point to buffer, and clears screen. }
var

meI1L-ptr: record case BOOLEAN of
TRUE: (i: INTEGER);
FALSE: (p: 1\ screeILmap);

end;
begin

mem_ptr.i:= 4096; {address of buffer = 1000H}
screen:= meI1L-ptr.p;
Clear_Screen;

end;

begin
Init_Screen;

end.

Program 30

The only place in this unit where we use tricks with pointers is in
the procedure Init_Screen. The record variant is used to make an
absolute address (the field i) equivalent to a pointer (p). The
pointer to the screen buffer (screen) is then initialized to the value
ofp.

In the procedure Clear_Screen, we use FILLCHAR to quickly
fill the entire screen with blanks. In the procedure Scroll_Screen,
we call MOVELEFT to move the screen up one line, and then call
FILLCHAR to set the last line to blanks. If we wanted a proce­
dure that scrolled the screen down one line, we could use
MOVERIGHT in a manner similar to MOVELEFT.

The character intrinsics manipulate the array much faster than
the usual assignments within for loops would. They are ideal for
situations, like screen display, where speed is truly important.

8-8

ORD(ODD)

Since Booleans are represented as 16-bit quantities, and since
comparison operators only test the low-order bit of a Boolean
value, the ODD intrinsic actually does nothing more than allow
an integer to be treated as a Boolean. In a similar fashion, the
ORD intrinsic merely allows its parameter to be treated as an
integer, since this is the internal representation of all scalar
types.

These facts can be useful, because the operators and, or, and not
actually do logical operations on full words; each bit is set appro­
priately.

The combination of the ODD function and the Boolean operators
allow bit-wise operations on integer values.

For example, the following expression has the effect of masking I
down to its four low-order bits. The ORD intrinsic allows the
result to again be treated as an integer.

1:= ORD(ODD(I) and ODD(15));

We used this technique in Program 25 (and promised to explain it
later) because our strategy for Nim required us to perform a bit­
wise XOR on integers:

function Odd_ Int(a,b: pos.-int): pos.-int;
{ Odd_ Int returns the exclusive-or of a and b. }
begin

Odd_ Int:= ORD((ODD(a) and not ODD(b))
or (ODD(b) and not ODD(a)));

end; {Odd_ Int}

The expression is complicated because there is no single operator
that performs a bit-wise exclusive-or.

8-9

CONCLUSION

This is the end of the Programmer's Guide. While we hope that it
has helped you, we hope that it is not the end of your study.

Among the many books available, one recommended most highly
is Niklaus Wirth's Algorithms + Data Structures = Programs
(Englewood Cliffs, NJ: Prentice-Hall, Inc., 1976).

It seems that the most successful and innovative software (in­
cluding languages and operating systems) has been invented, not
with the grandiose aim of solving all programming problems for
all time, but with the modest aim of solving a particular problem
in the most elegant way possible. Pascal itself was invented for
the purpose of teaching programmers. In light of this, we encour·
age you to apply your skills toward problems that interest you,
and to approach them in a spirit of craftsmanship.

8-10

A

Lexical Standards

THE CHARACTER SET

The letters A..Z, a .. z, the digits 0 .. 9, the special characters:

() [] { } + - * / <=> .. . , ,

as well as blanks (' ') and < return> .

The other printable characters are:

! @ #$% & ? 1\ " , 'V

SPECIAL SYMBOLS

. , '()[]{}+ - * < > 1\

< = < > > = (* *) ***

A-I

RESERVED WORDS

An asterisk indicates reserved words not in standard Pascal.

and goto record
array repeat

if
begin *implementation *segment

in *separate
case *interface set
const

label then
div to
do mod type
downto

not *unit
else until
end of *uses

*external or
var

file packed
for procedure while
forward *process with
function program

IDENTIFIERS

• Can contain letters, digits, or the underscore (_)

• The first character must be a letter

• The underscore is ignored

• Uppercase and lowercase are equivalent

• Only the first eight characters determine uniqueness

• Cannot cross a line boundary

A-2

COMMENTS

• Are delimited by { } or (* *)

• Delimiters cannot be mixed

• Comments with the same kind of delimiter cannot be nested

• Comments with different kinds of delimiter can be nested

• A comment can be longer than one line

• A comment with $ immediately after the left delimiter indi­
cates a compiler option

PREDECLARED IDENTIFIERS

An asterisk indicates predeclared identifiers not in standard
-------- Pascal.

ABS
ARCTAN

*ATAN
*ATTACH
*INSERT
*BLOCKREAD
*BLOCKWRITE

BOOLEAN

CHAR
CHR

*CLOSE
*CONCAT
*COPY
COS

*DELETE
DISPOSE

EOF
EOLN

*EXIT
EXP

FALSE
*FILLCHAR

GET
*GOTOXY

*HALT

*IDSEARCH
INPUT
INTEGER
INTERACTIVE

*IORESULT

*KEYBOARD

*LENGTH
LN

*LOG

*MARK
MAXINT

*MEMAVAIL
*MEMLOCK
*MEMSWAP
*MOVELEFT
*MOVERIGHT

NEW
NIL

*ODD
ORD
OUTPUT

A-3

PAGE *SEMAPHORE *UNITBUSY
*PMACHINE *SEMINIT *UNITCLEAR
*POS *SIGNAL *UNITREAD
PRED SIN *UNITST A TUS

*PROCESSID *SIZEOF *UNITWAIT
PUT SQR *UNITWRITE

*PWROFTEN SQRT
*START *VARAVAIL

READ *STR *V ARDISPOSE
READLN *STRING *VARNEW
REAL SUCC

*RELEASE *WAIT
RESET TEXT WRITE
REWRITE *TIME WRITELN
ROUND *TREESEARCH

TRUE
*SCAN TRUNC
*SEEK

A-4

B

UCSD Pascal Syntax

COMPARISONS

Comparisons are operators that return the type BOOLEAN.

Comparisons on ordered types:

Equal to
< > Not equal to
> Greater than
> = Greater than or equal to
< Less than
<= Less than or equal to

Ordered types include all numeric types, all scalar and sub range
types, the type STRING, and packed array of CHAR.

For BOOLEAN values, these comparisons may be interpreted as:

Equal to
< > Not equal to or XOR (exclusive or)
< = Implies
> Does not imply
> = Is implied by
< Is not implied by

Comparisons on unpacked records or arrays of the same type and
dimensions:

Equal to
< > Not equal to

B-1

Comparisons on sets:

= Equal to
< > Not equal to
> = Is a superset of
< = Is a subset of
in Membership

OPERATIONS

JNTEGER operations:

+

*
div
mod

Addition
Subtraction
Multiplication
Integer division
Remainder after division

The second operand of a div or mod cannot be zero.

*, div, and mod have precedence over + and -.

REAL operations:

+

*

Addition
Subtraction
Multiplication
Real division

The second operand of a / (slash) cannot be zero.

The * (asterisk) and / (slash) have precedence over the + and -
(plus and minus operations).

Long INTEGER operations are the same as for INTEGER,
except that mod is not allowed.

B-2

BOOLEAN operations:

not
and
or

Negation (a unary operator)
Conjunction
Union (inclusive or)

not has precedence over and, which has precedence over or.

Set operations:

+ Union
Intersection

* Difference

The * (asterisk) has precedence over the + and - (plus and
minus) operation.

STATEMENTS

A statement can be a null statement. Among other things, this
accounts for the extra semicolon at the end of a compound state­
ment or the statement list in repeat.

assignment-statement = variable-name ":=" expression

case-statement =
"case" expression "of"

constant-list ":" statement
{ ";" constant-list ":" statement} [";"]

"end"

compound-statement =
"begin" statement { ";" statement} "end"

for-statement =
"for" var-id ":=" start-value "to" stop-value

"do" statement

"for" var-id ":=" start-value "downto" stop-value
"do" statement

B-3

goto-statement = "goto" label

if-statement =
"if" Boolean-expression "then" statement
["else" statement]

procedure-call = procedure-name ["(" parameter-list ")" 1

repeat-statement =
"repeat"

statement { ";" statement}
"until" Boolean - expression

while-statement =
"while" Boolean-expression "do" statement

with - statement =
"with" record-id-list "do" statement

B-4

RAILROAD DIAGRAMS

These figures are a concise representation of UCSD Pascal
syntax.

< CO M P ILATION >

220 4 0 0 2

UNIT
DEFINITION

USES
CLAUSE

UNIT
DEFINITION

B-5

< UNIT DEFINITION >

2 28 4003

B-6

UNIT
loENTIF IER

<BLOCK>

2284004

B-7

2284 005

B-8

< INTERFACE PART>

USES CLAUSE

CONSTANT
DEFINITION

TYPE
DEFINITION

VARIABLE
DECLARATION

ROUTINE
HEATING

< USES CLAUSE>

UNIT
IDENTIFIER

< IMPLEMENTATION PART >

1
IMPLEMENTATI~

1
USES CLAUSE

1
LABEL

DECLARATION

1
CONSTANT
DEFINITION

1
TYPE

DEFINITION

~
VARIABLE

DEC LARAT ION

~
ROUTINE

1

<ROUTINE HEADING>

< LABEL DECLARATION>

<CONSTANT DEFINITION>

2284006

B-9

< T YP E DEF I NIT ION>

ID E NTIFI E R TYPE

< VAR IA BLE DECLARATION>

TYP E

2284007

B-IO

< TYJ-> E . ·

2 ZB.\ 00 A

B-l1

< "- I E L O L IS T >

< S I MPL E TYPE >

2 28 4 009

B-12

< ROUTINE>

2284010

B-13

B-14

< EXP R ESS I O N >

< SIMPL E E X PR ESS ION>

< PARAMETER LI S T >

2 2 B4 1) 1 ?

B-15

< CONSTANT >

< UNSIGNED NUMBER>

2284 013

B-I6

UNSIGNED
INTEGER

CON STANT
IDENTIFIER

UNSIGNED
NUMBER

UNSIGNED
INT EGE R

<FACTOR>

< TERM>

FACTOR

21fl<10 14

B-17

< UNS I G N ED INTEGER ">

< I NDENT I FI E R >

NO T E:

THE UN D ERSCORE CHARAC T ER
S IGN I F ICANT

< UNS IGNED CONSTAN T >

2 28 40 1 5

B-18

I S ACCEP T ED B UT NOT

CON S T ANT
I DENT I F I ER

uN S IGN ED
NUMB E R

c

Intrinsics

For your reference, here is an alphabetical list of the intrinsic pro­
cedures available in UCSD Pascal, along with the parameters
they require (optional parameters are enclosed in brackets: []).

ABS(X)
ARCTAN(X)
ATAN(X)
ATT ACH(SEM, 1_ VEC)

BLOCKREAD(FILENAME, BUFFER,
COUNT [, RELBLOCK])

BLOCKWRITE(FILENAME, BUFFER,
COUNT [, RELBLOCK])

CHR(I)
CLOSE(FILENAME [, OPTION])
CONCAT(SOURCEl, SOURCE2, ... , SOURCEn)
COPY(SOURCE, INDEX, SIZE)
COS(X)

DELETE(DESTINATION, INDEX, SIZE)
DISPOSE(POINTER {, FIELD_ TAG })

EOF [(FILENAME)]
EOLN [(FILENAME)]
EXIT(program)
EXIT(PROGRAM_ NAME)
EXIT(ROUTINE_N AME)
EXP(X)

FILLCHAR(DESTINATION, LENGTH, CHARACTER)

G ET(FILEN AME)
GOTOXY(X, Y)

C-l

HALT

INSERT(SOURCE, DESTINATION, INDEX)
IORESULT

LENGTH(SOURCE)
LN(X)
LOG (X)

MARK(POINTER)
MEMAVAIL
MEMLOCK(SEG_LIST)
MEMSW AP(SEG_LIST)
MOVELEFT(SOURCE, DESTINATION, LENGTH)
MOVERIGHT(SOURCE, DESTINATION, LENGTH)

NEW(POINTER {, FIELD_TAG})

ODD(I)
ORD(SCALAR_ VALUE)

PAGE(FILENAME)
POS(PATTERN, SOURCE)
PRED(SCALAR_ VALUE)
PUT(FILEN AME)
PWROFTEN(I)

READ([FILENAME ,]VARl, VAR2, "" YARn)
READLN([FILENAME ,] VARl, VAR2, .. " YARn)
RESET(FILENAME [, EXT_FILE])
REWRITE(FILENAME [, EXT_FILE))
RELEASE(POINTER)
ROUND(X)

SCAN(LENGTH, < partial expression> , SOURCE)
SEEK(FILENAME, INDEX)
SEMINIT(SEM, COUNT)
SIGNAL(SEM)
SIN(X)
SIZEOF(V AR_OR_TYPE_ID)
SQR(X)

C-2

SQRT(X)
START« process call> [, PROC_ ID [, STACKSIZE [,
PRIORITY]]])
STR(I, STR)
SUCC(SCALAR_ VALUE)

TIME(HIWORD, LOWORD)
TRUNC(X)

UNITCLEAR(DEVICE_NUMBER)
UNITREAD (DEVICE_NUMBER, BUFFER, LENGTH [,

[BLOCKNUMBERj , FLAG])
UNITWRITE(DEVICE_NUMBER, BUFFER, LENGTH [,

[BLOCKNUMBERj , FLAGj)

V ARA V AIL(SEG_ LIST)
V ARDISPOSE(POINTER, COUNT)
V ARNEW (POINTER, COUNT)

WAIT(SEM)
WRITE([FILENAME ,j VALl, VAL2, , .. , VALn)
WRITELN([FILENAME ,j VALl , VAL2, .. " VALn)

C-3/C-4

D

Syntax Errors

1: Error in simple type
2: Identifier expected
3: unimplemented error
4: ')' expected
5: ':' expected
6: Illegal symbol (terminator expected)
7: Error in parameter list
8: 'OF' expected
9: 'I' expected

10: Error in type
11: 'l' expected
12: 'l' expected
13: 'END' expected
14: ';' expected
15: Integer expected
16: '=' expected
17: 'BEGIN' expected
18: Error in declaration part
19: error in < field-list>
20: ',' expected
21: ,*, expected
22: 'INTERFACE' expected
23: 'IMPLEMENTATION' expected
24: 'UNIT' expected

50: Error in constant
51: ': =' expected
52: 'THEN' expected
53: 'UNTIL' expected
54: 'DO' expected
55: 'TO' or 'DOWNTO' expected in for statement
56: 'IF' expected
57: 'FILE' expected
58: Error in < factor> (bad expression)
59: Error in variable

D-l

60: Must be of type 'SEMAPHORE'
61: Must be of type 'PROCESSID'
62: Process not allowed at this nesting level
63: Only main task may start processes

101: Identifier declared twice
102: Low bound exceeds high bound
103: Identifier is not of the appropriate class
104: Undeclared identifier
105: sign not allowed
106: Number expected
107: Incompatible sub range types
108: File not allowed here
109: Type must not be real
110: < tagfield> type must be scalar or sub range
111: Incompatible with < tagfield> part
112: Index type must not be real
113: Index type must be a scalar or a subrange
114: Base type must not be real
115: Base type must be a scalar or a subrange
116: Error in type of standard procedure parameter
117: Unsatisfied forward reference
118: Forward reference type identifier in var declaration
119: Re-specified params not OK for a forward procedure
120: Function result type must be scalar, subrange or pointer
121: File value parameter not allowed
122: A forward function's result type can't be re-specified
123: Missing result type in function declaration
124: F-format for reals only
125: Error in type of standard procedure parameter
126: Number of parameters does not agree with declaration
127: Illegal parameter substitution
128: Result type does not agree with declaration
129: Type conflict of operands
130: Expression is not of set type
131: Tests on equality allowed only
132: Strict inclusion not allowed
133: File comparison not allowed
134: Illegal type of operand(s)
135: Type of operand must be Boolean
136: Set element type must be scalar or subrange

D-2

137: Set element types must be compatible
138: Type of variable is not array
139: Index type is not compatible with the declaration

-------.. 140: Type of variable is not record
141: Type of variable must be file or pointer
142: Illegal parameter solution
143: Illegal type of loop control variable
144: Illegal type of expression
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar
149: Index type must be integer

150: Assignment to standard function is not allowed
151: Assignment to formal function is not allowed
152: No such field in this record
153: Type error in read
154: Actual parameter must be a variable
155: Control variable cannot be formal or non-local
156: Multidefined case label
157: Too many cases in case statement
158: No such variant in this record
159: Real or string tagfields not allowed
160: Previous declaration was not forward
161: Again forward declared
162: Parameter size must be constant
163: Missing variant in declaration
164: Substitution of standard proc!func not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
168: Undefined label
169: Error in base set
170: Value parameter expected
171: Standard file was re-declared
172: Undeclared external file
173: FORTRAN procedure or function expected
174: Pascal function or procedure expected
175: Semaphore value parameter not allowed

D-3

182: Nested UNITs not allowed
183: External declaration not allowed at this nesting level
184: External declaration not allowed in INTERFACE section
185: Segment declaration not allowed in INTERFACE section
186: Labels not allowed in INTERFACE section
187: Attempt to open library unsuccessful
188: UNIT not declared in previous uses declaration
189: 'USES' not allowed at this nesting level
190: UNIT not in library
191: Forward declaration was not segment
192: Forward declaration was segment
193: Not enough room for this operation
194: Flag must be declared at top of program
195: Unit not importable

201 : Error in real number-digit expected
202: String constant must not exceed source line
203: Integer constant exceeds range
204: 8 or 9 in octal number
250: Too many scopes of nested identifiers
251: Too many nested procedures or functions
252: Too many forward references of procedure entries
253: Procedure too long
254 : Too many long constants in this procedure
256: Too many external references
257: Too many externals
258: Too many local files
259: Expression too complicated

300: Division by zero
301: No case provided for this value
302: Index expression out of bounds
303: Value to be assigned is out of bounds
304: Element expression out of range
398: Implementation restriction
399: Implementation restriction

400: Illegal character in text
401: Unexpected end of input
402: Error in writing code file , not enough room
403: Error in reading include file

D·4

404: Error in writing list file, not enough room
405: 'PROGRAM' or 'UNIT' expected
406: Include file not legal
407: Include file nesting limit exceeded
408: INTERF ACE section not contained in one file
409: Unit name reserved for system
410: disk error

500: Assembler error

D-5/D-6

E

American Standard Code for
Information Interchange

(ASCII) Characters

000000 NUL 3204020 SP 6410040 @ 9614060'
100101 SOH 33041 21 ! 65101 41 A 97 141 61 a
200202 STX 3404222 .. 6610242 B 9814262 b
300303 ETX 3504323 # 6710343 C 9914363c
400404 EOT 3604424 $ 6810444D 10014464 d
500505 ENQ 3704525 % 6910545E 101 14565 e
600606 ACK 3804626 & 7010646 F 10214666 f
700707 BEL 3904727' 7110747 G 10314767 g
801008BS 4005028 (7211048 H 10415068 h
9011 09 HT 4105129) 73 111 49 I 10515169 i
10 012 OA LF 42052 2A * 741124AJ 1061526Aj
11 013 OB VT 43053 2B + 75113 4B K 107153 6B k
12014 OC FF 44054 2C. 761144CL 108154 6C I
13015 OD CR 45055 2D- 771154DM 109155 6D m
14016 OE SO 46056 2E . 78116 4E N 110156 6E n
150170FSI 470572F I 791174FO 1111576Fo
1602010 DLE 48060300 8012050 P 11216070 P
17021 11 DC1 4906131 1 81 121 51 Q 113161 71 q
1802212 DC2 50062322 8212252R 11416272 r
1902313 DC3 51063333 8312353 S 11516373 s
2002414 DC4 52064344 8412454 T 11616474 t
2102515 NAK 53065355 8512555 U 11716575u
2202616 SYN 54066366 8612656V 11816676 v
2302717 ETB 55067377 8712757 W 11916777 w
2403018 CAN 56070388 8813058X 12017078x
2503119 EM 57071399 8913159Y 12117179 Y
26 0321A SUB 58072 3A: 90132 5A Z 1221727Az
27 0331B ESC 59073 3B; 91 133 5B [123173 7B {
28034 lC FS 60074 3C < 921345C\ 1241747CI
29035 1D GS 61075 3D = 93135 5D 1 1251757D}
30036 IE RS 62076 3E > 941365E 126176 7E '"\...
31037 IF US 63077 3F? 95137 5F ~ 127177 7F DEL

~

E-l/E-2

Index

Page numbers in brown ink indicate pages in Part 2.

Title Page

A
ABS ... 2-9,3-14,3-18, 3-19
Adaptive Quadrature .. 3-11, 3-12, 3-15
American National Standards Institute, see ANSI
American Standard Code for Information Interchange,

see ASCII
and ... 2-7, 2-16
ANSI .. 2-3
ARCTAN ... 2-9, 3-18, 3-19

_______ array ... 1-5, 2-7, 3-10, 3-38,
3-45,3-76, 1-14, 1-15,2-15-2-17

ASCII ... 2-5, 2-11, Appendix E
Assignment ... 1-6, 3-7, 1-4, 2-3
ATAN, see ARCTAN
ATTACH ... 2-9, 3-29, 9-8, 9-9, 5-8

B
Backus-Naur Form, see EBNF
Block .. 4-7, 4-8

I/O .. 4-25, 4-27
512 bytes ... 4-25

BLOCKREAD 1-10, 2-9, 7-14, 7-15, 4-27
BLOCKWRITE .. 1-10, 2-9, 7-14, 7-15
BNF, see EBNF
BOOLEAN ... 1-4, 1-6,2-9,3-9, 1-12,

1-13, 1-19, 1-20, 1-22, 1-28, B-2
Boolean 1-11, 3-12, 3-13, 3-24-3-26, 3-75

Index-1

Title Page

C
case 2-7

record, see record, variant
Statement 6-6, 2-24
Variant, see record, variant

CHAR 1-4,2-9,3-27,3-28, 7-4, 1-20, 2-11
Character set 2-5, A-I
CHR 2-9, 3-9, 3-32, 4-4, 4-5
CLOSE .. 2-9, 7-9, 7-11, 7-12, 4-7, 4-19
Closing files, see CLOSE 7-9
Code segment 8-4
Codepool, the 8-3, 7-1
Comment 2-11,2-12, A-3
Compile-Time error, see Syntax error
Compiler option 10-3, 4-18
Compound statement 6-3, 1-5
CONCAT 2-9, 3-47, 2-19
Concurrency Chapter 9, Chapter 5
Conditional compilation 10-10, 10-11
CONSOLE ... 7-3, 7-16, 7-22
const (constant) 2-7,3-5,3-6, 1-14, 1-15

Declaration 4-5
Conversion 3-29-3-33
COpy 2-9, 3-47
COS 2-9, 3-18, 3-19

D
Data

Storage, see Space Allocation and packed
Type, see type

DELETE 2-9, 3-49
Device handling, see Input/Output, device
DISPOSE 2-9, 3-71
div, 3-12,3-13, 1-22
Double recursion 3-11
do\vnto 2-7,6-11
Dynamic types ... 3-59-3-70, 3-78

Index-2

Title Page

E
EBNF 2-3-2-5, 5-3
else ... _ 2-7
EOF .. 1-9, 2-9, 3-63, 7-8, 4-6
EOLN 1-9, 2-9, 3-63, 7-8
EXIT ... 2-9, 5-7, 6-13, 6-14
EXP .. 2-9, 3-18, 3-19
Expression 1-6, 3-6, 3-7, 3-8, 2-3
Extended Backus-Naur Form, see EBNF
external 1-11,2-7, 10-12

F
FALSE, see BOOLEAN ... 1-11
Field Specification 1-17
file ... 1-5, 2-7, 3-59-3-66, 3-78

External .. I-II, 2-7, 10-12
INTERACTIVE .. 2-9,7-4,7-16
Internal 3-60
Untyped 7-14, 7-15

FILLCHAR 2-9, 3-42, 8-3, 8-8
Flow of control.. 1-4, 1-9
for statement 2-7, 6-11
forward declaration 2-7,4-10, 8-4
function 1-9,2-7,3-6, 5-3-5-8, 1-24-1-26, 1-31

G
GET ... 1-10, 2-9. 3-64, 7-4
Global, see Scope 4-8, 1-25
goto statement 2-7,6-12,6-13, 3-3,3-4
GOTOXY 2-9, 7-22

H
HALT 2-9,6-14
Heap, the 8-3, 8-7, 7-1, 7-2

I
I/O, see Input/Output
Identifier 2-7, 2-4, A-2-A-4

Index-3

Title Page

IDSEARCH ... 2-9
if statement ... 1-7,2-7,6-4
implementation part .. 1-10,2-7, 6-3
in ... 2-7
Indentation 2-13, 2-14
Initialization code .. 4-16
INPUT .. 2-9
Input/Output .. 1-9, Chapter 7, 4-3, 4-4

Block 4-25-4-28
Character .. 4-3, 4-4, 4-9
Device .. 4-27, 4-28
Record 4-9

INSERT .. 2-9, 3-49
INTEGER 1-4,2-9, 3-10-3-15, 1-4, 1-7, 2-6, B-2
INTERACTIVE .. 2-9,7-4, 7-16
interface part ... 1-10, 2-7, 6-3
International Standards Organization, see ISO
intrinsic ... 2-7
Intrinsic procedures Appendix C ~

IORESULT .. 2-9, 7-20, 7-21
ISO .. 2-3

K
;KEYBOARD .. 7-16

L
label ... 2-7, 4-4
LENGTH ... 2-9,3-50, 1-20, 1-21 , 2-19
Lexical standards Appendix A
LN .. 2-9, 3-19
Local, see Scope
LOG ... 2-9, 3-19
Long INTEGER ... 3-22-3-24, 2-5 , 2-6

M
MARK ... 2-9, 8-8
MAXINT 2-9, 3-11, 1-3
MEMA V AIL .. 2-9, 8-6
MEMLOCK ... 2-9,8-5, 7-3

Index-4

Title Page

Memory management Chapter 7
-------- MEMSWAP .. 2-9, 8-5, 7-3

mod .. 2-7, 3-12
Module, see unit
MOVE LEFT ... 2-9, 3-43, 8-3, 8-8
MOVERIGHT .. 2-9, 3-44, 8-3,8-8

N
Nesting, see Scope
NEW ... 2-9, 3-70, 2-29, 7-4
NIL 2-9, 2-30, 2-33
Nim 5-6-5-8
not ... 2-7

o
Object format, see Space allocation
ODD .. 2-9, 3-14, 3-31, 8-9
or .. 2-7, 2-16
ORD .. 2-9, 3-32, 3-36, 8-9
OUTPUT .. 2-9
Output, see Input/Output

P
p-System .. 7-16,8-3
PACK .. 2-9,2-10
packed ... 2-7, 3-72, 3-73, 7-6, 2-15,2-18
packed array of CHAR 3-76, 7-6, 7-8
PAGE .. 2-9, 7-8
Palindrome 1-19
Parameter

Actual .. 5-6
Value ... 5-5
V ariable .. 5-5, 5-6

Parser 3-4, 3-8, 3-9
Pascal file, see file, internal
Peripheral device, see Input/Output, device
PMACHINE ... 2-9,2-10
Pointer .. 3-66, 3-67, 3-78, 2-28-2-34, 8-5
POS .. 2-9, 3-50

Indcx-5

Title Page

PRED 2-9, 3-37
Predeclared identifier 2-9, 2-10
Print queue 4-10,4-11
procedure 1-8,2-7,5-3-5-8, 1-24, 1-25, 1-31, 1-32
process .. 1-11, 2-7, 5-3, 9-3-9-6, 5-1
PROCESSID 2-9, 9-4, 5-1
program 1-4, 2-7

Heading 4-4
Pseudo-comment, see compiler option
PUT 1-10, 2-9, 3-64
PWROFTEN 2-9,3-18, 3-19

R
Railroad diagram .. B-5, B-18
Random access, see SEEK 7-13, 4-3
READ 1-9, 2-9, 7-3, 7-4
READLN 1-9, 2-9, 7-3-7-5
REAL 1-4, 2-9, 3-9, 3-11, 3-15-3-18, 2-8, B-2
record 1-5,3-10,3-38, 3-54-3-57, 3-77, 2-21-2-27 ~

V ariant 3-56, 2-28, 8-4
Recursion 2-9, 3-10-3-16
RELEASE 8-8
Remote device, see Input/Output, device
repeat statement 1-8,2-7,6-10, 1-22-1-24
Reserved words 2-6, 2-7, A-2
RESET 2-9, 3-65, 7-9, 4-4, 4-6
REWRITE .. 2-9, 3-65, 7-10, 4-4, 4-6
ROUND 2-9, 3-18, 3-31
Routine 3-14, 3-36

Declaration , 4-6, 4-7
Size limits 4-11

Runtime error 1-12, 1-13

S
Scalar .. 3-33-3-36,3-76, 1-33, 2-13, 2-14
SCAN ... 2-9, 3-44, 8-3
Scope 4-7-4-9
SEEK 1-10, 2-9, 7-13
segment routine 1-11,2-7, 4-11, 8-4, 7-2

Index-6

Title Page

SEMAPHORE .. 2-9,3-29,9-7, 5-2,5-3
SEMINIT ... 2-9, 3-29, 9-7, 5-2
separate .. 2-7
Separate compilation, see unit
set 1-5,2-7,3-38, 3-51-3-53, 3-77, 2-21-2-27
SIGNAL ... 1-11, 2-9, 3-29, 9-7, 9-8, 5-2
SIN ... 2-9,3-18,3-19
SIZE OF .. 2-9, 3-78, 3-79
Space allocation .. 3-71-3-78
SQR ... 2-9,3-14,3-15,3-18
SQRT .. 2-9,3-18,3-19
Stack, the .. 8-3, 10-3, 7-1, 7-2
Standard Pascal ... 7-3
START .. 1-11, 2-9,9-5, 5-1
Statement

Assignment .. 3-7, 1-4, 1-7
case .. 2-7
Compound .. 6-3, 1-5
for .. 2-7,6-11,6-12, 1-4, 1-5, 1-9
goto ... 2-7,6-12,6-13
if .. 2-7; 1-9, 1-12
procedure call .. 2-7, 6-10
repeat ... 2-7,6-8, 1-22, 1-23, B-3
while .. 2-7,6-8,6-9, 1-9, 1-11, 1-12
with ... 2-7, 3-57, 3-58, 2-25, 2-33

STR .. 2-9, 3-14
STRING 1-4, 2-9, 3-45, 7-5, 1-8, 1-20, 1-21, 2-18-2-20
String 3-38,3-45-3-51,3-77, 10-6-10-10
Structured type .. 3-38-3-57, 3-76-3-78
Subrange 3-34-3-36, 3-76, 1-33, 2-13-2-15
SUCC 2-9, 3-37
Symbols .. 2-6, A-I
Syntax ... Appendix B

Diagram .. B-5-B-18
Error .. Appendix D

T
Termination code ... 4-16
TEXT .. 2-9

Index-7

Title Page

TIME 2-9,7-20
TREESEARCH 2-9
TRUE, see BOOLEAN
TRUNC .. 2-9, 3-18, 2-6
type .. 2-7, 3-9, 3-10, 2-5-2-12

Conversion ... 3-29, 3-30
Declaration ... 4-5, 1-33, 1-34, 2-4, 2-26

U
unit .. 1-10,2-7,4-11-4-17

separate Chapter 6
Unit I/O, see Input/Output, device
UNITCLEAR 2-9, 7-18
UNITREAD .. 1-10, 2-9, 7-18
UNITWRITE .. 1-10,2-9,7-19
uses declaration .. 2-7,4-12-4-14, 6-3

v
Value parameter, see Parameter, value
var (variable) 2-7,3-5,3-6, 1-3, 1-4, 2-28-2-34

Declaration 4-5, 2-5
Parameter, see Parameter, variable 2-7

VARA VAIL 2-9, 8-6, 7-3, 7-4
V ARDISPOSE, .. 2-9, 8-8
Variant record, see record variant 2-28, 8-4
V ARNEW ... 2-9, 8-7, 7-3, 7-4

W
WAIT .. I-II , 2-9, 9-8, 5-2
while statement 2-7, 6-8
Wirth, Niklaus .. 2-3, 8-10
with statement 2-7,3-57,3-58, 2-25, 2-33
WRITE 1-9, 2-9, 7-5, 7-6
WRITELN 1-9, 2-9, 7-5, 7-6, 1-4, 1-5, 1-8

X
XOR, see Exclusive or .. 5-7

Index-8

THREE-MONTH
LIMITED WARRANTY

TEXAS INSTRUMENTS
PROFESSIONAL COMPUTER

SOFTWARE MEDIA

TEXAS INSTRUMENTS INCORPORATED EXTENDS
THIS CONSUMER WARRANTY ONLY TO THE
ORIGINAL CONSUMER/PURCHASER.

WARRANTY DURATION

The media is warranted for a period of three (3) months from
the date of original purchase by the consumer.

Some states do not allow the exclusion or limitation of inciden­
tal or consequential damages or limitations on how long an im­
plied warranty lasts, so the above limitations or exclusions
may not apply to you.

WARRANTY COVERAGE

This limited warranty covers the cassette or diskette (media)
on which the computer program is furnished. It does not ex­
tend to the program contained on the media or the accompany­
ing book materials (collectively the Program). The media is
warranted against defects in material or workmanship. THIS
WARRANTY IS VOID IF THE MEDIA HAS BEEN DAM­
AGED BY ACCIDENT, UNREASONABLE USE, NE­
GLECT, IMPROPER SERVICE, OR OTHER CAUSES
NOT ARISING OUT OF DEFECTS IN MATERIALS OR
WORKMANSHIP.

PERFORMANCE BY TI UNDER WARRANTY

During the above three-month warranty period, defective media
will be replaced when it is returned postage prepaid to a Texas
Instruments Service Facility listed below or an authorized
Texas Instruments Professional Computer Dealer with a copy
of the purchase receipt. The replacement media will be war­
ranted for three months from date of replacement. Other than
the postage requirement (where allowed by state law), no
charge will be made for the replacement. TI strongly recom­
mends that you insure the media for value prior to mailing.

WARRANTY AND CONSEQUENTIAL
DAMAGES DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS
SALE INCLUDING, BUT NOT LIMITED TO, THE IM­
PLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIM­
ITED IN DURATION TO THE ABOVE THREE-MONTH
PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LI­
ABLE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES
INCURRED BY THE CONSUMER OR ANY OTHER USER
ARISING OUT OF THE PURCHASE OR USE OF THE
MEDIA. THESE EXCLUDED DAMAGES INCLUDE, BUT
ARE NOT LIMITED BY, COST OF REMOVAL OR REIN­
STALLATION, OUTSIDE COMPUTER TIME, LABOR
COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS
OF SAVINGS, OR LOSS OF USE OR INTERRUPTION OF
BUSINESS.

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also
have other rights which vary from state to state.

TEXAS INSTRUMENTS
CONSUMER SERVICE FACILITIES

u.s. Residents:

Texas Instruments
Service Facility

P.O. Box 1444, MS 7758
Houston, Texas 77001

Canadian Residents:

Geophysical Service Inc.
41 Shelley Road
Richmond Hill, Ontario
Canada L4C 5G4

Consumers in California and Oregon may contact the following
Texas Instruments offices for additional assistance or
information.

Texas Instruments
Consumer Service

831 South Douglas St.
Suite 119
EI Segundo, California 90245
(213) 973-2591

Texas Instruments
Consumer Service

6700 S.W. 105th
Kristin Square, Suite 110
Beaverton, Oregon 97005
(503) 643-6758

IMPORTANT NOTICE OF DISCLAIMER
REGARDING THE PROGRAM

The following should be read and understood before using the
software media and Program.

TI does not warrant that the Program will be free from error or
will meet the specific requirements of the purchaser/user. The
purchaser/user assumes complete responsibility for any deci­
sion made or actions taken based on information obtained
using the Program. Any statements made concerning the util­
ity of the Program are not to be construed as expressed or im­
plied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICU­
LAR PURPOSE, REGARDING THE PROGR1-iM AND
MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN
"AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LI­
ABLE FOR SPECIAL, COLLA TERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAM. THESE EXCLUDED DAMAGES INCLUDE,
BUT ARE NOT LIMITED BY, COST OF REMOVAL OR
REINSTALLATION, OUTSIDE COMPUTER TIME,
LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS,
LOSS OF SAVINGS, OR LOSS OF USE OR INTERRUP­
TION OF BUSINESS. THE SOLE AND EXCLUSIVE LIA­
BILITY OF TEXAS INSTRUMENTS, REGARDLESS OF
THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THE PROGRAM. TEXAS INSTRU­
MENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF
ANY KIND WHATSOEVER BY ANY OTHER PARTY
AGAINST THE PURCHASERIUSER OF THE PROGRAM.

COPYRIGHT

All Programs are copyrighted. The purchaser/user may not
make unauthorized copies of the Programs for any reason. The
right to make copies is subject to applicable copyright law or a
Program License Agreement contained in the software pack­
age. All authorized copies must include reproduction of the
copyright notice and of any proprietary rights notice.

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD Pascal

~ 2232401-0001

Original Issue: 15 April 1983

Your Name:

Company:

Telephone :

Department:

Address: __ ___

City / State/Zip Code:

Your comments and suggestions assist us in improving our prod­
ucts . If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing MIS 7896
P.O. Box 1444
Houston, TX 77001

FOLD

NO POSTAGE
NECESSARY

IF MAILED

IN THE
UNITED STATES

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD Pascal
2232401 -0001

Original Issue: 15 April 1983

Your Name:

Company: __ _

Telephone: __ __

Department:

Address: __ ___

City / State/Zip Code:

Your comments and suggestions assist us in improving our prod­
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank .

FOLD

BUSINESS REP LY MAIL
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn : Marketing MIS 7896
P.O. Box 1444
Houston, TX 77001

FOLD

NO POSTAGE
NECESSARY
IF MA ILED

IN THE
UNITED STATES

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD Pascal
2232401-0001

Original Issue: 15 April 1983

Your Name:

Company:

Telephone: __ ___

Department:

Address:

City/State/Zip Code:

Your comments and suggestions assist us in improving our prod­
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PE RMIT NO. 6189 HOUSTON , TX

POSTAGE WI LL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn : Marketing MIS 7896
P.O. Box 1444
Houston , TX 77001

FOLD

NO POSTAGE
NECESSARY

IF MAILED

IN THE
UNITED STATES

Texas Instruments reserves the right to change
its product and service offerings at any time

without notice.

2232401-0001

TEXAS
INSTRUMENTS

Printed in U.S.A.

