DX10 OPERATING SYSTEM @

Systems
Programming
Guide

Volume V

TEXAS INSTRUMENTS

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES
Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer

margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion ora
page layout change.

DX10 Operating System Systems Programming Guide, Volume V (946250-9705)

Originallssue i August 1977
Revision. i e March 1978
Revision. ... e e October 1978
Revision. b December 1979
Revision. i e April 1981
Revision. i e September 1982
Revision. e September 1983
Changet January 1985

Total number of pages in this publication is 406 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.
Cover 1 2-22. 0 3-25-328............ 0
Effective Pages....... 1 223 . 1 3-29-333............ 1
Eff. PagesCont. 1 2:24-225............ 0 334. 0
fi-iv... oo oo 1 226. ... 1 3-35-3-36............ 1
Vo 0 2-26A/2-26B 1 3-37-339............ 0
Vieooo oo 1 2:27-236............ 0 340. 1
vii-xvi Lo 0 31-32.............. 0 3-41-3-42 0
11-14 0 33, 1 3-43-344 1
21-220............. 0 34-323............. 0 3-44A/3-44B 1
221, 1 324. 1 3-45-364............ 0

The computers, as well as the programs that T| has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including
TI computers—cannot replace sound judgment nor make the manager’s business
decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

. . __
© 1977, 1978, 1979, 1981, 1982, 1983, 1985 Texas Instruments incorporated.
All Rights Reserved
Printed in U.S.A.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES

Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

DX10 Operating System Systems Programming Guide, Volume V (946250-9705)

Continued:
PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.

4-1-48.............. 0 7-36A/7-36B 1 Het-H-8............. 0
o T 1 7-37-738............ 0 R 0
5.2-5134............ 0 81-86......000000.. 0 13-114. 1
Bt i 0 A1-A14 0 J-1-4-8 it 0
B-2... .. i 1 B-1-B4 0 Index-1-index-4 0
6-3-64.............. 0 C1-C2......civunne 0 User's Response...... 1
71-719oevv e 0 D1D-2.0viiiiinnns 0 Business Reply 1
7-20. .. e 1 B1-B2 ...civevvvinnn 0 InsideCover 1
7-21-735......0cvvt 0 Ft1-F24 0 Coverc..... 1

7-36...cciiiiiiiiie 1 G1-G-2........0000 0

10£6-95920¢2 1026-92¥0S2C
1026-95680€2 fenuey aping
aping aduvIajay Joup3 10£6-99v0622 $,195() JOlENSIIWPY
$,J95) JOjeIBUAY) abed sjuawnnsu) apiny aseg eyeq o1xa
we1b014 10803 01 XA sexa] Adil ovxa s.J9sM 066-412nD 01 XQ
1046-G2¥0S2e
10£6-2859.22 104625296 1026°16€VEZZ apIng s jewuweboid
aping apinY s Jasn eBrepyiog [enuew a0usIsjay wasAg Juswoabeuey
s.Jos) Areuonoiq eieq X@ 191ndwoD 066 I9POW WHOAIL eseq ejeq 01 XA
sjenuepy sjooj
Auanonposd
1026-189892¢2
fenue 90UI3J0Y
84-NVYHIHOAL 10.6-€8920¢t2
1026-8600522 8ping s.Jes(¢ asesjey
1euoIn | J0ssaoold 10/6-9698922 Jojeinw3 0822/082€ 0L XA
uonesnByuoy reased | JENUE SUOISUIIXT
1026-GL20vEe V¥SI8.-NYH1HOA 10266502222
V00t wo)sig ssauisng 106-6150222 8piny s Jojesadp
‘epiny s JojesadQ enuep 1066498922 (S1y) warshsang
90UdJ0)3Y Jedsed i1 aping s sowwesbory feulwIa] elowsey OLXA
10/6-¥£5042¢ 82-NVHIHO4 0i1Xa
aping 10.6-82502¢22 10£6-¥502422
$,Josn 18peo WOH apiny ux.tE:.-EQO-& 10468160422 fenuey
reosed 11 01 XQ lenuey 8ous18joH 10800 a2ualejay m.;mEEm-mc-m
2046-81€€£52 Ppue uoneIsusy
(onsawoq) 1016-69280€2 1026-1250222 woysAg (S 1Y) weisAsang
00€ WOISAG ssauisng fenuepy spIny s Jawureibold feunuie] sjowsy 0L Xq
‘epIng s 101819d0 99U21948 OISYE 1L 108092 01xQ
1016-¥560522
t0/6-8LEEESS L0£6°¥2S6€6 1026-6050422 apiny
(reuonewaiuy) 8pInY s,18wwesboiy fenuepy sJosn (SO)) asemyjog
00¢ waisAg ssauisng {1 D4y} 10i1eI3UY 99U3J9)3Yy abenbue SuoHeDIUNWIWOo)

‘aping s ojesadp

uresBoid proday

Alquwessy 00066/066

aAnoeIBIuL 0£2€ 01 XA

sjenueyy 91empjos sjenueyy sjenuepy

snoauejjoasiy efenBuey] suonesunwWIwo)
9026-0529v6

(1A swniop) ¥016-0529v6 20.16-0529v6

1026-2196V6 [enueyy A1aa0day {A18WNI0A) (1 awnjop)

fenueyy pue Buruodey Jou3g fenuey 104p3 1xa | apiny suonesdg

85U319)9Y JONPI Yur) wojsAg BunesadQ 01XG we)sAg Bunesado 01 Xa waysAg Bunesedo oL Xa

10£6-€516€6 S0£6-0529v6 £0.6-0529v6 1026-0629v6

wawnsoq ubisaqg (A 2wnjop) aping (1 2wniop) sping {1 swnjop)

wasAg 2'¢ aseatoy
woisAs Bunesado 01 xa

BuiwuseiBosy swaisig
waysAg Buntesado 01XQ

BuiwwerBoid vonesyddy
waisig Bunesado 01 Xa

sjenuepy woaysAs bunesado oL xa

saioed pue sydaouon
waysig BunesedQ 01xa

sjenuepy arem}jos QI Xd

Change 1

946250-9705

1016-86E¥ETC
fenueyy vonduosag

18J8U39 00ZELW/0060M

£0/6-2925v6

vonesado

pue uoliejjeisuj
13peay pJeDd v0g 19POW
131ndwos 066 1I2POW

1046-2¥920€2

uonesadQ pue
uonejjeIsu| walsAg ade |
anouBew 009t LW 19POIN

10£6-6229¥6

uolesadg pue
uonejjeisuj waysig ade)
S118uUbe W V6.6 1I9POW
19)Indwon 066 19PoN

10£6-869052¢
uonesddo

pue uoljeyeIsuy
SISSEY) fEUOIBWLIIY]
unm wasAg ysIg

1026-9881922
uvonesadQ pue
uoneyeisu|
as1g Addoj4
INIIIL 066

10£6-2690522

jenuep uonesedQ
pue uonejRISY
SISSEYD [euoijeuIoiy|
uynm wass osig
Addoi4 008Q4 1ePOW
J0ndwod 066 I9PON

L026-€525Y6

uonessdQ pue
uone|jelsuy walsAs 9siq
Addoi4 00804 1°POW
1eIndwod 066 1PPON

L026-0v190€2
uoiressdQ pue
uanejjelsu] waysig
afelolg sseyw
Y008AM/008aM

10/6-61EEESC
(seuag

10£6-692€£€5¢

{sauag

ws)sAg ssauisng)
nunISIqQ
V00SAM/00SAM 19POW
aping s Joyesado

10£6-1£920€2

fenuep uonesado

puUE uonejfeISu| WIASAS
ASIQ 00ESA 12Po

10.6-G196+6
uonesedQ pue
uonejiesu] WwaIsAg
9813 002S0Q 1epony
18IndwoD 066 1I2POW

10,662920€C

renuepy uonesadg

pue uonejelsu]

walsAg ¥S1Q 08SA IPPON
J81INdWIO? 066 12POKW

10.6-88920€2
(seuag wajsig

1sAg sseuisng}
nunisia

ysng) uonesadQ
PUE uoneje)ISU] WIISAS

1026-0925v6
uoyessdQ pue
uone|[elsu| weIsAs
2s1Qq peaH Suiropy
18Indwo) 066 [9POW

1026-1E29V6

uonesedQ pue
uoljejrel1su] sweysAs
0810 0550/52S0 1IBPon
191ndWwO) 066 1I9POW

1026-1929¥6

uvonesadQ pue
uolje|ieIsu} wesAg osig
eBpuped 01SA 19PN
19Indwod 066 1I9POW

10L6-9¥E11E2

{seueg woisAg
sseuisng) uoneisdo
pue uoliejeiIsu| welsAs
)s1g 001 aD reaunnoey

1026-1802£22
fenuew uonesedQ

10L6°C8EVETT
uonersdo

pue uonejeisy)
J9yund Anrenp
181197 GG01 I9SpowW

1016-6698922

fenuey uonesadQ

pue uonejiesu)
welsAg sejund Anenp
Jene G¥01 1I8poW
191ndwo) 066 1I9POW

1026-€¥920€2

{sauag walsig
ssauisng) uofiesadQ pue
uole|jel1suy S18)uld aul
009d7 Pue 00ed1 SIBPOW

10£6-¥9€0522

fenuey vonesedQ pue
uone||eisu| Si8lUld Ul
009d1 Pue 00Ed 1I9POW
19IndwoD 066 19POW

1026-9529+6

uoneledQ pue
uolje|[elsu} SI8jUBd SUI
0922 pue 0£ege 1I9POW
1eyndwo) 066 19POW

1000-0686122
fenuepy s esn
191U11d 0S8 19DOW

10£6-0£2€€5C

81135 WAISAS

ssauIsng 19)ulld OH Ov8
19poWy ‘aping) s 10je19dO

10£6-SG6920€2

renuep uonesadQ
pue uope|jelsu}
181ud OY 0¥8 19POW
19Indwo) 066 1PPOW

L026-vS¥0SCT
uonessdQ pue
uolje|jeisu] feuIwIe]
eleg USH 028 1I°POW
19Indwo) 66 1IPon

10.6-522802C
fenuel s JojeradQ

leuius | YSM 028 1I9POW

sjenueyy
opund

10469628222

S8135 WAlSAS

ssauisng 19iuld 018
{opop ‘aping s jojeiedQ

10£6-09¥6€6
uoylesadQ

pue uoyelRISU|
jatuid 018 19po
19Indwo) 066 1I9POW

10£6-G€659CC
fenuey s JojessdQ

feufwie] Od 182 1I8POW

10£6-1925v6

uonesedQ pue
uoljejjelsuj siowulg
8ul7 885 pue 9Ot SIBPOW
191ndwo?) 066 1OPOW

81q1%314 00014 1POW V008AQM/008aM 19DOW abesoigssey pue uoneeISul wWR)SAS
13indwon 066 19POW 8ping s Joresadg Y00SamM/00Sam ¥$1Q 00V 10D 1epowW
sjenuepy
891a0Q abero)s
10£6-9€65922
1026-0£2€€S2 renuep s,J01e)9dQ 10£6-0E0¥86
sauag welsig 10£6-6228022 reuiua] HSM €82 12POW [enuep s,joeredQ
ssauIsng Jajulid OH 0v8 fenue s j01e10d0 feutwse] HSH evZ 1PPOW
19POW "apINY S.10118d0 reujwis] USH 0Z8 19POW 10£6-G99€022
renuepy 1026-Z9vEY6
1026°LGYEYE 10£6-89€0G2C 10£6-G6920€2 1026-8€65922 swaisg sjeviwia) uonesedQ pue
voneiadQ pue fenuep uonesado renue uonesadQ renuepy Ai1owa W 592/£9. SISPOW uyone|eISu| feuule |
uolie||eISu] [eulwI3 | pue uonejeisu) pue uonejeisu $,J0je18dQ reuIwIa | eleq USO Ev ¢ 19POW
Aeidsiq 1HD €16 1I9POW (LAJ) feviune] 03pIA 181ud OY Ov8 IePOW SUONEJIUNWWOD 1046-¥99€02C J8Indwo? 066 19POW
12IndwoD 066 1I2PON 31U0J10913 OV6 1I9POW 191ndwOoD 066 I9PON 181 19POW suonannsuj Bujiesedo
19Indwe) 066 1I9PON G9.1/£91 SISpON 1026-6G25V6
1026-E2YSY6 1026-v5¥052T 1026-L€65922 uonjesredg
uonesadQ pue 1000-8226222 uonesadg pue fenuepy 1026-¥20v86 pue uopiejeisyy
uolel|eISU| [euIwIa | uonessdQ pue uoneqje)su| jeutuns s,J0je19dQ [EUUNL] lenuepy fewune eleq

Aeidsiqg 03pIA 116 19POW

12indwo) 066 18POW AeidsiQ 09DIA LEE ISPON

sjenuepy
feujunra g Aepdsig

uolR|{RISY| [eUIUNA |

e1eQ HUSH 028 19PON
10indwioD 066 1BPOW

SUOHIEUNWWOD

s JojesedQ reuiwa]

582 19O 8|qe1I0d SkL 1I9POW
sjenuepy
jeujunej AdoD-piey

HSHHSY €EL 12PON
19Indwo) 066 19POW

leulwa] eyowey
Jendwo) 066 1I9POW

10£6-¥€50222

epiny

$,9S 18pe0] WOH
1026-6202.22
106-21SV6 uojiesedQ pue
fenueyy 9ousIayey uojle|elsuj uojsuedxy
ereMmpIreH weisAs ININLL/NYD 066

18)ndwo) 01/066 1I9POWY
10£6-889892C
2026-€502422 aping
(uop3 onsawoq) s.Jasn Jeldnod ININIL
enuey 321ndwod 066 I9POW

uoljejjeisuj aiempreH
(S14) weysAsgng 10£6-8525¥6
|eujwig) ejowey uofjesedQ pue
Jsendwo) 066 1IPON uojje|eIsu] sinpoN
buiwwesBoid WOHd
1026°€502222 10indwoQ 066 1PPOW

{uop3 veedoin3)
lenueyy 1046-60v5¥6
uonejjeisuj srempreH uoneledQ pue
(S1Y)weisAsqQns uone)relsu] WeISAg

SUO(EdUNWIWOoD
13IndwoD 066 1I9POW

sjenuepy erempiey
snoeuej|oasIy

l

sjenuep axempieH 0IXd

946250-9705

Change 1

iv

Preface

This manual provides detailed information required by the person responsible for maintaining a
990 computer system running under the DX10 operating system.

This manual is one of a set of six volumes that describe the operational characteristics and
features of DX10. In addition to the six volumes, several support manuals are available for DX10
functions. Also each language supported by DX10 has its own associated manuals.

Become acquainted with these volumes and related DX10 manuals as necessary to prepare and
execute application programs under DX10. The following paragraphs each contain a brief
comment regarding the content of each volume. (The full titles and part numbers of all manuais
associated with the DX10 operating system are provided in the frontispiece.) The five associated
volumes are as follows:

Concepts and Facilities (Volume 1) includes features, concepts, and general background
information describing the DX10 operating system. it also contains a master subject index to help
you find the information you need.

The Operations Guide (Volume Il) contains information on how to perform an initial program load
(IPL start procedure) and how to log on and operate a terminal. Additionally, this manual contains
an introduction to your interface with DX10, the System Command Interpreter (SCl), and includes a
complete description of the SCI commands required to operate DX10. (The Text Editor and Link
Editor commands are not included in Volume [l, but can be found in their respective manualis.
Debugger commands are in Volume Ill.)

The Application Programming Guide (Volume Ill) contains information required by the application
programmer to prepare, modify, and execute application programs on DX10. Much of the material
is relevant to both high-level language programmers as well as assembly language programmers,
since it concerns program structure, program operation, file structure, and file /0. The SCI
programming language is included, since it is a major part of constructing applications under
DX10. Complete descriptions for nonprivileged supervisor calls (SVCs) and the DX10 Debugger are
included for assembly language programs.

The Text Editor Manual (Volume |V) includes operating instructions, examples, and exercises for
the interactive Text Editor provided on DX10. The SCI commands and error messages related to
the Text Editor are included.

The Error Reporting and Recovery Manual (Volume VI) describes each error message you can
receive while operating DX10 and gives suggested procedures for recovery. It documents task
errors, command errors, SVC errors, SCI errors, and I/O errors including those from disk and
magnetic tape. Also included are sections on system crash analysis and system troubleshooting.

946250-9705 v

vi

Preface

NOTE

Additional, in-depth descriptions related to specific languages,
including FORTRAN, COBOL, BASIC, RPG Il, Tl Pascal, assembly
language, and Query are found in manuals dedicated to the appro-
priate programming language. A Link Editor manual is provided as a
separate volume that describes the application of the link edit func-
tion in a DX10 environment. Separate manuals describe the use of
optional Sort/Merge, DBMS, and CPG packages.

Change 1

946250-9705

Contents

Paragraph

-— h ed dh ad b A
Nouvkhwiva

2.1

2.2

2.3

2.4

2.5
2.5.1
25.2
2.6
2.6.1
2.6.2
2.6.2.1
2.6.2.2
2.6.2.3
2.6.3

2.7.1
2.8
2.9
2.10
2.11
2.12
2.13
2.13.1
2.13.2
2.13.3

946250-9705

Title Page

1 — Introduction

General INformation i i it it i e e e e 1-1
Disk BUIld Procedure ittt it ittt it ettt e s 1-2
System Generation i i e e e 1-2
Writing Your Own Device Service Routine(DSR) i, 1-2
Designing and Writing an SV C Process0or .. vvvvt ittt it int i i 1-3
Using Privileged SV S ittt it ittt it i et 1-3
DX10 2. X Compatibilityot i i i i e e e e e 1-3

2 — Building Your System Disk

Y4 do Lo 11T} 4 T o T 21
Base System Configuration it it i i e e 2-2
Media ... i e e e i e et e 2-2
Computer Programmer Paneloiitiiinirititint ittt 2-2
Object Kits Supplied on Disk Cartridgecciii ittt nnannns 2-4
Overview of the Disk Build Procedureo i ittt it i e i ianann 2-4
Disk BUIld Procedure ittt i it i ittt e e e 2-5
Object Kits Supplied on Multiple Flexible DisketteMedia 2-10
Disk Build Procedure with a WD500 in Standard Configuration 2-11
Variations to Disk Build Procedure when Changing Default Values 2-16
Specifyingthe Target DisKoi ittt it ettt e i e 2-17
Changing Volume Characteristics of the TargetDisk 2-17
Specifyingthe Backup Fileot i it i 2-20
Variations to Disk Build Procedure for FD1000cccvtiiinennnnnnn. 2-20
Object Kits Suppliedon TapeMedia.cciiiii ittt e 2-20
Variations to Tape Build Procedure when Changing Default Values 2-26
Duplication of a Built Systemttt i ittt 2-29
Backup and Restoret ittt it it e it e e 2-30
Building a Custom Diskette or Tape to Use with DiskBuild 2-30
0T = 0 N =T 2-32
Modifying Disk Volume Informationc it i i 2-34
Modifying Initial State Specificationsc.cvtiiiiiit ittt 2-34
LT = U= - Y PP 2-35
Modification Strategy i i e 2-35
Modifyingthe IS Commandttt it ittt it 2-36

vii

Contents

Paragraph

3.1

3.2
3.2.1
3.2.2
3.2.21
3.2.2.2
3.2.2.3
3.2.3
3.2.3.1
3.23.2
3.2.4
3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.3.4
3.3.3.5
3.3.3.6
3.3.3.7
3.3.3.8
3.3.3.9
3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.2.3
3.4.2.4
3.4.2.5
3.43
3.4.4
3.4.4.1
3.44.2
3.4.4.3
3.44.4
3.4.45
3.44.6
3.4.4.7
3.4438
3.4.4.9
3.4.4.10

viii

Title Page

3 — System Generation

YL (=4 T=T £ =T ¢ 1T o 3-1
Preexecution Considerationscoiviiiiiiiiiniitrein it enennnns 3-2
Base System Configurationsttt i i i e e 3-2
Determining CRU Addresses v it ittt ittt ettt et rennnnnees 37
Arrangement of CRU Base AddressesinaChassisoovvunn 3-7
CRU Base Addresses fora17-Slot Chassisovvvit it i e vnnenns 3-7
CRU Addresses in Expansion Chassis iviiiiiiiiiiireinnennennens 3-10
Interrupt Levels . ..o i e e e e 3-10
Interrupts for Devices in ExpansionChassisccoiiii i, 3-10
Devices Sharing Interrupts.ottt i ittt e e it i e 3-14

T LINE AdAresses . .. ittt ittt it ettt ittt et a it it e 3-14
GEN990 System Generation Utilitycciiiiiiiii it it iiienennn 3-17
Files Created and Used by GENG90iiiiiiiininrinennrnnnnss 317
GEN99O Modes of Operationcoivtitiiniieretne i tnrnenenenns 3-18
oo T] = ., o T = 3-18
1070 1114 a =13 Ve 1.V T - 3-18
GENGGO COmMMANAS ... vttt ittt ittt ittt it eneenrtaeanannensenneans 3-18
BUILD ComMmMand. ... ittt ittt it ittt et eittateetaeeneananreneenans 3-20
CHANGE COmMMaANdottt ittt it ittt it tit ettt tneranenaans 3-20

(] I = e T 4 - s T 3-21
AV O 0o 4T 4 F- T T [3-22
INQUIREanRd HELP Commandscooiiiiiiniiiiiiinintiennanns 3-22
S0 0o Ty 1 4P ' T 3-22
STOP and BUILD CoOmMMands . . .ot vvvv ettt ittt et eereieteanennenens 3-23
oA @ 07 o T4 T 1 F- T o [3-23
GENIIOWHAT Commandovtitiin it in ittt ittt inenenrareeens 3-23
EXxecUting GENGODot i i i it ittt ettt it e 3-24
Defining the GEN990 Operating Prompts.o vvtiiiiiin it i i iennnns 3-28
Defining the System Timing Parametersccoviiiininininnnnnns 3-28
I o T =T 1 - 3-29
TIME SLICING ENABLED Parametercovvviiiinnrernrenennennns 3-29
TIME SLICE VALUE Parametervvvtitiieri et einnnrnennsnnnnnen, 3-29
TASK SENTRY ENABLED Parametercovvviin i inininininenennnen 3-29
TASK SENTRY VALUE Parameterovviiiii ittt it it it iiinnnanann, 3-29
TABLE Parameter it ittt it ittt ettt ettt i e 3-29
Defining Optional Features ...ttt it ittt ittt ity 3-31
COMMON Parameeter . ..ottt ittt ittt et ettt ety 3-31
INTERRUPT DECODER Parametercvvvivieiiiieiee i enonnnins 3-31
FILE MANAGEMENT TASKS Parametervvvvtininieinnnnenenen. 3-32

10 B0 (o] @ =T - T 1 1= T 3-32
RESTART D Parameter ...t i ittt ettt ettt et in et ennens 3-32
OVERLAY S Parameter ... vttt ittt ittt e ie ettt s eneeneeneens 3-32
ONLINE DIAGNOSTIC SUPPORT Parameter.ovvviviinnnenennnnnns 3-32
SY S LOG Parameter .o i vttt i i e e e e e 3-32
BUFFER MANAGEMENT Parameter.cvi ittt it enienineenes 3-33
O BUFFERS Parameteriiiiiiiint it iie ittt inenss 3-33

946250-9705

Paragraph

3.4.4.11
3.4.4.12
3.44.13
3.4.4.14
3.4.4.15
3.4.4.16
3.4.4.17
3.4.4.18
3.4.4.19
3.4.4.20
3.45
3.4.5.1
3.45.2
3.45.3
3.45.4
3.4.5.5
3.4.5.6
3.45.7
3.45.8
3.4.5.9
3.4.5.10
3.4.6
3.4.7
3.4.8
3.4.8.1
3.4.8.2
3.4.8.3
3.4.8.4
3.5
3.5.1
3.5.2
3.5.2.1
3.5.2.2
3.5.3
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.7

3.8

946250-9705

Contents

Title Page

INTERTASK Parameter. . .. ovv it iritiierentnnannaneneseansransesnens 3-33
ITCMESSAGES Parameter . .v.oovv ittt ittt inaanenenannnns 3-33
KIF Parameter oot i ittt iies it ianetnesnneannonsosnansanassnans 3-33
COUNTRY CODE Parametervvveerinernnenanennsransanssanasssnns 3-34
POWERFAILParametero.ccviiiiinnennsranennaeansesanssnesanans 3-34
AUTO MEDIA CHANGE RECOVERY Parametercvvvunnennnn 3-34
SCI BACKGROUND and SCI FOREGROUND Parameters 3-34
BREAKPOINT Parametercvvivii it inncaneiansanernneannssenees 3-35
PANEL DISPLAY(BARCHART)Parameter...........ccoiviviiinnnnnns 3-35
CARD 1 and CARD 2 (Defining ExpansionChassis) 3-35
DefiNiNG DEVICES .« .ottt 3-35
Defining Devices in an ExpansionChassist 3-38
Defining Disk and Magnetic TapeDrives.............. .ot 3-40
Defining CommunicationsDevices.c.cciive i 3-41
Defining Display Terminalsottt 3-42
DefiNING ASRS ... v ittt it it i i i e 3-45
Defining KSRs (or Other Teieprinter Devices (TPDs)) 3-46
Defining Line Printers......oovii ittt 3-49
DefiningaCardReaderc.coviiiiiiiirnnrneennrneniaiaannnans 3-51
Defining DISKettescoviiiiiiiiniiirennenanensencriaronnenees 3-52
Defining NonstandardDevices ... 3-53
DefiNING SV CS . ottt ittt ittt i i i 3-55
Torminating GENDS0iutiiiii ittt ianaa e tain e 3-55
Optional Processor System Generation Parametersoovntn 3-56
DX10 Remote Terminal Subsystem (RTS)........coiiiiii i 3-56

(T 071 [T [2 R R 3-56
3780/2780 and 3270/ICS EMUIatorsocvvriiii ittt 3-56
Bubble Memory Terminal SUpport. oottt 3-56
Assembling and Linkingthe System......... ... i it 3-57
Executingthe ALGSCommandciiiiiiiii it 3-57
Resultsofthe ALGS Commandoi i iiii ittt enanaas e 3-58
Normal Terminationvvvit it et serennanseasansssens 3-58
Abnormal Terminationcvvvitin it iiiniirtoinenenesnennarssanns 3-59
ALGS BatCh Stream vi ittt ittt ittt e 3-60
Patchingthe System ciiiiiiiiriiiriaiaeteratatansananaanennns 3-61
PGS EfTOr RECOVeIY . . o it ittt it te s intn e arnaasn e a s 3-61
Executing the Patch Synonym Assignment Programt 3-62
Batch Stream Error Counter Errors P 3-63
Clear Secret SYNONYMS ... vu vt it in ittt raneaseanassensnsnsanenns 3-63
Testingthe Systemo ittt i i i it i it i s 3-63
Installingthe Generated System it 3-64

Contents

Paragraph

4.1
4.2
4.3
4.3.1
4.4
4.4.1
4.4.2
443
4.5
4.6

5.1

5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.4
5.2.4.1
5.2.4.2
5.2.4.3
5.2.5
5.2.5.1
5.2.5.2
5.25.3
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.4
5.4.1
5.4.2

Title Page

4 — System Generation Troubleshooting

Nt OdUCH ON . .. 4-1
Maintaininga System LogbooKviviii i 4-1
Troubleshooting System Generation Problems.vvveeeeennnnneennnns 4-2
Crashes and Hangs.ovitiiii i et et 4-2
Other System Generation Problemsovvueneee i 4-4
SO o 0 4-4
S O = o 4-4
o O = g (o 4-5
ALGS and PGS Problemsooii ittt e e 4-6
Building a New System DisKttt ee ettt et e 4-7

5 — How to Write a Device Service Routine

It OdUCH ON . . e e 5-1
Device Service RoutineS (DSRS)viviinnet e et eee ettt 5-2
HOCall Routine oo e e 5-2
BNty PoINt . .. e 5-2

LA Lo o - Lo 5-2
PrOCESSINg 5-2
Shared ROUtINESt e e e e 5-5
PowerRestored Routine.c.ovviiiinne e 5-5
BNty POINt ... 5-6

LA e €] o - To T 5-6
PrOCESSING . .. 5-6

HO AbOrt Routine. e e 5-6
BNty POINt . .o 5-6

LA o451 - Vo 5-6
PrOCeSSING . . 5-6
Interrupt Service Routine (ISR)ovvvtiiteee e e 5-7
ENtry Point . . 5-8
WOTK S PACE . . . ittt 5-9
PrOCESSING . vt 59
Data StruCtUresS . .. o 5-12
Physical Device Table (P) ... vv ittt e et e e e e e 5-12
Keyboard Status BIoCK (KSB) . ..o vu vttt e e e e 5-20
Buffered /O Request BIOCKuiiit ittt et e 5-25
Task Status BIOCK (TSB) . ..o v vttt et e et e e 5-25
Extension for Terminals with Keyboards (XTK)vvveeeennneenennnn .. 5-32
Asynchronous DSR Local PDTEXtenSionvvoeeeonn e, 5-36
Asynchronous DSR Long-Distance Device Extensionooooevvn... 5-37
DSR Conventions and TeChNIQUeSc.ueveeeeeeeeei e, 5-39
Workspace for Keyboard ISRSt e e e e 5-39
Decoding Interrupts . ..ot 5-39
946250-9705

Contents

Paragraph Title Page
5.4.3 Reporting Errors tothe SystemLog e 5-39
5.4.4 AccessingtheDataBuffer..........ccoiiiiiii ittt e 5-40
5.4.4.1 Yo L= o3 Ao 1= - - T P 5-40
5.4.4.2 [0 1] =T Qe 1= 1= T 5-40
5.4.5 Reenter-Me ProCessiNgviiviieiatenrnretanroeranrnsanenneansness 5-41
5.4.6 DSRPrioritySchedulettt 5-41
5.4.7 BiddingTasks fromaDSR ..ottt ittt 5-42
5.4.7.1 ISR Procedure forBiddingaTaskcci it iiiiiiieiii s 5-42
5.4.7.2 Reenter-Me Procedure for BiddingaTask 5-43
5.5 Asynchronous DSRStructurecviiiiiiiiii it 5-44
5.5.1 Asynchronous DSR DesignOverviewccoviiiii it 5-47
5.5.2 Terminal Service Routine (TSR) it i i i e e 5-50
5.5.3 Interrupt Service Routine (ISR)cviiiiiiiii i 5-51
5.5.4 Hardware Controller Service Routine(HSR).c oot ii i on 5-52
5.5.5 Asynchronous Data Structure Allocation.............. ... v 5-53
5.6 HSR Common SUDroUtinesvieiiniintnerirerareantssanrnansaanssas 5-55
5.6.1 Power-Up Initializationciiiiii ittt it 5-56
5.6.2 Write Qutput SignalorFunctionco it ittt 5-57
5.6.3 Read Input SignalorFunctionoii ittt i 5-59
5.6.4 Enable/Disable Status Change Notification oot 5-59
5.6.5 OUtpUt A Character ittt i i i i i i i e 5-60
5.6.6 Write Operational Parameters oottt 5-61
5.6.6.1 Set ChannelSpeed(Baud Rate)...........coiiiiiiiiiiininin s 5-62
5.6.6.2 SetDataCharacter Format o0t iiiiiniiinrnerenenaanrson 5-63
5.6.7 Read Operational Parameters and Information.............ot 5-63
5.6.8 Request Time Interval Notification oo i 5-64
5.6.9 Controllerinterrupt Decoderot i i e 5-65
5.7 CommMON ROULINES ...t ittt ittt et e et st e c i 5-66
5.7.1 BRCALL — Branch TableCallRoutine i, 5-66
5.7.1.1 P arAM O OIS & ittt i e e e 5-66
571.2 CalliNng SeQUENCE . . ittt ittt it e e 5-67
5.7.2 BZYCHK — BusyCheck Routine ...t 5-67
5.7.2.1 [T = 1 1= 1 (= L= T 5-67
5.7.2.2 Calling SeQUBNCEot i i e 5-67
5.7.3 ENDRCD — End-of-Record Routineccouiriiiiiiii i, 5-68
5.7.31 Parameters e et e e 5-68
5.7.3.2 Calling SeqQUENCEttt i i e e s 5-68
5.7.4 KEYFUN — Keyboard FunctionRoutine. o it 5-68
5.7.41 [T = T =1 (=] TP 5-70
5.7.4.2 Calling SeQUENCEt ittt i e s 5-70
5.7.5 GETC — GetCharacterRoutine.ciiii it i ca s 5-70
5.7.5.1 L = 1= (= L= TP 5-71

5.7.5.2 Calling SeQUENCE . . . oottt ittt e e e 5-71

5.76 JMCALL —JumpTableCallRoutine it 5-71

5.7.6.1 P AT IS o vttt e e e 5-71

5.76.2 Calling SeqUEeNCEttt i i i e 5-72
5.7.7 PUTCBF — Put Characterin BufferRoutine............. ... oo, 5-72
5.7.71 =T = 0 £ 1= (=] - J PN 5-72

946250-9705 Xi

Contents

Paragraph

5.7.7.2
5.7.8
5.7.8.1
5.7.8.2
5.7.9
5.7.9.1
5.7.9.2
5.7.10
5.7.10.1
5.7.10.2

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4

7.1
7.2
7.2.1
7.2.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.1
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.19.1
7.19.2
7.19.2.1

xii

Title Page

Calling SeqUENCEttt 5-72
PUTEBF — Put Event Characterin BufferRoutine 5-72
ParamE S . . . e 5-72
Calling SeqUENCE . . .ottt ittt i e 5-72
SETWPS — Set Interrupt Mask Routinec.coviiinenenee i, 5-73
ParAM B OrS e 5-73
Calling SeqQUENCEottt e 5-73
BRSTAT — Branch Table Call with Statistics Routine 5-73
ParamME OIS . .o 5.73
Calling SeqUeNCEottt e 5-73

6 — How to Write a Supervisor Call Processor

IMrOdUCH ON . o 6-1
How to Write an SVC ProCesSor ...o.iiiiit ettt e e et et 6-1
SV Call BlOCK . vttt e e 6-1
SV C StrUCHUre .. it 6-2
Example of User-Defined SVCottt e 6-2
System Generation Requirements.covit et 6-4

1€ T3 T- T - 7-1
Install Task (Code >25) ...o.itiiit et e e e e 7-1
Special Formof Installttt 7-5
Install Real-Time Taskttt e e 7-5
Install Procedure (Code >26).ciiiiiiiit ittt 7-5
Install Overlay (Code > 27) .. .o iiiii it e e 7-8
Delete Task (Code >28)uvviiiii ittt e e e 7-10
Delete Procedure (Code >29)uiiiiitit et 7-11
Delete Overlay (Code >) iiiiiii e e e e e e e 7-12
Kill Task (Code >83) ... iuii ittt e e e 7-12
Suspend Awaiting Queue Input (Code >24) v et 7-13
Read/Write TSB(Code >2C) ...uuuiittiit ittt et et et 7-13
Read/Write Task (Code >2D) viiii ettt ettt e e 7-15
Get System Pointer Table Address (Code >32)ovvrnn e, 7-17
Initialize Date and Time (Code >3B)coviiinn et 7-18
Disk Manager(Code > 22).ovuiitiin ittt et e e 7-19
Assign Space on Program File (Code >37) ...ouiiiiiinnee e 7-23
Initialize New Volume (Code >38) . ..o oot ottt i e 7-25
Install Disk Volume (Code >20)ovuui ittt et et 7-27
Unload Disk Volume (Code >34) oottt e et 7-29
Direct Disk 1O ... o e 7-29
Direct Disk /O Call BIOCK viti ettt 7-31
Direct Disk /O OPCOAeS .. o v ittt ettt e e 7-34
Read Format (Opcodes >5and >F)oviinee i, 7-34

946250-9705

Paragraph

7.19.2.2
7.19.2.3
7.19.2.4
7.19.2.5
7.19.2.6
7.19.2.7
7.19.2.8
7.19.3

7.19.3.1
7.19.3.2
7.19.3.3
7.19.3.4
7.19.3.5
7.19.3.6
7.19.3.7

8.1

8.2
8.2.1
8.2.2
8.2.2.1
8.2.2.2
8.3
8.3.1
8.3.2
8.3.3

946250-9705

Contents

Title Page

Write Format (Opcode >8) ... v.vii it i 7-35
Store Registers (Opcode >E) ... ooiiiiiii i 7-35
Read by ADU(OPCOde >9) ..o vviiiiii it 7-35
Read by Track (OpCode SA) ...t ii ittt 7-36
Write by ADU(Opcode >B) ... ooiiii i 7-36
Write by Track (Opcode >C) . ..o vt i 7-36
Write Interteaved Factor(Opcode >12) . ..ot 7-36
Direct Diskette /O e e 7-36
Read Format (Opcodes >5and >F) oo, 7-36
Write Format (Opcode >8) ... vv it i 7-37
Read ASCI| (Opcode >9), Read Direct (Opcode >A) ...t 7-37
Write ASCIl (Opcode > B), Write Direct (Opcode >C), 7-37
Write Deleted Sector(Opcode >10).o i ittt 7-37
Read Deleted Sector(Opcode >11)ot 7-38
Special Diskette Options viiiiiiiiiiiiii i 7-38

8 — DX10 2.X Compatibility

110N 3 00 1o 18 1ot 4 L= PSP 8-1
DX10 2. X Disk CONVEISION .ottt ettt ittt 8-1
Disk/Magnetic Tape Configuration 8-1
Muitiple Disk Configurationt i 8-2
Operating ProCeduret 8-2
Converted File LOG . . v v vttt i e e 8-3
DX102.XSVC Compatibility. ..ot e 8-5
SVCS NOt SUPPOMEA . ..ttt e 8-6
SVCs Supported Only for Compatibility 8-6
SVCs StillUsed But Different oot i i e e 8-6
xili

Contents

Appendix

I o mmoo w >

o =-

xiv

Appendixes
Title Page
Keycap Cross-Reference Y S
Sy emM TaSK DS ... ittt it i ittt e et i i e e B-1
SystemM OVeHAY IDS .. ittt it e it et C-1
SYStemM ProceduUre IDS it ittt i i i ittt it s D-1
L€ o o 2= I I 1 - E-1
System Generation EXamplesttt i i e F-1
SV 00 ..ttt i e e e e G-1
BiddingaTask from a DS R ittt ittt e e e e H-1
DX10 Memory EStimatorttt ittt it et e -1
Example Patch File ... e J-1
Index

946250-9705

Contents

Illustrations
Figure Title Page
2-1 Model 990 Computer ProgrammerPanelo ittt 2-3
2-2 Control/Display Module (CDM) ittt ittt it 2-4
3-1 Base System Configuration for 990A13 13-Slot Chassis,
Business System 600/800 ittt it i e 3-4
3-2 Base System Configuration for 990 13-Slot Chassis v 3-5
3-3 Base System Configuration for 390 17-Slot Chassis 3-6
3-4 CRU Base Addresses for 990 and 990A13 13-SlotChassis 3-8
3-5 CRU Base Addresses, 17-SlotChassis ittt i, 3-9
3-6 CRU Base Addresses, 13-Slot Expansion Chassis#1 0ot 3-11
37 990A13 Interrupt Assignments, 13-8iotChassis o i, 3-12
3-8 Interrupt Assignments, 13-SlotChassisccciviiiiiiiiiiiii i 3-13
3-9 Interrupt Assignments, 17-SlotChassisc. ittt 3-15
4-1 Memory Used by File Managementcoiiiiiiiinnnnnnennennan s 4-5
5-1 Flowofan O Call ...ttt it ittt sttt aaanaans 5-3
5-2 L] = R T 1] = X P 5-4
5-3] S o e ToT= = - » o 5-9
5-4 PDT and DSR Configuration for Multiple Disk Drive Controller 5-11
5-5 PO T S IUCIUIE .. ittt i i i ettt i e 5-13
5-6 1 R B -T2 110 F- U {= 2 5-19
5-7 €S = 3] 4T o2 (1] (- J 5-21
5-8 KOB Template ... ciiiii ittt ittt ittt i e 5-24
5-9 Buffered /O Request BIOCKottt it it 5-25
5-10 =] = 3 €U e 411 - 5-26
5-11 Dl =31 1 13 1 T 5-32
5-12 D I S IC=T 12 o - - PP 5-35
5-13 Asynchronous DSR Local PDT Extension Structure 5-36
5-14 Asynchronous DSR Local PDT ExtensionTemplate 5-37
5-15 Asynchronous DSR Long-Distance Device Extension Structure 5-38
5-16 Asynchronous DSR Long-Distance Device Extension Template 5-38
5-17 Asynchronous DSRStructureottt 5-46
5-18 Asynchronous DSRLOGICFIOW ... iiiiii i e 5-48
5-19 Interrupt Processing FIow ittt it i it 5-53
5-20 Asynchronous Data StructureLinkageso, 5-54
5-21 Keyboard Interrupt Processing ...ttt 5-69
5-22 EXample DSRS ... ittt i e e e 5-74
6-1 SVC ROUtINE WOIKSPACE ...t i ittt et ittt ittt e 6-3
7-1 AddressingaTrack ittt ittt i i s 7-30
7-2 Store Registersand Read FormatDatao, 7-35
7-3 Logical Track Addressingottt 7-38
8-1 Sample LogofConverted Filesciiiiiiiiiiiiii i 8-4
946250-9705 XV

Contents

Tables
Table Title Page
2-1 DX10 Distribution Mediaand Part Numbersccoiiiiniirnninnnnnns 22
2-2 Minimum Configuration for TAPBLDciviiiiiiii it iiein e 2-21
3-1 Base System Configuration for DX100n DiSKScvvviiiiinernennnnn. 3-3
3-2 Base System Configuration for DX10 on MagneticTapec...... 3-3
3-3 CRU Base Address Offsets for ExpansionChassiscvvveneun... 3-10
34 Recommended TILINE Address Assignmentscvvvrerenennenn.. 3-16
35 Legal Commands in GEN990 CommandModeccovvivennnnnnn.. 3-19
3-6 Legal Commands in GEN990 InquireModeccoiiiinirninnennnnn. 3-19
3-7 GENGOO Parametersttt ittt et ettt e 3-25
3-8 System Table Area Sizing Guidelinecciiiiirniineinennnnn. 3-31
3-9 Description of Various Interface Boardsccoviiiniinnenreneenns 3-37
3-10 Relationship Between Peripherals and InterfaceBoards 3-37
3-11 XPS Command Prompt ReSponSescuouiiiiiiinrnenneeneennenenn, 3-62
5-1 Example Interrupt VectorTableoviiiiint i e e 5-8
5-2 P T ValUES . . . e e e 5-14
5-3 KB ValUuBS ...t i e e 5-22
5-4 T B ValUBS ..o it i e e e 5-27
5-5 Task State Codesottt it it e e e 5-31
5-6 D QI - 111 5-33
5-7 Asynchronous Device SUPPOmt ittt i it i e e 5-44
5-8 HSR Object ModuIesottt ittt e et 5-47
5-9 DS R SR BNty POINtS ...ttt ittt it i et 5-51
5-10 HSRBaud Rate Codescciiiiiiiiiitii ittt 5-62
5-11 CoNtroller TYPE COdES .. oti ittt ittt ittt et ettt et et et 5-64
5-12 CharacterRanges Used by GETCotiiintiete ettt e, 5-70
7-1 Disk DeSCriPtioNS ... i e 7-20
7-2 Direct Disk /O OpPCOdESttt ittt ittt et et ettt 7-34
7-3 Diskette Direct Disk /O OpCOdes i vttt ittt ittt e i 7-37
xvi 946250-9705

Introduction

1.1 GENERAL INFORMATION
This manual explains how to generate a customized DX10 operating system. You are presumed to
be an experienced programmer with responsibility for maintaining and extending your operating
system. This manual focuses on programming your operating system so that it runs most effi-
ciently under general circumstances. Refer to DX70 Application Programming Guide (Volume i)
for information about programming DX10 for specific applications.
The DX10 operating system includes some standard functions and offers a set of optional
functions that are hardware dependent. During system generation, you specify which functions to
incorporate in your system. The standard functions include:

* A multitasking, preemptive central processing unit (CPU) scheduler

] An internal clock interrupt and timer

] A supervisor cail (SVC) preprocessor

* Some task management SVC routines

. Basic input/output (/O) SVC routines
Optional functions that require additional memory include:

. Device support

¢ Standard SVCs

. Communications
Much of the DX10 software resides on disk and is loaded into memory only when needed. Program
swapping, file management, multiple dynamic job management, task loading, and numerous
SVCs are required to operate the system. The system generation procedure allows you to include

optional features such as support for multipie-user software development, key indexed files
(KIFs), and remote /0.

946250-9705 11

Introduction

1.2 DISK BUILD PROCEDURE

The DX10 software is shipped on several different media: assorted types of rigid disks, flexible
diskettes, and magnetic tape. If your DX10 software arrives on disk, you can simply install the disk
in the system disk drive and load the software immediately. However, if your system includes a
DS10 or CD1400 disk drive, you may want to transfer the system software to the fixed disk. Aiso, if
your software arrives on flexible diskette or magnetic tape, you must transfer it to disk. DX10
includes a Disk Build utility to simplify this transferral.

1.3 SYSTEM GENERATION

Section 3 on system generation describes the base system configurations that DX10 supports and
explains how to generate a logical configuration that reflects the physical configuration of your
system. If you want to include extra devices or instructions, or exclude unnecessary features, you
can customize your operating system during the process known as system generation.

Customizing your operating system allows you to tailor it to fit specific application needs. During
system generation, prompts appear on the screen of your video display terminal (VDT) that direct
you to perform any of the following actions:

e Add or delete devices to the hardware configuration

° Include or exclude optional DX10 capabilities

. Include user-defined SVCs

. Generate specialized systems for specific programming environments, which can be
used as operating conditions change

] Change various DX10 operating system parameters

GEN990, the System Generation utility, interactively prompts you for information about the sys-
tem to be built. After the interactive session, GEN990 builds the files necessary to complete sys-
temn generation. You then direct a system utility to assemble and link the new or modified system.
To complete system generation, you test the new system. If the new system contains errors, you
can return control to the old system and repeat the system generation process.

Section 4 explains how to handle errors that may occur during system generation.

1.4 WRITING YOUR OWN DEVICE SERVICE ROUTINE (DSR)

When you are quite familiar with programming for the DX10 operating system, you may decide to
include nonstandard devices in the system. You must write a DSR to detect and service each non-
standard device. During system generation, you integrate these DSRs with the supplied software.
Section 5 describes how to write your own DSR and incorporate it in the system during system
generation.

1-2 946250-9705

Introduction

1.5 DESIGNING AND WRITING AN SVC PROCESSOR

You can write new SVCs and SVC processing routines to provide services for DX10 that the
standard SVCs do not provide. Section 6 describes how to do so, and how to incorporate the new
SVCs in the system during system generation.

1.6 USING PRIVILEGED SVCs

Section 7 describes certain privileged SVCs that are used almost exclusively for enhancing the
capabilities of the operating system itseif. These SVCs have a special privilege level because their
misuse can either destroy the system by improperly and irrevocably modifying the disk, or hoard
the system by killing other tasks. Section 7 describes these SVCs and how to use them.

1.7 DX102.X COMPATIBILITY

Section 8 describes how to transfer data files from a DX10 2.X disk to a disk from a 3.0 or later
release of DX10.

946250-9705 1-3/1-4

2

Building Your System Disk

2.1 INTRODUCTION

Conventional maintenance of a system disk consists of two parts. First, you build the system disk
by installing the software kit containing the system components. Next, you make a backup copy
of the system disk as a security precaution.

Section 2 begins by explaining how to build your system disk. The four procedures for Disk Build
are as follows:

. From the software kit shipped on disk cartridge

. From the software kit shipped on flexible diskette

° From the software kit shipped on tape (cartridge or reel)
U From a DX10 system that is already running

The first three procedures build a new DX10 operating system from the software kit shipped from
the factory; the procedure you use depends on the shipping media. The fourth procedure is for the
convenience of users who already have a DX10 system, but would like to make copies without hav-
ing to buiid the disk again.

The system is shipped on media compatible with your hardware; however, installation frequently
includes transferring the data from the media on which it was shipped (for example, flexible disk-
ette) to other media (a fixed disk).

The section concludes by explaining procedures for customizing the initial state of your system.
That state can be set to modify the allowed activities at any given terminal. You can modify the
activities more at log-on time by using an M$300 command procedure. (Refer to the DX70 Oper-
ations Guide (Volume ll).)

Once you install and back up the system, you can generate a customized operating system as
described in Section 3.

NOTE

Throughout this manual, the names of keys are generic key names.
In some cases, the names on the keycaps of the terminals match
the generic key names, but in many cases they do not. Appendix A
contains a table of key equivalents to identify the specific keys on
the terminal you are using. Drawings that show the layout of the
keyboard of each type of terminal are also included.

946250-9705 241

Building Your System Disk

2.2 BASE SYSTEM CONFIGURATION

The DX10 software kit ships on disk, flexible diskettes, or tape; within the constraints of your hard-
ware, you can select the shipping medium. The installation procedure depends on your media.
Each software kit is designed for use with a standard system configuration.

CAUTION

Your configuration must agree with the base system configuration
to this extent: if you have a device in the system at a CRU or TILINE
address listed In the base system configuration, it must be the
specified device type at the interrupt listed, or the system enters an
infinite loop when it tries to process an interrupt from that device.
Remove conflicting devices or avoid their use if a loop condition
does not occur until you attempt to use the device.

If you have modified your hardware configuration, return enough of
it to the base system configuration shown in Table 3-1 or 3-2 to ful-
fill the above rule.

2.3 MEDIA

Table 2-1 lists the master DX10 distribution media kits and their part numbers. Some steps in the

installation procedure differ depending on the media type you have. Be sure to note the differ-
ences that apply to your media type.

Table 2-1. DX10 Distribution Media and Part Numbers

Medium Part Number
Disk 939151-1601
Magnetic tape (reei or cartridge) 939151-1301, 939151-1302
(two tapes required)
8-inch double-sided, double-density 939151-1602
(DSDD) flexible diskette

2.4 COMPUTER PROGRAMMER PANEL

Figure 2-1 shows switch and component locations on the 990 computer programmer panel

described in the following paragraphs. Figure 2-2 shows the control/display module (CDM) for the
990A13, which the Business System 600 and 800 use. The Business System 300 does not require a
programmer panel.

2:2 946250-9705

Building Your System Disk

jeued JewweiBoid jendwo) 066 |19PON

O00O0O oooad

Y710 3aW 1YW aaw

YW 1S Od dm

ooono

YN 1S Od dm

d3ILN3

Avidsia

‘1-2 eunbBi4

066| SLNaWNuLSN m<xuh@
(=]

oo oa

avoTl 1L3S3¥ NNy

ais
LvH

O

S

a

vi

c

€1l

O

cl

O

it

O

01

O

]

0|0

O

L

O

9

O

O

S

O

a

v

O

O

€

O

[4

O

O

o]

zvoes8ee

23

946250-9705

Building Your System Disk

POWER RUNM 1DLE FAULT

2283233

Figure 2-2. Control/Display Moduie (CDM)

2.5 OBJECTKITS SUPPLIED ON DISK CARTRIDGE

Paragraph 2.5.1 presents an overview of the operation of building a system disk from a disk car-
tridge. Detailed instructions for this operation are in paragraph 2.5.2. The system supplied by Tl
will operate on the hardware configuration given in Table 3-1.

2.5.1 Overview of the Disk Build Procedure

1. Load and initialize the DX10 system that comes on the master DX10 disk cartridge. This
procedure is the initial program load (IPL).

2. Format and initialize a new system disk. If necessary, identify and specify known bad
tracks on that disk to the operating system.

3. Issue the Copy Volume (CV) command to copy the contents of the DX10 master car-
tridge to the new system disk.

4. Remove the master disk.

24 946250-9705

Building Your System Disk

2.5.2 Disk Build Procedure
To build a system disk on a base system configuration, perform the following steps:

1. Mount the master DX10 disk cartridge in disk drive unit 1 and a blank disk cartridge in
disk unit 0. Remove write protection from disk unit 1 and enable write protection on
unit 0.

NOTE

The two platters of the DS10, CD1400/32, and CD1400/96 disk drives
are treated as two separate disk units. Mount the master DX10 disk
cartridge as the removable platter. The nonremovable platter (umt 0)
is where the new system will be built.

2. If you are using a Business System 300, turn off power to the computer. Then, turn
power back on and continue at step 7 of this list.

If you are using a Business System 600 or 800, press the HALT switch and then the
LOAD switch on the front panel and continue with step 7 of this list.

If you are using equipment with a programmer panel (most 990 equipment), continue
with step 3. If you are using equipment with a CDM (most 990A13-based equipment),
press ALT LOAD and continue with step 8.

3. Press the CLR switch and enter > 0084 on the programmer panel data switches.

4. Press MA under ENTER and then press the CLR switch.

5. Enter>0400 on the programmer panel data switches and press the MDE switch.

6. Press the LOAD switch. The computer loads and executes the disk IPL program from the
master disk.

7. Remove write protection from disk unit 0.

8. Press the Attention key, release it, and hold down the Shift key while you press the
exclamation point (!) key to activate the System Command Interpreter (SCI). (Refer to
Appendix A for an explanation of keycap names.) When the message WARNING
SYSTEM NOT INITIALIZED appears, return to SCI by pressing the Return key and enter
the Initialize System (IS) command. The prompts are as follows:

[11S
INITIALIZE DATE AND TIME
YEAR:
MONTH:
DAY:
HOUR:
MINUTE:

9462650-9705 2-5

Building Your System Disk

Respond to the prompts as follows:

YEAR
Enter a 2- or 4-digit integer that represents the year. For example, you can enter
1982 or 82.

MONTH
Enter a 1- or 2-digit integer that represents the month. For example, you can enter 1
or 01 to indicate January.

DAY
Enter a 1- or 2-dlgit integer that represents the current day.

HOUR
Enter a 1- or 2-digit integer that represents the current hour (according to the 24-
hour clock). For example, 2 PM would be 14.

MINUTE
Enter a 1- or 2-digit integer that represents the current minute.

After you Initialize the system, the following message and prompts appear. Respond to
the first two prompts by entering DUMY. Accept the default values for the next three
prompts that appear by pressing the Return key.

INITIALIZE SYSTEM LOG
ATTENTION DEVICE: DUMY
LOGGING DEVICE: DUMY
SYSTEM LOG PROCESSING TASK ID: 05E
ANALYSIS OUTPUT PRINTER: LPO1
USER LOG PROCESSORTASKID: 0

The warmstart procedure is now complete. The system displays the following message:

WARMSTART PROCEDURE COMPLETE:

NOTE

In the following step, you must enter the Initialize Disk Surface (IDS)
command, rather than the Initialize New Volume (INV) command, if
the diagnostic surface analysis or IDS has not previously been per-
formed on the disk. If you specify INV when IDS is required, DX10
will issue a message stating the need to use IDS.

946250-9705

Building Your System Disk

10. Press the Return key to get to SC! command mode. Enter the INV command. The INV
command initializes a disk — that is, deletes all files from the file structure and builds
the system overhead data. Initialization also allows you to assign the disk a volume
name and an interleaving factor. For a description of the INV command, refer to the
DX10 Operations Guide (Volume lI). The following prompts appear:

INITIALIZE NEW VOLUME
UNIT NAME:
VOLUME NAME:
NUMBER OF VCATALOG ENTRIES:
DEFAULT PHYSICAL RECORD SIZE:
HARDWARE INTERLEAVING FACTOR:
FORCE CLEARING OF DISK?: NO
USED AS SYSTEM DISK?: YES
LISTING ACCESS NAME:
EXECUTION MODE (F,B): FOREGROUND

Respond to the prompts as indicated:

UNIT NAME
The device name of the disk drive containing the target volume. Since the system
disk did not load from the normal system disk drive (TILINE* address > F800 and
unit select 0), the device names of the system disk drive and the drive from which
the software kit loaded are opposite from those shown in the supported
configuration (Table 3-1 or 3-2). In this description, DS02 references unit 0, and
DS01 references unit 1. Enter DS02.

VOLUME NAME
The name of the system disk being built (for example, VOL1). The name must be
alphanumeric — that is, from one to eight characters long, the first character of
which must be alphabetic.

NUMBER OF VCATALOG ENTRIES
The number of entries in VCATALOG, the system-generated, top-level directory of
each disk. The number of VCATALOG entries determines the amount of overhead
available for directory and file structure. Press the Return key and DX10 will deter-
mine the appropriate vaiue for the disk.

DEFAULT PHYSICAL RECORD SIZE
The physical record size to be used for all subsequent files created on the disk.
Press the Return key without entering a number and DX10 will determine the appro-
priate value. For more information on default physical record size, see Volume 11,

HARDWARE INTERLEAVING FACTOR
The number of disk sectors occurring between consecutive accessed sections.
This is a major factor in determining access efficiency for files on flexible diskette
and 5.25-inch Winchester disks. Press the Return key and the system determines
the appropriate interleaving factor for the disk type.

* Registered trademark of Texas Instruments incorporated.

946250-9705 27

Building Your System Disk

28

FORCE CLEARING OF DISK?
Accept the default value of NO by pressing the Return key unless the disk contains
highly sensitive information that must be destroyed.

USED AS SYSTEM DISK?
Accept the default value of YES by pressing the Return key; the initialization pro-
cess installs a bootstrap loader on the disk.

LISTING ACCESS NAME
Accept the default value, which is your terminal, or specify a file pathname or
printer device name.

EXECUTION MODE (F,B)
The INV command procedure can execute in either foreground or background
mode. A task executing in foreground mode executes more quickly than in back-
ground when other activity is occurring on the system, but no other activity can
take place at the executing terminal until the foreground task is finished. A task
executing in background mode leaves the terminal free to execute a foreground
task. The default value is FOREGROUND.

BAD TRACK ACCESS NAME
This is a hidden prompt that you can use in batch mode or in expert mode. Enter
the pathname of the file that is to supply bad track information. The file must con-
tain the list of bad tracks in the following format:

HEAD, CYLINDER;
or
HEAD, CYLINDER; HEAD, CYLINDER,; etc.

Enter the list of known bad tracks in the requested format (for example: 2, 235;
0, 15;). All entries, Including the last, must end with a semicolon. All numbers
entered are assumed to be decimal. Note that unlike the IDS command, for which
you can enter ME in response to this prompt, you can only supply the list of bad
tracks in a file for the INV command.

Specifying the list of bad tracks for a DS25 requires special consideration. The bad
tracks labeled on the side of the disk pack are labeled as if the pack were formatted
as a DS50. For a DS25, however, the system uses half of the cylinders that it uses
for a DS50. Therefore, for a DS25, ignore all bad tracks listed for odd numbered cyl-
inders. For each bad track on the disk label with an even numbered cylinder, divide
the cylinder number (not the head number) by two, and enter the result for the
cylinder number of the bad track.

When you enter the last prompt response, the INV command begins to format the
disk. This procedure may access every track on the disk depending on the options
and the condition of the disk. A typical moving-head disk (DS10 for example)
requires two minutes to complete the format function. The actual time varies with
disk speed, access time, and capacity.

946250-9705

11.

946250-9705

Building Your System Disk

Enter the CV command to copy the master disk to the blank disk. For more information
about the CV command, refer to the DX 10 Operations Guide (Volume Il). The prompts are

as follows:

COPY VOLUME

SOURCE DISK UNIT:

SOURCE VOLUME NAME:
DESTINATION DISK UNIT:
DESTINATION VOLUME NAME:
LISTING DEVICE:

VERIFY?:

CONVERT SEQUENTIAL FILES?:
CONVERT REL-REC FILES?:
MORE COPIES?:

YES
NO
NO
NO

SOURCE DISK UNIT
The name of the source disk unit in the form DSxx, where xx is a disk unit number
from 01 to 99. Enter DSO01.

SOURCE VOLUME NAME
The volume name of the disk to be copied. Enter REL36.

DESTINATION DISK UNIT
The name of the destination disk unit in the form DSxx, where xx is a disk unit
number from 01 to 99. Enter DS02.

DESTINATION VOLUME NAME
The volume name of the disk to which CV copies the disk identified by the source
volume name. Enter the name that you entered in response to the VOLUME NAME
prompt in the INV command.

LISTING DEVICE
Enter the device name of the terminal (STxx) that is to be the listing device. If a
listing is not required, enter DUMY.

VERIFY?
Although it is not recommended, a copy can be performed without verification if
you enter NO in response to this prompt. The initial value is YES.

CONVERT SEQUENTIAL FILES?
If the two disks involved in the copy process do not have the same defauit physical
record lengths, physical record length conversion allows more efficient use of the
destination disk. You can request physical record length conversion for sequential
files by responding YES. The initial value is NO.

29

Building Your System Disk

CONVERT REL-REC FILES?
If the two disks involved in the copy process do not have the same default physical
record lengths, physical record length conversion allows more efficient use of the
destination disk. Also, if the two disks have the same sector sizes, responding YES
to this prompt allows CV to perform full compression on unbounded program files.
You can request physical record length conversion for relative record files by
responding YES. The initial value is NO.

MORE COPIES?
Enter YES if you wish to make a series of copies. Your terminal then displays the
full set of prompts for the next copy to be made. You can make as many as nine
copies in a single execution of CV. The initial value is NO.

The new DX10 system disk has been built. You can now load the system from the new disk. If the
standard ROM bootstrap loader is available, loading involves no more than pressing the HALT
switch and then the LOAD switch on the front panel or, for a Business System 300, turning the
power off and on one time. However, before loading the new system and beginning operations (or
beginning to generate a custom system), make sure to copy your operating system and store the
copy in a safe place. That way, if anything happens to your system disk, you do not have to build
another. Refer to Volume Il for information on backing up your system disk.

2.6 OBJECT KITS SUPPLIED ON MULTIPLE FLEXIBLE DISKETTE MEDIA

This procedure explains how to use the Disk Build utility to transfer an object kit (typically, operat-
ing system software) from a backup copy on several flexibie diskettes to a single fixed disk (the
target disk). The Disk Build utility is designed for systems based on a WD500 disk drive. The
WD500 has a single flexible diskette drive which cannot contain all of the DX10 software at one
time and a disk drive whose disk cannot be removed. Therefore, the operating system must reside
on the fixed disk, but must be copied to the fixed disk from a series of removabie diskettes.

Disk Build can be used with any system that has both a flexible diskette drive and a rigid disk
drive. This procedure assumes that the system includes a WD500 in the standard configuration
(see Table 3-1). You may need to change your system to match the configuration in Table 3-1. You
must also have a set of special flexible diskettes consisting of an initial build diskette (which con-

tains the Disk Build utility) and three or more backup diskettes (which contain the new operating
system and system files).

You use Disk Build for any of the following:
. Building the initial system
° Rebuilding a destroyed system

. Replacing an operating system with a new one

2-10 946250-9705

Building Your System Disk

NOTE

Rebuilding a destroyed system (including your application files and
programs) with the Disk Build utility requires that you have pre-
viously backed up your operating system software on flexibie disk-
ettes using the Backup Directory (BD) or Backup Directory to Device
(BDD) command. If you want to accept the default values during
Disk Build, you must name the backup file “DX.SYSTEM” when you
issue the BD command.

2.6.1 Disk Build Procedure with a WD500 in Standard Configuration

The following procedure Initiates and executes Disk Build. To terminate Disk Build prematurely,
- enter a dollar sign ($) whenever a prompt offers an opportunity to respond. To begin the procedure,

first mount the build diskette into the flexible diskette drive; do not write protect the diskette.

Ensure that the Winchester disk(s) is in a ready state and write protected. To load the Disk Build

utility from the diskette to system memory, perform an IPL from the flexible diskette, as follows:

1. If you are using a Business System 300, turn off power to the computer. Then turn power
on again and continue with step 7 of this list.

If you are using a Business System 600 or 800, press the HALT switch and then the
ALTERNATE LOAD switch on the front panel. Then continue with step 7 of this list.

If you are using equipment with a programmer panel (most 990 equipment), continue
with step 2.

2. Press CLR and enter > 0084 on the programmer panel data switches.
3. Press ENTER MA on the programmer panel.

4. Press MDD and enter > 0200 on the programmer panel data switches.
5. Press MDE on the programmer panel.

6. Press LOAD. The loader code begins loading the Disk Build software.
7. Remove write protection from the Winchester disk.

After the system loads the Disk Build software, it immediately begins executing and displays the
following message on one or more terminals:

DISK BUILD UTILITY
DO YOU WANT TO CHANGE ANY DEFAULT VALUES? (Y/N):

The appropriate response to this question is N except in three cases:

. When the target disk is not located at the TILINE address default value, > F800, unit 0

946250-9705 2-11

Building Your System Disk

. When you wish to set special values for the following system disk parameters: volume
name, physical record size, number of VCATALOG (the volume directory) entries, or
hardware interleaving factor -

U When you wish to specify a source file other than the default file (DX.SYSTEM) on the
backup disks

In any of these three cases, enter a 'Y in response to the message and refer to the paragraph 2.6.2
for further explanation.

Whether you enter Y or N, only the terminal you are using remains active. All other terminal .
screens that displayed the introductory message become clear. A digital clock display appears in
the bottom right corner of your screen and monitors the execution time of the Disk Build utility.

Disk Build now inspects the target disk and evaluates its condition. Depending on the condition of
the disk, one of the following messages appears:

DISK REQUIRES SURFACE ANALYSIS
or

DISK REQUIRES INITIALIZATION
or

VOLUME NAME: xxXxxxxxx

THE SPECIFIED DISK COULD CONTAIN SOME
INFORMATION ABOUT YOUR BUSINESS.

IFN IS ENTERED, THE DISK WILL BE

ERASED. IFY IS ENTERED, ONLY SYSTEM
INFORMATION WILL BE ERASED. IF THERE IS
INFORMATION THAT MUST BE SAVED, ENTER
Y. IF THE INFORMATION CAN BE

REPLACED, ENTER N.

SHOULD THE USER INFORMATION ON THE SYSTEM
DISK BE SAVED?(Y/N)

The message DISK REQUIRES SURFACE ANALYSIS appears if Disk Build does not find a bad
track map on the target disk. As Disk Build begins the work of analyzing and formatting the disk,
the following message appears:

BEGIN STEP 1.

Disk Build automatically issues an IDS command, which analyzes the target disk surface for phys-
ical flaws and lists the location of any flaw on a bad track map. As Disk Build performs the IDS
command, a graph is displayed to show the percentage of surface analysis completed. When IDS
completes, a list of bad tracks is displayed. Then, Disk Build performs an INV command, which
creates a volume directory, assigns a volume name, and installs the volume on the target disk. In
this case, Disk Build uses default values for the INV parameters.

2-12 946250-9705

Building Your System Disk

The message DISK REQUIRES INITIALIZATION appears on the screen if Disk Build determines
that an IDS has been performed on the target disk but that VCATALOG does not exist. The follow-
ing message appears:

BEGIN STEP 1.
Disk Build automatically issues an INV command on the target disk using default values.
The third message appears on the screen if Disk Build finds VCATALOG on the target disk. This
message means that software or data might already exist on the target disk. If you have previously
created directories or installed programs, you may wish to preserve them. If so, enter Y. Disk Build
then issues the Install Volume (V) command. If you do not wish to save the previously existing
software, enter N. Disk Build will then issue an INV command.

Under any circumstances Disk Build deletes the following system files:

e .S$PROGA
e .S$IMAGES
e .SSLOADER
e .S$TCALIB
e .SSOVLYA

e .S3SDS$

Any datain these files is destroyed.

If Disk Build issues an IDS command, a graph is displayed to show the percentage of surface anal-
ysis completed. When IDS completes, a list of bad tracks is displayed.

Once the new volume is installed, Disk Build copies the remainder of the Disk Build operating sys-
tem software from the build diskette to the target disk using the CD command. During this pro-
cess, the following message appears on the terminali:

BEGIN STEP 2.

During the CD process, Disk Build creates a listing file called .B$LISTCD on the target disk. At this
time, the system files are recreated. The following message appears on the terminal:

REMOVE INITIAL BUILD MEDIA.
THEN TYPEY TO CONTINUE:

Remove the build diskette from the diskette drive.

946250-9705 213

Building Your System Disk

When you type Y, Disk Build automatically loads the system from the newly created files on the
target disk. The following message appears on the screen:

SYSTEM LOAD INITIATED — WAIT ONE MINUTE.
IF NO MESSAGES APPEAR, START OVER AT STEP 1.

] If no messages appear on the screen after one minute, the load process was not suc-
cessful. The data lights on the front panel should display a crash code. For an explana-

tion of crash codes, refer to DX70 Error Reporting and Recovery Manual (Volume Vi).
After correcting the cause of the crash, repeat this procedure from the IPL.

. If the load is successful, the following message appears on the terminali:

MOUNT BACKUP DATA VOLUME 1.
THEN TYPE Y TO CONTINUE:

Insert the first backup diskette, labeled Backup Disk Volume 1.

When the diskette is ready, enter Y. A response other than Y (or $, which aborts Disk Build) causes
the message MOUNT BACKUP DATA VOLUME 1 to reappear.

Disk Build issues a Restore Directory (RD) command to copy the first part of the operating system
software from the source diskette to the target disk. The following message appears on the
screen:

BEGIN STEP 3.

During this step, Disk Build deletes any files that could cause a conflict with the new system.

Specifically, Disk Build deletes .SSPROGA, .S$SDSS$, and .S$IMAGES. Disk Build issues a Modify

File Protection (MFP) command to allow replacement of .SSLOADER, .S$TCALIB, and .SSOVLYA,

Disk Build requests additional volumes as needed; the following message appears on the screen:
MOUNT VOLUME < x>; TYPE $ TO QUIT; Y TO CONTINUE:

In this message, < x> is the number of the next volume to install.

Remove the current diskette and mount volume < x> as requested.

When Disk Build has copied the entire DX10 operating system to the target disk, the following
message appears on the screen:

BUILD PROCESS COMPLETED.
REMOVE BACKUP MEDIA.
THEN TYPEY TO CONTINUE:

Remove the diskette. When you type Y, the following message appears on the screen:

SYSTEM LOAD INITIATED — WAIT 1 MINUTE.
THEN LOG ON.

214 946250-9705

Building Your System Disk

After four seconds, the system initiates an IPL and the screen becomes blank. When the IPL fin-
ishes, the DX10 operating system is loaded, and your computer is functional. To access SClI, press
the Attention key, release it, and hold down the Shift key while you press the exclamation point (!)
key. (Refer to Appendix A for an explanation of keycap names.) The following message appears on
the bottom line of the screen:

WARNING! SYSTEM IS NOT INITIALIZED:

If this warning message does not appear, observe the data lights on the front panel for a crash
code. :

At this point you have installed the DX10 operating system. It is necessary to issue an IS com-
mand to the system. The prompts are as follows:

[11S
INITIALIZE DATE AND TIME
YEAR:
MONTH:
DAY:
HOUR:
MINUTE:

Respond to the prompts as follows:

YEAR
Enter a 2- or 4-digit integer that represents the year. For example, you can enter 1982 or
82.

MONTH
Enter a 1- or 2-digit integer that represents the month. For example, you can enter 1 or 01
to indicate January.

DAY
Enter a 1- or 2-digit integer that represents the current day.

HOUR
Enter a 1- or 2-digit integer that represents the current hour (according to the 24-hour
clock). For example, 2 PM would be 14.

MINUTE
Enter a 1- or 2-digit integer that represents the current minute.

946250-9705 2-15

Building Your System Disk

After you initialize the system, the following message and prompts appear. You should initialize
the system log so that it only uses files for log messages. The following example demonstrates

this:
INITIALIZE SYSTEM LOG

ATTENTION DEVICE:

LOGGING DEVICE:

SYSTEM LOG PROCESSING TASK ID:
ANALYSIS OUTPUT PRINTER:

USER LOG PROCESSOR ID:

DUMY
DUMY
05E
LPO1
0

The warmstart procedure is complete. The system briefly displays the following message:

WARMSTART PROCEDURE COMPLETE:

When initialization is complete, you can customize your system, if necessary (see Section 3).

NOTE

The following file names are reserved pathnames. Do not use these
pathnames for your own files because the Disk Build deletes them:

e .BSPROGA
e .BSLOADER
e .B3PASS

e .BSCONTRL

e .BSLISTRD
e .BSLISTCD
e .BSOVLYA

2.6.2 Variations to Disk Build Procedure when Changing Defauit Values
When the Disk Build utility begins execution, the message DO YOU WANT TO CHANGE DEFAULT
VALUES? (Y/N) appears on the terminal screen. Enter Y in any of the following cases:

¢ The system disk (target disk) is not located at TILINE address > F800, unit 0.

¢ You wish to change one or more voiume characteristics.

. You wish to specify your own backup file (other than the default backup file,
DX.SYSTEM). If your response is N, this paragraph does not apply to your Disk Build

procedure.

2-16

946250-9705

Building Your System Disk

During the execution of Disk Build, you have three opportunities to change default values:

. When Disk Build is being loaded, you can specify the location of the system (target)
disk.

] Before Disk Build copies itself from the initial build diskette to the target disk, you can
change the default volume characteristics of the target disk.

. Before Disk Build restores the first backup diskette to the target disk, you can name
your backup file.

2.6.2.1 Specifying the Target Disk. Immediately after you respond Y to the previously displayed
question, DO YOU WANT TO CHANGE DEFAULT VALUES?, a message appears on the screen.
The content of this message varies with each system, depending on what drives are configured
and online with the particular system. The following message is a typical exampie:

SYSTEM WILL BE BUILT ON ONE OF THE FOLLOWING DISKS:

ID ADDRESS UNIT INTERRUPT TYPE
1 F800 01 13 WD500 — §M
2 F800 00 13 WD500 — S5M
3 F820 00 9 FD1000 — 1M

INPUT ID NUMBER OF DESIRED DISK UNIT:

The table of disk drives listed in the message represents all of the disks that are online in the
computer system. Choose the disk you want to be the system disk (target disk) for your computer,
and enter the corresponding ID number from the left-hand column of the table.

2.6.2.2 Changing Volume Characteristics of the Target Disk. Next, Disk Build inspects the tar-
get disk and evaluates its condition. Depending on the condition of the disk, one of the following
messages appears:

DISK REQUIRES SURFACE ANALYSIS
or

DISK REQUIRES INITIALIZATION
or

VOLUME NAME: xXXXXXXX

THE SPECIFIED DISK COULD CONTAIN SOME
INFORMATION ABOUT YOUR BUSINESS.

IF N IS ENTERED, THE DISK WILL BE

ERASED. IFY IS ENTERED, ONLY SYSTEM
INFORMATION WILL BE ERASED. IFTHERE IS
INFORMATION THAT MUST BE SAVED, ENTER
Y. IF THE INFORMATION CAN BE

REPLACED, ENTERN.

SHOULD THE USER INFORMATION ON THE SYSTEM
DISK BE SAVED?(Y/N)

946250-9705 217

Building Your System Disk

The prompts that follow the first two messages (DISK REQUIRES SURFACE ANALYSIS and DISK
REQUIRES INITIALIZATION) allow you to change default values. The other message is the same
as if you were accepting defaults; treat it as described previously.

If the message DISK REQUIRES SURFACE ANALYSIS appears, Disk Build has determined that it
must issue an IDS and an INV command on the target disk. The following prompts appear:

VOLUME NAME: (SYSTEM)
NUMBER OF VCATALOG ENTRIES:
PHYSICAL RECORD SIZE: (xxx)
HARDWARE INTERLEAVING FACTOR:

You can change these four target disk parameters that are set during the INV command.

VOLUME NAME
If the defauit volume name SYSTEM is acceptable, press the Return key on your ter-
minal. If you want to designate another name, enter that name at this time. The volume
name can be up to eight characters long.

PHYSICAL RECORD SIZE
The default value of the physical record size depends on the model of the target disk. To

designate a particular physical record size, enter that value in decimal notation. Refer to
Volume 1l for more information on defauit physical record size.

NUMBER OF VCATALOG ENTRIES
To designate your own value for this prompt, enter that value now. Aithough no default
value appears for this prompt, Disk Build supplies a default value if you press the Return

key without entering a value. The defauit value varies depending on the model of the
target disk.

HARDWARE INTERLEAVING FACTOR
To designate your own value for this prompt, enter that value now. Although no initial
value appears, Disk Build supplies a default value if you press the Return key without

entering a value.
After you answer this set of prompts, the following prompt appears:

RESTORE BAD TRACK LIST? _

If you want to restore the bad track list if available, answer Y. If you answer N or receive an error
after answering Y, Disk Build performs the IDS command.

When you answer Y, the following prompts appear:
ENTER BAD TRACKS IN THE FORMAT:
HEAD, CYLINDER,;
OR
HEAD, CYLINDER; HEAD, CYLINDER; ETC.

TO END LIST, ENTER AN EMPTY LINE

218 946250-9705

Building Your System Disk

Enter the list of known bad tracks in the requested format using decimal numbers for the values
(for example, 2, 235; 0, 15;). All entries, inciuding the last, must end with a semicolon. Improper
positioning or absence of the punctuation marks causes an error to be returned.

When you use the INV command for a DS25 disk, divide cylinder addresses in half before entering
them in response to the BAD TRACK FORMAT message. Because the DS25 uses every other cylin-
der on the disk pack, all tracks with odd cylinder addresses are ignored. You must enter the
addresses (divided by two) of even number tracks only. For example, to enter HEAD number 4,
CYLINDER number 422, you would respond to the BAD TRACK FORMAT message as follows:

HEAD 4 CYLINDER 211

If the message DISK REQUIRES INITIALIZATION appears, Disk Build has determined that the tar-
get disk has been analyzed but not initialized. A series of prompts follow. These prompts aiso
appear if you answer N to the question SHOULD THE USER INFORMATION ON THE SYSTEM
DISK BE SAVED?(Y/N) in the third message and you previously answered Y to change the default
values. The first prompt is as follows:

PERFORM INV?

If you want to reformat the disk, answer Y. (This is the equivalent of issuing the INV command with
the forced clearing of disk specified.) Otherwise, answer N.

If you answer Y, the following prompt appears:
PERFORM IDS?

If you want to perform surface analysis of the disk regardless if it has been done before, answer Y.
Otherwise, answer N.

The following prompts appear next:

VOLUME NAME: (SYSTEM)
NUMBER OF VCATALOG ENTRIES:
PHYSICAL RECORD SIZE: (xxx)
HARDWARE INTERLEAVING FACTOR:

You can change these four target disk parameters that are set during the INV command. These
prompts and the following prompt are discussed in the preceding explanation for the DISK
REQUIRES SURFACE ANALYSIS message.

RESTORE BAD TRACK LIST? _

At this point, Disk Build continues to run in the same way as if you had chosen to accept default
values. Disk Build performs either an IDS or an INV command (step 1) or an IV command. Then,
Disk Build copies the first diskette to the target disk (step 2) and performs an IPL. If the IPL is suc-
cessful, a message appears instructing you to replace the initial build diskette with the first
backup diskette and enter a 'Y to initiate an RD command.

946250-9705 2-19

Building Your System Disk

2.6.2.3 Speciftying the Backup File. When Disk Build restores the directory from the backup
diskette to the target disk, the default pathname of the target directory is DX.SYSTEM. If you have
chosen to change default values, the following message appears on the screen:

ENTER THE PATHNAME OF SEQUENTIAL BACKUP FILE: DX.SYSTEM
Enter the pathname of the backup file for the RD command.

This concludes the differences between the default-accepting mode and the default-changing
mode. Disk Build will display messages requesting the backup disks. Disk Build continues from
this point as described in the standard DSKBLD procedure described in paragraph 2.6.1.

2.6.3 Variations to Disk Build Procedure for FD1000

You should configure your equipment so it conforms to the DS04 device as given in Table 3-1. If
you are using equipment with a programmer panel (most 990 equipment), enter > 0082 on the data
switches in step 2 instead of >> 0084. In step 4, enter > F810 on the data switches instead of > 0200.
Then continue with step 6. If you are using equipment with a CDM (most 990A13-based equip-
ment), press ALT LOAD in step 2.

2.7 OBJECTKITS SUPPLIED ON TAPE MEDIA

The following procedure describes how to generate a DX10 operating system on a disk cartridge
from the two tape reels or cartridges that make up the tape medium software kit. The procedure
assumes the use of the standard ROM loader, a base system configuration (see Table 3-1 or 3-2 in
Section 3), and either a 911 VDT, a 940 EVT, or a Business System VDT.

CAUTION

The program for building the disk from tape assumes that the
devices listed in Table 2-2 are assigned the corresponding
interrupt. Otherwise, the system goes into an infinite loop when it
tries to process an interrupt from that device.

2:20 946250-9705

Building Your System Disk

Table 2-2. Minimum Configuration for TAPBLD

Device Address Interrupt Baud Rate
Disk TILINE > F800 13 (unit 0)
Magnetic tape TILINE > F880 9 (unit 0)
911 VDT CRU > 0100 10
Business CRU > 1700 8 9600
System terminal or

or TILINE > F980 11 9600
931 VDT

(channel 0)*

Note:

* You can configure a Business System terminal or a 931 VDT at either CRU address > 1700, inter-
rupt 8, or TILINE address > F980, interrupt 11. The terminai should use 9600 baud.

To begin the Disk Build from magnetic tape, perform the following steps:

1.

Mount the software kit magnetic tape labeled BUILD TAPE (T part number 939151-1301)
on tape unit 0 with write protection enabled and make tape unit 0 ready for operation.

Place a disk cartridge on the system disk drive (first controller) unit 0, and make disk
unit O ready for operation with the write protection enabled.

If you are using a Business System 300, turn off power to the computer. Then, turn
power back on and continue after step 9 of this list.

If you are using a Business System 600 or 800, press the HALT switch and then the
ALTERNATE LOAD switch on the front panel. Then continue after step 9 of this list.

If you are using equipment with a programmer panel (most 990 equipment), continue
with step 4. If you are using equipment with a COM (most 990A13-based equipment),

press the HALT switch and then the ALT LOAD switch, and continue after step 9 of this
list.

Press the CLR switch, and enter > 0082 in the programmer panei data switches.
Press the ENTER MA switch on the programmer panel.

Press the CLR switch, and enter > F880 in the programmer panel data switches.
Press the MDE and MAI switches on the programmer panel (in succession).
Press the CLR switch, and enter > 8000 in the programmer panel data switches.

Press the MDE switch and then the LOAD switch on the front panel.

946250-9705 Change 1 2-21

Building Your System Disk

The tape unit then reads the TAPBLD program from the tape to memory. This program contains

. several steps performed automatically. Appropriate messages appear on the screen as each step
executes. Once the program is loaded and begins execution, the following message is displayed
on one or more of the terminals:

***DISK BUILD UTILITY**~
DO YOU WANT TO CHANGE ANY DEFAULT VALUES? (YIN):

At this point, remove write protection from the disk unit.

The appropriate response to this question is N except when you wish to set special values for the
following system disk parameters: volume name, physical record size, number of VCATALOG (the
volume directory) entries, or hardware interleaving factor.

If you want to set special values for these items, enter a Y in response to the message and refer to
paragraph 2.7.1 for further explanation.

Whether you enter Y or N, only the terminal you are using remains active. All other terminal
screens that displayed the introductory message become clear. A digital clock display appears in
the bottom right corner of your screen and monitors the execution time of the Tape Build utility.

Tape Build now inspects the target disk and evaluates its condition. A running account of the data
tracks as they are accessed appears in the top righthand corner of the screen. Depending on the
condition of the disk, one of the following messages appears:

DISK REQUIRES SURFACE ANALYSIS
or
DISK REQUIRES INITIALIZATION

The message DISK REQUIRES SURFACE ANALYSIS appears if Tape Build does not find a bad
track map on the target disk. As Tape Build begins the work of analyzing and formatting the disk,
the following message appears:

BEGIN STEP 1.

Tape Build automatically issues an IDS command, which analyzes the target disk surface for
physical flaws and lists the location of any flaw on a bad track map. As Tape Build performs the
IDS command, a graph is displayed to show the percentage of surface analysis completed. When
IDS compietes, a list of bad tracks is displayed. Then, Tape Build performs an INV command,
which creates a volume directory, assigns a volume name, and installs the volume on the target
disk. In this case, Tape Build uses default values for the INV parameters.

The message DISK REQUIRES INITIALIZATION appears on the screen if Tape Build determines
that an IDS has been performed on the target disk but that VCATALOG does not exist. The follow-
ing message appears:

BEGIN STEP 1.

Tape Build automatically issues an INV command on the target disk using default values.

2.22 946250-9705

Building Your System Disk

Once the new volume is logically installed, Tape Build copies the remainder of the Tape Build
operating system software from the tape to the target disk. During this process, the following
message appears on the terminal:

BEGIN STEP 2.

At this time, the system files are recreated. As directories and files are created, their names
appear on the screen, as follows:

**VCATALOG™"
**S$DIAG **
**S$ROLLA **
**BSLOADER""
**B$PROC "~
**BSOVLYA **
**S$IMAGES™~
**BSPROGA "~
**BSPASS **

S$DIAG is not created on an FD1000 floppy disk.

Tape Build automatically loads the system from the newly created files on the target disk. The fol-
lowing message appears on the terminal:

REMOVE INITIAL BUILD MEDIA.
TYPEY TO CONTINUE:

Unioad and remove the tape. When you type Y, the following message appears on the terminal:

SYSTEM LOAD INITIATED — WAIT ONE MINUTE
IF NO MESSAGES APPEAR, START OVER AT STEP 1

If no further messages appear on the screen after one minute, the load process was not success-
ful. The data lights on the computer chassis should display a crash code. For an explanation of
crash codes, refer to Volume VI. After correcting the cause of the crash, repeat this procedure
from step 1in the preceding list.

If the load is successful, the following message appears on the terminal:

MOUNT BACKUP DATA VOLUME 1
THEN TYPEY TO CONTINUE

Insert the backup tape, labeled Backup Tape Volume 1.

When the tape is ready, enter Y. A response other than Y (or $, which aborts Tape Build) causes the
message MOUNT BACKUP DATA VOLUME | to reappear.

Tape Build issues an RD command to copy the first part of the operating system software from the
source tape to the target disk. The following message appears on the screen:

BEGIN STEP 3.

946250-9705 Change 1 2-23

Building Your System Disk

During this step, Tape Build deletes any files that couid cause a conflict with the new system.
Specifically, Tape Build deletes .S$PROGA, .S$SDS$, and .S$IMAGES. Tape Build issues an MFP
command to allow replacement of .S3LOADER, .S$TCALIB, and .S$OVLYA.

Tape Build requests additional volumes as needed; the following message appears on the screen:
MOUNT VOLUME < x>; TYPESTO QUIT; Y TO CONTiNUE:
In this message, x is the number of the next volume to install.

When Tape Build has copied the entire DX10 operating system to the target disk, the following
message appears on the screen:

BUILD PROCESS COMPLETED.
REMOVE BACKUP MEDIA.
THEN TYPEY TO CONTINUE:

Unload and remove the tape. When you type Y, the following message appears on the screen:

SYSTEM LOAD INITIATED — WAIT 1 MINUTE.
THEN LOG ON.

After four seconds, the system executes an IPL and the screen becomes blank. When the IPL is
complete, the screen remains blank. The DX10 operating system Is now loaded, and your com-
puter is functional. To access SCI, press the Attention key, release it, and hold down the Shift key
while you press the exclamation point (!) key. (Refer to Appendix A for an explanation of keycap
names.) The following message appears on the bottom line of the screen:

WARNING! SYSTEM IS NOT INITIALIZED:

If this warning message does not appear, observe the data lights on the front panel for a crash
code and refer to Volume VI.

Otherwise, issue an IS command to the system. The prompts are as follows:
[]11S

INITIALIZE DATE AND TIME
YEAR:
MONTH:
DAY:
HOUR:
MINUTE:

Respond to the prompts as follows:
YEAR

Enter a 2- or 4-digit integer that represents the year. For example, you can enter 1982
or 82.

2.24 946250-9705

Building Your System Disk

MONTH
Enter a 1- or 2-digit integer that represents the month. For example, you can enter 1 or 01
to indicate January.

DAY
Enter a 1- or 2-digit integer that represents the current day.

HOUR
Enter a 1- or 2-digit integer that represents the current hour (according to the 24-hour
clock). For example, 2 PM would be 14.

MINUTE
Enter a 1- or 2-digit integer that represents the current minute.

After you initialize the system, the foilowing message and prompts appear. Respond to the first
two prompts by entering the device name ME, as follows:

INITIALIZE SYSTEM LOG
ATTENTION DEVICE: ME
LOGGING DEVICE: ME

Accept the initial values for the next three prompts that appear by pressing the Return key.

SYSTEM LOG PROCESSING TASKID: 05E
ANALYSIS OUTPUT PRINTER: LPO1
USER LOG PROCESSORTASKID: 0
The warmstart procedure is complete. The system displays the following message:
LOG STARTED

WARMSTART PROCEDURE COMPLETE:

When initialization is complete, you can customize your system, if necessary (see Section 3).

946250-9705 2-25

Building Your System Disk

NOTE

The following file names are reserved pathnames. Do not use these
pathnames for your own files because the Tape Build deletes them:

e .BSPROGA
* .BSLOADER
e .B$PASS

e .B$CONTRL

e .BSLISTRD
e .BSOVLYA
e .BSLISTCD

2.7.1 Variations to Tape Build Procedure when Changing Defauit Values

When the Tape Build utility begins execution, the message DO YOU WANT TO CHANGE DEFAULT
VALUES? (Y/N) appears on the terminal screen. Enter Y if you want to change one or more volume
characteristics. If your response is N, this paragraph does not apply to your Tape Build procedure.

After you respond Y to the question, a message appears on the screen. The content of this mes-
sage varies with each system, depending on which drives are configured with the system. The foi-
lowing message is a typical example:

SYSTEM WILL BE BUILT ON ONE OF THE FOLLOWING DISKS:

ID ADDRESS UNIT INTERRUPT TYPE

1 F800 01 13 WD800 — 43MB
2 F800 02 13 WDS00A — 20MB
3 F800 03 13 WDS500A — 20MB
4 F800 04 13 UNKNOWN DISK

INPUT ID NUMBER OF DESIRED DISK UNIT:

The table of disk drives listed in the message represents disks that may be specified to build the
initial system. Choose the disk that is online to your system, and enter the corresponding 1D
number from the left-hand column of the table.

Before Tape Build copies itself from the initial build tape to the target disk, you can change the
default volume characteristics of the system disk. Tape Build inspects the target disk and evalu-
ates its condition. Depending on the condition of the disk, one of the following messages
appears:

2-26 Change 1 946250-9705

Building Your System Disk

DISK REQUIRES SURFACE ANALYSIS
or
DISK REQUIRES INITIALIZATION

The prompts following the two messages, DISK REQUIRES SURFACE ANALYSIS and DISK
REQUIRES INITIALIZATION, allow you to change defaulit values.

If the message DISK REQUIRES SURFACE ANALYSIS appears, Tape Build has determined that it
must issue an IDS and INV command on the target disk. The following prompts appear:

VOLUME NAME: (SYSTEM)
NUMBER OF VCATALOG ENTRIES:
DEFAULT PHYSICAL RECORD SIZE: (xxx)
INTERLEAVING FACTOR:

946250-9705 Change 1 2-26A/2-26B

Building Your System Disk

You can change these four target disk parameters that are set during the INV command.

VOLUME NAME
If the default volume name SYSTEM is acceptable, press the Return key on your ter-
minal. If you want to designate another name, enter that name at this time. The volume
name can be up to eight characters -long. Note that you cannot backspace the cursor
while responding to this prompt. Be sure to enter the VOLUME NAME correctly the first
time.

DEFAULT PHYSICAL RECORD SIZE
The default value of the physical record size depends on the model of the target disk. To
designate a particular physical record size, enter that value in decimal notation. Refer to
Volume Ill for more information on default physical record size.

NUMBER OF VCATALOG ENTRIES
To designate your own value for this prompt, enter that value now. Although no default
value appears for this prompt, Tape Build supplies a default value if you press the
. Return key without entering a value. The default value varies depending on the model of
the system disk.)

INTERLEAVING FACTOR
To designate your own value for this prompt, enter that value now. Although no initial
value appears, Tape Build supplies a default value if you press the Return key without
entering a value.

After you answer this set of prompts, the foIIoWing prompt appears:
RESTORE BAD TRACK LIST? __

If you want to restore the bad track list if available, answer Y. If you answer N or receive an error
after answering Y, Disk Build performs the IDS command.

When you answerY, the following prompts abbear: v

ENTER HEAD AND CYLINDER ADDRESS OF KNOWN BAD TRACKS.
ENTER THE ADDRESSES ONE PER LINE.

END THE LIST BY ENTERING RETURN ONLY FOR THE NEXT HEAD.
HEAD # '

Enter the addresses of any known bad tracks on this volume. Enter the decimal number for the
head on the line prompting HEAD #. Then press the Return key. Do not use any special characters
such as commas or semicolons. Tape Build then issues the prompt CYLINDER #. Enter the deci-
mal value of the cylinder number immediately after this prompt. Then press the Return key. Do not
use any special characters such as commas or semicolons. Tape Build then prompts you for the
next head and cylinder number in the same manner. When the list of head and cylinder pairs is
complete, press only the Return key in response to the HEAD # prompt to terminate your input.

When you use the INV command for a DS25 disk, divide cylinder addresses in half before entering
them in response to the CYLINDER # prompt. Because the DS25 uses every other cylinder on the
disk pack, all tracks with odd cylinder addresses are ignored. You must only enter the addresses
(cylinder divided by two) of tracks with even cylinder numbers.

946250-9705 2-27

Building Your System Disk

2.8 DUPLICATION OF A BUILT SYSTEM

You can create a copy of a system disk capable of performing an IPL with one of several methods.
If your system has more than one disk drive, you can produce a copy directly by using the Copy
Volume (CV) command. If the disks are the same type, you can use the CVD or DCOPY command.
If you have only one disk and it is removable, and you have a magnetic tape, you can use DCOPY.
If your only disks are not removable, the best way is to use the procedures in paragraph 2.10 to
create a backup that can be used with Disk Build; then use BDD to back up your data files.

You can create a system disk by using the following steps 1 through 5. This method is useful if
your output disk is too small to use CV, or if you wish to produce a system disk that has fewer
functions than a complete DX10 system. If you are trying to produce a smaliler version of a DX10
system, you can delete tasks from S$IMAGES and S$PROGA, and you can delete command proce-
dures from S$PROC. Volume Il contains information in the SCl command index table on what
parts of SSPROGA are used to service the command procedures. Make a copy of the program
files; delete the desired tasks, procedures, and overlays from the copy; and copy twice with CD to
compress the program files.

The system files necessary to have an operational DX10 system are S$PROC, S$SOVLYA,
SSLOADER, S$PROGA, and S$IMAGES. You need to have the procedures necessary for system
initialization and application execution in S$PROC.

1. Place a new disk volume in a secondary disk unit.

2. Initialize the volume using the INV command. Answer YES to the USED AS SYSTEM
DISK prompt to install the bootstrap loader on the disk.

3. Issue the CD command to copy the desired files to the new disk. (These files are the sys-
tem files mentioned previously and whatever other files and directories are necessary
for the system’s intended use.) If you use the RPRL option, be sure to recopy
.S$SYSGEN.GENDAT without RPRL. Use the Verify Copy (VC) command to verify the
copy. Accept the default value to include the system files.

4. Enter the CSF command to create the .S$PRINT, .S3ROLLA, and .S3CRASH system
flles.

5. Use the MVI command to specify to the system loader the names of the primary system
image, the program file, the overlay file, and the loader file.

Refer to Volume Il for detailed descriptions of the CSF and MVI commands.

946250-9705 2.29

Building Your System Disk

2.9 BACKUP AND RESTORE

Volume Ii gives specific information on how to back up your system disk. It explains backup pro-
cedures and differentiates among the following six commands:

. Disk Copy/Restore (DCOPY)

e Copy Directory (CD)

. Backup Directory (BD)

. Copy and Verify Disk (CVD)

] Copy Volume (CV)

. Backup Directory to Device (BDD)

Briefly, DCOPY is the fastest but offers no disk compression. DCOPY can copy from tape to disk
and vice versa, and from disk to disk. CVD and CV can only copy from disk to disk. The CVD and
CV commands offer file compression and the capability of avoiding bad tracks. CVD and DCOPY
require that the input disk and output disk be the same size and type. DCOPY requires that the
destination disk and source disk have the same number of tracks, sectors per track, and bytes per
sector even if there is an intervening tape copy. CV can copy between disks of different sizes and
types.

CD is a more general copy that copies disks of different types. It offers disk compression, selec-
tion of which files to copy, and conversion of physical record length of files. BD and BDD copy the
disk onto one sequential file, magnetic tape, or disk (or DSDD diskette). They can copy onto sev-
eral tape or disk volumes if necessary. If you are backing up a disk onto several volumes, you must
use BD or BDD. See Volume [l for backup and restore instructions.

2.10 BUILDING A CUSTOM DISKETTE OR TAPE TO USE WITH DISK BUILD

You can produce a backup on tape or diskette for use with Disk Build that contains a custom sys-
tem generation and your custom software. This can shorten the time it takes you to build a new
system or recover from problems with your system disk if you have a system without any
removable disks. This paragraph gives the details on what you need to include in the custom
backup.

2-30 946250-9705

Building Your System Disk

Your custom backup must contain the following system files:

e SSDS

e S3$PROC .
e SSOVLYA |
e S$SLOADER
¢ S$PROGA
e S$IMAGES
o S$MVI

The file S3SDS$ contains the assembler, the Link Editor, and programs from installation of lan-
guage packages such as the COBOL compiler. If you do not need any of these functions on the
system you are building, you may omit this file.

S$PROC need only contain those command procedures necessary for operation of the system you
are building and its applications. You can delete the command procedures for functions you do
not need.

S$SOVLYA and SSLOADER must be present.

S$PROGA need only contain those command processors necessary for operation of your applica-
tions and the operating system. Volume Il contains a table that shows what parts of SSPROGA are
necessary for each of the standard DX10 command procedures. You can delete those command
processors for the functions you do not need. However, it is wise to retain some functions needed
for diagnosis of problems, such as ANALZ. Make a copy of SSPROGA,; delete the tasks, proce-
dures, and overiays not needed; and copy it to the disk to be backed up with CD. The BD command
that creates the backup finishes the process of compressing the program file.

The SSIMAGES file must contain the system image designated for use by the contents of the
S$MVI file. The Modify Volume Information (MVI) processor creates SSMVI when it is executed on
a disk that is initialized as a system disk, has all the system files on it, and is installed in the sys-
tem (IV). The file can also be created by the Text Editor. See Volume Il for more information on the
MVI command.

The Disk Build software takes a certain amount of space on the disk being built. Be sure the disk
or directory you back up is small enough so the disk being buiit does not fill up during the restore
directory process.

NOTE

The disk from which you copy to produce the backup should not
contain any of the files that start with B$. The presence of any such
file in the backup may cause the RD process of the Disk Build to
return an error.

946250-9705 2-31

Building Your System Disk

The Disk Build program attempts to run MVI even if errors occur during the RD process. However,
if errors occur, it does not attempt to perform an IPL for the system it just built. At that point, you
should not perform an IPL. You can use the log-on sequence to run a skeleton SCI. Use a .SHOW
.BSLISTRD SCI primitive to inspect the listing from RD. The error messages in that file aliow you to
determine what the problem is.

If the system builds successfully but an IPL cannot be performed, the most likely cause is that the
S$MVI file is either missing or specifying the wrong system image.

2.11 SYSTEM FILES

' DX10 maintains specific system files related to DX10 operations in each disk volume as a part of
system overhead. System files allow the operating system to function.

Ordinarily, you do not want to back up these files because they are already on the system disk and
they are not often changed or easily built. Therefore, select the NOSYSFILE option on the CD and
BD commands to exclude these files. However, if you are building a system disk or generating an
alternative system disk to use with a specific application, you want to be sure they are included in
the copy procedure. Accept the defauit.

Because DX10 requires these files, do not change the characteristics of any of them and do not
alter the contents of the first six listed except as patched by released patch batch streams. DX10
system files include the following:

System program file S$PROGA
System image file S$IMAGES
Overlay file SSOVLYA
Roll file .SSROLLA
System crash file S$CRASH
System loader .S$LOADER
Diagnostic file .S$DIAG
SCl procedure directory .S$PROC
Background terminal communications area S$BGTCA
Foreground terminal communications area S$FGTCA
Background terminal local file S$BTLFXX
Foreground terminal local file SSFTLFXX
Terminal library S$TCALIB
Volume directory .VCATALOG
LP$X directory SSPRINT
System log file 1 .S$$SLGH
System log file 2 .S$$SLG2

where:

S$ designates system files.
XXis the terminal identification number.

You can initialize system log files during the DX10 loading and start-up procedure by entering the
Initialize System Log (ISL) command. The ISL command initializes the two log files that store
device errors, input/output (I/0) errors, task errors, and messages generated by user programs.
The command also permits selection of tasks to process the log file entries.

2-32 946250-9705

Building Your System Disk

Do not name user files with file names starting with S$. This nomenclature is reserved for system
files cataloged directly in the volume directory .VCATALOG. Following this convention aids you in
avoiding any conflict regarding file pathnames. :

Under DX10, an operational system disk must include a program file, overlay file, roll file, loader
file, and a system image file. These files are buiit from a software kit or are provided in an opera-
tional DX10 system disk provided with the system. You can maintain primary and secondary ver-
sions of the program file, image file, and overlay file by using the MVl command to modify disk
volume information (refer to paragraph 2.13). If you maintain more than one system program file,
image file, loader file, and overlay file under different names on a system disk, you can switch to a
specific version suited to your applications.

System program file — The system program file (S$PROGA) contains system programs
and optionally may contain user programs.

System image name — The name of the system image in the S$IMAGES file that con-
tains the memory resident parts of DX10.

System overlay file — The system overlay file (SSOVLYA) is a relative record file that
contains disk-resident overlays of DX10.

Roll file — The roll file (SSROLLA) is used by DX10 to roll out disk-resident tasks. Roll
files are created with the CSF command.

System crash file — The system crash file (SSCRASH) is used by DX10 to save the total
memory image following a system crash. The system crash file must be as large as the
whole memory. The default size is 64K words. The CSF command creates the system
crash file; it uses the sector size specified in the command. The system crash file may
be deleted; however, then it is not possible to save system crash information.

System loader file — The system loader file (SSLOADER) is an image file containing
code that loads the DX10 operating system from the system image file. The file name
must be eight characters in length.

Diagnostic file — The diagnostic file (SSDIAG) is created by the INV command. It is a
read-only file containing pseudorandom data patterns used for system verification by
diagnostic programs. This file occupies exactly one disk cylinder and is located as
close as possible to the disk spindle. (If the closest cylinder has a bad track, the next
closest is used, and so on. S3DIAG always occupies an error-free cylinder.)

SCI procedure directory — The SC! procedure directory (S$PROC) contains SCI proce-
dures and has a maximum of 457 entries.

Output spool files — The directory S$PRINT contains the output spool files for the
pseudo-devices LP$1 through LP$9, which hold output for printer devices LPO1 through
LP09. The CSF command creates the directory.

946250-9705 2-33

Building Your System Disk

e System log files 1 and 2 — The system log files (S$SLG1 and .S$SLG2) are queues of
system log messages that provide information about device errors, abnormal task termi-
nation, user messages, system log processor messages, memaory errors, errors in mem-
ory cache, and statistics. Refer to Volume VI for more information on the system log.

. Writable control storage (WCS) file — The WCS file contains predefined XOP instruc-
tions. Refer to the 990/99000 Assembly Language Reference Manual for a detailed
description of the WCS file. The WCS file is for use on 990/12 computers only.

SCl generates and maintains the following files as required by DX10. SCl-related files are automat-
ically created, maintained, and deleted as required. You should not aiter or delete these files.

] Background terminal communications area file — The background terminal communi-
cations area file (S8BGTCA) is used by SCI to control background program processing.

. Foreground terminal communications area file — The foreground terminal communica-
tions area file (S3FGTCA) is used by SCI to control foreground program processing.

U] Background terminal local file — The background terminal local file (S$BTLFXX) is used
by SCI as an output file for background processes at the terminal level.

° Foreground terminal local file — The foreground terminal local file (S$FTLFXX) is used
by SCI as an output file for foreground processes at the terminal level.

e Terminal library — The terminal library (S$TCALIB) contains data or user IDs defined to
the system.

e VCATALOG — VCATALOG is the master directory for a volume.

2.12 MODIFYING DISK VOLUME INFORMATION

Unless you already have a running version of DX10 and need to use the Modify Volume Informa-
tion (MVI]) command to recognize the newly built system as the primary system image, you need
not use the MVl command before going on to Section 3, system generation.

You can change disk volume information by using the MVl command. Under MVI, you can list
and/or change specific files and all files and volume information within those files. To terminate
MV, enter Q. For a detailed description of the MV! command, see Volume Il.

2.13 MODIFYING INITIAL STATE SPECIFICATIONS

For security reasons, you will probably want to control the log-on specifications of your system.

Whether you modify these specifications before or after system generation is a matter of personal
choice.

2.34 946250-9705

Building Your System Disk

The DX10 user interface requires that certain characteristics relative to each terminal in the sys-
tem be defined for all terminals. SCI allows specific terminals to operate with predetermined char-

acteristics as follows:
e Terminal status (device ON/OFF)
e Terminal operational mode (TTY/VDT)
¢ Terminal operational mode default (TTY/VDT)
. Terminal log-on specification (YES/NO)

. Terminal privilege level (0 through 7)

You can modify these characteristics by using the commands described in the following
paragraphs.

2.13.1 Initial States
The initial state of DX10 terminals after IPL is the following:

e All terminals are on.

e Noterminal requires Iog-oﬁ.

e TTY terminals are in TTY mode.

e VDT terminais are in VDT mode.

. All terminals are assigned the highest privilege level.

2.13.2 Maodification Strategy

Depending on the requirements of each DX10 installation, the system programmer may decide to
assign users and specific terminals on a system a varying level of access privilege and unique
user ID assignments. You can also specify the mode of operation (TTY or VDT) for each terminal.
Through the Modify Terminal Status (MTS) command, you can initialize specific assignments for
terminal use and access. You can redefine terminal specifications each time you do an IPL. We
recommend that you put all VDTs in VDT mode and all 733/743 type terminals in TTY mode as the
default mode.

DX10 also provides you the capability of identifying a particular system user. Through the fol-
lowing commands, the system programmer can assign user |D, passcode, and privilege code
specification:

AUl — Assign User ID

MU| — Modify User ID

DUl — Delete User ID

See Volume |l for descriptions and examples of these commands.

946250-9705 2-35

Building Your System Disk

2.13.3 Modifying the IS Command
The IS command is an SCl command that automatically calls several commands and performs
several functions related to initializing DX10.

IS is a general purpose initialization command designed to be modified by each DX10 installation.
We advise the person coordinating system use to empioy the IS command in generating a specific
configuration with DX10.

The command stream initialized by the IS command includes the following SCI commands:

Initialize Date and Time (IDT)
Initialize System Log (ISL)
Modify Terminal Status (MTS)

Modify LUNO Protection (MLP)

For descriptions and examples of these commands, see Volume |I.

The following procedure describes how to facilitate modification of the IS command for custom
terminal configurations.

1.

2-36

Issue the Copy/Concatenate (CC) command to create a copy of the file .S$PROC.IS.
Enter .S$PROC.IS in response to the INPUT ACCESS NAME prompt and
.S$PROC.ISCOPY (the pathname of the copy) as the OUTPUT ACCESS NAME.

Text edit the procedure by issuing the Initiate Text Editor (XE) command with the path-
name of .S3PROC.ISCOPY. given as the FILE ACCESS NAME. (Refer to the DX 70 Operat-
ing System Text Editor Manual (Volume IV).)

Using the Text Editor, add an MTS command to the procedure for each terminal, thereby
defining terminal characteristics at the entry of the IS command. You can aiso add
appropriate IV commands and Assign Global LUNO (AGL) commands.

Terminate the text edit session, specifying .S$PROC.ISCOPY as the OUTPUT ACCESS
NAME.

Test the modified IS command by issuing the ISCOPY command. If the command works
satisfactorily, issue a CC command, specifying .S$PROC.ISCOPY as the INPUT
ACCESS NAME and .S$PROC.IS as the OUTPUT ACCESS NAME. With this action, the
modified command procedure is installed as the standard IS procedure.

946250-9705

3

System Generation

3.1 SYSTEM GENERATION

The DX10 operating system’s purpose is to manage the complex and varied operations of a com-
puter system. To accomplish this, DX10 must obtain information about the computer’'s physical
and logical makeup (its parameters). Furthermore, DX10 must be directed to process these para-
meters into a form that is more suited to efficient management of the computer system. These
processes of obtaining and processing the computer’s parameters constitute system generation.

Generating a system involves the following stages:
U Preexecution considerations

. Execution of the Execute System Generation Utility (XGEN) command, during which you
provide DX10 the necessary parameters of the computer system

. Execution of the Assemble and Link Generated System (ALGS) command
. Execution of the Patch Generated System (PGS) command
* Execution of the Test Generated System (TGS) command

. Execution of the Install Generated System (IGS) command

NOTES

Hexadecimal numbers are preceded by a left angle bracket (>)
throughout this manual. Numbers without the left angle bracket are
assumed to be decimal. Follow this convention when entering
numbers to DX10 through the keyboard.

Also, the names of keys are generic key names throughout this
manual. In some cases, the names on the keycaps of the terminals
match the generic key names, but in many cases they do not.
Appendix A contains a table of key equivalents to identify the spe-
cific keys on the terminal you are using. Drawings that show the
layout of the keyboard of each type of terminal are also included.

946250-9705 3-1

System Generation

3.2 PREEXECUTION CONSIDERATIONS
Before issuing the XGEN command, consider two factors:
] Devices to be added in the future

o Ready knowledge of the computer system parameters that you must provide during the
execution of the System Generation utility

NOTE

Make sure you read the object installation documents for any com-
munications product that you plan to install on the system.

If you anticipate adding a new device in the near future, you may want to include the device during
system generation to avoid regenerating the entire system just to include that one device. Use the
Modify Device State (MDS) command to place the device offline until you physically install it. If
you should use this technique, the system software may require that the device’s controller board
be installed in the chassis. In addition, some devices cannot share interrupts. Refer to paragraph
3.2.3 on interrupts for a discussion of this requirement.

Before you begin system generation, fill out the configuration chart for your system so you can
respond readily to the prompts in the device definition portion of the System Generation utility.
The following paragraph describes basic system configurations.

3.2.1 Base System Configurations

Tl supports a base system configuration with multiple disk drives and at least one interactive
device, such as a 931 video display terminal (VDT). The base system configuration, stored in
.S$IMAGES, requires that the supported devices be physically configured so that it conforms to
the minimum configuration shown in the following tables and figures.

Table 3-1 shows the base system configuration supported by the DX10 system shipped on hard
disk or on flexible diskette build media. Table 3-2 shows the base system configuration supported
by the DX10 system shipped on magnetic tape build media. See Section 2 for instructions on
building a system from the media shipped to you from TI.

Figures 3-1, 3-2, and 3-3 show the suggested base hardware configuration for each of the indi-
cated chassis. Tl suggests that your computer hardware be configured to match that in the
figures, with your other devices added to it. This enables you to build a DX10 system in the future
with a minimum of configuration changes. Figure 3-1 shows the configuration for the 990A13
13-slot chassis. The Business System 600 and 800 use this chassis. The footnotes indicate the
various combinations that can appear in a system configured by Tl. The system shipped from the
Tl factory is capable of performing the system build, whichever media you have. You need to
examine the configuration chart for your system to determine what devices and parameters to use
in executing system generation. Figure 3-2 shows the configuration for the 990 13-slot chassis.
Figure 3-3 shows the configuration for the 990 17-slot chassis. (Note that in these figures the right
angle bracket (>) precedes a hexadecimal value.)

3-2 946250-9705

NOTE

System Generation

Systems are shipped with the configuration chart attached to the
computer chassis. Update the chart whenever you add or remove
devices from the system.

Table 3-1. Base System Configuration for DX10 on Disks
TILINE or
Device CRU Address Interrupt Devices Supported

Disk > F800 13 3 Drives
> F820 9 1 Drive

vOoT >1700 8 931 VDT/940 EVT
>0100 10 911 VDT
> F980 11 931 VDT/940 EVT on channei 0

Table 3-2. Base System Configuration for DX10 on Magnetic Tape

TILINE or
Device CRU Address Interrupt Devices Supported
Disk >F800 13 4 Drives
Tape > F880 9 1 Drive
VDT >1700 8 931 VDT/940 EVT
>0100 10 911 VDT
>F980 11 931 VDT/940 EVT on channei 0

946250-9705

Change 1

System Generation

LEFT SIDE (P1) RIGHT SIDE (P2)
SLOT | DEVICE CRU TILINE |[INTER—| SLOT DEVICE CRU TILINE |INTER-
BASE RUPT BASE RUPT
1 CcPU 1 CPU
2 >2E0] 2 >2C0 15
3 >2A0 10 3 >280 8
4 >260 11 4 >240 12
5 >220 7 5 >200 3
6 >1E0 11 6 >1Co0 11
SEE
NOTE 1 7 >1A0 9 7 >180 13
NOTES
2 AND 8 >160 8 8 >140]
3
SEE
NOTE 4 9 >120 8 9 911 VDT | >100 10
SEE
NOTE 5| 10 >0E0 12 10 >0Cco 11
11 >0A0 3 11 >080 7
12 >060 14 12 >040 4
13 >020 15 13 >000 6
NOTES :
(1) SOME STANDARD OPTIONS FOR SLOT 7 ARE AS FOLLOWS :
® A FULL BOARD TILINE DISK CONTROLLER AT ADDRESS >F800, INTERRUPT
13 ON P2 SIDE.
® A TILINE PERIPHERAL BUS INTERFACE (TPBI) BOARD FOR TAPE IN P1 AT
TILINE ADDRESS >F880, INTERRUPT 9 AND FOR DISK IN P2 AT TILINE
ADDRESS >F800, INTERRUPT 13 (FOR EXAMPLE , WD80O),
® A TPBI BOARD FOR DISK IN P1 AT TILINE ADDRESS >F820, INTERRUPT
? AND FOR DISK IN P2 AT TILINE ADDRESS > FS800, INTERRUPT 13
FOR EXAMPLE, WDS00).
(2) SOME STANDARD OPTIONS FOR SLOT 8 ARE AS FOLLOWS:
® A FULL BOARD FOR DISK AT TILINE ADDRESS >F820, INTERRUPT 9,
e A FULL BOARD FOR TAPE AT TILINE ADDRESS >F880, INTERRUPT 9.
(3) THE P2 SIDE IS .USER PROGRAMMABLE TO BE INTERRUPT 9 OR 14.
(4) AN OPTION FOR THE P1 SIDE OF SLOT 9 IS A 931 VDT OR 940 EVT AT
CRU BASE ADDRESS >1700, INTERRUPT 8. THIS IS A CI402 CONTROLLER
ON A SYSTEM WHERE THE CPU IS NOT A /10A.
(5) A STANDARD OPTION FOR SLOT 10 IS A 931 VDT OR 940 EVT ON A C1403
OR Cl404 AT TILINE ADDRESS » F980, INTERRUPT 11, CHANNEL 0.
2283055

Figure 3-1. Base System Configuration for 990A13 13-Siot Chassis, Business System 600/800

3-4 946250-9705

System Generation

LEFT SIDE (P1) RIGHT SIDE (P2)
SLOT | DEVICE CRU | TILINE |[INTER—| SLOT | DEVICE CRU | TILINE |INTER-
BASE RUPT BASE RUPT
sMmt 1 SMI
2 | AU 2 AU
MEMORY >FB0O 3 MEMORY >FB0O
MEMORY 4 MEMORY
>220 5 >200
>1E0 6 >1C0
DISK >1A0 | >F800 13 7 DISK 180 | >FBo0 | 13
SEE
NOTE 1 >160 9 8 DISK >140 | >F820 9
SEE
NOTE 2 >120 8 9 911 VDT | >100 10
SEE
NOTE 3| 490 >0E0 12 10 >0C0 11
11 >0A0 3 11 >080 7
12 >060 14 12 >040 a
13 >020 15 13 >000 6
NOTES:

(1)
(2)

(3)

2283056

946250-9705

AN ALTERNATE CONFIGURATION THAT YOU CAN HAVE 1S A FULL SLOT TAPE
CONTROLLER AT TILINE ADDRESS > F880, INTERRUPT 9 ON P2 SIDE.,

AN OPTION FOR THE P1 SIDE OF SLOT 9 IS A 931 VDT OR 940 EVT AT CRU
BASE ADDRESS >1700, INTERRUPT A. THIS IS A Cl402 CONTROLLER ON A
SYSTEM WHERE THE CPU IS NOT A /10A,

THE BASE CONFIGURATION CAN SUPPORT A 931 VDT OR 940 EVT ON CHANNEL
0 OF A Cl1403 OR C1404 MULTIPLEXER BOARD, THIS BOARD OCCUPIES A FULL
SLOT WITH TILINE ADDRESS >F980, INTERRUPT 11.

Figure 3-2. Base System Configuration for 990 13-Slot Chassis

3-5

System Generation

TOP OF CHASSIS (P1) BOTTOM OF CHASSIS (P2)
SLOT | DEVICE CRU_ | TILINE |[INTER—-{ SLOT | DEVICE CRU | TILINE |INTER-
BASE RUPT BASE RUPT
1 sSMI 1 SMI
2 | Aau 2 AU
3 MEMORY >FBOO 3 MEMORY >FBOO
4 MEMORY 4 MEMORY
5 11 5 11
6 >2E0 _ 10 6 >2¢C0 10
7 >2A0 15 7 >280 15
ﬁg% 1 8 >260 12 8 >240 12
SorE 2 9 >220 8 9 >200 8
10 >1E0 3 10 >1C0 3
11 DISK >1A0 | >F800 13 11 DISK >180 | >F800 13
12 >160 9 12 DISK >140 | >F820 9
13 >120 10 13 911 vOT | >100 10
NogE 3 | 14 >0E0 11 | 14 >o0co 11
15 >0A0 7 15 >080 7
16 14 16 >040 a
17 >020 6 17 >000 6
NOTES |
(1) AN ALTERNATE_CONFIGURATION THAT YOU CAN HAVE IS A FULL SLOT TAPE
CONTROLLER AT TILINE ADDRESS >F880 .
(2) AN OPTION FOR THE P1 SIDE OF SLOT 9 IS A 931 VDT OR 940 EVT AT GRU
BASE ADDRESS >1700, INTERRUPT 8. THIS IS A C1402 CONTROLLER ON A
SYSTEM WHERE THE CPU IS NOT A /10A.
(3) THE BASE CONFIGURATION CAN SUPPORT A 931 VDT OR 940 EVT ON CHANNEL
0 OF A Cl403 OR Cl1404 MULTIPLEXER BOARD., THIS BOARD OCCUPIES A FULL
SLOT WITH TILINE ADDRESS >F980 ., INTERRUPT 11.
2283057

Figure 3-3. Base System Configuration for 990 17-Slot Chassis

3-6 946250-9705

System Generation

3.2.2 Determining CRU Addresses

The communications register unit (CRU) is a serial data bus used by slower devices, such as key-
board devices and line printers. When defining one of these devices, you must specify its CRU
base address. A device’s CRU base address is determined by the position of its controller board in
the chassis.

Note that a controller board can be either full-size, filling an entire slot, or haif-size, filling either
the left or right half-slot. A halif-size board inserted in a half-slot uses the CRU base address of that
half-slot. For example, a half-size board in the left-hand half-slot of slot 14 in Figure 3-5 uses CRU
base address > 0EQ.

Most full-size CRU device controller boards actually implement two separate control circuits on
the two halves of a single board. The left and right halves of the board use the left and right CRU
base addresses, respectively. For example, a 911 VDT controller board can be inserted in slot 9 of
Figure 3-4. The control circuit on the right side of the board controls a single 911 VDT and uses
CRU base address > 100. The control circuit on the left side of the board controls another 911 VDT
and uses CRU base address > 120.

Some full-sized controller boards use a single circuit to control several units of a particular kind of
device. Such boards use only the right-hand (P2) CRU base address of that slot. For example, an
FD800 serial flexible disk drive controller board in slot 11 controls one or more drives, but only
uses CRU base address > 080.

3.2.2.1 Arrangement of CRU Base Addresses in a Chassis. The CRU base addresses in a chas-
sis begin at >000. Each following CRU base address is greater than the preceding CRU base
address by > 020. Figure 3-4 shows how the CRU base addresses are arranged within the 13-slot
chassis starting at the highest numbered siot, which is slot 13. CRU base address >000 is
assigned to the right-hand (P2) half-slot of slot 13. The next CRU base address, > 020, is assigned
to the left-hand (P1) half-slot of siot 13. The next CRU base address, > 040, is assigned to the P2
half-siot of the second highest numbered slot, which is slot 12. This pattern continues until the
maximum CRU base address, > 2EQ, is reached. CRU devices cannot be installed in slots without
a CRU base address. These slots are reserved for other boards, such as central processing unit
(CPU) and memory boards.

3.2.2.2 CRU Base Addresses for a 17-Slot Chassis. The arrangement of CRU base addresses in
a 17-slot chassis is similar to that of the 13-slot chassis. Figure 3-5 shows the arrangement of CRU
base addresses in a 17-slot chassis.

946260-9705 37

System Generation

LEFT SIDE (P1)

RIGHT SIDE (P2)

SLOT | DEVICE | CRU | TILINE |INTER- SLOT | DEVICE SRU | TILINE INTER
1 1
2 >2E0 2 >2c0o
3 >2A0 3 >280
4 >260 4 >240
5 >220 5 >200
6 >1E0 6 >t1co
7 >1A0 7 .>180
8 >160 8 >140
9 >120 9 >100
10 >0EQ0 10 >0Co
11 >0A0 1" >080
12 >060 12 >040
13 >020 13 >000
2283058
Figure 3-4. CRU Base Addresses for 990 and 990A13 13-Slot Chassis
3-8 946250-9705

System Generation

TOP OF CHASSIS (P1) BOTTOM OF CHASSIS (P2)
SLOT DEVICE CRU TILINE |INTER—| SLOT DEVICE CRU TILINE |INTER—
BASE RUPT BASE RUPT
1 1
2 2
3 3
4 4
5 5
6 >2E0 6 >2¢0
7 >2A0 7 >280
8 >260 8 >240
9 >220 9 >200
10 >1E0 10 >1Co
11 >1A0 11 >180
12 >160 12 >140
13 >120 13 >100
14 >0E0 14 >0cCo
15 >0A0 15 1 >080
16 >060 16 >040
17 >020 17 >000

2283059

Figure 3-5. CRU Base Addresses, 17-Slot Chassis

946250-9705 3-9

System Generation

3.2.2.3 CRU Addresses in Expansion Chassis. The CRU base addresses in an expansion chas-
sis are arranged in the same manner as in the main chassis except that the CRU base addresses
are offset by a muitiple of > 400, depending on the sequential position of the expansion chassis.
Table 3-3 lists the values to be added to the CRU base addresses for each expansion chassis.

Table 3-3. CRU Base Address Offsets for Expansion Chassis

Expansion Chassis Add to Base Address

> 0400
> 0800
>0C00
>1000
> 1400
>1800
>1C00

NOORWOND=

Figure 3-6 shows the CRU base addresses for a 13-slot chassis used as the first expansion chas-
sis. Notice that siot 1 has not been assigned an address. This position is always occupied by a
buffer board (the CRU expander board).

3.2.3 Interrupt Levels

During system generation, you must specify the hardware interrupt that each device generates.
The location of the controller or interface board in the chassis determines the interrupt level. Fig-
ure 3-7 shows the standard interrupt assignments for a 990A13 13-slot chassis. Figure 3-8 shows
the standard interrupt assignments for a 990 13-slot chassis. The interrupt levels for a 13-slot
chassis are determined by the positions of jumper wires on the system interface board, which is
attached to the rear of the 13-slot chassis. The jumper wires are inserted into a moided plastic
connector plugged into the backboard above slot 1. Do not attempt to change the position of
these wires or the connector. The 990A13 chassis uses an etched or programmable card that
plugs into the system interface board above slot 1.

3.2.3.1 Interrupts for Devices in Expansion Chassis. |f a device is configured in an expansion
chassis, the device uses the same interrupt used by the expansion card in the main chassis. When
a device in an expansion chassis is defined during system generation, you are prompted for an
interrupt level. Respond with the level assigned to the expansion card for the expansion chassis.
You are also prompted for the device’s expansion position. Respond to this prompt with the inter-
rupt level assigned to the device’s position within the expansion chassis. Interrupt levels within a
13-slot expansion chassis are the same as those within a 13-slot main chassis. Similarly, the inter-
rupt levels within a 17-slot expansion chassis are the same as those within a 17-slot main chassis.

3-10 946250-9705

System Generation

LEFT SIDE (P1) RIGHT SIDE (P2)
sLoT DEVICE CRU TILINE |[INTER-] SLOT DEVICE CRU TILINE [INTER-
BASE RUPT BASE RUPT
1 1
2 >6E0Q 2 >6C0
3 >6A0 3 >680
4 >660 4 >640
S >620 5 >600
6 >5E0 6 >5C0
7 >S5A0 7 >580
8 >560 8 >540
9 >520 9 >500
10 >4E0Q 10 >4C0
11 >4A0 11 >480
12 >460 12 >440
13 >420 13 >400

2283060

Figure 3-6. CRU Base Addresses, 13-Slot Expansion Chassis #1

946250-9705 3-11

System Generation

LEFT SIDE (P1)

RIGHT SIDE (P2)

SLOT DEVICE BcféJE TILINE I:Gg?— SLOT DEVICE é:ll\aSUE TILINE I:;SE_F‘!_—
1 1
2 6 2 15
3 10 3 8
4 11 4 12
5 7 5 3
6 11 6 11
7 =} 7 13
8 8 8 on
9 8 9 10
10 12 10 11
11 3 11 7
12 14 12 4
13 15 13 6
NOTE:
(%) THE P2 SIDE IS USER PROGRAMMABLE TO BE INTERRUPT 9 OR 14,
2283061
Figure 3-7. 990A13 Interrupt Assignments, 13-Slot Chassis
312 946250-9705

LEFT SIDE (P1)

System Generation

RIGHT SIDE (P2)

SLOT DEVICE I;::SUE TILINE ISIET SLOT DEVICE BCESUE TILINE I:EE?—
1 1
2 2
3 3
4 4
5 5
6 6
7 13 7 13
8 9 8 9
9 8 9 10
10 12 10 11
11 3 11 7
12 14 12 4
13 15 13 6
2283062
Figure 3-8. Interrupt Assignments, 13-Slot Chassis
946250-9705

System Generation

3.2.3.2 Devices Sharing Interrupts. When configuring your system, observe the following
guidelines:

. TILINE devices never share interrupts. However, the Cl403 and Cl404 communications
controllers can share interrupts between each other.

° CRU devices can share interrupts. However, some combinations may not be designed to
work, and others may work only with low-speed devices. You should not share interrupts
for high-speed devices.

. A communication device performs best if it does not share an interrupt. This is strongly
recommended.

° Interrupts cannot be shared between any device and a CRU expander card. It is best
not to share the interrupts for CARD1 and CARD2, the two interrupts for total CRU
expansion.

Frequently, several CRU devices are assigned the same interrupt during system generation or the
same position (interrupt) in an expansion chassis. The device controllers may be absent from the
chassis and generated with shared empty siots. However, some combinations with shared empty
slots may not be designed to work. Refer to Section 4 to determine which interrupts are giving you
problems. Some combinations may only work with low-speed devices. You should not share an
empty slot for high-speed devices.

On 990 Models 20 and 30, the 17-slot chassis used as the main chassis in the 990/12 CPU has sol-
dered connections that determine the interrupt levels. Figure 3-9 shows the standard interrupt
level assignments for a 17-slot chassis.

3.2.4 TILINE Addresses

TILINE is a high-speed, bidirectional, 16-bit data bus. It serves as a path for communication
between all high-speed elements in the system. The CPU, main memory, and high-speed periph-
eral devices are directly connected to the TILINE. TILINE peripheral devices include disk drives,
magnetic tape transports, some communications ports, double-sided, double-density (DSDD)
diskette drives, and asynchronous muiltiplexers.

You must supply the TILINE address when defining TILINE devices. This address, which the
hardware converts to a memory address, is determined by the switch settings on the controller for
the TILINE device. You should not alter these switches since the bits set by them differ from one
type of controller to another. Figure 3-1, Figure 3-2, and Figure 3-3 show typical TILINE address
assignments in 13- and 17-slot chassis. The configuration label attached to your computer’s chas-
sis records the TILINE addresses as they were set up when your computer was manufactured.

314 946250-9705

System Generation

TOP OF CHASSIS (P1) BOTTOM OF CHASSIS (P2)
SLOT DEVICE CRU TILINE |INTER-] SLOT DEVICE CRU TILINE [INTER—
BASE RUPT BASE RUPT

1 1

2 2

3 3

4 4

5 11 5 11
6 10 6 10
7 15 7 15
8 12 8 12
9 8 9 8
10 3 10 3
11 13 11 13
12 9 12 9
13 10 13 10
14 11 14 11
15 7 15 7
16 4 16 14
17 6 17 6

2283063

Figure 3-9. Interrupt Assignments, 17-Slot Chassis

946250-9705 3-15

System Generation

Table 3-4 lists the conventional TILINE assignments. We recommend that your system follow this
pattern.

1f you put a Cl403/C1404 controller in an expansion chassis, a TILINE coupler must be present, and
all Cl403/Cl1404 controllers must have their interrupts wired through the TILINE coupler. You gener-
ate them to have the interrupt level where the TILINE coupler is plugged into the main chassis.

Table 3-4. Recommended TILINE Address Assignments

TILINE Address

Device Type

Controller Number

>FB00
> FB04
> FB08

>FB10
>FB14
>FB18

> F800
> F810
> F820
> F830
> F840
> F850
> F860
> F870

> F880
> F890

> F900
>F910
> F920
> F930
> F940
> F950

> F980
> F990
>F9A0 *

Note:

Memory Controller

Cache Memory Controller

Disk Controller

Tape Controifer

Communication Controller

Cl1403/404

—

1 (System Disk)

OO WN -~ - O~NOOEWN

wWN =

* You can add additional controliers after this one. Add > 10 to this address to obtain the
address of each subsequent controller.

3-16

946250-9705

System Generation

3.3 GEN990 SYSTEM GENERATION UTILITY

As discussed in preceding paragraphs, DX10 must obtain the operating parameters of a computer
system in order to control that system. When GEN990 executes, it displays prompts which ask you
for these parameters. You aid GEN990 in the definition of the computer system by supplying the
values of these parameters. Then, at your direction, GEN990 can build the data files that are used
by the remainder of system generation.

GEN990 requires extensive interaction with you. The parameter values that you supply must
reflect your computer’s configuration accurately. Consequently, GENS90 is more vulnerable to
error than the remaining parts of system generation, which require relatively little human input.
The following paragraphs provide a description of GEN990. We recommend that you read the fol-
lowing description of GEN990 and gather the required parameter values before attempting to exe-
cute GEN990 (also called system generation).

The following paragraphs discuss these topics:
. Files created and used by GEN990
° GEN990 modes of operation (command and inquiry)

] GEN990 commands

3.3.1 Files Created and Used by GEN990 _
The GEN990 process uses your responses to the parameter prompts and the contents of various
data files to produce a new system. These files are stored in the directories called S$SYSGEN
and .PATCH, which can be on any disk currently installed in the system. Identify the disk where
they are located by responding to the first GEN990 prompt DATA DISK/VOLUME.

The GEN990 utility produces a directory called .S$SYSGEN.< output>, where <output> is the
name you call the system, entered in response to the third system generation prompt, OUTPUT
CONFIGURATION. In addition to the directory, GEN990 builds the following files, which are cata-
loged under the new directory:

. BATCHSTM — A batch stream of System Command Interpreter (SCl) commands used
by the ALGS command (see paragraph 3.5).

e CONFIG — The configuration file for the new system. The configuration file contains
the parameter values given in response to GEN990 prompts. You can read and print this
sequential file, but under no circumstances should you edit it.

. D$SOURCE — A file containing the assembly language source code for the data base
module (D$DATA) of the new system.

. LINKSTRM — A file containing all of the Link Editor commands necessary to link all
parts of the new system together.

946250-9705 3-17

System Generation

3.3.2 GEN990 Modes of Operation

GEN990, the interactive System Generation utility invoked by the XGEN command, can operate in
either the command or inquire mode. In the inquire mode, GEN990 prompts you for the parameter
values required to define the system configuration. In the command mode, you can list, change, or
delete portions of the configuration created in the inquire mode.

NOTE

In either the command or inquire mode, GEN990 understands com-
mands and data that are entered in uppercase only. Commands and
data entered in lowercase are misinterpreted.

3.3.2.1 Inquire Mode. GEN990 begins execution in the inquire mode. In the inquire mode,
GEN990 prompts you for parameters of the system being generated. You supply the parameter
values of the system being generated. You can enter the inquire mode from the command mode by
responding to the COMMAND prompt with INQUIRE.

3.3.2.2 Command Mode. You can enter the command mode at any time during the execution of
GENB990 by pressing the Command key on your terminal. When GEN990 is in the command mode,
it prompts you to enter a command by displaying the following:

COMMAND?
Respond by entering one of the GEN990 commands listed in Table 3-5.

3.3.3 GEN990 Commands
Table 3-5 lists the legal commands that you can issue to GEN990 from the command mode. Table
3-6 lists the legal commands that you can issue from the inquire mode. The following paragraphs
describe the commands and their uses.

3-18 946250-9705

System Generation

Table 3-5. Legal Commands in GEN990 Command Mode

Command Resuit

BUILD This command enables you to initiate the build
sequence to build the configuration, source,
and Link Editor control files, and terminate
GEN990. You can also do this in inquire mode.

CHANGE This command enables you to change the
value of a specified parameter. You can enter
CHANGE only from the command mode.

DELETE This command enables you to delete a device

or supervisor call (SVC) from the system gener-
ation.
INQUIRE or HELP These commands return GEN990 to inquire

mode from the command mode. GENS90
prompts you to define the next parameter with
NEXT.

LIST This command causes GEN990 to display the
parameter values of the current configuration.

STOP This command terminates GEN990. You can
also issue STOP in the inquire mode.

Table 3-6. Legal Commands in GEN990 Inquire Mode

Command Result

BUILD This command enables you to initiate the Build
sequence to build the configuration, source,
and Link Editor control files, and terminate

GEN990.

DVC or GENERATE These commands cause GEN990 to prompt
you for a DEVICE TYPE.

STOP This command terminates GEN990. You can

also issue STOP in the command mode.

SVC This command causes GEN990 to prompt you
for the parameters for an SVC.

WHAT or? This command causes GEN990 to display an
explanation of the parameter prompted.

946250-9705 319

System Generation

3.3.3.1 BUILD Command. Referto the entry forthe STOP command.

3.3.3.2 CHANGE Command. Use the CHANGE command to modify a previously defined value.
You can legally issue the CHANGE command only from the command mode, which you enter by
pressing the Command key. When you enter CHANGE, GEN990 displays the following prompt on
the terminal screen:

PARAMETER TO BE CHANGED?

If you want to change a system parameter (rather than a device parameter), enter the parameter
keyword (the name of the parameter) that you wish to change, such as TIME SLICING ENABLED.

Instead of writing the entire parameter keyword, you can enter an abbreviation of the parameter
keyword. DX10 interprets abbreviations using the Near Equality algorithm. The three rules for
abbreviating keywords as implemented by the Near Equality algorithm are the following:

e The abbreviation and the keyword must begin with the same letter.

. All letters in the abbreviation must appear in the keyword in the same order of
occurrence.

e The first letter following a biank in the keyword must match the first unmatched letter in
the abbreviation.

For example, both TSE and TIME are legal abbreviations for TIME SLICING ENABLED.

Be sure that an abbreviation is unique to a keyword. For example, if you entered INTER as an
abbreviation for the parameter keyword INTERTASK?, DX10 would interpret INTER as the keyword
INTERRUPT DECODER?. Similarly, although the abbreviation INTERT appears to stand for
INTERTASK?, DX10 interprets INTERT to be INTERRUPT DECODER?.

For a more detailed discussion of the Near Equality algorithm, refer to Volume I11.
To change a parameter of a particular device, respond to the prompt PARAMETER TO BE
CHANGED? with DVC. In the CHANGE command, GEN990 responds to DVC with the following
prompt:

DEVICE NAME?
Respond to this prompt with the device name of the previously defined device, for example, DS02
or ST04. GEN990 then displays the prompt DEVICE TYPE. Enter the type of device that you are
changing, such as DS or VDT.

If you press the Return key without entering a device type, then GEN990 deletes the device sup-
plied to the prompt DEVICE NAME.

3-20 227659-9701

System Generation

The following example demonstrates the way to change the access type of LP02, showing the
prompts from GEN990 and appropriate responses. After you enter the command mode by pressing
the Command key on your terminal, GEN990 prompts you for a command:

COMMAND? CHANGE
PARAMETER TO BE CHANGED? DVC
DEVICE NAME? LP02
DEVICETYPE?LP

CRU ADDRESS? (>60) 0080
ACCESS TYPE? (FILE) RECORD
9902 INTERFACE? (NO)

PRINT MODE? (SERIAL)
EXTENDED? (NO)

TIME OUT? (60)

INTERRUPT? (6)

The following example demonstrates the way to change an existing SVC, USVC2, to another SVC,
USVCY. Note that the object code for USVC9 is already in the file .TESTER.USVCO. The example
includes the prompts from GEN990 and appropriate responses. After you enter the command
mode by pressing the Command key on your terminal, GENS90 prompts you for a command:

COMMAND? CHANGE

PARAMETER TO BE CHANGED? SVC
SVC ENTRY NAME? USVC2

SVC? USVC?

FILE? .TESTER.USVC9

BYTES?(1)20

3.3.3.3 DELETE Command. Use the DELETE command to remove a device or SVC from the cur-
rent configuration. When you issue the DELETE command, GEN990 prompts you for an ENTITY
TO BE DELETED. Respond with either DVC, if you want to delete a device, or SVC if you want to
delete an SVC.

The following example demonstrates the deietion of a line printer, LP03, showing the prompts
from GEN990 and the appropriate responses.

After you enter the command mode by pressing the Command key, GEN980 prompts you for a
command:

COMMAND? DELETE

ENTITY TO BE DELETED? DVC
DEVICE NAME? LPO3
COMMAND?

946250-9705 3-21

System Generation

When a device is deleted, GEN990 reorders the device names of similar devices to maintain an
unbroken numerical sequence. The following chart demonstrates this:

Before deletion of LP03 After deletion of LP03
LPO1 remains LPO1
LPO2 remains LP02
LPO3 deleted
LP04 becomes LP0O3
LPO5S becomes LP04

The following example demonstrates the deletion of the SVC USVC3, showing the prompts from
GEN990 and the appropriate responses. After you enter the command mode by pressing the
Command key, GEN990 prompts you for a command:

COMMAND? DELETE

ENTITY TO BE-DELETED? SVC
SVC ENTRY NAME? USVC3
COMMAND?

3.3.3.4 DVC Command. Issue the DVC command from the inquire mode to define a device.
When the DVC command is issued, GEN990 prompts you for a DEVICE TYPE. Respond with a
device mnemonic, such as ST, LP, or DS. GEN990 then prompts you for appropriate parameter
values. Numerous examples are provided in paragraph 3.4.5.

3.3.3.5 INQUIRE and HELP Commands. Issue either the INQUIRE command or the HELP com-
mand to return GEN990 to the inquire mode from the command mode. After receiving the INQUIRE
command, GEN990 displays the following prompt:

NEXT?

3.3.3.6 LIST Command. The LIST command can only be issued from the command mode. The
LIST command causes GEN990 to list the value of ALL parameters specified and their values.
When the LIST command completes its display, GEN990 remains in the command mode and dis-
plays the COMMAND prompt.

NOTE

If you issue the LIST command at a VDT, the list of parameter val-
ues rolls up from the bottom of the screen until each row of the
screen contains an entry. To advance the display, press the Return
key. If you want a permanent hard-copy list of your configuration,
you need to use the Print File (PF) command to print the CONFIG
file.

3-22 946250-9705

System Generation

3.3.3.7 STOP and BUILD Commands. Issue either the STOP command or the BUILD command
to terminate GEN990. Before terminating, GEN990 displays the following prompt:

BUILD? (YES)

If you want GEN990 to build the system generation files based on the data you have supplied,
accept the default value of YES by pressing the Return key. When you enter YES, GEN990 begins
to process the configuration parameters that you supplied. This processing requires a certain
amount of time, depending on the number and kind of devices inciuded. Throughout this process-
ing, GENS90 displays the following messages informing you of its status:

CONFIGURATION FILE SAVED

D$SDATA SOURCE FILE IS NOW BEING BUILT

THE LINK EDIT COMMAND STREAM SOURCE FILE IS BEING BUILT
BATCH FILE FOR SYSGEN COMPLETION IS NOW BEING BUILT
SYSGEN COMPLETE

GEN930 TERMINATED

If you do not want to build the system files at this time, enter NO and press the Return key.
GEN990 then displays the following prompt:

DO YOU WANT TO SAVE THE CONFIGURATION FILE? (NO)

If you want to discard the parameters that you have entered and abort the system generation ses-
sion, accept the default of NO by pressing the Return key. If you want to save these parameters in
the CONFIG file, then enter the response YES and press the Return key. The following message
appears:

CONFIGURATION FILE SAVED

After you respond to the above prompts, GEN990 displays the following message:
SYSGEN COMPLETE
After a few seconds, GEN990 replaces the above message with the following message:

rrr GEN990 TERMINATED *****:
Press the Command key to return to SCI.

3.3.3.8 SVC Command. Issue the SVC command from the inquire mode to include user-written

SVC processors with the generated operating system. Refer to paragraph 3.4.6 for a description of
an SVC and a list of parameters.

3.3.3.9 GEN990 WHAT Command. Issue the WHAT command (or a question mark (?)) to obtain
an explanation of the most recently displayed prompt. If you issue the WHAT command in
response to a parameter prompt by GEN990, GEN990 displays the explanation and reprompts the
same parameter. For most parameters, two levels of explanation are available; that is, WHAT can
be asked twice for the same parameter. The first issue of WHAT displays an abbreviated explana-
tion and the second displays an expanded explanation.

946250-9705 3-23

System Generation

3.4 EXECUTING GEN990

You initiate GEN990 after you perform an initial program load (IPL) and initialize the system. (Vol-
ume |l describes a simpliified IPL procedure. The ROM Loader User’s Guide describes the IPL pro-
cedure in detail.) Initiate GEN990 by issuing the XGEN command at your terminal. The following
prompts immediately appear at your terminal:

EXECUTE AUTO-SYSGEN
DATA DISK/VOLUME:
INPUT CONFIGURATION:
OUTPUT CONFIGURATION:

Respond to the prompt DATA DISK/VOLUME with the device name or volume name of disk drive
that stores the system generation directories S$SYSGEN and PATCH. The S$SYSGEN and PATCH
directories contain the standard DX10 object modules, the data files used by GEN990 for prompt-
ing and building system generation files, and user-defined and released configuration files. To
conserve space on yeur main system disk of a multiple disk system, you can copy the S$SYSGEN
and PATCH directories to a secondary disk using the Copy Directory (CD) SCl command.

If this is the first generation of a particular configuration, respond to the prompt INPUT
CONFIGURATION? by pressing the Return key. If you are regenerating an existing configuration,
enter that configuration’s unique name and press the Return key on your terminal.

If this is the first generation of a particular configuration, respond to the prompt QUTPUT
CONFIGURATION? by entering a unique name. This name, identifying the configuration, must
begin with an alphabetic character and contain no more than five characters. If you are regenerat-
ing an existing configuration, you can enter that configuration’s name and the new configuration
replaces the old one. You can preserve the existing configuration and create a new one by enter-
ing a new name.

When you respond to the above prompts, GEN990 displays the following heading:
GEN990-AUTO SYSTEM GENERATION DX10 X.X.X
GEN990 continues by prompting you for the parameter values in TTY mode (one line at a time).
GEN990 often displays a parameter’s default value enclosed in parentheses (for instance, 60 is
the default value for LINE?). Table 3-7 lists and describes the XGEN prompts. The paragraphs fol-
lowing the table give more detailed expianations.
NOTE
Designate hexadecimal numbers with a leading zero (0) or a leading

right-angle bracket (>), as in 0152 and > 152. DX10 considers num-
bers that are not so designated to be decimal numbers, such as 152.

3-24 Change 1 946250-9705

System Generation

Table 3-7. GEN990 Parameters

Prompt (and Defauit Value)

Value Description

LINE? (60)
TIME SLICING ENABLED? (YES)
TIME SLICE VALUE? (1)

TASK SENTRY ENABLED? (YES)

TASK SENTRY VALUE? (60)

TABLE?

COMMON?

INTERRUPT DECODER? (NONE)

FILE MANAGEMENT TASKS? (2)

CLOCK? (5)
RESTART ID? (NONE)

OVERLAYS? (2)

ONLINE DIAGNOSTIC SUPPORT? NO
SYSLOG? (6)
BUFFER MANAGEMENT (BYTES)? (1024)

1/Q BUFFERS? (0)

946250-9705

Line frequency (50 or 60 Hz)
Do you want to time slice?

Number of system time units in one slice
(one system time unit equals 50 milli-
seconds).

Do you want to reduce automatically the
priority of tasks that execute longer than
a vajue defined during system generation
without giving up the CPU?

Number of system time units a task is
allowed to execute without giving up the
CPU before its priority is reduced (one
system time unit equais 50 milli-
seconds).

Size of the system table area in words.

File which contains the system common
image (optional).

File which contains the object code
of a user-supplied interrupt decoder
(optional).

Number of file managers to include in the
system.

Interrupt level of the clock.

Installed ID of the initial task to be exe-
cuted (optional).

The number of system overiay areas (400
words per overlay area).

Inciude optional disk performance diag-
nostics?

The number of system log messages
which may be queued.

Size in bytes of the largest physical
record.

Size in bytes of additional system area to
be used as device 1/O buffers.

3-25

System Generation

Table 3-7. GEN990 Parameters (Continued)

Prompt (and Default Value)

Value Description

3-26

INTERTASK? (100)

ITC MESSAGES? (3)

KIF? (YES)

COUNTRY CODE? (US)

POWER FAIL? (NO)

AUTO MEDIA CHANGE RECOVERY ? (YES)

SCI BACKGROUND? (2)

SC! FOREGROUND? (8)

BREAKPOINT? (16)

PANEL DISPLAY (BAR CHART)? (YES)

CARD1?

CARD 2?

DEVICE TYPE?

CRU ADDRESS?

Size in words of intertask communi-
cation area appended to system table.

Maximum number of intertask com-
munication messages that a task can
have in the intertask communi-
cation area.

Do you want to include logic to support
key indexed files (KIFs)?

In which country is this system being
used?

Do you want to include Model 911 VDT
power recovery option?

Do you want to protect disks from acci-
dental volume changes?

Maximum number of batch (background)
SClis which can be active at one time.

Maximum number of interactive (fore-
ground) SCls ailowed to be active at one
time.

Maximum number of breakpoints allowed
under system.

Should the front panel data light-emitting
diodes (LEDs) display disk and CPU activ-
ity (YES) or the current program counter
value?

Interrupt level of expansion chassis 1 -4
(optional).

Interrupt level of expansion chassis 5-7
(optional).

Type of a device to be added to system
(namely, LP, CRDR, ASR, KSR, DS, VDT,
MT, DK, SD, COM, RTS).

CRU address of device being added
(hexadecimal, multiple of > 20, range from
>0000 to >1EEQ).

946250-9705

System Generation

Table 3-7. GEN990 Parameters (Continued)

Prompt (and Defauit Value)

Value Description

TILINE ADDRESS?

ACCESS TYPE? or
CASSETTE ACCESS TYPE

TIME OUT? or
CASSETTE TIME OUT?

PRINT MODE? (SERIAL)

EXTENDED? (YES)

INTERRUPT?

EXPANSION CHASSIS?

EXPANSION POSITION?

CHARACTER QUEUE? (6)

DRIVES? (1)

DEFAULT RECORD SIZE? (768)

VDT TYPE?

INTERFACE TYPE?

CHANNEL NUMBER?

SPEED?

INTERRUPT CRU BIT?

946250-9705

TILINE address of device being added
(hexadecimal, muitiple of >20, range
from > F800 to FCOO0).

Either record- or file-oriented device.

Time interval aliowed to elapse for 1/O
before error.

Either serial or parallel mode of printing.

Do you want the extended character set

“for this serial printer (appiies only to Tl

Model 810 printer)?
Interrupt level assigned to device (3 — 15).

Number of expansion chassis to which
device is attached (1 - 7).

Interrupt level on expansion chassis
(0 - 15).

Number of unrequested input charac-
ters buffered for device.

Number of drives on a multidrive device
(such as a disk or magnetic tape).

Physical record size, in bytes, given to
disk files when the default is specified in
the SVC block.

Either 911 VDT, 913 VDT, 931 VDT, Busi-
ness System terminal, or 940 EVT.

The type of interface the device is using.
A peripheral is connected to the host
through an interface board. Refer to
Table 3-9.

The channel number on the board to
which the device is connected.

The speed at which the device is operat-
ing.

The CRU bit (0-30) which indicates an
interrupt.

3-27

System Generation

Table 3-7. GEN990 Parameters (Continued)

Prompt (and Default Value) Value Description
NAME? The name of a special device, 1 -4 char-
acters.
KSB? Starting label (1-6 characters) of the

keyboard status block (KSB), if any, for
special device.

DSR WORKSPACE? Label of the device service routine (DSR)
workspace for the speciai device.

INTERRUPT ENTRY? Label of the interrupt entry point in the
DSR.

PDT FILE? Pathname of the file that contains the
source code for the physical device table
(POT) for the device.

DSR FILE? Pathname of the file which contains the
DSR for the device.

OVERRIDE? (Y) Do you want GEN990 to override PDT
flelds? (Y or N)

sSvC? Starting label of the SVC processor where

the system is to transfer control.

FILE? Pathname of the file which contains the
object code for the SVC processor.

BYTES? (1) Number of bytes in the SVC block.

NEXT? Issue an inquire mode command.

3.4.1 Defining the GEN990 Operating Prompts

GEN990 prompts you to define the operating parameters of your customized system. The operat--
ing parameters tell GEN990 where its input should be and where its output should go. To respond
to the GEN990 prompts, read the following parameter descriptions.

3.4.2 Defining the System Timing Parameters

The following parameters are used to define timing values which are used by the new operating
system to perform multiprogramming in a real-time environment. All of the parameters have
default values which can be used by users who are mainly interested in changing DX10 optional
features or adding new devices.

3-28 946250-9705

System Generation

3.4.2.1 LINE Parameter. The LINE parameter specifies the power line frequency to which the
computer is connected. Line frequencies vary between different countries (for example, 60 Hz in
the U.S.A. and 50 Hz in Europe). GEN990 will accept either 50 or 60, with 60 being the default value.
For a Business System 300 or 300A, always specify 50.

3.4.2.2 TIME SLICING ENABLED Parameter. This parameter enables or disables time slicing.
In a system with time slicing enabled, each task is allowed to execute for a interval of time defined
during system generation. After a given task has executed for this time interval, DX10 checks to
see if another task with the same priority is waiting to execute. If such a task is waiting, the first
task is suspended, so allowing other tasks to execute. In a system with time slicing disabled, the
highest priority task will execute until it completes or voluntarily suspends execution. The initial
value is YES.

3.4.2.3 TIME SLICE VALUE Parameter. This parameter specifies the length of a time slice in
system time units. (One system time unit equals 50 milliseconds.) In a system with time slicing
enabled, each task is allowed to execute for a certain interval of time. After this time interval has
expired, the task is suspended and other tasks are given a chance to execute. The length of this
time interval is known as the time slice. The initial value is one system time unit.

3.4.2.4 TASK SENTRY ENABLED Parameter. This parameter enables or disables the Task Sen-
try. The Task Sentry, when enabled, keeps track of how long a task executes without voluntarily
suspending execution (by calling an SVC that requires the task to be rescheduled after the SVC
completes). When this time exceeds a value defined during system generation, the execution
priority of the task is reassigned to the next lower priority level. The Task Sentry can be enabled
concurrently with time slicing. However, if you do not choose to enable time slicing, you shouid
enable the Task Sentry to prevent any singie task from monopolizing the CPU. The initial value for
this parameter is YES.

3.4.2.5 TASK SENTRY VALUE Parameter. This parameter specifies the length of time a task
may execute without voluntarily giving up the CPU before its execution priority is reduced. The
value is given in system time units. (One system time unit equals 50 milliseconds.) The defauit
value is 60 systemn time units.

3.4.3 TABLE Parameter

The TABLE parameter specifies the size of the system table area. The system table area is part of
the operating system and is used to contain system log messages, intertask communication
messages, buffered SVC blocks, and many system-buiit tables. There is no default vaiue for this
parameter. The response to the TABLE prompt must be an integer number of words of memory (for
example, 4000). Table 3-8 is a guideline for estimating system table area. Using the values given in
the table, estimate the size and complete the system generation. GEN990 will not accept a value
smaller than 2048 words.

946250-9705 Change 1 3-29

System Generation

You can tune your system generation to have the maximum possible system table area by using
the following procedure:

1.

2.

Perform a trial ALGS.

Find the length of the task (length of phase 0) from the system link map. Subtract that
number from >F740.

Find the origin of the module name FILMG in phase 1 from the system link map
(LINKMAP file). Subtract that number from > C000.

The system table area can be larger by the smaller of these two numbers. If both results
are negative, the system root is too large and must be made smaller by the larger of the
absolute values. If one result is negative, the system root must be made smaller by the
absolute value of the one that is negative.

These caiculations are in hexadecimal bytes. The TABLE parameter in system genera-
tion uses decimal words. You need to convert the hexadecimal number to decimal and
divide by 2.

Repeat system generation and change the table area by the amount from step 5.

Repeat the ALGS and proceed with the rest of the steps to complete the system
generation.

When the system has been used for a while with your application, the size can be fine tuned using
the Show Memory Status (SMS) command. Enter the SMS command at a terminal with an active
SCI. Subtract the number given as LARGEST AREA USED from the number given as SYSTEM
TABLE AREA. The resuiting figure is the amount of tabie area that has never been used since the
last initial program load. If the amount is large (ten percent of the table size or more), the system
may be regenerated with a correspondingly smaller TABLE parameter. Do not reduce the table
area enough to remove all of the unused space. Allow a cushion of at least 500 words. Allow 1000
words if you choose to include KIFs.

3-30

Change 1 946250-9705

System Generation

Table 3-8. System Table Area Sizing Guideline

Features Included Size of Table Area in Words

Base System (includes support for 1 disk drive, 3200
1 VDT, 1 SCl foreground,
1 SCl background, 1 file management)

Each additional foreground* 650
Each additional background* : 800
Each additional disk drive 40
Each additional file management task (a system 190
generation defined number; see paragraph
3.4.4.3)
Diskette 128
Each installed disk volume with an opened KIF 133
Each serial line printer 70
Each parallel printer 210
Note:

* These figures are based on peak usage.

3.4.4 Defining Optional Features

The following prompts allow you to include or exclude many optional features in the new DX10
system. They all have default values that should be used if you are only interested in adding
devices to the system.

3.4.4.1 COMMON Parameter. This parameter is the pathname of the file which contains user-
supplied object for the system common area of memory. If no file is specified, no system common
area will be created. System common is memory reserved within the system which is available to
all tasks via the Get Common Data SVC (> 10), and thus may be used to exchange data between
tasks.

The object file (usually produced by the assembler from an assembly source module) can also
include code to define application dependent constants in system common. The source must be
assembled before it can be used by GEN990.

3.4.4.2 INTERRUPT DECODER Parameter. This parameter is the pathname of the file which
contains a user-supplied object for an interrupt decoder module. If a file name is entered, GEN990
includes your interrupt decoder instead of generating the standard interrupt decoders and tables.
If you enter nothing, GEN990 creates an interrupt decoder which is suitable for most systems.

946250-9705 Change 1 3-31

System Generation

3.4.4.3 FILE MANAGEMENT TASKS Parameter. This parameter is the number of copies of the
file management task which are to be included in the new system. File management tasks can
process any file /O request; therefore, more than one task ¢an process requests at the same time.
However, each copy of the file management task reduces the maximum possible system table
area by about 370 bytes. A system will run with only one file management task. Two provides
significantly better throughput than one even if only one controller is present. At the other
extreme, one file management task per disk controller provides all necessary file management
capabilities. More than three file management tasks, however, do not improve throughput signifi-
cantly, regardless of the number of disk controllers present. The default value is two.

3.4.44 CLOCK Parameter. This parameter is the interrupt level to be assigned to the internal
clock, and may be either 5 or 15, with 5 being the default value. If 15 is specified, the clock must be
wired for the level 15 interrupt. This can be done by changing a jumper wire on the system inter-
face board (see the Mode/ 990/10 or 990/12 Minicomputer Hardware Reference Manua/ for details).
Having a level 15 clock interrupt may affect time slicing, but it gives all other devices (particularly
communication devices and card readers) a higher interrupt priority than the clock, reducing the
possibility of timing errors on these devices.

3.4.4.5 RESTART ID Parameter. The number specified is the instailed ID of a task which will
automatically be the first task to execute each time an IPL occurs. Select an ID not reserved for
DX10 tasks (see Appendix B) since the task must be instailed on the system program file. If no
task ID is specified, no task is automatically bid at IPL.

3.4.4.6 OVERLAYS Parameter. This parameter specifies the number of system overlay areas to
be reserved in system memory. The system overlay area is used to contain overlays needed by
DX10 tasks, such as the file management, bid task, and disk manager. Adding more system overlay
areas to the system (the maximum is 14) decreases the number of disk accesses needed by the
system to execute and improves system throughput. However, each additional overlay area
reduces maximum possible system table area by 806 bytes. A system will function with only one
system overiay area (a minimum of one is required). More than three overlay areas (five in a system
that uses KIFs) offer diminishing improvement in throughput. Most systems run satisfactorily with
two. The initial value is two overlay areas.

3.4.4.7 ONLINE DIAGNOSTIC SUPPORT Parameter. |f selected, the Online Diagnostics func-
tion during normal system operation, collecting and providing information about the performance
of disk drives. If selected, the extended disk and magnetic tape DSRs, needed to support the
online diagnostic tests, are installed; if not selected, the regular DSRs are installed. The Online
Disk Diagnostic provides online test capability and provides information that permits evaluation
of the frequency and severity of errors experienced with disk drives. The magnetic tape DSR is
only installed if tape devices (MTxx) are defined in the system.

3.4.4.8 SYSLOG Parameter. The number to be specified is the number of messages which may
be queued for the system log. Any number greater than zero is valid. The initial value is six. If you
choose too small a number, messages may arrive faster than they can be processed and, as a
result, some messages may be lost. Although table area is used only while the message is
queued, choosing too large a number risks table area overflow. This degrades performance and
may inhibit the execution of some tasks; it may also cause a system crash.

3-32 Change 1 946250-9705

System Generation

3.4.4.9 BUFFER MANAGEMENT Parameter. This parameter specifies the size of the memory-
resident file buffer in bytes. The memory-resident buffer is used by file management to perform file
I/O for blocked files only (see Volume | for information on blocked files). It is made memory resi-
dent in order to allow tasks to use blocked file /O in small memory configurations where the sys-
temn may not be able to allocate free memory for a blocking buffer. You can make this buffer very
small to maximize your task execution space, but this decision risks >DF errors. (Refer to Volume
VI for a description of error codes.) Establishing a memory-resident buffer does not reduce system
table area, but decreases the physical memory space available for task execution.

Note that only one block is stored in this buffer at one time regardless of how much space you
allocate to the buffer. File management shares the memory-resident buffer between files as
needed.

The size of this buffer should be as great as the largest physical record defined for any file to be
used on the system. There is no point in making it larger. The initial value is 1024 bytes.

3.4.4.10 1/O BUFFERS Parameter. This parameter specifies the maximum amount of memory,
in bytes, to be added to the system table area. It is used for buffering device /O data blocks for
CRU type devices only. The number need not account for the buffers associated with the physical
device tables for standard devices (see Section 5 for a discussion of PDTs). It should include the
total amount of buffer space defined for nonstandard CRU devices. You should also consider the
expected number of Initiate /0 calls which will be made to the system. Having extra buffer space
will allow a task to execute several Initiate /O SVCs, which allows a device to service an /O
request. Instead of possibly having to wait for the calling task to be rolled in before the data can
be unbuffered and then wait for the task to issue the next request, the buffer for the next queued
I/0 request can be used and the I/O request can be served immediately. The initial value is 0.

3.4.4.11 INTERTASK Parameter. This parameter specifies the maximum size of the intertask
communications area (in words). This area is statically allocated out of user memory, and is used
to contain messages created by the Put Data SVC. This area must be at least as large as the largest
message your application sends to another program.

3.4.4.12 ITC MESSAGES Parameter. This parameter specifies the maximum number of inter-
task communication messages that can be in the intertask communications area for any given
queue ID. An error is returned if the task attempts to exceed the maximum number. The initial
value is 3. A greater value is necessary only if an application needs to store messages between
the time they are sent and received.

3.4.4.13 KIF Parameter. You have the option of including or excluding the logic for KIFs in the
system being generated. You must answer YES if you want to use KIFs, including KIFs with
COBOL. Excluding the KIF logic saves 2.5K words of memory (which does not affect system table
area), and reduces the maximum system table area load due to KIF I/O by about 210 words per file
manager task. Legal responses to the KIF prompt are YES (include KIF logic) and NO (exclude KIF
logic), with YES being the initial value.

946250-9705 Change 1 3-33

System Generation

3.4.4.14 COUNTRY CODE Parameter. This parameter specifies in which country this system is
being used. The response may be either the full or abbreviated country name. Refer to Volume llI
for more information on international considerations. The initial value is US (United States).

3.4.4.15 POWERFAIL Parameter. If you include the Model 911 VDT powerfail recovery feature,
the VDT screens are refreshed and rebuilt after a power failure occurs. You cannot use this feature
unless the system has battery power support. If you respond YES to the POWERFAIL prompt,
each 911 VDT in the system requires 2058 additional bytes of physical memory space for storing
the screen image. The initial value is NO.

3.4.4.16 AUTO MEDIA CHANGE RECOVERY Parameter. With several types of disk drives,
unloading a disk or powering down a drive while a volume is still logically installed causes a con-
dition in which subsequent writes to the disk are prevented. If you accept automatic media
change recovery, the disk DSR automatically reads the volume information from the disk to deter-
mine if the volume has been changed. If the volume that is currently loaded is the same as the vol-
ume that is logically installed, the write protection is turned off. If you do not accept automatic
media change recovery, write protection remains in effect until you issue an Unload Volume (UV)
command or a Check and Reset Volume (CRV) command to the drive. If media change occurs on
the system disk, a crash results. The automatic media change recovery option adds 170 bytes to
the memory-resident code, which reduces total space available for user programs, but does not
reduce maximum possible system table area.

3.4.4.17 SCI BACKGROUND and SC! FOREGROUND Paramsters. These two numbers specify
the maximum number of foreground (interactive) and background (batch) activations of the SCI
allowed at any one time. If the maximum number of foreground terminals is already logged-on,
then any additional log-on attempt is cancelled and an error message appears at the terminal. If
the background limit is exceeded, the request is queued and will be serviced when the number of
background SCI activations is lower than the limit. By specifying these parameters, you can limit
access to the operating system being generated, and thereby ease some of the demand for sys-
tem resources. Any number greater than zero is valid. The recommended practice is to allow one
foreground area for each terminal on the system and two background areas to be shared by the
entire system. The initial value is 8 for FOREGROUND and 2 for BACKGROUND.

Background tasks, receiving the lowest priority, level three, only execute when all higher priority
tasks are terminated or suspended. DX10 then divides available CPU time equally among level
three tasks. The following examples demonstrate the consequences of different numbers of back-
ground areas.

In a system in which two background areas are specified, two simultaneously bid background
tasks each require five minutes of execution time. Ten minutes are required for one of the tasks to
finish. If four such tasks are simuitaneously bid, ten minutes pass before two tasks are completed
and ten more minutes pass before the other two are completed. On a system with 10 foreground
and 10 background areas, if 10 terminals each simultaneously submit a 5 minute background task,
50 minutes pass at which time all 10 tasks complete. In the same system with only two back-
ground areas, only two tasks execute at one time and each one completes in 10 minutes. For this
reason, the recommended value for BACKGROUND? is 2.

3.34 946250-9705

System Generation

It is also true that background tasks requiring long execution times can lock out other background
tasks. Suppose that 2 background tasks, each requiring 45 minutes, are submitted in a system
allowing two background tasks. After 5 minutes, a third background task requiring 5 minutes is
submitted. With 2 background areas available, one of the 45-minute tasks must complete (after 90
minutes) before the 5-minute task can even begin to execute. With 3 background areas available,
the 5-minute task should complete within the next 15 minutes, delaying completion of the 45-
minute tasks by about 5 minutes.

3.4.4.18 BREAKPOINT Parameter. This number specifies the number of breakpoints allowed
under the system. Breakpoints are used by the system debugger for interrupting program execu-
tion (see Volume Il for information on the debugger). The initial value is 16.

3.4.4.19 PANEL DISPLAY(BAR CHART) Parameter. The value of this parameter determines the
data displayed on the data LEDs on the computer system's programmer panel. If you respond YES
(the default value), the display is a bar chart representing the computer’s performance. The eight
leftmost LEDs represent the percent of system disk usage, such that if the four leftmost LEDs are
lit, then 50 percent of the system disk’s access potential is being used. Similarly, the eight right-
most LEDs represent the percent of available CPU cycles being used. If you respond NO, the cur-
rent value of the program counter is displayed on the LEDs, and the Show Memory Map (SMM)
command usage statistics for the system disk and the CPU reflect a value of 0. Note that if you
respond YES, the chart display uses a small, but measurable, amount of CPU time.

3.4.420 CARD 1 and CARD 2 (Defining Expansion Chassis). GEN990 allows definition of
expansion chassis by prompting the CARD parameters. These parameters specify the different
interrupt levels in the main chassis to be assigned to CRU expansion cards 1 and 2. Card 1 sup-
ports expansion chassis 1, 2, 3, and 4. Card 2 supports expansion chassis 5, 6, and 7. Card 1 and
card 2 can be implemented either on one full-size CRU expander board or on two separate boards.
If two boards are used, only ports 5, 6, and 7 can be used on the second board. If port 8 is used, a
system crash results. If no number Is specified, GEN990 assumes that there is no expansion card.
Refer to paragraph 3.2.3.1 for a discussion of interrupts within an expansion chassis. Refer to
paragraph 3.2.2.3 for a discussion of CRU base addresses within an expansion chassis. Refer to
paragraph 3.4.5.1 for a discussion of defining devices that are configured in an expansion chassis.

3.4.5 Defining Devices
To define all of the devices included in your system’s physical configuration, enter the inquire
mode by issuing the INQUIRE command. GEN990 displays the following prompt:
NEXT?
Respond to NEXT? with the following command:
DVC
GENS90 displays the following prompt:

DEVICETYPE?

946250-9705 Change 1 3-36

System Generation

Reply to this prompt with the type of a specific device. The types of devices supported by DX10 are
the following:

VDT orCRT Model 911,913,0r 931 VDT; or 940 EVT

CRDR Model 804 Card Reader
LP Model 306, 588, 810, 850, 855, 2230, 2260 or 880 Line Printer;
or 840 RO, LP300, LP600, or LQ45
ASR Model 733 ASR
KSR Model 703/707 KSR, 733/743 KSR, 820 KSR, or teleprinter device
DK Mode! FD80O0 Single-Sided, Single-Density Flexible Diskette Drive
MT Model 979A, MT1600, or MT3200 Magnetic Tape Drive,
or WD800 Tape Cartridge Drive
Ds DS10, DS25, DS31, DS32, DS50, DS80, DS200, DS300, WD500, WD500A
WD800, WD800A, WD900, CD1400/32, CD1400/96, or FD1000 Disk Unit
COMm Communications packages (refer to each object installation
guide for each communications package)
SD Special device (that is, nonstandard device)
RTS Remote Terminal Subsystem Communications Line

For each device entered, GEN990 dispiays prompts for the parameters needed to define the
device. The following paragraphs provide descriptions of these parameters.

For each device defined, GEN990 creates a four-character device name (a pair of alphabetic char-
acters followed by a pair of numeric characters). The alphabetic characters indicate the device
group such as DS for TILINE disk drives, DK for flexible diskette drives, and ST for VDTs, auto-
matic send/receive (ASR) terminals, and keyboard send/receive (KSR) terminals. The two numeric
characters are assigned in ascending order from 01 to 99. Each unique pair of alphabetic charac-
ters added to the system begins with numeric pair 01. For a full discussion of device names, refer
to Volume I.

Table 3-9 describes the interface boards and their corresponding system generation names. You
use these names when responding to the INTERFACE TYPE? prompt for various devices. These
are not all the interface boards supported by Tl; they are the ones you need to know about to per-
form the current system generation. Table 3-9 also describes which boards you can use on the
Business System 300, 600, and 800.

Table 3-10 describes the relationship between these interface boards and some of the peripherals

to which they may be connected. The board names used in the table are their system generation
names.

3-36 Change 1 946250-9705

Table 3-9. Description of Various Interface Boards

System Generation

System
Generation Used in:
Interface Boards Descriptions Name BS300 BS600 BS800
C1401 (COMM I/F) Represents old COMM I/F interface; Cla01 Yes Yes
Cl401 is a new name.
TTYI/EIA Current TTY/EIA interface TTYIEIA Yes Yes
9902 _ TMS9902 port on 990/10A and 9902 Yes Yes
Business System 300.
Cl402 Two-channel unbuffered CRU 9902 Yes Yes
controller (two 9902 ports)
Cl421 Two-channel unbuffered CRU 9902 Yes
controller (one 9902 port and one 9903
9903 port)
Cl422 Four-channel unbuffered CRU 9902 Yes
controiler (four 9902 ports)
Cl403 Four-channel buffered TILINE EIA Cl403 Yes Yes
controller
Cl404 Four-channe! buffered TILINE Cl404 Yes Yes
fiber optics controiler
Table 3-10. Relationship Between Peripherals and Interface Boards
Attachable Interface Boards
Cl40t
Peripherals (COMM I/F) TTY/EIA 9902 9903 Cl403 Cl404
931 VDT X X X X X
940 EVT X X X X X
LP (Serial) X X X X
TPD X X X
Special Device X X X X X X

946250-9705

3-37

System Generation

3.4.5.1 Defining Devices in an Expansion Chassis. TILINE devices in expansion chassis are
physically linked to the main chassis by a pair of interconnected TILINE coupler boards, one in the
main chassis and one in the expansion chassis. These TILINE couplers are not apparent to the
software.

However, TILINE devices typically share an expansion chassis with CRU devices. CRU devices are
physically linked to the main chassis by a pair of interconnected boards: a CRU expander board in
the main chassis and a CRU buffer board in the expansion chassis. The CRU expander and the
CRU buffer are apparent to the software. In fact, the INTERRUPT parameter for a CRU or TILINE
device in an expansion chassis is the interrupt level assigned to the CRU expander in the main
chassis.

Definition of devices in expansion chassis requires that you specify the two additional
parameters:

. Expansion chassis
. Expansion position

When defining a device in an expansion chassis, GEN990 prompts you for EXPANSION CHASSIS.
This parameter specifies the expansion chassis (1 through 7) to which the device is connected.

GEN990 then prompts the EXPANSION POSITION parameter. This parameter specifies the inter-
rupt level (0 through 15) assigned to the slot on the expansion chassis to which the device is con-
nected. Refer to paragraph 3.2.3.1 for more information on interrupts in expansion chassis.

TILINE Devices in Expansion Chassis. When you define a TILINE device in an expansion chas-
sis, GEN990 recognizes the interrupt as the same one specified in the CARD 1 or CARD 2 parame-
ter and knows to prompt for additional parameters.

The following example demonstrates the definition of a disk drive whose controller is installed in
slot 7 of the second expansion chassis of a system. The second expansion chassis is also con-
nected to Card 1 of a CRU expander in siot 11 of the main chassis.

DEVICE TYPE? DS

TILINE ADDRESS? (> F820)
DRIVES? (1) 1

DEFAULT RECORD SIZE? (864)
INTERRUPT? (13) 7
EXPANSION CHASSIS? 2
EXPANSION POSITION? 13

3-38 946250-9705

System Generation

Your responses to the prompts are the same as if the controller board were installed in the main
chassis with the following exceptions:

The correct INTERRUPT parameter is the interrupt level assigned to the CRU expander
board in the main chassis.

The EXPANSION CHASSIS parameter.is 2 in this example, to indicate that the disk con-
troller board is installed in expansion chassis 2.

The EXPANSION POSITION parameter in this example is 13, which is the interrupt level
of the disk controller board within the expansion chassis.

CRU Devices in an Expansion Chassis. When you define a CRU device in an expansion chassis,
be sure to assign the correct CRU base address. Refer to paragraph 3.2.2.3 for a discussion of
CRU base addresses in expansion chassis. GEN990 recognizes this CRU base address to be

within an

expansion chassis and prompts you for the same additional prompts described in the

preceding paragraph. The following example demonstrates the definition of a 911 VDT controlled
by the right half of a controiler board which is installed in slot 9 of expansion chassis 1. The CRU

expander

board is installed in siot 11 of the main chassis:

DEVICE TYPE? VDT
ACCESS TYPE? (RECORD)
TIME OUT? (0)
CHARACTER QUEUE? (6)
VDT TYPE? 911

CRU

ADDRESS? (> 100) > 500

INTERRUPT? (10) 7
EXPANSION CHASSIS? 1
EXPANSION POSITION? 10

Your responses to the prompts are the same as if the controller board were installed in the main
chassis with the following exceptions:

946250-9705

The CRU ADDRESS parameter is modified to reflect in which expansion chassis the
controller board is installed.

The correct INTERRUPT parameter is the interrupt assigned to the CRU Expander board
in the main chassis.

The EXPANSION CHASSIS parameter is 1 in this example, to indicate that the 911 VDT
controlier board is installed in expansion chassis 1.

The EXPANSION POSITION parameter in this example is 10, the interrupt level of the
911 VDT controller board within the expansion chassis.

3-39

System Generation

3.4.5.2 Defining Disk and Magnetic Tape Drives. Supply the following GEN990 parameters to
add a disk drive to a new DX10:

e DEVICETYPE

e TILINE ADDRESS

e DRIVES

e DEFAULT RECORD SIZE
e INTERRUPT

The parameters required to add a tape transport are the same, except the DEFAULT RECORD SIZE
is neither required nor prompted.

Respond to the DEVICE TYPE prompt with DS to define a disk and MT to define a magnetic tape
drive.

The TILINE ADDRESS parameter is prompted by GEN990 when a TILINE device (in this case, a
disk drive or magnetic tape unit) has been defined in the system. Respond to this parameter with
the TILINE ADDRESS of the device just named. See paragraph 3.2.4 for a discussion of the TILINE.

The DRIVE parameter only applies to disk, diskette, and magnetic tape units, which may have
more than one drive per controller. Enter the number of drives connected to the controller being
defined, either 1, 2, 3, or 4. The initial value is 1.

GEN990 requests a DEFAULT RECORD SIZE parameter for each disk controller defined. DX10
uses the specified number of bytes to define the physical record size of a disk file when none is
specified in the SVC block or in the directory under which the file is created at file creation
time. The DX10 routine for volume initialization uses a muitiple of three sectors for its unit of disk
allocation.

The INTERRUPT parameter specifies the interrupt level (3 through 15) to be assigned to the device
being described. The interrupt for each slot of your chassis is listed on the configuration label that
is attached to the chassis.

The following examples show how to define disks in a new system:

DEVICE TYPE? DS

TILINE ADDRESS? (> F800)
DRIVES: (1) 3

DEFAULT RECORD SIZE: (768)
INTERRUPT: (13)

DEVICETYPE? DS

TILINE ADDRESS? (> F800) > F820
DRIVES: (1) 2

DEFAULT RECORD SIZE: (768)
INTERRUPT: (13) 12

3-40 Change 1 946250-9705

System Generation

The following example shows the definition of a tape transport:

DEVICETYPE? MT
TILINE ADDRESS? (F880)
DRIVES: (1)

INTERRUPT: (9)

3.4.5.3 Defining Communications Devices. DX10 optionally supports several types of commu-
nications packages. The parameters necessary to define communications devices are:

e DEVICETYPE

e CRUORTILINE ADDRESS
¢ NUMBEROF CHANNELS
e PROTOCOL

e BUFFERSIZE

e INTERRUPT

NOTE

Before you execute GEN990, you shouid read the object installation
documents for each communications package that you want to
install on your system.

The DEVICE TYPE parameter must be specified as COM or COMM. The CRU or TILINE parameter
is the address of the slot in the main or expansion chassis in which the communication card is
connected. If the CRU address is entered as a TILINE address, more than one communications
device can share that address. If the CRU address is a non-TILINE address, that CRU address can
be assigned to only one communications device. Calculation of a CRU address is explained in
paragraph 3.2.2.

The NUMBER OF CHANNELS parameter should be entered as 1 for a device using a Communica-
tion Interface board and can be 1 to 4 for a multiple channel device. GENS90 does not verify that
the value entered is legal since other devices with unknown characteristics can be added in the
future.

The PROTOCOL prompt is displayed as many times as the value you entered for the NUMBER OF
CHANNELS parameter. Valid responses to this prompt are 3780, 2780, or 3270. The 3780 and 2780
packages are normally used in a hardware configuration, which includes a console device and at
least one other /O device (for example, a line printer). The 3270 package is generally used in con-
junction with VDTs and/or a line printer. The default is NONE. If the default is taken for all
NUMBER OF CHANNELS prompts, GEN990 ignores the current COMM device definition.

946250-9705 3.41

System Generation

If the response to the PROTOCOL prompt is 3780 or 2780, the BUFFER SIZE prompt is displayed.
No BUFFER SIZE prompt is displayed if the PROTOCOL response is 3270. The BUFFER SIZE pa-
rameter specifies the size of the internal CRU buffer to be used by the communications device.
This buffer is used to receive data from the communications interface card. The default for the
3780 and 2780 required buffer size is 528 bytes.

The INTERRUPT parameter specifies the hardware interrupt assigned to the slot in which the
communications interface card is connected. This parameter is described in paragraph 3.2.3.

The following examples show how both a 3780 and a 3270 package are defined:
DEVICE TYPE? COMM
CRU ORTILINE ADDRESS? (> 140)
NUMBER OF CHANNELS (1)?
CHANNEL NUMBER 00 PROTOCOL? (NONE) 3780
INTERRUPT? (8)
BUFFER SIZE (528)?
DEVICE TYPE? COMM
CRU OR TILINE ADDRESS? (> 140) > 160
NUMBER OF CHANNELS (1)?
CHANNEL NUMBER 00 PROTOCOL? (NONE) 3270
INTERRUPT? (8)

3.4.5.4 Defining Display Terminals. The parameters needed to define a 911, 913, or 931 VDT, or
940 EVT are the following:

. DEVICETYPE

¢ ACCESSTYPE

e TIMEOUT

¢ CHARACTER QUEUE

* VDTTYPE

e CRUADDRESS

o INTERRUPT
In response to the DEVICE TYPE prompt, enter VDT or CRT.
The ACCESS TYPE should be specified as either RECORD or FILE. A device that is record oriented
can be opened for I/O by many tasks concurrently. A file-oriented device can only be used by one

task at a time. The initial value for VDTs is RECORD. Refer to Volume | for a discussion of file
orientation.

3-42 946250-9705

System Generation

The TIME OUT parameter specifies the number of seconds DX10 allows for an /O operation to
occur before declaring an error condition. Interactive devices are generally assigned no time-out
value because the time required for an input operation is operator dependent. The initial value is 0
(no time-out).

The CHARACTER QUEUE parameter specifies the number of input characters to be buffered. The
initial value is 6. The character queue must be an even number of characters.

The VDT TYPE parameter allows you to specify whether the device is a 911, 913, or 931 VDT, or 940
EVT. Enter either 911, 913, 931, or 940 in response to this prompt.

The CRU parameter specifies the CRU address of the chassis slot in which the VDT controllier is
connected, as described in paragraph 3.2.2. The initial value is >100.

The INTERRUPT parameter specifies the interrupt level assigned to the chassis slot in which the
VDT controller board is located. The initial value is 10.

Additional parameters needed to define a 931 VDT or 940 EVT are as follows:
e ASSOCIATED PRINTER
e TIMEOUT
e SWITCHED LINE
e SPEED
e INTERFACETYPE
e TILINEADDRESS

¢ CHANNEL NUMBER

In response to the ASSOCIATED PRINTER prompt, enter YES if a printer is attached to the auxil-
iary port on the 931 or 940. An attached printer always has a value of YES in response to the
EXTENDED? prompt (refer to paragraph 3.4.5.7). The initiai value is NO.

The TIME QOUT parameter specifies the number of seconds ailowed by DX10 for an |/O operation to
the printer. If more than the specified amount of time elapses, an 110 error is assumed. A response
of zero signifies no time-out count (that is, the printer has as long as necessary to complete the
operation). The initial value is 60 seconds.

946250-9705 Change 1 343

System Generation

The SWITCHED LINE prompt is used to specify the connection procedure for the terminal.
Respond NO for such configurations as local direct connect cable, leased telephone line with
modems, and switched telephone line with modems. A NO response to the SWITCHED LINE
prompt causes the operating system to assert Data Terminal Ready (DTR) and Request to Send
(RTS) signals unconditionally during IPL. This allows initiation of connection from either the ter-
minal or the CPU. The response to this prompt is usually NO. A YES response to the SWITCHED
LINE prompt causes the operating system to await a Ring Indicator (RI) signal from the modem to
the CPU before asserting DTR and RTS signals to complete the connection process. Respond YES
only if all the following conditions are met:

. The terminal and CPU are connected via a switched telephone line and modem:s.
e The modems require a Rl signal prior to asserting DTR and RTS signals.
. The call is placed from the terminal to the CPU,

The Modify VDT or Printer Characteristics (MVPC) command can be used to modify a response to
the SWITCHED LINE prompt without performing another system generation. The initial value is
NO.

The SPEED prompt requests the baud rate at which the terminal is operating. Legal baud rates are
300, 600, 1200, 2400, 4800, 9600, and 19200 baud. Make sure your hardware matches one of the
listed baud rates. The initial value is 1200.

The INTERFACE TYPE prompt specifies which interface board the terminal is using. The valid
responses are Cl401 (previously COMM 1/F), C1403, Cl404, 9902, and 9903. Refer to Table 3-9 for
more details.

The TILINE prompt appears if the response to the INTERFACE TYPE prompt is either Cl403 or
Cl404. Otherwise, the CRU ADDRESS prompt appears. The TILINE prompt specifies the TILINE
address of the board to which the VDT is connected, as described in paragraph 3.2.4. The initial
value is > F980.

3-44 Change 1 946250-9705

System Generation

The CHANNEL NUMBER prompt appears if the response to the INTERFACE TYPE prompt is either
Cl1403 or Cl404. This prompt specifies the channel number on the board to which the VDT is con-

nected. The initial value is 0.

The following example shows the definition of all four VDT types:

DEVICETYPE? CRT
ACCESS TYPE? (RECORD)
TIME OUT? (0)
CHARACTER QUEUE? (6)
VDT TYPE? 911

CRU ADDRESS? (> 100)
INTERRUPT? (10)

DEVICETYPE? CRT
ACCESS TYPE? (RECORD)
TIME OUT? (0)
CHARACTER QUEUE? (6)
VDT TYPE? 913

CRU ADDRESS? (> 100) > 00
INTERRUPT? (10) 6

DEVICETYPE? VDT
ACCESS TYPE? (RECORD)
TIME OUT?(0)
CHARACTER QUEUE? (6)
VDT TYPE? 940
ASSOCIATED PRINTER? (NO)
SWITCHED LINE? (NO)
SPEED? (1200) 9600
INTERFACE TYPE? Cl403
TILINE ADDRESS? (> F980)
CHANNEL NUMBER? (0)
INTERRUPT? (10) 7

DEVICETYPE? VDT
ACCESS TYPE? (RECORD)
TIME OUT?(0)
CHARACTER QUEUE? (6)
VDT TYPE? 931
ASSOCIATED PRINTER? (NO)
SWITCHED LINE? (NO)
SPEED? (1200) 9600
INTERFACE TYPE? 9902
CRU ADDRESS? (>1700)
INTERRUPT? (10) 8

946250-9705 Change 1

3-44A/3-448B

System Generation

3.4.5.5 Defining ASRs. To define a 733 ASR, you must supply the following parameters:
. DEVICETYPE
e CRUADDRESS
e ACCESSTYPE
e TIMEOUT
e CHARACTER QUEUE
e CASSETTEACCESSTYPE
o CASSETTE TIME OUT
¢ INTERRUPT
To define an ASR, respond to the DEVICE TYPE prompt by entering ASR.

The ACCESS TYPE or CASSETTE ACCESS TYPE parameter specifies whether a device is record
oriented or file oriented. Enter either RECORD or FILE. Record-oriented devices may be accessed
by many tasks at the same time, but file-oriented devices may only be opened by one task at a
time. Disks, magnetic tape, and diskettes are automatically record oriented. The default value is
the standard access type for the device being described. Card readers, line printers, and cassettes
are usually file oriented, while ASRs, KSRs, and VDTs are typically record oriented. Refer to Vol-
ume | for a discussion of device orientation.

The TIME OUT or CASSETTE TIME OUT parameter specifies the number of seconds which is to be
used by DX10 as the time-out count for the device. When an 1/O operation is initiated on a device,
DX10 allows the device to wait for the time period specified here for the operation to complete,
after which it assumes that an error has occurred. If no time-out is desired, enter 0. The default
value is different for different devices: 30 seconds for the line printers and card readers, 3 seconds
for cassettes, and no time-out for interactive devices.

The CHARACTER QUEUE parameter specifies the number of characters from a keyboard device
that should be buffered for input. If more characters are entered in the queue, they are ignored.
The initial value is 6.

The INTERRUPT parameter specifies the interrupt level (3 through 15) to be assigned to the device
being defined, as described in paragraph 3.2.3. The initial value is 6.

946250-9705 3-45

System Generation

The following example shows how to define an ASR. GEN990 assigns device names (such as
STO01, ST02) to terminal devices in the order in which the devices are defined.

DEVICETYPE? ASR

CRU ADDRESS? (> 00)

ACCESS TYPE? (RECORD)

TIME OUT? (0)

CHARACTER QUEUE? (6)
CASSETTE ACCESS TYPE? (FILE)
CASSETTE TIME OUT? (3)
INTERRUPT? (6)

When an ASR is defined, the cassette units are named left to right; in the previous example, CS01
is the left cassette drive and CS02 is the right drive. If you define more ASRs, GEN990 continues to
number the cassettes sequentially.

3.4.5.6 Defining KSRs (or Other Teleprinter Devices (TPDs)). The types of KSRs supported by
DX10 are 703, 707, 733, 743, 745, 763, 765, 781, 783, 785, 787, and 820.

NOTE
You can define a 743 or 745 terminal that is interfaced to a 990 using
the TTY/EIA interface module and unswitched lines as a KSR using
either the KSR or the TPD DSR. You can define an 820 terminal that
is interfaced to a 990 using a TTY/EIA interface module and
unswitched lines as a KSR using either the K820 or TPD DSR. You
can define a 733 terminal as either an ASR or a KSR using the KSR
DSR. It is recommended that 743, 745, or 820 terminals be defined
using the TPD DSR. This allows you to access various utility pro-
grams not otherwise available. Future utility software developed to
operate with hard-copy terminals may not operate for terminals that
are not defined as TPD devices.
The parameters needed to define a KSR device are the following:

U DEVICE TYPE

e DSRTYPE(TPD/KSR/K820)

e CRUADDRESS

e ACCESSTYPE

e TIMEOUT

* CHARACTERQUEUE

* INTERRUPT

3.46 946250-9705

System Generation

In response to the DEVICE TYPE prompt, enter KSR.

In response to the DSR TYPE(TPD/KSR/K820) prompt, enter either TPD, KSR, or K820, according to
the nature of the device you are defining.

The CRU ADDRESS parameter specifies the CRU address of the chassis slot in which the inter-
face is connected, as described in paragraph 3.2.2. The initial value is > 00.

The ACCESS TYPE should be specified as either RECORD or FILE. A device that is record oriented
can be opened for I/Q by many tasks concurrently. A file-oriented device can only be used by one
task at a time. The initial value for TPD is RECORD. Refer to Volume | for a discussion of file orien-
tation.

The TIME OUT parameter specifies the number of seconds that DX10 allows for an I/O operation to
occur before declaring an error condition. Interactive devices are generally assigned no time-out
value, since the time required for an input operation is operator dependent. The initial value is 0
(no time-out).

The CHARACTER QUEUE parameter specifies the number of input characters to be buffered. If
the Bubble Memory Terminal Support software (BMTS-990) is used at this port, see the BMTS-990
User’s Guide for additional information regarding this parameter. The initial value is 6.

The INTERRUPT parameter specifies the interrupt level assigned to the chassis slot in which the
VDT controller board is connected, as described in paragraph 3.2.3. The initiai value is 6.

Additional parameters needed to define a TPD are the following:
e TERMINALTYPE
e INTERFACETYPE
e SWITCHED LINE
. BAUD RATE
° ACU PRESENT
e ACUCRU*
o FULL DUPLEX MODEM -

e ECHO

* Not always prompted.

946250-9705 3-47

System Generation

The TERMINAL parameter allows you to specify which type of terminal you are defining. The
allowed responses are 703, 707, 743, 745, 763, 765, 781, 783, 785, 787, and 820.

The ECHO prompt asks whether keystrokes should be echoed (sent back to the terminal) by the
990. The default is YES. Echo must be selected for character editing to work properly at the ter-
minal. If echo is selected, the terminal must be configured without local copy. If a half-duplex
modem is used, echo should not be selected.

FULL DUPLEX MODEM asks if the modem is full duplex or halif duplex. If the modem is a Bell 103J
or a Bell 212A or a Vadic 3400, answer YES. If no modem is used, enter YES. If the modem is a Bell
2028, enter NO.

Respond to the SWITCHED LINE prompt to specify the type of telecommunication used with the
TPD. Remote terminals accessed using modems on the public telephone network are on switched
(dial-up) lines. Directly connected terminals and terminals on leased remote lines are not
switched. For the latter case, accept the initial value of NO. If the terminal uses dial-up lines,
respond Y (YES).

The INTERFACE TYPE prompt specifies which interface board the terminal is using. The valid
responses are Cl401 (previously COMM i/F), TTY/EIA, and 9902. Refer to Table 3-9 for more details.

Acceptable BAUD RATES are 110, 300, 600, 1200, 2400, 4800, and 9600. The initial value is 300
baud. Make sure your hardware matches one of the listed baud rates.

If an automatic call unit is used with the terminal, enter YES in response to the ACU PRESENT?
prompt; otherwise, accept the initial value of NO. If you respond YES, GEN990 disptays another
prompt, ACU CRU?. Respond with the CRU base address of the ACU. The initial value is 0.

The following example shows the definition of three devices:

DEVICE TYPE? KSR

DSR TYPE(TPD/KSR/K820)? KSR
CRU ADDRESS? (> 00)

ACCESS TYPE? (RECORD)
TIME OUT? (0)

CHARACTER QUEUE? (6)
INTERRUPT? (6)

DEVICE TYPE? KSR

DSR TYPE(TPD/KSR/K820)? K820
CRU ADDRESS? (> 00) > 40
ACCESS TYPE? (RECORD)

TIME OUT? (0)

CHARACTER QUEUE? (6)
INTERRUPT? (6)

3-48 946250-9705

System Generation

DEVICETYPE? KSR

DSR TYPE(TPD/KSR/K820)? TPD
TERMINAL TYPE? (743)
INTERFACE TYPE? Cl401
SWITCHED LINE? (NO)

BAUD RATE? (300) 1200

ACU PRESENT? (NO)

FULL DUPLEX MODEM? (YES)
ECHO (YES)?

CRU ADDRESS? (> 00) > 60
ACCESS TYPE? (RECORD)
TIME OUT? (0)

CHARACTER QUEUE? (6)
INTERRUPT? (6)

3.4.5.7 Defining Line Printers. The types of line printers supported by DX10 are: Model 306, 588,
810, 820 RO, 840 RO, 850, 855, 2230, 2260, LP300, LP600, and LQ45. The prompts needed to define a
line printer are the following:

e DEVICETYPE

e ACCESSTYPE

. PRINT MODE

. EXTENDED

e SPEED*

e TIMEOUT

e INTERFACETYPE

. CRU ADDRESS or TILINE ADDRESS

e CHANNEL NUMBER

e INTERRUPT

* Not always prompted.

946250-9705 3-49

System Generation

The DEVICE TYPE prompt requires you to enter LP to define a printer.

Specify the ACCESS TYPE as either RECORD (R) or FILE (F) oriented. Refer to Volume | for a dis-
cussion of file orientation. The initial value is FILE.

The PRINT MODE should be specified as either PARALLEL or SERIAL.

If a printer is specified as being serial, GEN990 prompts the EXTENDED? parameter. The 810
serial printer may have an extended character set. If the device being added has an extended char-
acter set, you should answer YES; if not, respond with NO. If you want to print lowercase charac-
ters, answer YES. The initial value is YES.

GENS90 also prompts the SPEED parameter if a printer is specified as being serial. The SPEED
prompt requests the baud rate at which the printer operates. Legal baud rates are 110, 200, 300,
600, 1200, 2400, 4800, and 9600. Make sure your hardware matches one of the listed baud rates. The
initial value is 4800.

The TIME OUT parameter specifies the number of seconds allowed by DX10 for an 1/O operation to
the printer. If more than the specified amount of time elapses, an I/O error is assumed. A response
of zero signifies no time-out count (that is, the printer has as long as necessary to complete the
operation). The initial value is 60 seconds.

The INTERFACE TYPE prompt appears if the response to the PRINT MODE prompt is SERIAL. This
parameter specifies which interface board the printer is using. The valid responses are Cl403,
Cl404, TTY/EIA, and 9902. Refer to Table 3-9 for more details.

The CRU parameter specifies the CRU address of the chassis slot in which the printer interface
card is connected, as described in paragraph 3.2.2. The initial value is > 60.

The TILINE prompt appears if the response to the INTERFACE TYPE prompt is either Cl403 or
Cl404. Otherwise, the CRU prompt appears. The TILINE parameter specifies the TILINE address of
the interface board to which the printer is connected, as described in paragraph 3.2.4. The initial
value is > F980.

The CHANNEL NUMBER prompt appears if the response to the INTERFACE TYPE prompt is either
Cl403 or Cl404. This parameter specifies the channel number on the interface board to which the
printer is connected. The initial value is 0.

The INTERRUPT parameter specifies the interrupt assigned to the chassis slot in which the printer
interface card is connected, as described in paragraph 3.2.3. The initial value is 14.

3-50 946250-9705

System Generation

The following example shows the definitions of three printers:

DEVICETYPE?LP
ACCESS TYPE? (FILE)
PRINT MODE? (SERIAL)
EXTENDED? (YES)
SPEED? (4800)

TIME OUT? (60)
INTERFACE TYPE? TTY/EIA
CRU ADDRESS? (> 60)
INTERRUPT? (14) 10
EXPANSION CHASSIS? (1)
EXPANSION POSITION? 5

DEVICETYPE? LP

ACCESS TYPE? (FILE)
PRINT MODE? (SERIAL) P
EXTENDED? (YES)

SPEED? (4800)

TIME OUT? (60)

CRU ADDRESS? (> 60) > 100
INTERRUPT? (14)

DEVICETYPE?LP
ACCESS TYPE? (FILE)
PRINT MODE? (SERIAL)
EXTENDED? (YES)
SPEED? (4800)

TIME OUT? (60)
INTERFACE TYPE? Cl403
TILINE ADDRESS? (> F980)
CHANNEL NUMBER? (0)
INTERRUPT? (14)

3.4.5.8 Defining a Card Reader.
following:

e DEVICETYPE
e CRUADDRESS
e ACCESSTYPE
e TIMEOUT

e INTERRUPT

The parameters needed to define a card reader are the

Enter CR in response to the DEVICE prompt. The CRU parameter specifies the CRU address
assigned to the card reader. CRU address calculation is described further in paragraph 3.2.2. The

initial value is > 40.

946250-9705

3-51

System Generation

NOTE

Connecting a card reader to an expansion chassis is not recom-
mended. A card reader generates many interrupts that must be ser-
viced immediately by DX10; therefore, connect the card reader to
the main chassis and assign it the lowest interrupt level possible.
No other device can be assigned the same interrupt level as a card
reader.

The ACCESS TYPE parameter indicates whether the card reader is RECORD (R) or FILE (F) ori-
ented. Refer to Volume | for a discussion of file orientation. The initial value is FILE.

The TIME OUT parameter specifies the number of seconds in the time-out count for the card
reader. The initial value is 30.

The INTERRUPT parameter specifies the interrupt level assigned to the chassis slot in which the
card reader interface card is connected. This number should be as low as possible. The initial
value is 4.
The following example shows definition of a card reader: ‘

DEVICETYPE? CR

CRU ADDRESS? (> 40) >80

ACCESS TYPE? (FILE)

TIME OUT? (30)

INTERRUPT? (4)

3.4.5.9 Defining Diskettes. The parameters required to define Model FD800 single-sided,
single-density diskette drives to GEN990 are the following:

e DEVICETYPE
e CRUADDRESS
. DRIVES
e TIMEOUT
. INTERRUPT
Respond to the DEVICE TYPE prompt by entering DK.

The CRU ADDRESS parameter specifies the CRU address of the chassis slot in which the diskette
controller is connected. The default value is > 80.

The DRIVES parameter specifies the number of diskette drives (1, 2, 3, or 4) which are connected to

the controller being defined. GEN990 names each drive DKXX, where XX is the drive number, in the
same way as disk drives.

3-52 946250-9705

System Generation

The TIME OUT parameter specifies the number of seconds allowed by DX10 for an I/O operation to
a diskette drive to compiete. The initial value is 30. .

The INTERRUPT parameter specifies the hardware interrupt level assigned to the chassis slot in
which the diskette controller is connected. Paragraph 3.2.3 provides a more detailed expianation.

The following example shows the definition of two diskette drives:

DEVICETYPE? DK
CRU ADDRESS? (> 80)
DRIVES?(1)3

TIME OUT? (30)
INTERRUPT? (7)

DEVICE TYPE? DK

CRU ADDRESS? (> 80) > 220
DRIVES? (1) 2

TIME OUT? (30)
INTERRUPT? (7)

3.4.5.10 Defining Nonstandard Devices. The following parameters are required to define a
device not supported by the standard DX10 software modules:

e DEVICETYPE

INTERFACE TYPE

e SPECIAL DEVICE ADDRESS
e CHANNEL NUMBER

e DEVICE NAME

e INTERRUPTBIT

e KSBADDRESS

* DSRWORKSPACE

e INTERRUPT ENTRY

e PDTFILE
e DSRFILE
* OVERRIDE

e INTERRUPT

In order to include a nonstandard device, you will have to write a DSR to handle it. See Section 5
for instructions. You should write the DSR before beginning system generation.

946250-9705 3-53

System Generation

Respond to the prompt DEVICE TYPE with SD (Special Device).

The INTERFACE TYPE parameter specifies which interface board the device is using. The valid
responses are Cl403, Cl404, 9902, and NONE. Refer to Table 3-9 for more details. Enter NONE if
you are not using a Cl403, Cl404, or 9902. The initial value is NONE. This information is used
to construct the interrupt decoder tables and does not provide any routines for handling the
interface.

In response to the SPECIAL DEVICE ADDRESS parameter, enter the TILINE or CRU address
assigned to the device. If you respond NONE, the INTERRUPT parameter is also set to NONE and
the OVERRIDE parameter is set to NO. The initial value for this parameter is > 100.

The CHANNEL NUMBER prompt appears if the response to the INTERFACE TYPE prompt is Cl403
or Cl404. This prompt specifies the channel number on the board to which the device is
connected.

Assign a name to the device in response to the prompt DEVICE NAME. The name must be four
characters long and begin with an alphabetic character. For example, if the device is a plotter,
then you can assign the name PLO1. If a device is a special graphics terminal, you can assign the
name GRO01. For each subsequent definition of this type of terminal, you can use the names GRO02,
GRO03, and so on.

The INTERRUPT BIT prompt appears if the response to the INTERFACE TYPE prompt is NONE.
When several devices share the same interrupt level, GEN990 must know the CRU interrupt bit
that indicates which device sent the interrupt in order to build a suitable interrupt decoder.
Respond to this prompt with the appropriate CRU interrupt bit. The default is 15. The valid values
are in the range 0 to 31.

The KSB ADDRESS parameter identifies the label of the starting address of the keyboard status
block (KSB) for this device as specified in bytes 12 and 13 of the physical device table (PDT). If the
device does not have a keyboard or if you do not intend to bid SCI with the device, then accept the
initial vailue of NONE by pressing the Return key. The device must have a KSB to have an STxx
(station) device name.

Respond to the DSR WORKSPACE prompt with the label of the address of the workspace to be
used by the DSR when processing device interrupts. The conventional value for this parameter is
either the first word of the KSB (if the device has a KSB) or the third word of the PDT (for nonkey-
board devices). :

For the INTERRUPT ENTRY parameter, enter the label of the entry point in the DSR for processing
interrupts for the device.

Respond to the PDT FILE prompt with the pathname of the file containing the PDT source module.

Respond to the DSR FILE prompt with the pathname of the file containing the DSR object module.

3.54 946250-9705

System Generation

When you write the PDT for the special device, you may not know in which chassis slot the device
will reside. The data in certain fields in the PDT and KSB (CHASSIS/TILINE ADDRESS and STATUS
FLG/INTERRUPT — 1 in the PDT and CRU INPUT ADDRESS in the KSB) is dependent on the siot
number. Respond YES to the OVERRIDE parameter if you want GEN990 to fill in these fields
according to information supplied during system generation. Respond NO if the PDT already con-
tains this data. If the special device has a keyboard, GEN990 overrides the station ID field in the
KSB.

Enter the interrupt leveli of the slot in which the special device is installed to respond to the prompt
INTERRUPT. If your response is NONE, the SPECIAL DEVICE ADDRESS PARAMETER is also set
to NONE and the OVERRIDE parameter is set to NO. The initial value is 15.

.Several examples of special device definition are included in Appendix F.

3.4.6 Defining SVCs

You can write your own SVC processors and include them in the DX10 software. It is necessary
to write the SVC processor and install it in a file prior to defining its parameters during system
generation.

GEN990 assigns identifying numbers to user-written SVCs, starting at >80. These numbers are
assigned in the sequence that the SVCs are defined. These numbers are not displayed in the out-
put of the LIST command, but they are recorded in the configuration file, which may be inspected.
If you delete an SVC, the identifying numbers are reordered to maintain an unbroken sequence. If
you modify an SVC using the CHANGE command, the SVC retains its order in the number
sequence, even if the content of the SVC has changed.

To define an SVC, issue the SVC command from the inquire mode. The following prompts appear:

s SVC
e FILE
e BYTES

The SVC parameter is the label of the initial entry point to a user-supplied SVC processor. You
must define this label in the processor. User-defined SVCs are assigned SVC codes by GENS90,
starting at > 80 and incrementing by one for each SVC defined.

The FILE parameter is the pathname of the file which contains the object module of the SVC pro-
cessor being defined.

The BYTES parameter specifies the number of bytes which are used by the call biock of the SVC
just defined. The number must be at least one, which is the initial value.

After you respond to these prompts, GEN990 returns to the inquire mode.
3.4.7 Terminating GEN990

Terminate GEN990 by issuing either the STOP command or the BUILD command. Refer to para-
graph 3.3.3.7 for a description of these commands’ actions.

946250-9705 3-55

System Generation

3.4.8 Optional Processor System Generation Parameters

During system generation, the parameters you specify in response to the GEN990 prompts should
take into account the optional processors you want to include. The optional processors that can
have an effect on the system generation procedure include, but are not limited to, the following:

e 915RTS

. Sort/Merge *

e 3780/2780

o 3270/1CS

° Bubble Memory Terminal Support (BMTS-990)

The following paragraphs explain the system generation considerations if you want to include
these processors.

3.4.8.1 DX10 Remote Terminal Subsystem (RTS). |f you want to include RTS in a DX10 system,
you must first perform the RTS pre-system generation procedures as specified in the Mode/ 990
Computer DX10 Remote Terminal Subsystem (RTS) System Generation and Programmer’s Refer-
ence Manual. After you complete these procedures, you can perform the standard DX10 system
generation procedure with each RTS communications line included as a special device (in addi-
tion to all other devices that must be included in your system).

Refer to the Model 990 Computer DX10 Remote Terminal Subsystem (RTS) System Generation and
Programmer’s Reference Manual for information concerning responses to the DX10 system gener-
ation prompts to include RTS communications.

3.4.8.2 Sort/Merge. When using Sort/Merge with COBOL, FORTRAN, BASIC, or assembly lan-
guage, you must specify an intertask communication area. In response to the INTERTASK prompt,
specify the number of words of the system table area that may be used for intertask
communications.

Refer to the system generation requirements section of the Sort/Merge User’s Guide for informa-
tion on how to compute the value required for the intertask communication area.

3.4.8.3 3780/2780 and 3270/ICS Emulators. The parameters necessary to define these proces-
sors during the system generation procedure are described in paragraph 3.4.5.3 on defining com-
munications devices.

For additional information concerning the system generation procedures for these processors,
refer to the DX10 3780/2780 Emulator Object Installation and the Mode/ 990 Computer DX10 3270
Interactive Communication Software (ICS) Object Installation manuals.

3.4.8.4 Bubble Memory Terminal Support. To use the BMTS-990, you must include a KSR using
the teleprinter DSR during system generation. The parameters necessary to define teleprinter
devices during system generation are listed in paragraph 3.4.5.6. For further information on
BMTS-990, see the Bubble Memory Terminal Support 990 User’s Guide.

3-56 : 946250-9705

3.5 ASSEMBLING AND LINKING THE SYSTEM

System Generation

After you define the system configuration using GEN990, the data files must be processed into a
machine-useable form. DX10 provides the Assemble and Link Generated System (ALGS) com-

mand to perform this processing automatically.

NOTE

If you are "generating any communications products, make sure you
have performed BCD as described in the communications installa-
tion documents prior to performing ALGS.

3.5.1 Executing the ALGS Command
Issue the ALGS command. The foilowing prompts appear on the screen:

ASSEMBLE AND LINK GENERATED SYSTEM
DATADISK: DSO01
TARGET DISK: DS01
SYSTEM NAME: TEST
D$DATA LISTING:
BATCH LISTING:

Respond to the prompt DATA DISK with the device name or volume name of the disk or disk drive
that contains the GEN990 output files. This is the same disk that you specify for the XGEN com-
mand to use as the data disk. The GEN990 output files are stored under a directory

.S$SYSGEN.< system name>, where < system name> is the name you assigned
OUTPUT CONFIGURATION for the XGEN command.

The output of the ALGS command is sent to a system file SSIMAGES on the

to the prompt

target disk. In

response to the prompt TARGET DISK, enter the device name or volume name of the target disk.

NOTE

Prior to executing the ALGS command, verify that a .S3IMAGES
program file exists on the target disk. If this program file does not
exist, you must create it using the Create Program File (CFPRO)
command. Refer to Volume |l for a description of the CFPRO com-
mand. Copy the procedure DUMMY from the existing .S$IMAGES
program file to the one created using the Copy Program Image (CPI)
command.

Respond to the prompt SYSTEM NAME with the name of the output configuration assigned to the

prompt OUTPUT CONFIGURATION for the XGEN command.

946250-9705

3-57

System Generation

The value of the prompt DSDATA LISTING is the access name of a sequential file or output device
to which the macro assembler output listing is written. The default access name follows this pat-
tern: < data disk> .S$SYSGEN.< system name> .DSLIST.

The value of the prompt BATCH LISTING is the access name of a sequential file or output to which
the ALGS output listing is written. The default value is a pathname with the form <data
disk> .S$SYSGEN.< system name> .ALGSLIST, such that < data disk> is the value that you sup-
plied to the prompt DATA DISK and < system name> is the value you supplied to the prompt
SYSTEM NAME.

3.5.2 Resuits of the ALGS Command

ALGS executes SC! in batch mode. The ALGS command stream executes a batch command
stream (developed by GEN990 and stored in the file < data disk>.S$SYSGEN.< system
name>.BATCHSTM) and sends a listing to the access name specified for the prompt BATCH
LISTING. The batch command stream executes the Macro Assembler, the Link Editor, and a syn-
onym assignment program that creates a patch file for the new system.

The ALGS command requires from 15 to 30 minutes to execute, depending on the size and com-
plexity of your computer system.

3.5.2.1 Normal Termination. When the ALGS process terminates, a message appears at the
terminal. If processing completes normalily, the message is:

*** ALGS NORMAL TERMINATION ***
Press the Return key. The following message appears:
*** ALGS NORMAL TERMINATION ***

In this case, press the Return key and proceed by patching the generated system as described in
paragraph 3.6.

A successful ALGS execution creates the following files:

. A D$DATA object module output from the Macro Assembler in .S$SYSGEN.< system
name> .D$OBJECT.

e Ataskimage which is the linked system, in file .S$IMAGES on the target disk.

. A patch file (in the file .S3SYSGEN.< system name> .PATCHFIL) ready to be applied to
the system image.

. A link map of the linked system in the file .S3SYSGEN.< system name> .LINKMAP.

. A file containing any error messages output by the patch generator in the file
.S$SYSGEN.< system name> .ERROR

. An SCl batch listing, if you accept the defaults for the BATCH LISTING parameter, in the
file .S$SYSGEN.< system name> .ALGSLIST.

3-58 946250-9705

3.5.2.2 Abnormal Termination. [f ALGS does not terminate normally, one of the following error
messages appears on the terminal screen:

*** ALGS — D$DATA ASSEMBLY ERROR = <code> **™:

*** ALGS — SYSTEM LINK EDIT ERROR = <code> ***:

*** ALGS — SYNONYM GENERATOR FATAL ERROR = <code> **™:

*** ALGS — SYNONYM GENERATOR NON-FATAL ERROR = <code> ***:

where:

< code> = a4-or5-digit condition code
The first three error messages indicate unsuccessful completion of ALGS. The fourth error mes-
sage indicates that a non-fatal error occurred and ALGS has successfully completed. If the fourth
error message appears, proceed by patching the generated system as described in paragraph 3.6.
If the first error message, DSDATA ASSEMBLY ERROR, appears, the error is a macro assembler
error. The second error message indicates a fatal Link Editor error. The third error message indi-
cates that a fatal error occurred in the synonym generator section of ALGS.

You need to examine the batch listings created by the ALGS command to determine the cause of a
fatal error. These two files contain the listings:

. <datadisk>.S$SYSGEN. < system name > .ALGSLIST — The batch SCl listing

. < data disk>.S$SYSGEN. < system name >.D3LIST — The assembly listing of the new
system’s D$SDATA module

The last two lines of the batch SCI listing (ALGSLIST) contain the error messages that appeared
on the terminal screen. Starting from the last line and working forward, inspect the batch SCl list-
ing for the last SCl command listed. Between this point in the listing and the end is an error mes-
sage and a 4-digit error code. Refer to Section 4. The following error codes may accompany the
third error message:

. 8001 — Module or synonym name too long

. 8002 — Same synonym for different overlays

. 8003 — Duplicate module

e C001— Symbol too long

e C002 — Unexpected EOF on link map

. C003 — Too many modules

. C004 — Bad link map format

Such errors indicate that the patch generator could not create a proper patch file from its input. If
the software supplied by Texas Instruments has not been modified, see Volume V1.

946250-9705 3-59

System Generation

3.5.3 ALGS Batch Stream
The following example shows the batch stream executed by ALGS for a system called TEST on
DSO1.

LEEEEE T E T T Poypugen SYSGEN COMPLETION BATCH STREAM ===z=zzzs====z=z=z==x=
**

RREXXERKRH KRR KK KSR AN® ASSEMBLE DSDATA FRhAdedsdshokdsok s s &k o
ARk R R RN RN R AR R R K IR IR IR E Rk kR kA ATk Ak e ok b o
BATCH ! 04/26/82-16:19:16
XMA SOURCE @$$DSCD.S$SYSGEN. TEST . DSSOURCE,
OBJECT @$$DSCD-S$SYSGEN.TEST.D$OBJECT:
LIST XMASL,
OPTION (BUN, TUN, DUN)
.SYN XMASL = ""
.IF @$scc,GE, 04000
CM R=ME,M="*** ALGS ~ D$DATA ASSEMBLY ERROR = @sscc *xxv
+STOP T="*** ALGS - D$DATA ASSEMBLY ERROR *#**"

-ENDIF
idldedddod AR A R L L L L e TN
TRk RkRARIRREN A Kk dh LINK THE SYSTEM LA AL L2 L L TR g

**

XLE CONTROL= @$$DSCD.S$SYSGEN.TEST.LINKSTRM.
LINK = @$SDSC$.SSIMAGES,
LIST = @$3SDSCD.SS$SYSGEN.TEST.LINKMAP
.IF @$$CC,GE, 04000
CM R=ME,M="*** ALGS - SYSTEM LINK EDIT ERROR = @$SCC **xn
+STOP T="*** AI,GS - SYSTEM LINK EDIT ERROR **#n
*ffgff**

rkkkkkkHXEAR RUN SYNONYM ASSIGNMENT PROG **%kddkddhdhdddihn
HRA KRR AR Ak HAHA KRR IR A AR IR KKk ARk ook ook o
XPS LINK = @$5DSCD.S$SYSGEN.TEST.LINKMAP,
INPUT = @S$DSCP.PATCH.MEMRES,
OUTPUT = @$$DSCD-S$SYSGEN.TEST.PATCHFIL,
ERROR = @$$DSCD.S$SYSGEN.TEST.ERROR
«SYN $5CC = "@S$XPSSE"
-IF @$scc,GT,00000
- SHOW @$$DSCD. S$SYSGEN. TEST . ERROR
-ENDIF
+IF @$$CC,GE,08000
CM RaME,M="*** ALGS - SYNONYM GENERATOR FATAL ERROR = @$$CC **#*n
-STOP T="*** ALGS - SYNONYM GENERATOR FATAL ERROR ***n
+ENDIF
-IF @$8CC,GT,00000
CM R=ME,M="*** ALGS - SYNONYM GENERATOR NON-FATAL ERROR = @$3CC *
-STOP T="*** ALGS - SYNONYM GENERATOR NON-FATAL ERROR *#*x"
-ENDIF
CM R=ME,M="*** ALGS - NORMAL TERMINATION #*%*%*"
-STOP T="*** ALGS -~ NORMAL TERMINATION #*#*%*"

3-60 946250-9705

System Generation

3.6 PATCHING THE SYSTEM

After completion of ALGS, the patch file generated by ALGS must be applied to the new system
before you can successfully perform an |PL. Issue the Patch Generated System (PGS) command to
direct DX10 to automatically apply the patches to the system.

PATCH GENERATED SYSTEM
DATA DISK:
TARGET DISK:
SYSTEM NAME:
BATCH LISTING:

Respond to the DATA DISK, TARGET DISK, and SYSTEM NAME prompts of this command with
the same values as for the preceding ALGS command. The defauit value for the prompt BATCH ~
LISTING is the file < data disk> .S$SYSGEN.< system name> .PGSLIST.

The output of the PGS command is a usable DX10 image and the SCI batch listing. The PGS com-
mand activates a batch SCI, which uses the patch file created by ALGS as input. The PGS process
operates in background as ALGS does. If PGS terminates successfully, a successful completion
message appears. After termination of PGS, the new DX10 image is ready to be installed and/or
tested as the executing operating system.

PGS will write error messages to the batch listing. Consult Volume VI for a description of any error
messages. See the following paragraph for instructions on PGS error recovery.

See Volume Il for a description of the command and an explanation of the prompt responses.
Appendix J lists an example patch file.

3.6.1 PGS Error Recovery
PGS generates one of four possible messages. If you receive the following message, the PGS
command was successful:

SYSTEM IS BOOTABLE

If you receive the following message, the error count was nonzero and the patches were unsuc-
cessful. You need to reissue the PGS command.

SYSTEM IS NOT BOOTABLE
The following message may also appear:
SYSTEM ROOT EXCEEDS > C000

The DX10 system tasks are loaded in the system at address > C000. A system in which the root is
greater than > C000 in length will overlap the system tasks causing unknown results.

The other message that may appear is as follows:

LONGEST OVERLAY PATH EXCEEDS > F800

946250-9705 3-61

System Generation

if the longest overlay path exceeds > F800, the system extends into the TILINE Peripheral Control
Space (TPCS). Improper execution and possibly disk data destruction will occur. The system root
length must be shortened. This can be accomplished by making the system table area smaller (re-
fer to paragraph 3.4.3) or by removing some of the devices or additional capabilities (user SVCs).
The latter choice in most cases is unacceptable, leaving reduction of the system table area the
only means of making the system root smaller. Appendix | can be used as an aid in determining
the new system memory requirements.

3.6.2 Executing the Patch Synonym Assignment Program

Occasionally, when installing the operating system from linked object, you may find it desirable to
execute the patch synonym assignment program without assembling and linking the system
again. Accomplish this using the Execute Patch Synonym (XPS) command:

EXECUTE PATCH SYNONYM PROCESSOR

LINK = [acnm]
INPUT = [acnm]
OUTPUT = [acnm]
ERROR = [acnm]

Table 3-11 lists the XPS prompts. The synonym $$DSC$ must be assigned the value of the disk
drive name on which the system image is installed (that is, DS01 for the system disk).

Table 3-11. XPS Command Prompt Responses

Required or Defaulit
Prompt Response Type Optional Value Example
LINK acnm R NONE .S$SYSGEN.TEST.LINKMAP
INPUT acnm R NONE .PATCH.MEMRES
QUTPUT acnm R NONE S$SYSGEN.TEST.PATCHFIL
ERROR acnm R NONE .S$SYSGEN.TEST.ERROR

3-62 946250-9705

System Generation

NOTE

The message DIFFERENT SYNONYMS FOR SAME OVERLAYS is
an informative warning, not a fatal error.

3.6.3 Batch Stream Error Counter Errors

Errors encountered by commands in batch streams are collected by using the Batch Stream Error
Counter (EC) command. This command tests the value of the synonym $$CC, which is set by calls
to S$STOP. When the value of $3CC is not zero, an error accumulation synonym, $E3$C, is incre-
mented by one. The value of $ESC may subsequently be displayed using the Create Message (CM)
command.

3.6.4 Clear Secret Synonyms

Synonym table overflow errors occur when the synonym table reaches its capacity. System-
defined synonyms and user synonyms share the same table area. Delete the system-defined
secret synonyms using the Clear Secret Synonyms (Q$SYN) command. Issue a Show File (SF)
command on .S$PROC.Q$SYN to inspect the synonyms cleared by the Q3SYN command.

3.7 TESTING THE SYSTEM

We strongly advise that you test the new system before installing it as the primary system. To test
the new system, issue the TGS command. The following prompts appear on the screen:

TARGET DISK:
SYSTEM NAME:

Respond to the prompts with the same values established in the preceding PGS command.

The TGS command designates the system under test to be the secondary system. The next time
that an IPL occurs, this secondary system is loaded as the operating system. On subsequent IPLs,
the primary system is loaded. This offers you an opportunity to ensure that the generated system
will load successfully and function as designed. The following exampie displays a typical output
from PGS using the imaginary systems S$SUP and ITGS:

IGS/TGS
PAES SYSTEM IPL STATUS

PRIMARY SYSTEM = S$SUP SECONDARY SYSTEM = ITGS
TEST SECONDARY SYSTEM

If the secondary system does not act as expected, you can perform an IPL and the primary system
will be loaded. Then you can repeat the system generation procedure for the system. If the sec-
ondary system functions properly, install it as the primary system using the 1GS command as
described in the following paragraph.

946250-9705 3-63

System Generation

3.8 INSTALLING THE GENERATED SYSTEM

Issue the IGS command to install the system entered for the SYSTEM NAME prompt as the pri-
mary system. The prompts and responses are the same as for TGS:

TARGET DISK:
SYSTEM NAME:

The following example displays a typical output of the IGS command:

IGS /TGS
PAES SYSTEM IPL STATUS

PRIMARY SYSTEM = ITGS SECONDARY SYSTEM = S$SUP
IPL ON PRIMARY SYSTEM

3-64 946250-9705

4

System Generation Troubleshooting

4.1 INTRODUCTION

This section provides useful advice for the person responsible for maintaining a system. in par-
ticular, this section concerns rectifying a faulty system generation, but the advice is useful in
troubleshooting any crash, if for no other reason, then to determine that the fault does not lie in
the system generation.

4.2 MAINTAINING A SYSTEM LOGBOOK

Make it a practice to keep a logbook of what happens to the system. Record all changes made to
the system and all unexpected behavior. The following list contains typical entries to a logbook:

U] New system generations

U] Installation of patches

. Installation of new hardware

. Repairs to hardware

L Which disk packs were in use when disk and/or controller related problems were noticed

. Which disk packs were in use when the system crashes

e What the crash codes were

. Installation of new application software

] Modifications to application software

o When application problems occurred and what the error codes and messages were

o The resolution to any problem
Changes to the system are primary clues to the initial direction of investigation. Coincidence of
problems with other operations on the system also gives important clues. Changes in system

behavior without a change in software are important clues to possible hardware problems, and
the error codes are the system’s primary method of communicating its problems to you.

946250-9706 41

System Generation Troubleshooting

4.3 TROUBLESHOOTING SYSTEM GENERATION PROBLEMS
Problems with system generation fall generally into three classes:

. Problems with mistyped interrupts and controller addresses, which cause hangs and
crashes

. Problems relating to the various components of system table area, their sizes, and how
they affect the operation of the system

. Problems with operations, usually with getting the Assemble and Link Generated Sys-
tem (ALGS) and Patch Generated System (PGS) commands to execute properly

The text below is arranged by external symptoms. The titles are meant to match the visible mani-
festation of the problem. Find the paragraph title that most closely matches the symptom of your
problem. If you cannot isolate a problem by the procedures below in a reasonable amount of time,
obtain software help before calling for hardware service.

Sometimes a problem with a system generation may be coincident with a hardware problem, or a
hardware problem may develop that manifests itself at the next initial program load (IPL). In the
DX10 documentation, the primary characteristic of hardware problems is called essential random-
ness (defined in Section 8 of DX70 Error Reporting and Recovery Manual, Volume Vl). One purpose
of the following text is to define essential coincidence as it differs from essential randomness and
to describe the essential coincidences that indicate problems with system generation.

4.3.1 Crashes and Hangs
Crashes and hangs are abrupt indications that something may be wrong with the system genera-
tion. The following characteristics describe a crash:
. The system becomes inoperative; your data terminal does not respond to your input.
. The fault light on the front panel is lit.
. A crash code appears on the front panel.
The system is also inoperative during a hang. A hang differs from a crash in two ways:

. The fault light is not lit.

. No crash code appears on the front panel. The bar chart display of CPU and disk activity
shows 100% activity or simply does not change at all.

The problem must be coincident with a new system generation to be associated with that system
generation. However, if a device is defined during system generation but not accessed during IPL,
a system generation problem with that device may not show itself until that device is accessed,
but it will always appear when that device is first accessed. If the problem appears randomly, con-
sult the troubleshooting guide in Volume VI.

4-2 946250-9705

System Generation Troubleshooting

If the crash always happens during IPL and is > 1F or less, the cause of the crash is a system gen-
eration problem. DX10 Releases 3.3 and earlier cannot have a crash code less than > 20. In these
releases, issue the Analyze DX10 Crash File (XANAL) command to execute the ANALZ utility and
use the General Information (Gl) command to obtain the contents of the status register at the time
of failure. Add one to the value of the rightmost digit to calculate the interrupt level that is
assigned to something defined incorrectly during system generation. (If the resuit is 2, the prob-
lem is not system generation related.) When working with DX10 Release 3.4 and later, subtract
> 10 from the crash code to calculate the interrupt level assigned to something incorrectly defined
during system generation. In Release 3.4 and later, the crash code cannot be less than > 13.

If the crash always occurs when a particular device is accessed, but not at {PL, the cause of the
crash is probably due to a fault in the definition of that device during system generation. If it is not
a system generation definition problem, the cause could be a miswired interrupt jumper plug in
the chassis or a broken controller board.

Hangs occur when a device is accessed and the interrupt/address pair do not match. A hang
appears during IPL on devices that interrupt when initialized by the power-up sequence of the
device service routine (DSR), and at first access on other devices. If a system generation problem,
it will always appear when the same device controller is accessed. Like the crash, if it is not a sys-
tem generation problem, it is a miswired interrupt jumper plug or a broken controller board.

A hang requires some analysis to determine the interrupt level involved. With the CPU in hung
condition, press HALT, then ST under DISPLAY. This causes the value of the status register to
appear on the 16 data lights on the front panel. Note the value of bit 8. If bit 8 is on, the hangisina
task and the problem is not related to interrupts or addresses mistyped during system generation.
If bit 8 is off, note the contents of bits 12 through 15. Press RUN, then repeat the process. A hang
caused by a faulty system generation will show one interrupt level consistently. If other interrupt
levels are displayed, sample the status register several times to determine which interrupt level
occurs most frequently. One level should stand out clearly. Add one to the value of bits 12 through
15 to obtain the interrupt level of the problem device.

If one level does not stand out, the problem may not be a faulty system generation. Before check-
ing for other problems, check on other devices. A lower level (higher priority) device may be inter-
rupting frequently enough to superimpose its normal behavior on the problem level. This will
cause the other interrupt level to also show up; you may want to investigate both levels for a sys-
tem generation problem. A level consistently showing up as 4 may mean that there is a hardware
malfunction in the realtime clock. Consistent appearance of level 15 with bit 8 set high means the
hang is in a task. If the level shows 1 or below, the system’s memory may have been changed
affecting the system’s ability to handle error conditions. In the latter case, it is often not possible
to force a crash dump. Call your dealer for help with this software problem.

If the crash or hang occurs randomly after the system is up and running, and the device indicated
by the analysis above has been successfully accessed—or at least accessed and a different error
occurred—the problem is probably not the system generation. The cause of the problem is more
likely to be a malfunctioning controller board or an intermittent problem in the interrupt wiring.

Sometimes the problem is at an interrupt level where an expansion chassis is defined. In this
case, consult the troubleshooting guide in Volume V. Refer to paragraph titled Continuous inter-
rupts to determine the chassis position of the problem device. Again, suspect a system genera-
tion problem only if the problem always happens during IPL or when a particular device is
accessed.

946250-9705 4-3

System Generation Troubleshooting

A hang can also occur when two devices are defined during system generation to have the same
interrupt (in the main chassis) or the same position (in an expansion chassis) where one device is
in use and no controller board is installed for the other device. The solution is to do one of the
following:

U] Remove all controller boards that share the interrupts or position.
. Perform another system generation, defining only those controllers present.

. Install the missing controller board in the affected chassis.

4.4 OTHERSYSTEM GENERATION PROBLEMS

Occasionally, the following problems arise when running applications and/or system utilities
whose solutions require system generation changes.

o Supervisor call (SVC) error > 05

] SVC error > 0E (to be distinguished from an error > 000E that can happen with a defec-
tive SC! command procedure that calis a COBOL program)

. SVC error> 89

4.41 SVC Error>05
SVC error > 05 has three causes:

. The user program has made an SVC in which the call biock itself, or the associated data
buffer, extends outside the range of memory the task has for its use. This condition is
usually regarded as a bug.

. The user program has made an Assign LUNO call with a pathname too long. This condi-
tion can arise in programs that construct their own pathnames, such as the Copy Direc-
tory (CD) utility. In that case, the problem is usually that an output disk volume has been
used whose name is long enough for marginal pathnames to “spill over”’ and cause the
probilem.

. Physical record and/or logical record too long when accessing key indexed files (KIFs).
Treat this error as you would SVC error > 89 since the cause is the same.

4.4.2 SVC Error>0E

This error has only one cause: the additional I/O buffer area defined for the system during system
generation is not sufficient to support the I/0 that the system is being asked to handle. Fix this
problem by enlarging that parameter during system generation. GEN990 (the System Generation
utility) itself may not allocate sufficient I/O buffer area. The parameter ADDITIONAL I/0 BUFFERS
is added to what GEN990 calculated, and so increasing this parameter should fix the problem.

If the problem does not respond to this fix, or you have included communications packages in the
system generation and the problem occurs when the communication package is inactive, some-
thing else is causing the > OE error. Check the possible COBOL cause mentioned above and, if
that is not the problem, obtain software help.

4-4 946250-9705

System Generation Troubleshooting

4.4.3 SVC Error>89
This error is caused by having a combination of physical record length and logical record length -
too great for the file management processor to map into its address space. The following discus-

sion explains Figure 4-1.

NOTE

Map reg 1 refers to the first of three segments, not to one of the map
files of the CPU.

FILE glANAGER
1

LOGICAL
MEMORY
>0000
SYSTEM ROOT — INCLUDES TABLE AREA
MAP
REG
1
FILE MANAGER CODE — PHYSICALLY
JUXTAPOSED TO ROOT TO GIVE 2
MAPPING SEGMENTS TO FILE
MANAGER FOR MANAGING BUFFERS
KIF CODE = LINKED WITH FILE MANAGER
JF_ —_—
MAP 88 - KIF
REG BUFFER AREA MAPPED IN BY FILE MANAGER
> UB - FM
UB - KIF
MAP BUFFER AREA MAPPED IN 8Y FILE MANAGER
REG BB — FM
3
S>FFEQ ot
WHERE
BB = BLOCKING BUFFER
UB = USER BUFFER
FM = FILE MANAGER

2283064

Figure 4-1. Memory Used by File Management

946250-9705 4-5

System Generation Troubleshooting

From Figure 4-1, it can be seen that the length of the system root directly affects the size of physi-
cal and logical records that the system can handle.

To calculate the amount of address space file management has to use for file blocking, inspect
the system link map from .S$SYSGEN and locate the phase with the module FILMG in it. Perform
the following steps:

1. Add the length and origin of the phase together and round up to a beet boundary.
2. Add>40tothe sum.
3. Subtract the result of step 2 from > FFEQ. The difference is the blocking space.

The blocking space can be used for logical records and physical records of any size ratio so long
as the sum of the two does not exceed blocking space. File management only maps in one block-
ing buffer and one logical record at any given time. Therefore, no “doubie blocking” occurs with
small physical and logical records. In the event that blocking space is exceeded, you get a >5 or
>89 error depending on which buffer is mapped into map segment 3. If the biocking buffer is
mapped to map segment 3, an > 89 error occurs. If the user buffer is so mapped, a > 5 error occurs.

There are three basic ways to solve this problem:
. Reduce the physical record size of the file.
. Reduce the logical record size used by the program in its Read 1/0 SVC.

. Make the system root smaller (by reducing table area or eliminating devices and
optional features).

o Make file management smaller by eliminating KIF.

4.5 ALGS AND PGS PROBLEMS

The most common operational problem with system generation is a Q$SYN SCI command on the
system that clears the synonyms used to pass information from the ALGS command or the PGS
command to the batch stream that does the work. If those synonyms are being cleared, inspect
the Q$SYN command procedure, the BATCH command procedure, the Execute Batch (XB) com-
mand procedure, and the M$00 command procedure for a .SYN or Assign Synonym (AS) command
that clears the synonyms set by the ALGS or PGS commands. All of these are invoked during exe-
cution of the ALGS and PGS commands. Other problems are insufficient disk space to complete
the system generation, the S$SYSGEN directory is full, and the SSIMAGES program file is full. The
error messages returned by GEN990 and the Link Editor will indicate these problems.

If the error was in the macro assembler process, inspect the listing file given for the DSDATA
LISTING prompt and determine which statements failed. If a numeric error code appears, you can
find an SVC error code in the two digits on.the right. Check for missing files, full directory, full
disk, and unassigned synonyms. These problems require you to provide the file, create space, or
assign synonyms. If a macro expansion error occurs, determine if the macro at fault was supplied
by Tl or by the vendor of a non-Tl software package. Contact the appropriate supplier or supplier's
representative for assistance.

4-6 946250-9705

System Generation Troubleshooting

If the error occurred during the Link Editor processing, inspect the file <data
disk>.S$SYGEN. < system name >.LINKMAP to determine the errors. Check for the same things
mentioned in the macro assembler process and also fot Instail Task and Install Overlay SVC errors.
The message ADDRESS SPACE OVERFLOW means that the system is too large; in this case, the
length of phase 0 may not be correct. Locate the longest phase 2 in the link map and add its origin
to its length. Subtract >F800 from the resuit. Make the system table smaller by this number and
perform another trial ALGS to see if further tuning is necessary.

4.6 BUILDING A NEW SYSTEM DISK

Another common problem occurs when building a new disk. If you initialize the new disk using the
Initialize New Volume (INV) command and accept the defauit value of NO for the USED AS
SYSTEM DISK? prompt you cannot successfully use that disk as a system disk. If you specify
such a disk as the TARGET DISK during system generation, errors occur that indicate that the
directory .S$SYSGEN is missing, that the .S$IMAGES program file is missing, or, if SSIMAGES is
present, something is wrong with it. Typically the latter appears as a Link Editor error. Create an
S$SYSGEN directory (it need contain no files); create SSIMAGES and copy the DUMMY procedure
from an operational S$IMAGES. Other files must also be copied to make a running system. They

currently are:

e S$PROGA
s SSLOADER
e S$PROC

e SSOVLYA

. S$SDSS$ if the assembler, Link Editor, and other software installed there are needed

946250-9705 4-7/4-8

5

How to Write a Device Service Routine

5.1 INTRODUCTION

DX10 supports a variety of peripheral devices by providing device service routines (DSRs) tailored
to their requirements. If you wish to add a nonstandard device to your DX10 system and no
standard DSR satisfies your needs, you must provide it with a DSR as well as the associated data
structures and interrupt handling routines.

This section supplies the information you need for adding support for a nonstandard device to the
DX10 operating system. It begins with a discussion of I/O request processing and the DSR entry
points needed to handle the various types of interrupts. It then describes the data structures
employed by the DSR and the coding conventions used for DX10 DSRs. The section then dis-
cusses the asynchronous DSR structure and the subroutines provided to simplify asynchronous
DSR coding. It concludes with explanations of the common routines provided with DX10 to sim-
plify DSR coding for both regular DSRs and asynchronous DSRs. Figure 5-22 contains two
examples of DSRs.
NOTE
There is no programmed limit on the number of special devices that
can be defined to use a DSR. However, DX10 supports a maximum
of 16 special DSRs. Each of the DSRs will be placed in its own map
segment.
Before you begin, you should have a good understanding of the following topics:
. Hardware interface for the device.
. Interrupt handling. Refer to paragraph 5.2.5.
. Device data structures. Refer to paragraph 5.3.

U] Computer hardware. Refer to the appropriate hardware manuais for your system.

U 990 assembly language. Refer to 990/70 and 990/12 Assembly Language Reference
Manual.

. DX10 system generation. Refer to Section 3.

946250-9705 Change 1 5-1

How to Write a Device Service Routine

5.2 DEVICE SERVICE ROUTINES (DSRs)

DSRs provide the interface between peripheral devices and tasks running on the 990 computer. A
task initiates a device operation by performing an 1/0 supervisor call (SVC). The /0 supervisor
transfers control to the DSR for the device, along with a pointer to information from the SVC. The
DSR processes the SVC data, usually by sending an instruction to the device. Then it returns con-
trol to the I/Q supervisor while waiting for the device to respond by generating a coded signal—an
interrupt. When it receives an interrupt, the DX10 interrupt handler decodes the signal and trans-
fers control back to the DSR. The DSR processes the interrupt and returns control to the I/O man-
ager to wait for the next interrupt. After the DSR compietes the SVC, it calls the ENDRCD routine
(refer to paragraph 5.7.3), allowing the task to resume execution. Figure 5-1 illustrates this
process.

When you write a DSR, you must provide routines to handle SVC calls and device interrupts. You
must also supply routines for aborting device I/O and for initializing the data structures and/or the
device during the initial program load (IPL). Optionally, you can include additional routines for
internal use by the DSR. Figure 5-2 shows where to place the routines in the DSR and the follow-
ing paragraphs explain their functions in detail. Subsequent discussions deal with the data struc-
tures used by the DSR, DSR coding conventions, and the common subroutines provided with DX10
to simplify DSR coding. The section concludes with two example DSRs.

56.2.1 /O Call Routine

When the 1/0 supervisor receives an SVC for the device, it first makes a copy of the call block
(buffers it) in the system table area. (Buffering is discussed in paragraphs 5.3.3 and 5.4.4.) Next it
transfers control to the I/O Call routine in the DSR. This routine initiates the processing of the
SVC, using the SVC data provided by the I/O supervisor. This usually involves decoding the SVC
subopcode, taking the appropriate action, and returning control to the 1/O supervisor. Typical
subopcodes are Open, Close, Read, and Write. The characteristics of the device determine the
actual processing required.

5.2.1.1 Entry Point. The I/O Call routine begins at the third word in the DSR. (The first and sec-
ond words point to the Power Restored and /O Abort routines.)

5.2.1.2 Workspace. The workspace used for the 1/O Call routine is the physical device table
(PDT) workspace for the device. This workspace contains the values shown in Figure 5-5 and
described in paragraph 5.3.1. Using this information, you can access the SVC block for the call
and address of the controller. You can use registers R5 through R11 for DSR working storage.

5.2.1.3 Processing. The operating system calls this routine with a BLWP instruction. That
instruction always executes one instruction in the new context. (Consult the 990/10 and 990/12
Assembly Language Reference Manual for a complete description of how BLWP works.) This
instruction can be a LIMI 2 to mask all but level 1 interrupts preparatory to calling SETWPS, which
sets the interrupt mask to the value defined in R2 of the PDT workspace. Prior to entry, the /O
supervisor sets the busy flag in the PDT (bit 1 of PDTDSF), which prevents entry to the DSR if
another request for service occurs before the current one completes. The operating system
queues such requests and then makes a new call to the DSR for all the queued requests.

5-2 946250-9705

How to Write a Device Service Routine

NON 1/0 XOP 15 SVCsS

vy vy

SVC (CODE 00)

1/0
SUPERVISOR

DEVICE 1/0 SvC

FILE /O SvC

FILE UTILITY SXC

”1

ONE QUEUE
PER DEVICE ,
ANCHORED IN PDT

mCcmco

1/0 CALL
ROUTINE
ENTRY

DEVICE END-OF—RECORD

DRIVER TASK

RETURN
TO TASK

DEVICE SERVICE ROUTINE N

POWER—UP VECTOR

ABORT 1/0 VECTOR

v

SYSTEM,
1/0 CALL ROUTINE CODE
RTWP

INTERNAL ROUTINES

POWER UP CODE

ABORT 1/0 CODE

INTERRUPT ENTRY CODE INTERRUPT

RECORD
END

2283065

Figure 5-1. Flow of an /O Call

946250-9705 5-3

How to Write a Device Service Routine

HEX.
BYTE
0 ADDRESS OF POWER RESTORE CODE
2 ADDRESS OF ABORT 1/0 CODE
1/0 CALL
ROUTINE —b
ENTRY
4 1/0 CALL ROUTINE ENTRY
OTHER " SHARED" ROUTINES
POWER RESTORE CODE
ABORT 1/0 CODE
INTERRUPT
ENTRY
INTERRUPT ENTRY PROCESSOR
2283066

Figure 5-2. DSR Structure

5-4 946250-9705

How to Write a Device Service Routine

The value in R2 of the PDT workspace is defined during system generation by GENS90. You can
choose to inhibit interrupts of varying levels, as noted below:

. You can use a mask value of 2, which inhibits all interrupts except power-down, power-
up, and machine error (for example, illegal instruction). This is seldom necessary and is
undesirable because all other interrupt activity of higher priority than necessary is also
inhibited which could cause other devices to receive timing errors.

e A mask value of one less than the value defined for the device during system generation
is used when the PDT workspace is also used for interrupt processing. This is the high-
est priority interrupt that must be masked to prevent the interrupt service routine (ISR)
from being entered before initialization is complete.

U] A mask value of > F allows all interrupts. This allows all other interrupts to be serviced,
and may be useful because it will not cause timing errors to appear on any other device.
If you elect to use this mask value, you allow the ISR to be entered at any time, including
when the DSR may be processing an 1/O SVC call. You must take precautions to ensure
that the DSR and the ISR do not access their common data structures in a conflicting
manner. This usually requires inhibiting interrupts to a level one less than the level the
device is connected to during the time common data is being accessed. A DSR written
to use this convention must use an interrupt workspace that is separate from the PDT
workspace, usually the keyboard status block (KSB).

e A response of NONE to the INTERRUPT? prompt during system generation causes a
mask value of > F to be generated. You should use it for a device that does not generate
interrupts.

If the SVC contains a subopcode (sometimes called the 1/O opcode), you can use the BRCALL or
JMCALL routines to process it. BRCALL (paragraph 5.7.1) employs a branch table to transfer con-
trol to the appropriate routine within the DSR. JMCALL (paragraph 5.7.6) uses a jump table for the
same purpose. When you use these routines, you must provide the branch table or jump table
immediately after the call. The remainder of the I/O Call routine can consist of processors for the
individual subopcodes and for error conditions. The 1/0 Call routine should terminate by executing
an RTWP instruction.

5.2.2 Shared Routines

Following the /O Call routine and subopcode processors, you might want to include one or more
common routines. These shared routines can perform operations common to the subopcode pro-
cessors or the other required routines.

5.2.3 Power Restored Routine

The Power Restored routine handles device initialization after the loading of DX10 or a power loss
and recovery. In particular, it should call the /O Abort routine whenever it finds an I/O request was
pending at the time of a power failure. As shown in Figure 5-2, the Power Restore routine follows
any shared routines included in the DSR.

946250-9705 5.5

How to Write a Device Service Routine

5.2.3.1 Entry Point. The address of the Power Restored routine must be defined in the first
word of the DSR. You do this by coding a DATA statement with the label of the first instruction in
the Power Restored routine as the operand.

5.2.3.2 Workspace. When the routine is called, the workspace pointer (WP) register points to
the PDT workspace for the device. You can use registers R5 through R11 in the PDT as scratch
registers.

5.2.3.3 Processing. The Power Restored routine has two main responsibilities. First, it must
initialize the device following a system load or power-up. How you do this depends on the charac-
teristics of the device. Second, it must abort I/0 when an 1/0 request was pending at the time of a
power failure. You can use the common system routine, BZYCHK, to determine whether an 1/O
request was pending. If so, the Power Restored routine should call the DSR I/O Abort routine. If
not, the routine should return control with an RTWP instruction.

5.2.4 1/0 Abort Routine

When DX10 times out a device or executes an Abort I/O SVC, the /O supervisor removes all physi-
cal record blocks (PRBs) from the queue for the device. Then it transfers control to the DSR at the
entry point for the /O Abort routine. This routine terminates the current /0 request and places the
appropriate error code in the SVC biock.

5.2.4.1 Entry Point. The address of the I/O Abort routine must be defined in the second word of
the DSR, immediately after the address of the Power Restored entry point. You code it using a
DATA statement with the label of the first instruction in the I/O Abort routine as the operand.

5.2.42 Workspace. When the routine is called, the WP register points to the PDT workspace for
the device. You can use R5 through R11 as scratch registers.

5.2.4.3 Processing. The /O Abort routine has the responsibility of terminating the processing
of the request and posting an appropriate return code in the buffered 1/O request block. It shouid
also perform whatever initialization of the device is necessary to restore it to a known state.

If necessary, you can use the communications register unit (CRU) or TILINE address in R12 of the
PDT workspace to inspect any status bits that may be available from the device. The error code
returned to the calling task goes in PRBEC of the buffered 1/0 request block, which you address as
@PRBEC(R1). The routine should report device errors to the system log by placing a nonzero error
code in PDTERR of the PDT. It should also record the status of the device by setting bit 14, the
Operation Failed flag, in PDTFLG. The routine should conclude with an RTWP instruction to return
control to the I/O supervisor.

5-6 946250-9705

How to Write a Device Service Routine

5.2.5 Interrupt Service Routine (ISR)

The 990 computer uses a vector table to handle up to 16 levels of interrupts. When the interrupt
hardware detects an interrupt, it uses the table to transfer control to the interrupt handler or
decoder (created by GEN990 during system generation) that processes the interrupt. Each transfer
vector consists of two 16-bit words. The first contains the address of the workspace area for the
interrupt, and the second contains the address of the entry point of the interrupt handler that ser-
vices the interrupt. The computer hardware automatically uses map file 0 to access the interrupt
vector.

Interrupt levels range from 0 through 15, with 0 being the highest priority and 15 the lowest. Bits 12
through 15 of the status register (ST) form an interrupt mask, whose value determines the lowest
priority (highest numbered level) interrupt allowed. The 990 computer continuously compares the
level of the highest pending interrupt request to the current value of the interrupt mask, honoring
only interrupts with equal or lower levels than the mask. The processor hardware always finishes
the current instruction before transferring control to the ISR.

When the CPU has a pending interrupt with an equal or lower level than the interrupt mask, it
saves the current WP, program counter (PC), and ST registers. It changes to map file 0, subtracts
one from the level of the interrupt, and places the resuit in the interrupt mask of the ST. Then, it
multiplies the interrupt level by 4 to compute the memory address of the interrupt vector. It stores
the WP, PC, and ST registers at the time of the interrupt in R13, R14, and R15 of the workspace
pointed to by the WP component of the interrupt vector. Then, it loads the WP and PC registers
with the values in the interrupt vector and executes one instruction regardless of any pending
interrupt or the value of the interrupt mask. Then, it resumes normal execution. This process trans-
fers control to the interrupt decoder built by GENS90. The interrupt decoder determines which
interrupt workspace and entry address are associated with the device and enters the DSR using a
BLWP instruction. Interrupt processing proceeds, and when it is complete, the ISR returns with an
RTWP instruction. The interrupt decoder then enters the interrupt cleanup routine in DX10, known
as trap return.

GEN990 produces both the interrupt vector table and the interrupt decoder, according to your
responses to its device definition prompts. The interrupt decoder takes care of such things as
shared interrupts and expansion chassis interrupts. You can provide your own vector table and
interrupt decoder, if you prefer, but you will also have to replace the ones built by GEN990. To do
this, you can tailor the source file built by GEN990 (.S$SYSGEN. < sysname >.D$SOURCE) to the
requirements of your device. It is usually better to let GEN990 produce the interrupt table and then
perform additional decoding in the ISR. Table 5-1 provides an exampie of an interrupt vector table.

946250-9705 5-7

How to Write a Device Service Routine

Table 5-1. Example Interrupt Vector Table

Memory Interrupt Vector Typical
Address Vector Contents Assignment
0000 0 WP address for interrupt 0 Power On'
0002 0 PC address for interrupt 0
0004 1 WP address for interrupt 1 Power Failing?
0006 1 PC address for interrupt 1
0008 2 WP address for interrupt 2 Error?
000A 2 PC address for interrupt 2
000C 3 WP address for interrupt 3 External Device
000E 3 PC address for interrupt 3 (Communications)®
0010 4 WP address for interrupt 4 External Device
0012 4 PC address for interrupt 4 (Card Reader)*
0014 5 WP address for interrupt 5 Line Frequency Clock (optionai)?
0016 5 PC address for interrupt 5
0018 6 WP address for interrupt 6 External Device
001A 6 PC address for interrupt 6
001C 7 WP address for interrupt 7 External Device
001E 7 PC address for interrupt 7
0020 8 WP address for interrupt 8 External Device
0022 8 PG address for interrupt 8
0024 9 WP address for interrupt 9 External Device
0026] PC address for interrupt 9 (Mag Tape)?
0028 10 WP address for interrupt 10 External Device
002A 10 PC address for interrupt 10 (CRT)®
002C 11 WP address for interrupt 11 External Device
002E 11 PC address for interrupt 11 (CRTy
0030 12 WP address for interrupt 12 External Device
0032 12 PC address for interrupt 12
0034 13 WP address for interrupt 13 External Device
0036 13 PC address for interrupt 13 (Disk)®
0038 14 WP address for Interrupt 14 External Device
003A 14 PC address for interrupt 14
003C 15 WP address for interrupt 15 External Device
003E 15 PC address for interrupt 15
Notes:

' Level 0 is always the Power On/Up interrupt.
* Predefined interrupts in the 990/10 and 990/12.
* Typical interrupt levels for standard devices.

5.2.5.1 Entry Point. GEN990 issues the INTERRUPT ENTRY prompt to obtain the entry point of
the ISR for the device being defined. It places the address of the ISR in the tables that the interrupt
handler (decoder) uses to enter the ISR after it determines which DSR is to service the interrupt.

The routine beginning at the specified entry point must handle all interrupts for the device.

5-8 946250-9705

How to Write a Device Service Routine

5.2.5.2 Workspace. GEN990 issues the DSR WORKSPACE prompt to obtain the location of the
workspace for the ISR, usually PDT workspace in bytes 4 through 23 of the PDT. RS through R11
are available for use by the DSR. You must not destroy the contents of the other PDT workspace
registers.

For multiple device controllers, the ISR should use a separate workspace for decoding the inter-
rupts instead of the PDT workspace. This workspace can be part of an extension to the PDT for the
first device (which you define to suit the needs of the device). The workspace can also contain
pointers to the PDT workspaces used by the DSR if needed.

For DSRs that service keyboard devices, the ISR should use the workspace in the KSB (paragraph
5.3.2) extension to the PDT. Some of the common routines (paragraph 5.7) used by keyboard DSRs
use the KSB workspace.

5.2.5.3 Processing. Figure 5-3 illustrates the processing done by the ISR. You should design
the ISR code to be reentrant, so that it can serve muitiple devices of the same type. All data that
the ISR changes must be in the PDT or its extension for the device being serviced. The ISR must
service each interrupt very quickly.

HARDWARE INTERRUPT

INITIALIZE
TiME-OUT

A

DECODE
INTERRUPT

l

INPUT OuTPUT ERROR TIMING STATUS

(X X]
INTERRUPT PROCESSORS

| | I §

RETURN ToO
SYSTEM
(RTWP)

2279423

Figure 5-3. ISR Processing

946250-9705 5-9

How to Write a Device Service Routine

The ISR should begin by resetting the time-out counter for the device. To do this, move PDTTM1 to
PDTTM2. You should do this even if you do not choose the time-out option during system
generation.

Complex devices, such as interactive terminals or muitiple-device controllers, require special
treatment:

5-10

The Keyboard ISR must be able to handle unsolicited characters as well as those gener-
ated in response to an I/0 SVC. By using the routine PUTCBF, the system places charac-
ters into the KSB character queue. Event characters are handled the same way using
the routine PUTEBF.

If the characters read from the device interface do not fit the function table in Volume I,
or the event/data character ranges defined for GETC, the ISR may need to transform
those characters into character codes compatible with those functions. If 8o, it should
perform the transformation before calling PUTCBF or PUTEBF. These character func-
tions and character ranges are set by convention and you need to hold to the convention
only if you need to use other parts of DX10 (such as SCI) that use that convention.

For multiple-device controllers, the ISR should first use the workspace in the extension
to the PDT to determine which device generated the interrupt. Then, use a BLWP
instruction to enter the DSR with the workspace of the PDT for that device and process
the interrupt. It should conclude with a RTWP instruction to return to the interrupt
decoder. Figure 5-4 shows a specific configuration for a multiple disk drive controller.

946250-9705

How to Write a Device Service Routine

Jajjonuos anl(jsia sjdniny Joy uoneinbyuod ysa pue 1ad ‘-G 2inbig

LdNYY3ILNI

jo |

dm

L9o0E8Zc

vosa

¥ITIOHLINOD
Msia

€0sa

ysa Msia
]
4300230 LdNYHILNI lg
b Lad
rosa
HYOSS3ID0OHd LdNUEILNI
¢
3002 01 L¥08YV
—P Lad -~
£0sq 300D 3™OLSIY ¥3IMod
SIANILNOY TTYNYILNI
AHLIN3I IVILING
Lad
z0sa
HOLD3A 1LY¥O08Y
¥OLO3A
IDOVASHEOM JYOLS3Y H3IMOod
1Lad OL S¥3LNIOd
3OVdSHYOM Sd
¥300230
< dm
1ad
» 1o0sa
»
S31av.L

aNv 8300030
LdAYYILNIY

378v.L HOLD3A
LdNYYILNI

20sa

{DRERD

10sa

5-11

946250-9705

How to Write a Device Service Routine

5.3 DATA STRUCTURES

The DSR uses severai data structures maintained by DX10. These data structures can be found in
.S$SYSGEN.SYSTEM.TABLES. This paragraph describes the contents and use of these data struc-
tures:

° Physical device table (PDT) — Characteristics and status of a device, and some working
storage.

. Keyboard status block (KSB) — Supplement to the PDT for keyboard devices.

. PDT workspace — /O call information passed to the DSR. Do not depend on the PDT
workspace registers to maintain status of a device from one 1/0O call to the next.

. Buffered 1/0 request biock — Information from the I/O SVC block available to the DSR.
* Task status block (TSB) — All the information the system needs to know about tasks.

. Extension for terminals with keyboards (XTK) — Extension used by Tl DSRs for
terminals. it functions as an extension to the KSB.

. Asynchronous DSR local PDT extension — The local (system table area) PDT extension
for the asynchronous DSR.

e Asynchronous DSR long-distance device extension — A second PDT extension area
accessed via long-distance instructions by the asynchronous DSR.

. Any extension you may define to contain data related to the device.

This section does not provide details on the entire I/O SVC block, since it receives a thorough
explanation in the Volume Iil.

5.3.1 Physical Device Table (PDT)

The PDT represents a device to the DX10 operating system. It describes the current state and char-
acteristics of the device, provides a workspace for the DSR, and holds the queue anchors for /0
requests for the device. Figure 5-5 shows the structure of the PDT. For a description of the PDT
extensions for standard devices, refer to the DX70 System Design Document.

You must provide a PDT for each device you add to the system.
Some of the fields are reserved and receive their initial values from GENS90 or the 1/0 scheduler.
You must provide the initial values for other fields. You must provide space for all the fields in the

PDT, since the operating system accesses data by its position from the beginning of the PDT.
Table 5-2 describes the PDT fields.

5-12 946250-9705

HEX
BYTE

> 00

>02

>04

>06

>08

>0A

>o0cC

>0E
>10
>12
>14
>16
>18
>1A

>ic

>1E

>20

>22

>24

>26

>28

>2A

>2E

>30

>32

>34

>36

>38

>42

>44

>46

>48

2283068

946250-9705

RO

R1

R2

R3

R4

RS
R6
R7
R8
R9
R10
R11

R12

How to Write a Device Service Routine

PDTLNK —~— FORWARD LINK TO NEXT PDT

PDTMAP —— POINTER TO DSR MAP FILE

PDTRO —— DSR SCRATCH

PDTPRB —— PRB ADDRESS

PDTDSF == DEVICE STATUS FLAGS

POTDTF —— DEVICE TYPE FLAGS

PDTDIB —— DEVICE INFO BLLOCK ADDRESS

PDTRS
PDTR6
PDTR7
DSR SCRATCH
POTRS
POTRO
PDTR10
PDTR11
POTCRU -~ CRU OR TILINE BASE ADDRESS
PDTR13 ~— SAVED WP REGISTER
PDTR14 ~—~ SAVED PC REGISTER
PDTR15 —— SAVED ST REGISTER
POT$ —— POT WORKSPACE ADDRESS
POTDSR -— DSR ADDRESS
PDTERR —— ERROR CODE PDTFLG —— FLAGS
PDTNAM ~= DEVICE NAME
POTSL1 ~— SYSTEM LOG 1

PDTSL2 -~ SYSTEM LOG 2

POTBUF —— NOT USED

PDTBLN —= BUFFER LENGTH

POTINT - - DSR REENTER—ME ADDRESS

PDTDVQ —— DEVICE QUEUE ANCHOR

PDTTM! = - TIME OUT COUNT 1

PDTTM2Z - — TIME OUT COUNT 2

PDTSRB —— SAVED PRB ADDRESS

PDTFQL — - PRIORITY DSR SCHEDULE QUEUE WORD

Figure 5-5. PDT Structure

How to Write a Device Service Routine

Table 5-2. PDT Values

Hex. Field
Byte Name Description
>00 PDTLNK Address of the next PDT and the PDT expansion block for
this PDT. All the PDTs are linked in a single list that is located
in the DSDATA module.
>02 PDTMAP Address of the DSR map file.
>04 PDTRO This word begins the PDT workspace to be used by the DSR
110 Call routine.
>06 R1 PDTPRB Address of /O opcode byte in buffered /O SVC block. This
register is updated prior to DSR entry from the I/O
subsystem.
>08 R2 PDTDSF Device status flags that are set by the system (bit 5 set by the
DSR):
Bit Meaning When Set
DSFASG 0 Device is opened; that is, LUNOs are open to
the device if it is file oriented.
DSFBSY 1 DSR is busy (that is, it is processing an /O
request).
DSFINT 2 Kill /O at this device is in progress.
DSFKLL 3 Task doing I/O at this device is being killed.
DSFCLS 4 Make this device available (unassigned) at the
end of this I/O operation.
DSFREN 5 Signals the task scheduler to reenter the DSR
(at the next time slice). A DSR can use this flag
to wait for a device by setting the flag and then
returning to the system.
DSFEOR 6 End-of-record processing needs to be done for
this PDT (data transfer is complete).
DSFJIS 7 0 = ASCIl. 1 = JISCII.

514 946250-9705

How to Write a Device Service Routine

Table 5-2. PDT Values (Continued)

Hex. Field
Byte Name Description
>09 —_ Interrupt mask to be used by request entries to the DSR. This

>0A R3 PDTDTF

DTFFIL

DTFTIL

DTFTIM

DTFPRI
DTFKSB

DTFCOM
DTFSYD

DTFEXT

946250-9705

field is set during system generation or when the PDT is

constructed.

Device type flags that are all set at system generation time,
except for the system disk flag that is set by the system

loader:

Bit

0

Meaning When Set

File-oriented device (if zero, the device is
record oriented).

The DSR accesses the data buffer directly. The
calling task is not roiled out. The buffer must
be accessed with LDD and LDS instructions.
This bit is also called the TILINE 1/O flag.

The time-out logic should be enabled for this
device. This flag can also be used by the DSR.

Device can only be used by privileged tasks.

This is a terminal (keyboard device) with a
keyboard status block attached to the PDT.

This is a standard communications device.
This is the system disk.
A PDT extension exists. This bit is always set

when bit 4 is set. It is set when bit 4 is not set to
indicate that a non-KSB extension is present.

5-16

How to Write a Device Service Routine

Table 5-2. PDT Values (Continued)

5-16

Hex. Field
Byte Name Description
Bit Meaning When Set
8-11 Not used.

12-15 Device type code, returned when the device is
opened for /0 and returned for a Read Charac-
teristics SVC. Device codes other than the
ones in the following list might cause an error
in some language packages (such as
FORTRAN and COBOL). The number in
parentheses after the device type name is the
number of status bytes used when a log mes-
sage is created.

0 — Dummy (0)
1 — Teleprinter (2)
2 — Line Printer (2)
3 — Cassette (2)
4 — Card Reader (2)
5 — Video Display Terminal (VDT) (4)
6 — Disk (16)
7 — Communications (4)
8 — Magnetic Tape (16)
E — AMPL Emuiator (undefined)
F — AMPL Trace Module (undefined)
>0C R4 PDTDIB Pointer to the word after the PDT itself. This can be a disk
PDT extension (DPD), tape PDT extension (TPD), line printer
PDT extension (LPD), or your own extension, depending on
the type of device. If a KSB is present, it must be the address
of the KSB.
>0E PDTRS Scratch registers to be used by the DSR.
through
PDTR11
>1C PDTCRU The CRU or TILINE address of the device.
>1E PDTR13 These three words contain the saved context (WP, PC, ST) to
PDTR14 which the DSR returns control via a RTWP.
PDTR15
>24 PDTS Pointer to the beginning of the PDT workspace (byte 4 of the
PDT).
>26 PDTDSR A pointer to the first word of the DSR.

946250-9705

How to Write a Device Service Routine

Table 5-2. PDT Values (Continued)

Hex. Field
Byte Name Description
>28 PDTERR Error code returned by the DSR.
>29 PDTFLG Device flags as follows:
Bit Meaning When Set
DFGPRB 8 Use the buffered 1/0 request block in log mes-
: sage. If not set, PDTSL1 and PDTSL2 are used.

DFGJAR 9 Receive mode for JISCII. Used by standard DSR
to handle JISCII.

DFGJAT 10 Transmit mode for JISCIl. Used by standard
DSR to handle JISCII.

DFGSTA 11-12 Device state: oniine =00, offline=01,
diagnostic = 10. Set by DX10.

DFGOPF 14 Operation failed bit. Set by the DSR to cause
the system to indicate a failure in the system
log.

>2A PDTNAM The 4-character device name. GEN990 renames devices said
to have a KSB, STXX, where XX is the terminal ID.

>2€E PDTSL1, For CRU devices (indirect access), these words contain the

PDTSL2 controller image after an error. When you specify indirect

access, the system log processor formats one or two words.
For TILINE controllers (direct access), the first word contains
the memory address of the controller image after an error.
When you specify direct access, the system log processor
goes to the address and formats the status bytes. The num-
ber of status bytes depends on the type of device (refer to the
list under bits 12 - 15 of PDTDTF).

>32 PDTBUF Not used.

>34 PDTBLN Maximum length of a data buffer that can be transferred by
the device in an I/O operation (for example, 80 for a special
device). This is only necessary for indirect buffer access
(DTFTIL set to 0). The size of the data buffer times the num-
ber of initiate /0 requests (maximum of §) should be added to
the response given to the /O BUFFER prompt from GEN990.

>36 PDTINT The reenter-me address for the DSR.

>38 PDTDVQ The anchor for the queue of /O requests for this device.

946250-9705 5-17

How to Write a Device Service Routine

Table 5-2. PDT Values (Continued)

Hex. Field
Byte Name Description

>42 PDTTM1 The number of system time units in the time-out count for the
device.

>44 PDTTM2 The number of time units remaining in the time-out count
before the system assumes that a device error has occurred.
The DSR signals the operating system to perform time-out
processing by setting the time-out enable flag in PDTDTF to
one. When the DSR starts an /O operation and after every
interrupt, the DSR should move the time-out count in
PDTTM1 to this word (PDTTM2). The scheduler then uses this
word as the time-out counter. Each time a system time unit
has elapsed, the scheduler decrements the time-out count in
this word. If the counter goes to zero, the system assumes
that a device error has occurred and enters the DSR at the
Abort I/O entry as indicated for the ABORT processing.

> 46 PDTSRB The address of the queued SVC block plus two. This Is a copy
of R1 as it was at the 1/0 Call routine entry to the DSR. See
paragraphs 5.3.1 and 5.7.3.

>48 PDTFQL DSR priority schedule queue word.

Figure 5-6 shows a template for the PDT. You can probably tailor one of the PDTs in
.S$SYSGEN.< sysname>.D$SOURCE to suit your device. After you write your PDT (in 990
assembly language), you must include it in the system. To do this, you give the pathname of its
source file in response to the PDT FILE prompt issued by GEN990. Refer to paragraph 3.4.5.10.

5-18 946250-9705

How to Write a Device Service Routine

de e g e ek K de ke ke ke ok ke e kK Kk K ke e de e ke ke ek de Kk e e de e de e e e ke K de de de e ke ke e de e ke ke ke ke ke ek ke ko ke ke

* PHYSICAL DEVICE TABLE (pDT) 05/20/80

I R T R Y 2 e
DORG 0

PDTLNK BSS 2 FORWARD LINKAGE TO NEXT PDT

* THERE IS AN EXPANSION BLOCK BEFORE THE NEXT PDT.

* TO REFERENCE IT USE THE VALUE IN PDTLNK PLUS

* ONE OF THE FOLLOWING OFFSETS. WHEN PDTLNK IS

* ZERO (DSOl) USE THE VALUE IN PDTLST (GLOBAL

* VARIBLE IN ROOT) .

PDTRED EQU =8 NUMBER OF READS

PDTWRT EQU -6 NUMBER OF WRITES

PDTOTH EQU -4 NUMBER OF OTHERS

PDTRTY EQU -2 NUMBER OF RETRIES

PDTLUN EQU -1 NUMBER OF LUNOS ASSIGNED

*

PDTMAP BSS 2 POINTER TO DSR MAP FILE

PDTRO BSs 2 RO - DSR SCRATCH

PDTPRB DATA $-$ Rl -~ QUEUED PRB ADDRESS

PDTDSF BSS 2 R2 - DEVICE STATUS FLAGS

DSFASG EQU O ASSIGNED

DSFBSY EQU 1 BUSY

DSFINT EQU 2 KILL I/0 IN PROGRESS

DSFKLL EQU 3 KILL TASK IN PROGRESS

DSFCLS EQU 4 CLOSE OUT

DSFREN EQU 5 RE-ENTER-ME

DSFEOR EQU 6 END-RECORD

DSFJIS EQU 7 JISCII FLAG(KATAKANA)

PDTDTF BSS 2 R3 - DEVICE TYPE FLAGS

DTFFIL EQU O FILE ORIENTED

DTFTIL EQU 1 TILINE DEVICE

DTFTIM EQU 2 ENABLE TIME-OUT

DTFPRI EQU 3 PRIVILEDGED DEVICE

DTFKSB EQU 4 TERMINAL WITH A KSB

DTFCOM EQU 5 COMM DEVICE

DTFSYD EQU 6 SYSTEM DISC

DTFEXT EQU 7 EXPANSION BLOCK PRESENT

PDTDIB DATA PDTLNK+PDTSIZ R4 DEVICE INFO BLOCK ADDRESS

PDTR5 BSS 2 RS - DEVICE SERVICE ROUTINE SCRATCH

PDTR6 BSS 2 R6 - DSR SCRATCH

PDTR7 BsS 2 R7 - DSR SCRATCH

PDTR8 BSS 2 R8 - DSR SCRATCH

PDTR9 BSS 2 R9 - DSR SCRATCH

PDTR10 BSS 2 R10 - DSR SCRATCH

PDTR1l BSS 2 R1l - DSR SCRATCH

PDTCRU BSS 2 R12 - CRU OR TILINE ADDRESS

PDTR13 DATA $-$ R13 - SAVED WP

PDTR14 DATA $-$ R14 - SAVED PC

PDTR1S5 DATA $-$% R15 - SAVED ST

PDT$ DATA PDTRO PDTRO ADDRESS

PDTDSR BSS 2 DSR ADDRESS
PDTERR BSS SAVED ERROR CODE
PDTFLG BSS DEVICE FLAGS

e

Figure 5-6. PDT Tempiate (Sheet 1 of 2)

5-19

How to Write a Device Service Routine

DFGPRB EQU 8 USE PRB IN LOG MESSAGE
DFGJAR EQU 9 JISCII RECIEVE MODE FLAG
DFGJAT EQU 10 JISCII TRANSMIT MODE FLAG
DFGSTA EQU 11 DEVICE STATE (TWO BITS)
* ONLINE = 0 , OFFLINE = 1
* DIAGNOSTIC = 2, UNDEFINED = 3
DFGOPF EQU 14 OPERATION FAILED
PDTNAM BSS . 4 DEVICE NAME
PDTSL1 BSS 2 RESERVED FOR SYSTEM LOG
PDTSL2 BSS 2 RESERVED FOR SYSTEM LOG
PDTBUF BSs 2 CRU BUFFER ADDRESS
PDTBLN BSS 2 CRU BUFFER LENGTH
PDTINT BSS 2 DSR INTERRUPT ADDRESS
PDTDVQ BSS 10 DEVICE QUEUE ANCHOR
PDTTM1 BSs 2 TIME OUT COUNT 1
PDTTM2 BSS 2 TIME OUT COUNT 2
PDTSRB BSS 2 SAVED PRB ADDRESS
EDTFQL BSs 2 FAST REENTER ME QUEUE LINK
PDTSIZ EQU §

RORG

PAGE

Figure 5-8. PDT Template (Sheet 2 of 2)

5.3.2 Keyboard Status Block (KSB)

The KSB is appended to the PDT for keyboard devices. It provides additional data about the device
and supplies a second workspace. The KSB workspace is used to service interrupts for keyboard
devices. Figure 5-7 shows the structure of the KSB and Table 5-3 describes the information it
contains.

You must provide a KSB for every new keyboard device that uses SCI. You might find it useful to
provide KSBs even for devices that do not use SCI. Like the PDT, you must define all of the fields,
even though the system provides some of the initial values.

5-20 946250-9705

HEX

BYTE

>02

> 04

> 06

> 08

> 0cC

> 0E

>12
> 14
> 16

>18

> 1A
> 1C
> 1E

> 20

> 22

> 24

> 26

> 28

> 2A

> 2C

2283070

946250-9705

RO

R1

R2

R3

R4

RS

R6&

R7

R8

R9
R10
R11

R13
R14
R15

How to Write a Device Service Routine

KSBLDT —— STATION LDT ADDRESS

KS8QOC — QUEUE LENGTH

KSBQiIP — QUEUE INPUT POINTER

KSBQOP —— QUEUE QUTPUT POINTER

KSBQEP —— QUEUE END POINTER

RESERVED

KSBFL —— KSB FLAG

KSBSN —— STATION NUMBER

KSBR7 — SCRATCH

KSBTSB —— TSB ADDRESS/VALIDATION TABLE ADDRESS

KSBR9 —— SCRATCH
KSBCRU —— CRU BASE
KSBR13 —— SAVED WP
KSBR14 —— SAVED PC
KSBR15 —— SAVED ST

KSBLDO —— PDT ADDRESS

KsBLD2 —— LUNO

KSBLD3 —— START /0 COUNT

KSBLD4 —— LDT FLAGS

KSBLDO6 —— LDT LINK

KSBLD8 — TSB ADDRESS

KSBLCK —— LOCK COUNT

Figure 5-7. KSB Structure

5-21

How to Write a Device Service Routine

Table 5-3. KSB Values

Hex. Field
Byte Name Description
>00 KSBLDT Scratch.
>02 KSBQOC The number of characters currently in the input character
queus. Initialize to zero.
>04 KSBQIP A pointer to the next byte of the character queue that is avail-
able to receive an input character (KSBBUF).
>06 KSBQOP A pointer to the oldest character in the input character
queue, that is, the next character to be picked up by the DSR
(KSBBUF).
>08 KSBQEP A pointer to the word after the character queue. That word
contains the length of the queue (KSBBUF + KSBSIZ).
>0A RESERVED
>0C KSBFL Flags as follows:
Bit Meaning When Set
KSBCHM 0 Character mode (no mapping).
KSBCIE 1 Allow the command interpreter to be used on
this terminal.
KSBRCM 2 Keyboard is in record mode (always set).
KSBCIB 3 Bidtask. Log-on request pending.
KSBICP 4 The command interpreter is active.
KSBSET 5 Hoid 1/0.
KSBKIO 6 Abort 1/0.
>0D KSBSN Station (terminal) ID.
>0E KSBR7 Scratch register for use by the DSR.
>10 KSBTSB The address of the TSB of the task currently using the ter-
minal if the terminal is in character mode. If a validation table
is being used, this field contains the validation table address.
>12 KSBR9, Scratch registers for use by the DSR.
KSBR10,
KSBR11

5-22 946250-9705

How to Write a Device Service Routine

Table 5-3. KSB Values (Continued)

Hex. Field

Byte Name Description

>18 KSBCRU The CRU or TILINE address of the terminal.

>1A KSBR13 The saved context (WP, PC, ST) to which the DSR keyboard
interrupt handling routine returns control via an RTWP
instruction.

>20 KSBLDO These 10 bytes form a logical device table (see the DX70
Design Document) that serves as an anchor for the terminal
local LDT list. Flag bit 0 in byte > 24 is set to mark this LDT as
an anchor. This LDT assigns terminal local LUNO 0 to the
terminal itself.

>2A KSBLCK The lock out count, which is a count of the number of Read
with Event Characters SVCs issued for this terminal.

>2C KSBBUF The input character buffer. Its size is defined by the response
to the CHARACTER QUEUE prompt from GEN990. This buffer
must hold an even number of bytes (at least two). Typical
buffers have six to ten bytes. This queue is used to store
unsolicited characters from the terminal.

>2E KSBSIZ The length of the input character buffer. Must be an even

number.

Figure 5-8 shows a template for the KSB. You might find it convenient to copy the source from
one of the KSBs in .S$SYSGEN.< sysname> .D$SOURCE and tailor it to your device. You must
append your KSB source to the PDT source, and place the address of the start of the KSB in R4 of
the PDT. The device extension must follow the KSB.

946260-9705 5-23

How to Write a Device Service Routine

5-24

Je e Je Je e de de de de e de e e e ke o e de ke e e e e e de e e e K de e ke de e g de d de de de de de dede dede de ke ke ek k ok ok ke ke kk

* KEYBOARD STATUS BLOCK

(KSB)

Je Je Je & de dede g e de de de do de e e de de de do e de de e e oo de de de e do do K e do e gk de e e e ok e e e de ke do ok ke K ke ke ke ke ke

KSBLDT
KSBQOC
KSBQIP
KSBQOP
KSBQEP
KSBEBF
KSBFL

KSBCHM
KSBCIE
KSBRCM
KSBCIB
KSBICP
KSBSET
KSBKIO
KSBBRK
KSBSN

KSBR7

KSBTSB
KSBVTA
KSBRY

KSBR10
KSBR11
KSBCRU
KSBR13
KSBR14
KSBR1S
KSBLDO
KSBLD2
KSBLD3
KSBLD4
KSBLD6
KSBLDS
KSBLCK
KSBSIZ

DORG
DATA
BSSs
BSS
BSS
BSS
DATA
BSS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BSS
BSsS
DATA
EQU
BSsS
BSS
BSS
BSS
DATA
DATA
DATA
DATA
BYTE
BYTE
BSS
BSS
DATA
DATA
EQU
RORG
PAGE

0
KSBLDO RO
Rl

R7
-$ R8
SBTSB
R9
R10
R11l
R12
R13
R14
R15

1
v

-$
$-KSBLDT

SO OoOOUWUPNDI DRI dOBLWNHFEFOFHONDNNMND

STATION LDT ADDRESS

QUEUE OUTPUT COUNT

QUEUE INPUT POINTER

QUEUE OUTPUT POINTER

QUEUE END POINTER

EVENT CHARACTER BUFFER

KSB FLAGS

" CHARACTER MODE

COMMAND INTERP ENABLE
RECORD MODE
COMMAND INTERP BID
COMMAND INTERP ACTIVE
COMMAND I/O HOLD
COMMAND I/O ABORT
DEACTIVATE BREAK KEY

STATION NUMBER

SCRATCH

- TSB ADDRESS .

VALIDATION TABLE ADDRESS

SCRATCH

SCRATCH

SCRATCH

CRU BASE

SAVED WP

SAVED PC

SAVED ST

PDT ADDRESS (PDTLNK)

LUNO

INIT I/O COUNT

LDT FLAGS

LDT LINK

TSB ADDRESS

LOCK COUNT

Figure 5-8. KSB Template

946250-9705

How to Write a Device Service Routine

5.3.3 Buffered /O Request Block

The buffered I/O request block is the portion of the SVC block that contains information for the
DSR. Figure 5-9 shows the structure and contents of the buffered I/O request block. DSRPRB is a
template defined in .S3SYSGEN.SYSTEM.TABLES. The DSR uses this template to reference ele-
ments of this data structure. Note that R1 contains the address of the I/O subopcode byte of the
buffered I/O request block. Therefore, use offsets in your DSR as given in Figure 5-9, which are
those defined by the DSRPRB template.

The buffered /O request block is copied to the system table area by DXIOS. The DSR must not use
LDS or LDD to access parts of the buffered 1/Q request block. When the DSR completes, DXIOS
copies the buffered /0 request block back to the user task.

5.3.4 Task Status Block (TSB)

Tasks are represented within DX10 by a TSB. The bidding routines TMBIDO and TM$BID build
TSBs in the system tabie area. The termination task, TM$DGN, releases a TSB when a task termi-
nates, uniess the task is a queue server. TSBs of inactive queue servers are not released unless
more system table area is needed. Figure 5-10 shows the format of a TSB, and Table 5-4
describes the information it contains.

BYTE
_IN DSR
-10 BROBRO —— QUEUE LINK
-8 BROTSB ~— REQUESTOR TSB ADDRESS
-6 BRORCE —— REQUESTOR CALL BLOCK ADDRESS
-4 BROLDT —— LDT ADDRESS FOR WHICH CALL WAS MADE
-2 PRBSOC —— SVC OPCODE PRBEC -— STATUS CODE
DSRPRB <
0 PRBOC —— SUBOPCODE PRBLUN —— LUNO
2 PRBSFL —— SYSTEM FLAGS PRBUFL —— USER FLAGS
4 PRBDBA -— DATA BUFFER ADDRESS
6 PRBRLN —— LENGTH OF DATA BUFFER
8 PRBCHT —— CHARACTER COUNT
“~
2284689

Figure 5-9. Buffered /O Request Block

946250-9705 5-25

How to Write a Device Service Routine

HEX. BYTE
>00 TSBAL — QUEUEING LINK
>02 TSBWP -~ ACTIVE WP
>04 TSBPC — ACTIVE PC
>06 TSBST -- ACTIVE ST
>08 TS8PRt -~ PRIQRITY I TSBSTA — TASK STATE
»0A TSBFLG — TASK FLAGS
>0C TSBEAC — TRANSFER VECTOR ADDRESS
306 TSBID — INSTALLED 1D { TSBRID — RUN ID
»10 TSBSMF — SAVED MAP FILE ADDRESS
>z TSBLNK — FIXED TS8 LINK
>4 TSBKSS — K58 ADDRESS
>16 TSAFL2 — TASK FLAGS (WD2)
>18 TSBAR! — AID PARAMETER (1)
>1A TSBARZ — BID PARAMETER (2)
»c TSBALT -- ALTERNATE TS8 ADDRESS
>E TSBCHR — 913,911 CHARACTER TSBIOC — TILINE 1/0 COUNT
>20 TSBPR! — PSB ADDRESS (PROCEDURE 1)
»22 TSBPR2 — PS8 ADDRESS (PROGEDURE 2)
>24 TSBFCB — PROGRAM FILE FCB ADDRESS
>26 TSBERC — DIAGNOSTIC £RROR CODE
> TSBWPD — DIAGNOSTIC WP
>2A TSBPCD — DIAGNOSTIC PC
>2¢ . TSBSTD — DIAGNOSTIC ST
»2E TSETD1 — TIME DELAY COUNTER
TSeTD2
>32 TSEMLI — MAP LIMIT |
>34 TSEMB1 — MAP BIAS |
>38 TSBMLZ — MAP LIMIT 2
>3 : TSEMB2 — MAP BIAS 2
>3A TSBML3 — MAP LIMIT 3
>3C TSBMS3 — MAP 91AS 3
>3E TSBPRF — FIXED PRIORITY 1 TSBMRG — TASK REGISTER NUMBER
>40 TSSPAR — PARENT TS8 ADDRESS
>42 TSBSON — OLOEST SON TSS ADDRESS
>a4 TSSBRI — OLDER SIBLING TS8 ADDRESS
>46 TSBBR2 — YOUNGER SIBLING TS8 ADDRESS
>48 TSBBLN — @EET LENGTH OF PROGRAM
>4A TSETON — OVERLAY NUMBER
>ac TSBOAD — ADDAESS OF OVERLAY AREA DESTINATION
>4E TSSTO — TIME TASK SUSPENDED
>50 TSBT! -~ NUMBER OF TIME SLICES REMAINING
»82 TSBSCR — SCRATCH FOR GETMEM
>4 TSBALL — LINK TO NEXT ROLLED TASK -
>58 TSBRAN —- ROLL FILE STARTING PHYSICAL RECORD NUMBER
>5A TSBRAL -- NUMBER OF ROLL FILE RECORDS
>sC TSBLOF — LOCAL LDT LIST FLAGS
>sE TSBLDA -- LOCAL LDT LIST ADDRESS
>80 TSSEOR — EOR COUNT TSBUP — 1/0 COUNT
>62 TSBSER — QUEUE ANCHOR ADDARESS
>64 TSBTSC — TASK SENTRY COUNT
>66 .
2284695

Figure 5-10. TSB Structure

5-26 946250-9705

How to Write a Device Service Routine

Table 5-4. TSB Values

Hex. Field
Byte Name Description
>00 TSBQL Link to the next TSB on the queue, when this TSB is queued.
>02 TSBWP, The saved context (WP, PC, and ST vaiues) for the task. When
TSBPC, the task is scheduled to execute, these saved values are
TSBST used to begin execution.
>08 TSBPRI Task priority (0, 1, 2, 3, or > 81, >82, >83, ..., > FF, where > 81
is real-time priority 1 and > FF is real-time priority 127).
>09 TSBSTA Task state as shown in Table 5-5.
>0A TSBFLG First word of task flags. The flags are as follows:
Bit Meaning When Set
¢] System task (hardware and software priviiege)
1 Privileged task (software)
2 Memory-resident task
3 Take end action on error
4 Roll out candidate
5 Rolled out
6 Abort/terminate task
7 Activate call outstanding
8 Reactivate bidding task at termination
9 Serially reusable task
10 Task quieting in progress
11 Initial bid
12 Leave task alone; do not abort
13 Task is under control of alternate TSB
14 SCI flag for scanning TSB chain
15 Task is replicated image
>0C TSBEAC Transfer vector address.
>0E TSBIID Installed task ID.
>0F TSBRID Runtime ID assigned by system.
>10 TSBSMF Address in the TSB of the saved map file register values
(bytes >32 - >3D).
>12 TSBLNK Link to the next TSB in the fixed list of TSBs. All TSBs in the
system table area are linked onto this list when they are cre-
ated. The list can be searched to find a task with a given run-
time ID by the routine named TMTSCH (for example, to kill
the task).
>14 TSBKSB Address of the KSB of the terminal associated with this task

946250-9705

(that is, the task was bid from the terminal).

5.27

How to Write a Device Service Routine

Table 5-4. TSB Values (Continued)

Hex. Field

Byte Name Description
>16 TSBFL2 Task flags as follows:
Bit Meaning When Set
0 Task to be suspended next time it executes
1 Task is being controlled
2 SVC traps to be taken when specified
3 SVC switch: when 0, SVC traps are taken
4 Execution stopped by scheduler
5 Execution stopped by trapped SVC
6 Execution stopped by XOP 15,15 (breakpoint)
7 Dynamic priority management
8 Roll in progress
9 Task activated
10 Initiate followed by execute I/O
1 Extend time slice
12 End action avalilable for task
13-15 Not used
>18 TSBAR1 The two parameters that can be passed to the task by the
Bid SVC and accessed by the task using the Get Bid
Parameters SVC.
>1C TSBALT TSB address of the alternate task. The alternate task is
executed in place of this task.
>1E TSBCHR 913/911 character.
>1F TSBIOC Number of outstanding TILINE /O operations.
>20 TSBPR1 Address of the procedure status block for attached pro-
cedure 1 (0 if none).
>22 TSBPR2 PSB address for procedure 2 (0 if none).
>24 TSBFCSB Address of the FCB that represents the program file on
which this task is installed.
> 26 TSBERC Error code that describes the error that caused the task
to terminate (used by the termination task).
>28 TSBWPD, The context (WP, PC, and ST registers) of the task when
TSBPCD, an error forced the task to terminate or take end action
TSBSTD (used by the termination task). A Get End Action Status
SVC returns these values.
>2E TSBTD1 Number of system time units remaining before this task

will be reactivated from its time-delayed state (32 bits).

5-28 946250-9705

How to Write a Device Service Routine

Table 5-4. TSB Values (Continued)

Hex. Field

Byte Name Description

>32 TSBMLA1 The map register values to be used when this task
executes.

>3E TSBPRF Map flags. Fixed priority of task.

>3F TSBMRG The offset into the saved map file that marks the limit
register that maps the task segment (that is, 0, 4, or 8).

> 40 TSBPAR TSB family tree pointers.

>42 TSBSON TSB family tree pointers.

>44 TSBBR1 TSB family tree pointers.

>46 TSBBR2 TSB family tree pointers.

>48 TSBBLN Length of the entire program (task and procedures) in
beets (32-byte blocks).

>4A TSBTON The number of the system overlay in which this task was
last executing (used for system tasks only).

>4C TSBOAD The address of the overlay area in which the above over-
lay was loaded (the overlay MUST be reioaded in the
same place).

>4E TSBTO Number of time slices this task has been suspended.

>50 TSBT1 Number of time slices still allotted to this task as the
minimum number of time slices it must receive before it
can be forcibly rolied-out by an equal priority task.

>52 TSBSCR Scratch used by the Get Memory SVC processor and the
system overlay loader.

>54 TSBRLL Link to the TSB or PSB that represents the next rolled

segment. The TSB or PSB of each rolled task or proce-
dure is linked onto a list of rolled segments. The list is
kept in order by increasing the roll file record number;
that is, segments written at the beginning of the roll file
appear at the beginning of the list. This linked list serves
as a directory into the roll file, so that the various rolled
segments can be retrieved for roll-in. Further roil informa-
tion is kept in TSBs or PSBs.

946250-9705 5-29

How to Write a Device Service Routine

Table 5-4. TSB Values (Continued)

Hex. Field

Byte Name Description

>56 TSBRRN Number of the physical record in the roll file that begins
the rolled image of the task segment. At initial bid time,
this is the program file record number.

>5A TSBRRL Number of roll file records occupied by the rolled task
image. During initial bid, this is the length of the task in
bytes.

>5C TSBLDF Task local LDT list flags: bit 0 is the LDT anchor.

>5E TSBLDA Pointer to the first task local LDT, or the station local
LDT list anchor (if no task local LDTs exist).

>60 TSBEOR Number of I/Q end-of-records that need to be processed
for this task. If this field is nonzero, the device driver rou-
tine (DDT) receives the next time slice that would other-
wise have been awarded to this task.

> 61 TSBIIP The number of I/O operations outstanding for this task.

>62 TSBSER The address of the anchor for the queue served by this
task (used only for queue servers).

>64 TSBTSC The task sentry count.

>66 *

5-30 946250-9705

How to Write a Device Service Routine

Table 5-5. Task State Codes

Task

State Signiticance
00 Actlve task, priority level 0
01 Active task, priority levei 1
02 Active task, priority level 2
03 Active task, priority level 3
04 Terminated task
05 Task in time delay
06 Suspended task
07 Currently executing task
08 Reserved
09 Task awaiting completion of I/O
0A Task awaiting assignment of device for I/O
(0]} Task awaiting disk file utility services
oC Reserved
oD Task awaiting file management services
OE Task awaiting overlay loader services
OF Task awaiting initial load
10 Reserved
10 Task awaiting disk management services
12 Task awaiting tape management services
13 Waiting on system overiay loader services
14 Waiting on task driven SVC processor
15 Task waiting on GETMEM request
16 Not used
17 Suspended for co-routine activation
18 Task waiting on termination task services
19 Task awaiting completion of any 1/O
1A Waiting on MM$FND door
1B Task eligible for rollout when requested /O is complete
1C Task activated while roll in progress
1D Suspended for initiate I/0 threshold
1E Suspended for locked directory
1F Suspended for task management directory buffer
24 Task suspended for queue input
FF Dummy task state

946250-9705 5-31

How to Write a Device Service Routine

5.3.5 Extension for Terminals with Keyboards (XTK)

The XTK is an extension used by Tl DSRs for terminals. It functions as an extension to the KSB.
Figure 5-11 shows the structure of the XTK, and Table 5-6 describes the values it contains. Figure
5-12 shows the template for the XTK.

BYTe
>00 XTKXUF —— EXTENDED USER FLAGS
>02 XTKFLG —— GENERAL FLAGS XTKSCH —— SAVED CHARACTER
>04 XTKCRD —- CARRIAGE RETURN DELAY COUNT
>06 XTKICD —— INTERCHARACTER DELAY COUNT
>08 XTKABT —— CODE ADDRESS TO PERFORM ABORT
>0A XTKTMO —-= TIMEOUT COUNT FOR HANG CONDITION
>0cC XTKSC3 —— SCRATCH
>0E XTKSSC —— SAVED STATUS OF CASSETTES
>10 EDTFLO —-— EXTENDED EDIT FLAG WORD O
>12 EDTFL1 -— EXTENDED EDIT FLAG WORD 1
>14 *

2284696

Figure 5-11. XTK Structure

5-32 946250-9705

How to Write a Device Service Routine

Table 5-6. XTK Values

Hex. Field
Byte Name Description
>00 XTKXUF Extended user flags from BRB
>02 XTKFLG General flags:
Bit Meaning When Set
0 KSFHNG — Hang-up condition on 745
1 KSFTMS — Time-out switch for 745
2 KSFSC! — SCl active during hang up
3 KSFDCD — Data carrier drop detected
4 KSFSIO — Shift in/shift out JISCII
5 KSFDIF — Direct character input requested
>03 XTKSCH Saved character for JISCII terminals
>04 XTKCRD Carriage return delay count
>06 XTKICD Intercharacter delay count
>08 XTKABT Code address to perform abort
>0A XTKTMO Time-out count for hang condition
>0C XTKSC3 Scratch
>0E XTKSSC Saved status of cassettes
>10 EDTFLO Edit flag word 1
Bit Meaning When Set
0-7 Reserved
8 MDTCHK — Post data modified on read
9 EXVAL — Extended character validation
10 NULFLG — Null character
11 CNBFLG — Covert null to blank

946250-9705

12-15 Reserved

5-33

How to Write a Device Service Routine

Table 5-6. XTK Values (Continued)

Hex. Field
Byte Name Description
>12 EDTFL1 Edit flag word 2
Bit Meaning When Set
0-1 Reserved
2 LEFAROQO — Terminate read on left arrow
3-1 Reserved
12 RITSARO — Terminate read on right arrow

13-15 Reserved

5-34 946250-9705

How to Write a Device Service Routine

UNL
Kkkk kAR kkkkRrkhRETh Ik ko krkhhhhhhhhhkhhkrhdhhrhrhhhkhhnrn
i
* EXTENSION FOR A TERMINAL (XTK) 02/12/82
* WITH A KEYBOARD

*
e de e e e de K de de e K e de e de o de de d ke de o de ode K e e e e ode o de e de de ok de e e e de e de de de ok dede ek ke ok ke ke ok kkk

DORG XTKBGN

XTKXUF WORD 0 EXTENDED USER FLAGS FROM BRB
XTKFLG FLAGS 8 XTK GENERAL FLAGS
FLAG KSFHNG HANG UP CONDITION ON 745
FLAG KSFTMS TIME OUT SWITCH FOR 745
FLAG KSFSCI SCI ACTIVE DURING HANG UP
FLAG KSFDCD DATA CARRIER DROP DETECTED
FLAG KSFSIO SHIFT IN/SHIFT OUT JISCII
FLAG KSFDIF DIRECT CHAR INPUT REQUESTED
XTKSCH BYTE 0 SAVED CHAR FOR JISCII TERMINAL
XTKFIL EQU XTKFLG FILL CHARACTER
XTKEVT EQU XTKFLG+1l EVENT CHARACTER
XTKCRD WORD 0 CARRIAGE RETURN DELAY COUNT
XTKPOS EQU XTKCRD WITHIN FIELD CURSOR POSITION
XTKICD WORD 0 INTER-CHARACTER DELAY COUNT
XTKDEF EQU XTKICD START OF FIELD CURSOR POSITION
XTKVTA EQU KSBVTA VALIDATION TABLE ADDRESS
XTKABT WORD 0 CODE ADDRESS TO PERFORM ABORT
XTKSC1l EQU XTKABT SCRATCH # 1
XTKTMO WORD 0 TIMEOUT COUNT FOR HANG CONDTION
XTKSC2 EQU XTKTMO SCRATCH # 2
XTKSC3 WORD 0 SCRATCH # 3
XTKSSC WORD 0 SAVED STATUS OF CASSETTES
XTKJIN EQU XTKSSC ASCII/JISCII INTENSITY MASK
*
| F——
* EDIT FLAG WORD O AT END OF XTK *CM*
|
EDTFLO WORD 0 EXTENDED EDIT FLAG WORD 0 *CM*
* NOTE: BITS 0-7 ARE USED !
MDTCHK EQU 8 POST DATA MODIFIED ON READ *CM*
EXVAL EQU 9 EXTENDED CHAR VAL *CM*
NULFLG EQU 10 NULL CHARACTER *CM*
CNBFLG EQU 11 CONVERT NULL TO BLANK *CM*
* NOTE: BIT 12 IS USED !
* NOTE: BITS 13-15 RESERVED
| ———
* EDIT FLAG WORD 1 AT END OF XTK *CM*
| ST
EDTFL1 WORD 0 EXTENDED EDIT FLAG WORD 1 *CM*
* NOTE: BITS 0-1 ARE USED !
LEFARO EQU 2 L=TERMINATE RD ON LEFT ARROW *CM*
* NOTE: BITS 3-11 ARE USED !
RITARO EQU 12 1=TERMINATE RD ON RIGHT ARROW *CM*
*

NOTE: BITS 13-15 ARE USED !
%*
XTKSIZ EQU §
RORG
PAGE
LIST

Figure 5-12. XTK Template

946250-9705 : 5-35

How to Write a Device Service Routine

5.3.6 Asynchronous DSR Local PDT Extension
The asynchronous DSR structure requires a PDT extension. Figure 5-13 shows the structure of
this extension, and Figure 5-14 shows the template for this extension. The pathname for this tem-
plate is .S$SYSGEN.SYSTEM.TABLES.DSALLLEX.

This extension starts immediately after the KSB. The first two words of this extension are used to
access a second DSR data structure (PDT extension) outside the local address space of the DSR.
Paragraph 5.5.5 discusses the procedure for initializing these two words. The next five words,
PDXFLG through PDXCP3, are reserved for HSR use. The remaining local PDT extension words are
for TSR/ISR use. The size of this portion of the local PDT extension varies for different
asynchronous devices.

HEX BYTE

>0

>2

>4

>5

>6

>8

>A

>C

>E

>10

>12

2284697

5-36

PDXSMB —— LONG DISTANCE EXTENSION MAP BIAS

PDXSMP —— LONG DISTANCE EXTENSION MAP POINTER

PDXFLG —— HSR PARAMETER BYTE 0

PDXCHN —— HSR PARAMETER B8YTE 1

PDXCP1 —-- HSR PARAMETER BYTES 2 AND 3

PDXCP2 -~ HSR PARAMETER BYTES 4 AND 5

PDXCP3 —— HSR PARAMETER BYTES 6 AND 7

PDXCP4 —— TSR/ISR PARAMETER BYTES O AND 1

PDXCPS3 - - TSR/ISR PARAMETER BYTES 2 AND 3

PDXCP6 -— TSR/ISR PARAMETER BYTES 4 AND 5

PDXCP7 - - TSR/ISR PARAMETER BYTES 6 AND 7

Figure 5-13. Asynchronous DSR Local PDT Extension Structure

946250-9705

How to Write a Device Service Routine

J ok de e o de e e e de de e e ke K K e do Kk e e e ke ke ok e e ke kK K e de g Kk ke ke de ke e de e e de ke ok ke de e K e ek ok ke ke ok

* *
* LOCAL ASYNC EXTENSION TQO PDT *
* *

2o e e e Je e Je de ke de o ode Fe de Ko Ko K de K de K K de ke de K ok ke de Je de de ke de e de e e ke e e de e de ke K de e ek de ke ke ke ke ok ke

DORG KSBSIZ
PDXSMB BSS
PDXSMP BSS
PDXFLG BSS
PDXCHN BSS
PDXFCT BSS
PDXCPl BSS
PDXCP2 BSS
PDXCP3 BSS
PDXCP4 BSS

LONG DIST EXT MAP BIAS
LONG DIST EXT MAP POINTER
HSR MEMORY AREA

L

"
"
"
"

TSR MEMORY AREA
"

SIS H SRS L ol ol S]

Figure 5-14. Asynchronous DSR Local PDT Extension Tempiate

5.3.7 Asynchronous DSR Long-Distance Device Extension

The asynchronous DSRs use a long-distance extension for part of the PDT extension area. This
memory must be accessed using long-distance instructions. The long-distance extension is
divided into several areas. Figure 5-15 shows the structure of this extension, and Figure 5-16
shows the template for this extension. The pathname for this template is
.S$SYSGEN.SYSTEM.TABLES.DSALLREX.

The first 32 bytes beginning with HSRBGN are reserved for HSR module use. The next 112 bytes
provide memory for a software transmit FIFO maintained by the HSR for non-buffered controllers.
The only buffered asynchronous controllers are the Cl403 and the Ci404. The remainder of the
long-distance extension is for TSR/ISR use. Its size varies with the functions that the TSR and ISR
modules perform. The example template defines areas for an implementation that keeps a mem-
ory copy of the screen image for VDT support. Fourty-eight bytes are provided for TSR/ISR use.
The TSR uses the memory starting at SIBUFF to maintain a memory image of the VDT screen.

946250-9705 5-37

How to Write a Device Service Routine

HEX. BYTE
>0 HSRBGN ~— HSR PORTION OF EXTENSION
(32 BYTES)
>1F
>20
SWFBGN —— SOFTWARE FIFO BEGIN
(112 BYTES)
>8F
>90
TSRBGN == TSR/ISR PORTION OF EXTENSION
(48 BYTES)
>BF
>co
SIBUFF -— SCREEN IMAGE BUFFER
(1920 BYTES)
>83F
2284698
Figure 5-15. Asynchronous DSR Long-Distance Device Extension Structure
Thdkkhdhhkhkhkhhhkhkhhkhhhrdhkhkhhhhhdhhhhkhhhdkhhhhhhhdhdhkdrdihxikx
**%* ASYNC LONG DISTANCE EXTENSION *hk
de Je e ot Je e de ke e d e do Kk de e K de e dede e ode de ok de e Tk de K e od e e K de o ke Je de e de de de e e e de e e dede de ok K ek Kk ok
DORG 0
HSRBGN EQU $ HSR PORTION OF DEVICE EXTENSION
BSS »>20 HSR DEPENDENT BLOCK
HSREND EQU §$
*
SWFBGN EQU HSREND SOFTWARE XMIT FIFO
BSS »>70
SWFEND EQU $
*
TSRBGN EQU SWFEND TSR PORTION OF DEVICE EXTENSION
BSS >30
TSREND EQU §
*
SIBUFF EQU TSREND SCREEN IMAGE BUFFER
BSS >780 1920 BYTE SCREEN IMAGE BUFFER
SIEND EQU $
RORG 0
Figure 5-16. Asynchronous DSR Long-Distance Device Extension Template
5-38

946250-9705

How to Write a Device Service Routine

5.4 DSR CONVENTIONS AND TECHNIQUES

This paragraph describes some of the methods used in writing the standard DX10 DSRs. When
you write your own DSR, you can use these conventions and techniques to simplify your task and
to make your DSR easier to maintain. The example DSRs provided at the end of this section dem-
onstrate many of these methods. ’

5.4.1 Workspace for Keyboard ISRs

When you write an ISR for a keyboard device, you need to buffer the input keystrokes. Common
subroutines provided with the operating system can handle keyboard input only if you provide a
KSB. Since these routines use the workspace in the KSB, your DSR interrupt decoder and proces-
sor should also employ this workspace.

5.4.2 Decoding Interrupts

It is often necessary for a DSR to return to the system to wait for the next interrupt, and provide the
address of a routine in the DSR which is coded to handle that interrupt. Since GEN990 allows only
one interrupt entry point for an ISR, DX10 DSRs commonly use R6 in the interrupt processing
workspace as an interrupt entry vector. When the DSR needs to wait for an interrupt, the DSR
loads the address of an interrupt processor into R6 and executes an RTWP instruction. When the
interrupt occurs, the ISR resets the time-out and branches to the address in R6. if you use a KSB,
be sure to only transfer control from the ISR to the other DSR routines (that use the PDT work-
space) by using a BLWP or the reenter-me mechanism. Use KSB R6 only for ISR entries and use
PDT R6 only for entries to DSR routines that use the PDT workspace.

5.4.3 Reporting Errors to the System Log

Most DSRs report device errors to the system log by placing an appropriate error code in PDTERR
of the PDT and setting the Operation Failed flag in PDTFLG. You can use the device controller
address in R12 of the PDT workspace to obtain controller status information. Most CRU
controllers have one word of status information.

If the device buffer access method selected by the DTFTIL bit of POTDTF is not direct (that is, the
value of the DTFTIL bit is 0), you should store status information in the system log words (PDTSLA
and PDTSL2) to report the error to the system log. If the buffer access method is direct (the value
of the DTFTIL bit is 1), your PDT must have an area set aside for log data and PDTSL1 must con-
tain the address of that area. Refer to the following paragraph for a discussion of buffer access
methods.

946250-9705 5-39

How to Write a Device Service Routine

5.4.4 Accessing the Data Buffer _
You can access the data buffer associated with the I/0 SVC in two ways. You select the method
when you code the PDT by setting the value of bit 1 of PDTDTF (DTFTIL) as follows:

0 = Indirect access. DX10 DSRs use this method for CRU devices such as data terminals
and line printers. It provides the flexibility for DX10 to roil out the calling task, and is
suitable for devices (such as data terminals) that may have a relatively long response
time under some conditions. The operating system makes a copy of the data buffer in
system table area, and the DSR references that copy.

1 = Direct access. DX10 DSRs use this method for TILINE devices such as disks and mag-
netic tapes. The calling task cannot be rolled while I/O is in progress and is suitable for
devices that have a relatively short response time under all conditions. The I/O
scheduler does not make a copy of the data buffer, so this method is also suitable for
devices with very long buffers.

The use of direct and indirect access need not be limited to TILINE and CRU type of devices. DX10
does not really care what the underlying device type is. You need to decide which access mode
suits the needs of your device. Note that if you select direct access for a device that can have a
long response time, the system can appear to lock up until the /O completes. This symptom is
caused by the following condition. Task A has an /O request pending on a device for which direct
access is specified, and the operating system does not have enough memory to roll in task B for
execution. It flags task A so that it is rolled out when the I/O completes instead of being placed in
execution. Task B is not loaded until then. You can relieve this condition by making the task that
makes such an access a memory-resident task.

5.4.4.1 Indirect Access. For buffers accessed indirectly, DX10 creates a copy of the data buffer
in the system table area. It modifies the buffer address in the system’s copy of the buffered 1/O
request block (pointed to by R1 in the PDT) to point to the system’s copy of the buffer. The DSR
should access this copy of the buffer. When the DSR calls ENDRCD (see paragraph 5.7.3), the sys-
tem copies the buffered I/O request block and the buffer back to the task that issued the SVC. The
system also takes care of all task rollin/rollout processing.

5.4.4.2 Direct Access. For buffers accessed directly, DX10 makes a copy of only the buffered
I/0 request block. The buffer address in the buffered I/O request block is relative to the address
space of the calling task. The DSR has its own map file, loaded into map file 0 of the CPU. That
map file brings together the system root, the I/0O common routines, and the DSR all into one
address space. The system root is the part of the operating system linked in phase 0. (Refer to the
DX10 Design Document for a discussion of system memory mapping.) The calling task executes in
CPU map file 1. The DSR must load CPU map file 2 using the LDD and LDS instructions with the
same map file used to execute the task, and must use the buffer address in the next instruction.
For additional details, refer to the 990/70 and 990/12 Assembly Language Reference Manual.

5-40 946250-9705

How to Write a Device Service Routine

You can access the map file for the task by accessing its TSB. The address of the TSB is located in
the buffered request overhead block, which immediately precedes the buffered I/O request block.
The TSB has a pointer to the map file for the task at TSBSMF. The following code places the first
word of the data buffer in R4:

MOV @PRBDBA(R1),RS R5< = ADDRESS OF TASK BUFFER
MOV @BROTSB(R1),R7 R7 < = ADDRESS OF TSB

MOV @TSBSMF(R7),R7 R7 < = ADDRESS OF MAP FILE

LDS *R7

MOV *R5,R4 R4 < = FIRST WORD OF BUFFER

5.4.5 Reenter-Me Processing

Some DSRs employ reenter-me processing to produce time delays or to allow an interrupt to bid a
task. (For more information on bidding tasks from the DSR, refer to paragraph 5.4.7.) The reenter-
me flag is DSFREN in PDTDSF in the PDT. You can use it in conjunction with the reenter-me
address in PDTINT. When you set the reenter-me flag to one, the task scheduler sets the interrupt
mask to the value in DSFINT in PDTDSF, resets the reenter-me flag to zero, and transfers control
to the reenter-me address specified in PDTINT of the PDT.

In DX10, VDT DSRs use this flag to transfer control from the keyboard ISR (which runs with inter-
rupts masked in the KSB workspace) to the I/0 Call routine (which runs with interrupts unmasked
in the PDT workspace). Whether your DSR uses this flag depends on the needs of your device.
Keyboard devices such as the 911 VDT need to handle characters typed when a Read I/O is not
active (unsolicited input). When the user enters data without a read operation pending, DSRE11
queues the characters in the KSB, placing them in a Read I/O SVC data buffer only after it receives
the SVC. Since DSR911 runs in the PDT workspace with all interrupts enabled, it needs to keep
interrupt processing separate from call block processing to avoid interference between the DSR
and ISR. Such interference is still possible between the PUTCBF and GETC routines, so the DSR
inhibits interrupts for the duration of PUTCBF and GETC calls. When a character is received, and a
Read /O SVC is active, the ISR uses reenter-me because it cannot directly call the DSR. A DSR
that runs with interrupts inhibited to a level that prevents concurrent execution of the ISR does not
need to use the reenter-me flag. It can call the DSR (using BLWP) directly from the ISR. This allows
a device to have a KSB without the extra coding necessary for reenter-me processing. The KSB
and reenter-me flag provide the flexibility needed to handle these situations.

5.4.6 DSR Priority Schedule

This procedure allows you to activate the DSR faster than the reenter-me processing. The operat-
ing system enters the DSR before any task executes. All operating system functions complete
before the DSR is activated. PDTs are placed on a queue for processing. The routines that manage
the queue make sure a PDT is only on the queue once. Byte 8 must contain a Branch instruction to
the routine to process this entry.

To place an entry on the queue, put the starting address of the PDT in RO of whichever workspace
is in use. Use a BLWP instruction to branch to the routine TM$FST. The code to place the current
PDT address on the DSR priority schedule queue is as follows:

MOV R4,R0

Al RO,PDTLNK

BLWP @ TM$FST

This code assumes the use of the template DSRPDT, which is offset by R4.

946250-9705 5-41

How to Write a Device Service Routine

DX10 Release 3.6 changed the DX10 scheduler to implement DSR priority scheduling. The
scheduler now returns to any map file 0 code before checking for queued PDTs or for a task. There-
fore, if the DSR priority schedule routine in the DSR is interrupted, controi immediately returns to
the DSR.

When the PDT is selected from the queue, the interrupt mask level is set to the value contained in
PDTDTF in the PDT. This value should be > F to allow interrupts to occur in a normal manner.

5.4.7 Bidding Tasks from a DSR

You can execute a task as a result of an interrupt by bidding it from within a DSR. The bid takes
place in the ISR and reenter-me processor. In the ISR, you set the flags for bidding the task. In the
reenter-me routine, you call the subroutine TMBIDO, which bids the task. (You must bid the task
within the reenter-me routine to ensure that no executing task has extended the time slice.)

The task must be installed on the system program file. If you want fast execution, install it mem-
ory resident with an appropriate real-time priority.

5.4.7.1 ISR Procedure for Bidding a Task. The ISR must do the following preprocessing in
response to an interrupt to bid a task:

1. Reset the interrupt from the device that caused the ISR to be entered.

2. Check your bid task in progress flag. If a bid task is in progress, ignore this request to
bid a task.

3. Setyourbid task in progress flag.

4. Provide a way to handle multiple interrupts received before the first bid is complete.
Typically, you ignore subsequent bid requests until the one in progress is compiete by
checking the flag set in step 2.

5. Set the reenter-me flag in the PDT (bit DSFREN in word PDTDSF of the PDT).

6. Increment the value of BIDTSK by one. The scheduler uses this word to check if any bid
requests are pending.

7. Check the global flag TMESLC. If zero, then set the global flag TMSDFR to -- 1. TMESLC
indicates whether a system task has inhibited scheduling and TM$DFR forces the
scheduler to execute as soon as scheduling is enabled. The following code performs
this test:

MOV @ TMESLC,R0

JNE CONT

SETO @ TM$DFR
CONT < next instruction>

8. Exit using an RTWP instruction.

5-42 946250-9705

How to Write a Device Service Routine

5.4.7.2 Reenter-Me Procedure for Bidding a Task. The reenter-me routine must do the following

processing to bid a task:

1. Initialize the workspace registers as follows:

R1

R2
R3

R4

R10

R11

Installed ID of the task in the first (upper) byte; second (lower) byte set to
zero.

Bid parameter #1.

Bid parameter #2.

* Station ID for the task in the first (upper) byte (> FF if no station); second

(lower) byte set to zero.

Pointer to a block of memory that the DX10 routines that are used for
bidding a task can use for a stack. Provide at least 15 words.

Used by subroutine linkage.

2. Use the BL instruction to call the common routine TMBIDO. TMBIDO places the task on
the active queue. Reference the symbol TMBIDO at the beginning of the DSR.

3. Reset your bid task in progress flag.

4. Decrement the value BIDTSK.

5. Check the error returned by TMBIDO and take the appropriate action. You may ignore the
bid request, bid an alternate task, or write a message to the terminal. TMBIDO returns
the following information:

RO

R1

R2

946250-9705

Error code:

0 — Noerror.

1 — Invalid station number specified.
2 — No runtime task 1D available.

3 — No system table area available.
4 — Invalid program file LUNO.

Run time 1D in first byte; bit 15 indicates whether the request has been
queued:

0 — Request not queued; task was memory resident.
1 — Request queued; task was disk resident and must be loaded.

TSB address of bid task.

5-43

How to Write a Device Service-Routine

5.5 ASYNCHRONOUS DSR STRUCTURE

This paragraph describes the DSR structure for asynchronous device support. Throughout this
paragraph, the term DSR refers to an asynchronous DSR. Table 5-7 shows the device and con-
troller combinations that the asynchronous DSRs provided by Tl support.

Table 5-7. Asynchronous Device Support

Devices
Business
System

Controllers 931 940 Terminal 810 840 85X
Cl401 Y Y Y
Cla02 Y Y Y Y Y
Cl421 Y Y Y! Y’
Cl422 Y Y Y Y
M0A? Y Y Y Y Y
Cl403 Y Y Y Y Y
Cla04 Y Y? Y3 Y? Y?
9314 Y Y
9404 Y Y Y
Business
System Y Y Y
Terminal*
Notes:

' On the Cl421 controller, printers are supported only on the 9902 port.
2 [10A refers to the TMS9902 communications port on the 990/10A processor printed circuit board.
! These devices connect to the Cl404 via the fiber optics to EIA RS-232C converter module.

* In the controller column, 931, 940, and Business System terminal refer to the auxiliary (AUX1) port
of the VDT.

5-44 946250-9705

How to Write a Device Service Routine

The asynchronous DSR design separates controller and device support into different software
modules. Figure 5-17 displays a block diagram of the DSR structure. The DSR consists of three
basic modules. The hardware controlier service routine (HSR) module provides the controller sup-
port and is supplied by Tl. The terminal service routine (TSR) moduie provides device support. The
interrupt service routine (ISR) module has interrupt and high priority processing responsibility.
You can include the TSR and ISR in the same source file if you want. The foilowing list describes
the basic functions of the DSR components:

TSR

946250-9705

All DSR entry points except interrupt entry (/0 Call, Power Restored, Abort, DSR
priority schedule, and reenter-me)

Request and completion reporting interfacé to DX10
Runs in PDT workspace
Provides software interface to device

Contains device-dependent logic

Contains interrupt entry of the DSR
Interface to HSR for interrupt processing
High priority receive character processing

Runs in DSR interrupt workspace (not the PDT workspace)

Generic (subroutine) software interface to the controller hardware
Contains all controller dependent logic
Contains all direct access to controller

Presents a buffered controller interface to other DSR modules

5-45

How to Write a Device Service Routine

5-46

2284699

Figure

OPERATING SYSTEM

TSR TERMINAI':'.

SERVICE ROUTINE

8L TSR

SCHEDULE

ISR INTERRUPT
SERVICE ROUTINE

BL.

y A

HSR CONTROLLER
SERVICE ROUTINE

CONTROLLER
INTERRUPT

CONTROLLER

5-17. Asynchronous DSR Structure

946250-9705

How to Write a Device Service Routine

The asynchronous DSR design can support several device and controller combinations. HSR
object modules are provided with the operating system for the controllers listed in Table 5-8.
Table 5-8 also documents the final node in the pathname for each HSR. The directory that con-
tains the HSR object modules is < vol>.S$SYSGEN, where <vol> is the volume name of the disk
you specify as the data disk.

Table 5-8. HSR Object Modules

Name Controller Type
DS403HSR C1403/Cl404
DS923HSR TMS 9902 and 9903 controilers *
DS401HSR Cl401 (previously COMM I/F)
Note:

* Includes Cl1402, Cl1422, C1421, the 990/10A 9902 port, and the 9902 interface
associated with the internal terminal on the Business System 300 computer.

These HSR modules are available for users implementing DSRs for special devices connected to
these controllers. These modules are used for DSRs following the asynchronous DSR design. This
design must be followed for user-written DSRs if both of the following conditions are true:

. The special device is connected to a Cl403 or Cl404 controller.
e Astandard Tl DSR supports any of the communication channels of the C1403 or C1404.

When both of these conditions are not true, you have a choice of DSR designs for asynchronous
device support. You can implement either the asynchronous DSR design or a design of your
choice. Remember that any user design must obey all DX10 constraints.

5.5.1 Asynchronous DSR Design Overview

Figure 5-18 displays a detailed DSRflow diagram. This figure displays data flow paths as well as
the DSR logic flow. Refer to Figure 5-18 during the following discussion of the DSR logic and data
flow. The TSR module contains all DSR entry points except the interrupt entry. It accepts requests
from and reports completions to the I/O supervisor of DX10. The primary function of the TSRis to
provide a software interface to the peripheral device. The actual functions vary considerably
based on the type of device.

The TSR performs initial processing for all requests. The TSR calls the HSR for the output of data.

The HSR stores output data in a transmit first-in, first-out (FIFO) buffer until the data can be trans-
mitted on the communications line.

946260-9705 5-47

How to Write a Device Service Routine

Mol 4 21607 4sQ snouosysuhsy -gi-g ainbi4

H3TT0HLNOD

Yiva
AN1A03Y

an3nd
H3IALOVYVYHD
3A1303Y

SNLYLS “10YLNOD
aNy viva ANy viva
v.iva
LIWSNYHL
ANILNOYH 3DIAYAS >
1dNYYALNI Y3T1TI0HLNOD H¥SH
H3TI0HLNOD S —
r 3
SNLY.LS
anNy
v.iva
8
Y
INLLNOY 3DIAYIS
LdNYYILNI YHSI JOHLNOD
aNyV v.iva
3IINA3IHOS
ys.L g
> ANILLNOY IDIAYIAS

TIYNIWY3L 84S

W3LSAS ONILYY3HO0

ooLvsce

ATTNO
SHITTIQULNOD
aayaddng- NON

| i |

odld
LINSNYYL
3UYMLIO0S

| O |

946250-9705

How to Write a Device Service Routine

NOTE

Buffered controllers such as the Cl403 contain a hardware transmit
FIFO. For non-buffered controllers such as the Cl422, the HSR
maintains a software transmit FIFO.

The HSR cannot accept data when the transmit FIFO fills with data waiting to be transmitted. in
this event, the TSR requests notification from the ISR when the HSR can accept more data. The
user writing TSRs and ISRs defines a mechanism for the TSR to make this request to the ISR. This
can be a flag set by the TSR and monitored by the ISR. The HSR notifies the ISR when it can
accept more transmit data, and the ISR schedules the TSR using the DSR priority schedule or
reenter-me mechanism. The TSR can then resume transferring output data to the HSR. Figure
5.18 shows the logic paths followed in this process. Under normal conditions, the TSR reports
completion of the output request before the HSR has actually transmitted all the data on the
communications line.

Read requests, in most cases, require the cooperation of the TSR and ISR modules. This discus-
sion assumes a receive character queue is utilized to capture unsolicited input from the peripheral
device. This is the KSB queue for SCI keyboard terminals. The receive character queue is a mecha-
nism for passing data from the ISR to the TSR as indicated in Figure 5-18. The TSR attempts to
satisfy the read by moving received data from the receive character queue to the user’s read data
buffer. When the TSR satisfies the read, it reports completion to the user task via the operating
system 1/O support routines. When the receive queue does not contain enough characters to sat-
isfy the read, the TSR must wait. To do this, the TSR requests notification from the ISR when the
receive character queue contains more data. The TSR requests notification using some mecha-
nism defined by the writer of the TSR and ISR. This mechanism can be a flag set by the TSR and
monitored by the ISR. The TSR then releases control. When the ISR stores data in the receive char-
acter queues, it schedules the TSR for execution. Other I/O service requests are processed by the
TSR with the aid of the ISR if required.

The ISR module contains some functions that you can consider device support and some that you
can consider controller support. The ISR module contains the interrupt entry to the DSR and uses
an interrupt workspace different than the PDT workspace. The ISR module runs with controller
interrupts masked; it calls the HSR to decode the controller interrupt.

For the most part, ISR processing is independent of request processing of the DSR. Receive data
is stored in the receive character queue even when no read request is active at the DSR. Error
recovery action must be taken when the receive character queue becomes full. The ISR processes
events requiring immediate attention. it also schedules the TSR module to start or resume
processing.

The HSR provides access to the controller hardware. It provides a generic interface to the con-
troller. This allows other DSR modules to be written independent of the asynchronous controller
type. HSR functions include controller and communications channel initialization, transmission
of data, timer services, monitoring of modem signals, and controller interrupt decoding. The HSR
does not support the concept of a read request. The HSR decodes the controller interrupt and
reports the cause for the interrupt to the ISR. If the cause of the interrupt was a received data char-
acter, the HSR also passes the data character back to the ISR. The HSR does not store the receive
data.

946250-9705 5.49

How to Write a Device Service Routine

5.5.2 Terminal Service Routine (TSR)
The TSR module is the interface to the /0 subsystem of DX10. It must implement all the following
DX10 interface functions similar to conventional DSRs:
° DX10 I/O subsystem entry points
— Power Restored
— Abort/Time-Out
— Reenter-me
— SVCrequest
— DBSR priority schedule
e Data structures
— PDT
— Buffered I/O request block
— KSB/interrupt workspace
U /O subsystem routines
— BZYCHK
— ENDRCD
— GETC
— PUTCBF, PUTEBF
— JMCALL, BRCALL, and BRSTAT

— KEYFUN

The following two mechanisms allow scheduling the TSR from an ISR:
] Reenter-me
. DSR priority schedule

You can use these mechanisms in any DSR whether the DSR uses the asynchronous design or
not.

5-50 946250-9705

How to Write a Device Service Routine

Both of these mechanisms enter the DSR in the PDT workspace. The DSR is reentered when the
next system clock interval expires if the reenter-me mechanism is invoked. The reenter-me mecha-
nism is described in paragraph 5.4.5. Another mechanism for scheduling DSR non-interrupt pro-
cessing (such as a TSR) from DSR interrupt processing (such as an ISR) is the DSR priority
schedule mechanism. This mechanism reenters the DSR after all interrupt processing for the sys-
tem is complete, but before the DX10 task scheduler or any task executes. This is a more direct
reentry path to the DSR. It is intended for only the highest priority (non-interrupt) processing. If you
use this mechanism arbitrarily, it can interfere with high priority processing of other DSRs.

Table 5-9 describes the requirements for DSR (TSR) entry points when the DSR priority schedule
mechanism is used. The first two entry point addresses (Power Up and Abort I/0) are defined by
two DATA statements. These two entry point addresses reside at relative address 0 and 2 of the
DSR. At DSR relative address 4, there must be a branch (B) instruction with its operand referencing
the SVC entry point of the TSR. The DSR priority schedule entry point is at relative address 8.

Table 5-9. DSR/TSR Entry Points

Address Code Meaning
0000 DATA POWERU DSR Power Up entry point address
0002 DATA ABORT DSR Abort I/0O entry point address
0004 B @SVCENT Entry point to 1/O Call routine
0008 B @ PRISCH Branch to scheduled routine

Refer to the description of the DSR priority schedule mechanism in paragraph 5.4.6 for further
details. You can define other interface mechanisms between the TSR and ISR within the con-
straints of the operating system. Paragraph 5.6 describes the interface to the HSR.

5.5.3 Interrupt Service Routine (ISR)
The ISR contains the interrupt entry to the DSR and executes in the interrupt workspace of the
DSR.

NOTE

Each channel of an interface supported by the asynchronous DSR
structure must have an interrupt workspace different than the PDT
workspace. The Cl402, Cl421, and Cl422 are not considered multiple
channel interfaces.

946250-9705 5-51

How to Write a Device Service Routine

The ISR interfaces with both the TSR and the HSR as well as the operating system interrupt
decoder. The design of the TSR/ISR interface is not dictated by the asynchronous DSR design. For
the most part, you can specify it to fit your needs. The following list provides examples of ISR
functions for standard keyboard devices:

. Bid application task

. Suspend output

. Abort output

. Abort application task (hard break)

Figure 5-19 shows the flow of control during interrupt processing. The PC component of the inter-
rupt trap is an address within the operating system interrupt decoder. A controller interrupt trap
gives control to the operating system interrupt decoder and starts its execution. The operating
system decoder contains logic to determine which DSR is assigned to service the interrupting
controller. The DSR is then entered at its interrupt entry point via a BLWP instruction. The work-
Space upon entry is the DSR interrupt workspace. This is the same workspace that the ISR uses.

The ISR is responsible for controlling further interrupt decoding by the DSR. The ISR calis the HSR
subroutine HNOTIF (refer to paragraph 5.6.9) to determine what type of controller interrupt
occurred. The ISR provides return vectors for each interrupting condition of the controller.
Figure 5-19 uses the word VECTOR to denote this process. The description of the HNOTIF sub-
routine documents the set of generic interrupt conditions. The HNOTIF subroutine takes the
return vector associated with the current controller interrupt.

The ISR code for the specific type of interrupt takes the proper action to service the interrupt.
When complete, the ISR returns to the operating system interrupt decoder via a RTWP instruction.
The ISR can invoke the reenter-me or DSR priority schedule mechanism to cause the TSR to be
executed. The operating system decoder takes the necessary action to restore normal system
execution.

Figure 5-19 shows one other path for interrupt processing. The HSR exits/returns directly to the
operating system interrupt decoder if the ISR calls HNOTIF when no controller interrupt is pend-
ing. This special return exists to support certain ISRs; most user ISRs never use this path.

5.5.4 Hardware Controller Service Routine (HSR)

The generic interface to the HSR consists of a set of subroutines with a branch and link (BL) call
interface. A subroutine implements one or more generic functions for the specific controller in
use. For example, the TSR makes a Set DTR subroutine call. The HSR for a CRU controller might
implement this as a SBO DTR CRU instruction. However, the HSR for a TILINE controller may
implement the same subroutine by using a SOC @DTR, @OUTSIG(R12) instruction to access the
TILINE Peripheral Control Space (TPCS) of the controller. Identical requests from the TSR/ISR
invoke identical functions for ali controllers. Provision is made for controller hardware differ-
ences. A ““not supported” return is provided for most HSR subroutines. This return is taken when
the requested function is not supported by the controliler hardware.

5-52 946250-9705

How to Write a Device Service Routine

BLWP
OPERATING — ISR
SYSTEM INTERRUPT
INTERRUPT SERVICE
DECODER RTWP ROUTINE
<
T HNOTIF VECTOR
HSR
RTWP CONTROLLER
SERVICE
ROUTINE
INTERRUPT DATA AND
CONTROL
CONTROLLER
2284701

Figure 5-19. Interrupt Processing Flow

5.5.5 Asynchronous Data Structure Allocation

The PDT extension contains two segments. One segment is physically contiguous to the PDT.
This segment contains data that requires the most frequent access. The other segment contains
data for which an increased access time does not significantly affect overall performance. This
second segment must be accessed with long-distance instructions. Other data structures
included in the long-distance extension are VDT screen images for screen image DSRs. Refer to
Figure 5-20.

All the data structures that are not accessed via long-distance instructions are allocated during
system generation. These data structures are available when the operating system is loaded into
memory from disk. The long-distance data structures must be allocated during the IPL of the oper-
ating system.

946250-9705 5-53

How to Write a Device Service Routine

NOISN3 1X3
3AJIA3A

NOISN3LX3 3D01A3Q

sebejur ainjonig ejeq snouoiyouhsy “0z-g ainbiq

34 dYWN

NOISN3LX3 lad
i gelom]

JOVII
N3I340s

< LY

————» asM
oanasd

NOISN3LX3
301IA3a

I 3

coLv8ee

NOISNALX3 30IA3Q

34 dv

NOISN3LX3 Lad
avooT

104

Ly

vy
10ad

JUNLONYLS Yiva
€0VID NO
YILINIYd IVINIS

LY

asM

JUNLONYLS Viva
UILNINd O3FHOVLLY
ove6/lE6

vy

1ad

JUNLONYLS VY.Lva
1ad ove/1€6

946250-9705

5-54

How to Write a Device Service Routine

This discussion references labels defined by data structure templates for the PDT extension for
asynchronous DSRs. The first two words of this extension, PDXSMB and PDXSMP, provide access
to a second long-distance PDT extension. These words must be initialized properly for user-
written DSR’s that use the asynchronous DSR structure (that is, DSRs that use an HSR provided
by Texas Instruments). R11 of the PDT workspace must contain the address of PDXSMB. The first
word of the extension, PDXSMB, should always be initialized (in source code) to contain the value
> FFFF. The second word, PDXSMP, must contain the size in bytes of the long-distance PDT
extension. This size must be at least 144 bytes for non-buffered controllers and at least 32 bytes
for buffered controllers (C1403/C1404). You have the option of specifying additional space for the
user-written TSR/ISR. You can also lengthen the local PDT extension by reserving more memory in
the PDT provided to the system generation program. The pathname of the user PDT is identified
during system generation in response to the PDT FILE prompt.
5.6 HSR COMMON SUBROUTINES
The information required to interface to the HSR module is as follows:

. Subroutine names

. Functions provided by each subroutine

e Subroutine calling conventions
The following paragraphs provide this information.

The following list describes the HSR subroutine classes. Each class contains several subroutines.
These subroutines provide one or more HSR functions.

. Power-up initialization

e Write output signal or function

e Read input signal or function

. Enable/disable status change notification
. Output a character

. Write operational parameters

] Read operational parameters

U Request timer interval notification

. Controller interrupt decoding

946250-9705 5-55

How to Write a Device Service Routine

All HSR subroutines are called via BL instructions. Thus, they use the caller's workspace during
- execution. Parameters required by the subroutines are passed to the HSR in workspace registers.
Information is returned to the caller in one of two ways. Data is returned to the caller in workspace
registers. Other status is returned via alternate subroutine returns. The caller specifies alternate
return addresses as operands of assembler DATA directives immediately following the BL subrou-
tine call. The following shows an example of HSR alternate return addresses:

BL @HSRSUB SUBROUTINE CALL

DATA ALT{ FIRST ALTERNATE RETURN
DATA ALT2 SECOND ALTERNATE RETURN
< next instruction> NORMAL RETURN (CODE)

The caller execution resumes at one of the aiternate return addresses or at the normal return
address (the instruction following all alternate return DATA statements). The number of alternate
returns varies for different HSR subroutines.

The HSR subroutines follow some general register conventions. The subroutines normally use RO
and R10 as working registers. These two registers are also used when parameters are passed to or
from the HSR. Exceptions are noted in some of the HSR subroutine descriptions. in most cases,
R7 is used as a pointer to the PDT. This pointer points to the end of the required PDT. R12 contains
the TILINE or CRU base address of the controller or controller channel. Other register usage is
documented with specific HSR subroutines.

5.6.1 Power-Up Initialization

This subroutine class allows the HSR to perform any initialization required before operation
begins. For the Cl403 and Cl404, the HSR must ensure that the controller has successfully exe-
cuted the self-test for each channel specified during system generation. For other controllers, the
HSR may be required to build a software transmit FIFQ in a long-distance memory buffer that the
operating system obtains.

The three subroutines that perform power-up initialization functions are HRESET, HSWPWR, and
HMRST.

The HRESET subroutine performs power-up initialization that must be performed for all I/O chan-
nels of the controller. This subroutine can be called once per channel for multiple channel con-
trollers. However, there is only one master reset of the controller for each power-up occurrence.

The HSWPWR subroutine performs all channel-oriented initialization. The HSR data structures for
the channel are initialized. Controller interrupts are enabled when the normal return is taken.

The HMRST subroutine performs the same initialization functions as the HRESET routine except

that a master reset of the controller is unconditionally performed. This subroutine is provided so
that diagnostic software can force a controller master reset for testing purposes.

5-56 946250-9705

How to Write a Device Service Routine

The TSR normally makes two calls to the HSR for power-up initialization. The HRESET subroutine
is called first, followed by the HSWPWR subroutine. These two subroutines are called for each
channel of the controller. The calling conventions are identical for each of the HSR power-up sub-
routines. If HPOWER is considered a synonym for any of the three power-up subroutine names,
then the calling conventions for all HSR power-up subroutines are as follows:

Calling convention:

BL @HPOWER
DATA XXXX POWER UP FAILURE RETURN VECTOR
< next instruction> NORMAL RETURN (CODE)

5.6.2 Write Output Signai or Function

The subroutine names for setting output signals or functions to 1 (logic true) are of the form
HSTxxx, where xxx specifies a signal or function. The subroutine names for resetting output sig-
nals or functions to 0 (logic false) are of the form HRTxxx, where xxx specifies a signal or function.
The following list describes the output signals supported by HSRs:

Subroutine Signal
HSTAL, HRTAL AL — Analog Loopback
HSTDTR, HRTDTR DTR — Data Terminal Ready
HSTRTS, HRTRTS RTS — Request to Send
HSTSRS, HRTSRS DSRS — Data Signal Rate Select
HSTSRT, HRTSRT SRTS — Secondary Request to Send

(or Reverse Channel Signal)

The following list describes the output functions supported by HSRs:

Subroutine Function
HSTBIL, HRTBIL BiL — Board Internal Loopback
HSTCR, HRTCR CR — Channel Reset
HSTCTH, HRTCTH CTH — Channel Transmitter Halt
HSTRS, HRTRS RS — Receiver Squeich
HSTTB, HRTTB TB — Set Transmit Break Condition
HSTUIL, HRTUIL UlL — UART Internal Loopback

946250-9705 5-57

How to Write a Device Service Routine

The following paragraphs describe each of the functions in detail.

HSTBIL Subroutine. The Set Board Internal Loopback subroutine HSTBIL sets a more general
(controller or board) internal loopback mode than the universal asynchronous receiver/transmitter
(UART) internal loopback mode. None of the current asynchronous controllers support this sec-
ond level of loopback.

HSTCR Subroutine. The Set Channel Reset subroutine HSTCR performs a hardware reset of the
channel. This does not disturb any other communication channels, nor does it enable the channel
interrupts. The HRTCR subroutine enables interrupts and allows normal operation. The following
example shows a typical sequence for TSR use of these subroutines:

1. TSRissues an HSTCR call to quiet HSR activity on the channel.

2. TSRissues an HSWPWR call to initialize the HSR data structures and status.

3. TSRinitializes its channel data structures and status.

4. TSRissues an HRTCR call to begin normal operation.
HSTCTH Subroutine. The Set Channel Transmitter Hait subroutine HSTCTH temporarily suspends
output of data to the communications line. Any data in the transmit FIFO is not transmitted. The
HRTCTH subroutine resumes transmission of data in the transmit FIFO.
HSTRS Subroutine. The Set Receiver Squeich subroutine HSTRS enables half-duplex operation.
The receiver squeich function disables reception of data during transmission. The HRTRS subrou-

tine turns the receiver squelch off and allows fuil-duplex operation.

HSTTB Subroutine. The Set Transmit Break subroutine HSTTB initiates the transmission of a
break sequence (spacing/logic 0). This continues until stopped with the HRTTB subroutine.

HSTUIL Subroutine. The Set UART Internal Loopback subroutine HSTUIL places the UART (com-
munications chip) for the channel in loopback mode. In general, this causes the UART to return all
transmitted data as received data on the same channel. Refer to UART documentation for more
detailed information. The HRTUIL subroutine changes the UART from UART internal loopback to
normal mode.

The calling conventions for the HSTxxx and HRTxxx subroutines are identical. The following call-
ing convention uses the HSTxxx name as an example:

Calling convention:

BL @HSTxxx WHERE xxx IS DTR, RTS, ETC.
DATA VVVV SIGNAL NOT SUPPCORTED RETURN VECTOR
< next instruction> NORMAL EXIT (CODE)

5-58 946250-9705

How to Write a Device Service Routine

5.6.3 Read Input Signal or Function

This subroutine class allows reading controller input signals and HSR function states. The HSR
subroutine name is of the form HRDxxx, where xxx identifies a signal or function. The following
list describes the input signals or function states that can be read:

Subroutine Signal/Function

HRDBIL BIL — Board Internal Loopback (Signal)

HRDCR CR — Channel Reset (Function)

HRDCTH CTH — Channel Transmission Halted (Function)

HRDCTS CTS — Clear to Send (Signal)

HRDDCD DCD — Data Carrier Detect (Signal)

HRDDSR DSR — Data Set Ready (Signal)

HRDRI RI — Ring Indicator (Signal)

HRDSCT SCTS — Secondary Clear to Send (Signal)

HRDSDC SDCD — Secondary Data Carrier Detect
(or Speed Indication Signal)

HRDSSS SSS — Split Speed Supported (Function)

HRDTB TB — Transmit Break (Function)

HRDUIL UIL — UART Internal Loopback (Signal)

Calling Convention:

BL @ HRDxxx WHERE xxx IS DSR, CTS, ETC.

DATA WWWW SIGNAL NOT SUPPORTED RETURN VECTOR
DATA YYYY CONTROLLER FAILURE RETURN VECTOR
DATA ZzZzZ SIGNAL FALSE RETURN VECTOR

< next instruction> SIGNAL TRUE RETURN (CODE)

5.6.4 Enable/Disable Status Change Notification

This subroutine class provides a mechanism for the ISR (and therefore, indirectly the TSR) to
receive status change notification from the HSR. There are subroutines to enable notification and
to disable notification. Once enabled, most of the signals or functions that are supported remain
enabled until explicitly disabled.

The Transmit Shift Register Empty (TSRE) function is an exception to this rule. If the HSR makes a
TSRE status notification, it automatically disables further notification for this same condition.
You must enable the TSRE function with another HDSTSR call to the HSR if you want subsequent
notification. Refer to the HSR interrupt decoder description for more details about the method of
notification.

Notification is made when the signal changes from 0 to 1 or from 1 to O for the first five signals.

Some controllers notify only on the ring signal changing from 0 to 1. The TSRE notification is
made only when the condition occurs.

946250-9705 5-59

How to Write a Device Service Routine

The subroutine names for enabling status change notification are of the form HESxxx, where xxx
specifies a signat or function. The subroutine names for disabling status change notification are
of the form HDSxxx, where xxx specifies a signal or function. The following list describes the noti-
fication conditions that the HSR supports:

Subroutine Status Change Notification
HESCTS, HDSCTS CTS — Clear to Send
HESDCD, HDSDCD DCD — Data Carrier Detect
HESDSR, HDSDSR DSR — Data Set Ready
HESRI, HDSRI Rl — Ring Indicator
HESSCT, HDSSCT SCTS — Secondary Clear to Send
HESSDC, HDSSDC SDCD — Secondary Data Carrier Detect
HESTSR, HDSTSR TSRE — Transmit Shift Register Empty

The calling conventions for the HESxxx and HDSxxx subroutines are identical. The following call-
ing convention uses the HESxxx name as an example:

Calling Convention:

BL @HESxxx WHERE xxx IS DSR, RI, ETC.
DATA VVVV NOT SUPPORTED RETURN VECTOR
< next instruction> NORMAL RETURN (CODE)

5.6.5 Output a Character

This HSR subroutine accepts characters to be output on the communications channel. The sub-
routine provides a character interface to the output channel (that is, only one character is passed
to the HSR for each HOUTPx subroutine call). In all cases, the output data is stored in a transmit
FIFO before transmission on the communications line. For buffered controllers, the FIFQ is on the
hardware controller. For non-buffered controllers, the FIFQ is a software data structure that the
HSR manages. An alternate (character not output) return from the HOUTPx routine is taken if the
FIFO becomes full. The caller is responsible for saving the data character. The HSR notifies the
ISR when the transmit FIFO is empty. This notification takes place as a “transmit interrupt” exit
from the HSR interrupt decoder subroutine. This notification causes the output data to flow to the
HSR again. Refer to the HSR interrupt decoder subroutine description for more details.

The output character subroutines are HOUTP4 and HOUTP7. The only difference in these two sub-
routines is that workspace register four (R4) contains the PDT pointer for the HOUTP4 subroutine
and R7 contains the PDT pointer for the HOUTP7 subroutine. Refer to the PDTDIB description in
Table 5-2.

5-60 946250-9705

How to Write a Device Service Routine

Calling Convention:

BL @ HOUTPx . x=4|F R4 1S PDT POINTER
x=7IFR7I1S PDT POINTER
DATA XXXX CHARACTER NOT OQUTPUT — RETURN VECTOR
< next instruction> NORMAL (CHARACTER OUTPUT) RETURN
where:

R4 or R7 contains the pointer to the PDT.
R5 is the output character, left byte.

Volatiie Registers:

RO and RS
R5 preserved for character not output.

5.6.6 Write Operational Parameters
The following list describes the operational parameters that the HSRs support:

] Baud rate selection — The transmit baud rate and the receive baud rate are specified in
the most significant byte (MSB) and least significant byte (LSB) of RO, respectively. The
MSB and LSB must be identical for controllers not supporting split speed.

. Data format:
— Parity selection: even, odd, mark, space, or none.
— Character length selection: 5, 6, 7, or 8 bit data.
— Stop bit selection: 1, 1.5, or 2 stop bits.

The write parameters subroutines are Set Channel Speed (Baud Rate) and Set Data Character

Format. The calling conventions for these two subroutines are very similar. The only difference is
the parameter information passed in RO.

946250-9705 5-61

How to Write a Device Service Routine

5.6.6.1 Set Channel Speed (Baud Rate). This subroutine specifies the transmit and receive
speeds for the channel. The transmit and receive speeds may differ only when split speeds are
supported.

Calling Convention:

BL @HSPSPD SET CHANNEL SPEED
DATA VVVV PARAMETER NOT SUPPORTED RETURN VECTOR
< next instruction> NORMAL RETURN (CODE)

where:

RO MSB contains the transmit speed code;
LSB contains the receive speed code.
Refer to Table 5-10.

Table 5-10. HSR Baud Rate Codes

Speed Code Baud Rate
00 50
01 75
02 110
03 134.5
04 150
05 200
06 300
07 600
08 1,200
09 1,800
0A 2,400
0B 3,600
oC 4,800
oD 7,200
OE 9,600
oF 14,400
10 19,200

11-FF Reserved

5-62 946250-9705

How to Write a Device Service Routine .

5.6.6.2 Set Data Character Format. This subroutine sets the character length, parity selection,
and the number of stop bits for data characters.

Calling Convention:

BL @HSPPSL SET DATA CHARACTER FORMAT PARAMETERS
DATA VVVWV PARAMETER NOT SUPPORTED RETURN VECTOR
< next instruction> NORMAL RETURN (CODE)
where:
RO contains the parameter information in the following format:
Bit Contents
0-1 Reserved
2-3 Parity selection:

00 = odd parity
01 = even parity
10 = mark parity
11 = space parity
Parity enable (if 1)
7 Reserved
-9 Number of stop bits:
00 = 1 stop bit
01 = 1.5 stop bits
10 = reserved
11 = 2 stop bits
10 - 11 Data character length:
00 = 5 bit character
01 = 6 bit character
10 = 7 bit character
11 = 8 bit character
12-15 Reserved

[« -3 I
|

5.6.7 Read Operational Parameters and Information

This class of subroutines allows the following operational parameter values to be read from the
HSR:

Subroutine Operational Parameter Value
HRPDAT HSR module revision level
HRPPSL Data format:

Parity selection: even, odd, mark, space, or none
Character length selection
Stop bit selection

HRPSPD Baud rate

HRPTYP Controller type ID

946250-9705 5-63

How to Write a Device Service Routine

The parameter information is returned in RO of the caller's workspace. For the HRPSPD and
HRPPSL subroutines, the format of the information in RO is identical to the format in the HSPSPD
and HSPPSL subroutines, respectively.

Calling Convention:

BL @ HRPxxx WHERE xxx IS SPD OR PSL
< next instruction> RETURN

The HRPDAT subroutine returns the current revision level of the HSR software module in RO. The
revision level is a hexadecimal number starting at 0 for the initial level and incrementing by 1 for
each revision. The HRPTYP subroutine returns a code right justified in RO that identifies the con-
troller type. Table 5-11 lists controller type codes.

Table 5-11. Controller Type Codes

Code Controller
> 0001 Cl401 (previously COMM I/F)
> 0006 Business System 300 internal 9902 port
> 0007 990/10A 9902 port
> 0008 Cl402
- >0009 Cl421 9902 port
> 000A Cl4a22
>0023) Cl1403
>0024 Cl404
>0030 Cl421 9903 port

5.6.8 Request Time Interval Notification

This subroutine (HTIMER) requests notification after a specified time interval. You specify the
time interval as some number of 250-millisecond periods. The HSR interrupt decoder performs the
notification by taking the timer interrupt vector return to the ISR. Refer to the discussion of the
HSR interrupt decoder for more details. You disable timer notification by specifying a zero as the

number of 250-millisecond intervals (RO = 0). A “not supported” exit is not provided for this
subroutine.

Calling Convention:
BL @HTIMER

where:

RO specifies the number of 250-millisecond intervals.

5-64 946250-9705

How to Write a Device Service Routine

5.6.9 Controller Interrupt Decoder
The ISR calls this subroutine (HNOTIF) to perform controller interrupt decoding. The subroutine
executes in the DSR interrupt workspace and with interrupts masked to the interrupt level of the
controller channel. The ISR provides several return vector addresses via DATA directives immedi-
ately following the call. A return vector is provided for each interrupt type possible from the con-
troller. If the subroutine finds no controller interrupt pending, the return is to the operating system
interrupt decoder rather than to the caller.

Calling Convention:

BL @HNOTIF
DATA XXXX
DATA YYYY
DATA ZZZZ
DATA AAAA
DATA BBBB

Receive Interrupt Return:

R10 Received character left byte; line status in right byte. Line status is as follows:

Transmit Interrupt Return:

RECEIVE INTERRUPT VECTOR
TRANSMIT INTERRUPT VECTOR

SIGNAL OR FUNCTION CHANGE VECTOR
TIMER INTERRUPT VECTOR
ILLEGAU/INVALID INTERRUPT VECTOR

Bit Meaning
0-2 Reserved
Break received
Framing error
Parity error
QOverrun error
Reserved

NoO O A W]

This return is taken when the transmit FIFO empties.

946250-9705

5-65

How to Write a Device Service Routine

Signal or Function Change Return:

R10 Current signal or function states are returned in bits 0 — 3 and bits 8 — 10. Bits 4 — 7
and 12— 15 are delta flags that indicate which signals or functions changed.

Bit ’ Contents
0 DCD
1 RI
2 DSR
3 CTS
4 Delta DCD
5 Delta Rl
6 Delta DSR
7 Deita CTS
8 SCTS
9 SDCD
10 TSRE
11 Reserved
12 Deita SCTS
13 Delta SDCD
14 Delta TSRE
15 Reserved

5.7 COMMON ROUTINES

The following paragraphs describe the routines provided by DX10 for use in your DSR. Using these
routines can reduce the code required for multiple routines that frequently perform the same oper-
ations. You can also use them to remove DX10-specific routines from your DSR.

5.7.1 BRCALL — Branch Table Cail Routine

This routine decodes the I/0 sub-opcode in PRBOC in the buffered /0 request block and transfers
control to the appropriate routine. When you enter BRCALL, R1 must contain the address of the
buffered 1/O request block, which contains the /0O sub-opcode in its first byte, as defined in para-
graph 5.3.3. If you use the alternate entry point BRCALT, RO must contain the sub-opcode. The
routine leaves the contents of R1 unchanged, but modifies RO and R11.

5.7.1.1 Parameters. You must also supply a parameter list that contains the maximum number
of sub-opcode processors, an error return address, and the address of each processor in order
corresponding to the sub-opcode values. BRCALL decodes the sub-opcode and uses it as an
index to the parameter list, where it obtains the address of the processor for the sub-opcode.

5-66 946250-9705

How to Write a Device Service Routine

5.7.1.2 Calling Sequence.

BL @BRCALL (or @ BRCALT)

DATA < highest legal sub-opcode (n)>
DATA < error return address>

DATA < sub-opcode 0 processor address>
DATA < sub-opcode 1 processor address>

DA‘TA < sub-opcode n processor address>

5.7.2 BZYCHK — Busy Check Routine

This routine determines whether the device was busy at the time of a power failure. You shouid
call it in your Power Restored routine, which receives control when power is reapplied. BZYCHK
runs in the PDT workspace. BZYCHK tests the busy flag (bit 1 of PDTDSF) in the PDT.

. If It finds the busy flag set to one, BZYCHK checks the ENDRCD flag. If it is set,
BZYCHK returns to the first word following the call. If it is not set, BZYCHK sets the
reenter-me flag. In the cail block pointed to by R7, BZYCHK sets the status code of the
call block (PRBEC) to > 04 to indicate that the device has lost a record due to the power
failure. It also sets the error flag (bit 1 of PRBSFL). Then, it returns control to the DSR at
the second word following the call. That word shouid contain a call to the end-of-record
processor.

e If it finds the busy flag set to zero, BZYCHK returns control to the DSR at the word fol-
lowing the call. The instruction in this word should be a jump to the appropriate routine
for handling the not-busy condition.

5.7.2.1 Parameters. BZYCHK does not have formal parameters other than the instructions for
branching to the busy and not-busy routines. On return, the contents of RO have been changed
and not restored.

5.7.2.2 Calling Sequence.

MOV @PDTSRB - PDTSIZ(R4),R7 LOAD THE CALL ADDRESS INTO REGISTERR7
BL @BZYCHK BRANCH AND LINK TO BZYCHK

JMP NOTBSY JUMP TO NOT-BUSY ROUTINE

< busy routine>

946250-9705 5-67

How to Write a Device Service Routine

5.7.3 ENDRCD — End-of-Record Routine

This routine notifies the operating system that the I/O operation has terminated by setting the
end-of-record-needed flag (DSFEOR in PDTDSF) in the PDT. You should return control to the oper-
ating system with a RTWP instruction following the return from ENDRCD. The operating system
then returns the 1/O request to the user task. If the DSR has detected an error, it should set the
error flag (bit 1 of PRBSFL) in the buffered I/O request block before calling ENDRCD.

The ENDRCD routine uses the following registers and does not restore them when it returns:

RO R9
R1 R10
R8 R11

5.7.3.1 Parameters. ENDRCD has no parameters other than PDTSRB must point to the /O sub-
opcode byte of the buffered I/0 request block for the SVC whose 1/O is completed.

5.7.3.2 Calling Sequence.

BL @ENDRCD BRANCH AND LINK TO ENDRCD
RTWP RETURN CONTROL TO DX10

5.7.4 KEYFUN — Keyboard Function Routine
This routine processes four special keys found on keyboard devices. These keys allow the key-
board user to hold 1/0, abort I/Q, bid a task, or kill a task, depending on the sequence used.

HOLD Stops normal character interpretation by the DSR. The next keystroke
determines the subsequent action. If the user presses a key other than
HARD BREAK, ABORT, or BID, /O resumes from the point where it was
interrupted. (The Attention key serves as the HOLD key.)

ABORT Aborts the I/O being processed. (The Return key serves as the ABORT
key.) The active SVC call terminates with an error code of 06.

BID Bids SCI. (The exclamation point (!) key serves as the BID key.) The op-
erating system bids task 2 in .S3PROGA when this flagis set.

HARD BREAK Terminates the task running at the terminal. (The Control/X key combina-
tlon serves as the HARD BREAK key.) The DSR does not need to take any
special actlon for this to occur. The operating system bids task 2 in
.S$PROGA when this flag is set.

KEYFUN uses the KSB workspace and expects the input character to be in the upper byte of R10.
It compares the character to the HOLD, ABORT, BID, and HARD BREAK key values. When it
detects a match, it sets the appropriate flag in R6 of the KSB and takes the special exit, which

should skip normal DSR character buffering. Figure 5-21 depicts the use of KEYFUN in keyboard
interrupt processing.

5-68 946250-9705

2283074

946250-9705

YES

CALL
PUTEBF

CHARACTER

How to Write a Device Service Routine

PRESENT NO

GET CHARACTER
USING
CRU/TILINE
INSTRUCTIONS

MATCH RETURN

CHARACTER

CALL
PUTCBF

Figure 5-21.

SCHEDULE DSR
VIA REENTER-
ME OR BLWP

RTWP

Keyboard Interrupt Processing

5-69

How to Write a Device Service Routine

5.7.4.1 Parameters. The four bytes following the KEYFUN call must contain the values for the
HOLD, ABORT, BID, and HARD BREAK keys. The following word should contain the address of
the special exit used to process those keys.

5.7.4.2 Calling Sequence.

MOV @CHAR,R10 R10< = CHARACTER

BL @KEYFUN BRANCH AND LINK TO KEYFUN
BYTE < hold key> ‘ATTENTION’ KEY

BYTE < abort key> ‘RETURN’ KEY

BYTE < bidkey> ‘EXCLAMATION POINT’ KEY
BYTE < hard break key> ‘CONTROL/X' KEY SEQUENCE
DATA < special exit> RETURN ON MATCH

< next instruction> RETURN ON NO MATCH

5.7.5 GETC — Get Character Routine
This routine retrieves a character from the KSB receive character queue for an interactive ter-
minal. It uses the workspace in the PDT and assumes that R4 points to the KSB.

GETC checks if the LUNO was opened for event characters and the call uses an extended call
block. If not, GETC discards event characters until it finds a data character. If the LUNO is opened
for event characters and the call uses an extended call block, GETC processes the first character
it removes. The character is processed according to Table 5-12.

Table 5-12. Character Ranges Used by GETC

Code Character Type

>00 - >7F Data

>80 - >86 Event

>87 - >95 Data

>96 - >9A Event

>9B8 Ignored. Another character is removed.
>9C - >9F Event

>A0 - >FF Data

If the LUNO was opened for event characters but the call does not use an extended cail block, the
event character is placed back in the queue and the event character exit is taken. A Get Event
Character SVC must be issued to remove the event character before more data characters can be
read.

The character is placed in R9 left justified and control is returned to the routine indicated in the
Table 5-12.

5-70 946250-9705

How to Write a Device Service Routine

If GETC finds no characters in the input buffer, it places the empty buffer routine address in R6
and executes an RTWP instruction, returning control to the system. Because of this return, key-
board DSRs that use GETC must use a special convention for returning control to the system. The
DSR must load R6 with the address of the processor for the next interrupt before each return to
the system, and the DSR entry for processing interrupts should consist of a branch to the address
in R6, as follows:

ISRENT MOV @PDTSRB(R4),R1 R1< = SAVED PRB ADDRESS (PDTSRB)
B *R6 RESUME EXECUTION

5.7.5.1 Parameters. The call to GETC must be followed by two return points. The first provides
a vector to the routine that handles an empty character buffer. The second provides a vector that
handles event characters. The third return point is the instruction following the event character
vector and is the routine for processing the data characters.

5.7.5.2 Calling Sequence.

BL @GETC
DATA < empty buffer routine>
DATA < event character routine>
< first instruction of the data character routine is here>

5.7.6 JMCALL — Jump Table Call Routine

This routine decodes the 1/0 sub-opcode in the buffered 1/0 request block and transfers controi to
the appropriate routine. When you enter JMCALL, R1 must contain the address of the buffered /O
request block, which contains the 1/0 sub-opcode in its first byte as described in paragraph 5.3.3.
If you use the alternate entry point JMCALT, RO upper byte must contain the sub-opcode. The rou-
tine leaves the contents of R1 unchanged, but modifies RO and R11.

5.7.6.1 Parameters. You must also supply a parameter list that contains byte entries for the
maximum number of sub-opcode processors, an error return address, and the address of each
processor in order corresponding to the sub-opcode values. The entries for the error and sub-
opcode processors give the offset in words (positive eight-bit value) from the label of the first byte
in the list to the beginning of the processor. (Since the byte values are unsigned displacements,
the displacement cannot exceed 255 words and cannot reference a processor that precedes the
table.) For example, if the table begins at JTABLE and a processor begins at PROC1, you should
use the following jump table entry for PROC1:

BYTE (PROC1 - JTABLE)/2
JMCALL decodes the sub-opcode and uses it as an index to the parameter list, where it obtains

the offset for the processor for the sub-opcode. This index is zero based. If the sub-opcode is
greater that the highest legal sub-opcode, the routine takes the error routine exit. RO is destroyed.

946250-9705 5-71

How to Write a Device Service Routine

5.7.6.2 Calling Sequence.

BL @JMCALL (or @ JMCALT)
<table> BYTE < highest legal sub-opcode (n)>
BYTE (<errorreturn> —< table>)/2
BYTE (< sub-opcode 0 processor> - < table> 2
BYTE (<sub-opcode 1processor> —< table> 02

BYTE (< sub-opcode n processor> —< table>)2

§.7.7 PUTCBF — Put Character in Buffer Routine
This routine places a data character into the KSB input character queue.

5.7.7.1 Parameters. PUTCBF expects to find a data character in the upper byte of R10 of the
KSB workspace and the address of the input character queue in R2 and R3. If it finds the queues
full, PUTCBF returns control to the routine indicated in the word following the call. Otherwise, it
returns controli to the second word following the call.

5.7.7.2 Calling Sequence.

MOV @CHAR,R10 R10< = DATA CHARACTER
BL @PUTCBF CALL PUTCBF

DATA < buffer full routine> RETURN IF BUFFER FULL
< next instruction> NORMAL RETURN

5.7.8 PUTEBF — Put Event Character in Buffer Routine
This routine places an event character in the KSB character queue.

5.7.8.1 Parameters. PUTEBF sets bit 0 of R10 of the KSB workspace to a one to make it an
event character. If it finds the event character queue full, PUTEBF returns control to the routine
indicated in the word following the call. Otherwise, it returns control to the second instruction fol-
lowing the call.

5.7.8.2 Calling Sequence.

MOV @CHAR,R10 R10 < = EVENT CHARACTER
BL @PUTEBF CALL PUTEBUF

DATA < buffer full routine> RETURN IF BUFFER FULL

< next instruction> NORMAL RETURN

5-72 946250-9705

How to Write a Device Service Routine

5.7.9 SETWPS — Set Interrupt Mask Routine

This routine resets the interrupt mask so that the /O Call routine can complete before the ISR
must handle any interrupts. Your I/O Call routine should begin with a LIMI instruction to prevent
an interrupt for the device during the execution of SETWPS.

5.7.9.1 Parameters. SETWPS expects R2 of the DSR workspace to contain the current interrupt
mask. It does not alter the workspace pointers.

5.7.9.2 Calling Sequence.

< initial entry> LMl 0 MASK ALL INTERRUPTS
BL @SETWPS CALL SETWPS
< next instruction> RETURN POINT

5.7.10 BRSTAT — Branch Table Call with Statistics Routine

This routine performs the same function as BRCALL and JMCALL but also keeps a count for each
type of I/O call. Each time BRSTAT is entered, an appropriate statistics counter is incremented in
the PDT before branching to the specific opcode processor.

5.7.10.1 Parameters. BRSTAT requires two tables: one that lists opcode processor entry points
and one that lists offsets to counters in the PDT. The opcode processor entry table must immedi-
ately follow the BL @ BRSTAT call and have as its first word a count of the number of entry points
in the table. R10 is either O for no statistics, or it is the address of the statistics table. The table
contains a byte entry for each opcode handled by the DSR. If the byte value is 0, no statistics for
that opcode are kept. Otherwise, the byte is used as an offset into the PDT from R4. (Refer to the
asynchronous DSR example in Figure 5-22.) ‘

5.7.10.2 Caliling Sequence.
LI R10,STATTB
BL @BRSTAT
DATA < highest legal sub-opcode (n)>
DATA < errorreturn address>

DATA < sub-opcode 0 processor address>
DATA < sub-opcode 1 processor address>

DATA < sub-opcode n processor address>

STATTB BYTE > FC,> FD,> FC

946250-9705 5.73

How to Write a Device Service Routine

SDSMAC 14:12:26 WEDNESDAY, JUN 28, 1978.

ACCESS NAMES TABLE PAGE 0001
SOURCE ACCESS NAME= SYSBLD.DEVDSR.SOURCE.LPDSR

OBJECT ACCESS NAME= SYSBLD.DEVDSR.OBJECT.LPDSR

LISTING ACCESS NAME= SYSBLD.DEVDSR.LIST.LPDSR

ERROR ACCESS' NAME=

OPTIONS= XREF, TUNLST

MACRO LIBRARY PATHNAME=

LINE KEY NAME
0056 A DSC.SYSTEM.TABLES (PDT)
=>SYSBLD.SYSTEM.TABLES (PDT)
0057 B DSC.SYSTEM.TABLES (LDT)
=>SYSBLD.SYSTEM. TABLES (LDT)
0058 C DSC.SYSTEM.TABLES (PRB)

=>SYSBLD.SYSTEM.TABLES (PRB)

Figure 5-22. Example DSRs (Sheet 1 of 60)

5-74

946250-9705

LPDSR

0001
0002
0003
0004
0005
0006
0008
0009
0010
0011
0012
0013
0014
00ls
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

946250-9705

0007
0009
000B
000D
000E

0007
0009
000D
000E
000F

How to Write a Device Service Routine

14:12:26 WEDNESDAY, JUN 28, 1978
PAGE 0002

*

*(C) COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, 1977. ALL
*RIGHTS RESERVED. PROPERTY OF TEXAS INSTRUMENTS INCORPOR-
*ATED. RESTRICTED RIGHTS - USE, DUPLICATION OR DISCLOSURE
*SUBJECT TO RESTRICTIONS SET FORTH IN TI”S PROGRAM LICENSE
*AGREEMENT AND ASSOCIATED DOCUMENTATION.

IDT “LPDSR”
*20=0=0=0=0=20=0=0=0=03020=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0

TITLE: LPDSR - LINE PRINTER DEVICE SERVICE ROUTINE
REVISION: 04/01/76 - ORIGINAL
REVISION: 06/01/76 - BLANK ADJUSTMENT
REVISION: 11/29/76 - DX10 REL. 3.0
COMPUTER: 990
ABSTRACT:
FOR PDTEMP = 0 ST$SDM EQU O

THIS IS THE HANDLER FOR I/0 TO VARIOUS MODELS
OF PRINTERS INTERFACED VIA THE STANDARD TI
PARALLEL INTERFACE, DATA MODULE.

FOR PDTEMP = 2 STSEIA EQU 2
THIS IS THE HANDLER FOR I/0O TO VARIOUS MODELS
OF THE CENTRONICS AND TI LINE PRINTERS, THAT
USE AN RS5-232-C INTERFACE.

% ok % ¥ %k % Xk H % % F ¥ F ¥

*=0=0=0=0=0=0=o=0=0=0=0=0=0=O=O=O=O=O=O=O=O=O=O=O=O=O=O=O=O
*

* EXTERNAL DEFINITIONS
*
DEF LPHAN DSR ADDRESS
DEF LPINT INTERRUPT ENTRY
DEF LPSPUR SPURIOUS INTERRUPT CLEAR

*

EXTERNAL REFERENCES

REF SETWPS SAVE WPS ROUTINE

REF ENDRCD END-OF-RECORD ROUTINE

REF BZYCHK PDT BUSY CHECK ROUTINE

REF JMCALL I0COMX - JUMP CALL PROCESSOR

REF ASCCHK ASCII CHARACTER CHECK

REF BYTE40
*
* CRU BIT EQUATES
*
EIAPAR EQU 7 OUTPUT - DATA PARITY BIT
EIADTR EQU 9 OUTPUT - DATA TERMINAL READY
EIAWRQ EQU 11 INPUT/OUTPUT - (CLEAR) WRITE REQ
EIANSF EQU 13 INPUT - NEW STATUS
EIADSR EQU 14 INPUT - DATA SET READY
*
DMSTR EQU 7 OUTPUT - DATA OUTPUT STROBE
DMVFC EQU 9 OUTPUT - VERTICAL FORMS CONTROL
DMDMD EQU 13 OUTPUT - DEMAND FOR A CHARACTER
DMINT EQU 14 OUTPUT - INTERRUPT ENABLE BIT

- INTERRUPT ACKNOWLEDGE BIT

DMCIN EQU 15 OUTPUT

Figure 5-22. Example DSRs (Sheet 2 of 60)

5-75

How to Write a Device Service Routine

LPDSR
LPDSR - LINE PRINTER DSR

5-76

0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078

0079
0080
0081

0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

0000
0002
0004
0006
0008
000a
oooc
000E
0010
0012
0014
0015

0016
0017
0018
0019
001a
001B
001c
001p
001E
001F
0020
0021
0022
0023
0024
0025

0occ”
00F8~
0300
0000
06A0
0000
0208
0002
06A0
0000
10
1p

oc
09
12
oF
12
1A
23
23
23
1D
1p
15
15
12
12
23

**Q=0=20=0=0=

* ABSTRACT:

* LPHAN

*

*

*

*

*

»*

P*

*

*

*

*

*

LPHAN DATA
DATA
LIMI
BL
LI
BL

BASE BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

14:12:26 WEDNESDAY, JUN 28, 1978.

0=0=0=0=0=0=0=0=0

PAGE 0003

=0=0=0=0=0=0=0=0=0=0=0=0=0

- THIS IS THE MAIN ENTRY POINT INTO THE DSR
FOR THE POWER RESTORE ROUTINE (PWRON), THE
ABORT I/O ROUTINE (ABORT), AND THE 1,/0
ROUTINES. THE MAIN CODE BODY BEFORE THE JUMP
TABLE SETS UP THE WP, PC, AND ST FOR INITIAL
PROCESSING IN THE DSR. THE COUNTER IS USED
TO DETERMINE THE NUMBER OF OUTPUT CHARACTERS
FOR THE NON-WRITE OP CODES. THE JUMP TABLE
IS USED TO PASS CONTROL TO THE PROPER OP CODE
HANDLING ROUTINE VIA "JMCALL".

*O=O=O=O=O=O=O=O=O=O=OFO=O=O=O=O=0=O=O=O=O=O=O=0=O=O=O=O=0

PWRON POWER-UP ENTRY ADDRESS
ABORT ABORT I/O ENTRY ADDRESS

0 MASK INTERRUPTS

@SETWPS SET RETURN - WPS

R8,2 INITIALIZE COUNTER
@JMCALL JUMP TABLE PROCESSOR

16 MAX OP CODE
ILLOP-BASE/2&>FF ILLEGAL OP RETURN
OPEN-BASE/2&>FF 00 OPEN
CLOSE-BASE/2&>FF 0l CLOSE

CLSEOF-BASE/2&>FF
OPNRWD-BASE/2&>FF
CLSUNL-BASE/2&>FF
READST-BASE/2&>FF
EXIT-BASE/2&>FF
EXIT-BASE/2&>FF
EXIT-BASE/2&>FF
ILLOP-BASE/2&>FF
ILLOP-BASE/2&>FF
WRITEA-BASE/2&>FF
WRITED-BASE/2&>FF
WRTEQOF-BASE/2&>FF
RWND-BASE/2&>FF
EXIT-BASE/2&>FF

02 CLOSE EOF

03 OPEN REWIND

04 CLOSE UNLOAD

05 READ STATUS

06 FWD SPACE - IGNORE
07 BAK SPACE - IGNORE
08 DLT RECORD - IGNORE
09 READ ASCII - ILLEGAL
OA READ BINARY- ILLEGAL
0B WRITE ASCII

0C WRITE DIRECT

OD WRITE EOF

0E REWIND

OF UNLOAD - IGNORE

Figure 5-22. Example DSRs (Sheet 3 of 60)

946250-9705

LPDSR
LPDSR

0102
0103
0104
0105
0106
0107
0108
0109
01l0
011l
0ll2
0113
0114
0115
O0lls
0117
0118
0119

0120
0121
0122

0123
0124
0125

0126
0127
0128

0129
0130
0131

0132
0133
0134
0135
0136

0137
0138
0139
0140
0141

0142
0143

0144

0145
0146

0147

- LINE PRINTER DSR

0026
0028
002a

002c
002E
0030

0032
0034
0036

0038
003a
003cC

003E
0040
0042
0044
0046

0048
004a
004cC

004E
0050
0052
0054
0056
0058

005A
005C
005E
0060
0062

946250-9705

0026~
0207
0112~
1024
002c”
0207
0110~
1021
0032~
0207
oloc”
101F
0038~
0038~
0038~
0038~
0207
010E”
101B

003E”
003E”
ClEl
0004
c221
0008
1016

04E1
0008
1006

D860
0064~
FFFF
F860
0000
0002
005a”
D921
FFFF
FFEO
3424
FFE6

How to Write a Device Service Routine

14:12:26 WEDNESDAY, JUN 28, 1978.

PAGE 0004

**Q=0

* ABSTRACT:

* OPEN - PURGE BUFFER AND DO CRLF.

* OPNRWD - PURGE BUFFER AND PAGE EJECT.

hd CLOSE -~ ISSUE LF TO DUMP BUFFER.

* CLSEOF - PAGE EJECT.

* WRTEOF - PAGE EJECT.

* RWND - PAGE EJECT.

* CLSUNL - PAGE EJECT.

* WRITEA - GET WRITE PARAMETERS FROM THE PRB.
* READST - CLEAR CHAR COUNT IN PRB.

* ILLOP - SET ERROR CODE AND RETURN.

* EXIT - SET INTERRUPT VECTOR AND EXIT.
*

**0=0

*
CLOSE

OPEN

OPNRWD

CLSEOF
WRTEOF
RWND

CLSUNL

WRITED
WRITEA

READST

*
ILLOP

EREXIT

EXIT

EQU
LI

JMP
EQU
LI

JMP
EQU
LI

JMP
EQU
EQU
EQU
EQU
LI

JMP
EQU
EQU
MOV
MOV
JMP
CLR
JMP

MOVB

S0CB

EQU
MOVB

STCR

$
R7,CRLF

TSTDSR
27,CR SET BUFFER PTR
TSTDSR

37,PAGE1

TSTDSR

$

$

$

$
R7,PAGE2 SET BUFFER PTR
TSTDSR

$

$

@PRBDBA-2 (R1l) ,R7 BUFFER ADDRESS

@PRBCHT-2 (R1) ,R8 CHARACTER COUNT
TSTDSR

@PRBCHT-2 (R1)

EXIT

@BYTEO2,@PRBEC-2 (R1) ERROR CODE = 2

@BYTE40,@PRBSFL-2 (R1l) SET ERROR FLAG IN PRB

$ STORE SYSTEM LOG INFO
@PRBEC-2 (R1l) ,@PDTERR-PDTSIZ (R4)

@PDTSL1-PDTSIZ(R4) ,0

Figure 5-22. Example DSRs (Sheet 4 of 60)

5-77

How to Write a Device Service Routine

LPDSR 14:12:26 WEDNESDAY, JUN 28, 1978,

LPDSR - LINE PRINTER DSR = PAGE 0005

0148 0064° BYTE02 EQU §

0149 0064 0206 LI R6 ,LPSPUR SPURIOUS INTERRUPT VECTOR
0066 00OEC”

0150 0068 06A0 BL @ENDRCD GO TO END-OF-RECORD ROUTINE

006A 0000

0151 006C 0380 RTWP

Figure 5-22. Example DSRs (Sheet 5 of 60)

5-78 946250-9705

LPDSR
LPDSR

0153
0154
0155
0156
0157
0158
0159
0160
0l6l
0le62
0163
0l64
0165
0l66
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0l86
0187
0188

0189

0190
0191
0192
0193
0194
0195
0196
0197
0198
0199

0200
0201
0202
0203
0204
0205
0206
0207
0208
0209

946260-9705

How to Write a Device Service Routine

14:12:26 WEDNESDAY, JUN 28, 1978.

- LINE PRINTER DSR PAGE 0006

006E
0070
0072

0074
0076
0078
007a
007¢C
007E
0080
0082

0084
0086
0088
008a
008c
008E
0090
0092
0094
0096

0098
009a
009c
009E
00A0
00Aa2
00a4
00a6

00as8
002A
00AC
00AE
00B2
00B2
00B4

006E”
1FOB
1618
1EOB
0074°
0754
1604
1p07
1FOD
131B
1002
1FOE
1618
0084~
0608
11E9
D277
0249
7F00
0289
1300
13F8
0754
1308

31co
1co2
1E07
1001
1po7
0206
006E~
0380

0549
31c9
1E07
1000
1p07
10E0
0206

**0=0
ABSTRACT:
TSTWRQ - THIS ROUTINE IS ENTERED UPON RECEIPT OF AN
INTERRUPT FROM AN EIA INTERFACED LP. WRITE
REQUEST MUST GO HIGH BEFORE PRECEEDING TO
OUTPUT ANOTHER CHARACTER.
TSTDSR - THIS ROUTINE IS ENTERED UPON RECEIPT OF AN
INTERRUPT FROM A DM INTERFACED LP, WRITE
REQUEST FOR AN EIA I/F’D LP HAS GONE HIGH, OR
THIS IS THE INITIAL CHARACTER BEING OUTPUT TO
THE LP. CERTAIN CHARACTERS LESS THAN 20 ARE
SCREENED FROM BEING OUTPUT TO THE LP EXCEPT IN
THE CASE WHERE THE SYSGEN PARAMETERS AND THE
USER SPECIFY THAT THE PRINTER IS CAPABLE OF
HANDLING THE CHARACTERS.

% % % % % % * % * F * * F X X

**0=0=O=O=O=O=O=O=O=O=O=O=O=O=O=O=O=O=O=C=O=O=O=O=O=O=O=O=O
*

TSTWRQ EQU § ENTER HERE ON INTERRUPTS
TB EIAWRQ WRITE REQUEST HIGH?
JNE WAITWR NO, WAIT FOR IT
SBZ EIAWRQ YES, RESET IT
TSTDSR EQU § INITIAL OUTPUT ENTRY
ABS *R4 DM INTERFACED LP ?
JNE EIATST NO -
SBO DMSTR YES- INITIALIZE STROBE
TB DMDMD DEMAND UP ?
JEQ WAITDS NO -WAIT FOR IT
JMP DECCNT YES-
EIATST TB EIADSR DATA SET READY ?
JNE WAITDS NO - WAIT FOR IT
DECCNT EQU §
DEC R8 YES—- DONE WITH THE RECORD ?
JLT EXIT YES- LEAVE
MOVB *R7+,R9 NO - GET NEXT CHAR
ANDI R9,>7F00 SET PARITY BIT 0
CI R9,>1300 DESELECT CHARACTER?
JEQ DECCNT YES - SKIP IT
LDCHR ABS *R4 DM INTERFACED LP ?
JEQ DMLCHR YES-
* EIA OUTPUT CHARACTER SEQUENCE
LDCR R9,7 NO - LOAD CHARACTER
JOP SETONE SET PARITY BIT AS NEEDED

SBZ EIAPAR

JMP WAITWR
SETONE SBO EIAPAR
WAITWR LI R6 , TSTWRQ

RTWP
*
* DM CHARACTER OUTPUT SEQUENCE
DMLCHR INV R9 INVERT THE CHARACTER
LDCR R9,7 OUTPUT THE CHARACTER TO THE I/F
SBZ DMSTR STROBE THE I/F
NOP
SBO DMSTR

JMP TSTDSR
WAITDS LI R6,TSTDSR

Figure 5-22. Example DSRs (Sheet 6 of 60)

5-79

How to Write a Device Service Routine

LPDSR 14:12:26 WEDNESDAY, JUN 28, 1978.
LPDSR -~ LINE PRINTER DSR PAGE 0007

00B6 0074~
0210 0o0B8 0380 RTWP

Figure 5-22. Example DSRs (Sheet 7 of 60)

5-80 946250-9705

LPDSR
LPDSR

0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231

0232
0233
0234
0235
0236
0237
0238
0239
0240
0241

0242
0243

0244
0245

0246
0247
0248
0249
0250
0251

0252
0253
0254
0255
0256

0257
0258
0259

0260
0261

946250-9705

How to Write a Device Service Routine

14:12:26 WEDNESDAY, JUN 28, 1978.
- LINE PRINTER DSR PAGE 0008
**O-_-0=o=o=O=0=0=0=0=0=O=0=O=o=0=o=0=O=O=O=O=O=O=O=O=O=O=O=O
* ABSTRACT:
* LPINT - THIS IS THE ENTRY POINT FOR DEVICE
* INTERRUPT. THE TIME-OUT COUNTER IS RESET AND
* THE PROPER ROUTINE IS ENTERED VIA R6.
* PWRON - THIS ROUTINE IS ENTERED WHEN THE SYSTEM
* INITIALLY STARTS AND WHEN THE SYSTEM RECOGNIZES
* A POWER RE-START. THE INTERFACE IS PROPERLY
* INITIALIZED.
* LPSPUR - HANDLE SPURIOUS INTERRUPTS.
* ABORT - THIS ROUTINE HANDLES I/O ABORT.
*
**0=0=O=0=0=0=0=0=0=0=O=0=0=0=0=0=0=0=O=O=0=O=O=O=O=O=O=O=O
*
00BA 0754 LPINT ABS *R4 DM INTERFACED LP ?
00BC 1602 JNE LPI$OS NO -
00BE lEOF SNZ DMCIN YES- CLEAR INPUT INTERRUPT
00c0 1001 JMP LPIS$S10
00C2 1lEOD LPI$S0S SBZ EIANSF CLEAR NEW STATUS INT
00C4 €924 LPIS10 MOV @PDTIM1 (R4) ,@PDTIM2 (R4)
00C6 FFFA
00C8 FFFC
00CA 0456 B *R6
*
00CC 0754 PWRON ABS *R4 DM INTERFACED LP ?
00CE 1604 JNE PWRS$05 NO -
00D0 1lEOF SBZ DMCIN YES- CLEAR INPUT INTERRUPTS
00p2 1DOE SBO DMINT ENABLE INTERRUPTS
00p4 1D09 SBO DMVFC DISABLE VFC
00D6 1003 JMP PWRS$10
00p8 1D09 PWR$05 SBO EIADTR *
00DA 3020 LDCR @INIT,O * INITIALIZE INTERFACE
00DC 0114~
00DE ClCl PWR$1l0 MOV R1,R7 R7=PRB ADDRESS
00E0 06A0 BL @BZYCHK GO TO BUSY CHECK ROUTINE
00E2 0000
00E4 1006 JMP NOTBZY NOT BUSY RETURN
00E6 0206 LI R6 ,EXIT BUSY RETURN
00E8 005A”
00EA 0380 RTWP
*
00EC 0754 LPSPUR ABS *R4 DM INTERFACED LP ?
00EE 1301 JEQ NOTBZY YES-
00F0 lEOB SBZ EIAWRQ NO - RESET INTERRUPT
00F2 0206 NOTB2Y LI R6,LPSPUR AND IGNORE IT
00F4 00EC”
00F6 0380 RTWP
00F8 ClCl ABORT MOV R1,R7 R7=PRB ADDRESS
00FA“ BYTEO6 EQU $
00FA 06A0 BL @BZYCHK GO TO BUSY CHECK
00FC 00E2”°
OOFE 10AD JMP EXIT NOT BUSY RETURN
0100 D860 MOVB @BYTEO6,@PRBEC-2 (R1) BUSY RETURN, ERROR CODE=6
0102 OOFA”
0104 FFFF
0106 0242 ANDI 2,>FBFF RESET REENTER-ME FLAG
0108 FBFF
010A 10A4 JMP EREXIT EXIT
*
Figure 5-22. Example DSRs (Sheet 8 of 60)
5-81

How to Write a Device Service Routine

= LINE PRINTER DSR

LPDSR

LPDSR
0262
0263 0l0cC 7F
0264 010D oc
0265 010E 0D
0266 010F oc
0267 0110 7F
0268 0111 0D
0269 0112 0a
0270 0113 oD
0271 0114 4600
0272

NO ERRORS

5-82

*
PAGEl

PAGE2
CR
CRLF

INIT

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
DATA
END

14:12:26

>7F
>0C
>0D
>0C
>7F
>0D
>0Aa
>0D
>4600

WEDNESDAY, JUN 28, 1978.

PAGE 0009
DATA TABLES FOR THE NON-OUTPUT
CR
FP
NUL
CR

INITIALIZE INTERFACE LDCR VALUE

Figure 5-22. Example DSRs (Sheet 9 of 60)

946250-9705

How to Write a Device Service Routine

LPDSR 14:12:26 WEDNESDAY, JUN 28, 1978.
LABEL VALUE DEFN REFERENCES PAGE 0010
$ 0116~ A0008 A0008 A0034 A0034 A0035 AQ035 AQ0036 A0036 A0052

A0053 B0036 C0017 0118 0121 0124 0127 0128 0129
0130 0134 0135 0145 0148 0171 0175 0184 0255

ABORT 00F8~ 0254