Model 990 Computer
DX10 Operating System Release 3.4
System Design Document

i s

Part No. 939153-9701 *C
1 October 1981

K@TEXAS INSTRUMENTS

LIST OF EFFECTIVE PAGES

55—

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES
Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the other

margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

Model 990 Computer DX10 Operating System Release 3.4 System Design Document (939153-9701)

Originallssue i 15 December 1977

ReVISION. . oot e e 15 December 1979

ReVISION. ...t et e e e 15 April 1981
Change 1 i e 1 October 1981

Total number of pages in this publication is 302 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE

NO. NO. NO. NO. NO. NO.
Covercovuinnn 1 61-68.............. 0 9-15-9-18............ 0
Effective Pages....... 1 69-6-11............. 1 019, 1
fi-v .o o 0 6-12-6-17............ 0 9-20-9-28............ 0
Vi 1 618.. ... 1 10-1-10-22........... 0
vii-viii .. 0 6-18A-6-18F 1 10-23/10-24........... 1
XX oveeeei e 1 6-19-650............ 0 A1-A18 ... 0
Xi-Xii oo 0 6-51-6-55............ 1 B1-B6 0
1-1-140............. 0 6-56-660............ 0 C1-C12 0
21-24 ... 0 661................ 1 D-1D-2.............. 0
31-36.............. 0 6-62-666............ 0 E-1-E-2 0
41-4-7 0 667.....0ciitn 1 F1-F14 1
48.. 1 668................. 0 User's Response. 1
49-4-27 0 T1-7-2. ..o 0 Business Reply....... 1
428-431............ 1 81-84.............. 1 Sales and Service 1
4-32-446............ 0 9-1-912............. 0 Coverooovun 1
51-54.............. 0 913-914............ 1

5

© Texas Instruments Incorporated 1977, 1979, 1981
All Rights Reserved

The information andlor drawings set forth in this document and all rights in and to inventions
disclosed herein and patents which might be granted thereon disclosing or employing the
materials, methods, techniques or apparatus described herein are the exclusive property of
Texas Instruments Incorporated.

System Design Document Preface

PREFACE

The purpose of this manual is to familiarize the reader with the flow
of control between major parts of the DX10 operating system, with the
internal data structures used, and with the organization of the systenm
disk.

The manual is organized into the following sections:

1. DX10 Implementation Tutorial -- Describes the general
concepts used throughout DX10 and control paths through major
parts of DX10.

2. Organization and Structure of DX10 Source Libraries -—-
Describes the organization of the DX10 source disk, and

includes a disk map.

3. System Loaders -- Describes the software necessary to start
up a DX10 system, including the boot loader, disk loader,
DX10 loader, and system restart task.

4. Disk Organization -- Describes the physical and logical
format of a DX10 disk, as well as the internal structure of
all file types that are supported.

5. System Files -- Describes some special files used by DX10.

6. Data Structures -- Describes many of the internal data
structures built and maintained by DX10.

7. DX10 Data Base Modules -- Describes the information contained
in the two data modules within DX10.

8. Common System Routines -- Names and describes the stacking
and queueing routines used by many of the system routines.

O

DX10 Source Modules -- Contains a tabularized description of
the most important modules in DX10.

10. System Command Interpreter -- Describes the separate
functional parts of the system command interpreter (SCI) and
the flow of control between those parts.

This manual also includes appendices +that describe how to analyze
system crashes; how to regenerate DX10, SCI, SDSMAC, and the 1link
editor from the source; the scheduler structure and operation; the
effect of device states on LUNO assignment; VDT character input; and
operation of the system level debugger.

9%39153-9701 iii Texas Instruments

Preface System Design Document

This manual assumes that the user has a detailed, working knowledge of
the information contained in the following Model 960 Computer Manuais:

DX10 Operating System Concepts and
Facilities Manual 946250-9701

DX10 Operating System Production
Operation Manual 046250-9702

DX10 Operating System Application
Programming Guide 046250-9707%

DX10 Operating System Developmental
Operation Manual 046250-9704

DX10 Operating Systen
Systems Programming Guide 046250-9708

DX10 Operating System Error Revorting
and Recovery Manual 046250-0706

Texas Instruments iv Q301 5%-9701

System Design Document Table of Contents

TABLE OF CONTENTS

Paragraph Title

SECTION 1 DX10 IMPLEMENTATION TUTORIAL

General Concedpts. + « v « v v ¢« o o o .

A Queue Servers.

.2 A 32-Byte Block of Memorv —-Beets . .

.3 Calling Conventions. . . e e e e e e
1.4 System Memory Mapping. . . e e e e e
. How Parts of DX10 Fit rT‘ogether. e e e e e
2. SVC Processing . « « « « ¢ ¢« 4 ¢ o o . .
2. Bidding a Task
2. Scheduling, ILoading, and Rolllng a Task.
2. Scheduling. e

Loading And Rolllng e e e e .« e e
Memory Management
Dev1ce I/0 FLOW. « & v v v v v v v e
ile Utility PFlow. e e e
Assigning and Releasing LUNOs . . .
Creating and Deletlng Files . .
File I/0 Flow. e e e e
Blocked File I/0.
Unblocked File I/0. . « . « ¢« o . . .
Task Termination . . e e e e e e
End Task/End Program SVC. ...
Suspend Awaiting Queue Input SVC.
Error Termination
Kill Task SVC ¢ ¢« v « o « o .

. . L]
NN -

N —

e o & e o
e e o e e & e o
N —

PN NDN = = s

¢« & e e

Rt I i el SR S U N G G VD G G ST
N3 310NN UITUT S OITVIVTW N =
e o o o « o . .

A~ -

SECTION 2 ORGANIZATION AND STRUCTURE OF DX10 SOURCE
2.1 General . . . C e e e e e e e e
2.2 Top Level Dlrectorles C e e e e e e e e

SECTION 3 SYSTEM LOADERS
3.1 General e e e e e e e e e e e
3.2 The Boot Loader . . . e e e e e e
3.3 The Disk Program Image Loader e e e e e e
3.4 The System Loader/Initializer
3.5 The System Restart Task

939153%-9701 v Texas

Page
-1
1-3
. 1-5%
1-6
1-6
1-11
e e o 111
« e e . 173
e o« . 148
. . .« 1-18
. . . 1-18
. . . 1=22
« . .. 1-26
.« . . 1-28
e o s 1-31
. 1-34
. 1-34
T N
. . 137
. 1-38
. . 1-38
. « o 1=39
. . . 1=39

... 1239

LIBRARIES

Instruments

Table of Contents System Design Document
TABLE OF CONTENTS (Continued)
Paragraph Title Page
SECTION 4 DISK ORGANIZATION

Disk Format . « « . « .« . e o
Physical Organization of the Disk
Volume Information
Allocation Bit Map
File Structures . . . e e e e e
Relative Record Flles. e o e s s
Unblocked Relative Record File
Blocked Relative Record File.
Sequential Files
Key Indexed Files.
B-TreesS o+ « o o « o s o o o
Data Blocks .« «+
Special Relative Record Flles.

o o
!

e o
N

e o o s o
.
« o o e o

[] L] L]
WLWWwWwwwwwwwwwbdhhp e

. *

[N

1 1
WWOWOWOOIANHH

[A]
|

e e
s e e o e e o o e ° s @ o

Program Files
Directory Files
Image Files . . . « . . .

R S S I I U - T S
e & o o e o s o o e e e o s

. L] . . @ . . . L] . . L] L] . L] .

L] L] . L N . L] . - . . ° . . .

. . . o o * . . L] L] . L . L] L]

. . L] L I L] L] L] . * . L]

L] L] . L] . L] L . L] . o . . - .

Bl W W W N

e 8 e ® & 9 9 e & o ©
* e e

e o e s o o o

e e+ e o & e & ¢ ¢ s

WM N

SECTION 5 SYSTEM FILES

General
System Program File
System Overlay File
Crash File.
Roll File

Ut Ul
« o ¢ o o
Uk W N -
¢« s ¢ o o
« v e o
e o o o &
e o e e e
e o o o o
e e o o »
"« e o o
e e« o o o
e o o o »
e o o o
« s e s e
e o o o
e o o o
« o o e &
e o o o @
e o o o @

SECTION 6 DATA STRUCTURES

6.1 General . . ¢ ¢ ¢ o o o e 2 e o o e s e e s s e o 6-1
6.2 QUEUES.: « o o o o o o o o s o o s o s o o s o s o = 6-1
6.3 Physical Device Table 6-2
6.3.1 PDT Expansion Block. . « ¢« ¢ ¢« ¢ o ¢ « &« « o « = 6-7
6.3.2 Disk PDT Extension (DPD) . . . e e e s e e e s 6-8
6.3.3 Teleprinter Device PDT Exten51on (DIB) . « . . . ©6-11
6.3.4 Keyboard Status Block (KSB). . . « « « « . « « . 6-14
6.3.4.1 Video Display Terminal Extension (VDT). . . . 6-17
6.3.4.1A Electronic Video Terminal Extension (VDT940) 6-18
6.3.4.2 KSR Extension (KSR) . . « « + o« « o« « &« o« « o« 6-18F
6.3.4.3 820 Extension (T82) . « « « o « « o« o « « « « 6-20
6.3.4.4 Character Queue e o o o o o o o & o« 6=-21
6.3.5 Line Printer Extension (LPD) e e« s o s+ e s s+ = . 6=21
6.3.6 Tape Extension (TPD) . . « ¢« « ¢« o o « « &« « « » 6-23
6.3.7 Floppy Diskette Extension (FPD). 6-24
6.4 File Control Block (FCB) e e o s e o s e s s+ e« s « b=25
6.4.1 KIF Extension to the FCB . . . « + + « . . « « 6-30
6.4.2 Queue Extension to the FCB « . « +« « &+ &« & « « o 6=32
6.4.3 Record Lock Table (RLT). . . . e e o + o o « o 6=33
6.4.4 Program File Extension to the FCB. « « e & s o . 6-34
6.5 Logical Device Table (LDT). + « « « « « o « « « « o« 6=35
6.6 Buffered Call BloCKk v « « o o o o o s o o o o « « o« 6=37
6.7 Task Status Block (TSB} « + « ¢ o + « « o« o« s « « + 6-38

Texas Instruments vi (Change 1) 939153-39701

System Design Document Table of Contents

~~1=3

Paragraph Title Page
6.8 Procedure Status Block (PSB). 6-45
6.9 Time Ordered List (TOL) . o. . Y e
6.10 System Log Parameter Blocks (QLPB) e e e 4+ « . 6=40
6.10.1 Device Extension with Controller Image (SLXKEY=0) 6-51
6.10.2 User Call Extension to SLPB (SLXKEY = 1) 6-52
6.10.% Memory Error Extension to SLPB (SLXKEY = 2). . . 6-52
6.10.4 Statistics Extension to SLPB (SLXKEY = 3). . . . 6-53%
6.10.5 Interrupt Extension to SLPB (SLXKEY 4) 6-53
6.10.6 Task Extension to SLPB (SIXKEY = 6). 6-54
6.10.7 Cache Memory Extension to SLPB (SIXKEY = 8). . . 6-54
6.10.8 SLPB Device Extension with PRB (SIXKEY = 9). . . 6-55
6.11 System Overlay Table (OVT). 6-55
6.12 Memory Management Lists . . 6-59
6.1% Structure of the Sequentlal Flle Created by Backup
Directory . . . 6-59
6.13.1 Backup Dlrectorv WLth NOMULTI Optlon Selected . 6-61
6.13.2 Backup Directory With MULTI Option Specified . . 6-67
SECTION 7 DX10 DATA BASE MODULES
1 General . . + ¢ 4t 4 4 e e e e e e e e e e e e 71
.2 DEDATA. + v v v v v v e e e e e e e e e e e e e 7-1
3 DXDAT2. v v v v v e e e e e e e e e e e e e e e e T=2
SECTION 8 COMMON SYSTEM ROUTINES
8.1 STACKING ROUTINES + v v v v v v v v o o o o o o 4 8-1
8.2 QUEUING ROUTINES. + v & &+ v v v o o o o o o . . 8-%
8.2.1 TMQUE . . & ¢ v v v e e e v e e e e e . 8-3
8.2.2 TMAQUE . . & & & v v v e e e e e e e e o 8-3
8.2.3 TMAQO .« & & v v v e e e e e e e e e . 8-4
8.2.4 ITMTSBQ « v ¢ v v v v v e e e e e e e e . 8-4
8.2.5 TMDQUE . © & & v v e e e e e e e e e e 8-4
8.2.6 TMSORM . . v v v v e e e e e e e e e e 8-4
SECTION 9 DESCRIPTION OF DX10 ROUTINES
9.1 General v i e e v e e e e e e Q-1
9.2 SVC Processing. . e e e e e e e 9-1
9.3 Bid Task Supervisor Call - Vode >05 e e e e e e e a-4
9.4 Task Manager. « 4 e e e 9-5
9.5 Memory Manager. « ¢ v o « « o . 9-10
9.6 Disk Manager. . e e . 9-14
9.7 Device I/0 Prooe531ng . 9-17
9.8 File Utility Routines 9-10
.9 File Manager. . o e e e e e e e e e 0-25
“9.9.1 Key Indexed Flles e e e e e e e e e e 9-27

8%9153-~.9701 vii Texas Instruments

Table of Contents

Paragraph

TABLE OF CONTENTS (Continued)
Title

SECTION 10 SYSTEM COMMAND INTERPRETER

— e el ot b
[eYoRolojoRoloNe)

. s

10.

10.

Texas Instruments

e ¢ o e

UIVIUT VT UTUTUT UTUT OIS s D S

oYoXoloJoJoJoRololoJoloJoRo RO

e e« o s * » e

GTUTUTUL I U B B B B s Ss SOT OO D DE D —

VIR~ NN —

IO WENN -

LTI R R R RO R RO R MO N R R RO N D RO RO D RO N RO D D D D —
LN =
1RSI N =

Ui NON
NN -

. . .
.
SO =

DT AT NN N —

nN —

General .

System Command Interpreter.
¢t Structure of SCI . .
Overlay Strategy . .

Data Structures.
System Communlcatlon “Area (SCA)
SCA Entry . « « « ¢ o o o o o o . . .
Text String
Terminal Communlcatlons Area (TCA) . .
Terminal Status Block (TSB)
Name Correspondence Table (NCT) . .

Interfaces « « « ¢ o o o o e e e e e s e s
Calling Sequence. . « « « + « o« o « « =
Terminal Local File . . « + « « « + &
System Procedure Library.
Menu FilesS. « o ¢ o« o o o o o s o o s
TCA Library File -- .S8TCALIB . .
Foreground TCA File .S$FGTCA .
Background TCA File .S®BGTCA .

SVC Overhead Analysis.

.BID SVC Overhead for Foreground SCIQQO .
.BID SVC Overhead In The Task Being Bid .

.0VLY SVC Overhead for SCIQ90 e e
.OVLY SVC Overhead in the Overlay .
Analysis. . . e ..

Background Resource Manager e e e e e e e
Structure of BRM « « « « + <« . &
Calling Seguence . . .
Background Communlcatlons Area (BCA)

Queued Task Bid Handler (QBID).
Structure of QBID. . . .« « « « « o . e .
Data Structures . . e e e & s e e

System Communlcarlon Area (sca) .

Background Communication Area (BCA)

Task Queue Entry. =« e e .
Calling Sequence . . « « « o« o o o o o =
Fi1ES. v ¢ o ¢ o« o 1 & e s e e 4 e e e o
Error Codes. . e e e e e

Queued Output Handler (OQUEUE).

Structure. . .« .« o o o . . . e

Data Structures. . . .
System Communlcatlon “Area (SCA\
Background Communication Area (BCA)
Output Queue Entry.

Pile Environment Table. . . . « «+ « «

Calling Sequence .

Files. . . e e e s e e e e e e e e
TCA F11e e e s e e e e e e e e e e e
Listing File. . « « « o « o « o« o o o .

Brror Cod2S. v o o o o o o o o o o o o o

viii

e e o o e & s e u

System Design Document

Pag‘f

10-1
10-1
10-1
10-%
10-4
10-4
10-4
10-5
10-6
10-7
10-7
10-8
10-8
10-9
10-9
10-9
10-10
10-10
10-10
10-11

. 10-11
. 10-11

10-124"
10—12‘

. 10-12

e e o & o @

10-1%
10-13
10-13%
10-14
10-14
10-14
10-16
10-16

. 10-16

10-16
10-17
10-17
10-17
10-18
10-18
10-21
10-21
10-21
10-21
10-22
10-22
10-23
10-2%
10-23

1 0—2?(

97201 53-9701

System Design Document

=)

Appendix

HEO QW >

939153-9701

TABLE OF CONTENTS (Continued)

APPENDIXES

System Crash Analysis

Regenerating DX10, SCI, SDSMAC, &
Scheduler Structure and Operation
Device States and LUNO Assignment

VDT Character Input SVCs.
The System Level Debugger .

(Change 1)

ix

From Source

Table of Contents

Page |

a-1
B-1
c-1
D-1
E-1

F-1

Texas Instruments

Table of Contents System Design Document

LIST OF FIGURES

Figure Title Pa<£ﬂ

1-1 DX10 Physical Organization. . . . ¢« « ¢« + « « « & 1-2
1-2 DX10 Queue Structure. . . « . ¢ ¢ ¢« ¢ ¢ ¢ ¢ o o . 1-4
1-3 Active Task QUEUE . .+ « ¢ ¢ & o o o o o o o o o

1-4 System Memory Mapping . . « + « ¢« & o o o o o o o

1-5 System Map File 0 Schemes « ¢ « ¢ ¢ ¢ « & 1-8
1-6 System Map File 1 Schemes « ¢« ¢ ¢ « « & 1-9
1-7 SVC Processing Flow of Control. « « « . &« 1-11
1-8 Bidding a Task. . « ¢ ¢« ¢ o ¢ ¢ o o o« o o o o o 1-12
1-9 TSB Family Tree€ . + « o o o o o o o o o o o o o & 1-14
1-10 TSB/PSB Relationship. « « ¢« ¢ ¢ ¢ ¢ o ¢ ¢ o o o & 1-15
1-11 Simplified Flow of Scheduler. . . . « . « ¢« « « & 1-19
1-12 Simplified Flow of ILoader . . . « « ¢ ¢ « & « o =« 1-20
1-13 Time-Ordered List . . ¢ ¢« ¢ ¢ ¢ ¢ o« ¢ o o o o o 1-22
1-14 Find Memory FlOow. . ¢ « ¢ o o ¢ o o s o o o o o = 1-24
1-15 Logical Device Table Hierarchy. 1-26
1-16 Device I/0O Processing FIOw. . « « « « o o o o o & 1-28
1-17 File Utility Calling Processing « . « « o« « o +« . 1-29
1-18 Logical Device Table Pointers« ¢« « « .+« . 1-31
1-19 FCB and LDT Tre€. « « « o o o o o o o o s o o s 1-32
1-20 File I/O Flow e e s e e e e s e e 1-35
4-1 Volume Information Format (VIF) « . . . 4-2
4-2 Partial Bit Map . + « ¢ o o « o o ¢ o o o o o o o 4-7
4-3 Sequential File Format. . « ¢« ¢ « ¢ ¢ ¢ ¢ o o o« & 4-11
4-4 Blank-Suppressed Record . . « . ¢ + « o o & s o & 4-12
4-5 Key Indexed File B-Tree . . « « ¢ o &+ o s « o o & 4-14
4-6 B-Tree Block. . v ¢ & ¢ o o o ¢ o o o o o o o s o 4-15
4-7 Data BlocKk. « « ¢ o o o o o o o o o o o o o o o 4-18
4-8 Program File Format . . « « ¢ ¢« o ¢ ¢ ¢ o o o o =« 4-21
4-9 Program File Record Zero . . « « o o o o o o o & 4-22
4-10 Program File Available Space List 4-24
4-11 Task Directory Block. . . « + & ¢ ¢ ¢ ¢ ¢ o« o + & 4-25
4-12 Procedure Directory Entry . . « ¢« ¢ ¢ ¢ o ¢ o o+ o 4-26
4-13 Overlay Directory Entry . . ¢ « ¢« ¢ ¢ o« o o o o & 4-28
4-14 Directory File Structure. . . . « « ¢ ¢ « ¢ o« o =« 4-30
4-15 Computing Hash Key. . « « ¢ ¢ ¢ ¢ ¢ ¢« o« ¢ o « o 4-31
4-16 Directory Overhead Record Format. « . . . 4-33
4-17 File Descriptor Record. . . . v ¢ ¢ o ¢ o o o o & 4-34
4-18 BAlias Descriptor Record . . « o o o ¢ o o o o o & 4-39
4-19 Key Descriptor Record . . « « ¢ ¢ o« o o o o o & o 4-41
4-20 Directory File DUmMP . « « ¢ o o ¢ ¢ o o ¢ s o o & 4-43
6-1 Queue ANChOL. « ¢ &+ o o o o o o o o o o o o o o = 6-1
6-2 Physical Device Table . . « ¢ « ¢ o ¢ o o o o o & 6-3
6-3 Physical Device Table Expansion Block 6-7
6-4 Disk PDT EXtension . . « « « o ¢ o o o o o o o o 6-8
6-5 Keyboard Status Block e o e e s o e 6-11
6-6 Teleprinter Device Extension to PDT « s e e e e e 6-15
6-7 Video Display Terminal Extension to KSB 6-17
6-7A Electronic Video Terminal Extension to KSB . . . 6-18A
6-8 KSR Extension to KSB., . . .+ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o &« 6-19
6-2 820 Extension To KSB. . « ¢ « & ¢ o o o s o o o 6-20
6-10 Line Printer Extension. « « ¢« ¢ « ¢« « + & 6-22
6-11 Tape Extension. . . « ¢ ¢ ¢ ¢ ¢ o ¢ o ¢« o o o o 6-238
6-12 Floppy Diskette PDT Extension « « « « . 6-24 %

Texas Instruments X (Change 1) 939153-9701

System Design Document

xf
'_J
0g
TR OIN = OW 10V fort
]
0]

!
Ny
[e)}

LIST OF PIGURES (continued)

Title

FCB Extension for Key Indexed Files .
Record Lock Table (RLT) . . .

FCB Extension for Program Files
Logical Device Table (ILDT). . .
Task Status Block (TSB)
Procedure Status Block (“““). ...
TOL Overhead Beet . .

System Log Parameter Block

SLPB Device Extension With Controller
User Call Extension to SLPB . .
Memory Error Extension to SLPB.
Statistics Extension %o the SLPB.
Interrupt Extension to the SLPB

Task Extension to the SLPB. . .

Cache Memory Extension to the SLPB

SLPB Device Extension with PRB. . . .
Directory To Be Backed Up . . .
Control File. . .

Expanded Structure for a Drogram F11e

Structure of .SEQFILE .

Back-up Directory Tape Format

3CI Flow of Control
TCA Layout. . . e e e e e
Terminal Status Rlock e e e e e
Name Correspondence Table

929152-9701 xi

Table of Contents

Page

6-31
6=33
6-%34
6-%5
6-38
H=46
6-48
6-50
. e 6-51
. e . h-52
. e . 6-K2
£-53
6-5%
6-54
6-54
£=55
6-A0
h-F1
6-61
H=H2
6-A8
.. . 10-2
. e . 10-6
. e . 10-7
10-8

Texas Instruments

Table of Contents

Table

e LA * AN AN ANe AN¢ AN ANo ANe ANO ANo RO RSN\ V]
QOO OOI |

| = =00 JOVTHVIN = = = =
U ANN—=—=0

Texas

LIST OF TABLES
Title

Top Level Directories

Format Information for Supported Dlsks

System Overlay Numbers.

Task State Codes.
SVC Overhead Routines
SVC Processors. . . . e e .

Task Management Routlnes
Memory Management Routines.
Buffer Management Routines.
Disk Management Routines.
Device I/0 Processing Routlneq
Device Service Routines
File Utility Routines
File I/0 Processors .
Key Indexed File I/0 Proonsqo"s
.BID SVC Overhead for SCI
Overhead in the Bid Task .
.0VLY SVC Overhead for SCI.
QBID Subroutine Call Table. .
OQUEUE Subroutine Call Table.

Instruments xii

System Design Document

Page
.. 2-2
4-1
5-2
. 6-41
. 9-2
. 0-3%
. 9-6
. 9-10
0-12
9-15
017
0-18%
a_2n
a-25
9-27
10-11
10-12
10-12
10-1%
10-20

92017”30701

System Design Document DX10 Implementation Tutorial

SECTION 1

DX10 IMPLEMENTATION TUTORIAL

1.1 GENERAL CONCEPTS
The DX10 operating system is physically divided into +two parts:
one is memory resident and the other is disk resident. Memory resident
DX10 includes:
...3ystem tables and device buffers
...System overlay areas
...Task scheduler
...Task loader
.Overlay loader
-System overlay loader
...XOP processors
.« .Most SVC processors

.Interrupt processors

.Some system tasks that may have overlays (e.g.,
disk manager, file manager)

These parts are linked together when the operating system is generated,

and loaded into memory when the system is booted, forming the nucleus
of DX10.

Disk resident parts of DX10 include system overlays and system tasks.
System overlays are loaded into the system overlay areas reserved
within the memory resident nucleus. System tasks are loaded into

available memory and are mapped in (i.e., share memory) with the
nucleus.

Figure 1-1 shows a simplified view of DX10 physical organization.

93915%-9701 1-1 Texas Instruments

DX10 Implementation Tutorial

m
i

e

xXas

System Design Document

INTERRUPT AND XOP TRAP VECTORS

SYSTEM TABLE AREA

SYSTEM OVERLAYS

SYSTEM TASKS

SYSTEM OVERLAY AREA

e — — = e - — — — —

DX10 NUCLEUS

2278109

Figure 1-1

Instruments

AVAILABLE
MEMORY

DX10 Physical Organization

System Design Document DX10 Implementation Tutorial

The following paragraphs describe several specific concepts utilized in
DX10.

1.1.1 QUEUE SERVERS AND ACTIVE TASK QUEUES.

An important concept in DX10 is that of information queues and
queue servers. A queue is a first-in, first-out list of data to be
processed. In DX10, each queue consists of a queue anchor, located in
the memory-resident nucleus, and the queued blocks of data. FEach block
is linked to the next block in the queue (see Figure 1-2). A queue
server is a task that is dedicated to the processing of the data blocks
in its associated queue. For example, the Bid Task SVC processor is a
disk-resident task that is a queue server. The queue entries are
buffered supervisor call blocks.

A queue server operates in the following manner: when an entry is
placed in the queue, the queue server is activated (bid). The queue
server, operating as a task under DX10, dequeues an entry from its
queue and processes it. The queue server continues to dequeue and
process queue entries until the queue is empty, at which time it
suspends itself by issuing a Suspend Awaiting Queue Input SVC (code
>24). When a new entry is placed in the queue, the queue server is
activated.

Nearly all of the functions of DX10 are performed by queue serving
routines. Many SVC processors (e.g., I/0 SVCs, Install Task, Kill
Task) plus all of the disk-resident SVC processors are queue servers.

NOTE

Disk-resident queue servers are pseudo-memory
resident. When such a task terminates awaiting
queue input, its memory is not released until it is
required to load other tasks. At that +time, the

memory 1is released and the task must be reloaded
the next time it is bid.

The active task queue keeps track of the active +tasks wihin the
system. It is organized in priority order (i.e., all tasks of the same
priority level are grouped together in a list), starting with the
highest priority level at the top of the gqueue. The top task on each
priority 1list is the oldest task on that list, and the bottom task is
correspondingly the youngest. The scheduler always causes the top task
on the active queue to be in execution. The sequence of task execution
is dependent on the placement of tasks on the appropriate 1list within
the queue. Figure 1-3 shows how the active task queue can appear. A
list is maintained on the queue for each priority level. Figure 1-3
shows a queue in which priority levels R1 through R38 are void, level
R%9 has two tasks, R40 has one task, and level R41 has three tasks.
The remaining real +time priorities are void with level 1 having five
tasks, level 2 having three tasks, and level 3 having 5 tasks.

939153-9701 1-3 Texas Instruments

DX10 Implementation Tutorial System Design Document

QUEUE ANCHOR QUEUE ENTRIES
NEWEST ENTRY

QUEUE LINK
OLDEST ENTRY

QUEUE LINK

QUEUE LINK

QUEUE LINK

2278110

Figure 1-2 DX10 Queue Structure

Texas Instruments 1-4 939153-9701

System Design Document DX10 Implementation Tutorial

R1 through R38 lists are void
Highest priority task T1/R39 | R39 list
T2/R39 !

T%/R40 RAO list

T4/R41 }
T5/R41 | R41 1list
T6/R41 |}

{-=-== R42 through R127 lists void

T7/1 }
T8/1 }
T9/1 b1 1ist
T0/1 |}
T™M1/1 1}

T12/2

T13%/2
T14/2

T15/3
T™6/3
T17/% 3 list
T18/3
Lowest priority task T19/3

e~

2 list

vt St st st

s

T™,T2 - priority R39
T3 : - priority R40
T4,T75,T6 - priority R41
77,78,T9,T10,T11 - priority 1
T12,T13%,T14 - priority 2
T15,T16,717,T18,T19 - priority 3

Figure 1-3 Active Task Queue

1.1.2 A 32-BYTE BLOCK OF MEMORY--BEETS.

Under DX10 memory management, a beet is defined to be = %2-byte
block of memory. A beet address (boundary) is an absolute address that
can be evenly divided by 32. The concept of a beet address is
necessary to DX10 memory management in order to fit a 20-bit absolute
(unmapped) memory address into a 16-bit word. All memory allocations
are integral numbers of beets, and begin on a beet boundary.

93915%-9701 1-5 Texas Instruments

DX10 Implementation Tutorial System Design Document

1.1.% CALLING CONVENTIONS.

Within DX10, routines normally call each other using the following
sequence:

BL @3UBR
DATA ERROR
NORMAL EQU 3

where SUBR is the entry label of the routine being called, ERROR is an
address within the calling routine to which the called subroutine
should return in case of an error, and NORMAL (i.e., the next
instruction) is the normal (non-error condition) return point.

Since +the call is made using a BL instruction, R11 points to the word
containing the error return address. The following sequence is
generally used by the called subroutine, when returning. '

MOV @ERRCOD, RO Put any error code in RO.

JEQ RTNORM If no error, do normal return.
ERRET MOV *R11,R11 If error, return to address

RT contained in word following
RTNORM INCT R11 the call. Normal return

RT is to the second word

after the call.

Since the return sequence 1is often used in DX10, a special routine,
POPO, is provided to perform the return (see the section on common
routines).

1.1.4 SYSTEM MEMORY MAPPING.

Using the memory mapping option available on the 990/10 computer,
the DX10 operating system is divided 1into several different mapping
schemes using map files O and 1 (Figure 1-4). All mapping schemes
include the DX10 data base, system table area, and common system
routines (called the system root) as the first segment (memory mapping
allows a program to be divided into three segments which need not be in
contiguous memory locations). All schemes which use map file O have
the I/0 common routines (routines commonly wused by device service
routines) as the second segment. The third segment of all map O
schemes is one of the following:

...The task scheduler and SVC and XOP code
...A device service routine (DSR).

Figure 1-5 shows how the logical address space of map O schemes is
arranged.

Texas Instruments 1-6 03915%3-9701

System Design Document DX10 Implementation Tutorial

One of the map file 1 schemes includes not only the system root in the
first segment, but also the file management and key indexed file
handling code (i.e., file management and key indexed file code are
physically 1located in memory immediately after the system root). This
map scheme allows file management to map I/0 buffers into its address
space using the two remaining map segments.

Other map 1 schemes include either a system task (memory resident or
disk resident) or system common as the second segment. The third
segment 1is available for use by the task. Figure 1-6 shows possible
arrangements of map file 1 schemes.

The link map of a generated system contains information on exactly
which DX10 modules are included in each mapped segment.

9%9153-9701 1-7 Texas Instruments

8= SjusunJIlsSuUl SBX9[

l0Lb-¢G16¢6

2278111

OK 2K 4K 6K 8K 10K 12K 14K 16K 1BK 20K 22K 24K 26K 28K 30K 32K
'——- MAXIMUM SIZE OF SYSTEM ROOT
o 1 2 3 4 5 6 7 8 9 A B c D E F
0) 0 o o)) o 0 0 0) 0 0) o
0 0 0 0) 0 0 0 0 o 0 0 0 0 0 o
o o 0 o) 0 o 0 o 0 o o) 0))
]] |]] | |]] 1 |]] 1 I
TME SHD
SVC CODE
COMM DSR ;
1/0 1
COMMON
ROU~
TINES N
MAP FILE O
i
—
> BeRe
—
I——
s | J
ROOT
A
ran AY
{ SYSTEM TABLE AREA | SYSTEM FILE MANGR , BLOCKING
DX DATA ! I ROUTINES KIF ' BUFFERS
MEMORY
RESIDENT
I—
SYSTEM
TASKS
MAP FILE 1
COMMON
AREA
DISK RESIDENT
SYSTEM TASKS

Figure 1-4 Sygseem Memory Mapping

Te1Jd03n] uotgeiuswoTdul 0}XQ

qusunooq uPrseq welsLg

System Design Document DX10 Implementation Tutorial

DATA BASE DATA BASE

SYSTEM TABLE AREA ROOT

COMMON ROUTINES COMMON ROUTINES

e

1/0 COMMON ROUTINES 1/0 COMMON 1/0 COMMON ROUTINES

e

THIRD
TASK SCHEDULER, XOP
ROUTINES, AND SOME SEGMENT

DEVICE SERVICE
SVYC PROCESSORS

ROUTINE

l—

2278112

Figure 1-5 System Map File 0 Schemes

939153-9701

Texas Instruments

DX10 Implementation Tutorial

System Design Document

ROOT ROOT ROOT
UNUSED
FILE MANAGEMENT
AND KEY INDEX FILES
SYSTEM SYSTEM
COMMON TASK
(ORIGIN=>C000)
(AVAILABLE)
(AVAILABLE)
(AVAL LE) (AVAILABLE)
2278113
Figure 1-6 System Map File 1 Schemes)
Instruments 1-10 0%915%-9701

Texas

System Design Document DX10 Implementation Tutorial

1.2 HOW PARTS OF DX10 FIT TOGETHER

The flow of control through DX10 follows many separate paths,
depending on the action currently being performed. The remainder of
this section +traces these control paths separately, following the
general order of events caused by the execution of a task. The order

begins with SVC processing and the task bid and ends with task
termination.

1.2.1 SVC PROCESSING.

Under DX10, supervisor calls are implemented as extended operation
(XOP) 15. When an SVC is issued, control is passed via the ZXOP +trap
vector table to the SVC decoding routine, SVCINT, which is the XOP
processor for XOP 15. This routine determines which SVC is desired by

decoding the SVC code in the call block, and relinquishes control to
the SVC processor.

If the SVC processor is a queue server, control passes from SVCINT +o
the SVC buffering routine, SVCBUF. This routine buffers the call block
into the system table area and queues the buffered call block on the
proper queue, thereby activating the associated queue server task. The
task that issued the SVC is suspended.

If the SVC is for I/0 (code 00), the SVC must go through yet another
stage of decoding by the I/0 supervisor, DXIOS. This routine buffers
the user I/0 data block and supervisor call block into the system table
area, and determines whether the call is for file management (disk file
1/0), file utility, or device I/0. TFile Management and File Utility
calls are queued for the file management task or file utility task,
respectively. Both are queue servers. Device I/0 requests are handled
by DXIOS and the device service routine directly, if the device is not
busy. If the device is busy, the request is queued in the device queue
for later processing.

The return of control to the task that issued the SVC is different for
queue serving SVC processors and nonqueue serving processors. Non-
queue servers simply return control to the calling task via the system
return point XOPRT1, allowing the calling task to resume execution.
Queue servers do not immediately return control to the calling task,
but continue to process queue entries. When an entry has Dbeen
processed, it 1is queued for the SVC cleanup routine, SVCCLN. SVCCLN
unbuffers each entry from the system table buffer into the calling
tasks memory, releases the system table area, and reactivates the task.

Figure 1-7 shows the flow of control through the DX10 modules involved
in SVC processing.

939153-9701 1-11 Texas Instruments

DX10 Implementation Tutorial

SVC
ISSUED

System Design Document

XOP
VECTOR TABLE
WP
PC
SVCINT
Vo svc QUEUE
NON QUEUE SERVING SVC
SERVING SVCS 3
] H
NRREEE
! (BUFFERS (BUFFERS
REQUEST) REQUEST)
FILE 1/0 DEVICE /0 UTILITY
SVC QUEUES
SVC PROCESSORS
FMT DEVICE FUTIL
QUEUE QUEUES QUEUE l IJ l l I i i
DEVICE
FILE FILE CLEAN-UP
MANAGER DRIVER UTILITY QUEUE
SVCCLN
UNBUFFER
EQUESTS)
. .
RESUME_TASK
EXECUTION
2278114
Figure 1-7 SVC Processing Flow of Control
1-12 93%9153-9701

Texas Instruments

System Design Document DX10 Implementation Tutorial

1.2.2 BIDDING A TASK.
The process of bidding or executing a task under DX10 1involves

building a task status block to describe the task, queueing the TSB for
processing by the bidder task, TM$BID, and then queueing it for the

task loader, as shown in Figure 1-8.
BID

TMBIDO
(BUILDS
TSB)

QUEUE TSB
FOR BIDDER
TASK

BID
QUEUE

|

BIDDER
TASK
(TM$BID)

QUEUE TSB
FOR TASK
LOADER

WAITING ON
MEMORY
QUEUE

2278115

Figure 1-8 Bidding a Task

9%9153-9701 1-13 Texas Instruments

DX10 Implementation Tutorial System Design Document

The first action taken by DX10 when bidding a task is to build a task
status block (TSB). A TSB is a block of overhead data maintained Dby
the operating system to describe each task currently running (either
executing, waiting for CPU time, or rolled-out) . The TSB contains
pointers to other system overhead blocks associated with a task (e.g.,
logical device tables for each LUNO assigned by the task, procedure
status blocks for any attached procedures), as well as other
information describing the task to the operating systen (see the
section on data structures for more detail on task status blocks and
procedure status blocks). From the +time a task 1s bid until it
terminates, the task is represented within DX10 by its TSB; all actions
taken by the system in order to execute the task (e.g., roll-in, roll-
out, memory allocation) reference the TSB.

To build a TSB, the system routine TMBIDO calls memory management 1o
reserve a block of memory from the system table area. It initializes
some of the fields in the TSB, generates a run-time ID for the task,
and then queues the TSB for further processing by the bidder task
TM$BID.

The bidder task is a memory-resident server. It dequeues a TS3B from
its queue, and fills in more fields (e.g., the task's priority) using
data from the program file on which the task is installed. The bidder
task also fills in the "family tree" pointers in the TSB. These four
pointers link the newly bid task with other tasks, according to the
structure shown in Figure 1-9. The parent task is the task that issued
the Execute Task SVC to bid the task. If the task was bid from a
terminal through an SCI command, SCI is the parent task. The brother
tasks are other tasks that were bid by the same parent task. The
oldest son is the first task that is bid by the task. This pointer 1is
given a zero value when the task is first bid.

Other pointers that are initialized by the bidder task are pointers to
the procedure status blocks of any procedures associated with the task.
A procedure status block serves a similar function for procedures as a
task, although the pointers are not as complex (see Section 6, Data
Structures, for more detail on PSBs). If a procedure attached to_ the
task Dbeing bid is not currently in memory (i.e., does not have a PSB),
the bidder task gets a block of system table area and builds the PSB
for the procedure; the Dbidder task accesses the program file for
necessary information. PFigure 1-10 shows how TSBs and PSBs are linked
by pointers under DX10. Note that PSBs may be linked with more than
one TSB, since a single procedure may be attached to more than one
task.

Texas Instruments 1-14 939153-9701

System Design Document DX10 Implementation Tutorial

¢
yo A
2% € \’oy’
DIV ¢
e(’: ¢ e
U7t v
¢
Ve ke
PARENT
» TASK s [®
y Y
y
YOUNGER TSB OF OLDER
BROTHER BROTHER
OTH BID TASK o

- WD
My AL, A ' o
© } |
&?Plh.woﬁpggy oLpEST . L@M”%
MAERN Q‘ o TSB k”ﬂ i\yﬁpﬁ
2278116 -~

Figure 1-9 TS8B Family Tree

93915%-9701 1-15 Texas Instruments

DX10 Implementation Tutorial System Design Document

PSB FOR
PROC 1

TSB
» PSB FOR
3 PROC 2
TSB
PSB FOR
PROC 3
TSB
PSB FOR
v PROC 4
2278117
Figure 1-10 TSB/PSB Relationship
Texas Instruments 1-16 0301539701

System Design Document DX10 Implementation Tutorial

Finally, the bidder task queues the TSB on the waiting on memory queue,
which is serviced by the task loader. The bidding task (parent task),
which had been suspended while TM$BID processed the SVC, is
reactivated. .

The scheduler and operating system provide a means for tasks to be -bid
from interrupt processors. The bid-task interrupt processor resets the
interrupt, sets the bid-task-in-progress <flag of the associated
physical device table, saves the ID of the task to be bid (the task to
be bid must reside in the system program file), sets up the processor
interrupt vector for handling multiple interrupts before the first bid
is complete, sets the reenter me flag, and returns through the trap
return module. The scheduler scans the PDT list for reenter me flags
every time the scheduler runs (every 50 milliseconds), so that when the
scheduler executes, the interrupt processor is reentered and the
scheduler inhibit flag (TM$EXT) is cleared.

When the processor is reentered, all 1lower interrupts are disabled.
The interrupt processor resets the reenter me flag, initializes the
registers required, and calls TMBIDO to bid the required task. Upon
return to the interrupt processor from TMBIDO, the returned error code
is checked. Appropriate action is taken when +the error code is
nonzero; when the error code is zero, the processor is exited.

To exit +the processor because of an error or bid complete, the bid-
task-in-progress flag is reset and the interrupt entry vector is set up
for processing subsequent interrupts. Exit is made by an RTWP

instruction which returns to the scheduler for any necessary
scheduling.

The following list contains register definitions for a call to TMBIDO:

RO = Error Return
R1 = Installed ID/SVC flag

SVC flag: O = SVC call

NOT O = Not an SVC call

R2 = Bid Parameter #1
R3 = Bid Parameter #2
R4 = Station ID/Program File LUNO
R5-R9 = Not used
R10 = Stack Pointer (The Scheduler Stack is used.)
R11 = Branch and Link Return Address
R12-R15 = Not used

The following list contains register definitions upon return from
TMBIDO:

RO = Error Return
R1 = Run ID/QUE - NO QUE flag (Bit 15)
Bit 15: O = Request not queued,
1 = Request queued
R2 TSB address of bid task

R%-R15 = Not used

939153-9701 1-17

Texas Instruments

DX10 Implementation Tutorial System Design Document

The following error codes are returned from TMBIDO:

= No error

Illegal station number on bid task
No runtime task IDs available

No system table area available
Illegal program file LUNO

AN —O
nonononon

1.2.3 SCHEDULING, LOADING, AND ROLLING A TASK.

Once a +task has Dbeen bid and a TSB has been built for it, that
task must be loaded into memory before it can be scheduled for
execution. The business of loading and executing multiple tasks is
managed by the task scheduler in conjunction with the task loader and
memory management.

1.2.%.1 Scheduling.

Tasks running under DX10 may be found in a variety of states,
including: active, suspended, queued for a SVC processor, and waiting
for various types of I/0. TSBs of tasks that are waiting for CPU time
(i.e., active tasks), and are in memory, are queued on the priority-
ordered active queue. The +task scheduler always picks the highest
priority task off the active queue. Before actually giving the CPU to
this task, the scheduler first checks the queue of tasks waiting on
memory.

This queue is a priority-ordered queue (highest priority first) of TSBs
of tasks which are either rolled-out or have just been bid, and are
waiting to get memory in order to execute. The scheduler determines if
any task waiting on memory is of higher or equal priority to the task
it has chosen from the active queue by searching the TS8Bs in the
waiting on memory queue. If a higher priority task is waiting, and the
task loader is not busy, the scheduler gives the next time slice to the
loader rather than the chosen task. If an equal priority task is
waiting for memory, and the chosen task has already had a minimum
number of +time slices, the loader is likewise awarded the time slice.
Otherwise, the chosen task gets the time slice.

Figure 1-11 shows a simplified version of how the scheduler chooses a

task to execute. The scheduler is described in more detail in Appendix
E.

1.2.%3.2 Loading And Rolling.

The +task loader is responsible for loading tasks into memory and
rolling them out. Tasks that are to be loaded may be either rolled-out
tasks or tasks that have just been bid. The task status blocks of all
tasks to be 1loaded are on the waiting on memory queue. The queue is
sorted so that higher priority tasks are processed first. The queue is
first-in, first-out for tasks of the same priority.

Texas Instruments 1-18 0%915%3-9701

System Design Document DX10 Implementation Tutorial

Tasks that are to be rolled-out by the task loader are tasks that have
either been selected by memory management (see paragraph 1.2.3.3) to be
rolled-out, but had TILINE I/0O in progress, or issued a Get Memory SVC.
Since TILINE I/0 accesses the task's memory directly, the task could
not be immediately rolled-out; therefore, memory management flags the
TSB to indicate +that it is being "quieted" (waiting for the I/0 to
complete). The TSB remains on the active queue until the I/0 is
complete, at which time the scheduler queues the TSB onto the quieted
queue. TSBs of tasks which issue Get Memory SVCs are immediately
queued on the quieted queue. All tasks that are on the quieted queue
are rolled-out by the task loader.

The task loader is a dedicated server of the quieted queue; that is, it
is automatically bid when an entry is made on the queue. The 1loader
may also be scheduled to execute when the task scheduler decides to try
to roll a task into memory, although the loader does not "serve" the
waiting on memory queue. Figure 1-12 shows how the loader processes
the two queues.

When the loader is executed, it first processes all of the entries on
the quieted queue, rolling them out of memory, requeueing the TSBs onto
the waiting on memory queue, and releasing the now vacant memory used
by the tasks. When the quieted queue is empty, the loader checks to
see if there is a task waiting on memory (i.e., a TSB on the waiting on
memory queue). If not, the loader issues a Suspend Awaiting Queue
Input 8VC, returning control to the scheduler.

If a +task is Wwaiting on memory, the 1loader checks for attached
procedures, and tries to allocate memory for them (the allocation logic
first checks to see if the procedure is already in memory). If memory
is found, the loader calls memory managément to allocate memory for the
task segment. If no memory is available, the load is left pending, and
the 1loader checks to see if any more entries have been made on the
quieted queue. At the end of the allocation phase, the 1loader checks
to see if all of the memory required is still allocated. This might
not be true if memory management has rolled out procedure 1 when
allocating memory for procedure 2.

If all of the memory is safely allocated, the loader loads the task and
procedures (unless they were already in memory) from either the roll
file (for roll-ins) or a program file (for initial bids). If +the
loaded task 1is flagged as memory resident, the loader assumes that it
was part of the initial program load (system boot) and puts the task in
a terminated state. Otherwise, the loader queues the task on active
queue priority O, slot 2 (head of the queue). This is done, regardless
of the task's assigned priority, in order to insure that the task will
get a time slice before it could be rolled-out by a higher priority
task.

After the task has been loaded, or some error has interrupted the load,
the loader once again checks the quieted queue for entries. If there
are any, the loader starts all over at the top of the cycle; otherwise,
the loader suspends itself, returning control to the scheduler.

9%9153-9701 1-19 Texas Instruments

DX10 Implementation Tutorial System Design Document

FIND ONE
YES

NO

LOADER
3 BUSY
YES

NO

REMOVE
FROM QUEUE

15
THERE A
TASK WAITING
ON
NO MEMORY

YES

THERE A
TASK WAITING

MARK LOADER
BUSY

SET UP LOADER
TO GET TIME
SLICE

REQUEUE
CHOSEN
TASK

SLICES

A EXECUTE
2278118 TASK

Figure 1-11 Simplified Flow of Scheduler

Texas Instruments 1-20 93%39153-9701

System Design Document DX10 Implementation Tutorial

GET MEMORY
FOR
PROCEDURE 2

ANY
TASKS TO BE
ROLLED

YES
; GET MEMORY
FOR TASK
SEGMENT
DEQUEUE
TASK BB

STILL
HAVE ALL
THE MEMORY

ROLL—OUT TASK||
QUEUE FOR
WAITING ON
MEMORY

LOAD TASK ERROR
SAND RELEASE ALL
ROCEDURES) ° MEMORY

THERE A
TASK Wh.ld.l TING

IS TASK
NO MEMORY
RESIDENT YES
3
is QUEUE IT ON GIVE IT A
THERE A ACTIVE QUEUE TERMINATED
PROCEDURE O, SLOT 1 STATE

GET MEMORY
FOR
PROCEDURE 1

SUSPEND SELF
(RETURNS TO
SCHEDULE)

2278119

Figure 1-12 Simplified Flow of Loader

939153-9701 1-21 Texas Instruments

DX10 Implementation Tutorial System Design Document

1.2.3.3 Memory Management.

Available memory under DX10 is divided into system table area and
user area (see TFigure 1-1). A1l of +this memory is dynamically
allocated and deallocatd by a collection of nucleus routines called
memory management. Memory is organized in four separate groups:

...Free user memory
...Allocated user memory
...Free system table area
...Allocated system table area

The allocated blocks of system table area are the various system data
structures, such as task status blocks, and are not all linked on a
single 1list. Free blocks of system table area are all linked on a
single list, headed by SAHEAD, an anchor contained in the DX10 data
base module (described in Section 7).

Free blocks of user memory are linked on a single list headed by
UAHEAD, another anchor in the data base module. Allocated Dblocks of
memory, which may contain tasks, procedures, or file blocking buffers,
are linked together on a time-ordered list. The time-ordered 1list
(T0L) 1is maintained such that, whenever a block is accessed (i.e., the
task executes, or the blocking buffer is read or written to), it 1is
removed from its current position on the TOL and relinked at the head
of the list when it is no longer being used. Thus, the 1list 1is
ordered, the first blocks on the list being the most recently used and
the last blocks being the least recently used. Figure 1-13 shows how
the time-ordered list is structured.

Requests for system table area are serviced immediately by the table
area allocating routine, MM3GSA. Since nothing in the system table
area can be rolled (all system tables and device buffers are
essential), the request is filled from available area only, and mnust
immediately fail or succeed depending on how much table area is free.
The allocation routine does a first-fit, 1linear search of the free
table area 1list, starting at the 1list header. If the search is
unsuccessful, the routine scans the TSB 1list, checking for disk
resident queue servers which are suspended awaiting queue input. If
such a task is found, its memory is released, its TSB is deallocated,
and the search for table area is restarted.

Texas Instruments 1-22 93915%-9701

System Design Document | DX10 Implementation Tutorial

\g
NEWEST
BLOCK <
—
G
L »
‘__‘
TOL HEADER
L »
«——
>
L—»
OLDEST
BLOCK

2278120

Figure 1-13 Time-Ordered List

9%915%-9701 1-2% Texas Instruments

DX10 Implementation Tutorial System Design Document

Requests for wuser memory (e.g., for tasks and procedures) are not
always serviced immediately. The find memory routine, MM$FND, only
processes one request at a time; further requests are queued until they
can be serviced. The find memory routine first searches the available
memory list, using a first-fit search. If a free Dblock of adequate
size is found, the starting address of the block is returned to the
requester. If no free block is available, the +time-ordered 1list 1is
scanned (by MM$SCN) for a rollable block of memory.

The +time ordered list (TOL) scan is from oldest (least recently used)
block to newest (most recently used). Blocks are chosen for roll-out
according to the following rules:

1. Any buffer except the memory resident buffer; if the
requester is buffer management, then the memory resident
buffer may also be chosen.

2. Tasks with lower priority.

3. Higher priority tasks that have been suspended longer than a
time threshold. ‘

4. Equal priority tasks that have received a minimum number of
time slices since being loaded into memory.

5. Any procedure with no currently attached tasks in memory.

6. Tasks that have TILINE I/0 in progress may be flagged for

quieting, and subsequent roll-out, if the memory requester is
not buffer management.

7. Queue servers that are suspended for queue input.

Tasks that may not be rolled-out are:

1. Tasks that have an alternate task (see Section 6, Data
Structures for a description of alternate tasks) .

2. Tasks that are queued for the system overlay loader.

3, File utility task (FUTIL) when it is accessing a directory.

If the TOL scan is successful, the block chosen is rolled-out (if it is
a task or procedureg, written to its file (if it is a blocking buffer
and has been modified), or simply released (if it is a queue server's
memory or an unmodified buffer). The rolled block of memory is
released from the TOL and put back on the free memory list. As Dblocks
are added to the free memory list, they are merged with any immediately
preceding or following blocks to reduce fragmentation. After a
successful scan of the TOL, the find memory routine again searches the
free block 1list. If a large enough block is still not available, the
TOL is scanned again for another rollable block. Figure 1-14 shows how
user memory is found.

Texas Instruments 1-24 9%9153-9701

System Design Document DX10 Implementation Tutorial

MEMORY
REQUEST

SEARCH FREE
MEMORY LIST
(FIRST-FIT)

ENOUGH
FREE

YES MEMORY

SCAN TOL
FOR ROLLABLE
BLOCK

FIND ONE

YES

ROLL IT OUT
OR WRITE IT
(IF A BUFFER)

'

BUFFER

v
RETURN RELEASE
POINTER TO REQUEST TIME BLOCK TO
FREE BLOCK FAILED DELAY FREE MEMORY
LIST
RETURN TO
2278121 REQUESTOR

Figure 1-14 TFind Memory Flow

9%915%-9701 1-25 Texas Instruments

DX10 Implementation Tutorial System Design Document

1.2.4 DEVICE I/0 FLOW.

When an executing task performs I/0, it must be done via an 1/0 s8vc,
and directed to a Logical Unit Number (LUNO). The I/0 SVC is decoded
by the SVC decoder, as described in paragraph 1.2.1, and control passes
to the I/0 supervisor, DXIOS. The I/0 supervisor determines from the
1/0 opcode that the call is not for file utility. It then searches the
logical device table +tree for the 1logical device table (LDT)
corresponding to the LUNO to which the I/0 is being directed.

A logical device table (LDT) is a system data structure that is created
for each LUNO assigned. The LDT describes the logical unit, whether it
be assigned to a file or a device (see Section 6, Data Structures, for
a detailed description of an IDT). All IDTs in the system are linked
in a hierarchy according to the type of ILUNO which they describe
(Figure 1-15). LDTs for task local LUNOs are linked on a list of LDTs
anchored in the task status block for the task. This list is 1in turn
linked to the terminal local IDTs for the terminal with which the task
is associated (if any), which are in turn linked to a single 1list of
LDTs for global LUNOs.

When the I/0 supervisor searches for the IDT of a LUNO, it searches for
the LDT starting at the anchor in the calling task's T3B. The 1ist is
searched linearly through the task local LDTs, then the terminal local
1DTs (if any), and finally the global IDTs, until an LDT for the
desired LUNO is found. Note that this causes task local LUNOs to mask
global or terminal-local LUNOs.

When the I/0 supervisor finds the LDT, it determines whether the I/0 is
to a device or file. Device I/0 call blocks are buffered into the
system table area. If there is a data buffer (e.g., for read or write
operations) and the I/0 requested is non-TILINE I/0, it is also
buffered in the system table area. At this point, the I/0 supervisor
checks the physical device table (described in Section 6) to see if the
device 1is Dbusy. If not, control is immediately passed to the device
service routine (DSR) for the device. Otherwise, the buffered call
block is placed on the device queue. If the I/0 call is Initiate 1/0
and the calling task has not exceeded a certain threshold number of
Initiate I/0s, control returns immediately to the calling task. If the
c711 is not Initiate I/0, the task is suspended until completion of the
I/0.

Texas Instruments 1-26 0301 R”3-0701

System Design Document

DX10 Implementation Tutorial

KSB
TERMINAL-LOCAL LUNOS
| 'I LDT LDT LDT
TSB
TASK-LOCAL LUNOS
———hl Lnﬂ—ol LDT DT l-—
TSB
TASK-LOCAL LUNOS
—b[LDT }——.Ll_oﬂ—i
KsB » DT
—
| SO
| ——==

TERMINAL~-LOCAL LUNOS

=BT o s N S N e Kl

GLOBAL LUNOS

5B L LDT I——.I LDT

‘ LDTHL.DT HLDTI

-

NO TASK-LOCAL LUNOS

2278122

L

Figure 1-15 Logical Device Table Hierarchy

939153-9701 1-27

Texas Instruments

DX10 Implementation Tutorial System Design Document

When processing an I/0 request, the I/0 supervisor checks the calling
task to determine whether it has dynamic priority or not. If it does,
the priority is updated according to the type of I/0 being done.

When the DSR finishes the I/0 operation, 1t calls an end-of-record
(EOR) routine which increments a counter in the calling tasks TS3B and
places the TSB on the active queue. When the scheduler allots a time
slice to the task, it checks the EOR count in the TSB. If the count is

non-zero, the device drive task (DDT) is allowed to execute in the
task's place.

When DDT executes, it scans the list of physical device tables (PDTs)
for a device that needs end-of-record processing. When such a device
is found, DDT processes the end—-of-record; it unbuffers the call block
and data block (if any) into the calling task's memory (causing the
task to be rolled-in first, if necessary), and activates the task.
After processing an EOR for a device, DDT checks the device queue for
queued I/0 requests. If a request exists, DDT transfers control to the
device service routine initial entry point. When the DSR finishes, it
returns to DDT. When the DSR returns, or if the device queue is empty,
DDT proceeds to the next PDT on the list.

When DDT has checked all the PDTs, it suspends itself via a Suspend
Awaiting Queue Input SVC, returning control to the scheduler. Figure

1-16 shows a simplified flow of the DX10 logic involved in processing a
device I/0 SVC.

1.2.5 FILE UTILITY FLOW.

The initial processing of a file utility SVC (code 0, opcodes >90
through »>9C) is similar to that for device 1/0. The SVC is decoded by
SVCINT, and control passes to the 1/0 supervisor. The I/0 supervisor
determines from the "ninety" opcode that the call is for file utility.
The 1I/0 supervisor preprocesses the file utility call by checking for
illegal opcodes, buffering the I/0 call block, and queueing the
buffered call block for the file utility task. The calling task is
suspended with a state of "waiting on task driven SVC processor" (state
>14). The file wutility task, FUTIL, 1is a queue server and 1is
automatically bid when an entry 1is placed on its input queue.

When the file utility task gets CPU time, it dequeues an entry from its
queue and processes that entry. File utility calls may be made in the
0ld librarian or DX10 2.2 "FUR" <formats. The file utility task
converts such calls into DX10 3.0 file utility call format and then
processes them normally. Normal processing (performed in module UC$)
involves a table look-up of the correct processor for the specified
file utility opcode (range >90 through >9C), and the transfer of
control to that processor. When the processor finishes, it returns
control to the file utility task. FU$ then queues the buffered call
block for the SVC cleanup task, SVCCLN, which unbuffers the call block
into the calling task's memory, and reactivates the task. TFigure 1-17
shows the flow of control for file utility SVCs.

Texas Instruments 1-28 93915%-9701

System Design Document

‘ 1/0 SVC ,

DX10 Implementation Tutorial

DDT
SCHEDULE

——

DECODE GET GET
/0 SVC NEXT PDT FIRST PDT
h DXIOS ‘l
BUFFER
CALL BLOCK |
L]
EOR
TO BE
l PRODUCED
YES |
UNBUFFER
Ré;'f\iATE
NO I TASK
BUFFER I
DATA

ANY
ENTRIES ON
QUEUE

2278123

DYNAMIC
PRIORITY

ADJUST

ENTER DSR

LAST PDT 2

Figure 1-16 Device I/0 Processing Flow

939153-9701

1-29

Texas Instruments

DX10 Implementation Tutorial l System Design Document

FILE UTILITY CLEANUP
SVC ISSUED TASK BID TASK BID
SVCINT ()
DECODE
sSvC
ANY
ENTRIES (ON ENTRIES ON
ES QUEUE YES
DX10S
BUFFER CALL
|$%§§$%f
SUSPEN SELF SUSPEND) SELF SUSPEND)
SALLING TASK RETURN TO RETURN TO
NEDULE SCHEDULE
1
]
¥
QUEUE
'ﬁ“"y
DEQUEUE CONVERT TO
ENTRY NEW FUTIL
CALL, PROCESS
CALL
L
CALL AN OLD
ALL / QUEUE CALL PROCESS CALL
FYR'CALL BLOCK FOR QUEUE CALL
CLEANU BLOCK FOR
TASK CLEANUP TASK
lvss
4
CONVERT TO
NEW FUTIL
CALL, PROCESS
CALL
|
L 4
QUEUE CALL QUEUE
BLOCK FOR
CLEAN-UP
TASK
DEQUEUE
ENTRY
UNBUFFER CALL
BLOCK,
ACTIVATE TASK
2278124

Figure 1-17 File Utility Calling Processing

Texas Instruments 1-30 9%9153-9701

System Design Document DX10 Implementation Tutorial

1.2.5.1 Assigning and Releasing LUNOs.

Within DX10, a LUNO is represented by a data structure called a
logical device table. Since the file utility opcodes include Assign
LUNO and Release LUNO, file utility is responsible for building logical
device tables and maintaining +the LDT 1links. Whenever a LUNO is
assigned, an LDT must be built in +the system table area, and its
pointers defined. Figure 1-18 shows the different pointers which may
be set in an LDT.

In addition to the LDT link which links all LDTs .in memory into the
structure described in the device I/0 section, all IDTs have a pointer
to the physical device table of the device to which +the LUNO is
assigned. LDTs of LUNOs assigned to files point to the disk PDT of the
volume (drive) that contains the file. All IDTs also have a pointer to
the task status block of the task opening the LUNO.

File 1DTs (LDTs of LUNOs assigned to files) also have two additional
pointers. All of the LDTs of LUNOs assigned to the same file are
linked on a common list. Also, each file LDT has a pointer to the file
control block (FCB) of the file to which the LUNO is assigned. A file
control block is another data structure maintained in the system table
area to describe a file (see Section 6). TFor every file that currently
has LUNOs assigned to it (i.e., is being referenced), file utility
maintains an FCB tree for all pathname components (i.e., higher level
directories) of the files pathname. TFor example, if a LUNO is assigned
to the file VOLUME4.USEROS5.SOURCE.DEBUG, an FCB for USERO5, SOURCE,and
DEBUG will be in memory, 1linked +together. The IDT for the LUNO
assigned to DEBUG points to the DEBUG FCB, and is also linked on the
list of LDTs for the file (see Figure 1-19). Note that the FCB for the
volume directory (VCATALOG), an assumed component of every pathname, is
always in memory when the volume is installed. A pathname can have a
maximum of 49 bytes, which is 1 byte for the length of the pathname and
48 bytes for the pathname itself.

When a LUNO is released, file utility searches the FCB/LDT tree for the
IDT of +the LUNO being released. The IDT is delinked from the various
lists it is on and released to the free system table area list; any
blocking buffers associated with the LDT are released. If the LDT is
linked to a file FCB, file management checks to see if any more LDTs
are linked +to the file. If not, the file must not be used currently,
and the FCB is delinked from the FCB tree and released to +the system
table area. The search continues up the FCB tree. As long as an FCB
has no LDTs linked to it (i.e., no LUNOs assigned to the file), and has
no descendant FCBs (i.e., if the FCB represents a directory <file that
is not being accessed and has no cataloged files being accessed), it is
delinked from the FCB tree, and the release LUNO search continues at
the parent FCB.

939153-9701 1-31 Texas Instruments

DX10 Implementation Tutorial System Design Document

ON TO TERMINAL-LOCAL
AND GLOBAL LUNOS

TASK-LOCAL
LUNO LIST
LoT ——p DT PDT
y 3
LT
PDT LINK
LDT LINK
LUNOS ASSIGNED TSB OF OWNER
TO FILE
FILE LINK
#CB POINTER
1
TASK—LOCAL LUNOS
LUNO LIST ASSIGNED
TO FILE
B
b FCB
TASK-LOCAL
LUNO LIST
LDT LUNOS .?_Sls:_:_‘GNED
S S P
2278125

Pigure 1-18 Logical Device Table Pointers

Texas Instruments 1-%2 9%9153%3-9701

System Design Document ‘ DX10 Implementation Tutorial

» FCB FOR
VCATALOG
(NO SIBLINGS) | OF VOLUMEA

L 1

t

POINTER TO
PARENT)
SIBLING _
- — — — ————
L FCB OF FCB OF FILE
I FcB USEROS SIBLING IN VCATALOG —1-
= - — — — —P -
POINTER TO
1 . | | DESCENDANT L
SIBLING
4
FCB OF
I FcB SOURCE !
—— — — — - -
FCB OF FcB : FCB OF
DEBUG F FILE IN SOURCE| L
;j‘ - =
3 3
LDT LIST
A
LDT
FILE LINK
LDTS FOR LIJNOS ASSIGNED TO
VOLUMEA.USERO5 . SOURCE, DEBUG
LDT
FILE LINK
LDT
2278126 -

Figure 1-19 FCB and IDT Tree

9%9153-9701 1-33 Texas Instruments

DX10 Implementation Tutorial » System Design Document

1.2.5.2 Creating and Deleting Files.
Creation of a file under DX10 involves the following process:

1. The FCB tree of the directory under which the file is to be
created is built in memory. For example, if the file
VOLUMEA.USERO5. SOURCE.DEBUG is being created, an FCB must be
in memory for the VCATALOG, USERO5, and SOURCE directories.
This structure is necessary in order to access the directory
VOLUMEA.USERO5.SOURCE on the disk. A pathname can have a
maximum of 49 bytes, which is 1 byte for the length of the
pathname and 48 bytes for the pathname itself.

2. Pile utility searches the disk directory to see if the file

being created already exists. If so, an error is returned;
otherwise, processing continues. .

3. A file descriptor record, which is a directory entry (see
paragraph 4.3%.4.2) for +the file being created, is built in
memory, and inserted into the directory on the disk..

Deletion of a file involves a process similar to the one described

above. - The FCB tree must be built in order to access the directory in
which the file is cataloged (note that the FCB tree may already by in
memory) . The file descriptor record in the directory is released and

made available. The FCB representing the deleted file is released if
it is currently in the system table area. In addition, the path up the
FCB tree from the deleted file is searched for FCBs with no descendants
(directories which are no longer being accessed). Any such FCBs are
delinked from the FCB tree and released to the system table area.

1.2.6 FILE I/0 FLOW.

The initial processing of a file I/0 SVC is also similar to that
for device I/0. The I/O supervisor determines from the I/0 opcode that
the call is for file management services. It then tests the I/0
request to see if a "fast transfer" is possible. A request is eligible
for "fast transfer" if the following conditions are met:

...The file is not opened for unblocked I/0

.The I/0 is for a sequential or blocked relative
record file

.The operation is a read or write (not forced
write)

.The file is not currently being accessed
.The record desired is already buffered in memory

(i.e., it has recently been accessed and the
buffer has not yet been destroyed).

Texas Instruments 1-34 93915%-9701

System Design Document DX10 Implementation Tutorial

If all of the conditions are met, control is transferred +to the file
management read or write routine, the desired I/0 is performed directly
between the file buffer in memory and in the calling task's data
buffer, and control returns to the calling task. Thus, the 1I/0
operation 1is performed by XOP level code, and the calling task is not
suspended. If the conditions are not met, the call block is buffered
into the system table area and queued for file management. The file
nanagement request queue is served by the number of replicas of +the
file management task, FM$TSK, specified during system generation. The
file I/0 queuing routine searches a list of file management tasks for a
suspended task, and activates one if possible.

FM$TSK is the main driver for file I/0 processing. It dequeues an
entry from +the queue, and checks to see if the file is already being
accessed by another FM8TSK. If so, it queues the request on a queue of
I/0 requests for that file, and dequeues another entry from the file
management request queue. If not, FMSTSK checks the I/0 opcode, and
tranfers control to the correct processor. If the file being used is a
key indexed file, control transfers to the key indexed file I/0 driver,
KI$BEG. When the processor returns, FM3TSK unbuffers the call block
and key indexed file currency information, if necessary, into the
calling task, and reactivates the task. It then checks for more queue
entries, first on the queue for the same file, and then on the file
management request queue. If more exist, it processes them. When the
queue is empty, FMETSK suspends via SVC >24. Figure 1-20 shows a
flowchart of the top level of file I/0 processing.

Some of the opcode processors (e.g., FMOPEN for open calls) do no more
than access the logical device table (LDT) assigned by the calling task
to the file. The read and write processors work in conjunction with
buffer management to transfer data between +the disk file and user
buffer. The following paragraphs describe the file buffering scheme
used by DX10 file management.

93%9153-9701 1-35 Texas Instruments

DX10 Implementation Tutorial

SVC ISSUED

BUFFER
REQUEST

System Design Document

DXIOS

- T

-
I
I
I
|
I
I
|
|
|
I
|
I
|
I
I
I
|
|
|
I
I

TYPE OF
FILE UTILITY REQUEST DEVICE 1/0
FILE 1/0
QUEUE ENTRY ELIGIBLE FOR
FOR FMT FAST TRANSFER
CASE OF | OPCODE
READ WRITE
\ 4
FMREAD FMWRIT

T

UNBUFFER
CALL BLOCK

I

RELEASE
BUFFERED
CALL BLOCK

RETURN TO
CALLING TASK

- - - -]

2278127

Texas Instruments

igure 1-20 File T1/0 Flow

1-36

939153-9701

System Design Document DX10 Implementation Tutorial

1.2.6.1 Blocked File I/0.

I/0 operations to blocked files (any type of file except unblocked
relative record - see Section 4 for a description of file types) are
handled through a group of routines called buffer management.

To access a specified logical record of a file, the file physical
record that contains the desired logical record is read into a blocking
buffer. These buffers are allocated from user memory, and are linked
onto the time ordered list when not being used. The buffers are linked
and delinked, read and written, created and released by Dbuffer
management routines.

When file management receives an I/0 request for a particular logical
record of a file, it calls a buffer management routine to get the
buffer that contains the physical record which in +turn contains the
desired logical record. If the specified physical record is already in
a buffer on the TOL, the buffer management routine simply delinks the
correct buffer and maps it into the file management task; if not, the
buffer management routine creates a new buffer, reads the specified

physical record from the file, and maps it into the file management
task.

The file management processor also calls a buffer management routine,
BMEMAP, to map the calling task's data buffer into file management.
Having both buffers mapped in allows file management to avoid using

long distance instructions when transferring data between the two
buffers.

After the file management processor has completed transfering the
specified logical record, it calls another buffer management routine to

release the file blocking buffer, which is relinked onto the head of
the TOL.

The wuse of blocking buffers in DX10 is an attempt to reduce the actual
number of disk accesses required to perform a given number of file 1I/0
operations. Since Dbuffers are not immediately released, but rather
Stay on the TOL until their memory is required by memory management, a
read or write request to a blocked file record may be made to a buffer
already in memory, rather than necessitating a disk access.

1.2.6.2 Unblocked File I/O.

I/0 operations to unblocked files (i.e., program, image,
directory, unblocked relative record files) do not use intermediate
blocking buffers. The file management processor calls BM$MAP to map in
the calling task's data buffer, and then calls the file management disk

I/0 routine, FM$IO, to transfer the record directly between the disk
and data buffer.

939153%~-9701 1-37 Texas Instruments

DX10 Implementation Tutorial System Design Dccument

1.2.7 TASK TERMINATION.
There are four ways for a task to terminate execution:

*¥ Tgssue an End Task or End Program SVC

* Issue a Suspend Awaiting Queue Input SVC (system tasks only)

¥ Create an error and go into end action

*¥ Be killed by another task issuing a Kill Task SVC

All terminated tasks, except tasks which are suspended awaiting queue
input, have their memory released and their TSBs queued for the
termination task, TM&DGN.

TM$DGN performs such general clean-up actions as:

.closes LUNOs opened by the terminated task

.Treleases task local LUNOs assigned by the
terminated task

..delinks the TSB from its family tree structure
.activates the parent task if specified

.sends any error message to the system log
.clears any breakpoints for the terminated task

.releases the TSB, if +the task is not memory
resident.

The following paragraphs describe what happens to a task at
termination.

1.2.7.1 End Task/End Program SVC.

The End Task and End Program SVCs are both processed by a routine
in the module TM$FUN. This routine checks the T8B of the executing
task (i.e., the task issuing the SVC) for any outstanding I/0. If any
exists, it 1is aborted, and the task is left on the active queue in
order to allow the device driver task to process the task's end-of-
records. The kill flag in the TSB is set, to notify the task scheduler
that the task has been terminated.

When a task's kill flag is set, and it has no outstanding 1/0, either
the scheduler or the end task/end program routine gueues the tasks TSB
for processing by the termination task, TMS8DGN. If the task is no®
memory resident, its memory is released.

Texas Instruments 1-38 93

)

1

\J1

3-9701

System Design Document DX10 Implementation Tutorial

1.2.7.2 Suspend Awaiting Queue Input SVC.

This SVC is also processed by a routine in +the TMSFUN module. This
routine simply enters a state >24 in the task's TSB, and resets the
task's PW and WP register values to restart it. The task's memory is
not 1immediately released, nor is its TSB queued for the termination
task. Since the task is not processed by TM®DGN, it should release all
task local LUNOs before issuing this SVC.

1.2.7.3 ZError Termination.

When a task causes an internal error interrupt (e.g., address out of
range, memory parity error), it is forced to go into end action. If
the task has no end action, or when +the end action terminates, the
tasks memory is released and its TSB is queued for the diagnostic task.
1.2.7.4 Kill Task SVC.

When a +task is killed, it is forced into end action, and then queued
for the diagnostic task.

939153-9701 1-39/1-40 Texas Instruments

System Design Document ' DX10 Source Libraries

SECTION 2

ORGANIZATION AND STRUCTURE OF DX10 SOURCE LIBRARIES

2.1 GENERAL

This section is intended as a guide to help the user search a DX10
source disk for a particular module. It contains a tabularized
description of +the +top level directories and their contents. A disk
map of the DX10 Operating System source disk is contained in +the

Product Documentation Package manual for the DX10 source (part number
2250958-0001) . :

The DX10 source and object modules are cataloged under a directory
structure that is generally organized as follows:

.o The level one directories (directories under VCATALOG) break
the DX10 code into specialized sections (e.g., task manager,
disk-manager, GEN990, key indexed file processor).

Each level one directory generally contains two sub-
directories, OBJECT and SOURCE.

“ o The OBJECT and SOURCE directories contain the object and
source modules of DX10 routines associated with the general
function implied by the level one directory name (e.g., task
management routines, memory management routines).

2.2 TOP LEVEL DIRECTORIES

Table 2-1 gives the names of the top level source directories

(cataloged directly under VCATALOG) and a brief description of the
contents of each one.

939153-9701 2-1 Texas Instruments

DX10 Source Libraries System Design Document

Directory Name

BDLINK

DEBUGR
DEVDSR
DSCBILD
DSCMGR
DXIO

DXLINK
DXMISC

DXUTIL

FILMGR
FUTIL
GEN990
GENPLINK
KIFILE

LINKER

MEMMGR

Table 2-1 Top Level Directories -- Part 1 of 2

Contents

The routines that make up the system crash analyzing
utility, ANALZ.

Several SCI batch command streams used to build a DX10
system disk.

Link Bditor control streams, link maps, and linked
object used by the disk build utility.

The routines that make up the debugger.

The device service routines for all supported devices.
The routines that make up the disk build utility.

The disk manager routines; the main driver is DM&TSK.
The DX10 I/O routines, excluding file management and
file utility; DXIOS is the main driver (i.e., processes

all code 0 SVCs.)

Link Editor control streams, 1link maps, and linked
object of various parts of DX10.

Miscellaneous routines and modules within DX10,

including: DSDATA, DXDAT2, SVC processors, boot
loader.

DX10 2.X to 3.1 disk conversion utility routines.

File management routines; the main driver 1is FM3TSK.
The routines for handling key indexed files and program
files are cataloged elsewhere.

Pile utility routines; the main driver is FUS$.

Routines and data files that make up GEN990, the system
generation program; the main driver is GEN.

Link Editor control stream, link maps and linked object
used by GEN990 to generate a system.

Key index file managing routines and overlays; the main
driver is KI$BEG.

Batch streams, control file, and Link Editor routines.

Memory management and buffer management routines.

Texas Instruments 2-2 9%915%-9701

System Design Document DX10 Source Libraries

Table 2-1 Top Level Directories —-- Part 2 of 2

Directory Name

NOSHIP
PATCH

PGFILE
SCI990

SDSMAC

SYSTEM

SYSTSK

TXLINK

UTCOMN
UTDIRP

UTDXTX
UTGENR

UTLINK

UTsve

9%915%-9701

Contents

Dummy debugger.
Patch files for sysgen and system program file.
Program file handling routines.

Batch streams and control streams to generate SCI, and
SCI routines.

Batch streams and control streams to generate the macro
assembler, and the assembler routines.

Templates of system tables and data structures.

Various system tasks, including: MVI, install/unload
volume (1svoL, UsvoL), initialize disk (IDSC),
diagnostic task (TMDGN).

The assembly language test program.

Task management routines, including: scheduler,
loader, rolling routines, etc.

Link editor control streams, link maps, and object for
the TX/DX file conversion routines.

Common routines used by various DX10 utilities.

Directory utility routines (e.g., for copy directory,
delete directory, backup directory, restore directory).

DX/TX file conversion routines.

General utility routines, including DCOPY, SIS, 8ST89,
CKS, IDT, MAD, SAD, etec.

Link Editor control streams, link maps and object for
linking most of the utility routines.

More utility routines, including Map Disk.

2-3/2-4 Texas Instruments

System Design Document System Loaders

SECTION 3

SYSTEM LOADERS

3.1 GENERAL

The software for 1loading and initializing +the DX10 operating
system 1includes: a program image loader on track 1 of all initialized
disks, a specialized loader for loading DX10 images and initialization
of various parts of the operating system, and a system restart task
which further initializes DX10 and which bids any user specified
restart task (GEN990 ID parameter).

In addition, the new ROM bootstrap loader (multiwire — PN 945134-0013;
printed circuit - PN 945134-0014) which can load a program from cards,

cassette, magnetic tape, or disk, is used to load the program image
loader.

The normal sequence for loading a system image is:

1. Initiate the boot loader (by pressing the HALT, RESET, and
then LOAD buttons on the front panel)

2. The boot loader loads the disk program image loader, starting
at location »>A0.

3. The disk program image loader determines where the end of its
address space (highest address) is, relocates itself to the
high end of memory, then reads in the special system image
loader, starting at location >AO.

4. The system image loader relocates itself to the high end of
memory, loads the DX10 image specified in the disk volume
information (track O, sector 0), initializes system
variables, bids +the system restart task, and transfers
control to the operating system.

5. The system restart task, executing under control of +the
operating systemnm, performs more initialization of +the
operating system and then bids +the user specified restart

task, if one was specified when the 1loaded system was
generated.

8361539701 31 Texas Instruments

System Loaders System Design Document

The following paragraphs describe each separate loader and restart task
in detail, as well as options in the loading sequence that may be used.

3.2 THE BOOT LOADER

The bootstrap loader which is contained in ROM, 1is capable of
loading a program from either cards, cassette, magnetic tape, or disk.
The loader can be programmed to load from any of these media by
inserting values in the hoot workspace (memory locations >80 - >9F) via
the front panel of the 990/10 computer.

Location >80 is wused to specify the loading device, according to the
following rules:

* If the content of >80 is positive, load from the card reader
at the preferred location (CRU address >40).

If the content is zero, load from a cassette at the preferred
location (CRU address 00).

* If the content is negative, load from +the TILINE device

(magnetic tape or disk) at the address specified in location
>82.

If the loading device is a TILINE device, locations >82 and >84
are used to specify the TILINE address and unit select, respectively.
The unit select value specifies which device on a mnultiple-device
controller is to be used. TFor magnetic tape controllers, the following
values should be used:

>8000 - unit O
>4000 - unit 1
>2000 - unit 2
>1000 - unit 3

Por disk controllers, the following values should be used:

>0800 - unit O
>0400 - unit 1
>0200 - unit 2
>0100 - unit 3

The default values, which are inserted into these locations by pressing
the HALT button on the front panel, cause the ROM loader to boot from
disk unit O at TILINE address >F800. Note that when 1loading from a
disk, the ROM loader always loads the program image loader from track
13 however, when loading from cards, cassette, oOT magnetic tape, 1t
loads whatever program image is read from the device.

Texas Instruments 3-2 9301530701

System Design Document System Loaders

3.3 THE DISK PROGRAM IMAGE LOADER

The loader SYSLD, which resides on track 1 of every DX10 3.0 formatted
disk, 1is capable of loading any standalone program from an image file
on disk into memory. After the program is loaded by the boot loader at
location >A0, it relocates itself to the high end of its address space
(e.g., +the high end of 32K words). It then determines what program to
load by using the volume information in sector O of +track O on the
system disk (see paragraph 4.2.1 for a description of the volume
information).

The program to be loaded is chosen according to the following rules:

1. If the diagnostic flag in the volume information is Y (i.e.
non gzero), the diagnostic task, which can be any standalone
task, will be loaded, and the flag reset to N (zero).

2. If no diagnostic is specified, the loader checks to see if
the file pathname of either a primary or a secondary system
loader is specified. If so, the image loader loads whichever
system loader is indicated by the flag (0O=load primary,
1sload secondary, -1sload secondary and reset flag to zero).

3. If no system loader is specified, the image loader loads the
system image 1indicated by the image flag, which is used in
the same manner as the system loader flag.

The program image loader normally loads a program image starting at
memory location D>AOQO. This default load bias is stored in the second
word of the loader, and may easily be changed by a Modify Absolute Disk
(MAD) command. Note that, since +the 1image loader neither changes
memory mapping nor uses long distance instructions, it always loads in
its own address space. When the loader is booted by the ROM loader, it
is always mapped into the first 32K words of memory.

3.4 THE SYSTEM LOADER/INITIALIZER

The DX10 system loader, module STARTR, is normally located on file
. SSLOADER. This program assumes it has been 1loaded starting at
location >AO0 by the program image loader, and relocates itself to the
high-order 8K bytes of physical memory. It then determines the name of
the operating system to be loaded from the program file .SSIMAGES, by
reading the volume information on track O, sector 0. The system select
flag " indicates which system image is +to Dbe 1loaded (O=primary,
1ssecondary, -1=load secondary and reset flag to zero).

After obtaining the name of the system to be loaded, the system loader

searches .VCATALOG and finds the program file, .S$IMAGES. It +then
loads the system image from disk, starting at location >AO.

939153-9701 3-3 Texas Instruments

System Loaders System Design Document

After 1loading the system image, STARTR performs the following
initialization functions:

* Initializes the map files for all of the system segments.

* Renames the disk drives (if necessary) to make the system disk
DSO1.

%* Initializes memory beyond the end of the loaded system to a
constant pattern (>BOOB).

Initializes memory size parameters.

* Initializes the interrupt and XOP +trap vectors in memory
locations >00 - >80.

* C(Creates file control Dblocks and logical device tables for
VCATALOG, the system program file, the system overlay file,
and the roll file.

Enters the power up code of each device service routine in the
system.

%* TLoads memory resident procedures and bids memory resident
tasks.

*¥ 1Initializes free memory pointers.

*¥ Bids the system restart task, SYSRST.

After initialization, the system loader releases control to the task
gscheduler.

3.5 THE SYSTEM RESTART TASK

When the operating system starts up, the first task scheduled for
execution is the system restart task, SYSRST. This task performs
initialization functions that are easier to do under a running
operating system than in the system loader. SYSR3ST also bids the user
specified restart task if there is one (the user restart task must be
on the system program file, and is specified during system generation).

Texas Instruments 3-4 939153-9701

System Design Document System Loaders

The initialization functions performed by SYSRST are:
* Delete all temporary files on the system disk
* Assign global LUNO >10 to the language program file, S$SDS
* Assign global LUNO 1 to the foreground TCA file, S$FGTCA
* Assign global LUNO 2 to the background TCA file, S%BGTCA
* Assign global LUNO 3 to the master TCA library file, S&TCALIB
* Enables the SCI bidding logic within the operating system

* Bids the system log command processor to start file logging.

939153-9701 3-5/%-6 Texas Instruments

System Design Document Disk Organization

SECTION 4
DISK ORGANIZATION

4.1 DISK FORMAT

Under DX10, all tracks on disks are initialized in one sector per
record format. Note that this record is a disk characteristic and is
not the same as the physical record size specified when creating files.

DX10 disks are logically divided into allocable disk units (ADUs), as
described in the DX10 Operating System Systems Programming Guide. An
ADU is defined to be an integral number of sectors on the disk, the
nunber of sectors per ADU varying according to disk size (see table 4-
1), such that the number of ADUs is less than 65,536 (i.e., each ADU on
the disk can be addressed in a 16-bit word) and the sectors (ADU is 1

or a multiple of 3). ADUs are numbered from zero, with the first ADU
starting on track 0, sector O.

Table 4-1 Format Information for Supported Disks

No. of No. of Sectors/ Bytes/
Disk Type Sectors ADUs ADU ADU
DS10 16320 16320 1 288
D325 77520 25840 3 864
DS31/DS32 9744 9744 1 288
DS50 154850 51616 3 864
DS200 588430 65381 9 2592
CD1400/32
Removable 52544 52544 1 256
Fixed 52544 52544 1 256
CD1400/96
Removable 52544 52544 1 256
Fixed 262716 43786 6 1536

4.2 PHYSICAL ORGANIZATION OF THE DISK

To prepare the disk for use, surface analysis and initialization of the

disk must be performed. Surface analysis is performed by using the IDS
(Initialize Disk Surface) command. After execution of this command,

the disk state word in track zero, sector zero contains a value of two.
Additionally, bad tracks (physical imperfections) on +the disk are
indicated. ZEach bad track is indicated in pairs of words. The first
word indicates the first of any contiguous group of bad tracks, and the
second word indicates the number of contiguous tracks. Initislization

9%9153-9701 4-1 Texas Instruments

Disk Organization System Design Document

of a disk is performed by using the INV (Initialize New Volume)
command. When a disk is initialized, the disk state word in track
zero, sector zero, contains a value of three, indicating that the disk
is now ready for use. Bad disk areas are indicated by ADUs in pairs of
words. The first word contains the ADU address of the first of any
contiguous group of bad ADUs. The second word contains the address of
the last ADU in the group.

A1l disks that have Dbeen initialized under DX10 have the following
physical layout:

* Track 0, sector 0 -- contains information about the disk
volume, such as +the volume name and pointers, to the volume
directory (VCATALOG).

* Track 0, sector 1 —- contains a list of bad (in the sense of
physical imperfections\ areas on the disk. Each entry is two
words: the first word is the address of the first bad ADU;
the second word 1is the address of the last bad ADU. A zero
word terminates the list.

* Track O, sector 2+ —— the remainder of track O contains disk
allocation information, in the form of bit maps.

* Track 1, sector O+ —— is reserved for the disk program image
loader described in Section 2.

* Track 1, penultimate sector -- a copy of track 0, sector O.

* Track 1, last sector -- a copy of track 0, sector 1.

*¥ The remaining tracks are available for file allocation.
The following paragraphs describe the track 0 information in greater
detail.
4.2.1 VOLUME INFORMATION.
The information contained in track 0, sector O of all disks intialized
under DX10 is called volume information. Figure 4-1 shows +the format
of the 140-byte block of information.
The following is a list of the volume information contained in track O,

sector O. Note that some fields have zero values when the disk is
initialized.

Texas Instruments 4-2 0301 53_9701

System Design Document ' Disk Organization

Hex.
Byte
— ¥ ——— - e o e o e e e e - e s e e e e e o *
>00 | !
! VOLUME NAME i
! !
] 1
Fm————— _ — — ————— e +
>08 | NUMBER OF ADUs : !
e e S —_ +
>0A | BIT MAP START SECTOR ! NUMBER OF’BIT MAPS !
m———— —————— e e o +
>0C | . TRACK 0O RECORD LENGTH !
e e - ——————— e +
Figure 4-1 Volume Information Format (VIF) —— Part 1 of 4
939153-9701 4-3 Texas Instruments

Disk Organization

>O0E |

System Design Document

e e e i/J ' ‘
>10 . \

RESERVED

|
|
|
|
|
i
+ - —_ ———————————— +
>16 ! NUMBER OF BAD ADUs ! 0
e .
>18 ! PROGRAM IMAGE LOADER ENTRY POINT T~\ \
A o e e e e e e e e e e e e e e +
ST, PROGRAM IMAGE LOADER LENGTH ihlék———/
e ————_————— e — e e e i o o e i i e . S i S S o o A o i S S
>1c | l
~ RESERVED ~
|]
| 1
A e e e e e e e e e e e +
>24 | PROGRAM IMAGE LOADER TRACK !
L —— ————— S +
>26 | !
~ RESERVED N
!]
| |
e e e e e e e - -+
S2E | |
~ PRIMARY SYSTEM IMAGE FILE NAME o
1 i
| |
e e e e e e e e e e e e e e e e +
>36 | !
~ SECONDARY SYSTEM IMAGE FILE NAME -
| 1
| 1
o e e e e e e e o e e e e e e +
>3E | SYSTEM IMAGE SELECT FLAG !
- _— - —_— - —————————————————— +
>40 | VCATALOG STARTING ADU ! i
o e e e e e e e e e e e +
>42 ! VCATALOG PHYSICAL RECORD SIZE !
e e e +
>44 | SECTORS/ADU !
o e ———— e +
>46 i CREATION DATE i
| |
o e et e e e e e e +

Figure 4-1 Volume Information Format (VIF) -- Part 2 of 4

Texas Instruments

4-4

93915%-9701

System Design Document Disk Organization

O - ————— e ————t
>4A | |
- PRIMARY PROGRAM FILE NAME -
| |
t |
+ ——————————— e _— ————————— +
>52 | !
~ SECONDARY PROGRAM FILE NAME ~
i]
i 1
U ———— e +
>5A | PROGRAM FILE SELECT FLAG : !
+= - - - - —_——— +
>5C | {
~ PRIMARY OVERLAY FILE NAME -
1]
! {
e e o - -+
+- —— ————— e e +
>64 | |
~ SECONDARY OVERLAY FILE NAME -
| |
| '
+=— - ———————————— - ——t
>6C | OVERLAY PILE SELECT FLAG !
+ — - -
>6E | |
- PRIMARY SYSTEM LOADER FILE NAME -
| |
| i
+ - - _— - —— —————————— +
>T76 | !
- SECONDARY SYSTEM LOADER FILE NAME :
| |
I !
Fm———— e e e +
>TE > SYSTEM LOADER SELECT FLAG d
e e +
>80 | !
~ DIAGNOSTIC FILE NAME :
1 I
! I
e e e e +
>88 | DIAGNOSTIC SELECT FLAG i
Fm———— - e e +
>84 | DEFAULT PHYSICAL RECORD SIZE ! ~
o e e tog . DK
>8C | BAD ADU LIST STARTING SECTOR ! Te(
e e e +
Figure 4-1 Volume Information Format (VIF) —- Part 3 of 4

9%9153-9701 4-5 Texas Instruments

Disk Organization System Design Document

\\\
e e e o ot o i o o e e R i +4g/)
>8E | TRACK O SECTORS/RECORD |
e e e e e e e e o e +
>90 | !
~ WCS PRIMARY FILE -
} |
b o e e e e e e e e o e e o +
>98 | ¥
~ WCS SECONDARY FILE -
! I
e e o e +
>AO | WCS SELECT FLAG !
o e e e o e e e e +
. >A2 VOLUME INFORMATION COPIED FILAG !
e e e e e e e o e e e o e o e e e e +
SA4 | DISK STATE !
o e e e e e o e o e e e +
Figure 4-1 Volume Information Format (VIF) —- Part 4 of 4
| | §ku:*2z \ %? o
! : - Fo¢

eeu Q@PiaJ 1s ‘L(cc(/b [

War n -

{ - C@Plﬁ@

o = UW<3%' c,cgziq,é?

Texas Instruments 4-6 93915%-9701

System Design Document Disk Organization

Hex.
Byte

>00
>08

>0E

>10
>16
>18

>1A
>1C
>24

>26
>2EF

>36

>3E
>40

>42

>44
>46

Description

D e T pp—— o

A 1-8 character volume name, blank filled to the right.

Total number of allocable disk units contained in the volume.
This field varies by disk type.

The number of the sector on track O in which the first bit map
resides.

Total number of bit maps.

The number of bytes per physical record (i.e., sector) on
track 0. This value is also disk dependent.

The number of the track that contains the disk program image
loader. This field is initialized to one.

Reserved.

Total number of bad ADUs on the disk.

Entry point address of +the disk program image loader
(initialized 1o >A4, the entry point of the loader when it is
loaded at location >A0).

Total length, in bytes, of the disk program image loader.

Reserved.

Second copy of the number of the track that contains the disk
program image loader (initialized to one).

Reserved.

The 1-8 character name of the primary system image file. Zero
at initialization.

Name of the secondary systenm image file. Zero at
initialization.

System select flag. Zero at initialization.

Number of the ADU in which +the volume directory (VCATALOG)
begins.

Physical record size of the VCATALOG directory file
(initialized to >86 bytes).

Number of sectors per ADU (disk dependent).

Disk creation date.

939153-9701 4-7 Texas Instruments

Disk Organization System Design Document

>4A Primary system program file name.

>52 Secondary system program file name.

>5A System program file select flag.

>5C Primary system overlay file name.

>64 Secondary system overlay file name.

>6C System overlay file select flag.

>6E Primary system loader file name.

>76 Secondary system loader file name.

>7E System loader select fite. —Q‘aé

>80 Diagnostic file name.

>88 Diagnostic select flag.

>8A Default physical record size for the disk (not implemented).

>8C Sector in track 0 in which the load ADU list begins (equals 1
for DX10 disks). (Not implemented).

>8E Number of‘sectors per record on track 0 (not implemented).

>90 Primary writable control storage (WCS) file name.

>98 Secondary writable control storage (WCS) file name.

>A0 Writable control storage select flag.

>A2 Volume information copied flag.

>A4 Disk state TOS ToNc

Ny Done
4.2.2 Allocation Bit Map

To keep track of which areas on the disk are allocated and which areas
are free, the DX10 disk manager maintains a bit map of allocated ADUs.
The bit map is located on track 0 of each disk, starting at sector 2
and continuing through as many sectors as necessary.

The bit map is divided into 128-word partial bit maps. Each partial
bit map is located in a separate sector on track 0. The first word of
each partial bit map contains the number of th ADU that begins the
largest block of free disk space located in that part of the disk that
is mapped by the partial bit map. Each bit in the remaining 127 words
represents an ADU. If the bit is zero, the ADU is free; a one bit
indicates that the ADU is allocated (or bad).

Texas Instruments 4-8 (Change 1) 939153-9701

System Design Document Disk Organization

Figure 4-2 shows a partial bit map. Note that, since each partial bit
map contains 127 16-bit words of information, it maps 20%2 ADUs.

BYTE O
RELATIVE ADU NO. OF LARGEST
AVAILABLE BLOCK
PARTIAL ALLOCATION BIT MAP
S BIT = 1 MEANS S
UNIT ALLOCATED
2278128

Figure 4-2 Partial Bit Map

4.3 FILE STRUCTURES

DX10 supports three file types: relative record files (block and
unblocked), sequential files, and key indexed files. All file types
are based on the unblocked relative record type, with extra system
overhead needed to implement sequential and key indexed files. In
addition, +there are three special usages of the relative record file:
program files, directory files, and image files.

In the following discussion of file types and file structures, a
physical record of a file is the amount of data actually transferred by
the operating system during an I/0 operation to the file; a logical
record of a file is the amount of information the user desires to
transfer in an I/0 operation. The ratio of the physical record size to
the logical record size is called the blocking factor.

939153-9701 4-9 Texas Instruments

Disk Organization System Design Document

4.3.1 RELATIVE RECORD FILES.

A relative record file is a file in which all logical records are a
fixed length and each record can be randomly accessed by its unique
record number. Relative record files may be unblocked (logical record
size equal to physical record size) or blocked (logical record size
less than physical record size).

4.%.1.1 Unblocked Relative Record Files.

Bach logical record of a file of this type occupies one physical record
of the file. A physical record may be any integral multiple of
contiguous sectors. File accesses require reading or writiog this many
sectors (reads and writes of multiple contiguous sectors can be
accomplished via one disk access) . Records read from unblocked
relative record files are transferred directly from the disk +to the
user buffer, without intermediate system buffering. When the user
specifies a particular record of the file, the record number is
converted by file management to an absolute allocable disk unit number
and a sector offset within the ADU. The absolute disk address is then
passed to the disk device service routine (DSR) to perform the actual
data transfer. The disk DSR converts the ADU and relative sector to =
physical +track and sector disk address to communicate with the disk
controller hardware.

Long Unblocked Relative Record
Record Size > ADU Size

LONG UNBLOCKED RELATIVE RECORD,RECORD SIZE > ADU SIZE

RECORD
A
/ -\
ALL DATA ALL DATA ALL DATA
\ / \u
\/ -/ J \ UNUSED
ADU ADU V /
2278129 ADU

Texas Instruments 4-10 Q301 /7%-0701

System Design Document Disk Organization

Unblocked Relative Record
Record Size < ADU Sigze

PHYSICAL
A - UNBLOCKED RELATIVE RECORD
LOGICAL RECORD SIZE < ADU SIZE
ALL DATA :2:;/ ALL DATA ;E:;/ ALL DATA ////, ;;//
RECORD 1 RECORD 2 RECORD 3 UNUSED
_ /
-V
2278130 ADU

Note that each physical record must begin on a sector boundary and that
a physical record that starts in te middle of an ADU may not span the
ADU boundary.

4.3.1.2 Blocked Relative Record File.

These files are +the same as unblocked except that multiple logical
records may be stored in each physical record. Logical records may not
span physical records. Records are +transferred via intermediate

blocking buffers which are furnished from the general pool of user
space by buffer management.

Blocked Relative Record File

BLOCKED RELATIVE RECORD FILE

PHYSICAL RECORD 1 PHYSICAL RECORD 2
4 e
REC1 | REC2 | REC 3 | REC 4 REC5 | REC6 | REC7 | REC 8 //f::
4 LOGICAL RECORDS UNUSED 4 LOGICAL RECORDS UNUSED
_ /
\V4
2278131 ADU

4.3.2 SEQUENTIAL FILES.

Sequential files are blocked relative record files with variable length
logical records. Logical records may span physical record boundaries
regardless of ADU boundaries. When 2 logical record spans a physical
record boundary, it is broken into partial records which are contained
in separate blocks. The first word of each physical record has two
flags indicating whether the first logical record is continued from the

539153-9701 4-11 Texas Instruments

Disk Organization System Design Document

preceding physical record and whether the 1last 1logical record is
contained in the following physical record. Set flag bits (bit = 1)
have the following meaning:

Bit Meaning When Set

0 First logical record in this physical record
is continued from the preceding record.

1 Last logical record in this physical record
continues in the next record.

Each 1logical record or partial record is preceded by a header word and
followed by a trailer word. The content of the header and trailer is
the number of Dbytes of user data between them. An end-of-file is
signified by a zero length record (zero header and trailer).

A special condition exists when a record or last partial record ends
with only one or two words remaining in the physical block. Since
there is not room for another partial record (header/data/trailer), the
next record will begin in the following block. The last word of the
current block contians the number in the last trailer plus the number

of unused bytes (two or four). Figure 4-3% shows how a sequential file
is arranged.

Logical records of a sequential file may be blank-suppressed (i.e., the
sequential file 1is created blank-suppressed). In blank-suppressed
files, all double blanks are removed. A blank-suppressed 1logical
record has the following format:

1. Header word

2. Byte containing a count of words with double blanks¥

N

. Byte containing 2 count of words with no double blanks*
4. Data characters*

5. Trailer word

* TItems 2 through 4 above are repeated as necessary.

Figure 4-4 shows a blank-suppressed record.

Texas Instruments 4-12 , 939153-9701

System Design Document

PHYSICAL RECORD 0

BYTE
o []1]
2 8
4
6 LOGICAL RECORD 0 DATA
-3
A
Cc 8
E E
10
;2
4
;g LOCICAL RECORD 1 DATA
1A
ic
1E E
20 8
22
24 LOGICAL RECORD 2 DATA
26
28
2A 8
PHYSICAL RECORD 1
1]o]
4
LOGICAL RECORD 2 DATA
4
A
LOGICAL RECORD 3 DATA
A
A
LOGICAL RECORD 4 DATA
A
[
o
2
2278132

939153-9701

Figure 4-3 Sequential File

FLAGS
RECORD 0

RECORD 0

RECORD 1

RECORD 1

RECORD 2

RECORD 2

FLAGS
RECORD 2

RECORD 2

RECORD 3

RECORD 3

RECORD 4

RECORD 4

EOF

Disk Organization

HEADER

TRAILER

HEADER

TRAILER

HEADER (PARTIAL)

TRAILER (PARTIAL)

HEADER (PARTIAL)

TRAILER (PARTIAL)

HEADER

TRAILER

HEADER

TRAILER

THIS WORD POINTS BACK TO EOF HEADER
NEXT RECORD STARTS IN NEXT BLOZK

Format

Texas Instruments

Disk Organization

PHYSICAL RECORD

1

RECORD HEADER

RECORD DATA

RECORD TRAILER

1E
° | 1
»
| 8
THIS IS A B.S. RECORD
1A [(]
1E

+

System Design Document

0 WORDS OF BLANKS,1 WORD OF DATA

2 WORDS OF BLANKS,B, g WORDS OF DATA

1A1 & WORDS OF BLANKS,0 WORDS OF DATA

1;

THIS RECORD REPRESENTS THE 80-CHARACTER RECORD BELOW

/* THIS IS A B.S. RECORD

< 52 BLANKS>

2278133

Figure 4-4 Blank-Suppressed Record

Texas Instruments

93915%-9701

System Design Document Disk Organization

4.3.3 XEY INDEXED FILES.

Key 1indexed files have variable 1length logical records that can be
accessed either randomly, by any one of up to 14 alphanumeric keys, or
sequentially, in the sort order of any key. On the disk, a key indexed
file with n keys is arranged as follows:

* The first 18n+3 physical records are the KIF log blocks.
Before modifying any record within the file, it is written
into a 1log block, +to prevent data loss in case of an error
(e.g., power failure) during the data transfer. In the event
of such an error, the logged image is written back into the
original file record, when the file is next opened, and the
file operation may be retried.

* The next n physical records are the roots of the balanced
trees (B-trees) that are used to locate each logical record
within the file by key. There is a B-tree for every defined
key (i.e., up to 14 B-trees); therefore, there are n B-tree
roots.

*¥ TFollowing the B-tree root nodes are physical records that
contain data as well as physical records that contain other B-
tree nodes.

The following paragraphs describe the structure of B-trees and data
records in detail. -

4.3.%3.1 B-Trees.

B-trees are made up of a root node, branch nodes, and leaf nodes. Root
nodes are just the first node of the tree. ILeaf nodes are the nodes
that contain pointers to the data records. Branch nodes are all the
nodes between the root and leaf nodes.

A B-tree, wunder DX10, is a multi-way (having multiple branches per
node), balanced tree; that is, all leaf nodes are at the same level.
DX10 B-trees may not exceed nine levels. Figure 4-5 shows a sample B-
tree, in which the key values are single letters.

Fach node of a B-tree occupies one physical record of a key indexed
file, and 1is called a B-tree block. Each B-tree block contains a few
words of overhead and several pointer/key value pairs. Figure 4-6
shows a B-tree block.

939153-9701 4-15 Texas Instruments

Disk Organization

Texas Instruments

Y

L

Systen

-

Design Document

N\

DI

"D

N

2N

2NN

> RO

Figure 4-5 Key Indexed File B-Tree

Y
| x| [MP e
fa

4]

4-16

—

939153-9701

System Design Document Disk Organization

>0C

>10
>12
>14

>18
>1A

Hex.
Byte

>00

>04

PREDECESSOR POINTER

+

!

i

+

: |
! OR FREE CHAIN LINK |
. SO +
1

i

1

1

+

1

|

SUCCESSOR POINTER !

—————————————— + - —_— e
NUMBER OF ENTRIES ! PLAGS !

o —— —————————— + ——t

I'SEQUENTIAL INSERT POSIWION' SEQUENTIAL INSERT COUNTER|

+ - ——————————————— - —t——t

! BLOCK NUMBER ! !

! ! POINTER

+ e - —— + |

! INDEX (LEAF LEVEL ONLY) ! !

e e e e e e +—=t

| |

~ KEY VALUE :

| |

1 i

+- - ——————————e — ———+t

| |

L L

i |

1 1

* . —— - - . e e e 2 o S o o . S e e e e e e e o o o o e o o e e e o 3*

Figure 4-6 B-Tree Block
Description
Physical record number of this B-tree block. This field 1is

maintained so that, should a system crash occur while this
file block is being modified, the logged image can be restored
to the correct file record.

The opcode of the file operation being performed. This field
is also maintained for logging purposes.

939153-9701 4-17 Texas Instruments

Disk Organization System Design Document

>06 The number of available bytes remaining to be used in this B-
tree block.

>08 If this block is currently being used as a B-tree node, this
field points to the preceding node on the same level (zero if
this is leftmost node). The address is a physical record
number. If this block is available for use, this field points
to the next available block (free blocks are kept on a linked

list).

>0C If this block is a B-tree node, +this field points to the
following node on the same level; otherwise, this field is
unused.

>10 The number of pointer/key value pairs currently contained in
this block.

>11 Flags. Bit 7 is set (byte 17 = 1) if this B-tree block is a
leaf.

>12 This byte is zero when the block is initialized due to a B-

tree split. When the first entry is made to the block, this
byte contains the number of entries in the Dblock that are
greater than +the new entry. (This applies to sequential
placement only; otherwise, byte >14 is moved up here).

>13 When the block is initialized due to a B-tree split, this
value is the maximum entries that may be inserted in the block
plus one. For each subsequent entry to this block, if the
number of entries in the block that are greater than the new
entry equals the number in byte >12, byte >13 is decremented
by one. When this B-tree block is about to split, if byte >13
is zero, the lower 90% of the entries are in one block and the
upper 10% in the other. Otherwise, the split is 50-50. (This

applies to sequential placement only; otherwise, byte >15 1is
moved up here.)

>14 These six bytes are the first pointer. If this is a non-leaf
node, the first four Dbytes contain the record number of a
branch or leaf node and the last two bytes are meaningless.
If +this is a leaf node, the first four bytes contain a record
number of a data record and the last two bytes contain the key
ID of the logical record within the data record.

>1A The key value of the first pointer/key value pair.

The remainder of the B-tree block contains more pointer/key value
pairs. These entries in a B-tree block are kept sorted in increasing
order of key value (smallest key value is first entry) .

If the block is not a leaf entry, each pointer field points 1o 3,
subtree that contains all key values less than or equal to the ke:@
value associated with the pointer. 1In fact, the highest key value™

Texas Instruments 4-18 039153-3701

System Design Document Disk Organization

contained in the subtree is the key value associated with the pointer
(as shown in the sample B-tree).

Further information on general B-tree structure is available in The Art
of Computer Programming, Volume III by Donald Knuth.

4.3.3.2 Data Blocks.

All of the data records (logical records) of a key indexed file are
contained in data blocks. A data block is a physical record of the
file and contains a few words of overhead and several logical records,
as shown in Figure 4-7. The word following the last logical record has
a zero value.

939153-9701 4-190 Texas Instruments

Disk Organization System Design Document

>0C
>0E
>10
>12

Hex.
Byte

>00

>04

e e e e e e e e e e o e e e e e e e e e e e e e e e e *

E BLOCK NUMBER 5

I |

e e e et e e e e e e e e e +

! COMMAND NUMBER !

e ————————— +

! SPACE REMAINING !

e —————————————————— e — = +

: OVERFLOW BLOCK OR !

| FREE CHAIN POINTER i

e e e e e e e e e e e e +

! HIGHEST KEY ID USED !
e e ———————————— +—t
! RECORD SIZE (1ST RECORD) .
o ——————————— e e e —————————— e — + NOTE 1
! KEY ID P
S —_ ———————— e +-—t
| |

~ RECORD -

')

I 1

o e e e e o e o e e e +

! RECORD SIZE (2ND RECORD) |

e e e e e e e e e +

! KEY ID !
m———— e e e e e e e e e e +

I I

~ RECORD -

| |

1 !

e —————————— - —————————— +

| |

% |

| 1

| |

I I

H e e e e e e e e e e o e e e e e e e —_ e e e e e e e e o e e . s o e e o o S e ¥*

NOTE 1 -- Four Overhead Bytes per Logical Record
FPigure 4-7 Data Block
Description

Physical record number of this Dblock. This field is
maintained so that, should a system crash occur while this
block is being modified, the logged image can be restored to
the correct file record.

The opcode of the current command. This field is also
maintained for logging purposes.

Texas Instruments 4-20 9301 53_9701

System Design Document Disk Organigzation

>06 The number of bytes remaining in the physical record.

>08 This block is used to link the block on the free block chain.

>0C The highest ID assigned to any logical record with the block.

>0E Size, in bytes, of the first logical record including this
word.

>10 The ID assigned to the first logical record.

>12 First logical record.

Whenever a data record is to be inserted in a data block, it is
assigned an ID that is unique within the block. The data record is
then inserted in the first available place in the block.

4.3.4 SPECIAL RELATIVE RECORD FILES.

In addition to the three basic file types, three special uses of the
relative record file warrant description: program files, directory
files, and image files.

4.%3.4.1 Program Files.

Program files are unblocked relative record files having a logical
record size of one sector. The smallest sector size allowed is 256
bytes. TFigure 4-8 shows the format of a program file. The sections of
information describing the contents of the program file (see Figure 4-8
will not always start at the beginning of records or be in the same
place for all program files. The following set of equations define the
record number and the offset into the record of the Dbeginning of the
sections of information. In the equations, R designates a record and O
designates the offset.

R1 = 1
01 =0

((MAX # TASKS +2)/2) * >10) + O1
R2 = R1 +

>100
((MAX # TASKS +2)/2) * >10 + 01
02 = remainder of ——————--- -
>100

(MAX # TASKS +1) * >10 + 02

R? = R2 4+ e
>100
. (MAX # TASKS +1) * >10 + 02

0% = remainder of

>100

939153-9701 4-21 Texas Instruments

Disk Organization

R4

04

R5

05

R6

06

R7

07

R8

08

If

R1,
R2,
R3,
R4,
R5,
R6,
R7,
R8:

System Design Document

((MAX # PROCS +2)/2) * >10 + 03

= R3 +
>100
((MAX # PROCS +2)/2) * >10 + 03
= remainder of -- ———— e ————
>100
(MAX # PROCS +1) * >10 + 04
= R4 +
>T00
(MAX # PROCS +1§ * >10 + 04
= remainder of
>100
((MAX # OVLYS +2)/2) * >10 + 05
= R5 +
>100
((MAX # OVLYS +2)/2) * >10 + 05
= remainder of
>100
(MAX # OVLYS +1) * >10 + 06
= R6 +
>100
(MAX # OVLYS +1) * >10 + 06
= remainder of
>100
((MAX # HOLES * 4) +2) + 07
= R7 +
>100
((MAX # HOLES * 4) +2) + 07
= remainder of

08 is not equal to

01: Record number
02: Record number
03: Record number
04: Record number
05: Record number
06: Record number
07: Record number

Record number

Texas Instruments

>100
zero, then R8

and offset for
and offset for
and offset for
and offset for
and offset for
and offset for
and offset for
of first image

4-22

= R8 + 1

names of tasks.

task directory entries.
names of procedures.
procedures directory entrie
names of overlays.

overlay directory entries.
unused space directory.
record.

939153%-9701

System Design Document Disk Organization

The first record (record number O) of a program file contains six bit
maps. These bit maps, in order of occurrence within record 0, are for
memory resident tasks, memory resident procedures, all tasks, all
procedures, all non-replicatable tasks, and all overlays.

*
|
|
x*

T — — s " A s s (s s g Y D . T o T — T —— > S S

o | OVERHEAD RECORD !

y 7T " NAMES FOR TASKS H

- —_— e +

R2:02 | DIRECTORY ENTRIES FOR TASKS !
R3:05 | NAMES FOR PROCEDURES T
R4:04 | "DIRECTORY ENTRIES FOR PROCEDURES T
R5:05 1 NAMES FOR OVERIAYS T
R6:06 | DIREGTORY ENTRIES POR OVERIAYS i
R7:07 | AVATLABLE SPACE LIST o H
RS 1_ IMAGE FORMATS FOR TASKS, PROCEDURES & O;ERLAYQ—_--I

Figure 4-8 Program File Format

When record zero is initialized, all the bits in the bit map are gzero
except the first bit in +the tasks, procedures, overlays, and non-
replicatable tasks bit maps (the bit maps occupying bytes >54->D3).

The first bit of these is a one, restricting user tasks from allocating
ID zero.

Each bit map is 16 words by 16 bits per word, and thus is able to
represent 256 IDs. A bit set to one indiates the ID corresponding %o
the bit position (i.e., O through 255) 1is assigned to a task,
procedure, or overlay segment that is installed in the file. Figure 4-
9 shows the format of record zero of a program file.

9%9153%3-9701 4-2% Texas Instruments

Disk Organization System Design Document

Hex
Byte
_____ e e e e o e e e 27 e e 2 S e 2 e 2 e o o P e e e . it e e 2 e o o o S e e e S o o e e
>00 | 0000 i
e e e e +
>02 | l
N RESERVED (=0) N
| I
I I
A e e e ———————————_—————— +
>10 | :
- RESERVED (=0) N
| |
! !
e +
>14 !
~ BIT MAP FOR MEMORY ~
~ RESIDENT TASKS A
|
| !
e e e e —————————— e +
>34 | !
~ BIT MAP FOR MEMORY
~ RESIDENT PROCEDURES v
i
|
S +
>54 | l
~ BIT MAP FOR ALL TASKS N
! |
1 |
e e e —————————————————————————————— +
>74] }
~ BIT MAP FOR ALL PROCEDURES -
! !
e - —_— ———t
>94 | i
~ BIT MAP FOR ALL NON-REPLICATABLE TASKS -
| I
o ————— - - - - - -t
>B4 | !
~ BIT MAP FOR ALL OVERLAYS N
| |
o —————————————— e o +
>D4 | MAXIMUM NO. OF TASKS | 02 :
Fo e ————————————— e +
>D6 | R2 :
e ————————————————————— A e e — - +
>D8 | MAXIMUM NO. OF PROCEDURES| 04 {
e e e o e +

Figure 4-9 Program File Record Zero —-- Part 1 of 2

Texas Instruments 4-24 93915%-9701

System Design Document Disk Organization

Fm——— - -+
>DA ! R4 I
+——— — s R +
>DC | MAXIMUM NO. OF OVERLAYS | 06 !
——————— e o ———— - ——————————— +
>DE | R6 !
e e ——————— - - -+
>E0 | MAX. NO. OF HOLES (TASKS, PROCEDURES, AND OVERLAYS) |
+ —-— — —_—— ——
>E2 | 07 '
o e e +
>E4 | R7 !
>E6 | !
~ UNUSED (=0) ~
| |
*_ - - _— _ *

Figure 4-9 Program File Record Zero —- Part 2 of 2

At program file creation time, the maximum number of tasks, procedures,
and overlays contained in bytes >D4, >D8 and >DC of record O are
defined by the creator of the program file. The maximum number of
holes, which equals the sum of the above +three values, is used +to
calculate the number of bytes required in the overhead records for the
available space list. This list is headed by a word that contains the
number of entries in the list. The rest of the list consists of 2-word
entries that describe the wunallocated spaces (holes) in the image
portion of the program file. Each entry contains the starting record
number and the number of available records in each unused portion of
the program file. These spaces appear when an image is deleted. This
space 1is recorded to be used again if a new image is installed in the
program file that is the same size or smaller than the one that was
deleted. Adjacent images, when deleted, create only one hole. Figure
4-10 shows the format of the available space list.

The available space list uses the entire record, not 256 bytes of it as
the other overhead records do. Therefore, if the list spans records,
an entry is split across two records. (The first word of the entry is
the last word of one record and the second word of the entry is the
first = word of the next record). The available space 1list 1is
initialized at the same time record O is initialized. Its values are
as follows: :

939153-9701 4-25 Texas Instruments

Disk Organization System Design Document

e *

: 1 ! FIRST WORD
e +

! RS ! SECOND WORD
e e +

! FFFP-R8 ! DHIRD WORD
K e e e e e e e e e e e e e e e e e e e o e *

R e e e e e e e e e e e e o e o o e e e e e o 2 e . e e e i . i 2 i e . *

! NUMBER OF ENTRIES !
T — —————— e e ==t

! SECTOR NUMBER b
U — + ENTRY 1
! SECTORS AVAILABLE Voo

e e e +m—t

]]

L 1}

| ' |
e T T —— ———————— =t

! SECTOR NUMBER b
rE— S — — - _— -—+ ENTRY n
! SECTORS AVAILABLE b

K e e e e e e e o e - e o e o e o ot e e S . T o . S e o e o o S o e e W

Figure 4-10 Program File Available Space List

The maximum number of records permitted in a program is FFFF. Thus,
the maximum number of image recards permitted in a program file is FFFF
minus the number of overhead records. The actual image of 2a *tagk,
procedure, or overlay must start on a record boundary in the program
file. If the segment has a relocation bit map, it begins at the first
word following the program segment image.

The task, procedure, and overlay name blocks in the program file
contain the names of all tasks, procedures, and overlays installed in
the program file. A name 1is eight bytes long, blank-filled to the
right. The names are placed in the position in the name block that
corresponds to the ID assigned to that segment. For example, if task
GENTX is assigned ID 1, the name GENTX is entered in bytes 8-15 (second
position) of the task name block.

The task, procedure, and overlay directory blocks in the program file
contain information about all segments installed in the program file,
as well as pointers to the segment images. ZEach directory is 16 Dbytes
long. The figures that follow show the formats of the program file
directory entries, with the field description following their

respective formats. PFigure 4-11 shows the format of the task directory
block.

Texas Instruments 4-26 0351 53-9701

System Design Document Disk Organization

Hex.
Byte
_____ K e - - e e e e e e e e e e s et e e e e e e e e T
>00 | LENGTH OF TASK SEGMENT]
e e e +
>02 ! FLAGS 5
+ —_— - —_ ——————————— ————————————— +
>04 RECORD NUMBER |
e e e e e - —_——t
>06 ! DATE INSTALLED |
e ——— ————————— +
>08 | LOAD ADDRESS !
+=— - - R e —— +
>0A | OVERLAY LINK } PRIORITY !
+——— - - - + ————————————— +
>0C | PROC 1 ID | PROC 2 ID !
+ - - _ + - —_— -—+
>0E | TASK LENGTH |
*o —_— ———— — = e e e *
>10 *
Figure 4-11 7Task Directory Block
Hex.
Byte Description
>00 Length of task segment in bytes. Iength of task root plus the
~length of the tasks longest overlay path.
>02 Flags, which mean the following when set:
Bit Meaning When Set
0 Privileged
1 System
2 Memory resident
- % Delete protected
Replicatable
5 Procedure 1 is on the system program file
6 Procedure 2 is on the system program file
o Directory entry in use :
8 Overflow
9 Writable control store
10 Execute protected
11-15 Unused (set to zero)
>04 Record number. Logical record number of the start of the task
image in the program file. '
939153-9701 4-27 Texas Instruments

Disk Organization System Design Document

>06

>08

>0A

>0B
>0C
>0D

>0E

>10

Date installed. Date is in the format:

Bit Meaning
0-6 Year (Displacement)
7-15 Julian date

Load address. Relative starting address within a mapped task
segment. Must be on a beet boundary.

Overlay link. The ID of the most recently installed overlay
associated with the task. Each overlay entry is in turn
linked to the next entry so that tasks can be associated with
their overlays when status or delete commands are executed. A
value of 0 is used to terminate the list.

Priority of the task.

Procedure 1 ID.

Procedure 2 ID.

Length (in bytes) of the difference between the last defined
location and the first defined location of a task. 1If a BSS

is the last instruction in the task, its 1length is not
included in this wvalue.

*

4-12 shows the format of the Procedure Directory Entry.

___ +
FLAGS |
___ +
RECORD NUMBER |
et +
DATE INSTALLED |
___ +
LOAD ADDRESS i

e e +

Figure 4-12 Procedure Directory Entry

Texas Instruments 4-28 (Change 1) 939153-9701

System Design Document

Hex.
Byte Description
>00
>02
Bit
0-1
2
3
4-6
—end e
10
11
12-15
>04 Record number.
procedure image
>06 Date installed.
Bit
0-6
7-15
>08 Load address.
procedure segment.
>0A Unused.
>10 *

Length of procedure segment in bytes.

Flags, which mean the following when set:

Meaning When Set
Unused (set to zero)
Memory resident

Delete protected
Unused (set to zero)
Directory entry in use
Unused (set to zero)
Writable control store
Execute protected
Write protected

Unused (set to zero)

Logical record number of

in the program file.
Date is in the format:

Meaning
Year (Displacement)
Julian date

Relative starting

the

address
Must be on a beet boundary.

Disk Organization

start of the

within a mapped

Figure 4-13 shows the format of the Overlay Directory Entry.

939153-9701 (Change 1)

4-29

Texas Instruments

Disk Organization System Design Document

Hex.
te
By e N
>00 | LENGTH OF OVERLAY SEGMENT |
e —————— +
>02 | FLAGS |
e ————_——— e +
>04 | RECORD NUMBER |
e e +
>06 | DATE INSTALLED |
o e e e +
>08 | LOAD ADDRESS |
Fom e ettt ettt +
>0a | OVERLAY LINK | TASK ID \
o Fom e +
>0C UNUSED (=0)
B e e e e e e e e e o o o e o e e o o o S o e o P o e o o o T S S o o e *
>10 *
Figure 4-13 Overlay Directory Entry
Hex.
Byte Description
>00 Length of overlay segment in bytes.
>02 Flags, which mean the following when set:
Bit Meaning When Set
0 Relocation bit map is present
1-2 Unused (set to zero)
3 Delete protected
4-6 Unused (set to zero)
7 Directory entry in use
8-15 Unused (set to zero)
>04 Record number. Logical record number of the starting address
of the overlay image in the program file.
>06 Date installed. Date is in the format:
Bit Meaning
0-6 Year (Displacement)
7-15 Julian date
>08 Load address. Relative starting address within a mapped
overlay segment. Must be on a beet boundary.
>0A Overlay link to the next overlay.

Texas Instruments 4-30 (Change 1) 939153-9701

System Design Document Disk Organization

>0B Task ID of associated task.
>0C-0F Unused (set to zero).

>10 *

4.3.4.2 Directory Files.

Directory files are unblocked relative record files and always have a
record length of one sector. Record 0 of the directory file contains
an overhead record. The remaining records in the file may contain one
of the following types of data blocks:

* File Descriptor Record (FDR) -- every file cataloged in the
directory 1is represented by an FDR, which describes the file
and its location on the disk.

* Alias Descriptor Record (ADR) =~ every alias of a file
cataloged in the directory is represented by an ADR, which
gives the location of the file and points to the FDR of the
actual file.

* Key Descriptor Record -- each key indexed file cataloged in
the directory is represented by an FDR, which in turn points
to a key descriptor record. The key descriptor record
describes all of the keys (1-14) that are defined for the
file. Note that the use of the key descriptor record implies
that each key indexed file cataloged in a directory uses two
directory entries.

Figure 4-14 shows the general structure of a directory file. Entries
are made in the directory file by hashing the name of the file being
entered. The hash algorithm results in a record number from one
through n, where n is the last record in the directory file.

Figure 4-15 shows the hash algorithm. If the directory file record is
unused, an FDR for the file being inserted is placed in that record.
If the record is already used, a free record is found by a linear
search from the hashed record.

939153-9701 (Change 1) 4-31 Texas Instruments

Disk Organization

RECORD NO.

System Design Document

0

OVERHEAD RECORD

L DIRECTORY ENTRIES

2278135

Texas

Figure 4-14 Directory File Structure

Instruments

4-%2

0%9153-9701

System Design Document Disk Organization

‘ HASH)

KEY — 1
| e— 1
\ 2
C ~——
NAME(!)
WHERE
N = NUMBER OF RECORDS IN
YES THE DIRECTORY LESS 1.
NO

KEY~—
((KEY* C)MOD N)+1

l

I—1+ 1

NO

YES

‘III!%HHIIII'

Figure 4-15 Computing Hash Key

2278107

9%9153-9701 4-33% Texas Instruments

Disk Organization System Design Document

If the file being inserted is a key indexed file, another directory
record must be found to contain the key descriptor record. This record
is found by searching linearly from the file descriptor record for the
file. The key descriptor record is inserted in the first available
directory record following the file descriptor record.

The different types of directory records are described in the following
paragraphs.

The directory overhead record (record O of all directories) contains:
*¥ The maximum number of records (entries) in the directory.
*¥ The number of currently defined files.
* The number of available records (entries).
* The filename of the directory.

*¥ The level number of the directory in the disk hierarchy
(VCATALOG) is level 0)

* The filename of the parent directory.
* The default physical record length.

Figure 4-16 shows the format of a directory overhead record.

Texas Instruments A-34 0%915%-9701

System Design Document Disk Organization

Hex
Byte
_____ *_ —_— o e e e e e ————
>00 | DORNRC -- NUMBER OF RECORDS IN DIRECTORY !
o e e +
>02 | DORNFL -- NUMBER OF FILES IN DIRECTORY !
e - ————— e +
>04 | DORNAR -- NUMBER OF AVAILABLE RECORDS i
F e e e e +
>06 |DORTFC -- NUMBER OF TEMPORARY FILES CURRENTLY DEFINEDI
e e +
>08 | |
~ DORDNM -- FILE NAME OF THIS DIRECTORY ~
~ (8 ASCII CHARACTERS) T
I
I |
+= - e e e -
>10 | DORLVL - LEVEL NUMBER OF DIRECTORY !
+- —_— ——————————— e e e e +
>12 | !
- DORPNM -- FILE NAME OF PARENT ~
- (8 ASCII CHARACTERS) ~
>14 | !
o —————————— +
>1A | DEFAULT PHYSICAL RECORD LENGTH !
Fm—— —_—— —_— ' ——————————— +
>1¢ ! !
~ RESERVED :
i I
| f
W e e o et e e e o e ————— e e e . o 0 et e e et e e *
>40 *
Pigure 4-16 Directory Overhead Record Format
939153-9701 435 Texas Instruments

Disk Organization System Design Document

Fach file cataloged under the directory 1is represented by a file
descriptor record. Figure 4-17 shows an FDR.

Hex.
Byte
_____ *.__..___________.______________+__________________.____._____*
>00 | FDRHKC -- HASH XEY COUNT : !
+—- - - e i i e e +
>02 | FDRHKV -- HASH KEY !
A o e e e e e e e e +
>04 | |
~ FDRFNM -~ FILE NAME ~
T (8 CHARACTERS) T
! |
e e i e e e e e e e +
>0C | I
~ FDRPSW —-—~ PASSWORD (4 CHARACTERS) ~
~ (NOT IMPLEMENTED) ~
1 |
o o e e e e +
>10 | ’ FDRFLG -- FLAGS !
A e e e e e e e e - +
>2 ! FDRPRS -— PHYSICAL RECORD SIZE :
e —————— ———————— e +
>14 ! FDRLRS -- LOGICAL RECORD SIZE !
e —————— +
>16 | FDRPAS -- PRIMARY ALLOCATION SIZE !
e e o e e e +
>18 | FDRPAA —— PRIMARY ALLOCATION ADU !
S —_— ——————— S
>IA ! FDRSAS -~ SECONDARY ALLOCATION SIZE !
e e e e e e +
>1c | FDRSAA —— OFFSET TO SECONDARY ALLOCATION TABLE :
A e e ——— e +
>1E ! FDRRFA —— RECORD NUMBER OF FIRST ALIAS
o e e e e e e e e e e e e +
>20 | FDREOM —— END OF MEDIUM LOGICAL RECORD NUMBER :
| _ |
e e e +
>24 | FDRBKM -- END OF MEDIUM BLOCK NUMBER
! |
e ————_—— — ————_—— e ————— +
>28 | FDROFM -—- END OF MEDIUM OFFSET !
o e e e +

Figure 4-17 TPile Descriptor Record -- Part 1 of 2

Texas Instruments 4-36 0701 5%-070

System Design Document Disk Organization

+-— e e —————— +{—=+
>2A i FDRFBQ -~ FREE BLOCK QUEUE HEAD i i
1 | |
S ———————— o + !
>28 | FDRBTR -- BLOCK NUMBER OF B-TREE ROOTS ! |
e e e e e + SEE
>30 | FDRSBB -- BLOCK NUMBER OF FIRST BUCKET ! NO?E 1
e - - —————— -+ .
>32 | FDRTNB - TOTAL NUMBER OF BUCKETS | |
+ e T — +
>34 | FDRKDR -- RECORD NUMBER OF KEY DESCRIPTORS ! |
—_ - ——— +<{==+
>36 | |
N FDRUD -- RESERVED FOR ILAST UPDATE DATE N
|]
I !
Fm—— —_— - -+
>3C | |
N FDRCD -- RESERVED FOR CREATION DATE -
| 1
1 I
+- ————————————— - - -+
>42 | FDRAPB -- ADUs/BLOCK ! FDRBPA -- BLOCKS/ADU :
+- —— + ———t
>44 | FDRMRS -- MINIMUM RECORD szzw !
+= ————————————— —+{==+
>46 | FDRSAT -~ SIZE OF SECONDARY ALLOCATION !
B S U —_— -t i
>48 | STARTING ADU OF ALLOCATION } |
t=—ee e +
] I !
! 1 1
~ ~ SEE
~ ~ NOTE 2
| o
+ e T ——— +
! SIZE OF SECONDARY ALLOCATION i !
o S — ———————————— +
>84 | STARTING ADU OF ALLOCATION i l
K e ——— et e e e o e o e —_— — P G,
>86 ¥
NOTE 1 -- Used only for key indexed files.
NOTE 2

Figu

939153-9701

-- Secondary allocation table (up to 16 allocations).

re 4-17 TFile Descriptor Record -- Part 2 of 2

4-37 Texas Instruments

Disk Organization

Hex.
Byte

>00

>02

>04
>0C
>10

Texas Instruments

FDRHKC

FDRHKV

FDRFNM
FDRPSW

FDRFLG

System Design Document

Description

Hash Key Count. The number of file descriptor
records (which may or may not include this one) that

are present in the directory that hashed to this
record number.

Hash Key. The result of the hash algorithm for the
file name actually covered 1in this record. The
value might not be this record number since the data

may have arrived here via the linear search used
when the hashed address is occupied.

File Name. Eight characters.
Password. A future feature.
Flags as follows:

Bit Meaning
0-1 File usage flags:
00 No special usage
01 Directory
10 Program File
11 Image File

2-3 Data Format:
00 Binary
01 Blank suppressed
10 Reserved for ASCII & print form control
11 Reserved

4 Allocation type:
0 Bounded
1 Unbounded

5-6 PFile type:
00 Reserved (for device)
01 Sequential
10 Relative record
11 Key indexed

7 Write protection flag:
0 Not write protected
1 Write protected

8 Delete protection flag:

0 Not delete protected
1 Delete protected

4-38 9391539701

System Design Document . Disk Organization

>12

>14

>16
>18

>1A
>1C

>1E

>20

>24

>28

FDRPRS

FDRIRS

FDRPAS
FDRPAA

FDRSAS
FDRSAA

FDRRFA

FDREOM

FDRBKM

FDROFM

939153-9701

9 Temporary file flag:
0 Permanent flag
1 Temporary flag

10 Blocked file flag:
0 Blocked
1 Unblocked

—
—

Alias flag:
0 Not an alias
1 An alias file name

i2 Force write flag:
0 Write buffers when memory is required
1 Write buffers when updated

1% Reserved for FCB changed flag (see 6.4)
14-15 Reserved

Physical record size in bytes. Must be an even
number.

Logical record size in Dbytes. Must be an even
number if the file is unblocked.

Primary allocation size in ADU.

Primary allocation starting ADU number (starting
disk address).

Secondary allocation size in ADU.

Offset into this FDR of the secondary allocation
table, if any. No secondary allocation table is
denoted by O. Secondary allocations are present
only for unbounded files.

Record number with +the directory of first alias
name. Files may be known by alias names. The alias
names are noted in the directory in alias descriptor
records. These alias descriptor records are chained

to the actual FDR and each contains a pointer back
to the actual FDR.

The logical record number of the end of medium. The

end of medium is the end of the last space allocated
to the file.

The logical block number of the end of medium. A
logical block is the same as a physical block.

The offset into the end of medium block of the
logical record following the end of medium record.

4-39 Texas Instruments

Disk Organization

>2A

>2E8

>30
>32

>34

>36

>3C

>42
>43
>44

>46

>86

Texas Instruments

FDRFBQ

FDRBTR

FDRSBB
FDRTNB

FDRKDR

FDRUD

FDRCD

FDRAPB
FDRBPA

FDRMRS

FDRSAT

System Design Document

Block number of the first block in a queue of key
indexed file free (unused) blocks. Each Dblock
points to the next block in the queue (a block is a
physical record of the file). Only used for key
indexed files.

The block number for the B-tree root block of the
primary key. The block following this is the KIF
root block for key 2, etc. This field is also the
total number of blocks that can be used for logging.

The block number for the first KIF bucket.
The total number of buckets in the KIF file.

Record number of the directory file record
containing descriptions of the KIF keys.

Date of the last update to this file. The date is
made up of three words. Word 1 contains the binary
value of the year. Word 2 contains a value that is
two +times the number of days (counting from the
beginning of the calendar year); the 1least
significant bit is the most significant bit of word
3 of the date. Word % contains the number of
seconds from the beginning of a day.

Creation date of the file. The date is made up of
three words. Word 1 contains the binary value of
the year. Word 2 contains a value that is two times
the number of days (counting from the beginning of
the calendar year); the least significant bit 1is the
most significant bit of word 3 of the date. Word 3
contains the number of seconds from the beginning of
a day.

The number of ADUs per physical record.
The number of physical records per ADU.

The minimum size that a key indexed file 1logical
record can be and still contain all of the keys
defined.

The secondary allocation table, which contains 16 2-
word entries. The first word of an entry contains
the size, in ADUs, of the secondary allocation. The
second word contains the starting ADU of the
allocation. The table allows up to 16 files, and is
only used if the file was created expandable
(unbounded). The entry fields are filled in by file
management as the file is expanded.

4-40 0%915%-9701

System Design Document Disk Organization

Files can be given other names, each name being a separate alias. Each
alias is hashed to find an entry in the directory just like a file
name, and an alias descriptor record (ADR) inserted in that entry. The
ADR points to the real file. It also points to the next alias for the
file. TFigure 4-18 shows the format of an ADR.

Hex
Byte
_____ e - — ——— ————— —- et s e e s e e e e e e e e e T
>00 ! ADRHKC -- HASH KEY COUNT !
R TS e e - +
>02 | ADRHKV -- HASK KEY VALUE !
+—— e e e +
>04 ! !
~ ADRFNM -- FILE NAME ~
1 }
! 1
+ —_— — - —_— - —_— —-——t
>oCc | |
- ADRPSW —-- PASS CODE .
| !
| |
Fom e ———— e e e e - - ——
>10 ! ADRFLG -~ FLAGS !
Fmm——— ————— R ————————— +{==+
>12 | PHYSICAL RECORD SIZE ! ;
o e e - —————————— + i
>14 ! LOGICAL RECORD SIZE ! E
+ —— — —————————————e _— + i
>16 ! PRIMARY ALLOCATION SIZE | SEE
e e e e - + NOTE 1
>18 ! PRIMARY ALLOCATION ADDRESS ! i
e e e + |
>1A ! SECONDARY ALLOCATION SIZE ! ;
Fmm——— e e e +
>1¢ ! SECONDARY ALLOCATION ADDRESS ! !
e — _— e e e o +<{——+
>IE ! ADRRNA -- RECORD NUMBER OF NEXT ALTAS !
e e e e +
>20 | ADRRAF -- RECORD NUMBER OF ACTUAL FILE !
o e e +
>22 ! |
~ UNUSED ~
| |
| 1
K e - ————— e e e ——— *
>86 *

NOTE 1 -- Used to maintain ADR for compatibility.

Figure 4-18 Alias Descriptor Record

9%9153-9701 4-41 Texas Instruments

Disk Organization

Hex. Field
Byte Name
>00 ADRHKC
>02 ADRHKYV
>04 ADRFNM
>0C ADRPSW
>10 ADRFLG
>12->1D

>1E ADRRNA
>20 ADRRAF
>22->85

>86 *

A key descriptor
describes the keys
When a key indexed
descriptor record

System Design Document

Description

Hash Key Count. The hash key count is the same as
in the file descriptor record.

Hash Key Value. The hash key value 1is the same as
in the file descriptor record.

File Name. The file name given in this item 1is an
alias name for the file. In other words, it is a
secondary name by which a previously defined file
will also be known. The primary name for a file is
supplied in the file descriptor record; secondary
names are documented in alias descriptor records.

Passcode. Space is provided for future
implementation of password codes.

Flags. The flag values are the same as provided in
the file descriptor record. Note that the flag for
alias is set to a one in this particular record.

These fields are not used.

Record Number of Next Alias. This 1is a pointer
chaining forward to another alias descriptor record
for the same file, if any exists. A value of =zero
is provided to indicate the end of the chainj i.e.,
no more alias descriptor records exist for the file.

Record Number of Actual File. This is a pointer to

the directory file record containing the file
descriptor record for this particular file.

Unused. These bytes may contain non-zero values,
but they are not used.

record is used only for key indexed files. It
(up to fourteen) used to access records in the file.
file is created and its keys are defined, a file
is hashed 1into the directory. File utility then

performs a linear search for an unused directory record, starting from
the file descriptor record. The key descriptor record is placed in the

first available

directory record. TFigure 4-10 shows the format of a

key descriptor record.

Texas Instruments

-

4-42 9301539701

System Design Document Disk Organization

Hex
Byte
_____ *__________________________+_______-__-_______________*
>00 | HASH KEY COUNT |
e e e e +
>02 ! -3 !
e — e e +
>04 | NOT USED |
+ T e e e +
>06 | NUMBER OF KEYS !
o e e e o +{-—+
>08 | FLAGS i CHARACTER COUNT OF KEY 1 | SEE
e R + NOTE 1
>0A | OFFSET TO KEY 1 b
P e e +<{-—+
>0C | i
1 |
I 1
e e e Fom e - - +
>3C | FPLAGS | CHARACTER COUNT OF KEY 14}
Fom —_—— - -+
>3E | OFFSET TO KEY 14 |
W e _ o e e o e —— -
>40 *
NOTE 1 —-~ Por the primary key; repeat for each
secondary key.
Figure 4-19 Key Descriptor Record
Hex.
Byte Description
>00 Hash Key Count. This is the same as described for the file
descriptor record.
>02 Hash Key = -3. This field is similar to +that provided with
the file descriptor record. The value of -3 is given to
indicate that this record is a key descriptor record and,
therefore, is unavailable for use as a file descriptor record.
>04 Not used.
>06 The number of unique keys defined for this key indexed file.
There are a maximum of 14 keys available for any key indexed
file. There must be at least one key, the primary key. Keys
2-14, if any, are secondary keys.
939153-9701 4-473 Texas Instruments

Disk Organization System Design Document

>08 Flags, as follows:

Bit Meaning When Set

0-3 Must be zero

4 Pile was created by a system using the
sequential placement scheme (primary key only)
5 Of a secondary key is set to 1 if the key
value need not always be present
6 Sequential commands are desired on this key
(e.g., Read Next)
7 Duplicates are allowed on this key
<09 The key length, in bytes (characters), of the

primary key.

<0A The starting byte number for the position of the key
within the key indexed file data record. The prior
three items (flags, character count of key, and key
offset) are repeated for each secondary key.

<40 *

Figure 4-20 shows a dump of the directory file .JB.DIR. The directory
contains a sequential file (.JB.DIR.SEQ), an image file (.JB.DIR.IMAG),
a program file (.JB.DIR.PROG), and a key indexed file (.JP.DIR.KEY).
The directory also contains an alias for the key indexed file. The
directory was created to have 11 entries, in addition to record O which
is the directory overhead record.

4.3.4.% Image Files.

Image files are nonexpandable, unblocked relative record files that
contain memory images of programs. They are not organized in any
format; that is, each sector of the image file, starting with the first
sector, is completely filled with data. There are no overhead records

or words. Image files are designed so that a program image can be read
into memory in a single disk access.

Texas Instruments 4-44 03915%-9701

System Design Document

FILE:.JB.DIR RECORD:000000

0000 OQOB 0004 0OOS 0000 4449

0010 0002 4A42 2020 2020 2020
SAME o .

9024 0000 : .
FILE:.JB.DIR "RECDRD:000001
QOSs 0002 Q001 S24S5 S1Z0

0094 . 0000 1A00 0120 0022 0OO1L
O00A4 0C00 0000 0000 Q000 000C

90B4. 0O00Q 0000 0000 G000 Q78
00CA. 0104 7E49 0103 0000 Q00O
- SAME <

0108 GO00

FILE:.JB.DIR RECORD: 000002
0100 0000 0001 4940 3147

0114 0000 C420 0120 0120 0004
Q124 0000 0000 0000 Q000 0000
013A 0000 0000 0000 0000 07B%

0144° 01D4 7E3B 0103 0000 0000
SAME

0190 0000

FILE:.JB.DIR RECORD: 000003

0192 0000 0000 0000 0000
3AME

Q21& QOOQ

FILE:2.JB.DIR RECORD: (000004

0218 0000 0000 0000 0000
SAME

029C 0000

FILE:.JB.DIR RECORD: Q0000

02FE -0000 0000 Q000 Q000

" SAME o ’

0322 0Q00

FILE:.JB.DIR RECDRD:Q00006

0324 0000 0000 O00O 000Q
SAME

Q3R/8 0000

FILE:,JB.DIR RECORD: 000007

02AA 0001 0007 S0S2 4F47

Q2E8 0000 8C20 0120 0120 001D

o3C2 QG000 0000 0G04A OO0 004A

0308 000U 00K 000D 0OOO O7BY

O3ES 0QID4 7E77 0102 0000 QOO0
SAME :

042E GOVO

FILE:.JB.DIR RECORD:D00Q02

0430 0000 0000 DACO OGO0
SAME

G4R4 0O00Q

FILE:.JB.DIR RECIORD: 00000

04R4A 0001 000% 4B4AS 5944

0434 0000 1E13 0000 0000 0000

04D4 Q0000 OGO0A 0000 Q000 OO0
SAME

05248 0000

FILE:.JUB.DIR RECORD:QO000A

053C 0001 000NA AR4S S720

0S4A 0000 1E0Z 0120 QOS0 GOLR

0SZA 0009 00QQ 000 000D OO0

0564 0027 002% QOS5 QUOR O7BRY

OS7A 01D4 7EIC Q103 0009 QOO0
SAME

OSCO 00GO

FILE: .JB.DIR RECORD:GOOOGE

0sC2 0000 FFFQD Q00£4 Q002

QSDO O004 0000 OQQ0 OGHG QOOY
SAME

0546 0000

2278136

Figure 4-20 Directory File

4-45/4-144

5220
Q000

2020
013E
0000
01D4
0000

2020
1063
0000
0104
CQO0

0000

0000

0000

Q000

2020
24A9
Q00O
[s39:0)
0000

QOO0

434
000G
000

2020
242E
QO0G
G104
[elelele)

1104
[AI5TRIS}

2020
Q000

2020
0001
Q000
7E47
0000

2020
Q001
0000
7ESB
000

[els v]

Q000

0000

Q000

2020
0001
0000
7E72
QOO0

Q000

4T 20
QOO0
QOO

2020
0002
QOO0
7ELD
Q000

[alslsnlel
0000

2020
0000

GO0
G000
0009
0789
0000

00Q0
0000
Q000
0789
Q000

0000

0000

0000

0000

Q000
Q0Q0
QOO0
078
00CO

QOO0

Q000
Q000
QOO0

QOO0
QOO0
DOIE
OB
QOO0

OGS
QOO0

JB

4]
-~ in

Dump

Disk Organization

DI R
& ..
IRPORRS S

AG .e

QG .
ae S0
B .

s we a2 da

YF ILE .

Y .o
P P
« «s as N

Texas Instruments

System Design Document | System Files

SECTION 5
SYSTEM FILES

5.1 GENERAL

This section describes the structure and purpose of wvaricus files

used by DX10. These special files are:
* System program file
* Oystem overlay file
* Crash file
* Roll file

The files wused by the System Command Interpreter are discussed in the
section on SCI.

5.2 SYSTEM PROGRAM FILE

The system program file has +the same structure ss 2 Zeneral
program file, as described in the section on disk data structures. Tt
is called the system program file because it contains all of +he disk

resident system +tasks and their overlays, as well as many utility
programs.

Queue-serving system tasks on the system program file include:
* SILMFOT - System log message formatting and output task

* TM3SBD - Scheduled Bid Task SVC processor

* TMDGN - Termination task

* SVCKIL - Kill TASK 8VC processor

¥ PFSLIN - Install Task, Procedure, and Overlay SVC processor

¥ PFSLOE - Delete Task, Procedure, and Overlay SVC processor

¥ FUTIL - File Utility SVC processor

¥ PFSLMN - Map Name to ID SVC processor

92915%.0701 51 Texas Instruments

System Files System Design Document

* PF$LAS - Assign Space on Program File SVC processor

* INSTAL - Install, Unload, Initialize Volume SVC processor

5.3 SYSTEM OVERLAY FILE

The system overlay file is an unblocked relative record file wused
to contain system overlays. ZFach overlay is placed in the record that
corresponds to the overlay number, and is in memory image format. ZEach
record is 800 bytes.

When a system overlay is requested, the record that corresponds to the
required overlay number is read directly into one of the system overlay
areas by the system overlay loader, thus incurring very 1little

overhead.
Table 5-1 shows what overlays are contained on the system overlay file.

Table 5-1 System Overlay Numbers

Overlay Number/
File Record : Overlay

Key indexed file B-Tree split routine
Key indexed file record insert routine
More key indexed file record insert
Key index file open and close routine
Sequential placement B-Tree Split routine
Sequential placement record insert routine
More sequential placement record insert
KIF record delete overlay
KIF delete B-Tree entry
Sequential placement record delete overlay
Sequential placement record delete overlay
Sequential placement delete B-Tree entry

~-F Disk manager overlays

10-173 File manager overlays

14 Disk manager overlay

20 Bidder task error recovery routine

DQE O 0-3IAI=AN —

5.4 CRASH FILE

The system crash file, .S$SCRASH, is an image file created large
enough to contain a dump of all memory. When a system crash occurs,
the routine SCRASH displays the crash code on the front panel lights
and idles the CPU. If a dump is taken, SCRASH writes all of memory to
the file .S$CRASH. This file may later be used as input by the crash
analysis program, ANALYZ.

Texas Instruments

(83}
i
N

939153-9701

System Design Document System Files

5.5 ROLL FILE

The roll file is an expandable image file that is used to contain
rolled-out task and procedure images. It is created by the CSF (Create
System Files) command.

There is no single directory of roll file entries. Instead, a 1linked
list of the TSBs and PSBs of rolled tasks and procedures is maintained.
Each TSB and PSB contains the starting record number and number of roll
file records wused by that segment. When the roll allocation routine,
TMRDAL, searches for a block of free roll file space, it runs down the
list wuntil it finds a hole between segments, or space between the last
rolled segment and the end of +the file, large enough to fill +the
request for roll space from the task loader. The roll file may be
extended, if necessary.

939153-9701 5-3/5-4 Texas Instruments

System Design Document Data Structures

SECTION 6

DATA STRUCTTURES

6.1 GENERAL N

Memory resident data structures within DX10 consist of many tables,
queues, and buffers. Most of the tables and buffers are dynamically
allocated from the system table area. Most of the system queues are
anchored in the DX10 data base modules, DDATA and DXDAT2. The

following paragraphs describe the important data structures used by
DX10.

6.2 QUEUES

The general structure of a DX10 queue is described in Section 1. The
queues are singly linked, first-in, first-out lists of data structures
to be processed. A queue is established by a queue anchor, which is
usually a 10-byte block having a format as shown in Figure 6-1.

Hex.
Byte
_____ *_...____.__.....______..____.__.________.___..__.__.__.___.._____.___*
>00 | QUENEW -- NEWEST ENTRY '
i +
>02 ! QUEOLD -- OLDEST ENTRY !
Fm—— - e e e +
>04 | QUETSB -~ TSB OF SERVER M™ASK !
e e e +
>06 ! QUEFLG -- FLAGS ! QUETID -- SERVER ID
e e e e +
>08 | QUESTA —- TASK STATE i QUECNT -- NO. OF ENTRTES !
B e e o e e *
>0A ¥

Figure A-1 Queue Anchor

829153-a701 6-1 Mexas Instruments

Data Structures System Design Document

Hex. Field

Byte Name Description

>00 QUENEW The address of the newest (last) entry on the queue.
Note that since this is only a one-word address, 1it
is implied that the queued structures are mapped in
with the queue anchor.

>02 QUEOLD The address of the oldest (first) entry on the
queue.

>04 QUETSB The address of the task status block of the queue
serving task (see paragraph 6.7 on TSBs). This
field is zero if no queue server exists for the
queue, or if +the queue server is not loaded into
memory.

>06 QUEFLG Flags, which when set mean:
Bit Meaning
0 Priority ordered queue (TSBs with high

priorities are at the front of the queue).

1 TSB queue (entries are TSBs).
2=-7 Reserved.

>07 QUETID The installed ID of the queue serving task (zero if
no server). Queue servers must be installed on the
system program file.

>08 QUESTA The task state that is to be assigned to all TSBs
that are placed in this queue (=>FF if none).

>09 QUECNT The number of entries currently in the queue.

>0A *

Most queue anchors are located in the module named DXDAT2. See Section
7 for further information about DXDAT2.

6.3 PHYSICAL DEVICE TABLE

A Physical Device Table (PDT) is a data structure that represents a
physical device to the operating system. In addition +to containing
information describing the device, the PDT is used as a workspace by
the device service routine. Some of the uses of the PDT are discussed
in Volume V of the DX10 reference manuals. A physical device table has
the format shown in Figure 6-2.

Texas Instruments 62 839153-9701

System Design Document

Data Structures

Hex
Byte .
_____ *______________..________-________.._.__._____.__________..___.__._*
>00 : PDTLNK -- FORWARD LINK TO NEYT PpT !
o +
>02 ! PDTMAP -- POINTER T0O DSR MAP FILE :
e e e e +
>04 RO | PDTRO -~ DSR SCRATCH !
e e e +
>06 R1 | PDTPRB —-- PRB ADDRESS !
e +
>08 R2 | PDTDSF —— DEVICE STATUS FLAGS !
e +
>0A R3 ! PDTDTF —- DEVICE TYPE FLAGS :
e e e e +
>0C R4 ! PDTDIB —- DEVICE INFO BLOCK ADDRESS !
e e e e e e +
>0E R5 ! PDTRS 5
">10 R6 ! PDTR6 !
>12 R7 | PDTR7 !
>4 R8 | PDTRS DSR SCRATCH !
>16 Ro | PDTRO !
>18 R10! PDTR10 !
>1A R11! PDTR11 !
e e +
>1C R12! PDTCRU -- CRU OR TILINE BASE ADDRESS !
e e +
>1E R13%| PDTR13 —- SAVED WP REGISTER !
e e e e e +
>20 R14! PDTR14 —- SAVED PC REGISTER !
e e e +
>22 R15! PDTR15 —- SAVED ST REGISTER !
e e e e +
>24 ! PDTS —— PDT WORKSPACE ADDRESS !
o e e +
>26 ! PDTDSR -- DSR ADDRESS !
B T o e e +
>28 ! PDTERR -- ERROR CODE ! PDTFLG -- FLAGS !
e e e o +
S2A ! !
: PDTNAM —- DEVICE NAME !
e e +
>2F ! PDTSL1 -- SYSTEM LOG 1 !
e e e +
>30 ! PDTSL2 -- SYSTEM LOG 2 !
e e e +
>%2 ! PDTBUF —- NOT USED !
e e e +
>34 ! PDTBLN -- BUFFER LENGTH |
e e e e +
>%6 ! PDTINT —-- DSR INTERRUP™ ADDRESS !
e e e e +

9%9153-9701

Figure 6-2 Physical Device Table (Part 1 of 2)

A=-3

Texas TInstruments

Data Structures

>38

>42
>44
>46
>48

Hex.
Byte

>00

>02

>04

>06
>08

Figure

Field
Name

PDTLNK

PDTMAP

PDTRO

PDTPRB
PDTDSF

Texas Instruments

System Design Document

__ .
PDTDVQ —-- DEVICE QUEUE ANCHOR E
__ +
PDT™M1 -~ TIME OUT COUNT 1 '

T Tpmmz -- nmwE 0T cowwt 2 |
" TPDTSRB - SAVED PRB ADDRESS :

6-2 Physical Device Table (Part 2 of 2)

Description

Address of the next PDT and the PDT expansion block
for +this PDT. All the PDTs are linked in a single
list that is located in thée D®DATA module.

Address of the DSR map file.

This word begins the workspace to be used by the
device service routine initial entry processor.

Address of buffered I/0 supervisor call block.
Device status flags that are set by the system:

Bit Meaning When Sef

——— ————— o o — — o —

0 Device is opened; i.e., LUNOs are assigned to
the device.

-

Device is busy.

2 Kill I/0 at this device is in progress.
3 Mask doing I/0 at this device is being killed.
4 Make this device available (unassigned) at the

end of this I/0 operation.

5 Signals the task scheduler to reenter the DSR.
This flag can be used by a DSR to wait for a
device, by setting the flag and then returning
to the systemn.

A Fnd-of-record processing needs to be done for
this device; i.e., data transfer is complete.

7 0 = ASCII. 1 = JISCIT.

f-4 0301 5%-0701

System Design Document Data Structures

>0 e
>0A PDTDTR
>0C PDTDIB
>0E PDTRS
thru
PDTR11
>1C PDTCRU

93915%-9701

Interrupt mask to be used by the DSR. This field is
the interrupt level assigned +to the device minus
one, and is set at system generation time.

Device +type flags +that are 2all set at system
generation time except for the system disk flag that
is set by the system loader.

Bit Meaning When Set

0 File oriented device (if the flag is zero, the
device is record oriented).

1 Device uses the TILINE data bus.

2 The time-out logic should be enabled for this
device.

o] Device may only be used by privileged tasks.

4 This is a terminal (keyboard device) with a
keyboard status block attached to the PDT.

5 This is a communications device.

6 This is the system disk.

7 A PDT extension exists.

8-11 Yot used.

12-15 Device type code, as follows:
O —-- Dumnmy

-- Teleprinter

—-— Line Printer

—— Cassette

~— Card Reader

-— Video Display Terminal
Disk and Diskette ‘
-- Communications
-— Magnetic Tape and AMPL
—-— AMPL Emulator
—— AMPL Trace Module

HiE O 0V AU -
|
1

Pointer to the word after the PDT itself. This may
be the address of the keyboard status block (XSB),
disk PDT extension (DPD), tape PDT extension (TPD)
or line printer PDT extension (LPD) depending upon
the type of device.

Scratch registers to be used by the DSR.

The CRU or TILINE address of the device.

A=K Texas Instruments

Data Structures

>1E

>24

>26
>28

>29

>2A

>2E

>36

>38

>42

>44

t3

[
o
N
n

PDTR173
PDTR14
PDTR15

PDT®

PDTDSR
PDTERR
PDTFLG

PDTNAM

pPDTSLY,
PDTSL2

PDTINT

PDTDVQ

PDTMY

PDTM2

Instruments

System Design Document

These three words contain the saved context (WP, PC
ST) 4o which the DSR returns control via a RTWP.

Pointer to the beginning of the PDT workspace; i.e
byte 4 of the PDT.

e
A pointer to the beginning of the DSR.
Error code returned by the DSR.

Device flags as follows:

Bit Meaning When Set

8 Use PRB in log message.
9 Receive mode for JISCII.
10 Transmit mode for JISCII.

11-12 Device state: online = 00, offline = 01,
diagnostic = 10.

14 Operation failed bit.
The 4-character device name.

Tor CRU devices, these words contain the controller
image after an error. For TILINE devices, these
words contain a pointer to the controller image
after an error.

Not used.

Maximum length of a data buffer which may be
transferred by the device in an I1/0 operation (e.g.,
80 for a card reader). This is only necessary for
CRU devices.

The interrupt entry address of the DSR and reenter-
me-address.

The anchor for the queue of I/0 requests for +this
device. The anchor has the same format as the queue
anchor described in paragraph 6.2.

The number of system +ime wunits in +the time-out
count for the device.

The number of time units remaining in +the time-out
count before the system assumes that a device error
has occurred. When the DSR starts an I/0 operation,
it should move the time-out count in bytes >42->43%
to this word. T™is word 1is +then used Dby the

A-F Q%01 5%_9701

System Design Document Data Structures

scheduler as the +time-out counter. Each +time =a
system time unit has elapsed, the scheduler
decrements the time-out count and sets the time-out
enable flag (bytes >OA->0B). 1If the counter goes to
zero before a device interru€t occurs (and the DSR
resets the counter or the flag), the system assumes
that a device error has occurred and reports it.

>46 PDTSRB The address of the queued supe
plus two (offset +to PRB; se
System Systems Programming Guide

isor c¢all ©bvlock,
the DX10 Operating

v

e
).

>48 *

All PDTs must be defined during system generation. The PDTs are
concatenated and inserted into the DEDATA module by GEN990.

Under DX10, PDTs for disks and terminals each have an extension that igs
used mainly by the interrupt processing routine of the DSR. The
following paragraphs describe those extensions.

6.3.1 PDT EXPANSION BLOCK.

Every PDT has a 10-byte expansion block. The end of this block is
pointed to by the link to the next PDT (PDTLNK). In the case of the
last PDT (DSO1§ where the link is zero, PDTLST in ROOT points to the
expansion block. The format of the PDT expansion block is shown in
Figure 6-3.

Hex.

Byte

_____ -X-__._________________.__.________, ——— o e o e

->0A ' RESERVED -~ SET TO %ERO !
e e e +

->08 f PDTRED -- READ OPERATIONS COUNT '
e ———————————— - e +

->06 ! PDTWRT -- WRITE OPERATIONS COUNT !
e e e e e +

->04 ' PDTOTH -~ OTHER OPERATIONS COUNT !
o e el + —————— +

->02 | PDTRTY -~ RETRIES COUNT PDTLUN -- LUNOS COUNT !

Figure 6-3 Physical Device Table Expansion Block

9291539701 6-7 Texas Instruments

Data Structures System Design Document

Hex. Field

Byte Name Description

->0A e Reserved. Initialized to zero.

->08 PDTRED The number of read operations that have been
performed.

->06 PDTWRT The number of write operations that have been
performed.

->04 PDTOTH The number of other operations that have been
performed.

->02 PDTRTY The number of retries.

->01 PDTLUN The number of LUNOs assigned.

6.3.2 DISK PDT EXTENSION (DPD).

The extension that is appended to disk PDTs is 96 bytes long. The
format is shown in Figure 6-4.

Hex.
Byte
_____ B e e e e e e e e e e e e e e e 2 2 e s e e e o e e s e e e e —— —_——Fay
>48 | DPDPRB -- FILE MGMT PRB | DPDERR -- ERROR CODE ! E
+— ———— o ————————— +
>AA DPDPOP —-- OP CODE i DPDLUN -- LUNO ' i
e ———————————— o —————————— +
>AC | DPDSFG —-- SYSTEM FLAGS | DPDUFG —- USER FLAGS | g
+ —————————————————————————— + —————————————————————————— + 1
>4E ! DPDBUF -- BUFFER ADDRESS b
e ———————————————— e + +-FILE
>50 | DPDRCL -- RECORD LENGTH 'l MGMT
e e e e e e e e o e e + ! 1/0
>52 | DPDCCT —— CHARACTER COUNT bobogve
e e e e e e e e e e + |
>54 | DPDADU —-- ADU NUMBER ! g
e ———— i ————————— e ————— — +
>56 | DPDSCT -- SECTOR OFFSET Vol
e e e e e e e e e — +=+
>58 ! DPDWTK —- WORDS/TRACK !
ettt e ———— +
>54 | DPDSTK -- SECTORS/TRACK | DPDOHD -- OVERHEAD/RECORD!
e — Fom e ————————— +
>5¢ ! DPDCYL —-- HEADS AND CYLINDERS !
e —————————— — ——————————— e — — — +
>5E | DPDSRD -- SECTORS/RECORD ! DPDRTK —- RECORDS/TRACK !
e ——_— e ————————— +

Pigure 6-4 Disk PDT Fxtension (Part 1 of 2)

Texas Instruments £5-8 0Z01KZ_Q70)1

System Design Document Data Structures

e e e e e e e o +
>60 | DPDWRD -- WORDS/RECORDS |
F o e e e +
>62 | |
= DPDTIL -- TILINE IMAGE =
(DPDILF -- INTERLEAVING FACTOR)
e T e T +
>72 | i
T DPDIBF -- INITIALIZATION BUFFER T
i i e e e e ———— +
>78 | DPDFCB -- POINTER TO VCATALOG FCB |
te— e +
>7a | I
T DPDVNM -- VOLUME NAME T
e e e e +
>82 | DPDFMT -- FILE MANAGER TSB ADDRESS |
o e e e —— +
>84 | DPDFMW -~ FILE MANAGER TASK AREA ADDRESS |
e & +
>86 | DPDPBM -- DISK MANAGER BUFFER ADDRESS i
Fo e & +
>88 | DPDMAD -- MAXIMUM NO. OF ADUs ON DISK }
e e e e e e +
>8A | DPDSAD -- SECTORS/ADU l
o e e e +
>8C | DPDDRS -- DEFAULT PHYSICAL RECORD SIZE |
o +
>8E | DPDECT -- ERROR COUNT |
o e +
>90 | |
T DPDTFL -- TEMPORARY FILE NAME SEED T
e e e +
>98 | |
T DPDSLG -- TILINE IMAGE FOR SYSTEM LOG T
o e +
>A8 | DPDFLG -- FLAGS WORD ‘ |
e e e +
Figure 6-4 Disk PDT Extension (Part 2 of 2)
Hex. Field
Byte - Name Description
>48 DPDPRB These 16 bytes are a copy of the file I/0 supervisor
call block.
>58 DPDWTK Number of words per track on the disk.

939153-9701 (Change 1) 6-9 Texas Instruments

Data Structures

>5A

>5B

>5C

>5E
>5F
>60

>62

>62

>72

>78

>7A

>82

>84

>86

>88
>8A

>8C

>8E

Texas Instruments

DPDSTK

DPDOVH

DPDCYL

DPDSRD

DPDRTK

DPDWRD

DPDTIL

DPDILF

DPDIBF

DPDFCB

DPDVNM

DPDFMT

DPDFMW

DPDPBM

DPDMAD

DPDSAD

DPDDRS

DPDECT

System Design Document

Number of sectors per track.

Number of overhead bytes per physical record (equal
one sector).

Number of heads and cylinders as follows:

Bit Meaning

0-4 Number of heads on the disk.
5-15 Number of cylinders.

Number of sectors per physical record (=1).
Number of physical records per track.
Number of words per record.

An image of the eight TILINE controller registers
for the disk.

Interleaving factor, integer number, saves first
word of TILINE controller registers image.

The buffer used to hold information returned by the
Store Registers direct disk I/0 call.

A pointer to the file control block for the disk
volume directory (see paragraph 6.4).

The 8-character name of the volume that is currently
installed on the disk unit.

The address of the task status block (see paragraph
6.7) for the file management task for this disk
controller.

The address of the file management task work area
(see the section on DS$DATA).

The address of the disk manager buffer for this
disk.

The maximum number of ADUs on this disk.
The number of sectors per ADU.

The default physical record size for this disk, as
defined to GEN990.

A count of the number of controller errors returned.
This count is reinitialized when the system is
booted.

6-10 (Change 1) 939153-9701

System Design Document Data Structures

>90
>98
>A8

6.3.3

DPDTFL The temporary file name last used.
DPDSLG A copy of the TILINE image used by the system log.
DPDFLG Flags as follows:

Bit Meaning

0 DPFRTY--No retry desired.
1 DPFRAW--Disk read after write.
2 DPFBRW--Bit map read after write.

TELEPRINTER DEVICE PDT EXTENSION (DIB).

The Device Information Block (DIB) is a data structure appended to the
PDT that contains information about the current status of the device as

well
time.

Hex.
Byte

>15
>16
>17
>18

>19

as information about how it was configured at system generation
Figure 6-5 shows the format of the TPD extension.
K e e e e e Fo e e e *
| ACU CRU ADDRESS I
e Fom e e +
| ISR TYPE (COMM-1, TTY-5) |
Fom e o o +
[LINE CONTROL TYPE (ALWAYS 0) |
o e +
| READ ASCII TIMEOUT |
e e e e +
{ WRITE TIMEOUT |
F e e o +
[READ DIRECT TIMEOUT 1 |
o e e e e +
| READ DIRECT TIMEOUT 2 |
o e e e e e +
| SYSGEN ACCESS FLAGS |
o o +
] STATE FLAGS |
o i +
| LINE FLAGS |
e e ————— Rt T — +
| TEMPORARY ACCESS FLAGS |
o e e e +
] SPEED (ENCODED) |
o e e +
| END OF RECORD CHARACTER |
Fo e e +
| END OF FILE CHARACTER |
o e e e +
[LINE TURN AROUND CHARACTER |
e e e e +

Figure 6-5 Teleprinter Device PDT Extension (Part 1 of 2)

939153-9701 (Change 1) 6-11 Texas Instruments

Data Structures System Design Document

w0 1 PARITY BRROR SUBSTITUTE '

T CR DRLAY INTERVAL i

w22 1 TTTTTTTTTTTTRARIDY oHECK mowTTNE i

soa 1 TTTTTTTTTTTTTTTTRaRITY sEe moUTINE i

>26 T ______ MAXIMUﬁ-EHARAEEERS BUFFE%EB—Eﬁ—giga ————————————— T

sos 1T immmiman tves i

29 1T TAST CHARACTER RECEIVED |

ss0 1T SAVED FXTENDED FLAGS i

s34 éXEEB’iﬁﬁBﬁ"EBﬁE'iﬁBﬁ'Eéﬁ """"""""""""" i

>33 T T SPEED T T

ss4 1 ISR vEcmom TABLE poINTER i

>36 T ——————————— TIMEBGE _____) —-_—T

S A NONBER OF PARITY ERRORS 1

>40 T ————————————————— ﬁﬁi££§_6§ LO%T-EHARACTERé _________________ T
e et et e D +

Figure 6-5 Teleprinter Device Extension to PDT (Page 2 of 2)

Hex.

Byte Description

>00 The CRU address of the ACU.

>02 The Interrupt service routine type, which is either

communications (1) or teletype mode (5)

>03 The line control type, which is always O.

>04 The Read ASCII timeout.

>06 The Write timeout.

>08 The Read Direct timeout 1.

>10 The Read Direct timeout 2.

>12 The svsgen access flags.

>13 The state flags as follows:

Texas Instruments =12 9301 53-9701

System Design Document

>14

15

>16
>17
>18
>19
>20
>21

»22
>24

939153-9701

AN - O

NI

=7

Data Structures

Meaning

Online

Connect in progress

Open

DLE received

Half-duplex line helongs to remote
terminal

Resend flag

Unused

Line flags as follows:

Bit

LA AN =D

Meaning

Half-duplex modem

Switched line

Refuse call

Auto-disconnect enable

DLE/EQT for disconnect sequence
SCF ready/busy monitor

File transfer exclusive access
Half-duplex LTA enable

The temporary access flags as follows:
. D

Bit

AN =D

5
6-7

Meaning

No echo

Unused

Transmit parity enabled
Transmit parity type

00 = Even
01 = 044

10 = Mark
11 = Space

Receive parity enabled
Receive parity type

The speed (encoded).

The end of record character.

The end of file charsacter.

The line turnaround character.

The parity error substitute character.

The carriage return delay interval.

The parity check routine pointer.

The parity set routine pointer.

Texas Instruments

Data Structures System Design Document

>26 The maximum characters buffered in FIFO.

>28 The terminal type.

>29 The last character received.

>30 The saved extended flags.

>32 The saved error code from interrupt service
routine.

>33 The sysgened speed.’

>34 The interrupt vector table pointer.

>36 ‘ The sysgened timeout.

>38 The number of parity errors.

>40 The number of lost characters.

6.3.4 KEYBOARD STATUS BLOCK (KSB).

Bach keyboard type device supported by DX10 has a KSB appended to the
PDT for the device. The KSB 1is generally used by the keyboard
interrupt decoder of the device service routine. Special keyboard
devices that are supported by user-written DSRs need not have a KSB
unless the System Command Interpreter (SCI) is to be bid at the
terminal, in which case the XSB must be present. TFigure 6-6 shows the
format of a KSB.

~

Texas Instrunents 6-1 0301 520701

System Design Document Data Structures

Hex
Byte
_____ *______.____._______________-_________.___.____..._____.__.______.*
>00 RO | KSBLDT —-- STATION IDT ADDRESS !
e e e e e e +
>02 Rt | KSBQOC -- QUEUE LENGTH !
o e e +
>04 R2 ! KSBQIP —- QUEUE INPUT POINTER !
e e e e +
>06 R3 | KSBOOP -~ QUEUE OUTPUT POINTER !
e e e +
>08 R4 ! KSBQEP -~ QUEUE END POINTER !
e e e +
>0A RS ! RESERVED |
e o e o +
>0C R6 ! KSBFL —-- KSB FIAG | KSBSN —-- STATION NUMBER !
e e e e +
>0E R7 ! KSBR7 —-— SCRATCH !
B +
>10 BR8] | KSBTSB —- TSB ADDRESS/VALIDATTON TARLE ADDRESS !
e e +
>12 R9 ! !
>14 R10! KSBRO —- SCRATCH !
>16 R11! |
o e e +
>18 Ri12! KSRCRU -- CRU BASE !
e e e e +
>1A R13! KSBR13 —— SAVED WP '
>1C R14! KSBR14 -— SAVED PC !
>1E R15! KSBR15 -— SAVED ST !
e e e +
>20 ! KSBLDO -- PDT ADDRESS !
Fm e e e +
>22 ! KSBLD? —-- LUNO ! KSBLD3 -~ START I/0 COUNT!
Fm e e o +
>24 ! KSBLD4 —— LDT FLAGS !
e e +
>26 ! KSBLD6 -- LDT LINK '
I +
>28 : KSBLD] —— TSB ADDRESS !
e e +
>2A ! KSBLCK —- LOCK COUNT !
K e e e *
>2¢ *
Figure 6-6 Keyboard Status Block
83915320701 6-15 Mexas Instruments

Data Structures

Hex. Field
Byte Name
>00 K3SBLDT
>02 KSBQOC
>04 KSBQIP
>06 KSBQOP
>08 KSBQEP
>0A RESERVED
>0C KSBFL
>0D KSBSN
>0FE KSBR7
>10 KSBTSB
>12 KSBRO,
¥SBR10,
KSBR11

Texas Instruments

System Design Document

Description

The offset into the ¥SB of the logical device table
(LDT) anchor for station (terminal) local LUNOs.

The number of characters currently in the 1input
character queue.

A pointer to the next byte of the character queue
that is available to receive an input character.

A pointer to the oldest character in the input
character queue, i.e., the next character to be
picked up by the DSR.

A pointer to the word after the character queue.
That word contains the length of the queue.

Flags as follows:

Bit Meaning When Set

0 Character mode (no mapping).

1 Enable the command interpreter bid logic.
2 Keyboard is in record mode (always set).
3 Bid the command interpreter.

4 The command interpreter is active.

5 Halt I/0.

A Abort I/0.

Station (terminal) ID.

Scratch register for use by the DSR.

The address of the TSB of the task currently wusing
the +terminal if the terminal is in character mode.
If 9 validation table is bheing wused, this field
contains the validation table address.

Scratch registers for use by the DSR.

A1 A 0Z015Z3.Q7N1

System Design Document Data Structures

Hex. Field

Byte Name Description

>18 KSBCRU The CRU address of the +terminal. For VDTs, +this
address is >10 more than in the PDT.

>1A KSBR173 The saved context (WP, PC, ST) +to0 which +the DSR
keyboard interrupt handling routine returns control
via a RTWP instruction.

>20 KSBLDO These 10 bytes form a 1logical device +able (see
paragraph 6.5 on LDTs) that serves as an anchor for
the terminal local ILDT 1list, as described in Section
1. Flag bit 0 in byte >24 is set to mark this IDT
as an anchor. This LDT assigns terminal local LUNO
0O to the terminal itself.

>2A KSBLCK The lock out count, which is a count of the)lthe
number of Read With Event Characters SV(Cs issued for
this terminal.

>2C *

6.3.4.1 Video Display Terminal Extension (VDT).

The VDT is an extension to the KSB used by the 911 and 913 terminals.
The offsets are expressed from the beginning of the Physical Device
Table (PDT) +to which the ¥SB has been appended. Figure 6-7 shows the
format of the VDT extension. ‘

Hex
Byte
_____ -)(—_____,___.________*
>2¢ ! VDTEUF -~ EXTENDED USER FLAGS 1
o e e e e +
>2E ! VDTFIL -- FILL CHAR ! VDTEV? —- EVENT CHAR !
e T S +
>30 | VDTPOS ——- CURRENT CURSOR POSITION !
e e e e e +
>32 | VDTDEF —- START OF FIELD !
e e e e +
>34 ! VDTSC1 ~- SCRATCH !
e e +
>36 | VD?SC2 —-- SCRATCH !
e e e e +
>38 ! VDTSC3 —-- SCRATCH !
e e e +
>34 | VDTJIN -— BIT O MASK !
e e e +
>30 ! UNUSED !
! !
K e e ¥*
>40 *

Figure 6-7 Video Display Merminal Extension to ¥SB

9%915%-9701 =17 Texas Instruments

Data Structures System Design Document

Hex. Field

Byte Name Description

>2C VDTEUF The extended user flags to be used during the
current operation.

>2E VDTFIL The fill character to be used during the current
operation.

>2F VDTEVT The event character to be returned to the user
call block.

>30 VDTPOS The current position of the cursor.

>32 VDTDEF The beginning of the field.

>34 VDTSC1 Scratch field for use by the extension.

>36 VDTSC2 Scratch field for use by the extension.

>38 VDTSC3 Scratch field for use by the extension.

>3A VDTJIN A mask that is used to set bit 0 of a character
to the appropriate value.

>3C=>3F ——==—-- Not used.

>40 *

6.3.4.1A Electronic Video Terminal Extension (VDT940).

The VDT940 1is an extension to the KSB used by the 940 terminals.
The offsets are expressed from the beginning of the Physical Device
Table (PD™) to which the KSB has been appended. Figure 6-7A shows
the format of the VDT940 extension.

NOTE
The meaning and position of the flags are for

TI internal use only and may be moved, changed
or deleted at any time.

The VDT940 has the following format:

Texas Instruments 6-18 (Change 1) 939153-9701

System Design Document Data Structures

Hex.
Byte
----- o e e e
>2C | VDTEUF - EXTENDED USER FLAGS |
ettt Fom +
>2E | VDTFIL - FILL CHARACTER | VDTEVT - EVENT CHARACTER]
Fo F e +
>30 | VDTPOS - CURSOR POSITION |
o e e —————————— +
>32 | VDTDEF - FIELD DEFINITION |
o +
>34 | VDTRED - READ DIRECT WORD |
o e e e +
>36 | VDTSCl - FLAG WORD 1 |
Fom e ——————— +
>38 | VDTSC2 - FLAG WORD 2 |
o +
>3a | VDTSC3 -~ TEMP LINK SAVE LOCATION |
et e +
>3¢ | RESERVED | GENSPD - TERMINAL SPEED |
o o e e e ———— e +
>3E | RESERVED]
to o e +
>40 | VDTATT - ATTRIBUTE SENT | VDTATB - ATTRIBUTE RECEIVE |
e R e it +
>42 | VDTSC4 ~ TEMP LINK SAVE LOCATION l
o e e e e +
>44 | VDTCNT - COUNT FOR VDTRED l
o o e e e +
>46 | VDTPTR - POINTER TO PRINTER PDT |
o +
>48 | VDTSC5 - LINK REGISTER FOR CHANGING CHARACTER SETS |
o e e e +
>4A | VDTMFL - FLAG WORD FOR MODE FLAGS |
o e e e +
>4C | VDTEDL - FLAG WORD FOR EVENT KEY FLAGS |
o e ———————————————————— +
>4E | VDTSIZ - NO. OF CHAR SCREEN MEMORY |
o e e e ————————— +
>50 | VDTFIS - SAVE RO FOR FIFO |
o e e e ————— +
>52 | VDTSC6 - TEMPORARY STORAGE |
Fom e e +

Figure 6-7A Electronic Video Terminal Extension to KSB (Part 1 of 2)

939153-9701 (Change 1) 6-18A Texas Instruments

Data Structures

>54
>56
>58
>5A

>5C

—— e ——— ———

———— ——————

System Design Document

———— —— - - — — — —— " " - — - ———— " — — — S — —— T ———

e ———— T — - . —— —— —— — . S — i - ——— N ——— T — T —— - ——

- v —— ———— — —— — ——— - T —— - — D W—— N — " - - o — o w—

—— - ————— — —— T _— — T — — —— — — T — T — — — - VTS " e — . — —— —— T - - o

— - — —— — - — — ——— T — - V" " s D — . T - M T = T G PN WY W D A M - —

—— ———— T —— - — A — A —— o — —— T — T — T —— S — T —— —— ——

—— —— . o - — T ——— — " — ———— P W - —— N - — > - W - D W ——— . S

— - — - —— e ——— W — o S W T ——— - —— —— T D T T . —— T ——— - ——

Figure 6-7A Electronic Video Terminal Extension to KSB (Part 2 of 2)

Hex.
Byte

>2C

>2E

>2F

>30
>32

>34

Texas Instruments

VDTPOS

VDTDEF

VDTRED

Description

- —— . — — —— -

The extended user flags to be wused during
current operation.

The fill character to be used during the current
operation.

The event character to be returned to the wuser
block.

The current position of the cursor.
The beginning of the field.
The buffer or address of the buffer for the read

to address based on the flag in VDTSC1l (see byte
>36).

6-18B (Change 1) 939153-9701

System Design Document

Data Structures

Byte Name Description

>36 VDTSC1 Flag word 1 as follows:

= o

N

Meaning

Found beginning of Read Information

Next start of header was requested by the
DSR

Read information goes into address 1in
VDTRED (set to 1l); otherwise stored in
VDTRED

Found first ESC in response

Found a right parenthesis in string

A second ESC was found in string

An aid character* was found

A change character set was found

An attribute character was found

The cursor position was found

The requested read was finished

Indicates terminal is in insert mode
Indicates terminal is connected to
computer

Indicates modem phone has rung

Instructs DSR to set re-enter me flag

>38 VDTSC2 Flag word 2 as follows:

Bit

Vo~V dWNH O

[
o

e
D b

Meaning

Timed out device

Time out for response

Printer has control of 1line

Printer wants control of line

EVT has control of channel

EVT wants control of channel

Extended character is in sC1l

Extended character is in 8C2

Alternate character set is in terminal
Alternate character set is on input
Alternate character set is on read to
address

Graphics set is in terminal

Graphics set is on input

* Aid characters are the SEND key, and the 24 function keys.

939153-9701 (Change 1)

6-18C Texas Instruments

Data Structures

Hex.
Byte

>38

>3A
>3C

>3D

>3E

>40

>41

>42

>44

VDTSC3
Reserved

GENSPD

VDTATT

VDTATB

VDTSC4

VDTCNT

Texas Instruments

System Design Document

Description

———— — — - —— ——

Flag word 2 as follows:

Bit Meaning

13 Graphics is set on read to address

14 Terminal busy flag
15 A mode 3 table check is in progress

Link register save location

Terminal definition as follows:

Bit Meaning

0 Set if switched

3-7 Speed of terminal:
Setting Speed
11110 110 baud
10101 300 baud
10001 600 baud
11111 1200 baud
11011 2400 baud
10111 4800 baud
10011 9600 baud

Reserved

Attribute sent to terminal as follows:

Bit Meaning

Double wide characters
Nondisplay

Blink display

Underline display character
Reverse image display character
High intensity display character

SO W

Attribute received from terminal bit definition
the same as VDTATT

Link register save location for outputting
characters

Counter for VDTRED

6-18D (Change 1) 939153-9701

System Design Document

Hex.
Byte

>46

>4C

Data Structures

Name Description

VDTPTR Pointer to PDT of attached printer, if present

VDTSC5 Link

VDTMET,

Vis s iaL ad

g

lag

5%*
6**
7H%
8
9

register for changing character sets

word for mode flags

Pass through flag

Terminate on receipt of ETX

Terminate on receipt of ESC right
parenthesis

Extended event characters

Extended display characters

Allow ESC and SOH through write ASCII
Do not set attributes

132-column mode 3 flag

Modified data to caller

Extended character validation

10-15 Reserved

VDTEDL Flag

word for event key flags as follows:

Bit** Meaning

e I
NHOWOWONITAUTEBWN O |
]

=
Ut > W

Erase field

Right field

Cursor left out of Field
Tab

Reserved

Skip

Home

Return

Erase input

Reserved

Delete character

Insert character

Cursor right out of field
Enter

Left field

Reserved

*Flag applies only if bit 0 of VDTMFL is on.
**Flag applies only if bit 3 or bit 4 of VDTMFL is on.

939153-9701 (Change 1)

6-18E Texas Instruments

Data

Hex.
Byte

>4E
>50
>52
>54
>56
>58
>5A

>5C

Structures

FIFOCT
FIFOIP
FIFOOP
FIFOEP

FIFOBP

FIFOPT

System Design Document

Description

Number of characters of screen memory
Save RO for FIFO

Temporary storage

FIFO count

FIFO input pointer

FIFO output pointer

FIFO end pointer

Beginning of FIFO

FIFO length (beginning address of FIFO and
length of FIFO set at system generation time)

6.3.4.2 KSR Extension (KSR),

The

such as the 733.

KSR is an extension to the KSB used by keyboard-type devices

The offsets are expressed from the beginning of

the Physical Device Table (PDT) to which the KSB has been appended.
Figure 6-8 shows the format of the KSR extension.

Texas Instruments

6-18F (Change 1) 939153-9701

System Design Document Data Structures

Hex
Byte
_____ Y
>2C | KSRABT —-- ABORT ROUTINE ADDRESS !
som 1 KSRCRD —- CARRIAGE RETURN DELAY COTN® i
50 1 KSRICD —- INTER_CHARACTER DELAY COUNT i
52 1 KSRSSC -- CASSETTE sTATUS i
ssa KSRACP —- ACTIVE PDT ADDRESS i
a6 1T KSRQP1 _- FIRST QUSUED PDT ADDRESS I
S KSRQP2 —- SECOND QUEUED PDT ADDRESS i
s KSRXUF -- BXTENDED USER ¥iAGS i
»50 | KSRFLG —- GEVBRAL FLAGS | KSRSOT - SATED oRARAOTEA|
>3E : """""""""" KSRTNO - aIMEOUT comwm :
s40 TS
Figure 6-8 KSR Extension to KSB
Hex. Field
Byte Name Description
>2¢ KSRABT The address of the abort routine.
>2E KSRCRD The carriage return delay count.
>30 KSRICD The inter-character delay count.
>32 KSRSSC The status of the cassettes.
>34 KBRACP The address of the active PDT for the 733.
>36 KSRQP1 The address of the first queued PDT.
>38 KSRQP2 The address of the second queued PD™.
>3A KSRXUFR Extended user flags.

9391530701 -10 Texas Tnstruments

N

Data Structures System Design Document

_>3C KSRFLG General flags as follows:

Bit Meaning When Set

0 Hang up condition.
1 Time out switch.
2 SCI is active during hang up.
% A data carrier drop was detected.
4 Shift in/out for JISCII.
5 Direct character input requested.
>3D KSRSCH Character saved for JISCIT output.
>3E KSRTMO Timeout count for hang condition.
>40 *

6.%.4.3 820 Extension (T82).

782 is an extension of the KSB for the R20 terminal. The offsets are
expressed from the beginning of the Physical Device Table (PD™) +o
which the KXSB has been appended. Some fields must be compatibhle with
the KSR because they are used outside of the Device Service Routine
(DSR). Pigure 6-9 shows the format of the 820 extension.

Hex.
Byte
_____ *_____________________,______________________________________-X-
>o¢ | T82PRB —-— SYSTEM FLAGS AND USER FLAGS !
e e e e e e +
>2E | !
N PR2EXT —— EXTENDED PRB FLAGS N
t |
i 1
e o e e e e +
>3C | T82FLG -- GENERAL FLAGS
e e et e e e e +
>ZE | T82TM0 —— TIMEOU™ COUNT
e e e e e e e e e e e e o o e o o e e e o o e e e S e o . 2 e o i o o o o G e o o o e e e *
>40 *

Figure 6-9 R20 Extension to K&8B

Texas Instruments =20 0%0152.9701

System Design Document Data Structures

Hex. Field
Byte Name Description
>2C T82PRB System and user flags to be used during the current
operation.
>2E T82EXT Flags from the extended Physical Record Block (PRB);
O if not extended.
>3C T82FLG General flags as follows:
Bit Meaning When Set
0 Hang up condition.
1 Time out switch.
2 SCI is active during hang up.
3 A data carrier drop was detected.
4 Shift in/out for JISCII.
5 Direct character input requested.
>3E T82TMO The timeout count.
>40 *

6.3.4.4 Character Queue.

The character queue follows +the XSB and KSB extension for terminal
devices. Currently, +the character queue starts at >64 from the
beginning of +the KSB. However, all references to the queue should he
through the KSB pointers. The length of the queue 1s set at SYSGEN
time. The word following the queue buffer is the length of the queue.

6.3.5 LINE PRINTER EXTENSION (LPD).

The line printer extension to the PDT is used for both fast (2230/2260)
and slow (e.g., 810) line printers. Figure 6-10 shows the format.

9%9153-9701 6-21 Texas Instruments

Data Structures

Hex
Byt

>00

>02

>04

>06

>08

>0A
>0C

>BA

Texas Instruments

>B6

.

e

System Design

Document

____________________________________ *
LPDDMF -- PRINTER TYPE |
___ +
LPDCC —- CHARACTER COUNT !
___ +
LPDOUT —- NEXT OUTPUT CHARACTER ADDRESS |
___ +
LPDIN —- NEXT INPUT BYTE |
___ +
LPDMXC -- MAXIMUM CHARACTERRS !
___ +
LPDENR —-- END RECORD FLAG |
___ -J'l-
LPDBUF —- CHARACTER BUFFER ~
(170 BYTES) ~
|
___ *
Figure A-10 Line Printer Extension
Field
Name Description
LPDDMF Describes the type of line printer. A zero
a fast printer and a 2 denotes a slow printer.
LPDCC The number of characters currently in the buffer.
LPDOUT A pointer to the next character to be output (unless
LPDCC = O).
LPDIN A pointer to the next free byte in which a character
can be stored (unless LPDCC = LPDMAX).
LPDMXC The maximum number of characters that may be stored
in the huffer.
LPDENR Used as a flag to cause end record processing.
LPDBUF The 170-hyte character buffer.
*

=22 07201 R3.0701

System Design Document Data Structures

6.3.6 TAPE EXTENSION (TPD).

The tape extension to the PDT is similar to the disk extension.
Currently, the disk and tape are the only TILINE devices. Certain
fields in +these extensions that are used outside the Device Service
Routine (DSR) must be in the same 1location. Therefore, the tapee
extension must be the same size as the disk extension. PFigure 6-11

shows the format of the TPD.

Hex.
Byte
_____ B e e e e e e e e e ¥
>0 | TPDSVS —- DEVICE STATUS !
e - e +
>12 | TPDMAJ —~~ MAJOR RETRIES COUNT !
e e - -t
>14 | TPDMIN —- MINOR RETRIES COUNT !
Fmm————— e e +
>16 | !
e e e e e e e +
>18 | !
e e e +
>1A !
~ TPDTIL ——~ CONTROLLER IMAGE -
| |
1 |
K e e o e e e e e e ot e e o e e o e e - — e e e e e e e e e e o e e *
Figure 6-11 Tape Extension
Hex. Field
Byte Name Description
>10 TPDSVS The device status for a device characteristics call.
>12 TPDMAJ A count of the number of maijor retries left.
>14 TPDMIN A count of the number of minor retries left.
>1A TPDTIL The controller image created to start an overation.

939153-0701 6-23 Texas Instruments

Data Structures System Design Document

6.%.7 PLOPPY DISKETTE EXTENSION (FPD).

The floppy diskette PDT extension is used for CRU-type flopov diskettes
(FD8OO). TILINE floppy diskettes (FD1000) use the normal disk PDT
extension. TFigure 6-12 shows the format of an FPD.

Hex

Byte

_____ K e e e e ettt e e e e e K
>00 | FPDBAS -- NOT USED |
so2 1T FPDDNO —- DISK DRIVE NUMBER |
o 1T FPDCMD —— CONTROLLER COMMAND i
06 1 FPDISC —— CURRENT LOGICAL SECTOR NUMBER i
o8 1 FPDCTK —- CURRENT TRACK POSITION |
son 1 FPDTRK - REQUESTED TRACK POSITION i
soc 1 FPDSCT —— REQUESTED SECTOR POSITION i
som 1 FPDDBA —— DATA BUFFER ADDRESS |
sto 1T FPDDBL -- DATA BUFFER LENG™H 1
we 1 FPDDBR - REMAINING CHARACTER COUNT 1
sa 1 PPDVCT —— SAVED VECTOR ENTRY POINT |
>16 I """"""""""" FPDUSE -- USE FLAG I
e x T

Figure 6-12 Floppy Diskette PDT Extension

Texas Instruments h=24 3301730701

System Design Document Data Structures

Hex. Field

Byte Name Description

>00 FPDBAS Not used.

>02 FPDDNO The disk drive number is contained in bits 4 and 5
of this word.

>04 FPDCMD The command that is to be issued to the disk
controller.

>06 FPDLSC The current logical sector number.

>08 FPDCTK The current track position.

>0A FPDTRK The requested track position.

>0C FPDSCT The requested sector position within the track.

>0E FPDDBA The data buffer address.

>10 FPDDBL The data buffer length.

>12 FPDDBR The remaining character count for multi-sector
transfers. : /

>14 FPDVCT The saved vector entry point within +the device
service routine (DSR).

>16 FPDUSE Used as a flag to indicate that this PDT has control
of the disk controller.

>18 *

6.4 TFILE CONTROL BLOCK (FCB)

Within DX10, files are represented by, or accessed through, file
control blocks. As described in Section 1, whenever s file is
accessed, a tree structure of FCBs 1is built into memory. This
structure resembles the directory/file hierarchy on the disk. FCRs are
built in the gsystem +table ares by the File Utility Assign LUNO
processor, and are basically a memory resident copy of the file
descriptor record (FDR) of the file. Figure 6-1% shows the format of =
file control block.

93Q153.0701 6-25 Texas Instruments

Data Structures System Design Document

Hex

B .
>00 | FCBLEN -~ LENGTH OF FCB !
e e e e e e e e i e e e e +

>02 ! FCBRNM -- RECORD NUMBER OF FDR :
o o e i e e o e e +

>04 ! !
~ FCBFNM -- FILE NAME -

% !

e e e o e e e e e e +

>o0C | l
! FCBPSW -- PASSCODE !

e e e e e e e e +

>10 | FCBFLG -- FLAGS !
e o +

>12 ! TPFCBCLA —-- LUNOs COUNT ! "CBCDF -- DESCENDANTS CNT !
B el T B e e ——————— +

>14 | FCBAFD -— FCB ADDRESS OF FIRST DESCENDANT |
e ———————————————— +

>16 ! FCBALS —— FCB ADDRESS OF LAST SIBLING }
o e e e e e e e e e e e +

>18 | FCBANS -~ PCB ADDRESS OF NEXT SIBLING }
o ————————————————— - - ———————————— e +

>1a ! FCBAPF —— FCB ADDRESS OF PAREN™ }
e e —————————————— +

>1¢) FCBPRS —-- PHYSICAL RECORD SIZE !
e e e e e e e e e e +

>IE | FCBLRS -- LOGICAL RECORD SIZE !
e e e e ———————————— e +

>20 | FCBPAS -— PRIMARY ALLOCATION SIZE IN ADU !
e o e e e e e e e e e e +

>22 | FCBPAA -- PRIMARY ALLOCATION ADDRESS !
e ————————————————————— e +

>24 ! FCBSAS -- SECONDARY ALLOCATION SIZE !
e e +

>26 ! FCBSAA -~ ADDRESS OF SAT BLOCK !
e e e ————————————————————————— +

>o8 | FCBEOM —-- END OF MEDIUM LOGICAL RECORD NUMBER !
| !

e ——————————————_————— e +

>20 3 FCBBKM -- END OF MEDIUM BLOCK NUMBER 5
| }
e —————————————— +

>30 | FCROFM -~ END OF MEDTUM OFFSET !
A +

>32 | FCBLRL -- LOCKED RECORD LIST HEAD !
o e ——————————————————— ————————— +

>34 | FCBLLH —- LDT LIST HEAD !
e e e e e e ———— o ———————————————————— +

Figure 6-13 TFile Control Block (FCB) -~ Part 1 of 2

Texas Instruments 6-26 0301 53.9701

System

>44

Hex.
Byte

>02

>04
>0C
>10

933153-9701 6-27

Design Document

Data Structures

1T TRCBADE - UNIZS/BLOGK 1 FOTRPA - BLOGRS/ONIT |
T FOBPDT __ DISK BDT ADDRESS H
[FGBEXT _- BLOCK GOUNT FOR PILE BXTRNSION I
R e H
! PCBXCT -- FILE EXT. COUNT! FCBMFG —- MODIFIED FLAGS !
[FORRIA _. REQUEST LIST aNeRoR H
1"'555555“12’565§?§§'ES‘52%%"&F§§“5§'§£865éE'EEEE‘“'E
*

Figure 6-13 TFile Control Block (FCB) —- Part 2 of 2

Name - Description

FCBLEN Length in bytes of +the PFCB and any extensions
(described 1later in this section). If there are no

extensions, the value of this field is zero.

FCBRNM The number of the directory file reco

contains the file descriptor record for this file.

FCBFNM File name (eight characters)

FCBPSW Passcode, reserved for future extension.
FCBFLG Flags, which are the same as in a file 4

record except for bits 12-13. The flags
following meanings:

Bist Meaning
0-1 File usage flags:
00 No special usage
01 Directory
10 Program file
11 Image file

2-3 Data format:
00 Binary
01 Blank Suppressed
10 Reserved for ASCII % print forms
11 Reserved

rd

escriptor
have the

control

Texas Instruments

Data Structures

>12

>173

>14

XS

FCBCLA
FCBCDF

FCBAFD

FCBALS

Tretrum=ants

System Design Document

4 Allocation type:
0 Bounded
1 Unbounded

5-6 File type:
00 Reserved for device
01 Sequential
10 Relative record
11 Key indexed

7 Write protection flag:
0 TNot write protected
1 Write protected

2 Delete protection:
0 DNot delete protected
1 Delete protected (file cannot be deleted)

9 Temporary file flag:
0 Permanent file
1 Temporary file

10 Blocked file flag:
0 Blocked
1 Unblocked

11 Alias flag:
0O Not an alias
1 An alias file name

12-13 Most restrictive access applied to all users
of the file:
00 Exclusive write
01 Exclusive all
10 Shared
11 Read only

14-15 Reserved
Number of LUNOs assigned to the file.

Number of descendant FCBs in memory. Only a
directory file wmay have descendants. Descendants
are all files that are cataloged under this
directory and any sub-directories.

Address of the FCR of the first descendant f(i.e.,
the first file ca%aloged under this directorv that
was accessed, and is still being accessed).

Sibling pointers. All FCBs of files cataloged under

the same directory are laterally linked by these
pointers, as described in Section 1.

DA Q201 KR _07N1

System Design Document Data Structures

>1A

>1C
>1E
>20

>22
>24
>26

>28

>2C
>30

>32

>34

>%6
>37

>38

>3A
>3E

FCBAPF

FCBPRS
FCBLRS
FCBPAS

FCBEOM

FCBBKM

FCBOFM

FCBLRL

FCBLLH

FCBAPB
FCBPBA
FCBPDT

FCBEXT
FCBXCT

9%29153-9701

Address of the PCB of the directory under which this
file is cataloged.

Size in bytes of a physical record of this file.
Size in bytes of a logical record.

Size in allocable disk units of the primary file

allocation.

Starting ADU number of the primary 2llocation.

Size in ADUs of the secondary aliocation.

Address of +te in-memory copy of the secondary
allocation +table (SA™) for the file. The SAT is an
exact copy of +the 1last 64 bytes of the file
descriptor record (FDR) and is located in the system
table area.

The number of +the logical record immediately
following +the last allocated logical record (end of
medium).

The physical record in which +the file allocation
ends (end of medium).

The sector offset into the physiecal record that
marks the end of medium.

The head of a singly 1linked 1list of record 1lock
tables, which are also located in the system table
area, each of which points to a locked record of the
file.

Head of a linked list of all logical device tables
that represent LUNOs assigned to this file.

The number of ADUs per physical record.
The number of physical records per ADT.

The address of the PDT for the disk on whieh this
file is written.

Block count for file extension.

Number of secondary allocations.

6-20 Texas Instruments

Data Structures System Design Document

>3F FCBMFG Flags as follows:

Bit Meaning When Set:

0 End of medium for this file has changed
1 Data has been written into the file
2 FCB is busy
>40 FCBRLA Pointer to the next buffered I/0 request for this

file (I/0 requests for the same file are queued from
the FCB until processed by file management).

>42 FCBLST Pointer to the last buffered I/0 request on the list
for this file.

>44 *

6.4.1 KIF EXTENSION TO THE FCB.
When an FCB represents a key indexed file, an extension to the FCB is

used to contain additional information. Figure 6-14 shows the format
of a KIF extension.

Texas Instruments 6-30 0701730701

System Design Document

Data Structures

Hex
Byte
_____ *____._______________________.______________________.________*
>00 ! !
| FCBTNB —- TOTAL NUMBER OF BUCKETS !
o e +
>04 ! FCBCMD —- COMMAND NUMBER !
+--——————--—------—--—--———~---—-——————============———+
>06 ! FCBCLB -- CURRENT LOG BLOCK NUMBER 3
e +
>08 i FCBFBQ -- FREE BLOCK QUEUE HEAD i
i |
o e e ———— +
>0C ! FCBBTR -~ B-TREE ROOTS BLOCK NUMRER !
A e e e +
>0E ! FCBSBB -~ BLOCK NUMBER OF FIRST RUCKET !
o e e +
>10 | FCBMRS -~ MINIMUM LOGICAL RECORD SIZE !
+- — e e e +
>12 ! FCBKDR -~ NUMBER OF ¥EVS |
o e T + ——+
>14 FLAGS ! CHARACTER COUNT OF KEV 1 | REPEAT
e e e +FOR SEC-
>16 ! OFFSET mo KEY 1 ! ONDARY
o e + —=KEYS
>18 | i
|]
| 1
K e e e e e *
40 *
Figure 6-14 TFCB Extension for Xey Indexed Files
939152-9701 6-%1 Texas Instruments

Data Structures System Design Document

Hex. Field

Byte Name Description

>00 FCBTNB Total number of buckets allocated in the file.

>04 FCBCMD The opcode of the current command (used for
logging) .

>06 FCBCLB The physical record number of the currently used log
block (see the discussion on key indexed files in
Section 4).

>08 FCBFBQ The physical record number (block number) of the
first record in a linked 1list of availahle records.

>0C FCBBTR The number of the first physical record containing a
B-tree root.

>0E FCBSBB The number of the first physical record containing
the first bucket.

>10 FCBMRS Minimum logical record size, in bytes, needed to
contain all defined keys.

>12 FCBKDB These fields are in-memory duplicates of bytes 6-63%
(>06->3F) of the disk resident key descriptor
record.

>4C *

6.4.2 QUEUE EXTENSION TO THE FCB.

When the file represented by an FCB is a directory, a queue anchor of
the form shown in TPFigure 6-1 1is appended +to the FCB. The queue
anchored is a queue of TSBs of tasks waiting for access to the
directory file. The queue is implemented to prevent both file
management and file utility from updating the same directory record
concurrently (e.g., if one task were writing to a file and another task
were renaming the file at the same time).

Hex. Field

Byte Name Description

>00 FCRQUE Address of the T8B of the newest task waiting for
access.

»02 0 e TSB address of the oldest task waiting for access.

>04 PCBLOK TSB address of the task currently accessing the
directory.

Texas Instruments £-322 9301 53%-0701

System Design Document Data Structures

>06 FCBQFL Flags. Must have a value of >40.
07 mmm—ee Task Id of server. Must be zero.
>08 FCBQST Task state. Must be >1E.

>0 e Count of items on queue.

6.4.3 RECORD LOCK TABLE (RLT).

An RLT is a 10-byte block of system table area that points to a file
record that is locked. All locked records of a file are represented by
a linked list of RLTs, ordered by an ascending disk address, which is
headed by a word in the file control block. Fach time a record is
locked, file management builds a new RLT and links it on the 1list.
Figure 6-15 shows the format of a record lock table.

Hex.
Byte
_____ ¥ —_— ——— - P |
>00 i RLTINK -- TABLE LINK i
Rt —— - —_— - -+
>02 | RLTLDT -- LDT ADDRESS !
o e +
>04 ; RLTBLK -- BLOCK NUMBER ;
i 1
+—- -_ - - ——————————————— e +
>08 ! RLTOFF —-- OFFSET IN BLOCK |
b e e e o e e e o e — e e e i e e i i e e *
>0A %
Pigure 6-15 Record Lock Table (RLT)
Hex. Field
Byte Name Description
>00 RLTLNK Link to the next RLT (0 = end of 1list).
>02 RLTLDT Address of the logical device table that represents
the LUNO assigned by the task that locked this
record.
>04 RLTBLX Number ofvthe physical record of the file in which

the locked logical record is written.

>08->09 RLTOFF The 1logical record within the above addressed
physical record that is locked.

939153%3-9701 6-33 Texas Instruments

Data Structures

System Design Document

6.4.4 PROGRAM FILE EXTENSION TO THE FCB.

When

t0 contain additional information.

an FCB represents a program file, an

extension to the FCB is used

Figure 6-16 shows the format of the

program file extension.

Hex.
Byte

>00
>01

>02
>04
>05
>06
>08
>09
>0A

>0C

Tiéiﬁﬁlﬁ’iZ'iXEE’&S"65’52.%;2??'561356'22’5EﬁﬁéiBﬁ?BﬁéiET
I 7TTTRGRIR _- TASK DIRECTORY ENTRY RECORD NUMBER 1
TSCENNE - WAX No OF PROGS | 7OBPO —- DIREGTORY OFRSZT|
1™ RS3eR - PRocS DIRRGTORY BNTRY RECORD WOWRER |
{5oRMN0 T WAX Wo OF VLTS | P0B00 -- DIREGTORY OFRSEI!
I RuB0R - OVERIATS DIRFGTORY ENIRY RECORD NOWBRR |
:-. ___ %*
Figure 6-16 TFCB Extension for Program Files
Field |
Name Description
FCBMNT Maximum number of task entries in the file.
FCBTO Task directory entry offset.
FCBTR Task directory entry record number.
FCBMNP Maximum number of procedure entries in the file.
FCBPO Procedure directory entry offset.
FCBPR Procedure directory entry record number.
FCBMNO Maximum number of overlay entries in the file.
FCBOO Overlay directory entry offset.
FCBOR Overlay directory entry record number.
*

Texas Instruments

6-34 9301 53-9701

System Design Document Data Structures

6.5 LOGICAL DEVICE TABLE (ILDT)

Logical device tables are built in the system table area by +the file
utility assign LUNO processor. Whenever a LUNO is assigned to a file or
device, an LDT is built to represent the 1logical unit to the systen.
Figure 6-17 shows the format of an LDT.

Hex
Byte
_____ *__.._____________._.______.__._______._.______.___._._________..___*
>00 ! LDTPDT —- PDT ADDR !
e T TS —— S e TR +
>02 | LDTLUN -- LUNO ! IDTIOC —-- STAR™ I/0 COUNT!
e e e +
>04 | ILDTFLG —-- FLAGS '
A e e e e +
>06 | LDTLDT —-- LDT LINK '
o +
>08 | LDTTSB —- USER TSR ADDRESS 4
e e e e e ———————— +
>0A | ILDTFLL -- FILE LINK !
e e +
>o¢ | LDTFCB -~ FCB ADDRESS !
e e ———————— +
>OE 5 LDTLRN —-- CURREN™ LOGICAL RECORD NUWMBER i
! !
o e e e e o +
>12 3 LDTRN —- CURRENT BLOCK NUWMRER i
i i
e e e +
>16 | LDTOCB —- OFFSE™ IN CURREN™ RLOCK !
o e +
>18 | LDTBLK —- BUFFER BEET ADDRESS '
o e +
>A |LDTORC -- OUTSTANDING REQS! LDTNU —— NOT USED !
K e e e e e o e e e e e e e e e m *
>I¢ *®

Note: Bytes >00->090 are the same for file and

device LDTs. Bytes >10->1B are used only
for file LD™s

Figure 6-17 Logical Device Tabhle (ILDT)

9%9153%-9701 A-35 Texas Instruments

Data Structures

Hex.
Byte

>00

>02

>073

>04

>06

>08

Texas

LDTLUN

LDTIOC

LDTFLG

LDTLDT

LDTTSB

Trnstruments

System Design Document

Description

Address of the PDT to which the LUNO is assigned.
Tor LUNOs assigned to files, this is the PDT for the
disk unit on which the file is written.

The LUNO which this LDT represents.

The number of initiste I/0 operations currently
being performed at this LUNO.

Flags as follows:

Bit Meaning
0 This LDT is used to anchor a list of LDTs
(e.g., in a KSB).

1-2 Access privileges:
00 Exclusive write
01 Bxclusive all
10 Shared
11 Read only

3 The file to which the LUNO is assigned was
created by the Assign LUNO SVC.

4-5 Scope of LDT anchor (i.e., what kind of LUNO) :
00 Task local
01 Station local
10 Global
11 Undefined

Deferred write error.

FPile is forced write.

LUNO is a system LUNO (canrot be released’.
LUNO assigned to a file.

LUNO is busy.

Tvent mode is locked in record mode.
Initiate I/0 is being verformed.

Abort I/0 is being performed.

Unblocked access.

Print flag.

—-L_s_s‘_s—_sgon e)

DI O

Link to the next IDT in +the 1IDT™ 1inverted tree
structure described in Section 1.

mSB address of the task that opened the LUNOC.

A-3A 0201 52_97M

System Design Document Data Structures

E e 2 L L S E R ST TS E ST E T E LT P T R P P PR T E T PSR EE LTS R L L T L
* The remaining fields (bytes >0A through >1B) are only Aefined for *

* LDTs that represent LUNOs assigned to files. When a LUNO is *
* released, or the task that assigned the LUNO terminates, the LDT *
* is relpased by the file utility Release LUNO routine. *

R e R N L L S s T T L A T TR

>0A LDTFLL Link to the next LDT representing a LUNO assigned to
the same file. All LDTs assigned to the same file
are Jinked together, and anchored in the file
control block.

>0C LDTFCB Address of the file control block for the file +o
which the LUNO is assigned.
>0 LDTLRN The number of the logical record that 1is currently
: being accessed.
>12 LDTBN The number of the physical record that is currently
being accessed.
>16 ILDTOCB The offset into the physical record to the current
logical record.
>18 LDTBLK The beet address of the buffer that contains the

last physical record transferred (read or written)
through this LUNO (gzero if +the ©buffer has Dbeen
released).

>1A LDTORC Number of outstanding requests for I/0 to this LUNO.
>1B LDTNU Not used.
>1C *

6.6 BUFFERED CALL BLOCK

Whenever a supervisor call that is processed by a queue serving routine
is issued, the call block 1is bhuffered in the system table area and
queued for the SVC processing routine. The first four words of the
buffer contain the following system overhead.

Hex. Field

Byte Name Description

>00 e Link to the next entry in the queue.

>02 0 mmme—— Address of the TSB of the task issuing the SVC.

>04 e Address of the call block within the calling task.
>06 —————= Address of the LDT to which an I/0 operation is

directed (used only for I/0 SVCs).

The remainder of the buffer contains the call block and any extension
blocks or data buffers.

03015%2-9701 6=37 Texas Instruments

Data Structures System Design Document

6.7 TASK STATUS BLOCK (TSB)

Tasks are represented within DX10 by a task status block (TSB). TSBs
are built in the system table area by the bidding routines TMRIDO and
TM$BID. A TSB is released by the termination task, TMDGN, when a task
terminates, unless the task is a queue server. TSBs of inactive queue
servers are not released unless more system table area is needed.
Figure 6-18 shows the format of a task status block.

Hex.
Byte
_____ *______________________________._____________._____________.-)(-
>00 ! TSBQL —- QUEUEING LINK !
e e e e e e — — +
>02 | TSBWP -- ACTIVE WP |
e e e +
>04 | TSBPC -- ACTIVE PC !
Fm———— - —— e ——————————— +
>06 | TSBST -- ACTIVE ST !
L adat O et +
>08 | TSBPRI -- PRIORITY ! TSBSTA —— TASK STATE !
o ———————— e —— +
>0A | TSBFLG -- TASK FLAGS)
e e e o +
>0C ! TSBEAC —- TRANSFER VECTOR ADDRESS !
A e e e e e e e e +
>0E ! TSBID -- INSTALLED ID : TSBRID -- RUN ID !
e ————————————— e e ———— e +
>10 | TSBSMF —— SAVED MAP FILE ADDRESS !
e e e e e e e o e e e o o +
>2 ! TSBLNK -- FIXED TSB LINK !
o e e e e e e e e e o e e e e ————t
>4 | TSBKSB -- KSB ADDRESS !
e ———————— e e e +
>16 | TSRFL2 —- TASK FLAGS (WD2) !
o e e o +
>18 | TSBAR1 -- BID PARAMETER (1) !
A e e e e e e e +
>1A | TSBAR?2 —-- BID PARAMETER (2) !
e e o o e e e e +

Figure 6-18 MTask Status Block (TSB) -- Part 1 of <

Texas Instruments f=3R 0%0153%-9701

System Design Document Data Structures

>1C T——” o TSBALT - Ai;;ﬁﬁzgg-aéi—KDDRE§s o _-—T
SB | mSEGER o 9177911 CHAR ITSBIOC - TILINR 1/0 COUNT!
s20 1 TTTTTTISmPRI - PSB ADDRESS (PROC 1)
soo 1T ISeRS o PSB ADDRESS (PROC 20 |
>24 T o -ESBFCB - PROGRKi-fILE_Eaé—;Bgﬁigg ————————— ?
o6 1T TSSERC - DIAGNOSTIC ERROR GODE H
som 1 TOBNED - DIaEROSTIZ WE i
>2A T—__ o TSBPCD :: DIAGNOSWIC_;E o ———T
>2C T_—— TSBSEB —— DIAGNOSTIC g; ______________ T
>2F T—-— o _ESBT5; — TIME DELAY COUN%E& ———————————— T

{ TSBTD2 !
32 1T naEMLy o mAp LIMIT 11
s34 1 T ISBNEY - MAD BIAS 1 T
w6 1 msemz - waammno 1
>38 ? o —EgﬁiBz —-— MAP BIAS > T
>3A T ____________ TSBMLE -~ MAP EEMIT z B T T
>3C T ______ TS%&B%—:— MAP_gfzs 3 T T
>3E T_Eéigﬁi—::-giiig-5§£6§1TY TTSBﬁﬁG —: TASK REGISTER_ﬁaT
sao 1T TSOTAR —- TARENT TS0 ADDRESS '
>42 T ---------- TSBSB§——— OLDESE-SON—;%B ngiigg ___________ T
sas | 1SEBRY —- OLDER SIBLING 7SB ADDRESS i
a6 1T TSBER> - TOUNGER SISLING 155 ADDRESS i
>48 ? ————— TS§££§ S BEEW LEﬁa;ﬁ OF PROGRAM T —-—T
sap 1 TnaBToN - OvERIAT WoWsER 1
sa¢ T n3BOAD - ADDRESS OF OTERLAT AREA DES. i
sa 1 mssro - aims mAsk suseEwbED |

e e e e e e e e +

Figure 6-18 Task Status Block (TSB) -- Part 2 of 3

93915%-9701 6-30 Texas Instruments

>50
>52
>54

>56

>DA
>5C
>5E
>60
>62
>h4
>66

Document

am

Data Structures System Design
e +
! TSB™ ——~ NUMRER OF TIME SLICES REMAINING !
e —————— +
! TSBSCR -- SCRATCH FOR GETMEM !
e e e +
| TSBRLL -- LINK TO NEXT ROLLED TASK !
e e ——————————————————————— +
i TSBRRN —- ROLL FILE STARTING PHYSICAL RECORD NUMBER E
! 1
e e +
} TSBRRL -~ NUMBFR OF ROLL FILE RECORDS '
e e e e ———————— e e +
i TSBLDF —— LOCAL LDT LIST FILAGS |
e e +
! TSBLDA -~- LOCAL LDT LIST ADDRESS !
g O R e e +
{ TSBEOR -- EOR COUNT ! TSBIIP —- I/0 COUNT !
e e ———— S +
! TSBSER -- QUEUE ANCHOR ADDRESS !
e e e e —————————— +
! TSBMSC —-~ TASK SENTRY COUNT !
R e e e e e e e e e e o e o o e o e e e £ . e e e e e o o o o . e e o e 28 e o et <ot o S o e e e e *
*

Pigure 6-18 Task Status Block (TSB) —- Part % of %

Field

Name Description

TSBQL Link to the next TSB on the gqueue, when this
queued.

TSBWP, The saved context (workspace pointer, progr

TSBPC, counter and status register values) for the

TSBST When the task is scheduled to execute, the

>08

>09

Texas Instruments =40 0%01 53,0701

values are used to begin execution.
TSBPRI Task priority (0, 1, 2, %, or >81, >R2, >
real-time priority 127.

TSBSTA Task state as shown in tabhle 6-1.

se

R%
>FP) where >81 is real-time priority 1 and >F

System Design Document

Task
State

00

OO OO0 OO
N OV BN

[sXoJoReoloNe]
oQ =00

- =00
—~OoEE

—

e e e o
] OYOU N0

=0

—
2

v

= O

)

=N -
o > g

939153-9701

Table -1 Mask State Codes

Significance

Active task, priority level

LT o

Active task, priority level
Active task, priority level
Active task, priority level
Terminated task

Task in time delay
Suspended task

Currently executing task
Reserved

Task awaiting completion of I/0

Task awaiting assignment of device for I/0
Task awaiting disk file utility services
Reserved

Task awaiting file management services
Task awaiting overlay loader services

Task awaiting initial load

Reserved

Task awaiting disk management services
Task awaiting tape management services
Waiting on system overlay loader services
Waiting on task driven SVC processor

Task waiting on GETMEM request

Not used

Suspended for co-routine activation

Task waiting on termination task services
Task awaiting completion of any I/0
Waiting on MMSFND door

AN — O

Data Structures

Task eligible for rollout when requested I/0 is complete

Task activated while roll in progress
Suspended for initiate I/0 threshold
Suspended for locked directory

Suspended for task management directory buffer

Task suspended for queue input
Dummy task state

f-41 Texas Instruments

Data Structures

Hex.
Byte

>0A

>0C
>0FE
>OF
>10

>12

>14

Texas Instruments

Field
Name

TSBFLG

TSBEAC
TSBIID
TSBRID

TSBSMF

TSBLNK

TSBKSB

-P-\-\)J Ny — [®] :
|

System Design Document

Description

First word of task flags. The flags are as follows:

Bit Meaning When Set

System task (Hardware and

software privilege)

Privileged task (Software)

Memory resident task

Take end action on error

Roll out candidate

Rolled out

Abort/terminate task

Activate call outstanding
Reactivate bidding task at termination
Serially reusable task

Task quieting in progress

Initial bhid

Leave task alone; do not abort
Task is under control of alternate
TSB

3CI flag for scanning TSB chain
Task is replicated image

— — O 0|3 I
— O

—_
‘NN

—
e

Transfer vector address.
Installed task ID.
Runtime ID assigned by system.

Address in the TSB of the saved map file register
values (bytes >%2->3D).

Link to the next TSR in the fixed list of TSBs. All
TSBs in +the system table area are linked onto this
list when +they are created. The 1list may be
searched to find a task with a given runtime ID by
the routine named TMTSCH fe.g., to kill the task).

Address of the KSB of the %erminal with which this

task 1is associated (i.e., the task was bid from the
terminal).

A-A2 0301520701

System Design Document Data Structures

>16

>18

>1C

>1E
>1F
>20

>22
>24

>26

>28

>2E

>32

TSBFL2

omgq J‘\\)‘IJ}QN N = O

TSBAR1

TSBALT

TSBCHR
TSBIOC
TSBPR1

TSBPR2

TSBFCB
TSBERC
TSBYWPD,

TSBPCD,
TSBSTD

TSBTD1

TSBMIA

939153-9701

Task flags as follows:

Bit Meaning When Set

Task to he suspended next time it executes
Task is heing controlled

SVC traps to be taken when specified

SVC switch: when 0, SVC traps are taken
Execution stopped by scheduler

Execution stopped by trapped SVC

Execution stopped by XOP 15,15 (breakpoint)
Dynamic priority management

Roll in progress

Task activated

10 Initiate followed by execute I/0
. I S Extend time slice
12 E?d action available for task
a

13-15 Not used

The two parameters that may be passed to the task by
the Bid 8VC, and accessed by the task using the GCet
Bid Parameters SVC.

T8B address of the alternate task. The alternate
task is executed in place of this task.

01%/911 character.
Number of outstanding TILINE I/0 operations.

Address of the procedure status block (see paragraph
6.7.1) for attached procedure 1 (zero if none).

PSB address for procedure 2 (zero if none).

Address of the FCB that represents the program file
on which this task is installed.

Error code that describes the error that caused the
task to terminate (used by termination task).

The context (WP, PC, and ST registers) of the task
a? the time an error forced the task to terminate or
a
take end action (used hy +the +termination task).)
These These values are returned on a Get End Action
Status SVC.

Number of system time units remsining before +this
task will be reactivated from its time delayed state
(32 bits.)

The map register values to be used when this task
executes.

h-47 Texas Tnstruments

Data Structures

>40

>48

>4A

>4C

24E

>50

>52

>54

>56

>5A

>60

Texas Instruments

TSBPRF

TSBMRG

TSBPAR

TSBBLN

TSBTON

TSBOAD

TSBSCR

TSBRLL

TSBRRN

TSBRRL

TSBLDF

TSBLDA

TSBEOR

System Design Document

Map flags. Fixed priority of task.

The offset into *the saved map file +that marks the
limit register that maps the task segment (i.e., 0O,
4, or 8).

T3B family tree pointers as described in Section 1.

Length of the entire progm (task and procedures)
in beets (32-byte blocks).

The number of the system overlay in which this task
was last executing (used for system tasks only).

The address of the overlay area in which the above
overlay was loaded (the overlay MUST be reloaded in
the same place).

Number of +time slices this task has been suspended.

Number of time slices still allotted to this task as
the minimum number of time slices it must receive
before it can be forecibly rolled-out by an equal
priority task.

Seratch used by the Get Memory SVC processor and the
system overlay loader.

Link to the TSB or PSB that represents +the next
rolled segment. The TSB or PSR of each rolled task
or procedure is 1linked onto =a 1list of rolled
segments. The 1ist is kept in order by increasing
roll file record number; i.e., segments %that were
written at the beginning of the roll file are at the
beginning of the list. This linked list serves as a2
directory into +the roll file, so that the various
rolled segments can be retrieved for roll-in.
Further roll information is kept in TSBs or PSBs.

Number of the physical record in the roll file that
begins +the rolled image of the task segment. At
initial bid time, this is the program file record
number.

Number of roll file records occupied by the rolled
task image. During initial bid, this is the length
of the task in bytes.

Task local LDT list flags: bhit 0 is the LDT anchor.
Pointer to the first task local LD, or the station
loca% LDT 1ist anchor (if there are no task local
LDTs).

Number of TI/0 end-of-records +that need to he

A-44 Q701 RZ2.Q7MN1

System Design Document Data Structures

processed for this task. If this field is non-zero,
the device driver task (DDT) is given the next time
slice that would otherwise have been awarded to this

task.

>61 TSBIIP The number of T/0 operations outstanding for this
task.

>62 T3IBSER The address of the anchor for the queune served by

o
this task (used only for queue servers).
>64 TSBTSC The task sentry count.
>66 * |

6.8 PROCEDURE STATUS BLOCK (PSB)

Each procedure being accessed by a task within DX10 is represented by a
procedure status block, just as tasks are represented by TSBs. When 2
task is bid, the bidder task, TM®BID, checks to see if the task has any
attached procedures. If so, the bidder task scans the fixed 1list of
PSBs anchored in the D®DATA module to see if the procedures are already
in memory. If not, TM®BID builds a PSB for the procedures.

A P3B is built in the system table area and 1linked on the fixed list of
PSBs. TFigure 6-19 shows the format of a PSR.

0301539701 f-45 Mexas Instruments

Data Structures System Design Document

Hex
Byte
_____ *_.______,_______________,__________+__________________._________.._*
>00 | PSBID -- PROCEDURE ID | PSBFLG —-- FLAGS !
e e —————— +
>02 | PSBADD —-- PROCEDURE ADDRESS l
e ———— e — +
>04 | PSBLEN -- PROCEDURE LENGTH !
e e e e e e e +
>06 | PSBLNK -- FIXED PSB LINK |
e e et e e e e e e o e e e +
>08 | PSBFCB -- PROGRAM FILE FCB ADDRESS !
e e +
>0A | PSBATT —-- NO. ACTIVE TAQKQ'P%BTIM —-— NO. IN-MEM TASKS|
PSR SRR SRS +
>0C | PSBRLL -- LINK TO NWYW ROLLED SEGMENT !
o e e e e — +
>O0E | PSBRN1 —-- RELATIVE RECORD NUMBER IN ROLL {
e ——————_— e ————— e — — +
>10 | PSBRN2 -- FILE/PROGRAM FILE !
et e +
>2 PSBRRL -— NUMBER OF ROLL FILE RECORDS !
3 e e e e e e e o e e e o e o e e e o o o e *
>14 *
Figure 6-19 Procedure Status Rlock (PSB)
Hex. Field
Byte Name Description
>00 PSBID ID assigned +o the procedure when it was installed
on the program file.
>01 PSEBFLG Mlags as follows:
Bit Meaning When Set
0 Memory resident procedure
1 This is the initial bid of the procedure
2 Procedure is rolled out
3 Procedure roll is in progress
—_4 Writable control storage XOP
5 PROC is write protected
6 PROC is execute protected
>02 PSBADD Address of the starting beet (32-byte Dblock of
memory) of the procedure.
>04 PSBLEN Length of the procedure in beets.
>06 PSBLNK Link to the next PSB in the fixed list of PSBs (zero

if at end of list).

.Texas Instruments AR 0Z01 530701

System Design Document Data Structures

>08 PSBFCB Address of the FCB for the program file on which the
procedure is installed.

>0A PSBATT Number of active tasks that share this procedure.

>0B PSBTIM Number of active tasks with memory (not rolled) that
share this procedure.

>0C PSBRLL Link to the next rolled segment (same as described
for TSBs).

>0F PSBRM1 Relative record number in roll.

>10 PSERN2 File/program file.

>12 PSBRRL Number of roll file records occupied by the rolled
procedure. During +the initial bid, +this is the
length 6f the procedure in bytes.

>14 *

A PSB may be released to the system table area by the memory management
routine named RELPSB. The PSB may only be released if +the procedure

has zero attached active tasks, :in which case both the procedure memory
and the P3B are released.

6.9 TIME ORDERED LIST (T0OL)

As described in Section 1, 2ll allocated blocks of memory (excluding
the system table area) are linked on a doubly-linked, ecircular, time
ordered list. This is done in order to support the least recently used
algorithm used by DX10 memory management to select blocks of memory for
rollout.

Blocks of memory that may be on the TOL are: task memory, procedure
memory, and file management blocking (I1/0) buffers (maximum of 30
buffers on TOL). Whenever a Dblock of memory is accessed f(i.e.,
executed if it is a task; read or written if it is a Dbuffer), it is
removed from its current ©position on the TOL, and relinked at the
beginning of the list when the access is ended. An exception to this
rule 1is procedure memory, which is not removed from the TOL when
procedures are used. Procedure blocks, therefore, tend to go +to the
end of the list.

The overhead involved in maintaining the TOL consists of a TOL header,
located in the D&DATA module, and an overhead beet (%2-byte block) at
the beginning of each allocated segment of memory. The overhead beet
is created by either the task loader (for +tasks and procedures) or
buffer management (for blocking buffers). Figure 6-20 shows the format
of s TOL beet. Note that an overhead beet is also used to maintain the
linked list of free memory blocks (see paragraph 6.11).

939153-9701 f-A7 Texas Tnstruments

Data Structures

Hex.
Byte
500
>02
>04
>06
>08

>0A

>18
>1A
>1C

>20

Hex.
Byte

>00

>02

>04
>06

Texas Instruments

System Design Document

e e e e e e +

} TOLLEN -- BLOCK LENGTH |
o ——— e ———_—— e e e +

! TOLPTR —-- POINTER !
o e e o o e e e e e +

! TOLFLK -- FORWARD LINK !
e e e e e e e e +

! TOLBLK -- BACK LINK }
e —————————————— e +

: TOLTYP -- BLOCK TYPE !
o ——— e ————————— e +

| !

~ NOT USED -

| |

| 1
e e o e e e +

! BUFFLG —— FLAGS }
e e e e e e e e e e +
: BUFRLN -- BUFFER LENGTH !
e e e e e e ER——
z ! USED
! BUFBLK -- PHYSICAL RECORD NUMBER ! ONLY
} ! FOR
! ! BUFFERS
K e e e et e e *____}
*
Figure A-20 TOL Overhead Beet
Pield
Name Description

TOLLEN

TOLPTR

TOLFLK

TOLBLK

Length, in heets, of the attached block of memory
ineluding this overhead beet.

Pointer, which varies depending on how this block is
being used:

Task -- Pointer to TSB
Procedure -- Pointer to PSB

Buffer -- Pointer %o LDT
Free block -- Pointer to next free bloek

Forward link to next oldest bloek.

Back link to next youngest block.

>N

-AQ 0Z01 520701

System Design Document Data Structures

>08 TOLTYP Block type as follows:
1 task
2 procedure
3 free block

onononon

0 blocking buffer
-1 list header

>0 e o Not used.

>18 BUFFLG Flags as follows:

Bit Meaning When Set

0 Buffer is busy

1 Write this block

2 This is the memory resident buffer

3 Release this buffer immediately
>14A BUFRLN Length of buffer (excluding overhead beet) in bytes.
>1C BUFBLK Number of the file physical record that is buffered

in this buffer.

>20 *

6.10 SYSTEM LOG PARAMETER BLOCKS (SLPR)

Whenever a message is to be written to the system log, the message
information is queued to the system log message queue in the form of a2
12-byte system log parameter block (SLPB) plus extensions. The SLPB is
created by different routines depending upon the source of the log
message as follows:

Source Creation Routine

Device FErrors SYSLQ, called by DDTEND, the end record
and statistic messages processor.

Task Errors SLPRQC, called by TM®DEN, the diagnostic
task.

User Messages SLSVC, the system log SVC processor.

Log Messages SIMFQOT, the system log formatter.

Memory ZErrors Non-correctable errors in TMERIN™.

correctable errors in TM®SHD.
The SLPBs are queued for the system log formatting and output task,

SIMFOT, which formats each SLPB and writes the message to the logging
device and/or files. Figure 6-21 shows the format of the SILPR.

930153-9701 £-40 Mexas Instruments

Data Structures

Hex.
Byte

>07

>08

>0C

Texas Instruments

System Design Document

K e e e e e e e e e e s ot e o e e i e o e o o e e o o o o i e *
! SLPB -- QUEUE LINK !
e +
! SLDAY -- JULIAN DAY |
o e e e — e ———————— e T
| SLHOUR -- HOUR ! SIMIN —— MINUTE
e e +
! SLFLAG —-- SLB FLAGS ! SIXKEY -- EXTENSION XEY !
e e ———————— o e e +
g SLTYPE —-- ERROR TYPE g
1
S, %
*
Figure 6-21 System Log Parameter Block
Field
Name Degcription
SLPB Link to the next block on the queue.
SLDAY Julian day.
SLHOUR Hour.
SIMIN Minute.
SLFLAG Flags as follows:
Bit Meaning When Set
(Subsequent messages have been lost
17 Not used
SLXKEY Extension key as follows:
0 Device extension with controller image
1 User call extension
2 Memory error extension
3 Statistics extension
4 Interrupt extension
6 Task extension
8 Cache memory extension
9 Device extension with PR3B
SLTYPE Error type {task, DSO1, etc.)
*

Q701 5%_0701

System Design Document Data Structures

Depending upon the source of the message, various extension blocks are
appended to the SLPB. The type of extension block to be appended is
indicated by the extension key in thée SLPB. The format of each of the
extension blocks is shown in the following paragraphs.

6.10.1 DEVICE EXTENSION WITH CONTROLLER IMAGE (SLXKEY = 0).

Figure 6-22 shows the format of the SLPB Device Extension with
Controller Image. ~

Hex.
Byte
_____ *_____________________-____+______-_____-_____________*
>0C | SLEC -- DX10 ERROR CODE | SLINID -- INSTALLED ID |
o e e ittt +
>0E | SLRNID -- RUNTIME ID | SLSTID -- STATION ID |
et e e +
>10 | SLLUNO -- LUNO | SLRTRY -- RETRIES |
o o +
>12 |SLSORF -- S=SUCCESS F=FAIL| NOT USED [
o e e +
>14 |SLACNT-- # AFTER IMAGE WDS|SLBCNT--4# BEFORE IMAGE WDS|
R e +
>16 | l
- TER IMAGE ~
| I
e e e e e +
>26 | |
~ BEFORE IMAGE ~
I l
K e e e e e e e e e e e e e e o e et e e e e o e o e ot e e 2 o e *
>3C *

Figure 6-22 SLPB Device Extension With Controller

939153-9701 (Change 1) 6-51 Texas Instruments

Data Structures System Design Document

6.10.2 USER CALL EXTENSION TO SLPB (SLXKEY = 1).

Figure 6-23 shows the format of the User Call Extension to the SLPB.

Hex.

Byte

_____ K e e e e e e e e e e e o e e e e o o e K

>0C | SLMLEN -- MESSAGE LENGTH | USER MESSAGE BEGINS HERE
e + (255 BYTES MAX.)
L L
l I
K e e e e e e e o e e o e e e o e S e i i e o o o S o e T o S e o o . S o T o S o o o o *

Figure 6-23 User Call Extension to SLPB

6.10.3 MEMORY ERROR EXTENSION TO SLPB (SLXKEY = 2).

The Memory Error Extension applies to 16K RAMs only. Figure 6~24 shows
the format of the Memory Error Extension to the SLPB.

Hex.
Byte
_____ K e e e e e e e e e e e e o e e o e o e e e e o e K
>0C SLBIT -- BIT IN ERROR SLROW -- ROW IN ERROR
(0-15, 6 ECC bits)
o e ——————— R ket +

>0E SLCORR--CORRECTABLE ERROR?|SLBAS2 -- CONTR BASE ADDR
(Y=yes, N=no)

>10 SLMEM2--AMOUNT OF MEMORY SLTYP2 -- CONTROLLER TYPE
(Controller only)

S S o e +
>12 SLADR2 -- TCPS ADDRESS OF CONTROLLER

e e e e —————————— e *
>14 *

Figure 6-24 Memory Error Extension to SLPB

Texas Instruments 6-52 (Change 1) 939153-9701

System Design Document Data Structures

6.10.4 STATISTICS EXTENSION TO SLPB (SLXKEY = 3).

Figure 6-25 shows the format of the Statistics Extension to the SLPB.

Hex.
Byte
- K e e e e e e e e —————————— e e *
>0C SLDEV3 -- DEVICE NAME
o e e +
>10 | SLREAD -- TOTAL READ OPERATIONS [
o +
>12 | SLWRT -- TOTAL WRITE OPERATIONS
o e —————— +
>14 | SLTOT -- TOTAL OTHER OPERATIONS |
K e o %
>16 *

Figure 6-25 Statistics Extension to the SLPB

6.10.5 INTERRUPT EXTENSION TO SLPB (SLXKEY = 4).

Figure 6-26 shows the format of the Interrupt Extension to the SLPB.

Hex.
Byte
———— e e +
>0C | SLINT -- INTERRUPT LEVEL | SLCHAS -- CHASSIS OF INT |
T T T —— o e +
>0E |SLPOS--POSITION IN CHASSIS| RESERVED |
F e e e e +
>10 1 SLDEV4 -- DEVICE NAME IF KNOWN
___ *
>14 *

Figure 6-26 Interrupt Extension to the SLPB

939153-9701 (Change 1) 6-53 Texas Instruments

Data Structures System Design Document

6.10.6 TASK EXTENSION TO SLPB (SLXKEY = 6).
Figure 6-27 shows the format of the Task Extension to the SLPB.
Hex.
Byte
_____ *__________________________+______-_________-______--_*
>0C | SLEC -- DX10 ERROR CODE | SLINID -- INSTALLED ID |
o e o +
>0E | SLRNID -- RUNTIME ID | SLSTID -- STATION ID |
T ettt D L Tt +
>10 | SLWP6 -- WP (WORKSPACE POINTER) |
o +
>12 | SLPC6 -- PC (PROGRAM COUNTER) |
SR S S +
>14 | SLST6 -- ST (STATUS REGISTER) |
o e ——— == +
>16 *
Figure 6-27 Task Extension to the SLPB
6.10.7 CACHE MEMORY EXTENSION TO SLPB (SLXKEY = 8).
Figure 6-28 shows the format of the Cache Memory Extension to the SLPB.
Hex.
Byte
———— K e e e e e e e e o e e e e e e i e o e o ——————— *
>0C SLBANK -- CACHE BANK SLPARA -- ADDRESS PARITY
(A or B) IN BANK A (G or B)
Fm e e e e LT L L L Ll Dbl +
>0E SLPARB ~-- ADDRESS PARITY SLBAS8 -- BASE ADDRESS
IN BANK B (G or B) OF CONTROLLER
e T e LD L Dl b +
>10 SLMEM8 -- AMOUNT OF SLEVEN -- IS ERROR ON
CONTROLLER MEMORY EVEN COORDINATE? (Y or N)
e T L L L e e e e E L e L L Dbt +
>12 SLADR8 -- TCPS ADDRESS OF CONTROLLER
B e e e et ettt e e e o o e o o o e e o e e o o S o o e P T S o e D . S S S e o S *
>14 *

Texas Instruments

Figure 6-28

6-54

Cache Memory Extension to the SLPB

(Change 1) 939153-9701

System Design Document - Data Structures

6.10.8 SLPB DEVICE EXTENSION WITH PRB (SLXKEY = 9).

Figure 6-28 shows the format of the SLPB Device Extension with PRB.

Hex.

Byte
_____ LSy G S AUy Y S SO WGPy Wiy Sy g g U SR g U U SRR
>0C | SLEC -- DX10 ERROR CODE | SLINID -- INSTALLED ID |
e e o e +
>0E | SLRNID -- RUNTIME ID | SLSTID -- STATION ID |
e Fo e +
>10 | SLLUNO -- LUNO | SLRTRY -- RETRIES |
e Fm e —————————— +
>12 |SLSORF -- S=SUCCESS F=FAIL| NOT USED |
o fmm +
>14 |]
SLPRB -~ PRB THAT CAUSED THE ~
DSR TO REPORT THE ERROR ~

(12 Bytes)
K e e e e e e e e e e o e o o i o o i o o o o S o o e <1 2 < o S . o <o S S S A o o o i e o *
>20 *

Figure 6-28 SLPB Device Extension with PRB

6.11 SYSTEM OVERLAY TABLE (OVT)

The system overlay table (OVT) is a vector table that contains the
addresses of many system routine entry points, data structures, lists,
and queue anchors. It is used by disk resident system tasks that are
not 1linked with the DX10 memory resident code, but which must refer to
and/or use information contained therein. The address of the vector
table may be obtained via a special SVC, Get System Pointer Table
Address. By using the table address as a base register value, a system
task can refer to any of the addresses within the table by name. A
template of the overlay table, showing the labels defined, follows.

939153-9701 (Change 1) 6-55 Texas Instruments

Data Structures

System Design Document

KK KKK KK W R KRN KN KK I KKK KK R KKK NN K KNI KKK KK KK KKK KKK KR

*

OVERLAY TABLE

(OVT) *

KK KK KK KKK MK KN KKK KKK KKK KX KK KKK KK KKK KKK KK KKK KKK KX KNKR

0000
0000
0002
0004
0006
0008
000A
000C
O00E
0010
0012
0016
0018
001A
001C
001 E
0022
0026
002A
002C
002E
0030
0034
0038
003A
003C
O03E
0040
0042
0044
0048
004A
004C
O04E
0050
0052
0054
0056
0058
005A
005C
005E
0062
0066
00KA
006C
O06E
0070
0072
0074
0076
NO7A

0000
0000
0000
0000
0000
0000
0000
0000
0000

FFFF
0n00
0000
0000

0000
0000
0000

0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000

TSKLST
UPsS
PSBLST
FIDMAP
PFSFCB
ETSK
BPT
TSKSCH
SYSPF
MMSR LM
FSFLG
FUTPDT
PDTLST
LDTLST
TMSQRM
TMBIDO
TMTREE
RSTRID
RSTRSW
SLDATA
MM&FND
BMEMPB
TSKSTR
SYSTAB
TABSIZ
AQPTRS
TDL
KBTAB
SLPBQC
SCIBMX
SCIFMX
MAPSHD
YEAR
UAHEAD
SAHEAD
KTSKWP
KTSKPC
CURMAP
OADPTR
OVLYQ
SOSLTO
SOS$BTO
SO$RFO
ENDADD
ENDLIM
MEMSIZ
BASADJ
TMTOL

TMSDOR
TMSOPN

Texas Instruments

DORG
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
BSS

DATA
DATA
DATA
DATA
BSS

BSS

B3S

DATA
DATA
DATA
BSS

BSS

DATA
DATA
DATA
DATA
DATA
DATA
BSS

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
B3B

BSS

BRS

DATA
DATA
DATA
DATA
DATA
DATA
B3S

388

0

-

QD000 PDODOREPOODODOI APDODOODDDDODIDOD

NIV Yo Xo oo No R Ve o Jo o o Ro Re O NORG RO L 4

h-5h

START™ OF MSB'S

ADDR SYSTEM TIME UNITS/SEC
START OF PSR'S

ADDR PIXED TASK ID RIT™ MAP
ADDR SYSTEM PROGRAM FILE FCB PT
CURRENT EXECUTING TASK
BREAKPOINT™ TARLE

TASK SEARCH UTILITY

ADDR OF PATHNAME OF SYSTEM PROG
TSB CLEAN UP

FUTIL/UNLOAD TOCKOU™

PUTIL PDT CURRENTLY IN USE
ITART OF PDT'S

STAR™ OF IDT'S

REM. SPEC. ENT. ®PROM 9SPEC. QUEU
BID TASK ROUTINE

BUILD TREE LINKAGE

USER RESTART ID

CRT 'HELP' XEY DISABLE SWITCH
SYSTEM L0OG DATA

ALLOCATE USER MEMORY ROUTINE
MAP BUFFER INTO ADDRESS SPACE
START OF NON-LINKED TSB'S
START OF SYSTEM TARLE

SIZE OF SYSTEM TARLE

PTR TO0 ACTIVE QUEUES

ADDR OF TIME DELAY LIST ANCHOR
PTR M0 G413 SMATUS BLOCKS
SYSTEM LOG QUEUEING ROUMINE
SCT BACKGROUND LIMIT

SCTI POREGROUND LIMIT

SCHEDULER MAP FILE POINTER
BLOCK OF CURRENT DATE AND TIME
ADDRESS OF MEM MGR HEADER
ADDRESS OF SYS ARFA HEADER
SUBROUTINE T0 KILL I/0 - WP
SUBROUTINE T0 KILL I/0 - PC
CURRENT MAP FILE POINTER
SYSTEM OVERLAY AREA

LOAD OVERLAY QUEUE

LINK ™0 OVERLAY

BRANCH T0 OVERLAY

RETURN FROM OVERILIAY

LOAD ADR FOR FIRS™ USER TASK
LIMIT REG FOR ENDADD

SI7ZE OF MEMORY IN REETS
ADJUSTMENT VALUE FOR BIAS REG
START OF TIME ORDER LIST

SERIAL ACCESS DOOR LOCKING
SERTAL ACCESS DOOR UNLOCKING

03015%-8701

System Design Document

O07E
0082
0084
0088
008C
0090
0094
0098
009C
00AO
00A4
O0A8
D0OAC
O00BO
00B4
00B8
00OBC
00CO
00C4
00C8
00CC
00DO
00D4
00D8
00DC
OOEO
OO0E4
O0ES8
OOEC
O0FO
O0F2
OOF4
O0F6
OOF8

O0FC
0100
0104
6108
010C
0110
0114
0118
011C
0120
0124
0128
0124
012C
012E
0130
0132
0134
0136
0138

0000

0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

9%9153%-9701

BMAFLS
TMSEXT
PUSH1
PUSH2
PUSH?3
PUSH4
PUSH~
PUSH6
PUSH7
PUSHR
PUSHO
POPO

PODA4

LuwLl

POP2
POP3
POP4
POPS
POP6
POP7
POP8
POPO
MMS®RUA
MMSGSA
MM$RSA
MM&GUA
SCRASH
TMQUE
TMDQUE
T™MAQUE
QHEAD
STUNIT
PLG12
PLGWCS
RETRID
*

FMOPEN
FMCLOS
FMWRIT
WRTSEQ
CKWRIT
CKLOCK
MAPREC
UPDFDR
BMSMAP
BM&RD

BMAREL
UAHADD
ENDDXL
MEMSW

DIOPDT
TLDTSB

BIDTSB
TOLBET
OF®FCB

BSS
DATA
BSS
BSS
BSS
BSS
BSS

BSS
ERE

ESSOL;

BSS
BSS
BSS
BSS
BSS
B3S
BSS
BSS
BSS
BSS
BSS
BSS
BSS
B3S
BSS
BSS
B33
BSS
BSS
BSS
DATA
DATA
DATA
DATA
B3S

B3S
BSS
BSS
BSS
BSS
B3S
B3SS
BB3S
B3S
B3S
B3S
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DOD0D0O0OOORPEARRARAEARADN ROOOOMPRADS AN A AL SRNDARARDRANSEDSSSDSSO S

f=57

Data Structures

BUFFER MGM™ FLUSH ROUTINE
INFINITE EXTEND TIME SLICE
SAVE REG R1

SAVE REGISTERS R1-R2

SAVE REGISTERS R1-R3

SAVE REGISTERS R1-R4

SAVE REGISTERS R1-R&

SAVE REGISTERS R1-R6

SAVE REGISTFRS R1-R7

SAVE REGISTERS R1-RR

SAVE REGISTERS R1-RO

EXIT ROUTINE

RESTCORE Ri

RESTORE REGISTERS R1-R?2
RESTORE REGISTFRS R1-R3
RESTORE REGISTERS R1-R4
RESTORE REGISTERS R1-RA
RESTORE REGISTERS R1-RA
RESTORE REGISTERS R1-R7
RESTORE REGISTERS R1-RR
RESTORE REGISTERS R1-RO
RETURN USER AREA MEMORY
GET SYSTEM AREA

RETURN SYSTEM AREA

GET USER AREA

SYSTEM CRASH ROUTINE
GENERAL QUEUEING ROUTINE
GENERAL DEQUEUETNG ROUTINE
QUEUE ON ACTIVE QUEUE

ADDR OF SVC QUEUES

CLOCK TICKS / SYSTEM TIME UNIT
MACHINE FLAG 0=/10,-1=/12 (VAL)
WCS FLAG N=NO; 1=YES - (VALUR)
RETURN RUN TIME ID

FMT FILE OPEN PROCESSOR
FMT FILE CLOSE PROCESSOR
FMT FILE WRITE PROCESSOR
SEQUENTIAL FILE WRITE
CHECK WRITE ACCESS

CHECK IF RECORD LOCKED
TRANSLATE BLOCK # TO ADU #
UPDATE FILE DESCRIPTOR RECORD
MAP IN TASK BUFFER

RETRIVE FILE BLOCK
RELEASE FILE BLOCK

BEET ADDRESS OF UAHEAD
LTMTIT™ REG VALUE FOR DX-10
USER MEMORY SIZE SWITCH
ADDRESS OF DISC PDT

™SB FOR TASK LOADER

* % % RESERVED * x ¥
TSB FOR BID MASK

RIRST BEET TIME ORDERED
FCB ADDRESS OF OVERLAY

Texas Instruments

Data Structures System Design Document

ROLL FILE FCB

OVERLAY FILE LDT

DT FOR LUNO D

LDT FOR LUNO B

LDT FOR LUNO F

ROLL FILE LDT

HEAD ADR CRASH FILE
CYLINDER ADR CRASH

SECTOR ADR CRASH FILF
TILINE ADR CRASH FILE

TOL LINKAGE ROUTINE

ADR RUN TIME ID RIT MAP
MEMORY TO BE CRASH DUMPED
DSR POWER UP ROUTINES

NAME OF SYSTEM PROGRAM FILE
CRASH FILE UNIT SELECT

TRAP INITIALI7ZATION TABLE
UNLOAD PDT CURRENTLY IN USE
SCHEDULER WORKSPACE
JCHEDULER ENTRY POINT
LENG™H OF MEM RESIDENT BUFFER
MAXIMUM SIZE FREE USER AREA

013A 0000 RFSFCB DATA
013C 0000 OFSLDT DATA
013E 0000 PF1LDT DATA
0140 0000 PF2LDT DATA
0142 0000 PF3LDT DATA
0144 0000 RFSLDT DATA
0146 0000 SCR®HD DATA
0148 0000 SCRATK DATA
014A 0000 SCR&SC DATA
014C 0000 SCR&DA DATA
014E 0000 TOLLNK DATA
0150 0000 RIDMAP DATA
0152 0000 CMEMS7 DATA
0154 0000 SCNPDT DATA
0156 0000 SYSPFN DATA
0158 0000 SCR$SL DATA
015A 0000 XY DATA
015C 0000 UNLPDT DATA
- O15E 0000 SCHDWS DATA
0160 0000 SLCSUS DATA
0162 0000 BM®SIZ DATA
0164 0000 MMUMAX DATA

0166 FM®RDM BSS READ MULTIPLE

016A BM®&MP2 BSS CHECK MEMORY PROTECTION

O16E TM®INC BSS INCREMENT TM®EXT RLWP VECTOR
0172 TM®DEC BSS DECREMENT TM®EXT BLWP VECTOR
0176 TM&CLR BSS CLEAR TM®EXT RBRLWP VECTOR

0174 0000 S$SPAT DATA

017C 0000 CTRYCD DATA

O17E 0000 TMSTO DATA

0180 0000 MMS$SPAK DATA
POIN

BEGINNING OF PATCH AREA

COUNTRY CODE

POINTER TO TM®TO

MEMORY PACK REQUEST FLAG (NOT A

ODODPRAEARAPIDODODO0O0DODODDIODOIODDDO0O0DODOD

g

0182 0OVTSIZ EQU
0000 RORG

Texas Instruments f-BR 0701 8Z_0701

System Design Document Data Structures

6.12 MEMORY MANAGEMENT LISTS

In addition to +the +time ordered list (T0L), which is a 1list of all
allocated blocks of user memory (as opposed to system table area), two
free memory lists are maintained by memory management.

One is a list of free blocks of system table area and is headed by the
SAHEAD anchor in the D$DATA module. The 1list is singly 1linked and
ordered by increasing address of +the free block. Rach free block
contains the following overhead in the first four bytes:

Bytes Description
0-1 Size of block in hytes
2-3 Link to the next block

When a block of system table area is allocated, the size of +the block
is stored in +the word immediately preceding the first word of the
allocated block (i.e., negative offset).

The other list contains free user memory blocks, and is headed by the
UAHEAD anchor in the D®DATA module. The list is also singly linked and
ordered by increasing address. FEach block contains an overhead beet as
described in paragraph 6.8 on the Time Ordered List (TOL).

6.13 STRUCTURE OF THE SEQUENTTAL FILE CREATED BY BACKUP DIRECTORY

By wusing the Backup Directory command, = directory can be backed up to
a sequential file. The following are two examples of the structures of
the sequential files created by backing up the directory of Figure 6-30
while using the control file of Figure 6-%31.

Figure 6-%2 shows the expanded structure of the backup of a progran
file. In Release 3.%, the Dblock option was introduced. The block
option causes information to be blocked in vhysieal records of 0A00
bytes (this may be altered in the Backup Directory PR0OC). The records
are packed by preceding eachlogical record by a character count. An
EOF (end of file) 1is represented by a zero count. The first record
(the 1label) is not packed. The backup directory is still terminated by
two physical EOFs when blocking is selected. Also, the tape label is
extended from 7 words to 15 words.

939153-9701 6-50 Texas Instruments

Data Structures System Design Document

VCATALOG

GLEN ANNA

SRC oBlJ LST SRC oBJ LST

bbb HLEEL 86686646

oBJ2

Figure A=30 Directory To Be Racked Up

2278137

Texas Instruments =60 03418570701

System Design Document Data Structures

MOVE .UT.GLEN. SRC, . SEQFILE
EXCLUDE B

MOVE .UT.GLEN.OBJ

EXCLUDE B

MOVE .UT.GLEN. LST

EXCLUDE B

MOVE .UT.ANNA

TIRITY

LIND

Figure 6-31 Control File

. INSTALL SVC FOR A
7/
/ MODULE A
s
s INSTALL SVC FOR B
e s
s
° P MODULE B
7
o s °
s
FDR S$PROGA // °
DATA S$PROGA °
~
° ~
N
~
L4 ~N
N
° ~
N
~
~
~N
N

2278138

Figure 6-32 Expanded Structure for a Program File

6.13.1 BACKUP DIRECTORY WITH NOMULTI OPTION SELECTED.

Figure 6-32 represents the format of a tape created by the Backup
Directory utility with the NOMULTI option specified. The MULTI/NOMULTI
option was available on Release 3.2 and earlier. Later releases use
the MULTI format exclusively. The only difference between the two
formats is a header used by the MULTI format that begins every volume.

The first record written is the directory overhead record (DOR) of the
first directory. Following the DOR are the FDRs and data records of
the files under the directory. The end of the directory is noted by an
EOD marker. The EOD marker is a record consisting of the following
four bytes: EODb where b equals a blank space.

939153-9701 (Change 1) 6-61 Texas Instruments

Data Structures

2278139 (1/5)

Figure 6-%%

Texas Instruments

System Design Document

DOR OF .UT.GLEN.SRC

FDR OF A

DATA OF A

DAY EOF NNV

FOR OF C

DATA OF C

AN EOF ANV

EOD MARKER

DOR OF .UT.GLEN.OBJ

FDR OF A

DATA OF A

AN EOF ANV

FDR OF 0BJ2

FDR OF NEW

DATA OF NEW

Structure of .SEQFILE (Sheet 1 of R)

6-62

0301530701

System Design Document Data Structures

FDR OF OLD

DATA OF OLD

\\\\\\\\\\\\\\\\\\\E 0 F \\\\\\\\\\\\\\\\\

EOD MARKER

FDR OF C

DATA OF C

AAMARRAALETARRRANAANY

EOD MARKER

DOR OF .UT.GLEN.LST

FDR OF A

DATA OF A

IANAARRRR NN

ADR OF Al

ADR OF A2

2278139 (2/5)

Figure 6-%3 Structure of .SEQOFILE (Sheet 2 of &)

939153-9701 6-6h% Texas Instruments

Data Structures System Design Document

FOR OF C

DATA OF C

ANAANRREZARNNANNNY

ADR OF C1

EOD MARKER

DOR OF .UT.ANNA

FDR OF SRC

FDR OF X

DATA OF X

N E0F NANANN

FDR OF Y

DATA OF Y

NN EF ANV

FDR OF Z

2278139 (3/5)

FPigure 6-%% Structure of .SEQFILE (Sheet 3 of ®)

Texas Instruments h-h4 0%9153-9701

Systen Design Document

(. 2278139 (4/5)

Figure 6-3%%

9%9153-9701

DATA OF Z

AANNEF AN

EOD MARKER

FDR OF OBJ

DFR OF X

DATA OF X

NN EF ANNANNN

FDR OF Y

DATA OF Y

AN EF ANNVNNAN

DFR OF Z

DATA OF Z

AN EF ANV

EOD MARKER

FDR OF LST

Data Structures

Structure of .SEQFILE (Sheet 4 of 5)

Texas

T
nstruments

Dats Structures System Design Document

FDR OF X

DATA OF X

VAT 0P ANV

FDR OF Y

DATA OF Y

AN E0F ANV

FOR OF £

DATA OF Z

VA EOF AN

EOD MARKER

EOD MARKER

AR
S—— ARRARRNEZANNNNNY

NOTE

An EOD marker 1is a record with E0Db in the first
four bytes, where b equsls a blank space.

Figure 6-33% Structure of .SEQFILE /Sheet 5 of &)

Texas Instruments h-KHK 0201 5/3-0701

System Design Document Data Structures

6.13.2 Backup Directory with MULTI Option Specified

The MULTI option is specified when a directory is being backed up to
magnetic tape and the directory spans more than one tape volume. .

If the MULTI option 1is specified, the first record written to the
sequential file is a header record (see tape 1, Figure 6-34). The
header record consists of the following words:

Word Contents

1-3 The ASCII characters **HDR¥*

4-7 Date and time as returned from SVC call
8 Tape volume number

9 Blocking factor

10-15 Reserved

After the header record, the file has the same structures as the
NOMULTI file. ‘

When the end of tape is encountered by Backup Directory, the record
being written to tape is saved to be written to the next tape. After
the tape has been changed, a header record is written to the new tape
(see Tape 2, Figure 6-34). The header record has the same format as
the header record of the first tape, except that the volume has been
incremented by 1. The date and time written will be the same as that

of the first tape. The record being written when the end of tape was
encountered is then written and the backup continues.

939153-9701 (Change 1) 6-67 Texas Instruments

Data Structures System Design Document

TAPE 1 MULTI VOLUME HEADER
% % HDR %

DATE

voL 1

DOR OF ,UT.GLEN,SRC

FDR OF A

DOR OF ,UT.ANNA

FDR OF SRC

FDR OF X

DATA OF X

4—— END OF TAPE

TAPE 2 MULTI! VOLUME HEADER
%kHDR ,DATA,VOL 2

CONTINUATION OF
DATA OF X

AUAMMRANEEANNNN

FDR OF Y

DATA OF Z

INARARRANEEANNNNNNY

EOD MARKER

EOD MARKER

ARG
NAMMAMAEZARNNN

END OF DIRECTORY

2278140

Figure 6-%4 Back-up Directory Tape Format

Texas Instruments A-RR 0Z01 720701

System Design Document DX10 Data Base Modules

SECTION 7

DX10 DATA BASE MODULES

7.1 GENERAL

Part of the memory resident DX10 kernel consists of the +two DX10
data base modules, DSDATA and DXDAT2. The data base is split into two
modules in order to separate sysgen dependent data from static data.
Constant data is contained in DXDAT2. The D$DATA module is built by
GEN990, and contains all of the sysgen dependent data. The following
paragraphs describe the contents of the two data modules.

7.2 DS$DATA

The D$DATA template is in file .DXMISC.SOURCE.D®DATA on the source
disk. The first section of +this module contains system constants
(e.g., time slice, size of the system table area), 1list headers, and
pointers (e.g., ETSK, which pointsto the task status block of the
currently executing task), and a table of user defined SVCs.

The next section of D$DATA contains +task status blocks for a file

management task (FM$TSK) for each disk drive and the task bidder
(TM$BID).

A keyboard status block table follows the TSBs. Each entry in the
table points to +the KSB for the station whose ID corresponds to the
table index (i.e., first table entry points to KSB for $STO1, third
entry points to KSB for STO03, etc.).

The next section of the D$DATA module contains the PDT for every device
defined in the system, including the KSBs for all terminals.

Following the PDTs are the global LDTs. There 1is a global LUNO
(represented by a logical device table) assigned to every disk drive,
and one assigned to STO1.

The remainder of the DSDATA module contains system log data, the system
table area, the ©breakpoint table, the system overlay areas, the
interrupt and XOP trap initialization table (written to locations >00-
>TF by the DX10 image loader), and the interrupt decoding module.

9%9153-9701 7-1 Texas Instruments

DX10 Data Base Modules System Design Document

7.3 DXDAT2

The DXDAT2 source module is on the file named
.DXMISC.SOURCE.DXDAT2 on the source disk. The constant data Dbase
module contains system SVC information, queue anchors for most system
queues, and TSBs for some link-in system tasks.

The first section of this module is a table of constants which are
often used by DX10 routines. The next section is a vector table of SVC
processor addresses, and is wused by the SVC interpreting code.
Following the vector table is a table of the lengths of all supervisor
call Dblocks. This table is used by this SVC intepreter, to find out

how much call block needs to be buffered before passing control to the
SVC processor.

The next section contains the anchors for most of the DX10 queues.
Each anchor is of the form described in the data structures section.

Following the queue anchors is the list of SVC definition blocks which
are used by the SVC unbuffering task, SVCCLN, +to decide what
information needs to be returned (unbuffered) to a task which has
issued an SVC processed by a queue server. The list is terminated by =
zero word.
The next section of DXDAT2 is a list of return field definitions, which
is wused by SVCCLN +to determine which fields within a buffered
supervisor call block need to be wunbuffered into the calling task.
This list is also ended by a zero word.
The next section contains task status blocks for the following linked-
in system tasks:

* Task loader (TMS$SLDR)

*¥ Overlay loader (TM$0OVY)

* Buffer read/write task (TM$RWT)

* Device driver task (DDT)

* Disk manager (DM$TSK)

* 8VC clean up task (SVCCLN)

*¥ System overlay loader (SOVLDR).

The remainder of the DXDAT2 module contains the workspace used by the
scheduler to update the time and date.

Texas Instruments 72 939153-0701

System Design Document Common System Routines

Section 8

COMMON SYSTEM ROUTINES

8.1 STACKING ROUTINES

Routines in DX10 use runtime stacks for passing parameters, storin
registers and return information, and loading registers. In order to
allow several routines that share a common workspace to use the same
stack, R10 is reserved in DX10 routines as a pointer to the top of the
stack (next available entry). Several stack handling routines, PUSHn
and POPn, are used to store data on, and retrieve data from, a stack.

PUSHn 1is wused to store registers R1-Rn (n </= 9) on the stack. PUSH
automatically increments the stack pointer, R10, to point to the top of
the stack. To call PUSH, execute a BL to @PUSHn. For example:

BL @PUSH3 STORE R3, R2, Rl
or
BL @PUSHI STORE REGISTERS 9-1

PUSH stores the registers starting with the highest numbered register
(i.e. a call to PUSH3 will store R3 first, then R2, and finally Rl),
and always clear RO.

Before calling PUSH, a routine must store its return address (usually
the wvalue of Rll, if the routine was called via a BL instruction) on
the stack. The example at the end of this description shows the
general DX10 convention for using PUSH.

POPn is used to load registers R1-Rn from the top n words of the stack
(n </= 9) and to return from a subroutine. POPn automatically
decrements the stack pointer, R10, to point to the new top of the
stack. Registers are loaded starting with RL1. POP 1is entered by
executing a B instruction to POPn.

POPO is a special entry point into POP, and is always executed at the
end of any call to POP. POPO loads R11l with the top word of the stack.
This should contain the address of the word following the instruction
which branched to the routine now using POP. If RO is zero (i.e.
there are no errors being returned by the routine), control returns to
the word following the address in R11. If RO is non-zero (error
condition) but the value of the word addressed in R1l is zero (no error
return address), control also returns to the word following the address
in R11. If RO and the word addressed by R1l are both non-zero, control
returns to the address contained in the word pointed to by R11l.

939153-9701 (Change 1) 8-1 Texas Instruments

Common System Routines System Design Document

A conventional call to a subroutine which uses PUSH and POP is:

BL @SUBR Call to subroutine
DATA ERROR Error return address
NORML EQU. $ Normal return point

The following example shows such a subroutine call:

REF PUSH5,POP5
COPY .SYSTEM.TABLES.ORS
*

* QFFSETS FOR REGISTER STACK
*

OR1 EQU -2
OR2 EQU -4
OR3 EQU -6
OR4 EQU -8
ORS5 EQU -10
OR6 EQU -12
OR7 EQU -14
OR8 EQU -16
OR9 EQU -18
STACK BSS 30%*2 CREATE A 30-WORD STACK
*
WS BSS 16*2 CREATE A WORKSPACE
*
*THIS IS THE MAIN PROGRAM
MAIN LI R10, STACK INITIALIZE STACK POINTER, R10
*
* -
* .
BL @SUBR CALL SUBROUTINE
DATA ERROR THIS IS THE ERROR RETURN ADDRESS
NORML EQU § THIS IS THE NORMAL RETURN
*
* *
* -
RT RETURN TO THE CALLING PROGRAM

ERROR EQU $

*
*THIS IS THE SUBROUTINE

SUBR MOV R11l,*R10+ STORE THE RETURN ADDRESS ON THE STACK
BL @PUSHS STORE R1-R5, CLEAR RO

*

* ' L]

EXAMPL EQU $ NORMAL EXIT
MOV @RVAL,@OR2(R10) STORE A RETURN VALUE IN THE STACKED R2
B @POPS5 RESTORE R1-R5, RETURN TO MAIN

*

SUBERR EQU § ERROR EXIT
LI RO, ERRCOD PUT ERROR CODE IN RO
B @POP5 RESTORE R1-R5, TAKE ERROR RET IN MAIN
END

Texas Instruments 8-2 (Change 1) 939153-9701

System Design Document Common System Routines

Elements of a stack may be accessed without using PUSH and POP, by
using offsets into the stack indexed by the stack pointer, R10, (as in
EXAMPL above). The top word on the stack is at address @-2(R10), the
next word is at @-4(R10), and so on down into the stack. Offsets for
registers pushed onto a stack are given in .SYSTEM.TABLES.ORS.

There are six routines used within DX10 to add or delete entries from
the various data queues. The routines are memory resident, and are
located in the module TM$QUE. The routines are: TMAQUE, TMAQO, TMQUE,
TMDQUE, TMTSBQ, and TMSQRM. These routines may be entered by memory
resident system tasks by executing a BL to the name of the routine.
Input register and stack requirements are given for each routine in the
following paragraphs. Disk resident system tasks may access all of the
routines except TMAQO via the system overlay table.

8.2.1 TMQUE

This is the general queueing routine. It places the specified data
structure (any type) on the specified queue. The address of the
structure to be queued is expected to be in R2. The address of the
queue anchor should be in Rl. TMQUE requires from 6 to 24 words of
stack, according to the following conditions:

1. The queue has no dedicated server task--6 words.

2. The queue has a dedicated, memory resident server task--12
words.

3. The queue has dedicated, disk resident server task--24 words.

When the data structure is placed on the queue, TMQUE checks two
conditions. If the queue has a dedicated server task, and the task is
terminated, TMQUE bids the task (calls TMBIDO). If the queue server is
in memory in state >24, it is activated directly. If the queue is a
TSB queue (entries are TSBs), then the TSB that has just been queued is
given the task state contained in the queue anchor (see paragraph 6.2
on queues).

8.2.2 TMAQUE
This routine puts the specified TSB on the active queue for that task’s

priority. TMAQUE uses six words of a stack. The routine expects Rl to
contain the address of the TSB to be queued. The TSB flags are checked

939153-9701 (Change 1) 8-3 Texas Instruments

Common System Routines System Design Document

to determine if the task has been allocated memory. If it does not
have memory, TMAQUE calls TMAQU to put the task on the waiting on
memory queue, TMWOM. If the task already has memory, TMAQUE checks the
TSB priority, and calls TMQUE to put the task on the active queue for
that priority.

8.2.3 TMAQO

This routine puts the specified TSB on the active queue at position one
for priority one tasks. The task loader and the system overlay loader
use TMAQO so that tasks which have just been loaded will get a good
chance of executing at least once before being rolled.

TMAQO uses six words of stack. The routine expects Rl to contain the
TSB address of the task to be queued.

8.2.4 TMTSBQ

This routine queues the specified TSB on the specified queue. TMTSBQ
is actually a second entry point to TMQUE, and is therefore the same
routine.

8.2.5 TMDQUE

This is the general dequeuing routine. It is used to remove an entry
from the head of the specified queue. The routine uses one word of a
stack. The address of the dequeued anchor should be in Rl. TMDQUE
will return the address of the dequeued data structure in Rl2, or an
error message in RO. The only error code is 1, which means the queue
is empty.

8.2.6 TMSQRM

This routine is used to remove any specified entry from the specified
dqueue. It requires one word of a stack. The address of the queue
anchor should be in Rl, and the address of the structure to be removed
from the queue should be in R2. TMS$QRM searches through the queue for
an entry with the address specified in R2. If no such entry is in the
queue, an error code of 1 is returned in RO. Otherwise, the structure
is removed from the queue.

Texas Instruments 8-4 {(Change 1) 939153-9701

System Design Document Description of DX10 Routines

SECTION 9
DESCRIPTION OF DX10 ROUTINES

9.1 GENERAL
s section breaks the major DX10 routines intc functional categories
g., task management, file management) and describes each routine
iefly. Several tables are included which show how the routine source
may be found on a DX10 source disk. '

hi

Th
(e
br

9.2 SVC PROCESSING

SVC processing includes individual SVC processing routines and several
overhead routines that are involved in decoding SVCs and buffering and
unbuffering supervisor call blocks. Tables 9-1 and 9-2 show the
routines that process SVCs.

9%39153-9701 9-1 Texas Instruments

Description of DX10 Routines

Routine

SVCINT

SVCBUF

SVCFND

SVUBUF

SVCCLN

Table 9-1

.DXMISC.SOURCE.SVCINT

.DXMISC.SOURCE.SVCBUF

.DXMISC.SOURCE.SVCBUF

.DXMISC.SOURCE.SVCBUF

.DXMISC.SOURCE.SVCCLN

Texas Instruments

Source Module Pathname

9-2

System Design Document

SVC Overhead Routines

Description

Interprets XOP 15 by accessing user
call block and SVC code. Looks up
SVC processor address 1in SCTAB
(DXDAT2 module), transfers control
to that address.

for SVCs
serving tasks

Buffers user call blocks
processed by queue
into system table area. Calls
TMQUE +to queue the buffered call
block and bid the queue server.

Looks up the SVC
in the DXDAT?2
Called by SVCBUF.

block
SVCDEF.

definition
table,

Buffers the user's call block and
any expansion blocks (as defined in
the definition Dblock retrieved by
SVCFND) into system table area.

Unbuffers the buffered call Dblock
after a queue serving SVC processor
has finished. SVCCLN may have to
cause the task to be rolled-in.
The task is reactivated after the
unbuffering. The buffer is
released to the system table area.

0%9153-9701

System Design Document

Description of DX10 Routines

Table 9-2 SVC Processors —-- Part 1 of 2

1/0

Wait for I/0

Time delay

Date and time

End of task

Bid task
Unconditional wait
Activate suspended
task

Do not suspend
Convert binary to
decimal

Convert decimal to
binary

Convert binary to
hexadecimal
Convert hexadecimal
to binary

Activate time delay
task

Abort I/0 (LUNO)
Get common data
address

Change priority
Get memory

Release memory
Load overlay

Disk file utility
End of program

Get parameters
Return common data
Put data

Get data

Scheduled bid task
Install disk volume
System log SVC
Disk manager
Suspend awaiting
queue input
Install task
Install procedure
Install overlay
Delete task

Delete procedure
Delete overlay
Execute task
Read/write TSB
Read/write task
Self identification

939153-9701

X0P/Queue

Server

MOMOODODOOODOD MOODOMMMHMOOOMOM MME M M M oM MM HEAXOOPM MMM

Process
Name

DXIOB
WAITIO
TDLY
DITIM
ENDTSK
TMSSBD
UNCDWT
ACTTSK

HOTSK
CBDA

CDAB
CBHA
CHAB
ATDLYT

ABTIOX
GETCOM

CHGPRI
MM$GTM
MM3RTM
TM$OVY
FUTIL

ENDPGM
GETPRM
RETCOM
PUTDAT
GETDAT
TM$SBD
INSTAL
SLSVC

DM3TSK
SUSPQI

PFSLIN
PFSLIN
PFSLIN
PFSLDE
PFSLDE
PFSLDE
EXCTSK
TSMWRT
TMSWRT
TM$SID

or Source Module
Pathname

.DXMISC.SOURCE.DXIOS

.DXMISC.SOURCE.WAITIO
. TSKMGR.SOURCE. TM$FUN
. TSKMGR . SOURCE. TMSFUN
. TSKMGR.SOURCE. TM$FUN
. SYSTSK.SOURCE. TM$3BD
. TSKMGR . SOURCE. TMRFUN
. TSKMGR.SOURCE. TM®FUN

.PTSKMGR.SOURCE. TM$FUN
.DXMISC.SOURCE.CNVRSN

.DXMISC.SOURCE.CNVRSN
.DXMISC.SOURCE.CNVRSN
.DXMISC.SOURCE.CNVRSN
.TSKMGR.SOURCE.TM$FUN

.DXMISC.SOURCE.ABTIOX
. "SKMGR . SOURCE. TMSCMN

. TSKMGR . SOURCE. TM$FUN
. MEMMGR . SOURCE . MM33VC
.MEMMGR . SOURCE . MM$SVC
. TSKMGR.SOURCE. TM$0VY
.FUTIL.SOURCE.FUS

. TSKMGR . SOURCE. TM$FUN
. TSKMGR.SOURCE. TM$FUN
. TSKMGR . SOURCE. TM$CMN
. TSKMGR . SOURCE. TMS$IQ
. TSKMGR . SOURCE. TM®IQ
.SYSTSK.SOURCE. TM$3BD
. SYSTSK.SOURCE. INSTAL
.SYSTSK.SOURCE. SYSLGY
.DSCMGR.SOURCE. DM&TSK
. TSKMGR . SOURCE. TMSFUN

(SYSTEM TASK)
(SYSTEM TASK)

. TSKMGR . SOURCE. TMSFUN
. TSKMGR . SOURCE. TMSRWT
. TSKMGR .SOURCE. TM3RWT
. TSKMGR . SOURCE. TMSFUN

Texas Instruments

SvVC
Cod

2F
30
31
32
33
34
35
36
37
38

39
3B

3B
3F

Description of DX10 Routines System Design Document

Table 9-2 SVC Processors -- Part 2 of 2
SvVe XOP/Queue Processor Source Module
e Title Server Name Pathname
End action status X TM$EAS .TSKMGR.SOURCE. TMREAS

GTEVNT .DXIO0.SOURCE.GETEVT
PFSLMN (SYSTEM TASK)

Get event character
Map program name

to ID

Get overlay table
address

Kill task SVC

Unload disk volume
Poll status of task
in terminal task set

X
Q
X GTOVYT .TSKMGR . SOURCE. TM$FUN
Q
Q
X
Wait on multiple X WANYIO .DXMISC.SOURCE.WAITIO
Q
Q
X
X
X
X

SVCKIL .SYSTSK.SOURCE.SVCKIL
INSTAL .SYSTSK.SOURCE.INSTAL
TM$ST .TSKMGR . SOURCE. TM3FUN

initiate I/0s

Assign space on
program file
Initialize disk
volume

Get event character
Initialize date

and time

Reset end action
Retrieve system data

PFSLAS (SYSTEM TASK)
INVOL .SYSTSK.SOURCE. INVOL

GTEVTL .DIO.SOURCE.GETEVT
SDTIM . TSKMGR . SOURCE. TM$DTM

RSTEAC . TSKMGR . SOURCE. TM3FUN
.TSKMGR . SOURCE. TM3FUN

9.3 BID TASK SUPERVISOR CALL - CODE >05

The Bid Task supervisor call is included in DX10 3.4 for
compatibility with DX10 2.X releases. Because this SVC may be deleted
in later releases, use of the Bid Task SVC 1is not recommended.
Documentation is included in this Systenm Design Document for
informative purposes.

The Bid Task SVC can only be used for tasks that have been
installed on the single system program file and that were designated as
being non-replicatable. The call is tranmitted to an Execute Task
(>2B) SVC by the operating system task TMSBD. The task is bid with no
associated station, and the calling task is not suspended.

The call block for the Bid Task supervisor call is eight bytes in

length and must be aligned on a word boundary. The entries in the
supervisor call block are defined as follows:

Byte O - Contains the code for the Bid Task supervisor call
and must be >05.

Byte 1 ~ This byte is used by the system to return an error
code, if necessary.

Byte 2 - Contains the installed ID on the system program file
of the task to be executed.

Byte 3 - Reserved.

Texas Instruments a-4 939153-9701

System Design Document Description of DX10 Routines

Bytes 4-7 - These bytes are wused to pass user specified
parameters ‘to the called task. The called task must
issue a Get Parameters supervisor call to obtain the
parameters. '

The following example of a Bid Task supervisor call specifies that
task >5E be 1loaded from +the system program file. The ASCII
representation of the characters HELP are passed to the called task.

EVEN FORCE ALIGNMENT ON A WORD BOUNDARY
BIDT BYTE >05 CODE FOR BID TASK
ERRC BYTE >00 SET BYTE ONE TO ZERO
ID BYTE >5E INSTALLED ID OF TASK TO BE EXECUTED
BYTE >00 RESERVED (SET TO ZERO)

PARMS TEXT 'HELP' FOUR BYTES PASSED TO CALLED TASK

Within +the procedure portion of the calling task, the following
statement is used to initiate the Bid Task supervisor call:

X0P BIDT,15

Error codes returned in Byte 1 of the supervisor call block are as
follows:

Error Code MEANING

>04 Signifies successful completion, for
compatibility with previous releases.

>FF Either: specified task 1is not on the systen
program file; the specified task is on the system
program file and is replicatale; or an error
occurred when the translated Execute Task 3SVC was
performed.

Other A task state is returned. This is the task state
of the called task if it is already in execution.
Or if a currently running task has allocated the
run ID corresponding to the called tasks

installed ID, that tasks state is returned as an
error code.

9.4 TASK MANAGER

The main routines involved in task management are the scheduler,
task loader, overlay 1loader, system overlay 1loader, and the task
managing SVCs. The task loader also works closely with memory
management routines, which are discussed in the next paragraph.

939153%-9701 9-5 Texas Instruments

Description of DX10 Routines

System Design Document

Table 9-3 shows the major task management routines.

Routine

TM$SHD

TM3LDR

TM3OVY

SOVLDR

SOSLTO

S0$BTO

. TSKMGR . SOURCE . TM&SHD
. TSKMGR. SOURCE . TM$LDR

. TSKMGR. SOURCE. TM$0OVY

.DXMISC.SOURCE.SOVLDR

.DXMISC.SOURCE.SOSCPR

.DXMISC.SOURCE.SO$CPR

Texas Instruments

Source Module Pathname

e e i e S e . e T S S o S S o S S

9-6

Table 9-3 Task Management Routines -- Part 1 of 4

Description

Task scheduler. Updates +time and
date, and delayed tasks, bids SCI,

and selects the next task to
execute.

Task loader. Loads tasks and
procedures, rolls out quieted tasks
and tasks +that have issued Get
Memory SVCs.

Overlay loader. Loads overlays
requested by tasks. Requests are
queued for the overlay loader,
which 1loads the overlay and calls
TMAQUE to put the task on an active
queue. T™MSOVY calls file
management routines to read the
overlay from disk.

System overlay loader. Serves the
queue SOVYQ. TSBs of tasks that
have called system overlays are
queued on SOVYQ. SOVLDR loads the
correct overlay and reactivates the
task, calling TMAQO.

Link to system overlay. This
routine is called by a task or
overlay to 1link to a system
overlay. If the desired overlay is
in memory, the TSB is altered to
link in the overlay; otherwise, the
TSB is queued for SOVLDR and the
task is suspended.

Branch to system overlay. This
routine is called by one system
overlay to branch to . another
overlay. If the desired overlay is
already in memory the calling
task's TSB is modified; otherwise,
the TSB is queued for OVLDR and the
task is suspended.

939153-9701

System Design Document

. Table 9-3 Task Management
Routine Source Module Pathname
SO$RFO .DXMISC.SOURCE.SOS$CPR
TM$DOR . TSKMGR.SOURCE. TM8DOR
TM$OPN .TSKMGR.SOURCE.TM$OPN
TM3$CLK . TSKMGR.SOURCE. TM$0PN
TRAPRT .TSKMGR.SOURCE. TM$RTN
XOPRM . TSKMGR.SOURCE. TMSRTN
SCHRET .TSKMGR.SOURCE.TMSRTN

939153-9701 9-7

Description of DX10 Routines

Routines =- Part 2 of 4

Description

Relink from system overlay.

This
routine is+ called by a systenm
overlay to relink back to the 1last

task or overlay that performed a
link to overlay. If the relink is
back to a task, or Dback to an
overlay that is in memory, control
is transferred immediately. If the
relink 1is back +to an overlay no
longer in memory, the current task
is suspended and the TSB is queued
for SOVLDR.

door
The
If

being

Enforce access privileges to
of a particular structure.
door is represented as a queue.
the data structure is
accessed by a task, the task
wanting access is queued and
suspended. Queued tasks will be
unsuspended and gain access when
the current accessing task exits
the door, via TMSOPN.

Open the door to a restricted
access structure. This routine is
called by a task to release access
to +the door. The next task in the
queue is unsuspended and the door
marked open.

Clock interrupt handler. Resets
the +timer interrupt, wupdates the
second counter, clock unit counter
and time slice counter.

Return point from all interrupt
processors. Returns control +to
interrupted task (if its time slice
has not expired), XOP, or other
interrupt processor.

First return from XOP processors.

Returns control to the executing
task if its +time slice has not
expired. Otherwise, it saves the

state of the -executing task
returns control the scheduler.

and

Return to scheduler by force.

Texas Instruments

Description of DX10 Routines

System Design Document

Table 9-3 Task Management Routines -- Part % of 4

Routine Source Module Pathname Description

XOPRT2, . TSKMGR . SOURCE. TMRTN Return points from XOP processors

XOPRT3 . TSKMGR.SOURCE. TMRTN that want the calling task
suspended. Task execution is
halted and control returns to the
scheduler.

TM$DPR . TSKMGR.SOURCE. TM$DPR Dynamic task priority routine.
This routine is <called by the
device driver task to adjust the
priority of a task installed with
dynamic priority, according to the
type of I/0 it is performing.

TOLLNK . TSKMGR. SOURCE.TM$TOL Link a block of memory onto the
head of the time ordered 1list
(T0L).

TOLDEL . TSKMGR.SOURCE. TM$TOL Delink the specified block of

: memory from the time ordered list.

TOLTDL . TSKMGR.SOURCE. TM$TOL Delink the task segment of the
specified task from the TOL.

TOLTLK . TSKMGR.SOURCE. TM$TOL Link the task segment of the
specified task onto the head of the
TOL.

TOLTSG . TSKMGR . SOURCE. TM$TOL Calculate the beet address of the
start of the task segment of the
specified task.

TMALPR . TSKMGR.SOURCE. TMALPR Allocate memory for a procedure.
The procedure may be either in
memory already, on a program file,
or on the roll file. Called by the
task loader.

TMIMAG . TSKMGR.SOURCE. TMIMAG Load program segment from image

Texas Instruments

O
1

file. Loads either a +task or
procedure from a program file or

the roll file. Called by TMLDTK
and TMLDPR.

939153-9701

System Design Document

Table 9-3

Routine

TMLDPR

TMLDTX

TMRDAL

TMRDDL

RSET12

939153-9701

. TSKMGR.SOURCE. TMLDPR
. TSKMGR. SOURCE. TMLDTK

.TSKMGR.SOURCE. TMRDAL

. TSKMGR.SOURCE. TMRDLL

. ITSKMGR.SOURCE. TMSINT

Source Module Pathname

9-9

Description of DX10 Routines

Pask Management Routines -~ Part 4 of 4

Description

Load a procedure from disk, either

from a program file or the roll
file. Called by task loader.

Load a task segment from disk,
either from a program file or the.
roll file. Called by task loader.

Allocate space of the roll file.
The allocation information is set
up in the TS8B or PSB of the segment
being rolled. The TSB or PSB is
linked onto +the roll directory
list. Called by task loader and
memory management.

Delink the specified segment from
the roll directory 1list. This
causes the space occupied by the
rolled segment to become available.

Clears the Protection, Overflow,
and WCS flags in the status
register. This mnmust be called
whenever entering map O from an INT
or XOP.

Texas Instruments

Description of DX10 Routines System Design Document

9.5 MEMORY MANAGER

Memory management routines perform such functions as allocating memory,
releasing memory, and rolling out tasks, procedures and buffers. A
special connection of routines, called buffer management, allocates,
deallocates, reads, and writes file I/O buffers. Table 9-4 shows the
major memory management routines. Table 9-5 shows the buffer
management routines, which are generally called by file management.

Table 9-4 Memory Management Routines -- Part 1 of 2
Routine Source Module Pathname Description
MM$GSA .MEMMGR.SOURCE.MMSMGR Get system table area. This

routine searches the free system
area list for a block of the
specified 1length and allocates it,
if possible.

MMS$RSA .MEMMGR . SOURCE . MMSMGR Release system table area. This
routine releases the specified
block of system area, placing it on
the free list. The block is

consolidated with neighboring
blocks if possible.

MM$GUA .MEMMGR. SOURCE.MM$MGR Get user area. This routine
searches the free user memory (all
memory beyond DX10) 1list for a
block of the specified length and
allocates it, if possible.

MM$RUA .MEMMGR . SOURCE . MM$MGR Release user area. This routine
links the specified block of user
memory onto the free 1list and
consolidates it with neighboring
blocks, if possible.

MM$GSO .MEMMGR. SOURCE.MM$MGR Get system +table area, clear to

ZEero. This routine calls MM3GSA,
then clears the allocated block (if
successful) to zero.

Texas Instruments 9-10 07301539701

System Design Document

Table 9-4

Routine

MM$FND

MM$SCN

MM$ROL

MM$RIM

RELPSB

MM3TSB

939153-9701

Source Module Pathname

. MEMMGR . SOURCE . MMSFND

.MEMMGR . SOURCE.MM3SCN

.MEMMGR . SOURCE.MM3ROL

- MEMMGR . SOURCE . MM$TSK

. MEMMGR . SOURCE . MM3TSK

- MEMMGR . SOURCE . MM3TSK

Description of DX10 Routines

Memory Management Routines —-- Part 2 of 2

Description

Find (user) memory. This routine
is called by all routines that need
a Dblock of user memory. ZEntry to
the routine is restricted to serial

access by the use of TM$DOR and
TMS0OPN. MM$FND first checks free
memory, then scans the TOL for
rollable blocks. If a rollable
block is found, it is rolled.

Scan the TOL for a rollable block.
This routine is called by MM$FND to
get a rollable block of memory if
there is not a large enough block
of free memory. Rollable blocks
may be task, procedure or buffer
memory.

Roll a task or procedure segment to
the roll file. This routine rolls
a block to disk, assuming that roll
file space 1is already allocated.
Calls BM$MAP and FMSWTM.

Release task memory routine. This
routine delinks the task memory of
the specified task from the TOL and
releases it. If there are attached
procedures, their attached task
counts are decremented. If +the
count for a procedure goes to zero,
its memory and PSB are released.

Release the specified PSB and
procedure memory.

Release TSB and memory of a task
suspended awaiting queue input.
This routine searches the TSB 1list
for a suspended queue serving task.
If one is found, the task's memory
and TSB are released.

Texas Instruments

Description of DX10 Routines

System Design Document

Table 9-5 Buffer Management Routines —- Part 1 of 3

Routine

Source Module Pathname

BMSNEW .MEMMGR.SOURCE. BM$RD

BM3$CLO .MEMMGR . SOURCE. BM$CLO

BMSFLS .MEMMGR . SOURCE. BM$CLO

BM3SCH -MEMMGR . SOURCE. BM$CLO

BM3UPD .MEMMGR . SOURCE. BMSCLO

Texas Instruments 912

Description

Pind a particular file Dblocking
buffer (= file physical record) and
map it into the calling task
(usually file management). If the
buffer is in memory, delink it from
the TOL and map it in. Otherwise,
allocate memory and read 1in the
correct file physical record, then
map it in.

Same as BMSRD except that

not read in a file record.
is used to avoid
sequential file

preparing to write it.

it will
BMSNEW
reading a
record when

Close file. This routine writes
all modified blocks of the file for
a given LUNO (IDT) that are still
in memory. The blocks remain on
the TOL until needed by MM$FND.

Flush blocks. This routine returns
all memory occupied by buffers for
the specified file. Modified
buffers are written to the file
before Dbeing released. Memory
resident buffers are marked empty
and left on the TOL.

Search for a particular buffer on
the TOL. THe search can be

restricted by the following Dbuffer
criteria:

Modified or unmodified buffer
with equal ILDT address.
Modified buffer with equal
LDT address.

. Modified buffer with equal
FCB address.

Update file. This routine calls
BM$SCH +to find a buffer on the TOL
according to the desired criteria.
If +the buffer is modified, it is
written to the file.

939153-9701

System Design Document

Description of DX10 Routines

Table 9-5 Buffer Management Routines -- Part 2 of 3
Routine Source Module Pathname Description
BM$SMAP «.MEMMGR. SOURCE.BMS$MAP Map the specified number of bytes

BM$SMPB - MEMMGR. SOURCE.BMSMAP
BM$RDM «MEMMGR. SOURCE. BM$SRDU
'
BMS$W +«MEMMGR.SOURCE. BM$SW
BM$SMPK « MEMMGR.SOURCE.BMSMAP
BMSIOW -MEMMGR. SOURCE.BM$W
BMS$IOR «MEMMGR.SOURCE. BM$W
BMSLNK « MEMMGR. SOURCE. BM$W
BMSDEL - MEMMGR.SOURCE.BMSW

939153-9701 (Change 1)

in the specified task”s memory into
the calling task.

Map the specified number of bytes
from general memory into the
calling task. This routine is
given a beet address which begins
the area to be mapped.

Read and update a buffer. This
routine calls BM$RD to get the
specified file buffer. If the
buffer has been modified, it is
written to the file.

Write a buffer. This routine
writes the specified buffer, which
is mapped into the calling task, to
the specified physical record of
the file {(destination address need
not be the same as the source file
record from which the buffer was
read).

Check a mapped segment for possible
Write Protection violation.

Set up the I/O call block to write
the specified buffer to the
specified record in the file.
After building the call block, it
calls FMS$SIO to perform the I/O.

Set up the I/0 call block to read
the specified buffer from the
specified record on the file.
Calls FMSIO to perform the I/O.

Link the specified buffer onto the
TOL *)

Delink the specified buffer from
the TOL.

Texas Instruments

Description of DX10 Routines System Design Document

Table 9-5 Buffer Management Routines -- Part 3 of 3
Routine Source Module Pathname Description
BMSREL .MEMMGR. SOURCE.BMSREL Release a buffer to buffer
management. This routine unmaps a

buffer from the calling task and
links it onto the TOL. Modified
buffers are written to the file.

BMSRMD +MEMMGR. SOURCE. BMSREL This routine is the same as BMS$REL
except it presets the buffer’s
modified flag, forcing a write to
the file.

BMSTRM .MEMMGR. SOURCE.BMS$REL Trim a buffer from memory. This
routine releases the specified
buffer to user memory. If the
buffer has been modified, it is
first written to the file.

BMSWRN +MEMMGR.SOURCE.BMSRDU Write a buffer and rename it. This
routine calls BMSW to write the
specified buffer, then modifies the
buffer overhead to make the buffer
correspond to the destination file
record.

9.6 DISK MANAGER
The disk manager consists of a memory resident, queue-serving task and
several system overlays. The queue server is the main driver. It
decodes the buffered SVC opcode and links to the correct processor
(which is a system overlay) for that opcode. The disk management
opcodes include: ’

.o 0 - deallocate a block

.o 1 - allocate all of the requested amount

oes 2 - allocate as much of the requested amount as
possible

.o 3 - allocate as much as possible at the address
requested or fail.

Table 9-6 shows the major routines included in disk management.

Texas Instruments 9-14 (Change 1) 939153-9701

System Design Document

Table 9-6

Routine

DMDAILC

ADJALC

ALCSCN

CHGMAP

939153-9701

.DSCMGR.SOURCE.DMDALC

.DSCMGR.SOURCE.ADJALC

.DSCMGR.SOURCE.ALCSCN

.DSCMGR.SOURCE.CHGMAP

Source Module Pathname

Description of DX10 Routines

Disk Management Routines —- Part 1 of 2

Description

Queue-serving main driver for disk
management.

Disk allocation main driver. This
routine processes all of +the
allocation opcodes. It converts

the requested number of file blocks
(physical records) to a number of
ADUs, then attempts +to allocate
according to the restrictions
implied by the opcode.

Deallocate disk space. This
routine deallocates the specified
ADUs by resetting the bits in the
correct partial bit maps.

Adjust allocation count. This
routine computes the number of ADUs
in a given block on contiguous free
ADUs which are useful to allocate
file physical records of a given
ADU sige.

Allocation bit map scans. This
routine contains two bit map scans.
The first scans a partial bit map

for a particular allocation
placement (allocation must start at
particular ADU). The second is a

first-fit scan which starts with
the first partial bit map and
searches for a large -enough Dblock
of free ADUs.

Change disk allocation bit map.
This routine sets or resets bits in
the disk resident bit map to
reflect the newly completed
allocation or deallocation
operation. This routine 1is the
common exit path from DMALLC and
DMDALC.

Texas Instruments

Description of DX10 Routines

System Design Document

Table 9-6 Disk Management Routines -- Part 2 of 2

Routine Source Module Pathname
DM$TBL .DSCMGR.SOURCE.DM$TBL
EXTEND .DSCMGR.SOURCE.EXTEND
MAPPBM .DSCMGR.SOURCE.MAPPBM
RDPBM .DSCMGR.SOURCE.RDPBM
WRTPBM .DSCMGR.SOURCE.WRTPBM
SCNBIT .DSCMGR.SOURCE.SCNBIT
SETBIT .DSCMGR.SOURCE.SETBIT
WCHPBM .DSCMGR.SOURCE.WCHPBM

Texas Instruments

Description

Disk management table builder.
This routine scans the partial bit
map currently buffered 1in memory,
and fills in the disk management
table (DMT) entries particular to
that bit map.

Extend an allocation across partial
bit map boundaries.

Map partial bit map. This routine
reads/writes +the specified partial
bit map from/to the disk.

Read partial bit map. This routine
reads the specified partial bit map
from +the specified disk to the
specified buffer.

Write partial bit map. This
routine writes the specified
buffered partial bit map to %
correct sector on the specifi%
disk.

Scan for a Dbit of the opposite
state. This routine scans a
buffered partial bit map from the
specified bit position until it
finds a bit of the opposite state.

Set bits to the given state. This
routine sets the specified number
of bits in a bit map, starting at
the specified bit position, to the
specified state (O or 1).

Calculate a partial bit map number
and bit position from the specified
ADU number.

93915%-9701

System Design Document Description of DX10 Routines

9.7 DEVICE I/0 PROCESSING

In addition to the DX10 1I/0 supervisor, there are several other

routines) which are used to process device I/0 calls. These other
routines include the device driver +task (DDT), the device service
routines (DSRs), and several common routines. Table 9-7 shows +the

major routines involved in processing device I/0.

Table 9-7 Device I/0 Processing Routines

Routine Source Module Pathname Description
DXIO0s .DXIO.SOURCE.DXIOS DX10 I/0 supervisor. This routine
processes SVCe code 0. 1t

preprocesses calls for device 1I/0,
file I/0, and file utility
services, buffering the call block
and queueing it for the appropriate

queue server or DSR. It also
processes all I/0 to the DUMY
device.

DDT .DXI0.SOURCE.DDT Device driver. Serves all device
queues. Initiates device 1I/0,

starts the DSRs, and does end-of-
record processing (i.e. unbuffers
data to tasks doing device I/0).

T™OUT .DXI0.S0URCE.DSRTMX Device tine out check. This

routine 1is called by the scheduler
after a system time unit has
elapsed. It scans the PDT list to
see if a device has a time-out
error, or 1if the re-enter-me flag
in the PDT 1is set. If the re-
enter-me flag is set, control is
passed to the DSR. If +the device
has a time-out error the I/0 is

aborted.

FSTXFR .DXI0.S0URCE.FSXTXFR Routine which tests a file 1I/0
request, .DXI0.SOURCE.F3TXFR, to
see if a "fast transfer" is
possible.

Table 9-8 shows the Device Service Routines included with DX10. Note

that the source modules for all DSRs are cataloged under the 1library
-DEVDSR.SOURCE on the disk.

939153-9701 9-17 Texas Instruments

Description of DX10 Routines System Design Document

Table 9-8 Device Service Routines

Source Module

Routine Description Name
CAST3%* DSR for cassette units on a 733ASR. .CAS733%
CRDSR DSR for 804 card reader. .CRDSR
DDIOSR DSR for direct disk I/O. .DDIOSR
DSR911 DSR for 911 VDT. .DSR911
DSR913 DSR for 913 VDT. .DSR913
DSR9T79 DSR for 979 magnetic tape drive. .DSRO79
DSRKSR* DSR for 733 KSR and 743 KSR. .DSRKSR
FPYDSR DSR for FD80OO diskette. .FPPYDSR
LPDSR DSR for 306, 588, 810, 2230 and 2260 .LPDSR
line printers.4
DSR820 DSR for 820 keyboard device. .DSR820
DSRTPD DSR for teleprinter devices .DSRTPD
.COMISR
.TTYISR
. TPDCOM

* CAS73%% and DSRKSR are linked to form DSR733 for the
7%% ASR.

Several routines commonly used by DSRs are contained in the source
module .DXIO.SOURCE.IOCOMX. The routines are:

... BZYCHK See if device is busy.
SETWPS Set up interrupt mask and workspace.
.. ENDRCD Activate end-of-record routine (part of DDT).
... XFERM Put format (direct disk I/0) data in buffer.
... GTADDR Calculate a 20-bit absolute address from a 16-bit
mapped address (used by DSRs for TILINE devices).
MAPCHK Verify that the specified address is mapped 1into a
user's space.
... BUFCHK Verify that a buffer 1is mapped into a single
base/limit register pair.
BRCALL Branch table call.
BRCALT Alternate branch table call.
JMCALL Jump table call.
JMCALT Alternate jump table call.

Texas Instruments 9-18 9%9153-9701

System Design Document Description of DX10 Routines

«.. SCNPDT Scan PDT list, and enter power-up routine for each
device.
... PUTEBF Put a character in the event character buffer (for

keyboard DSRs).

... PUTCBF Put a character in the character queue (for keyboard
DSRs) .
... GETC Get a character from the event buffer or character

queue (for keyboard DSRs).
... KEYFUN Recognize HOLD, ABORT, or BID keys from a keyboard.

«s»+ TILERR Move the TILINE image to the system 1log buffer in
the PDT extension for TILINE devices (used by disk
and magnetic tape DSRs).

... ASCCHK Compare an ASCII character to a table of characters
and transfer control to the address associated with
the matched character.

9.8 FILE UTILITY ROUTINES

File utility SVCs are queued by DXIOS for the file utility task, FUTIL
(task >0B on the system program file). FUTIL consists of a main
driver, FUS$, and several routines to process the different file utility
opcodes. It also contains two conversion routines, LC$ and FC$, which
convert the still supported librarian and FUR call blocks to DX10 3.0
file utility call blocks.

Table 9-9 shows the major file utility routines which make up the file

utility task, FUTIL. Note that all utility source modules are
cataloged under the library .FUTIL.SOURCE on the source disk.

939153-9701 (Change 1) 9-19 Texas Instruments

Description of DX10 Routines

Table 9-9 PFile Utility
Routine Source Nofule Pavhnenc
FUS .FUS$
FC$.FC3
IC3 .IC$
Ucs FUS
AAS .AAS
ISADR CAAS
ALS$.ALS

Texas Instruments 9-20

System Design Document

Routines —- Part 1 of 5

Description

Main driver and queue server for
file utility requests. Decodes
file utility opcode and branches to
correct processor. If opcode is
FUR or librarian, branch to FC$ or
LC$, respectively.

Convert FUR call to new call block.

This routine converts +the call,
calls UC® +to execute 1it, calls
CLEAN to unbuffer the call, then

returns to FUS.

Convert librarian calls to new call
block. This routine converts the
call, processes it, calls CLEAN to
unbuffer the call block, +then
returns to FUS.

Normal utility call processor.
This routine checks for bad
opcodes, looks up the correct
rocessor for +the given opcode
table is in FU$ also), and
branches to that processor. The
processor returns to UC$, which
returns to the caller (either FUS$,
LC$, or FCS$).
Add alias opcode processor. This
routine adds an alias to an

existing file.
been previously
file. Return is
(Ucs).

A LUNO must have
assigned to the
to calling task

Initialize alias descriptor record.
This routine initializes a buffered

ADR (see section on disk data
structures) and then returns to
AAS.

Assign LUNO opcode processor. This

routine assigns a LUNO to either a

file, a device, or a temporary
file. It also builds the necessary
FCB/LDT +tree in the system table
area.

93915%-9701

System Design Document

Description of DX10 Routines

Table 9-9 File Utility Routines -- Part 2 of 5

Routine

DP$

RF$

RL$

RLSLUN

SF$

UPS

939153-9701

.DP$

.RF3

. RL$

-RLS$

.SF$

.UP$

Source Module Pathname

9-21

Description

Create file opcode processor. This
routine creates a file, including

an FDR on disk, disk allocation for
the file, and an FCB in memory.

Delete protect opcode processor.
This routine sets the delete
protect flag bit in both +the TFCB
and the PFDR (on disk) for +the
specified file.

Rename file opcode processor. This
routine moves the existing FDR +to
the destination directory and
releases the 014 FDR directory
entry. If an existing file has the
new pathname, it is replaced by the
renamed file.

Release LUNO opcode processor.
This routine sets up registers
using values from the buffered call
block, calls RLSLUN to release the
LUNO, then returns.

Internal entry point to release
LUNO opcode processor. This
routine calls LDTSCH +to find the
ILDPT for +the specified LUNO. The
LDT is delinked from all chains,
and any file ©buffers associated
with the released LUNO are flushed
(released). The LDT is released to
system table area.

Set forced write flag opcode
processor. This routine sets the
forcdd write flag in the specified
LDT to the specified state.

Unprotect file opcode processor.
This routine reads the FDR for the
specified file from its parent
directory, resets +the protection
flags in +the FDR +to 2zero, and
rewrites the FDR back to the
directory.

Texas Instruments

Description of DX10 Routines

Routine

WP$

DAS

DF$

AL$PNC

T$FILE

TSADD

GENLUN

DEVSCH

Texas Instruments

Source Module Pathname

-WP$

.DAS

.DF$

.ALS$

.ALS$

.ALS$

.ALS$

.ALS

System Design Document

Table 9-9 TFile Utility Routines -- Part 3 of 5

Description

Verify pathname opcode processor.
This routine checks a pathname for
valid syntax, and then tries to
find the file. If the file exists,
relevant information is returned.

Write protect opcode processor.
This routine sets the write protect
bit in the FDR for the specified
file.

Delete alias opcode processor.
This routine delinks the alias
descriptor record for the specified
alias from the alias 1list in the
directory file (see the section on
disk data structures).

Delete file opcode processor. This
routine releases all primary and
secondary file allocations on the
disk and releases all directory
entries (FDRs and ADRs).

Assign LUNO to pathname component.
This routine returns the TFCB
address for the specified pathname
component. If no FCB exists,one is

built and added to the FCB/LDT
tree.

Assign ILUNO +to temporary file.
This routine generates a unique
pathname for +the temporary file,
then calls AL$ to assign the LUNO
to it.

Add a new FCB node to the TFCB/LDT
tree.

Generate a unique LUNO. This
routine searches a given IDT 1list
and returns a LUNO not currently
existing in the list.

Search PDT list for device name.

If the desired device is found, the
PDT address is returned.

93915%-9701

System Design Document

Description of DX10 Routines

Table 9-9 TFile Utility Routines -- Part 4 of 5
Routine Source Module Pathname Description
VOLSCH LALS Search the volume tables for volume

AL$DEV -ALS$
ALSFIL .ALS$
ALSPAR <AL3$
B$FDR .CF$
FSINIT .CF$
C$DFLT .CF$
CRBLK . .CF$
A$BIK .CF$
R$DSC .DF$

939153-9701

9-23

name. If the specified volume has
been installed, the PDT address of
the drive on which it isinstalled
is returned.

Assign LUNO if a device. This
routine searches the PDT list for
the desired device and assigns a
LUNO to it.

Assign LUNO to file. This routine
gets the system +table area and
builds an LDT for a LUNO to assign
to a file.

Assign LUNO to parent. This
routine assigns LUNC >CA +to the
parent directory file of the
specified file.

Build a file descriptor record and

write it to the specified directory
record.

Initigalize a file based on its file
type.

Compute file creation parameter
defaults, based on file type.

Compute the number of file physical
records required for a file based
on file type and specified initial
allocation.

Allocate the specified number of
physical records on the disk. This
routine calls +the disk manager to
allocate the required disk space.

Release disk space. Calls the disk

manager to release the primary file
allocation and all secondary
allocations.

Texas Instruments

Description of DX10 Routines System Design Document

Table 9-
Routine Source
R$FDR DF$
RSALS .DF$
FLLRMV .RLS
CLEAN .FUS

9 Pile Utility Routines -- Part 5 of 5

Module Pathname Description

Release file descriptor records.
Releases all FDR entries in the
directory for the file Dbeing
released.

Release aliases. Releases all ADR
entries in the directory for
aliases of the file being deleted.

Remove and clean up file LDT.
Delinks a file ILDT from all chains.
If +the file +to which the LDT was
assigned has no more LUNOs assigned
and no descendants, its FCB is
released.

Clean up request. Calls TMQUE +to
queue the buffered call block for
the SVC clean up task, SVCCIN.

Many routines commonly used by file utility processors are contained in
the file .FUTIL.SOURCE.US$. Some of the routines included are:

LDTSCH

FNDLUN -
<+« LDTRMV -
«.. LDTENT -
... HASH -

LOOKUP -
I$BLK -
.. GS$REC -

LI] FILE1O -
T$CLEN -

«+. FDRFCB -

Texas Instruments

search the LDT tree at the specified level (task,
station, global) for the specified LDT

find the specified LDT (level does not matter)
remove the specified LDT from all chains
enter the specified LDT in the LDT tree

compute a hash key value for the specified
pathname component

look up the specified file by name
initialize file blocking buffer

transfer the specified directory record to the
caller's buffer

performs all disk I/0 for FUTIL

clean up the FCB tree (release all unnecessary
FDBs on the upward path from a single leaf node)

translate a buffered FDR and associated blocks
into an FCB

- 9-24 939153-~-9701

System Design Document Description of DX10 Routines

9.9 TFILE MANAGER

File management under DX10 consists of a pool of memory resident,
queue serving tasks and four system overlays. The main driver of each
task is a routine called FM$TSK. This routine is activated whenever
the I/0 supervisor, DXIOS, places an entry on its queue. FM3TSK
dequeues each entry and passes control to the correct processor for the
specified I/0 opcode. The processor returns to FM$TSK, which unbuffers
the I/0 call block, reactivates the calling task, and gets +the next
entry n the queue. TFM8TSK issues an SVC >24 when its queue is empty.
Table 9-10 shows the major routines that process file I/0 calls. All
source modules are in directory .FILMGR.SOURCE.

Table 9-10 File I/0 Processors —- Part 1 of 2

Source Module
Routine Description Overlay Name

FMSTSK Main driver of file manager. N .FMRTSK
Looks up opcode in table,
branches to correct processor.

FMOPEN Open file processor. Checks N . FMOPEN
access privileges for conflicts.

FMCLOS Close file processor. File N .FMCLOS

or buffers are updated to disk,

FMCLUN locked records are unlocked.

FMCLEF Close file with EOF. Writes Y .FMCLEF
end-of-file, then calls FMCLOS.

FMOPRW Open and rewind file processor. Y . FMOPRW
Calls FMOPEN, then to FMRWND.

PMRDST Read file status processor. Y .FMRDST
Calls BMSMAP to map in user
buffer, then writes file
characteristics in buffer.

FMFBSP Forward/backward space processor. Y .FMFMBSP
Calls FBSP to reset LDT pointers.

FMREAD Read ASCII and read direct N . FMREAD

processor. Calls BM$MAP to

map in user buffer, then calls
BMSRD (blocked file) or FM$I/O
(unblocked) to get proper
physical record. Transfers
proper logical record to user
buffer and releases file buffer
(if blocked file).

9%9153-9701 9-25 Texas Instruments

Description of DX10 Routines System Design Document

Figure 9-10 File I/0 Processors -- Part 2 of 2
Source Module
Routine Description Overlay Name
FMWRIT Write ASCII and write direct N .FMWRIT

processor. Calls BM3SMAP to map
in user buffer, then gets proper
%hysical record through BM3$RD
blocked file). New logical
record transferred (via FMS$IO

if unblocked). Buffer (if any)
is released.

FMWEQF Write end-of-file processor. Y . FMWEOF
Writes an EOF (zero length)
record to a sequential file.
EOPs to relative record files
are ignored.

FMRWND Rewind file processor. Resets Y . FMOPRW
LDT pointers to show that the
file is rewound (before the
first file record).

FMRWRT Rewrite record processor. Y . FMRWRT
Backs up one record on a
sequential or relative record
file and writes the user's
buffer to that record (calls
FMWRIT to write).

FMACES Modify access privileges N .FMACES
processor. Checks for access
conflicts between different
users of a file; if none,
modifies LDT flags to reflect
new privileges.

FMOPXT Open extend processor. Calls Y . FMOPXT
FMOPEN to open the file, sets :
LDT pointers to end-of-medium,
then backspaces over any EOFs
at end of file.

FMOPUB Open for Unblocked I/0. Calls Y .FMOPUB
FMOPEN to open the file, then
sets flag in LDT to allow
unblocked I/0 to the file.

FM$IO File manager disk I/0 routine. N .FMS$IO
Maps file physical record no.
into ADU/sector offset disk
disk address and transfers data
between user buffer and disk.

Texas Instruments 9-26 9%9153-0701

System Design Document Description of DX10 Routines

9.9.1 KEY INDEXED FILES.

Key indexed file I/0 processing is a major part of file
management. KIF I/0 processing routines are contained in one memory
resident linked object module, KIF, and five system overlays. Table 9-
1" shows +the major routines involved in key 1indexed file 1I/0
processing. All source modules are in directory .KIFILE.SOURCE.

Table 9-11 Key Indexed File I/0 Processors —-- Part 1 of 2

Source Module
Routine Description Overlay Name

KI$BEG Key indexed file I/0 driver. N .KI$BEG
Receives key indexed file I/0
requests from FM$TSK, decodes
opcode, and branches to cor-
rect processor.

OLNOO2 Insert record into key indexed Y .0LNOO2
file, using the primary key.
Key is hashed to get a block
number and then record is in-
serted. Key is added to B-tree
for primary key.

OLNOO8 . Delete a record from a key Y . OLNOO8
indexed file, either by key
value or currency information.
Record is removed from block
and key values from B-trees.

KI$BTD Delete an entry from a B-tree. N KI$BTD
Searches a B-tree for the
specified key. If found, entry
is deleted. If the B-tree entry
is a B-tree divider (see section
on disk organization), OLNOO9 is
called to delete the entry from
the next higher node in the

B-tree.

OLNOOS Continuation of B-tree delete Y .OLNOO9
routine.

KISRR Read a record from a key N .KIS$RR

indexed file. If no currency
information is provided, searches
B-tree for specified key and sets
up currency. Calls BM3$MAP to map
in user buffer, reads desired
record using currency information,
releases file blocking buffer.

939153-9701 9-27 Texas Instruments

Description of DX10 Routines : System Design Document

Table 9-11 Key Indexed File I/0 Processors -- Part 2 of 2

Source Module
Routine Description Overlay Name
KIs$SC Driver for set currency commands. N .KI$sC
Sets user's currency information
to point to the data record and
the B-tree position corresponding
to the specified key value.

KI$RN Read next record. Uses currency N KISRN
information to find record con-
taining next largest key, calls
KI$RD (same as BM$RD) to read
the record.

KI$BIT Insert an entry into a B-tree. N .KI$BIT
Inserts a new key value in the
proper leaf node of the B-tree.
If the node becomes full, calls
OLNOO1 to split the leaf into
two new nodes and add an entry
to the next higher node.

OLNOO1 B-tree split routine. Y . OLNOO1

KI$BTS Search B-tree for specified key N .KI$BTS
value. If found, a stack that
traces the path down the B-tree
to the correct leaf node is
created; otherwise, the routine
finds the leaf node in which the
key should fit if it existed, and
the stack is still created.

KI$GRF Get free block. This routine is N .KI$GFR
used to get an overflow block or
B-tree block from the free block
chain. If the last free block is
returned, another secondary
allocation is made to the file.

OLNOO4 Open random and close opcode Y .OLNOO4
processor.
OLNOO3 Subroutines used by KI$RW Y .OLNOO3

(rewrite). This overlay contains
three pieces of code used by KISRW
(rewrite).

Texas Instruments 9-28 939153-9701

System Design Document System Command Interpreter

SECTION 10
SYSTEM COMMAND INTERPRETER

10.1 GENERAL

This section describes the routines that make up SCI, as well as +the
data structures and files used by the command interpreter. In this
description, SCI is divided into four parts: the command interpreter,
the background resource manager, the background task bidder, and the
output queuer. The following paragraphs describe those parts of SCI.

10.2 SYSTEM COMMAND INTERPRETER

The function of the command interpreter, SCI990, is to interpret
commands entered at a user terminal or listed in a sequential file.
The command language consists of a set of primitive operations, whose
names start with a period (e.g., ".BID"), and a procedure definition
and parameter gathering facility that permits the user +to extend the
set of commands.

SCI990 executes in both batch and interactive modes. In interactive
mode, the terminal user may be prompted for +the values of command
parameters. In Dbatch mode, parameters are specified by keyword
assignments 1in the command statement. Except for accessing the
commands and their parameters, the command interpreter is essentially
indifferent to the mode of operation. This document mentions a mode of
operation (Batch, VDT, TTY) only when the description does not apply to
all modes.

10.2.1 STRUCTURE OF SCI.

S3CI990 has two functions, parsing and then executing a command. The
parsing function includes: displaying menus and messages; and
reprompting for invalid input. The execution of a command may be
performed internally (for primitive operations) or result in evaluation
of a procedure definition. Figure 10-1 shows a generalized flow of
control through SCI990.

The structure of the system command interpreter is composed of direct

procedure calls. Indirect calls ("A" calls "B" calls "C") are listed
in a cross reference table at the end of this section.

939153%-9701 10-1 Texas Instruments

System Command Interpreter

‘ BEGIN ’

INITIALIZE

System Design Document

ANY PENDING
MESSAGES
?

DISPLAY THE P
NEWS FILE Em
DISPLAY
DISPLAY THE
TERMINAL NEXT MENU
DEFINE
el COMMAND NESTING PARSE THE
SYNONYMS (L-EVEL = NEXT COMMAND
CASE & COMMAND OF
.BID . DATA _ELSE ...OTHER PRIMITIVES. . . proctiuSE comMMAaND
A
A | N
<+ PROCESSORS —P CEVELC-1 &3;{?3_
+1
. STOP OR
END OF FILE
?
YES
TERMINATE
Figure 10-1 SCI Flow of Control
Texas Instruments 10-2 939153-9701

System Design Document System Command Interpreter

10.2.2 OVERLAY STRATEGY.

There are two kinds of overlays for the system command interpreter
task. One kind 1is +the overlay structure designed for use with the
.OVLY primitive command (executed by the S$0VLY routine). The text
editor and debugger are examples of this kind. Other overlays, such as
PARSER and secondary overlays of the debugger, do not use the .0OVLY
structure, but are loaded by means of a Load Overlay SVC.

The command interpreter itself has two overlays that are part of its
basic operation. PARSER contains the bulk of the routines used for
parsing a command,expanding a procedure definition, and executing a

rimitive command. The PARSER overlay is 1loaded as needed by the
GETCMD routine. DERROR contains the error formatting and display
routines (including the English 1language text for messages) and the
log-in/log-out routines. The DERROR routines are accessed by means of
S80VLY while +the PARSER routines are accessed by means of a Load
Overlay SVC.

A third overlay, TINFO, may be considered part of SCI990 proper. TINFO
contains the command processors for the following commands:

LTS - List Terminal Status

MTS - Modify Terminal Status

SBS - Show Background Status

KBT - Kill Background Task

MSG -~ Display Message at Own Terminal
CM -~ Create Message

AUI - Assign User ID

DUI - Delete User ID

MUI - Modify User ID

LUI - List User IDs
WAIT -~ Wait For Background Task To Complete

A fourth overlay, OUTQUE, contains the command processors for the
output queuer:

PR -~ Print File At Device

HO - Halt Output At Device
RO - Resume Output At Device
KO - Kill Output At Device
808 - SBhow Output Status

Other overlays are supporting routines for various command processors,
such as the text editor and debugger.

The general strategy for partitioning the command interpreter Dbetween
the shared procedure area, SCI, and the PARSER overlay is to attempt to
keep the size of the shared procedures plus the task area plus the
largest overlay as small as possible, but to make the shared area as
large as possible. Any of the routines in the PARSER overlay can be
moved into the shared procedure SCI should PARSER become the largest

939153-9701 10-3 Texas Instruments

System Command Interpreter System Design Document

overlay. However, care should be taken in moving routines from SCI to
PARSER, since PARSER is only loaded by GETCMD and many of the routines
(e.g., PUTLINE, GETFIL) may be called when PARSER is not loaded. For
example, GETFIL is called during error recovery from a procedure
expansion, which may occur while a user overlay is loaded.

10.2.3 DATA STRUCTURES.

The following paragraphs describe the internal data structures created
and maintained by SCI.

10.2.%3.1 System Communication Area (sca).

The SCA is an area of memory shared (as a "dirty" procedure) by all
command interpreters, the background resource manager and the
background request handlers (QRID, OQUEUE). The SCA contains a table
of global system data, such as global LUNOs and task bid IDs, plus a
table called an SCA entry for each terminal that uses SCI9QO0.

10.2.3.2 ©SCA Entry.

Fach terminal has a 32-byte entry in the SCA for communication Dbetween
the system command interpreter and the background resource manager
(BRM). The fields of the SCA entry are labeled and defined as follows.

SCASTT EQU O Terminal Type
SCASTI EQU 1 Terminal ID

SCASDV EQU 2 Terminal Device Name
SCASUI EQU 6 User ID

SCASFO EQU 12 PG Opcode

SCAS$BO EQU 13 BG Opcode

SCASTE EQU 14 PG Error Code
SCA$BE BEQU 15 BG Error Code
SCASFS EQU 16 TG Status

SCA$BS EQU 17 BG Status

SCASPT EQU 18 PG Task ID

SCASBT EQU 19 BG Task ID

SCASTFL EQU 20 PG Task LUNO
SCAS$BL EQU 21 BG Task LUNO
SCAS$FC EQU 22 FG "CODE" Value
SCA$BC EQU 23 BG "CODE" Value
SCASFR EQU 24 PG Return Code (CC
SCA$BR EQU 25 BG Return Code (CC)
SCASTFI EQU 26 FG SCI Task ID
SCA$BI EQU 27 BG SCI Task ID

Texas Instruments 10-4 030153-9701

System Design Document System Command Interpreter

The fields SCA$TT, SCAS$FS, and SCASBS are subdivided as follows:

SCAS$TT BYTE O Terminal/User Type Information

Bit

0 1 = Terminal is disabled

1-3 User privilege code (0-7)

4-7 Current terminal mode
0O = Batch mode
1 = TTY mode.
F = VDT mode

Memory images of every user's TCA are maintained on disk in a library
of user TCA images. During the log-in process, a user's TCA image 1s
loaded into the SCI990 task. When the TCA is passed from one system
task to another, it is transferred via the medium of a record on a
background or foreground TCA file. The overall layout of the TCA is
shown in Figure 10-2.

SCASFS BYTE 16 Foreground Status
Bit
0 1 = Login is required
1-3 Default user privileges
4-7 Default terminal mode
0 = Batch mode
1 = TTY mode
F = VDT mode
SCA$BS BYTE 17 Background Status
Bit
0 1 = BG Task pending
1 1 = Message pending
2 1 = BG Task complete
3 1 = BG Task bid error
4-7 Reserved

10.2.3.3 Text String.

Strings of characters are uniformly represented within SCIQ90 as a
series of bytes and a pointer. The first byte, which is addressed Dby
the pointer and may be on an odd byte address, contains the count of
the number of characters in the string. The following bytes contain

the characters. The null (empty) string is represented as a string
with length zero.

939153-9701 10-5 Texas Instruments

System Command Interpreter System Design Document

An output buffer for a routine which returns a string value wusually
must have the buffer capacity in the first byte so that buffer
overflows can be prevented. Some examples of string constants and
buffers follow:

STR1 BYTE 10

TEXT 'STRING ONE'
BUM BYTE 31
BSS 31

Note that +the first (count) byte is not included in the count. The
count refers to the number of following bytes.

10.2.3.4 Terminal Communications Area (TCA).

The terminal communications area (TCA) has three purposes. First,
it contains a description of the user currently logged in at the

terminal. This description includes his user 1D, status,’encoded
passcode, and allotted terminal time. Secondly, the TCA contains the
name correspondence table (NCT) belonging to the wuser. The NCT

contains the user defined synonyms and their values. Thirdly, the TCA
is used to pass information, including parameters, from one system task
to another. These task parameters are embedded in the NCT.

Hex.
Byte
_____ * .. —— *
>00 ! LENGTH OF TCA !
e e e e o e e e e e e e e e +
>02 | OFFSET TO TERMINAL STATUS BLOCK !
e - —————————————— +
>04 | RESERVED !
Fm e ————————————— - +
>06 | RESERVED :
e ———————————— +
>08 | OFFSET TO NAME CORRESPONDENCE TABLE (NCT) !
e — ————— e +
>0A | OFFSET TO END OF NCT
e e e ———— +
>0C | !
~ TERMINAL STATUS BLOCK -
|]
| 1
A e e e e e e e e e e e e e +
| |
y NAME CORRESPONDENCE TABLE -
|]
| 1
e e e e e e e e e e e e e e e e e e S e e S e e e o . P e S . S S S S i e o o o e S o o S *

Figure 10-2 TCA Layout

Texas Instruments 10-6 9%9153-9701

System Design Document System Command Interpreter

10.2.3.5 Terminal Status Block (TSB).-

The TSB, as shown in Figure 10-3, is used to identify the logged-
in user to +the various command processors. The encoded passcode
permits passcode verification without exposing the actual passcode
value. The user status information is copied to the terminal SCA entry
at log-in, and specifies the level of user capabilities in the system.
The FG task completion code is the medium by which FG task completion
codes are returned (those tasks executed with ".BID").

Hex.
Byte
_____ e e e e et e e e e e e e e e o e o e e e e e ¥
>00 i , !
: USER ID (6 CHARACTERS) !
[} |
+ - - —_— +
>06 ! FOREGROUND TASK COMPLETION CODE |
e e _— _ ———+
>08 | ENCODED PASSCODE |
+ - - - ——— ———t
>0A ! USER STATUS !
+ ———————————— e +
>0C | !
- RESERVED N
]]
1 |
F—mme —_— — +
>14 ! !
1 1
i i
+ + — -+
>18 | MAX DES SIZE ! ACTUAL DES SIZE
+mm— -+ +
>1A ! ,
~ USER DESCRIPTION TEXT -
i I
K e e —— e e e e e e e e e e e i o s e e e e o *
SOA %

Figure 10-% Terminal Status Block

10.2.3.6 Name Correspondence Table (NCT).

The NCT, as shown in Figure 10-4, consists of pairs of text
strings terminated by a zero byte. ZEach text string is formed from a
series of characters preceded by the count of the number of characters.
A length of zero is not permitted. User defined synonyms may consist
of printable characters only.

939153%-9701 10-17 Texas Instruments

System Command Interpreter System Design Document

Positional parameters (elements of the "PARMS" list on a .BID, .QBIP,
or .OVLY command) are transmitted to the command processor program via
special entries of the following form:

Byte 3, 0, O, Parameter Number Synonym
Byte 15
Text 'DS02.SYS.SOURCE!' Value

A program completion message (argument R2 of S$STOP) returned by a task
executed via a .BID or .QBID command is transmitted back to the FG
command interpreter as a bogus parameter O.

SIZE OF SYN 1 NAME

SYNONYN 1 NAME
TEXT

SIZE OF SYN 1 VALUE

SYNONYM 1 VALUE

SIZE OF SYN 2 NAME

e g

0 (END OF NCT)

2278142

Figure 10-4 Name Correspondence Table

10.2.4 INTERFACES.

SCI interfaces to the user, and to various SCI routines, through

the +terminal and several files. The following paragraphs describe the
interfaces.

10.2.4.1 Calling Sequence.

The calling sequence for SCI990 depends on the mode of operation.
In interactive (VDT or TTY) mode, the SCI task is bid by the operating
system in response to the wuser entering RESET followed Dby an
exclamation mark "!". In batch mode, +the task is bid by the QBID
mechanism (see paragraph 10.4) as a result of an XB command. The mode

Texas Instruments 10-8 9%9153-9701

System Design Document . System Command Interpreter

is determined by the four bytes passed as parameters of the Bid Task
SVC, which are formatted as follows:

S o e e e e e e e e *
! TYPE ! STATTION ID !
+-- —_— - ——t—— ————————————— +
! RESERVED |
R e e e e e e e e e e e e o et o e e et e e e e e e e e e e e e e e e e e e e *

The TYPE field is a copy of the SCAS$TT (terminal type) field in the ter
minal SCA entry. The STATION ID is the terminal (station) number. In
interactive mode, both the +type and STN ID fields are zero and the
information is derived from a SELFID SVC and the SCA entry. In Ybatch
mode, the fields are (and must be) non-zero to distinguish the mode.

10.2.4.2 Terminal Local File.

The terminal local file (TLF) is a buffer on disk for lines to be
displayed to the user. The lines are buffered so that VDT wusers can
scroll back and forth through them and so they can be listed together
in batch mode. The name of the file is determined from +the SCI mode
and the terminal number as follows:

FOREGROUND: .SSPTLF** where **
BACKGROUND: - SEBTLF** where *%

terminal number
terminal number

o

The interactive modes of SCI run in the foreground, while the batch
mode executes in background.

The TLF is written to by the S$I0 routines: S3OPEN, S$WRIT, S$WEOL,
and S$CLOS. Whenever SCI990 prepares to input a new command, the TLF

is displayed (TTY, VDT modes) or listed (batch mode) by the S$SHOW
routine.

10.2.4.3 System Procedure Library.

Commands are mapped into procedure file names by concatenating
them on the end of the current procedure library name. Unless the user
overrides the default PROC 1library name with a .USE command, the
standard system PROC library is used. This directory is named .S3$PROC.

10.2.4.4 Menu Piles.

Menus are displayed in VDT mode by displaying the contents of a
menu file. Menu files are named by concatenating the name of the
system PROC 1library, the characters ".M3", and the menu name. The

defa?lt menu file is .S$PROC.M$LC, which is also displayed in response

93%9153-9701 10-9 Texas Instruments

System Command Interpreter System Design Document

10.2.4.5 TCA Library File -- .S$TCALIB.

The terminal communication area (TCA) is described in paragraph
10.2.3.4 A TCA image is created for each user when his user ID is
assigned. This TCA image resides on the TCA library file .S$TCALIB
while the user is not logged in. Each record of the TCA 1library file
holds exactly one TCA image. The number of the record containing the
TCA image for a particular user ID is the same as the numeric part of
the 1ID. For example, a user ID of "ABCO10" uses record 10 (or >A) or
the TCA library file. The numeric parts of user IDs must therefore be
unique. Since the TCA library is implemented as an unblocked, relative
record file, DX10 allocates records in blocks. Thus it is desirable
that the record numbers be grouped, preferably by assigning them
sequentially starting at 1. Unneeded user IDs can be deleted and their
TCA 1library records reused by assigning the same numeric part of the
ID. Tor example, delete user ABCO10 and assign user DEFO10.

The TCA library file .S$TCALIB is accessed only during log-in and log-
out (in the DERROR module) and by the command processors for AUI, DUI,
LUI, and MUI (in the TINFO module). The byte field SCA$L5 in the SCA
module defines +the globally assigned LUNO used for accessing the TCA
library file (>03).

10.2.4.6 TForeground TCA File —- .S$FGTCA.

When a user logs in at a terminal, SCI990 reads his TCA image into
memory. While the user is logged in, this TCA image 1is used by the
various command processors to maintain his list of synonyms, maintain a
history of the status of his operations, and transmit parameter values
and messages between the various components of the SCI system. When a
command processor is implemented as a task separate from SCI990, the
TCA image is written to a record of the foreground TCA file for the
command processor task to read it. Routines S$PTCA and S$GTCA put and
get the TCA, respectively. The record number of TCA file is the same
as the terminal number. The foreground TCA file, S$FGTCA, is accessed
through the global LUNO found in byte SCASL3 of the SCA module.

10.2.4.7 Background TCA File -- .S3BGTCA.

The background TCA file, .S$BGTCA, is similar to the foreground
TCA file. This file is used for communication between the
batch/background SCI and its command processors. In addition, the

background TCA file 1is wused for passing synonyms and parameters to
tasks which are executed through QBID. The QBID task "freezes" the
foregound TCA image on record "I" of the foreground TCA file (where "I"
is the terminal number) onto record "I" of the background TCA file when
the Dbackground task bid request is made through the background request
manager. The background TCA file is accessed through the global LUNO
found in byte SCA$L4 of the SCA module.

Texas Instruments 10-10 939153-9701

System Design Document System Command Interpreter

10.2.5 SVC OVERHEAD ANALYSIS.

. The following four subsections detail the use of DX10 SVCs,
primarily for I/0, which are necessary for the execution of a typical
.BID or .OVLY program. The .BID and .OVLY cases assume a task or
overlay which accesses the TCA for parameters or synonyms and generates
a listing on the terminal local file. An analysis 1is presented in
paragraph 10.2.5.5.

10.2.5.1 .BID SVC Overhead for Foreground SCI990.

Table 10-1 shows the BSVC overhead incurred by SCI990 whiie
processing a .BID command. In the timing estimates, the Bid Task SVC
cost 1includes the overhead for End Task processing. The overlay for
the Open-Extend of the TLPF is assumed to be on disk.

Table 10-1 .BID SVC Overhead for SCI

Time Disk
Routine sve (Msec) Accesses
XBID 01 - Close the terminal ' 4.4 0
S$PTCA 00 - Open .SSFGTCA 4.7 0
OC - Write direct, 1 record 11.4 1
01 - Close .S$FGTCA 5.9 0
S$BID 2B - Bid task 36.2 2
S$GTCA 00 - Open terminal 4.5 0
00 - Open .S$FGTCA 4.7 0
OA - Read direct, 1 record 11.3 1
01 - Close .S$FGTCA 5.9 0
S$SOPEN 12 - Open-extend TLF 25.9 2
TOTALS 119.6 6

10.2.5.2 .BID SVC Overhead In The Task Being Bid.

‘ Table 10-2 shows the SVC overhead incurred by a task being bid
through .BID. In the timing estimates, the (91) LUNO assignment to the
TLF requires no disk accesses because the SCI task has a previously
assigned LUNO attached to the file. This also reduces the timing from
about 42 msec to 17 msec. The (12) open-extend estimate assumes that
the overlay is in memory and the TLF is empty. If it is not empty, the
estimate would be (18, 2, 1). The TLF is closed during task
termination. The overhead for task termination is assumed in the Task
Bid in paragraph 10.2.5.1.

939153-9701 10-11 Texas Instruments

System Command Interpreter System Design Document

Table 10-2 Overhead in the Bid Task

Time Disk
Routine sve (Msec) Accesses
SSNEW 17 - Get Bid Parameters .2 0
S$GTCA 00 - Open .SSFGTCA 4.7 0
OA - Read direct, 1 record 11.3 1
01 - Close .S$FGTCA 5.9 0
SSOPEN 91 - Assign LUNO to TLF 17.0 0
12 - Open-Extend TLF 9.7 0
S$PTCA 00 - Open .S$FGTCA 4.7 0
0C - Write direct, 1 record 1.4 1
01 - Close .S$FGTCA 5.9 0
TOTALS 70.8 2

10.2.5.3 .0OVLY SVC Overhead for SCI990.

Table 10-3 shows the overhead incurred by SCI in executing an
.OVLY command. Since an overlay is part of the SCI task, the TCA is
available in memory and the TLF is already open.

Table 10-3 .0OVLY SVC Overhead for SCI

Time Disk
Routine Sve (Msec) Accesses
S$OVLY 14 - Load Overlay 19.2 2

10.2.5.4 .0OVLY SVC Overhead in the Overlay.

For overlays, S$GTCA and SSRTCA access the TCA directly in memory
and require no I/0. The TLF is not actually opened and closed by
S$OPEN and S$CLOS, so the only TLF I/0 overhead is in the actual write
SVCs, which are ignored in this analysis. Therefore, no overhead is
incurred by the overlay being bid through an .0VLY command.

10.2.5.5 Analysis.

The assumptions made for this analysis are neither best nor worst
case and are probably typical. It is further assumed that the cost of
a disk access is approximately 100 msec for a DS31/32 disk drive and 60
msec for a DS25/50 disk drive. The SVC overhead for a typical .BID is
then about 986 msec (114.9 + 70.8s185.7 msec, 6+2=8 disk accesses).
The SVC overhead for the same program executed as an .OVLY is then 219
msec (19.2 msec, 2 disk accesses). The overhead for writing lines to
the TLF is the same in both cases and is 1ignored, as 1is all other
processing done by the program. For short functions, a .BID costs four

Texas Instruments 10-12 93%39153%-9701

System Design Document System Command Interpreter

times as much as an .0VLY in system overhead and terminal response
time. In both cases, the response time is on the order of a second or
less.

10.3 BACKGROUND RESOURCE MANAGER

The Background Resource Manager (BRM) manages the ba
resources of the DX10 system command interpreter. These resour
include the background task execution facility (QBID) and the output
queuer (OQUEUE). BRM polls the SCA for background service requests
from wuser terminals and bids +the appropriate program to handle the
request. It does not service requests itself and is not aware of the
meaning of the requests it manages. Adding background services may be
accomplished by adding background tasks to the system.

10.3.1 STRUCTURE OF BRM.

The BRM program consists of three modules, a task and two
rocedures. The first procedure is the system communication area
%SCA), which contains the SCA entries which are polled for service
requests. The second procedure is the background communication area
(BCA) through which BRM communicates with QBID and OQUEUE. The task
contaings the actual BRM code and data. Both the SCA and BCA are
"dirty" shared procedures. The SCA 1is described in +the -earlier
discussion of SCI990. The BCA is described in paragraph 10.3.3.

10.3.2 CALLING SEQUENCE.

The BRM must be placed into execution before any SCI background
service request is made through the SCA. This 1is normally done by
bidding BRM from +the DX10 system restart task. BRM then waits in a
time delay for a service request.

A service request is made by placing an opcode value in the SCA$FO (FG
SCI opcode) or SCA$BJO (BG SCI opcode) field of a terminal's SCA entry
and executing an Activate Time Delay Task SVC to wake up the BRM. The
run ID of the BRM task is initialized in byte SCA$L2 of the SCA. The
requesting SCI then enters a time delay loop waiting for the SCAS$FO (or
SCA$BO) field to clear.

Background service request opcodes are byte values consisting of two
hexadecimal digits. The <first digit identifies +the program that
processes the request. The second digit specifies a particular

operation. BRM uses only the first digit to determine the task ID to
bid.

Specific opcode values are documented in the QBID and OQUEUE
descriptions (paragraphs 10.4 and 10.5).

939153-9701 10-13 Texas Instruments

System Command Interpreter System Design Document

10.3.3 BACKGROUND COMMUNICATIONS AREA (BCA).

The BCA consists of +two parallel vectors, the TASKID and BUSY
tables, which are used for communication with the background request
handler tasks. The first digit of a service request opcode is used to
index these vectors. The TASKID vector maps the opcode into a DX10
task bid 1ID. The BUSY vector informs the BRM whether the indicated
task/opcode is currently in execution or must be bid to handle the
request. The BRM sets the busy flag when it successfully bids the
task. The task resets it when it terminates.

Entry O of each vector is meaningless since an opcode field value of O
indicates no request.

10.4 QUEUED TASK BID HANDLER (QBID)

QBID supervises the enqueueing and bidding of background tasks.
In +this context, Background (abbreviated BG) means that a task
execution is +to be initiated at a terminal via the .QBID SCI language
primitive. Such tasks are then managed by the user indirectly +through
commands that access the QBID program.

10.4.1 STRUCTURE OF QBID.

The QBID program consists of three segments. Two shared "dirty"
procedures, the SCA and BCA, are wused for communication with the
background resource manager and the command interpreter making a QBID
service request. These procedures are described in the documentation
for the background resource manager and SCI.

The task segment of the QBID program consists of several modules which
contain the QBID code and data. The code is organized as a supervisor
and four major components. The supervisor executes the four routines
BOOKIE, POLLER, BIDDER, and WAITER repeatedly until WAITER determines
that no work remains.

The bookkeeper routine BOOKIE keeps track of the status of all tasks
being managed by QBID. Its principal duties are: .Try to remove
blocks from blocked tasks .Remove queue entries of expired tasks
.Calculate the current level of background task activity

Blocked tasks are those that cannot be bid at a particular time but are
expected to be bidable 1later. Examples are tasks that are not
replicable but are currently in execution. Expired tasks are those
that have been successfully bid and have subsequently terminated.

Texas Instruments 10-14 9391539701

System Design Document System Command Interpreter

The POLLER routine periodically examines +the SCA for QBID service
request opcodes. Opcodes in the range >10 - >1F are handled
immediately by invoking the appropriate routine:

Opcode Routine Purpose
10 BUILDQ Build a queue entry
11 STATUS Check status of queued task
12 KILLQT Kill a queued task
13 DBID Bid task in halted state

The BIDDER routine attempts to bid tasks waiting on the background task
queue within the constraints of the sysgen-imposed +threshold count.
Tasks are bid only if the current background activity level count is
not exceeded. Candidate tasks on the queue must not be currently
executing or marked as blocked. Bid attempts that fail because the
specified task is not replicable or because the system +table area is
full cause the task to be marked as blocked.

The WAITER routine decides whether QBID has further work to do. If not
(i.e., the queue is empty), it informs the BRM via the BUSY vector in
the BCA that is terminating and does so. If there is more work to do,
WAITER executes a time delay SVC and exits. The supervisor then
repeats the execution of the four primary routines.

Table 10-4 shows the structure of QBID as a table of direct subroutine
calls.

Table 10-4 QBID Subroutine Call Table

Calling Routines

Routine Called

QBID BIDDER,BOOKIE,POLLER,WAITER
BIDDER -

BOOKIE TSTATE

POLLER BUILDQ,DBID,KILLQT,STATUS
WAITER -

BUILDQ TCASVC

DBID BUILDQ

KILLQT STATUS

STATUS TSTATE

TCASVC -

TSTATE -_

93%3915%-9701 10-15 Texas Instruments

System Command Interpreter System Design Document

10.4.2 DATA STRUCTURES.

The following paragraphs describe the data structures used by QBID
routines.

10.4.2.1 System Communication Area (SCA).

The SCA is an area of memory shared as a "dirty" procedure by all
command interpreters, the BRM, and +the background request handlers
(QBID,OQUEUE). The SCA contains a table of global system data, such a
global LUNOs and task bid IDs, plus a table called an SCA entry for
each terminal that will wuse SCI990. The SCA is documented in the
description of SCI990 (see paragraph 10.2).

10.4.2.2 Background Communication Area (BCA).

The BCA consists of two parallel vectors, the TASKID and BUSY
tables, which are used for communications between the BRM, QBID, and
OQUEUE. The first digit of a service request opcode is used to index
these vectors. The TASKID vector maps the opcode into a DX10 task bid
ID. The BUSY vector informs the BRM whether the indicated task/opcode
is currently in execution or must be bid to handle the request. The

BRM sets the busy flag when it successfully bids the task. QBID resets
it when it terminates.

10.4.2.3 Task Queue Entry.

Each task to be bid by QBID has an associated queue entry, which
is created by QBID in its own task area. BFEach queue entry describes a
task, information necessary to bid the task, and the current execution

status. The fields of a queue entry are labeled and defined as
follows:

QNEXT EQU 0 Address of next queue entry

* —— QNEX?T must be zero --

QSTAT EQU 2 Status of gqueue entry

QTERM EQU 3 Terminal ID

QUSRID EQU 4 User ID

QBTASK EQU 10 Task bid ID

QLUNO EQU 11 LUNO

QCODE EQU 12 Code value

QRTASK EQU 13 Task Run ID

QTIME1 EQU 14 Time place in queue

QTIME2 EQU 18 Time task was bid

*

QESIZE EQU 22 No. of bytes in a queue entry

Texas Instruments 10-16 9%9153~-9701

System Design Document System Command Interpreter

The status byte (QSTAT) is divided as follows:

Bit

0 1 = Task has been bid
1 1 = Task is blocked (task ID in use)
2 1 = Task is running

3-7 Reserved

10.4.3 CALLING SEQUENCE.

QBID Is always bid by the background resource manager (BRM) task
in response to a Dbackground service request from a terminal command
interpreter (FG or BG). SCA opcodes in the range 10 through 1F are
directed to QBID. The currently defined opcodes are:

10 Enqueue a background task bid (.QBID)
11 Check status of an enqueued task

12 Kill an enqueued task

13 Execute a BG task in debug mode (.DBID)

Associated with +these opcodes are fields within the SCA entry that
specify parameter values. These are:

SCASRBC BG "CODE" Value

SCAS$BL BG Program File LUNO
SCA$BS BG Status

SCASBT BG Task ID

SCASFE Returned error code (FG)
SCASTI Terminal ID

10.4.4 TFILES.

The only files accessed by the QBID task are the foreground and
background TCA files, .S$FGTCA and .S3BGTCA, via the LUNOs specified in
the SCA. When a task is enqueued for BG execution, the FG TCA image
for the terminal is copied from the FG TCA file to the BG TCA file.
The TCA image is a single record in each case. The record number is
the same as the terminal number. The TCA image is "frozen" in this
manner so ‘that the parameters specified on the corresponding .QBID
language primitive will be available to the enqueued task when it

executes. Also, all synonyms defined at the terminal will be available
to the task.

The TCA image 1is described in detail in the SCI990 discussion (see
paragraph 10.2)

10.4.5 ERROR CODES.

The following error codes are returned in the SCASFE field of the
SCA entry for the terminal making the QBID request.

939153-9701 10-17 Texas Instruments

System Command Interpreter System Design Document

Code Meaning

00 No error - request serviced

01 Unable to allocate a queue entry block

02 Unable to access the TCA

02 BG already pending (should be caught by the
command interpreter first)

03 Bid SVC failed for ".DBID" request

80 Unknown SCA opcode

FF No queue entry found (Status)

10.5 QUEUED OUTPUT HANDLER (OQUEUE)

OQUEUE supervises the enqueuing of files and output to devices and
of messages to and from terminals. Files are queued up for output by
name, rather than by copying the named file to a spooled data area.
Any number of files may be queued for any number of devices. OQUEUE
also enqueues messages for transmission to terminals.

10.5.1 STRUCTURE.

The OQUEUE program is divided into two tasks, O0Q$COPY and OQ$MGR,
each of which consists of three segments. Both tasks share "dirty"
procedures, the SCA and BCA which are used for communication with the
SCI990 +task making an OQUEUE service request. These procedures are
described in the documentation for the background resource manager and
the command interpreter.

The task segment of the OQ$MGR program consists of several modules.
The code is organized as a supervisor and four major components. The
supervisor executes the three routines POLLER, BOOKIE, and WAITER
repeatedly until WAITER determines that no work remains.

The POLLER routine periodically examines the SCA for OQUEUE service
request opcodes. Opcodes in the range >20->2F are handled immediately
by invoking the appropriate routine:

Opcode Routine Purpose
20 BUILDQ Build a queue entry
21 STATUS Show output status
22 KILLDV Kill output at a device
23 HALTIT Halt output to a device
24 RESUME Resume output to a device
2E SMSG Send a message
2F RMSG Receive a message

The bookkeeper routine BOOKIE tracks current I/0 and message activity,
ensuring +that each queue entry is ultimately processed. BOOKIE calls
MBOOKY to check each pending message destination against each currently
logged-in SCA entry. When a terminal for which a message is pending is
discovered to be activated, the message pending flag in the background

Texas Instruments 10-18 9%9153-9701

System Design Document System Command Interpreter

status field (SCA$BS) of +the SCA entry is set. BOOKIE then calls
OBOOKY, which attempts to assign an output processor to a file queue
entry waiting for access to an output device, and assigns an 0Q®COPY
task to each device for which output is queued. Thus, queued output
may be directed to many devices simultaneously.

OQ$COPY is a replicative task that copies files to a device. The file
and device must have been assigned global LUNOs prior to execution of
0Q$COPY. 0Q$COPY is bid by the BOOKIE portion of OQSMGR. The Device
Status Table (DST) in the BCA contains all the information necessary to
copy file records to the device.

The WAITER routine decides whether OQUEUE has further work to do. If
not (i.e., the queues are empty), it informs the BRM via the BUSY
vector in the VCA that it is terminating and does so. If there is more
work to do, WAITER executes a time delay SVC and exits. The amount of
the time delay is determined dynamically by WAITER. After the time
delay, WAITER exits. The supervisor then repeats the execution of the
four primary routines.

Table 10-5 shows the structure of OQUEUE by its subroutine call
linkages.

9%39153-9701 10-19 Texas Instruments

System Command Interpreter System Design Document

Calling
Routine
OQ$MGR
BOOKIE
POLLER

WAITER
MBOOKY
OBOOKY
BUILDQ
HALTIT
KILLDV
RESUME
RMSG
SMSG
STATUS
WRITER
GETFET
GETBLK
GTCA
S$PARM
FINDDV
OPARMS
S$SETS
PTCA
QSOPEN
QSWRIT
Q$WEOL
WRSTAT
Q$CLOS
OPENDV
OPENFL
COPYFD
CLOSEF
CLOSED
WSTOP
TCHELP
CLRBUF
SVC3R2
OPNSR2
SVCS3R1
FORMAT
WAIT

Texas Instruments

Table 10-5 OQUEUE Subroutine Call Table

Routines

Called

BOOKIE, POLLER,SLICER,WAITER

MBOOKY, OBOOKY
BUILDQ,HALTIT,KILLDV,RESUME, RMSG, SMSG, STATUS

GETFET

GETBIK,GTCA, SSPARM

FINDDV, OPARMS

FINDDV, OPARMS

FINDDV, OPARMS

GTCA, S$SSETS, PTCA

GETBLK,GTCA, SSPARM
GTCA,SSPARM, QSOPEN, QSWRIT, QSWEOL, WRSTAT, Q$CLOS
OPENDV, OPENFL, COPYFD, CLOSEF, CLOSED, WSTOP

TCHELP

GTCA.SSPARM

TCHELP
CLRBUF

CLRBUF
Q3WRIT,Q3IWEOL

SVC$R2, OPNSR2

SVCS$R1

SVC$R1 , FORMAT, SVC$R2, OPNSR2, WAIT
SVC$R1

SVCR2,WAIT

WAIT
SVC$R2
WAIT

10-20 939153-9701

System Design Document System Command Interpreter

10.5.2 DATA STRUCTURES.

The internal data structures used by OQUEUE routines are described
in the following paragraphs.

- 10.5.2.1 System Communication Area (SCA).

The SCA is an area of memory shared (as a "dirty" oprocedure) by
all command -interpreters, the BRM, and the background request handlers
(QBID, OQUEUE). The SCA contains a table of global system data, such
as global LUNOs and task bid IDs, plus a table called an SCA entry for
each terminal which may use SCI990 ?see paragraph 10.2).

10.5.2.2 Background Communication Area (BCA).

~ The BCA consists of two parallel vectors, the TASKID and BUSY
tables, which are used for communication between the BRM, OBID, and
OQUEUE. The first digit of a service request opcode is used +to index
these vectors.. The TASKID vector maps the opcode in a DX10 task bit
ID. The BUSY vector informs the BRM whether the indicated task/opcode
is currently in execution or must be bid to handle the request. The

BRM sets the busy flag when it successfully bids the task. OQUEUE
resets it when it terminates.

10.5.2.3 Output Queue Entry.
Each output entry describes a file and a device to which the file
is to be copied. The fields of the output queue entry are labeled and

defined as follows:

QNEXT EQU O Address of next queue entry
* -— QNEXT must be zero —-

QSTAT EQU 2 Status of queue entry

QTERM EQU 3 Terminal ID

QUSRID EQU 4 User ID

QTIME1 EQU 10 Time placed in queue

QTIME2 EQU 14 Time task was bid

QDLMAX EQU 18 Max length of message name
QULMAX EQU 18 Max length of message user ID
QDNLEN EQU 19 Actual length of device name
QUILEN EQU 19 Actual length of message user ID
QDVNM EQU 20 Device access name/message user ID
QALMAX EQU 26 Max length of access name

QTLMAX EQU 26 Max length of message text
QANLEN EQU 27 , Actual length of access name
QUTLEN EQU 27 Actual length of message text
QACNM EQU 28 File access name/message text

*

QASIZE EQU 80 Max No. of bytes in a file name
QDSIZE EQU 6 Max No. of bytes in device name

QESIZE EQU QACNM+QASIZE No. of bytes in queue entry

939153-9701 10-21 Texas Instruments

System Command Interpreter System Design Document

The status byte (QSTAT) is subdivided as follows:

Bit

0 1 = Output has begun
1 1 = ANSI Format

2 1 = I/0 completed
37 Reserved

10.5.2.4 7PFile Environment Table.

A file environment table (FET) is assigned to each output device
for which files are queued. The FET contains the data specifying the
file and device, a workspace, and all data and buffers used by a WRITER
routine to copy records from the file to the device. The FETs and
WRITER are analogous to DX10 tasks and a shared procedure. The fields
of a FET are labeled and defined as follows:

WFETRO EQU O 32 BYTE WORKSPACE

WNFET EQU 32 @ NEXT FET IN FET QUEUE
WPC EQU 34 @ NEXT ENTRY INTO WRITER
WQNTRY EQU 36 @ INPUT FILE QUEUE ENTRY
WLINES EQU 38 # LINES LEFT ON PAGE
WDVTYP EQU 40 DEVICE TYPE CODE

WSTAT EQU 41 STATUS

WDEVNM EQU 42 DEVICE NAME

WSTACK EQU 46 RETURN STACK

WPRBI EQU 54 INPUT PRB

WPRBO EQU 94 OUTPUT PRB

WBUFF1 EQU 134 BUFFER 1

WFSIZE EQU WBUFF1+140 END OF FET

The FET status byte (WSTAT) is subdivided as follows:

Bit

0 1 = Halt output immediately

1 1 = Halt output at EOF

2 1 = Kill output of current file
3 1 = Kill all output at device
4-7 Reserved

10.5.% CALLING SEQUENCE.

OQUEUE is always bid by the background resource manager (BRM) task
in response to a background service request from a terminal command
interpreter (FG or BG). SCA opcodes in the range of >20 through >2F
are directed to OQUEUE. The currently defined opcodes are:

>20 Release file to queue
>21 Show output status
>22 Kill output to a device

Texas Instruments 10-22 939153-9701

System Design Document System Command Interpreter

>23 Halt output to a device
>24 Resume output to a device
>2E Send message

>2F Receive message

Associated with these opcodes are fields within the SCA entry that
specify parameter values. These are:

SCASBS BG Status

SCASDV Terminal device name
SCASFE Returned error code (FG)
SCASTI Terminal ID

SCASUI User ID

10.5.4 FILES.
OQUEUE uses the TCA file and a listing file, as described below.
10.5.4.1 TCA File.

The foreground or background TCA file record corresponding to the
number of the terminal making the OQUEUE service request 1is read (by
module OQS$STCA) so that the opcode handling routines can access the
parameters in the NCT.

The TCA image is described in detail in the documentation for the
system command interpreter program, SCI990.

10.5.4.2 Listing File.

The Show Output Status function has a listing file as a parameter.
This listing file is normally the foreground or background terminal
local file (TLF), at the option of the SCI PROC which invokes OQUEUE.
The module OQS$TLF includes the routines used to write to the listing
file. '

10.5.5 ERROR CODES.

The following error codes are returned in the SCASFE field of the SCA
entry for the terminal making the OQUEUE request.

Code Meaning
00 No error - request serviced
01 No queue block available
80 Unknown SCA opcode
FA Invalid argument
FD NCT error (internal)
FD TLF Error
FD TCA error
FF Queue entry not found

939153-9701 (Change 1) 10-23/10-24 Texas Instruments

System Design Document System Crash Analysis

APPENDIX A

SYSTEM CRASH ANALYSIS

A.1 GENERAL

When the DX10 operating system detects a system failure, it displays an
error code on the front panel lights and idles the CPU, as described in
the DX10 Operating System Production Operation Manual. The first step
that must be taken 1in order to analyze the system crash is to dump
memory to the predefined crash file on disk. This is accomplished by
pressing the HALT and +then the RUN buttons on the front panel. The
next steps in analyzing the crash are: reboot the system (as explained
in the DX10 Operating System Production Operation Manual); bid SCI at a
terminal; and execute the crash analyzer, ANALZ, using an XANAL
command .

A.2 OPERATING PROCEDURE

When ANALZ is activated, using the XANAL command, five parameters are
prompted. The parameters are:

*CONTROL ACCESS NAME: the name of +the file or
device from which ANALZ

expects commands. The default
is ME.

*LISTING ACCESS NAME: the name of the file or

device to which ANALZ should
write its output.

*ANALYZE RUNNING SYSTEM?: answer YES +to analyze the
currently running system,
(rather than a crash dump).
If the dump is to be analyzed,
answer NO. The default is NO.

*DISK DEVICE NAME: the name of the disk unit on
which the crash file is
written. The default is DSO1.

*CRASH FILE NAME: the name of the file

containing the crash dump.
The default is SSCRASH.

939153-9701 A-1 Texas Instruments

System Crash Analysis System Design Document

If ANALZ is running in batch mode (i.e., a file or sequential input
device was specified as the control access name), each input value or
command must start in column one of a separate record (card). Use of
batch input +to ANALZ allows the user to keep a standard ANALZ command
stream on file or cards which can be easily and quickly executed after
every system crash.

A.3 COMMANDS

The commands given to ANALZ cause it to select portions of the memory
dump on the crash file (or actual memory, if +the running system 1is
being analyzed) and write them to the listing device in a formatted
form. Blocks of memory are written eight words per line, preceeded by
the address of the first word. All numbers are in hexadecimal. An
abbreviated ASCII representation of the eight words is written to the
right of the hexadecimal representation. Byte values that do not
represent a character are written as periods (m.m).

Table A-1 shows the ANALZ commands and the action each performs.

Table A-1. ANALZ Commands

Command Action

GI List general information about the crash

TS List the task states of all currently
executing tasks

SS List memory images of the system structures

MM List a memory map

AQ List a representation of the four active
queues

PQ List a representation of the other system
queues

TR List the workspace registers for all tasks
in memory

TA List memory images of every task area in
memory

AL Do all of the above, in the order given

DM List a specific area of memory

DI List disk information

QU Terminate execution

Normally, the user needs only execute the AL command to obtain enough
information about a crash. The following paragraphs describe in more
detail the results of some of the commands. The commands are described
in the order in which they are executed by the AL command. Useful
information is also provided for determining the reason for the crash.

Texas Instruments A-2 939153%-9701

System Design Document System Crash Analysis

A.3.1 GENERAL INFORMATION (GI) COMMAND.

The GI command lists general information about the crash.

A.%3.1.1 Crash Code.

The first entry is the system crash code that was displayed on the
front panel when the crash occurred, as well as an English +translation

of the code (see the DX10 Operating System Error Reporting and Recovery
Manual for a description of the crash codes).

A.3.1.2 Executing Task.

The second entry is the address of the task status block (TSB) of the
task that was executing when the crash occurred. When +this value is
zero, the crash occurred within the operating system, probably during a
gscheduling cycle.

A.3.1.3 Location of Failure.

This entry is +the address at which the crash routine was called. In
some cases, this entry points to the exact 1location of +the crash.
However, in most cases, this value is the location of a common crash
point that is entered from any of several locations.

A.3.1.4 Status Register.

This entry lists the value of +the status register when +the crash
occurred. The status register information is valuable when the crash
code is >20. The last four bits (last digit in +the entry) of the
status register 1is the interrupt mask. When the interrupt mask value
is in the range >2 - >E, the crash was caused by an illegal interrupt.
When the interrupt mask value is 1, the crash was caused by one of the
task error states occurring within the system or system task.

A.3.1.5 System Variables.

A set of system variables is printed after the status register value.
Most of these do not contain useful information. Three of the
variables may be of some importance. They are:

MEMSIZ Total amount of memory in the system
expressed in beets (32-byte blocks).
This 1is wuseful in determining the
amount of memory space available for
system and user tasks.

NUMDEC Negation of the number of time units

939153-9701 A% Texas Instruments

System Crash Analysis System Design Document

since the 1last scheduling action.
If +this number is unusually large,
a task may be in a loop with the
scheduler suspended or the scheduler
itself may be in error.

RSTRSW Flag that tells if the system has
completed initialization. If the
flag is set to -1 (>FFFF), the crash
occurred because the system was not
initialized.

Texas Instruments A-4 9%9153-9701

System Design Document System Crash Analysis

A.3.1.6 Fixed and Runtime Task IDs.

These entries are bit maps of all fixed and runtime task IDs. They are
generally of no value in a crash analysis.

A.3.1.7 System Patch Area.

A dump of all out-of-line patches that have been applied to the system
by the MEMRES patch file is listed. This is used to verify that all
out-of-line patches have been applied to the system successfully. The
beginning address of the patch area should %be equal to the value
assigned to S$PAT. The last five lines of the patch area will give the
revision letter of the release. The revision letter should be checked
to make sure that all recent patches have been applied.

A.3.1.8 Monitor Registers and Stack.

The monitor registers are the registers of the executing task at the
time of the crash. RO of these registers will often contain the code

of an error that caused the task to abort the system. The error codes
are as follows:

1 Memory Parity Error

2 Il1legal Instruction

3 TILINE Time Out

5 Mapping Violation

A Execute Protect Violation (990/12)
B Write Protect Violation (990/12)
C Stack Overflow (990/12)
D Hardware Breakpoint (990/12)
E 12 Millisecond Clock (990/12)
F Arithmetic Overflow (990/12)

R10 is the stack pointer for the task. A segment of the stack will be
printed following the workspace registers. The stack pointer can be
used to trace back through the stack to determine if a lower tier
routine has passed an error code.

A.3.1.9 Interrupt and XOP Vectors.

The hardware interrupt and XOP +trap vectors should be examined to
verify that they are intact. Since these values reside in the first
locations of physical memory, they are often destroyed by a system cr
privileged task that branches to memory location zero. Usually, the
locations that are destroyed are locations 0-% (power-up interrupt) or
locations 1A-1F (interrupts six and seven). Location O is often loaded
with a bad value when a data word required by a task is not specified.
Locations 1A-1F are destroyed when a task executes a BIWP instruction

939153-9701 A-5 Texas Instruments

System Crash Analysis System Design Document

to location O. When the BLWP instruction occurs, the return context of
the task will be in locations 1A-1F. When a >20 crash occurs, and the
interrupt mask indicates a defined interrupt (mask value minus one),
the interrupt trap values should be checked to determine if +they are
within the proper address range. BFExcept for interrupt levels O, 1, 2,
and 5, the workspace pointer and program counter for each +trap should
point to about the same locations.

A.3.1.10 Internal Workspaces.

The 1last data printed are the workspaces for the clock processor, the
interrupt 2 processor, and +the JSVC processor. These routines are
entered through context switches, so the return context will be found
in registers R13-R15 of these workspaces. The clock workspace will
contain the location in +the executing task where +the last clock
interrupt occurred. The SVC workspace will contain the location of the
last supervisor call. These two locations can sometimes help determine
where a task was at the time of the crash. The interrupt 2 workspace
contains diagnostic information about a >20 crash. RI1%-R15 contains
the context of the crash within the system. R1 contains the error code
(1isted above). When 1looking at +the saved status register for
interrupt 2 (R15), check to see if bit 8 is set or reset. If bit 8 is
set, the crash occurred in task driven code. If bit 8 is reset, the
crash occurred 1in system code. It may be necessary to dump memory
around the location pointed to by R14 to check the listing to determine
if the code has been modified.

A.3.2 TASK STATE (TS) COMMAND.

The TS command lists the most commonly referenced terms from the TSBs
of the tasks in +the system. The 1list contains, for each entry, the
task ID, the task context at the last time the task was scheduled or
performed a supervisor call, the current state of the task, the task
flags, and the TSB address. The task status block 1list follows the
listing of commonly referenced terms. The task flags contain useful
information in bit 5: when this bit is set, the task has been rolled
out %o disk; when this bit 1is reset, the task is in memory. By
examining this bit for each task, the user can determine which tasks
were in memory and may be associated with the crash.

-

Texas Instruments A-6 0391 53-9701

System Design Document System Crash Analysis

A.3.3 SYSTEM STRUCTURES (SS) COMMAND.

The S8 command lists the TSB, PSB, PDT, FCB, and IDT information from
the system. The system templates and/or data structure descriptions
are helpful when examining the SS command lisitng.

A.3.3.1 Task Status Block (TSB).

The TSB listing gives the entire TSB for every task in the system. The
TSB contains 2all +the information about the task that is used by the
system. The most important fields in the TSB 1listing are the end
action address, the second flag word, the task diagnostic field, and
the task map file.

The end action address entry contains the starting address of the
memory ‘task segment. This parameter is helpful when partial links of
the system segments are available (provided with DX10 source). By
taking the end action address entry, and locating where the task
segment is in one of the partial links, the location of other systen
parts can be found. The length of the root segment can be found from
the partial links. The starting address of DMGR, which is the start of
the memory resident task segment, can be located in the TSB 1listing.
By subtracting the length of the root segment from the starting address
of DMGR, the starting address of the root can be determined. The
starting address of the root segment is useful in determining if the
crash was caused by DX10.

The second flag word in the TSBs contains information about the task.
If the task is being debugged, the first seven bits of the flag word
contain information regarding the debugger; otherwise the first seven
bits are set to zero. If the task is suspected as causing the crash,
the flags should by verified with the templates, and TMRWT and the
DEBUGGER modules should be examined for possible problems.

The diagnostic information field in the TSB contains +the interrupt 2
values for a task +that has taken end action. This field is helpful
when analyzing a crash code of >27. The >27 crash is caused by TMEXT
being non-zero when a task is killed. Often this occurs when a system
task sets TM®EXT to suspend scheduling, then takes end action. Thus,
even though a task may have a unique crash code, a >27 crash may occur
because of these circumstances. The diagnostic information contains
the context vector of the task at the time it was aborted. By taking
these values, the listings can be examined to determine what conditions
caused the abort (if +the source listings are available). If +the
listings are not available, this information is useful in discovering a
faulty module, if subsequent crashes occur within the same task area.

939153-9701 A-T7 Texas Instruments

System Crash Analysis System Design Document

The task map file is also kept in the TSB. The map file consists of
three segments, with each segment containing a limit and a base. When
a memory management problem is being considered, or an unexplainable
map violation occurred from the task, the task map file should bYe
examined. To find the wupper 1limit of a task, find the last 1imit
register that is not equal to >FFFF and negate it. The task should be
able to address memory locations up to that point. To check for a
memory management problem or a TILINE time out problem, the location of
each segment in physical memory should be determined. This is done Dby
the following formulas:

Segment Beet Address Beet Length
T__) _£1 -L1/%2
2 B2+(-11/%2) (L1-L2) /32
3 B3+(-12/%2) (L3-L2) /32

where the map file s L1, B1, 12, B2, L3, B3

The segment beet address can be checked against MEMSIZ (GI command
listing) to see if the beet address exceeds the memory limit. Also,
the segment can be checked on the time ordered list (MM command
listing) if a memory management error is suspected.

A.3.3%.2 Procedure Status Block (PSB).

The PSB list follows the TSB list. These entries contain +the memory
Beet address and the length of the segment in Beets. It may be
necessary to verify the procedure locations in memory and check for
their entry on the time ordered 1list (MM command listing). The
procedures have a count of tasks that are attached to them. If +the
procedure is flagged as memory resident, then this count must always be
at least one. There 1is no link to the attached task(s) in the PSB;
this link is maintained by the tasks in the TSB.

A.3.3.3 Physical Device Tables (PDT) and Device Buffers.

The next items listed are the PDTs. The PDTs define every device in
the systen. The device buffers are shown with the PDTs; these are
meaningful only if the device is marked assigned and busy in the PDT
flag field. The first two words in the PDT contain the PDT link and
the map file address and are not included in the PDT workspace. If a
crash occurred when the system was in a DSR, the general location of
the PC can sometimes be found by looking at the PDT workspace registers
5 and 6. These registers often contain either the interrupt entry
vector or a BIWP vector used in the DSR. RS5 contains the workspace
pointer, and R6 contains the program counter.

All keyboard devices have a keyboard status block (KSB) as the last

part of +the PDT. The KSB contains a ring buffer for the characters
being input. By looking at this buffer, the last 6 characters input

Texas Instruments A-8 9%9153%-9701

System Design Document System Crash Analysis

can be determined. 1so, the K8B flags contain information about an
SCI bid and whether SCI is active at the terminal.

The TILINE and diskette drive PDTs have an extension for each
controller. The controller can have up to 4 drives associated with it.
There 1is one PDT per drive. The extension is found on the first drive
PDT. The extension indicates the number of drives that the controller
services. The PDTs for TILINE devices also contain the last TILINE
image that was sent to or from the device. These parameters are useful
in isolating disk problems when the crash was related to the disk or
the crash was forced by the user, when disk activity was 100% and the
system was in a "hung" state.

A.3.3.4 7PFile Control Blocks (FCB).

The FCB list gives all the files that were assigned at the time of the
crash. ZEach disk drive has a list consisting of its VCATALOG entry and
all +the directories and files under it. ZEach FCB contains information
the file name, pointers to its parent directory, disk allocation space,
and logical and physical record sizes. This list is most useful on a
running system when a drive cannot be released because of LUNO
assignment. When the FCB LUNO count is zero, the PFCB should be
released. If an FCB is in memory with a LUNO count of zero (see system
templates), the file is released by assigning a LUNO to that file, and
then releasing it. This allows FUTIL another chance at removing the
FCB. A disk will not be released until the only file opened under it
is VCATALOG. The FCBs are also helpful with FUTIL and file management
crashes. The FCB list shows all the files in the system at the time of
the crash. The FCBs can then be examined to determine which file or
files were involved in the crash.

A.3.3.5 Disk Partial Bit Maps.

Fach disk +that is installed has information concerning its ADU
allocation printed in the dump. A 3F-entry list is given for each
sector of track O that contains disk allocation information. The 1list
entries contain the size of the biggest ADU block for each sector, the
size of the first block, and the size of the last block in that sector.
There is room in each sector of the bit map to define 2032 ADUs. The
disk bit map is printed next. ZEach entry has one word of overhead and
127 words of bit maps. The allocation information is of 1little use
when analyzing a crash; it tells only if the disk is full.

939153-9701 A-9 Texas Instruments

System Crash Analysis System Design Document

A.3.3.6 TLogical Device Tables (LDT).

The 1last 1listing printed by the SS command is the LDT list. The LDTs
provide information about LUNO assignment in the systen. Every task,
station, and global LUNO is listed, with global LUNOs listed first,
then station and task LUNOs listed in order of TSB. The LDT contains
the LUNO number and the pointer to the associated file or device. When
the LUNO is assigned, the TSB field will contain a non-zero value
pointing to the TSB that owns the LUNO (see system templates). The
IDTs are structured as a forward-linked list. The task LUNOs will
point to the global LUNO list, either directly or through a 1list of
task LUNOs. The LDT information is most helpful when using ANALZ on a
running system. The LDT information can show why a LUNO is not being
released and what it is pointing to. When examining the listing for a
particular LUNO, the first LDT with the LUNO desired is looked at
first. There may be more than one LDT with the same LUNO. The
information in the first LDT is checked, and if this does not solve the
problem, the next is examined. The IDT 1list can also be used 1in
diagnosing file utility (FUTIL) problems in a crashed system.

A.3.4 TLIST MEMORY MAP (MM) COMMAND.

The MM command 1lists information about the system mapping scheme,
memory within the system table area, memory in the user task area, and
system overlay segment usage. This set of entries should be examined
whenever memory management might be involved with a crash.

A.3.4.1 System Memory Maps.

The system memory maps listing contains the current pointer to the map
0 map file, followed by all the system map files defined in the system.
Each entry in the map file list contains seven words. The first word
given is the overlay ID of the system image. This should correspond to
one of the overlay IDs on the link map of the systen. (The IDs 1listed
in the dump are in hexadecimal, while the IDs in the link map are in
decimal. This is used only if +the 1link maps of the system are
available). The remaining six words are the map file registers. These
are the same as explained for the TSB listing. The first several
entries are always the same, as follows:

File Management and Key Indexed Files
Memory Resident Tasks
User Common Area
I/0 Common Area
Scheduler
Disk Device Service Routine (DSR)
+ DSR for Bach Remaining Device

IO

The current map file (CURMAP) pointer is wusually pointing to the
scheduler map file, entry five in the map file list. When a crash

Texas Instruments A-10 97301 5%-9701

System Design Document System Crash Analysis

occurs and CURMAP is not ©pointing +to +the schedular map file, the
problem is within one of the DSRs. Whenever a crash occurs and the
interrupt mask (bits 12-15 of the status register) does not equal >F,
CURMAP and the map file it points to should be checked. The addresses
of the device DSR maps are found in the second word of the device PDT.
When +the PDT is dumped, the map file can be verified by checking that
the second word of the PDT points to one of the listed map files. The
memory for the DSR is examined by supplying the PDT address (not the

TSB address) for the Dump Memory (DM) command.

A.3.4.2 System Table Area.

The system table area contains system usage information and a 1list of
available memory. Crashes that are caused by too little table area can
be determined by 1looking at the system table header. A >30 crash
occurs when the system table overflows. The overflow can be determined
by adding the starting address of the table {(located in the header) and
the total length of the table (also located in the header). If +this
sum is greater than +the highest address allocated, a system table
overflow has occurred. When the system crashes Dbecause of a table
overflow, DX10 should be generated with a larger table area.

The remainder of +the table area defines +the free space chain of
available memory. The header information gives +the address of the
first byte available. The remaining entries give the length of that
block in bytes and an address pointer to the next available block. The
list is ended with a zero pointer.

The system table area contains many structures of 10-100 bytes. When
the system table area is heavily fragmented and approaching 100%
utilization, some devices (such as diskettes) may not be able to obtain
memory for the device buffer, and cause a table overflow crash. When
this occurs, the size of the system should be evaluated and resizing
the system by system generation should be considered.

Tasks with a coding error can cause a table overflow crash by using an
unusual amount of table area. When this occurs, the table area listing
contains many structures of the same type and size. Each entry in the
system table lists its size in bytes. An example of this type of crash
occurs when a COBOL program performs record locking on every record of
a very large (20,000 record file. The system table area will have
many RTL entries and will overflow. Programs that cause this type of
crash should be rewritten.

939153-9701 A-11 Texas Instruments

System Crash Analysis System Design Document

A.3.4.% TUser Memory Area.

The user memory area consists of three parts: the user memory header,
the available memory list, and the time ordered list. A1l values in
these tables are given in beets (32-byte blocks). The user memory is
considered to be all of the physical memory that is not taken up by the
memory resident segments of the operating system.

The user area header contains a pointer to the first available block of
memory, the starting address of user memory, and the total length of
user memory. No user task can be greater than the total length of
memory. A crash normally does not occur from this unless the available
memory space is less than 32K words or >800 beets. Also, no address on
any of the three lists should be greater than the total length of

memory (MEMSIZ). If +this occurs, it indicates an error in memory
management.

The available space list is a list of the blocks of memory available
for wuser programs and their beet lengths. This is a linked list, with
each entry containing a length word and a pointer to the next available

block. These entries are kept in the first two words of the first beet
of the block.

A1l user tasks, procedures, and blocking buffers that are not defined
as memory resident are found on the time ordered list (TOL). Each of
these segments have one beet of overhead that links them on the time
ordered 1list. The TOL beet contains the block length, the associated
structure address, the forward link, the backward link, and the segment
type. Blocks on the TOL are located by looking at the pointers in the
preceeding or succeeding block, which contain the beet address of the
desired block. The beet address of each block is not found at the
front of the entry.

The TOL is a circular list that is headed by a beet found at the start
of memory. The segment types are as follows:

>FFFF Header Entry
0 Blocking Buffer
1 Task Segment
2 Procedure Segment
3 Available Block

The header entry appears first on the list and should not be repeated.
No buffer on the TOL should have a segment type of three.

The wuser area 1list is useful for diagnosing a crash that was forced,
due to roll in/roll out deadlocks. Deadlocks can be caused by an area

of memory being "lost" to the system; i.e., the pointer to a memory
block may have been accidentally deleted.

Memory can be verified by checking 2ll memory on the TOL and the

available space list. Memory is verified by finding the first segment
of the user area, then adding its length to 1its starting address to

Texas Instruments A-12 9%39153%-9701

System Design Document System Crash Analysis

find the second segment. That segment should be located on either the
TOL or the available space 1list. Each segment of memory is then
checked in similar fashion, until all of the segments are accounted for
or the missing segment is found. If a segment is missing, this
indicates a problem in memory management which should be handled by a
Texas Instruments representative. When checking the available memory
list, care must be exersized when the task loader was active at the
time of the crash. The 1loader may have been in the process of
delinking a block of memory.

Anytime an entry or pointer in the lists is greater than MEMSI7, the
entry 1is 1in error. This is wusually caused by memory management
allocating a second block of memory over the top of +the first Dblock
allocated. The segment that overwrote the first should be examined for
conditions +that would cause memory management to put that segment at
that location in memory.

NOTE

Do not try to look at the TOL on an active system.
The memory chain will change while ANALZ is
scanning the 1list, causing ANALZ to print
meaningless data.

A.3.4.4 BSystem Overlay Areas.

The system overlay area information gives the address of each overlay
area, the status of the area, and the overlay ID. This 1listing 1is
useful only if the crash occurred when the system was executing in one
of the overlays. When the crash occurs in an overlay, this area is
used to find +the overlay. The system listings indicate the correct
code that should be in the overlay area.

A.3.5 LIST QUEUES (AQ and PQ) COMMAND.

The AQ command is used to list the four active queues of the systen.
The PQ command is used to list other queues in the system. The active
gueues show the tasks queued for execution at the four priority levels
of +the system. The other queues include the file utility queue
(FUTIL), the waiting on memory queue, the system 1log queue, and the
device queues. These queues may be of importance during a systenm
crash.

The queues listed by the PQ commands should not have more than three
entries, except for the waiting on memory queue, where the length of
the queue is a factor of system load versus system memory. When a
queue is found to be unusually long, the queue processor should be
checked to see if it is still active and the state it is in.

939153%-9701 A-173 Texas Instruments

System Crash Analysis System Design Document

A.3.5.1 FUTIL Queue.

The file utility routine (FUTIL) services all create file functions and
all assign LUNO functions to files and devices. The PFUTIL queue is
sometimes large because of the type of operation it is performing, such
as creating large key 1index files. The queue processor should be
checked when this occurs. Sometimes the FUTIL queue and processor will
be blocked when performing I/0 to a device. Some devices, such as line
printers, have a long time-out associated with them. When the device
is offline, and PUTIL is trying to assign a LUNO to the device, FUTIL
is suspended until the time-out is performed. During that +time, no
other entry on the FUTIL queue can be serviced. Users may force a
crash when this occurs, because it appears that the system is in a roll
in/roll out deadlock. Some crashes are caused by a FUTIL roll in/roll
out deadlock. Sometimes FUTIL will be rolled out of memory with a
longer than average queue, and will not be able to obtain memory for
roll in. When this occurs, it must be determined why FUTIL cannot get
memory and what routine is supposed to handle that condition. The

listings of the task loader area should contain the routine that
handles FUTIL memory management.

A.3.5.2 Waiting on Memory Queue.

The waiting on memory queue contains the task status blocks (TSBs) of
all tasks that are ready to execute but need memory. This queue grows
in proportion to the number of tasks that are in the system and the
size of available memory. There are times when no task is executing,
and every task is on this queue. When this happens, the system
deadlocks and crashes are usually forced. Conditions that lead to this
are when tasks lock other tasks into memory without following the rules
of the operating system. The most common occurrence of this is when a
device tries to simulate TILINE I/0, which locks a task into memory,
and the task does not set the supervisor control block (SCB) flag when
the I/0 completes. The SCB flag indicates to the system schedular that
end-of-record processing must be performed, and that the task can be
rolled out of memory. When this flag is not set, there is the
possibility that the roll out algorithm will be caught in an endless
loop. Other situations that lock tasks into memory and cause deadlocks
are file management requests and alternate TSB servers.

Another situation that causes the waiting for memory queue to grow, and
causes system deadlocks, is problems with the system disk. Sometimes
the disk will go offline and roll in/roll out cannot be performed. The
system log and system log queue should contain error messages when the
system disk is in question.

‘A.3.5.3 System Log Queue.

The system log queue contains all the system log messages that are
waiting to be written to the system log device. System log messages
will be kept on the queue if the system log device has not been
initialized or if the queue is getting more messages than +the systen

Texas Instruments A-14 0391 5%-9701

System Design Document System Crash Analysis

log device can handle. In this second case, the messages on the queue
will often give a clue as to what went wrong with the system before the
cras? occurred (for example, when there are problems with the system
disk).

A.3.5.4 Device Queues.

AL vi T

of I/0 requests made to that device. When a particular 4
line or down, and the device has no time out value, the list may become
long. When a crash is forced because a task would not come back from
an I/0 request, the device queues should be checked for the task
requesting I/0 and for unusual queue length. The system templates
indicate where the queue pointer is in the PDT.

Each device has a gueune list anchored in the PDT. Thig oguene ig a list
Zach devl h a ! in the PDT. thls que 18 a 118%T
e

A.3.6 TASK REGISTERS (TR) COMMAND.

The TR command lists all of the workspace registers of the tasks that
are in memory at the time of the crash. Workspace registers 10 and 11
are useful 1in determining where the task was executing at the time of
the crash. Registers 10 and 11 give the stack location for the task
and where the last return from a branch and link (BL) was in the task.
These registers are used with the task listing to locate where the task
was executing, and the data structures it was executing on. Register
10 points to the area containing information on routines called and
parameters passed to them.

A.3.7 TASK AREA (TA) COMMAND.

The TA command lists two parts of memory: the task memory area and the
system data base.

93915%-9701 A-15 Texas Instruments

System Crash Analysis System Design Document

A.3.7.1 Task Area.

The task area listing shows the raw memory dumps of the task segments.
The procedure segments are not shown; these must be listed with the
dump memory (DM) command. The push/pop stack is usually kept in the
task segment and will be listed by this command when it is. Many times
it is necessary to determine if the task memory space has been altered.
By checking the task area with a 1listing of the task, it can be
determined if any task memory has been wiped out. If several words
have been destroyed, it may be possible to determine which processor
wiped out the code and what type of operation was being performed.
File management and TILINE data transfers often cause destroyed code.
By checking the SVC call blocks, the buffer areas of the +transfer can
be determined. An incorrect address in the SCBs will cause code %o be
wiped out. Another cause of destroyed code is caused by the TILINE
device service routine not getting the right physical address of the
output buffer. Common places where this is discovered is in the first
100 words of the system, or at addresses greater than >C000. The
device service routines may have bugs when this occurs.

A.3.7.2 OSystem Memory.

This listing is a dump of the system data base. This area is the first
module of the operating system, with the largest part heing the system
table area. It is often necessary to examine data structures that are
not listed in the above sections of the ANALZ dump, but are found in
the system table area. Sometimes the table area is modified, similar
to the modifications of the task area listed above. This part of the
dump 1is important, because it lists the system data base without being
restrained to data structures.

A.3.8 ALL (AL) COMMAND.

The AL command allows the user to do all of the functions listed above,
in the order given, with one command. This is the most useful way of

performing a crash dump analysis. It allows for easy referencing
between different parts of the system without having to enter sevarate
commands for each part to0 be analyzed. Two other commands are

available for the analysis; these are listed below.

A.3.9 DUMP MEMORY (DM) COMMAND.

The DM command is used to list memory not shown by any of the above
commands. The DM command can be used in three ways. The first is to
give a task status block address and a relative address within the
task. This gives a list of the task area not given by one of the above
commands. The second method is is to give the address of one of the
physical device tables for the device. This gives the memory available
for the DSR. This second method also allows for the viewing the system
root and I/0 common area. The third method is to list absolute memory.

Texas Instruments A-16 9391 53-0701

System Design Document System Crash Analysis

This requires a TSB address of zero, and a 21 bit absolute address.
This method should be used when examining the time ordered list memory
(i.e., the memory pointed to by entries on the time ordered list).

A.%.10 DISK INFORMATION (DI) COMMAND.

The DI command provides information on each file and directory of the
system disk. This command is rarely used in a crash analysis. The
information given by the DI command, for each file, is a follows:

*¥ Tile Name: the name of the file.

* LRL: +the logical record length of the file.

* PRL: the physical record length of the file.

* Size: the number of ADUs in the file.

¥ Address: the starting ADU address of the file.
* Togical EDM: the logical end of file address.

* Block EDM: the physical end of file address.

A.4 ANALYZING >20 AND >27 CRASHES

The most common types of crashes are >20 and >27 crashes. The
following paragraphs give suggestions on how to start analyzing these
crashes and what conditions to look for.

A.4.1 >20 CRASHES.

The >20 crash is caused by an illegal internal interrupt. In most
cases it is an error interrupt within the system. The following steps
indicate what should be looked for when a >20 crash occurs.

A.4.1.1 Status Register.

When a >20 crash occurs, the status register should be checked first.
If +the 1last 4 bits of the status register do not equal one, the crash
is caused by an illegal internal interrupt. This indicates that a
device interrupted at an interrupt level that is not defined, or that a
device interrupted within an expansion chassis and the device position
in that expansion chassis is not defined. The value of status register
bits 12 through 15 plus one 1indicate the interrupt 1level that was
taken. The hardware configuration and the system generation listing
should be checked to determine if the interrupt level taken is a 1legal
interrupt. If the interrupt is legal, then the interrupt workspace is
checked for a bad chassis position interrupt. A pointer to that

939153-9701 A-17 Texas Instruments

System Crash Analysis System Design Document

workspace 1is at the beginning of memory at location interrupt level
times four. Workspace register 9 will have the position value times 8
that caused the the interrupt. Divide the contents of R9 by eight, and
check the hardware configuration to verify the chassis position.

A.4.1.2 Interrupt Two Workspace.

In most cases, the status will be >C001. This indicates a task error
within the operating systen. In the error interrupt workspace,
register 1 will contain the task error code that caused the crash.
These error codes are listed above under the description of the level 2
workspace. When the error code is found, the contents of registers 17%,
14, and 15 show the location of the crash, and the status at the time
of +the crash. If bit 8 of workspace register 15 is set to one, the
crash occurred in a user task; if it is set to zero, the crash occurred
in a system task. The contents of register 14 is the program counter
at the time of +the crash. This code around this location should
indicate what caused the crash. The workspace pointer is in register
1%3; the task workspace is used to check indexed addresses. The task
listing should be consulted to determine what instructions were Ybeing
executed at the time of the crash.

A.4.2 >27 CRASHES.

The >27 crash is the same as a >20 crash, except that the crash occurs
within a system task. The definition of a >27 crash is "TMSEXT non-
zero during kill +task", which is caused by a task taking end action
while it has suspended the scheduler. The crash occurs before the end
action is taken. When this crash occurs, the value of ETSK shows the
executing task at the time of the crash. The TSB for this task (found
in the TSB 1list) has a diagnostic information field containing the
error code and the context of the task at the time of the area. With
this information, the >27 crash is handled the same as the >20 crash.

Texas Instruments A-18 03091 53~.9701

System Design Document Regenerating DX10, SCI, SDSMAC, % XLE

APPENDIX B

REGENERATING DX10, SCI, SDSMAC, # XLE FROM SOURCE

B.1 GENERAL INFORMATION

A DX10 Release 3.2 {or later) system with FTORTRAN installed must
be used when it is desirable to regenerate DX10. Because of the large
volume of data required, the regeneration process normally requires a
4-disk system to complete the process. The disks required are:

System disk -- Contains a DX10 system, 5000 contiguous
sections of temporary space, and the
FORTRAN compiler and runtime package.

Source disk -- Contains source and object files.
Listings disk -— Contains the source listings.

Build disk -— Disk onto which to build the new system.
Batch listings disk -- Contains the batch execution listings.

Not necessarily a different disk.

The system disk must be a DS10 or larger disk. The source disk must be
a DS25 or larger disk (64176 sectors required).

The 1listings disk must be larger than a DS25 to contain all the source
listings (102543 sectors required). The assemblies may be done so that
the listing disk capacity requirement may be reduced by changing +the
disk during +the course of the assemblies. It is recommended that a
D825 disk be the minimum capacity disk used. The additional files for
the microfiche require an additional 6624 sectors for a total of 109167
sectors.

The Dbatch execution 1listings disk may be a DS31 or larger disk. The
batch listings require 5082 sectors. These listings may go to the
system disk, the 1listngs disk, or any other disk in the system
(excluding the source disk).

A single magnetic tape drive is required if the magnetic tape disk
build media is to be done.

To execute the batch stream named VOLSRC.BATCH.LINKBLD, the user must
have a privilege code of 6 or 7.

9%9153-9701 B-1 Texas Instruments

Regenerating DX10, SCI, SDSMAC, & XLE System Design Document

B.2 ASSEMBLING AND COMPILING DX10

The DX10 source is logically divided in%to directories according to
operating system function. These directories are described 1in this
system design document. A batch stream is supplied for each operating
system directory that will perform the conversion of source to object.
These batch streams recompile or reassemble all source modules if *he
proper synonyms are correctly assigned. The required synonyms are:

Synonym Value

YOLSRC SYSBLD (volume name of source disk)

VOLOBJ SYSBLD (volume name of object disk)

VOLLST LIST3X (volume name of listing disk)

VOLSYS 292229 (volume name of executing system disk)

VOLSBAT LIST3X (volume name of batch listings disk)
The source disk supplied by Texas Instruments is named CGYSELD.
Normally, the 1listing disk contains the release level in the volume
name when the procedure is executed by Texas Instruments personnel.
The names have been LIST30 for Release 3.0 and LIST31 for Release %.1.

The name may be changed without impacting the procedure.

The following is a list of +the Dbatch streams %o reassemble/compile
DX10:

SYSBLD.BATCH.ASM.ANALYZ
SYSBLD.BATCH.ASM.DEBUGR
SYSBLD.BATCH.ASM.DEVDSR
SYSBLD.BATCH.ASM.DSCBLD
SYSBLD.BATCH.ASM.DSCMGR
SYSBLD.BATCH.ASM.DX10
SYSBLD.BATCH.ASM.DXMISC
SYSBLD.BATCH.ASM.DXUTIL
SYSBLD.BATCH.ASM.FILMGR
SYSBLD.BATCH.ASM.FUTIL
SYSBLD.BATCH. ASM.GEN990
SYSBLD.BATCH.ASM.KIFILE
SYSBLD.BATCH.ASM.MEMMGR
SYSBLD.BATCH.ASM.NOSHIP
SYSBLD.BATCH.ASM.PGFILE
SYSBLD.BATCH.ASM.SYSTSK
SYSBLD.BATCH.ASM. TSKMGR
SYSBLD.BATCH.ASM.UTCOMM
SYSBLD.BATCH.ASM.UTDIRP
SYSBLD.BATCH.ASM.UTDXTX
SYSBLD.BATCH.ASM.UTGENR
SYSBLD.BATCH.ASM.UTSVC

Assign +the synonyms and execute each of the hatch streams with the XB
command. The approximate run time is 13 hours.

Texas Instruments B-

V)
0
NS
Vo)
-~y
Ul
Y

|
¥o)

K|
o
—

System Design Document Regenerating DX10, SCI, SDSMAC, & XLE

B.3 ASSEMBLING SCI990

To assemble SCI990, execute the following batch stream with the
same synonyms assigned as required for DX10 reassemblies:

SYSBLD.SCI990.BATCH. ASM

B.4 ASSEMBLING SDSMAC

To assemble SDSMAC, execute the following batch stream with the
Same synonyms assigned as required for DX10 reassemblies:

SYSBLD.SDSMAC .BATCH. ASM

This batch stream runs approximately 2.5 hours.

B.5 TRANSLITERATING THE LINK EDITOR

To transliterate the link editor, execute the batch stream named:

SYSBLD.LINKER.UTILITY.INSTALL.

This installs the transliterator required to translate and assemble the
link editor source. Use the same synonyms assigned for DX10
reassemblies. When this batch stream has completed, execute the batch
stream named:

SYSBLD.LINKER.BATCH. ASM
This batch stream runs approximately 2.2 hours.

B.6 LINK EDITING DX10

Assign the following synonyms and then execute the following batch
streams:

Synonym Value

VOLSRC SYSBLD (volume name of source disk)
VOLOBJ SYSBLD (volume name of object disk)
VOLBLD REL32 (volume name of disk to build)
VOLSYS ?????? (volume name of executing disk)

VOL$SBAT LIST3X (volume name of batch listings disk)

939153-9701 B-3 Texas Instruments

Batch Stream
SYSBLD.BATCH.DXLINKS
SYSBLD.BATCH.UTLINKS
SYSBLD.BATCH.GENPARTS
SYSBLD.SCI9Q90.BATCH.LINK
SYSBLD.SDSMAC.BATCH.LINK
SYSBLD.LINKER.BATCH.LINK

Regenerating DX10, SCI, SDSMAC, & XLE System Design Document

Function

Pre-links and links of DX10 parts
Pre-links and links of all utilities
Compress object for SYSGEN parts
Link of command interpreter parts
Link of macro assembler

Link of 1link editor

The approx

imate run time is 2.9 hours.

B.7 BUILDING THE DX10 SYSTEM DISK
Install a new disk in drive DSO3 (must be DSO3 for MVI commands).
Initialize the volume using the INV command and the following
responses:
[] INV
INITIALIZE NEW VOLUME

UNIT NAME: DSO3
VOLUME NAME: REL33

NUMBER OF VCATALOG ENTRIES: 100 (DS3%2), 200 (DS10),

Texas Inst

342 (D825, DS50)
BAD TRACK ACCESS NAME: DUMY

NOTE

If drive DSO?% is not available for this purpose, it
may be changed but with difficulty. One must text
edit a file on the master source disk to change the
operand for +the disk drive for the MVI command.
The file pathname is SYSBLD.MVICONT. The first
line of the file contains the entry DSO3 that must
be changed to the name of the available drive.
This change and changing the operand for the drive
response of the INV command above are the only
changes required. Proceed with caution since the
master disk must be written +to when QUITING the
edit session.

ruments B-4 930153-0701

System Design Document Regenerating DX10, SCI, SDSMAC, & XLE

Assign the synonyms as described for +the 1links and execute the
following batch streams:

Batch Stream Function
SYSBLD.BATCH.BILDX10 Build the new DX10 system disk
SYSBLD.SCI990.BATCH.SCIQ90 Install the command interpreter
SYSBLD.BATCH.PROCO Install SCI procedures (level O)
SYSBLD.RBATCH.PROC2 Install SCI procedures (level 2)
SYSBLD.BATCH.PROC4 Install SCI procedures (level 4)
SYSBLD.BATCH.PROC6 Install SCI procedures (level 6)
SYSBLD.BATCH.MENU Install the SCI procedure menus
SYSBLD.BATCH.SDSMAC Install the macro assembler
SYSBLD.LINKER.BATCH.INSTALL Install the link editor
SYSBLD.BATCH.PROTCT Delete protect the system tasks

The approximate time is 1.1 hours.

Patch the system just built by copying and editing the file named
REL3%.PATCH.MEMRES. The instructions for editing the file are

contained in the first few 1lines of +the file itself. Use the
Copy/Concatenate utility to copy the file:

[]CC

COPY/CONCATENATE

INPUT ACCESS NAME(S): REL33,PATCH.MEMRES
OUTPUT ACCESS NAME: REL33.PATCH.XMEMRES
REPLACE?: NO
MAXIMUM RECORD LENGTH: 80

Edit the file named REL33.PATCH.XMEMRES +to assign the required
synonyms. The link map for the built system 1is in the file named
VOLOBJ .DXLINK.MAP.SSIMAGES. Assign the synonym 3$3DSC$ to the wvalue
REL33 and execute the %batch stream named REL33.PATCH.XMEMRES. The
runtime is approximately 5 minutes.

Execute +the Dbatch stream named REL33.PATCH.PROGA to patch the system
program file. This takes about 5 minutes.

9%9153%-9701 B-5 Texas Instruments

Regenerating DX10, SCI, SDSMAC, & XLE System Design Document

B.8 BUILDING THE DX10 DISK BUILD MAGNETIC TAPES

To make the magnetic tapes for the magnetic tape disk Dbuild
procedure, follow the instructions listed below. The synonyms assigned
are to be used during the entire process. Three magnetic tapes are
made requiring the following resources:

System Disk -~ Contains system and temporary space.

Source Disk -- Contains source, object, and Dbatch
streams (SYSBLD).

Built DX10 System -- Contains a DX10 system as the result of

the preceding procedure for building the
DX10 system disk.

Assign the following synonyms:

Synonym Value
DSC SYSBLD
DSC2 REL33 (new DX10 system disk)

*For Tape 1: .Mount a 1200-foot magnetic tape in drive one (MTO1) with
a write-enable ring installed. Then, execute the batch stream named
SYSBLD.BATCH.BST1. The approximate runtime is 25 minutes.

*For Tape 2: .Mount a second 1200-foot magnetic tape in drive one
(MTO1) with a write-enable ring installed and execute the batch stream
named SYSBLD.BATCH.BST2. The approximate runtime is one minute.

*For Tape 3: .Mount a third 1200-foot magnetic tape in drive one

(MTO1) with a write-enable ring installed and execute the batch strean
named SYSBILD.BATCH.BST3. The approximate runtime is 10 minutes.

Texas Instruments B-6 939153-9701

System Design Document Scheduler Structure and Operation

APPENDIX C
SCHEDULER STRUCTURE AND OPERATION

C.1 FLOW OF CONTROL FOR DX10 SCHEDULER

The following list is a detailed flow of control for the DX10 +task
scheduler. The scheduler 1is entered when one of the following five
conditions is met:

* When the executing task suspends.

* When a time delay task is due to become active.

* When a task time slices out (if time slicing is enabled).
* When a device service routine (DSR) bids a task.

¥ When the task sentry decides to lower +the priority of the
executing task.)

The scheduler is entered from the routine named TRAPRT, which is the
common exit point for XOPRT2, XOPRT3, TMSDEC, and TMSCIR. The
scheduler will not be entered if the scheduler inhibit flag (TMS$EXT) is
high, if +the time slice extended flag (TMESILC) is non-zero, or if the
previously executing task was in map file O.

The variable ETSK is a word in the root of DX10 that points to the TSB

of the currently executing task. When no task is executing, ETSK is
null.

The flow of control for the task scheduler is given in the steps that
follow.

0.0 MAIN ENTRY POINT (defined as SLCSUS)

1.0 ETSK NULL?

If ETSK points to a TSB when the scheduler is entered,
then either +this +task was +time sliced out, a device
service routine (DSR) bid a task, a time delay task was
due to Dbecome active, or the task sentry decided to
lower this task's priority.

YES - GO T0 3.0

9391539701 C-1 Texas Instruments

Scheduler

N
o

4.0

5.0

6.0

7.0

8.0

9.0

Structure and Operation System Design Document

Put the TSB pointed to by ETSK on the active queue,
task sentry for CPU-bound tasks, and
set ETSK to zero.

CLEAR:
These flags are cleared each scheduling cycle:
Time slice ended flag (TM$DFR);
Scheduler inhibit flag (TM$EXT);
Time slice extended flag (TMESLC).

UPDATE TIME AND DATE

The number of elapsed system time units is added to the
computer clock calendar.

UPDATE TIME DELAY TASKS

Time delay tasks also are wupdated by the number of
elapsed system units. If the task is due to become
active, the scheduler puts it in an active status.

HAS A SYSTEM TIME UNIT ELAPSED?

The timeout logic for device service routines should be
entered at 50 millisecond intervals; i.e., each system
time unit.

YES - GO TO 8.0

HAS A DSR BID UP A TASK?

If a DSR bids a task, then the global variable BIDTSK is
non-zero. If this is the case, the DSR timeout must be
entered now.

NO -- GO TO 9.0
CHECK REENTER-ME AND TIMEOUTS FOR PDTS (BLWP TMOUT)

IS TILINE END OF RECORD OUTSTANDING?
Since tasks that do TILINE I/O are locked 1into memory,
do a TILINE end of record as soon as posible to allow
the task to be rolled. If TILINE EOR is outstanding,
the global variable SCB is non-zero.

YES -- GO TO 24.5

10.0 IS ACTIVE QUEUE EMPTY?

YES -- GO TO 13.0

Texas Instruments C-2 93%915%-9701

System Design Document Scheduler Structure and Operation

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

GET HIGHEST PRIORITY TASK OFF ACTIVE QUEUE;
SET ETSK TO PONT TO TSB OF HIGHEST PRIORITY TASK.

IS ETSK A REAL TIME OR SYSTEM PRIORITY?
If a real time or system task wants to execute, the
scheduler does not attempt to service SCI bids during
this scheduling cycle.

YES -- GO TO 19.0

IS RESTART IN PROGRESS?
No SCI bids are serviced until the system restart task
has initialized the system.

YES -- GO TO 15.0

SCAN KSBs FOR SCI BIDS
The scheduler bids SCI for each KSB that requests it
using the routine named TMBIDO.

HAS A TASK BEEN SELECTED (Is ETGK not null)?

YES -- GO TO 19.0

IS TASK LOAD IN PROGRESS (TMMLIP not null)?
If the scheduler has previously requested a task to Dbe
rolled in, there 1is no need to try to roll in another
task.

YES -- GO T0O 18.0

IS ANY TASK WAITING ON MEMORY (TMWOMO not null)?
YES -- GO TO 21.0

GO IDLE (wait for interrupt).
GO TO 3.0

IS THERE AN ALTERNATE TSB FOR ETSK?
YES -- GO TO 22.0
SHOULD A TASK WAITING ON MEMORY BE LOADED?

If a task waiting on memory is of higher priority or
equal priority and ETSK has had a minimum number of time

9%9153-9701 c-3 Texas Instruments

Scheduler

21.0

22.0

23.0

24.0

24.5

25.0

26.0

27.0

28.0

Structure and Operation System Design Document

slices, if +time slicing is available, then the task
loader is given the CPU to load the waiting task.

NO -- GO TO 22.0

REQUEUE ETSK ON ACTIVE QUEUE IF NOT NULL;
SET ETSK TO POINT TO TASK LOADER TSB;
SET TMMLIP TO NONZERO (SIGNAL LOAD IN PROGRESS).

SET TIME SLICE COUNT

Initialize the number of clock ticks for a time slice.
If +time slicing is disabled, a non-zero number is used
here.

IS END OF RECORD OUTSTANDING FOR ETSK?
Since TILINE EOR was checked earlier, this 1is a2 check
for CRU I/O.

NO -- GO TO 25.0
REQUEUE ETSK ON THE ACTIVE QUEUE

SET ETSK TO POINT TO DEVICE DRIVER TASK;
GO TO 34.0

IS THERE ANY ALTERNATE TSB PRESENT FOR ETSK?
NO -- GO TO 27.0

SET ETSK TO POINT TO ALTERNATE TSB;
GO TO 3%4.0

IS THIS TASK QUIETING?

Tasks that are quieting have been selected to be rolled
and are kept on the active queue until their I/0 is
finished.

NO -- GO TO 30.0

IS I/0 IN PROGRESS?
YES -- GO TO 2.0

Texas Instruments Cc-4 9%9153-9701

System Design Document Scheduler Structure and Operation

29.0 PUT ETSK ON QUIET QUEUE;
The task loader is a dedicated gqueue server of the quiet
queue and will be activated when something is placed on
its queue.
CLEAR ETSK;

GO TO 3.0

30.0 IS LEAVE ALONG FLAG SET FOR ETSK?
YES -- GO TO 34.0

31.0 IS ABORT FLAG SET?
NO -- GO TO 34.0

32.0 IS I/0 COMPLETE?
NO -- GO T0 2.0

3%.0 BRANCH TO END ACTION

%4.0 PROCESS GET CHARACTER SVC
The processing necessary for the get character SVC is
small and the SVC overhead is saved by moving the
character from the TSB, placed there by the DSR, to task
register O.

35.0 DOES AN OVERLAY NEED TO BE READ IN FOR ETSK?

NO -- GO TO 37.0

36.0 PLACE ETSK ON OVERLAY LOADER QUEUE;
GO TO 3.0

37.0 IS ETSK UNDER CONTROL?
This is a flag set in the TSB.

NO -- GO TO 39.0

38.0 PLACE ETSK IN STATE 6;
Task suspended by the scheduler.
CLEAR ETSK;

GO TO 2.0

9%9153-9701 Cc-5 Texas Instruments

Scheduler Structure and Operation System Design Document

35.0 SET UP TASK FOR EXECUTION
Set task in state 7;
Increment loader roll count (TSBT1);

Put ?ask memory on time ordered list (if not memory resi
dent

40.0 GIVE CONTROL TO ETSK VIA A RTWP USING PC, WS, AND
STATUS IN THE TSB POINTED TO BY ETSK.

C.2 PREEMPTIVE EXECUTION

Task scheduler operation is based on the concept of preemptive
execution. Preemptive execution allows a higher priority task to have
the CPU whenever it becomes active. For example, if task T1 with a
priority of R5 is executing, and a task T2 of priority R2 is bid, T!1 is
suspended and T2 is placed in execution. If task T3 of priority RO is

subsequently bid, T2 is suspended and T3 1is put into execution.
Preemption is shown in figure C-1.

Task in Active
Time Execution Task Queue Action
0 ms. T1 T1/R5
30 ms. T2 prempts T1 T2 T2/R2,T1,R5 T2 is bid
50 ms. T2 T2/R2,T1,R5
750 ms. T2 T2/R2,T1/R5
78% ms. T3 prempts T2 T3 T3/R1,T2/R2,T1/R5 T3 is bid
800 ms. T3 T3/R1,T72/R2,T1,R5
841 ms. T2 T2/R2,T1/R5 T3 has
completed
850 ms. T2 T2/R2,T1/R5

T1 - has an assigned priority of R5
T2 - has an assigned priority of R2
T3 - has an assigned priority of R1

Figure C-1 Preemption

C.3 TIME SLICING

Time slicing is a task scheduler option that can be selected at system
generation (sysgen) time. Also specified at sysgen is the length of
the time slice. This is defined as a multiple of system time units (at
50 milliseconds each). The default parameters are to have time
slicing, with each time slice 1is to be one system time unit (50

Texas Instruments C-6 039153-9701

System Design Document Scheduler Structure and Operation

milliseconds). When +time slicing is invoked, the time slice value is
the amount of CPU time that is given a task each time it executes, and
the next task to execute is the next task of the same priority. (This
is somewhat different from the pre-DX10 3.2/TX2.3/TX5 task scheduler as
this scheduler only slices tasks of

is the only task running. If task T5, priority R2, is bid, followed
shortly by task T6, priority R2, then T5, and T6 will alternate running
for 50 millisecond time slices. When both have completed, task T4 is

allowed to execute again. This is shown in figure C-2.
Task in Active

Time Execution Task Queue Action

0 ms. T4 T4/R5

50 ms. T4 T4/R5
100 ms. T4 T4/R5
128 ms. T5 prempts T4 5 75/R2,T4/R5 Task T5 is bid
150 ms. T5 T5/R2,T4/R5
183 ms. 75 T5/R2,T6/R2,T4/R5 Task T6 is bid
200 ms. 76 T6/R2,T5/R2,T4/R5
250 ms. T6 T5/R2,T6/R2,T4/R5
300 ms. 76 T6/R2,T5/R2,T4/R5
350 ms. T5 T5/R2,T6/R2,T4/R5
400 ms. 76 T6/R2,T4/R5 g?osuspends for

L

450 ms. T6 T6/R2,T4/R5
500 ms. T6 T6/R2,T4/R5
540 ms. T6 76/R2,T75/R2,T4/R5 %;Ocompletes
550 ms. 5 T5/R2,T6/R2,T4/R5
600 ms. 76 76/R2,T75/R2,T4/RS
650 ms. 5 T5/R2,T6/R2,T4/R5
700 ms. 76 T6/R2,T5/R2,T4/R5
717 ms. 5 T5/R2,T4/R5 T6 terminates
750 ms. T5 T5/R2,T4/RS
800 ms. T5 T5/R2,T4/R5
850 ms. 5 T5/R2,T4/R5
852 ms. 75 T4 /R5 T5 terminates
900 ms. T4 T4/R5
950 ms. T4 T4/R5

T4 -~ has an assigned priority of RS5.
T5 - has an assigned priority of R2.
T6 - has an assigned priority of R2.

Figure C-2 Time Slicing

939153%-9701 Cc-7 Texas Instruments

Scheduler Structure and Operation System Design Document

C.4 TASK SENTRY

Task sentry is the other scheduler option that can be selected at
sysgen time. Also defined at sysgen 1is the task sentry value
(expressed in multiples of system time units), if the task sentry is to
be used. The sysgen default parameters are not to have task sentry
selected, but if task sentry is selected, the default time value is 60
system time units (three seconds). When task sentry is operational the
operating system determines which task is running at the end of each
system time unit. If the same task is running now as was running at
the last check, an elapsed time counter is decremented. If a different
task is running, then the elapsed time counter is reset to the task
sentry value specified at sysgen. If the elapsed time counter reaches
zero, the task in execution is lowered to the next lower priority value
and placed at the bottom of the list for that priority level. The
elapsed time counter is +then reset, and the top task on the active
queue is placed in execution. If task sentry places a task on a
populated 1ist, then the task is returned to its loaded priority level
when it is next allowed to execute (i.e., task sentry cannot reduce a
task priority below that of the next lower priority task in the
system). Likewise, if a task terminates or suspends for any reason,
its priority 1is reset to that the priority assigned to it when it was
loaded. Pigure C-3 describes this action.

Texas Instruments c-8 9%9153-9701

System Design Document

Task in Active
Time Execution Task Queue
0 ms. 7 T7/R10
27 ms. T8 78/R9,T7/R10
50 ms. T8 T8/R9,T7/R10
81 ms. 79 T9/R8,T8/R9,T7,R10
100 ms. 79 T9/R8,T8/RS9,T7,R10
150 ms. 9 T9/R8,T8/R9,T7,R10
3100 ms. 78 T8/R9,T9/R9, T7/R10
3150 ms. T8 T8/R9,T9/R9,T7/R10
3200 ms. T8 T8/R9,T9/R9,T7/R10
6500 ms. 79 T9/R8,T7/R10
6550 ms. T9 T9/R9,T7/R10
9550 ms. T7 T™7/R10,T9/R10
9600 ms. 7 ™7/R10,T9/R10
9621 ms. T9 T9/R8
9650 ms. 79 T9/R8
9700 ms. 79 T9/R8
9750 ms. 79 T9/R8
9772 ms. 79 T9/R8,T7/R10
9781 ms. 7 T7/R10
9800 ms. 7 ™7/R10
9850 ms. 7 T7/R10
9894 ms. T9 T9/R8,T77/R10
9900 ms. 79 T9/R8,T7/R10
9981 ms. 7 T7/R10

7 -
T8 -
79 -

.

has an assigned priority of R10
has an assigned priority of R9
has an assigned priority of R8

Figure C-3 Task Sentry Operation

Scheduler Structure and Operation

Action

Task T8 is bid

Task T9 is bid

Task T9 exceeds
sentry

Task T9 resumes
execution

Task T9 exceeds
sentry

Task T9 exceeds
sentry

T7 suspends
for I/0

T7 completes
I/0

T9 suspends for
for I/0

T9 completes
I/0

T9 teminates

939153-9701 -9 Texas Instruments

Scheduler Structure and Operation System Design Document

C.5 SUMMARY OF SCHEDULER OPERATION

The four modes of scheduler operation are summarized in figure C-4.
The modes in which either time slicing or task sentry are described in
the previous paragraphs. The scheduler mode in which both time slicing
and task sentry are used, acts 1like the +time-slicing-only mode for
lists with more than one task, and like task sentry only for lists of
just one task, providing that the task sentry value is greater than the
time slice value. This is because the task sentry timer is reset each
time a new task 1is allowed a time slice. In the simplest scheduler
mode neither time slicing nor task sentry is used. In any case, the
highest priority task in the system is always in execution.

Most industrial applications use time slicing only or neither time
slicing nor task sentry. If timesharing, scientific programming, or
other general purpose data processing functions are performed on the
same machine with a real-time control function, the +time-slicing-only
mode should be used. In this case, the general purpose data processing
functions can be carried out on priority levels 1-%, and the control
programs can occupy priority levels R1-R127. If each control task is
assigned a different priority level, no time slicing of the real-time
control tasks occurs. The general purpose DP functions are allowed to
use any CPU time not required for the real time control function. If
only real-time control is carried out by the CPU, neither time slicing
mode nor task sentry mode should be used. In this case, all tasks are
assigned a separate priority level. Execution is nearly the same as
described above Tfor R1-R127 tasks but there is slightly less system
overhead since the operating system no longer performs the time slicing
function. In critical response environments, this mode may provide the
extra fraction of a second response required. Because of the response
characterisitics of the real-time priorities, communications software
is frequently given a real time priority.

Texas Instruments c-10 939153-9701

System Design Document Scheduler Structure and Operation

Task Sentry

YES NO

| At end of time slice, task At end of time slice task

E is put on the bottom of the| is put at the bottom of the
1

|

1

|

list for its priority ! 1list for its priority

level. If a task executes | 1level.
more consecutive system |
YES time units than specified |
for the task sentry, then !
the task is placed at the |
| bottom of the next lowest |
priority list in the active]
queue. !

If a task executes more
consecutive system time
units than specified for
the task sentry, the

task is placed at the
bottom of the next lowest
priority list in the active
queue.

Highest priority task has
CPU as long as it wants it.

NO

o e e s o e i v e e

Figure C-4 Summary of Scheduler Operation

NOTE

The highest priority task is ALWAYS being executed.

C.6 SUPERVISOR CALLS AFFECTING SCHEDULER OPERATION

Another feature that is useful in the industrial application
environment 1s the Do Not Suspend supervisor call. Execution of the
SVC causes the task scheduler to be inhibited from suspending the task
making the call. This 1is the only way to override the scheduler
functions. Suspension is inhibitied either 200 milliseconds or a
specified number of system time units (50 milliseconds. +to 12.750
seconds). The task can suspend itself by executing an I/0, Time Delay,
Wait for I/0, or Unconditional Wait supervisor call. This should be
used in place of the LIMI O instruction.

9%39153-9701 C-11 Texas Instruments

Scheduler Structure and Operation System Design Document

The following supervisor calls also affect scheduler operation:

* BExecute Task -- Causes the initiation of a task that has been
installed on any program file.

* Activate Suspended Task -- Reactivates a task that has placed
itself in a suspended state by using the Unconditional Wait
supervisor call.

Scheduled Bid Task -- Activates a task at a specified time.

* Time Delay -- Suspends the calling task for the specified
number of full system time units.

* Change Priority —-- Changes the priority of the calling task.
* Unconditional Wait -- Suspends the calling task indefinitely.

* Activate Time Delay Task -- Activates a specified task that is
in time delay.

Texas Instruments Cc-12 9%9153-9701

System Design Document Device States & LUNO Assignment

APPENDIX D
DEVICE STATES AND LUNO ASSIGNMENT

Devices supported by DX10 have three possible states: online, offline,
and diagnostic. When a device is offline, no LUNO can be assigned to

it. When a device 1is in the diagnostic state, FUTIL sub-opcode >94
must be used when assigning a LUNO to that device.

93915%-9701 D-1/D-2 Texas Instruments

System Design Document VDT Character Input SVCs

APPENDIX E
VDT CHARACTER INPUT SVCs

E.1 INTRODUCTION

Two supervisor cails (SVCs) are available to input a character from a
specified VDT keyboard. They are SVC >08 and SVC >18.

E.1.1 VDT CHARACTER INPUT SUPERVISOR CALL (CODE >08).

This supervisor call inputs a character from a specified station
keyboard. The calling task is suspended until +the character is
transferred. The system places the character in the most significant
byte of the task workspace register O.

The supervisor call block consists of three bytes, and need not be
aligned on a word boundary. Byte O contains the code, and the systen
returns a value in byte 1. Byte 2 contains the station number. When
the system is unable to locate the station, it returns -1 in byte 1.
When the station has not been opened in the character mode, or vwhen
power 1is off at +the station, the system returns >80 in byte 1.
Otherwise, the system returns zero in that byte.

The VDT character input call block is formatted as follows:

Hex.
Byte
_____ Ko — —_— _ —————t ————— - R ———————
>00 | >08 i ERROR CODE !
+ - —————————————— e e e ——— +
>02 ! STATION NUMBER !
* *

The following is an example of coding for a supervisor call block for a
character input from station keyboard supervisor call. The SVC says to
input a character from station 2 and place the character in +the most
significant byte of workspace register O.

SCBC BYTE 8,0,2

E.1.2 VDT CONDITIONAL CHARACTER INPUT SUPERVISOR CALL (CODE >18).

This supervisor call inputs a character from a specified station
keyboard. When a character is entered, the function sets the equal bit

939153-9701 B-1 Texas Instruments

VDT Character Input SVCs System Design Document

(bit 2) of the status register to 1 and places the character in the
most significant byte of workspace register 0. When a character has
not been entered, the function sets the equal bit of the status
register to O, indicating a "not equal" status. In either case, the
function returns control to the calling task immediately.

The supervisor call block consists of three bytes, and need not be
aligned on a word boundary. Byte O contains the code, and the system
returns a value in byte 1. Byte 2 contains the station number. When
the system is unable to locate the station, it returns -1 in byte 1.
When the station has not been opened in the character mode, or when
power is off at the station, the system returns >80 in byte 1.
Otherwise, the system returns zero in that byte.

The VDT conditional character input call block is formatted as follows:

Hex.
Byte
_____ *._..____._________________________+__________________________..__._..*
>00 | >18 ! ERROR CODE !
S O —_— e ——————————— +
>02 | STATION NUMBER !
B o e e e e e e e e e e e e o e . e e e e e o *

The following is an example of coding for a supervisor call block for a
conditional character input from station keyboard supervisor call. The
SVC says to input a character from station 5 and place it in the most
significant byte of workspace register O if a character has been
entered at the keyboard.

SCBT BYTE >18,0,5

Texas Instruments E-2 9%915%-970"

System Design Document System Level Debugger

Appendix F

THE SYSTEM LEVEL DEBUGGER

F.1 GENERAL INFORMATION

The System Level Debugger is used for breakpointing and 1listing
the contents of memory locations and registers when debugging the
DX10 system root only. The primary purpose for the System Level
Debugger is to debug DSRs. The debugger allows the user to

control a program”s execution and examine intermediate results in
order to determine exactly where problems are occuring.

F.2 HOW TO LINK THE DEBUGGER WITH THE DX10 SYSTEM IMAGE

The debugger 1is an option included at the time the system is
generated. When prompted for DEVICE during system generation the
user responds as follows:

DEVICE: DEBUG

Then, continue with the system generation process.

To delete the debugger from a system enter the following after
the DEVICE or NEXT prompt:

DEVICE: C DEBUG

F.3 PREPARING THE DX10 SYSTEM DEBUGGER

Prior ,to using the System Level Debugger the debu%ger image must
be modified to specify the target terminal (the default terminal

specification is a 913 VDT to which global LUNO 1 is assigned).

939153-9701 (Change 1) F-1 Texas Instruments

System Level Debugger System Design Document

F.3.1 SPECIFYING INTERACTIVE TERMINAL TYPE

The value in location >0A6C within the System Level Debugger
determines the type of interactive terminal to be used. Consult
the system linkmap for the location of the System Level Debugger
within the system image. The System Level Debugger is module
DEBUG in the system task. The following values indicate the
terminal type:

0 - ASR/KSR

2 - 913 VDT

4 - 911 vDT
NOTE

The System Level Debugger assumes the CRU
address for a 911 VDT is >100. The CRU
address used for 913 VDTs is >0CO. The CRU
address for ASR/KSR devices is >000. These
CRU addresses may be modified to allow
communication with other terminals. To do
so, the wuser must change the locations
immediately following the terminal type
address (>0A6C).

F.4 ACTIVATING THE SYSTEM LEVEL DEBUGGER

The System Level Debugger is activated through XOP 1,1
breakpoints. The breakpoint may be hard coded in a module or the
System Level Debugger may be activated by entering the breakpoint
through the front panel. The following procedure will activate
the debugger in this manner, if the system is in an idle state.

1. Press HALT.

2. Press PC under DISPLAY.

3. Write down the address displayed.
4, Press MA under ENTER.

5. Press MDD.

6. Write down the value displayed.

7. Press CLR.

8. Enter >2C41 in the display lights.
9. Press MDE.

10. Press RUN.

The debugger activates. Use the debugger to set the value from
Step 6 back into the location from Step 3.

Texas Instruments F-2 (Change 1) 939153-9701

System Design Document System Level Debugger

F.5 LIST OF THE DEBUGGER COMMANDS

When the debugger is activated, it requests commands by
displaying the question mark (?) on the screen. The user may
then enter one of the debugger commands listed in Table F-1, and
press the RETURN key. The debugger commands are described in the
paragraphs following Table F-1. Each debugging command is
specified by entering a single character. All command parameters
are hexadecimal numbers displayed without the hex (>) sign. A
number is automatically terminated after four digits are entered.
A number can also be terminated by a period.

Table F-1 List of Debugger Commands

Command Description

Display condition code in status register
Execute program being debugged

Inspect a range of memory locations

Display all workspace registers

List all instruction breakpoints
Display/alter contents of a memory address
Display/alter contents of next memory address
Display/alter program counter

Quit debugging session

Display/alter contents of a work space register
Set instruction breakpoint

Display/alter workspace pointer

Clear breakpoint

Execute single instruction

Resume execution after breakpoint

Hexadecimal sum

Hexadecimal difference

Display menu of commands

VI +NXATNHOUZICNGUHOON

939153-9701 (Change 1) F-3 Texas Instruments

System Level Debugger System Design Document

F.5.1 C Command -- Display Condition Code in Status Register
The C command displays the contents of the status register
(condition code) and allows the user to modify the contents.

Syntax:

? C

C= XXXX YYYY
Explanation:

xxxx 1is the current contents of the status register and
yyyy is the value entered as the new status register
contents (optional entry).

Example:
? C
C=COOF C1l0F
The example shown lists the status register contents,
>COOF. The contents are changed to >ClO0F. This sets bit 7
of the status register, placing the computer in the

privileged mode. If no value is entered, the register
contents remain unchanged.

F.5.2 G Command -- Execute Program Being Debugged
The G command executes the program being debugged. It is used to
start the program initially, and can be used to proceed from a
breakpoint. It is identiecal in function to the Z command when
used to restart the program.
Syntax:

? G
Explanation:

This command requires no parameters.
Example:

?2 G

The example initiates execution of the user program. The G
command is used to start the program or in some cases to
restart the program after stopping to examine register
contents.

Texas Instruments F-4 (Change 1) 939153-9701

System Design Document System Level Debugger

F.5.3

I Command -- Inspect a Range of Memory Locations

This command allows the user to inspect a range of memory
locations in the local task address space.

Syntax:

? I 1111 uuuu

XXXX XXXX ... XXXX YY YY oo« YY

Explanation:

1111 is the 1lower address of the memory locations to be
displayed (this is a required entry). uuuu = is the upper
address of the memory locations to be displayed (optional
entry). If uuuu is not entered, the debugger displays
locations 1111 through 1111 + >F. If neither the lower
address nor the upper address is entered, a message that an
illegal hex value has been entered is displayed. Each xxxx
is the displayed hexadecimal contents of a memory location.
Each yy is the ASCII representation of the memory contents.
The command displays >10 bytes per line, and fills the line
of the display on which wuuuu is displayed (that is a
multiple of >10 bytes is always displayed).

Example:

? I C000 C020

2202 0006 0800 ... 5336 e e oo ... S6
0045 3132 3658 ... 0000 E 12 6X
3148 4444 2634 ... 5541 1H DD &4 ... UA

The example displays the memory locations from >C000 to
>C020. Memory location >C000 contains >2202, 1location
>C002 contains >0006, etc. Location >C020 contains >3148.
The memory locations up to and including location >CO2F are
displayed, filling out the third line of the example.

939153-9701 (Change 1) F-5 Texas Instruments

System Level Debugger System Design Document

F.5.4 J Command -- Show All Local Workspace Registers
This command displays all local workspace registers on one 1line
of the display.

Syntax:
?2J
XXXX XXXX XXXX ... XXXX

Explanation:

The J command requires no parameters. BEach xxxx is the
value in one of the workspace registers, 0 through 15.

Example:
?2J
0002 4AC7 0000 0000 ... 0000
The example lists the contents of all the workspace
registers. Workspace register 0 contains >0002, workspace

register 1 contains >4AC7, etc. The listing displays all
16 workspace registers.

F.5.5 L Command -- List All Breakpoints
This command 1lists the absolute addresses of all breakpoints

currently set in the program.
Syntax:

? L

LOCATION

XXXX

XXXX

Explanation:

This command requires no parameters. Each xxxx 1is the
displayed location of a breakpoint.

Texas Instruments F~-6 (Change 1) 939153-9701

System Design Document System Level Debugger

Example:
? L

LOCATION
B610
BC24

The example show h

ows the t eakpoints that have been set in
the program, at locations >B610 a

d >BC24.

3

F.5.6 M Command -- Display/Alter Contents of Memory Address
The M command displays and allows the user to alter the contents
of a specified memory location. Only addresses currently mapped
in the task space may be modified with this command.
Syntax:

? M nnnn

M nnnn=xxxx yyvy

Explanation:

nnnn is the word address of the memory location the user
wishes to display (required entry). When nnnn is an odd
number, the memory word at nnnn-1 is displayed. xxxx is
the displayed value of the memory location. yyyy 1is the
new value the user wishes to place in the memory location
{optional entry).

Example:
? M B680
M B680=A002 A003
The example displays the contents of memory location >B680.

The value in that location is >A002, and the contents are
changed to >A003.

939153-9701 (Change 1) F~7 Texas Instruments

System Level Debugger System Design Document

F.5.7 N Command -- Display/Alter Contents of Next Memory

Address
The N command allows the user to display and alter the contents

of the next memory address after the address examined previously.
This command is used in connection with the R, M or N commands.

Syntax:
? N
NNNN=xxXxXX YyYY
Explanation:
nnnn is the displayed address of the next location. xxxx

is the displayed value of the next location. yyyy is the
new value the user wishes to place in the memory location

(optional entry).
Example:

? R4

R4=0022

? N

BOOE=0400 0800

This example shows an R command and an N command. The R
command displays workspace register 4. The N command
displays the contents of the next memory address. In this
example the next memory address is workspace register 5, at
location >BOOE. The value in the workspace register,
>0400, is changed to >0800.

F.5.8 P Command -~ Display/Alter Program Counter
The P command displays the contents of the program counter. The
user may alter the displayed contents if desired.
Syntax:
?P
PC=XXXX YYYY
Explanation:
XXxX 1is the displayed program counter value. yyyy is the

value to replace the currently displayed value. This is an
optional entry.

Texas Instruments F-8 (Change 1) 939153-9701

System Design Document System Level Debugger

Example:
? P
PC=BA20 BA2C
The example displays >BA20 as the program counter contents.

The contents are changed to >BA2C.

F.5.9 Q Command -- Quit Debugging Session
The Q command terminates the debugging program and the task that
is being debugged.
Syntax:
20
Explanation:

This command requires no parameters from the user.

Example:
?Q

END DEBUG
The message indicates that the syétem is in an idle state.

If the user wishes to exit from the debugger entirely, he
or she should enter a G command.

F.5.10 R Command -- Display/Alter Workspace Register
The R command displays the contents of a workspace register. The
user may alter the displayed contents if desired.
Syntax:
? R
RN=xXxxx yyyy
Explanation:
n is the workspace register number, from.0 to F (this is a
required entry). xxxx is the displayed workspace register

contents. yYYy 1is the value (this is an optional entry)
that replaces the displayed contents.

939153-9701 (Change 1) F-9 Texas Instruments

System Level Debugger System Design Document

Example:
? R4
R4=2260 2764

The example displays the contents of workspace register 4.
The value in workspace register 4 is >2A60. The value is
changed to >2A64.

F.5.11 S Command -- Set Breakpoint

The S command is used to set an instruction breakpoint at any
address currently mapped in the task space. When the breakpoint
is reached, the contents of the program counter, workspace
pointer, status register, and all current workspace registers (0
through 15) are displayed.

Syntax:

? 5 yyyy
Explanation:

yyyy is the address for the instruction breakpoint (this is
a required entry).

Example:
? S C006

The example sets a breakpoint at memory location >C006.
When the task 1is executed, it stops at location >C006 to
allow the user to examine registers, memory, etc., and make
changes if necessary. The following values are displayed
at a breakpoint:

PC=C006 WP=473E ST=0003 (PC)=2C40
0000 23CO 1000 3348 4566 7290 0000 ... 2448

The first line of the display shows the current contents of
the program counter, the workspace pointer, the status
register, and the word at the address in the program
counter. The second line of the display shows the contents
of the 16 workspace registers, 0 through 15.

Texas Instruments F-10 (Change 1) 939153-9701

System Design Document System Level Debugger

F.5.12 U Command -- Clear a Breakpoint
The U command clears (removes) one or more instruction
breakpoints.
Syntax:
? U yyyy
Explanation:

yyyy is the location of the breakpoint that is to be
removed (this is an optional entry).

If yyyy is not entered, then all breakpoints are removed.
Example:
? U C006

The example deletes an instruction breakpoint set at
location >CO006.

F.5.13 W Command -- Display/Alter Workspace Pointer
The W command displays the contents of the workspace pointer.
You can alter the displayed contents if desired.
Syntax:
?W
WP=XXXX YYYY
Explanation:
xxxx 1is the displayed workspace counter contents. yyyy is
the value that serves as a replacement for the displayed
value (optional entry).
Example
?W
WP=B010 B030

The example displays the workspace pointer contents, >B010.
The displayed contents are changed to >B030.

939153-9701 (Change 1) F-11 Texas Instruments

System Level Debugger System Design Document

F.5.14 X Command -- Execute a Single Instruction

The X command allows the user to step through the program being
debugged, one instruction at a time. The contents of all current
wor kspace registers are displayed after executing each
instruction. The X command executes the instruction at the
address in the program counter.

Syntax:
? X
PC=XXXX
Frrr rrrr rrrr ... rerr
Explanation:
This command requires no parameters from the user. xxxx is
the displayed contents of the program counter. Each rrrr

is the displayed contents of one of the workspace
registers, 0 through 15.

Example:
? X
PC=B250
0002 A020 0000 ... 0000
The example illustrates an X command to execute the
instruction at the address in the program counter. The
value in the program counter, >B250, and the workspace

registers are displayed. Workspace register 0 contains
>0002, register 1 contains >A020, etc.

F.5.15 2 Command -- Resume Execution After Breakpoint
When the Z command is entered, execution proceeds from the
current breakpoint to the next breakpoint (if another breakpoint
is present). The breakpoint is not cleared, and can be used
again, unless a U command is issued.
Syntax:

?2 2
Explanation:

This command requires no parameters from the user.

Texas Instruments F-12 (Change 1) 939153-9701

System Design Document System Level Debugger

Example:
? Z
This example restarts program execution after it has
stopped at a breakpoint. The Z command is used after a

breakpoint 1is reached, and the user has examined and
changed memory, register contents, etc., as desired.

F.5.16 + Command -- Add Hexadecimal Numbers
The + command is used to display the hexadecimal sum of two
hexadecimal numbers.
Syntax:
? + XXXX YYYY = 2222
Explanation:
XXxXX is a hexadecimal number (required entry). vyyyy is a

hexadecimal number that is to be added to xxxx (yyyy is a
required entry). zzzz 1is the hexadecimal sum of xxxx +

yYyy.

Example:
? + C420 2184 = E5A4

The example adds >C420 to >2184 and displays the sum of

>E5A4.
F.5.17 - Command -- Subtract Hexadecimal Numbers
The (-) command displays the hexadecimal difference of two

hexadecimal numbers.

Syntax:
? - XXXX YYYY = 2222

Explanation:
xxxxX is a hexadecimal number (required entry). yyyy is the
hexadecimal number from which xxxx is to be subtracted

(required entry). zzzz 1is the difference of the two
numbers.

939153-9701 (Change 1) F-13 Texas Instruments

System Level Debugger System Design Document

Example:
? - 0048 21CE = 2186

The example subtracts >48 from >21CE and displays the
difference, >2186.

F.5.18 ? Command -- Display A Menu of Commands

The ? command is used to display a menu of all available debug
commands, showing the format of the commands and a brief
description of each.

Syntax:

?2?
Explanation:

This command requires no parameters from the user.
Example:

?27?

- PROGRAM COUNTER

- WORKSPACE POINTER

- STATUS REGISTER

- MODIFY WORKSPACE REGISTER
- MODIFY MEMORY WORD

- INSPECT MEMORY

- DUMP ALL REGISTERS

SET BREAKPOINT

- REMOVE BREAKPOINTS

- LIST ALL BREAKPOINTS

- SINGLE STEP PROGRAM

- CONTINUE EXECUTION AFTER BREAKPOINT
- DISPLAY NEXT WORD

- ADD

- SUBTRACT

- QUIT DEBUGGER ?

VI +2Z2nNXPchuHTZOO=R™
|

The user may select any of the commands or exit from the
debugger by entering Q, waiting for the END DEBUG response,
then entering a G command.

Texas Instruments F-14 (Change 1) 939153-9701

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: _Model 990 Computer DX10 Operating System Release 3.4

System Design Document (839153-9701)

Manual Date; _1 October 1981 i Date of This Letter:
User’s Name: Telephone:
Company: Oftice/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to inciude
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

[BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS

P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

L .
Texas Instruments U.S. District Sales and Service Offices
(A complete listing of U.S. offices is available from the

California
831 S. Douglas Street
El Segundo, California 90245
(213) 973-2571

100 California Street

Suite 480

San Francisco, California 94111
(415) 781-9470

776 Palomar Avenue

P.O. Box 9064

Sunnyvale, California 94086
(408) 732-1840*

3186 Airway

Suite J

Costa Mesa, California 92626
(714) 540-7311

Colorado
9725 East Hampden Avenue
Suite 301
Denver, Colorado 80231
(303) 751-1780

Florida
1850 Lee Road
Suite 115
Winter Park, Florida 32789
(305) 644-3535

Georgia
3300 Northeast Expressway
Building 9
Atlanta, Georgia 30341
(404) 458-7791

*Service telephone number

district office nearest your location)

lllinois
515 West Algonquin Road
Arlington Heights, lllinois 60005
(312) 640-2900
(800) 942-0609*

Massachusetts
504 Totten Pond Road
Waltham, Massachusetts 02154
(617) 890-7400

Michigan
24293 Telegraph Road
Southfield, Michigan 48034
{313} 353-0830
(800) 572-8740*

Minnesota
7625 Parklawn Avenue
Minneapolis, Minnesota 55435
(612) 830-1600

Missouri
2368 Schuetz
St. Louis, Missouri 63141
(314) 569-0801*
New Jersey
1245 Westfield Avenue
Clark, New Jersey 07066
(201) 574-9800
Ohio
4124 Linden Avenue
Dayton, Ohio 45432
(513) 258-3877
Pennsylvania
420 Rouser Road
Coraopolis, Pennsylvania 15108
(412) 771-8550

Texas
8001 Stemmons Expressway
P.O. Box 226080
M/S 3108
Dallas, Texas 75266
(214) 689-4460

13510 North Central Expressway
P.O. Box 225214

M/S 393

Daiias, Texas 75265

(214) 238-3881

9000 Southwest Freeway, Suite 400
Houston, Texas 77074

(713) 776-6577

8585 Commerce Drive, Suite 518
Houston, Texas 77036

(713) 776-6531

(713) 776-6553*

Virginia
1745 Jefferson Davis Highway
Crystal Square 4, Suite 600
Arlington, Virginia 22202
(703) 553-2200

Wisconsin
205 Bishops Way
Suite 214
Brookfield, Wisconsin 53005
(414) 784-1323

408-
732-1840

714
540-7311 800-
854-3273

@ SR

o
808-955-2617 (Hawaiian Islands)

Installation for Computer Systems
800-231-2807

*Service mark of Texas Instruments

800-525-8055

Centralized Dispatch Telephone Numbers

303-751-1780

TI-CARE*

for Requesting Service

800-
325-4324

325- 4553

800-
525-8055

800-
325-4324

800-392-1488

201-574-9800
New Jersey
North of
Princeton

800-241-3047

Houston Customers-
713-776-6511
Ext. 553 or 554

Dallas Customers-
214-238-3881

713-937-1200 (Texas only, collect)

The Tl Customer Support Line is available to answer our customers’ complex
technical questions. The extensive experience of a selected group of Tl senior
engineers and systems analysts is made available directly to our customers. The T}
Customer Support Line telephone number is (512) 250-7407.

TEXAS INSTRUMENTS'

INCORPORATED

. DIGITAL SYSTEMS GROUP
POST OFFICg BOX 2909 AUSTIN, TEXAS

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-18a
	06-18b
	06-18c
	06-18d
	06-18e
	06-18f
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	replyA
	replyB
	xBackA
	xBackB

