DNOS *y

SCI and Utilities
Design Document

TEXAS INSTRUMENTS

- |
gl

© Texas Instruments Incorporated 1981, 1982, 1983
All Rights Reserved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and to inventions disclosed
herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments
Incorporated.

-

MANUAL REVISION HISTORY

DNOS SCI and Utilities Design Document (2270513-9701)

OriginalIssue ...ttt 1 August 1981
ReVISION. . . 1 October 1982
ReViSiON. .. 15 November 1983

The total number of pages in this publication is 570.

The computers offered in this agreement, as well as the programs that Tl has created to use
with them, are tools that can help people better manage the information used in their busi-
ness; but tools—including Tl computers—cannot replace sound judgment nor make the
manager’s business decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

L0/6-€150.2¢2

DNOS Software Manuals

This diagram shows the manuals supporting DNOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

A

Shd All DNOS Users:
DNOS Concepts and Facilities ‘,;,g DNOS System Command DNOS Messages and DNOS Master Index to
2270501-9701 . Interpreter (SCI) Reference Manual Codes Reference Manual Operating System Manuals
2270503-9701 2270506-9701 2270500-9701
DNOS Operations Guide DNOS Text Editor DNOS Reference Handbook
2270502-9701 Reference Manual 2270505-9701
~ 2270504-9701
High-Level Assembly Productivity Communications Systems
Language Users: Language Users: Tools Users: Software Users: Programmers:
COBOL Reference Manual 990/99000 Assembly DNOS Sort/Merge DNOS DNCS/SNA DNOS System Generation
2270518-9701 Language Reference User’'s Guide User's Guide Reference Manual
Manual 2272060-9701 2302663-9701 2270511-9701
DNOS COBOL 2270509-9701
Programmer’s Guide DNOS TIFORM DNOS DNCS DNOS Systems
2270516-9701 DNOS Assembly Reference Manual Operations Guide Programmer’s Guide
Language 2276573-9701 2302662-9701 2270510-9701
DNOS Performance Programmer’s Guide
Package Documentation 2270508-9701 DNOS Query-990 DNOS DNCS 914A DNOS Online Diagnostics
2272109-9701 User's Guide User’s Guide and System Log Analysis
DNOS Link Editor 2276554-9701 2302664-9701 Tasks User’s Guide

Tl Pascal Reference Manual
2270519.9701

DNOS Ti Pascal
Programmer’s Guide
2270517-9701

FORTRAN-78 Reference
Manual
2268681-9701

DNOS FORTRAN-78
Programmer’s Guide
2268680-9701

MATHSTAT-78
Programmer’s Reference
Manual

2268687-9701

FORTRAN-78 ISA
Extensions Manual
2268696-9701

TI BASIC Reference Manual
2308769-9701

RPG Il Programmer’s
Guide

~——a

Reference Manual
2270522-9701

DNOS Supervisor Call
(SVC) Reference
Manual

2270507-9701

Security
Managers:

DNOS Security
Manager's Guide
2308954-9701

DNOS Data Base
Management System
Programmer’s Guide
2272058-9701

DNOS Data Base
Administrator User’s
Guide :
2272059-9701

Data Dictionary
User’s Guide
2276582-9701

DNOS TIPE
Reference Manual
2308786-9701

DNOS TIPE
Exercise Guide
2308787-9701

DNOS COBOL Program
Generator User's Guide
2234375-9701

DNOS 3270 Interactive
Communications Software
(ICS) User's Guide
2302670-9701

DNOS 3780/2780
Emulator User’'s Guide
2270520-9701

DNOS DNCS System
Generation Reference

anua
2302648-9701

DNOS DNCS X.25
Remote File Transfer

(RFT) User’s Guide
2302640-9701

DNOS Remote Terminal
Subsystem (RTS)
User's Guide
2302676-9701

2270532-9701

ROM Loader User’s Guide
2270534-9701

Source
Code Users:

DNOS System
Design Document
2270512-9701

DNOS SCI and Utilities
Design Document
2270513-9701

DNOS Software Manuals Summary

Concepts and Facilities
Presents an overview of DNOS with topics grouped by operating system functions. All new users (0

evaluators) of DNOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each

device supported by DNOS.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives

a detailed presentation of all SCl commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Edltor on DNOS and describes each of the edmng commands

Messages and Codes Reference Manual '
-Lists the error messages, informative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Master Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manualis.

Programmer’s Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer’s guide covers oper-
ating system information relevant to the use of that language on DNOS. Each reference manual covers

details of the language itself, including language syntax and programming considerations.

Performance Package Documentation
Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 990/12

Computer and Business System 800.

Link Ednor Reference Manual
' Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

NOS System Generation Reference Manual .
Explains how to generate a DNOS system for your particular configuration and envuronment

er’s Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

r’'s Guides for Communications Software
Describe the features, functions, and use of the communications software available for executlon

under DNOS.

:ms Programmer’s Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

» Diagnostics and System Log Analysis Tasks User’s Guide
‘xplains how to execute the online diagnostic tasks and the system log analysis task and how to inte

ret the results.

ader User’s Guide
plains how to load the operating system using the ROM loader and describes the error conditio

asign Documents
1tain design information about the DNOS system, SCI, and the utilities. N

surity Manager’s Guide
:ribes the file access security features available with DNOS.

SCI/Utilities Design

PREFACE

The purpose of this document is to provide information pertaining
to the organization and operation of the System Command
Interpreter and selected wutility programs shipped with DNOS.
This information is sufficient to enable a system programmer who
is not familiar with the code to fix problems that may arise and
‘to make additions and improvements. A1l changes required to
internationalize the programs are discussed.

It is assumed that the reader is familiar with terms and concepts
discussed in the DNOS Concepts and Facilities Manual, and
Section 3 (Coding Conventions)of the DNOS System Design Document.

Changes made to this version of the manual, since the previous
release, are marked with revision bars in the outside margins.

This manual is organized as follows:

Section

1 How to Use the Design Document - Explains how to use
this manual.

2 Conventions and Libraries - Explains conventions used
in writing the SCI and utilities code. Contains a
summary of routines in S$SYSTEM and UTCOMN, libraries
used by SCI and utility programs.

3 Error and Status Message Handling - Describes the
components of the DNOS message-handling system -- the
message files, wutilities that build system message
files, and routines that construct messages for
display to the user.

4 System Command Interpreter - Discusses the System

Command Interpreter.
5 Text Editor - Discusses the Text Editor.

6 System Configuration Utility - Discusses the System
Configuration Utility.

7 Operator Interface - Discusses the Operator Interface
Subsystem.

8 Spooler - Discusses the Spooler subsystem.

9 File Maintenance Utilities - Discusses the file

2270513-9701 v : Preface

10

11

12

13

14

Appendix

maintenance utilities of DNOS.

SCI/Utilities Design

User ID Maintenance - Discusses the DNOS utility for

maintaining the set of user IDs on

the systen.

Teleprinter Device Utilities - Describes the
utilities used to call, answer, and disconnect
teleprinter devices and to examine their

characteristiecs.

Debugging - Discusses the tools provided by DNOS for

debugging user programs.

Volume Utilities - Discusses several

handle disk volumes.

Data Structure Pictures - Contains

utilities that

computer generated

pictures of data structures used by the utilities.

Keycap Cross-Reference - Discusses
names that
keys on keyboards through out this

the generic keycap

apply to all terminals that are used for

manual.

Writing DSEG Position-Independent Code - Explains one

technique of writing code that can
than one task in a program file.

Task Segments, Procedure
S$UTIL - Presents
procedure segments and
program file.

Segments
tables of
overlays

For further information related to the use
manuals shown in the frontispiece.

Preface

vi

be shared by more

and Overlays 1in
installed tasks,
in the utility

of DNOS, refer to the

2270513-9701

SCI/Utilities Design

TABLE of

TABLE of CONTENTS

Paragraph Title
PREFACE
SECTION 1 HOW TO USE THE DESIGN DOCUMENT
SECTION 2 CONVENTIONS AND LIBRARIES

2.1 CONVENTIONS e s e o s & s e e & e o e s o & .
2.2 SSSYSTEM &« ¢« ¢ o o o o o o o o o o o o o o o o
2.2.1 Routines Documented in Systems Programmer's

Guide e e o s s & s o e o o e o o o o o o
2.2.2 SSFMT e o o s & e e s e e e e e e o o o o o
2.2.3 SSGKEY & v ¢ ¢ ¢ & o o o o o o o o o o o o o
2.2.4 SSKEY e e e o s s & s 4 6 s e o 6 s e o &
2.2.5 SSMAPK ¢ ¢ ¢ o o o o o o o o o o o o o o o =
2.2.6 SSOPN e e o s s e s s s o e & 6 e & o o o
2.2.7 SSOPNX & o ¢ ¢ o o o o o o o o o o o o o o @
2.2.8 SSPRKEY ¢ & ¢ ¢« o o o o o o o o o o o o s o
2.2.9 SSPNCT v ¢ o o o o o o o o o o o o o o o o @
2.2.10 SSRIT e e o o 4 e 4 s e s s e o e e e s o
2.2.11 SSSETK & ¢ o o o o o o o o o o o o o o o o s
2.2.12 SSWAIT &« o ¢ o o o o o o s s o o o o o o o
2.2.13 SSWIT e e & s o s 4 e & e e s s e o 4 s e o
2.3 UTCOMN e o e o s o e s e o e o o o o o o e o o
2.3.1 UTUERR and UTSERR e o o s e e e o o o o o o
2.3.2 UTPUER e o e o s e e o e e e e o e o e o o o
2.3.3 UTEACT e e s o e o o & e e o e o o e e o o
2.4 USE OF .RBID e o ¢ & o o o o e s o e e e o o @
2.5 NAMING STANDARDS e e e e e e o e s e s+ e o o o
2.5.1 Command Naming Standards .« « « ¢ o o ¢ o o &
2.5.2 Prompt Naming Standards e e e e o o o o e o
2.5.3 Naming Synonyms and Logical Names e o o & e
2.6 Internationalizing The DNOS Utilities e e . .

2270513-9701

vii

CONTENTS

Page
. 2-1
. 2-1
. 2-1
. 2-3
. 2-4
. 2-4
. 2-4
. 2=-5"
« 2=5
. 2=5
« 2=5
. 2-5
.« 2=5
. 2-6
.« 2-6
. 2-6
. 2-8
. 2-10
. 2-10
. 2-10
. 2-11
. 2-11
. 2-18
. 2-18
. 2-18

SCI/Utilities Design TABLE of CONTENTS

SECTION 3 ERROR AND STATUS MESSAGE-HANDLING

3.1 OVERVIEW OF THE DNOS MESSAGE-HANDLING SYSTEM e o o 3-1

3.2 SCI INTERFACE FOR MESSAGE HANDLING e« o e o o o o o 3-1

3.3 THE USE OF $ScCC e o o o o o o o & o o o e o e o o 3-2

3.4 MESSAGE CONTENTS e o o & o e e e o e e e o s o o 3-2

3.4.1 Source Indicator =« « « o« o o« o o o o o o o o o o 3-3

3.4.2 Category-1ID e 6 o e 4 s e e e e e e e e e e e & 3-4

3.4.3 Message e o o o o o s e s 8 s e e e o e e o o o 3=4

3.4.3.1 Fixed Information e o o o o o o o o o o o o & 3=4

3.4.3.2 Variable Text e e o & s o o o 4 s e e e e o o 3=4

3.4.4 Additional Text e e a2 e s+ o s e e © e o o o o 3-5

3.4.5 Translation Of I/0 Errors Encountered By SVCs . 3-5

3.4.6 Abbreviated Forms e o o o o o o o e o 8 o e o o 3-5

3.5 MESSAGE FILES e o o o o o o o o o o o o o o e o o 3-6

3.5.1 Details of the TEXT Files e o o o o o o o o o o 3=7

3.5.2 Details of the EXPTEXT FileS =« « « o o « o« o« o« o« 3=9

3.6 FILENAMES e o o o o o o o o 8 e o e o o e o s o o 3-11
3.7 UTILITIES TO BUILD THE MESSAGE FILES e o o o o o o 3-14
3.7.1 Build Message File « o ¢ o o o o o o« o o o o o« o« 3-14
3.7.2 Build Expanded Message File e o o o o o o o o o 3-15
3.8 SHOW EXPANDED MESSAGE UTILITY e o o o o o o e o 3-16
3.9

THE MESSAGES AND CODES MANUAL e o e e e

SECTION 4 SYSTEM COMMAND INTERPRETER

OVERVIEW . ¢ ¢ ¢ o o o o o o o o o o o o o
STRUCTURE e o o o o o o o o s o o o o o o
FLOW OF CONTROL e e o o o o o o e o o o
Invoking SCI . .o ¢ ¢ o o o o o o o o o o
Initialization e o o o o o o o o e o o
Major LOOP « « o o o o o o o o o o o o o
Termination e e e 4 e e e o s a4 e o e
DESIGN CONCEPTS e o o o & s e o o o o o o

e o e o o s 0
e o e o
SO N -

4.1 Command Procedures e o o s e e o o o o
b2 Environment Stacking in Nested Procedures

3 Task Bidding . « o ¢ o ¢ o o o o o o o o
4.4 SCI Subroutine Linkage . « ¢ o ¢ o o o &
4.5 MACLEOS o ¢ o o o o o o o o o o o o o o o
4.6 Error Reporting e o o o o o o o 6 e o o
cbd.6.1 SCIERR e o o s o e o e e o o e o o o o

DETAILED DESIGN e o e o o o o o o o o o o
High-Level Routines and Modules e e e e
SCI%0 ¢ ¢ ¢ ¢ o o o o o o o o o o o o
DMENU e o o o o o o o s 6 o o o o o o
DERROR & ¢ ¢ ¢« o ¢ ¢ o o o o o o o o o
GETCMD & ¢ & & ¢« ¢ o o o o o o o o o @
GETOPC ¢« ¢ ¢ o ¢ o o o o o o o o o o &

~ArrPrPEEPEAEEEEPEEAEEEAPEEREREEREEEESES
.

LuuvuvuuvuvunpeseerpbrbrPPPRPEPrPLLLLLN -
L]

3
3

.
(e)
.
LN -

viii

. . . . 3_17

e ¢« o o 4-1
e o o o 4=-1
e o o o 4=3
e o o o 4-3
« o o o 4=3
o o o o A4=4
e
e o o o 4=4
e o o o 4=5
e o o A4=5
e o o o 4=-6
e o o o 4L-8
e o« o« o 4=9
e o« « o« 4-10
e o o o 4=-12
e o o o 4=-13
« o o o 4-13
e o o o 4=14

« o o o 4=15
e o o o 4=15
e ¢« o o 4L-16
e o o o 4=17

2270513-9701

SCI/Utilities Design

.
S~

L]
= = b b b = = D OO WN

oL pPwWwN—O

PP PLPLOCLOWLWLLWLOLLWLLLWWLWWLWWLWLWLWWLWWLWWWLN

~rrPrPrPErErsEPEEEEPEAEPEPEAEEPEPEEEEEEEEEEESEEE
L]

Luouuvmoumuvumuouomunmoumuomuououvumuoubobooeoboog o n

.

N =

4'5.4.5

2270513-9701

LIBSCN
XSTOP

.

Interactive Session
Batch Job Session

Entry Point EXPROC

Entry Point XPROMP

Common Code for EXPROC and XPROMP
Processing Field Prompts

Field Prompt Values

Verifying
Writing a

DUMARG

XUSE .
XPROC
XEOP .
XMENU
XOPTIN
XBID .

XQBID and

XRBID
XDATA
XEVAL
XSHOW
XSPLIT
XSYN .
Xsvc .
XIF .
XELSE
XENDIF
XSTAGE
XEOS .

Routines that

3

.

Message
. . L] L]

Process

Parsing Routines . .

Data Structures .

Command Buffer P

GETLINE

TXTSUB

.

to the User

SCI

Text-Handling Routines
Table-Building Routines

GETALT
GETLST
GETRGI

Verification Routines

GETVER
GETELT
GETRNG
GETNAM
GETACN
GETSTR
GETINT

ix

Primitives

reparation . . .

. L] . . .

Command Procedure Processing Routines

TABLE

of CONTENTS

4-17
4-18
4-18
4-19
4-19
4-20
4=-21
4-21
4-24
4-25
4-27
4-27
4-30
4-30
4-30
4-30
4-31
4-31
4-31
4-32
4-32
4-33
4-33
4-34
4-34
4=-34
4-34
4-34
4-35
4-35
4-36
4=36
4-36
4-36
4-38
4-39
4-39
4=40
4-41
4-41
4-42
4=42
4-43
4=43
4=43
4=44
b=44
b=44
4=45
4-45

SCI/Utilities Design

GETYNO
4.5.4.6 Cleanup Routines e o o s s e
GETCMA
GETEOL
GETEQL
GNB
4.5.4.7 Utility Routines . « « + « o« &
GETKEY
GETRLN
GETSYN
GETTYP

4.5.5 Display Routines .+ « +« « o o o« o«
4.5.5.1 DLINE e o e o e+ e e e o o o o
4.5.5.2 DBATCH e e o o o e o o o o o o
4.5.6 Subsystem Support e ¢ e o 2 e .
4.5.6.1 MAILBOX e o o e o & o e e o
MBSRCV
MBSRLS

.
[\

TINFO e e e & o o o o o o o
Utility Routines . . . « « « o« &
HEXSYN & ¢ ¢ o ¢ o o o o o o o
APPROX e o s+ e e e e o o o o
S$SYSTEM Routines e« ¢ e e e
INTERNATIONALIZATION . « « o o« o« &

3

Fo N R T S
.
(o), I, IV, IV, N,]
* o
NNSNNOo
e e o
w N -

SECTION 5 TEXT EDITOR

OVERVIEW ¢ ¢ ¢ & o o o o o o o o o
STRUCTURE e o e e o o o o o o o
FLOW OF CONTROL e o o o o e o o
Invoking the Text Editor
Initialization e e o o o o o o
Major Path .« « ¢« ¢ o « o o o o o
Termination e o o o o o e o o
COMMAND PROCEDURES . + &« o o o o o«
FILES e e o o e e e e o o o s o o
Input File . & & ¢ ¢ o o o o o @
TEXT File o o & o o & o s o o o
MOD File ¢ ¢ ¢ o ¢ o o o o o o @
MERGE File o o e . .
DATA STRUCTURES, VARIABLES AND
Data Related to the Display . o
Data Related to Text Editor Files
Synonyms e o e o e o s e e o o o
FILE MANAGEMENT AND FILE 1I/0 .« .
Change Record for a Line
Delete Record for a Line e o o
Insert Line e e e e e o e e o

¥

e e e e o
e o e
S0 -

Ll
.
SN -

e e o
e e
w N =

L]
w N =

(IR, IRV, G, IV, NG, U, RV, IV, G, 0, R, IV, RV, R, RV, U, IV, RV, N,
Ll

NN OO LU P WLWWLWWWWN -~
L]

SYNONYMS

TABLE

L] 3 3
3 3 .
. . .
. 3 .
] . .

. . .
. . .
. . .
. . .
. . .
. . .
. 3 .
. . .

. . .
. . .
. . 3

.]
3 3 .
3 . .
. . .
. . 3
. . .
L] . .
. . 3

of CONTENTS

4=45
e o o« A4=45
L=45
4-46
4=46
4-46
o« o o 4=46
4-46
4-46
4=47
4=47
o o o 4=47
o o o 4=47
e o o 4-48
« o o 4=48
e o o 4=48
4-49
4-49
o« o o 4=49
e o o 4=50
e o o« 4=50
e o o 4=50
« « « 4=50
e « o 4=51

e « o« 5-1
e ¢« o« 5-1
« o« o 5-2
e o« o 5-2
« ¢« o 5=2
« o« o 5=2
e« ¢« o 5-3
« « o 5-4
« o« o 5=4
e« o o 5-5
e o o« 5-5
e o« « 5-6
e o « 5-9
e o o« 5-9
e o o 5-9
« « o« 5-10
e ¢« o 5-11
e o o« 5-12
e o « 5-13
« o« o« 5-13
e o« o 5-14
2270513-9701

SCI/Utilities Design

L]
— Lo 00N

Open Files . . « « &
Page Back o e e e e
Page Forward e o o e

L]

Read Record for a Line
0 ESFLIO Routines o o
DETAILED DESIGN e o o

. o o o
0 00 00 00 00 00 C0 00 00 00 00 00 00 OO0 ~ N N N N N~
. . .

E$WAIT . . . ° . . .
E$DISP . L] L] o L] L] L]
Edit Functions e o o

Roll Down o o e s
Roll Up . .
Tabbing Operations

.o . L)

LuUuuvmououuvuuuuuuvumuuuumououu oo um
e o

rPrEAEPErASEPAPAEPRPREPPPOLOND -~
.

«8.4.1 CMD e« o e o o o o
8.4.2 Edit/Compose . . .
.8.4.3 Line Number Display
8.4.4 Cursor Down o o e
.8.4.5 Cursor Up e o o e
.8.4.6 Home Cursor o o e

7

8

9

RBID Statement Parameters

Position at Beginning-of-File
Position at End-of-File

VDT State Tab Operations

Clear to End-of-Line
Delete Line « o e
Insert Line o o o
RETURN .« « ¢ &« o &
Command Functions .
Session Commands .
Activate Session
Terminate Session

(S, RV, RV, RV, N, |
e e o e e o
0 00 00 0O 0o O
e e ° e o o
(S RN I N S S
e o e o
—
wNo -0

.
[

Recover Edit Session

Independent Commands

Copy, Move,
Insert File
Save Lines
Show Line
Find String
Replace String
Delete String

5.9 ERROR PROCESSING .« . &

INTERNATIONALIZATION .

SECTION 6

OVERVIEW . . « « o «
STRUCTURE e o e o o o

(=23«)
o o
N =

2270513-9701 xi

L]

MODIFYING THE TEXT EDITOR

L]

2
.3 Line and String Commands
Delete Lines

TABLE

SYSTEM CONFIGURATION UTILITY

of CONTENTS

5-14
5-14
5-14
5-15
5-15
5-15
5-15
5-17
5=17
5-18
5-18
5-19
5-20
5=20
5=-20
5-21
5=-21
5-22
5-22
5=-22
5=-22
5-22
5-23
5-23
5-23
5-23
5-24
5=25
5-25
5=27
5-28
5-29
5-29
5-29
5-30
5-31
5-32
5-32
5-33
5-34
5-34
5-34
5-35

SCI/Utilities

.
[

e o o o
o o
w N

e © e e e o e o o s o o
e o e e o o e e e o
OO~ Vs WN -~

.1
o2
«3
b

e o o e e o []
. e e o]

L]
= b et et b = = O OO NOOWULMPWLWWLWWLWWWN =

e o o o o o o o o o
. e o o o o o o
(-

sssoooooooooooo~ooooooo~-ooooooo~oooooooooooo-oooooooooooooooocooooooonoonovnov o
L]

oo ~NO T ULMULMLULLLLLLLMULLUUKMULULWLOULLULLLLULLLLLLLEEREDSPRPPOLLLLWLWWLDODDDNODDND
L]

L]
N -

NN
e e o

NN -
L]

Address Space
Special Features

Overlays

FLOW OF CONTROL
Invoking SCU
Initialization
Main Program
Termination
Error Processing
DATA STRUCTURES
Interrupt Trap Table and Supporting
System Common Area

Design

TABLE

Structures .

SCU Internal Data Structures and Variables

Synonyms

DETAILED DESIGN
Initiate SCU Session
List Device Configuration
Device Characteristics
Return Device Parameters
Change Device
Add Device
Delete Device
Show Country Code
Modify Country Code
Show System Table Sizes
Modify System Table Area Slzes
Show System Log
Initialize System Log
Terminate SCU Session
Modify System Parameters
Stage One
Stage Two
Stage Three

Stage Four (more miscellaneous values) .

Modify Device State
MODIFYING SCU
Coding Conventions
INTERNATIONALIZATION
COMPANION COMMAND PROCEDURES
Command Procedure Design

MDC Command Procedure Package

OVERVIEW
STRUCTURE
System Operator Task
Operator Interface Task

SECTION 7

xii

OPERATOR

INTERFACE

of CONTENTS

1
== N~NOOULPWNDN

|
P
NoOYubnm o

L]

L]

L]
O\O\O\O\O\O\O\O"\O\O\G\O\O\U\O\G\

6-18
6-18
6-18
6-20
6-21
6-22
6-22
6-23
6-23
6-24
6-25
6-25
6-26
6-26
6-27
6-28
6-29
6-29
6-30
6-30
6-31
6-31
6-32
6-33
6-33

[
NN =

.
.
.
NN NN

2270513-9701

SCI/Utilities Design

COMMUNICATION BETWEEN TASKS

7.3 e s e e
7.4 GENERAL DESIGN CONCEPTS e o o o o o
7.4.1 Definitions e e o o s e e e o o
7.4.2 Operator Privilege =« « ¢ o ¢ o o o
7.4.3 Transactions . « o« o o o o o o o
7.4.4 Format of Displayed Requests . . .
7.5 SYSTEM OPERATOR TASK . « ¢ ¢ o o o =
7.5.1 Data Structures and Files e o o e
7.5.1.1 OPERATOR Local Variables
7.5.1.2 System Common Area . « o« o o o o
7.5.1.3 . System Operator Information . .
7.5.1.4 Operator Request Table (ORT) . .
7.5.1.5 User ID Table (UIDT) .« « « « o &
7.5.2 Initialization . ¢ ¢ ¢ ¢ o o o o @
7+5.3 Major Loop/Routines « o o o o o
7.5.4 Error Processing . « ¢ ¢ ¢ o o o
7.5.5 Termination e o o o o o o o o o
7.5.6 Detailed Design e e s s e e s = »
7.5.6.1 OISXOIL &« o o o o o o o o o o o o
7.5.6.2 0ISQOI e o o o & o e o s o o o
7.5.6.3 OISRD e o o o o o o o o o o o o
7.5.6.4 OISLOM & & o o o o o o o o o o o
7.5.6.5 OISROM ¢ ¢ ¢ ¢ o o o o o o o o o
7.5.6.6 OISKOM &« & o & o s o o o o o o &
7.5.6.7 O0ISGRQ e o o o o o e o & o o & o
7.5.6.8 OISPOR & ¢ ¢ o o o o o o o o o o
7.5.6.9 OLISROR v o ¢ o o o o o o o @

7.5.6.10 OLSRPL ¢ ¢ ¢ ¢ o o o o o o o o o
7.5.6.11 OISFMS ¢ ¢ o o ¢ o o o o o o o o
7.5.6.12 OISMBX &« o o o o o o o o o o o o
7.6 OPERATOR INTERFACE TASK e o o o o
7.6.1 Invoking X0L .« ¢ ¢ ¢ ¢ o o o o o o
7.6.2 Data Structures and Variables . .
7.6.3 Initialization .« ¢ ¢ o o o o o o
7.6.4 Major LOOP « o o o s o o o o o o o
7.6.5 Termination e o 6 o o & o o o o o
7.6.6 Error Processing . « « o o o o o o
7.6.7 Detailed Design e o o o o e o o o
7.6.7.1 XOIXOL & ¢ o o o o s o o o o o &
7.6.7.2 . XOIQOI & & o o o o o o o o o o &«
7.6.7.3 XOICRM ¢ ¢ o o o o o o o o o o =
7.6.7.4 XOIROM & o ¢ o o o o o o o o o @
7.6.7.5 XOILOM o ¢ o o o o o o o o o o o
7.6.7.6 XOIKOM &« o o o o o o o o o o o @
7.6.7.7 XOIROI e o o o o e o o s o o o
7.6.7.8 XOISVC ¢ o o o o o o o o o o o o
7.6.7.9 XOISIO & o o o o o o o o o o o o
7.6.7.10 XO0IDSP e« o o o o o o o o o o o
7.7 USER ACCESS TO THE OPERATOR INTERFACE
7.8 INTERNATIONALIZATION e o ¢ o o o o o

2270513-9701 xiii

e o o e e @ o e e o o o o o o o o o o o

SU

TABLE

e o o o

O e o o o o

L] . [* . L] .

e o e o o e o o o

of CONTENTS

STEM

e e o o e o o o o

L] (] o L]

e o e o o o o o o

e o o o e o o o o o o o o

SNSN SN SNSNSNSNSNSNSNNSNNSNNNNNNN
|

|
=R, OWWOWRONNNNOOOTULPWWN

1
—
- =000

7-11
7-12
7-13
7-14
7=15
7-16
7-17
7-19
7=20
7=-21
7-21
7-22
7-22

- 7-22

7=-23
7-23
7-24
7=24
7=-24
7-26
7-28
7-29
7-29
7=30
7=-31
7-31
7-33
7=-33
7=34
7=-34
7-34

SCI/Utilities Design

2.1
2.2
3.1
.3.1.1
«3.1.2
«3.1.3
o2
.3

® e e e o o o o o

e o o o o
SPLWWN -~

e o

N -

.
N -

OO OO LULLULLULULULULLULEAELWLWLWWWLWWLWWNNN -

©0 0O 00 00 OO0 OO0 OO0 Co OO0 00 OO ©O0 OO OO0 OO0 OO OO0 OO Co 00 Oo OO OO OO0 GO 0o OO0 OO0 Q0 C0 OO
L]

NN~NYNOOLUVLOUULEWN -
.

L]
L]
L] L]
N -

L]
b b= = \O 00NN W

N - O

L] L] L] L] L] L] L] L] L]
e o o o o o o
. L]] L] L]

00 00 o0 00 0o CoO 00 00 O 0o o

sV OY

OO0 N SN NSNNNNNNN

MAINTENANCE OF THE OPERATOR INTERFACE

SECTION 8 SPOOLER
OVERVIEW . ¢« ¢ ¢ o o o o &
STRUCTURE e o o o o o o
Tasks in the Spooler Job
Tasks in the User's Job
COMMUNICATION AMONG SPOOLER
Channels . . « ¢ « o o &
.SSDSTCHN o

o e o o o
>

o o o Ne o o o
~

e N e o o o

.SSACCCHN e o o o o o .
eSSSPOOL &« &+ o o o o o o o o

BID Statements e o o o o o o
Semaphores =« « o o o ¢ o o o o
DEVICES e e o s e o o o s o o o
THE QUEUE FILE e o o o s s e e
Class Name Table (CNT) . « . .
Spooler Device Table (SDT) . .
Queue Records e o o o o o o
Queue Entries e o o o o o

Continuation Entries
Spooler ID Logical Names
DETAILED DESIGN OF SPS$DST o« .
Memory Data Structures « o o
Invoking SPSDST e e e e s

Initialization . « « « o &
Major LoOop =« ¢ ¢ o o o o
Error Processing .« ¢ ¢ o ¢ o o

SPSDST . « . .

e o o o

SPINIT =« ¢ o o o o o o o o o
Termination e o o o o s o o
Detailed Design e o o o o o o

SPSCHD =« ¢ o o o o o o o o o

Queue File Space Management
Acquiring Space
Releasing Space
Writer Task Messages .« .« « &
Output Request Messages o« o
Kill OQutput (KO)
Modify Output (MO) . « « « &
Modify Spooler Device (MSD)
Halt Output (HO) . ¢ « o o o
Resume Output (RO) . « .« . .
Verify Device or Class Name

Perform Copy Count Maintenance

Find File Name e o o o o o o
Shared Modules e o o o o o o

Xiv

e o o o o

e o o o o o o o

TABLE of CONTENTS

SUBSYSTEM . 7=35
e o o o o o o 8=1
e e o o o o o+ 8-1
e o o o o o o 8-1
e o o o o o o 8=2
e ¢« o o o o o« 8-3
e e o o o o o« 8-3
¢« ¢ ¢ o o o o« 8-3
e e o o o o o 8-4
e o o o o o o 8-4
e o o o o o o 8-5
e o o o o o o 8=5
e o o o o o o 8-6
e o o o o o o« 8-6
o« o o o o o o 8-7
« « o o s+ « . 8-8
e o o o o o o 8-9
e« o o« o o o « 8-10
e e o o o o o 8-11
e o o o o o« o« 8-11
e e o o o o o 8=12
e ¢ o o o o o 8=12
s e o o o o o 8-16
e o o o o o o 8-16
e o o o o o o« 8-17
e« ¢ o o o o o 8-18
e o o o o o o 8-18
e o ¢ o o o o 8-18
e e o o e o o 8-19
e o o o o o o 8-19
e o o o s o o 8-19
e o o o o o o 8-20
8-20
8-20
e o o o o o o 8-21
e e o o e o o 8-22
e o o o o o o 8-23
e o o o o o o 8=24
e o e o e o o 8-25
e o o o e o o 8-26
e e o o o o o 8=27
e o e o e o o 8-27
e o o o e o o 8-27
e o o o o o o 8=27
. e o o o o 8-28
2270513-9701

SCl/Utilities Design

.
O

Internationalization e o o o o o o
SPOOLER DEVICE WRITER TASKS « o o .
Invoking LPWRITER e o o o o o o o
Initialization e o o o o o e o o
Processing a Print Request
Error Processing .« « « o ¢ ¢ o« o o
Termination e« o o o o o o o s s »
Internationalization e o o o o o o
The Banner Sheet e o o o o o o o
SPTASK ¢ o o o o o o o o o s o o o o
Invoking SPTASK e e o o o o o o o
Initialization e o o o o o e o o
Major Loop e o o o o & o e o o o o
Termination e o o o o o o o o o
SHOW OUTPUT STATUS =« &« ¢ o o o o o o

e o e o
e o []
NSOV WN -

e e
e o
SON -

0 00 0o 00 00 Co 00 CO OO0 OO0 OO CO OO OO 00 OO0 OO0 Co0 OO0 O 0o OO OO 0o
L]

== = = = O OO WO WO OO NNNNNNNYNYNS
L[]

9.1 Invoking SOS ¢ ¢ ¢ ¢ ¢ o o o o o o
9.2 Processing . « o o o o o o o o o o
9.3 Error Processing . « ¢ ¢ « o o o o
9.4 Internationalization .« « « « ¢ o o
.10 PF ¢ ¢ ¢ o o o o o o o o o o o o o s
.10.1 Invoking PF e o o o o o o s o o
.10.2 Processing . « ¢ o o ¢ o o o o o o
.10.3 Error Processing . « « o o o o o o
.10.4 Internationalization =« « o« o« o o o

TABLE

SECTION 9 FILE MAINTENANCE UTILITIES

OVERVIEW o ¢ o o ¢ o o o o o o o o o
MOVE TASKS e o o o o o e o o o o o o

O WO WO O VO
L]
NNONNDN -
L]

1 Design Concepts e o ¢ o o o o o o
e2.1.1 Structure of Tasks e o o o o o o
L] .1.2 I/o L] L] . L] L] L] L] L] L] L] L] L] L] L]

Blocking

Header Placement and Volume Numbers

Double Buffering
Direct I/0

9.2.1.3 Traversing a Hierarchy . . « .« &
9.2.1.4 Control File « ¢ ¢ o o o o o o o
9.2.1.5 Error Processing .« « « o o o o o
9.2.1.6 Volume Numbers in Backups o« o

9.2.1.7 Volume Number Checking by RD & VB
9.2.2 Data Structures and Variables o o
9.2.3 Invoking Move Tasks e o o o o o o
9.2.4 Internationalization . « ¢« ¢ ¢ o
9.2.5 Detailed Design e e o e s o o o
9.2.5.1 Routine CD « ¢ ¢ o o 4 o o o o o
9.2.5.2 CFDRVR ¢ ¢ ¢ ¢ o o o o o o o o @
9.2.5.3 xxDIR e e o o o o e o o o o o

2270513-9701 XV

of CONTENTS

. . . 8-28
. . . 8-28
. . . 8-29
. . . 8-29
. . . 8-30
. . . 8-31
. . . 8-32
.« . 8-32
. . . 8-33
. . . 8=34
. . . 8-34
. . . 8-34
. . . 8-35
.« . . 8-35
. . . 8-36
. . . 8-36
. . . 8-36
. . . 8-37
. . . 8=37
. . . 8=37
. . . 8-37
. . . 8-38
. . . 8-39
. . . 8-39
e .. 9-1
e e . 9-1
c e . 9-2
N
e e . 94
9-5
9-6
9-6
9-6
. . . 9-11
. . . 9-13
. . . 9-13
. . . 9-13
e . . 9-14
. . . 9-15
. e . 9-17

e« o o 9-18
. . . 9_18

. . L] 9-19
e o o 9-19
L] L] L] 9—20

SCI/Utilities Design TABLE of CONTENTS

XXDATA L] . L] 9-21

9.2.5.4
9.2.5.5 Common Service Routines e o e o o o o o o o o 9=22
ADUBLK 9-22
NBLKS 9-22
APPEND 9-22
REMOVE 9-22
GETACN 9-22
GETCOM 9-23
GETDSC 9-23
GETEOL 9-23
GETTXT 9-23
JMPFN 9-23
CKFSTK 9-23
INCLUD 9-24
OPTION 9-24
SCHFNM 9-24
DATE 9-24
DESTIN 9-24
GETPRM 9-24
SOURCE 9-25
ERRINT 9-25
ERRCLR . 9-25
ERROR 9-25
ERRSS 9-26
ERRSVC 9-26
SETCC 9-26
GETREC ' 9-26
I$0 9-26
OPNFIL 9-27
WRTHDR ‘ 9-27
WRTLIN 9-27
WRTLST 9-27
INITAL 9-27
CLRIRB 9-27
MEMMGR 9-27
STKDIR - 9-27
POPSTK 9-28
9.3 SUPPORT FOR REMAINING FILE MAINTENANCE UTILITIES o 9-28
9.3.1 0S$S Routines e o o o o o o o o o o o o o o o o o 9-28
9.3.2 UTSORT e o o o o o o o o o o e o o o o o o o o o 9-29
9.3.3 UTSORT Data Structur@sS =« « o« o o o o o o o o o o 9-29
9.4 LIST DIRECTORY (LD) e o o o o o o o o o o o o o @ 9-30
9.5 MAP DISK (MD) e o o o o o o e o o o o o o o o o o 9-30
9.6 DELETE DIRECTORY (DD) e o o o o o o o o o o o o o 9-32
9.7 CCAF ¢ ¢« ¢ o o o o o o o o o o o s o o o o o o o o« 9-33

xvi 2270513-9701

SCI/Util

10.1
10.2
10.3
10.3.1
10.3.1.1
10.3.1.2
10.3.1.3
10.3.1.4
10.3.1.5
10.3.1.6
10.3.2
10.4
10.4.1
10.4.2

10.5
10.6
10.6.1
10.6.2

11.1
11.2
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.4

2270513~

ities Design

SECTION 10 USER ID AND ACCESS GROUP MAINTENANCE

OVERVIEW o ¢ ¢ o o o o o o o o o o
STRUCTURE OF THE TASKS .« « ¢« « o« &
FILES e o s o o o o e o s o o o o
.SCLF e o o o o o o o o o
Verification Record (VFY) .« o
File Information Records FIR)
User Descriptor Record (UDR) .
User Descriptor Overflow record
Access Group name Record (AGR)
Structure of the .SSCLF file .
Synonym and Logical Name File .
FLOW OF CONTROL OF AUIDUI e o o
Invoking AUIDUI e o o s o o o o
Initialization =« ¢ ¢ o o o o o o
Major Routines e o o o o o o o
Add User ID - UIAUI e o o o o
Delete User ID - UIDUI
Modify User ID - UIMUI
List User IDs - UILUI o o o o
Termination e o o o & o o o o
FLOW OF CONTROL OF MP e e o o o o
FLOW OF CONTROL OF AGTASK e o e
Invoking AGTASK e o o o o o o @
Initialization e o o o o o o e o
Major Routines ¢ o o o o o o o

Add list of users to access group

Create access group (AGCAG) .

(a

Change access group leader (AGCHGL)

Delete access group (AGDAG) .

Delete users from access group (AGDEL)

List access groups (AGLAG) . .

List access group members (AGLAGM)

.

Set file creation access group (AGSCAG)

Termination e o o o s o e o o o

SECTION 11 TELEPRINTER DEVICE UTILITIES

OVERVIEW ¢ o ¢ ¢ o o o o o o o o o
COMMANDS & ¢ ¢ o o o o o o o o o o
TELEPRINTER DEVICE TASKS« .
TPCALANS ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o
TPDISC o o o o ¢ ¢ o o o o o o @
TPMHPC ¢« ¢ o o o o o o o o o o o
TPLHPC o « ¢ o ¢ o o o o o o o o
HARDWARE ENVIRONMENT .« « « ¢ « o« &

9701 xvii

GADLU)

TABLE of CONTENTS

10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-3
10-4
10-4
10-6
10-7
10-7
10-8
10-8
10-8
10-8
10-8
10-9
10-9
10-9

.10-9

10-9

10-10
10-10
10-11
10-11
10-11
10-11
10-12
10-12
10-12
10-12
10-13

11-1
11-2
11-3
11-3
11-5
11-6
11-6
11-6

SCI/Utilities Design

12.1 OVERVIEW ¢ o o o o o o o o o o o o
12.2 DEBUGGER ¢« ¢ o o o o o o o o o o o
12.2.1 Operating System Considerations
12.2.2 Structure of the Task e o e e e
12.2.3 Flow of Control e o o o o o o o
12.2.3.1 Invoking the Debugger o« o e e
12.2.3.2 Initialization . « « o o o o &
12.2.3.3 Major Loop/Routines e o o o s
12.2.3.4 Error Processing .« ¢« « ¢« o« o
12.2.3.5 Termination e o o o o o o o @
12.2.4 Data Structures e o o o o s o
12.2.5 Files e o ¢ o o o e o o o e o o
12.2.6 SYnonyms . o o o o o o o o o o
12.2.7 Coding Conventions .« « o« o o o &
12.2.8 Subroutine Linkage . ¢« « ¢ o ¢
12.2.9 Detailed Design e o e o o s o
12.2.9.1 DSOV1 e o o s o s o o e
12.2.9.2 List Breakpoints .« .« . .« « + &
12.2.9.3 List Memory, List System Memory
12.2.9.4 Show Internal Registers o o e
12.2.9.5 Show Panel . ¢« ¢« o ¢ ¢ o o o o
12.2.9.6 Show Value « « o o o o o o o &
12.2.9.7 Show Workspace Registers . . .
12.2.9.8 Modify Internal Registers o o
12.2.9.9 Modify Memory, Modify System Mem
12.2.9.10 Modify Workspace Registers . .
12.2.9.11 Assign Breakpoint e o o o o
12.2.9.12 Delete Breakpoint o o o o o o
12.2.9.13 Delete All Breakpoints. o o o
12.2.9.14 Delete/Proceed from Breakpoint(s
12.2.9.15 Proceed from Breakpoint e o
12.2.9.16 Activate Task e e o o o o e s
12.2.9.17 Halt Task e o o o o e e o o o
12.2.9.18 Quit Debugger e e e e e s s
12.2.9.19 Resume Task c o o o o e o o o
12.2.9.20 Execute in Debug Mode e e o .
12.2.9.21 Execute and Halt Task e o e
12.2.9.22 Find Byte e o o o o s e o o
12.2.9.23 Find Word e e e s e o s s e o
12.2.9.24 Assign Simulated Breakpoint .
12.2.9.25 Delete Simulated Breakpoint(s)
12.2.9.26 List Simulated Breakpoints . .
12.2.9.27 Resume Simulated Task e o o
12.2.9.28 Simulate Task e o o s+ e o o
12.2.9.29 Support Subroutines e s e e e

DSPR1 and D$PR2 :

DSHT

DSRST

SECTION 12 DEBUGGING TOOLS

xviii

e o o o "o o o o O e o o o o

y

o o o o

TABLE

.

L] 3 .
. o 3
. . .
. . .
3 . .
. . .
L] L]

] .

.

. (] * L] L] o . . .
.
e o o o o o

L L] L]
. 3 .
. . L
.] .
. L] .
L] L]
° . .
. L] .
. . .
[} [L]
° .]
. . .
L] .
. . .
.] o
. . .
. . .
L] . .
. 3 [
. . .
[.]
L] L] .
. L] .
. . .
. . .
. . .

of CONTENTS

o o 12-1
e o 12-1
e o 12-5
« o« 12-6
e o o 12-8

e o 12-8
12-8

e o o o

L]
3
.

. . 12-9
12-9
12-10
12-12
12-12
12-12
12-13
12-13
12-13
12-15
12-16
12-17
12-18
12-18
12-19
12-20
12-22
12-24
12-26
12-28
12-29
12-30
12-31
12-33

- 12-33
12-34

. 12-35

. 12-36

12-36

. 12-37

12-38

12-39

12-40

12-41

12-42

12-43

12-44

12-45

12-45

12-47

L] L]] . L] . L] . (] L] L] * . (] L] *
e o © o e e o o o o o o o o o o
e ®© 6 e e e o o o o ¢ o o o

e o o o o
e e o o o o o
e o . L]

2270513-9701

. . 12-9 A

¢ ey e o et —

SCI/Utilities Design

DSDMC

DSESE

DSPRP

DSPSP

DSPOP

DSWL
12.2.9.30 Pascal Debugging Commands
12.2.10 Modifying the Debugger . .
12.2.10.1 Changing the code o o e
12.2.10.2 Maintenance e s e o o
12.2.11 Internationalization . . .
12.3 LLR e o o e & o o e o o o o
12.3.1 Structure of the task o« .
12.3.2 Coding Conventions
12.3.3 Flow of control e o o o o
12.3.3.1 Invoking LLR . « « o« « &
12.3.3.2 Initialization
12.3.3.3 Subroutine Linkage . . .
12.3.3.4 Error Processing
12.3.3.5 Termination e o o o o
12.3.4 Data Structures and Files
12.3.5 Detailed Design e o o o o
12.3.6 Internationalization . . .
12.4 MRFSRF e o e o o o s o e s
12.4.1 Structure of the task .«
12.4.2 Coding Conventions . . .« .
12.4.3 Flow of Control e o o s
12.4.3.1 Invoking MRFSRF e o e
12.4.3.2 Initialization
12.4.3.3 Major Loop/Routines o« o
12.4.3.4 Error Processing
12.4.3.5 Termination e o o o o o
12.4.4 Subroutine Linkage . . . &
12.4.5 Data Structures and Files
12.4.6 Detailed Design e s e e
12.4.7 Internationalization . . .
12.5 MPISPI e o o o o e o o e o o
12.5.1 Structure of the task . .
12.5.2 Coding Conventions . . . &
12.5.3 Flow of Control e o o o o
12.5.3.1 Invoking MPISPI e o o
12.5.3.2 Initialization . « « .« &
12.5.3.3 Major Loop/Routines .« o
12.5.3.4 Error Processing
12.5.4 Termination e e o s s s e
12.5.5 Subroutine Linkage . . . &
12.5.6 Data Structures and Files
12.5.7 Detailed Design e e 4 e
12.5.8 Internationalization . . .

2270513-9701 Xix

e o o o o o o

TABLE of CONTENTS

® e o o o e o o e © o o o o o o o o

e o o o o o

e o e o o

e o o o o o o

e e e e e o

e e o o o ¢ o o o

. .

e e o o o o o ¢ o o o o o e o o o o o

e & e o e e o ° o o & e o o o o o o o o o e o o e o o © o o o o

e e o o

e e e o o o o o o e o o o o o o

e o o o o o o o o o

12-47
12-48
12-49
12-49
12-50
12-50
12-50
12-51
12-51
12-51
12-51
12-51
12-52
12-52
12-52
12-52
12-53
12-53
12-53
12-54
12-54
12-55
12-55
12-56
12-56
12-56
12-56
12-56
12-57
12-57
12-58
12-58
12-58
12-58
12-59
12-59
12-60
12-60
12-61
12-61
12-61
12-63
12-63
12-63
12-63
12-64
12-64
12-65
12-68

SCI/Utilities Design

TABLE

SECTION 13 VOLUME UTILITIES
13.1 INTRODUCTION e o o o o o o o o o o o o o
13.2 CVINIT -- PREPROCESSOR TASK FOR CV AND BDD
13.2.1 CVINIT Data Definitions and Structures
13.2.1.1 PARM ARRAY + « ¢ & o o o o o o o o o
13.2.1.2 Saved Data File e o o o o o e o o @
13.2.1.3 «SSCVI - The CVINIT Temporary File .
13.2.2 CVINIT Algorithm . « « o o o o o o o o
13.2.3 CVINIT Module Descriptions .« « « o o« &
13.2.3.1 CVIBID ¢ o« ¢ o o o o o o o o o o o o
13.2.3.2 CVICLS « o « o o o o o o o o o o o @
13.2.3.3 CVIDEV e o o o o o o o e o o o o o
13.2.3.4 CVIERR ¢ &« ¢ o o o o o o o o o o o o
13.2.3.5 CVIFIL « o o o ¢ o o o o o o o o o o
13.2.3.6 CVIGET ¢ o o s o o e e o o o o e o
13.2.3.7 CVIHDR & o o o o o o o o o o o o o o
13.2.3.8 CVIIMP e o o o o o o o o o 6 o o e o
13.2.3.9 CVILJB e o o o o o o o o o o o o o
13.2.3.10 CVILUN & o ¢ o o o o o o o o o o o s
13.2.3.11 CVIMAP ¢« o ¢ o o o o o o o o o o o o
13.2.3.12 CVIMSG e o o o o o o o & o o o o o o
13.2.3.13 CVINAM ¢ ¢ ¢ o ¢ o o o o o o o o o o
13.2.3.14 CVINJB e o o o o s e & e o o & o o o
13.2.3.15 CVINIT e o o o o o o o o o o @ o o
13.2.3.16 CVIOPN ¢ ¢ ¢ o o o o o o o o o o o o
13.2.3.17 CVIPAT & o o o o o o o o o o o o o o
13.2.3.18 CVIPDT o o o o o o o o o o o o o o @
13.2.3.19 CVIPRT o« ¢ ¢ o o o o o o o o o o o o
13.2.3.20 CVIQUI & o o o o o o o o o o o o o @
13.2.3.21 CVISDF &« o o o o o o o o o o o o @
13.2.3.22 CVISLEF ¢ o ¢ o o o o o o o o o o o @
13.2.3.23 CVISYN & o ¢ o o o o o o o o o o o o
13.2.3.24 CVISYS e o o o o o o o o e o o o o o
13.2.3.25 CVITRM o o o o o o o o o o o o o o o
13.2.3.26 CVITXT o o o o o o o o o o o o o o o
13.2.3.27 CVIUNL & ¢ o o o o o o o o o o o o &
13.2.3.28 CVIVER ¢« ¢ ¢ o o o o o o o o o o o o
13.2.3.29 CVIWRT ¢ o o o o o o o o o o o o o o
13.2.4 CVINIT Debug Suggestions . « o« o o o o
13.3 COPY VOLUME (CV) e o o o o e o o o o o o
13.3.1 CV Algorithms e o o o o o o o o o o @
13.3.1.1 Algorithm for Initializing Copy Volume
13.3.1.2 Algorithm for Initializing a Copy .
13.3.1.3 Algorithm for the Copy Driver o o e
13.3.1.4 Algorithm for Copying Directories .
13.3.1.5 Algorithm for Copying Files o o o e
13.3.1.6 Algorithm for Copying Program Files
13.3.2 CV Data Structures =« o« o o o o o o o @
13.3.2.1 AFR_REC_DEFN « & & o o o o o o o o &

XX

of CONTENTS

.
e o e o o o o o

13-1
13-1
13-1
13-1
13-2
13-4
13-4
13-5
13-5
13-5
13-5
13-5
13-7
13-7
13-7
13-7
13-8
13-8
13-8
13-8
13-8
13-9
13-9
13-9
13-9
13-9
13-9
13-9
13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-11
13-11
13-12
13-13
13-13
13-13
13-14
13-14
13-15
13-15
13-16
13-16

2270513-9701

SCI/Utilities Design

13.3.2.13
13.3.2.14
13.3.2.15
13.3.2.16
13.3.2.17
13.3.2.18
13.3.2.19
13.3.2.20
13.3.2.21
13.3.2.22
13.3.2.23

13.3.3.11
13.3.3.12

13.3.3.13.

13.3.3.14
13.3.3.15
13.3.3.16
13.3.3.17
13.3.3.18
13.3.3.19
13.3.3.20
13.3.3.21
13.3.3.22
13.3.3.23
13.3.3.24
13.3.3.25
13.3.3.26
13.3.3.27

2270513-9701

CV Pascal

AFR ARRAY

APR REC DEFN

BAD ADU REC

BAD_ADU_ARRAY
BAR_REC_DEFN

BAR ARRAY

COR_REC_DEFN
DER_REC_DEFN

DER ARRAY

FAR REC DEFN

FAR ARRAY

IRR REC DEFN

IRR ARRAY

LEVEL_ENTRY
LEVEL_ARRAY

PFIARR .

PRA REC DEFN

PRAARR .

PRR REC DEFN

PRR_ARRAY
SAT_REC
SAT_TBL

cv . .
CVALCA
CVALCD
CVBIAS
CVCDEV
CVCDIO
CVCFLE
CVCPRM
CVCSCY
CVCSNW
CVCSRD
cvcsvce
CVCVER
CVCVOL
CVENDR
CVFFOR
CVFNC1
CVFNC2
CVFNC3
CVFSRD
CVGIOB
CVLAFR
CVPDIR
CVPERM
CVPHDR
CVPPGF
CVPSTA

e 8 o e o o o © o © o e O 9 o o ¢ o °o o

=
o

e o o o o o e o

e

e o o o o o e o o

.

® e o o & o e e o o o o o o

o

e o o e o o e o o o o o o o o o o o o o N e e o o

.

® ® o & e e e e o o e o. e o o e o o © o o

e o o o o o

e o o o o o e

Xxxi

e e o o o o o o o o ¢ o e o o

e © e e e o o o o 0 o o © o o o o o o & oo

e o o e o o ¢ & o o o e o e e e o ® o ¢ o © o o o o o o o

e ® e e o o o o o © o o e o o o o o o o o

e ® e e e o o o o o © o e o o o o o

e e o e e ¢ o o o o o o °o o © o o ° o o o 06 o o o o & o o o o o

e e e e e o e o e o e o o o o o o o

® o o o o e o o o © o e ° ©° O © o & o 0 0o o ©° o © o o o o o

e o e o e o e o o o o o o o o o o o o

e e o o e © e o o e o o o o o © o o o o o

e e o e o o o © o ¢ @ ¢ © o o o o o

® o e e o e o e © o © o o ° o o o ©° o ° o

e © e o o o o e 6 o © o o e © o e ° o o6 o o o o o © o o o o o

TABLE

3 . .
. . .
. ° .
L]
°
.
.
]
]
]
]
[
]
.
L]
.
.
.
.
.
.
.
.
L]
.
3
.
.
.

® e e e o e e ° o o o 6 o o e &6 o ° ° o 6 o © © ©° o o © o o ° e 6 0 o o o o o o o o o o o

® © o e o e o e o ©° o o o o ©° o o o o O ° o O o O o O o o O o O o e o o o o o ° o e o o o o o
’

. L) L) . e o . ® . .

of CONTENTS

e © e e o © o o o o o o

e o o o o o o

e © e e o e e o © o o © o e o o © o o o° o ©° o o 5 s o o o

L] . o . . o] (] L] L]

® © e e o e o o © o o o o o © o 0 6 O 0 O o o o 6 e ©° o 0 ° o o o o s o o o o o o o o o ° o o

13-19
13-19
13-22
13-22
13-22
13-22
13-23
13-24
13-24

13-24

13-24
13-25
13-25
13-25
13-25
13-26
13-26
13-26
13-27
13-27
13-28
13-28
13-28
13-28
13-28
13-28
13-28
13-29
13-29
13-29
13-29
13-30
13-30
13-30
13-30
13-31
13-31
13-31
13-31
13-32
13-32
13-32
13-32
13-32
13-33
13-33
13-33
13-33
13-33
13-33

SCI/Utilities Design

13.3.3.28
13.3.3.29
13.3.3.30
13.3.3.31
13.3.3.32
13.3.3.33

WCOoONOOTUL P WN P~

13.4.3.10
13.4.3.11
13.4.3.12
13.4.3.13
13.4.3.14
13.4.3.15
13.4.3.16
13.4.3.17
13.4.3.18
13.4.3.19
13.4.3.20
13.4.3.21
13.4.3.22

CVPSVC
CVRWVR
CVSMAP
CVSTR1
CVSTR2
CVTRCP

CV Assembl

CVCMPB
CVDMVB
CVEACT
CVENDC
CVLCOM
CVMOVB
CVMSGM
CVPMSG
CVPTCH
CVRRTE
CVSTRT

CV Special Cases
Special Case File
Special Case Files and Directori

o o ¢ o o < o o o o

e o o o o o e e o o o

e o o o o o H o o o o o

l’ .
o«
o e
o e
o« .
es
o« e
o«
o«
o«
o« .
. o
o«
o« .
o« .
.«

CV Debug Suggestions

BDD Data Structures
Buffers
Other BDD

BDD Program

BDD Modules

BDABSQ
BDADJF
BDADKD
BDAPLF
BDBFDR
BDBFSZ
BDBHED
BDBKUP
BDC2NM
BDCHBM
BDCKRD
BDCKVR
BDCLCT
BDCLNP
BDD
BDD1
BDDIRT
BDDOND
BDDONT
BDDUMP
BDFDRF
BDFDRP

Types

Data Structures

Flow

xxii

BACKUP DIRECTORY TO DEVICE (BDD)

e © o e o o Me o o o o o o o o o o

TABLE

. . .
. L] .
. . .
. . L]
. ° .
. . .
. . .
. .]
. . .
. . .
L] . .
L] . .
. . .
. 3 .
. . .
. . .
. . .
. . .
. . .
. . .
. .]
. o .
. . .
o . .
) . .
. . .
L] . .
. . .
. . .
. . .
3 . .
. . .
.] .
. .]
. L] .
. . .
. . 3
. . .
) . .
. . .
. . .
. . .
. . .
. o .
. . 3
) . .
. . .
. . L
. . .
. . .

of CONTENTS

13-33
13-33
13-33
13-34
13-34
13-34
13-34
13-34
13-34
13-34
13-34
13-35
13-35
13-35
13-35
13-35
13-35
13-35
13-35
13-36
13-36
13-37
13-38
13-38
13-38
13-41
13-43
13-47
13-47
13-48
13-48
13-48
13-48
13-48
13-48
13-48
13-48
13-49
13-49
13-49
13-49
13-49
13-50
13-50
13-50
13-50
13-50
13-51
13-51
13-51

®© ® e o e o o e © o ° © e © o e ©° e & 6 o o o o o © © ° &6 ¢ o o o 6 ° o o o
e e e e o o e o e © o 6 o o o o o o o 5 © © o o o o e o o o o o o o o o o o
e o o o o o e o o o

2270513-9701

SCI/Utilities Design

13.4.3.23
13.4.3.24
13.4.3.25
13.4.3.26
13.4.3.27
13.4.3.28
13.4.3.29
13.4.3.30
13.4.3.31
13.4.3.32
13.4.3.33
13.4.3.34
13.4.3.35
13.4.3.36
13.4.3.37
13.4.3.38
13.4.3.39
13.4.3.40
13.4.3.41
13.4.3.42
13.4.3.43
13.4.3.44
13.4.3.45
13.4.3.46
13.4.3.47
13.4.3.48
13.4.3.49
13.4.3.50
13.4.3.51
13.4.3.52
13.4.3.53
13.4.3.54
13.4.3.55
13.4.3.56
13.4.3.57
13.4.3.58
13.4.3.59
13.4.3.60
13.4.3.61
13.4.3.62
13.4.3.63
13.4.3.64
13.4.3.65
13.4.3.66
13.4.3.67
13.4.3.68
13.4.3.69
13.4.3.70
13.4.4

13.4.5

BDFILT
BDFIND
BDFIXD
BDFLBL
BDFLSH
BDGBLK
BDGPRM
BDGTIM
BDGVIF
BDHASH
BDINCM
BDINIO
BDINVF
BDIOPR
BDIOQT
BDMESG
BDMONT
BDMPTH
BDMVIO

BDMVPR -

BDNMEQ
BDNXVL
BDOPEN
BDPFDR
BDPHED
BDPPTH
BDPTIM
BDQERR
BDREDD
BDREDF
BDREDV
BDSCAN
BDSCRM
BDSCTY
BDSORT
BDSPLT
BDSRCH
BDSTBD
BDSVCE
BDSVFD
BDVECT
BDVERF
BDWBGN
BDWDSK
BDWNDX
BDWRYV
BDWT AP
BDZIRB
BDD Debug

2270513-9701

. .
. .
. .
. .
.)
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
3 .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .

Sugges
Miscellaneous Comments

« o
o o o
e o o
e o o
o o o
o o
o o o
o o o
« o e
o o o
. o e
e e e
e o o
« o o
« o o
e o
o o o
e o o
e o o
« o o
e e e
o o
e e
e o o
o o o
e e e
o o o
c o o
e o o
e o »
e o o
o o o
o o
. o e
o o
e o e
« o o
« o o
o o o
o o o
« o e
. o e
o o
. s
« o o
e o o
o o
« o o
tions

xxiii

TABLE

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . 3
. 3 .
. . .
. . .
. . L]
. . .
3 . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . 3
. . L]
. . .
. . .

3 .
. . .
. . .
. . .
. . 3
. . .
. . .
. . .
. 3 .
. . .
. . .
. . .
. . .
. . .
. . .
. o .
. . .

of CONTENTS

13-51
13-51
13-51
13-51
13-52
13-52
13-52
13-52
13-52
13-52
13-52
13-52
13-53
13-53
13-53
13-53
13-53
13-53
13-53
13-53
13-53
13-54
13-54
13-54
13-54
13-54
13-54
13-54
13-54
13-54
13-54
13-55
13-55
13-55
13-55
13-55
13-55
13-55
13-55
13-55
13-56
13-56
13-56
13-56

13-56

13-56
13-56
13-56
13-56
13-58

APPENDIX C

SCI1/Utilities Design

SURFACE ANALYSIS ALGORITHM

Metacode

IDS Data Structures
IDSPRM
BADTAB
READ_TYPES_WORD
READ_TYPES . . .
FAILURES PER READ
SA ASSIST BUF -
PATTERNS
HEAD_ERROR_FLAG
BAD_RDS_PATTERN and TOT_
REQ_DEFECT_LENGTH
IDS Global Data

SECTION 14

OVERVIEW

__PATTERN

TABLE

DATA STRUCTURE PICTURES

APPENDIX A KEYCAP CROSS~-REFERENCE

OVERVIEW

APPENDIX B

OVERVIEW

EXAMPLE CONVERSION

RULES

CONVENTIONS USED IN S$SYSTEM

OVERVIEW

TASK,

. . 3 .

WRITING DSEG POSITION-INDEPENDENT CODE

PROCEDURE AND OVERLAY SEGMENTS IN SSUTIL

of CONTENTS

13-59
13-59
13-79
13-79
13-80
13-81
13-81
13-82
13-82
13-83
13-83
13-84
13-84
13-84

B-1
B-2
B-12
B-12

c-1

2270513-9701

SCI/Utilities Design

LIST of TABLES

LIST of TABLES

Table Title Page
1-1 Acronyms Used in this Manual e s e s e 6 e s e e o 1=2
2-1 Functions of UTCOMN Routines e o o o o o o o o o & 2=7
2-2 List of Verbs Used in DNOS Command Names e o o o o 2-13
2=-2 List of Verbs Used in DNOS Command Names

(continued) e o o o e o e o s o e e e o o e e e e« o 2=-14
2-3 List of Nouns and Adjectives Used as Objects « o o 2-15
2-3 List of Nouns and Adjectives Used as Objects

(continued) « o o o o o o s o o s o o o o s o o o o 2-16
2-3 List of Nouns and Adjectives Used as Objects

(continued) e o o o o o o o e o s 6 o o e o o o o o 2=17
2-4 Command Processors to Change for Internationalizing 2-20
2-4 Command Processors to Change for Internationalizing

(continued) e e o o o o o o e o o o

-1 Error Source Indicators . « « o« o &
-2 Reserved Message Filenames « e e
-3 Message File Indicators . « « « o« &
-1 Task Bid Characteristics e e o o e
-2 Flag States for >2B SVC Call Block
-1 ESFLIO Routines Summary e« o o o o @
-2 CODE Values for Edit Requests . . .
-1 SCU Overlays e s s s o o o o o o
-2 SCU Opcodes o« o o o o o o o o o o
-3 STYP Values « o« o o o o o o o o o o
4 SCU Commands e 6 o o o o 4 s o o
-1 OPERATOR Opcodes e e e o o & o o
-2 FLAGS Byte of .SSOPER Message . . .
-1 Spooler Parameters e o e o o o o
-2 Structure of .S$SDTQUE e o e o e
1 Default Options for Move Tasks . .

Debugger General Commands .« « « o o
Debugger Commands for Controlled Task
Pascal Debugger Command Summary . .
Template ACIronyms =« « o o o o o o o
SCI/Utilities Tasks « « « & o« o o &
SCI/Utilities Procedure Segments .
SCI/Utilities Overlays e e e e e e

[BEE SN CRN CIN CRN |
|
—_ W N =

|
w N -

OO FEFMFRFUOURONNYNCOOO OO ULLUUESEPPWWLW
1

2270513-9701 XXV

SCI/Utilities Design

LIST of FIGURES

L

Figure Title

3-1 Sample TEXT File ¢ + o ¢ o o o o o o o o o o
3-2 Sample EXPTEXT File =« « o o o o o o o o o o
4-1 Call Tree for SCI High-Level Routines ., . .
4-2 AUX2 Data Structure . + « o o o o o o s o &
5-1 Flow Through ESIST ¢ ¢« « o o o o o o o o o &
5-2 Flow Through ESEDIT . ¢ « ¢ ¢ o o o o o o o
5-3 TEXT File Format ¢ « « o o o s o o o o o o &
5-4 MOD File ENtrYy « o« o o o o o o o o o o o o o
6-1 SCU Address Space =« « o o o o o s o o o o o
6-2 Calling Structure for SCU Overlays . « . . .
6-3 Multi-Unit Workspace Structure « « « « o« o &
6-4 Single-Interrupt Decoder Data Structures . .
6-5 Multiple-Interrupt Decoder Data Structures .
6-6 Expansion Chassis Decoder Data Structures .
6-7 MUX Interrupt Decoder Data Structures . . .
6-8 MDC Command Procedure Structure . « « .+ o &
8-1 Spooler Data Structures (Sheet 1 of 4) . . .
9-1 CD Logic--Whether to Use Direct Disk I/0 (Sh

0f 2) ¢ ¢ ¢ v i e e e e e e e e
Example of Traversing a Hierarchy
Logical Organization of S$CLF . .
Physical Organization of .SSCLF .
Interfaces Between SCI and Control
DSEG Position-Dependent Code for S$
Address Resolution in Task Segment
Address Resolution in Task Segment
SSXMPL Code for Procedure Segment
SSXMPL Code for Task Segment . . .
DPI Task Structures . « « « o o =«
DSEG Structure in SSSYSTEM Routines

3V

00 b= = O
| ~OO |
[|
N =

|
NoOULEs WD -

XXvi

. . .
. . .
. . .

Tasks
XMPL
A . .
B . .

. . 3
. . .

IST of FIGURES

Page

|
—~ \O
[

LI I |
W
@ W F

—

N

[]

L]

L]

L]
C\O\O\O\O\O\O\O'\WWU'!U\J-\&WW

1

W = = O WUTW oo WwWw
~ W

2270513-9701

SCI/Utilities Design

SECTION 1
HOW TO USE THE DESIGN DOCUMENT

This manual is a description of the System Command Interpreter
(SCI) and the major DNOS utilities. It is divided into sections
according to subsystem or function. SCI is described first,
followed by a separate section that describes each of the major
utilities. (Not every wutility program included in DNOS 1is
documented in this manual.) For an overview of major utilities,
skim through this document, reading carefully the overview
portion of each section. For details on a particular utility or
module within a utility, consult the detailed diagrams and
discussion that follow the overview.

Section 3 in the DNOS System Design Document details naming
conventions for the DNOS modules. When searching for details
about a particular module, use the module name to determine which
subsystem description 1is relevant. For details about special-
purpose data structures, consult the section on data structure
pictures. Operating system data structures are detailed in the
DNOS System Design Document.

This manual assumes that you are familiar, at the user interface
level, with the subsystems described here. Refer to the System
Command Interpreter (SCI) Reference Manual for details of the
utilities at the user interface level.

The symbol > preceding a character string indicates that the
characters are hexadecimal digits.

The symbol <> is used to mean not equal.

Data structure pictures in this document are built directly from
the templates copied into SCI and utilities source code. The
structures are shown with hexadecimal byte counts, special
comments, flags, and diagrams.

Most of the special terms used in this document can be found in
the glossary in the DNOS Concepts and Facilities manual. Other
terms are defined in this document as they are needed. Acronyms
for system structures and routine names are introduced at various
points throughout the manual. If you choose to read a section
from the manual without reading all preceding sections, you may
encounter an acronym without an explanation of 1its meaning.
Table 1-1 lists most of the acronyms used in the manual. You may
want to refer to this list in conjunction with the glossary for a
complete description of a term.

2270513-9701 1-1 How to Use

SCI/Utilities Design

Table 1-1 Acronyms Used in this Manual

Acronym Meaning

ACC Accounting record contents
ADR Alias descriptor record
ADU Allocatable disk unit

BTA Buffer table area

CDR Channel descriptor record
CMD Command key

CRU Communications register unit
DEL Descendant error list

DOR Directory overhead record
DPD Disk PDT extension data
DSR Device service routine

EOF End-of-file

EOL End-of-1line

FCB File control block

FDB File directory block

FDP File descriptor packet

FDR File descriptor record

FIR File information record
I0U I/0 utility task

IPC Interprocess communication
IPL Initial program load

IRB I/0 request block

JCA Job communication area

JSB Job status block

KDR Key descriptor record

KSB Keyboard status block

LDT Logical device table

LPD Line printer PDT extension
LUNO Logical unit number

MRB Master read/master write buffer

MUW Multi-unit workspace

NCT Name correspondence table
PC Program Counter

PDT Physical device table

SCA System communication area
SCI System Command Interpreter
SCU System Configuration Utility
SDQ Spooler device queue

How to Use 1-2 2270513-9701

SCI/Utilities Design

Table 1-1 Acronyms Used in this Manual (Continued)

Acronym Meaning

SDT Spooler device table
SPM Spooler message format
SSB Segment status block
STA System table area

TCA Communication area

TLF Terminal local file
TSB Task status block

TTY Teletypewriter

UDR User descriptor record
VDT Video display terminal

2270513-9701 1-3/1-4 How to Use

SCI/Utilities Design

SECTION 2

CONVENTIONS AND LIBRARIES

2.1 CONVENTIONS

General coding conventions for DNOS code are discussed in Section
3 of the DNOS System Design Document. Unless noted otherwise in
the specific discussion of the utility programs, these
conventions are followed in all utilities.

Conventions followed in data segment (DSEG) position-independent
routines are discussed in Appendix A of this document.

.

2.2 S$SYSTEM

S$SYSTEM is a collection of routines used extensively by SCI and
the wutilities. S$SYSTEM is a shared procedure segment in the
S$UTIL program file. Each of the routines is DSEG position-
independent (see Appendix A). Only the routines that are not
documented in the DNOS Systems Programmer's Guide are covered 1in
detail in this document.

2.2.1 Routines Documented in Systems Programmer's Guide.

The following S$ routines are discussed in detail in the DNOS
System Programmer's Guide, in the section titled How to Extend
SCI. Refer to that document for further details.

NOTE

S$CMSG AND S$SPLR are not included in the
procedure segment S$SYSTEM. They are,
however, DSEG position-independent code and
are documented in the referenced guide.

2270513-9701 2-1 Conventions and Libraries

SCI/Utilities Design

Routine Description

S$BIDT Allows tasks that are normally bid via the .BID or
.QBID primitives to be bid from another task

S$CMSG Creates a message in a specified buffer

S$CLOS Closes the terminal local file (TLF)

S$GTCA Makes the communication area (TCA) available for
use by the caller

S$IADD Adds two 32-bit integers in two's complement form

S$IASC Converts a 32-bit binary integer into an ASCII
text string representing that number

S$IDIV Divides a 32-bit integer by another 32-bit integer

S$IMUL Multiplies two 32-bit integers

S$INT Converts an ASCII text string that represents an
integer expression into a 32-bit binary value

S$ISUB Subtracts 32-bit integers

S$MAPS Searches the name correspondence table and returns

the value of the specified synonym

S$NEW Initializes the task's run-time data base for use
by S$ routines

S$0PNS Opens a specified file in the same way S$OPEN does
but has an additional feature: when the Assign
LUNO is performed on the file, a specified user ID
and passcode are used for security purposes.

S$OPEN Opens the terminal 1local file, or a specified
file, for write access

S$PARM Returns a parameter in the TCA

S$SPLR Submits a print request from the user's task

S$PTCA Saves synonym values in the TCA

S$RTCA Releases the TCA

S$SCOM Compares two strings and sets the equal “and
arithmetic greater than bits of the status
register

Conventions and Libraries 2=-2 2270513-9701

SCI/Utilities Design

Routine Description

S$SCPY Copies the specified string into a specified
buffer

S$SETS Defines or redefines a synonym in the name

correspondence table

S$SNCT Searches the name correspondence table for the
synonym that is the immediate successor or
predecessor of the specified character string

S$SPLT Separates elements of a 1list and returns the first
element and the remainder of the list separately

S$STAT Returns the status of the terminal from which the
command processor was activated

S$STOP Terminates a command processor and returns to SCI
(does not terminate SCI)

S$TAD Returns time and date information maintained by
DNOS (ASCII format)

S$TERM Sets the termination synonyms and terminates the
calling task

S$WEOL Terminates the current line and writes it to the
TLF
S$WRIT Writes a specified text string to the TLF
The remaining routines discussed in this section are not
documented in the DNOS Systems Programmer's Guide. The calling

sequences are documented in the code.

2.2.2 S$FMT,

S$FMT formats the interactive screen with the full name of the
command procedure, and the names and any associated values of
field prompts. When S$FMT is called, the SCI variable KWBUFW
contains the length of the longest field prompt name. This value
allows S$FMT to left-justify the prompts and allow the maximum
number of columns to the right of the prompt names.

S$FMT checks for video display terminal/teletypewriter (VDT/TTY)
mode and writes to the terminal accordingly.

2270513-9701 2-3 Conventions and Libraries

SCI/Utilities Design

2.2.3 S$GKEY.

This routine is called with an integer value that represents the
position of the field prompt whose value is currently expected to
be entered by the user. S$GKEY accepts a new value for any field
prompt at or prior to this position on the screen. The values
are not verified by S$GKEY. Pointers to the values are stored in
the SCI table VALTBL.

Note that the Up Arrow keystroke is processed by S$GKEY. The
user 1is allowed to change values of previously defined field
prompts. Any keystroke that moves the cursor to a 1lower 1line
causes S$GKEY to return to the caller.

2.2.4 S$KEY.

S$KEY sets a name/value pair in the NCT. It does not delete
approximately matching names. This routine is called only when
it 1is known that no name resides in the NCT that matches or
approximately matches the name being stored.

2.2.5 S$MAPK.

This routine interfaces with the Name Manager to obtain the value
of any field prompts stored at the current command procedure
nesting that approximately match the character string passed to
S$MAPK. S$MAPK builds a structure of the following format:

<00><runID><depth level><x><FF>

where x is calculated as follows: Subtract one from the binary
number that is the ASCII representation of the first character of
the string passed to S$MAPK. Call this structure ARGUMENT.
Since the name correspondence table (NCT) is in alphabetic order,
ARGUMENT is the last entry that can precede the first name in NCT
that approximately matches the character string passed to S$MAPK
(that is, a name consisting of only the first character).

The following loop is executed:

1. A supervisor call (SVC), is issued to the Name Manager
requesting the name/value pair immediately following
ARGUMENT.

2. If the Name Manager returns a name that does not
exactly match the first six characters of ARGUMENT, the
partition of names available to the caller has been
exceeded without finding a match. Return a null value
to the caller.

Conventions and Libraries 2-14 2270513-9701

SCI/Utilities Design

3. If the name returned satisfies the approximate matching
algorithm when paired with the input character string,
then return the value to the caller.

4, Set ARGUMENT to the name that did not approximately
match and go to step 1.

By appending the run ID and and depth level to the name, a
partition within the NCT is created. Only name and value pairs
stored at one depth level are available to command procedures and
programs.

2.2.6 S$OPN.

S$0OPN 1is the same as S$OPEN. This alternate label for the entry
point exists for historical reasons only.

2.2.7 S$0PNX.
This routine forces an open extend of the specified file. Open

extend positions the file at the end-of-file (EOF) after it is
opened. S$0OPNX has the same interface as S$OPEN,.

2.2.8 S$PKEY.

S$PKEY writes a message on the command line of the interactive
terminal and waits for a reply.

2.2.9 S$PNCT.

S$PNCT purges the NCT. It calls the Name Manager to delete all
name/value pairs that start with the specified character string.

2.2.10 S$RIT.

S$RIT issues an SVC to read information from an interactive
terminal.

2.2.11 S$SETK.

S$SETK sets a name/value pair and deletes all names in the NCT
that approximately match the name being set.

2270513-9701 2-5 Conventions and Libraries

SCI/Utilities Design

2.2.12 S$WAIT.

S$WAIT is called by RBID tasks that must be sSuspended. The
calling sequence is the same as for S$TERM. Termination synonyms
are set and control is returned to SCI. The calling task is not
terminated.

The logic of routine S$WAIT is described in the following
metacode: :

Set Termination Synonyms;

$$RBID=Y;

Close the TLF;

Issue Activate Suspended Task SVC (>07) for parent task (SCI);
Issue Unconditional Suspend SVC (>06) for calling task;

AR AR SRR R RS EREEEEEEREEERRRESXERRRRSER R RRE RS SRR R R R R R

SCI (or another task it bids) executes until SCI issues *

¥ an Activate Suspended Task SVC for this task. *
BRI RN R R RN R R RN RN R RN R RN R R RN R R R R RN AR AR R R R RRRRRRRRRRR RN RN

Open the TLF;
Get CODE from call block parameters;
IF $$RBID is non-null
THEN Return the error (CODE) to the user;
END;

2.2.13 S$WIT.

S$WIT 1issues an SVC to write a specified buffer of text to an
interactive terminal.

2.3 UTCOMN

"UTCOMN is a library of general-purpose routines used by the

utility programs. The routines are written in either Pascal or
assembly language. Table 2-1 1lists the routines and their
functions. The 1interface routines used by the DNOS error

handling system are documented in greater detail in the following
paragraphs.

Conventions and Libraries 2-6 2270513-9701

SCI/Utilities Design

Table 2-1 Functions of UTCOMN Routines

Module/

Routine Description

UTACNM Builds the name of the channel or file to which
the input file description packet (FDP) is
assigned. Callable by Pascal code.

UTCHEK Checks for errors returned from R$ routines. If
there 1is an error, reports it through UTPUER.
Otherwise, returns to the caller.

UTCMPS Compares two character strings.

UTCVDT Converts time and date block to one of the
following formats:

HR:MIN:SEC: WEEKDAY, MONTH DAY, YEAR
HR:MIN:SEC:

UTEACT Collects end-action data and reports it through
S$TERM A

UTEXIT A command exit path used by MRFSRF (the processor
for Map and Show Relative to File) and LLR (the
processor for List Logical Record)

UTGJOB (Also UTGTSB, UTTINT, UTJINT, UTTHIS) Transverses
a job status block (JSB) 1list or task status block
(TSB) 1list in the running system. Callable only
by programs that are hardware-privileged and
system tasks

UTLLWT Calls S$WRIT and S$WEOL to write +the specified
buffer to the listing file

UTLMSG Issues an SVC to put a message to the system 1log
file

UTLOGN Resolves the input pathname, which may be a
logical name

UTLWRT Writes the message buffer (assumed to be prepared
by S$CMSG) to the listing file

UTMTBL Moves tables for the directory sort package

UTPOP Restores as many as nine registers on exit from a

module.

2270513-9701 2-7 Conventions and Libraries

SCI/Utilities Design

Table 2-1 Functions of UTCOMN Routines (Continued)

Module/
Routine Description
UTPSER Pascal interface to call UTSERR
UTPTCH Patch space
UTPUER Pascal interface to call UTUERR
UTPUSH Saves as many as nine registers on entry to a
\ module
UTR$ST Module containing entry points for the following
four S$ routines that are used by Pascal tasks
that run in the system job:
¥ S$STOP - Allows tailored cleanup
processing. If a routine named CLNUP
exists, it is called via BLWP before the
SVC to terminate the task is issued.
¥ GS$GTCA - Dummy entry point -equated to
S$STOP
¥ S$PARM - Dummy entry point equated to
S$STOP
¥ S$INT -~ Dummy entry point equated to
S$STOP
UTSERR Reports SVC errors through S$TERM
UTSORT Module containing callable routines to sort
directory entries. The entry point is SORT.
UTUERR Reports non-SVC errors through S$TERM
UTVERS Carries version information for use by IPL

2.3.1 UTUERR and UTSERR.

The common routines UTUERR and UTSERR are wused by system
utilities to do commonly needed processing of utility errors and
SVC errors, respectively.

Conventions and Libraries 2-8 2270513-9701

SCI/Utilities Design

UTSERR is called when an SVC error occurs and the utility is to
exit through S$TERM. UTSERR can be used to set up registers for
and make the call to S$TERM. The interface to UTSERR is as
follows:

BLWP @UTSERR
BYTE Ra,Rb

where:

Ra is a register containing the condition code.
Rb is a register containing a call block pointer.

NOTE

If the SVC is an I/O SVC, the 1logicdl unit
number (LUNO) must not be released before the
call to UTSERR completes. '

UTUERR is called when an error message is needed from the UTILITY
file of the S$MSG directory. UTUERR makes the appropriate call
to S$TERM. The interface to UTUERR is as follows:

BLWP @UTUERR
BYTE Ra,Rb

where:

RO contains the internal message number.

Ra is a register containing the condition code.

Rb is a register containing a pointer to variable
text (0 if none).

If the internal message number supplied to UTUERR is 1less than
>8000, it is treated as an SVC error. Some of the S$ routines
return SVC error codes directly without translation. In this
case, UTUERR changes the file indicator and passes a call block
pointer.

To terminate normally with $$CC set to zero, a system utility
clears RO, and executes a BLWP to UTUERR using BYTE RO,RO.

2270513-9701 2-9 Conventions and Libraries

SCI/Utilities Design

2.3.2 UTPUER.

Routines written in Pascal may call UTPUER to interface to
UTUERR. The declaration for UTPUER is as follows:

UTPUER(P1:INTEGER;P2: INTEGER;P3:STRING);
where:

P1 is the internal message number.
P2 is the condition code.
P3 is a pointer to a variable text string (0 if none).

The string passed to UTPUER is a Pascal string with two byte
counts. The first byte count is the maximum size of the string
and the second is the actual size of the string.

2.3.3 UTEACT.

A common end-action routine, UTEACT is provided for system
utilities. For wutilities that require no cleanup of their own,
UTEACT can be specified as the end-action routine address. If
cleanup 1is needed, the utility can do so in its own end-action
routine and then branch to the common routine via the following
instruction:

B @UTEACT

2.4 USE OF .RBID

The .RBID primitive is used to synchronize alternating execution
between SCI and a foreground task. A number of utilities make
use of .RBID to alternate execution with SCI. These include the
operator interface, the system configuration wutility, the text
editor, and XANAL. The syntax of .RBID is as follows:

.RBID TASK=INT/NAME,[PARMS=(STRING...STRING)],[CODE=INT]

The TASK parameter is the installed ID or name of a task on the
utility program file (S$UTIL) which is to be bid through .RBID,
The optional PARMS parameter is a character string list which is
passed to the task each time it is activated. The CODE
parameter, which 1is optional, is an integer value between zero
through 255 that the task being bid may access via S$STAT.

For each task that is bid through .RBID, SCI makes an entry into

the RBID active table. This table keeps a correspondence of
installed IDs to runtime IDs. If the ID of the task bid by .RBID

Conventions and Libraries 2-10 2270513-9701

SCI/Utilities Design

is not in this table, SCI assumes it is an initial ©bid of the
task. If the ID is found in the table, a resume is done for the
corresponding runtime ID.

The following is an example of a command procedure that uses the
.RBID primitive:

. PROC EX(EXAMPLE PROC)=0,
INPUT PATHNAME=ACNM("@EXIP"),
OUTPUT PATHNAME(S)=(ACNM),
".PRINT THE FILE?=zELEMENT(Y,N)(NO)

.SYN EXIP="&INPUT PATHNAME"
.SYN = = EXOP="&OUTPUT PATHNAME"
.SYN EXP="&PRINT"
.RBID TASK=>43,PARMS=("@EXIP" ,"@EXOP" ,"@SEXS$P")
.EOP E

See the documentation on S$WAIT, the routine called by an RBID
task to return to SCI.

2.5 NAMING STANDARDS

Names for utility commands, for their prompts, and for synonyms
must be chosen carefully so that they are meaningful to the user
and consistent with other names already in use. The following
paragraphs provide guidelines for naming.

2.5.1 Command Naming Standards.

Commands are named by concatenating the first letter of a verb
with the first letter of an object. The verb and object are
chosen to describe the command, give a unique name, and blend in
with the style of the other commands in the system to maintain a
consistent wuser interface. The verb may be compounded of more
than one word, and the object may be compounded of nouns and
ad jectives. A 1list of verbs in use is found in Table 2-2, and a
list of nouns and adjectives in use is found in Table 2-3. There
are a very few exceptions to the first letter rule. One is X for
Execute, and another is RW for Rewind. Variants of commands are
indicated by a tag letter or part of word. Create File, for
example, has six variants: CFSEQ, CFREL, CFKEY, CFIMG, CFPRO,
and CFDIR. Two variants of Execute COBOL Compiler exist: XCC
and XCCF, the tagged variant meaning to execute in foreground.

2270513-9701 2-11 Conventions and Libraries

SCI/Utilities Design

Commands must not be named using words with the same first letter
that have conflicting meanings. For example, the verb Cancel (C)
cannot be used because of conflicts with the current usage of C
(Create, Copy, COBOL, etc.). The goal is to avoid human-oriented
confliects 1in meanings. For example, Create and Copy do not
confliect in meanings, as do Create and Cancel. Two words with
the same meaning should never be used. In the case of two words
with the same first letter, uniqueness should be obtained with
compound objects rather than compound verbs wherever possible,
such as CIC (Create IPC Channel). Copy/Concatenate, which has a
compound verb and no object, was one of the commands for which
there was no clean alternative to using a compound verb. It also
has no object.

Conventions and Libraries 2-12 2270513-9701

SCIs/Utilities Design

Table 2-2 List of Verbs Used in DNOS Command Names

2270513-9701

VERB

ACTIVATE
ADD
ANALYZE
ANSWER
APPEND
ASSEMBLE
ASSIGN
BACKSPACE
BACKUP
BEGIN
BUILD
CALL
CHECK
CLEAR
CONCATENATE
CoPY
COUNT
CREATE
DELETE
DISPLAY
END

FIND
FORWARD SPACE
HALT
INITIALIZE
INSERT
INSTALL
KILL
LIST

MAP
MODIFY
MOVE
PATCH
PRINT
PROCEED
QUIT
READ
RECEIVE
RECOVER
RELEASE
REPLACE
RESET
RESPOND
RESTORE

LETTER

WO OO VI I EZEZECRHHHITITMEOOODOOOOOOO WD DmE = e e > >

Conventions and Libraries

S

SCI/Utilities Design

Table 2-2 List of Verbs Used in DNOS Command Names (continued)

VERB LETTER

RESUME
REWIND
SAVE

SET

SCAN
SHOW
SIMULATE
SNAPSHOT
START
SUSPEND
TEST
TRANSFER
UNLOAD
UNLOCK
VERIFY
WAIT
WRITE
EXECUTE

<=

><£§<CC>—!'—JUJUJUJUJUJUJMCIJ=U‘:U
~
-3

Conventions and Libraries 2-14 2270513-9701

SCI/Utilities Design

Table 2-3 List of Nouns and Adjectives Used as Objects

NOUNS and ADJECTIVES LETTER
ABSOLUTE A
ACCESS A
ALIAS A
ALL LOGICAL UNITS AL
ALLOCATABLE DISK UNIT -ADU
ANALYZER AN
ASSEMBLER A
ATTRIBUTE A
CRASH ANALYSIS UTILITY ANAL
BACKGROUND B
BACKUP B
BATCH B/BATCH
BREAKPOINT(S) B
BYTE B
CHANNEL c
COMMAND DEFINITION TABLE CDT
COMPILER C
COMPLETE C
CONFIGURATION c
CONFIGURATION UTILITY (]
CONSISTENCY C
CONTENTS OF SPECIFIED

CRU REGISTER CRU
CONVERSION C
COPY C
COUNT c
COUNTRY CODE cc
DATE and TIME DT
DEBUG/DEBUGGER D
DEFINITIONS D
DEVICE D
DEVICE CONFIGURATION DC
DIRECTORY D/DIR
DISK/DISKETTE D
EDIT/EDITOR/TEXT EDITOR E
END E
END OF FILE EOF
ENTRY E
ERROR E
EXECUTION E
EXPANDED E
FILE (S) F
FOREGROUND F

2270513-9701 2-15 Conventions and Libraries

SCI/Utilities Design

Table 2-3 List of Nouns and Adjectives Used as Objects (continued)

NOUNS and ADJECTIVES LETTER

GENERATED/GENERATION G
GLOBAL LUNO GL
GROUP

HORIZONTAL H
I/0 I
IBM IBM
IMAGE I/IMG
INFORMATION
INTERFACE
INTERNAL

IPC

JOB (S)

KEY INDEXED FILE/KIF
LINE(S)

LINK EDITOR
LOG/LOGGING
LOGICAL

LUNO

MACRO

MARGIN

MEDIA

MEMBERS

MEMORY

MESSAGE (S)

MODE

MONITOR

MULTIFILE

NAME (S)

NEW

OPERATOR

OUTPUT

OVERLAY

PANEL

PASCAL

PASSCODE

PATCH

PATHNAME
PERFORMANCE DISPLAY
PRIORITY
PROCEDURE
PROCESSOR

PROGRAM
PROTECTION

/MSG

(@]

o

/PRO

YWY YUY Y9 U U UV T OO0 O0OZZ2IIXXXIIZIIt"rrrere R HHHH

Conventions and Libraries 2-16 2270513-9701

SCI/Utilities Design

Table 2-3

2270513-9701

List of Nouns and Adjectives Used as Objects (continued)

NOUNS and ADJECTIVES

RANDOMLY

REALTIME/REAL-TIME

RECORD

REGISTER (38)

RELATIVE

RELATIVE RECORD

REQUEST

REVERSE

RIGHT MARGIN

RIGHTS

ROLL

SCALING

SCHEDULER/SWAP
PARAMETERS

SCI

SECURITY

SEGMENT

SEQUENTIAL

SESSION

SET

SIMULATED

SOFTWARE CONFIGURATION

SPOOLER

STACK

STATE

STATUS

STRING

SURFACE

SYNONYM (S)

SYSTEM

SYSTEM TABLE SIZES

TABS

TASK

TERMINAL

TRACK

UTILITY

USER ID (S)

VALUE

VOLUME

WORD

WORKSPACE

LETTER

=
o

(721> J= - - - - I~ - B - = B~ v i~ - B~ - B v
=

nLnwnwn
o

S/38EQ

(@]

HAEaaHununununununumnnmvnonmunniuwtnm
-3

c
~
c
-3
o

I E<S<cCc
—

Conventions and Libraries

SCI/Utilities Design

2.5.2 Prompt Naming Standards.

The standards for field prompts for commands are that the total
number of prompts be minimized and that they be descriptive. For
example, if a command requires the runtime ID of a task, the
prompt RUN ID should be chosen, because that prompt is in use
throughout the command set, and has the required meaning. New
prompts should be carefully chosen and universally used.

The use of the phrases ACCESS NAME, PATHNAME, and FILE NAME are
also rigorously defined. The definitions are the following:

¥ PATHNAME or FILE "NAME means specifically a disk file.
The use of PATHNAME is maintained for compatibility with
older software. FILE NAME is the preferred usage.

¥ ACCESS NAME means a disk file or any other I/0 resource.

The phrases LISTING ... and OUTPUT ... are chosen with
particular connotation in mind. A LISTING is a report to be
viewed by a person, and not be used by another program. Thus,
Map Disk produces a LISTING, while Copy/Concatenate produces
OUTPUT. The primary intent of the output of the- utility should
be considered in determining if it is a LISTING or OUTPUT. For
example, the fact that programs have been written to process the
listing file of the List Directory command should not be cause to
call its list OUTPUT.

2.5.3 Naming Synonyms and Logical Names.

Synonyms and logical names wused by DNOS utilities should be
readily recognized as such. In general, these names are formed
using the format XY, where X is the command name and Y is a
meaningful abbreviation for the synonym or 1logical name. The
initial $ identifies the synonym as one in use by a DNOS utility.
"For example, MDCDEV might be a synonym for a device name prompt
used by the Modify Device Configuration (MDC) command.

2.6 Internationalizing The DNOS Utilities

DNOS is designed to meet the international requirements of the
United States as well as most Western European countries and
Japan. There are certain SCI commands which may be modified, if
so desired, to better fill the needs of the users of a particular
country. For instance, the prompts that are displayed when a SCI
command begins execution may be modlfled to be displayed 1in the
user's own language.

Conventions and Libraries 2-18 2270513-9701

SCI/Utilities Design

To assist internationalization, the DNOS utilities are written to
make use of the file based messages as much as possible. In
cases where the files are not practical, messages are maintained
in a single module for the particular utility. These modules
need to be changed as do all the message files. One of the
routines used to access the messages files has a message that
also needs to be translated; this module is .S$.SOURCE.S$CMSG.

For those commands that have a module with message text,
modifications need to be done to the command processor. Table
2-4 lists the SCI commands that may be modified for this purpose.
In addition, the IFSVC processor and the SCI module that executes
.SVC also need to have message modules changed.

2270513-9701 2-19 Conventions and Libraries

Table 2-4 Command Processors to Changé for Internationalizing

Command

BD
BDD
CD
CKD
CKR

CRV
CSM
cv
CVD
DCOPY
DD

HT
IBMUTL
IDS
I0

IP
IPS
IRT
IT
LAG
LAGFR
LB
LBP
LD
LDC
LHPC

LJ
LLN
LLR
LM
LOM
LPS
LSAR
LSB
LSM
MAD
MADU
MD
MDC
MKF
MM
MOE
MPE
MPF

Conventions and Libraries 2-20 2270513-9701

SCI/Utilities Design

Full Command Name

Backup Directory

Backup Directory to Device
Copy Directory

Check Disk for Consistency
Copy Key Indexed File to Sequential
File Randomly

Check and Reset Volume

Copy Sequential Media

Copy Volume

Copy and Verify Disk

Disk Copy

Delete Directory

Halt Task

IBM Diskette Conversion Utility
Initialize Disk Surface
Install Overlay

Install Procedure

Install Procedure Segment
Install Real-Time Task
Install Task

List Access Groups

List Access Groups File Rights
List Breakpoints

List Breakpoints-PASCAL
List Directory

List Device Configuration
List Hardcopy Terminal Port
Characteristics

List Jobs

List Logical Names

List Logical Record

List Memory

List Operator Messages

List Pascal Stack

List Security Access Rights
List Simulated Breakpoints
List System Memory

Modify Absolute Disk

Modify Allocable Disk Unit
Map Disk

Modify Device Configuration
Map Key Indexed File

Modify Memory

Modify Overlay Entry

Modify Procedure Entry

Map Program File

SCI/Utilities Design

Table 2-4 Command Processors to Change for Internationalizing (continued)

Command Full Command Name
MPI Modify Program Image
MRF Modify Relative to File
MS Modify Synonym
MSE Modify Segment Entry
MSM Modify System Memory
MTE Modify Task Entry
MVI Modify Volume Information
RCRU Read Contents of Specified
CRU Address
RD Restore Directory
SAD Show Absolute Disk
SADU Show Allocable Disk Unit
SCS Show Channel Status
SD Scan Disk
SDT Show Date and Time
SIR Show Internal Registers
SJs Show Job Status
SMM Show Memory Map
SMS Show memory Status
SP Show Panel
SPI Show Program Image
SPS Show Pascal Stack
SRF Show Relative to File
STS Show Task Status
SvVs Show Volume Status
SWR Show Workspace Registers
VB Verify Backup of Directory
Ve Verify Copy of Directory
XJM Execute Job Monitor
XPD Execute Performance Display
XSCU Execute System Configuration Utility
XSGU Execute System Generation Utility
2270513-9701 2-21/2=-22 Conventions and Libraries

SCI/Utilities Design

SECTION 3

ERROR AND STATUS MESSAGE-HANDLING

3.1 OVERVIEW OF THE DNOS MESSAGE-HANDLING SYSTEM

The message-handling system of DNOS 1involves several sets of
message files, utilities to build message files, and routines to
construct messages for display to the user. Users who are
migrating from DX10 to DNOS should modify utilities to use the
DNOS message system for consistency of user interface.

Since the user's interface with DNOS is SCI, +the burden of
displaying messages to the wuser 1lies with SCI. Each of the
utilities and support functions generates messages using the same
SCI interface, and SCI displays messages to the user. A1l DNOS
utilities that encounter the same <condition produce the same
message.

Source code is independent of the file structure or message IDs.
This allows changing of the message file (deleting, adding, or
rearranging message without source code changes.

The DNOS message facility is designed for consistent handling of
error and completion messages from all sources, and for ease of
internationalization. To attain these design goals, all DNOS
language processors and utilities wuse error messages and
termination messages from sStandard files, call the routine S$TERM
to report errors and terminate processing, and isolate the text
of all internal messages to a single module.

3.2 SCI INTERFACE FOR MESSAGE HANDLING

The following SCI interface routines and common utility modules
are defined for the DNOS message-handling facility:

* S$TERM is wused to pass along a message upon task
termination.

¥ S$CMSG 1is used during processing to format a message to
be output from a utility.

* The common modules UTCOMN,SOURCE.UTUERR and
UTCOMN.SOURCE.UTSERR are 1linked with various utilities
that use messages in the UTILITY or SVC files.

2270513-9701 3-1 Error Processing

ey

SCI/Utilities Design

¥ UTCOMN.SOURCE.UTPSER is the Pascal-callable interface |
routine for UTSERR.

¥ UTCOMN.SOURCE.UTPUER is the Pascal-callable interface
routine for UTUERR.

¥ UTCOMN,SOURCE.UTEACT is used by utility tasks that use
common end-action processing.

S$TERM and S$CMSG are documented in the DNOS Systems
Programmer's Guide. The UTCOMN routines are documented 1in the
Conventions and Libraries section of this manual.

3.3 THE USE OF $$cCC

The synonym $$CC is used to report a completion code. Since the
severity of an error depends on the environment in which it
ocecurs, the wutility writer decides the degree of severity to
report for each error condition that arises. The appropriate
value 1is placed into a register before calling UTSERR or UTUERR.
Usually, values of >0000, >4000, or >8000 are set. Some
utilities, such as the Link Editor, count warnings or errors and
provide that count in the last three digits. Only UTEACT sets
$$CC to >C000 under normal circumstances.

The conventional meanings used for the $$CC codes are as follows:

¥ C000 - fatal - An error which causes the utility to
terminate processing of a request without successfully
completing the request

¥ 8000 -~ nonfatal - An error which causes the utility to
omit some part of its usual processing or in some other
way complete the user's request without doing the entire
operation which the user expects.

®# U000 - warning - A condition has arisen that may or may
not cause results to be complete. The wuser needs to
check the output of the utility.

(0000 - Successful completion.

3.4 MESSAGE CONTENTS

The displayed message has the following format:

Error Processing 3-2 2270513-9701

SCI/Utilities Design

SOURCE CATEGORY-ID MESSAGE (ADDITIONAL TEXT)
where:

SOURCE is a one- to three-character error source
indicator.

CATEGORY 1is the one- to eight-character name of the DNOS
subsystem that generates the error.

ID is an alphanumeric string.
MESSAGE is the text of the message.

ADDITIONAL is additional text and may be blank. This !

TEXT field is used by SCI to report errors in command
procedures. The format of the additional text is as
follows:

Command procedure name; line number

The combined parts of a message are displayed to the user by the |
show expanded message (SEM) utility or by SCI when an error has
occurred or when some informative message must be displayed. If
the command being processed was executed interactively, the
message appears on the screen. If the command was executed from
a batch stream, the message appears in the batch 1listing file.
If more than one 1line 1is required for the message, text is
continued on the next line or lines, beginning in the same column
as the text of the first line. Margins are set by S$CMSG.

3.4.1 Source Indicator.

The source indicator is one of the character combinations shown
in Table 3-1.

Table 3-1 Error Source Indicators]

Indicator Meaning f

I Informative message

17) Warning message

U User error

S System error

H Hardware error

UsS User or system error

UH User or hardware error

SH System or hardware error

USH User, system, or hardware error

2270513-9701 3-3 Error Processing

SCI/Utilities Design

3.4.2 Category-ID.

The category of a message is a string of from one to eight
characters, such as SVC or LINKER. The category identifies the
DNOS subsystem that generated the message.

The message identifier (ID) provides an 1index into the DNOS
Messages and Codes Reference Manual. Internally, this identifier
is a key for the key indexed file of expanded messages used by
the Show Expanded Message (SEM) command procedure that displays
additional information about a particular message.

3.4.3 Message.

The text of the message consists of fixed explanatory information
and optional variable text.

3.4.3.1 Fixed Information.

Fixed information resides in a message file. The length of this
file-resident portion of the message may be as many as 238
characters, and may include any character except the question
mark. The question mark is used as a position marker which is
replaced by variable text when the message 1is processed. Each
question mark 1is followed by a decimal digit from 1 to 9 or an
upper case C. The digits 1 to 9 show which variable text element
replaces the question mark. (This allows translations of
messages to rearrange the variable text within the fixed text of
the message.) The upper case C indicates that the remainder of
the current line of the message is to be blank-filled, i.e. the
C is an effective carriage return, line feed sequence.

3.4.3.2 Variable Text.

Variable text is that part of the displayed message that 1is not
the same each time the message is output. It is determined by
the utility that generates the message, and is supplied to SCI
along with an identifier of the message file. The variable text
is passed to S$CMSG by the calling task in a buffer, with the
length in the first byte of the buffer.

The 1length of an element of variable text may be null, or it may
be as many as 235 characters, including variable text delimiters.
In a 255-byte buffer for Name Management requests, 20 bytes are
reserved for system data.

Error Processing 3-4 2270513-9701

SCI/Utilities Design

The semicolon is not a valid variable text character. It is used
as a delimiter between elements of variable text. Two
consecutive semicolons represent a null variable text element.
Variable text may include a pathname, a LUNO, an opcode, or other
run-time information.

When a question mark is found in the fixed text, variable text is
inserted into the buffer containing a copy of the fixed text. If
the specified variable text element is null, the question mark is
output without the associated digit. A variable text element
that is not referenced in the fixed text is not displayed.

3.4,4 Additional Text.

When additional text appears in the message, the character string
passed to S$CMSG by the utility generates the message. In the
sense that it is determined at run time, it is variable text, but
there 1is no processing of additional text. The character string
is appended to the message constructed from fixed and variable
text.

The maximum number of characters of additional text is 255.

3.4.,5 Translation Of I/0O Errors Encountered By SVCs.

Special handling 1is performed for the message generated when an
SVC passes back an I/0 error. When this case is encountered, the
message text corresponding to the I/0 error 1is also displayed.
For example, the message generated when I/O error 0001 is
encountered during an Install Task SVC appears as:

USH SVC-0010 THE FOLLOWING I/O ERROR (INTERNAL CODE 0001) WAS
ENCOUNTERED DURING SVC 25:
U SVC-0118 LUNO ? NOT ASSIGNED FOR I/0 SUB-OPCODE ?

If the user enters a "?" following a display of the message, the
expanded test for the I/0 error will be shown. Since variable
text for the I/0 message is not available when the message is
processed, question marks appear in the I/0 portion of the
message.

3.4.6 Abbreviated Forms.

If the files containing the fixed portion of the message text are
not on the system disk, an abbreviated form of the message is
displayed. It contains only the category, an internal message
number, and any variable text that would normally have been
included with the fixed text. The following examples illustrate
both cases.

2270513-9701 3-5 Error Processing

SCI/Utilities Design

Assume the fixed portion of the message text for an SVC error
with internal number >0027 is the following: 0315 2?1 DOES NOT
EXIST. Assigning a LUNO to a nonexistent file .PRINT.OUT
produces an error message as follows:

U SVC-0315 .PRINT.OUT DOES NOT EXIST

This message appears as shown if the variable text has the value
.PRINT.OUT preceded by the byte count of 10.

On a system without a fixed text file, the same message appears
as follows:

SVC-INTERNAL CODE >0027 .PRINT.OUT

Suppose that a COBOL program compiles correctly and informs the
user of the results. The internal message number might be >9010
and the message C06 ?1 COMPILED WITH 2?2 ERRORS might be in a
message file named COBOL. The displayed message appears as
follows:

I COBOL-C06 .SOURCE COMPILED WITH 0 ERRORS
Without the fixed text file, it appears as follows:

COBOL-INTERNAL CODE >9010 .SOURCE;O

The variable text in this case is made up of two items, the input
file pathname and the number of errors the COBOL compiler
discovered. The variable text buffer is as follows:

9.SOURCE ;O

where 9 is binary data indicating the length of the text string
that follows.

If the utility specifies an internal message number that does not
exist (for example, SVC returns >8111), the message output form
is as follows:

SVC-UNDOCUMENTED ERROR - INTERNAL CODE >8111

3.5 MESSAGE FILES

Message files are maintained on the system disk to provide the
fixed text portion of the messages used by SCI, the 1languages,
and utilities. Four directories of message files are used to
build and support the DNOS message facility. In the descriptions

Error Processing 7 3-6 2270513-9701

SCI/Utilities Design

below, MESSAGES represents the volume ID of the disk that
contains the DNOS source/object kit shipped by Texas Instruments
Incorporated. The directories of message files are as follows:

¥ The MESSAGES.TEXT directory of the DNOS source directory
contains the files of error and status messages in text-
editable form. There is a separate file for each of the
language processors, SCI, SVC processors, and the major
utilities.

¥ The .S$MSG directory contains the information in
MESSAGES.TEXT, in the format used by the operating
system and SCI.

¥ The MESSAGES.EXPTEXT directory contains expanded
explanations of the errors documented in the TEXT files.
The files in this directory are in text-editable form.

¥ The .S$EXPMSG directory contains the information in the
MESSAGES. EXPTEXT in the format used by the operating
system and SCI.

Corresponding entries in the various directories have the same
leaf node names. The filename SVC appears in each of the four
directories MESSAGES.TEXT, MESSAGES.EXPTEXT, . S$MSG, and
.S$EXPMSG, as the file of errors detected for system SVCs.

Compiler messages that appear in listings are not placed in the
files; messages are centralized into one module for the compiler.
Run-time error messages generally are placed into the message
files. Programmers in all environments using DNOS are expected
to understand English messages, but end users may not Kknow
English. Therefore, any messages displayed to end users must be
easily internationalized.

All messages for a particular compiler or utility must be placed
into a single file, though +there may be separate files for
compilers and for run-time support.

3.5.1 Details of the TEXT Files.

The TEXT message files (DNOS as well as user-defined) are
editable, blank-suppressed, sequential files with a 1logical

record length of 80 bytes. A blank line is the entry delimiter.

Record one contains the internal message number 1limits for the
file and local language characters for the error source.

2270513-9701 3-7 Error Processing

SCI/Utilities Design

Each file in the TEXT directory has the following format:

¥ The 1lowest and highest internal message numbers are
"ASCII representations of the hexadecimal numbers, and
are in columns 1 through 4, and 6 through 9,
respectively.

¥ The abbreviation characters in the local languagé are in
columns 11 through 15, in the following order:

- User error (U)

- System error (S)

- Hardware error (H)
- Warning (W)

- Informative (I)

The remaining records of the file contain error messages in the
following format:

¥ First line:

- Error source indicator (U, S, H, US, UH, USH, I,
or W)

-~ One or more blanks

- One or more four-digit hexadecimal internal
message numbers, separated by commas and enclosed
in parentheses) '

- Optional comments. They are not output with the
message. ,

* Following Line(s). The message for this entry starts in
column 1 of the next line and can be up to three lines
long. This provides a maximum of 240 characters for the
fixed-text portion of a message. If a message
identifier is to be seen by the user, it must appear in
the message.

¥ A blank line

A TEXT file message may contain any displayable characters with
the exception of the question mark. A question mark and its
associated digit are replaced with variable text when the message
is processed. The question mark and digit pair may be embedded
between any two valid message characters. Similarly, the ?C may
be embedded between any two valid message characters.

Error Processing 3-8 2270513-9701

SCI/Utilities Design

Figure 3-1 shows a TEXT file consisting of three messages for
five different internal conditions.

1000 10FF USHWI

U (1000) MESSAGE OCCURS OFTEN WITH UNPRINTABLE NAMES
FLO1 FILE 2?1 ALREADY PURGED

U (1004,1014,1024) THIS COMMENT IS NOT OUTPUT.
FLO2 KEY INDEXED FILE SUPPORT NOT AVAILABLE

U (10FO0)
FNO2 INSUFFICIENT BUFFER SPACE ALLOCATED IN USER TASK

Figure 3-1 Sample TEXT File

Assume that this file is in the S$MSG directory as a file named
TESTER. A message generated for internal error code >1014 is
displayed as follows:

U TESTER-FL02 KEY INDEXED FILE SUPPORT NOT AVAILABLE

Message files in the TEXT directory built by Texas Instruments
Incorporated have messages in uppercase English.

The internal message numbers used within one file are independent
of those wused in another file. The user is free to choose any
value when building a message file. It is recommended that the
internal message numbers be contiguous in order to minimize file
space used. The S$MSG file built from the TEXT file includes an
index that is a continuous sequential table of internal message
numbers and their corresponding record numbers in the S$MSG file.

If you use message files, you may want to create a companion
equate file for each TEXT file of messages in use. Programs can
then assemble, compile, or link with the equates module and refer
to specific errors by their equated label rather than by hard-
coded internal message number.

3.5.2 Details of the EXPTEXT Files.

For each TEXT file created by Texas Instruments Incorporated,
there 1is a companion expanded explanation file in the directory
MESSAGES.EXPTEXT. Files in the EXPTEXT directory are text-
editable sequential files with a 1logical record length of 80
bytes. These files include the "Explanation:"™ and "User Action:"
portions of the messages that appear in the DNOS Messages and
Codes Reference Manual and in the information provided by the SEM
command.

2270513-9701 3-9 Error Processing

SCI/Utilities Design

Files in the EXPTEXT directory created by Texas Instruments
Incorporated have messages in uppercase and lowercase English.

In a file in the EXPTEXT directory, the first record contains the
characters for the two phrases "Explanation:" and "User Action:"
(including the colons), in the same language as the messages. The
fields must be enclosed in quotes if the phrases include blanks.

Each entry for a message in the file includes the following:

¥ First line:

- A key consisting of two percent-sign characters
followed by the message identifier which can have
as many as 14 characters. The keys %%1 and %%2 are
reserved.

- One or more blanks

- One or more hexadecimal message numbers, separated
by commas, and enclosed in parentheses

¥ Next line(s). One or more explaining the message.
¥ A blank line

¥ Next line(s). User action. One or more paragraphs
explaining what to do when the message occurs

¥ A blank line
Expanded explanations may be included for some or all of the

entries in the TEXT file. Figure 3-2 shows a sample EXPTEXT file
corresponding to the sample TEXT file in Figure 3-1.

Error Processing 3-10 2270513-9701

SCI/Utilities Design

"Explanation:" "User Action:"

%2%FLO1 (1000)
The file indicated has already been purged with a previous
command.

Verify that the correct filename has been provided. If not,
resubmit the command with the correct filename.

$%FL02 (1004,101L4,1024)
The system in use does not have key indexed file support. The
operations requested are not available.

Locate a system with key indexed file support or rewrite the
program to run without key indexed files.

- %%FN0O2 (10F0)
The user task does not have enough buffer space for the
subroutine being called.

Rewrite the task providing more buffer space.

Figure 3-2 Sample EXPTEXT File

3.6 FILENAMES

The names of files within the four message directories may be any
name except those reserved for DNOS and its utilities. Table 3-=2
lists the reserved names.

Each of - the reserved filenames 1is recognized by S$CMSG, which
generates the error and status messages. It is also translated in
the command procedure M$02, for use with the Show Expanded Message
(SEM) Command.

To avoid conflict with the naming of other files, S$CMSG uses a
file indicator rather than a filename to access the appropriate
message file. The file indicator is a hexadecimal value between
>01 and >FF, which is used internally by the program needing the
file. The indicator is bound to the appropriate filename by the
synonym $$FNxy, where xy is the indicator. While DNOS-supplied
components use wWell known file indicators, DNOS cannot know user-
defined indicators. User-defined command procedures that access
user-defined message files specify $$FNxy prior to bidding a
program that calls S$CMSG for error processing.

2270513-9701 3-11 Error Processing

SCI/Utilities Design

Table 3-2 Reserved Message Filenames

Filename Use

ASSEMBLR Assembly language completion messages
BASIC BASIC messages

COBOL COBOL messages

COMMON Messages concatenated with CRASH, CRASH1 LOADER
CRASH System crash messages

CRASH1 Messages concatenated with CRASH, COMMON
DATADICT Data Dictionary messages

DBMS DBMS run-time messages

DEBUGGER SCI Debugger utility error messages

DNIO Distributed Network I/O Messages

DNOSHLL DNOS high-level language support messages
EDITOR SCI Text Editor error messages

FORTT78CP FORTRAN compiler messages

FORTT78RT FORTRAN run-time messages

ICS3270 Communication messages for 3270

LINKER Link Editor completion messages

LOADER System loader flash crash messages

MAIL Support for the SCI MAILBOX function
PASCAL PASCAL run-time messages ‘

PTP Performance tools package messages

QUERY QUERY run-time messages

RPG RPGII run-time messages

S$ROUTIN Messages common to SCI, DEBUGGER, EDITOR, UTILITY
SCI SCI error and status messages

SMRG Sort/Merge run-time messages

STATUS Alias of SVC file

SvC SVC processor error and status messages
TAP TAP X.29 Package

TIFORM TIFORM run-time messages

TIPE TI Page Editor messages

UTILITY DNOS utility program error and status messages

Table 3-3 1lists the file indicators chosen by Texas Instruments
Incorporated for DNOS and its utilities, for the 1languages, and
for run-time support.

Error Processing ' 3-12 2270513-9701

SCI/Utilities Design

Hex File Indicator

Table 3-3 Message File Indicators

00 through 2F

34 through 3F
40 through 5F

60 through TF

80 through FF

2270513-9701

01
02
03
ou
05
06
07

08
10
11
12
21
30
31
32

41
42
43
yy
45
46
47
48
49
4A
4B
4c
4D-5F

60
61
62
63
6u
65
66
67
68-7D
TE
TF

DNOS

SVC messages and codes

Utility messages

SCI messages

SCI Text Editor messages

SCI Debugger utility error messages
Status messages for certain SVCs
SVC messages and codes, in certain cases
when SVC >U4C was already called
MAILBOX support

Assembly language completion messages
System crash messages

System loader flash crash messages
Link Editor completion messages
3270 Communications

TAP X.29 package

Distributed Network I/0 messages
Reserved for Communications
Language Run-Times

COBOL run-time support

FORTRAN run-time support

TI Pascal run-time support
DNOSHLL run-time support

RPG II run-time support

TIFORM executor run-time support
DBMS run-time support

QUERY run-~time support
Sort/Merge run-time support

TIPE

Data Dictionary

Performance Tools Package
Reserved

Language Compilers/Interpreters
BASIC

COBOL compiler (Reserved)
FORTRAN-T78 compiler

Reserved

Reserved

Reserved

TIFORM FDL compiler (Reserved)
DBMS DDL compiler (Reserved)
Reserved

TI Pascal compiler

DNOSHLL compiler

Available to users

3-13 Error Processing

SCI/Utilities Design

$$FNxy 1is set in the command procedure prior to bidding the
program, so that the synonym is uniquely defined when message file
access is required.

If the synonym $$FNxy does not exist when the message is formatted
by SCI, and if +the file indicator 1is not one of the file
indicators known by SCI, the message appears with just the file
indicator rather than the filename as the category identifier as
follows:

xy--INTERNAL CODE message ID variable text

3.7 UTILITIES TO BUILD THE MESSAGE FILES

Two wutilities build the message files. One creates the S$MSG
files from the TEXT files and the other creates the S$EXPMSG files
from the EXPTEXT files. To 1internationalize and rebuild the
entire set of DNOS messages, the batch stream
.BATCH.BUILD.MESSAGE1 from the DNOS source/object kit should be
used. This batch stream combines several input files to build the
output files correctly.

3.7.1 Build Message File.

The SCI Build Messages File (BMF) command procedure and the BMF
task build a message file in the .S$MSG directory. The BMF task
consists of a Pascal program (BMF) and supporting routines. It is
replicatable and nonprivileged.

BMF reads the TEXT file described above and creates two temporary
files that make up the .S$MSG file. The .S$MSG output file 1is
either a relative record file or a sequential file. The command
procedure creates an output file of the specified type and merges
the temporary files into it.

SCI bids BMF with a PARMS 1list that consists of the stack and heap
sizes. Values of 1000 and 500, respectively, are sufficient. The
program requires that the following synonyms be set:

$INPUT Pathname of the input TEXT file. This file must be
structured as described earlier in this section.

$INDEX Pathname of the relative record file in which an
index table (the first part of the .S$MSG file) is
built.

$MSGFIL Pathname of the sequential file in which the

message file (remaining records of the .S$MSG file)
is built.

Error Processing 3-14 2270513-9701

SCI/Utilities Design

The detailed formats of the output files are documented in the BMF
code. The $INDEX file <contains a header record (high and low
internal message IDs and local language character strings) and a
directory 1into $MSGFIL. For each internal message ID, the index
table contains the record number in $MSGFIL where the associated
message text is stored.

BMF opens the three files, reads the first record from the input

file, and creates a complete index file. For each message,
starting with the lowest message number and continuing through the
highest, the 1index table entry (the record number of the

associated text) is initialized to 0, indicating that no message
text exists for the internal message code).

BMF enters a 1loop in which the message information is read,
processed, and stored in the appropriate text record(s).
Appropriate entries in the index file are updated to point to the
message text.

BMF continues to process after finding an error, so that a single
execution can be used to detect all errors in the input file.
Errors are reported through UTPUER, the UTCOMN Pascal interface
routine to DNOS message handling.

NOTE

Messages in the . S$MSG files must be
displayable on VDTs, printers, and any other
output device. The TEXT files and the
corresponding .S$MSG files must be in all
uppercase (for English). No attempt is made
to translate lowercase to uppercase
characters.

3.7.2 Build Expanded Message File.

A similar utility, build expanded message file (BEMF), creates the
S$EXPMSG files from the EXPTEXT files. BEMF reads the EXPTEXT
file, formats each explanation into a key indexed file record and
writes that record to the S$EXPMSG file.

The BEMF task consists of a Pascal program (BEMF) and supporting
routines. It is replicatable and nonprivileged.

SCI bids BEMF with a PARMS 1list as follows:

2270513-9701 3-15 Error Processing

T

SCI/Utilities Design

PARM Definition

Pascal stack - 1500 is sufficient

Pascal heap - 500 is sufficient

$$LU - LUNO of output file

Convert lowercase to upper case? (YES/NO)
$BEMF$2 - adjusted message ID length

NI EWN -

The program requires that the following synonyms be set:

INPUT Pathname of the input EXPTEXT file. This file
must be structured as described earlier in this
section.

OUTPUT Pathname of the error file.

Prior to bidding the BEMF task, the command procedure assigns a
LUNO to the output file specified by the user. The output file
may be any key indexed file, but it must reside 1in the S$EXPMSG
directory to be used by DNOS. BEMF writes directly to the
.S$EXPMSG file; no temporary files are created.

The key indexed file that is built by BEMF is capable of carrying
messages with IDs of as many as 14 characters. The keys that are
actually used are the two percent-sign characters followed by the
one to fourteen character keys provided in the EXPTEXT file. Two
special keys are built while processing the first 1line of the
EXPTEXT file. The first string (for "Explanation:") is stored
using the key %%1, and the second string (for "User Action:") is
stored with the key %%2.

BEMF opens the input, output, and error files, then processes the
first record to build the first record of the .S$EXPMSG file. The
program enters a loop that reads and processes expanded message
paragraphs until the EOF is encountered in the input file.

BEMF continues to process after finding an error, so that a single
execution can be used to detect all errors in the input file.
Errors are reported through UTPUER.

The key indexed file is closed prior to task termination errors.
The command procedure must release the LUNO.

3.8 SHOW EXPANDED MESSAGE UTILITY

The show expanded message (SEM) utility writes the expanded text
of a specified message category and ID to the specified 1listing
file. SEM is written in Pascal and wuses the UTCOMN error
processing routines.

Error Processing 3-16 2270513-9701

SCI/Utilities Design

The task segment SEM is replicatable and nonprivileged.

SCI bids SEM with a PARMS 1ist as follows:

PARM Definition
1 Pascal stack - 1500 is sufficient
2 Pascal heap - 1000 is sufficient
3 $$LU - LUNO of message file
y Flag to indicate whether or not to display the

short form of the message:
=1, means do not display short form
=2, means display short form
5 Message category
6 Message ID

The program requires that the following synonyms be set:

SEMLST The pathname of the listing file. If $SEMS$LST
has a null value, the expanded text is written to
the TLF.

$$VT Variable text
$$ES Error source

$$MN Internal message number

SEM calls R$CMSG, the Pascal interface routine to S$CMSG for
formatting the explanation and wuser action portions of the
expanded message.

3.9 THE MESSAGES AND CODES MANUAL

The DNOS Messages and Codes Reference Manual contains messages and
explanations in a format similar to the output of the SEM command.
The manual is built directly from the message files, using
utilities 1in the messages manual data base. These utilities are
described in the README file of the messages manual data base, but
they are not supplied to wusers with either source or object
versions of DNOS.

2270513-9701 3-17/3-18 Error Processing

SCI/Utilities Design

SECTION 4

SYSTEM COMMAND INTERPRETER

4,1 OVERVIEW

The System Command Interpreter (SCI) is the interface between the
user and the kernel of DNOS. SCI provides service at two levels:

¥ The wuser enters an SCI primitive and keywords. SCI
processes the keywords and performs the requested
function. SCI issues an SVC when services of the kernel
are required.

¥ The command procedure represents a level of removal from
the primitive. In this case, SCI interprets prompts and
SCI commands in the command procedure and constructs
primitives and the appropriate keywords.

SCI is written in assembly language. Task structure, flow of
control, and details of the routines and data structures are
discussed in this section. Some comments concerning modification
of SCI are included.

Refer to the DNOS System Command Interpreter (SCI) Reference
Manual for details about SCI primitives, SCI command syntax, and
how SCI command procedures are written.

4,2 STRUCTURE
The SCI task is made up of three segments:
¥ S$SYSTEM procedure segment - Library of general service
routines shared by many DNOS tasks. S$SYSTEM includes

only DSEG position-independent code. Any changes made
to routines in S$SYSTEM must preserve this independence.

2270513-9701 4-1 scI

SCI/Utilities Design

NOTE

Refer to the . following sources for further
information about S$SYSTEM routines:

* DNOS System Programmer's Guide

¥ The section of this document
entitled Conventions and Libraries

®* Appendix A of this document, Writing
DSEG Position-Independent Code

¥ SCI990 procedure segment - Procedural code that performs
SCI functions, This segment is shared among all
executing SCIs. If changes are made to this segment,
the code must remain sharable.

¥ SCI990 task segment - DNOS transfer vector, all volatile
data for SCI (module SCITSK) and workspace, and DSEGs
for S$SYSTEM routines. -
The S$SYSTEM and SCI990 procedure segments are write protected.
SCIXFR is the standard DNOS task transfer vector. It must be the
first module linked into the SCI990 task segment. This three
word vector —contains a workspace pointer, an initial program
counter and an end-action address, in that‘order.
SCITSK is the read and write data area for SCI990. This module
is linked below SCIXFR in the SCI990 task segment. SCITSK
includes the following categories of data:
¥ Sixteen registers of initial workspace

* Return address stack (25 words)

¥ SVC call block structures for accessing the following
entities:

- Primary input and output devices (or files) for
this session

- Output file for a .DATA primitive

- File in which the procedure being expanded is
stored

- Menu file

SCI : 4-2 2270513-9701

SCIs/Utilities Design

¥ SVC call block structures for issuing the following
SVCs:

Map Task Name to ID SVC

-~ Get Job Information SVC

Self ID

Time Delay SVC

Convert Binary to Decimal SVC

¥ Buffers
¥ Area for stacking as many as 32 procedure environments

Miscellaneous data, including a 64-byte patch area

4.3 FLOW OF CONTROL

The following paragraphs describe the flow af an SCI session.

4.3.1 Invoking SCI.

The LOGON task in DNOS is responsible for initiating SCI. The
LOGON task creates an interactive job and bids SCI as its initial
task. This task communicates with the terminal to which it is
assigned by LOGON.

Once SCI is active, it can initiate SCI as a background batch
task within the same job. This background task has access to
resources through its parent task, the SCI task that bid it.

SCI can create a batch job in which SCI is a task. Once this
batch job has been created, all ties with the parent job and task
are severed. Resources are not shared between the batch job and
the parent job.

4,3.2 Initialization.

Initialization of SCI consists of the following:

¥ Gaining access to input and output resources, synonyms,
and logical names

* Determining the mode (batch or interactive) in which SCI
is functioning

2270513-9701 4-3 SCI

SCI/Utilities Design

¥ If interactive mode, getting terminal information from
the TINFO task :

¥ Establishing communication with MAILBOX
* Showing the news file .S$NEWS when appropriate
¥ TInvoking the command procedure M$00.

SCI invokes M$00 to allow a user to perform one or more
operations deemed desirable at the beginning of every SCI
session. For example, the command procedure can be used to.
customize prompts, menus, and command libraries. A companion
command procedure, M$01, is invoked at the termination of an SCI
session.

4.,3.3 Major Loop.
Following successful completion of the initialization process,
SCI enters its major processing 1loop, Wwhich performs two

functions:

1. Displays the terminal local file (TLF), menus (if they
exist) and messages (if they exist)

2. Gets and processes the next input

Unless end-action is taken by SCI or the user specifically
terminates SCI, control returns to this major 1loop following
completion of command processing, or any time the Command key
(CMD) is pressed.

4,3.4 Termination.

The SCI990 task terminates during processing of the .STOP
primitive. This primitive is in the Quit (Q) command procedure

for an interactive session and in the End Batech Execution
(EBATCH) command procedure for a batch session.

4.4 DESIGN CONCEPTS

The following paragraphs describe some overall concepts of the
design of SCI.

SCI 4y -2270513-9701

SCI/Utilities Design

4.4,1 Command Procedures.

In command mode, SCI recognizes two kinds of user input -- an SCI
language primitive or the name of a command procedure. A command

procedure is a collection of SCI primitives and/or other command
procedures.

A procedure may invoke other command procedures, but ultimately,
Wwhen all nested procedures have been expanded, the result is a
series of one or more primitives. To expand a command procedure
is to read nested command procedures until all procedure
references have been resolved to SCI primitives.

SCI maintains a variable (DEPTH) that is a measure of the current
command procedure nesting depth. Depth level 0 is the primary
input level (that is, the batch input file or the interactive
terminal). DEPTH is incremented and decremented as command
procedures are entered and exited. The maximum nesting level 1is
32. SCI processes each command line using field prompts defined
in that command procedure, at that nesting depth. SCI commands
can be called recursively.

4.4.,2 Environment Stacking in Nested Procedures.

SCI stacks the following elements of the environment when a new
nesting level is entered:

¥ LUNO for the current command procedure

¥ Record number in the current procedure

IF/LOOP counter. Since .IF and .LOOP structures must be
terminated (by .ENDIF and .REPEAT, respectively) before
the end of the command procedure, this count is

maintained at each level of nesting.

¥ Expert mode flag. The variable EXPERT. Any nonzero
value implies that expert mode is active.

¥ Stage depth. Not currently implemented
¥ The name of the command procedure

The environment information requires 17 bytes of memory per
nesting level.

In effect, the field prompt values are stacked, because of the
way they are stored by SCI. When a field prompt response is put
into the name correspondence table (NCT), SCI pairs the value
with a name ‘that has the following format:

2270513-9701 h-5 SCI

SCI/Utilities Design

00<run ID><depth level><name>
where:

run ID is a binaby number that is the run ID of the
parent task.

depth level is the current value of DEPTH (a binary number).
The depth level >50 is a special value used for
temporary storage of field prompt/value pairs
entered in expert mode. (See the discussion of
XPROMP for details.)

name is the name of the field prompt.

SCI appends the same information to a field prompt name when
requesting the value from the Name Manager. The only field
prompt values that are available to a command procedure are those
defined at that command procedure's depth level.

The environment is unstacked when the end of a procedure is
reached. When the procedure depth 1level 1is popped, all
name/value pairs at the depth being exited are purged from the
NCT.

4,4,3 Task Bidding.
Four SCI primitives are used to bid tasks. They are as follows:

* _BID activates the specified task as a foreground
activity and suspends SCI until the task terminates.

* _QBID activates the specified task as a background
activity'in a new stage. SCI suspends in a batch
session, but does not suspend in an interactive session.
Tasks activated by .QBID do not share synonyms and
logical names with SCI.

¥ _DBID activates the specified task in a new stage, with
the specification that +the task is to be suspended
immediately. This primitive 1is for the Debugger
utility. '

¥ _RBID activates the specified task and suspends SCI.
Tasks activated by .RBID can return control to SCI
without terminating.

Table U4-1 is a summary of two characteristics of each type bid:

whether or not SCI is suspended, and whether or not the synonyms
and logical names are shared by SCI and the task that is bid.

SCI ‘ 4-6 2270513-9701

S5CI/Utilities Design

Table 4-1 Task Bid Characteristics

Interactive /

i H] i i

/ i | i i i

/ Batch i .BID ! .QBID ! .DBID ! .RBID |

1Yes / ! No / ! No / 1Yes / H

Suspend SCI? ! / i / H / ! / i

! / Yes| / Yes | / H / Yes|

1/ 1/ ! /(Note 1)! / H
----------------- R e it ettt Rttt
Share Synonyms |Yes / | No / ! No / 'Yes / |
and H / i / i / i / |

Logical Names? | / Yes} / No Vo 4 i
4 i/(Note 2)| /(Note 1)} / Yes |
__ +

Note 1 - Not allowed in batch mode

Note 2 - Incompatible with DX10

In processing each of the primitives, an Execute Task SVC (>2B)
is issued when the task is first bid. Refer to the DNOS SVC
Reference Manual for details of the call block. Four flags in
the flags byte (byte 3 of the call block) vary with the four bid
primitives, and with interactive or batch mode. Table U4-2 shows
the flag states.

Table 4-2 Flag States for >2B SVC Call Block

Interactive /

' | ! | !

/ ! ! ' ! |

/ Batch ! .BID ! .QBID |} .DBID | .RBID |

RBID task (Bit 2)] 0/0 H 0/0 H 0/% H 1/1 i
Background task | 0/0 | 1/1 i1/ 1 0/0 |
(Bit 3) ' | ' f |

Unconditional ! ! ' i i
suspend (Bit 6) | 0/0 ! 0/0 ! 1/% H 0/0 i

Suspend calling | ' ! i i
task (Bit 7) ! 1/1 10/ ! 0/% d 171 H

®* Not allowed in batch mode

The RBID concept is implemented to allow alternating execution
between SCI and wutility tasks, such as the Text Editor and the
System Configuration Utility. By calling the S$WAIT routine, a
utility task can relinquish control to SCI and remain in the

2270513-9701 §-7 SCI

SCI/Utilities Design

user's job until reactivated by SCI. The SCI routine S$RBID and
the S$SYSTEM routines S$NEW and S$WAIT coordinate the switching
of control between SCI and an RBID task. They use the Execute
Task SVC, the Unconditional Suspend SVC, the Activate Suspended
Task SVC, and the synonym $$RBID.

SCI maintains a table of active RBID tasks, in the SCI990 task
space. The name of the structure is RBIDAC. It contains a
maximum of five two-byte entries. Corresponding to each entry in
the 1list is a task in the user's job that has been bid using the
+RBID primitive, and has returned to SCI by calling S$WAIT. The
entry in this table is the installed ID of the task and the run_
ID of the task in the user's job.

The routines S$RBID, S$TERM and S$WAIT use the synonym $$RBID.
When SCI passes control to an RBID task, a non-null value
indicates that SCI is taking end action. The utility task takes
the appropriate action, that is, it should terminate. This 1is
the 1last opportunity for the .RBID task to do any cleanup
processing and to call S$TERM.

When the utility task passes control back to SCI, a non-null
value for $$RBID indicates that the utility task was suspended by
S$WAIT and should remain in the active RBID task 1list (RBIDAC).

WARNING
.RBID 1is 1intended for the exclusive use of
SCI and DNOS utilities. Texas Instruments,
Inc. does not guarantee 1implementation

detail consistency in future releases of
DNOS. Any application programs written to
exploit this feature may fail in future
releases.

4y.4,4 SCI Subroutine Linkage.

A push/pop stack of return addresses is maintained for executing
subroutine calls and returns in SCI code. The SCI CALL macro
generates a branch to SDCALL, whose address is always maintained
in register 10. SDCALL checks for and reports stack overflow. A
maximum of 25 nested calls can be stacked.

The return routine has two entry points -- SDSRET and SDSERR.
SDSRET unstacks the «call and returns control to the calling
routine at the instruction following the CALL macro.

SDSERR is the error return entry point that reports an error.
The call is unstacked and control is transferred to the error

scI ' 4-8 2270513-9701

SCI/Utilities Design

address specified on the CALL macro. If no error address 1is
specified, control is transferred back to the calling routine at
the location following the CALL macro.

No working registers are saved or restored with a normal
call/return sequence within SCI. The routines SAVEO9 and RSTRO9
are available to save and restore registers 0 +through 9. The
buffer for storing registers is twenty bytes in 1length, a
stacking facility for only one level.

4.,4,5 Macros.

The macros required by SCI are in the file DSC.SCI990.SOURCE.
MACROS. The macros are as follows:

LTXT Produces a data structure consisting of the
appropriate byte 1length, followed by the character
string that is the operand of LTXT.

ZTXT Produces a data structure consisting of the
appropriate byte 1length, followed by two bytes of
zero, followed by the character string that 1is the
operand of ZTXT. (ZTXT produces a structure with the
same format as a field prompt name in the NCT.)

SEC Produces the appropriate calling sequence for S$XFER

CALL Produces a branch and 1link sequence to the first
operand with an optional error exit to the second
operand. This macro implements the CALL portion of

the SCI subroutine linkage strategy. The format of
the macro is as follows:

CALL @ROUTINE,ERROR

where:
ROUTINE is the routine to be called.

ERROR is the address at which an error
encountered by ROUTINE is processed.

The following instructions are generated:

BL ¥R10 (R10 = address of SDCALL)
DATA ROUTINE, ERROR

2270513-9701 ' 4-9 SCI

SCI/Utilities Design

4.,4.6 Error Reporting.
The error reporting system in SCI consists of two phases:

1. When an error occurs, the information required to
format the proper message is saved.

2. The message is displayed on an interactive terminal
or in the batch listing file.

The standard error reporting interface, for both SCI and any
tasks it bids, is S$TERM. This routine sets the termination
synonyms and terminates any task bid by SCI. S$TERM treats a
call from SCI as a special case in which the calling task is not
terminated. Register assignments for S$TERM are covered in
detail in the DNOS Systems Programmer's Guide.

SCI reports one error for each command input by the wuser. The
routine that first encounters an error condition does not always
have the information required to determine which message or
action 1is most wuseful to the caller and/or user. The routine
S$XFER provides some flexibility in reporting errors.

When a utility routine detects an error, it uses the set error

condition (SEC) macro which branches to SDSERR, which calls
S$XFER.

S$XFER buffers error reporting in order to minimize the number of
calls to S$TERM, This buffering of error conditions is an
important performance consideration. Considerable overhead is
involved when S$TERM calls the Name Manager to set termination
synonyms.

Nested routines may ignore or recover from certain error
conditions. A code is passed to S$XFER to control the state of
the buffered error. The meaning of the code values are as
follows:)

SCI 4-10 2270513-9701

SCI/Utilities Design

Code Action

1 Sets the error condition variables and calls S$TERM.
In this case, any previously held condition is passed
to S$TERM. This allows a calling routine ¢to report
the error encountered by a called routine.

2 Resets the error condition. This causes all
previously held error conditions to be cleared. This
allows a calling routine to nullify any error reported
by called routine(s).

3 Holds the error condition. This causes future error
conditions to be ignored until a set or reset request
is processed.

4 Terminates error reporting. This is a special case
for processing the .STOP primitive in batch SCI.
After calling S$TERM, the TEXT and CODE keyword values
are used to set the termination synonyms $$VT and
$$CC, respectively. A1l future errors are ignored.
(The only errors that should be encountered are in the
LOGOFF procedure M$01.)

The phrase termination synonyms is used to refer to the following
set of synonyms:

¥ 4CC (Condition Code)

¥ $$VT (Variable Text)

* 4$$ES (Error Source)

¥ 4$$MN (Message Number)

* $$FN (Filename)

¥ $$PN (Additional Text: procedure name and line number)
These synonyms (with the exception of $$PN) are set by S$TERM,.
S$XFER sets $$PN. The termination synonyms are used by DERROR to
format the message, if any, to be displayed.
Routines <called in the display step of the major loop report
errors through DERROR, which calls S$TERM directly rather than

through S$XFER. Any error encountered 1in these routines is
reported to the user.

2270513-9701 4-11 SCI

SCI/Utilities Design

DERROR is designed to display messages in the following order:

1. Messages to report errors flagged by the foreground
task

2. Messages to report errors flagged by one or more
background tasks

3. Messages from MAILBOX

Foreground error messages are produced according to the values of
the termination synonyms. Background error messages are produced
by examining the values in descendant error lists (DELs). These
values correspond to the values of termination synonyms set in
descendant stages by S$TERM. DELs are data structures
implemented by the Name Manager. See the DNOS System Design
Document for further details.

In the current release of DNOS, only one background task is
allowed (and therefore, no more than one DEL 1is produced).
Should this 1limit be removed, DERROR is designed to process DELs
from multiple background tasks. The algorithm implemented is a
loop that consists of reading a DEL and displaying the message,
until the last DEL is processed.

S$CMSG formats error messages. The required register assignments
and the formatting process are documented in the DNOS Systems
Programmer's Guide.

Termination messages from batch SCI jobs will be logged to the
system log file and listing file. In the event the listing file
does not exist, the message will be written only to the system
log. No message will be written to the system 1log for normal
termination.

4.4.6.1 SCIERR.

Using the DEF and EQU facilities of the assembler, this module
establishes a label for each error recognized by SCI. A label is
used instead of a hexadecimal constant when an error is reported.
Under this scheme, an assembly cross-reference listing summarizes
all routines that generate the error of interest.

The existence of SCIERR also provides a summary 1listing of all
errors SCI reports. Whenever a new error condition is added to
SCI, SCIERR is extended and the appropriate message files are
updated. See the section of this document entitled Error and
Status Message Handling for details of the message files.

SCI | §-12 o 2270513-9701

SCI/Utilities Design

4,5 DETAILED DESIGN
SCI can be divided into the following functional groups of code:

¥ High-level routines - Main driver, major loop
processing, and SCI constant data declarations

¥ Command procedure processing routines - Control the flow
of information between command procedures at various:
levels

* Primitive processing routines - Process SCI 1language
primitives

¥ Parsing routines - Set up and perform textual
substitution on the command buffer and search for
specific entities

¥ Display routines - Process data to be displayed
(messages, menus, etc.) and write it to the appropriate
file or device

¥ Subsystem support routines - Interface with MAILBOX, the
subsystem that distributes messages, and with TINFO, the
subsystem that maintains terminal information

¥ Utility routines - Perform basic functions. They are
used by all functional groups of code.

4.5.1 High-Level Routines and Modules.

The high-level routines shown in the call tree Figure 4-1 are
described in detail in the following paragraphs.

SCI990
- ———
]
|
o e ————— +
: :
DMENU GETCMD
fmm— + e e —————— +
: ! : : :
DERROR LIBSCN GETOPC XPROMP/ XSTOP
H (GETMNU Entry) EXPROC
]]
1 |
GETCMD LIBSCN

(GETLCM Entry)

Figure 4-1 Call Tree for SCI High-Level Routines

2270513-9701 B-13 SCI

SCI/Utilities Design

4.5.1.1 SCI990.

The main driver for SCI is SCI990. This routine calls for all
required initialization and executes the major loop.

SCI990 operates in one of three states, depending on I/O
requirements. Internally, the state is indicated by the value of
the one-word global flag STATE.

STATE
State Flag I/0 Requirements
Batch 0 Input from a sequential file or device
Output to a different file or device
TTY >0001 Input from an interactive device
that is not a VDT
Output to the same device
VDT >FFFF Input from a VDT keyboard

Output to a VDT screen

The following four bytes of information are available to the SCI
through the Get Task Parameters SVC:

¥ Byte 0. Eight bits of terminal status information, as
follows:

- Bit 0. Reserved. Always zero
- Bits 1 through 3. Privilege level of the user

- Bits 4 through 7. Terminal mode. This is a four-
bit representation of the proper value of the
STATE flag.

¥ Byte 1. Station number of the physical terminal with
which this task is affiliated. When the station number
is in the range >01 through >FE, this is a background
SCI task, and any terminal information available is 1in
byte 0. The station number values of >00 and >FF have
the following special meanings:

- >00. This 1is an interactive task. Terminal
information is not included in byte O.

- DOFF. This is affiliated with a batch job and has
no access to a terminal. -

¥ Byte 2. Value of the optional parameter CODE on the
task bid that invoked SCI. This information is not

SCI 4-14 2270513-9701

SCI/Utilities Design

presently used by SCI.
¥ Byte 3. Zero for SCI.

Note that when SCI is invoked as an interactive foreground task
by LOGON, no terminal information is passed in byte 1. A zero
value for station number implies that the information must be
obtained from other sources.

Terminal mode 1is obtained from the TINFO subsystem. Privilege
level is obtained through a Job Manager SVC, and station number
through a Self Identification SVC.

4,5.1.2 DMENU.

DMENU displays the TLF, defines certain synonyms, calls DERROR to
display messages, and, optionally, displays a menu.

The following synonyms are set when the user bids SCI and cannot
be changed.

*¥ $$MO. Mode of the session:
- >00 Batch

- >01 TTY interactive

- D>0F VDT
¥ $$ST. Two-digit decimal station number for the
interactive session. This synonym has a value of zero

for a batch job session.
* $$UI. User ID with as many as eight characters
* $$12. Yes/no flag for the existence of 990/12 hardware

¥ ME. Four-character station name. This synonym 1is
deleted in a batch job session.

4.5.1.3 DERROR.

DERROR calls S$CMSG to format S$TERM, S$STOP, DEL, and MAILBOX
message information. DERROR writes the information to an
interactive terminal or to the batch listing file.

Once the foreground message has been displayed, DERROR resets bit
5 in the synonym $$ES. This prevents the message from being
displayed again. In interactive VDT mode, DERROR examines the
next user input. If it is a question mark (?), command procedure
M$02 is 1invoked. This command procedure displays the expanded
message text to the user.

2270513-9701 4-15 SCI

SCI/Utilities Design

In batch mode, the value of the synonym $$CC is examined. If it
is greater than zero, an 80-character highlight line of the
following format is written to the batch listing file:

OFDEOGEOREOEODRORODEODREODROROEOORODROD

For batch SCI jobs, the final termination messages will be logged
to the listing file and the system log file. If the listing file
does not exist the message will be written only ¢to the system
log. No message wWill be written to the system log file for
normal termination. :

Message contents and files, as well as formatting rules and
examples, are described in detail in the section of this manual
entitled Error and Status Message Handling.

4,5.1.4 GETCMD.

Routine GETCMD 1is responsible for reading a command 1line,
identifying the desired function, and transferring control to the
appropriate processing routine. GETCMD identifies three types of
functions:

¥ Command line is a primitive
¥ Command line invokes a command procedure
¥ Command line is the end of a command procedure

GETCMD calls GETLNE to read the input 1line into the command
buffer and calls TXTSUB to make substitutions for synonyms and
field prompts. GETOPC 1is <called to parse the operation code
specified in the command buffer.

GETOPC returns a result in a register. If the input is a
primitive, the 1leftmost byte is zero, and the rightmost byte is
an index into a table containing addresses of routines that
process the SCI primitives.

The address table in GETOPC offers a convenient way to disable an
SCI primitive. A check is made to detect the loading of a value
of zero into the branch register. If zero is loaded, the branch
is not taken, and an error message is generated. 1In the current
release of DNOS, the following primitives are disabled in this
manner: .STAGE, .EO0OS, and .COPY.

If the 1leftmost Dbyte of register one is nonzero, the register
contains a pointer to a buffer containing the name of the command
procedure that is to be expanded. GETCMD calls EXPROC to do this
expansion. '

SCI 4-16 ' 2270513-9701

SCI/Utilities Design

4.5.1.5 GETOPC.

GETOPC has responsibility for determining whether the command is
a primitive or a procedure call. This determination is made by
examining the first nonblank character in the command buffer. If
it is a period, the command is processed as a primitive.

GETOPC identifies the primitive by searching a table of primitive
names. The character strings that are names of primitives are
stored 1in the name table in the same order as the addresses of
routines that process the primitives are stored in the branch
table. The 1index into the name table is the index. into the
processing routine address table. GETOPC returns this index. If
no match is found in the name table, GETOPC generates an error.

The user request that a menu be displayed is a special case in
GETOPC. When the first nonblank character of the command buffer
is /, that slash is replaced with the character string .MENU.
For example, if the wuser enters /EDIT, GETOPC converts that
string to .MENU EDIT. This feature serves two functions:
¥ Provides a shorthand way to request the menu for any
command procedure

¥ Permits a wuser who 1is not normally allowed to enter
primitives from the terminal to, in effect, enter the
primitive requesting menus.

If the command 1is not a primitive, GETOPC returns a pointer to
the buffer that contains the name of the procedure.

4.5.1.6 LIBSCN.

LIBSCN directs access to command procedures and menus defined in
the primary and secondary libraries.

The entry point to gain or release access to a menu is GETMNU.
The entry point to gain or release access to a command procedure
is GETFIL.

Stacking or unstacking the command procedure environment is done
when LIBSCN is called through the entry point GETFIL.

When a new command procedure is invoked, LIBSCN stacks the
current environment, opens the new input file for reads, and
increments the procedure depth counter.

When access to a command procedure is released, LIBSCN closes the\
current input file, wunstacks the previous command procedure
environment, and decrements the procedure depth counter.

When LIBSCN is <called to push the procedure environment, it is

passed a pointer to the name of the new input source. The name

2270513-9701 h-17 SCI

SCI/Utilities Design

supplied is appended to the name of the primary procedure library
directory. (the 1library name is kept internally in the variable
USYS), and the LUNO for input resource is assigned to the new
file from which input is to be obtained. The file is opened. If
the assign and open produce no errors, LIBSCN processing is
complete.

If an error other than >27 (pathname undefined) or >21 (volume
not installed) is returned by the assign, the error is reported
and processing in LIBSCN terminates.

If the command procedure is not found in the primary 1library,
LIBSCN attempts to 1locate it in the secondary library. The
specified name is appended ¢to the secondary directory name
pointed to by USE. The LUNO is assigned and the file is opened.
A1l errors are reported.

4,5.1.7 XSTOP.
XSTOP processes the .STOP primitive, which terminates SCI. The
processing is different, depending on whether the session is

interactive or batch.

Interactive Session.

The following processing is done by XSTOP when the .STOP
primitive is from an interactive session:

1. Ensures that no background tasks or RBID tasks are
active. If so, an error is generated and the .STOP is
ignored.

2. Invokes M$01.

3. Calls DERROR to process messages and terminate
communication with MAILBOX.

4. Performs processing in routine WRAPUP.

a. Aborts RBID tasks. (This aborts anything RBID in
M$01.)

b. Copies the current synonyms and logical names to
the permanent files. The pathnames of these
files must be .S$USER.userID.SYN for the synonym
file and .S$USER.userID.LGN for the logical name
file. In both pathnames, userID is the ID used
to initiate the SCI session.

c. Clears the VDT screen, if VDT state.

d. Closes the input and output files and/or devices.

SCI , 4y-18 2270513-9701

3CI/Utilities Design

e. Deletes the foreground and background TLFs.

f. Issues an SVC to terminate the task.

Batech Job Session.

The following processing is done when by XSTOP when the .STOP
primitive is from a batch job session: .

1. Copies the TLF to the listing file.

2. Processes the TEXT and CODE parameters if they are
specified with the .STOP. Sets the termination
synonyms $$VT and 3CC to TEXT and CODE values,
respectively.

3. Invokes M$01.

4, Writes the M$01 TLF to the listing file.

5. Performs processing in routine WRAPUP.
a. Aborts RBID tasks.
b. Closes the input and output files and/or devices.
c. Deletes the TLF, if this is a batch job.

d. Issues an SVC to terminate the task.

4.5.2 Command Procedure Processing Routines.

All wuser inputs that are not primitives are processed in module
XPROMP. The routines discussed in the following paragraphs
initiate processing of the command procedure and ensure that
user-provided inputs have valid characteristics, as defined 1in
the command procedure. '

Field prompts may be defined either on the same line as the
command procedure name or on a . PROMPT primitive. The
information for each field prompt -- name, initial value, whether
or not a value is required, and acceptable data type(s) for the
value of the prompt -- satisfies the same syntax rules regardless
of where the definition appears.

A large part of the processing in these two instances 1is
implemented by common code in the module XPROMP. Initialization
for processing a newly invoked command procedure is done at entry
point EXPROC and for a .PROMPT primitive at entry point XPROMP.

2270513-9701 4-19 SCI

SCI/Utilities Design

Flow through the <code in XPROMP is complex and not always
obvious. The logic sketches in the discussion of common code are
intended solely to convey 1logic. The implementation contains
more GO TO transfers and common paths that sometimes contain
redundant testing.

4.,5.2.1 Entry Point EXPROC.

The <code at entry point EXPROC initiates the processing of a
command procedure. Upon entry, the name of the desired procedure
is stored in the buffer PROCNM. The command buffer pointer CBPTR
points to the first nonblank character following the name of the.
procedure.

EXPROC initialization consists of the following:

1. Calling the Name Manager (through routine S$PCNT) to
purge all field prompt names and values at expert depth
in the NCT.

2. Calling GETEOL to determine whether any nonblank
characters appear after the command procedure name.
(GETEOL sets CBPTR to point to +the next nonblank
character when that character is not the end-of-line
byte.) If there is information on the command 1line,
the wuser 1is in expert mode and the flag is set by
EXPROC. Routine KEYLST is called to store all name and

value pairs specified on the command 1line. KEYLST
strips enclosing parentheses from lists. No
verification of values is done. At this point, the

names and values are associated pairs stored at expert
depth in the NCT. If a name appears in the assertive
state (no value assignment), it is paired with a value
of Y. »

3. If this is batch mode, setting the expert mode flag.
There 1is no resource that can be prompted for values,
so it is assumed that all required information is
supplied on the command line. Even if no information
is specified, an attempt is made to execute the command
procedure using initial values of field prompts.

4, Calling LIBSCN, through entry point GETFIL, to gain
access to the specified command procedure.

5. Checking the first line of the procedure to ensure that
this 1is the command procedure desired. Unless the
first line of the procedure begins with name or .PROC
name, where name matches the character string in the
buffer PROCNM, processing is aborted and an error is
reported.

6. Initializing PRMTLN to a value of zero to indicate to

SCI - 4-20 | 2270513-9701

SCI/Utilities Design

common code that entry was through the entry point
EXPROC.

Following this initialization, control passes to common code 1in
module XPROMP.

4.5.2.2 Entry Point XPROMP.

This entry point is used when a .PROMPT primitive is processed.
Initialization consists of two operations:

* If DEPTH=0, aborting processing. The .PROMPT primitive
is not accepted from the interactive terminal or from
the batch input listing file.

¥ Initializing PRMTLN to a value of 1 to indicate to

common code that entry was through the entry point
XPROMP. .

4.,5.2.3 Common Code for EXPROC and XPROMP.

The code that is common to entry points EXPROC and XPROMP is in
module XPROMP,

The output of the common code is a set of name/value pairs stored
at the proper depth in the NCT. Each of these values has
attributes that satisfy the declarations in the procedure being
processed.

Command processing in this common code is in one of four modes:
normal mode, ENTER key mode, expert mode, or expedite mode.

Normal mode is the absence of the requisite conditions
for any other mode -- that is, it is not expert mode,
not enter key mode and not expedite mode. In normal
mode, the screen is formatted and the user is allowed to
supply values for all field prompts.

* ENTER key mode 1is established when the user in normal
mode presses the ENTER key. This mode simulates a
carriage return as the user response to every remaining
field prompt. The ENTER key mode 1is reset when a
subsequent field prompt does not have an acceptable
value. Normal mode is reestablished.

* Expert mode is activated when one or more characters
appear on the command 1line beyond the name of the
command procedure. Expert mode remains active for all
prompting within the command procedure. Expert mode is
an attribute of the environment at each depth, and 1is
stacked. Expert mode reduces the number of reads from
the interactive terminal, and minimizes the processing

2270513-9701 4-21 SCI

SCI/Utilities Design

required to validate data from those reads.

In expert mode, the user is allowed to supply input only
at depth 1level one, and only for a field prompt that
does not have an acceptable value. In this case, any
field prompt prior to the one for which the user is
prompted may be changed, but expert mode is not reset.

Expert mode does not transfer to procedures invoked by
the one being processed in expert mode. For example,
assume that procedure A is invoked in expert mode and
procedure A invokes procedure B. Whether or not
procedure B is processed in expert mode is determined by
how procedure A invokes procedure B (with or without one
or more nonblank characters past the name of the
procedure). In a batch session, all commands are
processed in expert mode.

¥ Expedite mode is a submode of expert mode and is active
as 1long as the predicted number of reads to the
interactive terminal is zero. No terminal reads are
required if all field prompt conditions are satisfied in
expert mode. If the command procedure is invoked in
expert mode, the attempt is made to process the command
procedure in expedite mode. Expedite mode is reset when
a required field prompt has no acceptable value. The
performance advantages of expedite mode are realized if
all required field prompts have values that are verified
before the wuser 1is prompted. These values are either
initial values or values supplied by the user in expert
mode.

XPROMP 1is called to process each .PROMPT primitive in a command
procedure. It is possible that one part of a command procedure
qualifies for expedite mode and another does not qualify.
In this discussion, the following terms are used:
¥ 1Initial wvalue - Value supplied in the definition of a
field prompt or by the user, in expert mode. (These are

called DUMMY values in code comments.)

¥ Actual value - Value supplied by the user in response to
a prompt at the interactive terminal.

The following variables are used throughout XPROMP:
¥ EXPERT - Flag that reflects the status of expert mode
* XPDITE - Flag that reflects the status of expedite mode

¥ ARGDSP - Index equal to two times the number of field

SCI y-22 2270513-9701

SCI/Utilities Design

prompts declared in the command procedure. This
variable is always incremented and decremented by ¢two
because it is wused as an offset into tables that have
two-byte entries. ARGDSP has a maximum value of 44,
(As many as 22 field prompts can be declared.)

TYPTBL - Index into field prompt data structures

¥ KWTBL - Data structure <containing pointers to field
prompt names

¥ VALTBL - Data structure containing pointers to field
prompt values

* ENTERK - Flag that reflects the status of ENTER key
mode.

¥ CURPOS - Flag for S$GKEY. When set, this flag indicates
that the horizontal cursor position (column) is not to
be changed.

* ERRPTR - Pointer to an error message that is to be
displayed by S$GKEY. A value of zero indicates no error
is to be displayed.

PRMTLN - Flag that indicates which entry point (EXPROC
or XPROMP) is used to enter XPROMP, If EXPROC was used
name/value pairs are stored at expert depth, and no
name/value pairs are stored at the current depth.

Three functional sections of common code exist. In the first
section, the field prompt definitions are processed. Any initial
value (either supplied on the statement that defines the prompt
or supplied by the wuser in expert mode) is examined for
appropriate characteristics. If necessary, the screen is
formatted.

The second section of processing in common code is a loop that
verifies the attributes of the value for each field prompt from
the interactive terminal. This 1loop 1is &exited only when
acceptable values are available for all required field prompts,
the CMD key is pressed, or an irrecoverable error occurs.

The final section writes a message to the user, when appropriate.

Certain conditions are examined each time it is possible to take
one of the following shortcuts:

¥ Avoid formatting the screen. This saves I/0 to the
screen.

¥ Avoid prompting the wuser for further input. If all
information known to be required at this point in the

2270513-9701 4-23 SCI

SCI/Utilities Design

command procedure is available, the values are verified
in section one, and section two (including reads to the
terminal, verification processing, and Name Manager
overhead) is bypassed.

Processing Field Prompts.

When common code is entered, the command buffer contains one or
the other of the following:

* The name 1line of the command procedure, with CBPTR
pointing to the first nonblank character

¥ The .PROMPT line, with CBPTR pointing to the first
nonblank character after .PROMPT

The command buffer is parsed for full name and/or privilege level
information. The full name is stored in FNBUFF and the privilege
level is checked against the privilege level of the user invoking
the procedure. Processing is aborted if the user's privilege
level is lower than that specified in the command procedure.

Initial values are processed by the routine DUMARG. For each
field prompt, GETALT is called to build the table of
characteristics that a value for the field prompt must satisfy.
In DUMARG, if expedite mode 1is active, an attempt is made to
verify the initial values and maintain expedite mode. An initial
value supplied by the user in expert mode overrides an 1initial
value defined in the command procedure. If expedite mode is not
active, verification is not performed until the next section of
the code, in which field prompt values are verified.

Following the processing of field prompt names and any initial
values specified, the interactive screen is formatted, except in
the following cases:

* Batch mode

¥ Expert mode at a depth level greater than one (that is,
in nested procedures)

The screen is formatted at depth level one, even though there may
be no opportunity for the user to enter values for field prompts.
When the screen is formatted in expert mode, the full name buffer
is blanked out to indicate to the user that this is expert mode.

At the end of section one, KWTBL and VALTBL contain pointers to
field prompt names and pointers to any values that exist (initial
values).

SCI : y-24 2270513-9701

SCI/Utilities Design

Verifying Field Prompt Values.

The second section of common code contains a loop that verifies
the values supplied for each field prompt, starting with the
first. If the expedite mode flag is set at the end of the first
section, every required field prompt has a value that is already
verified. In this case, the second section is bypassed and wrap-
up processing begins.

The variable ERRPTR is cleared.
The logic of the loop is as follows:

LOOP: For each field prompt;
IF expert mode is set
THEN
IF a value is available in VALTBL

THEN Enter carriage return processing
at ALTERNATE ENTRY; (Note 1)

ELSE
IF the field prompt is optional

THEN GO TO LOOP;

ELSE
Reset ENTERK;
IF batch mode
THEN Exit LOOP with error;
ELSE GO TO label PROMPT;
ELSE
PROMPT: IF DEPTH is not 1
THEN
IF expert mode is set (Note 2)
THEN Exit LOOP with error;
IF the ENTERK flag is set (Note 3)
THEN Process this as a carriage
return;
ELSE
Call S$GKEY to get a value;
Process according to event
character; (Note 1)
END LOOP; '
Note 1 - Processing of event characters is described in subse-

quent paragraphs.

Note 2 - This test is required because it is possible to branch
from the THEN clause into the ELSE clause (at the label
PROMPT).

Note 3 - At this point, the screen is known to be formatted.

2270513-9701 4-25 SCI

SCI/Utilities Design

Event characters are processed inside the 1loop shown in the
immediately preceding metacode. The processing of each event key
is as follows:

¥ Command (CMD) Key. Returns to the primary input source.
The routine XEOP is called and the depth counter (DEPTH)
is decremented until DEPTH=0. Control 1is returned to
the major loop of SCI.

¥ ERASE INPUT Key. Starts over on field prompt values.
The values for field prompts are reset to the values

established in the first section. Control 1is then
returned to the end of the first section of common code,
where the screen is (re)formatted. The verify field

prompts section of code is reentered. This can be done
because the values set by DUMARG have been verified and
are in the NCT at the current depth level. Any values
specified in response to prompts have only been stored
in VALTBL (the Name Manager has not been called to store
values in the NCT).

¥ Down Arrow. Sets the flag CURPOS for the next S$GKEY
call. This keystroke is processed as a carriage return
except when it is entered on the line containing the
last field prompt. On the last line it is treated as a
no-op.

¥ ENTER Key. The flag ENTERK is set to indicate that this
key has been pressed and the ENTER key mode has been
activated. Control is transferred to carriage return
processing.

¥ Carriage Return:

-~ NORMAL ENTRY. Carriage return processing assumes
that the user has specified a value for a field
prompt. SQUISH (an internal routine) is called to
remove leading blanks and quotes surrounding the
text supplied by the user.

- ALTERNATE ENTRY. The command buffer is set up to
appear as though the value had been supplied on
the command line. GETVER is called to determine
if the wvalue supplied meets command procedure
specifications for the field prompt. After return
from GETVER, the following logic is executed:

SCI 4-26 2270513-9701

SCI/Utilities Design

\

IF the value acceptable
THEN Put the value in VALTBL;
ELSE
Set ERRPTR for display of error message;
IF batch mode
THEN Exit LOOP with an error;
IF DEPTH = 1 and not expert mode
THEN »
Clear the ENTERK flag;
IF batch mode
THEN Exit LOOP with error;
GO TO label PROMPT in LOOP;
ELSE Exit LOOP with error;
ENDIF;

Once LOOP has been exited, S$KEY is called to place each name and
value pair into the NCT at the current depth.

Writing a Message to the User.

S$WIT is called to write the following message (in the 1local
language) to the interactive screen:

FOREGROUND COMMAND EXECUTING
This call to S$WIT is bypassed only in the follgwing cases:
¥ Batch mode
* TTY mode

¥ Expert mode at a depth level greater than one (that is,
in nested procedures)

4.5.2.4 DUMARG.

This routine processes field prompt type specifications and
builds the KWTBL and VALTBL data structures. KWTBL contains
pointers to field prompt names to be formatted on the screen.
VALTBL contains pointers to values for field prompts. (The value
may be null.)

Expedite mode is controlled by DUMARG.

Once DUMARG has built an entry in KWTBL and VALTBL, S$KEY is
called to store the name/value pair in the NCT at the current
depth. If a name/value pair has no declaration (the type
declaration may appear on a .PROMPT statement 1later in the
procedure), the pair is still stored at the proper depth, and
verification is done when the type declaration is available.

Initialization in DUMARG consists of clearing KWTBL, VALTBL and
ARGDSP.

2270513-9701 y-27 SCI

SCI/Utilities Design

The loop in DUMARG implements the following functions:

* Gets the name of the field prompt and stores it in
KWTBL.

Calls GETALT to build an entry in a buffer, according to
the specified type declarations.

¥ If in expert mode, calls S$MAPK to determine whether a
value for this field prompt is specified on the command
line. If so, deletes the name/value pair at expert
depth and saves the value in a temporary buffer for
later use.

¥ Gathers information to be used in formatting the screen,
should it be necessary. This 1involves examining the
length of each field prompt name. A 1limit of 28
characters is imposed on the displayable width of a
field prompt name. If the name 1is 1longer than 28
characters, it is truncated. The screen 1is formatted,
leaving the maximum possible number of blank columns to
the right of the field prompt names.

*# The following special <case for initial value is
processed: If the initial value of a field prompt
begins with the character $, a null string 1is wused as
the initial wvalue. This is implemented because it is
common to use synonyms as 1initial values of field
prompts. If the synonym is undefined, routine TXTSUB
substitutes the character string itself in the text of

the command buffer. Without special processing, this
value would be paired with the field prompt name as its
value. Since field prompt name/value pairs are

displayed and are often passed to tasks , the null
string 1is considered more indicative of the undefined
status of the field prompt value. This convention 1is
enforced in code, and any field prompt initial value
that begins with the character $ is replaced with the
null string.

When the following logic is entered, the command buffer contains
the first line of the command procedure or the .PROMPT line. Any
field prompt values supplied by the user in expert mode have been
stored in the NCT at expert depth if common code 1is entered
through EXPROC, and at the current depth if through XPROMP.

SCI 4-28 2270513-9701

SCI/Utilities Design

LOOP: For all field prompt declarations
Get field prompt name and save in KEYWRD;
IF expert mode is active
THEN
IF EXPROC entry point
THEN
Save current depth;
Set expert depth;
Call S$MAPK for a value;
IF a value is returned
THEN Delete name/value pair at
expert depth;
Restore current depth level;
ELSE Call S$MAPK for a value;
ENDIF;
(Note 1)
IF the next character is =
THEN
Call GETALT; (build AUX2 entries for field prompt)
Call GNB; (advance CBPTR to next nonblank character)
IF there is an initial value
THEN
Parse initial value;
IF value starts with $
THEN VALUE = null string;
ELSE VALUE = value;
IF anything is stored in AUXBUF
THEN VALUE = AUXBUF;
ELSE VALUE = AUXBUF;
Update KWBUFW for length of name in KEYWRD;
Store pointers to name and VALUE in KWTBL and
VALTBL, respectively;
IF expedite mode
THEN
Call GETVER to verify VALUE;
IF VALUE is not acceptable
THEN reset expedite mode;
ENDIF ;
Call S$KEY to store name/value pair in the NCT at current depth;
END LOOP;

Note 1 - At this point S$MAPK has stored some value for the field
prompt in the temporary buffer AUXBUF. Any field prompt
with no value is paired with the null string.

The final section of DUMARG writes the field prompt names and
values to the batch listing file, if appropriate. If any field
prompts remain at expert depth, they are moved to the current
depth. These values are considered for assignment to field
prompts on subsequent .PROMPT primitives within the same command
procedure. In batch mode, these leftover name/value pairs are
written to the listing file as UNKNOWN.

2270513-9701 B-29 SCI

e e e e e

SCI/Utilities Design

4.5.3 Routines that Process SCI Primitives.

Each of the following routines processes an SCI primitive. It is
assumed that you are familiar with the syntax of those commands.
(Refer to the DNOS System Command Interpreter (SCI) Reference
Manual for details.)

Processing of the .PROMPT primitive is described in the Command
Procedure Processing Routines paragraph in this section.

4.5.3.1 XUSE.

XUSE processes the .USE primitive to redefine +the five command
libraries. The routine scans the access names and calls S$MAPS
to do synonym substitution. The pathnames of the primary and
secondary 1libraries are stored in a buffer pointed to by the
variable USYS. 1In the absence an operand, a null pathname 1is
stored 1in the buffer. XUSE sets a flag to force DMENU to search
for a new menu the next time it is called. XUSE also sets the
synonym $$CL to contain the specified 1ist of pathnames.

The default command- 1library is .S$CMDS, with no secondary
libraries.

4.5.3.2 XPROC.

XPROC processes the .PROC primitive to install a command
procedure 1into the primary procedure library. The name of the
primary library is constructed by appending the name supplied
with the primitive to the directory name stored in USYS.

XPROC calls XDATA (at entry point PUTDAT) to copy records between
the .PROC and L.EOP primitives into the file with the following
pathname:

<USYS>.name
where:
eUSYS points to the name of the directory for the
primary command library.
name is supplied by the user on the .PROC primitive.
Comments (lines with * in column 1) are not copied. Leading

blanks and text beyond the SCI delimiter are deleted.
4.,5.3.3 XEOP.
XEOP processs the end of command procedure condition. The

procedure depth counter is decremented and LIBSCN 1is called to
switch control back to the calling command procedure.

SCI 4-30 2270513-9701

SCI/Utilities Design

4.5.3.4 XMENU.

XMENU processes the .MENU primitive to identify the menu that is
displayed in the major loop. XMENU sets the parameters that
cause DMENU to display the specified menu. The variable S$$MNU
is set to reflect the form of the command.

Command S$$MNU Display Action

.MENU -1 Does not display menu
+.MENU name +1 Forces display of menu
.MENU #¥*name 0 Displays menu only in VDT

In the latter two cases, name is used to build the pathname of
the file from which the menu is obtained. Menus are expected to
be stored in the same directory as the primary command procedure
library. The constructed pathname is of the following format:

<USYS>.M$name
where:
USYS points to the directory name.
4.5.3.5 XOPTIN.

XOPTIN processes the .OPTION primitive to alter three
characteristics of an SCI session: PROMPT, MENU, and PRIMITIVE.
When the .OPTION operand field 1includes a keyword in the
assertive state (that is, no value assignment is made), the
following default values are assigned:

Keyword Feature Default Value
;ESQEE_ Promp;-;;;;;ayed in the major loop -----E; ______
MENU Name of the menu displayed in the LC

major loop (VDT only) (List Commands)
PRIMITIVE Accept primitives at depth YES

level zero
Only those features that appear on the command line are altered.
4.,5.3.6 XBID.

XBID processes the .BID primitive. XBID processes keywords and
sets up parameters for routine S$BID. Elements of the PARMS list
are stored in the NCT. The name of each element is 'made wup of
three binary numbers -- two zeros followed by a number that is
the position in the 1list occupied by the value. For example, the

2270513-9701 4-31 SCI

SCI/Utilities Design

name of the first element on the PARMS 1ist is 001. Its value is
the first element on the PARMS 1list.

After the keywords are parsed, XBID executes the foilowing steps:
1. Closes the TLF (if it is open).

2. If the primary input is a terminal, issues an SVC to
close the terminal.

3. Calls S$BID

4, Opens the TLF and terminal, as required to restore
prior status. \

5. Deletes any synonyms created for PARMS specified with
.BID.

6. If this is a c¢all from QBID, sets error synonyms
appropriately.

4,5.3.7 XQBID and XDBID,

XQBID process the .QBID primitive. XQBID 1is the interface
between SCI and the routine S$QBID. XQBID processes the keyword
list, verifies keyword values and calls the S$ routine to bid the
specified task.

XQBID has an entry point for XDBID, the routine that processes
the .DBID primitive. This entry point is used for entry to the
Debugger. The specified task is bid and immediately suspended.

4.5.3.8 XRBID.

XRBID processes the .RBID primitive to bid a task, and subsequent
.RBID primitives to restart that task.

XRBID calls routine S$RBID, which is part of SCI. (S$RBID is not
in the S$SYSTEM shared procedure segment.)

S$RBID uses the synonym $$RBID to determine whether or not SCI is
taking end action and to determine whether or not to delete the
calling task from the table of active RBID tasks. The 1logic of
S$RBID is described in the following metacode:

SCI 4-32 2270513-9701

SCI/Utilities Design

IF SCI is taking end action
THEN $$RBID=Y;
ELSE $$RBID="n;
IF the task is not in RBIDAC
THEN This is the initial bid.
Issue an Execute Task SVC (>2B);
ELSE The task is already in the job, in a suspended state.
Issue an Activate Suspended Task SVC (>07);
Issue an Unconditional Suspend SVC (>06) for SCI;

I EEEEEEERREEEEEEARRARESEEEERREEEEERREERAERRESRSRREERRR RS R R R XX 4

¥ SCI is suspended. The RBID task must call S$WAIT to *

¥ return control to SCI (via Activate Suspended Task SVC). *
(XS EEEEEEEEEEEE R REE R R EEEE R E R R EREEEEREEEEEEEEEEREEEEEEEEEEEREEE X]

IF $$RBID is non-null
THEN Call ENTRY to make the entry in RBIDAC, if necessary;
ELSE Call ENTRY to delete the entry in RBIDAC, if necessary;
END;

Routines S$NEW and S$WAIT coordinate information essential to the
.RBID function. S$WAIT is discussed 1in the section of this
manual entitled Conventions and Libraries. S$NEW is documented
in the DNOS Systems Programmer's Guide.

Routine XRSTAT provides reporting and termination services for
SCI, with regard to RBID tasks. When it is called with a request
for status, it returns the names of all .RBID tasks currently in
the wuser's job. When it is called to terminate tasks, it sets
$$RBID to a non-null value and allows each of the tasks in the
RBIDAC 1ist to perform end action.

The calling sequence for XRSTAT is documented in the code.
4,5.3.9 XDATA.

XDATA copies the records between the .DATA statement and the next
.EOD statement: to a file specified by the access name on the

.DATA statement. If no access name is specified, the data 1is
copied into the TLF.

The entry point PUTDAT is wused by XPROC to copy command
procedures. In this case, the delimiter is .EOP rather than
.EOD.

XDATA returns an error if the end-of-file is encountered before
the delimiter (.EOP or .EOD).

4.,5.3.10 XEVAL.
XEVAL processes the numeric assignments of the L.EVAL command.

S$INT 1is called ¢to convert the integer expression text to a
binary number. S$IASC converts the binary number to decimal

2270513-9701 4-33 SCI

SCI/Utilities Design

ASCITI digits. S$SETS is called ¢to assign this value to the
specified synonym name.

XEVAL processes name and value pairs until the SCI line delimiter
is encountered.

4.5.3.11 XSHOW.

XSHOW processes the .SHOW primitive, causing the specified file
or files to be displayed through a call or calls to S$SHOW.

4.5.3.12 XSPLIT.

XSPLIT processes the .SPLIT primitive. The keywords and values
in the operand field are verified as character strings. S$SPLT
is called to split the command stream into sets of keyword/value
strings. S$SETS is called to store the name/value pairs in the
synonym table.

4.5.3.13 XSYN,

XSYN processes the assignments of a .SYN primitive. It calls
S$SETS to perform the binding.

4.5.3.14 XSVC.

XSVC processes the .SVC primitive. After ©parsing keywords and
values, the specified SVC is 1issued. If an SVC error is
returned, the return code processor is called using the Return
Code Processor SVC. (Refer to the DNOS Systems Programmer's
Guide for details of the return code processor SVC.) The
condition code synonym ($$CC) is set.

At the beginning of XSVC is a table of SVC opcodes and I/0
subopcodes that are not allowed. These restrictions are imposed
in order to protect the integrity of SCI. (Refer to the DNOS
System Command Interpreter (SCI) Reference Manual for a 1list of
the opcodes and subopcodes that are disallowed.)

4.5.3.15 XIF.

XIF processes conditional statements. The routine evaluates
clauses associated with the .IF, .WHILE, and .UNTIL primitives.
XIF saves the information necessary to effect the .LOOP, .REPEAT,
.ENDIF, and .ELSE primitives.

XIF 1identifies the Dbeginning of the construct, evaluates the
operands, and takes the appropriate action, depending on the
result of the specified comparison.

Three positional parameters are parsed:

<string1> <relation> <{string2>

SCI 4-34 2270513-9701

SCI/Utilities Design

An attempt 1is made to evaluate each string as a numeric integer
expression. If this is not possible, S$SCOM is called to compare
them as strings.

Transfer of control is accomplished by placing the next comm%nd
line to be processed into the command buffer. This involves one
or the other of the following:

¥ Reading 1lines forward until the matching .ENDIF
primitive is found

¥ Backspacing to the matching .LOOP primitive.

The IF/LOOP level is maintained by XIF. The 1line number of each
.LOOP is stacked when a nested .LOOP is encountered. These 1line
numbers are used to calculate the number of lines to backspace
the procedure file when transferring control to the matching
.LOOP primitive.

XIF calls GETRLN to parse the relation. The offset returned is
used to access a mask in the table RLNVAL. If the result stored
in the status register by S$SCOM is equal to the mask, the
relation is true.

The data structures RLNTBL and RLNVAL are organized in such a way
that the 1index to the inverse relation name and mask are
computable. For example, the first relation in both tables is IS
and the last relation is ISNOT; the second is EQ and the next to
last is NE, and so on. This organization 1is &exploited 1in the
code that processes .WHILE and .UNTIL primitives. The same code
that processes the .WHILE is used to process the .UNTIL, with the
operator inverted (table offset complemented).

4.5.3.16 XELSE.

XELSE bypasses the .ELSE primitive clause. Command procedure
records are skipped until an .ENDIF or .EOP is encountered.
XELSE pairs .IF and .ENDIF primitives within the .ELSE clause and
returns when an unmatched .ENDIF is encountered.

4.5.3.17 XENDIF.

XENDIF processes the L.ENDIF command. The IF/LOOP 1level 1is
decremented.

2270513-9701 4-35 SCI

SCI/Utilities Design

NOTE

The primitives discussed 1in the following
paragraphs, .COPY, .STAGE, and .EOS, are
currently disabled. (The processor address
table entries in GETCMD are set to =zero).
The routines XCOPY, XSTAGE, AND XEOS are code
that is never executed.

4.5.3.18 XSTAGE.

XSTAGE issues an SVC to the Name Manager, requesting the creation
of a new stage. The stage depth counter is incremented.

4.5.3.19 XEOS.

XEOS issues an SVC to the Name Manager, requesting a return to
the previous stage. The stage depth counter is decremented.

4,5.4 Parsing Routines.

Parsing routines are <called in the major 1loop for command
processing. Two routines prepare the command buffer for parsing
and the remainder process the data. The routine that fetches SCI
verbs (GETCMD) is similar to these parsing routines, but its
function is to transfer control through a branch table. For that
reason, GETCMD and GETOPC are described with the high-level
routines that determine the major path through SCI. The parsing
routines discussed here process character strings to arrive at a
value.

4.5.4.,1 Data Structures.

The major data structures used by the parsing routines are CBUFF,
the command buffer, and CBPTR, a pointer to CBUFF. When
processing field prompts, TYPTBL and a temporary buffer contain
information about the prompts and their current values.

CBUFF is a 256-byte buffer where input is stored and intermediate
processing results are sometimes kept. CBPTR'points to the next
character (in CBUFF) available for processing.

TYPTBL 1is a structure for storing abbreviated information about
each of the 22 possible field prompts. Field prompts are treated
as positional parameters. Information about the first prompt
specified 1is the first entry in TYPTBL. Information stored in
the structures KWTBL (pointers to field prompt names) and VALTBL
(pointers to current values of field prompts) is also based on

SCI 4-36 2270513-9701

SCI/Utilities Design

position of the field prompt.

TYPTBL is a U6-byte table. The first word contains an offset to
the field prompt currently being processed. Information in the
TYPBTL is stored in the address that is the sum of the table
address plus the value of the first word in the table. The value
of the first word is also used as an offset into KWTBL and VALTBL
to access information about the field prompt currently being
processed.

TYPTBL contains two bytes of information for each field prompt.
The first byte —consists of flags that are used to guide the
processing of this field prompt. The flags 1indicate the
following conditions:

* Whether or not the field prompt is required

¥ Whether or not the value can be a list

¥ Type alternation - whether the field prompt has more
than one acceptable type (This bit is wused only while
building the list.)

The second byte contains a count of the number of data types that
can be considered for the value of this field prompt.

A1l field prompt attribute information is stored in AUX2. AUX2
is a 348-byte structure that overlays three buffers that are not
in wuse when AUX2 1is 1in use. The first 256-byte block is
dedicated to AUX2, and is followed by:
ACNM - A 51-byte buffer used by XDATA
FSTNAM - A 20-byte buffer used by XSPLIT
RSTNAM - A 20-byte buffer used by XSPLIT

The total buffer size (348 bytes) is static, but storage within
the buffer is dynamically allocated as field prompt type
declarations are processed. The first 23 words of AUX2 are
reserved for pointers. The remainder is allocated as required.
Free space, if any, is at the bottom.

The structure of AUX2 is shown in Figure 4-2.

2270513-9701 h-37 SCI

SCI/Utilities Design

i
P e e e e e —————_—————————
0 { Pointer to Field Prompt #1 information (P1) !
I o e e e e e e e e e e e e e e o
T e e e e e e o o e e o o o o
E . L) L]
R . L]
S . .
! | Pointer to Field Prompt #22 information '
P1->} TYPE ID ! # bytes supplemental information|
! Supplemental information for Field Prompt #1 (Note 1,2) |
i TYPE ID ! # bytes supplemental information|
! Supplemental information for Field Prompt #1 (Note 1,2) |
P2->} TYPE ID i # bytes supplemental information|

- —————— —————— ———————— - — - ——— - — - — - ——————— - ————— -

Note 1 - This structure is a case with two type declarations
for field prompt #1.

Note 2 - Formats of the supplemental information fields are

discussed with the parsing routines that build this
table.

Figure 4-2 AUX2 Data Structure
4.5.4.2 Command Buffer Preparation.

GETLINE and TXTSUB set up the command buffer so that one or more
of the parsing routines can be used to process input data.

SCI 4-38 2270513-9701

SCI/Utilities Design

GETLINE,

Routine GETLINE gets the next information to be placed 1into the
command buffer. There are three entry points:

¥ GETLNE - Fetchs a 72-character command line and displays
the character string that 1is the command line prompt
(the default, or as specified with the .OPTION
primitive).

¥ GETINP - Fetchs a 72-character command line and does not
display the prompt.

¥ GETDAT - Fetchs an 80-character data line and displays
p the prompt.

Depending on the entry point, an end-of-line (EOL) byte is placed
in either column 73 or column 81 of the buffer. The buffer is
blank filled ¢to the EOL. In the code, EOL is referenced as an
exclamation mark (!), but it is not a printable character.

A record from the appropriate source, either a file or device
(primary input) or a command procedure definition (secondary
input), is read into the command buffer. If the - session 1is 1in
batech mode, commands from the primary input are written to the
listing file.

TXTSUB,

TXTSUB makes two passes on the command buffer to remove extra
blanks and to replace synonyms and field prompts with current
values.

On the first pass, multiple blanks are reduced to single blanks,
except when multiple blanks appear within a quoted string.

The second pass is a right to left parse. Substitutions are made
as follows:

* For every occurrence of @, the routine S$MAPS is called
to supply the value associated with the synonym whose
name follows @. If the synonym 1is wundefined, the
synonym name is used as its value in the command buffer
text stream.

¥ For every occurrence of &, the routine S$MAPK is called
to supply the value of the command prompt that follows
&. If the command prompt has no value, the null string
is substituted into the command buffer text stream.

On each pass, TXTSUB processing 1is terminated when the EOL
character is encountered.

2270513-9701 4-39 SCI

e e e e

SCI/Utilities Design

4.5.4,3 Text-Handling Routines.

‘The remaining parsing routines are divided into those that build
and access the AUX2 data structure to verify field prompt value
assignments, those that parse in search of the value to assign to
a field prompt of a known type, those that skip over delimiters
and superfluous blanks, and utility routines used by all parsing
routines.

Routines that build and access the AUX2 data structure to verify
field prompt value assignments are of two types:

¥ Routines that parse to build data structures for field
prompt value verification:

- GETALT. - Builds a data structure of alternative
types for a given field prompt. This vroutine
calls GETLST and GETRGI if the alternative types
are themselves l1lists and/or ranges.

- GETLST. Builds a supplemental data structure of
list elements

- GETRGI. Builds a supplemental data structure of
range limits

¥ Routines that access AUX2 to verify the wvalue(s) being
considered for assignment to a field prompt name:

- GETVER, Verifies data attributes for a field
prompt value

- GETELT. Verifies that the item being considered
is an element of the specified 1list

- GETRNG. Verifies that the value being considered
is within the specified range.

Routines that parse in search of the value to assign to a field
prompt whose type is known are as follows:

¥ GETNAM. Name type

¥ GETACN. Access name type
¥ GETSTR. String type

¥ GETINT. Integer type

* GETYNO. Yes/no type

- SCI 4-40 2270513-9701

SCI/Utilities Design

Routines that skip over delimiters and superfluous blanks are as
follows:

¥ GETCMA. Skips over a comma

¥ GETEOL., Skips blanks to the first nonblank character.
Returns an indicator if that character is the EOL

* GETEQL. Skips over the equal sign

¥ GNB. Skips over all blanks to the next nonblank
character.

Utility parsing routines are as follows:

¥ GETKEY. Keyword

GETRLN. Relation

¥ GETSYN. Synonym name

¥ GETTYP. Type declaration
These parsing routines return through SDSERR if an error
condition 1is encountered and return a condition code in register
zero.
If the routine produces an error, the command buffer and pointer
are restored to their values prior to the parsing routine call.
The calling routine is responsible for taking the appropriate
action, based on the error.
If, however, no error is encountered, CBPTR points to the first
character of the next item to be parsed and register one points
to the text of the value for the item just parsed. This value
may or may not be stored in the command buffer. Previous
characters in the command buffer are not guaranteed to be
unaltered.

4,5.4.4 Table-Building Routines.

The routines described in the following paragraphs build the AUX2
table.

GETALT.

GETALT processes field prompt type declarations. The following
information is stored in TYPTBL:

®# Flags that indicate the following:

- Whether or not alternate types are declared

2270513-9701 4-u1 SCI

SCI/Utilities Design

- Whether or not a list has been declared

- Whether or not this field prompt is required to
have a value

* The number of types declared for this field prompt

GETALT also makes entries in AUX2 ¢that contain the following
information as required:

*# A one-byte identifier for the type

Number of bytes of supplemental information. (This may
be 0, as in the case of a YESNO type whgre there 1is no
supplemental information.)

* Supplemental‘information:
- Range
- List

GETALT 1is called once for each field prompt, and processes all
type declaration information. It calls GETLST and GETRGI if
necessary. Overflow of the AUX2 buffer is detected and reported
through SDSERR.

- GETLST.

GETLST processes the elements of a set of acceptable values that
a field prompt may have. Enclosure of the 1list in parentheses is
checked and a syntax error 1is returned if a parenthesis is
missing. The 1ist is stored in AUX2 as supplemental information
for the ELEMENT data type. The AUX2 format of the 1list is as
follows:

<number of elements in list><byte count for first
element text><text of first element><byte count
for translation valued><translation value of first
element><byte count for second element textd><text
of second element>...

This information is used by GETELT to verify that the element
specified is on the list.

GETRGI.

GETRGI checks for AUX2 table overflow and for enclosure of range
information 1in parentheses. Error conditions are reported
through SDSERR. GETRGI parses the command buffer and constructs
a supplemental information data structure in AUX2 consisting of
the 32-bit signed integer lower and upper limits.

SCI 442 2270513-9701

SCI/Utilities Design

This information 1is used by GETRNG to ensure that a value being
considered for the field prompt is within the specified range.

4.5.4.,5 Verification Routines.

These routines verify whether or not a speéified value 1is
acceptable, according to the information in AUX2.

These routines are structured as follows:

Save CBPTR;

Search CBUFF for specific data type. (This includes
syntax checking and verifying attributes of the value.)
IF no error

THEN
Set CBPTR to point to the character in CBUFF
immediately following the delimiter
for this type;
Set register one to point to the parsed value;
ELSE
Restore CBPTR to its prior position;
Set an error indicator; :
Return;

GETVER.

GETVER verifies that the value to be assigned a field prompt has
the proper attributes. It accesses the information stored 1in
AUX2. GETVER processes a single value or a list of values,
checking each value against all valid types. \

Upon completion of GETVER, register one points to a translated
value list in AUX3.

NOTE

Field prompts declared type STRING are not
subjected to any tests by GETVER. No
information 1is stored in AUX2, and any non-
null value proposed for the field prompt 1is
accepted as is.

GETELT.

GETELT parses an item in the command buffer that is expected to
be an element of a list built by GETLST. The input item parsed
is paired with the text of each element of the 1list. The
approximate matching algorithm is used to determine whether or
not they match. An error 1is generated if the item does not
appear in the list or if it matches more than one element in the

2270513-9701 443 SCI

SCI/Utilities Design

list.

When a unique match is found, the item (or the translation value,
if one exists) 1is returned. Notice that the translation value
may differ, perhaps drastically, from the information input by
the user.

Upon return from GETVER, a register points to the value. If it
is the user input, that value is in the command buffer. If it is
a translation value, it is in AUX2.

GETRNG.

GETRNG parses the command buffer for what is expected to be an
integer type and verifies that it is in the specified range. The
bounds are inclusive so the value may equal either limit.

GETINT 1is called to parse the next item in the command buffgr.
S$INT is called to convert that ASCII representation to binary.

An error condition is set if the value 1is outside the range
limits and control returns to the calling program through SDSERR.

GETNAM,

GETNAM parses for the name type. The only checking done is to
ensure that the first character is alphabetic or $, and that the
succeeding characters are alphanumeric or $. It should be noted
that the term alphabetic includes the ASCII representations of
the uppercase characters A through Z, plus [, \, and], as well
as the Katakana character set. Alphanumeric includes alphabetic
characters and the ASCII codes for the decimal digits 0 through
9.

The GETNAM routine uses a data structure that contains the limits
of the internal representation of these character sets. It 1is
called ALPHA. The structure consists of the ASCII
representations of the limits of the following three ranges, each
of which is continuous:

®#® A through Z, and [, \, and]

*® Katakana

0 through 9
GETACN.

GETACN verifies the syntax of an access name. It calls PTHNAM to
check the syntax of each node of the character string.

The delimiter for an access name type is any character that is
not alphanumeric, as in the preceding paragraph.

SCI h-uy 2270513-9701

SCI/Utilities Design

GETSTR.

GETSTR parses the command buffer in search of a STRING type. Two
types of strings are processed -- quoted and unquoted.

A quoted string begins with a quote ("), which is stripped.
Subsequent adjacent quote pairs ("") are replaced with a single
quote. An unpaired quote is the delimiter for a quoted string.
It is also stripped. ’
Processing of an unquoted string includes reduction of multiple
blanks to single blanks and deletion of leading and trailing
blanks. The delimiters for unquoted strings are as follows:

¥ Exclamation mark - !

¥ Right parenthesis -)

®# Equal sign - =

¥ Quote - "

* Comma - ,
The delimiter is stripped.
GETINT.

GETINT calls GETSTR to 1isolate the character string to be
processed as an integer type. Any remaining blanks are removed.
S$INT is called to evaluate the expression. This is done to
detect errors, not to obtain the value. GETINT returns the
character string that is known to be a legitimate integer type.

GETYNO.

GETYNO calls GETNAM to isolate the name to be evaluated as a
YESNO type. Only the first character of the name is checked for
Y or N.

Unless an error is encountered, register one points to the
original byte count followed by either Y or N and the remainder
of the original character string.

4,5.4,6 Cleanup Routines.

The following cleanup routines are used:

GETCMA.

This routine skips over an anticipated comma. If the comma 1is

the next nonblank character, it is skipped and CBPTR points to
the first character after the comma that is not a line delimiter

2270513-9701 445 SCI

SCI/Utilities Design

or a blank. New 1lines are read if necessary. (That is, the
comma is treated as a line continuation character by SCI.)

An error is generated if the next nonblank character is not a
comma. In the error case, CBPTR points to the character that was
expected to be a comma.

GETEOL.

This routine advances CBPTR to the next nonblank character. An
error is returned 1if that character is not the SCI 1line
delimiter.

GETEQL,

This routine parses the equal sign. If the first nonblank
character is -, CBPTR is advanced to the next nonblank character

after -. If the equal sign is not found, an error is returned
and CBPTR points to the character that was expected to be the
equal sign. New 1lines are read if necessary. (That is, the

equal sign is treated as a line continuation character by SCI.)

GNB.

GNB advances CBPTR to the next nonblank character. No errors are
returned. No new lines are read because the 1line delimiter
appears just past the right margin in the command buffer.

4y,5.4,7 Utility Routines.

The following wutility routines are <called by many parsing
routines:

GETKEY.

GETKEY calls GETSTR to 1isolate the character string to be
processed as a keyword or field prompt name. S$SCPY is called to
store the string in an 82-byte dedicated buffer pointed to by the
global variable KEYWRD.

GETRLN.

GETRLN supplies information about the relation to be considered.
GETNAM is called to isolate the character string that represents
a logical operator. RLNTBL is searched for the specified
operator, using S$SCOM to compare strings. GETRLN returns (in
register one) the displacement from the beginning of RLNTBL to
the match. This displacement can be used to access information
in RLNVAL, a table of masks for isolating the comparison result
of interest for this operation.

SCI 4-46 2270513-9701

SCI/Utilities Design

GETSYN.

This routine isolates the character string +that represents a
synonym name. GETSYN recognizes two forms -- name and access
name types.

GETSYN calls GETNAM first, and if no name is found, it calls
GETACN and attempts to parse an access name.

GETTYP.

GETTYP is used by GETALT ¢to parse the command buffer for
legitimate type declarations. The anticipated type is scanned by
GETNAM, A table containing the text for all types (TYPNAM) |is
searched for a match.

Register one is returned pointing to a location that contains the
displacement to the match. (This displacement 1is also the
displacement into the table TYPXFR to the address of the routine
that processes the type.)

This routine parsés only one type and must be called repeatedly
in the case of alternate types.

4.,5.5 Display Routines.

The following routines direct the writing of output ¢to the
appropriate device or file, depending on whether the SCI session
is batch or interactive.

4.5.5.1 DLINE.

DLINE writes or displays one line of output to a file or device.
The form of the line depends on the SCI mode.

¥ Batch - Generates a page eject and page header as
required, using counters LINECT and PAGECT for lines and
pages, respectively ,

TTY - Writes a single record without page headers,
followed by a carriage return and line feed

¥ VDT - Writes a single record on the bottom of the
screen. No page headers, carriage return or line feed

DLINE requires an output buffer that begins on a word boundary,
and 1is an even number of bytes in length, because the buffer is
used in the SVC call block for the write. If the record 1length
of the output file or device is greater than the buffer length,
the record is truncated.

2270513-9701 h_u7 SCI

SCI/Utilities Design

If the buffer is an odd number of bytes in length, the number of
bytes output is rounded down. The first two bytes of the output
buffer are always cleared by DLINE. If the output is to a
device, and there are no control characters in the text, DLINE
uses the first two bytes for carriage control.

4,5.5.2 DBATCH.

DBATCH is called when the SCI session is in batch mode. DBATCH
writes the field prompt name/value pairs to the listing file.

DBATCH writes the names and values from KWTBL and VALTBL. The
values in KWTBL and VALTBL are the same as those in the NCT
because in batch, the wuser has no opportunity to make changes
interactively.

4,5.6 Subsystem Support.

The following routines are interfaces to the MAILBOX and TINFO
subsystems.

4.5.6.1 MAILBOX.

MAILBOX is a separate program that processes messages sent
between tasks.

Interactive SCI uses the receive services of MAILBOX in the
initialization and termination portions of the task, as well as
in DERROR. MAILBOX is bypassed in a batch session. The
interface routines that receive messages (MBRCV and MBRLS) are
included in the SCI990 procedure segment. The interfaces to
MAILBOX are 1independent of the specific implementation of the
MAILBOX functions.

Pointers to two buffers must be passed to MAILBOX 1interface
routines. One buffer 1is for the message and the other is for
time and date. The first byte in each of the buffers . must
contain the length of the buffer.

MAILBOX interfaces set the first byte of each buffer to zero if
no message is found.

Upon return, if register zero is zero, no errors occurred. If an
error did occur, the following information is returned:

¥ Register zero is the error code.

® If the error code in register zero is >90FF, register
two points to an SVC call block that contains the error.

SCI 4-u8 2270513-9701

SCI/Utilities Design

MB$RCV,

MB$RCV is the user interface for accessing messages sent to the
task through MAILBOX. It leaves all conditions set in such a way
that more messages can be requested later.

In addition to the buffers (message, time and date), MB$RCV
requires a token 1list. The token 1list is a list of MAILBOX
addresses to be searched. Each token should correspond to one of
the tokens specified when a message is sent. The token list has
the following format:

<LIST LENGTH><TOKEN LENGTHD><TOKEN>...
where:

LIST LENGTH 1is the total number of bytes in the 1list

that follows.
TOKEN LENGTH is the length of the next token (maximum of 8).
TOKEN is the character string.

A maximum of three tokens is specified. SCI passes two tokens -~
the station ID and the user 1ID.

MB$RLS.

MB$RLS is the user interface that allows the caller to take any
messages pending and terminate communication with the MAILBOX
subsystem.

MB$RLS is called by SCI during processing of the .STOP primitive.
4,5.6.2 TINFO.

TINFO 1is a separate task that owns the system data structures
that contain information about +the status of terminals. It
processes the following SCI commands: CM, KBT, MSG, MTS, SBS,
SDT, and WAIT.

Only those routines that provide SCI read access to the system
communication area (SCA) are included in the SCI990 procedure
segment. This allows SCI to determine the mode of the terminal.

SCA3$R reads terminal parameters. When this interface routine 1is
called, register one points to a buffer that contains as its
first four bytes STnn, where n is a decimal ASCII digit. Upon
return, the buffer contains whatever information TINFO has
concerning the station. The format of the station name 1s hard
coded.

2270513-9701 4-y9 SCI

SCI/sUtilities Design

4,5.7 Utility Routines.

SCI uses two wutility routines of its own, as well as several
routines in the S$SYSTEM procedure segment.

4,5.7.1 HEXSYN.

HEXSYN converts a specified binary value to a five-character
string. The first character, >, 1is followed by the ASCII
representation of the four-digit hexadecimal number. This
character string is then assigned as the value of the specified
synonym.

Registers one and two are pointers to the synonym name and binary
value, respectively. They are preserved.

4,5.7.2 APPROX.

APPROX applies the approximate matching algorithm to two strings.
The rules of the algorithm are outlined in the DNOS System
Command Interpreter (SCI) Reference Manual.

4,5.7.3 S$SYSTEM Routines.

SCI makes extensive use of the following routines in the S$SYSTEM
procedure segment. They are divided into two groups -- the first
group 1is routines documented in the DNOS Systems Programmer's
Guide. The second group lists routines documented in the section
of this manual entitled Conventions and Libraries.

The following routines are documented in the DNOS Systems
Programmer's Guide:

S$IADD . Adds double precision

S$IASC Converts binary to ASCII

S$INT Converts ASCII to binary

S$MAPS Maps the value of a synonym

S$NEW Initializes a task data base

S$PFIL Submits print request from user task
S$SCOM Compares strings

S$SETS Sets the value of a synonym

S$SNCT Searches the NCT

SCI ‘ 4-50 2270513-9701

SCI/Utilities Design

S$TAD Formats time and date

S$TERM Terminates a task

The following routines are documented in the Conventions and
Libraries Section of this manual:

S$FMT Formats the interactive display

S$GKEY Gets keyword value

S$KEY Sets a name/value pair in the NCT.

S$MAPK Maps keyword value |

S$OPN Is the same as S$OPEN

S$OPNX Forces an open extend of the specified file

S$PKEY Writes to interactive terminal and waits for a
reply

S$RIT Reads information from an interactive terminal

S$SKEY Sets keyword value (special case)

S$WIT Writes to interactive terminal

S$PCNT Purges the NCT

S$SETK Sets keyword value

S$WAIT Suspends the calling task

4.6 INTERNATIONALIZATION

All character strings displayed to the user are declared in the
module SCIPRC.

2270513-9701 4-51/4-52 SCI

SCI/Utilities Design

SECTION 5

TEXT EDITOR

5.1 OVERVIEW

The Text Editor is an SCI subsystem through which recofds ih a
file are modified, added, inserted or deleted.

The Text Editor task is written in assembly language.

The Text Editor is a co-resident task in a user job with an
interactive SCI session. The Text Editor requires access to an
interactive terminal. It is not supported in a batch
environment. '

This section describes the structure of the Text Editor, its
files and data structures, and the processing of the edit
commands and functions.

Refer to the DNOS Text Editor Reference Manual for a detailed
description of the Text Editor user interface.

5.2 STRUCTURE
The Text Editor is composed of three segments:

* Procedure segment S$SYSTEM - Library of routines that
is wused not only by the Text Editor, but by other
DNOS tasks, including SCI.

* Procedure segment EDITOR - Nonreplicatable segment
that 1is procedural code and that performs text
editing functions and editing commands as they are
entered from the interactive terminal.

* Task segment EDITOR - Replicatable task segment of
the Text Editor that contains the task transfer
vector, volatile code, volatile information that
contributes to the definition of the current state of
the edit, and S$SYSTEM routine workspaces and DSEGs.
Each time the Text Editor is invoked, a unique task
segment is created in the user's job.

2270513-9701 5-1 Text Editor

SCI/Utilities Design

5.3 FLOW OF CONTROL

The major phases of a text editing session are outlined in the
following paragraphs:

5.3.1 1Invoking the Text Editor.

The Text Editor is invoked by SCI during processing of any
command procedure that bids the program. Once an edit is active,
control <can switch back and forth between the Text Editor and
SCI, via the RBID mechanism.

5.3.2 1Initialization.

Initialization of the Text Editor begins with an escape clause.
This traps any command procedures that bid the task outside an
active edit. The escape allows those command procedures to Dbe
executed without actually editing a file. (Command procedures,
as shipped by Texas Instruments Incorporated, do not RBID the

Text Editor unless an edit is in progress.)

If the escape clause is not taken, initialization is performed as
follows:

1. Initializes the Text Editor variables and data
structures

2. Opens the input file (if one is specified)
3. Creates the work files

4, Displays the first page of the file to be edited (if
one is specified)

5.3.3 Major Path.
Three kinds of processing are done during a text editing session:
¥ Device service routine (DSR) processing - Functions
performed entirely by the DSR, and not requiring

execution of Text Editor code

¥ Function processing - Functions +that do not require
parameters (for example, Up Arrow and ERASE INPUT)

¥ Command processing - Functions that require parameters
(for example, Move Lines (ML) and Find String (FS))

Text Editor ' 5-2 2270513-9701

SCI/Utilities Design

Figure 5-1 and Figure 5-2 depict the processing path through the
Text Editor. Note that edit functions are performed in E$EDIT in
a loop that is only exited when the CMD key 1is pressed. When
this happens, the Text Editor suspends and returns to SCI for
command procedure processing. This suspension is accomplished by
a call to S$WAIT, a routine in the S$SYSTEM segment. The Text
Editor is reactivated by SCI.

TXTEDT: Reset STAY flag (Note 1)
IF CODE is not 0 (Note 2)
THEN IF CODE is less than 0
THEN CODE=-CODE
Set STAY flag
Call ECMD to process the command;
ELSE Set STAY;
ENDIF;
IF STAY flag is reset
THEN Call E$WAIT to suspend;
Call ES$EDIT;

Note 1 - STAY is a register.

Note 2 - CODE is the CODE parameter on the .RBID statement.
Figure 5-1 Flow Through E$1ST

The treatment of the CODE value on the .RBID statement allows a
command procedure to process an edit command and then either to
reactivate an edit already in progress (CODE < 0) or return to
SCI (CODE < 0).

E$EDIT: IF initialization is required
THEN Call INITIL;
EDT100: Read next input;
IF CMD
THEN Call E$WAIT;
ELSE Perform function;
Update the display at the terminal;
END Loop READ;

Figure 5-2 Flow Through E$EDIT

5.3.4 Termination.

Termination of the Text Editor involves disposing of the session
information as specified by the user and terminating the task by
a call to S$TERM. Unless the session is aborted, a new file 1is
created wusing the input file (if one is specified) and the work

2270513-9701 5-3 Text Editor

e

SCI/Utilities Design

files. This new file is renamed according to parameters passed
in the PARMS 1list. ’

A major design goal of the termination processing was to make it
virtually impossible for the user to lose data. A new file is
created containing information from the input file and the work
files., If the replace option is YES, the input file 1is deleted
when the new file 1is renamed. Only then are the work files
deleted. The only exposure to loss of data is during catalog
manipulation of pathnames.

Should a system crash occur during any other phase of
termination, recover edit processing can restore most of the
information entered during the prior edit. Specific limitations
of the recovery scheme are discussed in the paragraph on detailed
design of recover edit processing.

5.4 COMMAND PROCEDURES

The Text Editor does not include the <capability to prompt
interactively; control is returned to SCI when the user must
supply additional information for command processing. Command
procedures in the SCI 1language are provided for this purpose.
The command procedures collect data interactively and RBID the
Text Editor with the appropriate parameter values on the PARMS
list.

5.5 FILES

The Text Editor manages two work files, the MOD file and the TEXT
file, in addition to the input file, which is optionally provided
by the user.

The MOD file contains one entry for each line of the input file
that has been displayed. Information in the MOD entry indicates
what kind of change, if any, is made to the original input file
record. The largest file that is processed by the Text Editor is
one with 65,250 records. (The record number variable is one
word.) The size of the MOD file is monitored for exceeding the
maximum file size.

The TEXT file contains the text of the modified or inserted
lines.

The MERGE file is created during termination of the Text Editor.
After the revised file is built, it is renamed according to the
parameters passed to the Text Editor with the termination

\

Text Editor 5-4 2270513-9701

SCI/Utilities Design

request.

5.5.1 Input File.

The pathname of the input file is specified on the PARMS list
passed to the Text Editor with CODE=0 to (re)activate - an edit
session. If a pathname is provided, it must be for a relative
record file or a sequential file. Key indexed files cannot Dbe
text edited. An error is generated if an attempt is made to text
edit a device or a key indexed file. Two other prompts related
to input files are:

1. Exclusive Edit - If yes, the file is opened exclusive
write. If no, the file is opened shared.

2. Length - Maximum length of lines 1in the file to be
edited. Records 1longer than this are truncated.
Records shorter than this are blank filled in the
output file.

If an 1input file name is not provided, editing takes place with
regard to the MOD and TEXT files only. The presence or absence
of an input file causes no significant changes in processing.

5.5.2 TEXT File,.

The TEXT file is used to store the text of inserted, changed or
moved records. It is a relative record file with a 1logical
record length as prompted for in the XE command, not to exceed
240 characters. The TEXT file is created during initialization
of the edit. Its pathname is as follows:

+S$TEXTxx
where:
xx is the station ID at which the edit is active.
The structure of the TEXT file is shown in Figure 5-3. TEXT file

records are written sequentially and are not blocked in physical
records.

2270513-9701 5-5 Text Editor

SCI/Utilities Design

FIRST RECORD:

Byte(s) Contents
0 Pointer to end of pathname. Fixed at >34
to reserve 52 bytes
1 Number of bytes in input file pathname
2-53 Pathname of input file
79-80 Time stamp

ALL REMAINING RECORDS:

Byte(s) Contents

1-LENGTH Text of a line - where LENGTH was prompted for
an XE command.

Figure 5-3 TEXT File Format

The two-byte time stamp is the result of an exclusive or of the
seconds, minutes, hours, date (Julian), and year returned from
the time and date SVC.

The time stamp is created during the initialization of an edit
session. In addition to being written in the first record of the
TEXT file, it is written in each physical record of the MOD file.
The time stamp is used as a validity check when merging the files
to <create the output file. It is used by Recover Edit to verify
the mod and text records are not information 1left over from
another edit session.

5.5.3 MOD File.

The MOD file is used to record the types of changes made to the
input file and to point to data in the TEXT file.

If an input file is specified, there is one MOD entry for each
record of the input file. As each record is displayed for the
first time, a null MOD file entry is written for the displayed
(or skipped over) input file record. Additions and insertions
are recorded by writing MOD file entries with numbers greater
than the number of lines in the input file, and linking them with
the MOD entries that correspond to the appropriate input file
records. As part of 1initialization of a session, the
characteristics of the input file are read, and the number of
records originally in the input file is stored 1in the variable
LSTINP. MOD file entries for inserted lines begin at LSTINP+2.
Entry number LSTINP+1 is used for the end-of-file (EOF) line. In

Text Editor ' . 5-6 2270513-9701

SCI/Utilities Design

the current implementation, the variable MODEOF 1is equal to
LSTINP+1.

If an input file 1is not specified, MOD entries are assigned
sequentially, and the MOD file becomes a complete linked list of
entries,

The MOD file 1is a relative record file with a logical record
length of 252, The value 252 is chosen to best utilize space on
disks with a 256-byte sector size. Twenty-five entries are
blocked into a logical record. The remaining two bytes contain
the same time stamp that appears in the first record of the TEXT
file. The structure of each MOD file entry is shown in Figure
5-4,

The MOD file is created during initialization of the edit. 1Its
pathname is as follows:

.S$MODx x
where:

XX is the station ID at which the edit is active.

2270513-9701 5-7 Text Editor

SCI/Utilities Design

BYTE
0 1 Previous WOD file entry mumver !
2 & Next MOD file emtry number
o This MOD file emtry mumber
6 1 TEXT file record number
8 | MOD type code { " Link flags i
BYTE(S)
0-1 Previous entry number. If this MOD entry is linked

to a previous entry, the number is stored here.

2=3 Next entry number. If this MOD entry is linked to a
next entry, the number of that entry is stored here.

4.5 File entry number of this MOD entry. This is
provided as an error check.

6-7 TEXT File record number. If this is an insert or a
change record, the text of the change is stored in the
TEXT file record specified by this number.

8 MOD type code. This value determines whether the input
file record corresponding to this MOD entry, or the
inserted or changed text is to be deleted. An unmodified
input record is denoted by a null code.

0 - Null 2 - Delete
1 - Insert 3 - Change
9 Link flags. In most cases, if a MOD entry is linked,

it is linked both forward and backward. However, if a
line is inserted at the beginning of the file or just
prior to the end-of-file, the corresponding MOD file entry
is only linked in one direction.

>80 - Linked to previous entry only
>40 - Linked to next entry only
>C0 - Linked in both directions

Figure 5-4 MOD File Entry

Text Editor 5-8 2270513=9

SCI/Utilities Design

5.5.4 MERGE File.

The MERGE file is created during termination of the edit. It is
a temporary file so its pathname is autogenerated by DNOS.

The characteristics of the MERGE file are determined by the
following algorithm:

IF Specified output file already exists
THEN Use the output file characteristics;
ELSE IF an input file is specified
THEN Use input file characteristics;

ELSE Use default sequential file characteristics;
ENDIF;

If the logical record length of the file whose characteristics
are being duplicated 1is greater than 80, records in the input
file are blank filled past column 80,

The MERGE file is created on the same disk volume as the output
file so that the rename SVC can be used. The following logic is
used to determine the name of the volume on which the file 1is
created:

IF the pathname starts with a .
THEN Build MERGE file on system disk;
ELSE
Issue map logical name SVC
IF Value returned is null
THEN Volume name is first node of pathname;
ELSE Volume name is first node of logical name value;
ENDIF;

5.6 DATA STRUCTURES, VARIABLES AND SYNONYMS

Resident data modules are 1linked into the task segment. The
modules E$DDTA and E$FDTA contain data used strictly by the Text
Editor.

5.6.1 Data Related to the Display.

The module E$DDTA contains, in general, data pertaining to the
state of the display, buffers used by some of the commands, and

80 bytes of patch space, as follows:

* EDTFLG - Flag indicating whether or not an edit is in
progress. A nonzero value indicates an active edit.

* TXTBUF - General purpose buffer for reads and writes

2270513-9701 5-9 Text Editor

SCI/Utilities Design

¥ LINBUF - Buffer used for building lines to be displayed
to the interactive terminal. This buffer overlays
TXTBUF. The format of LINBUF is as follows:

Byte(s) Contents
0-4 Line number. Five ASCII characters
Blank if this line is an insert. Two bytes
preceding buffer are reserved for carriage
control.
5 Field size. Must be set after each read
operation
6-241 Text (242 characters). Byte 6 must be on a
word boundary. Two bytes at end are reserved
for carriage control.

¥ BACKUP - Used to save the line for back out processing

* BUFFER - 250-byte buffer for blocking 25 MOD file
entries .

* CLBUFR - Line compare buffer containing the text of the
current cursor line as it was when the cursor was first
moved to that 1line, or when the last TEXT file record
was written. The information in the compare buffer 1is
used to determine whether a change record is processed
in the MOD/TEXT files for this input record.

* MLBUFR - Working copy of current 1line containing all
changes made to date

¥ PATCHE - 80 bytes of patch space available for data that
must be patched into the resident module until a source
change is made

5.6.2 Data Related to Text Editor Files.

Module E$FDTA contains the following data, used, in general,
the file management modules of the Text Editor:

* T1/0 Request Blocks (IRBs) for the input, MOD, TEXT, an
MERGE files :

\
\

* File condition flags that indicate whether or not thd
MOD, TEXT and input files are opened

* INPFIL - Flag that indicates whether or not an input
file is specified by the user \

\
Text Editor 5-10 2270° .

SCI/Utilities Design

¥ CURPOS - One-word data structure that contains the
cursor row in the leftmost byte and the cursor column in
the rightmost byte. Always relative to LHSCOL, not to
screen edge.

¥ LHSCOL - Lefthand side column (O-origin)

¥ LINTBL - Line table with one entry for each displayable
line, plus entries for a header and a trailer line. The
header 1line is a dummy record that is sometimes used as
a temporary storage area. The trailer line is wused to
store text to be displayed as the EOF 1line.

Each entry in LINTBL is a copy of +the MOD file entry
corresponding to the edited line displayed on that 1line
of the terminal. See Figure 5-4 for the format of each
entry. The entries in VLINTBL are structured exactly
like entries in the MOD file. The Text Editor file
management and I/0 package maintains this table.
Information regarding changes that have been made to the
text of a line is recorded in this table. The table
contains entries for displayed lines only, and is not
equivalent to the output buffer for the MOD file.

The size of LINTBL is determined at run time. A read
device characteristics operation for SVC >00 is issued
to determine the number of displayable 1lines available
on the terminal. A Get Memory SVC is issued to obtain
adequate space for LINTBL. The number of lines on the
interactive terminal is kept in the variable VDTSIZ.

Note that the full text displayed on a screen is not kept in
memory (in the Text Editor address space), but is constructed on
a line-by-line basis, as required, from input file, MOD file, and
TEXT file records.

5.6.3 Synonyms.

Only one synonym, $$EA, 1is specifically accessed by the Text
Editor. $$EA is used to indicate whether an edit session 1is
currently active. Just prior to returning control to SCI, the
Text Editor sets this synonym to Y if the session is not Dbeing
ended. The Text Editor then calls S$WAIT to suspend until the
task is RBID. When processing a request that terminates the
session, $$EA is set to N just prior to the call to S$TERM. The
name of the synonym ($$EA) is hard coded.

2270513-9701 5-11 Text Editor

SCI/Utilities Design

5.7 FILE MANAGEMENT AND FILE I/O

The Text Editor file I/0 package is the vehicle by which all but
exceptional I/0 functions are implemented. This simplified I/O
interface leaves the edit function and command processors free to
consider I/0 on the basis of lines. It frees the processors from
consideration of the details of I/0 in each specific
circumstance.

File management routines in module E$FMNG determine which record
in which file represents the desired line, and direct the 1I/O
routines in module E$FLIO to perform the details of the function
specified.

NOTE

The file management package discussed here
serves a different purpose than the functions
implemented by the operating' system File
Manager. Despite the similarity of names,
the two are separate entities.

The E$FMNG interface is used whenever the file being edited (that
is, the 1logical merging of the input, MOD and TEXT files) is
affected. I/0 routines in the module E$FLIO are called directly
when action is required on any other file. These routines have a
BLWP/RTWP interface.

The control entry point for the package is E$FMNG. The function
code passed in register 1 determines which process is performed.

Function

Code Process Performed
5 Position to beginning-of-file
6 Position to end-of-file
7 Page forward (up) n records
8 Page back (down) n records
9 Read record for line n
10 Change record for line n
11 Delete record for line n
12 Insert record for line n

Line numbers, pointers to pathnames of files, and pointers to
buffers are passed 1in registers, as noted in the subsequent
paragraphs. Specific register assignments are documented in the
code., Error indications are returned in register 0. (A value of
0 1indicates no errors.) If I/0 to a file produces an error,
E$WAIT is called to return directly to SCI. SCI displays the

Text Editor 5-12 2270513-9701

SCI/Utilities Design

message.

All edit and command functions conduct 1I/0 on the basis of
displayed lines. I/O operations include read, insert after and
change a specified 1line, among others. The 1line number is
derived from the cursor position for VDT terminals and is always
1 for TTY terminals.

A1l file management functions use the data structure LINTBL (the
line table, discussed in the paragraph on data related ¢to Text
Editor files).

When E$FMNG 1is called to read a line, the edited line is placed
into the specified buffer. The edited line is found by using the
MOD file entry, which points to a line in the input file, or
points to an inserted line in the TEXT file, or indicates that
the line has been deleted. The text of the line is accompanied
by the input file record number (blank if the 1line is an
insertion). Therefore, the read operation makes all data to be
displayed available to the calling routine.

The discussion of each function includes the parameters passed
with the request. Specific register assignments are documented
in the code.

5.7.1 Change Record for a Line,

Input to this process is the line number (in the edited file) on
which the change is detected, and a pointer to the buffer of new
text of the line.

If the record has been previously changed, the existing TEXT file
record (whose file record number is in the LINTBL entry) is
rewritten with this new change.

If the MOD code for this 1line is null (indicating no
corresponding TEXT file record exists), the next available TEXT
file record number is obtained, and the new text is stored in
that TEXT file record. The MOD code in the line table is altered
to reflect that this line has been changed.

5.7.2 Delete Record for a Line.

This function, implemented in E$FDEL, marks the 1line
corresponding to the current line in the line table as a deleted
record. The appropriate entry is updated in the MOD file. The
specified entry in the line table is deleted by writing the entry
for the following line over the deleted 1line, then moving all
subsequent entries in the line table forward one line. The next
record in the input file is inserted at the bottom of the 1line
table unless the corresponding MOD file entry specifies that the

2270513-9701 5-13 Text Editor

SCI/Utilities Design

line has been deleted. Deleted lines are skipped until the next
nondeleted line is found.

5.7.3 Insert Line.

This request must include the line number and a pointer to the
buffer of text to be inserted. The insert line request 1is not
processed if the number of records in the MOD file is greater
than 65,250, If the MOD file is not full, it 1is determined
whether or not the current MOD entry is chained back to the
previous entry. If not, they are chained. If so, the previous
MOD entry 1is read and the MOD entry for the line to be inserted
is built and linked between the previous and the current entries.
All three entries, now linked, are rewritten to the MOD file,
All 1line table entries from the current entry through the end of
the line table are moved down in LINTBL. The preceding entry 1is
read and written over the current entry. This effectively
inserts a MOD file entry and its corresponding TEXT file record
before the old current line.

5.7T.4 Open Files.

The routine E$OPEN is called directly by the Text Editor rather
than through E$FMNG. A pointer to the input file pathname 1is
passed to the routine., After a check to ensure that the pathname
does not reference a device, the input file, if any, is opened.
If the input file characteristics are acceptable, (that is, if it
is not a key indexed file) the TEXT and MOD files are created by
E$CRET. Flags are set to indicate that the files are opened, and
whether or not an input file is specified. Control returns to
the calling program.

5.7.5 Page Back.

This routine calls FGTRPV to get the previous record for 1line
zero, and repeats the call for the specified count. This routine
does not deal with line numbers as page forward does.

5.7.6 Page Forward.

Page forward 1is <called with the relative roll count and the
absolute line number. This routine operates in two modes -- page
forward a certain number of records, or continue to page forward
until a certain absolute record number is found. 1In the latter
case, if that record is not found, an error code 1is returned.
(If an error message is to be generated, the calling routine must
do it.) The subroutine FGTNXT moves line table entries up one
and reads the MOD entry corresponding to the next 1line of the
edited file into the bottom of the line table.

Text Editor 5-14 2270513-9701

E$OPEN

E$CRET

E$CLOS

E$DELT

E$REWD

E$READ

E$WRIT
(Note 1)

E$GTFC
(Note 2)

E$WEOF

Note 1 - E$WRIT does not write in the input file.
must specify the MOD,

SCI/Utilities Design

Table 5-1 E$FLIO Routines Summary

Process

Moves access name into
IRB (input file only)
Opens input file

Creates specified file

Closes specified file
Releases LUNO

Closes specified file
Releases LUNO
Deletes file

Rewinds specified file

Reads a record from
specified file

Writes from buffer to
specified record in
the specified file

(Note 1)

Reads characteristics
of file
Validates file type
Checks write protection
Returns file type

(Note 2)

Writes EOF in the
specified file

Note 2 - E$GTFC returns a flag

caller's workspace.

as follows:

Text Editor

1:Relative record

2:3equential

Parameters

Address

Address

Address

Address

Address

of

of

of

of

access name

IRB

IRB

IRB

Address of IRB

Address of IRB
File record number
Address of buffer

Address of IRB (Note 1)
Record number
Address of buffer

Address of IRB

Address of IRB

register

The 1IRB

the TEXT or the MERGE file.

two of the
The values indicate file type,

2270513-9701

SCI/Utilities Design

5.7.7 Position at Beginning-of-File.

Position at Dbeginning-of-file has no parameters. E$REWD is
called to rewind the input file. The line table is cleared and
the first MOD file entry is read into the line table entry. All
entries are moved up one slot until the first entry has been
moved into line zero of the line table.

5.7.8 Position at End-of-File.

Position at end-of-file has no parameters. The entry point is
E$FEND. The routine calls E$GMOD to read MOD file entries wuntil
the MOD file EOF is in position zero of the line table. FGTPRV
is then called to position the EOF entry into line one and the
previous line in line zero.

LCOUNT 1is set ¢to the number of active (not deleted) records in
the edited file.

5.7.9 Read Record for a Line,

Routine E$FRED reads the text for the specified 1line 1into th

buffer. If the MOD code in the corresponding entry is null or
change, the record number is converted to ASCII and returned with
the text. If not, the record number field is blank. If the MOD
file entry in the line table for the specified line is null, the
text is read from the input file. If it is a change or insert,
the text comes from the TEXT record specified by the line table
entry. An EOF indication 1is returned if the specified 1line
number is not found.

E$FRED is called with the line number and a pointer to an 88-
character buffer, which must begin on a word boundary.

by

5.7.10 E$FLIO Routines.
Both the Text Editor and E$FMNG call E$FLIO routines for specific
I/0 requests. Table 65-1 summarizes E$FLIO entry points,
functions and parameters.

Except where noted in Table 5-1, E$FLIO routines use a workspace
that is separate from the caller's workspace.

2270513-9701 5-15 Text Editor

SCI/Utilities Design

5.8 DETAILED DESIGN

Linkage between edit subroutines is implemented with a return
address stack. The stack and the code that manages that stack
are 1in the module E$STAK. The calling routine is STCALL and the
return routine is STRETN. No registers are saved or restored.
As many as ten calls can be stacked at any time. If the call
being processed overflows the stack, STCALL drops 1into an
infinite 1loop. If the return being processed underflows the
stack, STRETN drops into an infinite loop.

Edit functions are not concerned with file record numbers.
Command functions are concerned only to the extent that the lines
of the wedited file (the logical merging of the input and TEXT
files as specified by the MOD file) must be positioned
appropriately for display during the course of command
processing.

5.8.1 RBID Statement Parameters and CODE.

The RBID statement that invokes the Text Editor is wunique for
each service requested. A1l calls go through the entry point
TXTEDT in module E$1ST. The CODE value and PARMS passed on the
RBID statement provide the information the Text Editor needs in
order to perform the requested operation, Table 5-2 shows the
values of CODE for the various requests.

Table 5-2 CODE Values for Edit Requests

CODE Request
0 (Re)activate Text Editor (XE, XES)
Modify Tabs (MT)
Modify Roll (MR)
Modify Horizontal Roll (MHR)
Modify Right Margin (MRM)
Show Line (SL)
Copy Line(s) (CL)
Move Line(s) (ML)
Delete Line(s) (DL)
Find String (FS)
Replace String (RS)
Delete String (DS)
Insert File (IF)
Quit Edit (QE)
Save Line(s) (SVL)
Recover Edit (RE)

S, OV JTOUTEWMN =

—_

2270513-9701 5-17 Text Editor

SCI/Utilities Design

5.8.2 E$WAIT,

This routine, in the module with the same name, calls the
appropriate S$ routine to suspend or terminate the Text Editor.

E$WAIT does the following processing:
1. Calls S$XFER if there is an error condition to report.
2. Closes the LUNO to the interactive terminal.

3. Calls S$XFER if registers must be set before <calling
S$WAIT or S$TERM.

4, If an edit is in progress (as indicated by the flag
EDTFLG), the Text Editor 1is suspended by <calling
S$WAIT. ©Otherwise, the task is terminated by calling
S$TERM.

After calling S$WAIT, when the Text Editor is RBID, E$WAIT opens
(with event characters) the LUNO to the terminal and branches to
TXTEDT in E$1ST. - i

5.8.3 E$DISP.

The routine E$DISP writes to the display for either VDT or TTY
terminals. The processing includes adjusting the cursor position
when line numbers are displayed. E$DISP is <called with ¢two
arguments. One 1indicates how much of the display is to be
rewritten, as follows:

Argument Action
<0 Refreshes whole display
= Refreshes from current line to bottom of display
>0 Refreshes from top of display to current line.

The other argument indicates whether the current line is to be.
read or whether the text of the line in MLBUFR is to be used.

DISPAG contains a loop in which the line is read (by call to the
file management and I/0 package) and rewritten. The loop 1is
exited when all 1lines have been rewritten or when an EOF is
encountered. When the EOF occurs, the current line is saved as
the EOF line, and the remaining lines on the display are cleared.

Within the loop to read lines, when the line that matches the row

portion of CURPOS is read, SAVLIN is called to save the text in
CLBUFR for 1later compares.

Text Editor 5-18 2270513-9701

SCI/Utilities Design

5.8.4 Edit Functions.

Edit functions pertain to the insertion, deletion, and
modification of data on the cursor line as it is displayed at the
terminal. Edit functions are invoked by keyboard keys, and have

no parameters except as implied by the cursor position at the
time the function is invoked.

Edit functions are described only to the point that I/0 services
are required. Interfaces with the Text Editor file management
and file I/0 package are noted. Edit functions not discussed in
this section are performed by SVC. For further details on I/O to
a specific device, refer to the DNOS Supervisor Call (SVC)
Reference Manual.

Edit functions vary, depending on the Text Editor state and mode.
As used in this discussion and in the code itself, the Text
Editor operates in two states -- VDT and TTY. The VDT state
exploits the advantages of the 911 VDT and the 911-1like behavior
of other VDTs. The TTY state is for the 820 terminal and the 733
ASR terminal. The variable STATE is accessed (through S$
routines) to determine the state of the terminal.

The editing mode governs the action taken with selection of the
new line function, which is requested by pressing the RETURN key.
In edit mode the cursor is positioned on the first tab position
of the next 1line, with a roll-up of one line taking place, if
necessary. In compose mode, selection of the new 1line function
causes the introduction of a blank line following the current
line, with the cursor positioned as previously described.

Edit function processing begins in the module E$EDIT at the label
EDT100. General flow through E$EDIT is shown in Figure 5-2,
This code sets up the parameters for a BLWP to S$RIT, which does
all reading from the interactive terminal. Factors considered
during this setup include the state of the terminal, tab
information, right margin position, and whether or not the cursor
is on the EOF line of the display. ‘

E$EDIT checks for an event character that physically moves the
cursor to the next 1line. This does not signify completion of
processing on the current line i.e., the line for which the read

was 1issued. This situation is detected when the DSR returns a
line number that is not the line number for which the read was
issued. Corrective action is taken -- the cursor is set to the

last displayed column of the line number for which the read was
originally issued.

After all special conditions have been processed, the event

character returned by S$RIT is used to look up the address of the
subroutine that performs the function indicated. The address of

2270513-9701 5-19 Text Editor

SCI/Utilities Design

the required routine is written into a branch instruction in the
task segment that makes the subroutine call.

Following completion of ©processing by the edit function
processor, control is returned to ES$EDIT. A branch back to
EDT100 is made and the Text Editor prepares for the next edit
function. An exception to this return occurs only if the CMD

function is selected. 1In this case, the EDT100 loop is exited by
calling E$WAIT to suspend the Text Editor and reactivate SCI,.

The edit functions can be grouped into the following categories:
¥ CMD - Exit the edit function 1loop

¥ Toggle switches - Switch line number display status or
switch edit mode or switch word wrap mode

¥ Cursor and roll functions - All movements of the cursor
except cursor right and cursor left, which are sometimes
processed by the DSR. Cursor left is processed by the
DSR only if the lefthand edge of the screen is column 1.
Cursor right is processed by the DSR only if the right
margin is on the screen.

¥ Tabbing operations
¥ Line functions
5.8.4.1 CMD,

This function is processed in E$EDIT. When it is selected, the
Text Editor 1is in a state +to return control immediately to

SCI990. ES$EDIT calls E$WAIT which calls S$WAIT to suspend the
Text Editor.

5.8.4.2 Edit/Compose.

The edit/compose logic switches the editing mode between compose
mode and edit mode. The necessary cleanup operations are also
performed. Processing begins at the label MODFLP in the module
E$KCL1. The edit/compose flag is inverted. The word wrap flag
is reset if you are changing to edit mode.

5.8.4.3 VLine Number Display.

The line number display function inverts the state of DLNFLG, the
flag that indicates whether or not the line numbers are displayed
at the 1left of each line. When the Text Editor is initialized,
DLNFLG is set to 1, which indicates that 1line numbers are
displayed. Any other value of DLNFLG causes suppression of 1line
numbers.

Text Editor 5-20 2270513-9701

SCI/Utilities Design

Processing begins at NUMFLP in E$KCL1. The current cursor column
is adjusted to reflect the requested change 1if necessary. The
cursor is adjusted if you are changing from no line number
display to line number display and the cursor is on a character
that would be pushed off screen. The flag is then reversed,
E$DISP displays the current page, and if the state is TTY the
portion of the —current 1line up to the cursor is rewritten.
Control is then returned to E$EDIT. '

5.8.4,4 Cursor Down.

The cursor down function operates virtually the same in both
states.

The entry point is CURDWN in E$KCL1. Upon entry, a test is made
to determine if the cursor is currently on the EOF line. If so,
the operation is ignored. The current line is checked and a mod
record written if needed via COMSAV,. If the cursor is not on the
EOF line, but is on the bottom line of the display, (which 1is
always the case in TTY mode), the display is rolled up, or paged
forward, one line. E$DISP is called to rewrite the display and
save the new line for later compares.

If the <cursor is not on the bottom line of the display (VDT
only), the cursor row address is incremented by one. E$FMNG 1is
called to read the next 1line of the edited file. SAVLIN is
called to save the text for later compares. The display 1is not
rewritten. (The cursor is moved down by the next call to S$RIT.)

Control is returned to E$EDIT.

5.8.4.5 Cursor Up.

The current line is checked and a modification record is written,
if needed, using COMSAV.

The cursor up entry point is CURSUP in E$KCL1. Upon entry, a
test is made to determine the state of the terminal.

In TTY mode, E$FMNG is called to page back or roll down one 1line
(a NOP if the first record is displayed or if the file is empty)
and the display is rewritten.

In VDT mode, if the cursor is on the top 1line, the display 1is
rolled down, or paged back one line. E$DISP is called to rewrite
the display and to save the top line for later compares. If the
cursor is not on the top 1line, the cursor row address is
decremented by one. E$FMNG is called to read the previous line
and it is saved for later compares. The display is not
rewritten. (The cursor is moved to the previous line by the next
call to S$RIT).

2270513-9701 5-21 Text Editor

SCI/Utilities Design

Control is returned to E$EDIT.
5.8.4.6 Home Cursor.

The record corresponding to the top line of the display is read
and saved for later compares, if the cursor is not already on the
top line (always true in TTY mode), and the cursor position 1is
set to the first tab position for the next S$RIT call to be made
by E$EDIT.

5.8.4.7 Roll Down.

Roll down processing begins at ROLDWN in ES$KCL1. E$FMNG is
called to page back the number of lines currently in the roll
parameter., E$DISP displays the rolled page. On a TTY terminal,
the top line of the rolled page is displayed.

5.8.4.8 Roll Up.

Roll up processing begins at ROLLUP in E$KCL1. E$FMNG is called
to page forward the number of 1lines currently in the roll
parameter, E$DISP displays the rolled page. On a TTY terminal,
the top line of the rolled page is displayed.

5.8.4.9 Tabbing Operations.

The following routines in E$TABS are used 1in ©processing tab
operations:

¥ NEXTAB - Always permits TAB wrap around. Entry point
GETNXT does not permit TAB wrap around and positions the
cursor to 1 character past the margin if no tab is found
to the right of the current position. NEXTAB wupdates
the cursor position to the column in which the next tab
stop occurs.

¥ PRVTAB - Examines the cursor position and returns the
column in which the previous tab stop occurs. If there
is no tab stop between the current cursor position and
the beginning of the line, cursor position is set to the
last tab stop prior to the right margin. -

VDT State Tab Operations.

Clear to tab processing begins at CLRTAB. A line of blanks is
set up, a call to DUPTAB is made to write the appropriate number

of blanks from the current cursor position to the next tab
position.

Duplicate to tab processing begins at the label DUPTAB. If the
cursor is on the EOF line, the operation is ignored. If not,
E$FMNG is called to read the preceding line in the file. GETNXT
is called to obtain the next tab position, with tab around not

Text Editor 5-22 2270513-9701

SCI/Utilities Design

permitted. The start position of the cursor is used to determine
the buffer starting address for the write and a call to S$WIT 1is
made to write the change. Control is returned to E$EDIT.

Tab back processing begins at the label TABACK. A call to PRVTAB
sets up the cursor position, based on the tab position to the
left of the current cursor position.

Tab forward processing begins at the 1label TABFWD. NEXTAB 1is
called to set the cursor position on the tab position to the
right of the current cursor position.

5.8.4.10 Clear to End-of-Line.

The entry point for the clear to end-of-line function 1is KPSKIP
in the module E$KCL2.

The original 1line is saved for ©possible later backout. The
buffer to the right of the cursor is blanked and the 1line 1is
rewritten.

5.8.4.11 Delete Line.

The entry point for the delete line function is DELLIN in the
module E$KCL2. The line specified on the 1last S$RIT call is
deleted. A call to E$FMNG deletes the line, the display is
rewritten, and control returns to E$EDIT.

5.8.4,.12 1Insert Line.

Processing for insert line begins at INSLIN in the module E$KCL2.
A blank line is built in the compare buffer and E$FMNG is called
to insert that line before the current line. Finally, E$DISP is
called to display the new page with the inserted blank line.

5.8.4.13 RETURN.

The new 1line function operates differently for different
combinations of mode and state. Processing begins at RETURN in
E$KCL2, where terminal state is determined. ' ‘

VDT.

E$EDIT fixes the cursor correctly. COMSAV in E$CSAV is called to
determine if there have been any changes in the current line. If
so, a change record is written into the MOD file and the text 1is
written to the TEXT file. Mode is checked.

Edit.

The cursor column is set to the leftmost tab, and CURDWN in
E$KCL1 is called to complete new 1line processing. CURDWN 1is
described in the Cursor Down paragraph.

2270513-9701 5-23 Text Editor

SCI/Utilities Design

Compose.

Special processing takes ©place if the EOF is displayed on the
current page. E$FMNG is called to roll the display up one 1line,
a blank line is inserted at the current cursor position. Control
is then returned to E$EDIT.

5.8.5 Command Functions.

With the exception of the request to initiate an edit session,
command functions are processed starting in E$CMDS$. Parameter
values must be passed to the Text Editor in the PARMS 1list of the
.RBID statement.

The selected command is specified to the Text Editor by the CODE
parameter as detailed in Table 5-2.

ECMD verifies that the CODE value passed is a recognized value,
enforces rules concerning whether certain requests are valid with
the current state of the Text Editor, and reports errors due to
unacceptable values in the PARMS 1list.

When ECMD is called, CODE has a value greater than zero.

ECMD checks the internal flag EDTFLG to determine whether an
edit is currently in progress. If an edit is 1in progress,
control 1is transferred to the specific command processor through
a branch table. If an edit is not in progress, only CODE values
of 0 (initiate a session) or 11 (recover a session) are
processed. This condition is enforced in the code. All other
requests cause a return to SCI with an error condition set. A
recover edit request is aborted if a session is currently active.

Each command processor accesses the PARMS 1list as needed and
deals with cases in which the values are not appropriate for the
particular edit in progress. Invalid parameters may -cause
control to be returned to ECMD for the display of an
appropriate error message. In all other cases, each command
processor 1is responsible for the termination of its processing
with or without the display of an error code and/or descriptive
message. Command processors return to E$1ST by a RTWP
instruction unless the error return to ECMD is taken.

Command requests can be grouped into three categories of similar
function:

* Session commands - Those that initiate, terminate and
recover an edit session

* TIndependent commands - Those that cause no significant
activity within the Text Editor

Text Editor 5-214 2270513-9701

SCI/Utilities Design

* Line and string commands - Those that alter one or more
lines in the file

NOTE

The command functions involve parameters that
are field prompts in SCI command procedures.
The name of each parameter on the PARMS list
is the same as the name of the respective
field prompt. Refer to the DNOS Text Editor
Reference Manual for a detailed discussion of
the parameters.

5.8.5.1 Session Commands.

These commands activate, reactivate, terminate or recover an edit
session.

Activate Session.

SCI Commands: XE, XES

CODE: O B
PARMS:
Number Definition
1 File access name
2 Number of lines to roll
3 Right margin position
4 Scaling? A value of 1 suppresses
the scale display
5 through n Tab columns

The command procedure that issues the request to initiate an edit
session is responsible for ensuring that no edit is in progress
on a file other than the one specified. Otherwise, the Text
Editor resumes the previous edit, disregarding the input file
access name in the PARMS 1list.

Initiate session (the Execute Editor (XE) or Execute Editor with
Scaling (XES) command) processing starts in the module E$EDIT.
EDTFLG is checked ¢to determine if an edit 1is currently in
progress. If so, initialization is skipped.

If an edit is not in progress, a check for batch mode is made.

The Text Editor terminates if the bidding task is in a background
job. The error is reported through S$XFER.

2270513-9701 5=25 Text Editor

SCI/Utilities Design

The module E$INIT is called to initialize variables in the
resident modules E$DDTA and E$FDTA, respectively.

E$INIT initializes the session in the edit mode, unless no input
file 1is specified (in which case, compose mode is chosen). The
session is initiated with 1line numbers displayed. If the
terminal is in the VDT state, the highest addressable line number
for +the terminal 1is determined by issuing an SVC to read the
device characteristics of the terminal. (This information is
stored 1in the variable VDTSIZ, and is referenced in other places
by the Text Editor. The initialization phase is the only time
the SVC 1is issued.) DLINES is set to the number of displayable
lines. If the state is TTY, DLINES is set to 1. If the state is
TTY and the device is a VDT, a message is displayed telling the
user to change to VDT mode, and the Text Editor terminates. This
is done because there are fundamental, unreconciled differences
between the way the 733/820 DSRs and the VDT DSRs work. If the
VDT DSRs are modified to operate in the TTY mode as the 733/820
DSRs work (currently, the VDT DSRs do not recognize TTY/VDT
states), this restriction could be removed.

The strip carriage control flag, E$STRP, is cleared. This flag
is used to limit to one the number of times an error message 1is
generated while editing a file that contains wundisplayable
characters (for example, the carriage control characters of an
ANSI print file).

The open file flags are cleared and the flag field of the input
file IRB 1is set. Internal file position indicators are
initialized.

When control is returned to E$EDIT, the routine S$PARM is called
to obtain the access name of the input file, if one is provided.
E$FLIO 1is called directly to open the input file if any and to
create and open the MOD and TEXT temporary files. A conventional
E$FLIO call is made to position each file at the beginning of the
file. The edit in progress flag, EDTFLG, is set.

Initialization for an edit session is complete. The remaining
processing of E$EDIT is executed each time it is called.

E$PRMS obtains the vertical and horizontal roll, right margin,
scaling and tab stop parameters. E$FOPN gets the exclusive edit
and length parameters. The roll and right margin values are
stored in the resident data area as integers, and a tab stop bit
map is built from the tab parameter values.

The value of the scaling parameter is checked and the following
logic is executed if scaling is requested:

Text Editor 5-26 | 2270513-9701

SCI/Utilities Design

IF VDT state
THEN
Set DLINES to VDTSIZ-1 (bottom line for scaling);
Decrement roll by one;
Set flag to reserve bottom display line for scale;
ENDIF;

Note that during any edit session, scaling can be turned on and
off as desired.

DISPAG is called to display the current page. The Text Editor is
now prepared to accept user edit function selections.

Terminate Session.

SCI Command: QE

CODE: 9
PARMS:
Number Definition
1 Abort?
2 Qutput file access name
3 Replace?
4 MOD list access name

The Quit Edit (QE) command terminates an edit session and is
processed in the module ES$QE. When the first PARM 1is NO,
creation of the MERGE file is performed in the module E$FMRG. A
rename SVC (Assign New Pathname operation of the I/O SVC) is
issued in E$QE to change the name of the MERGE file to the
specified output file name.

In the merge process, records are read from the MOD file to
determine how the MERGE file is built. Records are copied from
the input file or skipped (if deleted, changed, or inserted), and
records from the TEXT file replace input file records for changes
and insertions. If a MOD 1listing file 1is specified, the
appropriate information, including proper carriage control, is
written to it.

During terminate session processing, each of the three levels of
I/0 1is used: services are requested through the control point
E$FMNG, I/0 routines in E$FLIO are called directly, and during
the rename process, one direct I/0 SVC is issued.

Upon successfully building (and possibly renaming) the new file,

the Text Editor task is terminated by a call to E$WAIT, which
calls S$TERM.

2270513-=9701 5=27 Text Editor

SCI/Utilities Design

Recover Edit Session.

SCI Command: RE

CODE: 11
PARMS:
Number Definition
1 Abort?
2 Output file access name
3 Replace?
y MOD list access name

Processing for the Recover Edit (RE) command does what is
necessary to allow a terminate session request to. be processed.
The purpose of the command is to allow recovery of data
entered/changed during an edit session that is active when the
system crashes, or is stopped.

The work files for that edit session are opened, and the pathname
of the previously specified input file is read from the TEXT file
header record. The input file, if any is opened.

The following variables are initialized as shown. These values
are not necessarily what they are at +the ¢time the edit 1is
interrupted, but they do allow session termination processing to
complete.

®# LSTINP=Number of lines in the input file minus one.
This number is obtained when the input file
characteristics are read.

* MODEOF=LSTINP+1. This is the entry number of the MOD
file entry.

®# E$NORC=LSTINP. In normal circumstances this value is a

running count of input records processed. It is
initialized as the number of lines in the input file, if
any.

®# HIMRN=>TFFF. This variable is +the highest MOD file
entry number. It is set to an arbitrarily high number.

¥ BGNREC=-1. This is an initializing value to ensure that
all MOD entries are processed.

Following +this initialization, control is transferred to
terminate session processing in the module E$QE. The MERGE file
is created and disposed of as indicated by the elements of the
PARMS 1list.

Text Editor 5-28 2270513-9701

SCI/Utilities Design

As long as the MOD, TEXT and input files are readable, the edit
activity is recovered, with the exception of any MOD entries (and
any TEXT records that they reference) that are buffered, but not
written to the MOD file at the time the system fails.

The MOD disk file is updated when the LINTBL does not contain all
entries that are needed. The most damaging instance occurs when
a previously empty file is being built and 24 lines (25 line VDT)
have been entered when the system fails. LINTBL will, so far,
have contained MOD entries for the entire file. No MOD file
records will have been stored on disk. Recover edit, in this
case, finds an empty MOD file and reconstructs a null file.

5.8.5.2 1Independent Commands.

Modify Tabs (MT), Modify Roll (MR), Modify Horizontal Roll (MHR)
and Modify Right Margin (MRM) commands are independent commands
in the sense that there is no special processing done by the Text
Editor when these commands are entered. In the command
procedures shipped by Texas Instruments Incorporated, these
commands only bid the Text Editor when an edit session is active.
When the Text Editor is bid, a CODE value of 0 is used, so that
the commands reactivate the session. If no edit is active, the
command procedures set synonyms but do not bid the Text Editor.

5.8.5.3 Line and String Commands.

All command functions call E$EVAL to convert the line parameters
into absolute, relative, or combination absolute/relative 1line
numbers. If the absolute portion of the line number is zero, the
default value of the current cursor line is assumed. E$EVAL does
not contain the logic to process the special cases of BEGIN and
END as line numbers. Each command processor takes action on
these values before calling E$EVAL,.

A1l command processors call E$POSF to position the file, based on
the evaluation of 1line numbers. The MOD entry in LINTBL 1is
altered, and the input file and TEXT file are read, as specified
by the MOD file, to produce the text to be displayed at the
terminal.

Copy, Move, Delete Lines.

PARMS and CODE:

Copy Lines (CL) 2 Start line, end line, insert after line
Move Lines (ML) 3 Start line, end line, insert after line
Delete Lines (DL) 4 Start line, end line

2270513-9701 5-29 Text Editor

SCI/Utilities Design

These three closely related commands are processed by code in the
module E$CLML. The entry points for the Copy, Move and Delete
Lines commands are ECL, EML and E$DL, respectively. The
command flag is set to a unique value at each entry point and
control is transferred to common code at E$LCOM.

Prior to positioning the file for processing, each line parameter
is evaluated. If the parameter has an absolute component, an
attempt is made to position the file. This determines 1if the
specified line actually exists in the edited file. If one of the
three parameters references a missing 1line, processing 1is
terminated with an error message. If there 1is no absolute
component, position in the file is moved the specified number of
lines in the proper direction (or until the beginning-of-file or
end-of-file is encountered). During this validation process, the
number of records to be moved, copied, or deleted is counted.
This information is used later to calculate the amount of memory
required for a copy or move temporary buffer.

After the 1line numbers have been successfully validated and the
file positioned, the following processing is done:

Position the file to the line specified by the first parameter;
IF this is a copy or a move
THEN issue an SVC to get memory for temporary buffer space;
DO from start line to end line;
-Call E$FMNG to read the text of the line and page
forward one line; !
IF Copy or move
THEN Write the text of the line to the temporary buffer;
IF Move or delete
THEN Call E$FMNG to delete the line;
END;

IF Copy or move
THEN

Position file to the line specified by the third
parameter;
Insert temporary buffer into edit file, in reverse
order (end line to start line);
Issue an SVC to release the memory acquired for
temporary storage.

ENDIF;

Insert File.

SCI Command: IF

CODE: 8

Text Editor 5-30 2270513-9701

SCI/Utilities Design

PARMS:
Number Definition
1 File pathname
2 Insert after line

Processing for the Insert File (IF) command is in the module
E$IF. S$PARM is called to obtain the access name of the file
that is to be inserted. The file is opened by a call to E$OPEN
(the standard I/0 interface is not used because the file that is
opened and read is not the file being edited). The file being
edited is positioned by a call to E$POSF, which, in this case,
fetches parameter number two and calls E$FLIO to read the record
for that 1line. E$FMNG pages the file being edited forward one
line and inserts the record before +the current 1line. This
process is repeated until an EOF is encountered in the file being
inserted, at which time the inserted file is closed and insert
file processing ends.

Save Lines.

SCI Command: SVL

CODE: 10
PARMS:
Number Definition
1 Start line
2 End line
3 Save file pathname
4 Option(ADD,REPLACE,EXTEND)

Processing of the Save Lines (SVL) command is done in module
E$SVL. The current file position 1is saved so that it can be
restored later. The edited file is positioned at the beginning
and ending 1line numbers in order to verify those values. E$SVL
issues an assign LUNO (with autocreate) to the save file

pathname. The file is opened and, if it was not created by the

assign, the fourth parameter (option) is tested to determine what
action to take regarding replacement. The ADD option stores the
file if it does not currently exist. REPLACE saves the given
lines whether the file exists or not, and EXTEND adds the 1lines
to the end of the given file. An error condition is set and
control returns to SCI for display of the error message.

Lines are copied from the edit file to the save file wuntil the
line count 1is exhausted. (The 1line count is set during
positioning of the file at the beginning and ending 1line.) An
EOF is written to the save file, it is closed and processing of
the request ends.

2270513-9701 5-31 Text Editor

SCI/Utilities Design

Show Line.

SCI Command: SL

CODE: 1

PARMS:
Number Definition
R Line number

Processing of the Show Line (SL) command is controlled by E$SL.
After the only parameter 1is obtained, the first character is
compared with B for beginning-of-file and E for end-of-file. If
not B or E, it is assumed to be a line number. The file is
positioned using the appropriate call to E$FMNG. -DISPAG displays
the page.

Find String.

SCI Command: FS

CODE: 5
PARMS
Number Definition
1 Number of occurrences
2 Start column
3 End column
4 String

The parameters passed are stored in E$PRMB.' a parameter text
buffer. E$SPRM 1is called to obtain and validate the first four
elements of the PARMS 1list. —

The Find String (FS) command is processed in module E$FS. The
text of +the cursor line is read and E$MTCH is called to search
the line for a match to the string. If one 1is found, the
occurrence count 'is decremented. If the occurrence count is
zero, the command is terminated, 1leaving the cursor at the
beginning of the (last) 1line on which a match is found. 1If a
match is not found, or if one is found but the occurrence count
is not yet decremented to zero, E$FMNG is called to page forward '
one line and the next 1line is ©processed as described above.
Lines are read until the EOF record is encountered or the cursor
is positioned to the first character of the string found until
the occurrence count is decremented to zero.

Text Editor 5-32 2270513-9701

SCI/Utilities Design

Replace String.

SCI Command: RS

CODE: 6
PARMS:
Number Definition

1 Number of occurrences
2 Start column
3 End column
4 String
5 Replacement string

The parameters passed are stored in E$PRMB, a parameter text
buffer. E$SPRM is called to obtain and validate the first four
elements of the PARMS 1list.

Processing for the Replace String (RS) command is done in the
module E$RS.

The fifth parameter, the replacement string, 1is obtained by a
direct call to S$PARM.

In E$SREP, the text for the line denoted by the cursor is read by
E$FMNG. E$MTCH is called to search the line for an occurrence of

the specified string. If one is found, the characters to the
right are shifted appropriately to make room for the replacement
string, 1if any, which 1is 1inserted into the 1line. If the

replacement string is shorter, blanks are inserted from the right
margin to fill the line. An error is generated if the starting
column plus the replacement string length is greater than the
right margin. E$FMNG is called to write a change record for the
altered 1line, and the starting column is updated for the next
call to E$MTCH. The same line is examined for a match until no
match 1is found, at which time E$FMNG is called to page forward
one line, to make available the next line to be examined. This
operation continues until the occurrence count is zero or until
the EOF record is read. If there is no input string, all
characters between the start and end column are assumed to match,
and are replaced by the replacement string.

The number of blanks that can be appended to the right of the
line is limited to 80. Otherwise, an attempt to delete blanks
from the entire line would cause an endless loop of delete blank,
shift left and pad with a blank.

2270513-9701 5-33 Text Editor

SCI/Utilities Design

Delete String.

SCI Command: DS

CODE: 7
PARMS:
Number Definition
1 Number of occurrences
2 Start column
3 End column
4 String

The parameters passed are stored in E$PRMB, a parameter text
buffer. E$SPRM is called to obtain and validate the first four
elements of the PARMS 1list.

Processing for the Delete String (DS) command begins in the
module E$DS. The process is the same as for the Replace String
(RS) command, except that the replacement string is null, that
is, the length of the replacement string 1is zero. Control 1is
transferred to E$SREP where the search and deletion takes place.

5.9 ERROR PROCESSING

The Text Editor uses the same S$ error reporting facilities used
by SCI.

The SEC macro is used to generate code to call S$XFER. All error
conditions are set using constants of the format E$Exxx. These
constants are defined in module E$ERRORS. A cross-reference
listing for the Text Editor shows the modules in which an error
condition is set.

5.10 MODIFYING THE TEXT EDITOR

Care must be exercised when modifying the module E$QE, which
contains the code to rename the MERGE file. At any time during
this process, the edited and/or original input file must remain
recoverable in case of a system crash.

In order to allow sharing of the code by more than one terminal,

any volatile code (such as calculated branch instructions) must
be in a DSEG.

Text Editor 5-34 2270513-9701

SCI/Utilities Design

5.11 INTERNATIONALIZATION

There is no embedded text in the Text Editor code.

2270513-9701

5-35/5-36

Text Editor

SCI/Utilities Design

SECTION 6

SYSTEM CONFIGURATION UTILITY

6.1 OVERVIEW

The system configuration utility (SCU) allows a user to' modify
the 1image of a DNOS operating system as created during system

generation (sysgen), or to modify basic attributes of the
currently executing system, without having to reexecute the
System Generation utility. The <capabilities provided by SCU
include:

¥ Listing the current device configuration
¥ Modifying, adding, or deleting devices. The same
attributes of a device that can be specified during
sysgen can be modified through SCU.
¥ Showing and/or modifying the country code
¥ Modifying the sizes of various system table areas
¥ Modifying various scheduler and swapping parameters
¥ Modifying the current state of an existing device
¥ TInitializing the system log
Some of the previously listed capabilities are not available when
modifying the currently executing system (for example, when
changing, deleting, or adding devices or changing system table
area sizes).
SCU 1is written in Pascal, with ~calls to assembly language

routines located in the system root. This section describes the
logic flow and processing performed by SCU.

2270513-9701 6-1 System Configuration Utility

SCI/Utilities Design

6.2 STRUCTURE

The configuration utility is a DNOS system task with overlays.

6.2.1 Address Space.

SCU's 1logical address space is slightly different when modifying
disk images and when modifying the running system.

When modifying the running system, SCU has the system root in the
first segment, and, since SCU is a system task, the wuser's SCI
job communication area (JCA) in the second segment. The SCU task
area, including overlays, is in the third segment.

When modifying a disk image, the system root occupies SCU's first
two map segments. The DNOS system root is installed as two
separate segments on the kernel program file. (During the
initial program load (IPL) sequence, the system loader coalesces
the two root segments into one <contiguous segment, the system
root.) When SCU maps these disk image segments into memory, they
are treated by the Segment Manager as two distinet segments,
although SCU maps them such that all 1logical addresses in the
root are valid.

Figure 6-1 shows the different logical address spaces in which
SCU may operate.

6.2.2 Special Features.

SCU uses the updateable program file processing of the Segment
Manager to rewrite the disk image of an operating system.

Most changes to the devices in a system configuration are
accomplished by first deleting the old device definition and then
adding the new one. . The exception is the modification of the
state of a device. This does not require any change in system
data structure chaining, and therefore can be handled without the
delete and add operation.

When a device is deleted from the system PDT 1ist, SCU calls the
nucleus support table management routines NFGTA and NFRTA to
compress table memory.

The SCU program operates in either interactive or batch mode.
The Modify Device Configuration (MDC) command procedure structure
is not, however, executable in batch.

]
System Configuration Utility 6-2 2270513-9701

SCI/Utilities Design

>0000 e ——————— + o ————— +
i i i i
i i i ROOT '
i i i i
' ROOT H i 1 |
i | or o +
i | ! ROOT |
fmm———————— + ! 2]
| JCA ! b +
e a—-—- + .
>C000 o ———— +
H SCuU H
i TASK i
$m——m— +oool leeotmmmmmmm +
i i i Overlay | i i
| Overlay | H 1 | | Overlay |
i i tom + i i
T +...1 Overlay | H !
d 2 b e e e ——— +
e +
| Overlay |
i 3 i
e +

Figure 6-1 SCU Address Space

6.2.3 Overlays.

There are seventeen SCU overlays as shown in Table 6-1. The
program file IDs are defined in the Pascal template SCUCONS. A
maximum of three overlays can be resident in the SCU address

space., Figure 6-2 shows the calling structure for overlays.

2270513-9701 6-3 System Configuration Utility

SCI/Utilities Design

Table 6-1 SCU Overlays

Overlay
Name Function(s)
SCUINIT Initializes and terminates SCU session
! Returns Device Parameters
Processes Modify Country Code (MCC) command
SCUDATA Builds the SCU internal data base from system
tables
SCUDEV Processes a Modify Device Configuration (MDC)
command
SCULDC Processes List Device Configuration (LDC)
command
SCUADD Adds a device to the system configuration
SCUPDT Builds the appropriate system data structures
for a device being added
SCUPD 1. Fills in certain extensions to the PDT
SCUPD2 Fills in certain extensions to the PDT
SCUDSR Installs a DSR for a device being added
SCUAINT Adds Single and multiple device interrupt
’ tables
SCUAEXP Adds Expansion chassis interrupt tables
SCUAMUX Adds MUX board interrupt tables
SCUDEL Deletes a device
SCUMDS Processes Modify Device State (MDS) command
SCUMISC Processes Modify System Table Sizes (MST)
command
Processes Initialize System Log (ISL) command
SCUMSP Processes Modify Scheduler/Swap Parameters (MSP)
command :
SCUNAME Allocates names to devices

6.3 FLOW OF CONTROL

SCU is bid by SCI. It processes the request, wusing the PARMS
list passed by the command procedure, then calls R$WAIT to
suspend SCU and to reactivate SCI. When SCU 1is invoked to
process a request and no session is active (SCU maintains an
internal flag to indicate whether a session is in progress), SCU
terminates through R$TERM instead of R$WAIT. SCU also terminates
through R$TERM after processing a request to terminate the
session (QSCU command).

System Configuration Utility 6-4 2270513-9701

SCI/Utilities Design

CUMAIN

]
I

dommm———— dmmmm o Fmm—————— o —————— +

| ! ! | !

SCUINIT SCUDEV SCUADD SCUMSP SCUMISC
]]
[} !
b ———— Fm—————— Fm—————— + !
i i i | i
SCULDC SCUDATA SCUDEL SCUMDS|
1
1
- tmm—————— +

I ! [} ! [}
SCUPDT SCUPD1 SCUPD2 SCUNAME SCUDSR SCUAINT

[} I
SCUAMUX SCUAEXP

Figure 6-2 Calling Structure for SCU Overlays

6.3.1 1Invoking SCU.

SCI invokes SCU by .RBID primitive. In general, information 1is
passed from SCI to SCU by parameters on the RBID statement. The
exception is the request to modify system parameters. Parameters
are passed to SCU in synonyms for that process. Information is
always passed from SCU to SCI by synonyms.

The PARMS 1list varies,‘according to the service requested, but
the first three elements are always the same, as follows:

PARM

No. Definition
1 Pascal stack parameter
2 Pascal heap parameter
3 Opcode for request

The contents of the fourth through last elements of +the PARMS
list depend on the opcode. Variations of the PARMS 1list with
specific opcodes are discussed, with the detailed design of the
code, in the following paragraphs.

SCU does not make use of the CODE parameter on a bid statement.

2270513-9701 6-5 System Configuration Utility

SCI/Utilities Design

6.3.2 Initialization.

The initialization of SCU is done in the procedure CUINIT, which
is called in CUMAIN. This code is executed only on the initial
bid of SCU by the XSCU command, as opposed to subsequent RBIDs.
The process consists of setting up the logical address space of
the wutility for the system being modified and initializing
session and error variables used by SCU.

6.3.3 Main Progran.

The driver routine for SCU, CUMAIN, has two major phases of
execution: initializing the memory-resident data base, and
processing changes to the operating system ©being modified.
CUMAIN contains a loop that gets a new opcode to be processed,
calls the appropriate opcode processor, and calls R$WAIT to be
suspended until SCI restarts SCU with the next request.

At the beginning of the opcode processing loop, the SCU variable
REINIT is tested to determine whether the device definition data
base needs to be rebuilt. This could be necessitated by
changing, deleting, or adding a device. If it does need " to be
rebuilt, CUDATA is called.

CUDATA executes in three stages, as follows:

1. Deletes all current device definitions in the SCU
internal data structure.

2. Reads operating system tables to determine which
devices are defined, and the associated interrupt
level, expansion chassis, and expansion position for
each device. This information is stored in an SCU data
structure, the device definition list.

3. Scans the PDT 1list, adding entries to the device
definition list for devices with no interrupt.

Building the device definition 1list involves processing the
interrupt trap table located in memory 1locations >0000 +through
>003F and following the appropriate <chain of =system data
structures until the physical device table (PDT) associated with
each device is located. The data structures that make up this
chain are discussed in the subsequent paragraphs.

If more than one device is defined at a given interrupt 1level,
CUDATA processes every entry in the multiple-interrupt decoder
table, handling each device interrupt vector the same way as 1in
the single device case.

System Configuration Utility 6-6 2270513-9701

SCI/Utilities Design

If an expansion chassis is defined at an interrupt level, each
position for the chassis is processed the same way as in the
single device case.

Also, if one or more asynchronous multiplexor (MUX) boards is
defined at an interrupt level all devices on each board are
processed as in the single device case.

6.3.4 Termination.

SCU is designed to protect the integrity of the home file
operating system in the event of a system failure. That is, the
root segments are not marked modified during an active SCU
session, so that in the event of an irrecoverable error, the
Segment Manager does not destroy the originals on disk. The
Segment Manager SVC that marks the memory-resident segments
modified is issued during normal termination of an SCU session.

NOTE

This scheme only works as long as updateable
segments are swapped out (rather than
rewritten to disk) when SCU is swapped out.
Should the swapping of updateable segments by
the Segment Manager change 1in this regard,
SCU will have to be modified, perhaps
drastically.

SCU sets the $$CA (configuration utility active) synonym. During
a session, the synonym is set to either YES or NO, and at the end
of the session, the synonym is deleted. The synonym is set to
YES before R$WAIT is called to return control to SCI. However,
the synonym is set to NO during actual execution of SCU, so that,
in case of an abnormal termination, the synonym's meaning remains
correct.

6.3.5 Error Processing.

Errors detected in SCU code are of two types: errors that cause
abnormal termination of SCU, and warnings. Errors that cause
termination are generated only by S$ routines, and are handled by
the common utility routine, UTCHEK. Warnings are caused by
errors detected by SCU code (such as NO SUCH DEVICE), and cause
SCU to abort the request being processed and return an error to
the wuser through R$WAIT. SCU remains active, and any session in
progress remains in progress, although the warning message may
advise the user to abort the session.

2270513-9701 6-7 System Configuration Utility

SCI/Utilities Design

Irrecoverable errors are not reported up the calling chain to the
SCU main driver; they cause immediate task termination. Other
errors are reported to the main driver eventually by setting four
Pascal common error variables, $$CC, $$VT, $$MN, and $$ES. The
values of these four variables are passed as the parameters to
R$WAIT at the end of the major 1loop in the SCU main driver,
CUMAIN. R$WAIT transfers the value of each variable to a synonym
with the same name, and suspends SCU.

6.4 DATA STRUCTURES

SCU accesses several operating system data structures. The only
data structures maintained by the program for its exclusive use
other than data structures used by the Pascal run time, are the
device definitions list, the device map file array (DEVMAP),
error variables, and some global flags.

System data structures as well as SCU internal data structures
and variables are discussed in the subsequent paragraphs.

6.4.1 Interrupt Trap Table and Supporting Structures.

In order to access information about devices currently defined on
the system being modified, SCU must read the PDT <(and any
associated extension data structures) associated with each
device. Even though the PDT associated with each device may have
an extension, in the remainder of this section, the set of one or
more structures is called the PDT. Any reference to a PDT
includes a reference to the appropriate set of data structures,
depending on the device.

For each device that is capable of generating an interrupt, there
exists, in operating system tables, a device interrupt wvector
data structure. A device interrupt vector is a six-byte data
structure that contains:

¥ WP. A pointer to the interrupt workspace (either a PDT,
a keyboard status block (KSB), or a multi-unit workspace
(MUW)) for the device. The format of this data
structure, as well as all extension data structures
except the MUW, is shown in the Data Structure Pictures
section of DNOS System Design Document. The structure
of the MUW is shown in Figure 6-3. The PDT may also
have extension data structures of the following types:

- Keyboard status block (KSB)
- Disk PDT extension (DPD)

- Line printer PDT extension (LPD)

System Configuration Utility 6-8 ' 2270513-9701

SCI/Utilities Design

- Extension for a Terminal with a Keyboard (XTK)
- Device Information Block for TPD DSR (DSTDIB)
- Local ASYNCH Extension to the PDT (DSALLLEX)

- Multi-unit workspace (MUW). This structure is a
16-register workspace, and is associated with a
controller that interfaces with as many as four
devices. Each device associated with the
controller has a PDT, but it is the controller
that generates an interrupt to +the operating
system. Figure 6-3 shows the register assignments
in the MUW.

¥ PC. Address of the DSR for the device. Because of the
manner in which DSRs are installed in DNOS, this address
is always >C000. This fact is not, however, exploited
in SCU code.

¥ MAP. Address of the map file for the device

e e e e e o +
RO \ PDTO - Pointer to PDT workspace for first H
| device associated with controller H
o e e e e e e e e e e e e e e +
R1 | PDT1# !
o e e e e e e e e e e e e e e e e +
R2 { PDT2#% i
e e e ——— e ———————————— — +
R3 | PDT3#% i
o e e e e e e e e o +
RY i\ Flags !
o e e e e e e e e +
\ /
/ \
o e e e e e e e e e e +
R12 ! TILINE address of the controller : i
o e e e e e 2 o e +
R13 ! Return context: Workspace pointer i
e, ————————— +
R14 ' ' Program counter |
o e e e e e e e e +
R15 ! Status register 1
tmm e e, ————————————— +
* Reserved for pointers to PDT workspaces for a maximum

of four devices.

Figure 6-3 Multi-Unit Workspace Structure

2270513=9701 6-9 System Configuration Utility

SCI/Utilities Design

A unique device interrupt vector for each device is defined to
the operating system. The following paragraphs describe the
system data structures through which the vectors are located.

The operating system interrupt trap table contains the initial
pointers for all devices. This structure 1is stored in >0000
through >003F of SCU's logical address space. For each of the 16
interrupt 1levels (0 through 15), the interrupt trap table
contains a workspace pointer and a program counter.

The program counter for each device interrupt 1level 1is one of
four entry points into the interrupt processor. The following
addresses are defined in the system data structure NFPTR:

¥ PCSPTR - Entry point for processing if a single device
is defined at this interrupt level

¥ PCMPTR - Entry point for processing if multiple devices
are defined at this interrupt level

¥ PCEPTR - Entry point for processing 1if an expansion
chassis is defined at this interrupt level

¥ PCAPTR - Entry point for processing if a MUX board is
defined at this interrupt level. .

¥ TILLPC - Entry point for processing if no device 1is
defined at this interrupt level

The program counter in the interrupt trap table is compared with
those global constants to determine what kind of structures if
any must be examined in order to find the associated device
interrupt vector(s).

If the program counter address indicates a single device, the WP
value 1is the address of a workspace in which registers eight,
nine and ten form a device interrupt vector, as shown in Figure
6-4,

System Configuration Utility 6-10 22T70513-9701

SCI/Utilities Design

Trap
Table
0 4= + Device
! . ! tmmm— e > PDT
i i i
1 . H Workspace !
fom——————— + i + H
g | S S —— >/ / d
tm———————— + S + !
{ PCSPTR | R8 |Device WP |—=-+ ==+ Device
tmmm—————— + e ————— + !
| . 1 R9 |Device PC | ! Interrupt
! . ' e + H
i .] R10 |Device MAP | {-=+ Vector
i . i tommm e +
] . R / /
i . i tommmm e +
DR X o B +

Figure 6-4 Single-Interrupt Decoder Data Structures

If the interrupt trap table program counter is PCMPTR, multiple
devices are defined at the interrupt level. The WP value points
to a workspace where register nine points to a multiple-interrupt
decoder table. A multiple-interrupt decoder table is an array of
four-byte entries. The first two bytes are a communications
register unit (CRU) bit address. The third and fourth bytes are
a pointer to a device interrupt vector as shown in Figure 6-5.
Each device defined at that interrupt level has one entry in the
table. A CRU bit address of zero denotes the end of the table.

2270513=9701 6-11 System Configuration Utility

SCI/Utilities Design

Trap
Table Multiple-interrupt Decoder Table
0 4 + o ———————————————— +
i . i Fi— CRU ! vector i
H . ' H P - U +
i . ! Workspace | ! CRU | vector ———4--4
o ——————— + fm—————— + | b ———— fm—————————— + |
! WP ——t=—mm>/ / ! / / /i
tmmm + tm—————— + | o ——— S + |
i PCMPTR i ' RO =4-4+ H 0 ! 0 ! '
tm———————— + R — + trm—m e ——— S + |
i . i i i |
1 . H / / e c e c e ar——c———— +
i . | O —— + i Device Interrupt Vector
i . H ' tommm +
i ! fm—————— >iDevice WP |
H . ! S +
YO tmmmm e e + iDevice PC |
o —————— +
iDevice MAP|
e +

Figure 6-5 Multiple-Interrupt Decoder Data Structures

If the program counter in the interrupt trap table is PCEPTR, an
expansion chassis is defined at the interrupt level. The chain
of data structures for an expansion chassis definition is shown
in Figure 6-6. WP points to a workspace where the value in
register twelve indicates which expansion card is defined at that
level. A value of >1F00 indicates card one (chassis 1 through 4)
while >1F20 1indicates card two (chassis 5 through 7). Up to
seven expansion chassis may be defined in a DNOS system. ETAB is
an operating system table with seven entries, two bytes for each
possible expansion chassis. Each entry contains either a pointer
to a <chassis position table or zero (chassis undefined). The
address of ETAB is in the ETBPTR field of NFPTR.

A chassis position table contains 24 entries, four bytes for each
possible position (0 - 23) on an expansion chassis. Two bytes
are a flag that indicates single or multiple devices at the
position. The remaining bytes point either to a multiple-
interrupt decoder table as shown in Figure 6-5 or to a device
interrupt vector for a single device as shown in Figure 6-6), or
are zero (position wundefined). Figure 6-6 shows the path from
the interrupt trap table to each of the devices associated with
an expansion chassis definition.

System Configuration Utility 6-12 2270513-9701

SCI/Utilities Design

ETAB Chassis
tm————— + Position Table
->!1Chas 1T+===+ 4=—e=-= fm———— +
Trap . Fmm———— + +->|Pos O|Flag¥|
Table ./ / tm———— fm———— +
0 +===mmm-- + . tmm——— + iPos 1{Flag¥]
i . | . Chas 4/ tm———— bm———— +
i i . Fmm——— + IPos 2}Flag¥*|
i . | Workspace . / / P tm———— +
e ———— + tm—————— + . temm———— + / / /
! WP emdmm==d>/ / . iChas T]| T —— m————— +
tmmm + b ———— + . Fm————— + {Pos23|Flag¥*|--+
! PCE | R12} >1F00 !.. b b +
o ——— + tmm—————— + H
i . | i i i
i ' / / fmmmm e —c————————————————— +
i | tm—————— + H Device Interrupt Vector
i . |] IR +
] . | - >! Device WP |
H . | b +
DUt e e + \ Device PC |
e ——— +
i Device MAP|
R - +

* Flag indicates single/multiple device(s) associated
with chassis position. In this example, a single-
device definition is shown.

Figure 6-6 Expansion Chassis Decoder Data Structures

If the program counter in the interrupt trap table is PCAPTR, a
MUX card is defined at the interrupt level. The chain of data
structures for a MUX card definition is shown in Figure 6-7. WP
points to a workspace where the value in register ten points four
bytes proceeding a MUX board table. A MUX board table contains a
three word entry for each MUX card defined at this interrupt.
The first word of an entry contains the TILINE address of the
card. The second word contains a pointer to the channel table
associated with the board, and the third word is unused in DNOS.
The table is terminated by a word of binary =zeros. Each MUX
board must have one, and only one, four-entry channel table, the
entries corresponding to channels zero through three,
respectively, on the board. Each entry contains a standard DSR
entry vector plus an unused word.

2270513-9701 6-13 System Configuration Utility

SCI/Utilities Design

MUX Board Table

Trap B L LT T S
Table H : :
0 +=-ceeee + ! TSR
i | H
i : | Workspace ! ot
Fmmm————— + o ——— + ! ! TILINE |
| WP —=}==> 7/ / 1 tAddress 1}
tmem———— + Fmmmmae + H S A ——— Board 1
! PCA | R10} |=——— { Channel |
fmm————— + m—————— + +--1{Table PTR|
i : i i i I et T
] :] / / P >18 i
] O FF S —— + m—————— + | et
P : 1
i] : i
Channel Table 1 R SRS +
fmmmm e + ! | TILINE |
iDevice WP | {-=--+ |Address N}
Channel tmm———————— + tm———————— + Board N
0 iDevice PC | ! Channel |
tmm———————— + iTable PTR|===+
iDevice MAP| fmm——————— + !
fmm———————— + ! >18 ! ! Channel Table
i 0 i b ———— + i ettt +
tmm———————— + | 0 | =D i
i : H dommm—————— + i i
e + i i
iDevice WP | ' H
Channel b ———— +] i
3 iDevice PC | tmm——————— +
e +
iDevice MAP|
tmm———————— +
i 0 i
- +

Figure 6-7 MUX Interrupt Decoder Data Structures

6.4.2 System Common Area.

System common areas defined in NFDATA, NFPTR, NFJOBC and NFCLKD
are accessed and modified by SCU. The Data Structure Pictures
section of the DNOS System Design Document contains the detailed
formats of system common areas.

System Configuration Utility 6-14 2270513-9701

SCI/Utilities Design

6.4.3 SCU Internal Data Structures and Variables.

SCU maintains a linked 1list of Pascal records that contain device

definitions. ‘Each device definition <contains information
condensed from the <chain of structures associated with the
device, and from the PDT for that device. The following

information is kept in each record of the list:
* CRU or TILINE address

¥ Device PDT address. If the device is a controller, as
many as four device PDT addresses are saved.

¥ TInterrupt level, chassis number, and chassis position

¥ Number of units

¥ 1Interrupt workspace address
The internal 1list is rebuilt at the beginning of the major loop
in CUMAIN if the device configuration was changed by the 1last
command. The need to rebuild the list is indicated by a global
flag, REINIT.
The global flags, SESSION and RUNNING_SYSTEM, indicate the
current SCU environment (that is, whether or not a session is in
progress, and whether or not the running system or a disk image
is being modified).
6.4.4 Synonyms.
Seventeen Synonyms are used by SCU. The names are as follows:

$cu1, $cu2, $Ccu3, $Cuu, $cus, $CcU6, $CUT, . . .$CU1T

This set of synonyms is used to pass information between SCU and

SCI. The data contained in each synonym is dynamic, depending on -

which request is being processed by SCU. A mapping scheme that
localizes assignment of synonyms for data transfer is used in
most of SCU (synonym names are hard coded in the procedures
CURISL and CUISL).

Mapping variables are defined in SCUCONS (in the TEMPLATE.PTABLE
directory) These variables are of the following format:

$$name
where:

name is a meaningful character string -- it is either
descriptive of the information to be mapped with

2270513-9701 6-15 System Configuration Utility

Pt

SCI/Utilities Design

the variable (CHAS for chassis, POS for position),
or it is the exact name of a system variable from
NFDATA or NFCLD.

Each mapping variable is given an integer value between one and
seventeen. The mapping is effected 1in SCU code by assigning
values to synonyms whose names are constructed as follows:

$CU@$$name.

As an example, suppose the synonym mapping variable $$MEMTIC has
a value of five. 1In SCU code, the value of the NFDATA variable
MEMTIC is passed back to SCI as the value of the synonym $CUS5.

This synonym mapping scheme centralizes assignment of synonyms
for data transfer between SCI and SCU. Only the $$name
definitions in SCUCONS need be changed to alter the mapping.

The following synonyms are set by SCU code. Their names are hard
coded.

¥ $$CA - Indicates whether an SCU session 1is currently
active.

3$CUSRS - Indicates whether the running system or a disk
image is being modified

®# $TYP - Indicates device type. When SCU processes a
request to return the characteristics of a device with a
particular name, $TYP is set to a value that indicates
the type device associated with that name. (See Table
6-3 for the values $TYP is assigned.)

6.5 DETAILED DESIGN

Each of the requests recognized by SCU is discussed in the
following paragraphs. The opcode, overlay(s) and PARMS list are
defined. Processing is discussed in general terms.

When SCU is invoked, the first three elements of the PARMS 1list
are always the same -- stack, heap and opcode. Values of 500 for
stack and 800 for heap are sufficient for the configuration
utility. Table 6-2 summarizes the opcode values used by SCU.
Only the fourth and subsequent elements of the PARMS 1list are
discussed with each specific request.

System Configuration Utility 6-16 2270513-9701

SCI/Utilities Design

Table 6-2 SCU Opcodes

Opcode Function

0 Initiates an SCU session

1 Lists current device configuration

2 Requests device parameters

3 Modifies an existing device

y Adds a device

5 Deletes a device

6 Shows country code

7 Modifies country code

8 Requests =system table area sizes

9 Modifies system table area sizes

10 Requests system log parameters

1M Modifies system log parameters

12 Terminates SCU session

13 Requests system parameters - screen 1
14 Requests system parameters - screen 2
15 Requests system parameters - screen 3
16 Modifies system parameters - screen 1
17 Modifies system parameters - screen 2
18 Modifies system parameters - screen 3
19 Modifies device state
20 Requests system parameters - screen 4
21 Modifies system parameters - screen Ui

In the following discussion, elements passed on the PARMS list
and in SCU synonyms are defined as they appear in the DNOS
System Command Interpreter (SCI) Reference Manual. Refer to the
discussion of the referenced SCI command for additional
information about the parameters.

6.5.1 Initiate SCU Session.
SCI Command: XSCU

Opcode: 0

Overlay: SCUINIT

PARMS:

One additional PARM must be passed. It is the name of the system
to be configured.

Initialization of an SCU session is done in the procedure CUINIT
which is called by CUMAIN. After initializing SCU variables,
CUINIT 1is called to map into memory the two system root segments
for the system being modified. This is done by assigning a LUNO

2270513-9701 6-17 System Configuration Utility

SCI/Utilities Design

to +the program file containing the system to be modified, then
issuing two change segment SVCs and a rebias segment SVC to map
the root.

Following this initialization, control drops into the major loop,
where the internal device definition list is built, and R$WAIT is
called to suspend SCU wuntil the next request is ready to be
processed.

6.5.2 List Device Configuration.

SCI Command: LDC

Opcode: 1

Overlay: SCULDC, SCUDEV

PARMS:

The fourth element on the PARMS list must be the name of the
output listing file.

CULDC is called to format a report from the SCU internal device
definition data base. The report is written to the specified
output destination by calls to R$WRIT, the Pascal interface
routine to S$WRIT.

6.5.3 Device Characteristics.

Four requests are concerned with devices -- return device
parameters, change device parameters, add device and delete
device.

6.5.3.1 Return Device Parameters.

SCI Command: MDC

Opcode: 2

Overlay: SCUMDC

PARMS:

The fourth element of the PARMS 1list is the name of the device.
SCU returns the current values for device characteristics.
Routine CURDP searches the device definition data base for a
device with the specified name, and sets, according to the device

type, a subset of the following synonyms:

- ¥ CUSSDEVNAME - Name of the device

System Configuration Utility 6-18 2270513-9701

SCI/Utilities Design

¥ $CU$$CRU - CRU or TILINE address of the device

¥ CUSEXTENDED - YES/NO 1line printer has extended
character set

¥ CUSSINT - Interrupt level

¥ $CU$$CHAS - Chassis number

¥ $CU$$POS - Expansion chassis position

¥ $CU$$QUEUE - Length of the character queue of a terminal

¥ $CU$$MODE - Print mode for line printer (S for serial, P
for parallel)

¥ $CU$$DRIVES - Number of devices on a controller

* CUSS$DEFAULT - Default physical record size for disk
¥ CUSINTERFACE - Interface type

¥ $CU$$SWITCHED - Phone line switched YES/NO

¥ $CU$$BAUD - Baud rate of the station

¥ $CU$$ACU - Automatic call unit YES/NO

¥ $CU$$ACRU -’Address of the automatic call unit

¥ CUSPRINTER - Associated 1line printer for the 940
YES/NO

¥ $CU$$SMODEM - Full duplex modem YES/NO
¥ $CU$$ECHO - Echo keystrokes YES/NO
¥ CUS$TYPE - KSR terminal type
¥ $CU$$CDT - CDT number
¥ $CU$$CDE - CDE mask
The synonym $TYP is set. The values assigned this synonym are

determined by the operating system LDT template, as shown in
Table 6-3. All values are given in hexadecimal.

2270513-9701 6-19 System Configuration Utility

SCI/Utilities Design

Table 6-3 $TYP Values

$TYP
Value Device type
2 KSR
3 ASR
7 Disk drive
8 Magnetic tape drive
9 TPD device
A 911 VDT
B Serial line printer
C Parallel line printer
10 Card reader
11 940 VDT
12 931 VDT

6.5.3.2 Change Device.
SCI Command: MDC
Opcode: 3

Overlays: SCUDEV, SCUADD, SCUDEL, SCUPDT, SCUDSR, SCUPD1,
SCupPD2, SCUAINT, SCUAEXP, SCUAMUX

PARMS:

Depending on device type, values must be supplied for a subset of
the following PARMS 1list. A device 1is changed via three
operations. The parameters associated with the o0ld device are
first retrieved. The device is then deleted. Finally, the old
parameters together with any modifications to those parameters
are used to add a new device.)

REINIT is set to cause the device definition list to be rebuilt
by CUDATA the next time through the major loop of CUMAIN.

System Configuration Utility 6-20 2270513-9701

SCI/Utilities Design

PARM _

No. Definition

y Device name

5 CRU or TILINE address

6 Interrupt level '
7 Expansion chassis

8 Expansion position

9 Device type

10 Drives

11 Print mode (serial or parallel)
12 Print width

13 Extended character set?

14 Time-out

15 Opens validated?

16 Character queue

17 Cassette time-out

18 Cassette opens validated?

19 Default record size
20 KSR type

21 Interface

22 Switched

23 Baud

24 ACU

25 ACU CRU

26 Echo

27 Full duplex

28 Associated printer
30 CDT number

31 CDE mask

32 Channel number

6.5.3.3 Add Device.

SCI Command: MDC

Opcode: 4

Overlays: SCUADD, SCUPDT, SCUDSR, SCUPD1, SCUPD2,
SCUAINT, SCUAEXP, SCUAMUX

PARMS:

Same as change device.

CUAD is called to build the device record.

CUADD is called to allocate operating system table area for a new
PDT. CUDSR is <called to install the DSR, if necessary, and to

link the PDT into the operating system PDT 1list. CUAINT is
called to add the device at the specified interrupt level.

2270513-9701 6-21 System Configuration Utility

SCI/Utilities Design

This process 1is more complex when the kind of data structure is
changed (for example, the addition of the second device at an
interrupt level changes +the chain from the single-device
structure to a set of multiple-device structures).

REINIT is set to cause the device definition list to be rebuilt
by CUDATA the next time through the major loop of CUMAIN.

6.5.3.4 Delete Device.

SCI Command: MDC

Opcode:5

Overlays: SCUDEV, SCUDEL

PARMS:

The fourth element of the PARMS list is the name of the device.
CUMAIN calls CUDD to scan the device definition data base for a
device that has the specified name. If one is found, IN_USE is
called to determine whether the device may be deleted. It may be
deleted if no LUNOs are assigned, and it is not an installed
disk. If the device cannot be deleted, processing of the.request
is aborted. If it is acceptable to delete the device, CUDD calls
CUDINT to delete that device from the interrupt trap table, then

unchains the PDT for that device from the system PDT 1list and
releases that memory to the system table area.

6.5.4 Show Country Code.

SCI Command: SCC

Opcode: 6

Overlay: SCUINIT

PARMS:

No additional input is required.

The current value of the country code, from the system table
NFDATA, 1is returned . to SCI by the routine CUSCC in the module
cucc.

The value returned in the synonym $CU$$COUNTRY is an integer.

All mapping of the country code to country name is done in the
command procedure.

System Configuration Utility 6-22 2270513-9701

SCI/Utilities Design

6.5.5 Modify Country Code.

SCI Command: MCC

Opcode: 7

Overlay: SCUINIT

- PARMS:

The fourth PARM is the new country code.

When the country code is changed, CUMCC, in the module CUCC, 1is

called to replace the old value in NFDATA with the new one.

6.5.6 Show System Table Sizes.

SCI Command: MST

Opcode: 8

Overlay: SCUMISC

PARMS:

No additional input is required.

CURSTS processes this request and sets the following synonyms:

*# $CU$$STA - Size of the system table area (STA). This is
calculated from values in the STA overhead data
structure, STAEND-STARES, which is the ending address
minus the beginning address.
* $CU$$SMT - Size of the Segment Manager table area

¥ CUSFMT - Size of the File Manager table area

¥ $CU$$BTA - Size of the buffer table area (BTA), BTALEN
in the data structure NFDATA

¥ $CU$$BTAMAX - Maximum size of BTA, BTAMAX in NFDATA

¥ $CU$$STAMAX - Maximum size of STA. This value is
calculated wusing MAXSIZE (an SCU constant for maximum
JCA/special table area size) and SYSTAB (from NFPTR, the
address of the beginning of the system table area). The
calculated value is calculated as follows:

2270513-9701 6-23 System Configuration Utility

SCI/Utilities Design

¥ $CU$$SYS_JCA - System JCA size
STAMAX = >C000 - MAXSIZE - SYSTAB.

Calculating the Segment Manager and File Manager table areas
involves reading segment status blocks (SSBs) in the STA. Refer
to the DNOS System Design Document for details of SSBs. The
lengths of segments belonging to each manager are summed to
produce the total size of the tables allocated to the Segment
Manager and to the File Manager. Pointers in NFPTR are used to
access the appropriate SSB(s).

6.5.7 Modify System Table Area Sizes.
SCI Command: MST
Opcode: 9

Overlays: SCUMISC

PARMS:
PARM
No. Definition
y Maximum job communication area (JCA)
5 New size for system table area
6 New size for segment manager tables
T New size for file manager tables
8 New size for buffer tables ‘ ;
9 New size for system job communication area (JCA)

CUMAIN calls CUMSTS to process the values passed in the PARMS
list. A new value for RELOCA, the relocation value used by the
loader, is calculated and stored in NFDATA. The new value is the
difference between the user-specified table area size and the
current value of JCASTR (beginning address of the JCA), rounded
to a beet boundary. The BTA size is changed by putting the new
value in BTALEN in NFDATA.

Altering the =size of the Segment Manager and the File Manager
table areas may involve making changes in the STA and in NFPTR.
The SSBs associated with the segments are in the STA. The
maximum length of a segment represented by one SSB is >3000. If
the total size of an area decreases, one or more SSBs may have to
be deleted. If the area increases in size, new SSBs may need to
be built. The building and destroying of special table area SSBs
and updating the appropriate pointers in NFPTR are handled by the
routine MOD_SSBS.

System Configuration Utility 6-24 2270513-9701

SCI/Utilities Design

6.5.8 Show System Log.
SCI Command: ISL
Opcode: 10
Overlay: SCUMISC
PARMS:
No additional input is required.
This request is processed by the procedure CURISL, which returns
current values from the system 1log for those items a user is
allowed to change.
The folléwing information is returned through SCU synonyms:
¥ $CU1 - Attention device name
¥ $CU2 - Log device name
¥ $CU3 - Task ID of system log processor
¥ $CUY4 -~ Task ID of user log processor

¥ $CU5 - Number of records in each log file

The synonym assignments are hard coded in CURISL.

6.5.9 Initialize System Log.
SCI Command: ISL
Opcode: 11

Overlay: SCUMISC

PARMS:

PARM

No. Definition

L Logging device

5 Attention device

6 System log processor task ID
7 User log processor task ID

8 Recreate file?

9 Allocation

2270513-9701 6-25 System Configuration Utility

SCI/Utilities Design

Procedure CUISL is called to process most of the values by
setting flags or changing values in the log processor common
area, LGLCOM. 1If the user has specified that the log files are
to be recreated, CUISL bids the log file recreate task, LGRCRT,
in the system job. When LGRCRT terminates, CUISL checks LGLCOM
for error codes. If an error was reported by LGRCRT, it is
reported to the user through the Pascal interface routines.

NOTE
If a disk image of a system is being
modified, the log files are never recreated,

regardless of the value passed in the PARMS
list.

6.5.10 Terminate SCU Session.
SCI Command: QSCU

Opcode: 12

Overlay: SCUINIT

PARMS:

The fourth element on the PARMS 1list is an abort indicator
(YES/NO).

Normal termination of an SCU session is handled by the procedure
CUQUIT. This procedure checks the abort parameter. If a value
equal to NO is specified, CUQUIT issues Segment Manager SVCs to
force write the root segments.

Although the request is meaningless, no error is generated when
termination processing is requested with a value of YES passed as
the abort parameter, and the running system is being modified.
6.5.11 Modify System Parameters.

SCI Command: MSP

This function of SCU is done in four stages. This design was
chosen for the following reasons:

¥ Some terminals have as few as 12 display lines. This

hardware limits the number of field prompts, so that all
information cannot be displayed on one screen.

System Configuration Utility 6-26 2270513-9701

SCI/Utilities Design

¥ Fewer synonyms are required for passing information
between SCI and SCU than if all parameters are handled
at once.

¥ The parameters that may be modified fit rather naturally
into three categories.

The PARMS 1list wused in bidding SCU for modifying system
parameters consists of only the first four parameters.

Each stage 1is performed by a pair of Pascal procedures: CURSP1
and CUMSP1, CURSP2 and CUMSP2, CURSP3 and CUMSP3, and CUMSP4 and

CURSP4, Procedures with an R in the name set synonyms to the
current values in the system tables. Procedures with an M in the
name store synonym values in the system tables. A1l procedures

are in the module CUMSP.

Each of the CUMSP procedures depends heavily on two subroutines,
RETRIEVE and RETURN. These two subroutines are wused to map
synonym values to binary values and map binary values to synonym
values, respectively. Since values are of various types (for
example, character, integer, or list), RETRIEVE and RETURN are
called with a parameter to indicate the kind of value being
passed or requested. These calls are made with a knowledge of
system table formats. Should those formats change, changes to
code that calls RETRIEVE or RETURN will be required.

6.5.11.1 Stage One.

In the first stage, values of miscellaneous system variables are
returned (opcode 13), and modified (opcode 16).

Overlay: SCUMSP

2270513-9701 6-27 System Configuration Utility

Synonyms:

Synonym Contents

$CU$$DSPFG1 Statistic to display
on left side of front
panel

$CU$$DSPFG2 Statistic to display
on right side of
front panel

CUSSUNTSLC Number of clock ticks
in a time slice

CUSENDLMT Number of STUs a
task is allowed for
end-action

CUSMEMTIC Number of ticks
between parity checks

$CU$$JICA Number of bytes in a
medium JCA

6.5.11.2 Stage Two.

In stage two,
14) and modified (opcode 17).

Overlay: SCUMSP
Synonyms:
Synonym Contents

CUSSINTPRI Initial run time
priorities

$CU$$JPRMOD Weighting factors for
job priority on run
time priority

$CU$$DYNMOD How much to vary run-
time priority for I/0
bound tasks

CUSAGEIND Whether to age run-
time priorities

CUSIOINDX Average time a task

suspends

System Configuration Utility 6-28

parameters used in scheduling are returned

SCI/Utilities Design

Field Prompt Name

FRONT PANEL DISPLAY-LEFT

FRONT PANEL DISPLAY-RIGHT

CLOCK TICKS/SLICE

END ACTION LIMIT(STU'S)

MEMORY ERROR SAMPLE RATE

MEDIUM JCA SIZE

(opcode

Field Prompt Name

INITIAL PRIORITY VALUES

WEIGHT OF JOB PRIORITY
DYNAMIC PRIORITY RANGE

AGING ON PRIORITY

TICS BETWEEN SUSPENDS

2270513-9701 |

SCI/Utilities Design

6.5.11.3 Stage Three.

In stage three, swapping parameters are returned (opcode 15) and
modified (opcode 18).

Overlay:

Synonyms:

$CU$$CLMXBF
$CU$$CLMXPS
$CU$$STLSPND
CUS$STLEXEC

$CU$$TOLS24
CUSLDRTDY

$CU$$JCARES

SCUMSP

Contents

Field Prompt Name

Maximum number of CACHABLE BUFFERS
buffers or segments
to be cached
Maximum number of
program segments
cached

Minimum number of STUs MINIMUM SUSPENSION TIME
in suspension until

task is swapped

Minimum number of STUs MINIMUM EXECUTION TIME
execution until task
is swapped

Whether to swap
queue servers

Number of STUs to
delay task loader
Minimum JCA free space JCA EXPANSION BOUNDARY
prior to expansion

CACHABLE PROGRAM SEGMENTS

STATE >24 IMMEDIATE ROLL?

LOADER TIME DELAY(STU'S)

6.5.11.4 Stage Four (more miscellaneous values).

Overlay:

Synonyms:

$CU$$JOBLMT
$CU$$JOBBLM
$CU$$MEMSIZ

CUSSITENM

2270513-9701

SCUMSP

Contents Field Prompt Name

Maximum number of FOREGROUND JOB LIMIT
active foreground jobs
Maximum number of
active background jobs
Size (in beets) of
physical memory

Site name (e.g. AUSTIN)SITE NAME

BATCH JOB LIMIT

PHYSICAL MEMORY SIZE

6-29 System Configuration Utility

SCI/Utilities Design

6.5.12 Modify Device State.
SCI Command: MDS
Opcode: 19

Overlay: SCUDEL

PARMS:
PARM
No. " Definition
y Device name
5 New device state
6 Does device accept eight-bit characters?
T Read after write error check?
8 Bit map read after write error check?

The modify device state request is processed in procedure CUMDS.
It applies the specified <changes directly to the PDT of the
device being modified. ’

The read after write error check can only be applied to the
running system. This rule is enforced in the code. The feature
is not allowed on DS31 drives, because the DS31 controller does
not comprehend the transfer inhibit bit. SCU issues a store
registers SVC to the device to determine whether it is a DS31.
Because this test 1is always done, the read after write error
check cannot be activated for a drive that is off-line.

6.6 MODIFYING SCU

In general, the use of Pascal to implement SCU facilitates
sustaining or even adding capabilities. SCU does not use the '
Pascal I/0O package. The only I/O that SCU explicitly performs is
through synonyms and SCI prompts or through calling S$ routines
to write lists to the output file. The fact that the main driver
is for all practical purposes a single CASE statement based on
the opcode makes adding new capabilities to SCU straightforward;
simply add a new case and define a new procedure to process it.

Note that SCU does some implicit I/O by using updatable program
file segments. During processing of the request to terminate an
SCU session, the root segments are force written to their home
file unless the session is aborted by the user. '

System Configuration Utility 6-30 2270513-9701

SCI/Utilities Design

6.6.1 Coding Conventions.

The SCU code uses copy files for constants and types that may
need to change. Constants are used extensively, in an effort to
localize potential SCU modifications due to data structure or
command procedure changes. Constants are defined for the
following:

¥ Error message codes (message numbers)
¥ Overlay IDs
¥ SCI PARMS 1list positions

¥ Synonym name mapping values (except for procedures
CURISL and CUISL)

¥ SCU opcodes

The SCU code follows the DNOS naming conventions as described in
the DNOS System Design Document, with regard to module names and
source file names. The exception is that subroutines
(procedures) defined and used 1locally in -a single major
subroutine are given names that have meaning. For example, the
data base initialization routine, CUDATA, contains subroutines
ADD_SINGLE, ADD_MULTIPLE, and so onj; CUMDS, which modifies device
state, contains a function IN_USE.

The SCI command procedures that invoke SCU are two-phased; that
is, they return defaults and then apply user-specified changes.
Most command processors consist of two procedures. The procedure
that applies the command is named CUxxx, where xxx is, in
general, the command procedure name. The Pascal procedure that
returns defaults is named CURxxx, with the R indicating return.

6.7 INTERNATIONALIZATION

The output produced by SCU consists of numbers, device names, and
report text (for example, LDC headings, device attributes). The
report text is all contained in the only SCU assembly 1language
modules. The text 1is in the form of Pascal strings, with each
string in a separate CSEG. In addition ¢to report text, CUCOM
contains the text for several necessary constants, such as YES,
NO, TRUE, FALSE, and the device states (online, offline,
diagnostic, spooler). Whenever code within SCU must determine
whether the answer to a prompt is YES/NO, TRUE/FALSE, etec., it
compares the prompt answer to an appropriate string in CUCOM;
thus, there is no imbedded text in any SCU module except CUCOM.

2270513-9701 6-31 System Configuration Utility

SCI/Utilities Design

The country code is handled as an integer by the program. All
mapping of integer to country name is done within the command
procedure.

6.8 COMPANION COMMAND PROCEDURES
The user interface to SCU is SCI.

Table 6-4 summarizes SCU functions, grouped by command procedures
as shipped by Texas Instruments Incorporated. The commands that
are available outside an initiated session are noted. System
modifications made outside an initiated session cannot be " made
permanent in the same way as modifications made during an SCU
session. Modifications are made permanent by updating the home
program file. Updating is done as part of session termination.
Some SCU commands make changes to system data structures that
become effective only after an IPL (for example, adding a new
type of device, which requires a new DSR for that device;
changing system table sizes).

System modifications made outside an active session are applied
to the running system.

Table 6-4 SCU Commands

XSCU - Execute SCU

LDC - List Device Configuration (Note 1)

MDC - Modify Device Configuration

SCC - Show Country Code (Note 1)

MCC - Modify Country Code

MST - Modify System Table size (Note 2)

ISL - Initialize System Log (Note 1)

MDS - Modify Device State (Note 1)

MSP - Modify Scheduler/Swap Parameters (Note 1)

QSCU - Terminate an SCU Session
Note 1 - Command is available during uninitiated sessions.
Note 2 - Command is available in 1limited form during

uninitiated sessions.

System Configuration Utility 6-32 2270513-9701

SCI/Utilities Design

6.8.1 Command Procedure Design.

A1l command procedures to modify the system are written to flow
as follows:

¥ RBID SCU with the opcode specifying that the utility 1is
to return the current values of parameters associated
with the item to be modified. '

¥ Prompt the user for new values, using the current values
as defaults.

¥ RBID SCU with the opcode specifying that the utility is
to modify the image in memory. The values supplied by
the user are passed to SCU in either the PARMS 1list or
in $CU synonyms.

Nothing in the code requires that SCU be called first to return
values. The first of the above steps could be omitted.

SCU does not validate the values passed on the PARMS 1list. The
command procedures, as shipped by Texas Instruments Incorporated,
ensure that all data entered by the user is of a proper type and
has an acceptable value (for example, range or element of a
list). Changing the field prompt declarations in SCI command
procedures that invoke SCU could allow a user to make disastrous
changes to the operating system being modified.

6.8.2 MDC Command Procedure Package.

MDC 1is the top 1level of a three-tiered command procedure
structure. This hierarchy minimizes the number of command
procedures required to specify all possible modifications (add,
delete, or change) to a total of twelve devices. A discussion of
the structure follows, along with an example session to show how
MDC steps the wuser through the process of changing the
characteristics of a device.

All other SCU command procedures are the more conventional
single-level type and are not discussed in this document.

The MDC hierarchy is shown in Figure 6-8.

2270513-9701 6-33 System Configuration Utility

SCI/Utilities Design

MDC
i
T fmm— e ———— +
d i |
MDC$A MDC$C MDC$D
Add Device Change Device ‘Delete Device
]]
1]
o —————— tm———t
]
]
e s e e Rttt ittt e B el St T
] i i | d i i i H i i t i
MDC$010 | | MDC$015) MDC$03 | MDC$08 | | MDC$OB | MDC$TYP
Card i i Virtual} ASR i Magnetic| |\ Serial | Set the
Reader | { Terminal}| Device |Tape Unit]| i Line | Synonym
H i Base | ' ' ! Printer| $TYP
1] a1] [] [] . []
]] 1 1 1] [}
{MDC$012 MDC$02 MDC$07 {MDC$0A MDC$0C
1931 VDT KSR Disk 1 911 Parallel
i Device Drive ! VDT Line
! i Printer
MDC$011 MDC$09
940 VDT TPD

Figure 6-8 MDC Command Procedure Structure

MDC prompts the wuser for the kind of change to be made (add,
change, or delete), and invokes the appropriate procedure at
level two.

Level two procedures prompt the wuser for device name and/or
device type. At this level, all information necessary to delete
a device 1is known. MDC$D RBIDs SCU and does not invoke any
procedures at level three.

MDC$A and MDC$C invoke the appropriate third-level procedure.
The name of the third-level command procedure is constructed by
appending the value of the synonym $TYP to the character string
MDC$. $TYP represents the device type as defined in the LDT
template.

Level three procedures prompt the user for specific information
needed to define a device of the particular type. SCU is then
RBID with the proper opcode and PARMS 1list.

The following example shows the technique used in writing the MDC

command procedure set. Explanatory comments have been added, and
the procedures are not exact replicas of those shipped with DNOS.

System\Configuration Utility 6-34 2270513-9701

SCI/Utilities Design

Assume that you have invoked MDC. The following command

- procedure is executed:

MDC(MODIFY DEVICE CONFIGURATION)=6,
DATA DISK/VOLUME=%¥ACNM("@$XSGU$D")
.SYN $XSGU$D="@&DATA DISK/VOLUME",
MDCDD="€€$XSGU$D .S$OSLINK.S$SGU$"
.LOOP

.PROMPT (MODIFY DEVICE CONFIGURATION),
COMMAND (CHANGE ,ADD,DELETE)=ELEMENT(C=C,
A=A,D=D) (C)

MDC$&COMMAND

.UNTIL @$$CC,NE,O

.UNTIL €$$MO,EQ,O

.REPEAT

S a2 JOWOOTOUl W =

Lines 5 through 12 are a loop. Line 9 is the construction of the

second-level command procedure name. Line 10 provides
exiting the loop if an irrecoverable error occurs and line

prevents looping in batch mode.

Assume you responded ADD to the COMMAND field prompt.

command procedure MDC$A is invoked.

MDC$A (ADD DEVICE)=6,

DEVICE TYPE = ELEMENT(VDT=VDT,911=VDT,DISK=DISK,

MAG TAPE=MAG TAPE,VIRTUAL TERMINALS=VIRTUAL TERMINALS,
ASR=ASR,KSR=KSR,CARD READER=CARD READER,

LINE PRINTER=LINE PRINTER)

.RBID TASK=02E, UTILITY, PARMS=(500,800,8,03000)

.IF @$$CcC, EQ, O

.SYN SCUBTA = @$CUAY

.SYN $TITLE="ADD &DEVICE TYPE",$0P=4,
$CU1="".$CU2=""'$CU3="",$CUM="" ’$CU5="" ,$CU6="" ’$CU7="" R
$CU8="" ’$CU9="" ,“$CU‘|O="" ’$CU11:""'$CU12=""'$CU13="" ’
$cuUTU="" _$CU1I5="" CU16="",$CUIT=""

MDC$TYP DEVICE TYPE ="&DEVICE TYPE"

.IF @$TYP, IS, ELEMENT(0A,03,02,015)

.SYN $CU15=">@$TYP",$CU16=">E000"

.ENDIF

.SYN MDCAD="Y"

MDCOTYP

.ENDIF

.SYN $TYP="" $TITLE="",6$PROC="",$0P="" MDCAD="",
$CU1=""’$CU2=""’$CU3:"" ,$CUL‘="" ’$CU5=""'$CU6="" '$CU7="'| ’
$CU8:"",$CU9=""'$CU10=""’$CU11:"" ,$CU12:""'$CU13="" ’
$CUTH="" $CUI5="",$CU16="",$CU17="",$SCU$BTA="" ,$SCUSINT=""

for
11

The

WoOoONTOUlEWN =

10
11
12
13
14
15
16
17

18

19
20
21
22

23

Line 18 is the construction of the third-level command procedure

name.

2270513-9701 6-35 System Configuration Utility

SCI/Utilities Design

Assume you responded DISK to the DEVICE TYPE field prompt. Since
this is a disk, TYP has the value 07 (the 7 was set by SCU the
first time it was invoked, and the 0 was added in the command
procedure). Command procedure MDC$07 is invoked.

MDC$07 (@$TITLE)=6,

TILINE ADDRESS = RANGE(OF800,0FBFO)("@$Ccu2"),
DRIVES = RANGE(1,4)("e@scue6e"),

DEFAULT RECORD SIZE = INT("@$CUT"),

INTERRUPT = RANGE(3,15)("@$cu3"),

EXPANSION CHASSIS = ¥*RANGE(1,7)("€s$cuum"),
EXPANSION POSITION = ¥RANGE(0,23)("@$CU5")
*BID TASK SCU

.RBID TASK=02E,UTILITY,PARMS=(500,800,8$0P,8$CU1,&TILINE,
&INTERRUPT,&EXPCHAS,&EXPPOS,@$TYP,
&DRIVES,,,,0,NO,

’”&DEFAULTD'D!"!!"!I"O)

This command procedure bids SCU with the appropriate PARMS list
to add a disk in the system currently being configured.

System Configuration Utility 6-36 2270513-9701

SCI/Utilities Design

SECTION 7

OPERATOR INTERFACE

7.1 OVERVIEW

The operator interface subsystem provides a mechanism by which
information and/or requests are communicated to a user who is
performing operator functions, and to any other users who ask to
see the messages.

- The operator interface is designed to enable any task in any job
to pass a request to the system operator when the task requires
intervention (for example, when devices require attention). The
request may or may not require a response from an operator. If
it does, the subsystem allows the task to specify time-out
information. The requesting task is notified when an operator
responds to the request, or when the specified time has expired,
whichever occurs first.

Operator functions may be either centralized to one user, who is
called the system operator, or distributed among all users who
have requested to have the text of operator requests displayed at
their terminals.

The basic design of the operator interface subsystem is passive.
An operator must initiate +the transaction of responding to a
specific request. The subsystem maintains a 1list of pending
requests, but takes no initiative to get operator response.

While the operator interface subsystem does service a series of
requests, it is not a queue server in the same sense as the Job
Manager and the Name Manager. The operator interface subsystem
does not accept input from a batch job. It is written in Pascal
and requires the following support:

¥ MAILBOX services

¥ 1Interprocess communication

¥ 1Initiate Event and Wait for Event SVCs

¥ Access to a system disk for a temporary file

2270513-9701 T-1 Operator Interface

SCI/Utilities Design

7.2 STRUCTURE

The operator interface subsystem is implemented in two tasks --
the system operator task, OPERATOR, and the operator interface
task, XOI. '

7.2.17 System Operator Task.

The system operator task, OPERATOR, 1is a nonreplicatable,
nonprivileged system task. OPERATOR is bid in the system job by
the system restart task, and, once through the initialization
phase, never terminates.

The functions of the OPERATOR task are as follows:

¥ As the owner and master of S$OPER, processes all writes
and reads issued to the channel

* Maintains the operator request table, a list of all
pending operator requests

¥ Maintains the user ID table (UIDT), a list of all wusers
who have requested that operator requests be displayed
at their terminals

¥ Maintains the pointer in the system common area NFPTR to
indicate which user, if any, is currently the system
operator

7.2.2 Operator Interface Task.

The operator interface task, X0I, is bid in the user's job by
SCI. XO0I is replicatable and nonprivileged.

The function of X0I is to interface between a wuser and the
OPERATOR task. This consists of writing messages on the channel
and processing the associated reply buffers.

For the system operator whose terminal is dedicated to the system
operator function, XOI displays incoming requests and provides

special processing of two function keys for responding to and
killing specific requests.

7.3 COMMUNICATION BETWEEN TASKS

OPERATOR is the owner of .S$0PER, a global master/slave
interprocess communication (IPC) channel. All communication

Operator Interface 7=-2 2270513-9701

SCI/Utilities Design

between requesting tasks and the system operator task is done on
.S$0PER. ‘

As owner of the channel, OPERATOR is responsible for processing
Open and Close SVCs on .S$0PER. OPERATOR does not open the
channel to any access privilege other than shared.

All messages on .S$0PER must be sent with a write operation using
the reply option. Any message received by OPERATOR that is not
so written is not processed; an error code that indicates an
invalid opcode 1is put into the SVC block and the write to the
channel is terminated.

Only the XO0I task of the system operator is allowed to issue a
read to .S$OPER.

The format of messages written to .S$0OPER is covered in the
paragraph on detailed design of the operator interface task, XO0I,
which has responsibility for formatting the appropriate message.
The format of the reply buffer is in the detailed design of the
system operator task, OPERATOR, which has responsibility for
formatting the reply.

7.4 GENERAL DESIGN CONCEPTS

The following paragraphs contain information about terms used in
this document, the rules of operator privilege, and the format of
messages displayed by the operator interface subsystem.

7.4.1 Definitions.

The following terms are used throughout this document. They are
not wused in comments that appear in the source code, but are
defined in this document to clarify concepts in the operator
interface subsystem.

¥ Operator - A wuser who has executed the ROM command,
without a subsequent KOM, or who is the system operator

¥ System Operator - A user who has been designated the
system operator by successfully executing the XOI
command (without a subsequent QOI)

¥ (Operator) Request - An entry in the operator request
table
¥ (Operator) Response - The data produced by operator

action with regard to a request

2270513-9701 7-3 Operator Interface

SCI/Utilities Design

¥ Requester - The user task with which an operator request
is associated. The requester may be XO0I or another
task. For example, the Spooler generates requests in
behalf of the user who invoked the Spooler. In this
case, the wuser task that invoked the Spooler is the
requester,

* Message - An OPERATOR opcode and the supporting data to
obtain services from OPERATOR

¥ Reply - A buffer of information that is the result of .
services provided by OPERATOR

NOTE

The system task in the operator interface
subsystem is installed with the name
OPERATOR. In the code, it 1is often called
SOT (for system operator task). In this
document, the system task is called OPERATOR.
This is done to avoid confusion between a
reference to the system task and a reference
to the XOI task associated with the user who
is designated the system operator (the system
operator's XO0I task).

T.4.2 Operator Privilege.

The operator interface subsystem enforces the following
restrictions concerning operator privilege:

¥ If a user is designated the system operator, only that
user is allowed ¢to respond to operator requests,
although many other users may still be viewing the text
of the requests.

¥ If no wuser 1is designated the system operator, several
users may be eligible to respond to operator requests.
When the user's ID is put on the list of those to whom
requests are relayed, the user becomes eligible ¢to
respond to any request which would be relayed to him.

OPERATOR places one further restriction on the system operator,
in that only one session (terminal) 1is considered the system
operator. This 1is enforced by requiring that not only the user
ID and job ID of a requester be the same as the system operator,
but that +the task ID in the TSB must also match. Thus, even
though DNOS allows a user ID to be concurrently 1logged on at

Operator Interface 7-U4 2270513-9701

SCI/Utilities Design

several terminals, only the session associated with the terminal
where X0I was successfully executed is recognized by OPERATOR as
the system operator. Other subsystems may allow the system
operator to use multiple terminals, but the operator interface
subsystem does not.

Other subsystems may grant to the system operator privileges that
are not generally available. For example, the Spooler subsystem
allows the system operator to kill any request in any output
queue.

7.4.,3 Transactions.

The construct of a transaction is useful in understanding the
flow of the operator interface subsystem. A transaction 1is the
process by which a piece of business is accomplished.

The operator interface subsystem conducts the following kinds of
transactions:

¥ A transaction that consists of one message/reply pair.
The reply may be written immediately or after some
interval, but when the reply is written, the transaction
is complete.

¥ A transaction that consists of more than one
message/reply pair. A message is written to .S$OPER
that initiates processing for a piece of business that
cannot Dbe completed before the reply is written. At
least one more message/reply pair is required to
complete the piece of business.

¥ A read message from the XOI task of the system operator.
This transaction differs from the first two in that it
is a read to .S$0PER, rather than a write.

The flow of the first transaction type is simple. This category
includes all general requests and all SCI commands except KOR and
ROR. As an example, when a user enters the ROM command, the XOI
task is bid by SCI in the user's job. X0I writes a formatted
message on .S$0OPER. OPERATOR adds the user's ID to the list
(UIDT) and replies to the user's X0I task, completing the write
on .S$0OPER. The X0I task in the user's job then terminates,
unless the user is designated the system operator.

With the second transaction type, XO0I writes the first message of
the transaction, processes the reply buffer, then writes a second
message and processes that reply. XOI then terminates (unless
the wuser 1is designated as the system operator) because the
transaction is complete. OPERATOR processes both messages and
writes both replies. This category includes the SCI commands KOR
and ROR, commands that prompt the user for information used in

2270513-9701 7-5 Operator Interface

SCI/Utilities Design

formatting the second message to OPERATOR. 1 |

The third transaction type occurs only when a system operator has
dedicated the terminal to system operator functions. The timing
of completing the read depends upon whether there is a request
that has not yet been displayed to the system operator. If there
is such a request, the read is processed immediately. If not,
the read to .S$0OPER is left open until such a message does exist.
There is no message buffer for this transaction.

7.4.4 Format of Displayed Requests.
Operator requests are always displayed in the following format:

OR xxxxxf FROM user AT hh:mm-general text

where:
XXXXX is the request ID or blank.
f is the response mark -- an asterisk if a response
is required and a blank otherwise.
user is the user ID associated with the request.
hh:mm is the time the request was received by OPERATOR,
in hours and minutes. ’
general text is the general text of the request.

When a request is displayed through MAILBOX, the entire message
just shown is sent as the text of a MAILBOX message, with one
exception. If the user to whom the request is being displayed is
not allowed to respond to the request (that is, if another user
is the system operator), then the request ID field, xxxxx, is
blank. When the message 1is displayed at the user's terminal,
MAILBOX headers are appended to the front of the message.

7.5 SYSTEM OPERATOR TASK
OPERATOR performs the following functions:

¥ Processes general operator requests. Places a request
in the operator request table (ORT)

¥ Initiates relay operator messages (ROM). Creates an
entry in the UIDT for this user ID

¥ Terminates relay operator messages (KOM). Deletes the
user's ID from the UIDT

¥ Creates a file containing a list of (pending) operator
requests

Operator Interface 7-6 2270513=9701

SCI/Utilities Design

¥ Designates a user as the system operator
¥ Terminates a user as the system operator

¥ Processes the transaction whereby an operator responds
to or kills a specified pending operator request

OPERATOR is bid by the restart task during IPL.

7.5.1 Data Structures and Files.
OPERATOR maintains one item in the operating system common area,
three major data structures for its own wuse, and task 1local
variables to control flow through the code.
7.5.17.1 OPERATOR Local Variables.
The OPERATOR local variables are as follows:

¥ REPLY - Flag to indicate whether or not to write a reply

¥ NXTREQ - The request ID for the next request placed in
the operator request table

7.5.1.2 System Common Area.

OPERATOR maintains the pointer SOPJSB in NFPTR, which points to
the JSB of the system operator's job. SOPJSB is zero when no
user is acting as the system operator.

7.5.1.3 System Operator Information.

OISOPR is a data structure maintained by OPERATOR. It contains
the following information concerning the current system operator:

¥ OPRSTT. Operator state:

- XOI. Requests are to be sent to the system
operator when a read is issued by XO0I to .S$OPER.
"This is the state when the wuser is first
designated the system operator. If the system

operator enters ROM mode and then leaves ROM mode,
X0I state is reinstated.

- ROM. The system operator's terminal 1is not
dedicated to X0I; the text of an incoming request
is sent through MAILBOX.

¥ OPRJID. Pointer to the job ID associated with the

system operator. A value of zero implies that no user
is designated the system operator.

2270513-9701 =7 Operator Interface

SCI/Utilities Design-

¥ OPRTSB. Pointer to the TSB of the system operator's X0I
task.

¥ OPRRDP. Pointer to the reply buffer associated with a
pending read on .S$OPER. A value of zero means that no
read is pending.

¥ OPRRPT. Pointer to the ORT entry to which the system
operator is currently responding. A value of zero
indicates +that the system operator 1is not currently
responding to a request.

7.5.1.4 Operator Request Table (ORT).

The ORT is maintained by OPERATOR. The structure is a circularly
linked 1list of Pascal records in the OPERATOR task area. The
header record in memory points forward to the next record and
backward to the final record. In addition to +the 1linking
information for the entire ORT, entries that specify a time-out
are circularly linked to form the time-out list.

ORT entries remain indefinitely until they are removed for one of
the following reasons:

¥ An operator responds to the request
¥ An operator kills the request
¥ The request exceeds the time-out limit

The ORT contains one record for each pending request. The
following information is in each ORT record:

* Pointer to the Master Read/Write buffer (MRB) that
contains the information in the following 1list. The
format of the message written in this buffer is covered
in the paragraph on detailed design of XOI.

- Information needed to do a Master Write to .S$OPER

- General text

- Prompt information (maximum of two prompt/initial
value pairs)

¥ Request ID (1 through 65,535). These decimal numbers
are assigned sequentially as requests are placed in ORT.

¥ User ID of requester

Operator Interface 7-8 2270513-9701

SCI/Utilities Design

¥ Flags:
- Response required?
- Written to the system operator yet?
¥ Time of request
¥ Time-out value
¥ PResponse state. A pointer-to the UIDT entry for the
user who 1is currently responding to this operator
request and to minus one when the system operator is
responding to the request. This pointer is set to zero
when no user is responding to the request.
7.5.1.5 User ID Table (UIDT).
The UIDT is a list of all active users who wish to receive and
possibly respond to operator messages. This list is maintained
by OPERATOR. The structure is a circularly linked 1list of Pascal
records in the OPERATOR task area.
Each entry contains the following information:
¥ User 1ID
¥ Job ID

¥ Pointer to the JSB of the job with which this user ID is
associated

¥ Station number with which the user is associated
¥ Flags:

- UIDALL. Whether the wuser wants all operator
messages (T) "or only those originating from or
directed to this user ID (F)

- UIDOPR. Whether this user is the system operator

¥ Pointer to the operator request to which this wuser is
currently responding

7.5.2 1Initialization.
System operator task initialization 1is done by the procedure
OISINT, in the module of the same name. The operator channel

.S$0PER is deleted and created. A LUNO 1is assigned to the
channel and it is opened.

2270513=-9701 7-9 Operator Interface

SCI/Utilities Design

Internal buffers, pointers and variables are initialized. The
pathname .S$0OPMSxx 1is stored in the variable LOMNAM for use in
building the pathname of the file where the formatted 1list of
operator requests is temporarily written. (When a user requests
a list of pending operator requests, xx 1is replaced with the
user's station ID). ‘The ORT and UIDT 1linked 1lists are
"initialized with only one record in each. The one record in ORT
is 1linked to itself with respect to both the pointers for the
entire list and pointers for the time-out 1list. OISOPR 1is
inirtialized to reflect that there is no system operator, and that
no read is pending on .S$0PER.

7.5.3 Major Loop/Routines.

OISTSK is the name of the Pascal program that executes in the
OPERATOR task. The program is in module OISTSK. The major loop
consists of the following logic:

LOOP1:DO forever;
IF the time-out 1list is empty
THEN
Issue a master read with suspend to .S$0PER;
Process the I/0 from .S$0PER;
ELSE
LOOP2: For all requests on time-out 1list;
IF Request pending longer than specified time-out
THEN Write reply with time-out code;
Remove request from ORT;
END LOOP2;
~Issue a master read without suspend;
IF I/0 was returned from .S$0OPER
THEN Process the I1/0;
ELSE Suspend for five seconds;
END LOOP1;

7.5.4 Error Processing.
Errors are reported to requesters in the error code field of the
reply buffer for S$OPER. Error code values returned by OPERATOR
are defined in the Pascal template OISCONS.

Errors resulting from SVCs issued by OPERATOR are processed in
the routine OISERR. With one exception, all such errors are
written to the system log. The error caused by writing a reply
to a task that has terminated is ignored.

7.5.5 Termination.
OPERATOR is designed never to terminate. The only error that 1is

irrecoverable occurs in the initialization phase. If OPERATOR is

Operator Interface 7-10 2270513-9701

SCI/Utilities Design

unable to create, to assign a LUNO to, or to open the IPC channel
.S$0PER, the error is written to the system log and the task is
terminated through Pascal end-action.

7.5.6 Detailed Design.

One major function of each OPERATOR processing routine is ¢to
prepare the reply buffer for a particular message. The contents
of the reply buffer vary with the opcode in the message and the
results of the processing done by OPERATOR. The details of the
reply buffer format are discussed with each of the processors in
the following paragraphs.

7.5.6.1 OISXOI.

OISXOI processes the message for designating a user as the system
operator.

If no system operator already exists, OISKOM is called to take
the user out of the UIDT (the user may have previously entered
the ROM command), the requester's JSB pointer 1is stored in
NFPTR.SOPJSB, and the OISOPR data structure is set wup with the
following characteristics:

¥ System operator not responding to any operator request
¥ No read pending on S$0OPER
¥ System operator receiving messages in XOI mode

If a system operator has already been designated, and is not the
requester, an error code indicating invalid request is put into
the reply buffer. The requesting user is notified by the XOI
task that he or she has not been designated the system operator.
If this 1is a request from the system operator, OISKOM is called
to remove the operator's user ID from UIDT and set the operator
mode to XOI.

The reply buffer for this message is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=5)
1/1 Error code

7.5.6.2 O0ISQOI.

0ISQOI processes the message to terminate the designation of the
user as system operator.

Before any action is taken on the message, the job ID and TSB of
the requester are compared to the data in OISOPR. Unless both

2270513-9701 T=-11 Operator Interface

SCI/Utilities Design

items match, the request is denied, an error code is written 1in
the reply buffer and processing in 0ISQOI terminates. The XO0I
task informs the user of errors. :

The next consideration is whether the system operator is in ROM
mode or XO0I mode. If ROM mode, OISKOM is called to take the
operator out of UIDT. In XOI mode, if a read is pending on
.S$0PER, it is killed with an error code in the reply buffer to
so indicate. The pointer to the read reply buffer is cleared,
resetting the read pending flag.

Next, OISQOI <clears two pointers to the system operator -- its
own data structure element OPRJID and SOPJSB in the system common
area NFPTR.

If the operator was in the process of responding to a request,
the response state of»that ORT entry is cleared.

Now that +the system operator has been effectively relieved of
that function, each entry in the ORT must be updated as follows:

¥ Mark each entry as not having been sent to the system
operator.

¥ Call OISMBX to send each message to the appropriate
users in the UIDT. This time, the request ID field 1is
nonblank so that any user who so desires may respond to
the request. Note that the user who was formerly the
system operator does not receive these messages, as that
ID has just been deleted from the table by OISKOM.

An error code of zero is placed in the reply buffer and 0ISQOI
processing ends. ‘

The reply buffer format is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=6)
1/1 Error code

7.5.6.3 OISRD.

Procedure OISRD processes read meséages on .S$0OPER. A nonzero
error code is placed into the reply buffer in the following
cases:

* The requester is not the system operator (a task that is
not the system operator's X0I issues the read).

¥ The requester is the system operator, but is not in XOI
mode.

Operator Interface 7-12 2270513-9701

SCI/Utilities Design

¥ A read is already pending from the system operator.

Otherwise, the ORT is searched for the first entry that has not
yet been sent to the operator. Since entries are added to ORT as
they are received, the first entry found is the oldest pending
request not yet displayed to the system operator. When an unsent
request is found, the text is formatted into the reply buffer and
the ORT entry is marked as having been sent to the operator.

If no wunsent entry is found, the OPERATOR variable REPLY is set
to a value of false. The MRB is saved and a pointer to it stored
in OPRRDP. A reply is written on S$0OPER to complete .the read
only when the value of REPLY is true.

The format of the reply for the read message is as follows:

Offset/
Byte Length Description
0/1 OPERATOR opcode (=0)
1/1 Error code (zero except when read not honored)
2/2 Request ID
L/8 User ID
12/5 Time of request
17/1 Response mark:
A blank means no response is required.
An asterisk means a response is required.
18/1 Length of general text
20/? General text (maximum of 223 bytes)

7.5.6.4 OISLOM.

OISLOM processes the request to list operator requests, either
all of them or a subset consisting of those associated with the
requester's user ID.

An error code indicating that the request is invalid is set in
the reply buffer if the user is neither the system operator nor
in the UIDT. Another error code is set in the reply buffer if
there are no requests (entries in the ORT) to be displayed.

The next section of OISLOM is a loop on entries in the ORT. The
request 1is written to the temporary file .S$0PMSxx (the complete
pathname is stored in the variable LOMNAM), if one of the
_following is true:

¥ The requester is the system operator.

¥ The requester specified that all requests be relayed.

¥ The requester's wuser ID is the same as the user ID in
the ORT entry.

2270513=-9701 7-13 Operator Interface

SCI/Utilities Design

The variable MSGSENT is maintained to determine whether a request
is found in ORT that satisfies one of these conditions and is
actually written to the file.

For each request to be 1listed, procedure OISFMS is called to
format the general text. 'If the requester is the system operator
or if there currently is no system operator, the request ID 1is
filled in. Otherwise, blanks are written into that field in the
formatted text.

The message is then written to the temporary file, in 80-
character 1lines, breaking on blanks (or in column 60 if no blank
occurs past that point).

After all entries in the ORT have been processed, the variable
MSGSENT is tested, and if it is false, the error code indicating
no messages is set in the reply buffer.

The format of the reply buffer is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=H4)
1/1 Error code

7.5.6.5 OISROM.

OISROM processes the message to add a user ID to the UIDT.

If the user ID is already in UIDT, the &entry is wupdated to
reflect the current specification for whether the user is to
receive all operator requests or only those associated with the
user ID, and an error code indicating no errors is returned to
the requester in the reply buffer. Otherwise, a new UIDT entry
is created and chained into the UIDT 1list, and all appropriate
requests in the ORT are sent to the user through MAILBOX.

The new UIDT entry has the following characteristies:

* This user is currently not responding to a request so
the pointer is zero.

¥ UIDOPR 1is <either true or false, depending on whether
this user is the system operator.

¥ UIDALL is set according to the following rules:
- True if this is the system operator or if the
message sSpecifies that the user wishes to see all

operator requests

- False otherwise

Operator Interface T-14 2270513-=9701

SCI/Utilities Design

NOTE

Even if the system operator enters a request
to be shown only the user's own messages, the
UIDT entry 1is built in such a way that the
system operator receives them all. The
system operator is not allowed to change this
item in UIDT with subsequent ROM commands.

If the requester is the system operator, the data structure
OISOPR is updated to show that the system operator is now in ROM
mode. If a read is pending on S$0OPER, it is terminated with an
error code indicating an abort, and the read pending pointer is
cleared.

For each message that has not previously been sent to this
operator, OISMBX is called. If the user is the system operator,
the 1logic employed does not send messages through MAILBOX that
have already been sent on .S$0PER to the operator in XO0I mode.

The reply buffer format is:

Offset/Byte Length Description
0/1 OPERATOR opcode (=2)
1/1 Error code

7.5.6.6 OISKOM.

OISKOM processes a message to remove a user's ID from the UIDT
(and therefore, discontinue relaying operator messages to that
user through MAILBOX).

In order to remove any ambiguity concerning which ID 1is to be
removed from the table, several precautions are taken. Not only
must the user ID match, but also the job ID that placed the user
in UIDT must match the 1ID of the job in which the message to
remove the ID was generated. If such a match is not found, an
error code is set to indicate invalid KOM request.

If the request is valid, the previous and next UIDT entries are
altered to unchain the record for the user ID being deleted. If
the UIDT entry shows that the wuser was in the process of
responding to an operator request, the appropriate ORT entry is
cleared to show that the request is no longer in response state.

If +the user being removed from UIDT is the system operator, the
status of the system operator is changed to XOI mode. The memory
used for the deleted entry is released and an error code of zero
is set.

2270513-9701 7-15 Operator Interface

SCI/Utilities Design

The format of the reply buffer is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=3)
1/1 Error code

7.5.6.7 OISGRQ.

Procedure OISGRQ processes a message that contains an operator
request to be added to the ORT. The message is examined for
consistency of data. OISGRQ generates an error code when any of

the following circumstances is encountered:

* Flags are set that do not apply to a general request.
Even though the flags would not cause erroneous
processing of this particular request, their being
improperly set casts suspicion on the remaining data.

¥ A response is not required, but the number of prompts is
nonzero.

¥ Too many prompts are specified (the maximum number,
MXPRCT, is declared in OISCONS).

¥ The length of the general text is either zero or greater
than the maximum number of characters allowed. (Again,
the maximum 1length of the general text, MXTXTL, is
declared in OISCONS).

¥ The length of a prompt is either zero or greater than
MXPRTL, the maximum prompt length, which is declared in
OISCONS.

If the flag which indicates that the job ID is specified 1in the
message buffer is set, OISGRQ runs the operating system JSB chain
in search of an entry that has the specified job ID. If the job
ID is not found, an error is set and processing in OISGRQ ends.

If the data is valid according to all these tests, a new ORT
entry is created with the following characteristics:

¥ It 1is not in response state (no operator currently
responding to this request).

¥ The value of NXTREQ is assigned as the request ID.

¥ If time-out is specified, the record is chained into the
time-out 1list. Pointers in this record, the previous
record, and the next record are updated to place the
record in the list.

¥ The entry is marked not yet sent to the system operator.

Operator Interface 7-16 2270513-9701

SCI/Utilities Design

¥ Each ORT entry contains forward and backward chaining.
Pointers in this record, the previous record and the
next record must be updated.

NXTREQ is incremented by one and the general text of the request
is written to the system 1log. (For more details, see the
previous paragraph that describes +the format of displayed
requests).

The next part of OISGRQ is concerned with sending the request to
the system operator and/or any interested user. The variable
REPLY is set to the complement of the flag that indicates whether
a response is required. The variable REPLY determines whether or
not a reply is written to the message on .S$0OPER. If the request
does not require an operator response, REPLY is given a value of
YES so that the write on .S$0PER is completed. If the request
does require a response, REPLY is given a value of NO. The
requester remains suspended until the operator responds or kills
the request or the request exceeds the time-out limit. The write
on .S$0PER is not completed immediately.

Procedure OISMBX is called to send the message, through MAILBOX,
to each user whose ID is in UIDT. If the system operator XOI has
a read pending, the message is placed in a holding buffer and
OISRD is called to format the reply buffer. The reply is written
to .S$O0PER to complete that read on the channel.

If the reply to the message Jjust processed is to be written
immediately (as reflected by the value of REPLY) the reply buffer
is formatted for the general operator request, and written to
.S$0PER to complete the write.

The format of the reply buffer is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=1)
1/1 Error code
2/1 Number of prompts (=0)

7.5.6.8 OISPOR.

OISPOR processes the initial (and possibly only) message in the
transaction of an operator responding to a request. Information
about the request is returned in the reply buffer.

An error code is returned in the reply buffer if the user is not
allowed to respond to the specified operator request. Any of the
following circumstances prevents the requester from being allowed
to respond to the request:

¥ A system operator exists and the requester is not the
system operator.

2270513-9701 T-17 Operator Interface

SCI/Utilities Design

¥ The requester is not in the UIDT.

* The request 1is currently being serviced by another
operator.

¥ The specified request ID is not in the ORT.

Once the requester has been cleared to respond to the request,
the response required flag 1is checked. If no response 1is
required, the ORT entry is unchained (on both the ORT 1list and
the time-out list) and the error code in the reply buffer is set
to indicate that no response is required for this operator
request. This completes processing for requests to which no
response is required.

If a response is required, this is the first of two messages
required to complete the transaction. The text and the prompt
information is put in the reply buffer. The response state is
updated 1in the appropriate ORT entry, indicating that this
operator request 1is now being serviced. OISOPR or the
appropriate UIDT record 1is wupdated to show which ORT entry is

being serviced by the operator. The format of the reply buffer
is as follows:

Offset/
Byte Length Description
0/1 OPERATOR opcode (=7)
1/1 Error code
2/2 Request 1ID

The remainder of the reply buffer is present only if
the error code is zero.

4/1 Filler for word boundary alignment
5/1 Number of prompts
6/1 Length of general text
T/? General text
?2/1 Length of first prompt
(maximum of 28 bytes) (Note 1)
?2/? Text of first prompt (Note 1)
?/1 Length of default for first prompt
(maximum of 50 characters) (Note 1)
?2/? Text of default for first prompt (Note 1)
?/1 Length of second prompt (Note 2)
?/? Text of second prompt (Note 2)
?2/1 Length of default for second prompt (Note 2)
?/? Text of default for second prompt (Note 2)
Note 1 - Provided if number of prompts is one or two
Note 2 - Provided if number of prompts is two

Operator Interface T7-18 2270513=-9701

SCI/Utilities Design

7.5.6.9 OISROR.

OISROR processes the second message in the transaction of a user
responding to an operator request.

An error code is written into the reply buffer if the specified
request is not in the ORT, or the request is not in response
state, or the request is in response state to a user other than
the user ID associated with this message.

After checking all these conditions, OISPOR resets the response
state of the request in the ORT. The appropriate data structure,
either OISOPR or the UIDT, 1is wupdated ¢to show that the
operator/user is no longer occupied with responding to this
request. Both the request and operator updates are done prior to
processing the response data in the message, because even if the
data is unacceptable, this two-part transaction must be repeated
from the beginning.

If there are any irrelevant flags set, a nonzero error code is
set and OISPOR processing ends.

The remainder of OISROR completes the transaction begun by
processing in OISPOR. If there is no data to be: considered (as
in the case of the user hitting the Command key and aborting the
response), the error code in the reply buffer is set to zero and
no further processing is done. This represents the no response
condition. The request 1is 1left in ORT and the only thing
remaining to be done is to complete the X0I write on S$0PER. The
reply buffer is already formatted.

If the response is negative (that is, if the operator killed the
request rather than responding to it), OISRPL is called to do the
following:

1. Format a reply that indicates +the negative response
from the operator

2. Send the reply to the task associated with thé ORT
entry

The negative response 1is processed here because common code is
used to kill and respond to an operator request.

Otherwise, the response is positive unless one of the following
errors is found in the data:

¥ Number of prompts returned does not match the number of
prompts in the ORT entry.

¥ Data overflow is detected in value(s) returned for
prompt(s).

2270513-9701 7-19 Operator Interface

SCI/Utilities Design

If neither of these <conditions is found, OISRPL is called to
format and send a positive response to the task +that initiated
the operator request.

NOTE

Only the positive and negative responses are
generated in OISROR. The other response that
may be sent to the task that initiated the
request is time-out, which is generated in
OISTSK. The reply buffer format is detailed
in the discussion of OISRPL.

If a reply to the operator request was written, the master read
buffer must be restored so that the proper reply is written ¢to
the XO0I that supplied the operator response data.

The format of the reply buffer for the messages processed by
OISROI is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=8)
1/1 Error code

7.5.6.10 OISRPL.

This is a service routine that sends a reply to the task that
generated an operator request. It is called with two arguments;
the first is a pointer to the ORT entry to which the reply
applies and the second is the type response to be sent --
positive, negative, or time-out.

The disposition of the request is written to the system 1log, as
follows:

#¥%%% OI - REPLY TO nn tdisposition
where:

nn is the request ID.
disposition 1is one of the following:

TIMEOUT - Request timed out prior to operator response.
REQUEST DENIED - Operator killed the request.

REQUEST GRANTED - Request with zero prompts was granted.
The prompt(s) and the response(s) of the operator if the
request has one or two prompts.

*® kK Kk kK

Operator Interface 7-20 2270513-9701

SCI/Utilities Design

The error code is set, depending on the response type. The error
codes are defined in OISCONS,.

The reply is written and the entry is removed from the ORT list
and the time-out 1list.

If the reply is written because of a time-out, some additional
processing must be done. If the request is in the response
state, the operator who was servicing the request must be
relieved of that burden. OISOPR or the UIDT entry is updated to
reflect the fact that the request has timed out.

For the general operator request, the reply buffer format 1is as
follows:

Offset/Byte Length Description
0/1 Opcode (=1)
1/1 Error code
The remainder of the reply buffer is present only if the
error code indicates a positive response.

2/1 Filler for word boundary alignment
3/1 Number of prompts
L/1 Length of response to first prompt (Note
5/7? Text of response to first prompt (Note
?2/1 Length of response to second prompt (Note
?/? Text of response to second prompt (Note
Note 1 - Present only if number of prompts is one or two
Note 2 - Present only if number of prompts is two

7.5.6.11 OISFMS.

This routine places the text of an operator request into the
MAILBOX message buffer. It also builds the other invariant
fields of such a message -- user ID, time, response mark and
length.

7.5.6.12 OISMBX.

This is a service routine that sends the text of an operator
request to one user or to the appropriate users in UIDT. This
includes any user who asked to see all requests or whose user ID
matches the user ID for the operator request being processed.
OISMBX has two arguments, both of which are pointers. The first
argument points to an entry in ORT. The second argument, which
is optional, points to an entry in UIDT. If the second argument
is supplied, the general text of the request is sent to the
specified user. Otherwise, the general text is sent ¢to all
interested users in UIDT.

2270513-9701 7-21 Operator Interface

1)
1)
2)
2)

SCI/Utilities Design

Another function performed by OISMBX is <cleanup of UIDT.
OPERATOR is not notified when a user 1logs off. Before the
message is formatted for MAILBOX, the system PDT list is searched
for the PDT associated with the station number in the UIDT entry.
If the JSB pointer in the PDT is not the same as the JSB pointer
in the UIDT entry, the user is no 1longer logged on at that
terminal, and the UIDT entry is deleted.

7.6 OPERATOR INTERFACE TASK

The name of the operator interface task is X0I. The Pascal
program in XOI is named XOITSK. XOI operates in the following
two modes:

* When the system operator's terminal 1is dedicated to
operator activities, +the task provides an interface
directly to OPERATOR for displaying messages and two
functions, respond to operator request and kill operator
request.

* When the user does any other operator activity, the task
simply formats a message to OPERATOR, writes it to
.S$0PER and processes the reply buffer. The wuser
receives the text of operator requests through MAILBOX
and SCI.

7.6.1 1Invoking XOI.

X0I is bid by SCI with a PARMS list that contains the information
required to write a message on .S$0PER for OPERATOR services.
The PARMS 1list includes an opcode, which is not the same as the
OPERATOR opcode. The specific elements in the PARMS list are
discussed in the paragraphs -on detailed design of the operator
interface task.

7.6.2 Data Structures and Variables.

The operator interface task data structures and variables are as
follows:

¥ DISPATCH. Internal code for the function to be
performed. This is initialized based on the PARMS list,
but in certain circumstances, it is modified during
execution,

¥ READPEND. Boolean variable that indicates whether or
not a read is active on .S$0OPER

Operator Interface 7T=22 2270513-=9701

SCI/Utilities Design

¥ XOIACTIVE. Boolean variable that indicates whether the
terminal is dedicated to operator activities

¥ XOIMODE. Boolean variable that indicates whether or not
this task represents the system operator

The following error variables are maintained by XOI:
¥ MSGNUMBER. Message number
¥ VARTEXT. Variable text for error message

¥ CONDCODE. Condition code. The only codes returned by
XOITSK are the following:

- >8000. Not an irrecoverable error
- 0. Normal

CONDCODE is set, using the constants NORMAL and NONFATAL, which
are defined in XOICONS.

The synonym XOIMEN is used to communicate with SCI regarding
display of a menu. The command procedure ROM examines the
synonym. If it is defined, ROM executes a .MENU'primitive to to
suppress the normal display of a menu. This preserves the screen
displayed by XOI.

7.6.3 Initialization.
Initialization of XOITSK is done in the routine XOIINT. The
routine sets up IRBs and pointers, prepares message and character
buffers for later use, opens the <channel S$0PER and stores a
false value in the flags XOIMODE and READPEND.
7.6.4 Major Loop.
The major loop of XOITSK is repeated as long as XOIMODE is true.
At the top of the loop, XOISET is called to do the following:

¥ Checks for batch mode. This is accomplished by calling

R$STAT to determine the state of the session. If it 1is

batch, processing is aborted.

¥ Stores the station ID. This information is returned by
R$STAT.

¥ Sets DISPATCH. This requires translating the parameter
on the PARMS list to the proper OPERATOR opcode.

2270513-9701 7-23 Operator Interface

SCI/Utilities Design

¥ (Clears the error variables CONDCODE and MSGNUMBER.
The next portion of the 1loop is a case statement based on
DISPATCH. The appropriate processor is invoked. 1If, after this
processing, XOIMODE is true, XOI suspends by a call to R$WAIT.
XOIMODE is set to true only when OPERATOR establishes the user as
the system operator and is set to false when OPERATOR removes the
user from the system operator designation. (In terms of SCI
command procedures, XO0I sets XOIMODE and QOI resets it.)
7.6.5 Termination.
When XOIMODE is false, XOITSK exits the major loop and closes the
LUNOs for the terminal and for S$0OPER. R$TERM is then called to
terminate the task. The task also terminates (through R$TERM) if
an SVC error occurs with regard to the read message on S$0PER or
the keyboard read.
7.6.6 Error Processing.
XOITSK maintains error variables and reports errors through the
Pascal interface routines R$TERM, R$WAIT and R$CMSG.
7.6.7 Detailed Design.

When X0I is bid, the PARMS l1list always <contains the following
three elements:

1. Pascal stack parameter - A value of 1000 is sufficient.

2. Pascal heap parameter - A value of 1000 is sufficient.

3. A parameter to indicaté what service is desired
The third parameter péssed from SCI to XO0I is not the same as the
opcode that is passed from XOI to OPERATOR. Both sets of values
are shown in Table T7-1.
The fourth element varies with the service requested, as follows:

*# XO0I, QOI, KOM - No fourth element required

¥ COM - General text of the request

¥ PROM - Message selection (ALL or MY)

¥ LOM - Listing access name

* ROR, KOR - Request ID

Operator Interface 7-24 2270513-9701

SCI/Utilities Design

COM has
pathname.
is being s

Table 7-1 OPERATOR Opcodes
OPERATOR PARMS List SCI
Opcode Action Code Command
1 Creates operator request 8 COM
2 Starts relaying operator 1 ROM
requests (through MAILBOX) :
3 Stops relaying operator 2 KOM
requests (through MAILBOX)
4 Lists operator requests 3 LOM
5 Designates user as system y X01I
operator
6 Removes user as system 5 QOI
operator
7/8 Responds to operator 6 ROR
request
7/8 Kills operator request 7 KOR
T Returns text and prompts
of operator request
8 Processes operator response
to request
The format of messages written on .S$0OPER is discussed in the
paragraph on detailed design of the processor that formats the

message.

a fifth
This 1is
ent to a

parameter,

.S$0PER,

the operator
or <sitename>:.S$0PER,

network site.

interface

channel
if the message

The first byte is the OPERATOR opcode in all messages.

The second byte contains flags. The format of the flags byte is
detailed in Table 7-2 and is referred to as FLAGS in the detailed
discussion of each message format.

2270513=9701 7-25 Operator Interface

SCI/Utilities Design

Table 7-2 FLAGS Byte of .S$0PER Message

Bit(s) Description
0 For use by relay operator messages (ROM) request.
1 - All operator messages
0 - Only messages associated with this
user ID
1,2 Response type (for ROR)
Bit 1 Bit 2 Type
0 Positive
0 1 Negative
1 No response
3 Response required (for use with general operator
requests)
0 - No
1 - Yes
4 For use with general operator requests
0 - User ID for this request is specified in-
in the JSB of the task that generated the
message.
1 -— User ID to be associated with this request

is specified elsewhere in this buffer.

5=-7 Reserved, set to zero

7.6.7.1 XOIXOI.

Procedure XOIXOI formats a message to OPERATOR requesting that
the user be designated the system operator. If the request is
granted, XOIXOI writes the following text to the system log:

userID - STxx BECAME SYSTEM OPERATOR

where:

userID and STxx (station number) identify the user who is
designated system operator.

XO0IXOI handles all I/0O between the operator terminal and OPERATOR
until the operator indicates, by pressing the CMD key, that the
terminal is no longer to be dedicated to the system operator
interface.

The Boolean variables XOIMODE, XOIACTIVE and READPEND are used
throughout the procedure.

Operator Interface 7-26 2270513=9701

SCI/Utilities Design

XO0IX0I formats a message to OPERATOR and writes it to .S$0OPER.
If the reply buffer contains a nonzero value in the error code
field, the request was not completed successfully. The message
number, condition code, and variable text returned by OPERATOR in
the reply buffer are stored in the error variables and XOIXOI is
exited.

If the error code is zero, the user is now the system operator,
and XOIMODE 1is set to true. The user's display is cleared. At
this point, the terminal 1is dedicated to system operator
functions. Two things can happen -- either an operator request
can be written to .S$0OPER by another user, or the system operator
can initiate activity with OPERATOR by entering operator commands
from the keyboard. XOIXOI must respond to whichever of these two
events occurs first. The event synchronization facility of the
operating system 1is used. An initiate read on .S$OPER is event
zero, and an initiate read on the keyboard is event one. After
the display 1is cleared, if READPEND is false, an Initiate Event
SVC is issued for event zero and READPEND is set to true.

An Initiate Event SVC for reading the keyboard 1is 1issued, and
XOIACTIVE is set to true.

XOIXOI enters a 1loop that is continued as long as XOIACTIVE is
true. The loop consists of waiting for an event to occur, and
processing the data associated with that event.

LOOP: DO while XOIACTIVE
Issue Wait for Event SVC (either 0 or 1);
IF the event is the channel read
THEN IF SVC error
THEN Terminate through R$TERM;
IF no channel error (in reply buffer)
THEN Abort keyboard read event;
Display data from channel read;
Initiate Event SVC for channel read;
IF keyboard read is complete (always true)
THEN IF SVC error
THEN IF not due to intentional abort
THEN Terminate through R$TERM;
ELSE Call XOIKEY to process data from read;
IF XOIACTIVE
THEN Initiate Event SVC for keyboard read;
END LOOP; (XOIACTIVE)

The test for keyboard event complete is superfluous because it
either is the event that occurred, or it has been completed by
the abort issued in processing the channel read complete.

Procedure XOIKEY processes keyboard input. All keys are ignored
except F4, F5 and CMD. FU4 is processed as a respond to operator
request, and F5 as a kill operator request. If CMD is the event
key, XOIKEY resets XOIACTIVE.

2270513=9701 T=27 Operator Interface

SCI/Utilities Design

When the input is F4 or F5, XOIKEY sets variables as though XOI
had been invoked by SCI to process a ROR or KOR request,
respectively. The processing of the request 1is handled 1in
XO0IKEY, with calls to XOIROI, which processes both transactions.

Before returning to XOITSK, XOIXOI sets the variable text,
message number, and condition code variables to indicate no
errors.

The message format is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=5)
1/1 FLAGS
2/2 Station ID

7-607.2 XOIQOI.

XO0IQOI formats the message to remove the user from designation as
the system operator. If XOIMODE is false, the message number and
condition code variables are set to indicate that the request is
not allowed.

Otherwise, a message is formatted and written to .S$O0OPER. If a
nonzero error code 1is returned in the reply buffer, the error
variables are set to indicate an internal error message number,
and a recoverable error condition code.

An error code of zero indicates success, and the following text
is written to the system log:

userID - STxx QUIT AS SYSTEM OPERATOR

where:

userID and STxx (station number) identify the former
system operator.

If a read on .S$0OPER is pending, the read 1is terminated and
READPEND 1is set to false. (OPERATOR aborted the read while
processing the message.) XOIMODE 1is set to false and error
variables are set to indicate no errors.

The message format is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=6)
1/1 FLAGS
2/2 , Station ID

Operator Interface 7-28 2270513=-9701

SCI/Utilities Design

7.6.7.3 XOICRM,

XOICRM formats a general operator request message for .S$OPER
(SCI command COM). The kind of request generated is 1limited 1in
that no prompts are allowed, and no time-out may be specified.

R$PARM is called to obtain the channel pathname and the message
text from the PARMS 1list with which X0I was bid. The message 1is
formatted and written to the specified pathname. When the reply
is received, the XO0ITSK error variables are set to indicate
whether an internal error or no error occurred.

The general operator request message format is as follows:

Offset/
Byte Length Description

0/1 OPERATOR opcode (=1)

1/1 FLAGS

2/2 Job ID to be used rather than ID of job from

which the request originated.

/1 Time-out count (minutes)

5/1 Number of prompts

6/1 Length of general text

7/? General text

?/1 Length of first prompt - (Note 1)
?/? Text of first prompt (Note 1)
?2/1 Length of default for first prompt (Note 1)
?/? Text of default for first prompt (Note 1)
?/1 Length of second prompt (Note 2)
?/? Text of second prompt (Note 2)
?2/1 Length of default for second prompt (Note 2)
?/? Text of default for second prompt (Note 2)
Note 1 - Must be provided if number of prompts is one or two

Note 2 - Must be provided if number of prompts is two

Prompts, time-out, and response required are not available
through XOICRM. These fields are utilized by tasks that write a
message to .S$0OPER with those options specified. (For example,
the Spooler subsystem writes general requests with prompts, time-
outs and response required.) The XOI user interface provided for
creating an operator message is not designed to deal with the
complexities of waiting for a response.

7.6.7.4 XOIROM.
XOIROM formats and writes a message on .S$0PER to request that

OPERATOR place the user's ID in UIDT and relay messages to the
user through MAILBOX, rather than directly to the terminal. If

2270513-9701 7-29 Operator Interface

SCI/Utilities Design

the error code in the reply buffer 1is nonzero, the error
variables are set and XOIROM processing ends.

If no error is returned from OPERATOR, XOIROM tests the XOIMODE
and READPEND variables to determine if a read on .S$0PER should
be displayed. (OPERATOR aborts any read on the channel when the
system operator quits or issues the ROM command. If, however,
the read has completed, the data is in the reply buffer, and has
not been displayed. The ORT entry is flagged as having been sent
to the operator, and is not routed to the user through MAILBOX.
Therefore, the request must be displayed now if the operator is
to see it at all.) The request is displayed and READPEND is set
to false. Notice that XOIMODE remains true, even though the
system operator's terminal 1is no 1longer dedicated to system
operator activities.

XOITSK error variables are set to indicate normal processing.

The format of the message is as follows:

Offset/
Byte Length Description
0/1 OPERATOR opcode (=2)
171 FLAGS
2/2 Station ID

7.6.7.5 XOILOM.

Procedure XOILOM produces a file containing a l1list of pending
operator requests. The pathname of the file in which to write
the information 1is the fourth element on the PARMS 1list with
which XOI is bid. The access name is obtained through R$PARM,
and R$OPEN is called to open the file. If an error occurs, the
error variables are set and processing ends.

After the successful open, the message is formatted and written
on .S$O0OPER. If the error code in the reply buffer is nonzero,
the error variables are set to reflect the kind of error,
including the "error" of no pending operator requests. The user-
specified file is closed by call to R$CLOS, with the parameter to
specify that the file not be displayed. XOILOM processing ends.

The remainder of XOILOM consists of transferring the contents of
the temporary file created by OPERATOR to the file with the
access name provided by the user. The write operations are
accomplished by calls to R$WRIT and R$WEOL. The file 1is <closed
by call to R$CLOS, with the parameter to specify that the file be
displayed.

Operator Interface T=30 2270513=-9701

SCI/Utilities Design

The format of the message is as follows:

Offset/
Byte Length Description
0/1 OPERATOR opcode (=z4)
1/1 FLAGS
2/2 Station ID

7.6.7.6 XOIKOM.

X0IKOM formats and writes to S$0PER a message to request that
OPERATOR stop sending operator messages to the user through
MAILBOX. Error variables are set to reflect the results returned
in the reply buffer.

The message format is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=3)
1/1 FLAGS
2/2 Station ID

7.6.7.7 XOIROI.

Procedure XOIROI formats a message to OPERATOR for responding to
or killing an operator request. It is invoked directly when SCI
bids XO0I to either kill or respond to a request. It is also
called by XOIXOI when the system operator uses a function key
shortcut. Because it may be called either way, an argument is
passed to indicate whether the operator request ID is in the
PARMS 1ist (invoked by SCI) or in a buffer (called by XOIXOI).
The variable DISPATCH is used to determine whether the call 1is
for a response or a kill.

The first step in either case is to format and write a message to
.S$0PER, asking OPERATOR for the general text and prompts, if
any, of the specified operator request. If a nonzero error code
is returned in the reply buffer, the appropriate error variables
are set and processing ends. Among the possible T"errors"
returned is that the request requires no response. In this case,
however, the error processing is appropriate, because there is no
further action to be taken on the request. An operator request
that requires no response is informational only, and killing or
responding to it are equivalent.

A case statement, based on the value of DISPATCH, is used to set
up prompts and initial values to be displayed to the operator.

¥ For the response operation, the data returned by

OPERATOR in the reply buffer is used. If prompt text(s)
and initial value(s) are supplied, they are saved for

2270513-9701 | T7T-31 Operator Interface

SCI/Utilities Design

display, and the +type response expected from the
terminal is non-null. If the prompt count is zero, the
default prompt is used and a YESNO type response 1is
required. The character string wused for the default
prompt is the constant RIODFLT,.

¥ For the kill operator request, a single default prompt
is set wup, with a YESNO response type required. The
character string used for the default prompt is the
constant KIODFLT.

XOISIO is called to do the I/0 to the display. When control is
returned from XO0ISIO, a second message is formatted for OPERATOR.
This message indicates one of three kinds of operator response to
the request currently under consideration:

¥ No response - Operator has looked at the request, but
chose not to respond (that is, he or she pressed the CMD
key rather than responding to the prompt). This
response is also sent when the operator denies a request
that has no prompts, but requires a response or when the
operator decides not to kill a request after having
started to do so.

*# Positive - Request has been considered by the operator
and the data, if any, is included in the message.

* Negative - Request should be deleted from the ORT
because the operator killed it.

In the <case of the positive response, the data supplied by the
operator is put into the message.

X0ISVC is called to write the message to S$0OPER. If an error is
indicated in the reply buffer, the appropriate error variables
are set.

The format of the first message is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=T)
1/1 FLAGS
2/2 Request ID

Operator Interface 7-32 2270513-9701

SCI/Utilities Design

The format of the second message is as follows:

Offset/Byte Length Description
0/1 OPERATOR opcode (=8)
1/1 FLAGS
2/2 Request 1ID
4/1 Filler for word boundary alignment
571 Number of prompts
6/1 Length of first response (Note 1)
7/°? Data in response to first prompt (Note 1)
?2/1 Length of second response (Note 2)
?2/? Data in response to second prompt (Note 2)

Note 1 - Present only if number of prompts is one or two

Note 2 - Present only if number of prompts is two

7.6.7.8 X0ISVC.

X0ISVC issues all supervisor calls for XOITSK. The SVC block
must be prepared, and a pointer to it passed as an argument to
XO0ISVC. If an error is returned, XOISVC calls R$TERM to report
the error and terminate the task. No local error variables are
set when an SVC error occurs.

7.6.7.9 XOISIO.

Procedure XOISIO formats the data to be displayed, and handles
user inputs in a manner that emulates the SCI user interface.
The I/0 to the device is handled through R$FMT and R$GKEY, the
Pascal interfaces to S$FMT and S$GKEY, respectively.

All event keys not processed by S$GKEY are ignored except for the
following:

¥ Up Arrow key - Starts over on prompt number one.

¥ ERASE INPUT key - Ignores any previous input. Reformats
the display with prompts and initial values and gets
ready to accept input for prompt number one.

¥ ENTER key - Uses all current data, if it is acceptable.

¥ PRETURN, TAB, SKIP keys - Check the value returned, and
if it is acceptable, go to the next prompt, if any.

2270513-9701 7-33 Operator Interface

SCI/Utilities Design

The values supplied by the user are checked in function XIOVAL,
which is called with an argument to indicate the type response
required and a pointer to the string to be checked. It returns a
value of true except in the following cases:

¥ The length byte for a non-null string is zero.
¥ The first character of a YESNO type is not Y or N.

* R$INT returns a nonzero error code for the character
string that is expected to be an integer expression.

7.6.7.10 XOIDSP.

This routine displays the message returned upon completion of a
Channel Read SVC to .S$OPER. It 1is called with a Boolean
argument, SUSPEND, that indicates whether to set the synonym
$XO0I$MEN. The appropriate SVC blocks are built, and XOISVC is
called to write the data to the display. If SUSPEND is true, the
synonym XOIMEN is given a value of Y. This synonym is used in
the command procedures. When $XO0OI$MEN has a non-null value, the
command procedures execute a .MENU primitive to suppress display
of the menu in the major loop of SCI.

7.7 USER ACCESS TO THE OPERATOR INTERFACE SUBSYSTEM

Users can access the operator interface wusing several O0I$
routines. Routines O0IBGN, OICOM, OIS$END and OIS$WAT are
documented in the DNOS System Programmer's Guide.

7.8 INTERNATIONALIZATION
The following messages in procedure/module OISRPL of OPERATOR are
coded in English:

¥ %%¥%% 0T - REPLY TO ##

¥ TIMEOUT

¥ REQUEST DENIED

* REQUEST GRANTED

The following text in procedure/module XOIINT of XOITSK are coded
in English:

¥ RESPOND TO OPERATOR INTERFACE REQUEST

Operator Interface 7-34 2270513-9701

SCI/Utilities Design

¥ KILL OPERATOR
¥ REQUEST ID
* KILL REQUEST?

¥ GRANT REQUEST?

INTERFACE REQUEST

¥ _STxx BECAME SYSTEM OPERATOR

¥ .STxx QUIT AS

7.9

The wuser interface

are designed to be compatible with SCI.

this compatibility,

¥ The S$
When changes a
relinked and r
with SCI.

routines

SYSTEM OPERATOR

portions of the operator
In
the following things must

S$GKEY and S$FMT are
re made in these
einstalled,

routines,
in order to keep it compatible

MAINTENANCE OF THE OPERATOR INTERFACE SUBSYSTEM

interface subsystem
order to maintain
be done:

linked into XOI.
X0I must Dbe

¥ If SCI changes the way the following keys are processed,
an equivalent change is required in the XOITSK procedure

X0ISIO:

- Up Arrow ke
- ERASE INPUT
- RETURN key
- ENTER key

- TAB key

- SKIP key

2270513-9701

y

key

7-35/7-36

Operator Interface

SCI/Utilities Design

SECTION 8

SPOOLER

8.1 OVERVIEW
The Spooler subsystem is the interface between users and output
devices. The functions performed by the Spooler subsystem
include the following:

¥ Maintains output queues

¥ Schedules and starts output devices

* Halts and resumes output at devices

¥ Services user requests to do the following:

- Place an output request on a specified queue

- Modify the priority, form or destination of a
request already on an output queue

- Display the status of devices and/or queues

- Modify spooler device attributes
The Spooler subsystem 1is designed to prevent unauthorized
deletion or modification of output requests, yet give a user

complete control of the requests he or she initiated. It 1is
written in Pascal and assembly language.

8.2 STRUCTURE

The Spooler subsystem consists of tasks that execute in the
spooler job and tasks that execute in the user's job.

8.2.1 Tasks in the Spooler Job.

The Spooler job is created during IPL. The system initialization
batch stream bids the Spooler device scheduler task (SP$DST) as
the primary task. The XJ SCI command procedure specifies the
task bid parameters for SP$DST. The 1leftmost 8 bits of Bid
Parameter one (PARM1) are flags. The leftmost bit is normally

2270513-9701 8-1 Spooler

SCI/Utilities Design

set to 0, but may be set to 1 to specify that files are to Dbe
printed in priority order without regard for the currently
mounted form. The other seven flags are reserved. The rightmost
8 bits of Bid Parameter one (PARM1) specifies the number of class
name records to be created in the Spooler queue file, where each
class name record will support 48 <class name entries. Bid
Parameter 2 (PARM2) specifies the number of device table records
to be created in the queue file, where each device table record

supports 12 device name entries. Because SP$DST changes ‘the
state of 1line printers, it must be a software-privileged task.
SP$DST is privileged, software-privileged, and is not

replicatable.

The following tasks are bid by SP$DST and terminate upon
completion:

¥ SPINIT - Initialization task that is bid when SP$DST is
first activated. It is neither reentrant nor sharable.
SPINIT must be a software-privileged task and 1is not
replicatable.

¥ xxWRITER - A task that performs an output request. xx
indicates the device type. (For example, LPWRITER
spools 1lines of data to a printer, with a device name
that starts with the characters LP.) The writer task
signals SP$DST when the output request is complete.
Writer tasks are replicatable.

8.2.2 Tasks in the User's Job.

The following tasks are bid in the user's job and terminate upon
completion:

¥ SPTASK - Allows a user task to route output to a logical
name rather than to a device. SPTASK generates a
request to place the spooled output (temporary file) on
the appropriate queue for output service.

* PF - Interfaces with SCI and formats the information
supplied by the wuser to generate the following SCI
requests: Print File (PF), Halt Output (HO), Kill
Output (KO), Modify Output (MO), Resume Output (RO), and
Modify Spooler Device (MSD); finds a specified device
entry in the Spooler queue file and set a synonym for
the device's associated class names. This synonym will
be the default value issued for the class names prompt
of the MSD command. This prevents a user from
inadvertently destroying other user's class names.

Spooler 8-2 2270513-9701

SCI/Utilities Design

¥ SO0S - Displays the requests queued for output and the
status of Spooler devices. The output of this task 1is
documented in the DNOS System Command Interpreter (SCI)
Reference Manual with the SOS command.

8.3 COMMUNICATION AMONG SPOOLER TASKS

SP$DST communicates with other tasks through channels, task bids
and semaphores.

8.3.1 Channels.

Three channels provide the interprocess communication required by
the Spooler subsystem. '

8.3.1.1 .S$DSTCHN.

.S$DSTCHN is the global master/slave channel owned by SP$DST.
All requests for output service on spooler devices must be
requested with a message to SP$DST on this channel.

A1l messages to SP$DST must be written with a request for reply.
This is enforced in the code, and messages are ignored if no
reply 1is specified. The 1length of the reply buffer must be
greater than or equal to eight.

The PF task (in the wuser's job) sends formatted messages to
SP$DST on .S$DSTCHN. ‘Each message contains a spooler request
code and the information required to perform the function
indicated by the <code. Details of the format are shown in the
section of this document entitled Data Structure Pictures. The
spooler message format is named SPM.

Most of the data is information needed to add, change or delete a
request on the queue. The first two bytes, however, are an
opcode (used by SP$DST to control flow) and a byte in which an
error code <can be returned by SP$DST to the originator of the
message.

IPC passes open and close I/0 operations to SP$DST as the channel
owner. No task is allowed to open the channel with exclusive
access. Servicing of <close requests to the channel is not
altered. SP$DST issues a Master Write SVC indicating that no
error occurred.

2270513-9701 8-3 Spooler

SCI/Utilities Design

The opcodes and the function each represents are as follows:

Code Function
0 Writer task has completed or terminated
1 Adds an entry to an output queue
2 Halts output
3 Resumes output
y Kills output
5. Modifies a previous request
6 Modifies attributes of a Spooler device
T Checks validity of a Spooler device or class name
8 Find file name, given Spool ID

20 Maintains current copy count for a print request
21 Fake modify attributes request (used only by LPWRITER)
22 Fake modify output request (used only by LPWRITER)

8.3.1.2 .S$ACCCHN.

This job-local symmetric channel is owned by the accounting log
task, LGACHN, and 1is wused by SP$DST ¢to place accounting
information in the accounting queue when output service is
completed.

The format of the message is shown in the Data Structure Pictures
section of the DNOS System Design Document. The message 1is the
same as the accounting record contents, ACC.

8.3.1.3 .S$SPOOL.

This task-local master/slave channel is owned by SPTASK. When a
user assigns a LUNO to a logical name created with resource type
SP, the channel .S$SPOOL is established as the route through
which data is passed from the user's job to a temporary file.

The channel has associated parameters from the wuser's assign
logical name process. Those parameters and their meanings are
defined in Table 8-1. SPTASK requires that the logical name be
created with all 7 parameters and that the parameters are
specified in numerical order.

When the .S$SPOOL LUNO is released, SPTASK sends a print file
message to SP$DST.

Spooler 8-4 2270513-9701

SCI/Utilities Design

Table 8-1 Spooler Parameters

Parameter Parameter
Name Number
ANSII Format 00
Banner Sheet 01
Number of Lines/Page 02
Number of Copies 03
Forms oy
Device/Class 05
Spooler Logical Name 06

8.3.2 BID Statements.

Tasks are bid by SCI and by SP$DST using an appropriate SVC. The
elements of the PARMS list passed with the bid are described in
the detailed discussion of each task in the following paragraphs.

SCI command procedures bid PF and SOS, each with a PARMS 1list.
LPWRITER and SPINIT are bid by SP$DST.

The system task IOU bids SPTASK (the owner of the channel
.3$SPOOL) as part of processing an assign LUNO to a logical name
Wwith resource type SP. The user's assign LUNO IRB is passed to

SPTASK. It contains a pointer to the parameter list specified
when the logical name is created by the user.

8.3.3 Semaphores.

SP$DST and LPWRITER communicate using semaphores. The semaphore
concept 1is discussed in the DNOS Supervisor Call (SVC) Reference

Manual. The semaphore is used to coordinate requests for
halting, resuming, killing and modifying output at a device.

Each device that 1is available to the Spooler subsystem is
assigned a unique job=-1local LUNO during the spooler
initialization process, or when the device is made available to
the Spooler subsystem via the MSD command. The LUNO number 1is
known by both SP$DST and LPWRITER. This number is used as an
index into the semaphore data structure (that is, the LUNO number
is the same as the semaphore number). Since LUNOs are unique, a
unique semaphore is referenced with regard to each device.

Semaphores are given initial values during SP$DST initialization.

2270513-9701 8-5 Spooler

SCI/Utilities Design

8.4 DEVICES

Devices can be dynamically allocated and deallocated to the
Spooler subsystem. The following functions are provided:

Adds and deletes spooler device entries.
¥ Changes the device availability to Spooler.

¥ Modifies the set of <class names associated with the
specific device. Class name usage allows the user to
define an output class, composed of a set of devices,
and allows the Spooler subsystem to dynamically select
an available device from that set.

¥ Specifies the form currently mounted on the device.

¥ Allows devices to be specified as available exclusively
to the spooler or available to the spooler, but to be
shared with other programs, or as queue only.

Output requests directed to a Spooler device that 1is currently
defined as queue only are queued for future service when the
device becomes available. This allows the installation ¢to take
devices from the Spooler on a temporary basis. The Spooler
Subsystem has exclusive access to any device 80 specified. A
device may be usable by the Spooler but be specified as a shared
device. The Spooler will contend with other users for this type
of resource.

The Spooler subsystem interfaces with the operator interface
subsystem when forms are to be changed on a device. The name of
the last form mounted on each device is maintained in the Spooler
device entry table.

8.5 THE QUEUE FILE

A major design objective of the Spooler subsystem is to maintain
the integrity of the print queues in the event of a system crash
or 1intentional stopping of the system. This is accomplished by
keeping a disk file that contains information about Spooler
devices, the status of each of those devices, <class names
associated with the devices, and information about each output
request that has not yet been serviced or that is being serviced.
The queue file resides in a directory on the system disk,
.S$SDTQUE. The name of the queue file is the same name as
generated operating system that is currently executing.

Spooler 8-6 2270513-9701

SCI/Utilities Design

In order to minimize disk accesses, the logical record size is
large (768 bytes). The queue file is an wunblocked relative
record file.

The Spooler maintains two types of queues for output requests --
class name queues and device queues. As mentioned earlier, each
installation can edit the initialization batch stream .S$ISBTCH
to specify the desired number of class name and device table
records, The default values for the standard Spooler queue file
are one class name record and one device table record. This
gives the user the availability of 48 class names and 12 devices.

The task SP$DST has exclusive write access to the queue file.
Other tasks access the file for reading only.

The structure of .S$SDTQUE is shown in Table 8-2.

Table 8-2 Structure of .S$SDTQUE

Record
Number Contents
1 Header record containing the name of the file,
version number, the number of class name records
in the file, and the number of device table
records in the file.
2 to i Class name records, each containing 48 class
name entries
i+1 to j Device table records, each containing 12 device entries

entries

j+1 to 65535 Blocks of output requests. Each record has space
for six queue entries.

8.5.1 Class Name Table (CNT).
The records 2 to i of the Spooler queue file contain c¢lass name
table (CNT) entries. The organization and format of each CNT
entry is shown in the section of this manual entitled Data
Structure Pictures. The following information 1is maintained
about each of the class name queues:

¥ Class information: ' I

- Number of devices that use this class name

2270513-9701 8-7 Spooler

SCI/Utilities Design

- Status of the <class (active, deleted, halted,
etc.)

- Character string name of the class
* Queue header:
- Record number, offset within that record

- Priority of the request

8.5.2 Spooler Device Table (SDT).

The device table records of the Spooler queue file contain
Spooler device table (SDT) entries. SDT entries contain
information about each device known to the Spooler, and a queue
anchor to the requests waiting specifically for the device. The
data structure picture SDT in the last section of this manual
shows the organization and format of each entry in this record.
The following information is maintained for each of the devices:

¥ Name of the device

LUNO assigned to the device, if the device is currently
usable by the Spooler subsystem

¥ Status of the device (active or deleted)

¥ Pointers for as many as sSix class names with which the
device is associated; the pointers consist of a (class
name record number, index into the class name record)
pair.

¥ Name of the form currently mounted on the device

¥ Device type (byte) and flags from the PDT

¥ Flags to indicate the state of the spooler device:
- Available exclusively to Spooler?
- Shared device

- Halted?

- Busy? (Set if a request is active at the device.)

Spooler 8-8 2270513-9701

SCI/Utilities Design

The following information is maintained about the queue header
for each device:

¥ Record number and offset within the record
¥ Priority of the request

Information about the output request that is currently active
(not on a queue) is maintained for each device.

The following information about the request, if any, that is
active on a device is maintained for each device: .

¥ Priority of the request
¥ Record number and offset within the record

¥ Number of units to page forward or backward (used only
with Resume Output command)

¥ Flags used to communicate with the writer task

8.5.3 Queue Records.

The remaining records consist of blocked output requests. A
request occupies 114 (decimal) bytes, and a record contains a
maximum of six requests. The organization and format of each SDQ
entry (request) is shown in the section of this manual entitled
Data Structure Pictures.

Queue entries are chained forward, in descending job priority
order. (The highest priority in the system is 0 and the lowest
is 31. Thus, the queues are chained in ascending numerical
priority order.) The initial output ©priority assigned to a
request 1is the job priority of +the job that generated the
request.

The anchors for these queues are the CNT and SDT entries.
Entries are not on multiple queues, and an entry that is active
on a device is not on any queue. (Pointers to the active request
reside in the device table entry for the device on which the

request 1is active.) If the user requests that a multifile or
concatenated file be output, the SDQ entry is the header for a
linked list of entries that contain pathname information

necessary to process the request.

There are two kinds of entries in the request queue. The SDQ
data structure picture shows the format of both types. The most
common entry is a queue entry. It contains information for
starting an xxWRITER task. The second type is a continuation
entry. It contains little more than names of additional files
that are to be output as part of the same request. Every

2270513-=9701 8-9 Spooler

SCI/Utilities Design

continuation entry that exists is associated with a queue entry.

The following information is maintained for both types of
entries:

¥ Status of the request (active or deleted)
¥ Record number and offset to a continuation entry, if any
¥ Queue chaining information:
- Record number and offset of the next request
- Priority of the next request
8.5.3.1 Queue Entries.
A queue entry carries the following additional information:
* Information about the origin of the request:
- User ID
- Job ID
- Job name
*¥ Name of the device or class specified
¥ Details of ﬁhe request:
- Priority
- Number of copies
- Lines per page
- Form to be mounted on device
- Spooler ID of this request
- Pathname of the first file to be output
- Whether or not to print a banner sheet
- Whether queued for a device or for a class name
- Delete file after output flags

- ANSI flag

Spooler 8-10 . 2270513=9701

SCI/Utilities Design

8.5.3.2 Continuation Entries.

The continuation entry is used only when the request is to print
a logically concatenated set of files. It contains status, queue
chaining, and continuation information, the same as a queue
entry. The remainder of the record contains a one-word count
that is the number of additional pathnames, followed by the
pathnames, each in the following format:

Nce...cc
where:

N is the number of characters in the pathname.
cc...cc 1is the character string itself. '

The number of pathnames in a continuation entry depends on the
length of the pathnames. A total of 100 characters is available
for packing pathnames in a continuation entry. The pathname list
can be continued across as many SDQ entries as required.

8.5.4 Spooler ID Logical Names.

In +the process of building a queue entry, SP$DST creates a
logical name for the input pathname or pathnames supplied in the
spooler message. This logical name is of the following format:

Snnnnn
where:

nnpnn is the ASCII representation of a five-digit
(decimal) number.

The number is initialized during spooler initialization, and is
incremented each time a request is added to a queue. The logical
name created by SP$DST is the spooler ID displayed by the SOS
task. ' ‘

This 1logical name defines a single file or a concatenated file
set. This definition simplifies the function of writer tasks.
Under this arrangement, the writer tasks require no knowledge of
the user's request; the writer task assigns to the spooler ID as
defined in the queue entry. Because SP$DST has created this
logical name, the operating system File Management subsystem
builds the structures necessary to access the file(s). The
writer task reads the file until an EOF or EOM is encountered.

2270513-=9701 8-11 Spooler

8.6 DETAILED DESIGN OF SP$DST
Details of the device scheduler

initialization task, SPINIT, are
paragraphs.

8.6.1 Memory Data Structures.

SCI/Utilities Design

task,
discussed

SP$DST, and its

in

the following

Two major data areas are used by the Spooler subsystem:

¥ SPMSG - Segment containing the text of messages that are

written by the Spooler to the system log.

It is used by

SP$DST. The structure is a table with 20 entries. The
.length of each entry is 50 characters.

¥ SPCOMN - Area containing run-time information about the
queue file, SPINIT initializes most of
SP$DST, but some of the common area is used for queue
positioning parameters internal to

structures are described 1in

8-1.

Spooler 8-12

this

area for

SP$DST. These
greater detail in Figure

2270513-9701

SCI/Utilities Design

XA X EEEEEEEEERESEREEEERR RS XEARRXRRRRR XA RS RXR R XA RS R X R R AR E X

¥ DESCRIPTION OF THE SPOOLER IN-MEMORY DATA STRUCTURES. *
* THIS IS A PASCAL DEFINITION OF THE DNOS COMMON TEMPLATE *
* FOR SPDATA, AND IS MAINTAINED AS THE SPCOMN PROCEDURE *

I AEEEEEXEEEEEEEXEREEE SRR REESEEEEE AR R AR RRES RS R AR X R R R EERE R R,

SPDATA : PACKED RECORD
CNTREC : CNR ; "CLASS NAME RECORD BUFFER AREA
n
" CNTREC IS THE INTERNAL BUFFER AREA FOR CLASS NAME RECORDS
" FROM THE SPOOLER QUEUE FILE

n

SDTREC :PACKED ARRAY [1..12] OF SDT ; "DEVICE TABLE RECORD BUFFER
"
" SDTREC IS THE INTERNAL BUFFER AREA FOR
" DEVICE TABLE RECORDS FROM THE SPOOLER QUEUE FILE
"
QRECT : QR : "QUEUE ENTRY RECORD BUFFER #1
QREC2 : QR ; "QUEUE ENTRY RECORD BUFFER #2
n
" QREC1 AND QREC2 ARE INTERNAL BUFFER AREAS USED
" TO BUFFER IMAGES OF RECORDS TWO THROUGH 255 OF
" THE .S$SDTQUE FILE; QREC1 IS USED TO BUFFER THE
" ENTRY BEING ADDED, DELETED, OR MODIFIED, WHILE
" QREC2 IS USED TO BUFFER THE ENTRY THAT PRECEDES
" THE ENTRY IN QREC1 IN THE QUEUE
"
HDRREC : HR ; "FILE HEADER RECORD
MRAREA : MRA ; "MASTER READ BUFFER AREA
"
" MRAREA IS THE BUFFER AREA FOR THE SPOOLER MESSAGES
" OBTAINED BY THE IPC MASTER READS AND WRITES ACROSS
" THE .S$DSTCHN

SDFBLK : IRB ; "BLOCK FOR I/0 TO SPOOLER QUEUE FILE
n
" SDFBLK IS THE I/O REQUEST BLOCK (IRB) USED TO
" PERFORM I/O TO THE SPOOLER QUEUE RELATIVE RECORD FILE

n

MREAD ¢ IRB H "MASTER READ/WRT SVC BLK

" MREAD IS AN I/O REQUEST BLOCK USED BY SP$DST
" TO PERFORM IPC MASTER READS AND WRITES ACROSS
" THE SPOOLER'S CHANNEL (.S$DSTCHN)

Figure 8-1 Spooler Data Structures (Sheet 1 of 4)

2270513-9701 8-13 Spooler

SCI/Utilities Design

DEVIRB : IRB : "DEVICE I/O BLOCK ¥% 001 %%

n
n
n
n

ACCIRB : IRB

"WACCOUNTING CHANNEL ¥#%¥ Q01 **

LNBLK : S43 H "CREATE/DELETE LOGICAL NAME BLK

" LNBLK IS THE NAME MANAGER REQUEST BLOCK USED TO
" CREATE SPOOLER LOGICAL NAMES IN THE PROCESSING OF
" PF MESSAGES OR TO DELETE SPOOLER LOGICAL NAMES IN
" THE PROCESSING OF COMPLETION MESSAGES FROM THE
" WRITER TASKS
BIDSVC : S2B ; "BLOCK FOR BID TASK SVC
n
" THIS IS THE BID TASK SVC BLOCK USED TO BID THE DEVICE
" WRITER TASKS AND SPINIT

MAPPRG : S31 ; "BLOCK FOR MAP NAME TI ID SVC
n
" THIS IS THE MAP NAME TO INSTALLED ID SVC BLOCK
" THAT IS USED TO DETERMINE THE INSTALLED ID OF
" SPINIT AND THE DEVICE WRITER TASKS PRIOR TO
" THE ACTUAL TASK BID SVC

SEMWAT : S3D "SEMAPHORE OPERATIONS SVC BLK
"
" THIS SVC BLOCK IS USED TO SEMAPHORE SIGNALLING
" TO THE WRITER TASKS THAT IT SHOULD PREMATURELY TERMINATE
" OR SUSPEND THE ACTIVE PRINT REQUEST. THE MANNER OF
" TERMINATION USED BY THE WRITER TASK IS A FUNCTION
" OF STATUS FLAGS SET BY SP$DST IN THE APPROPRIATE
" SDT ENTRY.

"

Figure 8-1 Spooler Data Structures (Sheet 2 of 14)

Spooler 8-114 2270513-9701

SCI/Utilities Design

MISFLG : PACKED RECORD "MISCELLANEOUS FLAGS
QTYP ¢ BOOLEAN; "TRUE=DEVICE QUEUE ENTRY
HOLFND : BOOLEAN; "TRUE=AVAILABLE SPACE FOUND
ACCOFF : BOOLEAN; "TRUE=ACCOUNTING DISABLED
DISABL : BOOLEAN; "TRUE=DISABLE ALL CMDS THAT
QFC : BOOLEAN; "TRUE=QUEUE FILE JUST CREATED
FILL15 : 0..2047 ;
END;

n

" MISFLG IS INTERNAL USE FLAGS

n

SP$ID : SID H "SPOOL ID NAME AREA

n

" INTERNAL BUFFER USED TO BUILD AN ASCII SPOOL ID
" LOGICAL NAME

MSGADR : @SPM H "ADDRESS OF MESSAGE TO DST
CURFRM : PACKED ARRAY [1..8] OF CHAR; "WORKING SPACE FOR FORM
SPLID : WORD; "SPOOLER ID

" INTEGER VALUE THAT REPRESENTS THE VALUE OF THE NEXT SPOOL

" ID TO BE GENERATED

"
CURCR : WORD
CURDR : WORD
FIRSTD : WORD

"CURRENT CLASS NAME RECORD
"CURRENT DEVICE TABLE RECORD
"FIRST DEVICE RECORD NUMBER
FIRSTQ : WORD "FIRST QUEUE RECORD NUMBER
PRIOPT : WORD "PRINT BY PRIORITY OPTION FLAG
MAXQR : WORD; "MAX QUEUE RECORD

"

" REPRESENTS THE LAST RECORD NUMBER IN THE .S$SDTQUE FILE

n

“e wo wo we we

Figure 8-1 Spooler Data Structures (Sheet 3 of &)

2270513=9701 8-15 Spooler

SCI/Utilities Design

INIERR : BYTE; "INITIALIZATION ERROR CODE
QUEOF1 : BYTE; "OFFSET INTO QUEUE BUFFER ONE
QUERN1 : WORD; "QUEUE RECORD NUMBER IN BUFFER 1

"

" QUERN1 AND QUEOF1 ARE A RECORD NUMBER/ENTRY OFFSET
" PAIR INDICATING A PARTICULAR SDQ ENTRY IN THE
" QREC1 BUFFER THAT IS BEING PROCESSED
"
QUERN2 : WORD; "QUEUE RECORD NUMBER IN BUFFER 2
QUEOF2 : BYTE; "OFFSET INTO QUE BUFFER TWO
n
" QUERN2 AND QUEOF2 ARE A RECORD NUMBER/ENTRY OFFSET
"™ PAIR THAT INDICATE THE PARTICULAR SDQ ENTRY THAT
" PRECEDES THE ENTRY INDICATED BY QUERN1/QUEOF1 PAIR
" IN THE QUEUE CHAIN; IF QUERN2 = 0 AND QUEOF2 = >FF,
" THEN THERE IS NO ENTRY ON THE QUEUE THAT PRECEDES
" THE QUERN1/QUEOF1 ENTRY

NDX : BYTE; "INDEX INTO RECORD

" USED BY THE SP$DST QUEUEING ROUTINES TO INDICATE
" WHICH CNT OR SDT ENTRY IS BEING USED

"

RESRV1 : BYTE; "¥%% RESERVED #¥*%
QF PN ¢ PACKED ARRAY [1..52] OF CHAR; "QUEUE FILE PATHNAME

Figure 8-1 Spooler Data Structures (Sheet 4 of 14)

8.6.2 1Invoking SP$DST.

The spooler job is created when the system is 1initially 1loaded.
The system initialization batch stream bids SP$DST as the initial
task in the spooler job. If the spooler job is killed by the
system operator, it can be restarted using the XJ command with

SP$DST as the initial task. The user must remember to specify
the identical task bid parameters that were 1last used in the
initialization batch stream. If the Spooler initialization task

finds differences in what is in the current queue file and what
was specified in the task bid parms, the current queue file will
be deleted and the task bid parms will be used to <create a new
queue file. This results in all device definitions and
outstanding print requests being deleted.

8.6.3 1Initialization.

A separate task, SPINIT, is bid by SP$DST to perform
initialization functions for the Spooler subsystem. SPINIT calls
procedure SPICHN, which deletes and recreates channels associated
with the Spooler subsystem.

Spobler 8-16 2270513-9701

SCI/Utilities Design

SPINIT <calls SPIDTQ ¢to assign, with autocreate, a LUNO to the
spooler queue file. If no file is found, the Spooler queue file
is created with no devices or class names defined. If the file
is found, the active request at each device (if any) is placed on
its original queue and the memory-resident variables are
initialized to allow the restarting of output at spooler devices.

During reconstruction of the queues, SPINIT scans all the queues
to determine the largest spool ID currently in use. (A given
spool ID 1is associated with the same file across crashes.)
SPINIT then terminates.

SP$DST assigns a LUNO to 1its channel, .S$DSTCHN, and the
accounting channel, .S$ACCCHN, and schedules any device that is
available and that has entries on its device queue or on one of
its associated <class name queues, SP$DST then issues a Master
Read SVC to its channel, and is ready to process messages from
users.

8.6.4 Major Loop.

SP$DST is the heart of the Spooler subsystem. It builds the
prioritized queues from requests it receives, and schedules
devices to perform the output requests on the queues. After
initial setup, the flow is as follows:

DO UNTIL an irrecoverable error occurs;
Clear previous error conditions;
Call SPSCHD* to start the appropriate writer tasks;
IF the write reply flag is set
THEN Master Write to .S$DSTCHN;
Master Read to .S$DSTCHN;
IF the message is for SP$DST
THEN CASE:Function code
SPDONE* -~ Writer task message
SPPFM* . Output request
: SPHOM¥ . Halt output message
SPROM* - Resume output message

O oMt EFEWMND -0

SPKOM*¥ . Delete an output request

SPMOM* - Modify an output request

SPMSDM* - Modify attribute(s) of a spooler device
SPVFY* - Verify device or class name

SPFFN*¥* . Find file name, given spool ID

20: SPCPYC* -~ Maintain copy count for active entry
21: SPMSDM* - Fake MSD operation (used by LPWRITER)
22: SPMOM* - Fake MO operation (used by LPWRITER)
ELSE Report an error;
END;

2270513-9701 8-17 Spooler

SCI/Utilities Design

* Name of the module that performs the function.

Various errors are reported to the user through SPERR, the error
processing routine, but unless an error is catastrophic (see the
subsequent paragraph on termination), control returns to the
preceding loop.

8.6.5 Error Processing.

SP$DST and SPINIT process errors differently, as described in the
following paragraphs.

8.6.5.1 SP$DST.

Error processing in SP$DST consists primarily of writing an error
code in the user-specified reply buffer. Routine SPERR performs
this function.

An error code of >E5 (bad call block) is placed in the second
byte of the <caller's request block if one of the following
conditions is encountered:

¥ Caller does not specify write with reply

¥ The caller output character count (length of buffer)
does not exactly equal the size of the SPM (template).

¥ Reply buffer supplied by caller is too short. Eight
bytes is the minimum buffer 1length for returning the
reply data.

If the caller attempts to open the channel .S$DSTCHN with any
access privileges other than shared, >3B (unable to grant
requested access privilege) is placed in the second byte of the
caller's request block.

If an attempt is made to add a device or class name queue when
the maximum number of such queues already exists, a message is’
written to the system log, and an error code is returned to the
caller.

8.6.5.2 SPINIT.

Errors that occur in the initialization task are either ignored
or cause abnormal termination of the spooler job. If SPINIT 1is
unable to access a channel or a file that it needs, an error flag
is set in SPDATA and the task terminates. The error flag causes
SP$DST (and therefore the spooler job) to terminate.

Spooler 8-18 . 2270513-9701

SCI/Utilities Design

8.6.6 Termination.

End-action is taken by SP$DST only when the task is terminated by
the operating system (as a result of a Kill Job operation by the
system operator).

SP$DST and SPINIT terminate when one of the following resources
is unusable: '

*# 1IPC Channel .S$DSTCHN
¥ Spooler queue file

Routine SPQUIT handles termination. It takes the following
steps:

1. Writes a message to the system log
2. Attempts to release all channels and associated LUNOs
3. Attempts to release the Spooler queue file

4, Issues an SVC to terminate SP$DST

8.6.7 Detailed Design.

The major 1loop of SP$DST consists of scheduling devices and
processing formatted messages from various sources for wvarious
services, The modules that contain code to perform these
functions are discussed in greater detail in the following
paragraphs.

8.6.7.1 SPSCHD.

Procedure SPSCHD performs scheduling. The devices associated
with a class name are scheduled for continuous operation as 1long
as requests are queued. If a device or its associated class name
queues contain requests, and the device 1is not 'halted,
unavailable, or busy, SPSCHD selects a request to start on the
device.

The ©priorities assigned the various requests are honored by the
scheduler, regardless of the type queue in which the request is
stored. Requests are normally selected from the device or class
name queues according to requested print form first, and job
priority second. This 1is to minimize operator forms mounting.
Requests for the same form and having the same priority are
processed on a first-in, first-out Dbasis. Requests will be
processed in priority order without regard to the requested print
form if that option was specified when the spooler was started.

2270513-9701 8-19 . Spooler

SCI/Utilities Design

Once the next request to be serviced has been selected, SPSCHD
removes the request from its queue, updating the appropriate
queue header. The pointers for the active request are updated in
the SDT. A writer task for the device is bid.

8.6.7.2 Queue File Space Management.

Ongoing management of space in the Spooler queue file is done by
the SP$DST routines SPQADD and SPQDEL, which add and delete
entries in the queues. The algorithm is designed to keep the
queues compact, minimizing the number of disk accesses required.

The wvariable MAXQR is maintained in SPCOMN. Its value is the
current number of records in the file.

Acquiring Space.

The queue file is created by SPINIT with the specified number of
class name records, the specified number of device table records,
and one (empty) queue entry record. It is expanded by SPQADD,
one record at a time, as required to accommodate requests.

When a queue entry is ready to be placed in the file, the
following algorithm is exercised to find space for it:

IF There is a deleted entry in the current record
THEN Write the new entry there;
ELSE
Starting with the first queue record, search
(sequentially) for a deleted entry.
IF a deleted entry was found
THEN Write the new entry there;
ELSE
IF MAXQR = >FFFF
THEN Report "space not available"
and ignore the request;
ELSE
Increment MAXQR;
Expand the file;
Write the new entry in the new record;
ENDIF;

Releasing Space.

SPQDEL deletes entries from the queue records. The chain
pointers are updated in the proper entries, and the queue entry
as well as all associated <continuation entries are marked
deleted.

Spooler 8-20 2270513-9701

SCI/Utilities Design

8.6.7.3 Writer Task Messages.

to
or

Device writer tasks send a formatted message on «.S$DSTCHN
indicate to SP$DST that a request has been completed
terminated. Procedure SPDONE processes this message.

Seven conditions cause a writer task to generate a spooler ,
message:

¥ Normal completion of the task. A termination due to an
I/0 error in the file being output 1is treated . as a
normal completion.

¥ The active request has been terminated by a Kill Output
command.

¥ The active request has been terminated by a Modify
Qutput command.

¥ Device error

* Request SP$DST to update (decrement) copy count for

specified queue entry

The operator responds positively to a forms mount
request, thus requiring the currently mounted form name
(in the SDT) to be changed.

¥ The operator responds negatively to a forms mount
request, thus requiring the selected file to be
requeued.
Flags in the device table entry and in the spooler message are

used to determine what condition caused the writer task to send a
termination message as follows:

¥ SDTFLG.SDFKIL=true means the task was killed by a kill
output request. SP$DST signaled the writer task via a
semaphore operation to terminate.

SDTFLG.SDFTRM=true
processing of a modi
signaled the write

means the task was terminated during
fy output message request. SP$DST
r task via a semaphore operation to

terminate.
SPMFLG.SDFDVE=true means that a device error occurred.

SPMFLG.SPFABE=true means the writer task took

end-action.

device

SPDONE writes a record to the accounting channel, unless the flag

SPDATA.MISFLG.ACCOFF is set to inhibit accounting.

2270513-9701 8-21 Spooler

SCI/Utilities Design

SPDONE then determines the device to which the spooler message
applies. This is done by matching the device name in the message
with an entry in the device table.

If the writer is terminated by a Modify Output command, the
active request is placed back on the proper queue by SPMOM. The
only processing done by SPDONE is to reset the flag SDFTRM. This
completes processing by SPDONE for the termination message
generated due to a Modify Output command.

For those requests that specified multiple copies, the LPWRITER
will, upon completion of each copy, send a message to the Spooler
Device Scheduler Task. The message informs SP$DST to decrement
the number of copies for the specified entry and update that
entry on disk. In the event of a crash or intentional kill of
the Spooler job, the original copy count will not be printed
again; only the number remaining will be printed.

If the message is generated because of a device error, a Halt
Output command is simulated. This consists of the following:

¥ Setting the halt flag in the device table entry

¥ Updating the device table record in the Spooler queue
file ’

¥ Signaling the writer task, via semaphore, to halt and
wait for a signal, and, again via semaphore, to resume
output

In all other cases, the following processing is done:

IF the writer task ended abnormally
THEN Write a message to the system log;
IF the flag SQFDAP (delete after print) is set and
the file was successfully printed
or the flag SQFDAL (delete always) is set
THEN Delete the file;
Delete the queue entry;
Update the device table entry to show that no request is
active at this device.

Reset the kill, busy and termination flags in the device entry;
ENDIF;

8.6.7.4 Output Request Messages.
Procedure SPPFM processes output request messages written from

the user's job, for instance by PF or SPTASK. The process
consists of the following steps:

Spooler 8-22 2270513-9701

SCI/Utilities Design

1. Determining whether the request belongs on a device
queue or a class name queue. If the device or class
name is not found, an error is reported through SPERR
and no further action is taken on the message.

2. Finding space in the appropriate queue and reporting
the error if no space is available

3. Formatting the SDQ entry or entries (procedures SPBLDQ
and SPCONQ)

4, Adding the entry to the queue (procedure SPQADD)

If a device known to the Spooler subsystem is not currently
available, queueing of entries for that device continues. The
requests are output whenever the device is made available to the
Spooler subsystem. If a device is known to the Spooler, but is a
shared device, the Spooler must contend with other tasks in the
system for the use of the resource (device).

8.6.7.5 Kill Output (KO).

Either the system operator or the originator of ‘an output request
can issue a command to kill the output request. The PF task in
the user's job writes the message to .S$DSTCHN that requests a
kill output for the user. This message is processed by procedure
SPKOM.

The initial test is to determine whether the user has requested

that the entire queue or a single entry be removed. If the
spooler ID supplied 1is ALL, the entire queue is examined for
candidates to delete. After determining whether the name

supplied 1is a device or a class name, the routinevKILL_QUE is
called to delete all output requests that the caller is
authorized to delete.

In the event that the user identified a specific request (spooler
ID), the active requests are searched first. If the specified
request is found, SPKOM terminates the writer task, via semaphore
operation, and updates the queue to delete the request. If the
request is not active, it is waiting in the queue.

After the request is 1located, SPKOM calls SPOPCK to check the
authority of the user to kill the request. SPOPCK returns a
value of true 1if the user is either the system operator or the
user who originated the request. If the user is authorized to
kill the request, it is unchained and deleted. If the operator
check is false, a privilege error indicator is returned.

KILL QUE is a routine that processes an ehtire queue. Starting
at the queue header in the class name or device table, each queue

2270513-9701 8-23 Spooler

SCI/Utilities Design

entry 1is read, and SPOPCK is called to check operator privilege.
If the user has authority to kill the request, the entry 1is
unchained and deleted. If the entry cannot be killed by this
user, it is left on the queue. No privilege error messages are
generated as it is legitimate for a user to kill all requests on
a queue that belong to the user. The system operator is allowed
to kill any request.

8.6.7.6 Modify Output (MO).

Procedure SPMOM processes this message type. This command allows

the wuser to make various —changes in entries that are already
queued for output. The following items may be changed:

* Device name or class name - Removes the entry from its

present queue and places it on the queue for the
specified device or class name

¥ Form - Changes the form originally requested to the form
now being specified

¥ Priority - changeé the priority of an entry. The
original priority is the priority of the requester's
job, and can be changed to any value that is a valid job
priority.

Valid job priorities are 0 (highest priority) through 31 (lowest
priority).

SPMOM determines what is being changed by examining the value of
the following three variables passed in the spooler message:

* SPMJPR - A value of >FF means there is no change in
request priority.

¥ SPMDVN -~ A value of eight blanks means there is no
change in device or class name.

¥ SPMFRM - A value of eight blanks means there 1is no
change in form name.

The first test performed by SPMOM is to determine if this request
involves changing the device/class. If so, the SDT or CNT entry
for the specified device or class is located.

The second step is to locate the SDQ entry specified by the spool
ID. The active devices are search first. If the entry is not
found as an active entry, then the waiting queues are searched.
If the specified spool ID is not found, an error is given.
Otherwise, the 1location of the SDQ entry is noted along with
whether the entry was active or not.

Spooler 8-24 2270513-9701

SCI/Utilities Design

SPMOM then calls SPOPCK to verify that the requestor has the
authority to make changes to the specified SDQ entry.

If the entry is not an active entry, it is unchained from the
waiting queue.

If the entry is active and the only change specified 1is to
numerically lower the priority (logically increase the priority),
then the priority in the SDQ entry is updated and SPMOM returns
normally to its caller.

If the entry is active and some other change is specified, then
SPMOM signals the writer task to terminate.

Finally, SPMOM queues the entry to the specified device/class or,
if none was specified, then to the device/class for which the
entry was previously queued.

8.6.7.7 Modify Spooler Device (MSD).

This message type is processed by the procedure SPMDSM. Modify
spooler device messages alter the entries in the device table and
class name table. If an entry in the tables is not found for the
specified device or class name, it is assumed that the new name
is to be added.

In altering existing device or <class name attributes, the
following logic is exercised:

IF the delete device (SPFUSE) is set in the spooler message
THEN
IF the device is available to Spooler subsystem
THEN Release the device;
Mark the device deleted in the SDT;
ELSE Update the entry with newly specified attributes;
ENDIF ;

When new class names are specified for a device, the entire list
of previously specified class names for that device 1is replaced
with the new list.

When the device or class name specified does not match any entry
known to the Spooler, the new information is used to construct an
entry in the device table. A Map Task Name to Installed ID SVC
is issued to ensure that there is a writer task for the specified
device. If none 1is found, the device is not added and a name
error messagé 1s returned through SPERR.

2270513-9701 8-25 Spooler

SCI/Utilities Design

A device for which a writer task is found is added to the device
table. Initially it has no request active and no requests
queued. The form and device name are copied from the spooler
message.

If the spooler mode indicates that the device is available, the
routine SPDIAG is called to determine the status of the device.
SPDIAG searches the system PDT 1ist for the PDT of the device to
be added. If no PDT is found, SPDIAG returns an error to the
caller. The caller deletes the device table entry, when
appropriate.

If the device is to be available exclusively to the Spooler, the
device state 1is tested. Unless the device is online, or in the
spooler state, the not available flag in the device table entry
is set and processing is complete.

For devices found 1in the online state and are to be available
exclusively to the Spooler, SPDIAG issues a special assign LUNO
(an SVC that is reserved for system use) that gives the Spooler
exclusive control of the device. If the device 1is shared, a
regular Assign LUNO (op code >91) is performed. If an error is
returned from the assign LUNO SVC, the not available flag in the
device table entry is set.

Class names are added to the device table entry énd both the

class name and device table records are rewritten to the queue
file. :

8.6.7.8 Halt Output (HO).

SP$DST sets the halted flag in the device table entry and writes
the updated entry to disk. If the HO request indicates an
immediate halt and if a request is active on the device, SP$DST
signals the writer task, via semaphore operation, to halt and
wait for another signal, via semaphore operation, to resume
output.

If the request does not specify an immediate halt, the halt

output flag in the device entry table is set, but no semaphore’
operations are performed. After the active request is completed,

the device is not scheduled again until the halt output flag 1is

reset by a Resume Output command. :

If the request specifies a class name rather than a device name,
then the class is marked halted. This means that SP$DST will not
schedule any more files in that class queue for printing on any
devices until a Resume Output command is entered to reactivate
the class queue. Any files currently printing at the time of the
Halt Output command continue to print.

Spooler 8-26 2270513-9701

SCI/Utilities Design

8.6.7.9 Resume Output (RO).

SP$DST resets the halted flag in the specified device table
entry. The user-specified number of pages is stored in the queue
entry for the 'request. A positive number causes pages to be
skipped; a negative number causes pages to be reprinted.

SP$DST signals the writer task to resume execution via semaphore
operation.

If the request specifies a class name rather than a device name,
then SP$DST marks the class as not halted. This allows SP$DST to
again schedule files in the specified class queue for printing on
devices in the class.

8.6.7.10 Verify Device or Class Name.

The requested operation determines whether the specified device
or class name currently exists in the SDT or CNT. SP$DST
searches the CNT and SDT to find +the device or class name
specified. If it is not found, a name error message is reported
through SPERR. Otherwise, no error is reported and processing
ends.

The verify request is generated by the task that assigns spooler
parameters, ASP, during the creation of a 1logical name with
resource type SP. It is also used by SPTASK to verify that the
device/class name specified is still valid.

8.6.7.11 Perform Copy Count Maintenance.

If a user requests multiple copies on a print request, the writer
task sends a message to SP$DST when each copy completes. This
message indicates that SP$DST is to reduce the number of copies
for the active entry on the specified device.

8.6.7.12 Find File Name.

This message type is processed by the procedure SPFFN. SPFFN
searches first the active devices for the specified spool 1ID. If
the specified entry is not found as an active entry, SPFFN then
searches the waiting queues. If the entry is still not found, an
error is returned. Otherwise, the pathname of ¢the file to be
printed is returned to the requesting task via the reply buffer.
The function provided by SPFFN is not used by any of the standard
DNOS tasks. However, this functionality is provided for wuser
programs to use if they need to.

2270513-9701 8=27 Spooler

SCI/Utilities Design

8.6.8 Shared Modules.

The modules described in this paragraph are used by the tasks
SPINIT and SP$DST. They must be linked into ©both tasks. The
modules are as follows:

¥ SPDCNT - Marks the CNT entry specified by the calling
parameter as a deleted entry. The queue headers are
also deleted.

¥ SPDIAG -~ Assembly language routine that interfaces
between the Spooler and the operating system PDT 1list.
When the device 1is found in that list, a spooler job-
local LUNO is assigned to it. The SDT entry is set to
indicate that the device is not busy and is not halted.

¥ SPDSDT - Deletes the specified entry in the SDT. The
device is marked deleted and the queue headers as well
as the active request are altered to indicate that there
is no request active, and none queued.

¥ SPIO - Routine that performs I/0 requests for a
specified record and record type.

¥ SPSDQD - Marks the specified queue entry deleted.

8.6.9 Internationalization.

The text of each message written to the system log is hard coded
in English in module SPCOMN.

8.7 SPOOLER DEVICE WRITER TASKS

A spooler device writer task is bid when the device is found to
be available, idle, and not halted, and an entry exists on the
device queue or on one of its associated class name queues. In
order to bid the writer task, SP$DST locates a task in the system
utility program file, .S$UTIL, with the task name consisting of
the first two characters of the device name followed by WRITER.

Device writer tasks have the following responsibilities:
¥ Requesting that SP$DST maintain the number of copies
¥ Maintaining the lines-per-page count
* Adding <carriage control, wunless the file has embedded

carriage control

Spooler 8-28 2270513-9701

i

SCI/Utilities Design .

¥ Requesting the mounting of new forms
The writer task terminates after servicing a single request.

The only device currently supported by the DNOS Spooler is the
line printer. LPWRITER services all 1line printers supported by
DNOS.

8.7.1 Invoking LPWRITER.

SP$DST bids LPWRITER in the spooler job and passes information in
the PARMS 1list. VLPWRITER is passed 3 values: Bid parm 1 1is
XXYY, where XX is the shared luno assigned to the Spooler queue
file and YY is an index into the device table record; Bid parm 2
is DDDD, where DDDD is the device table record number. This is
where LPWRITER finds pointers to the output request that 1is
currently active on the device.

8.7.2 1Initialization.

Prior +to printing a file, the Spooler queue file on disk must be
opened and the device table read to obtain current information
about the device. The queue entry for the request that is active
on the device is then read into memory.

If the form currently mounted on the printer is not the form
specified in the request, LPWRITER calls SPFORM to interface with
the operator interface subsystem. No further action is taken on
the request until SPFORM returns control to LPWRITER.

Following the call to SPFORM, the status of the device is checked
to determine whether or not the active request has been killed.
If so, LPWRITER closes the queue file, and formats and sends a
message to SP$DST indicating that LPWRITER is done. LPWRITER
then issues an SVC to terminate the task.

Procedure SPFORM interacts with the operator interface subsystem
when forms need to be changed on a printer. A general operator
request is written on .S$0PER, the global channel owned by the
OPERATOR task. The format of the message is discussed in the
section of this manual entitled Operator Interface.)
SPFORM constructs a message with the following characteristics:

¥ Response required

¥ Job ID as the identifier

¥ Prompt count of one

* Message: MOUNT FORM = form name ON device name.

2270513=9701 8-29 Spooler

. SCI/Utilities Design

¥ Prompt: FORM MOUNTED

¥ Name of the requested form as the default value for the
prompt

If the reply for the operator interface subsystem indicates that
the specified job ID is not valid, the operation is tried again
without specifying a job ID.

If the operator responds negatively, SPFORM sends a modify output
request to SP$DST to tell SP$DST to requeue the file to the
device or class for which it was previously queued.

If the operator responds positively, SPFORM sends a modify
spooler device request to SP$DST ¢to notify SP$DST that the
operator has changed the form. If the operator specifies that
the form mounted 1is one other than the form specified for the
file, SPFORM then sends a modify output request to SP$DST to tell
SP$DST to requeue the file.

Finally, SPFORM closes and releases its LUNO to the operator
interface and returns to SPLPWT.

8.7.3 Processing a Print Request.

LPWRITER 1issues an Open File SVC for the device LUNO, prints a
banner sheet if requested, opens the input file, and reads the
first record. Carriage control information is extracted from the
first record. The procedure SPCOPY prints one copy of the file
or files. LPWRITER calls SPCOPY repeatedly for multiple copies.

SPCOPY is a loop that consists of the following:

¥ Writing a record to the device

¥ Testing the semaphore associated with this device. If
SP$DST has signaled LPWRITER, the appropriate action is
taken.

¥ Reading the next record from the input file
¥ Reporting input file I/O0 errors

This loop is repeated until the EOF is encountered in the input
file or until the request is aborted.

When LPWRITER 1is signaled, the device table entry is reread and
the following processing is done:

Spooler 8-30 2270513=9701

SCI/Utilities Design

¥ If the termination flag SDTFLG.SDFTRM or the kill flag
SDTFLG.SDFKIL is set, LPWRITER closes the input file,
the device and the disk queue file, releases the
associated LUNOs, sends a completion message to SP$DST,
and issues an SVC to terminate the task.

¥ If the halt flag SDTFLG.SDFHLT is set, LPWRITER waits
for a signal via semaphore operation indicating a resume
output. The queue entry 1is read again and the page
number is changed to reflect the page forward or page
back information in the resume output message. The
input file is repositioned, if necessary, and execution
continues in the inner 1loop.

SPCOPY builds the SVC block to write a line to a printer. SPPRIO
interfaces with the DSR. If the error code returned from the SVC
is a device error, the write 1is retried as many as 10 times
before a device error is returned to SPCOPY.

NOTE

The DSR error code 6 is assumed to be a
device error. This is hard coded in- SPPRIO,
The DSR open error code >3B is assumed to be
an open access privilege error. This is hard
coded in SPPRIO.

8.7.4 Error Processing.

Routine SPLOGM writes various error messages to the system log.
The messages are of the following format:

%% LPWRITER userID jobname ERROR ec:file/device

where:
userID is the user's ID.
jobname is the name of the job associéted ‘with the
active request.
ec is an error code.

file/device is the name of the file or device on which the
error occurred.

2270513-9701 8-31 v Spooler

SCI/Utilities Design

8.7.5 Termination.

Normal termination of LPWRITER occurs in the modules SPLPWT and
SPCOPY and consists of the following steps:

¥ Closing the input file and releasing LUNO
¥ Closing the device LUNO
¥ Closing the Spooler queue file LUNO

* Calling'SPLOGM to write an error message to the system
log, if appropriate

* Formatting and sending a writer task completion message
to SP$DST and waiting for the reply. This message
contains the information SP$DST needs to build an
accounting record.

* Terminating LPWRITER

A completion message is formatted and sent to SP$DST and the task
is terminated. When the termination is because of an I/0 error
in the file being printed, an error message is written to the
system log.

8.7.6 Internationalization.

In procedure SPFORM, the following English messages are
constructed for the general operator request message:

MOUNT FORM=
ON
FORM MOUNTED
In SPLOGM, the fixed portion of the following message written to
the system log is hard coded:
#%%x%] PWRITER userID jobname ERROR ec:file/device

The block character definition for the banner sheet in SPCHAR 1is
in English characters.

Spooler 8§-32 2270513=9701

SCI/Utilities Design

8.7.7 The Banner Sheet.

Pascal function SPBANN is the module that displays a user-
requested banner sheet. The banner sheet is driven from the
contents of the disk file .S$SDTQUE.S$BANNER. The banner sheet
will examine the records of the disk file for command records.
These command records and their indicated functions are:

* £JOB ‘ - Display wuser's job mname 1in large block
letters
¥ AUSER - Display user's ID in large block letters
¥ AFILE - Display requested print file name
NOTE

If output is directed to a Spooler 1logical
name, that name 1is printed in large block
letters; otherwise a single line is
displayed.

*# ATEXT,CCCCCCCC -~ Display characters 'CCCCCCCC' in large
block letters

NOTE

£TEXT must be immediately followed by a comma
or the record is ignored. The next 8
characters will be displayed in large block
letters.

* £DATE - Display date and time

The standard banner sheet will consist of #J0OB, #AUSER, #AFILE, and
ZDATE command records. Any record that is not a command record
will be echoed to the output device. Using this feature and the
£TEXT command record, the user can easily use the text editor on
.S$SDTQUE.S$BANNER to create a custom banner sheet.

2270513-9701 8-33 Spooler

SCI/Utilities Design

8.8 SPTASK

SPTASK acts as an interface between a task in the user's job and

a logical name created with spooler (SP) resource type. This
allows wuser tasks to assign a LUNO to a Spooler logical name
instead of to the actual device. When the LUNO 1is released,

SPTASK writes a message to SP$DST on the channel .S$DSTCHN. The
message requests that the file be output to the device or class
name specified when the logical name was created.

SPTASK is written in assembly language. Functionally it performs
exactly like the line printer DSR does.

8.8.1 1Invoking SPTASK.

When a LUNO is assigned to a logical name with resource type SP,
SPTASK is bid in the user's job by the operating system task IOU.

A unique SPTASK is invoked each time a LUNO is assigned ¢to a
logical name with resource type SP. For example, if a user has
created a logical name SYSOUT as a Spooler resource type, and
assigns two LUNOs to SYSOUT, there are two separate SPTASK tasks,
two temporary files, and two separate output requests.

When SPTASK is bid, it is passed the IRB that is requesting an
Assign LUNO operation to the user's logical name. See the Data
Structure Pictures section of the DNOS System Design Document for
details of the IRB format. Associated with the IRB is the set of
parameters describing the print file options defined with the
logical name. These will be used later.

8.8.2 Initialization.

During the initialization phase, SPTASK issues an SVC to get the
job and task IDs in which it is executing. This information is
used to construct a pathname in the following format:

«S$jjijte
where:
jjjj 1is the ASCII representation of the internal hexadecimal
job 1ID.
tt is the ASCII representation of the internal hexadecimal

task ID.

This name is used in the termination phase of SPTASK to rename
the temporary file to which output has been spooled.

Spooler 8-34 2270513-9701

SCI/Utilities Design

SPTASK then issues a Master Read to .S$SPOOL, the task-local
channel across which all spooled output 1is received. If the
first message on the channel 1is not an Assign, a message is
written to the system log and SPTASK terminates.

When the Assign is received, SPTASK sends a Verify Device/Class
Name message to SP$DST via the channel .S$DSTCHN to verify that
the device or class specified as one of the parameters is still a
device or class that is known to the spooler. If it 1is not,
SPTASK puts an error >21 into the Assign LUNO call block, does a
Master Write to complete the Assign LUNO processing, and then
terminates. :

If the device/class is valid, SPTASK issues an Assign LUNO for a
temporary file with autocreate. If the file 1is opened without
error, SPTASK then issues a Master Write to .S$SPOOL to complete
the Assign LUNO processing. :

8.8.3 Major Loop.

The major loop of SPTASK consists of Master Read, I/0 to the
temporary file, and Master Write. This loop is repeated until
SPTASK receives a request to release the .S$SPOOL LUNO (that 1is,
a release LUNO from the user task to its logical- name).

8.8.4 Termination.

When the release LUNO is received, SPTASK writes a close EOF to
the temporary output file. The file is then renamed .S$jjjjtt.
A spooler message is constructed to place the file on an output
queue. The message specifies that the file be deleted after it
is printed. These parameters from the Assign LUNO IRB are used
to build the Spooler message to request output service on the
file. ’ ‘

SPTASK writes the message to .S$DSTCHN and waits for the reply.
If an error is returned, a message is written to the system 1log.

NOTE

The task-=local LUNO for «.S$DSTCHN is
specifically assigned to >77.

Having put the output request on a queue, SPTASK then begins
termination processing. A Master Write to .S$SPOOL <clears the
channel. .S$SPOOL is then closed and the LUNO is released.
.S$DSTCHN is closed and its LUNO is released. SPTASK then issues
an SVC to terminate the task.

2270513-9701 8-35 Spooler

SCI/Utilities Design

8.9 SHOW OUTPUT STATUS

SOS executes in the user's job. It displays items queued for
output for each device and each class name. It also displays
that status of each device. The user specifies the following
options: ‘

¥ All devices knownl to the Spooler subsystem, or a
specific device or class, the status of that device, and
the currently mounted form

¥ All requests or the requests queued for the requester's
user ID, including the remaining number of copies to be
printed

SOS is written in Pascal, and requires read access to the Spooler
queue file. ‘
8.9.1 Invoking SOS.
SO0S is invoked by SCI with the following PARMS list:
1. Pascal stack parameter - A value of 1000 is sufficient
2. Pascal heap parameter - A value of 1000 is sufficient
3. Device/class name - Character string. A null character
string for this wvariable is interpreted as a request
that all queues be displayed.
y, User.ID - Character string. A null character vstring

for this variable is interpreted as a request that all
entries in each queue be displayed.

8.9.2 Processing.

SOS opens the listing and Spooler queue files. The <c¢lass name
records and the device table records are sequentially read.

The CNT is searched for the specified class name. If it is not
found, the name supplied is assumed to be a device name. First
the device queues and then the class name queues are displayed.

Spooler 8-36 2270513=-9701

SCI/Utilities Design

8.9.3 Error Processing.

Errors in SOS are processed through UTCHEK, the SCI error
reporting interface for Pascal.

8.9.4 Internationalization.

In the procedure SOPHDR, the following headings for the queue
list are hard coded in English:

DEVICE=XXXXXXXX
STATUS= EXCLUSIVE

OR = QUEUE ONLY
OR = HALTED
OR = SHARED

FORM=FFFFFFFF
CLASS NAMES=()

ST/ USER FORM SPOOL LOGICAL NAME OR
PRI ID ID FILE NAME
8.10 PF
PF executes in the wuser's job. It accepts user information

through SCI to format and send spooler messages to SP$DST, in the
spooler job, for the following requests: :

¥ Print Fiies

¥ Halt Output

¥ Resume Output

¥ Kill Output

¥ Modify Output

¥ Modify Spooler Device

PF is written in Pascal.
8.10.1 1Invoking PF.

PF is bid by SCI and accepts parameters through the PARMS 1list.
These positional parameters are as follows:

2270513-9701 8-37 Spooler

SCI/Utilities Design

Position Parameter
1 Pascal stack size
Pascal heap size
3 Command type (integer)

1: Print File command

2: Halt Output command
3: Resume Output command
J: Kill Output command
5: Modify Output at Device command
6: Modify Spooler Device command
7: Build synonym for MSD prompt
4 Spool ID
5 Device or class name
6 Class name list
7 Delete SDQ entry? (Y/N)
8 Form name
9 File pathname
10 ANSI? (Y/N)
11 Delete after print? (Y/N)
12 Banner sheet? (Y/N)
13 Lines per page
14 Number of copies (integer)
15 Page count (integer, used only by
Resume Output command)
16 Immediately or at EOF (integer, used only by
Halt Output command)
17 Priority (integer)
18 Available exclusive to Spooler? (Y/N)
19 Shared? (Y/N)

8.10.2 Processing.

The first part of PF performs processing common to all PF
commands. The device or class name in the PARMS 1list is stored
in the message buffer. If the form name PARM is blank, STANDARD
is used in the message buffer. The spooler 1D, if present, 1is
saved. An SVC is issued to get the job name and ID, the user ID,
and the job priority.

After processing the particular function code, PF assigns a LUNO
to and opens .S$DSTCHN. The message is written to the channel.
An error code is set, based on the reply received from .S$DSTCHN.
The channel is then closed and the LUNO is released. UTPUER is
called to return the error code and to terminate PF.

Spooler 8-38 2270513-9701

SCI/Utilities Design

8.10.3 Error Processing.

Errors in PF are processed through UTCHEK, the SCI error
reporting interface for Pascal.

8.10.4 Internationalization.

In PF, if no form is specified on the PARMS list, the English
character string STANDARD is used.

2270513-9701 8-39/8-40 Spooler

SCI/Utilities Design

SECTION 9

FILE MAINTENANCE UTILITIES

9.1 OVERVIEW

DNOS file maintenance utilities provide the following functions:

¥ Copy a hierarchical structure to another

structure

¥ Copy the data in a hierarchical
sequential structure, and rebuilds
structure from the sequential structure

¥ Verify the two kinds of copy operations

hierarchical

structure ¢to a

hierarchical

¥ List the elements of a hierarchical structure

¥ Map the contents of a disk volume

*# Delete all elements of a hierarchical structure

File maintenance utilities are written in assembly language.

NOTE

Refer to the DNOS System Design Document and

to the DNOS Systems Programmer's Guide for

discussions of disk structures

and files.

The characteristics of those entities are

integral to the design of
maintenance utilities.

9.2 MOVE TASKS

file

A set of five tasks provides the following functions:

* Copy directory (CD) - Copies a hierarchical structure to

a hierarchical structure

2270513-9701 9-1

File Maintenance

SCI/Utilities Design

* Verify copy (VC) - Compares two hierarchical structures
and reports the results

Backup directory (BD) - Copies a hierarchical structure
to a sequential structure

* Restore directory (RD) -~ Recreates a hierarchical
structure from data ©previously copied to a sequential
structure (by BD)

¥ Verify backup (VB) - Compares a hierarchical structure
to backup data in a sequential structure and reports the
results

Each of these tasks is a collection of common modules and unique
modules in the DSC.DP.CD directory. 1In order to avoid confusion,
the group of tasks is called the move tasks rather than the CD
tasks, since CD is the name of one of the tasks.

Directory file structures and the files themselves are processed
according to entries in the control file. If no control file 1is
provided, all &elements of the directory are processed, with the
exception of temporary files, and certain system files, as noted
in the paragraph entitled Design Concepts.

NOTE
The syntax and use of the control file is

documented in the DNOS System Command
Interpreter (SCI) Reference Manual.

Move tasks execute either interactively or in batch mode except
when a multivolume medium is used. The message to mount the next
volume must be written to an interactive terminal.

9.2.1 Design Concepts.

Each of these tasks 1is software privileged and replicatable.
Exclusive access to all files is required. Once the file has
been processed, however, the file is released.

Each move task is designed to process files that are elements of
a DNOS directory structure. See the data structure pictures
section of the DNOS System Design Document for details of the
following data structures processed by move tasks:

¥ Directory overhead record (DOR)

¥ File descriptor record (FDR)

File Maintenance 9-2 2270513=9701

SCI/Utilities Design

Channel descriptor record (CDR)
¥ Alias descriptor record (ADR)
¥ Key indexed file key descriptor record (KDR)

"Files or subdifectories with the following names are not
automatically processed. Only when specified by directive in the
control file are they processed. The names are fixed 1in the
code.

¥ S$ROLLD
¥ S$CRASH
¥ VCATALOG
* S$DIAG

* S$SDTQUE

These names are stored in the data structure SPFMST, which is
processed as an exclude list, regardless of the context in which
the include/exclude 1list is processed. SPFMST is searched only
if the name is not found in the include/exclude 1list.

The specific files are excluded because, in general, the data is
considered transient, or because processing the file may result
in system failure because of the requirement for exclusive access
to the file. For instance, if the system swap file 1is ©being
copied and the move task needs more memory, a deadlock results --
the Get Memory SVC requires that the move task be swapped out.

The FDR of a directory file resides in the parent directory. The
VCATALOG FDR resides within the VCATALOG directory file. The
VCATALOG FDR is never processed in the first-level directory,
since processing it initiates an infinite loop. When the move
task encounters a directory FDR, it stops processing the current
directory and starts processing the directory associated with the
FDR. In the case of a first level VCATALOG FDR, the associated
directory is the one currently being processed.

Under no circumstances is a temporary file copied, even if there
is a directive in the control file. Information in the FDR
determines whether or not the file is temporary.

Directory files are not copied when a hierarchical structure is
copied. If. the destination directory does not exist, the
hierarchy is duplicated by creating an empty directory of the
same size. FDRs in this directory are rewritten as files and/or
subdirectories are copied. When space is allocated for a file or
subdirectory, the FDR is built in the new directory file. With
this scheme, when a system crash occurs, no more than one FDR

2270513=9701 9-3 File Maintenance

SCI/Utilities Design

that does not have a corresponding file is 1left in the new
directory.

9.2.1.1 Structure of Tasks.

Each move task uses routines in the .SCI990.S$0OBJECT directory.
That library appears in each of the link streams.

Each task consists of one task segment. The move tasks 1include
the following categories of modules:

* CD - Highest-level control routine, common to all move
tasks. This module contains the transfer vector, and
must be linked first in each task.

¥ Common modules - Routines that are identical regardless
of the function being performed

* xxNAME modules - Modules of common design and/or
purpose. XX 1is replaced with the two-character task
name to form the name of the module to be 1linked 1into
that task. For example, each task has an xxDOR module,
and VBDOR is the name of the module linked in the verify
backup (VB) task. Each xxDOR module processes a
directory overhead record as required by the function of
the move task xx.

®# Modules unique to the task
¥ Modules from the UTCOMN directory
9.2.1.2 1I/0.

S$ routines are used to access PARMS on the bid statement and to
write messages to the listing file.

The backup tasks, BD, RD, and VB, allow the wuse of multiple
volumes when the sequential access name specifies a device. The
device can be either a disk or a magnetic tape. If it is a disk,
BD allocates an image file that is extended, as required, up to
the available space on the disk. Blocked records are written to
this image file. A minimum block size of 2304 bytes 1is used;
2304 1is the smallest integer of which 256 (sector size of DS300,
DS80,WD-800, and CD1400) and 288 (sector size of DS200, DS50,
DS10 and FD1000) are factors. Choosing this block size ensures
that either sector size is blocked efficiently. The block size
used is determined by the amount of free memory available for
buffer space. BLKSIZ is set to the highest multiple of 2304 that
is less than or equal to the amount of available memory.

File Maintenance 9-4 2270513-9701

SCI/Utilities Design

Blocking.

When the blocking option is specified in a BD operation, physical
records are blocked before they are written to the destination
file or device. This provides more efficient use of space on the
destination device.

When Dblocking is specified, records are packed into buffers
BLKSIZ bytes in length. (If no block size 1is specified, a
default value of 9600 bytes is used. When BLKSIZ is 9600 bytes,
approximately 10 percent of a magnetic tape 1is used for
interrecord gaps.)

Each blocked record starts on a word boundary, and is preceded by
a two-byte count. This count is the byte count of the record,
except in the following special cases:

¥ A count of zero marks the end of useful data in a
(short) block.

¥ A count of >FFFF marks the EOF.

* A count of >FFFE marks block of data read using direct
I/0, rather than record by record.

Records may span blocks.
The first physical record of the sequential file is a header

record. It is a 160-byte record that contains the following
information:

Byte Data

0-5 ASCII text **HDR*, Identifies a header record
to RD & VB.

6-13 Binary creation data. Same format as returned
by the Get Time and Date SVC.

14-15 Binary volume number.

16-17 Binary block size BD used.

18-19 Binary sector size of source directory

20=21 Flags
Bit 0=1 => made with a system that has
new EOT handling.
Bit 1=1 => made by BDD.
22-63 ASCII time and date of backup.
6U4-79 ASCII text identifying the volume number.
80-95 ASCII text identifying the sector size.
96-159 ASCII text identifying the source directory
pathname.
160-161 Binary fast flag. = 0 if NOFAST was in effect
for the backup. -1 if FAST was in effect.

2270513-9701 9-5 File Maintenance

SCI/Utilities Design

Header Placement and Volume Numbers.

The task's general buffer area 1is wused for blocking buffer
memory. As a rule, GETMEM manages this space, but in the case of
BD, the wvalues of BUFFER and MEMORY are altered to protect the
blocking buffer. (The variables BUFFER and MEMORY are discussed
later in this section.)

Double Buffering.

In order to improve performance, BD and RD double buffer when
there is enough memory available to allocate two buffers of the
specified block size. The read and write routines wait for the
preceding read/write if preparation of the second buffer is
complete before the read/write of the previous buffer is
complete.

Double buffering is not attempted unless the block option is
specified.

The VB task does not double buffer I/0, but two buffers are used
to load equivalent source file and destination file ©blocks 1into
memory for the compare. Memory must be available for both
buffers or the VB task terminates.

Direct I/O0.

For performance reasons, some move tasks wuse direct disk 1I/0.
Direct disk I/O is discussed in detail in the Supervisor Call
(SVC) Reference Manual.

VC does no direct disk I/0.

BD reads the source directory using direct disk I/0, when the
destination is a disk device. A destination with an access name
of the format DSmn, where m and n are digits, is assumed to be a
disk device.

RD wuses direct disk I/0 to write to the destihation when the
sequential medium is a disk device (DSmn). ’
NOTE
BD and RD code contains comments that refer
to direct I/0 on the sequential medium. In

DNOS, this I/O is blocked file I/0, using
very large buffers.

VB reads the file (hierarchical structure) using direct disk I/0,
when the sequential medium is a disk device.

File Maintenance 9-6 2270513=-9701

SCI/Utilities Design

CD uses direct disk I/0 when it does not jeopardize the integrity
of the destination file. Direct disk I/0 is not used in the
following cases:

* Copying a program file to an existing program file.
Both program files are handled, not as one stream of
data, but as a collection of tasks, procedures and
overlays.

¥ Copying a program file that contains wunused space
because tasks, procedures, and/or overlays have been
deleted from the program file. One of the functions of
CD is to compress program files, and direct disk 1I/0
does not accomplish this goal.

Files that are not program files are subjected to additional
tests to determine whether or not to use direct disk I/0. Stated
in general terms, using direct disk I/0 must not result in a file
with an incorrect internal structure. Direct disk I/O0O 1is not
used if one or more of the following conditions would be created
in the output file:

¥ Unused space where a physical record should start

¥ A physical record that violates the rule that any
physical record spanning allocatable disk units (ADUs)
must begin on an ADU boundary. (A physical record that
begins in the middle of an ADU must not extend beyond
the end of that ADU.)

Figure 9-1 describes the logic used to determine whether or not
the current