
DNOS~

Systems
Programmer's

Guide
Part No. 2270510·9701 ·C

March 1985

TEXAS INSTRUMENTS

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES

Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

DNOS Systems Programmer's Guide (2270510-9701 *C)

Original Issue August 1981
Revision .. October 1982
Revision .. November 1983

Change 1 March 1985

Total number of pages in this publication is 374 consisting of the following:

PAGE
NO.

CHANGE
NO.

Cover 1
Effective Pages 1
Eff. Pages (Cont.) 1
iii - iv 1
v-vii 0
viii 1
ix - xviii 0
1-1 - 1-5 0
1-6 1
1-7 -1-12 0
1-13-1-14 1
1-15 - 1-28 0
2-1 - 2-8 0

PAGE
NO.

CHANGE
NO.

2-9 - 2-10 1
2-11 - 2-56 0
3-1 - 3-11 0
3-12 1
3-13 - 3-29 0
3-30 1
3-31 - 3-32 0
3-33 1
3-34 - 3-59 0
3-60 1
3-61 - 3-86 0
3-87 1
3-88 - 3-90 0

PAGE
NO.

CHANGE
NO.

3-91 1
3-92 0
4-1 - 4-6 0
5-1 - 5-15 0
5-16 1
5-17 - 5-68 0
6-1 1
6-2 - 6-8 0
7-1-7-10 0
8-1 - 8-12 0
9-1 - 9-8 0
9-9 1
9-1 0 - 9-1 2 0

The computers, as well as the programs that TI has created to use with them, are tools that
can help people better manage the information used in their business; but tools-including
TI computers-cannot replace sound judgment nor make the manager's business
decisions.

Consequently, TI cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

1981,1982,1983,1985, Texas Instruments Incorporated. All Rights Reserved.

Printed in U.S.A.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

~ Manual Update

MANUAL: DNOS Systems Programmer's Guide (2270510-9701 *C)

MCR/CHANGE NO.:

EFFECTIVITY DATE:

MCR 004724/Change 1

20 March 1985

This change package contains information necessary to update your current manual. Please
remove the obsolete pages from your existing manual and replace them with the changed pages
as follows:

Remove
Obsolete Pages

Cover/Manual Revision History
iii - iv
vii - viii
1-5 - 1-6
1-13 -1-14
2-9 - 2-10
3-11 - 3-12
3-29 - 3-30
3-33 - 3-34
3-59 - 3-60
3-87 - 3-88
3-91 - 3-92
5-15 - 5-16
6-1 - 6-2
9-9 - 9-10
User's Resp.lBus. Reply
Inside Cover/Cover

Insert
Change 1 Pages

Cover/Effective Pages
iii - iv
vii - viii
1-5 - 1-6
1-13 -1-14
2-9 - 2-10
3-11 - 3-12
3-29 - 3-30
3-33 - 3-34
3-59 - 3-60
3-87 - 3-88
3-91 - 3-92
5-15 - 5-16
6-1 - 6-2
9-9 - 9-10
User's Resp.lBus. Reply
Inside Cover/Cover

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES

Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

ONOS Systems Programmer's Guide (2270510-9701 *C)

Continued:

PAGE
NO.

CHANGE
NO.

1 0-1 - 1 0-8 0
11-1-11-12 0
12-1 . 12-14 0
A-l . A-14 0
Index-l ·lndex-l0 0
User's Response 1
Business Reply 1
Inside Cover 1
Cover 1

PAGE
NO.

CHANGE
NO.

PAGE
NO.

CHANGE
NO.

I\.)
I\.)
........
o
(J1

o
<b
........
o

0
::T
m
:::J

CO
CD ..

DNOS Software Manuals
This diagram shows the manuals supporting ONOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

ONOS Concepts and Facilities
2270501·9701

ONOS Operations Guide
2270502·9701

High-Level
Language Users:

COBOL Reference Manual
2270518·9701

ONOSCOBOL
Programmer's Guide
2270516·9701

ONOS Performance
Package Documentation
2272109·9701

TI Pascal Reference Manual
2270519·9701

ONOS TI Pascal

All DNOS Users:

ONOS System Command
Interpreter (SCI) Reference Manual
2270503·9701

ONOS Text Editor
Reference Manual
2270504·9701

Assembly Productivity
Language Users: Tools Users:

990199000 Assembly ONOS Sort/Merge
Language Reference User's Guide
Manual 2272060·9701
2270509·9701

TIFORM
ONOS Assembly Reference Manual
Language 2234391·9701
Programmer's Guide
2270508·9701 ONOS Query·990

User's Guide
ONOS Link Editor 2276554·9701
Reference Manual
2270522·9701 ONOS Data Base

ONOS Supervisor Call
Management System
Programmer's Guide

Programmer's Guide (SVC) Reference 2272058·9701
2270517·9701 Manual

2270507 ·9701 ONOS Data Base
FORTRAN·78 Reference Administrator User's
Manual Guide
2268681·9701 2272059·9701

ONOS FORTRAN·78 Data Dictionary
Programmer's Guide User's Guide
2268680·9701 2276582·9701

MATHSTAT·78 ONOS TIPE
Programmer's Reference Reference Manual Kit
Manual 2308868·0001
2268687·9701

ONOS TIPE
FORTRAN·78ISA Security Exercise Guide Kit
Extensions Manual Managers: 2308869·0001
2268696·9701

TI BASIC Reference Manual ONOS Security
ONOS C.:JBOL Program
Generator User's Guide

2308769·9701 Manager's Guide 2234375·9701
2308954·9701

RPG II Programmer's
Guide
939524·9701

ONOS Messages and
Codes Reference Manual
2270506·9701

ONOS Reference Handbook
2270505·9701

Communications
Software Users:

ONOS ONCS/SNA
User's Guide
2302663·9701

ONOS ONCS
Operations Guide
2302662·9701

ONOS ONCS 914A
User's Guide
2302664·9701

ONOS 3270 Interactive
Communications Software
(ICS) User's Guide
2302670·9701

ONOS 3780/2780
Emulator User's Guide
2270520·9701

ONOS ONCS System
Generation Reference
Manual
2302648·9701

ONOS ONCS X.25
Remote File Transfer
(RFT) User's Guide
2302640·9701

ONOS Remote Terminal
Subsystem (RTS)
User's Guide
2302676·9701

ON OS Distributed Network
110 (ONIO) User's Guide
2308793·9701

ONOSCommon
Communications Utilities
2308783·9701

ONOS Master Index to
Operating System Manuals
2270500·9701

Systems
Programmers:

ONOS System Generation
Reference Manual
2270511·9701

ONOS Systems
Programmer's Guide
2270510·9701

ROM Loader User's Guide
2270534·9701

Source
Code Users:

ONOSSystem
Design Document
2270512 ·970 1

ONOS SCI and Utilities
Design Document
2270513·9701

DNOS Software Manuals Summary

Concepts and Facilities
Presents an overview of ONOS with topics grouped by operating system functions. All new users (or
evaluators) of ONOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a ONOS system. Includes detailed instructions on how to use each
device supported by ONOS.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
a detailed presentation of all SCI commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on ONOS and describes each of the editing commands.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by ONOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Master Index to Operating System Manuals
Contains a composite index to topics in the ONOS operating system manuals.

Programmer's Guides and Reference Manuals for Languages
Contain information about the languages supported by ONOS. Each programmer's guide covers oper­
ating system information relevant to the use of that language on ONOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Documentation
Describes the enhanced capabilities that the ONOS Performance Package provides on the Mode19~/12
Computer and Business System 800.

Link Editor Reference Manual
Describes how to use the Link Editor on ONOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

DNOS System Generation Reference Manual
Explains how to generate a DNOS system for your particular configuration and environment.

User's Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

User's Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution
under DNOS.

Systems Programmer's Guide
Discusses the ONOS subsystems and how to modify the system for specific application environments.

ROM Loader User's Guide
Explains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNOS system, SCI, and the utilities.

DNOS Security Manager's Guide
Describes the file access security features available with DNOS.

iv Change 1 '2270510-9701

Preface

This manual discusses the functional characteristics of the Texas Instruments Distributed
Network Operating System (DNOS) and is intended for the systems programmer. It provides
information required for modifying the DNOS system to meet the specific needs of an
applications environment. Directed to object-level implementation, this manual is not a detailed
guide for the user who has access to source code.

This manual contains the following sections and appendixes:

Section

1 DNOS System Overview - Discusses the structure, flow, and loading of the system and
the distinctive DNOS subsystems. The subsystems described are job management,
segment management, name management, and interprocess communication (I PC).

2 Disk and File Organization - Describes the files that DNOS supports and the disk
structures that support the files.

3 Extending SCI - Describes the System Command Interpreter (SCI), the use of SCI
primitives, and the procedure for adding commands to support a specific applications
environment.

4 Writing an SVC Processor - Explains the procedure for writing supervisor call (SVC)
processors for applications-oriented SVCs and for including these processors in a
custom-generated system.

5 Writing a DSR - Describes the input/output (110) system and how to write a device
service routine (DSR). This section also describes the interrupt types and the DSR
support routines.

6 DNOS Accounting System - Discusses the capabilities and use of the accounting
system.

7 File Security - Explains what a programmer needs to know about a system that
supports file security.

8 Analyzing System Problems - Describes system crashes that occur during system
loading and after the system begins executing. This section discusses both the system
crash dump and utility XANAL, which lists the data in the dump. It also explains how to
force a system crash.

2270510-9701 v

Preface

Section

9 Adding Error Messages - Discusses error processing and explains how to add error
messages required for user-supplied system programs.

10 International Considerations - Explains the method and results of changing the
country code of the system and how to customize DNOS for a particular country.

11 Differences Between DX10 and DNOS - Describes the differences between DX10 and
DNOS as they relate to migration of DX10 to DNOS.

12 Special Features of DNOS - Describes some special features of DNOS and how they
are used.

The DNOS software manuals shown on the support manual diagram (frontispiece) contain related
information. The ROM Loader User's Guide (part number 2270534-9701) contains information
about how to load DNOS from devices accessible on the TILlNE* peripheral bus and on the
communications register unit (CRU).

* TILINE is aregistered trademark of Texas Instruments Incorporated.

vi 2270510-9701

Paragraph

1.1
1.1.1
1.1.2
1.1.2.1
1.1.2.2
1.1.2.3
1.1.2.4
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10
1.3.11
1.3.12
1.4
1.4.1
1.4.2
1.4.3
1.5
1.5.1
1.5.1.1
1.5.1.2
1.5.2
1.5.3
1.5.3.1
1.5.3.2
1.5.3.3
1.5.3.4
1.5.3.5

2270510·9701

Contents

Title Page

1 - DNOS System Overview

DNOS System Structure .. 1-1
System Memory Mapping ... 1-3
Fundamental Structure of DNOS .. 1-5

Job Structure ... 1-5
Tasks ... 1-5
Queue Servers .. 1-6
System Files ... 1-6

Channels for DNOS Functions .. 1-9
System Flow .. 1-10

Initial Program Load (lPL) .. 1-11
System Idle State .. 1-11
Task Activation .. 1-11
Task Scheduling ... 1-11
Time Slicing ... 1-11
XOP Processing ... 1-11
Execution Priorities .. 1-12
Dynamic Modification of Run-Time Parameters 1-13
Task Termination .. 1-14
Clock Interrupt Processor ... 1-14
Internal Interrupt Processor .. 1-14
System Crash Routine .. 1-15

I PL and System Loaders ... 1-15
ROM Loader ... 1-16
Program Image Loader .. 1-16
System Loader ... 1-17

DNOS Subsystems ... 1-18
Job Management .. 1-18

Supervisor Call (SVC) ... 1-18
SCI Commands .. 1-19

Segment Management .. 1-19
Name Management .. 1-21

Logical Names .. 1-21
Job Temporary Files .. 1-21
Fi Ie Concatenation ... 1-21
Multivolume File Capability .. 1-23
Stages of Name Definition ... 1-23

vii

Contents

Paragraph

1.5.4
1.5.4.1
1.5.4.2
1.5.4.3
1.5.4.4
1.5.4.5

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.1.3
2.1.1.4
2.1.2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4
2.1.3
2.1.3.1
2.1.3.2
2.1.3.3
2.1.3.4
2.1.3.5
2.1.3.6
2.2
2.2.1
2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.2.4
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.1.3
2.3.1.4
2.3.1.5
2.3.1.6
2.3.2
2.3.3
2.3.3.1
2.3.3.2
2.3.4
2.3.4.1

viii

Title Page

Interprocess Communication (I PC) 1-24
Channel Definition ... 1-24
Channel Creation .. 1-25
Channel Characteristics .. 1-25
IPC Supervisor Calls (SVCs) .. 1-27
I PC SCI Commands ... 1-27

2 - Disk and File Organization

File Organization .. 2-1
File Types .. 2-1

Sequential Files .. 2-1
Relative Record Files .. 2-2
Key Indexed Files (KIFs) .. 2-2
Special Usage Files ... 2-3

File Protection and Sharing ... 2-3
Delete and Write Protection ... 2-3
Record Locking ... 2-4
Access Privi leges ... 2-4
Special Usage File Protection ... 2-4

File Characteristics ... 2-5
Record Blocking ' 2-5
Saving Disk Space .. 2-6
Immediate Write .. 2-6
Temporary Attribute ... 2-7
Expandability ... 2-7
End-of-File (EOF) .. 2-7

Disk Organization ... 2-8
Disk Characteristics ... 2-8
Disk Space Allocation to Files ... 2-9
Physical Organization of a DNOS Disk 2-10

Volume Information .. 2-10
Bit Map ... 2-15

Displaying and Modifying Absolute Disk Addresses 2-15
Disk File Structures .. 2-15

Directory File .. 2-16
Directory File Characteristics " 2-16
File Descriptor Record (FDR) ... 2-18
Alias Descriptor Record (ADR) .. 2-23
Channel Descriptor Record (CDR) 2-25
Key Descriptor Record (KDR) ... 2-30
Example of a Dump Directory .. 2-32

Sequential Files ... 2-32
Relative Record Files ... 2-37

Unblocked Relative Record Files 2-37
Blocked Relative Record Files .. 2-40

Key Indexed Files (KIFs) ... 2-40
KI F Keys .. 2-40

2270510-9701

Paragraph

2.3.4.2
2.3.4.3
2.3.4.4
2.3.4.5
2.3.4.6

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.4.1
3.4.4.2
3.4.4.3
3.4.4.4
3.4.4.5
3.4.4.6
3.4.4.7
3.4.4.8
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.8.1
3.5.8.2
3.5.9
3.5.10
3.5.11
3.5.12
3.5.13
3.5.14
3.5.15
3.5.16
3.5.17
3.5.18

2270510-9701

Contents

Title Page

KIF Records ... 2-41
KIF Key and Record. Example .. 2-41
Structure of KI Fs ... 2-42
Description of Logical Record .. 2-51
KIF Disk Usage .. 2-52

3 - Extending SCI

SCI Overview .. ~ 3-1
User-Defined SCI Command Procedures 3-3

SCI Primitive ... 3-4
Command Procedure .. 3-4
Command Processor .. 3-4

SCI Language Syntax .. 3-4
SCI Language Variables .. 3-6

Synonyms ... 3-7
Logical Names .. 3-11
Environment and Scope of Name Definitions 3-11
Field Prompts ... 3-12

ACNM Field Prompt Type .. 3-13
DEFAULT Field Prompt Type ... 3-14
ELEMENT Field Prompt Type .. 3-14
INT Field Prompt Type .. 3-15
NAME Field Prompt Type .. 3-15
RANGE Field Prompt Type ... 3-15
STRING Field Prompt Type .. 3-15
YESNO Field Prompt Type ... 3-16

SCI Primitives ... 3-16
.PROC and .EOP Primitives .. 3-18
.IF, .ELSE, .ENDIF Primitives ... 3-20
.PROMPT Primitive ... 3-22
.SYN Primitive ... 3-23
.EXIT Primitive ... 3-24
.EVAL Primitive .. 3-25
.LOOP, .UNTIL, .WHILE, and .REPEAT Primitives 3-26
.SPLIT Primitive .. 3-28

Using the First .SPLIT Format .. 3-28
Using the Second .SPLIT Format 3-29

.BID Primitive .. 3-30

.DBID Primitive .. 3-31

.QBID Primitive .. 3-32
.RBID Primitive .. 3-32
. DATA and .EOD Primitives .. 3-33
.STOP Primitive .. 3-34
.USE Primitive ... 3-35
.OPTION Primitive .. 3-36
.MENU Primitive ... 3-38
.SHOW Primitive ... 3-39

ix

Contents

Paragraph

3.5.19
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.9
3.9.1
3.9.2
3.10
3.10.1
3.10.1.1
3.10.1.2
3.10.1.3
3.10.1.4
3.10.1.5
3.10.1.6
3.10.1.7
3.10.1.8
3.10.1.9
3.10.1.10
3.10.1.11
3.10.1.12
3.10.1.13
3.10.1.14
3.10.1.15
3.10.2
3.10.2.1
3.10.2.2
3.10.2.3
3.10.2.4
3.10.2.5
3.10.2.6
3.10.3
3.10.3.1
3.10.3.2
3.10.3.3
3.10.3.4
3.10.4
3.10.4.1
3.10.4.2
3.10.4.3
3.10.4.4
3.10.5
3.10.6

x

Title Page

.SVC Primitive ... 3-39
SCI Primitive Batch Stream Example 3-44
Error Processing for Primitives ... 3-46
Command Procedures and Command Processors 3-46

Command Procedure Design ... 3-46
Command Processor Design ... 3-51
Installing Command Procedures and Command Processors 3-53
Using New Commands , 3-54
Expert Mode Considerations ... 3-54
Deleting Commands .. 3-55

Command Processor Interface Routines , 3-56
Interface Routine References .. 3-56
Buffers for Interface Routines .. 3-57

Interface Routine Descriptions ... 3-58
SCI Interface Routines .. 3-58

Get TCA (S$GTCA) ... 3-58
Initialize System Data Base (S$NEW) 3-58
Bid Task Routine (S$BIDT) ... 3-59
Get Parameter (S$PARM) .. 3-62
Get Terminal Status (S$STAT) .. 3-64
Set Synonym Value (S$SETS) .. 3-64
Get Synonym Value (S$MAPS) .. 3-65
Search Name Correspondence Table (S$SNCT) 3-66
Split List Into Components (S$SPL T) 3-67
Return Time and Date (S$TAD) 3-68
Put TCA (S$PTCA) .. 3-69
Release TCA (S$RTCA) .. 3-69
Create Message (S$CMSG) .. 3-69
Terminate and Return to SCI (S$TERM) 3-72
Alternate Termination (S$STOP) 3-73

Local Display File Routines .. 3-73
Open File (S$OPEN) .. 3-74
Open File Specifying User ID (S$OPNS) 3-74
Write toFile (S$WRIT) ... 3-75
Write End-of-Line to File(S$WEOL) 3-75
Close File (S$CLOS) .. 3-75
Local Display File Example .. 3-76

String Utility Routines .. 3-77
Convert ASCII to Binary Integer (S$INT) 3-77
Convert Binary Integer to ASCII (S$IASC) 3-78
Compare Strings (S$SCOM) .. 3-79
Copy String (S$SCPY) ... 3-80

Arithmetic Utility Routines ... 3-81
Add 32-Bit Integers (S$IADD) ... 3-81
Subtract 32-Bit Integers (S$ISUB) 3-82
Multiply 32-Bit Integers (S$IMUL) 3-83
Divide 32-Bit Integers (S$IDIV) .. 3-84

Spooler Interface Routine (S$SPLR) 3-85
Operator Interface Routines ... 3-88

2270510·9701

Paragraph

3.10.6.1
3.10.6.2
3.10.6.3
3.10.6.4
3.10.7
3.10.7.1
3.10.7.2
3.10.7.3
3.10.7.4

Contents

Title Page

Initialize Operator Interface (OI$BGN) 3-89
Create Operator Message (OI$COM) 3-89
Wait for Operator Response (OI$WAT) 3-90
End Operator Interface Subsystem Interface Session (OI$END) 3-90

Mailbox Subsystem Interface Routines 3-91
Initialize Mailbox Interface (MB$INT) 3-91
Send Mail (MB$SND) .. 3-91
Receive Mail (MB$RCV) ... 3-92
Release Mailbox (M B$RLS) .. 3-92

4 - Writing an SVC Processor

4.1 Need for an SVC Processor ... 4-1
4.2 How to Write an SVC Processor ... 4-1
4.2.1 SVC Call Block ... 4-1
4.2.2 SVC Definition Tables ... 4-1
4.2.3 SVC Processor Details ... 4-4
4.2.4 System Generation Requirements 4-6

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.3.1
5.3.3.2
5.3.3.3
5.3.3.4
5.3.3.5
5.3.3.6
5.4
5.4.1
5.4.2
5.4.2.1
5.4.2.2
5.4.2.3
5.4.2.4
5.4.2.5
5.4.2.6
5.4.2.7
5.4.3
5.4.4
5.4.5
5.5

2270510-9701

5 - Writing a DSR

Introduction .. 5-1
Preparation .. 5-1
1/0 Subsystem .. 5-2

Data Structures ... 5-2
Request Flow ... 5-3
Device Interrupt Decoder ... 5-4

Single-Device Interrupt ... 5-4
Multiple-Device Interrupt ... 5-5
Expansion Chassis Interrupt .. 5-7
Asynchronous Multiplexer Interrupt Decoder 5-10
Return Routine .. 5-13
Illegal Interrupt Routine ... 5-13

Device Service Routines ... 5-13
Design Criteria ... 5-14
DSR Entry Points ... 5-16

Hardware Interrupt Entry Point .. 5-17
Delayed Reentry Point ... 5-19
Power-Up I nitialization Entry Point 5-19
Abort Entry Point ... 5-20
Time-Out Entry Point .. 5-20
Initial Request Entry Point ... 5-20
Priority Scheduler Entry Point .. 5-20

Body of the DSR .. 5-20
Bidding a Task From the DSR ... 5-21
Multiplexing Hidden Request Queue 5-21

DSR Support Routines .. 5-22

xi

Contents

Paragraph

5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9
5.5.10
5.5.11
5.5.12
5.5.13
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.4
5.7
5.7.1
5.7.2
5.7.2.1
5.7.2.2
5.7.2.3
5.7.2.4
5.7.2.5
5.7.2.6
5.7.3
5.7.4
5.7.5
5.7.6
5.7.6.1
5.7.6.2
5.7.7
5.7.8
5.7.9
5.8
5.9
5.10

6.1
6.2
6.2.1
6.2.2
6.3

xii

Title Page

Branch Table Processor Routine .. 5-22
End-of-Record Processor Routine 5-24
Bid Task Routine ... 5-24
Queue Event Character or Queue Character Routine 5-25
Get Queued Character Routine ... 5-26
Get Event Character .. 5-26
Character Check Routines ... 5-27
Map Out Current Buffer Routine .. 5-28
Get Buffer ... 5-28
Map In Buffer .. 5-29
Get 20-Bit TILINE Address ... 5-29
Transfer PDT Information to Task Memory 5-30
Report TI LI N E Error ... 5-30

Asynchronous DSR Structure .. 5-31
Asynchronous DSR Design Overview 5-34
Terminal Service Routine (TSR) ... 5-36
Interrupt Service. Routine (ISR) ... 5-37
Hardware Controller Service Routine (HSR) 5-38
Asynchronous Data Structure Allocation 5-39

HSR Common Subroutines .. 5-41
Power-Up Initialization .. 5-42
Write Output Signal or Function .. 5-43
HSTBIL Subroutine ... 5-43
HSTCR Subroutine ... 5-43
HSTCTH Subroutine, ... 5-44
HSTRS Subroutine ... 5-44
HSTTB Subroutine ... 5-44
HSTUIL Subroutine ... 5-44
Read Input Signal or Function .. 5-44
Enable/Disable Status Change Notification 5-45
Output a Character ... 5-46
Write Operational Parameters .. 5-46

Set Channel Speed (Baud Rate) 5-47
Set Data Character Format .. 5-48

Read Operational Parameters and Information 5-48 '
Request Time Interval Notification 5-49
Controller Interrupt Decoder ... 5-50

DSR Installation , ... 5-51
Debugging Techniques ... 5-52
DSR Example .. 5-52

6 - ONOS Accounting System

Introduction .. 6-1
Accounting Data .. 6-1

Description of Accumulated Data .. 6-2
Data Format .. 6-2

Implementation ... 6-6

2270510-9701

Contents

Paragraph Title Page

6.3.1 Account Numbers ... 6-7
6.3.2 System Generation Requirements 6-7
6.3.3 Application Program Requirements 6-7

7 - File Security

7.1 Introduction .. 7-1
7.2 Access Groups ... 7-1
7.2.1 SYSMGR Access Group Member .. 7-2
7.2.2 Access Group Leader .. 7-2
7.2.3 Access Group Member ... 7-2
7.2.4 Creation Access Group .. 7-2
7.2.5 Modifications to Access Groups and Access Rights 7-3
7.3 Access Rights .. 7-3
7.3.1 Control Access ... 7-4
7.3.2 Read Access ; ... 7-4
7.3.3 Write Access ... 7-4
7.3.4 Execute Access ... 7-4
7.3.5 Delete Access .. 7-4
7.4 Example of a Secured System ... 7-4
7.5 Important Points About Access Rights to Secured Files 7-7
7.6 Programmers ... 7-8
7.6.1 1/0 Utility Operations that Specify a User 10 7-8
7.6.2 Security Bypass .. 7-9
7.6.3 Special Rename File SVC Option .. 7-9
7.6.4 Open Routine Specifying User 10 (S$OPNS) 7-10
7.6.5 No-Echo Option for SCI Prompt Response 7-10
7.6.6 Read File Characteristics Option 7-10

8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.1.1
8.2.1.2
8.2.1.3
8.2.1.4
8.2.1.5
8.2.1.6
8.2.1.7
8.2.1.8
8.2.1.9
8.2.1.10

2270510-9701

8 - Analyzing System Problems

System Initialization Problems .. 8-1
ROM Loader Errors .. 8-1
Program Image Loader Errors ... 8-2
System Loader Errors .. 8-2

System Crash Problems .. 8-4
Organization of the XANAL Listing 8-6

Crash Code .. 8-6
Executing Task ... 8-6
Executing Task JSB ... 8-6
Location of Failure .. 8-6
Status Register ... 8-6
CURMAPAddr .. 8-6
System Patch Area .. 8-8
Executing Workspace at Time of Dump 8-8
Hardware Trap and Extended Operation (XOP) Vectors 8-8
Special Workspaces ... 8-8

xiii

Contents

Paragraph

8.2.2
8.2.2.1
8.2.2.2
8.2.3
8.2.4

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.6.1
9.1.6.2
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.4

Title Page

Task States and JSBs .. 8-8
Task States ... 8-11
JSB List .. 8-11

Analyzing System Crash Dumps .. 8-11
Forcing a System Crash .. 8-12

9 - Adding Error Messages

DNOS Message and Error Processing 9-1
I nternal Error Codes ... 9-1
Short English Messages .. 9-2
Expanded Explanations Online .. 9-3
Show Expanded Message (SEM) Utility 9-3
Displaying Messages .. 9-3
Message Examples .. 9-4

Assign LUNa Error .. 9-4
COBOL Compiler Termination ... 9-5

Message Files .. 9-5
Format of the Message Text Files .. 9-6
Format of the Expanded Error Message Text Files 9-8

Message File Utilities .. 9-9
Message File Utility .. 9-10
Expanded Message File Utility ... 9-11

Error Message Interface ... 9-11

10 - International Considerations

10.1 Introduction ... 10-1
10.2 Country Code .. 10-2
10.3 Information Interchange Codes .. 10-3
10.4 KIF Collating Sequences .. 10-5
10.5 Internationalizing Messages ... 10-7

11 - Differences Between DX10 and DNOS

11.1 Introduction ... 11-1
11.2 General Environment ... 11-1
11.3 Device and File I/O Operations ... 11-4
11.4 SCI User Interface .. 11-6
11.5 SCI Primitives and Interface Routines 11-7
11.6 SVC Support .. 11-8
11.7 User-Written System Software .. 11-11
11.8 System Console .. 11-11

xiv 2270510·9701

Paragraph

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.8
12.9
12.10
12.10.1
12.10.2
12.11
12.12
12.12.1
12.12.1.1
12.12.1.2
12.12.2
12.12.3
12.12.4

Appendix

A

2270510-9701

Contents

Title Page

12 - Special Features of ONOS

Introduction ... 12-1
DNOS Job Architecture ... 12-1
Logical Names .. 12-2
SCI Features .. 12-3
Interprocess Communication (I PC) .. 12-3
Performance Monitoring .. 12-4
Performance Optimization ... 12-4

Alternate Ways to Structure SCI Sessions 12-5
Keyboard Bidding of Tasks .. 12-5
Types of LUNOs ... 12-7
Batch Jobs .. 12-7
Miscellaneous Items ... 12-7

System Configuration Utility ... 12-8
S$SYSTEM Directory ~ .. 12-8
System Command Procedures ... 12-8

Begin Update Documentation (BUD) 12-8
End Update Documentation (EUD) 12-10

Maintaining User IDs .. 12-11
Spooler Subsystem .. 12-11

Spooler Directory ... 12-11
Spooler Banner Sheet File .. 12-12
Spooler Queue Fi Ie .. 12-12

Spooler Device Attributes .. 12-13
Spooler Clean-up .. 12-13
Spooler Temporary Files ... 12-14

Appendixes

Title Page

Keycap Cross-Reference ... A-1

xv

Contents

Illustrations

Figure Title Page

1-1 Physical Layout of DNOS .. . 1-2
1-2 990 TILINE Logical Address Space Example 1-4
1-3 DNOS Task Structure 1-6
1-4 DNOS Queue Structure 1-7
1-5 DNOS System Flow .. . 1-10

2-1 Volume Information Format (2 Sheets) 2-11
2-2 Partial Bit Map .. . 2-15
2-3 Directory Structure .. . 2-16
2-4 Directory File Structure .. . 2-17
2-5 Directory Overhead Record Format 2-18
2-6 FOR Format (2 Sheets) 2-19
2-7 ADR Format .. . 2-23
2-8 CDR Format ... ~ .. . 2-26
2-9 KDR Format .. . 2-31
2-10 Dump of a Directory File .. . 2-33
2-11 Sequential File Format (2 Sheets) 2-35
2-12 Blank-Suppressed Record .. . 2-38
2-13 KIF Structure 2-43
2-14 Sequential Record Placement Method 2-44
2-15 B-Tree Block Format 2-45
2-16 B-Tree Example (2 Sheets) .. . 2-48
2-17 Data Block Format .. . 2-50

3-1 SCI Modes of Operation 3-2
3-2 SCI Access to Logical Names and Synonyms 3-2

4-1 Format of RPUDAT Module ... 4-3
4-2 User-Defined SVC ... 4-5

5-1 Interrupt Decoder for Single Device 5-5
5-2 Interrupt Decoder for Multiple Devices ~................................... 5-6
5-3 Expansion Chassis Interrupt Decoder (3 Sheets) 5-7
5-4 Asynchronous Multiplexer Interrupt Decoder (2 Sheets) 5-11
5-5 Interrupt Decoder Return Routine " 5-13
5-6 Illegal Interrupt Routine " 5-13
5-7 DSR Structure , 5-14
5-8 Memory Map for DSR Execution .. 5-15
5-9 Hardware Interrupt Processing ... 5-17
5-10 Asynchronous DSR Structure ... 5-33
5-11 Asynchronous DSR Logic Flow ... 5-35
5-12 Interrupt Processing Flow ... 5-38
5-13 Asynchronous Data Structure Linkages 5-40
5-14 DSR Listing Example (16 Sheets) ... 5-53

7-1
7-2

xvi

Access Groups and Secured Files ... 7-5
Creating an Access Group .. 7-6

2270510-9701

AI

Contents

Figure Title Page

8-1 System Loader Error ... 8-2
8-2 General Information Block .. 8-7
8-3 Task States and JSB List (2 Sheets) 8-9
8-4 Bit Assignment for the Flag Word 8-11

9-1 Functions of Message File Utilities 9-10

Tables

Table Title Page

2-1 Format Information for Supported Disks 2-9

3-1 Special SCI Characters .. 3-5
3-2 SCI-Maintained Synonyms ... 3-10
3-3 Message Processing Synonyms .. 3-11
3-4 Valid Field Prompt Types .. 3-12
3-5 SCI Primitive Notation .. 3-17
3-6 SCI Primitives ... 3-17
3-7 Command Privilege Levels ... 3-19

f 3-8 Disallowed SVCs for.SVC Primitive 3-43

4-1 Request Definition Block (ROB) Format 4-2
4-2 RIB Format ... 4-4

5-1 DSRITSR Entry Points ... 5-16
5-2 Asynchronous Device Support ... 5-31
5-3 HSR Object Modules ... 5-39
5-4 HSR Baud Rate Codes .. 5-47
5-5 Controller Type Codes .. 5-49

8-1 System Loader Phases ... 8-3
8-2 System Loader (Flashing) Crash Codes 8-3
8-3 XANAL Commands .. 8-5

10-1 ASCII Codes for Special Language Characters 10-3
10-2 JISCII Codes for Japanese Characters 10-4
10-3 Collating Sequences for All Supported Languages 10-6

11-1 DX10/DNOS System File Names .. 11-4

;

2270510-9701 xvii/xviii

I

1

ONOS System Overview

1.1 ONOS SYSTEM STRUCTURE'

The Texas Instruments Distributed Network Operating System (DNOS) is a general-purpose oper­
ating system for the Texas Instruments Business Systems and Model 990 Computers. It allocates
system resources to the jobs executing on the computer system to provide maximum perfor­
mance based on information supplied by the user and on real-time performance analysis. In the
DNOS environment, a job is a set of one or more cooperating programs (tasks) and performs one
or more functions.

DNOS has two parts; one is memory resident and the other is disk resident. The memory-resident
portion, called the kernel, is loaded into memory during the initial program load (lPL). (The
memory-resident parts of the system are linked together when the operating system is generated.)
The kernel must reside in main memory before any processing can occur.

The kernel provides support for activating and terminating tasks and for processing supervisor
calls (SVCs) and interrupts. It also provides support for system tasks in the form of common
routines and functions callable from system tasks.

Disk-resident modules of the system are brought into main memory from disk storage as they are
needed to perform specific functions. This disk-resident part of DNOS consists of various system
tasks that perform primarily queue-serving functions.

Figure 1-1 shows a phYSical layout of DNOS. In the figure and elsewhere in this manual, the right
angle bracket (» preceding a value indicates a hexadecimal value.

The kernel includes the following parts:

Transfer Vectors
A transfer vector is a pair of consecutive memory words. The first word contains the address
of a 16-word workspace register area. The second word contains the address of a subroutine
entry pOint. A transfer vector is used to perform a type of control transfer called a context
switch. An'example of a transfer control switch is the transfer of control to an interrupt sub­
routine when an interrupt occurs. Business Systems and Model 990 Computers support 16
transfer vectors for interrupts. They also support 16 transfer vectors for extended operations
(XOPs). XOPs perform system-defined functions implemented by software.

Nucleus
The nucleus contains routines that support queuing, synchronization, linking to other rou­
tines, and managing the scheduler. The nucleus portion also includes the system table area.

2270510·9701 1·1

ONOS System Overview

2279382

1·2

> 00000

DNOS

MEMORY

SPACE

USER

MEMORY

SPACE

MAXIMUM

rV

MAIN MEMORY

INTERRUPT TRANSFER VECTORS

XO P TRANSFER VECTORS

NUCLEUS

SYSTEM TABLES

SYSTEM COMPONENTS

SCHEDULER

SVC PROCESSORS

DSRs

SYSTEM JOB JCA

MEMORY RESIDENT SYSTEM TASKS

MEMORY RESIDENT USER TASKS

BUFFER TABLE AREA

(DEVICE BUFFERS)

USER

DYNAM IC MEMORY

Figure 1-1. Physical Layout of DNOS

,....v

2270510·9701

DNOS System Overview

System Tables
All the data structures needed to sUPP9rt system operations are located in the table areas.
These areas include segment management table areas, file management table areas, the
system job communication area, and the partial bit map for the system disk.

System Components
System components include the scheduler, Supervisor Call (SVC) processors, and the device
service routines (DSRs). You use these components temporarily, as segments mapped into
the logical memory space as required.

In addition to the kernel, DNOS memory space also contains the following:

System Tasks
The memory-resident system tasks are loaded into memory next to the system segments.
The memory-resident tasks include file management, disk management, and the task loader.

Memory-Resident User Tasks
All user-written, memory-resident tasks reside in the area next to the memory-resident sys­
tem task area.

Partial Bit Maps
The partial bit maps for all disks except the system disk reside below the memory resident
tasks.

Buffer Table Area
The buffer table area (BTA) is allocated immediately after the memory-resident user tasks.
This expandable area includes buffers used for handling input and output for devices.

The rest of memory is available for user tasks, language processors, and utilities. The user
dynamic memory is allocated to tasks from the end of physical memory to allow the buffer area to
expand.

1.1.1 System Memory Mapping
The hardware map option provides three map files; each defines up to 64K (K equals 1024) bytes of
logical memory space. This space can be located anywhere in the 2048K-byte TILINE address
space and can be divided into as many as three segments.

Each map file provides three 16-bit bias registers (B1, B2, and B3) and three limit registers (L 1, L2,
and L3). The limit registers contain values that define the lengths of the three segments. These
segments form the 64K bytes of logical address space. The bias registers contain values that
define the physical locations of the three segments. Refer to Figure 1-2 for a view of the logical
and TILINE address space with map option. The logical addresses in the three segments are
mapped into TILINE beet (32-byte) addresses.

2270510-9701 1·3

DNOS System Overview

00 00

Ll

L2

L3

F8

FC

..
p

.. -

..
p

00

00

FF FF

2279383

1·4

MAP 0 ~ LOGICAL ADDRESS SPACE

SEGMENT 1

SEGMENT 2

SEGMENT 3

TPCS

ROM LOADER

+
LOCATED ON

CPU BOARD

~

TILINE ADDRESS SPACE

2048K BYTES

SEGMENT 1

SEGMENT 3

SEGMENT 2

TPCS

00000

FFCOO

FFEOO

FFFFF

Figure 1·2. 990 TILINE Logical Address Space Example

2270510-9701

DNOS System Overview

Usually, the operating system dedicates the three map files to software functions. The system
uses map 0 for operating system code and for facilitating special hardware features. Transfer vec­
tors for interrupts and XOPs are in map O. This map is one means of addressing the TILINETM
peripheral control space and read-only memory (ROM) loader. The TILINE peripheral control space
is a range of TILINE addresses reserved for access to TILINE device controllers. After setting up a
map file, a l,Jser might also access TILINE peripheral control space using long-distance instruc­
tions. The ROM loader is a program that executes during IPL to load the operating system into
memory.

Both system tasks and user tasks use map 1. The long-distance instructions use map 2 to access
memory outside the segments currently mapped into. the logical memory space.

1.1.2 Fundamental Structure of ONOS
The fundamental structure of ONOS is the job structure. A job is a collection of cooperating tasks
(programs) that you initiate or a program automatically initiates to perform one or more functions.

The task structure is within the job structure. Many of the ONOS system tasks are queue servers,
tasks dedicated to processing entries on queues. Queues and queue servers play an important
role in maintaining system flow. For storing system data, ONOS maintains a set of system files.

1.1.2.1 Job Structure. A job is the fundamental entity that receives logical resources. ONOS
maintains a job status block (JSB) for each job in the system. The JCA is a block of memory that
contains control information for a specific job including the job's priority, name, 10, and related
information. The JSBs are created in the system table area as a linked list for the jobs in the
system.

The JSB provides a link to the job communication area (JCA), which contains a queue of the tasks
in the job, the semaphores defined for the job, and their job-local information. Semaphores pro­
vide synchronization of tasks within a job. The JCA for the job currently executing is kept in
memory.

1.1.2.2 Tasks. A task is a program that executes under control of the operating system. It con­
sists of an address space, a program counter, a workspace pointer, anda status register. At least
one task exists for each job.

Associated with each task is a task status block (TSB), which is a block of memory containing
information about the task. The TSBs within each job are on a task queue located in a JCA. Each
TSB can be placed on the active queue, the waiting-on-memory (WOM) queue, or the waiting-for­
table-area queue, according to the priority order within the job.

Figure 1-3 shows the ONOS task structure.

TILINE is a trademark of Texas Instruments Incorporated.

2270510-9701 1·5

ONOS System Overview

SYSTEM TABLE AREA JCA

J I QUEUE ANCHOR J I TSB TSB TSB
JSB I ~I

FOR JOBS ~I I

JCA

"

I JSB I • ...1
TSB I I I

i
I

l JCA

I I JSB --1
TSB I I I TSB -L

2279384

Figure 1·3. DNOS Task Structure

1.1.2.3 Queue Servers. Information queues and queue servers are important concepts in
ONOS. A queue Is a first-in, first-out list of data to be processed. In ONOS, each queue consists of
a queue anchor and the queued blocks of data in memory. The queue anchors are located in the
memory-resident nucleus and in the JCAs. Each queue anchor contains the address of the newest
and the oldest queue entries. Each data item or block is linked to the next data item or block in the
queue.

A queue server is a task that processes its associated queue. Placing an entry in the queue acti~
vates the queue server. Operating as a system task under ONOS, the queue server dequeues an
entry and then processes it. The queue server continues to dequeue and process queue entries
until the queue is empty, at which time the server suspends itself or terminates.

Figure 1-4 shows the ONOS queue structure.

1.1.2.4 System Flies. Various functions of ONOS use system directories and files. Some are
required if you choose certain options; otherwise, you can remove them. Also, other software sys­
tems and the languages used with ONOS place S$ files on the system disk. Remove these only if
you are sure your environment does not need them.

The system disk is the disk from which IPL is done. It is known by the device name set during sys­
tem generation. For example, if IPL is done from OS04, the file .S$CMOS is the same as
OS04.S$CMOS.

1·6 Change 1 2270510-9701

DNOS System OvervielA

QUEUE ANCHOR QUEUE ENTRIES

NEWEST ENTRY f--- PROCESSOR DATA
OLDEST ENTRY I

QUEUE LINK

.. PROCESSOR
-..

DATA

QUEUE LINK

PROCESSOR
--.. .. DATA

QUEUE LINK

PROCESSOR .. -. DATA .. .
0000

22849 27

Figure 1·4. DNOS Queue Structure

DNOS functions use the following directories:

Directories

. S$CDT

.S$CMDS

. S$EXPMSG

.S$MSG

2270510·9701

Description

Files used by the system to process keyboard bids at devices .

Command procedures provided with DNOS to access the utilities
using a System Command Interpreter (SCI) environment.

Key indexed files (KIFs) of expanded error and status messages .
If you remove this directory (your option), you cannot use the
question mark (?) key to display details on the screen when a
message appears.

Relative record files of basic error and status messages. If you
remove this directory (your option), all messages appear in abbre­
viated form, as in the following:

SVC·INTERNAL CODE> 0027 .PRINT.OUT.

1·7

ONOS System Overview

.S$SOTQUE

.SSGU

. S$SYSLIB

.S$SYSTEM

.S$USER

. SC1990

Files of spooler data, one for each generated system. Do not
delete these unless you deleted the generated system or you
need to recreate one of the fi les.

Files created by system generation. You can delete subdirecto­
ries for systems no longer in use, but you should keep those for
systems in use. For further information about these files and
directories, refer to the ONOS System Generation Reference
Manual.

Overlay management for automatic overlay loading .

Special systems programming command procedures and the
software configuration history file. Section 12 describes these
procedures.

Directory with subdirectories for each user 10 defined for the
system. Each subdirectory contains user synonyms and logical
names; you must not delete any of these subdirectories. The
SYSTEM and SYSMGR user IDs are created during IPL.

Linkable object for the SCI interface (S$) routines .

ONOS functions use the following files:

Files

.S$ACT1, .S$ACT2

.S$CLF

. S$CRASH

.S$OIAG

. S$IPL

.S$ISBTCH

.S$ISLIST

. S$LANG

1·8

Description

Accounting log files. You need these if the accounting option is
enabled. You cannot modify the file currently in use by the
system.

Capabilities list file used by SCI. Used in conjunction with the
S$USER directory.

Crash file to which a system crash can be written .

File used by online diagnostics when checking the state of the
disk .

System loader.

Initial batch stream executed during the initialization of the sys­
tem after an IPL.

Listing file for .S$ISBTCH. You can delete this file if you do not
need the listing.

Languages program file .

2270510·9701

ONOS System Overview

.S$LOG1, .S$LOG2 System log files used to record error and status information
about the active system. You cannot modify the file currently in
use by the system .

. S$MVI File used by the Modify Volume Information (MVI) processor to
record changes to the disk .

. S$PWCS Image file for performance tools microcode. This file is present if
the ONOS performance package is installed .

. S$ROLLO.S$ROLLA System roll file used for swapping segments from memory.

.S$SCA

. S$SECURE

.S$SHAREO

.S$SHIP

. S$UTIL

File of information about users that is used by the log-on task
and SCI:

Program file containing support programs for file security .

Shared program file, used for sharable procedures and special
tasks provided by the system. This program file reserves task IDs
and procedure IDs> 00 through> 2F for software provided by
Texas Instruments. All other IDs are intended for users.

Kernel program file for the system shipped to the users. You can
delete this file if you use a different system as the standard
system.

System utilities program file .

1.2 CHANNELS FOR ONOS FUNCTIONS

ONOS functions use the following channels. Each channel is served by an owner task in the
S$UTIL program file.

Files

. S$ACCCHN

. S$OSTCHN

.S$MAIL

. S$OPER

. S$SPOOL

.S$XBJ

2270510·9701

Description

Channel that processes accounting file entries .

Channel used by the spooler device scheduler .

Channel used for the Create Message (CM) function and other
SCI message functions.

Channel used for system operator functions .

Channel used by the spooler .

Channel used for processing the Execute Job (XJ) and Execute
Batch Job (XBJ) commands.

1·9

DNOS System Overview

1.3 SYSTEM FLOW

The following paragraphs describe how the operating system responds to requests for service.
Figure 1-5 shows the flow of control and information in ONOS.

HALT-LOAD
SEQUENCE
(PROGRAMMER
PANEL)

INITIAL
PROGRAM
LOAD

SYSTEM
RESTART
TASK

SERVE A
REQUEST OF
THE FUNCTION­
ING SYSTEM

2279386

EXECUTE
TASK
CODE

LOADS KERNEL
AND MEMORY
RESIDENT TASKS,
INSTALLS DISK
VOLUMES, ETC.

SETS UP SYSTEM
LOG AND ACCOUNTI NG ,
BIDS REQUI RE
SYSTEM TASKS,
ETC.

PROCESS
SVC
REQUEST

PROCESS
HARDWARE
INTERRUPT

ERROR PATH
ONLY

ONOS
CRASH
ROUTINE

OPERATING
SYSTEM
SUPPORT

Figure 1-5. ONOS System Flow

FORCED ERROR
CONOI TION ERROR
IN SYSTEM TASK,

~~~g~ 1~l~2~6R 

FOR MEMORY 
MANAGEMENT, 
TIM!NG, 
PERFORMANCE, 
ETC. 

1·10 2270510-9701 



~' 

ONOS System Overview 

1.3.1 Initial Program Load (IPL) 
System operation begins with IPL. The IPL program is loaded into main memory and performs 
housekeeping functions (such as determining the size of physical memory and initializing physi· 
cal memory). The IPL program then relocates into upper memory and reads the kernel into lower 
memory. Next, the IPL program performs a variety of system initialization functions. The operating 
system is then activated. -

1.3.2 System Idle State 
ONOS enters the idle state immediat~ly after IPL and when no programs or users require system 
services. However, the logical structure of the system changes dynamically when tasks are exe­
cuted under control of the operating system. 

1.3.3 Task Activation 
Bidding a task is the process of preparing a task for execution. This process involves building and 
initializing the necessary data structures and activating the task. If the task procedural segments 
are already in memory, the system checks to see that the task is not being killed and that its job is 
not terminating. If these conditions are met, the task is placed on the active queue. Otherwise, 
task activation aborts. 

If the task procedural segments are not in memory, the task is put on the waiting-on-memory 
(WOM) queue to be processed by the task loader. After the task is loaded into memory, the checks 
described for tasks already in memory are performed. Either the task is placed on the active queue 
or task activation aborts, as appropriate. 

, 1.3.4 Task Scheduling 
The task scheduler places tasks into execution. First it selects a task to execu e; then, it instructs 
the central processing unit (CPU) to begin executing the task. The task execu es until it releases 
control of the CPU. Then, the scheduler selects the next task for execution. 

Each JCA contains a queue of TSBs for tasks ready to execute in priority orde . Each JSB carries 
the priority of the highest-priority task on its active queue; the queue of active SBs is ordered by 
this priority. 

The scheduler selects the highest-priority active task for execution. When a ta k reaches the end 
of its allotted execution time, its TSB goes back to the JCA active queue if the task is to remain 
active; the task remains unqueued if it is to be suspended. When a task susp nds, the scheduler 
might need to change the priority of the highest active task in the JSB and reo der the JSB on the 
JSB queue. 

1.3.5 Time Slicing 
Time slicing is the technique of executing each task in turn for a specified eriod of time. The 
clock interrupt processor controls timing. The clock interrupt routine counts t e number of clock 
cycles during task execution. When the count reaches a specified number, the routine 
reschedules the task. Each clock tick is either 8.33 milliseconds (for 60-Hertz line frequency) or 10 
milliseconds (for 50-Hertz line frequency). 

1.3.6 XOP Processing 
When the scheduler places a user task into execution, the task controls the CPU until its time 
slice ends. The only exceptions are when an external interrupt occurs or a t sk issues an XOP 
instruction. The I/O subsystem activates immediately in response to a device nterrupt. A context 
switch occurs when an XOP instruction is issued. 

2270510·9701 1·11 



DNOS System Overview 

When an XOP 15 is issued, control passes via the XOP transfer vector table to the SVC decoding 
routine; this routine is the XOP processor for XOP 15. It- determines which SVC is desired by 
decoding the SVC code in the call block and then relinquishes control to the SVC processor. 

If a queue server processes the request, the SVC preprocessor buffers the call block into the sys­
tem table area and queues the buffered call block onto the proper queue. This activates the asso­
ciated queue server task and suspends the task that issued the SVC. If system code that is not a 
queue server processes the request, the SVC is completed and control returns immediately to the 
task that issued the SVC. 

1.3.7 Execution Priorities 
The scheduling of ONOS tasks is based on run-time priority. Run-time priorities have a range of 0 
(high) through 255 (low). To calculate a run-time priority when a task is bid, ONOS must first look at 
the installation priority of the task. An installation priority is assigned to a task when it is installed 
in a program file. When assigning run-time priorities,.ONOS differentiates between tasks that are 
either priority 0 or real-time tasks and those that are not. 

The run-time priority of real-time tasks and., priority 0 tasks is identical to their installation 
priorities. 

The run-time priority of all other tasks is influenced by the following three factors: 

• The installation priority of the task (1,2,3,4) 

• The mode of the task (whether foreground or background) 

• The priority of the job under which the task is running 

Be careful to note that the installation priority given a task (1, 2, 3, 4) that is not a priority 0 or real­
time task is relative. Such tasks normally have run-time priorities between 128 and 255. 

The run-time priority of a real-time or priority 0 task is the same as its installed priority. Therefore, 
a system task with an installed priority of 0 has a run-time priority of O. A real-time task with an 
installed priority of 56 has a run-time priority of 56. 

System tasks usually have an installed priority of O. Real-time tasks have an installed priority 
range between 1 (high) and 127 (low). Therefore, run-time priorities are also in the same range. 

The run-time priority of all other tasks is handled in a different manner. Tasks in this group usually 
pick up a run-time priority between 128 and 255 (refer to the paragraph describing dynamic modifi­
cation of run-time parameters for exceptions). 

1·12 2270510·9701 



o S System Overview 

First, ONOS looks at the installed priority (1, 2, 3, or 4) of the job in which the task is being bid and 
whether the task is executing in foreground or background. When determining w ich installation 
priority to give a task, you should normally use the following scheme: 

• Assign priority 1 to foreground tasks that are heavily interactive. 

• Assign priority 2 to foreground tasks that are compute-bound. 

• Assign priority 3 to only those tasks that always execute in backgroun ,as priority 3 is 
the lowest of the four priority classes. 

• Assign priority 4 to tasks that alternate between an 110 bound state nd a compute­
bound state. This priority level is proper for most tasks in a computing e vironment. The 
run-time priority of a priority 4 task running in foreground is lower than t at of a priority 1 
running in foreground task but greater than that of a priority 2 task running in fore­
ground. 

Second, ONOS looks at whether the task is executed in foreground or backgr undo Any task, 
regardless of its installed priority, is treated as a priority 3 task if you bid it in back round mode. 

Third, ONOS is heavily influenced by the priority of the job in which the task is bi (range: ° (high) 
through 31 (low)). A low-priority task in a high-priority job often has a higher run-time priority than 
high-priority tasks in a low-priority job. For example, a background task in a riority 2 job is 
assigned a higher run-time priority than a foreground task in a priority 29 job. 

1.3.8 Dynamic Modification of Run· Time Parameters 
DNOS allows the dynamic modification of run-time priorities. This is called th priority modifi­
cation op!ion. I~ y~u .ena~l~ this option, the run-time priority of a task varies during its execution. I 

To enable this option, use the Modify Scheduler/Swap Parameters (MSP) SCI co mand to modify 
dynamic priority range parameters. There is one parameter for each of the four ins ailed task priori­
ties (1, 2, 3, or 4). Unless you are very familiar with dynamic priority range param ters, you should 
use the following values when you modify the parameters: 12, 12, 12,12. These values yield the I 
maximum system performance for most environments. To disable this option, se the parameters 
back to their default values (0, 0, 0, 0). 

If you accept the defaults (0, 0, 0, 0) for the dynamic priority range parameters (re er to the Modify/ 
Swap Parameters SCI command), tasks in this group pick up a run-time priority etween 128 and 
255. Modifications to the parameters, however, can yield a run-time priority higher than 128. 

To understand this process, consider the following. As a task executes, an ndicator shows 
whether the task is I/O-bound or compute-bound. DNOS uses this indicator to mo ify the run-time 
priority of tasks (raising priority for I/O-bound tasks and lowering it for compute-b und tasks). 

2270510-9701 Change 1 1·13 

I 



! .. 

ONOS System Overvie"'( 

The degree to which a run-time priority can vary for tasks depends on the value of the dynamic 
priority range for that priority class. For example, if you use the MSP command to assign dynamic 
priority range parameters of 8,12,0, and 32, the following events occur: 

• The run-time priority of priority 1 and priority 2 tasks would vary by plus 12 (1/0 bound 
tasks), since 12 is the smallest allowed variation. 

• The run-time priority of priority 3 would be unaffected. 

• The run-time priority of priority 4 tasks would vary by plus 24. 

Test results show that modifying dynamic priority parameters can improve the mean response 
time of DNOS in some environments. 

An aging factor can further modify the run-time priority. The priority of an older task is raised 
slightly more than the priority of a newer task. To raise the priority, the power of 4 that represents 
the execution time in seconds is used. That is, a task that has executed for 4 seconds is raised 1 
priority level; one that has executed for 16 seconds is raised 2 levels, and so on. At the end of 18 
hours of execution, the priority of a task is raised 8 levels. 

1.3.9 Task Termination 
A task terminates when one of the following occurs: 

• The task issues a termination SVC . 

• Another task issues a Kill Task SVC for this task. 

• The task aborts by executing an illegal operation. 

If the task specifies end action (execution after abnormal termination), execution resumes at the 
specified end-action address for a certain length of time. Otherwise, the task releases its 
resources and goes to the terminate task queue, where the termination processor task 
deallocates it. 

1.3.10 Clock Interrupt Processor 
The clock interrupt processor gathers performance statistics, keeps track of time, and decides 
when a system time unit has expired for the executing task. The time and date appear in the fol­
lowing form: year, day (Julian), hour, minute, second, and tick (8.33-millisecond unit). A 32-bit tick 
counter also keeps track of time in clock ticks. The time, date, and 32-bit tick counter are updated 
on each clock tick. 

1.3.11 Internal Interrupt Processor 
Instruction execution errors (for example, illegal opcodes and privileged instructions) cause inter­
nal interrupts (interrupt level 2). The internal interrupt processor handles these interrupts. If an 
interrupt occurs in task code, the processor kills the task or puts it into its end-action code; con­
trol returns to the scheduler. However, if the error occurs in operating system code, in interrupt 
processing code, or while scheduling is inhibited, the processor calls the system crash routine. 

1·14 Change 1 2270510·9701 



DNOS System Overview 

1.3.12 System Crash Routine 
When a module detects an internal operating system error, it branches to the system crash routine 
and passes a crash code that indicates the type of error. The crash routine halts the system and 
displays the crash code on the programmer panel of the computer. Pressing HALT and RUN on the 
programmer panel saves the state of the system at the time of the crash and writes an image of 
memory to the crash file on disk. You can then analyze the crash. 

1.4 IPL AND SYSTEM LOADERS 

IPL is the process of loading the operating system into memory. Before you can enter any system 
command into the system for execution, the IPL procedure must bring DNOS into memory. To per­
form an IPL, press in sequence HALT and LOAD on the front panel of the computer. For a Busi­
ness System 300, turn the power off and on to perform an IPL. 

When an IPL procedure completes, the system restart task is bid. The task performs the following 
initialization activities: 

• Defining channels needed by DNOS 

• Assigning system-required global logical names 

• Creating log and accounting files 

• Deleting temporary files 

• Creating the SYSTEM user 10 

The task also performs initialization activities that enable DNOS to offer the security option: 

• It creates the SYSMGR user 10. 

• It creates the SYSMGR access group. (The SYSMGR access group is created only when 
the S$CLF file needs to be created.) 

The IPL process checks to see that the crash file on the system disk is large enough to contain the 
entire system memory image. If the file is not large enough, the IPL process attempts to delete the 
existing .S$CRASH file and creates a larger one. If the IPL process encounters an error when it 
tries to delete the file, the first person to log on the system is shown a message that says that the 
crash file is either too small or it does not exist. 

The file .S$ISBTCH serves as a batch stream for adding unique system procedures that are per­
formed immediately following IPL. For example, you can include procedures to assign global logi­
cal names, initialize certain functions, monitor devices, or delete certain directories. Executing 
.S$ISBTCH also invokes the SCI command procedure M$OO. This batch stream executes in a job 
named SYS$INT. For this job, the synonym $$UI is not defined. 

2270510-9701 1·15 



ONOS System Overview 
I 

The following paragraphs describe what happens between pressing the LOAD switch and 
initiating a job from a terminal. 

Three loaders are involved in an IPL procedure: the ROM loader, the program image loader, and 
the system loader. The ROM loader brings the program image loader into memory from the system 
disk. The program image loader locates the system loader on the disk and loads the system 
loader. The system loader loads the system image and transfers control to the system. The 
following paragraphs discuss each loader in detail. 

1.4.1 ROM Loader 
The ROM loader (bootstrap loader) resides in TILINE peripheral control space starting at location 
> FCOO. You can program this loader to load from devices accessible on the TILINE bus and on the 
communications register unit (CRU). The IPL is performed from a system disk (a TILINE device). 
(This manual does not describe using the ROM loader for other devices.) 

Location> 80 contains a negative value that indicates the TILINE device to be used as the load 
device. Location> 82 contains the TILINE address of the load device. This address specifies the 
location of the TILINE peripheral control space for loading the TILINE device commands. The 
default is > F800. To load the system on a 990/10 or 990/12 computer (using a disk controller) at an 
address other than> F800, you must change the contents at location> 82. 

Refer to the ROM Loader User's Guide for a description of how to use the ROM loader and how to 
modify the value for the default load device. 

1.4.2 Program Image Loader 
The program image loader resides on track 1 of every DNOS-formatted disk that was specified as a 
system disk. It can load any stand-alone program from an image file or object file on disk into 
memory. The following criteria determine the program to be loaded: 

• If the diagnostic flag in the volume information is nonzero, the diagnostic task is loaded 
and the flag is reset to zero. Section 2 describes the volume information in detail. 

• If no diagnostic is specified, the loader checks to see if the file pathname of either a 
primary or a secondary system loader is specified. If so, the image loader loads the sys­
tem loader indicated by the flag, as follows: 

o Load primary 

1 Loadseconda~ 

-1 Loadseconda~ 

If the flag equals - 1, the image loader resets the flag to O. 

• If no system loader is specified, the image loader loads the system image indicated by 
the image flag, which is used in the same manner as the system loader flag. 

The program image loader normally loads a program image starting at memo~ location> AO. This 
default load address is stored in the second word of the loader. You can change it by using the '" 
Modify Absolute Disk (MAD) command. 

1·16 2270510-9701 



ONOS System Overview 

1.4.3 System Loader 
The system loader resides on the system disk in an image file called S$IPL. The program image 
loader loads it into memory. The system loader executes with interrupts masked to level 2, inhibit­
ing interrupts from devices. Once loaded into memory, the loader initializes physical memory and 
determines the actual size of physical memory in the computer. 

As the loader finishes a particular phase of the load process, it displays the phase on the program­
mer panel indicators, starting at the leftmost indicator. 

The following lists in sequential order the phases of the load process: 

Phase 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Description 

Loader relocation complete 

Successful opening of kernel program file 

Successful loading of root, verification of system version, and loading 
of writable control source (WCS) 

Successful loading of special table areas 

Successful initialization of system overlay table and crash file 

Successful loading of JCA segments 

Successful loading of DSRs and scheduler 

Successful loading of memory-resident system tasks 

Successful loading of user memory-resident tasks 

The loader first relocates itself into high-order physical memory. It then opens the program file 
that contains the kernel and loads the WCS (when applicable). Next, the loader loads the system 
root and initializes the crash file. If a crash occurs during the remainder of the load operation, the 
crash file contains useful information about the crash. Special table areas are loaded next, 
followed by the system job JCA, DSRs, the scheduler, and memory-resident system tasks. 

Next, the loader performs some special initialization, such as the following: 

• Determining which of the disk drives defined is the disk from which the system was 
loaded and marking it as the system disk 

• Installing the system disk 

• Creating file descriptor blocks (FDBs) for the system files used during the load process 

2270510-9701 1·17 



ONOS System Overview 

The next step in the load process is to install all online disk volumes. The final phase of the loader 
execution is allocation of the buffer table area (located in user memory, immediately following the 
memory-resident part of the operating system and all memory-resident tasks) and initialization of 
the system anchors for the free user memory of the buffer table area. The memory containing the 
loader is considered part of user memory. After all i~itialization is performed, the loader transfers 
control to the power-up interrupt processor of the operating system. 

1.5 ONOS SU BSYSTEMS 

ONOS includes several subsystems that implement capabilities including job management, seg­
ment management, name management, and interprocess communication (IPC). User commands 
interpreted by SCI can access these capabilities. User programs access these capabilities by 
executing SVCs. The following paragraphs describe these subsystems and the relevant 
commands. 

1.5.1 Job Management 
A job is an entity that performs a user-defined function within the system. It can include one or 
more tasks, and it can be either interactive or batch. 

An interactive job is initiated when a user logs on at a terminal. You can also initiate an interactive 
job by entering an Execute Job (XJ) command. The terminal specified in response to the STATION 
10 prompt is the terminal used for interaction. 

A batch job consists of one or more tasks that do not require interaction with a terminal and that 
execute in the background. The commands that direct the execution of the task or tasks of the job 
are supplied in a file. To initiate a batch job, enter an Execute Batch Job (XBJ) command. 

Job management is the subsystem of ONOS that performs the system functions required to initi­
ate, execute, and terminate jobs. Management of resource allocation by jobs provides a level of 
protection between jobs. Once a job is initiated, execution of the tasks of a job is independent of 
the execution of tasks within other jobs. 

1.5.1.1 Supervisor Call (SVC). The Job Management Request SVC is the interface of a task with 
the job management subsystem. This SVC performs the following job management operations: 

• Create Job 

• Halt Job 

• Resume Job 

• Modify Job Priority 

• Map Job Name 

• Kill Job 

• Get Job Information 

1·18 2270510-9701 

~ 



DNOS System Overview 

A task requests creation of a job by requesting a Create Job operation. If the request is valid, the 
job is created with a unique job ID. This ID is used throughout the system as the identifier of the 
new job. The job is set into execution if the job limit is not exceeded. If the limit is exceeded, the 
job is queued, waiting for an executing job to terminate. 

Various control capabilities are available for interpreting and modifying the status of jobs. The 
use of these capabilities depends on the requester's ability to prove ownership (by user ID) of the 
job. The types of requests available include those to show job status, kill the job, halt the job, 
resume the job, and modify job priority. 

1.5.1.2 SCI Commands. The following commands are available through SCI to execute jobs 
and to perform various operations on jobs currently executing under the user's ID: 

Execute Batch Job (XBJ) 
The XBJ command creates a job having batch SCI as its initial task. 

Execute Job (XJ) 
The XJ command creates an interactive job with operating parameters differing from those of 
the creating job. 

Show Job Status (SJS) 
The SJS command displays the status of any jobs currently executing under the user's ID. 

Halt Job (HJ) 
The HJ command suspends a job currently executing under the user's ID. 

Kill Job (KJ) 
The KJ command forces termination of a job currently executing under the user's ID. 

Resume Job (RJ) 
The RJ command resumes execution of a job that has been previously halted. 

Modify Job Priority (MJ P) 
The MJP command modifies the priority of a job while it is executing. 

List Jobs (LJ) 
The LJ command allows you to list the current status of a particular job or all jobs on the 
system. 

1.5.2 Segment Management 
The segment management feature enables tasks to dynamically change the current segment set 
mapped by the task. This feature also enables a task to guarantee access to a segment until it is 
no longer needed and enables a task to write segments to disk. 

Segmentation allows more than three segments of a task to be in memory. The program can map 
three segments in the program address space simultaneously. This feature allows faster execu­
tion speed than overlay loading. If enough memory is available, it also enables a program to 
exceed the 64K-byte address boundary. 

2270510-9701 1·19 



DNOS System Overview 

The two types of segments are memory-based qnd disk-based. The Create Segment operation of 
the Segment Management SVC creates a memqry-based segment at run time. The newly created 
segment is mapped into one of three segments tiy specifying the segment position or by replacing 
an existing spare one using the segment run-tirjne ID. Segments not in a task address space are 
released from memory if the segment reserve count is O. The reserve count keeps track of the cur­
rent usage of the segment. 

The Reserve Segment operation of the Segmen~ Management SVC increments the reserve count. 
For a task to retain access to segments not in :the task address space, the user must request a 
Reserve Segment operation. Such segments are reserved until the user requests the Release 
Segment operation of the SVC. . 

A disk-based segment is either a segment instaUed in a program file or a physical record of a rela­
tive record file. To install a segment, use the Install Task (IT), Install Procedure (lP), or Install 
Program Segment (IPS) command. One, two, or ~hree segments can be brought into memory when 
the task is loaded for execution. This is acconlplished by the IT command with specification of 
attached procedures. The Change Segment operation of the Segment Management SVC loads 
installed segments into memory while the prog~am is executing. The Force Write Segment opera­
tion can write the disk-based segments that are LJpdateable back to their home file position. 

You can place an unmapped segment physically in memory by requesting a Load Segment opera­
tion. The Unload Segment operation releases thf3 segment from memory. The Set Exclusive Use of 
Segment operation prevents other tasks from aqcessing an unmapped segment. The Reset Exclu­
sive Use of Segment operation releases the seg:ment from exclusive use. Like a Reserve Segment 
operation, the Exclusive Use of Segment operation allows a task to retain access to a segment not 
in the task address space. 

The Segment Management SVC supports the folilowing operations: 

• Change Segment 

• Create Segment 

• Reserve Segment 

• Release Segment 

• Check Segment Status 

• Force Write Segment 

• Set/Reset Release/Modifiable Flag 

• Load Segment 

• Unload Segment 

• Set Exclusive Use of Segment 

• Reset Exclusive Use of Segment 

1·20 2270510·9701 

." 



ONOS System Overview 

1.5.3 Name Management 
The following paragraphs introduce the concept of logical names and describe their uses with 
files. 

1.5.3.1 Logical Names. A logical name is a system variable from one to eight characters long, 
defined by the user. The value of the logical name is a path name or device name. The parameters 
of the pathname supply related information. A logical name provides a name by which a resource 
is known to the job. The user can reference the logical name instead of the pathname or device 
name. A logical name also provides a mechanism for passing parameters associated with the 
resource. 

A logical name may be global or job local in scope. Any user can assign a global logical name that 
is available to all system users. In contrast, a job-local logical name is available only to the 
specific job for which it is defined. 

Logical names permit three extensions to the standard file types: job temporary files, logically 
concatenated files, and multivolume files. A logically concatenated file is a group of files known 
collectively by a single logical name. A multivolume file can exist on one or more disk volumes. 

1.5.3.2 Job Temporary Files. Job temporary files are used only within the scope of a job. These 
temporary files are local to the job that is active when the files are created; they are deleted along 
with the job. Any task within the job can access a job temporary file. 

To create a job temporary file, specify the parameters for the file on a Create Logical Name opera­
tion of the Name Management SVC; then, use the Assign LUNO operation of the I/O Operations 
SVC to assign a LUNO to the logical name, automatically creating the file. 

Access to the file is by logical name. You can use a job temporary file to accumulate output data 
from multiple tasks or to pass data from one task to another. 

The mechanism used to keep a job temporary file from being deleted gives the file the appearance 
of always having a LUNO assigned. For this reason, operations that require no LUNOs to be 
assigned to the file (that is, DF, MFN, or XE with exclusive use) will not succeed. A volume that has 
a job temporary file currently in use cannot be unloaded until the file has been deleted. 

Job temporary files are implicitly deleted when the job terminates. They can also be deleted by 
releasing the logical name used to access the file. In the event of a system crash, temporary files 
are deleted at the next I PL. 

1.5.3.3 File Concatenation. You can logically concatenate sequential and relative record files 
by setting the values of a logical name to the path names of a set of files. Logical concatenation 
allows access to the set of files in sequence without physically concatenating the files. When 
required, you can physically concatenate the files via the Copy/Concatenate (CC) SCI command. A 
multifile set is a set of KIFs whose path names are the values of a logical name. The files in the set 
are associated in a nonreversible manner. Individual components of concatenated and multifile 
sets can be on separate disks. 

2270510·9701 1·21 



ONOS System Overview 

Several restrictions apply to the concatenation of files: 

• The files must be of the same type. 

• The files cannot be special use files such as directories, program files, KIFs, or image 
files. . t 

• Relative record files to be concatenated must have the same logical record size. 

• A concatenation of files cannot contain blocked and unblocked records. 

• You must release any LUNa assigned to a file before concatenating the file. 

• You cannot concatenate a file with itself. 

• You cannot use a logical name at one site to concatenate files at another site. 

Special rules apply to combining KIFs in a multifile set. At the first definition of the set, the follow­
ing rules apply: 

• All but the first file must be empty. 

• No file can be a member of an existing multifile set. 

• All files must have the same physical record size and the same key definitions. 

In subsequent definitions of these sets, the following rules apply: 

• The same files as in the first definition must be associated in the same order. 

• You cannot omit any of the files that were in the original set. 

• You can add one empty file at the end but not at any other position. 

You can access a KIF of a multifile set only as an unblocked file. 

A multifile set of KIFs permits a larger KIF than one disk can store. When a KIF can no longer 
expand because of insufficient space on the disk, you can create a new file on another disk. By 
using a logical name, you can use the two files as one. The second file is, in effect, an extension of 
the first. If the first file contains 5000 physical records and physical record 5001 is required, the 
first physical record of the second file, record 0, is used. 

The following lists the file utility operations of the I/O Operations SVC that apply to concatenated 
and multivolume sets: 

• Assign LUNa 

• Release LUNa 

• Verify Pathname 

1·22 2270510·9701 



DNOS System Overview 

The Assign Logical Name (ALN) SCI command associates files collectively with a logical name. 
Actual logical concatenation or creation of a multifile set occurs when you assign a LUNO to the 
logical name. You can access a concatenated file only for the duration of the logical name. You 
can specify files by path name, synonym, logical name, or a logical name and path name combina­
tion. However, all forms must resolve to valid path names. All files in the concatenation or multifile 
set must be precreated and online when you use the logical name. 

The last file in a concatenation set can be expandable. All other files become nonexpandable until 
the logical name is released or the job"terminates. 

When a single end-of-file (EOF) mark appears at the end-of-medium (EOM), the EOF is masked. 
This allows you to access concatenated files logically as a single file without receiving intermedi­
ate EOF marks. Note that any intermediate EOF mark not at the EOM is always returned. If you 
encounter two EOF marks at the EOM, a single EOF is returned. 

Several users can access the same concatenated or multifile set if the access privileges permit. 
Two concatenated files are identical when they consist of the same path names in the same order. 
An error occurs if any of the precreated files of a concatenated file are being accessed indepen­
dently. This maintains file integrity. To delete a concatenated file, you must delete the individual 
files. 

To back up individual components of a concatenated file or a multifile set, use the standard direc­
tory utilities. You cannot back them up by using the logical name. After backing up the files to a 
new medium, you can assign a new logical name to them and use them as before. 

1.5.3.4 Multivolume File Capability. A multivolume file is a concatenated file or a multifile KIF 
set that is made up of files on two or more volumes. The same rules and limitations apply to 
concatenating files on different volumes as files on the same volume. 

1.5.3.5 Stages of Name Definitions. All logical names associated with a given job are located 
in a unique segment in memory. Stages are used to divide the logical names within a name seg­
ment into independent groups. The same names can appear in more than one stage, but changing 
the value of a name in one stage does not affect the value of the name in any other stage. 

Each stage within a name segment has a unique stage number between 0 and 255, and each task 
within a job is associated with a stage number. A task is not restricted to this stage. It can enter a 
new stage, and after some time executing there, it can return to its previous stage. Both of these 
operations are subopcodes of the Name Manager SVC. These operations are used by system soft­
ware and are not documented with the standard user SVC. 

When the first user logs on with a given user 10 and job name, a name segment is created and ini­
tialized with the names retrieved from the file .S$USER.< USER 10> .SYN. Each defined user 10 
has a directory under .S$USER. The files in these directories are used to store name definitions 
while the user IDs are not being used and to recreate stage zero when a user logs on. Initially, only 
stage 0 exists. However, as soon as any foreground SCI task begins executing, it issues an Enter 
New Stage operation. The first SCI task that is bid in a new job initializes stage 1 with the names 
of stage 0 and associates SCI with the new stage. 

2270510·9701 1·23 



DNOS System Overview 

When a user reconnects to an existing job, a similar set of events occurs. LOGON bids the new 
SCI under stage 0; SCI executes an Enter New Stage operation; a new stage number is allocated 
and initialized with the names of its parent stage (stage 0); and the new stage number is asso­
ciated with the new SCI. Note that even though a user's disk-resident name file might change 
between the time that he logs on and the time theft another user reconnects to his job, both users 
start execution with the same name definitions. The reason for this is that stage 0 is initialized 
only once and is never changed. However, if another user logs on with the same user 10 and job 
name but does not reconnect, he begins execution with the current names in the synonym file 
since he is creating a new job whose name segment has not been initialized. 

After SCI has finished initializing itself, a user can begin executing commands and programs. Any 
task which is bid by SCI and runs in the foreground begins executing with the same stage number 
as its parent task, SCI. This is true for all command' processors that are bid by the .BIO and .RBIO 
primitives and for all user tasks that are bid via the Execute Task (XT) command. All command 
processors that are bid by the .QBIO and .OBIO primitives and all batch streams that are bid via 
the Execute Batch (XB) command begin execution in a new stage. SCI handles the latter case by 
executing an Enter New Stage operation and performing a regular bid. After the new task has 
begun executing in the new stage, SCI executes a Return to Previous Stage operation. A task bid 
in this fashion cannot change the name definitions of its parent stage. 

When a user executes the Quit SCI (Q) command, SCI executes a Save Names operation. This 
operation causes the names associated with the stage of the requesting task to be saved in a 
specified file. For SCI, this file is always .S$USER.< USER 10> .SYN. Even if more than one user is 
reconnected to a job, this operation is performed after each user logs off. The file will reflect the 
name definitions of the last user to log off. Therefore, it is necessary for users to cooperate when 
sharing a a single name segment. 

1.5.4 Interprocess Communication (lPC) 
IPC provides communication between two or more tasks. Information passes through 
communication channels, and IPC is responsible for managing channel activity. 

1.5.4.1 Channel Definition. A channel is a path through which data flows between two or more 
tasks. A single owner task controls each channel. One or more other tasks, called requesting 
tasks, can exchange data with the owner task. The scope of a channel can be global, job local, or 
task local, as follows: 

Global Scope 
A channel having global scope is potentially accessible by any task in the system. The owner 
task is nonreplicatable and cannot be bid automatically by an Assign LUNa (AL) SCI com­
mand or a corresponding SVC. Multiple tasks. can concurrently use a global channel that 
permits shared access. 

Job-Local Scope 

1·24 

A channel having job-local scope is accessible by any task in the job. The owner task is rep li­
catable, one copy per job. The channel can be created as sharable, and the owner task can be 
bid automatically when the first AL command or corresponding SVC assigns a LUNa to the 
channel. 

2270510-9701 



DNOS System Overview 

Task-Local Scope 
A channel having task-local scope is accessible within a task. The owner task is replicated 
for each requester task. By definition, the channel is not sharable, and the owner task is bid 
automatically when the first AL command or corresponding SVC assigns a LUNO to the 
channel. Each requester task can independently assign a LUNO, open the channel, perform 
110, close the channel, and release the LUNO. 

1.5.4.2 Channel Creation. Creating a channel consists of the following steps: 

1. Install the channel owner task in an existing program file or in a newly created program 
file. For a job-local or task-local channel, you must install the owner task as a 
replicatable task. The owner task of a global channel is not replicatable. 

2. Create the channel by executing a Create IPC Channel (CIC) command or the corre­
sponding SVC operation. This creates the channel with the specified characteristics. 

1.5.4.3 Channel Characteristics. DNOS channels can be defined as symmetric channels or 
master/slave channels. Symmetric channels function with simple read and write requests, where 
one correspondent on the channel issues a read and another issues a write. The data written 
passes to the reader's buffer when a pair of requests match. In a master/slave channel, the master 
task receives the entire buffered SVC block for processing. The master (owner) task processes the 
block and returns the resulting block to the requesting (slave) task. 

Symmetric Channel Activity. Symmetric channels communicate messages or data in a rela­
tively restricted fashion. Tasks can be written to exchange information or facilitate use of com­
mon resources. The operations addressed to the channel by such tasks are limited to Open, 
Close, Read, Write, Read Status, and Write EOF. 

When a task opens the channel, the access privileges requested are checked against those pre­
viously granted to other users of the channel. The same rules apply for channels as for other 
resources when granting or denying access. For example, if one requesting task opens a channel 
with privileges of exclusive all, no other task can open the channel. Shared access, which allows 
both Read and Write operations by all channels, is appropriate for most Open operations. 

The channel definition can require more restrictive access privileges than a task specifies. A 
requesting task can open a symmetric channel established as a nonshared channel in any mode; 
however, the channel functions with only one task at a time. This is necessary for a symmetric 
channel since the owner task has no way of differentiating requesting tasks from each other. 

Any of the following can issue a Close: an owner, a requesting task, or the system when process­
ing an abnormal termination by a task on the channel. When a Close is issued by (or for) a request­
ing task, IPC processes the Close and the channel closes for that task. 

On other operations to a symmetric channel, IPC must find a match before the operation is per­
formed. That is, one task must issue a Read and the other a Write before either operation will be 
processed. If a mismatch occurs, both the requester and the owner tasks are informed of the error. 

2270510-9701 1·25 



DNOS System Overview 

When an owner issues a Close, IPC processes the request and the channel is marked as dormant 
for all tasks for which it is currently open. This setting causes requesting tasks to receive errors 
on any operation except Open and Close. When a requesting task on a dormant channel issues a 
close, the channel becomes a closed channel for that task, and it is available to be opened. 

Master/Slave Channel Activity. A master/slave channel is established when the owner task pro­
cesses all requests from requesting tasks. The master/slave owner task can be written in assembly 
language using the Master Read, Master Write, and Read Call Block operations described in sub­
sequent paragraphs; it can also be written in a high-level language with subroutine support to 
access these operations. 

When accessing a master/slave channel, a requesting task may need to pass a set of parameters 
to the master task. The user can specify these parameters as part of an Assign Logical Name 
suboperation of the Name Manager SVC. Then, ONOS can pass them to the owner task as part of 
an AL command or a corresponding SVC. 

To receive such parameters, an owner task may process Assign LUNO operations from requesting 
tasks. The owner receives the request with Master Read. The owner task then requests a Master 
Write of the assign block. Owner tasks that process assigns also process Release LUNO calls. 

The owner task can process I/O Abort requests and all I/O Utility requests. You must specify these 
options in the Create IPC Channel (CIC) command. 

While using a master/slave channel, the owner task processes I/O operations to a channel from 
requesting tasks. The owner task issues a Master Read to obtain a request for processing and 
issues a matching Master Write to return messages or status information to the requesting task. 

IPC performs several operations for the master/slave channel as it does for the symmetric chan­
nel. In particular, IPC deals with an Open or Close issued by an owner task as described for 
symmetric channels. The owner Open specifies the channel access privileges in a manner consis­
tent with I/O resources. The owner task processes Open and Close operations from a requesting 
task processed by the owner task. IPC modifies some internal counts to keep track of requesting 
task Open and Close operations when the owner executes a Master Write of the Open or Close 
block. 

IPC passes to the owner task all I/O operations issued to the channel by the requesting task. The 
operations are processed accordingly. The owner task uses the following operations exclusively: 

• Open 

• Close 

• Master Read 

• Read Call Block 

• Master Write 

• Read Status 

1-26 2270510-9701 



DNOS System Overview 

1.5.4.4 IPC Supervisor Calls (SVCs). The IPC operations are a subset of the operations that the 
1/0 Operations SVC provides. In addition to those listed in the preceding paragraph for master 
tasks, the following operations apply to IPC channels: 

• Create IPC Channel 

• Delete IPC Channel 

• Open 

• Symmetric Read 

• Symmetric Write 

• Write EOF 

• Close 

1.5.4.5 IPC SCI Commands. The following SCI commands support IPC capabilities: 

Create IPC Channel (CIC) 
The CIC command creates a global, job-local, or task-local channel. A global channel is 
accessible by any task in the system, and the owner task is nonreplicatable. A job-local chan­
nel is accessible by any task in the job, and the owner task is replicatable. The owner task of 
a task-local channel is replicatable for each task in any job. 

Delete IPC Channel (DIC) 
The DIC command deletes the disk-based definition of the channel specified. 

Show Channel Status (SCS) 
The SCS command displays information about a specified active channel. This information 
includes channel owner, type of channel, scope of channel, maximum message length, 
shared or not shared scope, number of current assigns, number of current opens, and current 
access privileges. 

2270510-9701 1·27/1·28 





2 

Disk and File Organization 

2.1 FILE ORGANIZATION 

DNOS provides disk file support for applications and system programs. A file is a named and 
organized collection of records. Disk files are written on any of several disk media used with 
DNOS. You can access the files through the 1/0 subsystem. The following paragraphs describe 
the types of files, ways of protecting and sharing them, and their characteristics. 

2.1.1 File Types 
DNOS supports three types of disk files: 

• Sequential files 

• Relative record files 

• Key indexed files (KIFs) 

Relative record files include three special usage groups: 

• Directory files 

• Program files 

• Image files 

2.1.1.1 Sequential Files. In a sequential file, the order in which the records are written deter­
mines record organization. You cannot alter the record sequence by adding or deleting records 
except in the following cases: 

• You can add records in sequence following the last record in the file. 

• You can rewrite a record if the record length does not change. 

On a blank-suppressed file, the blank-suppressed record length must not change during a rewrite 
operation; the internal size of the record must be the same. Records in a sequential file are of 
variable length, and you access the records serially (record 0 first, record 1 next, and so on). 
Records are accessed in the order in which they were originally written. 

Encountering an end-of-file (EOF) on a read of a sequential file indicates that the file is positioned 
after the last record. 

2270510-9701 2·1 



Disk and File Organization 

2.1.1.2 Relative Record Files. A relative record file consists of records that are identified by 
position. In effect, the file is a string of logical records, each accessed by a record number. The 
first logical record is record O. Therefore, to access the tenth record, you should enter 9 in the 
appropriate field of the 1/0 supervisor call (SVC) block. You can access relative record files 
sequentially by placing a starting value in the record number field of the 1/0 SVC block. ONOS 
automatically increments the record number after each read or write. The range of record numbers 
is from 0 to one less than the number of records in the file. The upper limit is 16,777,216. Records 
in a relative record file are of fixed length. The length is specified when the file is created. 

ONOS converts the record number to a physical address on the disk (track and sector). It can 
directly access any record with one disk access. 

Relative record files can be blocked or unblocked. Generally, blocking allows faster processing. 
You can delay actual disk transfers of memory buffers for blocked relative record files. Once a 
buffer for a block is allocated in memory and the block is read from disk, all Read operations from 
that block reference the memory buffer for the block. Unless you select the immediate-write 
option, information directed to records already in rrtemory is not written back to disk until ONOS 
requires the memory space allocated to the blocking buffer or until the file is closed. 

When ONOS reads an EOF on a relative record file, the record number is used but not incremented 
in the SVC block. 

2.1.1.3 Key Indexed Files (KIFs). A KIF consists of data records that you can access by con­
tent. You can define various fields within a record as a key. Each record can have up to 14 keys, 
with access through each key independent of the other keys. For example, the records in an 
employee file might be accessed by employee 10, employee name, and employee social security 
number. 

In addition to random access by key value, KIFs have the following features: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

2·2 

You can access records sequentially in the sort order of any key. 

At file creation, you can give a key the attribute of allowing duplicates (that is, of allow­
ing two or more records in the file with the same value for this key). 

At file creation, you can give a key the attribute of being modifiable. This allows you to 
change the key value when you write a record. Also, a modifiable key value can be miss­
ing in the record but added later on a rewrite. Note that you cannot assign this attribute 
to the first (primary) key. 

Key fields can overlap if their attributes match. 

A key can be up to 100 contiguous characters long. 

Records can be of variable length and can change in size on a rewrite. 

Positioning on partial keys is allowed. 

Records are automatically blank compressed. 

Record-level locking (temporary exclusive-all access) is supported. 

2270510-9701 



Disk and File Organization 

• The file can grow in size. . 

• Preimage logging of modified blocks maintains file integrity. As a result, system 
crashes and power failures cause the loss of only the last I/O operation. 

• A KIF cannot contain records of odd or zero length. 

• The EOF on a KIF is analogous to the EOF on a relative record file. 

2.1.1.4 Special Usage Files. DNOS supports three special types of relative record files: 

Directory File 
Contains information necessary to locate other files and descriptive information about those 
files. It does not contain user data. 

Program File 
Contains executable programs or segments in memory image form. A program file usually 
contains more than one program. 

Image File 
Has a logical record size that equals the phYSical record size, which in turn equals the disk 
sector size. Image files usually contain a memory image of some code. These files are 
designed so that a program image can be read into memory in one disk access. 

2.1.2 File Protection and Sharing 
DNOS ensures disk file integrity and allows you to control the use and modification of files by 
means of the following features: 

• Delete and write protection 

• Record locking 

• Access privi leges 

• Special usage file protection 

2.1.2.1 Delete and Write Protection. Standard I/O calls modify the delete and write protection 
file attributes. Files are initially created without protection. You must make a subsequent I/O call 
to change the protection status. 

An attempt to write to or delete a write-protected file fails and returns an error code. (Write protec­
tion includes delete protection.) These protective attributes are not intended for file security. 
(Non privileged SVCs are available to remove write and delete protection.) Instead, they provide 
protection against user error or program flaws that might otherwise destroy valuable data. 

2270510·9701 2·3 



Disk and File Organization 

2.1.2.2 Record Locking. Record locking restricts access to a record in a file. This means that 
although several users share access to a given file, you can lock individual records within the file 
to provide exclusive (single-user) read and write access. This is not a security feature, since any 
file user can unlock a locked record; however, this feature can ensure that record updates occur 
one at a time. For example, inventory files can be accessible from several terminals. Record lock­
ing can prevent two or more users from attempting to update a record simultaneously, causing an 
undetected loss of one of the updates. 

2.1.2.3 Access Privileges. To assist intertask 1/0 synchronization, DNOS supports several dif­
ferent access modes for all 1/0 resources. These modes define the relationship between logical 
units and resources and prevents conflicting accesses by other logical units. Four access modes 
apply to files. Enforcement of file access privileges is through the Open, Open Rewind, and Open 
Random operations of the 1/0 Operations SVC. The SVC fails if you request an operation with a 
conflicting privilege level. You can change access privileges if no access conflicts result. 

With respect to access privileges, a Write operation is any operation that alters the contents of a 
file. The access privileges, which conform to the American National Standards Institute (ANSI) 
standard, are as follows: 

• Read-Only - Allows the calling program to read but not write. Gives other programs 
read-only, shared, and exclusive write access. 

• Shared - Allows the calling program to read and write. Gives other programs read-only 
and shared access. 

• Exclusive write - Allows the calling program to read and write. Allows other programs 
to read but not write. 

• Exclusive all - Allows the calling program to read and write. Does not allow other pro­
g rams to have access. 

The Open, Open Rewind, Open Random, and Modify Privileges operations use bits 3 and 4 of the 
user flags in the 1/0 SVC block to select the following access privileges: 

Code Meaning 

00 Exclusive write 

01 Exclusive all 

10 Shared 

11 Read only 

2.1.2.4 Special Usage File Protection. To prevent accidental use of special usage files (pro­
gram, directory, and image files) as data files, you must set two flags in the I/O SVC block for the 
Assign LUNO operation. These flags indicate whether the LUNO is being assigned to a program 
file, a directory, an image file, or a file with no special usage. You must set the proper flags to set 
the LUNO; otherwise, an error code is returned. The flags are bits 1 and 2 in byte 16 of the I/O Oper­
ations SVC block. For further details, refer to the ONOS Supervisor Call (SVC) Reference Manual. 

2·4 2270510-9701 



Disk and File Organization 

2.1.3 File Characteristics 
The following paragraphs describe these characteristics of ONOS files: 

• Record blocking 

• Saving disk space 

• Immediate write 

• Temporary attribute 

• Expandability 

• End-of-file 

2.1.3.1 Record Blocking. A file consists of a collection of data entities called logical records. 
The logical records do not necessarily correspond to the physical records (that is, to the physical 
division of data on the disk). Logical records are the data groupings of a file as seen by a program. 
Physical records are the buffers physically transferred between memory and disk. 

The length of the logical records within a file can be constant or variable, depending on the file 
type. For relative record files, logical records are of fixed length. This makes it possible for the 
system to calculate the physical position of any logical record relative to the beginning of the file. 
This characteristic makes possible random access of a logical record in relative record files. 

Sequential files and KIFs allow variable-length logical records. For KIFs, the logical record length 
is always an even number of bytes. For sequential files, the logical records can be any number of 
bytes, including zero. 

When you create a file, you must specify the logical record size. For relative record files, the size 
must be exact. For sequential files and KIFs, the record size is used to calculate the amount of 
disk space initially allocated to the file; the specified size should be an estimate of the average 
logical record size. The more accurate the estimate, the better the utilization of disk space. 

The physical record length is specified when the file is created and cannot be changed. 

It is often advantageous to store multiple logical records in a physical record. This is called 
blocking. 

Since disk transfer and latency times are relatively long, usually you should choose physical 
records large enough to include several logical records. When a task first issues a read request, 
ONOS actually reads an entire physical record into memory. The physical record is stored in an 
area of memory called a blocking buffer. Only the part that corresponds to the requested logical 
record is passed to the requesting task. 

Subsequent read and write requests to a physical record in memory do not cause immediate disk 
access; instead, they reference the record image in memory. ONOS keeps an accessed physical 
record, which usually contains several logical records, in memory until the memory area is needed 
for other purposes or the file is closed. Blocking logical records and the deferred write capabilities 
can substantially improve system throughput, especially for sequential files. 

2270510-9701 2·5 



Disk and File Organization 

If no physical record size is specified at creation time, ONOS assigns a default physical record 
size based on the file type. Sequential files and KIFs support variable-length records. Since ONOS 
can split logical records into two or more physical records in a sequential file, the physical record 
size can be smaller than the largest logical record. However, this results in inefficient processing 
of the file. 

2.1.3.2 Saving Disk Space. Blank suppression and blank adjustment are two methods of saving 
disk space within a file by storing data in a more compact form. These methods apply only to KIFs 
and sequential files. While blank suppression always occurs on KIFs, it is optional on sequential 
files. 

Blank suppression replaces strings of blanks by a cQunt of blanks when writing to disk and 
restores the blank string when reading from disk. In operation, blank suppression is transparent to 
the user. Usually, you should specify blank suppression for a source file, a listing file, or a text file, 
since these files tend to contain many blanks. However, keep in mind that blank suppression 
increases by one word the length of records containing no blanks. 

The second method, blank adjustment, applies to sequential files and 1/0 devices with variable 
record lengths. Blank adjustment truncates trailing blanks on output and restores them on input. 
To use this feature, you must set the blank adjust flag bit in an I/O SVC block. 

2.1.3.3 Immediate Write. When ONOS writes a record of a blocked file, the record is placed in a 
blocking buffer in memory. The record in the buffer remains in memory as long as possible. Subse­
~uent read and write requests access the memory buffer and not the disk. The disk is accessed 
Jnly when ONOS needs the memory occupied by the blocking buffer or the file is closed. This 
jelaying of disk writes increases system throughput. However, although the disk write is actually 
jelayed, it is reported as being complete. Consequently, errors that occur during the write cycle 
:ue unexpected and in some situations may not be detected. ONOS supports an immediate-write 
)ption, specified when a file is created, for files that cannot risk an undetected write error. 

rhe most common undetected error is disk failure. For example, you might update a record in a 
)Iock and be informed that the update has been successfully completed. However, when the 
)Iock is actually written to disk, possibly several minutes later, an I/O error might occur. This error 
s returned on the next call to the LUNO after the error. The error is returned even if the call is not a 
Nrite operation. 

Nhen deciding whether to include the immediate-write option, remember that undetected errors 
ire rare and that files (especially sequential files) with this option are less efficiently processed. 
rherefore, you should reserve this option for sensitive files that cannot risk loss of data. KIFs 
ilways include the immediate-write option. 

!·6 2270510·9701 



Disk and File Organization 

2.1.3.4 Temporary Attribute. When you create a file, it usually remains in existence until you 
explicitly delete it. However, under DNOS you can also create temporary files as follows: 

• Create a temporary file using an Assign LUNO operation of the 1/0 SVC with the tempo­
rary file bit set. In this case, the file remains in existence only as long as the LUNO is 
assigned. If you do not specify a name, DNOS assigns a unique temporary file name. 
However, the path name portion of the I/O SVC block can indicate the disk volume on 
which the file is to be created. By using the Rename File operation of the I/O Operations 
SVC, you can explicitly name the file and specify it as permanent. Otherwise, it is 
deleted the first time its LUNO is released. 

• Create a temporary file using a Create File operation of the 1/0 Operations SVC with the 
temporary bit set and a path name supplied. You can assign one or more LUNas to the 
file using the pathname. The file remains in existence as long as at least one LUNa is 
assigned. When the last LUNO is released, the file is deleted. 

• Create a job-temporary file by using the Assign Logical Name SVC or the Assign Logical 
Name (ALN) SCI command followed by eHher the Create File (CF) command or the 
Assign Luno (AL) command. The discussion of name management in Section 1 
describes how to create a job-temporary file using these commands. 

2.1.3.5 Expandability. When you create a file using the Create File operation of the I/O Opera­
tions SVC, you can give the file a fixed size via the primary allocation parameter. Alternatively, you 
can create the file as expandable and give the primary allocation as its initial allocation. When the 
file exceeds its primary allocation, it is augmented with secondary allocations. The secondary 
allocation parameter is the size of the first secondary allocation. Subsequent secondary alloca­
tions automatically and progressively increase in size over the previous allocation. Files add up to 
a maximum of 16 secondary allocations. 

2.1.3.6 End-of·File (EOF). An EOF is a logical position within a relative record file or KIF. It is an 
actual record within sequential files. When read, it sets the EOF status bit. No data is transferred. 
The EOF status bit is bit 2 of the system flags. 

2270510-9701 2-7 



Disk and File Organization 

Relative record files have one EOF that corresPo~ds to the record following the highest-numbered 
written record. Sequential files can have more than onel EOF. A sequential file is analogous to a 
reel of magnetic tape that can contain several files sepajrated by EOFs. A sequential file can con­
sist of multiple data sets or subfiles marked by EOFs. A ~IF has a logical EOF that corresponds to 
the record following the record with the largest primar~ key. For a KIF, the EOF applies only to 
Read ASCII operations and Forward Space operations tHat access the file sequentially in primary 
key order. : 

I 

The internal representation of an EOF in a sequential filb is a record of zero length. Either a Write 
EOF operation or a Close and Write EOF operation whtes the EOF. Writing an EOF does not 
prevent writing more records to the file. 

2.2 DISK ORGANIZATION 

The organization of files on the disk is related to the follolwing: 

• Disk characteristics 

• Allocation of space on the disk 

• Physical organization of the disk 

2.2.1 Disk Characteristics , 
I 

All tracks on disks are initialized in a one-sector-per-recqrd format. This record size is a character-
istic of the type of disk and is not necessarily the physic,1 record size for files to be created on the 
disk. : 

Disks are logically divided into allocatable disk units (Ai!DUS). An ADU is made up of one or more 
complete sectors of the disk. The number of sectors p r ADU varies according to the disk type 
(see Table 2-1) to provide a number of ADUs per disk Ie s than 65,536. Each ADU on the disk can 
be addressed by a 16-bit word. ADU numbers start w:ith 0, the first ADU starting on track 0, 
sector 0. 

2·8 2270510-9701 



Disk and File Organization 

Table 2·1. Format Information for Supported Disks 

Available 
Disk Space No. No. No. Sec.! Sec./ Bytes/ 
Type (M Bytes) ADUs Heads Cylinder Track ADU Sec. 

0810 4.7 16,320 2 408 20 288 

0825 22.3 25,840 5 408 38 3 288 

0850 44.6 51,616 5 815 38 3 288 

0880 62.7 40,819 5 803 61 6 256 

08200 169.5 65,381 19 815 38 9 288 

08300 238.3 62,045 19 803 61 15 256 

F01000 1.15 4,004 2 77 26 288 

C01400/32 
Removable 13.5 52,544 821 64 256 

Fixed 13.5 52,544 821 64 256 

C01400/96 
Removable 13.5 52,544 821 64 256 

Fixed 67.3 43,786 5 821 64 6 256 

W0500 4.9 19,200 4 150 32 256 

W0500A 17.0 22,208 3 694 32 3 256 

W0800-18 18.5 24,087 3 651 37 3 256 

W0800-43 43.2 56,203 7 651 37 3 256 

W0800A/38 38:4 50,105 5 911 33 3 256 

W0800A/68 69.2 45,094 9 911 33 6 256 

W0800A/114 114.5 49,720 15 904 33 9 256 

W0900-138 138.1 59,928 10 805 67 9 256 

W0900-138/2 69.0 44,946 5 805 67 6 256 

W0900-425 425.8 61,600 24 693 100 27 256 

W 0900-42512 212.9 55,440 12 693 100 15 256 

2270510-9701 Change 1 2·9 



Disk and File Organization 

2.2.2 Disk Space Allocation to Files 
Disk space is allocated to files in multiples of ADUs. The ADU size, physical record length, and 
logical record length determine how efficiently disk space is utilized. Consider the following disk 
access characteristics: . 

• Physical records start on sector boundaries. 

• Physical records that do not start on an ADU boundary cannot span an ADU boundary. 

• Logical records can span physical record boundaries in sequential files only. 

For efficient utilization of disk space by a file, the physical record size should be an integer mul­
tiple of the sector size and an integer multiple or a factor of an ADU. If the file is a relative record 
file, the physical record size should be an integer multiple of the logical record size. 

An additional consideration in file definition is frequency of disk access. A disk access is required 
only when an I/O operation addresses a record that is not in the buffered physical record. As a 
rule, the physical record length should be at least three times the logical record length, allowing 
file management to buffer logical records. 

2.2.3 Physical Organization of a DNOS Disk 
Disks initialized under DNOS have the following physical layout: 

• Track O/Sector 0 - Contains volume information such as the volume name and the loca­
tion of VCATALOG. 

• Track O/Sector 1 - Contains bad ADU list. 

• Remainder of track 0 - Contains bit maps indicating disk allocation information. The 
largest available block is recorded at the beginning. 

• Track 1 - Contains the disk program image loader and a copy of sectors 0 and 1 of 
track 0, used for recovery from a major disk failure. 

• Remaining tracks - Available for file allocation. 

• Reserved tracks - Contain alternate location of bad tracks on disks that support bad 
track mapping. 

2.2.3.1 Volume Information. The information stored in track 0, sector 0 of all disks initialized 
under DNOS is called volume information. Figure 2-1 shows the format of this 164-byte block of 
information. In this figure and those that follow, reserved fields are fields that DNOS does not cur­
rently use but might use in the future. 

2·10 Change 1 2270510·9701 



Disk and File Organization 

DEC HEX 

0-7 0-7 VOLUME NAME 

8-9 8·-9 NUMBER OF ADUs 

10-11 A-B BIT MAP SECTOR NO. I No. OF BIT MAPS 

12-13 C-D BYTES PER PHYSICAL RECORD 

14-15 E-F PROGRAM IMAGE LOADER TRACK NUMBER 

16-21 10-15 RESERVED 

22-23 16-17 NUMBER OF BAD ADUs 

24-25 18-19 PROGRAM IMAGE LOADER ENTRY POINT 

26-27 1 A-1B LENGTH OF PROGRAM IMAGE LOADER 

28-35 1C-23 RESERVED 

36-37 24-25 PROGRAM IMAGE LOADER TRACK NUMBER 

38-45 26-2D RESERVED 

46-53 2E-35 PRIMARY SYSTEM IMAGE FILE NAME 

54-61 36-3D SECONDARY SYSTEM IMAGE FILE NAME 

62-63 3E-3F SYSTEM IMAGE SELECT FLAG 

64-65 40-41 VCATALOG STARTING ADU 

66-67 42-43 VCATALOG PHYSICAL RECORD SIZE 

68-69 44-45 SECTORS/ADU 

70-73 46-49 CREATION DATE 

74-81 4A-51 PRIMARY PROGRAM FI LE NAME 

2279387 (1/'2.) 

Figure 2·1. Volume Information Format (Sheet 1 of 2) 

2270510·9701 2·11 



Disk and File Organization 

DEC HEX 

82-89 52-59 SECONDARY PROGRAM FILE NAME 

90-91 SA-58 PROGRAM FILE SELECT FLAG 

92-99 5C-63 PRIMARY OVERLAY FI LE NAME 

100-107 64-68 SECONDARY OVERLAY FILE NAME 

108-109 6C-6D OVERLAY FILE SELECT FLAG 

110-117 6E-75 PRIMARY SYSTEM LOADER FILE NAME 

118-1 25 76-7D SECONDARY SYSTEM LOADER FILE NAME 

126-127 7E-7F SYSTEM LOADER SELECT FLAG 

128-135 80-87 DIAGNOSTIC FI LE NAME 

136-137 88-89 DIAGNOSTIC SELECT FLAG 

138-143 8A-8F RESERVED 

144-151 90-97 WRITABLE CONTROL STORAGE FILE NAME 

152-159 98-9F WCS SECONDARY FILE 

160-161 AO-A1 SELECT SWITCH 

162-163 A2-A3 TRACK 1 SELECT FLAG 

2279387 (2/2) 

Figure 2·1. Volume Information Format (Sheet 2 of 2) 

2·12 2270510-9701 



~' 

Disk and File Organization 

The volume information shown in Figure 2-1 contains the following field descriptions: 

Byte 

0-7 

8-9 

10 

11 

12-13 

14-15 

16-21 

22-23 

24-25 

26-27 

28-35 

36-37 

38-45 

46-53 

54-61 

62-63 

64-65 

66-67 

68-69 

70-73 

2270510-9701 

Description 

Volume name, one to eight characters, blank filled to the right. 

Total number of ADUs contained in the volume. This field varies by disk 
type. 

The number of the sector in track 0 in which the first bit map resides. 

Total number of bit maps. 

The number of bytes per physical record (that is, sector) in track O. This 
value is also disk dependent. 

The number of the track that contains the disk program image loader. 
This field is initialized to 1. 

Reserved. 

Total number of bad ADUs on the disk. 

Entry pOint address of the disk program image loader (initialized to > A4, 
the entry pOint of the loader when it is loaded at location> AO). 

Total byte length of the disk program image loader. 

Reserved. 

Second copy of the track that contains the disk program image loader 
(initialized to 1). 

Reserved. 

Name of the primary system image file (one to eight characters). Zero at 
in iti alization. 

Name of the secondary system image file. Zero at initialization. 

System select flag. Zero at initialization. 

Number of the ADU in which the volume directory (VCATALOG) begins. 

Physical record size of the VCATALOG directory file. 

Number of sectors per ADU (disk dependent). 

Disk creation date. 

2·13 



Disk and File Organization 

2-14 

NOTE 

The remaining fields of the volume information block apply to sys­
tem disks only. They are not given values when the disk is initial­
ized. The Modify Volume Information (MVI) command writes the 
field values. 

Byte Description 

74-81 Primary system program file name 

82-89 Secondary system program file name 

90-91 System program file select flag 

92-99 Primary system overlay file name 

100 -107 Secondary system overlay file name 

108 -109 System overlay file select flag 

110-117 Primary system loader file name 

118 -125 Secondary system loader file name 

126 -127 System loader select flag 

128-135 Diagnostic file name 

136-137 Diagnostic select flag 

138-143 Reserved 

144 -151 Writable control store (WCS) file name 

152 -159 WCS secondary file 

160 - 161 Select switch 

162 -163 Track 1 select flag 

~ 

2270510·9701 



Disk and File Organization 

2.2.3.2 Bit Map. To identify which areas on the disk are allocated and which are free, DNOS 
maintains a bit map of allocated ADUs. The bit map is located in track 0 of each disk, starting at 
sector 2 and continuing through as many sectors as necessary. 

The bit map is divided into 128-word partial bit maps. Each partial bit map is located in a separate 
sector in track O. The first word of each partial bit map contains the number of the ADU that begins 
the largest block of free disk space located in that part of the disk, which is mapped by the partial 
bit map. Each bit in the remaining 127 words represents an ADU. If the bit is zero, the ADU is free; 
if it is one, the ADU is allocated (or the ADU is on a bad track). Each partial bit map contains 127 
16-bit words of information and maps 2032 ADUs. Figure 2-2 shows the structure of a partial bit 
map. 

BYTE 0 
RELATIVE ADU No. OF LARGEST AVAILABLE BLOCK 

1 
2279388 

PARTIAL ALLOCATION SIT MAP 

BIT = 1 MEANS 

ADU ALLOCATED 

Figure 2·2. Partial Bit Map 

2.2.4 Displaying and Modifying Absolute Disk Addresses 
The following SCI commands are available to display or modify absolute disk addresses: 

Command Description 

SAD Show Absolute Disk 

SADU Show Allocatable Disk Unit 

MAD Modify Absolute Disk 

MADU Modify Allocatable Disk Unit 

2.3 DISK FILE STRUCTURES 

J 

The structure of the directory file is a key to the organization of files on a disk. The following para­
graphs describe the directory structure and the structure of each type of file that DNOS supports. 

2270510-9701 2·15 



Disk and File Organization 

2.3.1 Directory File 
A directory contains information necessary to locate other files and descriptions of those files. 

Figure 2-3 illustrates the way in which all directories are connected in a network. The top of this 
network is the volume directory, called VCATALOG._ VCATALOG is created on each volume when 
the disk is initialized. It maintains information about directories, system files, and user files. 

USER 

FILES 

USER 

FILES 

VCATALOG 

DIRECTOR 

DIRECTORY 

DIRECTORY 

USER 

FILES 

USER 

FILES 

USER 

FILES 

SYSTEM 

FILES 

2279389 

Figure 2·3. Directory Structure 

2.3.1.1 Directory File Characteristics. Directory files are unblocked relative record files con­
sisting of one logical record per physical record. Figure 2-4 shows the file structure of a directory. 
Record 0 contains overhead information in the format shown in Figure 2-5. Each of the remaining 
records is of one of the following types: 

• 

• 

2·16 

File descriptor record (FDR) - Describes a file and its location on the disk . 

Alias descriptor record (ADR) - Describes an alias for a file, includes the location of the 
file, and points to the FDR of the file. 

2270510-9701 



Disk and File Organization 

• Channel descriptor record (CDR) - Describes a channel, specifies the program file of 
the owner task of the channel, and points to the FOR of the program file. 

• Key descriptor record (KDR) - Describes the keys defined for a KIF. An entry in the FOR 
of the KIF points to the KDR. Thus, each KIF requires two directory entries. 

Subsequent paragraphs describe the types of records in a directory. 

File names in a directory are hashed to a record number, 1 through N, where N is the last record in 
the directory. If a file name hashes to a record number and the record is unused, an FOR for the file 
being inserted is built in that record. If the record is already used, a linear search from the hashed 
record finds a free record. For KIFs, a linear search is performed from the FOR to locate an avail­
able record for the key descriptor block. 

REC. No. 

o 

2 

3 

rlJ 

2279390 

OVERHEAD RECORD 

• 

Figure 2-4. Directory File Structure 

,. ... 

FDRs , ADRs, 

CDRs , AND KDRs 

2270510-9701 2·17 



Disk and File Organization 

DEC HEX 

0-1 0-1 NUMBER OF RECORDS IN DIRECTORY 

2-3 2-3 NUMBER OF FILES IN DIRECTORY 

4-5 4-5 NUMBER OF AVAILABLE RECORDS 

6-7 6-7 No. OF TEMP. FILES CURRENTLY DEFINED 

8-15 8-F FILE NAME OF DIRECTORY 

16-17 10-11 LEVEL NUMBER OF DIRECTORY 

18-25 12-19 FILE NAME OF PARENT 

26-63 lA-3F RESERVED 

2279391 

Figure 2·5. Directory Overhead Record Format 

The directory overhead record, record 0 of all directories, contains the following: 

• Maximum number of records (entries) in the directory 

• Number of currently defined files 

• Number of available records (entries) 

• File name of the directory 

• Level number of the directory in the disk hierarchy (VCATALOG is level 0) 

• File name of the parent directory 

2.3.1.2 File Descriptor Record (FOR). Each file cataloged under the directory is represented by 
an FOR. Figure 2-6 shows an FOR. 

2·18 2270510·9701 



DEC HEX 

0-1 0-1 

2-3 2-3 

4-11 4-B 

12-15 C-F 

16-17 10-11 

18-19 12-13 

20-21 14-15 

22-23 16-17 

24-25 18-19 

26-27 lA-1B 

28-29 1C-tD 

30-31 tE-1F 

32-35 20-23 

36-39 24-27 

40-41 28-29 

42-45 2A-2D 

46-47 2E-2F 

48-49 30-31 

50-51 32-33 

52-53 34-35 

54-59 36-3B 

60-65 3C-41 

66 42 

2279392 (1/2) 

Disk and File Organization 

H ASH KEY COUNT 

HASH KEY 

FILE NAME 

RESERVED 

FLAGS 

PHYSICAL RECORD SIZE 

LOGICAL RECORD SIZE 

PRIMARY ALLOCATION SIZE 

PRIMARY ALLOCATION ADU 

SECONDARY ALLOCATION SIZE 

OFFSET TO SECONDARY ALLOCATION TABLE 

RECORD NUMBER OF FIRST ALIAS 

END OF MEDIUM LOGICAL RECORD NUMBER 

END OF MEDIUM BLOCK NUMBER 

END OF MEDIUM OFFSET 

FREE BLOCK QUEUE HEAD 

BLOCK No. OF B-TREE ROOT (PRIMARY KEY) 

BLOCK NUMBER OF FIRST DATA BLOCKS 

TOTAL NUMBER OF DATA BLOCKS 

RECORD NUMBER OF KEY DESCRIPTORS 

DATE AND TIME OF LAST UPDATE 

DATE AND TIME FILE CREATION 

ADUs /BLOCK I BLOCKS/ADU 

Figure 2·6. FOR Format (Sheet 1 of 2) 

KIF 

FILES 

ONLY 

2270510-9701 2·19 



Disk and File Organization 

DEC 

68-69 

70-71 

HEX 
44-45 

46-47 

72-73 48-49 

132-133 84-85 

2279392 (2/2) 

rv 

T 

MINIMUM RECORD SIZE 

SIZE OF SECONDARY AL.L.OCATION 

STARTING ADU OF ALLOCATION 

ADm TIONAL SECONDARY ALLOCATIONS 

(AS REQUIRED, 16 MAXIMUM) 

Figure 2·6. FDR Format (Sheet 2 of 2) 

.... 

r-

1 

> 

SECONDARY 

ALLOCATION 

TABL.E 

The FOR shown in Figure 2-6 contains the following information: 

Byte 

0-1 

2-3 

4-11 

12-15 

16-17 

18-19 

20-21 

22-23 

24-25 

26-27 

28-29 

2·20 

Description 

Hash key count. The number of records in the directory that 
hashed to this record number. 

Hash key. The result of the hash algorithm for the file name in this 
FOR. The hash value might not be the number of this record. When 
the hash value record has already been written, DNOS searches 
linearly for an unused record. 

File name (eight characters). 

Reserved. 

Fi Ie usage flags. 

Physical record size in bytes. Must be an even number. 

Logical record size in bytes. Must be an even number if the file is 
unblocked. 

Primary allocation size, in ADUs. 

Primary allocation starting ADU number (starting disk address). 

Secondary allocation size in ADUs. 

Offset into this FOR of the secondary allocation table. When the 
file is not expandable or before a secondary allocation has been 
made, the field contains O. 

2270510-9701 



Byte 

30-31 

32-35 

36-39 

40-41 

42-45 

46-47 

48-49 

50-51 

52-53 

54-59 

60-65 

66 

67 

68-69 

70-133 

2270510-9701 

Disk and File Organization 

Description 

Record number of the ADR for the file's first alias or of the CDR. 
Contains zero when no alias is defined and no CDR exists. 

Logical record number of the end-of-medium (EOM). The EOM is 
the end of the last space allocated to the file. 

The logical block (physical record) number of the EOM. 

The offset into the EOM block of the logical record following the 
EOM record. 

Block number of the first block in a queue of KIF blocks with avail­
able space. Each block points to the next block in the queue. A 
block is a physical record of the file. This number is used only for 
KIFs. 

The block number of the B-tree root block of the primary key. The 
block following this is the KIF root block for key 2, and so on. This 
field is also the total number of blocks that can be used for 
logging. 

The block number of the first KIF data block. 

The total number of data blocks in the KIF. 

Record number of the KDR. 

Date of the last update to the file. 

Creation date of the file. 

The number of ADUs per physical record. 

The number of physical records per ADU. 

The minimum size for a KIF logical record; the KIF must contain all 
of the keys defined. 

The secondary allocation table, which contains two-word entries. 
The first word of an entry contains the size, in ADUs, of the first 
secondary allocation. The second word contains the starting ADU 
of the allocation. The table can contain as many as 16 entries and 
is used only when the file expands. Unused fields contain zeros. 

2·21 



Disk and File Organization 

The file usage flags in bytes 16 and 17 have the following meanings: 

2279394 

2·22 

0-1 2-3 14 1 5-6 17 I 8 19 110 111 112113-14 115 1 

Bit(s) 

0-1 

2-3 

4 

5-6 

7 

8 

9 

10 

Meaning 

Fi Ie usage, as follows: 
00 - No special usage 
01 - Directory file 
10 - Program file 
11 - Image file 

Format, as follows: 
00 - Binary 
01 - Blank compressed 

Allocation type, as follows: 
1 - Expandable 
o - Primary allocation only 

Fi Ie type, as follows: 
01 - Sequential 
10- Relative record 
11 - Key indexed 

Write protected, as follows: 
1 - Write protected 
o - Not write protected 

Delete protected, as follows: 
1 - Delete protected 
o - Not delete protected 

Temporary file, as follows: 
1 - Temporary file 
0- Not a temporary file 

Blocked, as follows: 
1 - Unblocked 
0- Blocked 

2270510-9701 



Bit(s) 

11 

12 

13-14 

15 

Meaning 

Reserved 

Immediate write, as follows: 
1 - Immediate write mode 
o - Deferred write mode 

Reserved 

Reserved 

Disk and File Organization 

2.3.1.3 Alias Descriptor Record (ADR). An alias is an alternate name for a file. A directory con­
tains an ADR for each alias of any file in the directory. The assignment of a record number for an 
ADR is similar to the assignment of a record number for an FOR. The alias is hashed to derive a 
recora number. When the record is available, the ADR is written to that record. Otherwise, DNOS 
searches the file linearly from that record to locate an available record; DNOS writes the ADR in 
the first available record. 

The number of aliases a file can have is limited only by the number of empty records available in 
the directory. An ADR implements each alias. The ADRs for the aliases of a file are linked to the 
FDR of the file and to each other. 

The program file of a task that is the owner task of an IPC channel has one or more CDRs linked to 
the FDR of the fi Ie along with any ADRs associated with the fi Ie. 

Figure 2-7 shows the format of the ADR, which is similar to that of the FDR. It includes 34 bytes. A 
flag identifies the record as an ADR. A field of the ADR contains the record number of the FDR for 
the file. Another field contains the record number of the next ADR or CDR linked to the FDR. When 
no record is linked to the ADR (that is, this ADR is the end of the linked list), this field contains O. 

DEC HEX 

0-1 0-1 HASH KEY COUNT 

2-3 2-3 HASH KEY 

4-11 4-8 ALIAS 

12-15 C-F RESERVED 

16-17 10-11 FLAGS 

18-29 12-10 RESERVED 

30-31 lE-1F RECORD NUMBER OF NEXT ADR OR CDR 

32-33 20-21 RECORD NUMBER OF FOR 

2279393 

Figure 2·7. ADR Format 

2270510·9701 2·23 



Disk and File Organization 

The ADR shown in Figure 2-7 contains the following information: 

Byte 

0-1 

2-3 

4 -11 

12-15 

16-17 

18-29 

30-31 

32-33 

Description 

Hash key count. The number of records in the directory that hashed 
to this record number. 

Hash key. The result of the hash algorithm for the alias in this ADR. 
The hash value might not be the number of this record. When the 
hash value record has already been written, DNOS searches linearly 
for an unused record. 

Alias. The alias in this item is an alternate name for the file (that is, 
a secondary name by which a previously defined file is also known). 
The primary name for a file is supplied in the FOR. Secondary 
names are documented in the ADR. 

Reserved. 

File usage flags. These apply to the file and are identical to those in 
the FOR except that bit 11 is set to identify this record as an ADR. 

Reserved. 

Record number of next alias. This is a pointer chaining forward to 
another ADR for the same file, if one exists. If one does not exist, 
this value is O. 

Record number of actual file. A pointer to the directory file record 
that contains the file descriptor for this particular file. 

The file usage flags in bytes 16 and 17 apply to the file described in the FDR at the record in bytes 
30 and 31. The flags have the following meanings: 

2279395 

2·24 

Bit(s) 

0-1 

2-3 

Meaning 

Fi Ie usage, as follows: 
00 - No special usage 
01 - Directory file 
10 - Program file 
11 - Image file 

Format, as follows: 
00 - Binary 
01 - Blank compressed 

2270510-9701 



Bit(s) 

4 

5-6 

7 

8 

9 

10 

11 

12 

13-14 

15 

Meaning 

Allocation type, as follows: 
1 - Expandable 
o - Primary allocation only 

Fi Ie type, as follows: 
01 - Sequential 
10- Relative record 
11 - Key indexed 

Write protected, as follows: 
1 - Write protected 
o - Not write protected 

Delete protected, as follows: 
1 - Delete protected 
o - Not delete protected 

Temporary file, as follows: 
1 - Temporary file 
0- Not a temporary file 

Blocked, as follows: 
1 - Unblocked 
0- Blocked 

ADR; set to 1. 

Immediate write, as follows: 
1 - Immediate write mode 
o - Deferred write mode 

Reserved 

Reserved; set to O. 

Disk and File Organization 

2.3.1.4 Channel Descriptor Record (CDR). The CDR describes an IPC channel. It is associated 
with the program file of the channel owner task and is linked to the FOR of the program file along 
with any aliases for the file. 

The allocation of a record in the directory for a CDR is similar to the allocation of an ADR. The 
channel name is hashed and the result is used as a record number. When the record is already­
occupied, the next available record is used. 

Figure 2-8 shows the format of the CDR. 

2270510-9701 2-25 



Disk and File Organization 

DEC HEX 

0-1 0-1 HASH KEY COUNT 

2-3 2-3 HASH KEY 

4-11 4-8 CHANNEL NAME 

12-15 C-F RESERVED 

16-17 10-11 FLAGS 

18 12 CHANNEL FLAGS INSTALLED 10 

20 14 DEFAULT RESOURCE RESOURCE TYPE FLAGS 

22-23 16-17 MAXI MUM MESSAGE LENGTH 

24-29 18-10 RESERVED 

30-31 1E-1F RECORD NUMBER OF NEXT CDR OR AOR 

32-33 20-21 RECORD NUMBER OF FOR 

34-143 22-8F RESERVED 

144 90 USER 10 RESERVED 

146-255 92-FF RESERVED 

2279396 

Figure 2·8. CDR Format 

The CDR shown in Figure 2-8 contains the following information: 

Byte 

0-1 

2-3 

4 -11 

12-15 

16 -17 

2·26 

Description 

Hash key count. The number of records in the directory that hashed 
to this record number. 

Hash key. The result of the hash algorithm for the channel number. 
The hash value might not be the number of this record. When the 
hash value record has already been written, DNOS searches linearly 
for an unused record. 

Channel name (eight characters). 

Reserved. 

File usage flags; bit 15, the channel descriptor flag, is set to one. 

2270510-9701 



Byte 

18 

19 

20 

21 

22-23 

24-29 

30-31 

32-33 

34-143 

144 

145-255 

Disk and File Organization 

Description 

Channel flags. These flags define the channel. 

Installed 10 of owner task. 

Default resource type. The resource type of the channel as it 
appears to the requesting task. The significance of the contents of 
this byte depends on the resource type flag (as described in a sub­
sequent paragraph). 

Resource type flags. 

Maximum length for messages that the channel transfers. 

Reserved. 

Record number of next CDR or ADR. The record number of the next 
record in the linked list of CDRs and ADRs. This field contains 0 
when this CDR is the last record in the list. 

Record number of FOR of the channel owner task program file. 

Reserved. 

User 10. The user 10 of the user who created the IPC channel. 

Reserved. 

Of the file usage flags in bytes 16 and 17, bits 0 throu-gh 14 are reserved. Only bit 15, the CDR flag, 
applies. The flags have the following meanings: 

2279397 

2270510-9701 

Bit(s) 

0-14 

15 

Meaning 

Reserved. 

CDR, as follows: 
1 - Record is a CDR 
0- Record is not a CDR 

2·27 



Disk and File Organization 

The channel flags, byte 18, define the channel attributes as follows: 

2279398 

2·28 

Bit(s) 

0-1 

2 

3 

4 

5 

6 

7 

5-7 ] 

Meaning 

Scope of channel, as follows: 
00 - Task local 
01 - Job local 
10 - Global 

Shared, as follows: 
1 - Channel is shared. 
a - Channel is not shared. 

Symmetric, as follows: 
1 - Symmetric channel 
a - Master/slave channel 

Assign, as follows: 
1 - Channel owner processes assign LUNO. 
a - Channel owner does not process assign LUNO. 

Abort, as follows: 
1 - Channel owner processes abort request. 
a - Channel owner does not process abort request. 

I/O utility, as follows: 
1 - Channel owner processes I/O utility request. 
a - Channel owner does not process I/O utility request. 

Reserved. 

2270510-9701 



Disk and File Organization 

When the device resource type flag (bit 6, byte. 21) is set, the default resource type (byte 20) has the 
following significance: 

o - Dummy device 
1 - Special device 
2 - 743 keyboard send/receive (KSR) 
3 - 733 automatic send/receive (ASR) 
4 - 733 cassette drive 
5 - Reserved 
6 - Single-sided diskette drive 
7 - Disk drive 
8 - Magnetic tape drive 
9 - Teleprinter device (TPD) 

10 - 911 VDT 
11 - Serial printer 
12 - Parallel printer 
13 - Four-channel communication controller (FCCC) 
14 - Communication interface module (CIM) 
15 - Industrial device 
16 - Card reader 
17 - 940 VDT 
18 - 931 VDT 
19 - Reserved 
20 - Bit-oriented/character-oriented asynchronous 

interface module (BCAIM) 

When the file resource flag (bit 7, byte 21) is set, the default resource type (byte 20) has the follow­
ing significance: 

2270510-9701 

Value 

o 
1 
2 
4 
5 
6 

Device 

Reserved 
Sequential file 
Relative record file 
Di rectory fi Ie 
Program file 
Image file 

2-29 



Disk and File Organization 

The resource type flags in byte 21 define the default resource type in byte 20. The flags are as 
follows: 

2279399 

Bit(s) Meaning 

o - 4 Reserved. 

5 Channel resource flag, as follows: 
1 - Default resource is an IPC channel. Byte 20 con­

tains a channel resource type. 
0- Default resource is not an IPC channel. 

6 Device resource flag, as follows: 
1 - Default resource is a device. Byte 20 contains a 

device resource type. 
0- Default resource is not a device. 

7 File resource flag, as follows: 
1 - Default resource is a file. Byte 20 contains a file 
resource type. 
0- Default resource is not a file. 

When the channel resource type flag (bit 5, byte 21) is set, the default resource type (byte 20) 
should contain 0 for a symmetric channel. 

2.3.1.5 Key Descriptor Record (KDR). If the file being inserted is a KIF, the KDR requires 
another directory record. DNOS locates this record by searching linearly from the FDR of the file. 
The KDR is inserted in the first available directory record following the FDR. 

A KIF has a primary key and can have as many as 13 secondary keys. A KDR describes the keys 
that access records in the file. Figure 2-9 shows the format of a KDR. 

2·30 2270510-9701 



Disk and File Organization 

DEC HEX 

0-1 0-1 HASH KEY COUNT 

2-3 2-3 -3 

4-5 4-5 RESERVED 

6-7 6-7 NUMBER OF KEYS 

8 8 FLAGS I CHAR COUNT OF KEY 1 

10-11 A-B OFFSET TO KEY 1 

12-13 C-D ("v 5 N K S 
.... IJ 

ECO DARY EY 

T (FOUR BYTES EACH AS DEFINED FOR KEY 1) T 
62-63 3E-3F L ________________________________________ ~_ 

2279400 

Figure 2·9. KDR Format 

The KDR shown in Figure 2·9 contains the following information: 

Byte 

0-1 

2-3 

4-5 

6-7 

8 

9 

10-11 

12-63 

2270510·9701 

Description 

Hash key count. The number of records in the directory that hashed to 
this record number. The KDR is not hashed. When this value is greater 
than 0, an FDR, ADR, or CDR has been written in the next available 
record because this record is occupied. 

Hash key. This field corresponds to the hash key field of other direc· 
tory records and contains - 3, indicating that this is a KDR. 

Reserved. 

The number of keys defined for this KIF. A maximum of 14 keys are 
available for any KIF. One key, the primary key, is required. Keys 2 
through 14 are optional secondary keys. 

Primary key flags. 

The key length, in bytes (characters), for the primary key. 

The byte number of the first character of the key within the KIF data 
record. 

Data for the secondary keys, if any. Four bytes in the format shown 
for the primary key (that is, key flags, key length, and key offset) are 
supplied for each secondary key. 

2·31 



Disk and File Organization 

The key flags are defined as follows: 

2279401 

Bit(s) Meaning 

0-3 Reserved. 

4 Sequential placement flag. Applies only to primary key, as follows: 
1 - Created by system using sequential placement scheme. 
o - Created by system using hash placement scheme. 

5 Value present flag, as follows: 

6 

7 

1 - Value need not always be present. (Valid only for secondary 
keys.) 

0- Value must always be present. 

Sequential commands flag, as follows: 
1 - Sequential commands are desired. 
0- Sequential commands are not desired. 

Duplicates flag, as follows: 
1 - Duplicate values are allowed for this key. 
0- Unique values are required for this key. 

2.3.1.6 Example of a Dump Directory. Figure 2-10 shows a dump of the directory file .JB.DIR. 
The directory contains a sequential file (.J B.DIR.SEQ), an image file (.J B.DIR.IMAG), a program file 
(.JB.DIR.PROG), and a KIF (.JB.DIR.KEYFILE). The directory also contains an alias for the KIF 
(.JB.DIR.KEYFILE) and the KDR for the KIF. The directory was created to have seven entries in 
addition to record 0 (the directory overhead record). 

2.3.2 Sequential Files 
Sequential files support variable-length logical records. Logical records can span physical record 
boundaries regardless of ADU boundaries. When a logical record spans a physical record bound­
ary, it is divided into partial records in separate physical records. The first word of each physical 
record has two flags, which indicate the following: 

• Whether the first logical record is continued from the preceding physical record 

• Whether the last logical record is continued to the following physical record 

2·32 2270510-9701 

1 



Disk and File Organization 

FILE ACCE!~;S NAME: . .JB.DIR 
RECORD: 000000 
0000 0007 0004 0001 0000 4-449 5220 2020 2020 · . · [II R 
0010 0002 4A42 2020 2020 2020 0::::00 0000 0000 ,-'B 

SAt·1E 
OOFE 0000 
RECORD: 000001 
0000 0000 0005 !:i::::45 5120 2020 2020 0000 0000 !:;;E G! 
0010 OAOO 0:300 0050 0001 o 6:::: A 0001 0000 0000 .F' 

SAME 
00:36 07BD 010E 9121 07BD 010E 91Fl 0101 0000 · ! 

::;A~1E 

OO'~'O 4A4F 4E20 2020 2020 0000 0000 0000 0000 ,-'0 N 
::;AME 

OOFE 0000 
RECORD: 000002 
0000 0001 0002 5052 4F47 2020 2020 0000 0000 F'R 013 
001.0 :::C20 0120 0120 0011 4CAE 0001 0000 0000 L. 
0020 0000 00:::::::: 0000 00:::::3 0000 0000 0000 0000 .-, .. .:. · :~: 
00::::0 0000 0000 0000 07BD 010E 910B 07BD 010E 
0040 91.EA 010:::: 0000 0000 0000 0000 0000 0000 

:::':;At·1E 
0090 4A4F 4E20 2020 2020 0000 0000 0000 0000 ,-'0 hi 

SAME 
OOFE 0000 
RECORD: 00000:::: 
0000 0000 0000 0000 0000 0000 0000 0000 0000 . . · . . . . . . . . 

!::;At·1E 
OOFE 0000 
RECORD: 000004 
0000 000:3 0004 4B45 5920 2020 2020 0000 0000 KE Y 
0010 lEO:::: 0:300 001C 002A 4CBF 0001 0000 0006 . * L . 
0020 0000 0000 0000 0029 0001 0000 0029 0027 · ) . ) 
00::::0 0029 0059 0005 07BD 010E 'ill ::::4 07BD 0101:: . ) .Y 
0040 '~'1 EE 0101 001D 0000 0000 0000 0000 0000 

SA~1E 

0090 4A4F 4E20 2020 2020 0000 0000 0000 0000 ,-'0 N 
::;;AI'1E 

OOFE 0000 
RECORD: OOOOO~5 

0000 0001 FFFD 0059 0002 080D 0000 0014 000';:' .Y 
0010 0000 0000 0000 0000 0000 0000 0000 0000 

SAME 
OOFE 0000 
RECORD: 000006 
0000 0000 0004 4B45 5946 4';:'4[: 4520 0000 0000 I<E YF lL E 
0010 lEl:::: 0000 0000 0000 0000 0000 0000 0000 
0020 0004 0000 0000 0000 0000 0000 0000 0000 

SA~1E 

OOFE 0000 
HECORD: 000007 
0000 0000 0004 494D 4147 2020 2020 0000 0000 H1 AG 
0010 C420 0120 0120 0011 4CE9 0001 0000 0000 L. 

::;At'1E 
00:31:.· 07BD 010E 911:::: 07BD 010E 91FO 010:::: 0000 

SAf\1E 
0090 4A4F 4E20 2020 2020 0000 0000 0000 0000 ,-'0 N 

SA~1E 
OOFE 0000 

I Figure 2·10. Dumpofa Directory File 

2270510·9701 2·33 



Disk and File Organization 

The flag bits, when set to 1, have the following meanings: 

Bit Meaning 

o First logical record in this physical record is continued from the preceding 
record. 

1 Last logical record in this physical record continues in the next record. 

Figure 2-11 shows the format of a sequential file. Each logical record or partial record is preceded 
by a header word and followed by a trailer word. The header and trailer words contain the number 
of bytes of user data. An EOF is signified by a zero-length record (zero header and trailer). 

When a record ends with only one or two words remaining in the physical block, there is no room 
for another partial record (header/data/trailer). In this special case, the next record begins in the 
following block; the last word of the physical record is effectively a physical record trailer. It con­
tains the number in the last trailer plus the number of unused bytes (two or four). 

Logical records of a sequential file can be blank suppressed. (The sequential file is created blank 
suppressed.) In blank-suppressed files, words that contain two blanks are removed. A blank­
suppressed logical record has the following format: 

• Header word 

• Byte containing a count of words of blanks 

• Byte containing a count of words that contain at least one non blank character 

• Data characters 

• Repetitions of items 2 through 4 

• Trailer word 

2·34 2270510-9701 



Disk and File Organization 

PHYSICAL RECORD 0 
DEC HEX 

01
' 
l 0 0 FLAGS 

2 2 8 RECORD 0 HEADER 

4 4 
'oJ ,..'oJ 

r.J LOGICAL RECORD 0 DATA ,..rJ 

10 A 

12 C 8 RECORD 0 TRAILER 

14 E E RECORD 1 HEADER 

16 10 
,.~ rL.l 

,.~ LOGICAL RECORD 1 DATA rrJ 

28 lC 

30 1E E RECORD 1 TRAI LER 

32 20 A RECORD 2 HEADER 

34 22 
r'J LOGICAL RECORD 2 DATA 

,..l..I 

1 
(PARTIAL) 

A fRECORD 
42 2A 

44 2C 2 TRAILER 

22 79402 (1 /2) 

Figure 2·11. Sequential File Format (Sheet 1 of 2) 

2270510-9701 2·35 



Disk and File Organization 

DEC HEX 

0 0 

2 2 

4 4 

8 8 

10 A 

12 C 

14 E 

22 16 

24 18 

26 1A 

28 1C 

36 24 

38 26 

40 28 

42 2A 

44 2C 

2279402 (2/2) 

2·36 

,. 

PHYSICAL RECORD 1 

LOGICAL RECORD 2 DATA 

(PARTIAL) 

LOGICAL RECORD 3 DATA 

LOGICAL RECORD 4 DATA 

FLAGS 

4 RECORD 2 HEADER 

,..1.1 

,.,., 

4 RECORD 2 TRAI LER 

A RECORD 3 HEADER 

,.1..1 

,.~ 

A RECORD 3 TRAILER 

A RECORD 4 HEADER 

IJ 

rr-l 

A RECORD 4 TRAILER 

0 

--- EOF 
0 

2 

---
PHYSICAL RECORD 

TRAILER 

Figure 2·11. Sequential File Format (Sheet 2 of 2) 

2270510-9701 



Disk and File Organization 

Figure 2-12 shows a blank-suppressed record. Notice that items 2 and 3 precede each group of 
characters (item 4) and that the number of words in item 3 is the length (in words) of item 4. In 
Figure 2-12, counts are hexadecimal, and hexadecimal ASCII representations are shown for 
characters. 

INPUT RECORD: 

COLUMN: 

2279403 

o o 
5 

FIRST 

2.3.3 Relative Record Files 

1 

o 
1 

5 

LAST 

2 

o 
2 

5 

3 

o 
3 

5 ••• 8 

o 

AG E (COLUMNS 33-
80 BLANK) 

A relative record file is a file in which each logical record can be randomly accessed by its unique 
record number. All records in a relative record file are of the same length. Relative record files can 
be unblocked or blocked: 

• Unblocked - The logical record size is greater than half of the physical record size. 

• Blocked - The logical record size is less than or equal to half of the physical record 
size. 

2.3.3.1 Unblocked Relative Record Files. Each logical record of a relative record file occupies 
one physical record of the file. A physical record should be any integral multiple of contiguous 
sectors. File accesses require reading or writing all sectors of a physical record. One disk access 
can read multiple contiguous sectors; Records read from unblocked relative record files are trans­
ferred directly from the disk to the user buffer without intermediate system buffering. When the 
user specifies a particular record of the file, the record number is converted to an absolute ADU 
number and a sector offset within the ADU. The absolute disk address is then passed to the disk 
device service routine (DSR) to perform the actual data transfer. The disk DSR converts the ADU 
and relative sector to the physical track and sector disk address that the disk controller hardware 
requires. 

2270510·9701 2-37 



Disk and File Organization 

1 PRECEDING LOGICAL RECORDS 1 
'r-- (IF ANY) rrJ 

0016 RECORD HEADER 

00 03 o WORDS BLANKS, 3 WORDS DATA 

46 49 F 

52 53 R 5 

54 20 T BLANK 

04 02 4 WORDS BLANKS, 2 WORDS DATA 

4C 41 L A 

53 54 5 T 

05 02 5 WORDS BLANKS, 2 WORDS DATA 

20 41 BLANK A 

47 45 G E 

18 00 24 WORDS BLANKS, 0 WORDS DATA 

0016 RECORD T'RAI LER 

,..~ SUCCEEDING LOGICAL RECORDS f"V 

T (IF ANY) 

T 
2279404 

Figure 2·12. Blank·Suppressed Record 

2·38 2270510.9701 



Disk and File Organization 

Each physical record must begin on a sector boundary. A physical record that begins on a sector 
boundary that is not also an ADU boundary cannot span the ADU boundary. The disk format for 
unblocked relative record files is as follows. In the first format, the record is larger than the ADU; 
in the second format, the record is smaller than the ADU. 

Unblocked Relative Record File 

Record Size> ADU Size 

'RECORD 

1\ 
,~------------------------~ 

ALL DATA II ALL DATA II ALL DATA II UNUSED I 
" V 

,\ , 
v \~--------~~-------V 

ADU ADU ADU 

2279405 

Record Size < ADU Size 

PHYSICAL 

,~---.."I\,------\ 

'--_A_L_L_D_A_T_A ____ I _____ I I ALL DATA I I ALL DATA II ____ -----' 
FIRST RECORD SECOND RECORD THIRD RECORD UNUSED 

__ ----------------------------------J' V 
\ 

ADU 

2279406 

2270510-9701 2·39 



Disk and File Organization 

2.3.3.2 Blocked Relative Record Files. These files are similar to unblocked relative record files 
except that multiple logical records can be stored in each physical record. Logical records cannot 
span physical records. Records are transferred via intermediate blocking buffers that are in the 
general pool of user space. The disk format for blocked relative record files is as follows: 

Blocked Relative Record File 

PHYSICAL RECORD 1 PHYSICAL RECORD 2 

___ R_E_C_1---.a._RE_C_2 ......... I_R_E_C_3 ....... 1_R_E_C_4 _____ ---'1 I RE C 5 I REC 6 I REC 7 I RE C 8 

4 LOGI CAL RECORDS 
\ 

2279407 

2.3.4 Key Indexed Files (KIFs) 

UNUSED 

V 
ADU 

4 LDGICAL RECORDS UNUSED 
I 

A KIF is a file in which you can access records by the value of a character string called a key. Each 
KIF can have as many as 14 keys, with access through each key independent of the other keys. 

Each entry of data made to the file is called a record. ONOS reads the records of other file types by 
identifying their positions in the file. In contrast, ONOS reads the records of KIFs by identifying a 
portion of the content of the record. 

2.3.4.1 KIF Keys. A character field used to identify a record is called a key. A key is defined at 
the file level and applies to every record in the file. It is a static set of values that cannot be 
changed except by reconstructing the file. A KIF must have at least one key. KIF key fields are 
defined when the file is created and can be from 1 to 190 characters long. 

The first key defined is the primary key; the others are defined as secondary keys. The primary key 
need not be in the first portion of a record; also, secondary key fields can physically precede the 
primary key within a record. 

When you define a key, you can specify the following: 

• Whether the key permits duplicates 

• Whether the key is modifiable 

If the value of a key must be unique throughout an entire file, the key must not permit duplicates. 
This prevents a record from being inserted into the file if the record has the same key value as a 
record already in the file. For example, keys such as employee numbers and social security num­
bers should not be duplicatable, while keys such as names and salaries should permit duplicates. 

If a key is modifiable, you can change its value after a record with that key value has been inserted 
into the file. A key containing a person's salary should be modifiable, while a key containing the 
person's social security number should not be modifiable. If a record with a nonmodifiable key 
contains incorrect data, the only way to correct it is to delete and reenter the record. The primary 
key cannot be modifiable. 

2·40 2270510-9701 



Disk and File Organization 

2.3.4.2 KIF Records. As you enter records into a KIF, they are logically sorted by key value. If 
more than one record has the same key value,.they are sorted in the order they were entered. 

The records of a KIF can be read either randomly or sequentially. When the records are read ran­
domly, a key number and key value must be·given for each Read operation. When the file is read 
sequentially, a key number and key value is supplied for the first read. The sorted order of that key 
determines the sequence of logical records returned by subsequent Read operations. The 
operation requests the next record either in forward or backward order. 

2.3.4.3 KIF Key and Record Example. Since a key is defined for each record in the KIF, the 
records should contain related information, at least for the key portion. For example, related infor­
mation could be a number (social security or employee number) or a name. The following example 
illustrates a KIF record and the keys the record contains: 

1-9 

123456789 

2279408 

Key 

1 
2 
3 
4 
5 
6 
7 
8 

10-20 

DOE 

21-30 

JOHN 

Columns 

41-46 
01-09 
10-20 
21- 30 
31-40 
10-40 
47-47 
48-52 

31-40 

ANDREW 
__ 4_1_-4_6_

1 

4M7 I 

004442 

Definitions 

Employee number 
Social security number 
Last name 
First name 
Middle name 
Full name 
Sex 
Monthly salary 

48-52 

02400 

The record is 52 characters long and contains 7 fields. Since the name fields are used in more than 
one key, the record has 8 keys. Although this example does not include characters between keys, 
you have the option of entering blanks or other data between keys. Also, in the example every 
column is defined to be in at least one key. This is not required. Quite often only a small portion of 
the record is defined to be part of a key, while the rest of the record contains data. The only require­
ments are that a primary key must be included and that no key can be longer than 100 characters. 

2270510-9701 2·41 



Disk and File Organization 

Since the primary key does not have to be in any particular position or have any qualities different 
from the other,keys, you cannot determine which key is the primary key by looking at a KIF record. 
Instead, you can determine the primary key by entering a Map Key Indexed File (MKF) command. 
The primary key is identified as key number 1, as in the following example: 

Start Duplicates 
Key Column Length Modifiable * Allowed* 

1 41 6 N N 

2 1 9 N N 

3 10 11 Y Y 

4 21 10 Y Y 

5 31 10 Y Y 

6 10 31 Y Y 

7 47 1 N Y 

8 48 5 Y Y 

Note: 

* Y indicates yes and N indicates no. 

2.3.4.4 Structure of KIFs. The structure of a KIF consists of the prelogging area, the 8-tree 
blocks, the data blocks, and the free chain blocks. A block is another term for a physical record. 
Figure 2-13 shows the structure of the KIF before any records have been inserted. The allocation 
for the file includes an area reserved for data and the 8-tree area. The EOM is at the beginning of 
that area. As records are inserted, 8-tree blocks and data blocks are added, moving the EOM 
toward the end of the allocation. The EOM indicates the current extent of the file. (KIFs are 
expandable.) 

You can also compress these files. When you copy KIFs using the Copy Directory (CD) command 
or the Restore Directory (RD) command, you can compress the size to the EOM with the compress 
(CMP) option. 

2-42 2270510·9701 



Disk and File Organization 

PRELDGGING 

AREA 

B-TREE 

ROOTS 

FREE CHAIN 

-EOM-

FUTURE DATA AND B-TREE AREA 

END OF 

ALLOCATION 

2279409 

Figure 2·13. KIF Structure 

Prelog Area 
The first (18 x K) + 3 physical records, where K is the number of keys defined for the file, are 
the KIF prelog blocks. Any physical record modified is first copied to a prelog block to pre­
vent data loss in case of a fatal error during the data transfer. If a fatal error occurs, the 
logged image is written back into the original record on the next open of the file. 

8-Tree 
The next K physical records are the root nodes of the B-trees. Every defined key has a B-tree 
(up to 14 B-trees). 

Free Chain 
One block is created initially adjacent to the B-tree roots to contain the chain of free blocks. 
The block is accessed using a pointer in the file control block (FCB). The FCB is a memory­
resident data structure of the file descriptor block. 

When B-tree blocks beoome empty, the freed blocks are placed on the free chain. When a 
record is deleted from a data block, the data block is placed on the free chain. When a record 
is inserted into the file, it is placed in a block on the free chain. 

Data Blocks 
Data blocks contain the logical records of the file. All user data (logical records) is blank 
suppressed when stored in data blocks. The following paragraphs describe the structure of 
8-trees and data blocks. 

2270510·9701 2·43 



Disk and File Organization 

Sequential Record Placement. When you insert data records into a KIF, the data records are 
placed in the data area sequentially. When you delete records from a file, available blocks are 
placed on the free chain to utilize available space. The KIF uses the available space on the free 
chain before using any space after the EOM. Figure 2-14 shows sequential record 
placement. 

PRELOGGING 

AREA 

8-TREE 

ROOTS 

.--- FREE CHAIN 

DATA 

~ --. FREE DATA AND 8-TREE AREA 

DATA 

8-TREE 

40 FREE 

DATA 

EOM 

END OF 

ALLOCATION 

2279410 

Figure 2·14. Sequential Record Placement Method 

2·44 2270510-9701 



Disk and File Organization 

B·Trees. A B·tree is a balanced tree. It has multiple branches per node, and all leaf nodes are at 
the same level. ONOS B-trees can include as many as nine levels. 

Each node of a B-tree occupies one physical record of a KIF and is called a B-tree block. The root 
node is initialized when the file is created, but all other nodes are created as records are added. 
Each B-tree block contains a few words of overhead and several pointer/key value pairs. 
Figure 2-15 shows the format of a B-tree block. 

DEC HEX 

0-3 0-3 

4-5 4-5 

6-7 6-7 

8-11 8-B 

12-15 C-F 

16 10 

18 12 

20-23 14-17 

24-25 18-19 

26-n lA-n 

,oJ 

t 
227941 1 

BLOCK NUMBER 

LOG NUMBER 

SPACE REMAINING 

PREDECESSOR POINTER 

OR FREE CHAIN POINTER 

SUCCESSOR POINTER 

No. OF ENTRIES FLAGS 

SEQ. INPUT POS. SEQ. INPUT COUNTER 

BLOCK NUMBER 

ID (LEAF NODE) OR RESERVED 

KEY VALUE 

ADDITIONAL POINTER/VALUE PAIRS 

n = 26 (> 1 A) + LENGTH OF KEY 

Figure 2·15. B·Tree Block Format 

r~ 

T 

POINTER 

VALUE 

PAIR 

2270510-9701 2·45 



Disk and File Organization 

The fields of the B-tree block are as follows: 

Byte 

0-3 

4-5 

6-7 

8-11 

12-15 

16 

17 

18 

19 

20-23 

24-25 

26-n 

Description 

Physical record number of this B-tree block. Used for unlogging. 

Log number that file management assigns when this block is logged. 

Number of available bytes remaining in this B-tree block. 

Preceding node on the same level; zero if leftmost. 

Next node on the same level; zero if rightmost. 

Number of pointer/value pairs in the B-tree block. 

Flags, as follows: 

Bits 0 - 6 - Reserved 
Bit 7 - Set to 1 for leaf node; otherwise, set to zero 

Sequential input position. 

Sequential input counter. 

Physical record number of the next lower node if this is not a leaf 
node. If it is a leaf node, physical record number of the data block 
containing the logical record associated with the key value. 

For a leaf node, the ID of the logical record within the data block. 
Otherwise, this word is reserved. 

The actual key characters. 

The remainder of the B-tree block contains more pOinter/value pairs, each containing a physical 
record number and a key value (as in the pair that begins at byte 20). These entries in a B-tree block 
are kept sorted in increasing order of key value. The smallest key value is the first entry. 

The log number in the B-tree block and in data blocks is a number that file management assigns 
when any operation that modifies any block in the file is performed. The same log number is 
placed in all blocks being modified during the operation. This is done as the blocks are logged 
(that is, copied into the prelog area). If you need to restore the file due to unsuccessful completion 
of the operation, the records in the prelog area with the log number of the operation are unlogged 
(copied back into the file). 

2·46 2270510·9701 



Disk and File Organization 

The sequential input position, byte 18, and ·the sequential input counter, byte 19, require some 
explanation. When the 8-tree block is created, byte 18 is set to 0 and byte 19 to the number of 
pointer/value pairs available plus 1. After the first insert, byte 18 is set to the number of keys in the 
block greater than the inserted key, and the value in byte 19 decreases by 1. Subsequent inserts 
decrease the value in byte 19 by 1 if the number of keys in the block greater than the inserted key 
equals the value in byte 18. If byte 19 equals 1 when the 8-tree block is about to split, the ratio of 
the split will be 90/10 instead of 50/50. The 90/10 ratio indicates that the top 90 percent of the keys 
are placed in one block and the remaining 10 percent in another. 

If the block is not a leaf node, each pointer field points to the root of the subtree that contains all 
key values less than or equal to the key value associated with the pOinter. That is, the highest 
key value contained in the subtree is the key value associated with the pointer, as shown in 
Figure 2-16. 

Figure 2-16 shows the development of the 8-tree for a key of an example file. The key is two char­
acters long, and each node has three pointer/value pairs. When the file is created, the root node 
contains one pointer/value pair, containing> FFFF, the maximum value of the key. The first opera­
tion inserts a record with a key of AO, res.ulting in two pointer/value pairs in the root node. Inserting 
another record, key MO, fills the root node. 

The next record to be inserted has a key value of 80. The root node is split, producing a second 
level in the 8-tree. For purposes of this example, all splits are 50/50. The new level contains two 
nodes, and the root node contains pOinters to these nodes. The root node now contains keys 80 
and> FFFF. The left node at the new level contains keys AO and 80, and the right node contains 
keys MO and> FFFF. Inserting a record with a key of A 1 fills the left node at the bottom (leaf node) 
level. 

When the record with a key of A2 is inserted, the left node splits, resulting in three leaf nodes. The 
nodes contain keys AO and A 1, A2 and 80, and MO and> FFFF, from left to right. When the record 
with key A3 is inserted, it fills the center leaf node. 

Inserting the record with a key of A4 again forces a new level. All nodes except the left and right 
leaf nodes are modified. The root node now contains keys A3 and> FFFF. The second level con­
sists of two nodes. The left node contains keys A 1 and A3, and the right node contains keys 80 
and> FFFF. The new level contains four nodes with keys AO and A 1, A2 and A3, A4 and 80, and MO 
and> FFFF, from left to right. 

2270510-9701 2·47 



Disk and File Organization 

CREATION 

INSERT AO 

INSERT MO 

INSERT BO 

INSERT A 1 

INSERT A2 

22 7 94 1 2 (1 /2 ) 

Note: 

2-character keys; maximum is > FFFF; 3 keys per 8-tree block 

Figure 2·16. B·Tree Example (Sheet 1 of 2) 

2·48 2270510-9701 



Disk and File Organization 

INSERT A3 

INSERT A4 

2279412 (2/2) 

Figure 2·16. B·Tree Example (Sheet 2 of 2) 

2270510·9701 2·49 



Disk and File Organiaztion 

Data Blocks. A data block is a physical record of the file and contains a few words of overhead 
and several logical records as shown in Figure 2-17. The word following the last logical record has 
a zero value. 

DEC HEX 

0-3 0-3 

4-5 4-5 

6-7 6-7 

8-11 8-B 

12-13 C-D 

14-15 E-F 

16-17 10-11 

18- 12- ,..v 

1 
r~ 

rV 

r 

,...v 

T 
2279413 

2·50 

BLOCK NUMBER 

LOG NUMBER 

SPACE REMAINING 

FREE CHAIN POINTER 

HIGHEST LOGICAL RECORD 10 USED 

RECORD SIZE 

LOGICAL RECORD 10 

RECORD 

ADDITIONAL RECORDS 

RECORD SIZE 

LOGICAL RECORD 10 

RECORD 

0 

Figure 2·17. Data Block Format 

.... 

,i...I 

I "" 

,...~ 

,...~ 

T 

> 
FIRST 

RECORD 

LAST 

RECORD 

2270510-9701 



Disk and File Organization 

The fields of a data block are as follows: 

Byte 

0-3 

4-5 

6-7 

8-11 

12-13 

14-15 

16-17 

18-

Description 

Physical record number of the block. 

Log number that file management assigns when this block is logged. 

The number of bytes remaining in the block" 

Free chain pointer. The block is placed in the free chain when a logical 
record is deleted from the block. The block mayor may not include 
active logical records. 

Highest 10 assigned to any logical record within the data block. 

Size (in bytes) of the first logical record inclusive. 

The 10 assigned to the first logical record. 

First logical record. 

Additional records (if any) follow the first record. For each record, the size and 10 precede the 
record. A word of zeros (the record size of the next record) follows the last logical record. 

2.3.4.5 Description of Logical Record. A logical record in a KIF is a blank-suppressed record 
(described in paragraph 2.3.2). The first word of a blank-suppressed record contains the number of 
words of blanks removed and the number of words of data that follow. Following the specified 
words of data is another word with similar counts related to the next portion of the record. This 
pattern continues through the entire record, as shown in the following example: 

10 21 31 41 47 48 52 

222222222 PUBLIC JOHN CUE 333333 M 44444 

2279414 

2270510-9701 2·51 



Disk and File Organization 

The record is written to the file as follows: 

RECORD SIZE r LOGICAL RECORD ID r ;r-~~~~~~ g~ ~g.f2~g~D~L~~~EOWING 
0030 0003 0008 3232 3232 3232 3232 3250 5542 4C49 

4320 0202 4A4F 484E 0302 4355 4520 0306 3333 3333 

3333 4034 3434 3434 \ LNUMBER OF DATA WORDS FOLLOWING 

LNUMBER OF WORDS OF BLANKS 

2279415 

The records of a KIF that has only a primary key are a special case. The characters of the key are 
replaced by blanks in each record and are suppressed. The following example shows the record 
given in the preceding example with a primary key consisting of the entire name, columns 10 
through 40: 

SINGLE KEY ID = 3 KEY = ENTIRE NAME 

001E 

3333 

2279416 

0003 

3333 

0005 

3333 

3232 

4034 

THE KEY FIELD CONTAINS BLANKS --~\ 

3232 

3434 

3232 

3434 

3232 3220 OF06 

The record contains 30 bytes instead of 48. The first word following the record number shows 5 
words of data instead of 8. The word that precedes the last block of data replaces a field of 30 
blanks. 

2.3.4.6 KIF Disk Usage. This paragraph explains how to calculate the size of a KIF. The accu­
racy of the estimate depends on the accuracy of the parameters used in the calculation. These 
parameters are as follows: 

• Physical record size 

• Average blank-suppressed logical record size 

• Sizes of all the keys 

• Size of an ADU on the disk on which the file is created 

• Maximum number of logical records 

• Whether the input is sorted 

2·52 2270510-9701 



Disk and File Organization 

The most difficult parameter to estimate is the average blank-suppressed logical record size. This 
is the average size of a logical record if all blanks are removed from all the records. You can easily 
determine the maximum number of logical records if the records are already in a sequential file. 
Otherwise, you must estimate this value. The other values are well defined and should require no 
estimations. 

The disk allocation of a KI F consists of three specific areas: 

• Prelogging area 

• B-tree nodes 

• Data r~cords 

The prelogging area is the only area of the three that has an absolute value. The following formula 
calculates the number of physical records of disk space required for this area: 

NPRprelog = (18 * K) + 3 

where: 

K is the number of keys. 

NOTE 

In the following formulas, [RD] means to round the number down to 
the nearest integer, and [RU] means to round the number up to the 
nearest integer. 

The B-tree nodes are the records that contain the structures that make KIFs function differently 
from other file types. Only leaf nodes are included in this calculation so that the file estimate can 
be low by a few records. The following formulas estimate the number of physical records required 
for these structures: 

x = PRS - 20 [RD] 
KS + 6 

y = #LR [RU] 
X 

NPR B-tree = Y + (SPLIT * Y) [RU] 

2270510-9701 2·53 



Disk and File Organization 

where: 

PRS is the physical record size. 

KS is the size of the key. 

NLR is the maximum number of logical records. 

SPLIT is 0.1 if the input is already sorted with respect to the key; otherwise, it equals 0.25. 

You must determine a 8-tree value for each key in the file. 

The last area includes the data records. The following formulas estimate the number of physical 
records required for this area: 

x = PRS =~J6 {RD] 
LRS + 6 

NPRdata = ~_l:~8 [RU] 
X 

where: 

PRS is the physical record size. 

LRS is the average blank-suppressed logical record size. (If the file has only one key, this 
value should not include the length of the key; that is, assume that the key consists of all 
blanks.) 

IILR is the maximum number of logical records. 

:1"0 16 bytes subtracted from the PRS are the overhead of the physical data block. The 6 bytes 
.Jdded to the LRS are the overhead of each logical record. 

The following formula calculates the total number of physical records required: 

K 
TPR = N PRprelog + N PRdata + ~ N PR 8-tree i 

i = 1 

where: 

K is the number of keys. 

2·54 2270510-9701 



Disk and File Organization 

Finally, the following formula calculates the total number of ADUs required: 

if PRS> = ADU 

then number of ADUs required = PRS[RU] * NPR total 
ADU 

else number of ADUs required = 1 

where: 

PRS is the physical record size. 

ADU is the ADU size. 

ADU [RD] 
PRS 

The following are examples of these calculations. 

EXAMPLE 1 

PRS = 864 
ADU = 864 

*NPR total 

f LRS = 60 (Average blank-compressed key size) 
KS = 20 

A} NPRprelog = (18 * 1) + 3 = 21 

B) 864 - 20 [RD] = 32 

20 + 6 

K =1 
#LR = 800 
Sorted input (SPLIT = .1) 

800 [RU] + (.1 * 800 [RU] ) [RU] = 25 + 3 
32 32 

NPR 8-tree = 28 

C) 864 - 16[RD] = 12 

2270510-9701 

60 + 6 

N PRdata = 800[RU] = 67 
2 

2·55 



Disk and File Organization 

2·56 

NPRtotal = NPRprelog + NPR B-tree + NPRdata 
= 21 + 28 + 67 
= 116 

ADUs = 864 [RU] * 116 = 116 
864 

EXAMPLE 2 

A) NPRprelog = (18 * 3) + 3 = 57 

B) 864 - 20 [RD] = 32 
20 + 6 

PRS = 864 
ADU = 864 
LRS = 60 
KS1 = 20 
KS2 = 20 
KS3 = 20 
K =3 
#LR = 2600 
Random input (SPLIT = .25) 

2600 [RU] + (.25 * 2600 [RU]) [RU] = 82 + 21 
32 32 

NPR B-tree(1) = 103 key 1 
N PR B-tree(2) = 103 key 2 
NPR B-tree(3) = 103 key 3 

C) 864 - 16 [RD] = 12 
60 + 6 

NPRdata = 2600 [RU] = 217 
12 

N PRtotal = N PRprelog + N PR B-tree(1) + N PR B-tree(2) + N PR B-tree(3) + N PRdata 
= 57 + 103 + 103 + 103 + 217 
= 583 

ADUs = 864 [RU] * 583 = 583 
864 

2270510·9701 



I 

3 

Extending SCI 

3.1 SCI OVERVIEW 

The System Command Interpreter (SCI) is the principal interface between the operating system 
and the user. SCI operates in a job and executes commands in both the interactive and batch 
modes. Thus, SCI can execute in an interactive job at a terminal or from a batch stream without an 
associated terminal. Except for the way in which it accesses commands and their parameters, SCI 
executes in the same manner for the interactive mode as for the batch mode. 

In the interactive mode, SCI displays prompts that request the values of command parameters. 
SCI can have one associated foreground task and one background task in the interactive mode. 

In the batch mode, you specify parameters by field prompt assignments in the command stream. 
The batch stream executes in background. A background task or an SCI batch job receives a copy 
of the synonyms and logical names when execution begins. Changes in the background or the 
batch mode synonyms and logical names do not affect the foreground values. 

You can initiate an independent SCI batch job by using the Execute Batch Job (XBJ) command. 
Since batch jobs do not require associated terminals to execute, you can start any number of 
them from a terminal. Figure 3·1 illustrates the concept of SCI interactive and batch modes. 

The name manager task maintains synonyms and logical names for jobs running under ONOS. 
Synonyms are local to a job; however, logical names are either job-local or global in scope. You 
can access synonyms and logical names for the job from SCI utilities or user tasks by issuing 
supervisor calls (SVCs) to the name manager. The name manager retrieves synonym and logical 
name definitions. However, you should call the appropriate SCI interface S$ routines to access 
synonyms rather than issuing the SVC. This allows you to conform to any change in SCI imple­
mentation by linking the updated version of the S$ routines. 

A synonym is a variable in the SCI language and represents either a string of characters or a null 
value. It functions as an alternative for another string. It is usually shorter than the text it replaces 
and more convenient to use. 

A logical name is a user-specified character string used to name a resource within the scope of a 
job. A resource can be referenced by the logical name instead of a path name or a device name. 
Consequently, a logical name resolves to a pathname or device name. A logical name can also 
appear as the first component of a pathname. Unlike synonyms, logical names can have asso­
ciated parameters. This provides a general method of passing user-defined parameters to a task. 
Parameters are used to provide execution time values for SVC control blocks. Figure 3-2 shows 
the flow for accessing synonym and logical name tables from an SCI utility. 

2270510-9701 3-1 



Extending SCI 

2279417 

2279418 

3·2 

BAC 

JOB 1 

INTERACTI VE SC I 

FOREGROUND 

XBJ 

XB OR 

QBID 

XBJ 

KGROUND '. 

BACKGROUND SCI 

OR 

BACKGROUND TASK 

I .. -. 

I 
I 
I 
I .... . 
I 
I 

Figure 3·1. SCI Modes of Operation 

JOB 2 

BATCH SCI 

JOB 3 

BATCH SCI 

USER JoB SYSTEM JOB 

REQUEST 

SCII 
NAME 

UTILITY " MANAGER 
.... .... .... --.. 

SVC OR 

S $ ROUTINE 

SYNONYM .... --TABLE 

LOGICAL ... 
NAME .....-

TABLE 

Figure 3·2. SCI Access to Logical Names and Synonyms 

) 

) 

2270510·9701 



; 

Extending SCI 

The synonym table and logical name table are-copied from a disk file when a user logs on. The file 
is usually identified with the user 10 in the .S$USER directory. However, it is also possible to use 
the Modify Terminal Status (MTS) command to have the user specify the file during logon. The 
name manager accesses memory copies of synonyms and logical names. The synonym and logi­
cal name table in memory are written back to the disk file when the interactive SCI terminates. 

When several users are logged on with the same user 10 and job name, they can share an environ­
ment of synonyms and logical names by responding YES to the RECONNECT prompt at log-on. 
Each user starts the session with the same set of synonyms and logical names. Each has his own 
environment as he makes changes. The environment of the last person to sign off from this job is 
saved on the disk. 

In the interactive mode, SCI also uses the terminal local file (TLF). It provides a buffer on disk for 
lines to be displayed to the user. The lines are buffered so that the interactive SCI user can scroll 
through them. The name of the file is determined from the SCI mode and the terminal number, as 
follows: 

• Foreground: .S$FTLFxx (xx = terminal number) 

• Background: .S$BTLFxx (xx = terminal number) 

• Batch SCI Job: .S$J Lxxxx (xxxx = job 10) 

3.2 USER·DEFINED SCI COMMAND PROCEDURES 

You can extend SCI by defining SCI command procedures for specific applications or by redefin­
ing or modifying the command procedures supplied with the system. 

The next paragraphs give a brief overview of the following topics: 

• SCI primitives 

• Command procedures 

• Command processors 

After the overview, these topics are covered in detail as the rest of the section explains how to 
create your own SCI command procedures and command processors. 

2270510-9701 3-3 



Extending SCI 

3.2.1 SCI Primitive 
A primitive is the basic building block of the SCI language. Primitives allow you to create com­
mand procedures, which enable you to create additional commands that meet your application 
needs. 

3.2.2 Command Procedure 
A command procedure is a sequence of SCI statements (commands, primitives, or menu displays) 
that SCI executes. A command and its associated field prompts are defined in the command 
procedure. 

You can use any existing SCI commands and any of the SCI primitives in a command procedure. 

SCI command procedures are stored in a directory called a procedure library. Use separate 
libraries for the SCI commands provided with ONOS and for those you create. This precaution 
enables you to modify the libraries separately, since new releases can effect the SCI command 
library that comes with ONOS. 

3.2.3 Command Processor 
A command processor is a task that an SCI procedure executes to perform a specified action. The 
processor can be written in either a high-level language or assembly language. The processor can 
access synonyms and logical names to communicate with SCI. For many applications, the proce­
dure calls the processor without passing any data to the processor. In more complicated cases, 
the procedure passes parameters to the processor via the PARMS parameter of .BIO, .OBIO, 

OBIO f1J or. . 

The instructions or statements of the source code for the command processor vary with the lan­
guage used and the action to be performed. The command processor can contain any number of 
instructions and can use the services of SCI. 

3.3 SCI LANGUAGE SYNTAX 

The SCI language consists of a set of commands (primitives), special characters, and variables. 
Command procedures use several SCI characters specifically defined for use in these procedures. 
Table 3-1 defines these special characters and the SCI language syntax, and subsequent para­
graphs discuss primitives and variables. 

3·4 2270510-9701 



Extending SCI 

Table 3·1. Special SCI Characters 

Character Meaning 

@ 

& 

A 

= 

Indicates the end of a record. Comments may occur after the! but cannot 
span lines. 

If it is in column 1, it indicates a comment statement; if it precedes a valid 
field prompt type (Table 4-4), it indicates that the field prompt is optional. 

Indicates that SCI should treat the character string following the @ sign 
(and preceding the next nonalphanumeric character) as a synonym. If the 
synonym was previously defined, the value of the synonym replaces the @ 

sign and character string; otherwise, the value of the synonym is defined as 
the character string itself. 

Indicates that the character string following the ampersand is a field 
prompt. The value replaces the ampersand and the character string; if no 
value is specified, a null string is indicated. 

If it precedes a valid field type, the initial value and the user response are 
not echoed at the terminal. In a batch stream, the response is replaced by 
four dashes. 

Delimits synonyms when concatenating them with other values or 
synonyms. 

If it is in column 1, it causes the line in a batch stream to be executed but 
not written to the listing file. 

In the following examples, lowercase characters indicate values supplied by the user; items 
enclosed by [ ] are optional. 

The basic syntax of a command in the SCI language is: 

command[field prompt(s)] 

where: 

command is the SCI command and field prompt(s) is a list of field prompt assignments. 

At least one blank space must separate the command from the field prompt(s); blank spaces can 
also be entered before the command. Commas separate field prompts which can continue on 
successive lines. 

2270510-9701 3·5 



Extending SCI 

The basic syntax of a primitive in the SCI language is: 

primitive [keyword list] 

where: 

primitive is the SCI primitive and keyword list is a list of keywords associated with the 
primitive. 

At least one blank space must separate the primitive from the keyword list; blank spaces can also 
be entered before the primitive. The keywords are separated with commas and can continue on 
successive lines. 

Any SCI language line (except a comment line) whose last nonblank character is an equals sign 
(=) or a comma (,) is continued on the following line. 

The following example is processed as a single SCI command: 

lOT YEAR=1980, MONTH=4,OAY=27, 
HOUR=18 ,MINUTE=56 

Note that blank spaces can also follow or precede the commas separating field prompts. A 
continued list of field prompts can begin anywhere on subsequent lines. Field prompts on succes­
sive lines are usually placed directly below the initial line of field prompts for appearance and 
readability only. 

3.4 SCI LANGUAGE VARIABLES 

SCI language uses the following three types of variables: 

• Synonyms 

• Logical names 

• Field prompts 

Synonyms and logical names allow you to reference an I/O resource by an abbreviated name of 
the resource and are applicable to every task in a job. Field prompts are assigned values deter­
mined by the field prompts within a command. The following paragraphs define these variables 
and discuss their uses. 

3·6 2270510·9701 



;' 

Extending SCI 

3.4.1 Synonyms 
Synonyms are names that you assign to represent 1/0 resources using any of the following: 

• .SYN primitive 

• Assign Synonym (AS) command 

• S$SETS used in an application program 

• Name Manager SVC (> 43) execution 

The first three are user interfaces to the Name Manager SVC. This section discusses the .SYN 
primitive, S$SETS, and the AS command. The DNOS System Command Interpreter (SCI) Manual 
explains the AS command and the DNOS SVC Reference Manual explains the Name Manager SVC 
execution. 

The following example shows how the .SYN primitive defines a synonym equivalent to the direc­
tory component of a path name: 

.SYN MY=DS02.MKC.SQURCE 

The preceding example assigns the synonym MY to represent the directory DS02.MKC.SOURCE. 
As a result, a file in this directory can be referenced as follows: 

[] SF 
PATHNAME: MY.DATA 

When using synonyms, there are three ways to determine a synonym value, as follows: 

• In the context of an SCI command procedure, precede the synonym name with an at 
sign (@). 

• Use S$MAPS/S$SNCT in an application program. 

• Execute the Name Manager SVC (> 43). 

The first two are user interfaces to the Name Manager SVC. S$MAPS and S$SNCT are discussed 
later in this section. 

When the @ sign precedes the synonym name in a string or expression, the synonym value 
replaces the synonym. For example, if the string DEVICE is previously defined as a synonym with 
the value LP01: 

"LISTING DEVICE IS @DEVICE" 

is evaluated by SCI as: 

" LIS TIN G D E V ICE I S L P 0'1 " 

2270510·9701 3·7 



Extending SCI 

If a synonym does not have a previously assigned value, SCI uses the synonym name as the value. 
For instance, if the synonym MY has not been defined, then the following is true: 

.SYN X=@MY.MKC.DATA 

is equivalent to 

.SYN X=MY.MKC.DATA 

SCI reads the synonym string characters from right to left, identifying the string following the @ 

sign as a synonym name. If there is more than one @ sign within a string of characters and the @ 
signs are not preceded by a special character (that is, the character is not a dollar sign, bracket, 
back slash, or alphanumeric), the string following the first @ sign encountered is evaluated and 
the synonym name is replaced by the value. 

For example, if the following synonym is defined as: 

.SYN GHI=123 

and is used in the following synonym definition: 

.SYN ABC=@DEF@GHI 

SCI evaluates the string GHI, reading from right to left, and replaces the synonym with its defined 
value as follows: 

.SYN ABC=@DEF123 

SCI begins reading from right to left again, finds the @ sign and evaluates the entire string 
@ DEF123 (not @ DEF). Since DEF123 has not previously been defined, the .SYN primitive assigns 
the character string DEF123 as the value for the synonym ABC. 

Assuming the GHI synonym is still defined as 123 and the synonym DEF is assigned the following 
value: 

.SYN DEF=SRC 

the following synonym definition: 

.SYN ABC=@DEF .@GHI 

would be evaluated as follows: 

.SYN ABC=SRC.123 

3·8 2270510-9701 



Extending SCI 

In situations where there is no special character in the string, use the caret (A) to separate two 
synonyms or enclose a synonym. The caret allows proper synonym evaluation by SCI, demon­
strated in the following example. 

The synonyms OBJ and PGM are defined and used in the following .SYN primitive: 

.SYN OBJ=MY 

.SYN PGM=PROGA 

.SYN RESULT=@OBJA@PGM 

SCI evaluates the synonyms OBJ and PGM separately when the caret is inserted and defines the 
synonym RESULT as: 

.SYN RESULT=MYPROGA 

This process of reading and evaluating synonyms applies to all commands and is not unique to 
the .SYN primitive; the .SYN primitive is used only as an example for simplicity. When a line is read 
by SCI, textual substitution is performed immediately from right to left, without regard to the 
command being processed. After the synonym is evaluated, the command line is processed 
accordingly. 

Because of the textual substitution on a line-by-line basis, a primitive split over several lines can 
have different results from a primitive written on one line. Consider the following example: 

.SYN X=ABC 

.SYN 0=1 

.SYN O=@X, E=@O 

These lines generate the value ABC for D and the string 1 for E. Now, consider a second example: 

.SYN X=ABC 
.SYN 0=1 
.SYN O=@X, 

E=@O 

These lines generate the value ABC for both D and E because the textual substitution in the last 
line occurs after the .SYN D = @X line is processed. 

A synonym can be used without any problems to represent an entire path name or only the first 
component of a path name. However, because of the significance of special characters in the eval­
uation of synonyms, the use of synonyms to represent secondary components of a pathname can 
cause problems. For example, if S is a synonym defining SOURCE and is used in 
@VOL1.MYDISK.S, the synonym is not properly evaluated with the @ sign preceding the path­
name. Synonyms can be used as secondary components if the @ signs are properly placed in the 
string evaluation. The correct synonym representation is VOL 1.MYDISK.@S and is evaluated as 
VOL 1.MYDISK.SOURCE. 

2270510·9701 3·9 



Extending SCI 

The period acts as a delimiter in concatenation for synonyms. For example, if the synonym ABC 
has a value of XYZ, the concatenation of ABC to the character string .DEF would have the 
following results: 

@ABC.DEF=XYZ.DEF 

A character string can be concatenated to a synonym, as shown in the following example (where 
LAST represents the character string): 

LAST@XYZ 

where: 

@XYZ represents the value of a synonym. 

In addition to the synonyms you create, SCI maintains some synonyms which can be accessed by 
command procedures. These synonyms are listed in Table 3-2. 

Synonym 

$$BT 

$$BC 

$$CL 

$$MO 

$$81 

$$8T 

$$UI 

ME 

Table 3·2. SCI Maintained Synonyms 

Definition 

Task run 10 of last background task. 

Completion code of last executed background task. 

List of current command procedure directories 

Two-digit hexadecimal code for the SCI mode: 
00 = Batch mode 
01 = TTY mode 
OF = VOTmode 

Eight-character site name for this system. 

Two-digit decimal station number (for example, 09). When executing in a 
batch job, $$ST is assigned a value of 00. 

User 10 of one to eight characters (for example, SYSTEM). 

Four-character station name (for example, ST09). When executing in a 
batch job, ME is not assigned a value. 

Table 3-3 lists the synonyms which are generated by command processors and SCI when using 
the error handling facility. 

3·10 2270510-9701 



Extending SCI 

Synonym 

$$CC 

$$ES 

$$FN 

$$MN 

$$VT 

3.4.2 Logical Names 

Table 3·3. Message Processing Synonyms . . 
Definition 

Hexadecimal completion code that can be returned by a command proces­
sor via the S$TERM or S$STOP routine 

Error source indicator for the last status or error message 

File name within directory .S$MSG from which the last message was 
generated 

Internal message number of the last error or status message declared by 
either SCI or a command processor 

Text string containing information about the last error or status message 

Logical names appear functionally equivalent to synonyms, but they are significantly different. 
Like synonyms, logical names are sets of names and values; however, logical name values can 
include a set of parameters in addition to the resource name. 

The logical name value is always assumed to be an 1/0 resource. Values associated with the logi­
cal names are descriptions of 1/0 resources, such as logically concatenated files or spooler 
devices. Logical names can have path names and descriptive parameters (for example, job­
temporary or ANSI format) and can be job-local or global in scope. The resolution automatically 
occurs within ONOS each time the logical name is used in a context as an 1/0 resource. Treat the 
logical name as an 1/0 resource once it is defined. 

There are two ways that you can define a logical name: 

• Execute the Assign Logical Name (ALN) command. 

• Execute the Name Manager SVC (> 43).' 

The ALN command is a user interface to the Name Manager SVC and is described in the ON OS 
System Commad Interpreter (SCI) Reference Manual. Refer to the ONOS SVC Reference Manual 
for an explanation of the Name Manager SVC. . 

3.4.3 Environment and Scope of Name Definitions 
Within a single job, each task has access to the set of synonyms and logical names that other 
tasks of the job have assigned. The effects that these name definitions have on an executing task 
can be thought of as the task's environment. 

When a background task is started via a .QSIO primitive, a new snapshot of the SCI environment is 
made and the new task executes in that environment. None of the synonym and logical name defi­
nitions changed by either task (subsequent to the bid) affect the environment of the other. 

2270510-9701 3·11 



Extending SCI 

3.4.4 Field Prompts 
A field prompt is the character string which req ests a valid response to execute an SCI com­
mand. This character string contains a maximum f 28 characters, including embedded blanks. 

Reference to the field prompt value can be made y preceding the field prompt with an ampersand 
(&). The following example refers to the value of t e specified field prompt: 

&INPUT PATHNAME OR LUNa 

Field prompt values can include an assigned sy onym. To reference a field prompt which con­
tains a synonym as its value, the at sign (@) prece es the ampersand. The following example indi­
cates that the synonym resolution is to be perform d on the field prompt value: 

@&INPUT FILE PATHNAME OR LUNa 

Use the ampersand also when concatenating character strings, strings, and variables. For 
instance, the character string ABC is concaten ed to the value of the field prompt FILE in the 
following example: 

ABC&FILE 

A field prompt can specify an appropriate respon e type for the acceptable values. When defining 
response types for field prompts, enclose the re ponse type in parentheses to indicate that a list 
can be accepted as the value. 

Table 3-4 lists the types of valid field prompts. ~he brackets [] indicate optional items and the 
parentheses () indicate an initial value for the pro!mpt. 

Table 3·4. Valid F eld Prompt Types 

Types Ite s 

ACNM [(initial value)] 

DEFAULT (initial value) . 

(response[ = rePlace1entl, ... )[(initial value)] ELEMENT 

INT [(initial value)] I 

LACNM [(initial value)] 

NAME [(initial value)] 

RANGE (lower bound, upper brUnd)[(initial value)] 

[(initial value)] I STRING 

I 
i [(initial value)] YESNO 

3·12 2270510-9701 



Extending SCI 

The following features are common among field prompts: 

• An asterisk (*) preceding the field"prompt type indicates a response is optional and 
need not be supplied. 

• If an initial value begins with a dollar sign ($), then a null string is used as the initial 
value. 

• The value of a field prompt can be a single value or a value list; however, DEFAULT can 
only be a single value. When defining a field prompt type in a command procedure, 
enclose the type in parentheses to allow a value list. Code a value list as a sequence of 
single items separated by commas when defining the response to a field prompt inter­
activ~ly. However, if a value list is entered in a batch stream, enclose the list in 
parentheses. If a list contains only one item, parentheses are not required. 

For example, in a command procedure, FILE = ACNM declares the field prompt 
FILE and requires a value of the type ACNM. INPUT = (ACNM) indicates that 
INPUT can be a single value or a list of values which are of the ACNM type. When 
defining responses to these prompts interactively, FILE = DS04.LlST and 
INPUT = MY.MKC.PROGA,MY.MKC.PROGB are valid value assignments for FILE and 
INPUT, respectively. 

• Each field prompt type can have a specified initial value. Enclose initial values which 
are lists in quotation marks (""). The DEFAULT type requires that an initial value be 
specified. Represent the null value for a field prompt, referred to as a null string, by a 
pair of quotation marks (""). 

• A field prompt can be specified as having more than one possible field prompt type. For 
example, a response to a prompt can be a pathname or LUNO as used in this Execute 
Task (XT) command prompt: 

PROGRAM FILE OR LUNO=ACNM/RANGE(O,OFF) 

The preceding example is known as an alternate prompt type. Separate each field prompt 
type by a slash (I). The DEFAULT type cannot be specified as an alternate type. 

The following paragraphs discuss each field prompt type and its format. The prompts used in the 
format examples are used for simplicity and may not be in their complete forms. 

3.4.4.1 ACNM Field Prompt Type. The ACNM field prompt type allows a response that is a file 
name, channel name, or device name. The following is an example of the ACNM field prompt type: 

FILE PATHNAME=*ACNM("@$SF$P") 

2270510-9701 3·13 



Extending SCI 

In the previous example: 

• The asterisk indicates that the response is optional. 

• The response must be a single value. 

• The at sign (@) preceding the set of characters, $SF$P, indicates the string represents a 
synonym. 

• The parentheses around the set of characters, "@$SF$P", indicate that SCI will use the 
value of the synonym as the initial value for the field prompt. 

• The quotation marks around @$SF$P cause the entire value of the synonym to be 
shown. Without the quotation marks, invalid parameter messages can occur. 

3.4.4.2 DEFAULT Field Prompt Type. The DEFAULT field prompt type assigns a default value to 
a field prompt. The DEFAULT type has the following three characteristics: 

• Syntax is not checked. 

• Field prompts of the DEFAULT type are not displayed in interactive mode but they can 
be explicitly assigned a value in batch mode or expert mode. 

• The field prompt is assigned a default value only when the previous value was not 
assigned to the field prompt in batch mode or expert mode. 

The following example illustrates the DEFAULT field prompt type: 

DISPLAY=DEFAULT(Y) 

The Y is a response previously assigned to the field prompt. It is only necessary to enter a 
response when you do not want the default. 

3.4.4.3 ELEMENT Field Prompt Type. The ELEMENT field prompt type allows a list of accept­
able responses to a field prompt to be specified. Using the near-equality algorithm discussed in 
the System Command Interpreter (SCI) Reference Manual, SCI attempts to match the response 
entered with each element in the list. If the response fails to match any item or matches more than 
one item, the type verification fails. Each item in the list can have a replacement value. Whenever a 
specific item in the list is matched, the value assigned to the field prompt is the replacement value 
and not your response. If the terminal is in default VDT mode (see the Modify Terminal Status 
(MTS) command in the System Command Interpreter (SCI) Reference Manual), the replacement 
value is echoed to the screen and replaces your response. 

The following example illustrates the ELEMENT field prompt type: 

ARE YOU SURE=ELEMENT(Y=YES,N) 

In this example, the response must begin with aY or N character. It is recommended that replace­
ment values match the response in accordance with the near-equality algorithm. 

If you respond with YOU BETCHA, the value of ARE YOU SURE is YES. However, if the response 
was NO WAY, the value of ARE YOU SURE is NO WAY. 

3·14 2270510-9701 



Extending SCI 

3.4.4.4 INT Field Prompt Type. The INT field prompt type allows a response to be a 32-bit 
hexadecimal or decimal integer expression in the range of > 80000000 through > 7FFFFFFF 
(- 2147483648 through 2147483647). The following example illustrates the INT field prompt type 
with the initial value enclosed in parentheses: 

PARM1= INT(O) 

In this example, the parentheses around the value zero indicate the initial value. 

3.4.4.5 NAME Field Prompt Type. The NAME field prompt type allows a response to be a char­
acter string beginning with a dollar ($) sign or a letter (A - Z). The remaining characters of the 
string can contain letters, numbers, $, [, ], or \. The following example illustrates the NAME field 
prompt type: 

TASK NAME=*NAME 

In this example, an asterisk preceding the field prompt type indicates that the response is 
optional. 

3.4.4.6 RANGE Field Prompt Type. The RANGE field prompt type has the same function as the 
INT type; however, in addition, you can specify numeric upper and lower bounds. The following 
example illustrates the RANGE field prompt type: 

LUNO=*RANGE(O,255) 

In this example: 

• The asterisk preceding the field prompt type *RANGE(0,255) indicates that the response 
is optional. 

• The response must be in the range of 0 through 255. 

3.4.4.7 STRING Field Prompt Type. A STRING field prompt type allows a response that is a 
string which does not contain quotation marks, exclamation marks, equals signs, parentheses, or 
commas. 

The initial value specified for a STRING type can be enclosed by quotation marks, denoting it as a 
quoted string. A quoted string can contain quotation marks, exclamation marks, equals signs, 
parentheses, or commas within the enclosed string. However, you must be cautious when you use 
a string containing quotation marks, as they must always be used in pairs. 

An error occurs if an unpaired quotation mark is used within the string, as in the next example: 

flENTER TO flRESUME OPERATION" 

2270510-9701 3-15 



Extending SCI 

There should always be an even number of quotation marks in a quoted string, as in the next 
example: 

"ENTER TO "RESUME OPERATION'''' 

A pair of double quotation marks can also be used to represent a null string (""). 

The following example illustrates the STRING field prompt type: 

INPUT=*(STRING)("@$XE$S") 

The following statements are true: 

• The parentheses around the field prompt type STRING indicate that the response can 
be a single value or a value list. 

• The asterisk preceding the field prompt type (STRING) indicates that the response is 
optional. 

• The at sign (@) preceding the characters $XE$S indicates that the value of the synonym 
is to be substituted for the string $XE$S. 

• The parentheses around the set of characters "@$XE$S" indicate that the value of the 
synonym $XE$S is used as the initial value for the field prompt. 

• The quotation marks enclosing the set of characters @$XE$S allow the value of the 
synonym $XE$S to be a list of values. 

3.4.4.8 YESNO Field Prompt Type. The YESNO field prompt type allows a response that is an 
alphabetic character string beginning with a Y or an N character. The following example illus­
trates the YESNO field prompt type: 

ARE YOU SURE?=YESNO 

In this example, the response must begin with a Y or an N. 

3.5 SCI PRIMITIVES 

SCI primitives are the lowest-level members of the SCI language and are used to create command 
procedures and command processors. When applicable, primitives follow the guidelines dis­
cussed in the preceding paragraphs. Table 3-5 lists the SCI primitive notations and Table 3-6 lists 
the available primitives and their associated parameters. Subsequent paragraphs discuss each 
SCI primitive. 

3·16 2270510·9701 



Notation 

Uppercase 

Lowercase 

No marks 

[ ] 

Item ... item 

Italics 

i Primitive 
Command 

.PROC 

.EOP 

.PROMPT 

.SYN 

.EVAL 

.SPLIT 

. SVC 

.IF 

.ELSE 

ENDIF 

.LOOP 

.WHILE 

2270510-9701 

Table 3·5. SCI Primitive Notation 

Meaning 

Enter the item as shown. 

Enter an item of this type. 

The item is required. 

The item is optional. 

More than one, item of this type can be used. 
Items are separated by commas. 

Indicates the type of item required. 

Indicates alternate items. 

Table 3·6. SCI Primitives 

Parameters 

name[(full name)][ = int][,field prompt list] 

[(full name)][ = int][,field prompt list] 

name = "value" ... name = "value" 

[mode][ = YES/NO,]name = value 

LIST = (list)[,FIRST = name][,REST = name] or 
LIST = "string"[,FIRST = name][,REST = name] 
[,CHARACTER = "string"][,POSITION = int][,STATUS = name] 

[$name ]DATA/BYTE/TEXT = value(s) ... 
[$name ] DATAl BYT E/TEXT = value(s) 

op1,relation,op2 

op1,relation,op2 

Extending SCI 

3·17 



Extending SCI 

Primitive 
Command 

.REPEAT 

.UNTIL 

.EXIT 

.BID 

.DBID 

.QBID 

. DATA 

.EOD 

.STOP 

.USE 

.OPTION 

.MENU 

.SHOW 

Table 3·6. SCI Primitives (Continued) 

Parameters 

op 1,re/ation,op2 

TASK = namelint[,LUNO = int][,CODE = int] 
[,PROGRAM FILE = acnm][,PARMS = (string ... string)] 
[,UTILlTY] 

TASK = namelint[,LUNO = int][,CODE = int] 
[,PROGRAM FILE = acnm][,PARMS = (string ... string)] 
[, UTI L1TY] 

TASK = namelint[,LUNO = int][,CODE = int] 
[,PROGRAM FILE = acnm][,PARMS = (string ... string)] 
[,UTILITY] 

[acnm][,EXTEND[ = YES/NO]][,SUBSTITUTION[ = YES/NO]] 
[,REPLACE[ = YES/NO]] 

[TEXT = string][,CODE = int] 

[pathname ... pathname] 

[PROMPT[ = string]][,MENU[ = name]] 
[,PRIMITIVES[ = YES/NO]][,LOWERCASE[ = YES/NOn 

[menu name] 

fi/ename ... filename 

3.5.1 .PROC and .EOP Primitives 
You can use the .PROe primitive to begin an sel procedure definition which must end with the 
,EOP primitive. Use the .PROe primitive to install the command procedure into a command proce­
jure library. The following represents the .PROe format: 

.PRoe name[(full name)][ = int][,field prompt list] 

The name parameter, which must be the first parameter, defines the name of the procedure. You 
:::an give an optional full name, enclosed in parentheses, immediately following the name. The full 
name is displayed on the terminal when the procedure is executed. 

3-18 2270510-9701 



Extending SCI 

The int field is optional and determines the privilege level used for the procedure being defined. 
This field must follow the full name if you specified a full name. Table 3-7 shows the different priv­
ileges which can be specified. 

Command privilege levels are assigned according to your system knowledge and job require­
ments. If a user 10 privilege level is numerically lower than the privilege level assigned to a particu­
lar command, you cannot issue that command. The system manager uses the Assign User 10 (AUI) 
or the Modify User 10 (MUI) command to establish privilege levels. Privilege levels can be assigned 
with respect to the power of the command and the knowledge and trustworthiness of the user. The 
default value for the privilege level is o. 

Table 3·7. Command Privilege Levels 

Level Meaning 

o Lowest level of access privilege; for example, Create File (CF) 

1 Defined by the System Manager 

2 System access level; for example, Kill Task (Kn 

3 Defined by the System Manager 

4 Management access level; for example, Assign User ID (AUI) 

5 Defined by the System Manager 

6 Combination of System and Management; for example, Execute System Generation 
Utility (XSGU) 

7 Defined by the System Manager 

The field prompt list is a character string following the optional privilege level. A field prompt list 
is formatted as: 

field prompt = field prompt type 

where: 

the field prompt type is one of those listed in Table 3-4 and follows the rules defined for it. 

A maximum of 22 field prompts can be defined for a command. 

2270510·9701 3·19 



Extending SCI 

The following example illustrates the .PROC and .EOP primitives used in a command procedure: 

.PROC EX <EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM 
SF FILE="&INPUT PATHNAME" 

.EOP 

In this example, the full name of the command procedure is EXAMPLE PROC and the SCI com­
mand is EX. The specified privilege level is zero, therefore, the command is available to any user. 
INPUT PATHNAME is a field prompt. INPUT PATHNAME requires an ACNM field prompt type for 
its response. The SF command uses the response to INPUT PATHNAME as an initial value. This 
command procedure could be used to install the EX command on the system. 

When you issue the EX command, EXAMPLE PROC is displayed along with the INPUT 
PATHNAME prompt. The cursor is positioned in the response field and is ready for your entry. 
Press the RETURN key after you enter a response. The SF command is bid by the EX command 
procedure and the file identified for the INPUT PATHNAME response is displayed. (It is not neces­
sary to completely understand the command procedure at this point. Details of command proce­
dures are explained later in this section.) 

It is good programming practice to indent the command procedure to show the control structures 
in it. The .PROC processor preserves such indentation when it creates the output file. 

3.5.2 .IF, .ELSE, .ENDIF Primitives II. 
The SCI language uses the constructions IF-THEN and IF-THEN-ELSE to create a conditional 
primitive. The .IF primitive must be used in conjunction with the .ENDIF primitive. The .ELSE primi-
tive is an optional primitive used with the .IF and .ENDIF primitives. The .ENDIF primitive termi-
nates the .IF primitive . 

. IF op1, relation, op2 

.ELSE 

.ENDIF 

If the .IF condition is true, then statements immediately following the .IF primitive are executed. If 
the condition is false, any statements following the .ELSE primitive (if present) are executed. Exe­
cution then continues with statements following the .ENDIF primitive. 

3·20 2270510·9701 



The .IF primitive must contain a conditi.on using a relation defined in the following list: 

Relation 

op1,EQ,op2 
op1,NE,op2 
op1,GT,op2 

op1 is equal to op2 
op1 is not equal to op2 

Meaning 

op1 is greater than (follows) op2 in the ASCII collating 
sequence 

Extending SCI 

op1,LT,op2 
op1,GE,op2 
op1,LE,op2 
op1,IS,op2 
op1,ISNOT,op2 

op1 is less than (precedes) op2 in the ASCII collating sequence 
either GT or EQ is true for op1 and op2 
either L Tor EQ is true for op1 and op2 
op1 is of type op2 
op1 is not of type op2 

The EQ, NE, GT, LT, GE, and LE relations allow op1 and op2 to be strings, variables, or concaten­
ated strings. The relation parameter designates the type of comparison which is performed on the 
operands. If both op1 and op2 are numeric, a numeric comparison is made; otherwise, a string 
comparision is performed. 

The IS and ISNOT relations require op2 to be a field prompt type; alternate types cannot be speci­
fied. A check is made to verify that op1 satisfies the type specified by op2. The following example 
illustrates the IS relation: 

STATION 10 = RANGE(O,OFF)/ELEMENT(ME)(It@$$ST It ) 

.IF It&STATION IOIt, IS, RANGE(O,OFF) 

.SYN $XT$SIO=It&STATION IOIt 

.ELSE 

.SYN $XT$SIO=It@$$STIt 

.ENOIF 

Note that the field prompt defines alternate types of responses, RANGE and ELEMENT. The .IF 
statement verifies that the value specified was of the RANGE type. 

2270510-9701 3-21 



Extending SCI 

You can use any SCI primitives (excluding .PROC and .EOP primitives) between the .IF and .ENDIF 
primitives. You can use the .IF primitive within other .IF primitives with a maximum of 32 levels of 
nested conditionals. The following example uses the .IF, .ELSE, and .ENDIF primitives; IAN and 
OAN of the CC (Copy Concatenate) command represent the input and output pathnames, 
respectively . 

. PROC EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM, 
OUTPUT PATHNAME=ACNM, 
DISPLAY OR COPY?=ELEMENT(D=D,C=C)(DISPLAY) 

.IF &DISPLAY,EQ,D 

.ELSE 

.ENDIF 

.EOP 

SF FILE="&INPUT PATHNAME" 

CC IAN="&INPUT PATHNAME", 
OAN="&OUTPUT PATHNAME" 

The .IF primitive compares the &DISPLAY to the character D. &DISPLAY is the value of the 
response to the DISPLAY OR COPY? prompt; the character D represents a possible value for the 
response. If &DISPLA Y and D are equivalent, the SF command procedure is bid and the value rep­
resented by &INPUT PATHNAME is displayed. If the response to DISPLAY OR COPY? does not 
match D, the .ELSE primitive bids the Copy/Concatenate (CC) command procedure to copy the 
contents of the file specified for INPUT PATHNAME to the file specified for OUTPUT PATHNAME. 
The .ENDIF primitive terminates the .IF comparison and execution continues with the primitives 
or commands following the .ENDIF. 

3.5.3 .PROMPT Primitive 
The .PROMPT primitive reduces the need 'for secondary command procedures, avoiding large 
command procedure libraries. Additional overhead involved in processing a new command proce­
dure is also eliminated. The syntax for the .PROMPT primitive is as follows: 

.PROMPT [(full name)][ = in t][,fie/d prompt list] 

The field prompts defined by .PROMPT are displayed on a different screen from those defined by 
.PROC (that is, the screen is cleared and the new prompts are displayed). 

The full name parameter is optional and specifies a character string to be displayed when the 
primitive is executed in interactive mode. The int parameter is the lowest privilege level assigned 
to the user ID which permits execution of the procedure. The privilege level specified for .PROMPT 
can be higher than the level specified by .PROC; however, it is not recommended. The field prompt 
list parameter is a series of field prompts. 

3·22 2270510·9701 



The following example illustrates the .PROMPT primitive: 

.PROC EX(EXAMPLE PROC)=Q, 
INPUT PATHNAME=ACNM, 
OUTPUT PATHNAME=ACNM, 
DISPLAY OR COPY?=ELEMENT(D=D,C=C)(DISPLAY) 

.IF &DISPLAY,EQ,D 
SF FILE="&INPUT PATHNAME" 

.ELSE 
CC IAN="&INPUT PATHNAME", 

OAN="&OUTPUT PATH NAME" 
.PROMPT (SUPPLEMENTARY QUESTION), 

DELETE FILE?=ELEMENT(Y=Y,N=N)(NO) 
.IF &DF,EQ,Y 

.ENDIF 

.ENDIF 

.EOP 

OF PATHNAME="&INPUT PATHNAME" 

Extending SCI 

The .PROe, .IF, .ELSE, and .ENDIF primitives execute as previously explained. The .PROMPT prim­
itive displays the DELETE FILE? prompt. The character string SUPPLEMENTARY QUESTION 
defines the optional full name parameter. 

3.5.4 .SYN Primitive 
The .SYN primitive assigns values to synonyms. Synonyms and their values are maintained in the 
synonym table. The .SYN primitive has the following format: 

.SYN name = "value" ... name = "value" 

The name parameter specifies the synonym name. The value parameter is a string, variable, or 
concatenated expression. Quotation marks enclosing the value are recommended to ensure cor­
rect interpretation of the value string. 

A string enclosed in quotation marks indicates that the value specified is a list and is to be treated 
as a single item. A value list must be enclosed in quotation marks as shown in the following 
example: 

.SYN A = "1,2,3" Legal 

.SYN A = 1,2,3 Illegal 

Synonyms can be assigned string values containing special characters. To properly handle the 
special character, enclose the string in quotation marks. For instance, as a special character, the 
exclamation mark (!) indicates an end of record. If you use the! in a character string, enclose the 
string in quotes to include the characters following it. For example: 

. SYN A = "HELLO!THERE" 

.SYN A = HELLO!THERE 

2270510-9701 

THERE is included in the string . 
THERE is not included in the string and is regarded as a 
comment. 

3·23 



Extending SCI 

To avoid synonym table overflow, delete synonyms which are no longer necessary. Assigning a 
null value ("") to a specified synonym deletes the synonym from the synonym table. 

The following example illustrates the .SYN primitive used in a command procedure: 

.PROC EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM, 
OUTPUT PATHNAME=ACNM, 
DISPLAY OR COPY?=ELEMENT(D=D,C=C)(DISPLAY) 

.SYN $EX$IP="&INPUT PATHNAME" 

.SYN $EX$OP="&OUTPUT PATHNAME" 

.IF &DISPLAY,EQ,D 

.ELSE 
SF FILE=@$EX$IP 

CC IAN=@$EX$IP, 
OAN=@$EX$OP 

.PROMPT (SUPPLEMENTARY QUESTION), 
DELETE FILE?=ELEMENT(Y=Y,N=N)(NO) 

.IF &DF,EQ,Y 

.ENDIF 

.ENDIF 

.EOP 

OF PATHNAME=@$EX$IP 

This example is similar to the example for the .PROMPT primitive. In addition, this command pro­
cedure assigns values to the synonyms $EX$IP and $EX$OP which you can access by other com­
mand procedures. 

3.5.5 .EXIT Primitive 
The .EXIT primitive terminates the execution of the current command procedure. (Use the .EOP to 
terminate the definition of the command procedure.) The .EXIT primitive can be used as often as 
necessary at any point within a command procedure definition. Do not use the .EXIT primitive 
however, within a batch stream. 

The .EXIT primitive does not have any parameters to be defined, and it uses the following format: 

.EXIT 

3·24 2270510-9701 



An example of the .EXIT primitive used in a command procedure is as follows: 

.PROC EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM("@$EX$IP"), 
OUTPUT PATHNAME=ACNM("@$EX$OP"), 

.SYN 

.SYN 
• I F 

DISPLAY OR COPY?=ELEMENT(O=O,C=C)(OISPLAY) 
$EX$IP="&INPUT PATHNAME" 

.EXIT 

.ENOIF 

$EX$OP="&OUTPUT PATHNAME" 
&OISPLAY,EQ,O 
SF FILE=@$EX$IP 

CC IAN=@$EX$IP,OAN=@$EX$OP 
.PROMPT (SUPPLEMENTARY QUESTION), 

DELETE FILE?=ELEMENT(Y=Y,N=N)(NO) 
.IF &OF,EQ,Y 

.ENOIF 

.EOP 

OF PATHNAME=@$EX$IP 

If the following statement from this example is true: 

.IF &OISPLAY,EQ,O 

Extending SCI 

then the SF command procedure is bid to display the file represented by the synonym $EX$IP. The 
.EXIT primitive then terminates the execution of the EX command procedure. If the .IF comparison 
is false, execution of the command procedure continues with the primitives and commands fol­
lowing the .ENDIF primitive for that .IF comparison. 

3.5.6 .EVAL Primitive 
The .EVAL primitive evaluates a numeric expression, converts the result to decimal or 
hexadecimal ASCII format, and stores it as the value of a specified synonym. The .EVAL primitive 
has the following format: 

.EVAL [mode][ = YES/NO],name = value 

The mode parameter must be the keyword DEC (decimal) or HEX (hexadecimal), to specify the 
conversion mode. If you specify the mode parameter with one of these keywords and enter Y in 
response, the mode specified is the numeric base to which the result is converted. If you enter N, 
the result is converted into the mode that you did not specify. You can also enter the mode 
parameter without a YIN response; in this case, the Y is assumed. The mode parameter is not 
required and automatically defaults to the decimal mode if it is not specified. 

The name parameter specifies the name of the synonym to which the resulting value is assigned. 

2270510-9701 3·25 



Extending SCI 

The value parameter is the numeric decimal or hexadecimal integer expression to be evaluated. 
Synonyms can be assigned numeric values and used as operands in the arithmetic expression. 
The valid arithmetic operators are: 

+ 

'" 
I 

unary plus or addition 
unary minus or subtraction 
multiplication 
division 

The character K can also be used within an expression to denote the constant value 1024. 

The following examples illustrate valid .EVAL primitives. (Assume the synonym THREE has a 
value of 3 and the synonym TWO has a value of 2, the value shown in parentheses to the right of 
the example is the value assigned to the synonym RESULT.) 

.EVAL 

.EVAL 

.EVAL 

.EVAL 

.EVAL 

.EVAL 

.EVAL 

OEC=Y,RESULT= @THREE*5- @TWO 
OEC= N,RESULT= @THREE*5- @TWO 
OEC,RESULT= @THREE*5- @TWO 
RESULT= @THREE*5- @TWO 
HEX = Y,RESULT = @THREE*5 - TWO 
HEX= N,RESULT= @THREE*5- TWO 
HEX,RESULT= @THREE*5-TWO 

(13) 
(>0) 
(13) 
(13) 
(>0) 
(13) 
(>0) 

The .EVAL primitive is useful in establishing counters for loop primitives. Refer to the paragraph ,., 
concerning the .LOOP, .UNTIL, .WHILE, and .REPEAT primitives for an example of its use. 

3.5.7 .LOOP, .UNTIL, .WHILE, and .REPEAT Primitives 
Use the .LOOP, .UNTIL, .WHILE, and .REPEAT primitives to repeat groups of SCI statements 
within command procedures to form a loop. Use the .LOOP primitive to begin a loop and the 
.REPEAT primitive to terminate it. You can use the .UNTIL or .WHILE primitives at any point 
between the .LOOP and .REPEAT primitives. The loop primitives have the following format: 

.LOOP 

.UNTIL 

.WHILE 

.REPEAT 

op1, relation, op2 
op1, relation, op2 

The .UNTIL and .WHILE primitives each contain two operands and a relation parameter which is a 
numeric or string compare operation of the type described with the .IF primitive. Op1 and op2 
parameters can be strings, variables, or concatenated strings. 

3·26 2270510·9701 



Extending SCI 

The basic structure of a loop in an SCI command procedure is: 

.LOOP 

SCI statements 

.UNTIL or .WHILE 

SCI statements 

.REPEAT 

The .LOOP primitive begins the loop and the .REPEAT primitive ends it. The loop must contain at 
least one .WHILE or .UNTIL primitive at any point within the loop. The SCI statements within the 
loop are executed until the condition of the .WHILE primitive is false or until the condition of the 
.UNTIL primitive is true. When either of these conditions is met, SCI executes the first statement 
following the .REPEAT primitive. 

If multiple .UNTIL and .WHILE primitives are contained within a loop, SCI discontinues the loop 
when the first .UNTIL or .WHILE condition becomes true or false, respectively. SCI then continues 
with execution following the .REPEAT primitive. 

You can also use the .IF primitive within the loop primitives. However, the total depth of nested 
loops with nested .IF statements cannot exceed 32. 

The followtng example contains the loop primitives used within a command procedure. 

.PROC 

.SYN 

.SYN 
• I F 

.ELSE 

• I F 
.SYN 
.SYN 
· LOOP 
.UNTIL 
PF 

2270510-9701 

EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM("@$EX$IP"), 
OUTPUT PATHNAME=ACNM("@$EX$OP"), 
DISPLAY OR COPY?=ELEMENT(D=D,C=C)(DISPLAY), 
PRINT THE FILE?=ELEMENT(Y=Y,N=N)(NO), 
LISTING DEVICE=NAME("@$EX$L"), 
NUMBER OF COPIES?=INT("@$NUM") 
$EX$IP="&INPUT PATHNAME" 
$EX$OP="&OUTPUT PATHNAME" 
&DISPLAY,EQ,D 
SF FILE=@$EX$IP 
.EXIT 

CC IAN=@$EX$IP,OAN=@$EX$OP 
&PRINT,EQ,Y 
$EX$L=&LIST 
$NUM="&NUMBER OF COPIES" 

@$NUM,EQ,O 
FILE=@$EX$IP,L=@$EX$L 

3·27 



Extending SCI 

.EVAl $NUM=@$NUM-1 

.REPEAT 

. SYN $NUM='''' 

.PROMPT (SUPPLEMENTARY QUESTION), 
DELETE FILE?=ELEMENT(Y=Y,N=N)(NO) 

.IF &DF,EQ,Y 

.ENDIF 

.ENDIF 

.ENDIF 

.EOP 

OF PATHNAME=@$EX$IP 

In the preceding example, the combination of the .LOOP, .UNTIL, .EVAL, and .REPEAT primitives 
creates a counter mechanism. 

If the .IF comparison of this command procedure is true: 

.IF &PRINT, EQ, Y 

the .SYN primitives are performed, the synonym $EX$L is given the value of the LISTING DEVICE 
response, and the synonym $NUM is given the value of the NUMBER OF COPIES? response. The 
loop is initiated and the .UNTIL primitive compares the value of $NUM with O. If $NUM is nonzero, 
the Print File (PF) command procedure is bid and prints the file specified by INPUT PATHNAME to 
the LISTING DEVICE specified. The .EVAL primitive then decrements the value of $NUM by one 
and the .REPEAT primitive causes the loop to repeat. When the value of $NUM is 0, SCI execution 
continues with the statements immediately following the .REPEAT primitive. 

3.5.8 .SPLIT Primitive 
The .SPLIT primitive splits a value list in two, assigning the first part to one synonym and the 
second part to another. The primitive can have either of the following formats: 

.SPLIT LIST = (list)[,FIRST = name][,REST = name] 
or 

LIST = "string"[,FIRST = name][,REST = name] 
[,CHARACTER = "string"][,POSITION = int][,STATUS = name] 

Use the first format to split items separated by commas. Use the second format when the items 
are separated by characters other than commas. 

3.5.8.1 Using the First .SPLIT Format. In the first format, the LIST parameter contains one 
value or a list of values. The first item of the list is assigned as the value of the synonym name of 
the FIRST parameter and the remainder of the list is assigned as the value of the synonym name 
:)f the REST parameter. 

The operation of the .SPLIT primitive is as follows: 

LIST FIRST 

(A,B,C) A 
A A 

null null 
«X,Y),Z,G) (X,Y) 

3·28 

REST 

(B,C) 
null 
null 
(Z,G) 

2270510-9701 



Extending SCI 

Items in the value list must be separated by co~mas. Parentheses can be used to control the split­
ting of the list. 

The following example illustrates the firs~/ormat as used in a command procedure: 

.PROC 

.SYN 

.SYN 

.LOOP 

.WHILE 

.SPLIT 

EX{EXAMPLE PROC)=O~ 
INPUT PATHNAME=ACNM{If@$EX$Iplf), 
OUTPUT PATHNAME{S)={ACNM) 
SEXSIP=If&INPUT PATHNAME" 
SEX SOP = If ( & 0 U T PUT' PAT H N AM E ) If 

If@SEXSOplf,NE,SEXSOP 
LIST=If@SEXSOP", 
FIRST=EXOUT, 
REST=SEX$OP 

CC IAN="@SEX$IP",OAN="@EXOUT" 
.REPEAT 
.SYN 
.EOP 

EXOUT="1f 

In this example, the file specified with the INPUT PATHNAME prompt is copied to the file(s) 3peci­
fied with the OUTPUT PATHNAME(S) prompt. 

The .SPLIT primitive within the loop determines the current output file to which the input file is to 
be copied. When one copy is complete, .SPLIT updates the current output file to the next output 
file specified in response to the OUTPUT PATHNAME(S) prompt. 

The .WHILE primitive within the loop ensures that the input file is copied to all of the specified 
output files. When all copy processes are complete, execution continues with the primitives and 
commands following the .REPEAT primitive. 

3.5.8.2 Using the Second .SPLIT Format. In the second format, the LIST parameter contains a 
character string. 

The CHARACTER keyword contains a single character or a list of characters. The first occurrence 
of any of the characters in the list causes a.split to occur. What precedes the character and the 
character itself go to FIRST; what remains goes to REST. Specifying by CHARACTER is useful for 
splitting pathnames whose nodes are separated by periods or colons. 

The POSITION keyword is an integer value that specifies a character within the string. The integer 
value determines after which character in the string the split will occur. A 0 or negative value 
causes the FIRST synonym to be null and the REST synonym to contain the entire string. A value 
equal to or greater than the character length of the string causes FIRST to contain the entire string 
and REST to be null. Specifying POSITION is useful for splitting files that follow a naming conven­
tion, where you need to break off a certain number of leading characters and where any character 
could be found at the location of the split. 

When writing the .SPLIT primitive you may indicate CHARACTER, POSITION, or both. When 
CHARACTER and POSITION are both present, the first condition to be satisfied determines the 
location of the split. 

2270510·9701 3-29 



I 

Extending SCI 

The STATUS keyword is a synonym that will be set in one of the following ways: 

• For a split by CHARACTER, the synonym is set to the character on which the split 
occurred (namely, the character specified). 

• For a split by POSITION, the synonym is set to the character preceding the split. 

• For a split that does not occur, the synonym is set to null. 

The following example illustrates the second format a$ used in a command, procedure. The syn­
onym NAME already has the value DB1.PAYMENT . 

. SPLIT LIST="@NAME",FIRST=DIR, REST=NAME, 
CHARACTER=(".",":"), STAT.uS=CHR 

This command line assigns the value DB1 to the synonym DIR and assigns the value PAYMENT to 
the synonym NAME. CHR, the synonym forthe STATUS keyword, is set to ".". 

In the following example, the synonym NAME already has the value ABCDEFG . 

• SPLIT LIST="@NAME",FIRST=PART1, REST=PART2, 
POSITION=3, STATUS=CHR 

This command line assigns the value ABC to the synonym PART1 and assigns the value OEFG to A 

the synonym PART2. CHR, the synonym for the STATUS keyword, is set to "C". 

In the next example, the command line specifies a split by both CHARACTER and POSITION . 

• SPLIT LIST="@NAME",FIRST=SITE, CHARACTER=":", 
POSITION=8, STATUS=CHR 

This command line breaks the contents of NAME at the first colon or after the eighth character, 
whichever condition is satisfied first. The synonym SITE receives the first part of NAME. Since 
REST is not specified, the second part of NAME is discarded. CHR will be set to either ":" or the 
eighth character of NAM E. 

3.5.9 .BID Primitive 
The .BID primitive specifies the execution of a DNOS task. Tasks initiated with the .BID primitive 
share synonyms and logical names with SCI and must execute serially (that is, such tasks can 
only execute at a terminal one at a time). 

The .BID primitive has the following format: 

.BIO TASK = namelint[,LUNO = int][,CODE = int] 
[,PROGRAM FILE = acnm][,PARMS = (string ... string)][,UTILlTY] 

3·30 Change 1 2270510-9701 



Extending SCI 

The TASK = namelint parameter is required and identifies a task located in a program file. The 
value can be specified as a name or as an integer. The LUNO = int parameter is optional and speci­
fies a LUNO assigned to the program file. The default value for LUNO is the LUNO assigned to the 
.S$SHAREO program file. COOE is an optional value containing an integer from 0 through 255 that 
can be accessed by the task as a binary value. The default value for COOE is O. PROGRAM FILE is 
the access name of the program file. If you specify PROGRAM FILE, you cannot specify LUNO. 
PARMS is optional and contains a list of character strings, separated by commas, that can be 
accessed by the task. UTILITY specifies that the program which is to be bid exists on the .S$UTIL 
utilities program file. If you specify UTILlTY,you cannot specify either LUNO or PROGRAM FILE. 
SCI transfers control to the task upon encountering the .BIO primitive. When the task terminates, 
SCI processes the next statement in the procedure. 

The following example illustrates the .BIO primitive: 

.PROC 

.SYN 

.SYN 

.SYN 

.EOP 

EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM("@$EX$IP"), 
OUTPUT PATHNAME(S)=(ACNM), 
PRINT THE FILE?=ELEMENT(Y=Y,N=N)(NO) 
$EX$IP="&INPUT PATHNAME" 
$EX$OP="&OUTPUT PATHNAME" 
$EX$P="&PRINT" 
.BID TASK=>40,PARMS=("@$EX$IP","@$EX$OP","@$EX$PII) 

In this example, the .BIO primitive bids a task with a task 10 of > 40 residing in the .S$SHAREO 
program file. 

The values for synonyms $EX$IP, $EX$OP, and $EX$P are set to be the responses entered for the 
INPUT PATHNAME, OUTPUT PATHNAME(S), and PRINT THE FILE? prompts, respectively, The 
task uses these synonym values as parameters during execution. 

3.5.10 .DBID Primitive 
The .OSIO primitive specifies the execution of a task as a background task in a suspended state. 
The .OSIO primitive enables you to debug the command processor using the SCI debugger. A 
snapshot of synonyms and logical names is taken when a task is executed by .OBIO, allowing you 
to execute another foreground task concurrently. 

The .OSIO primitive has the following format: 

.OSIO TASK = namelint[,LUNO = int][,COOE = int] 
[,PROGRAM FILE = acnm][,PARMS = (string ... string)][,UTILlTY] 

2270510-9701 3·31 



Extending SCI 

The parameter definitions of the .OBIO primitive are identical to the .BIO primitive parameters. The 
following example illustrates the .OBIO primitive as it is used in a command procedure. 

.PROC 

.SYN 

.SYN 

.SYN 

EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM("@$EX$IP"), 
OUTPUT PATHNAME(S)=(ACNM), 
PRINT THE FILE?=ELEMENT(Y=Y,N=N)(NO) 
$EX$IP=II&INPUT PATHNAME" 
$EX$OP="&OUTPUT PATHNAME" 
$EX$P="&PRINT" 
.OSIO TASK=USERTASK,PARMS=("@$EX$IP","@EX$OP","@$EX$P"), 
PROGRAM FILE=.USERPROG 

.EOP 

The .OBIO example bids the task by name, USERTASK, from the program file .USERPROG and 
executes as a background task in suspended state, performing the same functions as the .BIO 
primitive example. 

3.5.11 .QBID Primitive 
The .QBIO primitive specifies the execution of a task as the background task of a terminal. In the 
interactive mode, SCI processes the next input command after initiating execution of the task and 
the task executes concurrently. In the batch mode, SCI is suspended until the task terminates. A 
snapshot of synonyms and logical names is taken when a task is executed by .QBIO. 

The .QBIO primitive has the following format: 

.QBIO TASK = namelint[,LUNO = int][,COOE = int] 
[,PROGRAM FILE = acnm][,PARMS = (string ... string)][,UTILlTY] 

The .QBIO and .DBIO primitive parameter definitions are identical. The following example uses the 
.QBIO in a command procedure: 

.PROC 

.SYN 

.SYN 

.SYN 

.EOP 

EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM("@$EX$IP"), 
OUTPUT PATHNAME(S)=(ACNM), 
PRINT THE FILE?=ELEMENT(Y=Y,N=N)(NO) 
$EX$IP="&INPUT PATHNAME" 
$EX$OP=II&OUTPUT PATH NAME" 
$EX$P="&PRINT" 
.QSIO TASK=USERTASK,PARMS=("@$EX$IP","@EX$OP","@$EX$P"), 
PROGRAM FILE=.USERPROG 

This example bids the task (USERTASK) from the program file .USERPROG and executes as a 
background task at the terminal, performing the same functions as the .BIO primitive example. 

3.5.12 .RBID Primitive 
The .RBIO primitive bids several system utilities. The primitive must be used with great care, so 
that system utilities are not affected. Refer to the DNOS SCI and Utilities Design Document for 
further information concerning the .RBIO primitive. 

3·32 2270510-9701 



Extending SCI 

3.5.13 . DATA and .EOD Primitives 
The .DATA primitive copies data directly to a file from the command input stream. You must use 
the .EOD primitive to terminate the data stream. The .DATA primitive has the following format: 

. DATA [acnm][,EXTEND[ = YES/NO]][,SUBSTITUTION[ = YES/NO]] 
[,REPLACE[ = YES/NO]] 

The acnm specifies the file or device to which the data is to be copied. If the acnm is not specified, 
the Terminal Local File (TLF) is assumed. Since the TLF is displayed when the command proce­
dure completes execution, the .DATA primitive can be used to send status and error messages to 
the bidding terminal and place debugging statements in a procedure to track the path of 
execution. 

There are three parameters (EXTEND, SUBSTITUTION, and REPLACE) which affect the copying 
process. The EXTEND parameter specifies whether the data file is to be opened extended. This 
allows you to concatenate several data streams under one pathname. If you do not specify the 
EXTEND parameter, the default is taken and the data file is not opened extended. If you use the 
TLF, the file is always opened extended. 

The SUBSTITUTION parameter specifies whether textual substitution is to be done on the data 
stream before it is copied to the specified acnm. Textual substitution causes the appropriate 
values to be substituted for field prompts preceded by ampersands (&) and synonyms preceded by 
at signs (@). Multiple blanks are also compressed to a single blank unless they are enclosed by 
quotation marks ("). Any characters after an exclamation mark (!) and any comment lines are omit­
ted. If you do not specify SUBSTITUTION, the d~fault is taken and textual substitution is not 
performed. 

You can use the REPLACE parameter in a data stream to replace an existing file specified by 
acnm. If you do not specify REPLACE, the default is taken and file replacement is performed. If 
you use the TLF, the REPLACE parameter is ignored. If you specify both EXTEND and REPLACE, 
EXTEND is used if REPLACE = NO. 

Following is an example of the .DATA and .EOD primitives: 

.PROC 

.SYN 

.SYN 
• LOOP 
.WHILE 
.SPLIT 

.DATA 

EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM(If@$EX$Ip lf ), 
OUTPUT PATHNAME=(ACNM) 
$EX$IP=If&INPUT PATHNAMEIf 
$EX$OP=If(&OUTPUT PATHNAME)1f 

1f@$EX$Oplf,NE,$EX$OP 
LIST=If@$EX$Oplf, 
FIRST=EXOUT, 
REST=$EX$OP 
CC IAN=If@@$EX$Iplf,OAN=If@@EXOUTIf 

COpy COMPLETED 
.EOD 
.REPEAT 
.EOP 

2270510·9701 Change 1 3·33 



Extending SCI 

In this example, the .DATA and .EOD primitives are used to output the following message to the 
TLF when an input file has been copied to a specified output file: 

COpy COMPLETED 

In the previous example, if the message was to be appended to the contents of a file (for instance, 
. KCOUT), the following EXTEND option must be specified forthe .DATA primitive: 

.DATA .KCOUT,EXTEND=YES 
COPY COMPLETED 
.EOD 

3.5.14 .STOP Primitive 
The .STOP primitive terminates execution of SCI and has the following format: 

.STOP [TEXT = string][,CODE = int] 

In batch mode, the string specified by the TEXT parameter is optional and can be used to create a 
message to send to the interactive SCI in place of the message BATCH SCI HAS COMPLETED. 
The CODE parameter is optional and is used to set the synonym $$BC in the synonym table of the 
bidding task (SCI) when a batch stream completes. The $$BC synonym is deleted by SCI when a 
background task is initiated. The TEXT and CODE parameters are ignored when SCI is not in batch 
mode. 

You cannot enter the .STOP primitive interactively at a terminal if any of the following operations 
are in progress at the terminal: 

• Text editing 

• Debugging 

• Execute System Configuration Utility (XSCU) session 

• Background activity 

When the .STOP primitive is processed, SCI execution does not terminate immediately. The M$01 
procedure executes, saving synonyms and logical names (in the same way the Q command does). 
Refer to the System Command Interpreter (SCI) Reference Manual for details about the M$01 
procedure. 

The following example illustrates the interactive use of the .STOP primitive: 

.PROC LO(TERMINAL IS LOGGING OFF)=O 

.SVC 0=(0200,20) 

.STOP 

.EOP 

!FULL NAME DISPLAYED 
!TIME DELAY SVC 
!TERMINATE SCI 

In this example, the .STOP primitive is used within a command procedure to stop SCI and log off 
the terminal after a short time delay. (The .SVC primitive is explained later in this section.) 

3·34 2270510-9701 



Following is an example of a command procedure written to stop a batch stream: 

SBATCH (STOP BATCH EXECUTION), 
TEXT=*STRING, CODE=*INT 
.IF @$$MO, NE, 0 
.EXIT 
.ENDIF 
SOT 
.STOP TEXT="&TEXT", COOE="&COOE" 

Extending SCI 

Note that during the processing of .STOP, the value of $$CC is changed. Therefore, if you use 
$$CC in the CODE = portion of .STOP, the value will be from .STOP processing, not from previous 
activity. 

3.5.15 .USE Primitive 
The .USE primitive specifies alternate procedure libraries to be used by SCI. The .USE primitive 
has the following format: 

.USE [pathname 1[,pathname 2[,pathname 3[,pathname 4 [,pathname 5]]]]] 

From one to five pathnames follow the .USE statement. Each path name specifies a command 
library. Once invoked, the menus and command procedures are taken from these libraries. If a 
menu or command procedure is not found after searching the library specified by pathname 1, 
then the library specified by pathname 2 is searched, and so on. The .USE primitive remains in 
effect until it is replaced by another .USE or until a log-offllog-on sequence occurs. 

To revert to the standard system library, specify a .USE primitive with no operands. In this case, 
the default value .S$CMDS is taken as pathname 1 and the remaining pathnames are null. 

The synonym $$CL is set each time a .USE is issued. The value assigned to $$CL is the string of 
libraries specified in the .USE statement. When installing a command procedure, SCI places the 
command definition into the directory specified by pathname 1.0ne of the pathnames must con­
tain the main menu specified by the .OPTION primitive discussed in subsequent paragraphs. 

2270510·9701 

NOTE 

If the main menu cannot be found after executing the .USE primi­
tive, a warning message is output. You must execute another .USE 
primitive to specify the correct command procedure directory con­
taining the main menu. 

3·35 



Extending SCI 

The .USE primitive affects only the SCI session in which it was executed. Every SCI session 
begins with the system library .S$CMDS as the default library. A .USE primitive executed from an 
interactive terminal has no effect on any batch SCI executed from the terminal. 

The following example illustrates the .USE primitive for the interactive mode: 

[] .USE .USERLIB, .S$CMDS 

This statement enables you to access the command procedures in the .USERLIB library and the 
.S$CM DS system library. 

In the following example, the .USE primitive is used in a command procedure to access com­
mands in the directory .USERLIB. When the .PROC primitive is encountered, SCI installs the EX 
(Example Proc) command procedure into the .USERLIB library . 

.USE 

.PROC 
. USERLIB, .S$CMDS 
EX(EXAMPLE PROC)=O, 
INPUT PATHNAME=ACNM("@$EX$IP"), 
OUTPUT PATHNAME(S)=(ACNM), 
PRINT THE FILE?=ELEMENT(Y=Y,N=N)(NO) 
$EX$IP="&INPUT PATHNAME" 
$EX$OP="(&OUTPUT PATHNAME)" 

.SYN 

.SYN 

.SYN 

.BID 
$EX$P="&PRINT" 
TASK=USERTASK,PARMS=("@$EX$IP","@$EX$OP","@$EX$P"), 
PROGRAM FILE=.USERPROG 

.EOP 

3.5.16 .OPTION Primitive 
The .OPTION primitive enables you to modify some basic interface characteristics of SCI to suit 
your local language or application requirements. 

The .OPTION primitive has the following format: 

.OPTION [PROMPT[ = string]][,MENU[ = name]][,PRIMITIVES[ = YES/NO]] 
[,LOWERCASE[ = YES/NO]] 

3·36 2270510-9701 



The parameter definitions are as follows: 

Keyword 

PROMPT 

MENU 

PRIMITIVES 

LOWERCASE 

2270510-9701 

Assigned Value 

An alternative prompt charac­
ter string which must be less 
than 50 characters in length. 

Main menu name. (SCI will 
automatically prefix the spec­
ified menu with M$ to obtain 
the menu file name in your 
PROC library). 

YESorNO 

YESorNO 

Extending SCI 

Function 

Enables you to specify the 
SCI prompt. The default 
SCI prompt is [ ] repre­
sented by the ASCII codes 
>78 and >70. 

Enables you to specify your 
own main menu which is 
displayed after each menu 
display cycle in VOT mode. 
The default SCI menu is 
named LC. 

Enables you to allow or 
disallow the use of primi­
tives at the primary level. In 
the case of interactive SCI, 
you are allowed or disal­
lowed to use primitives at 
the keyboard. In batch SCI, 
you are either allowed or 
disallowed the use of primi­
tives in the batch stream. 
The default is YES. 

Enables you to allow or 
disallow lowercase to 
uppercase mapping of 
input to SCI. The default is 
NO. Use of the LOWER­
CASE option does not 
apply to batch stream pro­
cessing or the following 
SCI command processors: 

CVO 
INV 
XANAL 

OCOPY 
MS 
MVI 

3·37 



Extending SCI 

The following example shows the use of the .OPTION primitive to display the station number. 
MYMENU is a user constructed menu which is to be displayed, replacing the SCI main menu . 

. PROC ~P(NEW PROMPT ~ROC) 

.OPTION PROMPT="ST@$$ST",MENU=MYMENU,PR.IMITIVES=YES 

.EOP 

The synonym $$ST in this example represents the station number of the user's terminal. 

In the following example, the .OPTION primitive is used to select the EDIT menu found in 
.S$CMDS.M$EDIT for display at each menu display cycle of SCI. This command also disables 
primitives at the primary level. 

.OPTION MENU=EDIT,PRIMITIVES=NO 

The next example illustrates the use of the .OPTION primitive to select a user-constructed menu 
(PROPRE) found in the user command library with the file name .M$PROPRE, replacing the SCI 
main menu displayed. This command also enables the use of lowercase characters as inputs to 
SCI. 

.OPTION MENU=PROPRE,LOWERCASE=YES 

3.5.17 .MENU Primitive 
The .MENU primitive causes SCI to display a specified menu the next time SCI is in command 
mode. The .MENU primitive has the following format: 

.MENU [menu name] 

There are three variations of the menu name parameter: 

• 

• 

• 

No menu specified - The use of a .MENU with no menu specified causes screen con­
tents to remain unchanged in the next menu cycle. 

Menu name - If you specify a menu name (one through six alphanumeric characters), 
SCI will display the menu in the next menu cycle, whether the station is in TTY or VDT 
mode. SCI appends the characters M$ at the beginning of the name to obtain the file 
name within your command procedure library file where the menu resides. 

* Menu name - If you specify a menu name preceded by an asterisk, the menu is dis­
played only if the station is in VDT mode. 

An equivalent alternative to the .MENU primitive is the slash (I) symbol. It is defined as follows: 

3·38 

J 
JDEV 
J*DEV 

is equivalent to .MENU 
is equivalent to .MENU DEV 
is equivalent to .MENU *DEV 

2270510·9701 



The following example illustrates the .MENU primitive: 

.PROC 
.MENU 
.EOP 

NM(NEW MENU PROC) 
MYMENU 

Extending SCI 

This example specifies MYMENU to be displayed on the terminal. SCI searches the command 
library for the file M$MYMENU and displays the menu in that file on the next menu display cycle. 

3.5.18 .SHOW Primitive 
The .SHOW primitive displays the contents of a specified file or files to an interactive terminal or 
batch listing file. The .SHOW primitive has the following format: 

.SHOW filename[,filename .. .filename] 

where: 

filename is the name of a file. 

The .SHOW primitive cannot display program files, image files, or directories . 

. SHOW is equivalent to the Show File (SF) command. The function keys used with the SF com­
mand are applicable to the .SHOW primitive. Refer to the SF command in the System Command 
Interpreter (SCI) Reference Manual for descriptions of the function keys. 

The following example illustrates the .SHOW primitive used in the SF command procedure: 

.PROC 

.SYN 

.SHOW 

.EOP 

SF(SHOW FILE)=O, 
INPUT FILENAME=ACNM("@$SF$IP") 
$SF$IP="&INPUT FILENAME" 
@@$SF$IP 

In the previous example, the .SHOW primitive displays the file specified as the response to the 
INPUT FILENAME prompt. The .SHOW primitive is not limited to the SF command procedure; it 
can be used in any command procedure. 

3.5.19 .SVC Primitive 
The .SVC primitive allows you to issue supervisor calls (SVCs) from the SCI procedure language. 
The format of the .SVC primitive is as follows: 

.SVC [$name] DATA/BYTEITEXT = value(s) ... [$name] DATAl BYTEITEXT = value(s) 

The optional $name parameter is a synonym that can be used to retrieve information returned to 
the SVC call block by DNOS. The DATA, BYTE, and TEXT parameters enable you to describe the 
SVC call block with value(s) as they might appear in assembly language. The execution of this 
command causes SCI to build the supervisor call block and issue the SVC. The synonym $$CC is 
set to > 00 if the SVC completes normally; otherwise, SCI sets an error condition enabling the 
command procedure to test for abnormal cases via the $$CC and $$MN synonyms. The $$CC and 
$$MN synonyms are described elsewhere in this manual. 

2270510·9701 3·39 



Extending SCI 

There are some SVCs which cannot be used with the .SVC primitive. These limitations are signifi­
cant and are described in Table 3-8. 

To use the .SVC primitive, perform the following steps: 

3·40 

1. Determine the SVC to be issued. Make sure that it does not fall into any of the catego­
ries of disallowed SVCs. 

2. Format the SVC call block using the DATA, BYTE, and TEXT parameters, After each 
parameter, insert an equals sign (=). 

a. If the SVC definition requires a pointer to a text string, replace the pOinter (which is 
always a DATA value) with the text. The following example illustrates this use in 
the System Log SVC when written in assembly language: 

SVCB DATA >2100 
DATA 0 
DATA POINTER 
DATA 0 

POINTER BYTE 20 
TEXT 'TEXT FOR LOG MESSAGE' 

The following is an example of .SVC primitive used to issue the System Log SVC: 

.SVC DATA=>2100, 
DATA=O, 
DATA="TEXT FOR LOG MESSAGE", 
DATA=O 

SCI realizes the text supplied for the pOinter is not a data value and stores the text 
string with the preceding byte length count. A pointer to this string is generated by 
SCI and placed in the SVC block. 

b. If the SVC definition requires text within the call block, you must declare the field 
length of the text. To do this, place the field length within parentheses before the 
text. Following is an example of this use in the Map Task Name to ID SVC when 
written in assembly language: 

SVCB DATA 
DATA 
TEXT 
DATA 
DATA 

>3100 
o 

SCI990 
OFFOO 
o 

2270510-9701 



Extending SCI 

The following is an example of the .SVC primitive used to issue the Map Task 
Name to ID SVC: 

SVC DATA=>3100, 
DATA=O, . 
TEXT=(8)SCI990, 
DATA=OFFOO, 
DATA=O 

This example causes the field to be blank filled with the text left-justified. 

3. If you are using a list of DATA or BYTE values, enclose the list in parentheses, as shown 
below for the System Log Message SVC: 

. SVC DATA= (>2100',0, "MESSAGE FOR SYSTEM LOG", 0) 

A list of TEXT is not allowed. 

4. Information returned by DNOS is retrieved from the call block by placing a label name 
before the DATA, BYTE, or TEXT field of interest. The label name must begin with a $, as 
shown below when issuing the Map Task Name to ID SVC using the .SVC primitive: 

.SVC DATA=(>3100,0), 
TEXT=(8)SCI990, 
BYTE=OFF, 

STASKID BYTE=O, 
DATA=O 

After the SVC is issued, SCI assigns the hexadecimal ASCII value of the DATA or BYTE 
parameter or the text string of the TEXT parameter to the system $TASKID. If a list of 
values was specified as the DATA or BYTE parameter, the synonym is assigned the first 
item of the list. Such synonyms are assigned whether or not an error occurs when the 
SVC is executed. 

2270510-9701 3·41 



Extending SCI 

The following examples illustrate uses of the .SVC primitive. 

The first example uses the .SVC primitive to cause a time delay of 100 system time units, as shown 
below: 

.SVC DATA=(0200,100) 

The second example uses the .SVC primitive to kill a task with a run 10 value equivalent to the 
value of the synonym $$RI. The state of the task terminated is converted to ASCII (base 16) and the 
synonym $STATE is assigned that value . 

. SVC DATA=03300, 
BYTE=(@$$RI,O), 

$STATE BYTE=(O,O,O,O) 

In the third example, the .SVC primitive is used to assign a global LUNO to the directory .S$CMOS 
and return the LUNO that was assigned as the value of $$LU. A special feature of the DATA field is 
shown here. If any element in the DATA list cannot be converted into a number, SCI allocates 
memory and copies the element as a string (preceded by a byte count), placing the address of the 
string in the SVC block. . 

.SYN 

.SYN 

.SVC 

$$LU 

TYPE=02000 
SCOPE=01000 

DATA=O, 
BYTE=>91, 

BYTE=O, 

TYPE IS DIRECTORY FILE 
THE LUNO SCOPE IS GLOBAL 

DATA=(O,O,O,O,O,O,@TYPE+@SCOPE+0400,O,O), 
DATA=.S$CMDS 

The advantages of the .SVC primitive as opposed to bidding a separate task to perform the SVC 
are as follows: 

3-42 

• Efficiency - The overhead involved to bid a task is avoided. 

• Generality - Some functions are supported by the operating system and are not avail­
able in the standard set of SCI commands. 

2270510-9701 

• 



Extending SCI 

Table 3·8. Disallowed SVCs for .SVC Primitive 

SVC Type Restrictions 

Privileged SVCs Since SCI is not a privileged task, privileged SVCs cannot be 
issued. DNOS enforces this limitation. Refer to the DNOS 
Supervisor Call (SVC) Reference Manual to determine if the 
desired SVC is privileged. 

External Data Blocks SVCs that use external data blocks (other than text string for­
mat for input) are not allowed. SCI enforces this limitation and 
disallows the following SVCs: 

SVC Subopcode Function 

>00 >05 Read Characteristics 
>09 Read ASCII 
>OA Read Direct 
>OB Write ASCII 
>OC Write Direct 
>10 Rewrite 
>40->52 All KIF Subopcodes 

>03 Get Date and Time 
>OA Convert Binary to 

Decimal 
>OB Convert Decimal to 

Binary 
>OC Convert Binary to Hexa-

decimal 
>00 Convert Hexadecimal to 

Binary 
>1C Put Data 
>10 Get Data 
>3B Initialize Date and Time 
>3F Retrieve System Data 
>45 Encrypt Data 
>46 Decrypt Data 
>47 Log Accounting Entry 
>4C Return Code Processor 

2270510-9701 3·43 



Extending SCI 

Table 3·8. Disallowed SVCs for .SVC Primitive (Continued) 

SVC Type Restrictions 

Special SVCs SVCs that might jeopardize the internal functioning of SCI are 
not allowed. SCI enforees this limitation and disallows the fol­
lowi ng SVCs: 

SVC 

>01 
>04 
>OF 
>10 
>12 
>13 
>14 
>18 
>40 
>43 

Function 

Wait for 110 
Terminate Task 
Abort 1/0 by LUNO 
Get Common 
Get Memory 
Release Memory 
Load Overlay 
Release Common 
Segment Manager 
Name Manager 

3.6 SCI PRIMITIVE BATCH STREAM EXAMPLE 

The following example uses SCI primitives in a batch stream to install a program in a program file. 
The first command of every batch stream should be the Batch SCI (BATCH) command and the last 
command should be the End Batch SCI (EBATCH) command. The BATCH command clears un­
necessary synonyms and EBATCH indicates that there are no more commands to be processed in 
the batch stream. 

3·44 2270510-9701 



Extending SCI 

EXAMPLE 

BATCH LS=YES 
***************************************************************** 
* * ASSEMBLE, LINK AND INSTALL THE EXAMPLE TEST TASK 
* ASSUME: SOURCE = SOURCE DIRECTORY 
* OBJECT = OBJECT DIRECTORY 
* LISTING = LISTING DIRECTORY 
* PROG = PROGRAM FILE 
* CONTROL = LINK CONTROL DIRECTORY 
* LINK = LINKED OUTPUT DIRECTORY 
* LINKMAP = LINKMAP DI~ECTORY 

* 
***************************************************************** 
* * ASSEMBLE EXAMPLE SOURCE MODULES: EXAMPLE01, EXAMPLE02 

* 
XMA SOURCE=SOURCE.EXAMPLE01, OBJECT=OBJECT.EXAMPLE01, 

LISTING=LIST.EXAMPLE01, OPTIONS=(XREF,DUN,BUN,TUN) 
EC 
XMA SOURCE=SOURCE.EXAMPLE02, OBJECT=OBJECT.EXAMPLE02, 

LISTING=LIST.EXAMPLE02, OPTIONS=(XREF,DUN,BUN,TUN) 
EC 
******~r********************************************** ***************** 

* * IF NO ASSEMBLY ERRORS THEN LINK THE EXAMPLE TASK 

* .IF @SE;SC,EQ,O 
XLE CONTROL=CONTROL.EXAMPLE, LINKED OUTPUT=LINK.EXAMPLE, 

LISTING=LINKMAP.EXAMPLE 
EC 
.ENDIF 
********************************************************************** 
* * IF NO ERRORS OCCURRED DURING THE LINK 
* DELETE THE CURRENT TASK 

* .IF @SESC,EQ,O 
DT PROGRAM FILE=PROG, TASK NAME=EXAMPLE 
.ENDIF 
********************************************************************** 
* * IF NO ERRORS OCCURRED DELETING THE OLD TASK 
* INSTALL THE NEW PROGRAM 
* 
.IF @SESC,EQ,O 
IT PROGRAM FILE=PROG, OBJECT PATHNAME=LINK.EXAMPLE 
EC 
.ENDIF 
********************************************************************** 
* * INSTALLATION OF EXAMPLE PROGRAM COMPLETE 

* 
EBATCH TEXT="INSTALLATION COMPLETE, ERRORS=@SESC",CODE=@SESC 

2270510·9701 3·45 



Extending SCI 

* 
* IF NO ERRORS OCCURRED DELETING THE OLD TASK 
* INSTALL THE NEW PROGRAM 

* 
.IF @SESC,EQ,O 
IT PROGRAM FILE=PROG, OBJECT PATHNAME=LfNK.EXAMPLE 
EC 
.ENDIF 
********************************************************************** 
* * INSTALLATION OF EXAMPLE PROGRAM COMPLETE 

* 
EBATCH TEXT="INSTALLATION COMPLETE, ERRORS=@SESC",CODE=@SESC 

3.7 ERROR PROCESSING FOR PRIMITIVES 

If SCI encounters a syntax error within the parameters of a primitive in a command procedure, the 
command procedure execution aborts. If the error occurs on a primitive that is in a batch stream, 
the batch stream terminates at the point of error. 

If the destination file cannot be accessed for the .PROC or .DATA primitives, SCI scans until it 
encounters an .EOP or .EOD primitive. SCI then sets the synonym $$CC to an error condition and 
continues processing. For example, if a batch stream is executed and the destination file for a 
.PROC or . DATA primitive is not accessible, SCI continues to execute the remaining procedures. 

3.8 COMMAND PROCEDURES AND COMMAND PROCESSORS 

In addition to the command procedures and command processors supplied with the DNOS operat­
ing system, the system programmer can write new procedures and processors which fulfill user 
requirements. The rules of the SCI language syntax and the SCI primitives discussed earlier in this 
section are applied when writing new procedures and processors. The following paragraphs dis­
cuss the design of command procedures and command processors and the various options 
available. 

3.8.1 Command Procedure Design 
A command procedure is a sequence of statements that is executed each time you issue an SCI 
command. The command procedure is composed of SCI statements including commands, primi­
tives, and menu invocations executable by SCI. 

Command procedures are designed to: 

• Collect responses to field prompts 

• Assign values to synonyms to be used by this or other procedures 

• Call command processors and/or other command procedures 

3·46 2270510-9701 



Extending SCI 

Procedures can collect responses to field prompts and perform various actions such as compari­
sons with the .IF primitive. For example, the Install Task (IT) command tests the response to the 
field prompt ATTACHED PROCEDURES? and may issue additional field prompts, depending on 
the result of the comparison. 

A synonym can be enclosed in parentheses after the field prompt type and defined as the initial 
value of the field prompt in a command procedure, as in the following: 

.PROC 

.SYN 

. I F 

.EOP 

SF(SHOW FILE), 
FILE PATHNAME=*ACNM("@$SF$P") 
$SF$P="&FILE PATHNAME" 
"&FILE PATHNAME",NE, Ifli 

.SHOW @&FILE PATHNAME 

.ENDIF 

In this procedure, the value of the synonym $SF$P is the initial value for FILE PATHNAME. The @ 

sign preceding the synonym designates the synonym value. When you first log on the system, 
$SF$P has no assigned value and the field prompt has no initial value displayed. After you execute 
the first SF, the synonym is assigned the value which is entered as the initial value for FILE 
PATHNAME in subsequent SF executions. 

In addition to assigning synonyms within the c'ommand procedure, the use of a synonym as an 
initial value enables the command procedure to recall the synonym with its last assigned value. 
Initial values are not required to be synonyms in command procedures; they can be numbers or 
strings. For initial values that are synonyms, values are not required to be assigned for the 
synonyms. For example, if the synonym pFILE has no value assigned, the character string FILE fol­
lowing the p sign is assigned as the value. 

After all references are resolved, if the initial value for a field prompt begins with a $ sign, then the 
field prompt is given a null value (not the string that begins with the $ sign as the initial value). 

The ability of one procedure to call other procedures offers you several advantages. It allows one 
procedure to perform a simple field prompt test and branch to other command procedures, thus 
simplifying user input. As an example of such a procedure, the CF command can be written as 
follows: 

.PROC CF (CREATE FILE - SEQ, REL, KEY, DIR, PRO, IMG), 
FILE TYPE=ELEMENT(SEQ, REL, KEY, DIR, PRO, IMG) (SEQ) 

* 
. IF "@$$MO", EQ, 0 

MSG T="ERROR: USE SPECIFIC FILE TYPE CREATE IN BATCH" 
.ELSE 
.IF "&FILE TYPE", EQ, SEQ 
CFSEQ 
.ENDIF 
.IF "&FILE TYPE", EQ, REL 
CFREL 
.ENDIF 

2270510·9701 3·47 



Extending SCI 

• IF "&FI LE TYPE", EQ, KEY 
CFKEY 
.ENOIF 
· I F "&FILE TYPE", EQ, OIR 
CFOIR 
.ENOIF 
• I F "&FILE TYPE", EQ, PRO 
CFPRO 
.ENOIF 
· I F "&FILE TYPE", EQ, IMG 
CFIMG 
.ENOIF 
.ENOIF 

.EOP 

In the batch mode of SCI operation, the top level procedure of a nested command definition must 
recognize all field prompts of the command, including those used by the nested procedure. In the 
following example, the field prompt OBJECT ACCESS NAME is used in the nested procedure and 
must be specified in the top level procedure . 

3·48 

. PROC RUNCEXECUTE APPLICATION PROGRAM), 
lANGUAGECCOBOL,PASCAL)=NAME, 

XCP PROMPT 

.EOP 

OBJECT ACCESS NAME 
C~ECK FOR BATCH MODE 

.IF "@$$MO",EQ,O 

.IF "&LANGUAGE",EQ,"COBOL" 
XCP OBJECT ACCESS NAME="&OBJECT ACCESS NAME" 
.ENDIF 
.EXIT 
.ENDIF 

INTERACTIVE MODE 
.IF "&LANGUAGE",EQ,"COBOL" 
XCP 
.EXIT 
.ENDIF 
.IF "&LANGUAGE",EQ,"PASCAL" 
XPT 
.EXIT 
.ENDIF 

2270510·9701 



Extending SCI 

The top-level procedure RUN calls the Execute COBOL Program (XCP) command; however, the 
RUN procedure is divided into two parts. The first part of the RUN procedure is used for batch 
execution. The XCP command is called with the appropriate field prompt values, assuming all 
synonyms are assigned correct values prior to execution~ 

NOTE 

Synonyms can be set by previous command procedures in a batch 
stream. Therefore, you must take appropriate action so that the cor­
rect synonyms are used. 

The second part of the RUN procedure is used for interactive mode. When the XCP command is 
called, field prompt values are not assigned so that they will be prompted at the terminal. 

NOTE 

As soon as a procedure terminates, its field prompts and their 
values are destroyed. 

The following examples show how to call the RUN procedure in batch and interactive modes. 

Example of batch mode: 

RUN LANG=COBOL,OBJ=O.TEMP 

Example of interactive mode: 

[]RUN 
EXECUTE APPLICATION PROGRAM 

LANGUAGE: COBOL 

EXECUTE COBOL PROGRAM<VERSION:3.3.1 81196> 
OBJECT ACCESS NAME: O.TEMP 

MESSAGE ACCESS NAME: 
SWITCHES: 00000000 

FUNCTION KEYS: NO 

If a command procedure uses the .PROMPT primitive in the interactive mode to gather responses 
from additional screens of prompts, special provisions must be made for batch execution. The 
procedure must include DEFAULT type prompts for all .PROMPT screens along with the first 
screen of prompts. For example, the following CIC command procedure includes DEFAULT types 
for the RESOURCE TYPE and PROCESS ASSIGNS? prompts that are to be displayed in the second 
screen. 

2270510·9701 3-49 



Extending SCI 

CIC(CREATE IPC CHANNEl)=2, 
CHANNEL PATHNAME = ACNM, 
nW~ER TASK PROGRAM FIlE= ACNM, 
OWNER TASK NAME OR 10 = NAME/RANGE(O,OFF), 
CHANNEL TYPE = ElEMENT(S=SYMMETRIC, 
M=MASTERISlAVE)(SYMMETRIC), 
CHANNEL SCOPE = ElEMENT(G=GlOBAl, 
T=TASK,J=JOB)(GlOBAl), 
MAXIMUM MESSAGE lENGTH = RANGE(1,03000)(100), 
SHARED CHANNEL ACCESS? = ElEMENT(Y=YES,N=NO)(YES), 
RESOURCE TYPE = DEFAUlT(CHAN), 
PROCESS ASSIGNS? = DEFAUlT(NO) 
.IF "&CHANNEl TYPE",EQ,MASTERISlAVE 
.PROMPT(MASTERISlAVE CHANNEL ATTRIBUTES), 
RESOURCE TYPE = INT 
PROCESS ASSIGNS?=ElEMENT(Y=YES,N=NO)(NO) 

(procedure continues) 

The field prompts from .PROMPT screens are defined without type information. This allows the 
use of a single command procedure in both interactive and batch modes, but prompt the field 
prompts in groups in interactive mode. 

The following examples show how to use the CIC procedure in batch mode and interactive mode. 

Example of batch mode: 

CIC CHANNEL PATHNAME=.MKC.REPORT, 
OWNER TASK PROGRAM FIlE=.MKC.COMPIlE, 
OWNER TASK NAME OR ID=TAX, 
CHANNEL TYPE=MS, 
CHANNEL SCOPE=T, 
MAXIMUM MESSAGE lENGTH=100, 
SHARED CHANNEL ACCESS?=YES, 
RESOURCE TYPE=CHAN, 
PROCESS ASSIGNS?=NO 

Example of interactive mode: 

3·50 

[ ] C I C 
CREATE IPC CHANNEL 

CHANNEL PATHNAME: .MKC.REPORT 
OWNER TASK PROGRAM FILE: .MKC.COMPIlE 

OWNER TASK NAME OR 10: TAX 
CHANNEL TYPE: MS 
CHANNEL SCOPE: TASK 

MAXIMUM MESSAGE lENGTH: 100 
SHARED CHANNEL ACCESS: YES 

2270510-9701 



Extending SCI 

MASTER/SLAVE CHANNEL ATTRIBUTES 
RESOURCE TYPE: CHAN 

PROCESS ASSIGNS?: NO 

All of the field prompts and values which are defined within a procedure are stored in a table until 
the procedure terminates. Therefore, when a procedure calls another procedure (or itself), all of 
the field prompts and values for both procedures are stored in the table. As a result of deep level 
nesting, the table can become full and cause the command procedure to abort with the following 
message: 

U SCI-0036 FIELD PROMPT TABLE OVERFLOW 

To prevent table overflow, you should avoid deep levels of nesting and recursive procedures. To 
avoid nesting and still call numerous procedures, call as many procedures as possible at the 
same level. Procedures do not have access to one another's field prompts. Recursive procedures 
can usually be avoided by using iterative loops within a command procedure. 

3.8.2 Command Processor Design 
A command processor can be written in any language supported by ONOS. The command proces­
sor is invoked by the command procedure using the .BIO or .QSIO primitive to initiate the program 
as a foreground task or a background task, respectively. If the program is run as a foreground 
task, SCI execution is suspended until the task completes. Processors that involve long-term exe­
cution should operate in background, rather than foreground. 

The following code is a simple example of a processor written in assembly language invoked by 
the command procedure EXP (defined in the next section): 

EXAMPLE 

* 
* 
* 
* 
* 

WS 
MSG 

ERRO 

ERR1 

ERR2 

PC 

2270510-9701 

lOT EXPRO 
THIS IS THE EXAMPLE COMMAND PROCESSOR CALLED BY 
EXP. IT GETS THE 2 PARAMETER VALUES AND RETURNS 
THEM AS A MESSAGE IN THE MESSAGE BUFFER. THE 
MESSAGE IS THEN DISPLAYED WHEN THE RETURN TO THE 
COMMAND INTERPRETER IS MADE. 
REF S$GTCA,S$PARM,S$RTCA,S$STOP 
DATA WS,PC,ERRORO 
BSS 32 PROCESSOR WORKSPACE 

TOTAL MESSAGE SIZE 
MESSAGE BUFFER 

BYTE 255 
BSS 255 
BYTE 17 
TEXT ':END ACTION TAKEN' 
BYTE 27 

TEXT ':ERROR RETURNED FROM S$PARM' 
BYTE 27 
TEXT ': ERROR 
BLWP @S$GTCA 
MOV RO,RO 
JNE ERROR2 
LI R4,MSG 

RETURNED FROM S$GTCA' 
GET THE TCA 
TERMINATE 

IF ERROR 
GO GET 

3·51 



Extending SCI 

LI R3,1 THE FIRST 
BLWP @S$PARM PARAMETER,WHICH IS 
BYTE R3,R4 "&EXAMPLE NAME" 
MOV RO,RO TERMINATE 
JNE ERROR1 IF ERROR 
MOVB @MSG,R7 SET R7 = NUMBER OF 
SRL R7,8 CHARACTERS READ IN 
A R7,R4 R4 POINTS TO LAST CHARACTER 

* OF FIRST STRING 
NEG R7 R7 = LENGTH OF 
AI R7,255 REMAINING BUFFER 
MOVB *R4,R6 R6 = LAST CHARACTER OF 1ST STRING 
SWPB R7 R4 NOW POINTS TO THE 
MOVB R7,*R4 REMAINING BUFFER 
LI R3,2 GO GET THE SECOND 
BLWP @S$PARM PARAMETER,WHICH IS 
BYTE R3,R4 "&NUMBERfD 
MOV RO,RO TERMINATE 
JNE ERROR1 IF ERROR 
AB *R4,@MSG @MSG CONTAINS LENGTH OF MESSAGE 
MOVB R6,*R4 RESTORE LAST CHAR OF 1ST STRING 

* NORMAL NO ERROR RETURN 
LI R2,MSG RETURN MESSAGE 
C LR R1 

RETURN BLWP @S$RTCA RELEASE TCA 
BLWP @S$STOP RETURN TO SCI 

* END ACTION 
ERRORO LI R2,ERRO 

LI R1,>8000 
JMP RETURN 

* ERROR RETURN FROM S$PARM 
ERROR1 LI R2,ERR1 

LI R1,>8000 
JMP RETURN 

* ERROR RETURN FROM S$GTCA 
ERROR2 LI R2,ERR2 

LI R1,>8000 
JMP RETURN 
END 

Note that the processor receives its parameters and returns control to SCI by calling various inter­
face routines (S$GTCA, S$RTCA, S$STOP, S$PARM). These routines are discussed later in this 
section. 

The command processor terminates by calling S$STOP and control returns to the command pro­
cedure statement following the .BID primitive which invoked the processor. 

3·52 2270510·9701 



Extending SCI 

3.8.3 Installing Command Procedures and Command Processors 
After the command procedure and command processor (if applicable) are created, install each of 
them before using the new command. Install the command procedure in a procedure library. 
Although you can install user-defined commands in the .S$CMDS command procedure library, it is 
recommended that you install them in a separate user library to prevent accidental alterations of 
supplied commands. Install the command processors, if used, in a program file. 

You can install command procedures interactively or through batch execution. The following 
example creates a user command procedure library on the system disk and installs the EXP com­
mand in that library interactively: 

[]CFDIR 
[] .USE 
[].PROC 

• BID 

.EOP 
[ ] 

PATHNAME=SYSVOL.USERLIB,MAXENT=101 
SYSVOL.USERLIB,.S$CMDS 
EXP(EXAMPLE PROCEDURE), 

EXAMPLE NAME=STRING(lfSAMPLE If ), 
NUMBER=INT 

TASK=>55,PARMS=(If&EXAMPLE NAMEIf,"&NUMBERII), 
PROGRAM FILE=.USERPROG 

The Create Directory File (CFDIR) command creates the user library which is then specified in the 
.USE primitive. By specifying .S$CMDS as the secondary library in the .USE primitive, the standard 
SCI commands are still available to use. Enter the command procedure statements following the 
.USE primitive. If several procedures are to be entered in the same library, additional .USE primi­
tives are not necessary. 

A batch stream is more efficient than interactive entry, particularly when defining several proce­
dures. The sequence to create a batch stream for the above command procedure is as follows: 

1. Issue the Execute Text Editor (XE) command without specifying an input FILE ACCESS 
NAME. 

2. Edit the above SCI statements into the file. Include the BATCH and EBATCH commands 
as the first and last commands, respectively. 

3. Issue the Quit Edit (QE) command, do not abort the edit, and specify some file (for 
example, MKC.NEWPROC) as the OUTPUT FILE ACCESS NAME. 

Refer to the ONOS Text Editor Reference Manual for information about the Text Editor. 

Install the command procedure by issuing the Execute Batch (XB) command, specifying 
MKC.NEWPROC as the INPUT ACCESS NAME. When the batch stream completes, check the list­
ing file for errors. If no errors occurred, the command procedure is installed in the library 
SYSVOL.USERLIB. 

2270510-9701 3·53 



Extending SCI 

The task called by the .BID primitive is the assembly code example used in the paragraphs dis­
cussing the command processor. Before installing the command processor, you must compile or 
assemble the processor and any routines it calls (excluding the S$ routines, which exist in object 
form), then link edit the processor. If the processor uses the S$ interface routines, the link edit 
control file must use the library .SCI990.S$OBJECT containing the S$ routines. Following is an 
example of the Link Editor control stream needed to link the example processor with the interface 
routines: 

LlBRARY.SCI990.S$OBJECT 
PHASE 0, MYPROC1 
INCLUDE .MYPROC1 
END 

S$ routines 
Name of linked object module 
Processor object module 

After you link edit the processor, install it in a program file using the Install Task (IT) command. 

3.8.4 Using New Commands 
After you install the command procedures in the .S$CMDS library and the command processors in 
program files, you can issue new commands whenever SCI prompts for a command. If you install 
the new commands in a user command library, you must specify that library by executing the .USE 
primitive before the commands are available. 

The following example specifies a command library, other than .S$CMDS, to be used by SCI: 

[].USE SYSVOL.USERLIB 
[]EXP 
EXAMPLE PROCEDURE 

The last .USE primitive executed specifies the current library. Executing the .USE primitive with­
out a path name defaults to the system library, .S$CMDS. 

3.8.5 Expert Mode Considerations 
The way SCI commands are entered interactively in expert mode is similar to the way these com­
mands are entered in batch mode. Enter the command and answer the following prompts and res­
ponses necessary for command execution. The following is an example of the Show File (SF) 
command: 

SF F=DS02.USER.TEMP 

f\fter you press the RETURN or ENTER key, the file that you specified is displayed. 

f a command requires additional prompt responses, separate them by commas. If you execute a 
:ommand using this method and exclude a prompt necessary for command execution, SCI allows 
,ou to enter a response to that prompt. For instance, suppose SOURCE FILE, DESTINATION FILE, 
lnd LISTING FILE were the prompts for a command. Responses to the SOURCE FILE and DESTIN­
~TION FILE prompts must be supplied, but response to the LISTING FILE is optional. If you enter 
l response to only the SOURCE FILE prompt: 

EX S=DS02.USER.SOURCE 

J·54 2270510·9701 



Extending SCI 

then SCI displays the prompts of the command as if you had only entered the command name. 
The cursor is positioned at the prompt which needs a response, as in the following: 

SOURCE FILE: DS02.USER.SOURCE 
DESTINATION FILE: (cursor positioned here) 

LISTING FILE: 

This enables you to enter the response to the DESTINATION FILE prompt. If necessary, you can 
change the response to the SOURCE FILE at this point. However, SCI will not allow you to enter a 
response to the LISTING FILE prompt; you can only modify responses preceding the cursor posi­
tion. Press the RETURN key and the command will execute. 

If a response requires a list of values, this list must be enclosed in parentheses if you are using 
expert mode. 

When you issue a command procedure interactively to call another command procedure and it 
does not specify any field prompts or values for the second procedure, the field prompts for the 
second procedure are displayed. However, if you enter a command procedure in expert mode to 
call another command procedure, the prompts are not displayed for the second procedure. 

Another type of expert mode is used when the the initial or default value is to be used. Enter the 
command with a period as in the following: 

SF. 

Press the RETURN or ENTER key so the file specified as the initial or default value will be dis­
played. You cannot use this type of expert mode unless the nonoptional command prompts have 
predefined initial or default values. For example, the SF command does not have a default value 
and the initial value is not assigned until after the first execution of the command. Therefore, if SF 
has not been executed previously, the SF. command would not show a file. 

3.8.6 Deleting Commands 
If you want to delete a command, delete the command procedure from the command procedure 
library and the command processor (if applicable) from the program file in which they are 
installed. Before deleting the command processor, ensure that it is not called by other command 
procedures. 

Delete a command procedure by entering a Delete File (OF) command. The following example 
deletes the EXP command installed in a user library: 

OF PATHNAME=SYSVOL.MYLIB.EXP 

Delete a command processor by using the Delete Task (On command. 

2270510-9701 3·55 



Extending SCI 

3.9 COMMAND PROCESSOR INTERFACE ROUTINES 

A processor communicates with SCI through command processor interface routines (S$ routines). 
For example, a processor uses the S$PARM routine to obtain the parameters supplied with the 
.BIO, .OBIO, or .QBIO primitives. Calling S$ routines allows you to write processors similar to 
those supplied with ONOS, which contain calls to S$ routines that are transparent to the user. 
Since S$ routines require an assembly language interface, high-level language users must provide 
assembly language routines to call them. Refer to the appropriate language manual for details on 
interface routines. 

Several other ONOS processors provide interfaces similar to the SCI interfaces. These include an 
interface to the mailbox message subsystem and one to the operator interface subsystem. Rou­
tines with names beginning with MB$ are interfaces to the mailbox message subsystem, and 
those beginning with 01$ are interfaces to the system operator subsystem. The library with the S$ 
routines includes these interface routines. 

3.9.1 Interface Routine References 
References to interface routines in a command processor are external references. Each refer­
enced routine must be listed in a REF assembler directive in the command processor program. 
Branch and Link Workspace Pointer (BLWP) instructions call interface routines. Sometimes, data 
follows a routine, as specified in the calling sequences of the routine. The following example 
shows the REF directive and the BLWP instructions required in a command processor that calls 
the following interface routines: Get TCA (S$GTCA), Terminate and Return to SCI (S$TERM), and 
Release TCA (S$RTCA). 

REF S$GTCA, S$RTCA, S$TERM 

BLWP @S$GTCA 

BLWP @S$RTCA 

BLWP @S$TERM 

Any task using S$ routines must be linked with the routines. They are located in library .SCI990, 
which must be specified for link editing. Tasks written for OX10 must be relinked with ONOS S$ 
routines to execute on ONOS. 

If the S$ routine library for OX10 has been linked with a ONOS task, the following error message 
appears when the task executes: 

***ERROR*** TASK ID >xx HAS BEEN LINKED TO DX10 S$ROUTINES 

3·56 2270510·9701 



Extending SCI 

where: 

. xx is the installed ID of the task. 

This message appears when the S$GTCA routine or the Initialize System Data Base (S$NEW) 
routine executes. 

3.9.2 Buffers for Interface Routines 
Many of the S$ interface routines require buffers. The form of these buffers is as follows: 

LABEL BYTE CNT 
BSS CNT 

CNT represents the number of bytes in the buffer, excluding the count byte. When the buffer con­
tains a character string, the form is as follows: 

LABEL BYTE CNT 
TEXT' __ '. 

CNT EaU $-LABEL-1 

In this example, symbol CNT represents the number of characters in the string provided by the 
TEXT directive. 

The resulting buffer has the following form: 

\ '\ 

l l 

STRING C1 C2 . 
LENGTH 

Cn 

'\ 
l \. 

BYTE BYTE 
2279419 

where: 

string length indicates the number of characters in the string. 
buffer size represents one byte for each character in the string plus one byte reserved for the 
length count. 

Unless otherwise indicated, all references to buffers in the descriptions of the interface routines 
refer to a buffer with the byte count in the first byte, as in the preceding examples. 

If you create a buffer of length n and you designate the buffer in a routine that returns a value, the 
length byte will receive the length of the returned string. 

2270510-9701 3·57 



Extending SCI 

3.10 INTERFACE ROUTINE DESCRIPTIONS 

The six major classes of interface routines are as follows: 

• SCI interface routines 

• Local display file routines 

• String utility routines 

• Arithmetic utility routines 

• Mailbox message routines 

• Operator interface routines 

3.10.1 SCI Interface Routines 

The SCI interface routines access parameters (PARMS and CODE), locate and modify synonyms 
defined for the session, and return control to SCI. Only tasks bid with the .BIO, .QBIO, or .OBIO 
primitives can use these routines. The communications area (TCA) serves as an information buffer 
between SCI and the command processors. A call to the S$GTCA routine must precede any calls 
to these S$ routines. After a call to the S$RTCA routine, a call to any of these routines is not valid. 
You can call the S$TERM routine and the Alternate Termination (S$STOP) routine any time, since ~ 
they call S$GTCA. 

3.10.1.1 Get TCA (S$GTCA). Routine S$GTCA makes information available to a command pro­
cessor. You must call this routine before a command processor can access synonym values or get 
parameters passed to it by the SCI procedure. After a successful call to S$GTCA, the processor 
can retrieve the values of CODE and PARMS. ' 

Calling Sequence 

BLWP @S$GTCA 

Registers Used 

RO - Error code returned by S$GTCA 

Error Codes 

> FF05 - Unable to access name correspondence table (NCT) 

3.10.1.2 Initialize System Data Base (S$NEW). S$NEW initializes a data base for use by the var­
ious system routines according to the terminal state, mode, and 10. Some command processors 
do not call S$GTCA because they do not need to access the TCA; however, these processors must 
call S$N EW before they can use any other S$ routines. Processors that call S$GTCA need not call 
S$NEW. 

3·58 2270510-9701 



Extending SCI 

Calling Sequence 

BLWP @S$$NEW 

Registers Used 

RD - Error code returned by S$NEW 

Error Codes 

> FFFF - S$N EW previously called 

3.10.1.3 Bid Task Routine (S$BIDT). S$BIDT allows tasks that are normally bid via the .BID or 
.OBID primitives to be bid from another task. S$BIDT allows a task to replicate the SCI environ­
ment at the time a .BID is performed. This capability is also available in COBOL through C$BID 
(which in turn uses S$BIDT) and is available to other languages through an interface to an 
assembly language routine. 

By using S$BIDT, a task can execute other user-written tasks or a system task directly, without 
returning to SCI to have the .BID primitive execute the task. This allows the task to retain control 
and avoids the problem of having to reenter the task again to resume processing upon return from 
SCI. 

Since S$BIDT can bid any task that the .BID or .OBID primitives can bid, the routine can invoke 
tasks that are part of the operating system release as well as user-written tasks. For example, you 
have an application task that prompts the user for a directory pathname. You could use the 
S$BIDT routine to call the List Directory task in order to produce an alphabetized listing of the 
members in the directory. The application program could then read this alphabetized listing and 
prompt the user for desired actions on selected members. After interfacing with the user, the 
application task could use S$BIDT to call the Copy Directory task to copy specified members to 
another directory. 

Use of the S$BIDT routine does, however, have several drawbacks: 

• To call a task directly with S$BIDT routine means bypassing the command procedure. 
Therefore, you risk the fact that a call to a released operating system task may not work 
on a later release of the operating system due to a change in the .BID calling sequence. 

• The task using S$BIDT must be invoked via a .BID, .OBID, or .DBID primitive. However, a 
task bid via S$BIDT can issue an S$BIDT call to enable concatenation. If the task using 
S$BIDT is invoked via XT (Execute Task) or XTS (Execute Task and Suspend SCI), the 
results can be unpredicatable. 

• If the task calling S$BIDT has opened the terminal local file (TLF), the task bid by the 
S$BIDT routine will be unable to get access to the TLF and may terminate without per­
forming the desired action. You can get around this problem, however, by having one of 
the tasks use an alternate path name. You can either use DUMY or define your own path­
name. 

2270510·9701 3·59 



I 

Extending SCI 

• If the S$BIDT routine encounters errors when bidding the task, it returns error code. 
However, any error code returned by a task that is called via the S$BIDT routine is very 
difficult to access. If one of your application programs absolutely needs to access this 
error code, contact your Customer Representative for information. 

As with all S$ routines, a task must call either S$GTCA or S$NEW (to perform the necessary initial­
izations) before it calls S$BIDT. 

Calling Sequence 

BLWP @S$BIDT 

Registers Used 

3-60 

RO - Set to 0 by S$BIDT if the task was bid successfully. Set to a nonzero error code by 
S$BIDT if the task was not bid successfully. 

R1 - The calling task sets the MSB to the task 10 of the task to be executed and the LSB to 
the LUNO assigned to the program file of the task to be executed. 

R2 - Set by the calling task to contain the address of an address table. Each of the 
addresses in the table points to a parameter that will be passed to the task to be exe­
cuted. This address table must contain a 0 as its last entry. If R2 itself is 0, the parame-
ters of the calling task are passed to the task to be executed. ~ 

R3 - The calling task sets the MSB to the CODE to be passed to the task to be executed. The 
MSB has an integer range between 0 and 255. It is 0 if no CODE is to be passed; all 
other values correspond to the CODE keyword which may optionally appear on the .BID 
statement. The calling task uses the LSB to set flag bits: 

Bit 8 - If set to 1, the run I D of the bid task is returned in the MSB of R1. If set to 0, R1 
remains unchanged. 

Bit 9 - If set to 0, the calling task is associated with the same station as the caller. If 
set to 1, the task is not associated with a station. 

Bit 1 ° - If set to 1, the task shares the synonym table with the caller. If set to 0, the 
called task gets a snapshot of the current synonyms in a table of its own. 

Bit 11 - Set to 0. 
Bit 12 - If set to 1, the calling task is terminated after the called task is bid. 
Bit 13 - Set to 0. 
Bit 14 - Set to 0. 
Bit 15 - If set to 1, the calling task is suspended until the called task is terminated. 

If neither bit 12 or bit 15 of R3 is set to 1, the called task and the calling task will run 
concurrently. Therefore, you must not expect the function of the called task to finish 
at any particular time. 

Change 1 2270510-9701 



, 

Extending SCI 

Error Codes 

> FFFD - S$BIDT is unable to make a snapshot of the current synonyms. 

> FFFE - S$BIDT is unable to bid the task specified. 

S$BIDT can return any error returned by an S$ routine. You can refer to the SCI section of the 
DNOS Messages and Codes Manua/ for help. 

To illustrate the use of the S$BIDT routine, the following example shows you how to have S$BIDT 
call the Copy/Concatenate (CC) processor: 

1. Examine the command procedure to determine the input values needed for the S$BIDT 
routine. 

2. 

2270510·9701 

CC(COPY/CONCATENATE), 
INPUT ACCESS NAME(S) =(ACNM)("@$SF$P"), 
OUTPUT ACCESS NAME =ACNM 
REPLACE? =ELEMENT(Y=YES,N=NO)(NO), 
MAXIMUM RECORD LENGTH =*INT 
.SYN $SF$P="&INPUT ACCESS NAME" 
*BID TASK CCAF 
.BID TASK=011, UTILITY, CODE=1, 
PARMS=«&INPUT ACCESS NAME),"@&OUTPUT ACCESS NAME", 
NO,"&REPLACE",NO,"&MAXIMUM RECORD LENGTH") 

Set up the proper data structure to invoke the command procedure. Notice that the CC 
command procedure prompts for responses. It then bids task> 11 with a code value of 1 
and passes six parameters. Under DNOS 1.2, you could invoke the CC procedure with 
the following data structure: 

ADRTBL DATA INPUT 
DATA OUTPUT 
DATA PARM3 
DATA REPLAC 
DATA PARM5 
DATA MAX 
DATA 0 

INPUT BYTE 5 
TEXT ( . IN) 

OUTPUT BYTE 4 
TEXT .OUT 

PARM3 BYTE 2 
TEXT NO 

REPLAC BYTE 1 
TEXT Y 

PARM5 BYTE 2 
TEXT NO 

MAX BYTE 0 

3·61 



Extending SCI 

Notice how the parameters being passed match up with the six parameters of the CC 
command procedure. The first parameter passed to the CC procedure is a five-byte 
string "(.IN)", which represents the input file. The second parameter is a four-byte string 
".OUT", which represents the output file. The third parameter is always "NO". The 
fourth parameter is a one-byte string "Y", which indicates the output file is to be 
replaced if one already exists. The fifth parameter is always "NO". The sixth parameter, 
maximum record length, is not being used. Notice also how AORTBL is terminated by a 
o and has parameters with the following format: byte 0 is equal to the number of charac­
ters in the parameter; bytes 1 through N contain the ASCII characters of the parameter. 

3. Set up code to execute the command procedure. Assuming you are using ONOS 1.2 and 
the calling task is on S$UTIL, you could bid the CC task with the following code: 

LI 
LI 
LI 
BLWP 

R1,>11FF 
R2,ADRTBL 
R3,>0101 
@S$BIDT 

TASK ID >11, LUNO FF 
ADDRESS OF TABLE 
CODE >01, SUSPEND CALLER 
BID CC UTILITY TASK 

This code sets up the registers with the values needed by the CC utility and then passes 
control to the S$BIOT routine. S$BIOT collects the input parameters, performs other 
processing necessary to replicate the SCI environment for the bid, and bids the CC task 
with a copy of the caller's synonyms and logical names. 

By following the general principles of this example, you can use the S$BIOT routine to execute 
other ONOS or user-written tasks. 

3.10.1.4 Get Parameter (S$PARM). S$PARM returns the parameters in the TCA to the command 
processor. These are the PARMS parameters of the .BIO, .OBIO, or .OBIO primitive. These parame­
ters are text strings separated by commas. Place an integer indicating the number of the parame­
ter desired in register Ra. Place the address of a buffer into which the text string is to be copied in 
register Rb. If the buffer is too short, an error code is returned in register RD. Registers Ra and Rb 
are specified in the two bytes immediately following the call to S$PARM. 

Calling Sequence 

BLWP 
BYTE 

@S$PARM 
Ra,Rb 

Registers Used 

RO - Error code returned by S$PARM 
Ra - Index of desired parameter 
Rb - Address of a buffer in which to place the parameter text string 

Error Codes 

3·62 

> 901 B - Output buffer too small 
> FF05 - Unable to access NCT 

2270510-9701 



Extending SCI 

Example 

This example retrieves the second parameter text string. The .BID primitive for task EXAM is as 
follows: 

.BID TASK = EXAM, CODE = 37, PROG = VOL.TEST.PROG, 
PARMS = ("&NAME", "@OLDVAL"» 

The command processor accesses the parameter as follows: 

BUF BYTE 20 
BSS 20 
EVEN 

REF S$GTCA, S$PARM, S$RTCA, S$TERM 

BLWP 
MOV 
JNE 
LI 
LI 
BLWP 
BYTE 
MOV 
JNE 
BLWP 
MOV 
JNE 

ERROR LI 

2270510-9701 

C LR 
LI 
MOV 
BLWP 

@S$GTCA 
RO,RO 
ERROR 
R4,2 
RS,BUF 
@S$PARM 
R4,RS 
RO,RO 
ERROR 
@S$RTCA 
RO,RO 
ERROR 

R1,>COOO 
R2 
R3,2 
RO,R4 
@S$TERM 

GET TCA 
CHECK FOR ERRORS 

ESTABLISH PARAM INDEX 
ESTABLISH BUFFER POINTER 
GET 2ND PARM 
S$PARM INFO 
CHECK FOR ERRORS 

RELEASE TCA 
CHECK FOR ERRORS 

CONDITION CODE=COOO 
NO VARIABLE TEXT 
SCI ERROR 
MESSAGE NUMBER 
TERMINATE TASK 

3·63 



Extending SCI 

3.10.1.5 Get Terminal Status (SSSTAT). S$STAT returns the status of the terminal from which 
the command processor was activated. The information is returned as a 32-bit integer. The first 
byte contains the following: " 

Bit Contents 

o Reserved 

1-3 User privilege code. The hexadecimal values and privilege 
levels are as follows: ' 

o Lowest level of access 
1 User defined 
2 System access level 
3 User defined 
4 Management access level 
5 User defined 
6 System and management access level 
7 User defined 

4-7 Current terminal mode, in the form of a hexadecimal number: 

o Batch mode or background 
1 TTY mode 
F VOTmode 

The second byte contains the station 10, the third byte is reserved, and the fourth byte contains 
the CODE value of the most recent .BIO, .OBIO, or .QBIO. 

Calling Sequence 

BLWP @S$STAT 

Registers Used 

RO - Error code returned by S$STAT 
R3 - Address of 32-bit buffer 

Error Codes 

None (currently) 

You can issue a call to S$STAT prior to a call to S$GTCA; also, you can issue a call to it after call­
ing S$RTCA if you call S$NEW first. 

3.10.1.6 Set Synonym Value (SSSETS). The S$SETS routine defines or redefines a synonym in 
the NCT. Place the synonym in a text string buffer at the address in register Ra. Place the value to 
be assigned the synonym in a buffer at the address in register Rb. If register Rb contains 0 or the 
address of a zero-length string, the synonym is deleted from the TCA. ~ 

3·64 2270510-9701 



Calling Sequence 

BLWP @S$SETS 
BYTE Ra,Rb 

Registers Used 

RO - Error code returned by S$SETS 
Ra - Address of synonym name text string 
Rb - Address of synonym value text string 

Error Codes 

> FF05 - Unable to access NCT 
> FF06 - Synonym table overflow 

Example 

SYNAME BYTE 5 
TEXT 'SYN01' 

VALUE BYTE 14 
TEXT 'DS02.LIB.INPUT' 

LI 
LI 
BLWP 
BYTE 
MOV 
JNE 

R3,SYNAME 
R4,VALUE 
@S$SETS 
R3,R4 
RO,RO 
ERROR 

Extending SCI 

3.10.1.7 Get Synonym Value (S$MAPS). S$MAPS searches the NCT for the synonym name in a 
buffer at the address in register Ra. With this routine, you can access only synonyms defined by 
S$SETS or by the .SYN primitive. When the synonym is found and the output buffer is large 
enough, the value is placed in the buffer at the address in register Rb. If the buffer is too small, an 
error code is returned in register RO. If the synonym is not found in the TCA, a zero-length string is 
copied into the buffer. When the synonym name contains a period (.), the text preceding the period 
is replaced by its synonym value, if one exists. 

Calling Sequence 

BLWP @S$MAPS 
BYTE Ra,Rb 

2270510-9701 3-65 



Extending SCI 

Registers Used 

RO - Error code returned by S$MAPS 
Ra - Address of synonym name text string buffer 
Rb - Address of synonym value text string buffer 

Error Codes 

> 901 B - Output buffer too small 
> FF05 - Unable to access NCT 

Example 

SYNAME BYTE 4 
TEXT 'SYNM' 

VALUE BYTE 40 
ass 40 

LI 
LI 
BLWP 
BYTE 
MOV 
JNE 

R2,SYNAME 
R3,VALUE 
@S$MAPS 
R2,R3 
RO,RO 
ERROR 

Ra=2 
Rb=3 

3.10.1.8 Search Name Correspondence Table (S$SNCT). S$SNCT searches the NCT for the 
synonym that is right before or after the character string at the address in register Ra. The NCT in 
the TCA contains synonyms. The value in register RO determines whether the search is for the 
predeceding or the succeeding character in the ASCII character sequence. The original string 
need not appear in the table. 

When the desired synonym is found, the synonym is placed in the buffer at the address in register 
Ra. Its value may be placed in the buffer at the address in register Rb. If no synonym is found, a 
null string (length 0) is placed in the buffer at the address in register Ra. When Ra contains the 
address of a zero-length string and RO contains 0, the routine returns the first synonym in ASCII 
code order. When Ra contains the address of a zero-length string and AO contains - 1, the routine 
returns the last synonym in ASCII code order. When register Rb contains 0, no value is returned. 
The synonym is returned in the buffer at the address in register Ra. Use S$SNCT to access syno­
nyms in ASCII code order. 

3·66 2270510-9701 



Extending SCI 

S$SNCT assumes the following: 

• The Ra and Rb buffers are 255 bytes long (if Rb is not 0). 

• The character count value in the 'first byte of each buffer is a count of the string cur­
rently in the buffer. Unless Rb is 0, S$SNCT does not check the buffer length before writ­
ing in the buffer. 

Calling Sequence 

BLWP @SSSNCT 
BYTE Ra,Rb 

Registers Used 

RO - Set to 0 to search for successor and - 1 to search for predecessor 
Ra - Address of buffer containing original string; synonym name is returned here 
Rb - Pointer to the buffer that receives either the value of the synonym found or 0 

Error Codes 

None (currently) 

Example 

SYN BYTE 3 
NAME TEXT 'SYN' 

BSS 252 
VALUE BYTE 255 

BSS 255 

LI RO,O 
LI R3,SYN 
LI R4,VALUE 

GETNXT BLWP @SSSNCT 
BYTE R3,R4 
MOVB *R3,R1 
JEQ OUT 

*PROCESS THE SYNONYM 

LENGTH OF SYN BUF 

LENGTH OF VALUE BUF 

RO ....... GET SUCCESSOR 
R3 ----... NAME OF SYN 
'R 4 = V A L U E B U F FER 
GET NEXT SYN 
DEFINE 'A' AND 'B' 
MOVE RO,RO IN ERROR 
CHECK FOR END OF NCT 

3.10.1.9 Split List Into Components (S$SPLT). S$SPLT divides a list and returns the first ele­
ment and the remainder of the list separately. S$SPL T copies the first element (all text that pre­
cedes the first comma of the list) in the buffer at the address in register R1 into the buffer at the 
address in register R2. The routine also copies the remainder of the list into the buffer at the 
address in register R3. Registers R1 and R3 can contain the same address. 

2270510-9701 3·67 



Extending SCI 

Calling Sequence 

BLWP @S$SPLT 

Registers Used 

RO - Error code returned by S$SPL T 
R1 - Address of list text string 
R2 - Address of buffer to receive first element of list 
R3 - Address of buffer to receive remainder of list 

Error Codes 

> 901 B - Output buffer too small 
> FFFF - Unbalanced parentheses 

Example 

LIST 

FIRST 

BYTE 33 LENGTH OF LIST 
TEXT '(20,LIST ACCESS' 
TEXT 'NAME,OUTPUT FILE)' 
BYTE 20 LENGTH OF 'FIRST' BUF 
BSS 20 

R1 ~ LIST POINTER 
R2 ~ FIRST POINTER 

LI R1,LIST 
LI R2,FIRST 
MOV R1,R3 
BLWP @S$SPLT 
MOV RO,RO 
JNE ERROR 

R3 ~ REST POINTER =R1 

3.10.1.10 Return Time and Date (S$TAD). S$TAD returns the time and date information that 
ONOS maintains. The routine issues an SVC to obtain the date and time block. The date and time 
from the block are formatted and returned to the calling task. For an initialized date, the string has 
the following form: 

HR:MIN:SEC WEEKDAY, MONTH, DAY, YEAR. 

When the time and date have not been initialized, only the time is returned. The values returned 
represent the elapsed time since power was applied to the computer. 

Calling Sequence 

BLWP @S$TAD 

Registers Used 

RO - Error code returned byS$TAD 
R1 - Address of buffer for time and date 

3·68 2270510-9701 



Extending SCI 

Error Codes 

> 901 B - Output buffer too small 

Example 

This example shows a string returned by S$TAO: 

14:48:16 FRIDAY, NOV 07,1980. 

3.10.1.11 Put TCA (S$PTCA). S$PTCA should be called before the processor terminates or calls 
S$RTCA. This routine is provided for compatibility with other Model 990 Computer operating sys­
tems and for future ONOS development. 

Calling Sequence 

B LWP @S$PTCA 

Registers Used 

RO - Error returned by S$PTCA 

Error Codes 

None (currently) 

3.10.1.12 Release TCA (S$RTCA). index(S$RTCA Routine) S$RTCA releases the TCA. The 
command processor should call it just before terminating. This routine is provided for compatibil­
ity with other Model 990 Computer operating systems and for future ONOS development. 

Calling Sequence 

BLWP @S$RTCA 

Registers Used 

RO - Error code returned by S$RTCA 

Error Codes 

None (currently) 

3.10.1.13 Create Message (S$CMSG). S$CMSG writes a message in a buffer using information 
supplied in registers defined in the calling sequence. Use routine S$CMSG to return an error or 
status message when the command processor continues processing after issuing the message. 
Use routine S$TERM to issue an error or status message and terminate the task. 

2270510-9701 3·69 



Extending SCI 

Calling Sequence 

BLWP S$CMSG 

Registers Used 

RO - Error code returned by S$CMSG. 
R1 - Address of the buffer in which the message is returned. The address must be a word-

aligned (even) address. (The first full word contains the buffer length in bytes.) 
R2 - Address of buffer that contains the variable text. 
R3 - Error source information. 
R4 - Internal message code. 
R5 - Address of buffer that contains either the final component of the message file path­

name orO. 
R6 - Address of buffer that contains additional variable text; applies only when bit 4 of error 

source information word is set to 1. 
R7 - Extra flags word, if R3 so indicates. 

Error Codes 

> 901 8 - Output buffer is too small 

Calling this routine requires some analysis of the error condition prior to the call, specifically the 
following: 

• For an SVC error, execute a Return Code Processing SVC (opcode > 4C) to obtain the 
message number and other required data. 

• Obtain the file name component of the message file pathname by accessing the value 
of a synonym. You can also obtain the file name if the message file is a system message 
file with a known file name or if the message file is specified with a file indicator. 

Register R1 contains the address of a buffer into which the routine places the message. A mes­
sage can be more than 255 characters long; the first word of the buffer contains the length of the 
text portion (the remainder) of the buffer. The address must be a word-aligned address. The buffer 
must allow enough space for the message from the file and any anticipated variable text. 

Set register R2 to one of the following: 

• The address of a buffer that contains the variable text for the message 

• The address of a zero-length buffer when no variable text is required 

• Zero 

The count includes the semicolons (;) that separate the variable text elements. A message can 
contain as many as nine variable text elements. You must place data in the buffer that corre­
sponds to the variable text elements defined for the message. 

3·70 2270510-9701 



Extending SCI 

Register R3 contains error source information consisting of four hexadecimal digits. In most 
cases, register R3 is set to 0, indicating that all error source information comes from the file. To 
override the file information, set the leftmost hexadecimal digit to specify the error source as 
follows: 

Value 

a 
1 
2 
4 
6 
8 
A 
C 
E 
F 

Meaning 

Use source information in error file 
Warning 
User error 
System error 
User or system error 
Hardware error 
User or hardware error 
System or hardware error 
User, system, or hardware error 
Informative message 

Set the second digit to a when no additional variable text is required; set it to 8 to place additional 
text at the end of the message. When you set this digit to 8, you should place the address of the 
buffer that contains this text in register R6. To suppress header information, add 1 to the second 
digit (making it 9 or 1). Set register R7 to > 8000 to indicate header suppression. A 1 in the second 
digit of R3 indicates that register R7 is an additional flags word. 

Set the third and fourth digits to the file indicator of the message file, as follows: 

Setting 

>00 
>01 
>02 
>xy 

Meaning 

No message file or file identified in register R5 
SVC error message file 
Utility error message file 
Last component of the pathname to which synonym $$$$FNxy 
is assigned (where xy is greater than or equal to> 80) 

Set register R4 to the internal message code of the desired message. 

Set register R5 to the address of a buffer that contains the file name (last) component of the file 
pathname of the message file that contains the message or that is set to O. The first byte of the 
buffer must contain the number of bytes of the file name component. This register should be set 
to a if the file indicator in R3 identifies the message file or if no message file is specified. When 
the file indicator is a and register R5 contains either a or the address of a null string, an abbrevi­
ated message is written. The abbreviated message consists of the file indicator, message num­
ber, and variable text. 

Set register R6 to the address of a buffer that contains additional variable text. Set it to a when no 
additional text is required. When the second digit of the value in R3 is not set to 8, register R6 does 
not apply. Additional variable text is placed at the end of the specified message independently of 
any question marks in the file message. 

If bit 7 of register R3 equals 1, register R7 is used as an additional flags word. If bit a of register R7 
equals 1, message headers are suppressed. 

2270510·9701 3·71 



Extending SCI 

Section 9 provides further information on message file format. 

3.10.1.14 Terminate and Return to SCI (S$TERM). S$TERM sets the termination synonyms and 
terminates the calling task. The following are the termination synonyms: 

Synonym 

$$CC 
$$VT 
$$ES 
$$MN 
$$FN 

Meaning 

Condition code 
Variable text 
Error source 
Internal message code 
Message file name 

Calling Sequence 

BLWP @S$TERM 

Registers Used 

R1 - Value for condition code $$CC 
R2 - Address of buffer that contains variable text 
R3 - Error source information 
R4 - One of the following: 

o (normal termination) 
Internal message number (non-SVC-detected error) 
Address of SVC block (SVC-detected error to report) 

SCI uses the values of the termination synonyms to provide a warning or error message. When you 
call routine S$TERM at successful termination of a command processor, set registers R1 through 
R4 to 0 to terminate without issuing a message. 

The condition code synonym contains the severity code. Set register R1 to one of the following 
values: 

Value 

>4000 
>8000 
>COOO 

Meaning 

Terminated with a warning message 
Terminated with an error message for a recoverable error 
Terminated with an error message for a fatal (unrecoverable 
error 

Set register R2 to the address of a buffer that contains the variable text for the message. Set it to 0 
when no variable text is required. The count of characters in the buffer includes the semicolons (;) 
that separate the variable text elements. A message can contain as many as 9 variable text ele­
ments but no more than 235 characters of text. Data must be placed in the buffer that corresponds 
to the variable text elements defined for the message. 

3·72 2270510-9701 



Extending SCI 

Register R3 contains error source information consisting of four hexadecimal digits. In most 
cases, register R3 is set to 0, indicating that all error source information comes from the file. If you 
need to override the file information, set the most significant digit to specify the error source as 
follows: 

Value 

o 
1 
2 
4 
6 
8 
A 
C 
E 
F 

Meaning 

Use source information in error file 
Warning 
User error 
System error 
User or system error 
Hardware error 
User or hardware error 
System or hardware error 
User, system, or hardware error 
Informative message 

Set the second digit to O. Set the third and fourth digits to the file indicator of the message file, as 
follows: 

Setting 

>00 
>01 
>02 
>xy 

No message file 
SVC error message file 
Utility error message file 

Meaning 

Last component of the pathame to which synonym $$FNxy is 
assigned 

Set register R4 to the message number unless the file indicator in register R3 is > 01 (SVC error). 
For an SVC error, set R4 to the address of the SVC block. 

3.10.1.15 Alternate Termination (S$STOP). S$STOP is included in ONOS to support command 
processors for earlier operating systems. S$STOP terminates a command processor and returns 
control to SCI. Routine S$TERM performs a similar function with the added capability of providing 
error messages in ONOS format. Use S$TERM in any command processors you write. 

3.10.2 Local Display File Routines 
The TLF is a file of ASCII data to be displayed. Use the TLF for short messages and listings. SCI 
provides a TLF for foreground, background, and batch job modes. SCI displays the contents of the 
foreground TLF immediately prior to displaying the command prompt. The contents of the back­
ground TLF appear on the screen when you enter either a WAIT or a Show Background Status 
(SSS) command. SCI copies the batch mode TLF into the batch listing file. After displaying the 
TLF, SCI deletes each message. 

The routines described in the following paragraphs open files, close files, and build and write 
records to the file. The maximum length of a TLF record is 134 characters. Data items are written 
at specific columns, and each line is terminated by a call to S$WEOL. When the text is directed to 
a device instead of to a file, these routines add the required device control characters to the text. 
Only tasks executed by means of the .BIO, .QBIO, or .OBIO primitives can successfully call these 
routines. 

2270510·9701 3·73 



Extending SCI 

3.10.2.1 Open File (S$OPEN). S$OPEN opens the TLF or a user-specified file for write access. 
If register R1 contains 0, S$OPEN opens the TLF. 

Calling Sequence 

BLWP @S$OPEN 

Registers Used 

RO - Error code returned by S$OPEN 
R1 - 0 or the address of the buffer that contains the pathname of the device to call or file to 

open 

Error Codes 

> A1xx -Assign or open error, 110 error code xx 
> 9022 -Invalid use of device 
> 9026 -Invalid file type 

3.10.2.2 Open File Specifying User ID (S$OPNS). S$OPNS opens a specified file in the same 
way S$OPEN does but has one additional feature: when the Assign LUNO is performed on the file, 
a specified user 10 and passcode are used for security purposes. However, if the calling task is a 
security bypass task, the passcode field is ignored. 

If register R1 contains 0, S$OPNS opens the TLF. 

Calling Sequence 

BLWP @S$OPNS 

Registers Used 

RO - Error code returned by S$OPNS. 
R1 - 0 or the address of the buffer that contains the path name of the device or file to open 
R2 - Address of a buffer with the user 10 parameters. The buffer begins with two bytes val-

ues. The first byte has a value of > 02; the second a value of > 10. These bytes are then 
followed by two eight-character fields. The first contains the user 10; the second the 
password. Each of these two fields should be right filled with blanks if the values are 
less than eight characters long. 

Error Codes 

3·74 

> A 1 xx - Assign or open error, 110 error code xx 
> 9022 -Invalid use of device 
> 9026 -Invalid file type 

2270510-9701 



Extending SCI 

3.10.2.3 Write to File (SSWRIT). S$WRIT concatenates the text string addressed by register R1 
with the current line to be written to the file. When register R2 contains 0 or a positive value, the 
value specifies the column (0 through 133) in which the text begins. A negative value in R2 is not 
valid. When any byte in the string contains> 7F, the immediately preceding character is repeated. 
The byte following the byte that contains> 7F specifies the number of repetitions. The string 
should not contain device control characters, such as a line feed; S$WRIT supplies these as 
needed. 

Calling Sequence 

BLWP @S$WRIT 

Registers Used 

RO - Error code returned by S$WRIT 
R1 - Address of text to be written 
R2 - Starting column in the record 

Error Codes 

> FFF8 - Fi Ie is not open 
> FFF9 - Start position is too small 
> FFFA - Text buffer overflow 

3.10.2.4 Write End·ot·Line to File(SSWEOL). S$WEOL terminates the current line to be written 
and writes it to the file. If S$WRIT has not supplied any text since the file was opened or since the 
previous line was written, S$WEOL writes a blank line. 

Callihg Sequence 

BLWP @S$WEOL 

Registers Used 

RO - Error code returned by S$WEOL 

Error Codes 

> A1xx - I/O error xx has occurred 
> FFF8 - Fi Ie is not open 

3.10.2.5 Close File (SSCLOS). S$CLOS terminates writing to the file. You should call S$CLOS if 
the file was opened prior to a call to S$TERM. When register R1 contains 0 and the file is the TLF, 
the TLF appears on the screen after the command completes and before the termination message 
appears. 

When R1 contains a nonzero value, the lines that were written to the TLF since the last call to 
S$OPEN or S$OPNS are erased from the TLF. 

2270510-9701 3·75 



Extending SCI 

Calling Sequence 

BLWP @S$CLOS 

Registers Used 

RO - Error code returned by S$CLOS 
R1 - Display flag 

Error Codes 

> FFFB - TLF is not open 

3.10.2.6 Local Display File Example. The following example includes a call to each of the local 
display file routines: 

Example 

3·76 

M1 BYTE 10 
TEXT 'THIS IS A' 

M2 BYTE 16 
TEXT 'TLF TEST MESSAGE' 

CLR 
BLWP 
MOV 
JNE 

LI 
LI 
BLWP 
MOV 
JNE 

LI 
LI 
BLWP 
MOV 
JNE 

R1 
@S$OPEN 
RO,RO 
ERROR 

R 1 , M1 
R2,0 
@S$WRIT 
RO,RO 
ERROR 

R 1 , M2 
R 2, 11 
@S$WRIT 
RO,RO 
ERROR 

TLF TO BE OPENED 
OPEN TLF 
TEST FOR ERROR 

MESSAGE ADDRESS 
COLUMN ADDRESS 
WRITE M1 
TEST FOR ERROR 

MESSAGE ADDRESS 
COLUMN ADDRESS 
WRITE M2 
TEST FOR ERROR 

2270510-9701 



ERROR 

BLWP 
MOV 
JNE 
C LR 
BLWP 
MOV 
JNE 

LI 
C LR 
LI 
MOV 
BLWP 

@S$WEOL 
RO,RO 
ERROR 
R1 
@S$CLOS 
RO,RO 
ERROR 

R1,>COOO 
R2 
R3,2 
RO,R4 
@S$TERM 

3.10.3 String Utility Routines 

WRITE END-Of-LINE 
TEST fOR ERROR 

CLEAR DISPLAY fLAG 
CLOSE & DISPLAY TLf 
TEST fOR ERROR 

CONDITION CODE=COOO 
NO VARIABLE TEXT 
SCI ERROR 
MESSAGE NUMBER 
TERMINATE TASK 

Extending SCI 

The string utility routines copy, compare, and convert character strings. The string buffer required 
by these routines has the form previously described. 

An empty buffer reserved for string storage should indicate the size of the buffer (minus 1) in the 
first byte. 

The string utility routines are as follows: 

• S$INT - Convert ASCII to Binary Integer 

• S$IASC - Convert Binary Integer to ASCII 

• S$SCOM - Compare Strings 

• S$SCPY - Copy String 

3.10.3.1 Convert ASCII to Binary Integer (S$INT). S$INT converts an ASCII text string that repre­
sents an integer expression into a 32-bit binary value. The integer expression to be converted can 
contain the standard arithmetic operators +, -, *, and I. Register R4 contains the base of the 
numbers to be converted. When the ASCII string contains numbers beginning with> or 0, the 
numbers are converted as hexadecimal numbers regardless of the base specified in register R4. 

Calling Sequence 

BLWP @S$INT 

Registers Used 

RO - Error code returned by S$INT 
R2 - Address of buffer that contains ASCII code to be converted to binary integer 
R3 - Address of a 32-bit buffer in which the converted value is stored 
R4 - Base of number represented by the input string; a 0 value indicates base 10 

2270510-9701 3·77 



Extending SCI 

Error Codes 

> 9002 - Invalid integer expression 
> FFFF - Divide by zero 

Example 

BUFF 

LNG 
NMB 

BYTE 
TEXT 
EQU 
BSS 

LI 
LI 
LI 
BLWP 
MOV 
JNE 

LNG 
'33000' 
$-BUFF-1 
4 

R2,BUFF 
R3,NMB 
R4,0 
@S$INT 
RO,RO 
ERROR 

TEXT STRING TO BE CONVERTED 

LENGTH CALCULATION 
BUFFER FOR BINARY VALUE 

ADDRESS OF TEXT STRING 
BUFFER ADDRESS FOR BINARY NO 
SET FOR BASE 10 
CONVERT TEXT STRING TO BINARY 
PASS ERROR CODE 

3.10.3.2 Convert Binary Integer to ASCII (S$IASC). S$IASC converts a 32-bit binary integer into 
an ASCII text string representing that number. The 32-bit integer is converted as a two's comple­
ment number or a 32-bit positive binary number, depending on the base specified in register R3. If 
the base is 0, the number is converted as a two's complement binary integer. It is converted into 
the ASCII representation of the decimal (base 10) number with leading blanks and a minus sign for 
a negative number. If the base does not equal 0, the 32-bit integer is considered to be positive; it is 
converted into the ASCII representation of the integer in the specified base, with leading zeros. 

Calling Sequence 

BLWP @S$IASC 

Registers Used 

3·78 

RO - Error code returned by S$IASC. 
R1 -Address of the 32-bit integer. 
R2 -Address of the buffer to receive the ASCII text string. The first byte of the buffer must 

contain the buffer length minus 1. The buffer must be large enough to contain the larg­
est possible values. 

R3 -In byte 0, number of ASCII characters to be returned; 0 means variable number; 
maximum is 32. 
In byte 1, base (for example, 10 or 16) into which integer is to be converted prior to 
representation in ASCII; 0 means decimal. 

2270510-9701 



Error Codes 

>9018 
>FFFF 

Example 

BUFF 

NMB 

Output buffer is too small 
Field width is greater than 32 

BYTE 15 
BSS 15 
DATA >20 
DATA 0 

LI 
LI 
LI 
B LWP 
MOV 
JNE 

R2,BUFF 
R1 , NMB 
R3,0 
@S$IASC 
RO,RO 
ERROR 

BUFFER FOR ASCII VALUE 

NUMBER = >20 

ADDRESS OF TEXT STRING 
ADDRESS OF BINARY NUMBER 
VARIABLE LENGTH/BASE 10 
CONVERT BINARY TO ASCII 
PASS ERROR CODE 

Extending SCI 

3.10.3.3 Compare Strings (S$SCOM). S$SCOM compares two strings and sets the equal and 
arithmetic greater than bits (bits 1 and 2) of the status register and register RO to the results of the 
comparison. If one string is shorter than the other, it is treated as if it is filled to the right with null 
characters (> 00). If one string is a substring of the other (matching from the left), RO is set to O. 
The addresses of the two strings are in registers Ra and Rb. Registers Ra and Rb are specified in 
the two bytes immediately following the call. 

Calling Sequence 

BLWP @S$SCOM 
BYTE Ra.Rb 

Registers Used 

RO - Substring test code returned by S$SCOM: 0 = one string is a substring - 1 = strings 
do not match 

Ra - Address of the buffer that contains the first string 
Rb - Address of the buffer that contains the second string 

Error Codes 

Status returned in RO 

2270510-9701 3·79 



Extending SCI 

Example 

FIRST BYTE 6 LENGTH OF FIRST 
TEXT 'SUBSTR' STRING 

SECOND BYTE 9 LENGTH OF SECOND 
TEXT 'SUBSTRING' STRING 
LI R3,FIRST R3 POINTS TO FIRST 
LI R5,SECOND R5 POINTS TO SECOND 
BLWP @S$SCOM COMPARE THE TWO 
BYTE R3,R5 DEFINE ' A ' AND ' B ' 
JEQ OUT THIS JUMP WILL NOT 
MOV RO,RO OCCUR 
JEQ SUB THIS JUMP WILL OCCUR 

3.10.3.4 Copy String (S$SCPy). S$SCPY copies the string at the address in register Ra into the 
buffer at the address in register Rb, placing the length of the copy string in the first byte of the 
buffer. Registers Ra and Rb are specified in the two bytes immediately following the call. The 
buffer containing the string to be copied must not overlap the receiving buffer. If the length of the 
receiving buffer is less than the length of the string to be copied, an error code is returned in regis­
ter RO. When register Ra contains 0 or the address of a null string (zero length), the first byte of the 
buffer at the address in register Rb is set to O. 

Calling Sequence 

BLWP @S$SCPY 
BYTE Ra,Rb 

Registers Used 

RO - Error code returned by S$SCPY 
Ra - Address of buffer that contains text to be copied 
Rb - Address of buffer to receive copy 

Error Codes 

> 901 B - Output buffer too small 

Example 

STRING BYTE 7 
TEXT 'COPY ME' 

COpy BYTE 20 
ass 20 
LI R1,STRING 
LI RB,COPY 
BLWP @S$SCPY 
BYTE R1 , RB 
MOV RO,RO 
JNE ERROR 

LENGTH OF STRING 

LENGTH OF BUFFER 

R1=POINTER TO STRING 
RB=POINTER TO BUFFER 
CALL S$SCOPY 
DEFINE 'A' AND 'B' 
TEST FOR ERROR 

3·80 2270510.9701 



~' 

ERROR LI 
C LR 
LI 
MOV 
B LWP 

R1,>COOO 
R2 
R3,2 
RO,R4 
@S$TERM 

3.10.4 Arithmetic Utility Routines 

CONDITION CODE=COOO 
NO VARIABLE TEXT 
SCI ERROR 
MESSAGE NUMBER 
TERMINATE TASK 

Extending SCI 

The arithmetic utility routines perform addition, subtraction, multiplication, and division with 32-
bit signed integer operands. The operands must be in binary form. All of the routines allow the 
addresses of the operands and the addresses of the results to be the same. The logical greater 
than, arithmetic greater than, and equal bits in the status register (bits 0 through 2) are set or reset 
as assembly language instructions would set them. 

The following routines are available: 

S$IADD - Add 32-bit integers 

S$ISUB - Subtract 32-bit integers 

S$IMUL - Multiply 32-bit integers 

S$IDIV - Divide 32-bit integers 

3.10.4.1 Add 32·Bit Integers (S$IADD). S$IADD adds two 32-bit integers in two's complement 
form. The sum is a 32-bit two's complement integer. Registers R1 and R2 contain the addresses of 
the two integers, and the sum is placed in the address in register R3. 

Calling Sequence 

BLWP @S$IADD 

Registers Used 

RO - Error code returned by S$IADD 
R1 - Address of the 32-bit buffer containing the addend 
R2 - Address of the 32-bit buffer containing the addend 
R3 - Address of the 32-bit buffer for the sum 

Error Codes 

> FFFF - Numeric overflow 

2270510-9701 3·81 



Extending SCI 

Example 

NUM1 DATA >0000 BUFFER FOR 32-BIT INTEGER 
DATA >1111 

NUM2 DATA 0 BUFFER FOR 32-BIT INTEGER 
DATA >0145 

RESLT BSS 4 BUFFER FOR 32-BIT SUM 

LI R1 , NUM1 ADDRESS OF INTEGER 
LI R2,NUM2 ADDRESS OF INTEGER 
LI R3,RESLT ADDRESS OF RESULT BUFFER 
BLWP @S$IADD PERFORM ADDITION 
MOV RO,RO PASS ERROR CODE 
JNE ERROR 

3.10.4.2 Subtract 32·Bit Integers (S$ISUB). S$ISUB subtracts 32-bit integers. If register R1 con­
tains 0, S$ISUB calculates the negative of the number at the address in register R2, that is, 0 
minus the number. 

Calling Sequence 

BLWP @S$ISUB 

Registers Used 

RO - Error code returned by S$ISUB 
R1 - Address of the 32-bit buffer containing the minuend 
R2 - Address of the 32-bit buffer containing the subtrahend 
R3 - Address of the 32-bit buffer for the difference 

Error Codes 

> FFFF - Numeric overflow 

3·82 2270510·9701 



Extending SCI 

Example 

NUM1 DATA >0000 BUFFER FOR 32-BIT INTEGER 
DATA >1111 

NUM2 DATA 0 BUFFER FOR 32-BIT INTEGER 
DATA >0145 

RESLT BSS 4 BUFFER FOR 32-BIT RESULT 

L1 R1 , NUM1 ADDRESS OF INTEGER 
L1 R2,NUM2 ADDRESS OF INTEGER 
LI R3,RESLT ADDRESS OF RESULT BUFFER 
BLWP @S$ISUB 
MOV RO,RO PASS ERROR CODE 
JNE ERROR 

3.10.4.3 Multiply 32·Bit Integers (S$IMUL). S$IMUL multiplies two 32-bit integers. Registers R1 
and R2 contain the addresses of the integers, and S$IMUL places the 32 least significant bits of 
the product in the buffer at the address in register R3. No overflow indication is returned. 

Calling Sequence 

BLWP @S$IMUL 

Registers Used 

RO - Error code returned by S$IMUL 
R1 - Address of the 32-bit buffer containing the multiplier 
R2 - Address of the 32-bit buffer containing the multiplicand 
R3 - Address of the 32-bit buffer for the product 

Error Codes 

None (currently) 

2270510·9701 3·83 



Extending SCI 

Example 

NUM1 

NUM2 

RESLT 

DATA >0000 
DATA >1111 
DATA 0 
DATA 0145 
BSS 4 

LI R1,NUM1 
LI R2,NUM2 
LI R3,RESLT 
BLWP @S$IMUL 
MOV RO,RO 
JNE ERROR 

BUFFER FOR 32-BIT INTEGER 

BUFFER FOR 32-BIT INTEGER 

BUFFER FOR 32-BIT INTEGER 

ADDRESS OF INTEGER 
ADDRESS OF INTEGER 
ADDRESS OF RESULT BUFFER 
PERFORM MULTIPLICATION 

3.10.4.4 Divide 32·Bit Integers (S$IDIV). S$IDIV divides the 32·bit integer at the address in reg­
ister R1 by the 32-bit integer at the address in register R2. The routine places the quotient in the 32-
bit buffer at the address in register R3 and the remainder in the 32-bit buffer at the address in 
register R4. When registers R3 and R4 contain the same address, the quotient is stored at the 
address and no remainder is stored. 

Calling Sequence 

BLWP @S$IDIV 

Registers Used 

RD - Error code returned by S$IDIV 
R1 - Address of the 32-bit buffer containing the dividend 
R2 - Address of the 32-bit buffer containing the divisor 
R3 - Address of the 32-bit buffer for the quotient 
R4 - Address of the 32-bit buffer for the remainder 

Error Codes 

> FFFF - Divide by zero 

3·84 2270510-9701 



Extending SCI 

Example 

NUM1 DATA >0000 BUFFER FOR 32-BIT INTEGER 
DATA >1111 

NUM2 DATA 0 BUFFER FOR 32-BIT INTEGER 
DATA >0145 

QUOT BSS 4 BUFFER FOR 32-BIT QUOTIENT 
RMDR BSS 4 BUFFER FOR 32-BIT REMAINDER 

LI R1,NUM1 ADDRESS OF INTEGER 
,L I R2,NUM2 ADDRESS OF INTEGER 
LI R3,QUOT ADDRESS OF QUOTIENT BUFFER 
LI R4,RMDR ADDRESS OF REMAINDER BUFFER 
BLWP @S$IDIV PERFORM DIVISION 
MOV RO,RO PASS ERROR CODE 
JNE ERROR 

3.10.5 Spooler Interface Routine (S$SPLR) 
The S$SPLR routine allows you to access the spooler subsystem from your task environment. This 
routine supports all spooler commands that SCI supports. It can be called only from assembly 
language routines. 

Routine S$SPLR builds a print request message to the spooler subsystem from information you 
provide. 

Calling Sequence 

BLWP @S$SPLR 

Registers Used 

RO - Error code (returned) 
R1 - Address of Spooler Control Block (SCB) 

Note that R1 is changed to point to an SVC block if error < gOFF is returned in RO. 

2270510-9701 3·85 



Extending SCI 

The SCB template is in the template directory with the other system templates. It contains the fol­
lowing information: 

Offset (in Bytes) Data Type Contents 

OSCBOP Byte Spooler message code 

1 SCBFLO Boolean Flags 

2SCBFLG Boolean Informative flags 

4SCBSI0 Character Spooler ID 

10SCBOEV Character Device or class name 

18SCBUSR Pointer SCI string for user 10 

20SCBJNM Pointer SCI string for job name 

22SCBPTH Pointer SCI string for file path name 

24SCBFRM Pointer SCI string for requested form 

26SCBPAG Word Integer, number of pages on 
resume 

28SCBCOP Byte Number of copies 

29SCBLPP Byte Lines per page 

30 SCBPRI Byte Job priority 

31SCBXXX Byte Reserved 

32 SCBDVP Pointer SCI string for device or class 
name 

The following values are valid for the SCBOP field: 

3·86 

Value 

1 
2 
3 
4 
5 
6 
7 

Meaning 

Print file message 
Halt output message 
Resume output message 
Kill output message 
Modify output message 
Modify Spooler device message 
Verify validity of device or class name message 

2270510·9701 



Extending SCI 

The following are SCBFLO field definitions: 

Bit 

o 
1 through 7 

Name 

SCFDVP 

Meaning 

True; use SCBDVP rather than SCBDEV 
Each bit is reserved and must be 0 

The following are SCBFLG field definitions: 

Bit 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

14 
15 

Name 

SCFUSE 
SCFAVL 
SCFPGD 
SCFR1 
SCFR2 
SCFANS 
SCFBNR 
SCFDAP 
SCFIMM 
SCFR3 
SCFR4 
SCFR5 
SCFSHR 
SCFDAL 

Meaning 

True; delete the spooler device 
True; not available to the spooler 
True; reverse paging on resume output 
R~served; must be 0 
Reserved; must be 0 
True; ANSI file 
True; no banner sheet desired 
True; delete after printing 
True; halt immediately, not at end-of-file (EOF) 
Reserved; must be 0 
Reserved; must be 0 
Reserved; must be 0 
True; remote/shared device 
True; delete always (even if a kill output is 
done later) 
Reserved; must be 0 
Reserved; must be 0 

S$SPLR makes the following assumptions about the SCB. 

• The device or class name entry must be left justified and blank filled to the right. 

• The SCBUSR, SCBPTH, SCBJNM, and SCBFRM fields are SCI string pOinters. 

• SCBJNM and SCBUSR fields are handled in a special manner. S$SPLR uses the job 
name and user ID that the job manager SVC > 48 (Get Job Information) block returns if 
the field is 0, the length of the string is 0, or the length of the string exceeds eight cnar­
acters. Otherwise, S$SPLR uses the user-supplied string. 

• When the SCBOP field specifies a print file message, S$SPLR uses the default form 
name STANDARD if the SCBFRM field is 0, the length of the string is 0, or the length of 
the string exceeds eight characters. 

2270510-9701 Change 1 3·87 

I 

I 



Extending SCI 

• The SCBSID field is returned to you if the print file message is successfully processed. 

• If the SCBCOP field is 0 or greater than 127, a value of 1 is used. 

• You can send messages using the Modify Spool Device (MSD) command to the spooler, 
but S$SPLR does not change class name definitions. Also, you cannot specify class 
names in defining any new device to the spooler. 

• If you want to use the Modify Output function, a value of > FF in the SCBPRI and 
SCBCPY fields indicates that the previous value does not change. 

Error Codes 

o 
>90FF 
>9110 
>906B 
>910F 
>9112 
>9187 
>9194 
>9195 
> 925F 
>9205 
>9207 
>9206 
>9255 
>907D 
>9191 
>9193 
>94FF 

Successful completion 
returned in R1 
Invalid device name or class name 
Invalid spooler message code (error in S$SPLR) 
Spooler cannot assign spoollD to requested file 
Invalid pathname received 
Access is not appropriate to honor request 
Device is not avai lable now 
Device cannot be remote/shared an available to spooler simultaneously 
Invalid concatenated pathname syntax 
Number of characters in concatenate pathname set exceeds decimal 256 
Invalid calling sequence to S$SPLR 
SCB aligned on an odd-address boundry 
Invalid spooler ID sent to spooler 
Invalid priority specified 
Device is active; request cannot be honored 
Maximum allowable number of devices has been entered 
Errors returned by the job manager SVC > 48, and the I/O subsystem for 
assign, open, write, close, and release LUNO SVC requests 

If an error occurred on an open, write, or close of the spooler channel .S$DSTCHN, you must either 
close the LUNO, release the LUNO, or both. Since the DNOS error processor SVC expects the SVC 
block causing the error to be intact, no intermediate operations could have been performed using 
the call block that caused the error. Therefore, S$SPLR cannot close or release the LUNOs, and 
you must perform these operations after calling the return code processor. If you choose to termi­
nate on the error condition, the operating system closes or releases the LUNOs automatically. 

3.10.6 Operator Interface Routines 
These routines allow user-written tasks to create operator messages and to receive responses 
made by the operator. 

The operator interface routines are as follows: 

• OI$BGN - Initializes operator interface subsystem 

• OI$COM - Creates an operator message 

3·88 2270510·9701 



Extending SCI 

• OI$WAT - Causes the task to wait for an operator response 

• OI$END - Terminates the operator interface subsystem session 

3.10.6.1 Initialize Operator Interface (OI$BGN). Routine OI$BGN must be called before the 
operator interface is available for use by the calling task. It assigns a LUNO to the operator inter­
face IPC channel. 

Calling Sequence 

BLWP @OI$BGN 

3.10.6.2 Create Operator Message (OI$COM). Routine OI$COM initiates an operator message 
and returns immediately to the calling task. 

Calling sequence 

BLWP @OI$COM 

Registers Used 

R1 - MSB: time-out in minutes LSB: number of prompts (0 - 2) 
R2 - Address of buffer containing operator message 
R3 - Address of buffer containing first prompt (if any) 
R4 - Address of buffer containing default response for first prompt (if any) 
R5 - Address of buffer containing second prompt (if any) 
R6 - Address of buffer containing default response for second prompt (if any) 

Error Codes 

>90FF 
>9100 
>9101 
>9102 
>9103 
>9104 
>9105 
>9106 
>910C 
>910F 

SVC error 
Number of prompts is greater than 2 
Address pointer of operator response is 0 
Operator message length is 0 
Address pointer of first prompt and default is 0 
Illegal operator message length 
Address pointer of second prompt and default is 0 
Prompt has illegal message length 
OI$COM called previously with reply outstanding 
Time delay exceeded 

A 0 time-out value specified in the lower byte of register R1 indicates that no response is required. 
A second prompt cannot be specified unless a first prompt is specified. If prompts are specified, 
default responses are optional. A 0 value, or an address pointing to a null string (length of 0), in 
any of the buffer registers indicates no string. 

If no error is returned, the specified message is sent to the operator interface subsystem as an ini­
tiated operation. To receive responses from the operator, OI$WAT must be called. 

2270510-9701 3·89 



Extending SCI 

3.10.6.3 Wait for Operator Response (OI$WAT). The caller uses OI$WAT to wait for an operator 
response. 

Calling Sequence 

BLWP @OI$WAT 
BYTE Ra,Rb 

Registers Used 

Ra - Address of buffer in which operator response to first prompt is to be placed 
Rb - Address of buffer in which operator response to second prompt is to be placed 

A zero value in either register indicates no buffer. 

Error Codes 

>90FF 
>9107 
>9108 
>9109 
>910A 
>9108 
>910E 
>9110 

SVC error 
Address pOinter of message is 0 
Message buffer is too small 
No message outstanding 
Negative response by operator 
Previous message timed out without response 
Operator interface not initialized 
Operator interface error returned 

Only one operator message may be outstanding at any given moment. No error is given if a task 
sends a message that completes, and then sends another message without testing for a response 
to the first message. An operator can cause a negative response to be returned by issuing a KOR 
(Kill Operator Request) command. If a negative response is returned, OI$WAT will set the status 
register toa not equal status. Otherwise, an equal status is returned. 

3.10.6.4 End Operator Interface Subsystem Interface Session (OI$END). Routine OI$END ter­
minates communication with the operator interface subsystem and releases the LUNO to the 
operator channel. 

Calling Sequence 

BLWP @OI$END 

Error Codes 

> 90FF - SVC error 

After calling this routine, the operator interface may no longer be used until a new call to OI$8GN 
is made. Any outstanding operator messages are aborted. 

3-90 
2270510-9701 



Extending SCI 

3.10.7 Mailbox Subsystem Interface Routines 
The mailbox subsystem interface routines route messages among tasks. The routines are as 
follows: 

• MB$INT - Initializes mailbox interface 

• MB$SND - Allows a task to send mail to an addressee 

• M B$RCV - Allows a task to receive mai I 

• MB$RLS - Allows a task to stop receiving mail 

3.10.7.1 Initialize Mailbox Interface (MB$INT). .Routine MB$INT must be called before any other 
mailbox interface routines may be called. This routine assigns a LUNO to the mailbox channel and 
initializes the mailbox interface. 

Calling Sequence 

BLWP @MB$INT 

Registers Used 

RO - Error code returned by MB$INT 
R1 - One of the following: 

* Address of SVC call block if an error is returned 
* Poi nts to a site name stri ng on entry 

Error Codes 

> 90FF - SVC error 

3.10.7.2 Send Mail (MB$SND). Routine MB$SND allows a task to send mail to an addressee. 

Calling Sequence 

BLWP @MB$SND 

Registers Used 

R1 - Address of buffer that contains message text 
R2 - Address of buffer that contains name of addressee (one to eight characters) 

Error Codes 

>90FF 
>9100 
>9101 
>9102 
>9103 
>9104 

2270510·9701 

SVC error 
No message buffer specified 
No addressee buffer specified 
Message length of 0 specified 
Illegal addressee buffer length 
All-blank addressee specified 

Change 1 3·91 

I 



Extending SCI 

3.10.7.3 ReceiveMaii (MB$RCV). Routine MB$RCV allows a task to receive mail addressed to 
anyone of up to three names. 

Calling Sequence 

BLWP @MB$RCV 

Registers Used 

R1 - Address of buffer that contains message text 
R2 - Address of buffer that contains time and date 
R3 - Name list in the format: 

< length of list> < name length> < name> ... 

Each name can be one to eight characters in length. 

The time and date returned is in ASCII string format. It is same format as SCI displays when a 
Create Message (CM) message is received. It is the time and date when mailbox received the mail, 
not when the mail was requested through MB$RCV. 

Error Codes 

>90FF 
>9105 
>9106 
>9107 
>9108 
>9109 
>910A 
>910B 
>910C 

SVC error 
All blank name specified in name list 
Name length exceeds eight characters 
Name list length exceeds 28 characters 
No name list specified 
Time and date buffer too small 
Message buffer too small 
No time and date buffer specified 
No message buffer specified 

3.10.7.4 Release Mailbox (MB$RLS). Routine MB$RLS allows a task to stop receiving mail from 
the mailbox. This routine can receive any mail that has been received since the last call to 
MB$RCV. 

Calling Sequence 

BLWP @MB$RLS 

Registers Used 

R1 - Address of buffer that contains message text 
R2 - Address of buffer that contains time and date 

Errors Codes 

> 90FF - SVC error 

3·92 2270510·9701 



4 

Writing an SVC Processor 

4.1 NEED FOR AN SVC PROCESSOR 

About 70 supervisor calls (SVCs) are included with ONOS to perform services and provide access 
to data structures. However, certain situations require additional, special SVCs. ONOS allows you 
to write your own SVC processor and include it as part of ONOS during system generation. 

4.2 HOW TO WRITE AN SVC PROCESSOR 

To add an SVC to ONOS, you must design the call block for the SVC, build several tables, write a 
processor for the SVC, and include relevant information during system generation. 

4.2.1 SVC Call Block 
Because of the close relationship between the SVC call block and the SVC processor, only the 
writer of the processor can design the call block. Except for the first three bytes, you must deter­
mine the size and content according to the SVC functions to be performed. 

Byte 0 of the call block must contain the SVC opcode. The standard set of SVCs uses opcodes 
ranging from 0 through> 7F. You can implement SVCs using opcodes from> 80 through> FF. You 
can specify one or more opcodes using any codes within the user-defined range. 

The SVC processor returns a code in byte 1 of the SVC call block. This code is 0 when the SVC 
completes normally. A code other than 0 is returned when an error occurs or a warning is 
appropriate. 

Byte 2 of the call block contains a subopcode when an SVC supports several operations. When an 
SVC performs only one operation, you can use byte 2 for any purpose. 

To allow for adaptations or extensions to an SVC and its processor, you should include a reserved 
word at the end of the defined call block. Also, you should make the block an even number of 
bytes beginning on a word boundary. 

4.2.2 SVC Definition Tables 
To enable the processor to operate as efficiently as possible, the operating system copies some 
or all of the call block into a special structure for use by the SVC processor. You must specify how 
much information to copy and how much to return to the user task in a pair of tables defined for 
each SVC. These tables are included in a module of definition information for use by system gen­
eration. The module can be built in any file but must include the following: 

• The lOT name, RPUOAT 

• DEF statements for RPUMAX and RPUTAB 

2270510.9701 4·1 



Writing an SVC Processor 

• A REF statement for each SVC processor entry point 

• A byte named RPUMAX that contains the largest user-defined SVC opcode 

• A table named RPUTAB that contains a two-word entry for each SVC opcode in the 
range> 80 through RPUMAX 

• A request description block (ROB) for each user-defined SVC 

• A return information block (RIB) for each user-defined SVC that returns data to the 
calling task 

The entries in the table RPUTAB consist of two words each. The first word contains> EOOO, and 
the second contains the address of the ROB for the SVC opcode being defined. The first entry in 
the table is for SVC opcode > 80. Each successive entry is for the next SVC opcode in sequence. If 
a particular opcode is not defined in the system being generated, the entry in RPUTAB must con­
sist of two words of zero. The RPUOAT module must be assembled, and the object module path­
name of the module must be supplied to the system generation program. Figure 4-1 shows an 
example of RPUTAB that lists two SVCs defined by the user. 

An ROB includes the address of the SVC processor, the address of the RIB, and how much 
information to supply to the SVC processor. Table 4-1 explains the format of an ROB. 

Field Size 

Word 
Word 
Word 
Word 
Byte 

Byte 
Word 

Table 4·1. Request Definition Block (ROB) Format 

Contents 

Flags, > 1000 for user-defined SVCs 
Address of the SVC processor 
Address of the RIB for this SVC (zero if no RIB is defined) 
Size of the call block in bytes 
Number of bytes of the call block to be copied by DNOS for the 
SVC processor (starting at byte 0) 
Zero 
Zero 

Figure 4-1 shows several ROB definitions for user-defined SVCs. 

The operating system uses an RIB to return data from the system copy of the call block to the call­
ing task. If only the error byte of the call block is returned, no RIB is needed. An RIB must be speci­
fied in the RPUOAT module when any other information is to be returned. Table 4-2 shows the 
format of an RIB. The pair of byte fields can be repeated if information is to be returned from sev­
eral noncontiguous areas in the call block. 

4·2 2270510-9701 



Writing an SVC Processor 

*------
* THIS MODULE HAS THE DATA TABLES TO ENABLE PROCESSING OF 
* USER-DEFINED SVCS. RPUTAB IS THE TABLE OF ROB AND PROCESSOR 
* ADDRESSES FOR THE SVCS. THE SET OF ROB DEFINITIONS FOLLOWS, 
* AND RIB DEFINITIONS ARE INCLUDED FOR RELEVANT CASES. IN 
* ADDITION, RPUMAX IS DEFINED TO BE THE MAXIMUM USER-DEFINED 
* SVC CODE. 
*------

lOT 'RPUDAT' 
DEF RPUMAX,RPUTAB LABELS TO ACCESS USER DATA 
REF SVC080,SVC082 LABELS OF ENTRY POINTS 

RPUTAB DATA >EOOO SVC80 - FIND CPU TIME 
DATA RDBU80 
DATA 0 SKIP SVC81 
DATA 0 
DATA >EOOO SVC82 - SPECIAL ADD 
DATA RDBU82 

RPUMAX BYTE >82 MAXIMUM USER-DEFINED CODE 

* RDBU80 DATA >1000 FLAGS 
DATA SVC080 PROCESSOR 
DATA RIBU80 RETURN INFORMATION BLOCK 
DATA 6 MAXIMUM CALL BLOCK SIZE 
BYTE 2 COpy ONLY TWO BYTES 
BYTE 0 RESERVED 
DATA 0 RESERVED 

RDBU82 DATA >1000 FLAGS 
DATA SVC082 PROCESSOR 
DATA RIBU82 RETURN INFORMATION BLOCK 
DATA 16 MAXIMUM CALL BLOCK SIZE 
BYTE 16 COPY ALL 
BYTE 0 RESERVED 
DATA 0 RESERVED 

RIBU80 DATA 0 RESERVED 
BYTE 2,4 START AT OFFSET 2, RETURN 4 BYTES 
DATA 0 RESERVED 

RIBU82 DATA 0 RESERVED 
BYTE 2,6 START AT OFFSET 2, RETURN 6 BYTES 
BYTE 12,4 AND AT OFFSET 12, RETURN 4 BYTES 
DATA 0 
END 

Figure 4·1. Format of RPUDAT Module 

2270510-9701 4·3 



Writing an SVC Processor 

Table 4·2. RIB Format 

Field Size Contents 

Zero Word 
Byte 
Byte 
Word 

Offset in the call block from which the return of data should begin 
Number of bytes to return 
Zero 

Figure 4-1 shows a source module for defining two user SVCs using SVC opcodes > 80 and> 82 
with opcode >81 omitted. 

4.2.3 SVC Processor Details 
The SVC processor must define its own entry point in a DEF directive. It must save and restore 
system registers by using two macro calls: SPUSH 1 as the first instruction and SPOP 1 as the last 
instruction. The processor runs as part of the operating system kernel, making use of an operating 
system workspace. Upon entry to the processor, the following registers are set: 

• Register 1 - Points to the system copy of the requesting call block 

• Register 4 - Points to the requester task status block (TSB) 

• Register 5 - Points to the requester-saved map file 

• Register 10 - Points to an internal operating system stack 

• Register 13 - Requesting task workspace pOinter 

• Register 14 - Requesting task program counter 

• Register 15 - Requesting task status register 

The SVC processor must not alter registers 10,13,14, and 15. 

Register 1 contains the address of the system copy of the requester's call block. The processor 
usually gathers all the information it needs from this copy. The processor alters the copied call 
block to pass information back to the requesting task. The second byte of the call block should 
always be used for returning a status code. If necessary, the processor can also access the 
requester task area to get or return data using long distance instructions, with register 5 as the 
map file pointer. 

When the processor finishes its work, it must return to the operating system by issuing the 
following: 

CLR RO 
SPOP 1 

1·4 2270510·9701 



Writing an SVC Processor 

The operating system then returns information as specified in the RIB for the SVC performed. 
Finally, control passes back to the task that issued the SVC. 

Figure 4-2 shows a processor for user-defined SVC > 80, corresponding to the definitions in 
Figure 4-1. 

TITL 'SVC080 PROCESSOR -- GET EXECUTION TIME' 

*********************************************************** 
* THIS EXAMPLE PROCESSOR IS FOR USER-DEFINED SVC >80. IT * 
* RETURNS THE AMOUNT OF CPU TIME USED BY THE TASK SO FAR. * 
* IT ACCESSES THE FIELD "TSBCPT" IN THE TSB. * 
* 
* THE CALL 
* 
* 
* 00 
* 
* 02 
* 
* 04 
* 
* 
* 

BLOCK HAS THE FORM: 

+-----------------------------------+ 
! 80 ! ERROR CODE ! 
+-----------------------------------+ 
! TIME EXECUTING SO FAR ! 

+---- ----+ 
! IN INTERNAL CLOCK TICKS ! 
+-----------------------------------+ 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* * UPON ENTRY R1 POINTS TO THE COPY OF THE CALL BLOCK * 

* R4 POINTS TO THE TSB OF THE REQUESTER * 
*********************************************************** 

lOT 'SVC080' 
DEF SVC080 ENTRY POINT 
LIBIN DSC.MACROS.TEMPLATE TO USE TSB EQUATES 
COPY DSC.TEMPLATE.ATABLE.TSB 
LIBIN DSC.MACROS.FUNC FOR OS FUNCTIONS 

SVC080 EVEN 
SPUSH 1 SAVE RETURN ADDRESS 

MOVE EXECUTION TIME 
... INTO CALL BLOCK 
GET A ZERO 

2270510-9701 

MOV @TSBCPT(R4),@2(R1) 
MOV @TSBCPT+2(R4),@4(R1) 
CLR R2 
MOVB R2,@1(R1) 
CLR RO 
SPOP 1 
END 

SHOW NO ERROR 
PREPARE FOR RETURN 
RETURN TO DNOS 

Figure 4·2. User· Defined SVC 

4·5 



Writing an SVC Processor 

4.2.4 System Generation Requirements 
To include user·defined SVCs, specify the pathname of the RPUDAT object module in response to 
the following request during system generation: 

USER SVC TABLE PATHNAME: 

In addition, place the object module for each user-defined SVC processor in a directory called 
.S$OSLlNK.S$SGU$.USERSVC on the data disk used during system generation. This directory is 
treated as a library when the system is linked; consequently, the processor entry point name must 
be the same as the file name of the appropriate module in the .S$OSLlNK.S$SGU$.USERSVC 
directory. If a file has several SVC processors In it, each processor entry point name must be listed 
as either an alias or a file name in the .S$OSLlNK.S$SGU$.USERSVC directory. 

4·6 2270510-9701 



5 

Writing a DSR 

5.1 INTRODUCTION 

Although ONOS supports a variety of peripheral devices, some users find it necessary to add a 
device not supported by the standard software. This section presents a method for writing soft­
ware to support a nonstandard device. 

The software that controls a peripheral device is called a device service routine (OSR). This sec­
tion supplies information to assist you in writing a OSR for ONOS. The ideas and materials pre­
sented are taken directly from the OSRs for the standard devices supported by ONOS. The 
examples apply to devices connected either through the communications register unit (CRU) or 
through the TILINE. (TILINE is a registered trademark of Texas Instruments Incorporated.) The 
CRU is a low-speed, bidirectional, serial data bus. The TILINE is a high-speed, bidirectional, 
parallel data bus. 

This section describes the ONOS I/O subsystem, OSR support routines, and OSR data structures. 
This section also tells how to write OSRs for asynchronous controllers. These descriptions are not 
comprehensive; they apply specifically to the problem of writing a OSR to support a nonstandard 
device. Refer to the DNOS System Design Document for further details and diagrams of data 
structures discussed in this section. 

5.2 PREPARATION 

To write a OSR, you should be familiar with the following areas: 

• Hardware interface for the device 

• ONOS I/O subsystem 

• Basic data structures 

• Computer hardware 

• Assembly language 

You should also study the process of system generation. Although this information is only indi­
rectly related to writing a OSR, it provides insight into how the operating system interfaces with a 
DSR. 

To help you locate the appropriate material, the following paragraphs describe the I/O subsystem 
and the basic data structures. 

2270510-9701 5·1 



Writing a DSR 

5.3 1/0 SU BSYSTEM 

The 1/0 subsystem moves data between any combination of logical and physical 1/0 resources 
and programs (tasks) that process the data. A DSR is concerned with the path between the pro­
gram and the physical 110 resource (that is, the device). 

5.3.1 Data Structures 
The following templates define the data structures that relate to writing a DSR. To use one of 
these templates, insert a COpy statement in the source. 

In all the data structure path names, DSC is a synonym that must be assigned the value of 
< volume> .S$OSLlNK, where volume is the name of the data disk used for system generation. 
You can examine any of these structures by printing the appropriate file from the DNOS release 
disk. 

Template 

DSC.TEMPLATE.ATABLE.BRO 
DSC.TEMPLATE.ATABLE.CDE 
DSC.TEMPLATE.ATABLE.IRB 
DSC.TEMPLATE.ATABLE.PDT 
DSC.TEMPLATE.ATABLE.KSB 
DSC.TEMPLATE.ATABLE.XTK 

Contents 

Buffered request overhead 
Command definition entry 
1/0 request block (IRB) 
Peripheral device table (PDT) 
Keyboard status block (KSB) 
Keyboard extension 

If you use the KSB and XTK templates in the DSR, you must include the following EQU 
statements: 

KSBBGN 
XTKBGN 

EQU 
EQU 

PDTSIZ 
KSBSIZ 

Precedes KSB copy 
Precedes XTK copy 

If you are writing a DSR for an asynchronous controller that is to be used with standard DSRs for 
asynchronous controllers, you must use the following templates: 

;·2 

Template 

DSC.TEMPLATE.ATABLE.DSALLLEX 
DSC.TEMPLATE.ATABLE.DSALLREX 
DSC.TEMPLATE.ATABLE.AJMPMAC 

Contents 

Asynchronous local extension 
Asynchronous remote extension 
Subroutine references for an 
asynchronous hardware service 
routine (HSR). 

2270510-9701 



The following templates define word and byte constants available to the DSR: 

Template 

DSC.TEMPLATE.COMMON.NFEROO 
DSC.TEMPLATE.COMMON.NFER10 
DSC.TEMPLATE.COMMON.NFER20 
DSC.TEMPLATE.COMMON.NFER30 
DSC.TEMPLATE.COMMON.NFER40 
DSC.TEMPLATE.COMMON.NFER50 
DSC.TEM PLATE.COMMON.N FER60 
DSC.TEMPLATE.COMMON.NFER70 
DSC.TEM PLATE.COMMON.N FER80 
DSC.TEM PLATE.COM MON.N FER90 
DSC.TEMPLATE.COMMON.NFERAO 
DSC.TEM PLATE.COM MON. N FERBO 
DSC.TEMPLATE.COMMON.NFERCO 
DSC.TEMPLATE.COMMON.NFERDO 
DSC.TEMPLATE.COMMON.NFEREO 
DSC.TEMPLATE.COMMON.NFERFO 
DSC.TEMPLATE.COMMON.NFWORD 

Defined Constants 

BYTEOO-BYTEOF 
BYTE10-BYTE1 F 
BYTE20-BYTE2F 
BYTE30-BYTE3F 
BYTE40-BYTE4F 
BYTE50-BYTE5F 
BYTE60-BYTE6F 
BYTE70-BYTE7F 
BYTE80-BYTE8F 
BYTE90-BYTE9F 
BYTEAO-BYTEAF 
BYTEBO-BYTEBF 
BYTECO-BYTECF 
BYTEDO-BYTEDF 
BYTEEO-BYTEEF 
BYTEFO-BYTEFF 
WD0001-WD8000 & MASTAB 

The following template contains the pOinters to items relevant to the operating system: 

DSC.TEM PLATE.COM MON.N FPTR Pointer segment 

Writing a DSR 

To assemble templates, you need a set of macros. You can access them by means of a LlBIN 
statement using the following path names: 

DSC.MACROS.TEMPLATE 
DSC.MACROS.FUNC 

In addition to the system-defined data structures, you can design your own data structure, called 
the device information block (DIB). To access this structure, use workspace register 4 of the physi­
cal device table (PDT). You should set the origin of the DIB to follow the PDT and any system data 
structures that follow the PDT. The DIB includes any data you wish to access or maintain by using 
the DSR. 

5.3.2 Request Flow 
An I/O request enters the I/O subsystem via the supervisor call (SVC) interface. The SVC interface 
decodes the request and passes it to the I/O subsystem. Routing information is derived from the 
logical unit number (LUNO) in the \/0 request block (lRB). The I/O system checks the access privi­
lege to the physical resource. Routing data and requester identifiers are concatenated to the IRB 
to form the buffered request block (BRB). The I/O subsystem passes the BRB to the device 
manager. 

The device manager examines the operation code of each request and processes each accord­
ingly. The device manager processes operation codes> 00, > 03, > 05, > 09, > OA, > OB, and> ~C. 
The Open operation codes> 00 and> 03 are checked only for terminals (keyboard devices that use 
a KSB). The device manager verifies the request buffer and allocates table space in the buffer 
table area (BT A) for the read operation codes> 05, > 09, and> OA. 

2270510-9701 5·3 



Writing a DSR 

For write operation codes >OB and >OC, the device manager copies the data buffer into the BTA 
after verifying the buffer and allocating space as for read operations. Bits DSFBI and DSFBO in 
the PDT control allocation of the BTA for each device. The device manager then places the request 
on a queue associated with the PDT and passes control to the DSR, which processes the request 
immediately or after completing any prior requests. 

While the DSR is processing a request but waiting for an interrupt, control returns to the operating 
system. The system executes programs during this time until the DSR receives an interrupt. An 
interrupt returns control to the DSR for further processing. 

When the DSR terminates the current request, the next request (if any) is passed to the DSR. The 
completed request is placed in a queue related to the program. The next time the program exe­
cutes, the completed request is returned to the program. This completes the cycle for an I/O 
request. 

5.3.3 Device Interrupt Decoder 
After the DSR initiates the device operation associated with the request, control returns to the 
system until an interrupt from the device causes the DSR to resume processing the request. 
Therefore, the programmer who is writing the DSR should know how the system uses the system 
interrupt decoder to process an interrupt. 

The interrupt decoder loads the DSR map file and transfers control to the DSR for the interrupting 
device. The methods of handling interrupt signals are as follows: 

• Single device per interrupt level 

• Multiple devices per interrupt level 

• Multiple devices in an expansion chassis. 

• Single device or multiple devices on a multiplexed device controller 

Subsequent paragraphs describe typical system-interrupt decoder routines. The system 
generation process builds these routines, and users cannot modify them. 

5.3.3.1 Single· Device Interrupt. Figure 5-1 shows an example of the interrupt decoder for a 
single device at interrupt level 13. The workspace address (WSPD) and the interrupt decoder exe­
cution address (PCS) are stored at locations> 34 and> 36, respectively. The first six registers (RO 
through R5) of the workspace are not used. Register R6, which is the service flag, is set to 1, and 
register R7 contains O. Register R8 contains WPdsr, the address of the workspace for the DSR. 
Register R9 contains SG3BGN, the execution address of the interrupt service routine (lSR) within 
the DSR. Register R10 contains MPdsr, the address of the map file for the DSR. 

5·4 2270510-9701 



WSPD 

PCS 

DATA WSPD,PCS LOCATION >34 AND >36 

EQU $-12 RO-R5 
DATA 1,0,WPdsr,SG3BGN,MPdsr 
DATA 0,0,0,0,0 

INPRPT ENTRY 
R11-R15 

MOV 
MOV 
LMF 
BLWP 
JMP 

@CURMAP,R11 
R10,@CURMAP 
R10,0 
RB 
RETURN 

SAVE CURRENT MAP FILE 
SET UP DSR MAP FILE 

ENTER DSR 

Figure 5·1. Interrupt Decoder for Single Device 

Writing a DSR 

When an interrupt occurs, the current status is saved in registers R13, R14, and R15 of WSPD. The 
interrupt decoder begins execution by saving the current map file address in register R11. The rou­
tine places the address of the DSR map file in location CURMAP. The DSR map file is loaded and 
control is transferred to the ISR. On return from the ISR, the interrupt decoder branches to a return 
routine at location RETURN. 

5.3.3.2 Multiple·Device Interrupt. Figure 5-2 shows an example of the interrupt decoder for mul­
tiple devices at interrupt level 10. Locations> 28 and> 2A contain the address of the workspace 
(WSPA) and the interrupt decoder execution address (PCM), respectively. The first six registers (RO 
through R5) of the workspace are not used. Register R6, which is set to 0 initially, is the service 
flag. It is set to 1 at the completion of the servicing of the interrupt. Register R9 contains the 
address of a table (TABLA) that contains pairs of words. The table has extra pairs for additional 
devices and is terminated by a word that contains 0 (DATA 0). The first word of each pair contains 
the CRU address of the bit that tells you which device caused the interrupt. The second word of 
the pair is the address of a three-word data structure (IVxx01 or IVxx02) that contains the work­
space address (WPdsr), the execution address (SG3BGN), and the map file address (MPdsr) for the 
ISR. 

2270510-9701 5·5 



Writing a DSR 

DATA WSPA,PCM LOCATION >28 AND >2A 

WSPA EQU $-12 RO -R5 
DATA O,O,O,TABLA,O,O,O,O,O,O R6-R15 

TABLA EQU $ MULTIPLE INTERRUPT DECODER TABLE 
DATA <cru interrupt bit address> 
DATA IVxx01 
DATA <cru interrupt bit address> 
DATA IVxx02 
DATA 0 LOGICAL END OF TABLE 

IVxx01 DATA KBdsr,SG3BGN,MPdsr 
IVxx02 DATA KBdsr,SG3BGN,MPdsr 

PCM 

PCM10 

PCM20 

5·6 

MOV 
MOV 
C LR 
MOV 
JEQ 
TB 
JNE 
MOV 
MOV 
MOV 
LMF 
BLWP 
SETO 
INCT 
JMP 

@CURMAP,R11 
R9,R8 
R6 
*R8+,R12 
RETURN 
o 
PCM20 
*R8,R7 
@4{R7),R10 
R10,@CURMAP 
R10,O 
*R7 
R6 
R8 
PCM10 

SAVE CURRENT MAP FILE POINTER 
GET THE TABLE ADDRESS 
SET SERVICE FLAG TO ZERO 
IS THE TABLE EXHAUSTED? 
AND EXIT 
DID THIS GUY DO IT? 
NOT I, SOMEONE ELSE DID IT 
GET ENTRY VECTOR 
PICK UP THE NEW MAP ADDRESS 
CHANGE MAPS 

ENTER THE DSR 
INDICATE AN INTERRUPT SERVICED 
NEXT TABLE ENTRY 

Figure 5·2. Interrupt Decoder for Multiple Devices 

2270510·9701 



Writing a DSR 

When an interrupt occurs, the current status is saved in registers R13, R14, and R15 of WSPA. The 
interrupt decoder begins execution by saving the current map file pointer in register R11. The 
decoder then moves the address of table TABLA into register R8 and clears the service flag in reg­
ister R6. The device interrupt bit must be tested to determine if the device interrupted. The CRU 
address of this device is moved into register R12. If the address is 0, the interrupt decoder 
branches to the return code. Otherwise, the device interrupt bit is checked. If it is 0, the next 
device interrupt bit is checked. A nonzero value identifies the interrupting device, and the address 
in the next word (IVxx01 or IVxx02) is moved into register R7. The DSR map file address is moved 
into register R10. The routine then moves the DSR map file address into location CURMAP, loads 
the map file, and branches to the ISR. When the ISR returns control to the interrupt decoder, the 
interrupt decoder checks the remaining devices in TABLA for interrupts. 

5.3.3.3 Expans,on Chassis Interrupt. Figure 5-3 shows an example of the interrupt decoder for 
devices in the expansion chassis on the first expansion card at interrupt level 7. Locations> 1C 
and > 1 E contain the address of the workspace (WSP7) and the interrupt decoder execution 
address (PCE), respectively. The first six registers (RO through R5) of the workspace are not used. 
Registers R6 and R12 contain the CRU base address of the expansion card. 

Location EXPTST contains the first of a table of mask words that correspond to flag bit positions 
for the expansion chassis. Table ETAB contains the address (CTAB1) of a table for the first expan­
sion chassis on the first card. Table CTAB1 contains addresses of three-word data structures 
(IVxx03 or IVxx02) that contain the workspace address (WPdsr), the execution address (SG3BGN), 
and the map file address (MPdsr) for the ISRs. The table also contains the address of a table 
(IVX110) for multiple devices on the same interrupt position and a flag word for each address in the 
table. The flag for each address follows the address. It is set to 0 for three-word data structure 
addresses and to - 1 for the multiple device table address. The multiple device table contains 
CRU addresses for the interrupt bits and addresses of three-word data structures (lVxx04 and 
IVxx05) for ISRs for those devices. 

DATA WSP7,PCE LOCATION >1C AND >1E 

WSP7 EQU $-12 RO -R5 
DATA >1FOO,0,0,0,0,0,>1FOO,0,0,0 R6 -R15 

EXPTST DATA >4000,>2000,>1000,>800 TEST BIT FOR EXP CHASSIS 

ETAB EQU $ EXPANSION CHASSIS TABLE 
DATA CTAB1,0,0,0,0,0,0,0 

i Figure 5·3. Expansion Chassis Interrupt Decoder (Sheet 1 of 3) 

2270510·9701 5-7 



Writing a DSR 

IVX110 

CTAB1 

EQU 
DATA 
DATA 
DATA 
DATA 
DATA 
EQU 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

$ 
>OS1E 
IVxx04 
>OS3E 
IVxxOS 
o 
$ 
0,0 
0,0 
0,0 
0,0 
0,0 
0,0 
IVxx03,0 
0,0 
0,0 
0,0 
IVX110,-1 
0,0 
0,0 
IVxx02,0 
0,0 
0,0 
0,0 
0,0 
0,0 
0,0 
0,0 
0,0 
0,0 
0,0 

LOGICAL END OF TABLE 

IVxx03 DATA KBdsr,SG3BGN,MPdsr 
IVxx04 DATA KBdsr,SG3BGN,MPdsr 
IVxxOS DATA KBdsr,SG3BGN,MPdsr 
IVxx02 DATA WPdsr,SG3BGN,MPdsr 

Figure 5·3. Expansion Chassis Interrupt Decoder (Sheet 2 of 3) 

5·8 2270510-9701 



PCE 

PCE10 

PCE15 

PCE20 

2270510-9701 

EQU 
MOV 
STCR 
MOV 
SRL 
ANDI 
COC 
JEQ 
A 
MOV 
JEQ 
ANDI 
A 
MOV 
JEQ 
MOV 
JNE 
MOV 
MOV 
LMF 
B LWP 
MOV 
TB 
JEQ 
JMP 

MOV 
JEQ 
MOV 
TB 
JNE 
MOV 
MOV 
LMF 
B LWP 
JMP 

$ 
@CURMAP,R11 
R9,O 
R9,R10 
R10,6 
R10,6 
@EXPTST(R10),R9 
IX 
R8,R10 
@ETAB(R10) ,R10 
IX < 

R9,>7C 
R9,R10 
*R10+,R9 
IX 
*R10,R7 
PCE20 
@4(R9),R10 
R10,@CURHAP 
R10,O 
*R9 
R6,R12 
1 5 
PCE10 
RETURN 

*R9+,R12 
PCE15 
*R9+,R7 
o 
PCE20 
@4(R7),R10 
R10,@CURMAP 
R10,O 
*R7 
PCE20 

Writing a DSR 

EXPANSION CHASSIS ENTRY 
SAVE CURRENT MAP FILE POINTER 
FIND CHASSIS THAT INTERRUPTED 

IS THAT CHASSIS PRESENT? 
NO, CRASH!!! 
ADD CARD LEVEL 
IS THE CHASSIS DEFINED? 
NO, TAKE IT DOWN 
INTERRUPT POSITION 
INDEX INTO TABLE 
INTERRUPT POINTER 
NOTHING THERE 
CHECK FLAG 
MULTIPLE DEVICES THERE 
DSR MAP BECOMES CURRENT MAP 

ENTER THE DSR 
RESTORE THE CARD BASE 
ANY MORE INTERRUPTS? 
YES, GET THEM NOW 
OTHERWISE, EXIT 

END OF TABLE? 
YES, BACK TO THE CARD 
GET THE ENTRY VECTOR 
IS THIS IT? 
NO, KEEP LOOKING 
PICK UP MAP POINTER 
CHANGE MAPS 

ENTER THE DSR 

LEVEL 

Figure 5·3. Expansion Chassis Interrupt Decoder (Sheet 3 of 3) 

5·9 



Writing a DSR 

When an interrupt occurs, the current status is saved in registers R13, R14, and R15 of WSP7. The 
interrupt decoder begins execution by saving the current map file address in register R11. The 
interrupt decoder reads the expansion coupler status word into register R9. The decoder calcu­
lates the ID of the interrupting chassis (times 2) in register R10. Using a mask from table EXPTST, 
the decoder verifies that the expansion chassis is connected. !f it is not, the interrupt decoder 
branches to the illegal interrupt routine. 

Register R10 is then used to index into the table ETAB to get the address of the chassis table. If 
the pointer is 0, the interrupt decoder branches to the illegal interrupt routine. If not, the device 
interrupt position is added to the chassis table address to obtain the index of the address corre­
sponding to the interrupt position in the chassis table. If the address is 0, the interrupt decoder 
branches to the illegal interrupt routine. If not, the decoder tests the flag associated with the 
address. 

If this flag is a nonzero value, the decoder branches to location PCE20 to process multiple 
devices. If the flag is 0, the decoder moves the DSR map file pOinter into register R10 and into the 
current map file pOinter, CURMAP. The decoder loads the DSR map file and transfers control to 
the ISR. When control returns from the ISR, the decoder restores the proper CRU address in regis­
ter R12 and tests the expansion chassis interrupt bit for another interrupt. When another interrupt 
exists, the decoder branches to location PCE10 to decode the outstanding interrupt. Otherwise, 
the decoder branches to the return code. 

The multiple-device routine at location PCE20 is similar to the routine described in the preceding 
paragraph. It loads the CRU address and tests for 0 at the end of the table. Then, the routine loads ~ 
the data structure address corresponding to the CRU address. The routine tests the interrupt bit 
and returns to location PCE20 when the bit is O. When the interrupting device is located, the rou-
tine loads the map file and transfers control to the ISR as previously described. On return from the 
ISR, the routine branches to location PCE20 to process any additional interrupt at the interrupt 
position. 

5.3.3.4 Asynchronous Multiplexer Interrupt Decoder. Use this decoder for CI403 and CI404 
multiplexers in the following cases: 

• They use a single interrupt. 

• They share interrupts in the main chassis. 

• They share interrupts in the expansion chassis. 

Figure 5-4 shows an example of the interrupt decoder for devices on a multiplexer(s) that has an 
interrupt level of 11 in the main chassis. Location> 2C contains the address of the workspace 
(WSPB) and location> 2E contains the decoder entry point (PCA). The decoder uses the first three 
registers (RO through R2 of WSPB) to pass controller information to the asynchronous DSR. In 
R10, there is a pointer to the controller table(s) (ACTLB) which the system generation builds for 
each controller that shares an interrupt level of 11. The decoder places the TILINE address of the 
controller in R12 and uses the remaining registers as temporary registers. 

Location ACTLB contains three word (word 0 through word 2) of controller information for each 
controller that shares interrupt level 11. The table is terminated with a zero. Word 0 contains the 
TILINE address of the controller. Word 1 is a pointer to the channel table (MUXB01). Word 2 is the ,. 
result of taking the maximum channel number of the controller and multiplying that number by 
eight. 

5·10 2270510-9701 



Writing a DSR 

Location MUXB01 contains four words (word 0 through word 3) of information for each channel of 
the controller (for a channel that was not specified during system generation, the four words asso­
ciated with the channel each contain zero). Word 0 of the channel table contains a pointer to the 
DSR interrupt workspace (KBdsr). Word 1 contains the DSR address (SG3BGN). Word 2 contains a 
pointer to the DSR map file (MPdsr). Word 3 contains the channel number. 

WSPB 

ACTLB 

MUXB01 

SLW3 
PCA 

PCA015 
PCA020 

PCA025 

DATA WSPB,PCA 

BSS 20 
DATA ACTLB-4 
BSS 10 

$ 

>F980 
MUXB01 
3*8 
o 
$ 

LOCATION >2C,>2E 

RO R9 
R10 CONTROLLER TABLE ADDRESS 
R11 R15 

MULTIPLE INTERFACE TABLE 
MUX INTERRUPT WORD ADDRESS 
MUX CHANNEL TABLE ADDRESS 
MAX MUX CHANNEL ID * 8 
LOGICAL END OF TABLE 
CHANNEL TABLE 

EQU 
DATA 
DATA 
DATA 
DATA 
EQU 
DATA 
DATA 
DATA 
DATA 

KBdsr,SG3BGN,MPdsr,0 
KBdsr,SG3BGN,MPdsr,1 

EQU 
MOV 
MOV 
AI 
MOV 
JEQ 
JGT 
SETO 
MOV 
JGT 
MOV 
MOV 
MOV 
J L T 
MOV 
MOV 
MOV 
J L T 
CZC 
JEQ 
SETO 

0,0,0,0 DUMMY CHANNEL ENTRY 
0,0,0,0 DUMMY CHANNEL ENTRY 

R3*2 
@CURMAP,R11 
R10,R9 
R9,4 
*R9+,R12 
PCARTN 
PCA015 
R4 
*R12,R8 
PCA015 
*R9+,R7 
*R9+,R6 
@SLW3(R12) ,RO 
PCA020 
RO,R1 
RO,R2 
R4,R4 
PCA027 
@WD0800,RO 
PCA027 
R4 

SLAVE WORD THREE ADDRESS 
SAVE CURRENT MAP FILE 
GET CONTROLLER TABLE ADDRESS 
GET CONTROLLER TABLE ENTRY 

IF TABLE EXHAUSTED, EXIT 
IF CONTROLLER NOT PRESENT, NEXT CONTROLLER 
SET LOAD MAP FILE FLAG 
DID THIS CONTROLLER DO IT? 
NO -- NEXT CONTROLLER 
GET STATION LIST ADDRESS 
GET CHANNEL COUNT (COUNT*8) 
IS THE INTERRUPT INVALID? 
YES -- NEXT CONTROLLER 
SAVE DATA WORD 
SAVE DATA WORD 
RELOAD MAP FILE? 
YES -- DON'T TEST FOR SAME CHANNEL 
SAME CHANNEL? 
YES 
FORCE MAP FILE LOAD 

Figure 5-4. Asynchronous Multiplexer Interrupt Decoder (Sheet 1 of 2) 

2270510-9701 5·11 



Writing a DSA 

PCA027 SLA 
SRL 
CI 
JEQ 
SRL 
ANDI 
C 
JH 
MOV 
A 
MOV 
JEQ 
ABS 
JGT 
MOV 
LMF 

PCA028 BLWP 
JMP 

PCA050 CLR 
JMP 

PCA055 AI 
C 
JH 
LI 

PCA060 MOV 
A 
MOV 
JEQ 
MOV 
LMF 
BLWP 
JMP 

1CA100 EQU 
INC 

PCA110 SETO 
JMP 

RO,8 
R 1 ,12 
R1,>0004 
PCA050 
R2,5 
R2,7*8 
R2,R6 
PCA100 
R7,R8 
R2,R8 
@4(R8),R5 
PCA025 
R4 
PCA028 
R5,@CURMAP 
R5,O 
*R8 
PCA025 
R2 
PCA060 
R2,1*8 
R2,R6 
PCA110 
R1,>0004 
R7,R8 
R2,R8 
@4(R8),R5 
PCA055 
R5,@CURMAP 
R5,O 
*R8 
PCA055 
$ 
R3 
R4 
PCA025 

MOVE DATA TO LEFT BYTE 
STATUS CODE TO BITS 13,14,15 
TIMER OR TRANSPARENT FIFO STATUS? 
YES -- PROCESS 
8 * CHANNEL NUMBER 
ISOLATE CHANNEL NUMBER * 8 
ADDRESS OUT OF RANGE? 
YES -- ILLEGAL CHANNEL NUMBER 
SAVE CHANNEL TABLE ADDRESS 
GET CHANNEL ENTRY VECTOR ADDRESS 
GET MAP FILE ADDRESS 
IF CHANNEL NOT GENNED, NEXT CHARACTER 
CHANGE MAP FILE? 
NO 
YES -- SET MAP FILE POINTER 
LOAD DSR MAP FILE 
ENTER DSR 
TRY THIS CONTROLLER AGAIN 
CLEAR CHANNEL NUMBER 
BYPASS CHANNEL INCREMENT 
GET NEXT CHANNEL ENTRY 
ADDRESS OUT OF RANGE? 
YES -- CHECK CONTROLLER AGAIN 
RELOAD STATUS CODE 
SAVE CHANNEL TABLE ADDRESS 
GET CHANNEL ENTRY VECTOR ADDRESS 
GET MAP FILE ADDRESS 
IF CHANNEL NOT GENNED, NEXT CHANNEL 
SET MAP FILE POINTER 
LOAD DSR MAP FILE 
ENTER DSR 
NEXT CHANNEL 
ILLEGAL CHANNEL NUMBER 
INCREMENT NUMBER OF ILLEGAL INTERRUPTS 
SET CHANGE MAP FILE FLAG 
NEXT CONTROLLER 

Figure 5-4 Asynchronous Multiplexer Interrupt Decoder (Sheet 2 of 2) 

When an interrupt occurs, the present status is saved in R13, R14, and R15 of WSPB. When the 
interrupt decoder begins execution,_ it saves the current map file address by placing it in R11. The 
interrupt decoder searches for the controller which generated the interrupt by placing Word 0 of 
the controller information table (ACTLB) into R12 and then reading slave word 0 of the TPCS. The 
controller that has an interrupt pending will have a negative value in slave word O. Once the 
decoder finds the controller with the interrupt pending, it looks at word 1 of the appropriate con­
troller table to find the pOinter to the channel tables (MUXB01). This pointer indicates where the 
DSRs for each channel are located. The decoder then determines which channel caused the inter­
rupt and picks up the proper channel DSR mapfile (MPdsr) and loads it. The decoder enters the 
DSR by executing a Branch and Link Workspace Pointer (BLWP) instruction, using the DSR work­
space (KBdsr) and program address (SG3BGN). When the DSR returns control to the interrupt 
decoder, the interrupt decoder checks the remaining controllers at ACTLB for pending interrupts. 

5-12 2270510-9701 



Writing a DSR 

5.3.3.5 Return Routine. The return routine in Figure 5-5 tests the service flag and branches to 
the illegal interrupt routine when the flag is 0, indicating that no interrupt has been serviced. 
Otherwise, the routine moves the saved map file address to location CURMAP and loads the map 
file. It transfers to a routine at location NFTRTN that checks processing conditions and executes 
a Return to Workspace Pointer (RTWP) instruction. This restores the machine status to its 
pre-interrupt status. 

RETURN MOV 
JEQ 

PCARTN MOV 
LMF 
B 

R6,R6 
IX 
R11 , @CURMAP 
R 11 , ° 
@NFTRTN 

TEST SERVICE FLAG 
NOTHING SERVICED IS AN ERROR 
RESTORE OLD MAP FILE POINTER 
RESTORE OLD MAP 
RETURN TO OS 

Figure 5-5. Interrupt Decoder Return Routine 

5.3.3.6 Illegal Interrupt Routine. The illegal interrupt routine in Figure 5-6 stores the status reg­
ister contents in register R11 and calculates the level of the illegal interrupt. The routine then 
moves the level into location LEVEL to form the crash code; finally, the routine branches to the 
system crash routine using the transfer vector at location N FCRSH. 

IX 

LEVEL 

STST 
ANDI 
INC 
SOC 
BLWP 
DATA 

R11 
R11,>F 
R11 R11 = 
R11,@LEVEL 
@NFCRSH BOGUS 
>10 CRASH 

BAD INTERRUPT LEVEL 

INTERRUPT ~ CRASH 
CODES >13 ~ 1 F 

Figure 5-6. Illegal Interrupt Routine 

5.4 DEVICE SERVICE ROUTINES 

The following paragraphs describe DSRs, including their design criteria. Figure 5-7 shows the 
overall organization of a DSR that interfaces directly between a device and DNOS. A DSR that 
interfaces between an asynchronous controller and DNOS can be structured according to Figure 
5-8. Any unique properties of this type of DSR are described in a later description of DSRs for asyn­
chronous devices. 

2270510-9701 5-13 



Writing a DSR 

ENTRY POINTS 

SUB-OPCODE DECODER 

SUB-OPCODE PROCESSING 

ROUTINES 

END-OF-RECORD ROUTINE 

TI ME-OUT ROUTINE 

ABORT ROUTINE 

POWER ON ROUTINE 

REENTRY ROUTI NE 

HARDWARE INTERRUPT ROUTINES 

2279421 

Figure 5·7. DSR Structure 

The entry points to the DSR are described first, along with the routines to which they branch the 
body of the DSR (the subopcode decoder, the subopcode processing routines, and the end-of­
record routine) is described next. The set of DSR support routines that the DSR can call when 
required is described last. 

5.4.1 Design Criteria 
To service multiple devices of the same type on the same system, you must design the code of the 
DSR to be shared and reentrant. The DSR must service each interrupt very quickly. It must appear 
to service multiple device interrupts simultaneously. However, only one interrupt at an interrupt 
level can be serviced at one time. Subsequent interrupts must wait for servicing until the current 
one has completed. 

Each PDT maintains information about a single physical device for the 110 subsystem, and each 
physical device requires a PDT. Part of the PDT is the DSR workspace. Between the processing of 
requests for the device and interrupts from the device, data is stored either in the PDT workspace 
registers or in extensions to the PDT. Use registers R1 through R4 and R12 through R15 of the PDT 
only for their intended purposes, as described in the PDT template. The following registers are 
available for exclusive DSR use: RD and R5 through R11. 

5·14 2270510-9701 



Writing a DSR 

The DIB is the extension storage area of the PDT. Any data stored in the DSR can be destroyed as 
the DSR services other devices. Even if your presenfconfiguration has only one device for which 
you are writing the DSR, you should provide for possible expansion to several of these devices. 
The DSR should not modify any of the DSR code. 

The keyboard status block (KSB) maintains device information for keyboard devices. If you answer 
YES to the KEYBOARD? prompt during system generation of special devices, your device is gener­
ated as a keyboard device. In this case, you must include a KSB as the first part of the DIB. The 
KSBSN field in your KSB is initialized to your station number by system generation. (All devices 
with a keyboard are given device names that have the form STxx.) 

The KSB contains the DSR interrupt workspace for keyboard devices. Like the PDT, the KSB can 
be extended. The XTK is an example of a KSB extension. 

Figure 5-8 shows the logical structure of the DSR in relationship to the operating system. Model 
990 Computer hardware maps memory in three segments defined in a map file: 

• Interrupt trap addresses and system root (first segment) 

• Data buffer (second segment) 

• DSR (third segment) 

The upper limit of the first segment is shown as XXXX because the size of this segment varies. 
This value is defined during system generation and can be found in JCASTR in the NFPTR tem­
plate. The data buffer is in the BTA for CRU-type devices (swapping permitted); it is in the request­
ing task for TILINE devices (swapping not permitted). The map file that defines the segments for 
the DSR applies only while the DSR is executing. The system performs mapping. You should be 
concerned with mapping only if the DSR must map buffers in or out. 

2270510-9701 

> 0000 

INTERRUPT TRAPS 

BUFFERED REQUEST BLOCK 

> xxxx ~-------------------------------~ 

REQUEST BUFFER 

> COOO 

DSR CODE 

> F800 

2279422 

Figure 5·8. Memory Map for DSR Execution 

5·15 



Writing a DSR 

5.4.2 DSR Entry Points 
The ONOS operating system can enter the DSR through one of the following entry points: 

• Hardware interrupt - Branches to the routine that processes interrupts from the device 

• System interrupt - Branches to the routine that processes reentry requests 

• Power up - Branches to the routine that initializes the device 

• Request abort - Branches to the routine that forces error termination of the current 1/0 
request 

• Request time-out - Branches to the routine that processes a device time-out 

• 1/0 Request Processor - Branches to the routine that processes priority requests 

• Priority Schedule Interrupt - Branches to routine that processes priority reentry 
requests. 

The 110 subsystem requires that branch instructions for these entry points be placed at the begin­
ning of the DSR (relative address 0) in a specific sequence. The first code of the DSR must contain 
the branch instructions for the entry pOints, as given in Table 5-1. 

Address 

>0000 
>0004 
>0008 
>OOOC 
>0010 

Table 5·1. DSRITSR Entry Points 

Code 

B @HINT 
B @SINT 
B @PWRUP 
B @ABORT 
B @TIMOUT 

Meaning 

Hardware Interrupt 
System interrupt (delayed reenter me) 
Power up Initialization 
1/0 abort 
Time-out 

Since these entry points are required to be at absolute locations, no data or subroutine code can 
precede these instructions. 

When a hardware interrupt occurs, the interrupt decoder executes a Branch and Link Workspace 
Pointer (BLWP) instruction in order to pass control to the DSR. The interrupt mask is set to the 
interrupt level of the device minus one to prevent another device interrupt. If a device interrupt 
enters the DSR, it destroys the current context saved in the DSR registers (R13, R14, and R15). 

5·16 Change 1 2270510·9701 



Writing a DSR 

5.4.2.1 Hardware Interrupt Entry Point. The first branch instruction transfers to the routine that 
processes the hardware interrupts. This routine is the ISR. Figure 5-9 shows the functions of the 
ISR, which are to initialize the time-out counter, decode the interrupt, reset and process the inter­
rupt, and return to the interrupted program. 

The time-out counter is initialized by moving the value in the field PDTTM1 to the field PDTTM2. 
You can select the time-out option during system generation. The counter should be initialized in 
any case. 

INPUT 

I 

2279423 

2270510-9701 

OUTPUT 

I 

HARDWARE INTERRUPT 

INITIALIZE 

TIME-OUT 

DECODE 

INTERRUPT 

UNSOLICITED ERROR TIMING STATUS 

••• 
INTERRUPT PROCESSORS 

I I 

" 
RETURN To 

SYSTEM 

(RTWP) 

I I 

Figure 5·9. Hardware Interrupt Processing 

5-17 



Writing a DSR 

Each type of device can have several types of interrupts. Each type of interrupt is processed differ­
ently. Figure 5-9 shows six types, although all types do not apply to every device. The types are as 
follows: 

• Input 

• Output 

• Unsolicited 

• Error 

• Timing 

• Status 

An input interrupt occurs when the device has data to be transferred to the system. This type of 
interrupt occurs after a read operation has been requested and prior to completion of the 
operation. 

An output interrupt occurs when a device is ready to receive data from the system. This type of 
operation occurs after a Write operation has been requested and prior to completion of the 
operation. 

An unsolicited interrupt occurs when the device requires service (for example, has data to be 
transferred to the system) other than during the servicing of an I/O request. 

An error interrupt occurs when the device has error data to be transferred to the system. This type 
of interrupt can occur during any operation. 

A timing interrupt occurs when the device has a timing signal required by the system. 

A status interrupt occurs when the device has status information to transfer to the system. 

The ISR must include an interrupt decoder to identify each type of interrupt that applies to the 
device and to transfer control to the interrupt processor for the proper type. 

5-18 2270510-9701 

.. 



Writing a DSR 

For keyboard devices that use the KSB as the workspace for the input ISR, three supportive rou­
tines are available to the DSR: 10FCDT, PUTEBF, and PUTCBF. Subsequent paragraphs describe 
these routines. The following example outlines a typical input interrupt processor: 

• Move a character from the device into R10. 

• Check for input errors and process accordingly. 

• Reset the input interrupt. 

*-------
* Check for bidding a task from a DSR 
*--- .... ---
LAB010 BL @IOFCDT 

BYTE >1B,>OD 
BYTE >00,>00 
DATA <speciaL-processing-done address> 

Process the character 

*-------
* If the character is an event character 
*-------

*-------

BL @PUTEBF 
DATA <buffer-fuLL address> 
JMP <cLean-up address> 

* ELse buffer the data character 
*-------

BL @PUTCBF 
DATA <buffer-fuLL address> 

Do necessary cLean up. 

RTWP 

5.4.2.2 Delayed Reentry Point. The second branch instruction transfers control to the routine 
that services requested system interrupts. It is called the RE-ENTER-ME routine. The branch 
instruction transfers control to this routine when the system receives an interrupt approximately 
50 milliseconds after the DSR sets bit DSFREN in the PDT. The I/O subsystem resets the bit on 
entry to the DSR. The DSR writer can use this feature as a timer for long delays during I/O or as a 
signaling method between the ISR and the DSR. 

5.4.2.3 Power-Up Initialization Entry Point. The third branch instruction transfers to the routine 
that initializes the device upon power-up or power restoration. This routine must initialize the 
device interface to the proper state. 

2270510-9701 5-19 



Writing a DSR 

5.4.2.4 Abort Entry Point. The fourth branch instruction transfers to the routine that aborts a 
request. When a task is aborted, all I/O requests on all LUNOs must be aborted. The 
1/0 subsystem attempts to find all of the requests and places a code (> 10) in the error byte of each 
request. The I/O subsystem then notifies the DSR of an aborted request by entering the DSR at the 
abort entry. This routine must clean up the processing of the request and return it to the I/O sub­
system. 

5.4.2.5 Time·Out Entry Point. The fifth branch instruction transfers to the time-out routine. The 
associated interrupt occurs when the device does not respond within a time limit. This function is 
enabled by specifying a time-out period when the system is generated. The I/O subsystem initial­
izes the time-out count on initial request entry, and the hardware interrupt entry must reset it on 
each entry. The time-out routine must terminate the request. 

5.4.2.6 Initial Request Entry Point. The sixth branch instruction is the request entry point. The 
DSR is entered at this point when the I/O subsystem has a request for the device and the PDT is 
not busy. Before entering the DSR, the I/O subsystem initializes the following locations: 

• Register R1 (location PDTPRB) and location PDTSRB contain the address of the SVC 
opcode byte in the BRB. 

• The data buffer address field of the BRB contains the address of the mapped in data 
buffer (IRBDBA) template. 

• Location PDTTM2 contains the value in location PDTTM1 and indicates that the time­
out count has been initialized. This is done by the I/O subsystem before entering the 
DSR. 

5.4.2.7 Priority Scheduler Entry Point. The seventh branch instruction transfers to the DSR 
priority scheduler. This mechanism reenters the DSR after all interrupt processing to the system is 
complete but before the task scheduler initiates any task execution. This is the most direct reentry 
path to the DSR. Its use is intended only for high-priority interrupt processing. If you use the mech­
anism arbitrarily, you might interfere with other devices that use this fast reenter me entry pOint. 

5.4.3 Body of the DSR 
The body of the DSR consists olthe subopcode decoder, the subopcode processing routines, and 
the end-of-record routine (see Figure 5-7). 

The subopcode decoder normally calls DSR support routine BRSTAT to decode the subopcode. 
Routine BRSTAT also collects information for online diagnostics. 

The subopcode processing routines process the I/O requests by translating them into device oper­
ations. The number of routines required depends on the device, but usually processing routines 
for open, write, read, and close operations are provided. The device characteristics determine 
what each routine does. The programmer writing a DSR for a device must design these routines. 

After the subopcode processing routines have performed the appropriate operations, the DSR 
must call routine ENDRCD to return the request to the calling task. On return from ENDRCD, the 
DSR performs any necessary clean up and executes an RTWP instruction to return to the I/O 
subsystem. 

5·20 2270510·9701 



Writing a DSR 

5.4.4 Bidding a Task From the DSR 
DSR support routine 10FCDT provides the capability of bidding a task by a DSR for keyboard 
devices that use the KSB as the ISR workspace. The routine bids a specified task when you enter a 
predefined sequence of characters. The first character in this sequence is referred to as the 
arming character. 

A DSR for a keyboard device that does not use the KSB as the workspace or for a device that does 
not have a keyboard can also bid a task in response to a defined input sequence. The DSR must 
perform the functions of 10FCDT or an appropriate subset of those functions. 

The task to be bid from a DSR is defined in an entry in a command definition table (CDT). The 
command definition entry (CDE) contains the LUNO assigned to the program file that contains the 
task to be bid and the ID of the task. It also contains the ASCII code of the character that is 
entered to bid the task if more than one entry defines more than one task to be bid. 

Routine 10FCDT checks for an arming character before checking the CDT of the device and bid­
ding the task when the corresponding character has been entered. 

For devices without a keyboard, the DSR must check for an arming character, if one is required. It 
must also select the correct bid character. Bidding the task consists of placing the PDT of the 
device on a queue. First, the DSR must test the value in location PDTCHR of the PDT. When the 
value is not equal to 0, a task bid is pending and another is not allowed. 

Whether to delay bidding the task until the previously requested bid has been completed or to 
ignore the bid request is a decision that depends on the nature of the DSR and the task being bid. 
When the value in location PDTCHR is 0, put the bid character in PDTCHR and place the PDT on 
the queue beginning at location BIDREQ in common segment NFPTR. Set the interrupt mask to 
level 2 and locate the end of the queue. Location BIDREQ contains the address of location PDTBQ 
in the first PDT on the queue. That address contains 0 or the address of location PDTBQ in the 
next PDT. Locate the end of the queue by testing for 0 in location PDTBQ of each PDT. When you 
find the end, replace the 0 with the address of location PDTBQ of the PDT being serviced and set 
location PDTBQ in that PDT to O. Then, restore the interrupt mask to the proper value for the 
device being serviced. 

A system has 25 CDTs. The Set Device Parameters suboperation in the I/O SVC defines the CDTI 
CDE set for a device. All video display terminal (VDT) devices have the exclamation mark (!) char­
acter defined to bid SCI and the CONTROL X sequence defined to abort a task associated with the 
terminal. You can change these or add more by using the Add CDE to CDT suboperation in the I/O 
SVC or by using the Modify Command Definition Table (MCDT) command. 

5.4.5 Multiplexing Hidden Request Queue 
For a DSR that must multiplex its input and output, a queue anchor (PDTHQR) is included in the 
PDT. When a DSR needs to receive a second request, it must appear to the I/O subsystem to be not 
busy. The DSR achieves this by mapping out the current request and clearing PDTSRB. It must 
then keep the first request available by queuing it to the first hidden request queue, PDTHRQ, 
using the link word BROBRO in the BRB. (See template .ATABLE.BRO to find link word BROBRO.) 

2270510-9701 5·21 



Writing a DSR 

In this way, the 1/0 subsystem can find a request being aborted and flag the error byte with a 
hexadecimal 10. During an abort, the DSR is entered at the abort entry and must examine 
PDTHRQ and abort the requests marked with an error code of > 10. When a request is removed 
from the hidden request queue, PDTSRB must be set to the request address to indicate that the 
device is busy. 

If you design a DSR to multiplex two or more requests at the same time, you must be careful about 
its accessing a buffer. Only the buffer for the request given to the DSR is mapped into the DSR 
address space. The mapping information for the other request remains with the request. There­
fore, the subroutine 10M POT must be called to map out a request buffer before inserting the 
request on the queue anchor PDTHRQ. R1 must point to the SVC and error code byte of the BRB. 
To map the request buffer into the DSR address space, the subroutine 10MPIN must be called. R1 
must point to the word of the BRB that contains the SVC code and error byte. Neither of these sub­
routines modifies PDTSRB. 

5.5 DSR SUPPORT ROUTINES 

DNOS provides a set of support routines that a DSR can call to perform certain functions. In the 
following descriptions of these routines, the module path names begin with the synonym VOL. 
Assign the value < volume> .S$OSLINK (in which volume is the volume name of the system data 
disk) to synonym VOL prior to accessing these modules. 

5.5.1 Branch Table Processor Routine 
The DSR calls the branch table processor (BRSTAT) to decode the subopcode in the BRB and 
transfer control to the subopcode processing routine in the DSR. BRSTAT also collects informa­
tion for online diagnostics. 

Defined in Module 

VOL.IOMGR.OBJECT.IONRCD 

Entry 

WS PDT 
R1 Pointer to the BRB at the SVC opcode byte 
R4 Pointer to the PDT at PDTPDT 
R10 Pointer to statistics table 

Calling Sequence 

5·22 

BL @BRSTAT 
DATA max # of processors 
DATA error return address 
DATA processor address for subopcode 0 
DATA processor address for subopcode 1 

DATA processor address for subopcode n 

2270510-9701 



Statistics Table 

Exit 

BYTE offset into PDT for subopcode 0 
BYTE offset into PDT for subopcode 1 
BYTE offset into PDT for subopcode 2 

BYTE offset into PDT for subopcode n 

RO Mo.dified 
R10 Modified 

Writing a DSR 

The online diagnostics require counts of physical 1/0 operations. These counts are maintained in 
the following PDT offsets: 

PDTRC 
PDTWC 
PDTMC 

Offset to Read operation count 
Offset to Write operation count 
Offset to miscellaneous operation count 

Routine BRSTAT uses a statistics table to associate the appropriate offset with each subopcode. 
Build the table in the DSR using the offsets in the preceding list. Use the miscellaneous operation 
offset (PDTMC) for a subopcode that performs a physical device operation other than a Read or 
Write. Enter 0 in the table for any subopcode that does not perform a physical device operation. 

The statistics table contains an entry (either an offset or 0) for each subopcode. Routine BRSTAT 
uses register R10 as a pointer to the statistics table. When either R10 or the byte in the statistics 
table corresponding to the subopcode contains 0, no statistics information is logged. 

Routine BRSTAT increments the offset count corresponding to the subopcode in the statistics 
table. If the count overflows, routine BRSTAT places> FF in location PDTERR. DNOS monitors 
PDTERR and outputs the statistics when PDTERR contains> FF. After incrementing the count, 
BRSTAT uses the subopcode to obtain the subopcode processor address from the list shown in 
the calling sequence and returns to the DSR at the address of the subopcode processor. 

2270510·9701 5·23 



Writing a DSR 

5.5.2 End-o'-Record Processor Routine 
The OSR calls the end-of-record processor (ERSTAT or ENORCO) to return the BRB to the I/O sub­
system upon completion of the request. ERSTAT also collects information for online diagnostics. 

Defined in Modu/e 

VOL.IOMGR.OBJECT.IONRCD 

Entry 

WS PDT 
R4 Pointer to the PDT at POTPOT 
R10 - Pointer to the statistics table 
POTSRB - Pointer to the BRB 

Calling Sequence 

BL @ERSTAT or ENORCO 

Exit 

RS modified 
R9 modified 
R10 - modified 

Routine ERSTAT uses R10 as a pointer to the statistics table. This is the same table used by 
BRSTAT. If register R10 contains a 0 (as when ENORCO is called) or if the byte in the statistics 
table corresponding to the subopcode contains a 0, no statistics information is logged. 

Routine ERSTAT gets the address of the BRB from the PDT, POTSRB. It then masks interrupts to 
level 2, queues the processed request to the PDT, queues the PDT to the end-of-record list, and 
restores the interrupt level. 

5.5.3 Bid Task Routine 
The bid task routine (IOFCOT) bids a task from a OSR when a predefined pair of characters is 
entered at a keyboard device. System OSRs use this routine to implement the hard break key 
sequence (refer to Appendix A to see what keys this involves for the terminal you are using) and 
sequences beginning with the arming key (blank orange key). The supported sequences for the 
911 VOT are as follows: 

Blank orange, blank orange 
Blank orange, RETURN 
Blank orange, CONTROL X 
Blank orange, (!) 

Halt current output, resume current output 
Abort current output 
Terminate current task 
Bid SCI 

For the supported sequences, the arming character RESET is the blank orange key on the 911 
VOT. You can specify the arming character in sequences required for your OSR. Routine 10FCOT 
requires that you specify a character for the function that aborts the current output. The routine 
first checks for an abort character. If the abort character is not found, the routine checks for a bid 
character defined for the device. You can define COT entries to specify bidding additional tasks 
when other characters are entered. 

5-24 2270510·9701 



Writing a DSR 

An entry in the CDT defines the task to be bid from a DSR. The entry contains the LUNO assigned 
to the program file that contains the task to be bid and the ID of the task. It also contains the ASCII 
code of the character that bids the task. If the hard break key is allowed for this device, the CDT 
must contain an entry for the IOBREAK task (installed ID > 16 on the utility program file). The sys­
tem requires a set of entries in a CDT for each device that can bid a task. 

Defined in Module 

VOL.IOMGR.OBJECT.IOKB 

Entry 

WS KSB 
R10 Keyboard character (leftmost byte) 

Calling Sequence 

Exit 

BL @IOFCDT 
BYTE ASCII code of arming character 
BYTE ASCII code of abort output character 
DATA reserved 
DATA alternate exit address 

R6 Modified 
R9 Modified 
R10 - Modified 

5.5.4 Queue Event Character or Queue Character Routine 
The queue event character (PUTEBF) and the queue character (PUTCBF) routines store a character 
in the buffer to which the registers in the KSB point. If the queue is full, the character is not stored 
and the buffer full exit is taken. 

Defined in Module 

VOL.IOMG R. OBJ ECT.IOKB 

Entry 

WS 
R1 
R2 
R4 
R10 -

KSB 
Count of characters in queue 
Input queue pointer 
Queue end pointer 
Keyboard character (leftmost byte) 

Calling Sequence 

BL @ PUTEBF or PUTCBF 
DATA buffer full exit address 

2270510-9701 5·25 



Writing a DSR 

5.5.5 Get Queued Character Routine 
The get queued character (GETC) routine removes a character from the character queue to which 
the registers in the KSB point and makes it available to the calling routine. 

Defined in Module 

VOL.IOMG R. OBJ ECT.IOKB 

Entry 

WS PDT 
R4 Pointer to the PDT at PDTPDT 

Calling Sequence 

Exit 

BL @GETC 
DATA buffer empty exit address 
DATA event character exit address 

RO Modified 
R6 Buffer empty exit address 
R9 Queued character (leftmost byte) 

If the queue is empty, the buffer empty exit address is placed into register R6 and an RTWP is exe­
cuted. Otherwise, a character is removed from the queue. If the character is less than> 80, return 
is made to the calling routine at the instruction following the calling sequence. 

If the character is > 9B, it is discarded and the next character is removed. If the character is in the 
range of> 80 through> 86 or> 96 through> 9F and the LUNO is not opened to accept event char­
acters, the character is discarded and the next character is removed. Otherwise, the event flag is 
set in the system flags byte of the request and return is made via the event character address. 
When the request is a resource-independent call, the character is reinserted at the beginning of 
the character queue for future processing by a get event character routine. 

5.5.6 Get Event Character 
The get event character (IOGEC) routine removes an event character from the character queue to 
which the registers in the KSB pOint. If the buffer does not contain any event characters, no action 
is taken. 

Defined in Module 

VOL.IOMGR.OBJECT.IOKB 

Entry 

5·26 

WS 
R1 
R4 

PDT 
Pointer to the BRB at the SVC opcode byte 
Pointer to the PDT at PDTPDT 

2270510·9701 



Writing a DSR 

Calling Sequence 

BL @IOGEC 

Exit 

RO Modified 
R9 Modified 
R10 Modified 

The call to IOGEC should be added to subopcode processor 5. Routine IOGEC checks for the reply 
flag and extended request flag in the request call block. It then attempts to remove a character 
from the character queue to which the registers in the KSB point. If the character is in the range 
> 80 through> 86 or> 96 through> 9F and not> 9B, it is removed from the queue and replaced by 
> 9B. The character is placed in the event character byte of the request call block and the event 
flag is set in the system flags byte. 

5.5.7 Character Check Routines 
The seven-bit character check routine (ASCCHK) provides a means of checking for specific seven­
bit characters. Likewise, the eight-bit character check routine (ASCCK2) provides a means of 
checking for specific eight-bit characters. Both routines transfer control to the corresponding rou­
tine when a specified character is found. A label can precede a call to ASCCHK. 

Defined in Module 

VOL.IOMGR.OBJECT.IOKB 

Entry 

WS PDT 
R9 Character (msb) 

Calling Sequence 

BL @ASCCHK or ASCCK2 
BYTE char,label - $ - 1/2 
BYTE char,label - $ - 1/2 
BYTE char, label - $ - 1/2 
BYTE char,label - $ - 1/2 

BYTE 0,0 

Exit 

R10 - Modified 

2270510-9701 5·27 



Writing 8 DSR 

5.5.8 Map Out Current Buffer Routine 
The map out current buffer (IOMPOn routine is used to retain the necessary information required 
to map a buffer. This routine allows a device to act upon more than one request at a time. The 
mapping information is stored in the request call block. 

Defined in Module 

VOL.IOMGR.OBJECT.IOBMGT 

Entry 

WS PDT 
R1 Pointer to the BRB at the SVC opcode byte 
R4 Poi nter to the PDT at POTPOT 

Calling Sequence 

BL @IOMPOT 

Exit 

RO - Modified 

5.5.9 Get Buffer ~ 
The get buffer routine (IOGUB) obtains a buffer from the BTA (an example is a buffer for the PDT 
extension). You can access this buffer by using long-distance instructions. This routine is part of 
the root and does not require an include statement when linking. 

Entry 

WS PDT 
Ri Buffer size 
R10 - Pointer to a five-word temporary area 

Calling Sequence 

REF IOGUB 
BL @IOGUB 

Exit 

R2 - BEET@ 

5·28 2270510·9701 



Writing a DSR 

5.5.10 Map In Buffer 
The map in buffer (IOMPIN) routine is used to map a buffer in if it has been mapped out with the 
map out buffer routine. 

Defined in Module 

VOL.IOMGR.OBJECT.IOBMGT 

Entry 

WS PDT 
R1 Pointer to the BRB at the SVC opcode byte 
R4 Pointer to the PDT at PDTPDT 

Calling Sequence 

BL @IOMPIN 

Exit 

RO - Modified 

5.5.11 Get 20·Blt TILINE Address 
The get 20-bit TILINE address (GTADDR) routine is used with TILINE devices to get a 21-bit physi­
cal byte address. The value is stored in the PDT extension defined by the DPD at DPDTIL > 10 to 
DPDTIL> 13. 

Defined in Module 

VOL.IOMG R. OBJ ECT.IOTI LN 

Entry 

WS PDT 
R1 Pointer to the BRB at the SVC opcode byte 

Calling Sequence 

BL @GTADDR 

Exit 

R9 Modified 
R10 Modified 

2270510-9701 5.29 



Writing a DSR 

5.5.12 Transfer PDT Information to Task Memory 
The transfer PDT information to task memory (XFERM) routine moves data in the PDT extension 
defined by the OPO at OPOWTK for the number of bytes specified. 

Defined in Module 

VOL.lOMG R. OBJ ECT.IO TI LN 

Entry 

WS PDT 
R1 Pointer to the BRB at the SVC opcode byte 
R4 Pointer to the PDT at POTPOT 
R6 Count of characters to move 

Calling Sequence 

Exit 

BL @XFERM 

R6 
R9 
R10 

Modified 
Modified 
Modified 

5.5.13 Report TI LI N E Error 
The report TILINE error (TILERR) routine stores 16 bytes of TILINE information for the system log. 
If a previous error has been reported, the current error information is not stored. 

Defined in Module 

VOL.IOMGR.OBJECT.IOTILN 

Entry 

WS PDT 
R4 Pointer to the PDT at POTPOT 
R10 Error code (msb) 
R12 - TPCS address 

Calling Sequence 

BL @TILERR 

Exit 

R8 Modified 
R9 Modified 

5·30 2270510-9701 



Writing a DSR 

5.6 ASYNCHRONOUS DSR STRUCTURE 

As the structure common to all DSRs has already been discussed, this paragraph describes the 
DSR structure specific only to asynchronous device support. In this paragraph, the term DSR 
refers to an asynchronous DSR. Table 5-2 shows the device and controller combinations that are 
supported by asynchronous DSRs. 

Table 5·2. Asynchronous Device Support 

Devices 

Business 
System 

Controllers 931 940 Terminal 810 840 85X 

CI401 y y y 

CI421 Y y y 

CI422 y y y 

110A1 Y y y y y 

CI402 y y y y y 

CI403 y y y y y 

CI404 y y2 y2 y2 y2 

AUX10f Y y 
9313 

AUX10f 
Business 
System y y y 
Terminal 3 

AUX10f 
9403 y y y 

Notes: 

1 110A refers to the TMS9902 communications port on the 990/10A processor printed circuit board. 

2 These devices are connected to the CI404 via the fiber optics to EIA RS-232C converter module. 

3 AUX1 refers to the auxiliary port found on the 931,940, and Business System terminals. 

2270510-9701 5·31 



Writing a DSR 

The asynchronous DSR design separates controller and device support into different software 
modules. Figure 5-10 displays a block diagram of the DSR structure. The DSR consists of three 
basic modules. The hardware controller service routine (HSR) module provides the controller sup­
port. The terminal service routine (TSR) module provides device support. The interrupt service rou­
tine (ISR) module has interrupt and high priority processing responsibility. The following list 
describes the basic functions of the DSR components. 

5·32 

• TSR module 

Contains all DSR entry points (hardware interrupt, system interrupt, power up, I/O 
abort, time-out, priority scheduler) 

Provides request and completion reporting interface to DNOS 

Runs in PDT workspace 

Provides software interface to device 

Contains device dependent logic 

• ISR module 

Contains hardware interrupt processing routine of the DSR 

Provides interface to HSR for interrupt processing 

Provides high priority receive character processing 

Runs in DSR interrupt workspace (not the PDT workspace) 

• HSR module 

Provides generic (subroutine) software interface to the controller hardware 

Contains all controller dependent logic 

Contains all direct access to controller 

Presents a buffered controller interface to other DSR modules 

2270510-9701 



2284699 

OPERATING SYSTEM 

A~ 

TSR TERMINAL 
SERVICE ROUTINE 

.~ 

BL TSR 
SCHEDULE 

ISR INTERRUPT 
sERVICE ROUTINE 

BL 

, 

HSR CONTROLLER 
sERVICE ROUTINE 

CONTROLLER 

CONTROLLER 
INTERRUPT 

Figure 5·10. Asynchronous DSR Structure 

Writing a DSR 

2270510-9701 5.33 



Writing a DSR 

5.6.1 Asynchronous DSR Design Overview 
Figure 5-11 shows a detailed DSR flow diagram. This figure shows data flow paths as well as the 
DSA logic flow. Refer to Figure 5-11 during the following discussion of the DSR logic and data 
flow. The TSR module contains all DSR entry poin'ts. It accepts requests from, and reports comple­
tions to, the I/O subsystem of DNOS. The primary function of the TSR is to provide a software 
interface to the peripheral device. The actual functions vary considerably based on the type of 
device. 

The TSA performs initial processing for all requests. The TSR calls the HSR for the output of data. 
The HSA stores output data in a transmit FIFO until the data can be transmitted on the communi­
cations line. 

NOTE 

Buffered controllers such as the CI403 contain a hardware transmit 
FIFO. For non-buffered controllers such as the C1422, the HSR 
maintains a software transmit FIFO. 

The HSA cannot accept data when the transmit FIFO is filled with data waiting to be transmitted. 
In this event, the TSA requests to be notified (by the ISR) when the HSR can accept more data. The 
HSA notifies the ISA when it can accept more transmit data, and the ISR schedules the TSA using 
the DSA priority schedule or reenter-me mechanism. The TSR can then resume transferring output 
data to the HSR. Figure 5-11 shows the logic paths followed in this process. Under normal condi­
tions, the TSA reports completion of the output request before the HSA has actually transmitted 
all the data on the communications line. 

Aead requests, in most cases, require the cooperation of the TSR and ISA modules. The TSA 
attempts to satisfy the read by moving received data from the receive character queue to the 
user's read data buffer. When the TSA satisfies the read, it reports completion to the user task via 
the operating system I/O support routines. When there are not enough characters in the receive 
queue to satisfy the read, the TSA must wait. To do this, the TSR requests notification from the 
ISA when more data is stored in the receive character queue. The TSR then releases control. When 
the ISA stores data in the receive character queue, it schedules the TSA for execution. Other I/O 
service requests are processed by the TSR with the aid of the ISR when required. 

The ISA module contains some functions that you can consider device support and some that you 
can consider controller support. The ISR module contains the hardware interrupt routine to which 
the TSA hardware interrupt entry points. The ISR module uses an interrupt workspace different 
than the physical device table (PDT) workspace. The ISA module runs with controller interrupts 
masked. The ISA calls the HSA to decode the controller interrupt. 

For the most part, ISA processing is independent of request processing by the DSR. Aeceived data 
is stored in the receive character queue even when no read request is active at the DSA. Error 
recovery action must be taken when the receive character queue becomes full. The ISA processes 
events requiring immediate attention. It also schedules the TSA module to start or resume 
processing. 

5-34 2270510-9701 



I\) 
I\) 

~ 
C1I ...... 
o 
cO ...... 
~ 

(II 

~ 
(II 

r----------, 

OPERATING SYSTEM 

DATA AND 1 
CONTROL 

• 
• 

TSR TERMINAL 
SERVICE ROUTINE L... ... 

BL 

• 

• 
TSR 
SCHEDULE 

ISR INTERRUPT 
SERVICE ROUTINE 

BL !DATA 
AND 

+ STATUS 

• 

I I : ;..--------------... CONTROLLER 
INTERRUPT I SOFTWARE I 

I TRANSMIT I 
I FIFO I 
I I 
I I 
I I 
I I 1... __________ ...1 

NON-BUFFERED 
CONTROLLERS 

ONLY 

2284700 

~ ~ 

TRANSMIT 
DATA 

DATA AND Y 
CONTROL + 

HSR CONTROLLER 
SERVICE ROUTINE 

~ t 
• 

DATA AND 
STATUS 

CONTROLLER 

Figure 5·11. Asynchronous DSR Logic Flow 

RECEIVE 
CHARACTER 

QUEUE 

• 
!RECEIVE 

DATA 

::e 
:::!. 

S-
eQ 
Q) 

~ 
:n 



Writing a DSR 

The HSR provides access to the controller hardware. The HSR provides a generic interface to the 
controller. This allows other DSR modules to be written that are independent of the asynchronous 
controller type. HSR functions include controller and communications channel initialization, 
transmission of data, timer services, monitoring of modem signals, and controller interrupt decod­
ing. The HSR does not support the concept of a read request. The HSR decodes the controller 
interrupt and reports the cause for the interrupt to the ISR. If the cause of the interrupt was a 
received data character, the data character is also passed back to the ISR. The HSR does not 
store the receive data. 

5.6.2 Terminal Service Routine (TSR) 
The TSR module is the interface to the I/O subsystem of DNOS. Like a DSR does, it must imple­
ment all the following DNOS interface functions: 

• DNOS I/O subsystem entry points 

Hardware interrupt 

System interrupt (delayed reentry) 

Power-up 

Request abort 

Request time-out 

Priority scheduler 

Request processor 

• Data structures 

Physical device table (PDT) 

Keyboard status block (KSB)linterrupt workspace 

Asynchronous device extensions (DSALLLEX, DSALLREX) 

• I/O subsystem routines 

BRSTAT 

BZYCHK 

ENDRCD 

GETC 

10FCDT 

10FGEC 

5-36 2270510-9701 

A 



Writing a DSR 

IOGUB 

PUTCBF, PUTEBF 

The following two mechanisms allow scheduling the TSR from an ISR: 

• Delayed reentry 

• Priority schedule 

5.6.3 Interrupt Service Routine (ISR) 
The interrupt service routine (ISR) contains the interrupt routine of the DSR and uses the ISR work­
space of the DSR. 

NOTE 

Each channel of an interface supported by the asynchronous DSR 
structure must have an interrupt workspace different than the PDT 
workspace. 

The ISR interfaces with both the TSR and the HSR. The design of the TSR/ISR interface is not dic­
tated by the asynchronous DSR design. For the most part, you can specify it to fit your needs. The 
following list provides examples of ISR functions for standard keyboard devices: 

• Bid application task 

• Suspend output 

• Abort output 

• Abort application task (hard break) 

Figure 5-12 shows the flow of control during interrupt processing. The DSR is entered at its inter­
rupt entry point via a BLWP instruction. The workspace upon entry is the DSR interrupt work­
space. This is the same workspace the ISR uses. 

The ISR is responsible for controlling further interrupt decoding by the DSR. If you are using the 
HSR supplied by Texas Instruments, the ISR calls the HSR subroutine HNOTIF (refer to paragraph 
5.7.9) to determine what type of controller interrupt occurred. The ISR provides return vectors for 
each interrupting condition of the controller. Figure 5-12 uses the word VECTOR to describe this 
process. The description of the HNOTIF subroutine documents the set of generic interrupt 
conditions. The HNOTIF subroutine takes the return vector associated with the current controller 
interrupt. 

The ISR code for the specific type of interrupt takes the proper action to service the interrupt. 
When complete, the ISR returns to the operating system interrupt decoder via an RTWP instruc­
tion. The operating system decoder takes the necessary action to restore normal system 
execution. 

2270510-9701 5·37 



Writing a DSR 

Figure 5-12 shows one other path for interrupt processing. The HSR exits or returns directly to the 
operating system interrupt decoder if HNOTIF is called when no controller interrupt :s pending. 
This special return exists to support certain ISRs; most lIser ISRs never use this path. 

BLWP 
OPERATING _ .. ISR .. 

SYSTEM INTERRUPT 
INTERRUPT SERVICE 
DECODER RTWP ROUTINE ... --
... .~ .. ~ 

HNOTIF VEC TOR 

, 
HSR 

RTWP CONTROLLER 
SERVICE 
ROUTINE 

4. 
INTERRUPT DATA AN D 

CONTROL 

, 
CONTROLLER 

2284701 

Figure 5·12. Interrupt Processing Flow 

5.6.4 Hardware Controller Service Routine (HSR) 
The generic interface to the HSR consists of a set of subroutines with a branch and link (BL) call 
interface. A subroutine implements one or more generic functions for the specific controller in 
use. For example, the TSR makes a Set DTR subroutine call. The HSR for a CRU controller might 
implement this as a SBO DTR CRU instruction. However, the HSR for a TILINE controller may 
implement the same subroutine by using a SOC @DTR,@OUTSIG(R12) instruction to access the 
TILINE Peripheral Control Space (TPCS) of the controller. Identical requests from the TSRIISR 
invoke identical functions for all controllers. Provision is made for controller hardware differ­
ences. A "not supported" return is provided for most HSR subroutines. This return is taken when 
the requested function is not supported by the controller hardware. 

The asynchronous DSR design can support several device and controller combinations. HSR 
object modules are provided with the operating system for the controllers listed in Table 5-3. Table 
5-3 also documents the final node in the pathname for each HSR. The directory that contains the 
HSR object modules is < volume> .S$OSLlNK.DEVDSR.OBJECT, where < volume> is a synonym Jt' 
that you assign. 

5·38 2270510-9701 



Writing a DSR 

Table 5·3. HSR Object Modules 

Name Controller Type 

DS403HSR CI403/CI404 

DS923HSR TMS 9902 and 9903 controllers (*) 

DS401HSR CI401 (previously COMM I/F) 

Note: 

* Includes C1402, C1422, C1421, the 990/10A 9902 port, and the 9902 interface asso­
ciated with the internal terminal on the Business System 300 computer. 

These modules are made available for users implementing DSRs for special devices connected to 
these controllers. These HSR modules are used for DSRs following the asynchronous DSR design. 
This design must be followed for user written DSRs under the following conditions: 

• The special device is connected to a CI403 or CI404 controller 

• A standard TI DSR is used to support any of the communication channels of the CI403 or 
CI404 

When these conditions do not occur, you have a choice of DSR designs for asynchronous device 
support. You can implement either the asynchronous DSR design or a design of your choice. 
Remember that any user design must observe all DNOS constraints. 

5.6.5 Asynchronous Data Structure Allocation 
The DIB (the PDT extension) is divided into two segments. One segment is physically contiguous 
to the PDT. This segment contains data that requires the most frequent access and must be cre­
ated before the ALGS step of system generation is done. The segment must have the following 
pathname: 

< volume> .S$OSLlNK.S$SGU$.SD.DIBXXXX 

The other segment contains data for which an increased access time does not significantly affect 
overall performance. The second segment must be accessed using long-distance instructions. 
Other data structures included in the long-distance extension are VDT screen images for VDT 
DSRs. Refer to Figure 5-13. 

2270510-9701 5·39 



Writing a DSR 

All the data structures that are not accessed via long-distance instructions must be created 
before the completion of system generation. These data structures are available when the operat­
ing system is loaded into memory from disk. The long-distance data structures must be allocated 
during the power-up initialization of the operating system. The TSR is responsible for allocating 
the second long distance PDT extension by using the system routine IOGUB. If you are using the 
HSR module supplied by Texas Instruments, this extension must be allocated and words POXSMB 
and POXSMP must be initialized with the PDT extension address before the TSR can call any of 
the HSR subroutines. The size of the extension must be at least 144 bytes for nonbuffered con­
trollers and at least 32 bytes for buffered controllers (CI403/CI404). The user has the option of 
specifying additional space for the user-written TSRIISR. The user can also lengthen the local PDT 
extension by reserving more memory in the OIB that is provided to the system generation program. 

DNOS DATA STRUCTURES 

VDT PDT/DIS 

PDT ... 
~ 

R4 .. .. .... 
KSB 

R7 .- LONG DISTANCE 
DEVICE EXTENS ION 

LOCAL 
PDT EXT. 

MAP FILE .. DEVICE - EXT 

••• •• SCREEN 
IMAGE 

KEY *.-• - SUPPLIED BY THE SYSTEM 

•• - SUPPLIED BY THE USER 

••• - ALLOCATED BY THE TSR OUR ING POWER-UP 

2284928 

AS YNCHRONO US 
DSR LONG DISTANCE 

PRINTER PDT/DIS 
LOCAL PDT 

PDT 

R4 

PSEUDO 
KSS 

R7 

LOCAL 
PDT EXT. 

MAP FILE 

... 

• 

•• 

.* 

... 

LONG DISTANCE 
DEVICE EXTENSION 

DEVICE 
EXT ._. 

Figure 5-13. Asynchronous Data Structure Linkages 

5·40 2270510·9701 



Writing a DSR 

5.7 HSR COMMON SUBROUTINES 

The information required to interface to the HSR module is as follows: 

• Subroutine names 

• Functions provided by each subroutine 

• Subroutine calling conventions 

This information is discussed in the following paragraphs. 

The following list describes the HSR subroutine classes. Each class contains several subroutines. 
These subroutines provide one or more HSR functions. 

• Power-up initialization 

• Write output signal or function 

• Read input signal or function 

• Enable/disable status change notification 

• Output a character 

• Write operational parameters 

• Read operational parameters 

• Request timer interval notification 

• Controller interrupt decoding 

All HSR subroutines are called via branch and link (BL) instructions. Thus, they use the caller's 
workspace during execution. Parameters required by the subroutines are passed to the HSR in 
workspace registers. Information is returned to the caller in one of two ways. Data is returned to 
the caller in workspace registers. Other status information is returned by way of alternate subrou­
tine returns. The caller specifies alternate return addresses as operands of DATA assembler direc­
tives immediately following the BL subroutine call. The following shows an example of HSR 
alternate return addresses: 

BL @HSRSUB 
DATA ALT1 
DATAALT2 
**** 

SUBROUTINE CALL 
FI RST ALTERNATE RETU RN 
SECON D ALTERNATE RETU RN 
NORMAL RETURN (CODE) 

The caller execution resumes at one of the alternate return addresses or at the normal return 
address (the instruction following all alternate return DATA statements). The number of alternate 
returns.varles for different HSR subroutines. 

2270510·9701 5·41 



Writing a DSR 

The HSR subroutines follow some general register conventions. The subroutines normally use RO 
and R10 as working registers. These two registers are also used when parameters are passed to or 
from the HSR. Exceptions are noted in some of the HSR subroutine descriptions. In most cases, 
R7 is used as a pOinter to the PDT. R12 contains the TILINE or CRU base address of the controller 
or controller channel. Other register usage is documented with specific HSR subroutines. 

5.7.1 Power-Up Initialization 
This subroutine class allows the HSR to perform any initialization required before operation 
begins. The long distance buffer must be allocated before the HSR power-up subroutine is called. 

For the CI403 and C1404, the HSR is required to ensure that the controller has successfully exe­
cuted the self-test for each channel specified during system generation. For other controllers, the 
HSR may be required to build a software transmit FIFO in a long-distance memory buffer that is 
obtained by the operating system. 

The three subroutines that perform power-up initialization functions are as follows: HRESET, 
HSWPWR, and HMRST. 

The HRESET subroutine performs power-up initialization that must be performed for all I/O chan­
nels of the controller. This subroutine can be called once per channel for multiple channel con­
trollers. However, there is only one master reset of the controller for each power-up occurrence. 

The HSWPWR subroutine performs all channel-oriented initialization. The HSR data structures for 
the channel are initialized. Controller interrupts are enabled when the normal return is taken. ./A 

The HMRST subroutine performs the same initialization functions as the HRESET routine except 
that a master reset of the controller is unconditionally performed. This subroutine is provided so 
that diagnostic software can force a controller master reset for testing purposes. 

The TSR normally makes two calls to the HSR for power-up initialization. The HRESET subroutine 
is called first, followed by the HSWPWR subroutine. These two subroutines are called for each 
channel of the controller. The calling conventions are identical for each of the HSR power-up sub­
routines. If HPOWER is considered a synonym for any of the three power-up subroutine names, 
then the calling conventions for all HSR power-up subroutines are as follows: 

Calling convention: 

BL @HPOWER 
DATA XXXX 
**** 

5-42 

POWER UP FAILURE RETURN VECTOR 
NORMAL RETURN (CODE) 

2270510-9701 



Writing a DSR 

5.7.2 Write Output Signal or Function 
The subroutine names for setting output signals or functions to 1 (logic true) are of the form 
HSTxxx, where xxx specifies a signal or function. The subroutine names for resetting output sig­
nals or functions to 0 (logic false) are of the form HRTxxx, where xxx specifies a signal or function. 
The following list describes the output signals supported by HSRs: 

Subroutine 

HSTAL, HRTAL 
HSTDTR, HRTDTR 
HSTRTS, HRTRTS 
HSTSRS, HRTSRS 
HSTSRT, HRTSRT 

Signal 

AL - Analog Loopback (Signal) 
DTR - Data Terminal Ready (Signal) 
RTS - Request to Send (Signal) 
DSRS - Data Signal Rate Select (Signal) 
SRTS - Secondary Request to Send 

(or Reverse Channel Signal) 

The following list describes the output functions supported by HSRs. 

Subroutine 

HSTBIL, HRTBIL 
HSTCR, HRTCR 
HSTCTH,HRTCTH 
HSTRS, HRTRS 
HSTTB, HRTTB 
HSTUIL, HRTUIL 

Function 

BIL - Board Internal Loopback (Function) 
CR - Channel Reset (Function) 
CTH - Channel Transmitter Halt (Function) 
RS - Receiver Squelch (Function) 
TB - Set Transmit Break condition (Function) 
UIL - UART Internal Loopback (Function) 

The calling conventions for the HSTxxx and HRTxxx subroutines are identical. The following call­
ing convention uses the HSTxxx name as an example: 

Calling convention: 

BL @HSTxxx 
DATA VVVV 

WH ERE xxx IS DTR, RTS, ETC. 
SIGNAL NOT SUPPORTED RETURN VECTOR 
NORMAL EXIT (CODE) 

The following paragraphs describe each of the functions in detail. 

5.7.2.1 HSTBIL Subroutine. The Set Board Internal Loopback subroutine (HSTBIL) provides for 
setting a more general (controller or board) internal loopback mode than the UART internal loop­
back mode. None of the current asynchronous controllers support this second level of loopback. 

5.7.2.2 HSTCR Subroutine. The Set Channel Reset subroutine (HSTCR) performs a hardware 
reset of the channel. This does not disturb any other communication channels. The channel inter­
rupts are not enabled by this subroutine. The HRTCR subroutine enables interrupts and allows 
normal operation. The following example shows a typical sequence for TSR use of these 
subroutines: 

1. TSR issues an HSTCR call to quiet HSR activity on the channel. 

2. TSR issues an HSWPWR call to initialize the HSR data structures and status. 

2270510-9701 5-43 



Writing a DSR 

3. TSR initializes its channel data structures and status. 

4. TSR then issues an HRTCR call to begin normal operation. 

5.7.2.3 HSTCTH Subroutine. The Set Channel Transmitter Halt subroutine (HSTCTH) temporar­
ily suspends output of data to the communications line. Any data in the transmit FIFO is not trans­
mitted. The HRTCTH subroutine resumes transmission of data in the transmit FIFO. 

5.7.2.4 HSTRS Subroutine. The Set Receiver Squelch subroutine (HSTRS) enables half-duplex 
operation. The receiver squelch function disables reception of data during transmission. The 
HRTRS subroutine turns the receiver squelch off and allows full-duplex operation. 

5.7.2.5 HSTTB Subroutine. The Set Transmit Break subroutine (HSTTB) initiates the 
transmission of a break sequence (spacingllogic 0). This continues until stopped with the HRTTB 
subroutine. 

5.7.2.6 HSTUIL Subroutine. The Set UART Internal Loopback subroutine (HSTUIL) places the 
UART (communications chip) for the channel in loopback mode. In general, this causes the UART 
to return all transmitted data as received data on the same channel. Refer to UART documentation 
for more detailed information. The HRTUIL subroutine changes the UART from UART internal 
loopback to normal mode. 

5.7.3 Read Input Signal or Function 
This subroutine class allows reading controller input signals and HSR function states. The HSR ~ 
subroutine name is of the form HRDxxx, where xxx identifies a signal or function. The following 
list describes the input signals or function states that can be read: 

Subroutine 

HRDBIL 
HRDCR 
HRDCTH 
HRDCTS 
HRDDCD 
HRDDSR 
HRDRI 
HRDSCT 
HRDSDC 

HRDSSS 
HRDTB 
HRDUIL 

Calling Convention: 

5·44 

BL @HRDxxx 
DATA }} 
DATA YYYY 
DATA ZZZZ 

Signal/Function 

BIL - Board Internal Loopback (Signal) 
CR - Channel Reset (Function) 
CTH - Channel Transmission Halted (Function) 
CTS - Clear to Send (Signal) 
DCD - Data Carrier Detect (Signal) 
DSR - DataSet Ready (Signal) 
RI - Ring Indicator (Signal) 
SCTS - Secondary Clear to Send (Signal) 
SDCD - Secondary Data Carrier Detect 

(or Speed Indication Signal) 
SSS - Split Speed Supported (Function) 
TB - Transmit Break (Function) 
UIL - UART Internal Loopback (Signal) 

WH ERE xxx IS DSR, CTS, ETC. 
SIGNAL NOT SUPPORTED RETURN VECTOR 
CONTROLLER FAILURE RETURN VECTOR 
SIGNAL FALSE RETURN VECTOR 
SIGNAL TRUE RETURN (CODE) 

2270510-9701 



Writing a DSR 

5.7.4 Enable/Disable Status Change Notification 
This subroutine class provides a mechanism for the ISR (and therefore, indirectly the TSR) to 
receive status change notification from the HSR. There are subroutines to enable notification and 
to disable notification. Once enabled, most of the signals or functions that are supported remain 
enabled until explicitly disabled. 

The Transmit Shift Register Empty (TSRE) function is an exception to this rule. If the HSR makes a 
TSRE status notification, it automatically disables further notification for this same condition. 
The TSRE function must be enabled with anotherHDSTSR call to the HSR if subsequent notifica­
tion is desired. Refer to the HSR interrupt decoder description for more details about the method 
of notification. 

Notification is made when the signal changes from 0 to 1 or from 1 to 0 for the first five signals. 
Some controllers notify only on the ring signal changing from 0 to 1. The TSRE notification is 
made only when the condition occurs. 

The subroutine names for enabling status change notification are of the form HESxxx, where xxx 
specifies a Signal or function. The subroutine names for disabling status change notification are 
of the form HDSxxx, where xxx specifies a signal or function. The following list describes the noti­
fication conditions that the HSR supports: 

Subroutine 

HESCTS, HDSCTS 
HESDCD, HDSDCD 
HESDSR, HDSDSR 
HESRI, HDSRI 
HESSCT, HDSSCT 
HESSDC, HDSSDC 
HESTSR, HDSTSR 

Status Change Notification 

CTS - Clear to Send 
DCD - Data Carrier Detect 
DSR - Data Set Ready 
RI - Ring Indicator 
SCTS - Secondary Clear to Send 
SDCD - Secondary Data Carrier Detect 
TSRE - Transmit Shift Register Empty 

The calling conventions for the HESxxx and HDSxxx subroutines are identical. The following call­
ing convention uses the H ESxxx name as an example: 

Calling Convention: 

BL @HESxxx 
DATA VVVV 

2270510·970,1 

WHERE'xxx IS DSR, RI, ETC. 
,NOTSUPPORTED RETURN VECTOR 
NORMAL 'RETURN (CODE) 

5·45 



Writing a DSR 

5.7.5 Output a Character 
This HSR subroutine accepts characters to be output on the communications channel. The 
subroutine provides a character interface to the output channel (that is, only one character is 
passed to the HSR for each HOUTPx subroutine call). In all cases, the output data is stored in a 
transmit FIFO before transmission on the communications line. For buffered controllers, the FIFO 
is on the hardware controller. For non-buffered controllers, the FIFO is a software data structure 
that the HSR manages. An alternate (character not output) return from the HOUTPx routine is 
taken if the FIFO becomes full. The caller is responsible for saving the data character. The HSR 
notifies the ISR when the transmit FIFO is empty. This notification takes place as a transmit 
interrupt exit from the HSR interrupt decoder subroutine. This notification causes the output data 
to flow to the HSR again. Refer to the HSR interrupt decoder subroutine description for more 
details. 

The output character subroutines are HOUTP4 and HOUTP7. The only difference in these two sub­
routines is that workspace register R4 contains the PDT pOinter for the HOUTP4 subroutine and 
R7 contains the PDT pOinter for the HOUTP7 subroutine. 

Calling Convention: 

BL @HOUTPx x = 41F R41S PDT POINTER 
x = 71F R71S PDT POINTER 

DATA XXXX 

where: 

R7 or R4 
R5 

Volatile Registers: 

ROand R5 

CHARACTER NOT OUTPUT - RETURN VECTOR 
NORMAL (CHARACTER OUTPUT) RETURN 

contains the pOinter to the PDT. 
is the output character, left byte. 

R5 preserved for character not output 

5.7.6 Write Operational Parameters 
The following list describes the operational parameters that the HSRs support. 

• Baud rate selection - The transmit baud rate and the receive baud rate are specified in 
the most significant bit (MSB) and least significant bit (LSB) of RO; respectively. The 
MSB and LSB must be identical for controllers not supporting dual speeds. 

• Data format: 

Parity selection: even, odd,mark, space, or none 

Character length selection: 5, 6, 7, or 8 bit data 

Stop bit selection: 1, 1.5,2 stop bits 

)-46 2270510·9701 



Writing a DSR 

The write parameters subroutines are Set Channel Speed (Baud Rate) and Set Data Character 
Format. The calling conventions for these two subroutines are very similar. The only difference is 
the parameter information passed in RO. 

5.7.6.1 Set Channel Speed (Baud Rate). This subroutine specifies the transmit and receive 
rates for the channel. The transmit and receive rates may differ only when dual rates are 
supported. 

Calling Convention: 

BL @HSPSPD SET CHANNEL SPEED 
DATA VVVV PARAMETER NOT SUPPORTED RETURN VECTOR 

NORMAL RETURN (CODE) 

where: 

RO MSB contains the transmit rate code; 
LSB contains the receive rate code. 
(Refer to Table 5-4.) 

Table 5-4. HSR Baud Rate Codes 

2270510-9701 

Speed Code 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
00 
OE 
OF 
10 

11 through FF 

Baud Rate 

50 baud 
75 baud 

110 baud 
134.5 baud 

150 baud 
200 baud 
300 baud 
600 baud 

1,200 baud 
1,800 baud 
2,400 baud 
3,600 baud 
4,800 baud 
7,200 baud 
9,600 baud 

14,400 baud 
19,200 baud 

Reserved 

5-47 



Writing a DSR 

5.7.6.2 Set Data Character Format. This subroutine sets the character length, parity selection, 
and the number of stop bits for data characters. 

Calling Convention: 

BL @HSPPSL 
DATA VVVV 

where: 

SET DATA CHARACTER FORMAT PARAMETERS 
PARAMETER NOT SUPPORTED RETURN VECTOR 
NORMAL RETURN (CODE) 

RO contains the parameter information in the following format: 

Bit 

0-1 
2-3 

4 

5-7 
8-9 

10-11 

12-15 

Contents 

Reserved 
Parity selection 
00 = odd parity 
01 = even parity 
10 = mark parity 
11 = space parity 
Parity enable 
00 = not enabled 
01 = enabled 
Reserved 
Number of stop bits 
00 = 1 stop bit 
01 = 1.5 stop bits 
10 = reserved 
11 = 2 stop bits 
Data character length 
00 = 5 bit character 
01 = 6 bit character 
10 = 7 bit character 
11 = 8 bit character 
Reserved 

5.7.7 Read Operational Parameters and Information 
This class of subroutines allows the following operational parameter values to be read from the 
HSR: 

5·48 

Subroutine 

HRPDAT 
HRPPSL 

HRPSPD 
HRPTYP 

Operational Parameter Value 

HSR module revision level 
Data format: 
Parity selection: even, odd, mark, space, or none 
Character length selection 
Stop bit selection 
Baud rate 
Controller type ID 

2270510·9701 



Writing a DSR 

The parameter information is returned in RO of the caller's workspace. For the HRPSPD and 
HRPPSL subroutines, the format of the information in RO is identical to the format in the HSPSPD 
and HSPPSL subroutines, respectively. 

Calling Convention: 

BL @HRPxxx WHERE xxx IS SPD OR PSL 
RETURN 

The HRPDAT subroutine returns the current revision level of the HSR software module in RO. The 
revision level is a hexadecimal number starting at 0 for the initial level and incrementing by one for 
each revision. The HRPTYP subroutine returns a code right justified in RO that identifies the con­
troller type. Table 5-5 lists controller type codes. 

Table 5·5. Controller Type Codes 

Code 

>0001 
>0006 
>0007 
>0008 
>0009 
>OOOA 
>0023 
>0024 
>0030 

5.7.8 Request Time Interval Notification 

Controller 

CI401 (previously COM M I/F) 
Business System 300 internal 9902 port 
990/10A 9902 port 
CI402 
CI421 9902 port 
CI422 
CI403 
CI404 
CI421 9903 port 

This subroutine (HTIMER) requests notification after a specified time interval. You specify the 
time interval as a multiple of 250-millisecond periods. The HSR interrupt decoder performs the 
notification by taking the timer interrupt vector return to the ISR. Refer to the discussion of the 
HSR interrupt decoder for more details. Timer notification is disabled by specifying a zero as the 
number of 250 millisecond intervals (RO = 0). There is not a "not supported" exit provided for this 
subroutine. 

Calling Convention: 

BL @HTIMER 

where: 

RO specifies the number of 250-millisecond intervals. 

2270510-9701 5·49 



Writing a DSR 

5.7.9 Controller Interrupt Decoder 
The ISR calls this subroutine (HNOTIF) to perform controller interrupt decoding. The subroutine 
executes in the DSR interrupt workspace and with interrupts masked to the interrupt level of the 
controller channel. The ISR provides several return vector addresses via DATA directives immedi­
ately following the call. A return vector is provided for each interrupt type possible from the con­
troller. If the subroutine finds no controller interrupt pending, the return is to the operating system 
interrupt decoder rather than the caller. 

Calling Convention: 

BL 
DATA 
DATA 
DATA 
DATA 
DATA 

@HNOTIF 
xxx X 
yyyy 
ZZZZ 
AAAA 
BBBB 

Receive Interrupt Return: 

RECEIVE INTERRUPT VECTOR 
TRANSMIT INTERRUPT VECTOR 
SIGNAL OR FUNCTION CHANGE VECTOR 
TIMER INTERRUPT VECTOR 
ILLEGALIINVALID INTERRUPT VECTOR 

R10 Received character left byte 
Line status in right byte 

Transmit Interrupt Return: 

Bit 

0-2 
3 
4 
5 
6 
7 

Meaning 

Reserved 
Break Received 
Framing Error 
Parity Error 
Overrun Error 
Reserved 

This return is taken when the transmit FIFO empties. 

5·50 2270510-9701 



Writing a DSR 

Signal or Function Change Return: 

5.8 

R10 Current signal or function states are returned in bits 0 - 3 and bits 8 - 10. 
Bits 4 -7 and 12 -15 are delta flags that indicate which signals or func­
tions changed. 

Bit Contents 

0 DCD 
1 RI 
2 DSR 
3 CTS 

4 Delta DCD 
5 Delta RI 
6 Delta DSR 
7 DeltaCTS 

8 SCTS 
9 SDCD 

10 TSRE 
11 Reserved 

12 DeltaSCTS 
13 DeltaSDCD 
14 Delta TSRE 
15 Reserved 

DSR INSTALLATION 

After writing the DSR, you must assemble and link edit it. Assemble the DSR by executing the 
Execute Macro Assembler (XMA) SCI command and making the correct responses. 

After you assemble the DSR, you must link it with all of the required support subroutines. This is 
required with each release of the operating system, not with each system generation between 
releases. The following examp~e shows a typical link control stream used to link a DSR: 

NOPAGE 
ERROR 
PROCEDURE 
DUMMY 
INCLUDE 
PHASE 
INCLUDE 
INCLUDE 
INCLUDE 
END 

DUM ROOT 

<volume>.S$OSLINK.S$SGU$.DUMROOT 
O,DSRname,PROG >COOO 
dsr object pathname 
<volume>.S$OSLINK.IOMGR.OBJECT.IONRCD 
(any other support routines> 

Note: < volume> refers to the volume name of the data disk used during system generation. 

2270510-9701 5·51 



Writing a DSR 

The Execute Link Editor (XLE) SCI command executes the Link Editor. The linked output access 
name should be < volume> .S$OSLlNK.S$SGU$.SO.OSRxxxxx, where xxxxx represents the spe­
cial device name defined at system generation. Later, the system generation utility will expect the 
DSR to be found in this file. 

Special extensions to the PDT (OIBs) must be in the file <volume> 
.S$OSLlNK.S$SGU$.SO.OIBxxyy, where xx is the first two characters of the special device name 
specified during system generation (ST if the device has a keyboard), and yy is the device 10 gener­
ated by the system generation utility (for example, 03 in ST03). 

If you build an asynchronous OSR that is to be linked with an HSR module that is supplied by TI, 
you must first include the TSR module (which contains the OSR entry pOints). The following is an 
example of a link control stream: 

NOPAGE 
ERROR 
PROCEDURE 
DUMMY 
INCLUDE 
PHASE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
END 

DUMROOT 

<volume>.S$OSLINK.S$SGU$.DUMROOT 
O,DSRname,PROG >COOO 
tsr object pathname 
<volume>.S$OSLINK.DEVDSR.OBJECT.HSRname 
<volume>.S$OSLINK.IOMGR.OBJECT.IONRCD 
(any other support routines) 

Note: < volume> refers to the volume name of the data disk used during system generation. 

5.9 DEBUGGING TECHNIQUES 

The best debugging technique is to produce a well·documented OSR. This makes it easier to 
locate errors and makes the coding clearer to others. In addilion to good documentation, 
thorough code reading with colleagues helps reduce errors. 

Missing indexing registers are typical of the errors found through code reading. When the'struc­
ture begins with IRBxxx, R1 should be the index register. When the structure begins with POTxxx 
or is an extension to the PDT, R4 should be the index register. 

The next step is debugging the OSR on the computer in a restricted environment. The JMP $ 
instruction can be placed at strategic points within the OSR. When the computer executes one of 
these instructions, the PC remains at that location until the JMP $ instruction is removed. This 
enables the programmer to use the computer front panel to examine OSR behavior and data used 
by the OSR. The SIE mode can be used if the value of ST is changed to xxx2. 

5.10 DSR EXAMPLE 

Figure 5-14 shows the source code listing of a OSR for a line printer. This listing shows a typical 
application of the guidelines for writing a OSR. You may adapt this OSR to nonsupported devices. 

5·52 2270510-9701 



~ 

SDSMAC 3.5.0 
ACCESS NAMES TABLE 
SOURCE ACCESS NAME= 
OBJECT ACCESS NAME= 
LISTING ACCESS NAME= 
ERROR ACCESS NAME= 

82.130 16:53:03 FRIDAY, JUN 17, 1983. 

DS01.DSRLP 
DUMY 
DS01.LPLST 

PAGE 0001 

OPTIONS= 
MACRO LIBRARY PATHNAME= 

RXREF 

LINE KEY NAME 
DSC.CONDASM.OS 0002 A 

0140 

0141 

0149 

0150 

0157 

0256 

EOO07 

EOO08 

EOO09 

E0010 

0257 

DSRLP 
DSRLP 

0002 
0006 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0030 
0043 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 

LI 

LI 

B 

C 

o 

E 

=>. SSOS LI NK. CONDASM. OS 
DSC.MACROS.TEMPLATE 

=>.SSOSLINK.MACROS.TEMPLATE 
DSC.MACROS.FUNC 

=>.SSOSLINK.MACROS.FUNC 
DSC.TEMPLATE.ATABLE.IRB 

=>.SSOSLINK.TEMPLATE.ATABLE.IRB 
DSC.TEMPLATE.ATABLE.PDT 

=>.SSOSLINK.TEMPLATE.ATABLE.PDT 
DSC.TEMPLATE.ATABLE.LPD 

=>.SSOSLINK.TEMPLATE.ATABLE.LPD 
DSC.TEMPLATE.COMMON.NFERR1 

=>;SSOSLINK.TEMPLATE.COMMON.NFERR1 
DSC.TEMPLATE.COMMON.NFEROO 

=>.SSOSLINK.TEMPLATE.COMMON.NFEROO 
DSC.TEMPLATE.COMMON.NFER10 

=>.SSOSLINK.TEMPLATE.COMMON.NFER10 
DSC.TEMPLATE.COMMON.NFER20 

=>.SSOSLINK.TEMPLATE.COMMON.NFER20 
DSC.TEMPLATE.COMMON.NFER30 

=>.SSOSLINK.TEMPLATE.COMMON.NFER30 
DSC.TEMPLATE.COMMON.NFWORD 

=>.SSOSLINK.TEMPLATE.COMMON.NFWORD 
SDSMAC 3.5.0 82.130 16:53:03 FRIDAY,JUN 

- DNOS LINE PRINTER DSR 

G 

H 

17, 1983. 
PAGE 0002 

COpy DSC.CONDASM.OS 
lOT IDSRLpl 

* * (C) COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, 1979. 
* ALL RIGHTS RESERVED. PROPERTY OF TEXAS INSTRUMENTS 
* INCORPORATED. RESTRICTED RIGHTS - use, DUPLICATION 
* OR DISCLOSURE IS SUBJECT TO RESTRICtIOHS SET FORTH 
* IN TIIS PROGRAM LICENSE AGREEMENT AND ASSOCIATED 
* DOCUMENTATION. 
* * ROUTINE NAME: DSRLP 
* * ABSTRACT: 
* FOR LPDIFF => 0 
* FOR LPDIFF < 0 
* THIS IS THE HANDLER FOR I/O TO VARIOUS MODELS 
* OF THE CENTRONICS AND TI LINE PRINTERS, THAT 
* USE AN RS-232-C INTERFACE. 
* * ENTRY: 
* 
* * EX IT: 
* * ERRORS: 
* 
* 
* 

ENTERED VIA THE OPERATING SYSTEM THROUGH 
DIFFERENT ENTRY POINTS. 

VIA AN RTWP 

>02 - ILLEGAL OPCODE 
>04 - POWER LOST 
>06 - REQUEST ABORTED 

* REVISION: 07/18/80 - ORIGINAL 
* <REVISION DATE: LATEST LAST> ~ <NATURE> 
* * REVISION 02/04/81 - HANDLE "READ ONLY" 840,820 TERMINALS. 
* MAKE THIS DSR SMART ENOUGH TO RECOGNIZE 
* DC3 (BUSY) & DC1 (READY) SIGNALS. 
* 01 07/30/81 -DNOS 1.1 
* ADD 9902 CONTROLLER COMMUNICATION 
* 

Figure 5·14. DSR listing Example (Sheet 1 of 16) 

Writing a DSR 

2270510-9701 5.53 



Writing a DSR 

0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 

* 09/14/81 ~ ADD CONDITIONAL ASSEMBLIES FOR DX10 
* CODE. 
* 02 01/6/82 - CHANGE 9902 POWER UP TO SET 9902 FOR 
* A 2.5 MHz CLK 
* 03 02112182 - FIX ALGORITHM AS TO WHEN IT IS SAFE 
* TO CALL ENDRCD. 
* 04 03/22182 - DON'T DO LINE FEED ON OPEN 
* 05 03/22182 - BE SURE EOR FLAG IS RESET WHEN A FORCE 
* ENDRCD EXIT IS MADE. 
* 06 03/23/82 - ABORT PROCESS SHOULD SET EOR FLAG IF 
* 07 10/01/82 - ADD 9902 2-CHANNEL MUX SUPPORT 
* PDTSRB IS NON-ZERO. 
* 09 02125/83 - CORRECT SLOW DOWN OF PARALLEL INTERFAC 
* PRINTERS. 

* 10 03/22183 - 9902 GETS PROGRAMMABLE BAUD RATE 
* 11 03/28/83 - F IX BUGS 
* 12 04/08/83 - ABORT I/O CODE HAS BUGS 
* 13 04/21/83 - READST RETURNS STATISTICS 
* 14 06/03/83 - Fi x lower case on parallel printer bug 
* * ENVIRONMENT: 990/10 ASSEMBLER 
* CALLABLE FROM ASSEMBLER 
* TABLE SEGMENTS MAPPED IN WHEN ENTERED: 

DSRLP SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
DSRLP - DNOS LINE PRINTER DSR PAGE 0003 

0103 
0104 
0105 
0106 
0107 
0118 
0119 
0120 
0135 
0136 
0140 
0141 
0145 
0146 
0147 
0150 
0152 
0153 
0154 
0155 
0159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 

DSRLP 
DSRLP 

0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 

0066 

* 
* 
* 
* 
* 

<STA, BTA, DSR CODE> 
TABLE SEGMENTS MAPPED IN DURING ROUTINE: 

<NONE> 

* SUBROUTINE REFS: 

* 

REF ENDRCD 
REF BRSTAT 

END-OF-RECORD ROUTINE 
BRANCH TABLE PROCESSOR 

* MACROS TO BE USED: 

* 

LIBIN DSC.MACROS.TEMPLATE 
LIBIN DSC.MACROS.FUNC 

* EQUATES: 

COpy 
ASMIF C$OS=C$DPOS = DNOS ONLY ================== 
DSC.TEMPLATE.ATABLE.PDT 

* COpy DSC.TEMPLATE.ATABLE.IRB 
* COPY DSC.TEMPLATE.ATABLE.PDT 
LPDBGN EQU PDTSIZ 
* COpy DSC.TEMPLATE.ATABLE.LPD 

* 
* 
* 
LPDQCC 
LPDQIP 
LPDQOP 
LPDIFF 

ASMEND ========================================== 
ASMIF C$OS=C$DX10 = DX10 ONLY =================== 
UNL 

COpy DSC.SYSTEM.TABLES.DSRPDT 
COPY DSC.SYSTEM.TABLES.LPD 
COPY DSC.SYSTEM.TABLES.DSRIRB 

LIST 
COpy DSC.SYSTEM.TABLES.DSRPDT 
COPY DSC.SYSTEM.TABLES.LPD 
COpy DSC.SYSTEM.TABLES.DSRPDT 
EQU LPDCC 
EQU LPDIN 
EQU LPDOUT 
EQU LPDDMF 

ASMEND ========================================== 
SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 

- DNOS LINE PRINTER DSR PAGE 0004 

0008 
0009 

* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

* EIA CRU INPUT BIT DEFINITIONS 
* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
* >0 INPUT DATA (LSB) 
* >7 INPUT DATA (MSB) 
EIAXMT EQU >8 TRANSMIT IN PROGRESS 
EIAERR EQU >9 TIMING ERROR 
* >A REVERSE CHANNEL RECV 
* >B WRITE REQUEST 
* >C READ REQUEST 

(O=NO; 1 =YES) 
(O=NO; 1 =YES) 
(O=NO; 1=YES) 
(O=NO; 1=YES) 
(O=NO; 1 =YES) 

Figure 5·14. DSR Listing Example (Sheet 2 of 16) 

5·54 2270510·9701 



0186 
0187 
0188 
0189 
0190 
0191 
0192 
0193 
0194 
0195 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 

DSRLP 
DSRLP 

0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 
0248 
0252 
0253 
0254 

E0008 
E0009 
E0010 

0257 

0000 EIADCD EQU >0 
OOOE EIADSR EQU >E 

DATA CARRIER DETECT 
DATA SET READY 
MODULE INTERRUPT 

(O=NO 
(O=NO 
(O=NO 

1 =YES) 
1=YES) 
1=YES) 

0007 

0009 
OOOA 
OOOB 
OOOC 
0000 
OOOE 
OOOF 

0007 
0008 
0009 

0000 
OOOE 
OOOF 

0022 
0020 
001B 
0016 
0010 

* >F 
* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+ 
* EIA CRU OUTPUT DEFINITIONS 
* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
* >0 
EIAPAR EQU >7 
* >8 
EIADTR EQU >9 
EIARTS EQU >A 
EIAWRQ EQU >B 
EIARRQ EQU >C 
EIANSF EQU >0 
EIAIEN EQU >E 
EIADIM EQU >F 

DATA TO MODULE (LSB) 
DATA TO MODULE (MSB, PARITY BIT) 
* NOT USED * 
DATA TERMINAL READY (O=OFFi 1=ON) 
REQUEST TO SEND (O=OFFi 1=ON) 
WRITE REQUEST (CLEAR) (0/1 CLEARS ) 
READ REQUEST (CLEAR) (0/1 CLEARS) 
NEW STATUS FLAG(CLEAR)(0/1 CLEARS) 
INTERRUPT ENABLE (O=OFFi 1=ON) 
DIAGNOSTICS MODE (O=OFFi 1=ON) 

* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

* 
* 
* 
* * -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
* DATA MODULE(DM) CRU OUTPUT BIT DEFINITIONS 
* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
* >0 
* >6 
DMSTR EQU >7 
DMSTRJ EQU >8 
DMVFC EQU >9 
* >A 
* >B 
* >C 
DMDMD 
DMINT 
DMCIN 

EQU >0 
EQU >E 
EQU >F 

DATA TO MODULE (LSB) 
DATA TO MODULE (MSB) 
DATA STROBE (ASCII) 
DATA STROBE (JISCII) 
VERTICAL FROMS CONTROL 

DEMAND FOR A CHARACTER 
INTERRUPT ENABLE BIT 
INTERRUPT ACKNOWLEDGE BIT 

* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
* 9902 CRU INPUT BIT DEFINITIONS 
* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

* SECDCD EQU >22 
DCD902 EQU >20 
DSR902 EQU >1B 
XBRE EQU >16 
RRQ902 EQU >10 

* 

SECONDARY DATA CARRIER DETECT 
DATA CARRIER DETECT 
DATA SET READY 
XMIT BUFR TEGISTER EMPTY 
READ REQUEST INTERRUPT 

* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
* 9902 CRU OUTPUT BIT DEFINITIONS 
* -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

* 

R01 
R01 

R01 
R01 
R01 
R01 
R01 

0027 ABLTRS EQU >27 
SDSMAC 3.5.0 82.130 

ENABLE TRANSMISSIOS 
16:53:03 FRIDAY, JUN 17, 1983. 

R01 
R01 
R01 
R01 
R01 

- DNOS LINE PRINTER DSR 
0026 INT902 EQU >26 
0024 CLOCK EQU >24 

* 
0022 SECRTS EQU >22 
0020 DTR902 EQU >20 
001F RESET EQU >1F 
0015 DSCENB EQU >15 

* 0013 XBIENB EQU >13 
0012 RIENB EQU >12 

* 0010 RTS902 EQU >10 

INTERRUPT ENABLE 
1 = 2MHZ 
o = 4MHZ 
SECONDARY RTS 
DATA TERMINAL READY 
RESET CONTROLLER 
DATA SET STATUS CHANGE 

INTERRUPT ENABLED 
XMIT BUFR REGISTER EMPTY 
RCV'R INT ENABLE 

INTERRUPT ENABLED 
REQUEST TO SEND ON 

PAGE 

* -----------------------------------------------------
0003 PR9902 EQU 3 LPD FLAG 

* BIT 3 =1 -> 9902 CONTROLLED 
* GLOBAL DATA: 

COpy DSC.TEMPLATE.COMMON.NFER10 
COpy DSC.TEMPLATE.COMMON.NFER20 
COpy DSC.TEMPLATE.COMMON.NFER30 
COpy DSC.TEMPLATE.COMMON.NFWORD 

0005 
R01 
R06 
R06 
R01 
R01 
R01 
R01 
R01 
R01 

R01 
R01 
R01 
R01= 
R01= 

Figure 5·14. DSR Listing Example (Sheet 3 of 16) 

Writing a DSR 

2270510·9701 5·55 



Writing a DSR 

0259 
0260 
0261 
0262 
0263 
0264 

* 
* 

* 

COpy DSC.TEMPLATE.COMMON.NFERR1 
COPY DSC.TEMPLATE.COMMON.NFWORD 

ASMEND == •• ======= ••••• == •••••••• ===========.==== 
* NOTES: 
* 

DSRLP 
DSRLP 

0266 
0267 
0268 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 
0280 

SDSMAC 3.5.0 82.130 
- DNOS LINE PRINTER DSR 

16:53:03 FRIDAY, JUN 17,1983. 
PAGE 0006 

0000 
0002 

0281 0004 
0006 

0282 0008 
OOOA 

0283 OOOC 
OOOE 

0284 0010 
0012 

0307 0014 
0308 0016 

0018 

0460 
02C4' 
0460 
02CA' 
0460 
033C' 
0460 
0326' 
0460 
0326' 
04C5 
0207 
0072' 

* * ROUTINE NAME: DSRLP 
* * ABSTRACT: 
* 
* 
* 
* 
* 
* 
* 

B 

B 

B 

B 

B 

CLR 
LI 

THIS IS THE MAIN ENTRY POINT INTO THE DSR FOR 
THE HARDWARE INTERRUPT (LPINT), SYSTEM INTERRUPT 
(LPINT), POWER RESTORE (PWRON), ABORT 1/0 
ROUTINE, (ABORT), REQUEST TIME OUT (ABORT), AND 
REQUEST PROCESSING. CERTAIN INITIALIZATION IS 
PERFORMED PRIOR TO PASSING CONTROL TO THE OP 
CODE HANDLING ROUTINE VIA "BRSTAT". 

iLPINT 

iLPSINT 

iPWRON 

iABORT 

iABORT 

R5 
R7,PAGE1 

DSR HARDWARE INTERRUPT 

DSR SOFTWARE INTERRUPT 

DSR POWER UP 

DSR ABORT 

DSR TIME OUT 

INITIALIZE COUNTER 
INITIALIZE BUFFER 

DSRLP 
DSRLP 

0310 

SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
- DNOS LINE PRINTER DSR PAGE 0007 

POINT TO STATISTICS TABLE 001A 020A LI R10,STAB 

0311 

0312 
0313 
0314 
0315 

001C 004E' 
001E 06AO 
0020 0000 

0316 0022 0013 
0317 0024 014E' 
0318 0026 007C' 
0319 0028 007A' 
0320 002A 007E' 
0321 002C 0080' 
0322 002E 007E' 
0323 0030 008A' 
0324 0032 014E' 
0325 0034 014E' 
0326 0036 014E' 
0327 0038 014E' 
0328 003A 014E' 
0329 003C 0062' 
0330 003E 0062' 
0331 0040 007E' 
0332 0042 007E' 
0333 0044 014E' 
0334 0046 014E' 
0335 0048 014E' 
0336 004A 014E' 
0337 004C 013C' 
0338 0013 
0339 004E 48 
0340 004F 48 
0341 0050 48 
0342 0051 48 
0343 0052 48 
0344 0053 00 
0345 0054 00 

BL iBRSTAT DECODE OPCODE AND BRANCH 

*------
* THE STATISTICS TABLE MUST BE MODIFIED IF THE OPCODE 
* TABLE IS MODIFIED. 
*------
BASE 

MAX COD 
STAB 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
EQU 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 

MAXCOD 
IlLOP 
OPEN 
CLOSE 
REWIND 
OPNRWD 
REWIND 
READST 
EXIT1 
EXIT1 
ILLOP 
ILLOP 
IlLOP 
WRITE 
WRITE 
REWIND 
REWIND 
EXIT1 
ILLOP 
ILLOP 
ILLOP 
DUMP 
(S-BASE-6)/2 
PDTMC 
PDTMC 
PDTMC 
PDTMC 
PDTMC 
o 
o 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F, 
10 
11 
12 
13 

o 
1 
2 
3 
4 
5 
6 

MAX OP CODE 
ILLEGAL OP RETURN 

OPEN 
CLOSE 
CLOSE EOF 
OPEN REWIND 
CLOSE UNLOAD 
READ STATUS 
FWD SPACE- IGNORE 
BAK SPACE - IGNORE 
UNSED - ILLEGAL 
READ ASCII - ILLEGAL 
READ BINARY- ILLEGAL 
WRITE ASCII 
WRITE DIRECT 
WRITE EOF 
REWIND 
UNLOAD - IGNORE 
UNUSED - ILLEGAL 
UNUSED - ILLEGAL 
UNUSED - ILLEGAL 
DUMP STATISTICS 

OPEN 
CLOSE 
CLOSE EOF 
OPEN REWIND 
CLOSE UNLOAD 
READ STATUS 
FWD SPACE 

R05 
R05 

R05 

Figure 5·14. DSR Listing Example (Sheet 4 of 16) 

5·56 2270510-9701 



0346 0055 
0347 0056 
0348 0057 
0349 0058 
0350 0059 
0351 005A 
0352 005B 
0353 005C 
0354 0050 
0355 005E 
0356 005F 
0357 0060 
0358 0061 

00 BYTE 0 7 BAK SPACE 
00 BYTE 0 8 * UNUSED * 
44 BYTE PDTRC 9 READ ASCII 
44 BYTE PDTRC A READ DIRECT 
46 BYTE PDTWC B WRITE ASCII 
46 BYTE PDTWC C WRITE DIRECT 
46 BYTE PDTWC 0 WRITE EOF 
48 BYTE PDTMC E REWIND 
00 BYTE 0 F UNLOAD 
00 BYTE 0 10 * UNUSED * 
00 BYTE 0 11 * UNUSED * 
00 BYTE 0 12 * UNUSED * 
00 BYTE 0 13 DUMP STATISTICS 

SDSMAC 3.5.0 82.130 16~53:03 FRIDAY, JUN 17, 1983. DSRLP 
DSRLP 

0360 
0361 

- DNOS LINE PRINTER DSR PAGE 0008 

0362 
0363 
0364 
0365 
0366 
0367 
0368 
0369 
0370 
0371 
0372 
0373 0062 

0064 
0374 0066 

0068 
0375 006A 

006C 
006E 
0070 

C1 E1 
0006 
C161 
OOOA 
C845 
0008 
136F 
1008 

0072 ODOC 
0074 ODOC 
0076 0000 
0078 0000 

0376 
0377 
0378 
0379 
0380 
0381 
0382 
0383 
0384 
0385 
0386 
0387 
0388 

007A 05C7 
007C 05C7 
007E 05C7 
0080 05C5 
0082 0286 
0084 03AO' 

0389 0086 1378 
0390 0088 0380 
0391 
0392 008A 

008C 
0393 008E 

0090 
0394 0092 

0094 
0395 0096 

0098 
0396 009A 
0397 009C 

009E 
0398 OOAO 

00A2 
0399 00A4 

00A6 
0400 00A8 
0401 OOAA 

OOAC 
0402 OOAE 

OOBO 
0403 00B2 

C1 E1 
0006 
04E1 
OOOA 
0208 
OOFF 
06AO 
01 OC' 
04C8 
06AO 
010C' 
0208 
0100 
06AO 
01 OC' 
C20C 
06AO 
010C' 
0208 
FFFF 
06AO 

**0=0=0=0=0=0=0=0=0=0=0=0=0=0=.0.=0=0=0=0:0=0=0=0=0=0=0=0=0=0 
* ABSTRACT: 
* WRITE - GET WRITE PARAMETERS FROM THE BRB. 
* CLOSE - ISSUE LF TO DUMP BUFFER. 
* OPEN - PURGE BUFFER AND 00 CRLF. 
* REWIND - PAGE EJECT. 
* OPNRWD - PURGE BUFFER AND PAGE EJECT. 
* READST - RETURN PERTINANT INFORMATION 
* ILLOP - SET ERROR CODE AND RETURN. 
* EXIT - CALL ENDRCD IF ALLOWABLE THEN EXIT 
* EXIT1 - FORCE ENDRCD CALL AND EXIT R05 
* 
**0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0 
WRITE MOV ~IRBDBA(R1),R7 BUFFER'ADDRESS 

MOV 

MOV 

JEQ 
JMP 

iIRBOCC(R1> ,R5 

R5,iIRBICC(R1> 

EXIT1 
NEWREQ 

CHARACTER COUNT 

ACTUAL CHAR COUNT OUTPUT 

CHAR COUNT = O •• EXIT 

* 
PAGE1 DATA >ODOC 

DATA >ODOC 
DATA >0000 
DATA >0000 

NULL/FORM fEED 
PAGE2 
CR 
CRLF 
* 
CLOSE INCT R7 
OPEN INCt R7 
REWIND INC,T R7 
OPNRWD INCT R5 
NEWREQ CI R6,LPSPUR 

* 

J EQ 
RTWP 

TSTDSR 

CARRIAGE RETURN/FORM FEED 
NULL /CARRIAGE RETURN 
NULL/CARRIAGE RETURN 

R04 

SET BUFFER POINTER (CRLF) 
SET BUFFER POINTER (CR ) 
SET BUFFER POINTER (PAGE2) 
SET CHARACTER COUNT (PAGE1) 
IS AN INTERRUPT EXPECTED? 

NO, START OUTPUT 
YES, EXtr DSR 

READST MOV 

CLR 

6lIRBDBA(R1),R7 

lilIRBOCC(R1> 

GET BUFFER POINTER R13 

CleAR OUTPUT BUFFER LENGTH R13 

LI 

BL 

C LR 
BL 

LI 

BL 

MOV 
BL 

LI 

BL 

, R8,>00FF 

lilRFILL1 

R8 
6lRF ILL 1 

R8,>0100 

lilRFILL1 

R12,R8 
IilRFILL1 

R8,>FFFF 

6lRF ILL1 

RESERVED WORD 

CLEAR t4EXT WORD 

THIS IS A PRINTER DSR 

PUT WORD IN BUFFER 

CRU ADDRRESS GOES NEXT 
STORE WORD 

RESERVED FIELD 

R13 

R13 

R13 
R13 

R13 

R13 

R13 
R13 

R13 

R13 

Figure 5~14. DSR Listing Example (Sheet 5 of 16) 

Writing a DSR 

227051 0~97016·67 



Writing a DSR 

00B4 010C' 
0404 00B6 020S 

OOBS 0500 
LI RS,>0500 ASSUME EIA INTERFACE R13 

16:53:03 FRIDAY, JUN 17, 19S3. OSRLP SDSMAC 3.5.0 S2.130 
OSRLP - DNOS LINE PRINTER DSR 

0405 OOBA C164 MOV QLPDIFF(R4),R5 GET INTERFACE FLAGS 
PAGE 0009 

R13 
OOBC 0066 

0406 OOBE 2160 
OOCO 002S+ 

0407 00C2 1602 
040S 00C4 020S 

00C6 0600 
0409 oocS 
0419 OOCS 

OOCA 
0420 OOCC 
0424 OOCE 

OODO 
0425 00D2 

00D4 
0426 00D6 
0427 OODS 

OODA 
042S OODC 

OODE 
0429 OOEO 

00E2 
0430 00E4 

00E6 
0431 OOES 
0432 OOEA 

OOEC 
0433 OOEE 

OOFO 
0434 00F2 
0435 00F4 

00F6 
0436 OOFS 

OOFA 
0437 OOFC 

OOFE 
043S 0100 
0439 0102 

0104 
0440 0106 

010S 
010A 

2560 
0022+ 
1602 
020S 
SOOO 
06AO 
010C' 
04CS 
0205 
0006 
06AO 
0110' 
D224 
0076 
06AO 
010C' 
04CS 
0205 
OOOC 
06AO 
0110' 
C204 
022S 
0044 
0205 
0006 
06AO 
0126' 
04CS 
0205 
0004 
06AO 
0110' 
1021 

COC 

JNE 
LI 

QLPF902*2+MASTAB,R5 IS THIS A 9902 

RDST10 
RS,>0600 

IF NOT, SKIP 
SET UP FOR A 9902 INTRFCE 

RDST10 EVEN 
CZC QLPFIF*2+MASTAB,R5 IS THIS PARALLEL 

JNE 
LI 

RDST20 
RS,>SOOO 

IF NOT, SKIP 
SET UP FOR PARALLEL 

RDST20 BL 6lRF ILL 1 ONE WORD TO STORE 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

CLR 
LI 

BL 

RS 
R5,6 

QRFILL 

MOVB 6lLPDSPX(R4),RS 

BL 

CLR 
LI 

BL 

MOV 
AI 

LI 

BL 

CLR 
LI 

BL 

JMP 

QRFILL1 

RS 
R5,12 

QRF ILL 

R4,RS 
RS,PDTRC 

R5,6 

IilRCOPY 

RS 
R5,4 

QRF ILL 

EXIT1 

6 WORDS OF ZEROS 

GET XMIT BAUD RATE 

STORE IN OUTPUT BUFFER 

12 WORDS OF ZEROS 

GET PDT POINTER 
POINT AT READ COUNT 

6 BYTES TO COpy 

FINALLY, FOUR MORE ZEROS 

TO AID IN THE CONSTRUCTION OF THE STATUS RETURN 
BUFFER, WE HAVE RFILL AND RCOPY. R7 S JOB IS TO 
POINT AT THE OUTPUT BUFFER. 

RFILL - STORE RS INTO BUFFER R5 TIMES 
RCOPY - COpy R5 BYTES FROM *RS TO BUFFER 

SHOULD THE BUFFER BECOME FULL AT ANY TIME, RFILL 
AND RCOPY TAKE THE LIBERTY TO TERMINATE THE SVC 
AND RETURN WITH WHATEVER INFORMATION MADE IT INTO 
THE BUFFER. 

0441 
0442 
0443 
0444 
0445 
0446 
0447 
044S 
0449 
0450 
0451 
0452 
0453 010C 

010E 
0454 0110 

0205 RF ILL1 LI 
0001 

R5,1 FOR ONE WORD STORES 

SS61 RFILL 
OOOA 

6lIRBOCC(R1),QIRBICC(R1) BUFFER FULL 
0112 
0114 

0455 0116 
0456 011S 

OOOS 
1516 JGT EXIT 
1315 JEQ EXIT 

OSRLP SDSMAC 3.5.0 S2.130 16:53:03 

IF SO, BLOW THIS 
POPSICKLE STAND 

FRIDAY, JUN 17, 19S3. 

R13 

R13 
R13 

R13 
R13 

R13 
R13 

R13 

R13 
R13 

R13 

R13 

R13 

R13 
R13 

R13 

R13 
R13 

R13 

R13 

R13 
R13 

R13 

R03 
R13 
R13 
R13 
R13 
R13 
R13 
R13 
R13 
R13 
R13 
R13 
R13 

R13 

R13 
R13 

OSRLP - DNOS LINE PRINTER DSR PAGE 0010 
0457 011A CDCS MOV RS,*R7+ 
045S 011C 05E1 INCT QIRBOCC(R1) 

011E OOOA 
0459 0120 0605 
0460 0122 16F6 

DEC 
JNE 

R5 
RFILL 

ELSE, DO MORE FILLING R13 
KICK COUNTER HARD R13 

DONE YET ? 
IF NOT, HIT IT AGAIN 

R13 
R13 

Figure 5·14. DSR listing Example (Sheet 6 of 16) 

5·58 2270510-9701 



0461 0124 045B 
0462 
0463 0126 8861 

0128 OOOA 
012A 0008 
012C 150B 0464 

0465 
0466 
0467 

0468 
0469 
0470 
0471 

012E BOA 
0130 DDF8 
0132 05A1 
0134 OOOA 
0136 0605 
0138 16EB 
013A 045B 

* 
RCOPY 

* 

B *R11 ELSE, RETURN FOR MORE 

QIRBOCC(R1),QIRBICC(R1) BUFFER FULL ? 

JGT EXIT 
JEQ EXIT 
MOVB *R8+,*R7+ 
INC 6IIRBOCC(R1> 

DEC 
JNE 
B 

R5 
RFILL 
*R11 

IF SO, EXIT STAGE LEFT 
'(WE REALY NEED JGE) 

ELSE, PLAGIARIZE PDT 
KICK COUNTER 

DONE YET ? 
IF NOT, LOOP FOR MORE 
ELSE, RETURN TO MAIN CODE 

0472 013C 
013E 
0140 

0473 0142 

0920 DUMP MOVB 6IWDFFFF,QPDTERR(R4) 
0020+ 
0042 
1005 JMP EXIT1 

R13 
R13 
R13 

R13 
R13 
R13 
R13 

R13 
R13 
R13 
R13 

R03 
DSRLP 
DSRLP 

0475 
0476 
0477 
0478 
0479 
0480 
0481 
0482 
0483 
0484 
0485 
0486 
0487 
0488 
0489 
0490 
0491 
0492 
0496 

SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
- DNOS LINE PRINTER DSR PAGE 0011 

**** 
* 
* EXIT ROUTINE 
* 
**** 
***EXIT MOV R5,R5 HAVE OUTPUT CHARS BEEN BUFFERED? 
*** JNE DONE 
*** MOV QPDTSRB(R4),R1 IS THERE AN OUTSTANDING REQ? 
*** J EQ DONE 
*** MOV &'IIRBOC(R1),R11 YES, THIS AN OPEN/CLOSE? 

0144 C2E4 
0146 0066 

0497 0148 22EO 
014A 002A+ 

0498 014C 1605 

*** 
*** 
* 
*** 
*** 
*** 
*** 
* 
EXIT 

0499 * 

CI 
JLE 

MOV 
JNE 
MOV 
JNE 

MOV 

COC 

JNE 

R11,>04FF 
EXIT01 

END OF RECORD TO BE 
QIRBSOC(R1),R11 YES, ERRORRED OFF? 
EXIT1 
6ILPDQCC(R4),R11 NO, ALL CHARS BEEN 
DONE 

TURN OFF EOR FLAG. 
6ILPDIFF(R4),R11 

6ILPFEOR*2+MASTAB,R11 

DONE -NO. 
RESET EOR FLAG 

0500 014EIILLOP EQU $ 
0501 014E 4920 EXIT1 SZC 6ILPFEOR*2+MASTAB,6ILPDIFF(R4) 

0150 002A+ 

DONE 

OUTPUT? 

0152 0066 
0513 0154 06AO 

0156 0000 
BL 6IENDRCD YES, GO TO END-OF-RECORD ROUTINE 

0514 0158 0380 DONE RTWP 
DSRLP SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 

R03 
R03 
R03 
R03 
R03 
R03 
R03 
R03 
R03 

R03 
R03= 

R03= 

R03= 
R03= 
R05= 
R05= 

DSRLP - DNOS LINE PRINTER DSR PAGE 0012 
0516 **0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0 
0517 * ABSTRACT:· 
0518 * TSTWRQ - THIS ROUTINE IS ENTERED UPON RECEIPT OF AN 
0519 * INTERRUPT FROM AN EIA INTERFACED LP. WRITE 
0520 * REQUEST MUST GO HIGH BEFORE PRECEEDING TO 
0521 * OUTPUT ANOTHER CHARACTER. 
0522 * TSTDSR - THIS ROUTINE IS ENTERED UPON RECEIPT OF AN 
0523 * INTERRUPT FROM A OM INTERFACED LP, WRITE 
0524 * REQUEST FOR AN EIA I/FID LP HAS GONE HIGH, OR 
0525 * THIS IS THE INITIAL CHARACTER BEING OUTPUT TO 
0526 * THE LP. 
0527 * 
0528 **0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0 
0529 * 
0530 015A C2A4 TSTWRQ MOV 6ILPDIFF(R4),R10 

015C 0066 
0531 015E OA4A 
0532 0160 1706 
0533 0162 1F16 

SLA 
JNC 
TB 

R1 0, LPF902+1 
TSTW05 
XBRE 

IS THIS 9902 CONTROLLED 

-NO. JUMP 
XMIT BUFFER EMPTY? 

R01 

R01 
R01 
R01 

Figure 5·14. DSR Listing Example (Sheet 7 of 16) 

Writing a DSR 

2270510·9701 5·59 



Writing a DSR 

0534 0164 1309 
0535 0166 1013 
0536 0168 1010 
0537 016A 0460 

0538 
0539 
0540 
0541 

0542 
0543 

016C 0270' 

016E 1FOB 
0170 1302 
0172 0460 
0174 0270' 
0176 1EOB 

* 
TSTWOS 

TSTWR1 
* 

JEQ TSTDSR 
SBO XBlENB 
SBO RTS902 
B iTST480 

TB EIAWRQ 
JEQ TSTWR1 
B iTST480 

SBZ EIAWRQ 

-YES. 

-NO. EXIT •. WAIT 

WRITE REQUEST HIGH? 

NO, WAIT FOR IT 

YES, RESET IT 

R01 
R01 
R01 
R01 

R01 
MAR 
MAR 

0547 0178 
017A 

0558 017C 
017E 

C2A4 TSTDSR MOV SLPDQEPCR4),R10 GET QUEUE END POINTER 
006E 
C264 TSTRR9 MOV iLPDQIPCR4),R9 
006~ 

GET QUEUE INPUT POINTER 

DSRLP 
DSRLP 

0560 
0561 
0562 
0563 
0564 
0565 
0566 
0570 
0571 

SDSMAC 3.5.0 82.130 16:S3:03 FRIDAY, JUN 17, 1983. 
- DNOS LINE PRINTER DSR PAGE 0013 

0180 C145 
0182 130E 
0184 824A 
0186 1B01 
0188 625A 
018A 86A4 
018C 0068 

0582 018E 1308 
0583 0190 DEn 
0584 0192 05A4 

0194 0068 
0585 0196 0605 
0586 0198 15FS 
0587 
0588 
0589 

* 
* BUFFER THE DATA IF POSSIBLE 
* 

TST010 

TST020 

* 
* 
* 

MOV 
JEQ 
C 
JH 
S 
C 

JEQ 
MOVB 
INC 

DEC 
JGT 

RS,R5 
TST030 
R10,R9 
TST020 
*R10,R9 
iLPDQCCCR4),*R10 

TST030 
*R7+,*R9+ 
iLPDQCCCR4) 

RS 
TST010 

ANY DATA TO BUFFER? 
NO 

YES, AT END OF BUFFER? 
NO 
YES, PUT POINTER AT BEGINNING= 

IS THE BUFFER FULL? 

YES 
NO, MOVE NEXT CHAR TO BUFFER 

... COUNT IT 

... REDUCE INPUT COUNT 

ALL THE DATA IS BUFFERED 
SET END-OF-RECORD FLAG. 
ENDRCD CAN NOW BE CALLED. 

0593 019A 
019C 
019E 

E920 
002A+ 
0066 

SOC iLPFEOR*2+MASTAB,iLPDIFFCR4) 

R03 
R03 
R03 
R03= 

DSRLP SDSMAC 3.S.0 82.130 16:S3:03 FRIDAY, JUN 17, 1983. 
DSRLP - DNOS LINE PRINTER DSR 

0603 01AO C909 TST030 MOV R9,SLPDQIPCR4) 
01A2 006A 

0604 01A4 0206 
01A6 03AO' 

0605 01A8 C224 
01AA 0068 

0606 01AC 1602 
0607 01AE 0460 

01BO 0270' 

LI 

MOV 

JNE 
B 

R6,LPSPUR 

iLPDQCCCR4),R8 

TST03S 
iHST480 

0608 01B2 C224 TST035 MOV iLPDQOPCR4),R8 
01B4 006C 

0609 01B6 820A C 
0610 01B8 1B01 JH 
0614 01BA 621A S 
0623 01BC 0206 TST040 LI 

01BE 0178' 
0627 01CO C024 

0628 
0629 
0640 

01C2 0066 
01C4 150S 
01C6 1304 

* 

MOV 

JGT 
JEQ 

R10,R8 
TST040 
*R10,R8 
R6,TSTDSR 

iLPDIFFCR4),RO 

DMOUT 
DMOUT 

PAGE 0014 
SAVE QUEUE INPUT POINTER 

INITIALIZE INTERRUPT VECTOR 

ANY DATA TO OUTPUT? 

NO 
R01 

R01 

YES, GET QUEUE OUTPUT POINTER 

AT END OF BUFFER? 
NO 
YES, POINTER TO BEGINNING 

INITIALIZE INTERRUPT VECTOR 

OM INTERFACED LP? 

-YES. 
-YES. 

R01 
R01 

0641 01c8 2020 
01CA 0028+ 

COC iLPF902*2+MASTAB,RO R01 

0642 
0643 
0644 

* IS THIS 9902 CONTROLLED R01 

DSRLP 
DSRLP 

0646 
0647 

01CC 1328 JEQ OUT902 -YES. JUMP R01 
01CE 103C JMP EIAOUT -NO. MUST BE EIA R01 

SDSMAC 3.S.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
- DNOS LINE PRINTER DSR PAGE 001S 

*------
* OUTPUT TO DATA MODULE COM) INTERFACE 

Figure 5·14. DSR Listing Example (Sheet 8 of 16) 

5·60 2270510·9701 



; 

0648 
0649 
0650 0100 
0651 0102 
0652 0104 
0653 0106 
0654 0108 
0655 01DA 

01DC 
0656 01DE 
0657 01EO 

01E2 
0658 01E4 
0659 01E6 

01E8 
0660 01EA 
0661 01EC 

01EE 

0100' 
1FOD 
134E 
0278 
OA20 
1808 
0289 
6100 
1A05 
0289 
7BOO 
1402 
0249 
DFFF 
0549 
20AO 
002A+ 

0662 
0663 
0664 
0665 
0666 
0667 
0668 
0669 

01F0 1605 
01F2 3209 
01F4 1E08 
01F6 1000 
01F8 1008 
01FA 1004 

0670 01FC 31C9 
0671 01FE 1E07 
0672 0200 1000 
0673 0202 1007 
0674 0204 C908 

0206 006C 
0675 0208 0624 

020A 0068 
0676 020C 13B5 
0677 020E C024 

0210 0066 
0678 0212 8288 
0679 0214 1600 
0683 0216 621A 
0692 0218 C908 

021A 006C 

*------
DMOUT EQU 

TB 
JEQ 
MOVB 
SLA 
JOC 
CI 

S 
DMDMD 
TST480 
*R8+,R9 
RO,LPFUC+1 
TST210 
R9,>6100 

JL TST210 
CI R9,>7BOO 

JHE TST210 
ANDI R9,#>2000 

DEMAND UP? 
NO, GO EXIT DSR 
YES, PICKUP NEXT OUTPUT CHAR 

MAP LOWERCASE TO UPPERCASE? 
NO 
YES 

TST210 INV R9 INVERT THE CHARACTER 
COC iDSFJIS*2+MASTAB,R2 

* 

* 

JNE 
LDCR 
SBZ 
NOP 
SBO 
JMP 

TST220 
R9,8 
DMSTRJ 

DMSTRJ 
TST240 

TST220 LDCR R9,7 
TST230 SBZ DMSTR 

NOP 
SBO DMSTR 

TST240 MOV R8,iLPDQOPCR4) 

DEC 

JEQ 
MOV 

C 
JNE 
S 
MOV 

iLPDQCCCR4) 

TSTDSR 
iLPDIFFCR4),RO 

R8,R10 
DMOUT 
*R10,R8 
R8,iLPDQOPCR4) 

IS IT JISCII TERMINAL? 

YES, OUTPUT 8 BITS 
STROBE THE INTERFACE 

NO, OUTPUT 7 BITS 
STROBE THE INTERFACE 

UPDATE OUTPUT POINTER 

REDUCE QUEUE OUTPUT COUNT 

GO BUFFER MORE DATA 
Grab interface flags 

AT END OF BUFFER? 
NO-CONTINUE PRINTING 

YES, RESET POINTER 
UPDATE OUTPUT POINTER 

09 

FE 

FE 
FE 

09 
14 

09 
09 
09 
09 

0693 
DSRLP 
DSRLP 

0695 
0696 
0697 
0698 
0699 
0700 

021C 1009 JMP DMOUT MOVE NEXT CHAR 09 
SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 

- DNOS LINE PRINTER DSR PAGE 0016 

021E 2020 
0220 0026+ 

0701 0222 1302 
0702 0224 1F1B 
0703 0226 1303 
0704 0228 1E13 
0705 022A 1015 
0706 022C 1021 
0707 022E C28B 
0708 0230 1013 
0709 0232 06AO 

0234 0274' 
0710 0236 C2CA 
0711 0238 0249 

023A 7FOO 

*------
* OUTPUT TO 9902 INTERFACE 
*-----
* 
* OUT902 COC 

IS PRINTER BUSY? 
iLPFBSY*2+MASTAB,RO 

OUT100 

OUT200 

JEQ 
TB 
JEQ 
SBZ 
SBO 
JMP 
MOV 
SBO 
BL 

OUT100 
DSR902 
OUT200 
XBIENB 
DSCENB 
TST480 
R11,R10 
XBIENB 
iLPCOMN 

MOV R10,R11 
OUT410 ANDI R9,>7FOO 

DATA SET READY? 

-NO. DISABLE XMIT BUFF INT 
ENABLE OAT SET READY INT 

R01 
R01 
R01 
R01 
R01 
R01 
R01 

R01 

R01 

0712 * R01 
R01 
R01 

0713 023C 3209 
0714 023E C908 

0240 006C 
0715 0242 0624 

0244 0068 
0716 0246 1014 

2270510-9701 

LDCR R9,8 
MOV R8,iLPDQOPCR4) 

DEC iLPDQCCCR4) 

JMP TST480 

SEND THE CHARACTER 
UPDATE OUTPUT POINTER 

REDUCE QUEUE CHAR COUNT 

EXIT 

R01 

R01 

Figure 5·14. DSR LIsting Example (Sheet 9 of 16) 

Writing a DSR 

5·61 



Writing a DSR 

*------
* OUTPUT TO EIA INTERFACE 
*------
* 
* 
* 

RO = &lLPDIFFCR4) 
IS PRINTER BUSY? 

C' 'RO" TERMINAL> 

0717 
0718 
0719 
0720 
0721 
0722 
0723 0248 2020 EIAOUT COC @LPFBSY*2+MASTAB,RO 

0724 
0725 
0726 
0727 
0728 

0729 
0730 

024A 0026+ 
024C 1311 
024E 1FOE 
0250 160F 
0252 C288 
0254 06AO 
0256 0274' 
0258 C2CA 
025A 0249 
025C 7FOO 
025E 31C9 
0260 1C02 
0262 1E07 
0264 1001 

JEQ 
TB 
JNE 
MOV 
BL 

TST480 
EIADSR 
TST480 
R11,R10 
&lLPCOMN 

MOV R10,R11 
ANDI R9,>7FOO 

R9,7 
TST440 
EIAPAR 
TST450 

YES 
"DATA SET READY·' ON ?? 

NO 

LOAD CHARACTER 
SET PARITY BIT AS NEEDED 

0731 
0732 
0733 
0734 
0735 
0736 

0266 1007 TST440 
0268 C908 TST450 
026A 006C 

LDCR 
JOP 
S8Z 
JMP 
SBO 
MOV 

EIAPAR 
R8,&lLPDQOPCR4) UPDATE OUTPUT POINTER 

0737 026C 0624 DEC &lLPDQCCCR4) REDUCE QUEUE CHARACTER COUNT 
026E 0068 

0738 0270 0460 TST480 8 
0272 0144' 

@EXIT PERFORM END OF REQUEST 

OSRLP 
OSRLP 

0740 
0741 
0742 
0743 
0744 
0745 
0746 

SOSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
- ONOS LINE PRINTER DSR PAGE 0017 

0274 0206 
0276 015A' 

0747 0278 D278 
0748 027A OA20 
0749 027C 1808 
0750 027E 0289 

0280 6100 
0751 0282 1A05 
0752 0284 0289 

0286 7BOO 
0753 0288 1402 
0754 028A 0249 

028C DFFF 
0755 
0756 028E 20AO 

0290 002A+ 
0757 0292 1617 
0784 0294 D249 
0785 0296 1108 
0786 
0787 

0788 
0789 

0790 

0791 
0792 

0793 
0794 
0795 
0796 

0797 

0298 
029A 
029C 
029E 
02AO 
02A2 
02A4 
02A6 
02A8 
02AA 
02AC 

02AE 
0280 
0282 

20AO 
002E+ 
1612 
0242 
FOFF 
0209 
OFOO 
0608 
05A4 
0068 
100A 

20AO 
002E+ 
1307 

* *------------
* LPCOMN 
* 
* 

COMMON ROUTINE USED BY 9902 AND EIA PRINTERS 
1) PROCESS EXTENDED CHARACTER SET •. IF ANY 
2) CHECK AND PROCESS KATAKANA 

*-------------
LPCOMN LI R6,TSTWRQ SET INTERRUPT VECTOR 

MOVB *R8+,R9 NEXT OUTPUT CHAR 
SLA RO,LPFUC+1 EXTENDED CHARACTER SET 
JOC LPC410 -YES. JUMP 
CI R9,>6100 -NO. MAP LOWERCASE TO 

JL LPC410 UPPERCASE? 
CI R9,>7BOO 

JHE LPC410 
ANDI R9,#>2000 

* IS THIS A JISCII TERMINAL 
LPC410 COC &lDSFJIS*2+MASTAB,R2 

JNE LPC430 
MOVB R9,R9 KATAKANA CHARACTER? 
J LT LPC420 YES 

* PRINTER IN ALPHA MODE 
COC @DSFJAR*2+MASTAB,R2 

JNE LPC430 YES 
ANDI R2,#C>80001IDSFJAR) NO, RESET TO ALPHA 

LI R9,>OFOO LOAD SHIFT IN CODE 

DEC R8 RESET QUEUE OUTPUT POINTER 
INC &lLPDQCCCR4) ADJUST QCC 

JMP LPC430 
* 
* PRINTER IN KATAKANA MODE? 
LPC420 COC &lDSFJAR*2+MASTAB,R2 

JEQ LPC430 YES 

Figure 5·14. DSR Listing Example (Sheet 10 of 16) 

)·62 2270510·9701 



0798 

0799 

0800 
0801 

02B4 0262 
02B6 0200 
02B8 0209 
02BA OEOO 
02BC 0608 
02BE 05A4 
02CO 0068 

ORI 

LI 

DEC 
INC 

R2,>80001IDSFJAR 

R9,>OEOO 

R8 
GlLPDQCC(R4) 

NO, SET TO KATAKANA 

LOAD SHIFT OUT CODE 

RESET QUEUE OUTPUT POINTER 
ADJUST QCC 

0805 
DSRLP 
DSRLP 

0807 
0808 
0809 
0810 
0811 
0812 
0813 
0814 
0815 
0816 
0817 
0818 
0819 
0820 
0821 
0822 
0823 
0824 
0825 
0826 
0827 
0828 
0829 
0830 
0831 

02C2 045B LPC430 B *R11 
SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 

- DNOS LINE PRINTER DSR PAGE 0018 

02C4 C924 
02C6 0056 
02C8 0058 

0832 02CA C024 
02CC 0066 

0842 02CE 1102 
0846 0200 1EOF 
0847 0202 0456 
0848 
0849 0204 
0850 0206 
0851 0208 
0852 02DA 
0853 02DC 
0854 02DE 
0855 02EO 
0856 

OA40 
1706 
1013 
1015 
1F10 
1616 
1012 

0857 02E2 1004 
0858 02E4 1EOD 
0859 
0860 02E6 1FOC 
0861 02E8 1611 
0862 
0863 
0864 
0865 

02EA 
02EC 
02EE 
02FO 

0866 02F2 
02F4 
02F6 0867 

0868 
0869 

1EOC 
35CO 
0240 
7FFF 
9800 
03B9' 
1604 

E920 
0026+ 
0066 

**0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0 
* ABSTRACT: 
* LPINT - THIS IS THE ENTRY POINT FOR DEVICE 
* INTERRUPT. THE TIME-OUT COUNTER IS RESET AND 
* THE PROPER ROUTINE IS ENTERED VIA R6. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

A BUSY FLAG HAS BEEN ADDED TO THE LPD FOR 
"READ ONLY" (RO) TERMINALS. 
THIS FLAG IS ON WHENEVER A DC3(BUSY) INTERRUPT IS 
ISSUED BY THE TERMINAL. A DC1(READY) INTERRRUPT 
CAUSES THE FLAG TO BE RESET. 
THE BUSY FLAG IS ALSO RESET WHENEVER "DATA SET" 
RE "DSR" IS NOT ON, DUE TO THE FACT THAT WHEN 
THE TE IS TAKEN OFFLINE THEN ONLINE A DC1 IS NOT 
SENT. "DSR" AND BUSY ARE CHECKED IN THE WRITE 
ROUTINE I PWRON - THIS ROUTINE IS ENTERED WHEN 
THE SYSTEM INITIALLY STARTS AND WHEN THE SYSTEM 
RECOGNIZES A POWER RE-START. THE INTERFACE IS 
PROPERLY INTIALIZED. 

LPSPUR - HANDLE SPURIOUS INTERRUPTS. 
ABORT - THIS ROUTINE HANDLES 1/0 ABORT. 

**0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0 
* 
LPINT MOV 

LPSINT MOV 

* 
LPI1 

* 

LPI010 
* 

* 

LPI020 

* 
* 

J L T 
SBZ 
B 

S LA 
JNC 
SBO 
SBO 
TB 
JNE 
SBO 

JMP 
SBZ 

TB 
JNE 

SBZ 
STCR 
ANDI 

CB 

JNE 

SOC 

GlPDTTM1(R4),GlPDTTM2(R4) RESET TIME OUT COUNT 

6)LPDIFF(R4),RO 

LPI1 
DMCIN 
*R6 

RO,LPF902+1 
LPI010 
XBIENB 
DSCENB 
RRQ902 
LPI040 
RIENB 

LPI020 
EIANSF 

EIARRQ 
. LP I 040 

EIARRQ 
RO,7 
RO,>7FFF 

RO,GlDC3 

LPI030 

OM INTERFACED LP 

NO 
YES, CLEAR INPUT INTERRUPT 

9902 CONTROLLED 

-NO. JUMP 
ENABLE XMIT BUFER INT 
DISABLE DATA SET READY 
READ REQUEST INTERRUPT 
-NO. JUMP 
~YES. CAUSES RRQ902 TO 

RESET 

INT 

CLEAR NEW STATUS INT 
CHECK FOR "RO" TERMINAL 
READ REQUEST 

NO 
YES •• PROCESS DC3 OR DC1 

CLEAR INPUT INTERRUPT 
GET INTERRUPT REASON 
TURN OFF PARITY FLAG 

IS PRINTER BUSY? 

NO. JUMP 

SET "RO" DEVICE BUSY BIT. 
GlLPFBSY*2+MASTAB,GlLPDIFF(R4) 

R01 
R01 
R01 
R01 
R01 
R01 
R01 
R01 
R01 
R01 

FE 
FE 
FE 
FE 

FE 
FE 

FE 

FE 
FE 
FE 
MA 0870 02F8 

02FA 
02FC 

0871 02FE 1006 JMP LPI040 FE 
DSRLP 
DSRLP 

SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
- DNOS LINE PRINTER DSR PAGE 0019 

Figure 5·14. DSR Listing Example (Sheet 11 of 16) 

2270510-9701 

Writing a DSR 

5·63 



Writing a DSR 

0872 0300 9800 
0302 03B8' 

0873 0304 1603 
0874 
0875 

0876 

0877 
0878 
0879 
0880 
0881 
0882 
0883 
0884 
0885 
0886 

0306 4920 
0308 0026+ 
030A 0066 
030C C024 
030E 0066 
0310 OA40 
0312 1703 
0314 1F1B 
0316 1306 
0318 1002 
031 A 1FOE 
031C 1303 

0887 031E 4920 
0320 0026+ 
0322 0066 

0888 0324 0456 
0889 
0890 0326 C164 

0328 005E 
032A 1306 0891 

0892 
0903 032C E920 

032E 002A+ 
0330 0066 

0907 0332 E920 
0334 002C+ 
0336 OOOE 

LPI030 CB 

JNE 
* 

SZC 

LPI040 MOV 

SLA 
JNC 
TB 
JEQ 
JMP 

LPI045 TB 
JEQ 

* 
* 
* 
LPI047 SZC 

LPI050 B 
* 
ABORT MOV 

JEQ 
* 

SOC 

SOC 

RO,lilDC1 A "READY" INTERRUPT? FE 

LPI040 NO. JUMP 
YES. RESET BUSY BIT 

lilLPFBSY*2+MASTAB,lilLPDIFFCR4) 

FE 
FE 
MA 

lilLPDIFFCR4),RO 

RO,lilLPF902+1 
LPI045 
DSR902 
LPI050 
LPI047 
EIADSR 
LPI050 

9902 CONTROLLED ? 

-NO. JUMP 
-YES. DSR STILL ON? 

-YES. JUMP 

R01 

R01 
R01 
R01 
R01 
R01 

"DATA SET READY" ON? R01 
YES. FE 
NO. TURN OFF BUSY FLAG FE 
USE "DSR" SIGNAL AS BUSY FE 
INDICATOR. FE 

lilLPFBSY*2+MASTAB,lilLPDIFFCR4) R01 

*R6 FE 

lilPDTSRBCR4),R5 ENDRCD REQUIRED? R06 

ABRT10 -NO. R06 
-YES. SET EOR FLAG 

lilLPFEOR*2+MASTAB,lilLPDIFFCR4) R06= 

lilDFGOPF*2+MASTAB,lilPDTFLGCR4) SET OP-FAILED R12 

0908 0338 04C5 ABRT10 CLR R5 CLEAR COUNT TO BUFFER R06 
0909 033A 0456 B *R6 PROCESS NEXT CHAR 

DSRLP SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
DSRLP - DNOS LINE PRINTER DSR PAGE 0020 

0921 033C C024 PWRON MOV lilLPDIFFCR4),RO OM INTERFACED LP ? 
033E 0066 

0922 0340 1107 
0926 0342 1EOF 
0927 0344 1DOE 
0928 0346 1009 
0929 0348 1007 
0930 034A 1008 
0931 034C 1024 

PWR1 
DMCIN 
DMINT 
DMVFC 
DMSTR 
DMSTRJ 
PWR2 

0932 034E 4600 IN IT 
0933 0350 OA40 PWR1 

J LT 
SBZ 
SBO 
SBO 
SBO 
SBO 
JMP 
DATA 
SLA 
JNC 
SBO 
TB 
JEQ 
LI 

>4600 
RO,LPF902+1 
PWR120 
RESET 

0934 0352 1710 
0935 0354 1D1F 
0936 0356 1F08 
0937 0358 132C 
0938 035A 0208 

035C A200 
0939 035E 0209 

0360 03BA' 
0940 0362 1F24 
0941 0364 1304 
0942 0366 0208 

0368 AAOO 
0943 036A 0209 

LI 

TB 
JEQ 
LI 

LI 

8 
NOTBZY 
R8,CNTL25 

R9,BR25S2 

CLOCK 
PWR110 
R8,CNTL4 

R9,BR40S2 

PWR110 LDCR R8,8 
SBZ 13 
CLR R8 

NO 
YES, CLEAR INPUT 

ENABLE INTERRUPTS 
DISABLE VFC 
INITIALIZE STROBE 
INITIALIZE STROBE 

INTERRUPTS 

CEIAIEN/EIARTS/EIADTR) 
9902 CONTROLLED? 

CASCII) 
CJISCII) 

RESET THE 9902 CONTROLLER 
CONTROLLER EXIST ?? 
-NO. 
ASSUME A 2.5 MHZ 9902 

IS THIS A 2.5MHZ 9902 
-YES 
-NO. 4MHZ. GET CONTROL 

GET BUAD RATE 

OUTPUT CONTROL DATA 
IGNORE INTERVAL DATA 

MA 

R01 
R01 
R01 
R06 
R06 
R10 

R10 

R06 

R06 

R06 
036C 03EO' 

0944 036E 3208 
0945 0370 1EOD 
0946 0372 04C8 
0947 0374 0224 MOVB lilLPDSPXCR4),R8 GET iRANSMIT BAUD CODE 

R10 
R02 
R11 
R10 

0376 0076 
0948 0378 0978 
0949 037A A248 
0950 037C C259 
0951 037E 3009 

SRL R8,7 
A R8,R9 
MOV *R9,R9 
LDCR R9,0 

PUT CODE*2 IN LOW BYTE R10 
INDEX INTO BAUD RATE TABLE R10 
GET CLOCK VALUE R10 
SET TRANSMIT BAUD RATE R06 

Figure 5·14. DSR Listing Example (Sheet 12 of 16) 

)·64 2270510-9701 



I 

0952 0380 1026 
0953 0382 1027 
0954 0384 1012 
0955 0386 1010 
0956 0388 1022 
0957 038A 1020 
0958 038C 1004 
0959 038E 1009 
0960 0390 3020 

0392 034E' 
0961 0394 1EOF 
0965 0396 C186 
0966 0398 130C 
0967 039A 0262 

0968 
0969 

039C 0400 
039E 0380 

PWR120 

PWR2 

* 

SBO 
SBO 
SBO 
SBO 
SBO 
SBO 
JMP 
SBO 
LDCR 

SBZ 
MOV 
JEQ 
ORI 

RTWP 

INT902 
ABLTRS 
RIENB 
RTS902 
SECRTS 
DTR902 
PWR2 
EIADTR 
QINIT,O 

EIADIM 
R6,R6 
NOTBZY 
R2,>80001IDSFREN 

0985 03AO C024 LPSPUR MOV iLPDIFF(R4),RO 
03A2 0066 

0989 03A4 1506 JGT NOTBZY 
0990 03A6 1305 JEQ NOTBZY 
1000 03A8 OA40 SLA RO,LPF902+1 
1001 03AA 1702 JNC LPSP05 
1002 03AC 1E13 SBZ XBIENB 
1003 03AE 1001 JMP NOTBZY 

ENABLE INTERRUPTS 
ENABLE TRANSMITS 
ENABLE READ INT FOR RO 

SET SECONDARY RTS 
SET DTR 

INITIALIZE EIA INTERFACE 

THIS INITIAL POWER UP? 

NO, SET RE-ENTER-ME 

OM INTERFACED LP ? 

YES 
YES, 

9902 CONTROLLED ? 
-NO. 
-YES. RESET INTERRUPT 

1004 03BO 1EOB LPSP05 SBZ EIAWRQ EIA RESET INTERRUPT 
DSRLP SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 

R01 
R01 
R01 
R01 
R01 
R01 
R01 
R01 

FE 

R01 
R01 
R01 

R01 

DSRLP - DNOS LINE PRINTER DSR PAGE 0021 
1005 03B2 0206 NOTBZY LI R6,LPSPUR AND IGNORE IT 

03B4 03AO' 
1006 03B6 0380 RTWP 
1007 03B8 11 DC1 BYTE >11 READY SIGNAL 
1008 03B9 13 DC3 BYTE >13 BUSY SIGNAL 
1009 A200 CNTL25 EQU >A200 CONTROL REGISTER DATA FOR 
1010 * 9902 
1011 * 1 STOP BIT 
1012 * EVEN PAR ITY 
1013 * CLK4 = 0 •. 2.5 MHz CLK 
1014 * 7-BIT CHARACTER 
1015 AAOO CNTL4 EQU >AAOO CONTROL REGSISER DATA FOR 
1016 * A 4MHZ 9902 
1017 ******************************************************** 
1018 * 
1019 * 
1020 * 

THESE TABLES ARE USED TO CONVERT THE COMMON TRANSMIT 
AND RECEIVE BAUD RATE CODE PASSED TO THIS ROUTINE 

1021 * TO SECONDARY CODE FOR SETTING 9902 BAUD RATE. 
1022 * 
1023 * 9902 2.5 MHZ BAUD 
1024 03BA FFFF BR25S2 DATA >FFFF 
1025 03BC 06B6 DATA >06B6 
1026 03BE 0509 DATA >0509 
1027 03CO 0583 DATA >0583 
1028 03C2 055B DATA >055B 
1029 03C4 0504 DATA >0504 
1030 03C6 04AE DATA >04AE 
1031 03C8 02B6 DATA >02B6 
1032 03CA 015B DATA >015B 
1033 03CC 00E7 DATA >00E7 
1034 03CE OOAE DATA >OOAE 
1035 0300 0074 DATA >0074 
1036 0302 0056 DATA >0056 
1037 0304 003A DATA >003A 
1038 0306 002B DATA >002B 
1039 0308 0010 DATA >0010 
1040 03DA FFFF DATA >FFFF 
1041 03DC FFFF DATA >FFFF 
1042 03DE FFFF DATA >FFFF 
1043 03EO' BR25E2 EQU $ 

DSRLP SDSMAC 3.5.0 82.130 16:53:03 

RATE 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
o 
E 
F 

10 
11 
12 

TABLE 
BAUD RATE 50 NOT 
BAUD RATE 75 
BAUD RATE 110 
BAUD RATE 134.5 
BAUD RATE 150 
BAUD RATE 200 
BAUD RATE 300 
BAUD RATE 600 
BAUD RATE 1200 
BAUD RATE 1800 
BAUD RATE 2400 
BAUD RATE 3600 
BAUD RATE 4800 
BAUD RATE 7200 
BAUD RATE 9600 
BAUD RATE 14400 
BAUD RATE 19200 
BAUD RATE 28800 
BAUD RATE 38400 

MAX TABLE INDEX 
FRIDAY, JUN 17, 1983. 

SUPPORTED 

R06 

R06 
R06 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 
R10 

DSRLP - DNOS LINE PRINTER DSR 
1045 * 
1046 * 9902 4.0 MHZ BAUD RATE TABLE 

PAGE 0022 
R10 
R10 

Figure 5·14. DSR Listing Example (Sheet 13 of 16) 

Writing a DSR 

2270510-9701 5.65 



Writing a DSR 

1047 03EO FFFF BR40S2 DATA >FFFF 0 BAUD RATE 50 NOT SUPPORTED R10 
1048 03E2 0741 DATA >0741 1 BAUD RATE 75 R10 
1049 03E4 0638 DATA >0638 2 BAUD RATE 110 R10 
1050 03E6 0501 DATA >0501 3 BAUD RATE 134.5 R10 
1051 03E8 05A1 DATA >05A1 4 BAUD RATE 150 R10 
1052 03EA 0539 DATA >0539 5 BAUD RATE 200 R10 
1053 03EC 0400 DATA >0400 6 BAUD RATE 300 R10 
1054 03EE 0341 DATA >0341 7 BAUD RATE 600 R10 
1055 03FO 01A1 DATA >01A1 8 BAUD RATE 17.00 R10 
1056 03F2 0116 DATA >0116 9 BAUD RATE 1800 R10 
1057 03F4 0000 DATA >0000 A BAUD RATE 2400 R10 
1058 03F6 008B DATA >008B B BAUD RATE 3600 R10 
1059 03F8 0068 DATA >0068 C BAUD RATE 4800 R10 
1060 03FA 0045 DATA >0045 0 BAUD RATE 7200 R10 
1061 03FC 0034 DATA >0034 E BAUD RATE 9600 R10 
1062 03FE FFFF DATA >FFFF F BAUD RATE 14400 R10 
1063 0400 001A DATA >001A 10 BAUD RATE 19200 R10 
1064 0402 FFFF DATA >FFFF 11 BAUD RATE 28800 R10 
1065 0404 0000 DATA >0000 12 BAUD RATE 38400 R10 
1066 0406' BR40E2 EQU $ MAX TABLE INDEX R10 
1067 * R10 
1075 END 

NO ERRORS, NO WARNINGS 
DSRLP SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 

LABEL VALUE DEFN REFERENCES PAGE 0023 
$ 0406' 0338 0500 0649 1043 1066 
ABLTRS 0027 0235 0953 
ABORT 0326' 0890 0283 0284 
ABRT10 0338' 0908 0891 
BASE 0022' 0316 0338 
BR25E2 03EO' 1043 
BR25S2 03BA' 1024 0939 
BR40E2 0406' 1066 
BR40S2 03EO' 1047 0943 
BRSTAT R 0020' 0120 0311 l~ 
C$DNOS 0004 A0014 0004 0417 
C$DPOS 0004 A0013 0028 0041 0138 0147 0250 0270 0494 0545 0568 

0591 0612 0625 0681 0782 0840 0901 0919 0963 
0987 

C$DX10 0002 A0011 0009 0086 0109 0122 0160 0287 0411 0504 0550 
0574 0596 0617 0632 0686 0759 0834 0894 0912 
0972 0993 1069 

C$OS 0004 A0019 0004 0009 0028 0041 0086 0109 0122 0138 0147 
0160 0250 0270 0287 0411 0417 0494 0504 0545 
0550 0568 0574 0591 0596 0612 0617 0625 0632 
0681 0686 0759 0782 0834 0840 0894 0901 0912 
0919 0963 0972 0987 0993 1069 

CLOCK 0024 0237 0940 
CLOSE 007A' 0384 0319 
CNTL25 A200 1009 0938 
CNTL4 AAOO 1015 0942 
CR 0076' 0381 
CRLF 0078' 0382 
DC1 03B8' 1007 0872 
DC3 03B9' 1008 0866 
DCD902 0020 0226 
DFGOPF 0005 C0028 0907 
DMCIN OOOF 0220 0846 0926 
DMDMD 0000 0218 0650 
DMINT OOOE 0219 0927 
DMOUT 0100' 0649 0628 0629 0679 0693 
DMSTR 0007 0212 0671 0673 0929 
DMSTRJ 0008 0213 0665 0667 0930 
DMVFC 0009 0214 0928 
DONE 0158' 0514 0498 
DSCENB 0015 0242 0705 0852 
DSFJAR 0006 C0045 0787 0789 0796 0798 
DSFJIS 0004 C0043 0661 0756 
DSFREN 0005 C0044 0967 
DSR902 001B 0227 0702 0879 
DTR902 0020 0240 0957 
DUMP 013C' 0472 0337 

Figure 5·14. DSR Listing Example (Sheet 14 of 16) 

5·66 2270510·9701 



Writing a DSR 

EIAOCO 0000 0186 
EIAOIM OOOF 0201 0961 
EIAOSR OOOE 0187 0725 0882 
EIAOTR 0009 0195 0959 
EIAERR 0009 0182 
EIAIEN OOOE 0200 
EIANSF 0000 0199 0858 
EIAOUT 0248' 0723 0644 
EIAPAR 0007 0193 0733 0735 
EIARRQ OOOC 0198 0860 0863 
EIARTS OOOA 0196 
EIAWRQ OOOB 0197 0539 0542 1004 
EIAXMT 0008 0181 
OSRLP SOSMAC 3.5.0 82.130 16:53:03 FRIOAY, JUN 17, 1983. 
LABEL VALUE OEFN REFERENCES PAGE 0024 
ENORCO R 0156' 0119 0513 
EXIT 0144' 0496 0455 0456 0464 0465 0738 
EXIT1 014E' 0501 0324 0325 0333 0376 0441 0473 
ILLOP 014E' 0500 0317 0326 0327 0328 0334 0335 0336 
INIT 034E' 0932 0960 
INT902 0026- 0236 0952 
IRBOBA 0006 B0070 0373 0392 
IRBICC 0008 B0071 0375 0454 0463 
IRBOCC OOOA B0074 0374 0393 0454 0458 0463 0467 
LPC410 028E' 0756 0749 0751 0753 
LPC420 02AE' 0796 0785 
LPC430 02C2' 0805 0757 0788 0793 0797 
LPCOMN 0274' 0746 0709 0728 
LPOBGN 0066 0154 00011 
LPOIFF 0066 00012 0405 0496 0501 0530 0593 0627 0677 0832 0870 

0875 0876 0887 0903 0921 0985 
LPOQCC 0068 00021 0571 0584 0605 0675 0715 0737 0792 0801 
LPOQEP 006E 00024 0547 
LPOQIP 006A 00022 0558 0603 
LPOQOP 006C 00023 0608 0674 0692 0714 0736 
LPOSPX 0076 00027 0429 0947 
LPF902 0003 00016 0406 0531 0641 0849 0877 0933 1000 
LPFBSY 0002 00015 0700 0723 0870 0875 0887 
LPFEOR 0004 00017 0497 0501 0593 0903 
LPFIF 0000 00013 0419 
LPFUC 0001 00014 0653 0748 
LPI010 02E4' 0858 0850 
LPI020 02EC' 0864 0857 
LPI030 0300' 0872 0867 
LPI040 030C' 0876 0854 0861 0871 0873 
LPI045 031A' 0882 0878 
LPI047 031E' 0887 0881 
LPI050 0324' 0888 0880 0883 
LPI1 0204' 0849 0842 
LPINT 02C4' 0831 0280 
LPSINT 02CA' 0832 0281 
LPSP05 03BO' 1004 1001 
LPSPUR 03AO' 0985 0388 0604 1005 
MASTAB 0022+ J0026 0406 0419 0497 0501 0593 0641 0661 0700 0723 

0756 0787 0796 0870 0875 0887 0903 0907 
MAX COO 0013 0338 0316 
NEWREQ 0082' 0388 0377 
NOTBZY 03B2' 1005 0937 0966 0989 0990 1003 
OPEN 007C' 0385 0318 
OPNRWO 0080' 0387 0321 
OUT100 0228' 0704 0701 
OUT200 022E' 0707 0703 
OUT410 0238' 0711 
OUT902 021E' 0700 0643 
PAGE1 0072' 0379 0308 
PAGE2 0074' 0380 
POTERR 0042 C0073 0472 
POTFLG OOOE C0021 0907 
POTMC 0048 COO77 0339 0340 0341 0342 0343 0353 
POTRC 0044 C0075 0348 0349 0435 
POTSIZ 0066 C0093 0154 
POTSRB 005E C0088 0890 
PDTTM1 0056 C0084 0831 
POTTM2 0058 C0085 0831 

f 
Figure 5·14. DSR Listing Example (Sheet 15 of 16) 

2270510-9701 5·67 



Writing a DSR 

PDTWC 0046 C0076 0350 0351 0352 
DSRLP SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
LABEL VALUE DEFN REFERENCES PAGE 0025 
PR9902 0003 0252 
PWR1 0350 1 0933 0922 
PWR110 036E ' 0944 0941 
PWR120 038E I 0959 0934 
PWR2 0396 1 0965 0931 0958 
PWRON 033C I 0921 0282 
RO 0000 0627 0641 0653 0677 0700 0723 0748 0832 0849 

0864 0865 0866 0872 0876 0877 0921 0933 0985 
1000 

R1 0001 0373 0374 0375 0392 0393 0454 0454 0458 0463 
0463 0467 

R10 OOOA 0310 0530 0531 0547 0565 0570 0571 0609 0614 
0678 0683 0707 0710 0727 0729 

R11 OOOB 0461 0470 0496 0497 0707 0710 0727 0729 0805 
R12 OOOC 0400 
R2 0002 0661 0756 0787 0789 0796 0798 0967 
R4 0004 0405 0429 0434 0472 0496 0501 0530 0547 0558 

0571 0584 0593 0603 0605 0608 0627 0674 0675 
0677 0692 0714 0715 0736 0737 0792 0801 0831 
0831 0832 0870 0875 0876 0887 0890 0903 0907 
0921 0947 0985 

R5 0005 0307 0374 0375 0387 0405 0406 0419 0427 0432 
0436 0439 0453 0459 0468 0563 0563 0585 0890 
0908 

R6 0006 0388 0604 0623 0746 0847 0888 0909 0965 0965 
1005 

R7 0007 0308 0373 0384 0385 0386 0392 0457 0466 0583 
R8 0008 0394 0396 0398 0400 0402 0404 0408 0424 0426 

0429 0431 0434 0435 0438 0457 0466 0605 0608 
0609 0614 0652 0674 0678 0683 0692 0714 0736 
0747 0791 0800 0938 0942 0944 0946 0947 0948 
0949 

R9 0009 0558 0565 0570 0583 0603 0652 0655 0657 0659 
.~ 0660 0664 0670 0711 0713 0730 0731 0747 0750 i' 

0752 0754 0784 0784 0790 0799 0939 0943 0949 
0950 0950 0951 

RCOPY 0126 1 0463 0437 
RDST10 00C8 1 0409 0407 
RDST20 00D2 1 0425 0420 
READST 008A ' 0392 0323 
RESET 001F 0241 0935 
REWIND 007E ' 0386 0320 0322 0331 0332 
RFILL 0110 1 0454 0428 0433 0440 0460 0469 
RFILL1 010C I 0453 0395 0397 0399 0401 0403 0425 0430 
RIENB 0012 0245 0855 0954 
RRQ902 0010 0229 0853 
RTS902 0010 0247 0536 0955 
SECDCD 0022 0225 
SECRTS 0022 0239 0956 
STAB 004E ' 0339 0310 
TST010 0184 1 0565 0586 
TST020 018A ' 0571 0566 
TST030 01AO ' 0603 0564 0582 
TST035 01B2 1 0608 0606 
TST040 01BC ' 0623 0610 
TST210 01EA ' 0660 0654 0656 0658 
TST220 01FC ' 0670 0663 
TST230 01 FE I 0671 
TST240 0204 1 0674 0668 
TST440 0266 1 0735 0732 
DSRLP SDSMAC 3.5.0 82.130 16:53:03 FRIDAY, JUN 17, 1983. 
LABEL VALUE DEFN REFERENCES PAGE 0026 
TST450 0268 1 0736 0734 
TST480 0270 1 0738 0537 0541 0607 0651 0706 0716 0724 0726 
TSTDSR 0178 1 0547 0389 0534 0623 0676 
TSTRR9 017C I 0558 
TSTW05 016E ' 0539 0532 
TSTWR1 0176 1 0542 0540 
TSTWRQ 015A ' 0530 0746 
WDFFFF 0020+ J0024 0472 
WRITE 0062 1 0373 0329 0330 
XBI ENB 0013 0244 0535 0704 0708 0851 1002 
XBRE 0016 0228 0533 

Figure 5·14. DSR Listing Example (Sheet 16 of 16) 

5·68 2270510·9701 



6 

ONOS Accounting System 

6.1 INTRODUCTION 

At key points while executing each job in the sy;stem except the system job, ONOS collects infor­
mation about utilization of resources. For instance, when each task terminates, an entry is logged 
in the accounting file. The entry identifies the task and job under which the task executed and 
includes central processing unit (CPU) utilization and memory allocation data. 

The information is written in a compressed form to one of two accounting files, .S$ACT1 or 
.S$ACT2. The system requires two files. One is being written and the other is available to be pro­
cessed. The system switches to the other file when the file being written has been filled. If you 
examine these files using the Show File (SF) command, they appear as binary data. The files need 
to be processed by an application program to make use of the data. 

The application program must process the entries in an accounting file before the system fills the 
other accounting file. When one accounting file becomes full, the system accounting routine 
starts to write the other file without determining whether or not the previous contents have been 
processed. 

You must supply the application program to process the accounting file. When the system 
switches files, it bids the application program. This application program can process the data 
directly, copy the information to a magnetic tape, or possibly advise the operator that the file is 
full. 

6.2 ACCOUNTING DATA 

Accounting information for all jobs is written to the currently active accounting file in chronologi­
cal order. The information for each job-related entry includes the job 10. The application program 
can sort the file on the job ID field to organize the information for each job. 

The DNOS accounting file contains six types of entries. The application program must process all 
types of entries as appropriate for the accounting requirements of the site. There is also an identi­
fication record as record zero of the file; this record must be ignored by the application program. 

2270510·9701 Change 1 6-1 

I 



DNOS Accounting System 

6.2.1 Description of Accumulated Data 
The six entries allowed in a ONOS accounting file are as follows: 

• Job initialization - Contains the account 10, the job name, the job priority, and the user 
10. 

• Task termination - Contains the task 10, the CPU time used, the fixed priority (based on 
installed priority and job priority), the maximum amount of memory used, the termina­
tion code, and the number of supervisor calls (SVCs) issued. 

• Job termination - Contains the amount of job communication area (JCA) memory used 
and the amount of JCA memory allocated when the job was created. 

• Spooler device - Contains the job 10, the device name, the device type, and the number 
of I/O requests. 

• User-defined - Supplied by the user task via an SVC. The string from the buffer for the 
SVC is the entry, along with additional information supplied by ONOS. 

• Initial program load (lPL) - Contains the job 10. The IPL entry implies task termination 
for previously active tasks and job termination for previously active jobs. 

Ten bytes of overhead are added to each entry. These bytes contain the type of entry, the number 
of bytes in the entry, the time when the entry was made, priority, and job identification. ~ 

6.2.2 Data Format 
The first ten bytes of all accounting entries contain the following information: 

DEC HEX 

o 0 RECORD TYPE RECORD LENGTH 

2 2 YEAR/DAY 

4 4 HOUR MINUTE 

6 6 SECOND PRIORITY 

8 8 JOB 10 

2279424 

6-2 2270510-9701 



DNOS Accounting System 

Byte Meaning 

o Record type. Value defines entry, as follows: 

1 - Job initialization 
2 - Task termination 
3 - Job termination 
4 - Spooler device 
5 - User defined 
6-IPL 

1 Record length, in bytes 

2 - 3 The year and day. The two least significant digits of the year, in binary 
form, occupy the seven most significant bits. The day of the year (1 - 366) 
in binary form occupies the nine least significant bits. 

4 Hour 

5 Minute 

6 Second 

7 Priority. For a job initialization entry, the job priority. For a task 
termination entry, the initial priority of the task. Ignored for other entries. 

8-9 JoblD 

The additional bytes of a job initialization entry contain the following information: 

DEC HEX 1 1 10 A 

1 
ACCOUNT 10 

I 24 18 

26 1A 

I 
USER 10 

I 32 20 

34 22 

1 
JOB NAME 

J 40 28 

2279425 

2270510-9701 6·3 



DNOS Accounting System 

Byte Meaning 

10-25 Account 10 

26-33 User 10 

34-41 Job name 

For a task termination entry, the additional bytes contain the following information: 

DEC HEX 

10 A TASK 10 I TASK TERM. CODE 

12 C 

TASK CPU TIME 

14 E 

16 10 
SVC COUNT 

18 12 

20 14 

I/O TRANSFER COUNT 

22 16 

24 18 MAXIMUM MEMORY ALLOCATION 

2279426 

Byte Meaning 

10 Task run-time 10 

11 Task termination code 

12-15 Task CPU time (the count of clock cycles during task execution) 

16-19 SVC count (the number of SVCs the task issues) 

20-23 1/0 transfer count (the number of bytes transferred during 1/0) 

24-25 Maximum memory allocation, in beets (1 beet = 32 bytes) 

26-29 Elapsed time 

6·4 2270510·9701 



DNOS Accounting System 

Byte Meaning 

30 Installed task 10 

31 Station number 

32-33 Task segment attributes (attributes of segment as installed on program file) 

34-41 Task name (as many as eight characters) 

The additional bytes of a Job termination entry contain the following information: 

DEC HEX 

10 A JCA MEMORY USED 

12 C TOTAL JCA ALLOCATION 

2279427 

Byte Meaning 

10-11 JCA memory used (number of bytes of JCA used) 

12-13 Total JCA allocation (number of bytes of JCA allocated for the job) 

For a spooler device entry, the additional bytes contain the following information: 

DEC HEX 

10 A DEVICE TYPE I DEVICE TYPE FLAGS 

12 C 
DEVICE NAME 

14 E 

16 10 
NUMBER OF I/O REQUESTS 

18 12 

20 14 TIME USED 

2279428 

2270510-9701 6·5 



DNOS Accounting System 

Byte Meaning 

10 Device type flags 

11 Device type 

12-15 Device name 

16-19 Number of 1/0 requests 

20-21 Time used (reserved for a count of minutes of use) 

For a user device entry, the additional bytes contain the following user data: 

DEC HEX 

10 A 1 1 
USER DATA 

J T n-1 n-1 

2279429 

Byte Meaning 

10-n User data supplied by the Log Accounting Entry SVC (> 47). This is the entire 
contents of the buffer defined in the SVC block, less the first byte which con­
tains the byte count. The maximum number of bytes is 70. 

The IPL entry includes only the data in the initial ten bytes. 

6.3 IMPLEMENTATION 

To implement the accounting subsystem, you must do the following: 

• Define account numbers. 

• Generate a system that includes the accounting subsystem. 

• Provide a task to process the accounting information. 

6·6 2270510-9701 



ONOS Accounting System 

6.3.1 Account Numbers 
Account numbers are user-defined character strings 16 bytes in length. ONOS does not impose 
any other restrictions. 

Account verification is optional and requires a file of valid account numbers. The name of this file 
must be .S$ACCVAL. This file must be a sequential file with one account number per record. Be 
sure to include a blank record in the file if any users can log on without an account number. With­
out this blank record, all jobs in the system must use an account number listed in the file. Write 
the file of valid account numbers to provide account verification. When file .S$ACCVAL has not 
been created, account numbers are not validated. 

6.3.2 System Generation Requirements 
The accounting subsystem is an option that can be included when a ONOS system is generated. A 
group of SVCs (the accounting group) consists of the two SVCs required to support job account­
ing. By including the accounting group of SVCs, you implicitly request that the accounting sub­
system be included. Nothing else is required to generate a system that supports job accounting. 

6.3.3 Application Program Requirements 
The third requirement for job accounting is an application program to retrieve and process the 
information on the accounting file. This task must be installed on the system utilities program file 
.S$UTIL as task 10> 54, which is reserved for the user accounting task. When an accounting file is 
full, ONOS starts the task installed at 10> 54. 

The application program can determine the file that needs processing by issuing a Get Task 
Parameters SVC. The third byte of the task parameters contains a 1 in ASCII form if the first file 
needs processing and a 2 in ASCII form if the second file needs processing. If the processing task 
is written in Pascal, it must be linked with the MINOBJ routine so that stack and heap parameters 
are not expected as task bid parameters. 

Processing the entries on one file while the other file is being written, the application program can 
copy the entries to a more permanent file to be processed offline or at a later time. 

2270510-9701 6·7/6·8 





7 

File Security 

7.1 INTRODUCTION 

In a ONOS system using file security, a user can perform an operation on a file only if the following 
two conditions are met: 

• You are a member of an access group that has access rights to the file. 

• The operation is allowed by the access rights that the access group has to the file. 

You should refer to the DNOS System Command Interpreter (SCI) Reference Manual for explana­
tions concerning any commands with which you are not familiar. Read this entire section before 
you attempt to use file security. If you have any questions concerning file security, talk to the 
security manager of your system. 

7.2 ACCESS GROUPS 

An access group is composed of a set of user IDs. The users of these IDs usually have a common 
work assignment or a common need for system resources. 

The name of an access group must be a string of one to eight alphanumeric characters, with the 
first character alphabetic. Access rights to particular files on the system are assigned by access 
group name. Each secured file on the system can have access rights defined for up to nine access 
groups. You can define a different set of rights for each group. 

There are two types of access groups: pre-defined and user-defined. PUBLIC and SYSMGR are the 
only two predefined access groups. 

Everyone on the system is automatically an access group member of PUBLIC. A user who belongs 
only to the PUBLIC access group has rights only to unsecured files and files that creators have 
defined for PUBLIC access. 

Usually, only the security manager or a small, trusted group belongs to the SYSMGR access 
group. The SYSMGR group has access rights to every file and implied leadership of every access 
group. 

All other access gro_ups on the system are user-defined and are created for a specific purpose. The 
creator of an access group automatically becomes the initial access group leader. The leader des­
ignates which users on the system are members of his access group. A user can be a leader of one 
or more access groups and also a member in others. 

2270510·9701 7·1 



File Security 

After creating a file, a user can specify which access groups are allowed access to it and the types 
of access these groups can have. 

The roles one can play in access groups are briefly described in the following paragraphs. 

7.2.1 SYSMGR Access Group Member 
Because a member of the SYSMGR access group can access every file in the system and assume 
leadership for every access group, this group is not to be used for routine tasks. The SYSMGR 
access group should be limited to three special functions: 

• Setting up the security environment 

• Solving of unusual system problems 

• Applying patches supplied by Texas Instruments 

The security manager is normally either the only member of SYSMGR or the leader of a small, 
trusted group. 

7.2.2 Access Group Leader 
A user on the system becomes an access group leader either by creating an access group or by 
having the leader of an access group give up his leadership and designate him as the new leader. 

Each access group has only one leader (however, any member of the SYSMGR access group can 
perform any function the leader can). The access group leader controls membership in the group 
by his right to add or delete members. To create an access group, a user must have access to the 
Create Access Group (CAG) command procedure. User IDs associated with the SYSMGR access 
group cannot be used with the CAG command. 

7.2.3 Access Group Member 
An access group member is a person whose user 10 belongs to the set of user IDs for a specific 
access group. Only the access group leader (and members of the SYSMGR access group) can add 
or delete access group members. An access group member shares the access rights of his group 
to files on the system. Every user is a member of at least one access group since all users of the 
system belong to PUBLIC. 

7.2.4 Creation Access Group 

A user's creation access group is the access group that has all access rights to files he creates. 
Every user on the system has exactly one creation access group. A user must select one of the 
access groups to which he belongs as his creation access group. A user makes this selection by 
executing the Set Creation Access Group (SCAG) command. If a user never specifies a particular 
group, his creation access group is PUBLIC by default. 

As long as the creation access group retains control access, only users who belong to the group 
(or members of SYSMGR) can give any access rights to a file to other access groups (by executing 
the Modify Security Access Rights (MSAR) command). Giving read, write, execute, or delete 
access rights to another group does not take away these rights from a user's own group. However, 
since only one access group can have control access to a file, giving control access to another 
access group means taking it away from the user's group. Therefore, a user should be very careful 
before assigning control access for a file to another access group. 

7·2 2270510·9701 



File Security 

For example, a user selects an access group called LAWYERS as his creation access group. He 
logs off and logs on again (the system recognizes the selection only in this manner). Then, he cre· 
ates a file called ACCOUNTS. The LAWYERS access group now has control, read, write, execute, 
and delete access to ACCOUNTS. Later, he decides that a related access group, called 
PARALGLS should have read access and write access to the file. He would then use the MSAR 
command to assign them these two rights. Later, unknown to him, a junior member of LAWYERS 
uses the MSAR command to assign control access to the PARALGLS access group. The next time 
he tries to assign access rights to ACCOUNTS with the MSAR command, he will receive an error, 
since his access group, LAWYERS, no longer has control access to the file. After locating and tak· 
ing appropriate revenge on the junior member of LAWYERS who gave the file away, he would have 
to talk one of the members of PARALGLS (or a member of SYSMGR) into using the MSAR 
command to return control access to LAWYERS. 

7.2.5 Modifications to Access Groups and Access Rights 
The system determines what access groups a user belongs to when a job is created with that 
user's 10. Therefore, for the system to recognize any selection or modification that involves 
access groups, the user affected by such a change must log off and then log back on again for the 
change to take place. Changes to membership in an access group or to the selection of current 
creation access group do not affect running jobs. 

Modifications to the access rights of a file take effect immediately. However, the system deter· 
mines a user's access rights to a file when he tries to assign a LUNO to the file. Therefore, if a 
LUNO is already assigned to a file in a job, the Job will execute regardless of any changes to the 
file's security. 

For example, you are running a job that uses a file to which your access has all access rights. If 
someone uses the Modify Security Access Rights (MSAR) command to take away all the access 
rights to the file, the job you are running mayor may not be affected. If a LUNO is already assigned 
to the file, the modification will not affect the running job. However, if the LUNO has not been 
assigned, an error occurs when the task (under which the job is running) tries to access the file for 
which you no longer have access rights. 

7.3 ACCESS RIGHTS 

There are five possible types of access rights to a file: 

• Control access 

• Read access 

• Write access 

• Execute access 

• Delete access 

The access rights that an access group possesses define the ways in which its members can use 
a particular file. 

2270510-9701 7·3 



File Security 

Only one access group can have control access to a file. However, a member of an access group 
that has control access to a particular file can give any access group any combination of the first 
four rights to the file. 

You can use the MSAR command to assign or alter access rights to a file. When securing a file, 
you should carefully consider security requirements before deciding which groups should have 
access rights to the file. You should consider whether or not certain access rights can be withheld 
without affecting the normal work of the users. The following paragraphs describe each of the 
access rights. 

7.3.1 Control Access 
Control access is the right to change the access groups associated with a file or to change the 
access rights of any access group. Only one access group can have control access to a particular 
file. You must be part of an access group that has control access to a file in order to execute the 
MSAR command on that file. 

7.3.2 Read Access 
Read access is the right to read the contents of a file. This right also enables you to execute a file 
if it is an SCI batch stream or command procedure. If the file is a program file, read access allows 
you to designate the file when issuing the Map Program File (MPF) and Show Program Image (SPI) 
commands. With read access to a file, you can copy the contents of the file into any file for which 
you have write access. 

7.3.3 Write Access 
Write access is the ability to write data into a file. It allows you to modify old data and write new 
data. In addition, write access to a program file enables you to install or delete tasks, segments, 
procedures, and overlays. If the file is a key indexed file, this right allows you to insert or delete 
records from the file. 

7.3.4 Execute Access 
Execute access applies only to program files. This right allows you to execute tasks, segments, 
procedures, and overlays within a program file. As a security measure, you can protect your pow­
erful or sensitive tasks by placing them in a protected program file. However, do not move tasks 
supplied by Texas Instruments, as this step would affect the ability of the system to accept Texas 
Instruments patches. 

7.3.5 Delete Access 
Delete access is the right to delete (or replace) a file. In order to text edit a file, you must have both 
write and delete access. 

7.4 EXAMPLE OF A SECURED SYSTEM 

Figure 7-1 shows the relationship between access groups and access rights to particular files. 
Imagine a system that currently has only two user-defined access groups (ADMIN and FINANCE) 
and two secured files (ACCOUNTS, and BILLING). PRES is the access group leader for ADMIN. He 
has designated ADMIN as his creation access group. 

7·4 2270510-9701 



ACCESS GROUP 

ADMIN 

FINANCE 

SECURED FILE 

ACCOUNTS 

BILLING 

2284929 

IDS OF MEMBERS 

PRES t VP 

CMPTRLR.ANALYST t CLERK1, CLERK2 

ACCESS GROUP 

ADMIN 

FINANCE 

ACCESS RIGHTS 

READ, DELETE, CONTROL 

READ, WRITE 

File Security 

ADMIN 

FINANCE 

READ, WR ITE, DELETE, CONTROL 

READ 

Figure 7·1. Access Groups and Secured Files 

In this system, PRES can read both of the secured files because read access to these files has 
been defined for the ADMIN access group. He can also write to the BILLING file. ANALYST can 
write to ACCOUNTS because write access to the file has been defined for the FINANCE access 
group. However, if he tries to write to the BILLING file, he will receive an error because write 
access has not been defined for his access group. 

Consider that PRES needs to modify the accounts that his company has. To do so, he must estab­
lish write access to the ACCOUNTS file. Because he belongs to the ADMIN access group (which 
has control access to that file), he may issue the MSAR command to give write access to ADMIN. 

Consider that ANALYST was convinced he could help ADMIN modify the BILLING file. He has two 
options. First, he could ask PRES (the access group leader) to include his user 10 in the ADMIN 
access group. Second, he could ask anyone in the ADMIN access group to modify the security of 
the file in order to give write access to his access group, FINANCE. 

2270510·9701 7·5 



File Security 

Consider that PRES wants to create a stock strategy file which only the PRES, VP, and CMPTRLR 
can access. He can create an access group called LEADERS by executing the CAG command. 
PRES automatically becomes access group leader of LEADERS because he executed the com­
mand. If he wants to designate someone else as the leader he must execute the Modify Access 
Group (MAG) command. Then, he can use the Create File (CF) command to create a file named 
STRATEGY. The ADMIN group now has all access rights to the file (because PRES has selected 
ADMIN as his creation access group). He can then execute the MSAR command to define what 
access rights he wants the LEADERS access group to have. 

After these operations, the system would have one additional access group and one additional 
secured file, which might appear as follows: 

ACCESS GROUP 

LEADERS 

SECURED FILE 

STRATEGY 

2284930 

7·6 

IDS OF MEM BERS 

PRES. VP. CMPTRLR 

ACCESS GROUP 

ADMIN 

LEADERS 

ACCESS RIGHTS 

READ. WRITE. DELETE. CONTROL 

READ, WRITE 

Figure 7·2. Creating an Access Group 

2270510-9701 



File Security 

7.5 IMPORTANT POINTS ABOUT ACCESS RIGHTS TO SECURED FILES 

Each secured file can have access rights defined for up to nine access groups. The MSAR com­
mand assigns access rights and modifies them. You can define a different set of rights for each 
group. 

The rights granted to an access group define the rights of each member. The rights of an individual 
user are determined by membership in access groups. A user can access a file only if he is part of 
an access group that has rights to the file. 

The rights to a file for a given user are a composite of the rights for all of the access groups to 
which he belongs. For example, a user is a member of two access groups. The first has read 
access to a file and the second has write access to the same file. In this case, the user has both 
read and write access to that file. 

Access rights are independent of each other. Any combination of rights can be assigned to a file, 
even if certain combinations would not appear to make much logical sense. 

The system establishes what access groups a user belongs to when a job is created with that 
user's 10. 

The system establishes a user's access rights to a file when he assigns a LUNO to the file. 

The write-protect, delete-protect mechanisms of the Modify File Protection (MFP) are independent 
of file security, except in one way. To use the MFP command on a file, you must have write access 
and delete access. 

Changing the data in a file or the name of a file does not affect the access rights associated with 
the file. However, if you delete a file and create a new one with the same name, the file is no differ­
ent from any other that you create under your user 10: your creation access group inherits all 
access rights to the new file. 

Programs that copy files normally read the data from an input file and write the data to an output 
file. If the copying process is executed with any of the following SCI commands, the security 
rights of the input file are transferred to the output file: 

• BOD-Back Up Directory to Device (followed by the Restore Directory (RD) command) 

• CV-Copy Volume 

• CVD-Copy Volume to Device 

• DCOPY - Disk Copy/Restore 

If the copying process is executed with any other command, the security of the input file is not 
transferred to the output fi Ie. 

2270510-9701 7·7 



File Security 

7.6 PROGRAMMERS 

The following facilities related to security are available to programmers: 

• 110 utility operations that specify a user 10 

• Tasks designated as security bypass tasks 

• Special Rename File SVC option 

• Open routine specifying user 10 (S$OPNS) 

• No echo option for SCI prompt response 

• Read file characteristics security option 

7.6.1 1/0 Utility Operations That Specify a User 10 
In most cases, when a task uses a file, it does so with the access rights of the user 10 of the job in 
which it is running. In other cases, the task may be a special request server that runs in its own 
job. In the latter case, the task may need to access a file with the access rights of the requesting 
task. The user 10 and passcode of the requesting task are specified as an 1/0 parameter in the 
Supervisor Call (SVC) block for 1/0 utility operations in the request server task. For security bypass 
tasks, the passcode does not need to be specified. A security bypass task that specifies a user 10 
in the parameter list does not bypass security checking for the specified 1/0 operation. Instead, it 
picks up the access rights associated with the specified user 10. To set up an SVC block that spec­
ifies a user 10, refer to the ON OS Supervisor Call (SVC) Reference Manual. 

The following 1/0 utility operations may specify a user 10 as an SVC block parameter: 

• Assign LUNO-This operation assigns a LUNO if the specified user has any access 
rights to the file. All subsequent 1/0 operations that use the LUND are verified against 
the specified user's access rights. 

• Create File-This operation creates a file with full access rights given to the creation 
access group of the specified user. 

• Delete File-This operation deletes a file if the specified user 10 has delete access to 
the file. 

• Unprotect File-This operation removes write and delete protection from a file if the 
specified user 10 has write and delete access to the file. 

• Write Protect File-This operation write protects a file if the specified user 10 has write 
and delete access to the file. 

• Delete Protect File-This operation delete protects a file if the specified user 10 has 
write and delete access to the file. 

7·8 2270510-9701 



File Security 

7.6.2 Security Bypass 
Security bypass gives access rights to a program without giving it to the user. The Modify Task 
Security Attribute (MTSA) command assigns security bypass to a task in a program file; it can also 
remove this privilege. 

A task that is installed with the security bypass attribute is granted access to any file on thesys­
tem (except any task that uses an 1/0 utility operation specifying user 10). For this reason, you 
should secure the MTSA command under your security manager maintenance access group, so no 
one but you can assign the security bypass attribute to a task. It is your responsibility to guarantee 
the integrity of the task, as the task itself must enforce security. You, or a trusted programmer, 
should look over the logic of the task to insure that no unnecessary files are accessed. Once you 
have approved the task, you should perform the following steps: 

1. Assign the security bypass attribute to the task with the MTSA command. 

2. Use the MSAR command to give the control, delete, and write access rights for the pro­
gram file to your security manager maintenance group. With read and execute access, 
the user can use the program file for the needed purpose but he does not have the ability 
to modify it. 

3. Write protect the program file for the task, so the file cannot be modified. 

A security bypass task that uses one of the 1/0 utility operations that specify user 10 is affected as 
follows: 

• The task inherits the access rights of the user 10 specified rather than the full access 
rights normally given to a security bypass task. 

• The task does not need to specify the user passcode in the SVC parameter list. 

To set up an SVC block for 1/0 utility operations that specify user 10, refer to the DNOS Supervisor 
Call (SVC) Reference Manual. Having a security bypass task use one of these operations is useful 
in cases where you want to give a task unlimited access to files during execution but you want 
normal file access security for input and output files. 

For example, you are willing to give the security bypass attribute to a user's task but you want to 
guarantee that he can only place the output from the task into files for which the user has access 
rights. You can limit the user in this way by having the task use an Assign LUNO SVC that speci­
fies his user 10 when the task attempts to place the output in a specified file. At this point, the task 
loses its security bypass attribute. Therefore, before assigning the LUNO, the system checks 
whether the user has the proper access rights to the output file. 

7.6.3 Special Rename File SVC Option 
With the normal execution of the Rename File SVC, the new file assumes the security of the old 
file. For example, if you are modifying a file called LlST1 to be called LlST2, the LlST2 file assumes 
the security that belonged to LlST1. 

However, the special Rename File option allows you to keep the security of the destination file (if 
it exists) rather than that of the source file. Refer to the DNOS Supervisor Call (SVC) Reference 
Manual for details about this option. 

2270510-9701 7·9 



File Security 

You can use the option under the following three conditions: 

• The destination file already exists. 

• The replace option is specified. 

• You have write access to both the source file and the destination file. 

7.6.4 Open Routine Specifying User 10 (SSOPNS) 
The S$OPNS routine performs the following functions: 

• Executes an Assign LUNO SVC, specifying a user 10. 

• Opens a user-specified file, a user-specified device, or the Terminal Local File (TLF) for 
write access. To perform the S$OPNS routine, refer to the ONOS Systems Programmer's 
Guide. 

A programmer should use this routine instead of the standard S$OPEN routine when the following 
conditions are true: 

• The calling task is a security bypass task. 

• A standard security check on the listing file is desired. Therefore, a user who executes 
the task cannot place the output in a file for which he does not have access. 

7.6.5 No·Echo Option for SCI Prompt Response 
When writing SCI prompts, a programmer can use the no-echo option to indicate that data entered 
into a field is not to be displayed. Refer to the ONOS System Command Interpreter (SCI) Reference 
Manual for detai Is. 

7.6.6 Read File Characteristics Option 
The Read File Characteristics operation of the 1/0 SVC has an option that allows the issuer of the 
SVC to determine what rights he has to a file. If the option is specified, the SVC returns a word of 
data in the specified buffer. The data indicates what access rights the issuer of the SVC has to the 
file. 

The issuer of the SVC can also determine what access rights another user has to a file. If the user 
has access rights, he has previously been assigned a LUNO that specified his user 10. The issuer 
of the SVC can use this LUNO to find out what access rights the user has. 

Refer to the ONOS Supervisor Call (SVC) Reference Manual for details about this option. 

7·10 2270510-9701 



8 

Analyzing System Problems 

8.1 SYSTEM INITIALIZATION PROBLEMS 

During the initial program load (lPL) process, the system crashes when a loader error is encoun­
tered. The three loaders used to load the DNOS operating system into memory are the read-only 
memory (ROM) loader, the program image loader, and the system loader. The following para­
graphs discuss the error indications provided by the three loaders. 

8.1.1 ROM Loader Errors 
When an error occurs during ROM loader execution (TILINE load), the system crashes. The most 
common errors are controller and unit select errors. Regardless of the type of error, the fault light 
flashes on and off to indicate an error occurred. Depending on the error, the status of TILINE 
peripheral control space is displayed on the indicators of the programmer panel. 

If the error is a controller error and you are using a 990/10 or 990/12 computer, one of the following 
indicators lights up on the front panel: 

o 6 7 8 9 

ALWAYS ZEROS AC ME DE 

2279430 

AC - Abnormal completion 
ME - Memory error 
DE - Data error 
TT - TILINE time-out 

10 

TT 

1 1 t2 13 

IE RE CT 

IE -10 error 
RE - Rate error 
CT - Command timer 
SE - Seek error 

14 15 

5E o 

Refer to the appropriate disk installation and operation manual for further information regarding 
error conditions. 

If the error is a unit error and you are using a 990/10 or 990/12 computer, the following status word 
appears on the indicators: 

o 2 3 4 5 6 15 

OL NR WP us o 51 UNKNOWN 

2279431 

2270510-9701 8-1 



Analyzing System Problems 

OL - Offline 
NR - Not ready 
WP - Write protect 

8.1.2 Program Image Loader Errors 

us - Unsafe 
SI - Seek incomplete 

When the program image loader detects an error, it terminates with the flash crash routine. This 
routine displays> FF in the leftmost indicators, flashing on and off. The rightmost indicators 
show either of the following error codes: 

> 01 - Error loading from the disk 
> 08 - Unable to locate loader file 

If the> 01 error is displayed, disk track 1 information may have been destroyed. If the> 08 error is 
displayed, either an invalid system loader file name has been specified in the volume information 
or the disk image of the system loader file is damaged. 

8.1.3 System Loader Errors 
When the ONOS system loader detects an error during the IPL, the way it reports the error to you 
depends on what kind of computer you are using. On a 990/10 or 990/12 system, the loader dis­
plays the error code in the rightmost seven indicators and the phase number in the leftmost nine 
indicators on the programmer panel. The phase number indicates the last successful phase exe­
cuted, indicating that the loader detected an error in the next phase. The leftmost nine indicators 
flash on and off to indicate that the error occurred in the system loader. On a Business System 
computer, the hexadecimal equivalent of the error code is displayed in four digits on the front 
panel. 

Figure 8-1 shows the programmer panel phase number and error code display on a 990/10 or 
990/12 computer. The phase number is displayed as a bar graph starting from the leftmost indica­
tor. Indicator 0 is lit at the completion of phase 1, indicator 1 is lit at completion of phase 2, and so 
on. Each indicator remains lit until the loader completes execution. 

On a Business System Computer, the hexidecimal equivalent of the error code is displayed in four 
digits on the front panel. Table 8-1 lists the phase numbers. The error code is displayed as a binary 
number. Table 8-2 lists the codes and their meanings. 

I I I I I I I I I I I I I I I I I I I I 
~~----------------V~----------------~I '----------v~------------~I 

PHASE NUMBER ERROR CODE 

2279432 

Figure 8·1. System Loader Error 

8·2 2270510·9701 



Indicator 

0 
1 
2 

3 
4 
5 
6 
7 
8 

Error Code 

>01 
>02 
>03 
>04 
>05 
>06 
>08 
>09 
>OA 
>08 
>OC 
>OD 
>OE 
>OF 
> 11 
>13 
>14 
> 60-> 6F 
>68 

Analyzing System Problems 

Table 8·1. System Loader Phases 

Phase 

1 
2 
3 

4 
5 
6 
7 
8 
9 

Table 8·2. 

Description 

Successful loader relocation 
Successful open of kernel program file 
Successful load of writable control store (WCS), load of 

system root, and verification of system version 
Successful loading of special table areas 
Successful initialization of system overlay table and crash file 
Successful loading of JCA segments 
Successful loading of DSRs and scheduler 
Successful loading of memory-resident system tasks 
Successful loading of user memory-resident tasks 

System Loader (Flashing) Crash Codes 

Description 

Load device 1/0 error 
Not enough memory to load system 
System disk not found in image file 
Error in program file directory 
Loader incompatible with system version being loaded 
Disk bit map error 
No system loader file 
No kernel program file 
System segment not found in program file 
No patches appl ied to system 
Software version too old 
No utility program file 
No swap file 
Kernel program file revision is inconsistent with file revision 
Unable to get system table area 
Logical address space overflow 
Unable to load WCS file 
Error interrupt (Level 2) 
Insufficient user task area 

Refer to the DNOS Messages and Codes Reference Manual for more diagnostic information on 
loader flash crashes. 

2270510-9701 8·3 



Analyzing System Problems 

8.2 SYSTEM CRASH PROBLEMS 

When ONOS detects a system failure, it displays an error code on the front panel indicators and 
places the CPU in the idle mode. The fault indicator also lights to indicate a system crash. At this 
point, all the terminals stop responding to users. 

To analyze the system crash, perform the following steps: 

1. Press HALT and then RUN on the front panel to copy the contents of memory to the 
predefined crash file on disk. 

2. Perform the IPL to load the system again. 

3. Bid SCI at a terminal. 

4. Enter the XANAL command to execute the crash analyzer. 

To perform the IPL, press HALT and LOAD on the front panel. Refer to the ONOS Operations Guide 
for the complete procedures. 

The Execute Crash Analysis Utility (XANAL) SCI command provides a formatted listing of the sys­
tem crash file. A systems programmer can use this listing to analyze the cause of the system 
crash. 

The commands given to XANAL select portions of the memory dump on the crash file (or actual 
memory if the running system is being analyzed) and write them to the listing device in a formatted 
form. Table 8-3 summarizes the XANAL commands. 

8·4 2270510·9701 



Analyzing System Problems 

Command 

ALL 
AO 
CCB 
OM 
FCB 
GI 
JSB 
LDT 
MM 
OVB 
PBM 
PDT 
PO 
OU 
ROB 
RPB 
SGB 
SSB 
ST 
TA 
TR 
TS 
TSB 
?? 

Table 8·3. XANAL Commands 

Action 

Execute all of the commands 
Display contents of active queue 
Channel control block 
Dump a specific area of memory 
Dump file control blocks 
Display general information 
Dump job status blocks (JSBs) 
Logical device tables 
Memory maps 
Overhead beets 
Partial bit maps 
Dump physical device tables 
Display all other system queues 
Terminate session 
Resource ownership blocks 
Resource privilege blocks 
Dump segment group blocks 
Dump segment status blocks 
Dump secondary table areas 
Dump task areas currently in memory 
Dump registers for all tasks 
Display task status 
Dump task status blocks (TSBs) 
List all commands 

Normally, you should execute the GI, TS, and JSB commands in sequence to obtain the general 
information about a crash. The programmer can then print some of the data structures (such as 
TSBs) and memory maps as needed. The data structures printed by XANAL are described in detail 
in the DNOS System Design Document. 

Sometimes a great deal of knowledge about the system and system data structures is required to 
determine the underlying causes of the system crash from the XANAL listing. However, a systems 
programmer should be able to get much general information from the crash dump without getting 
involved in the details of the system structures. 

If you cannot resolve a system crash, do the following: 

• Report the system crash to a customer representative. 

• Provide a copy of the crash file (.S$CRASH) on a magnetic medium to the customer 
representative. (The medium will be returned after the data has been copied from it.) 

• Also provide the three link maps of the system and a file describing the events that led 
to the crash. 

2270510-9701 8·5 



Analyzing System Problems 

8.2.1 Organization of the XANAL Listing 
The first page of the crash dump generated by the GI command contains the general information 
block. Figure 8-2 shows an example of general information printed by the XANAL utility. The fol­
lowing paragraphs briefly describe each entry of the XANAL listing shown in Figure 8-2. 

8.2.1.1 Crash Code. The first entry is the system crash code displayed on the front panel when 
the crash occurred and the meaning of that code. An example of the crash code display is as 
follows: 

CRASH CODE = 00A2 FILMGR -- INCONSISTENT STRUCTURE 

In this example, > A2 (leading zeros are omitted in this section) was the error code returned when 
file management detected an inconsistent data structure. 

If the crash code is in the range of > 60 through> 6F (referred to as > 6x crash), the crash code 
represents a level 2 interrupt error. An example of the crash code for a > 6x crash is as follows: 

CRASH CODE = 0062 ERROR IN OS - ILLEGAL INSTRUCTION 
/ \ 

/ \ 
CRASH TYPE ERROR CODE 

The third digit identifies a > 6x crash and the last digit describes the cause of the crash. 

8.2.1.2 Executing Task. The second entry is the address of the TSB of the task that was execut­
ing when the crash occurred. When this value is 0, no task was executing at the time of the crash. 
Therefore, the crash occurred within the operating system, probably during a scheduling cycle. 

8.2.1.3 Executing Task JSB. The third entry is the address of the job JSB of the task that was 
executing when the crash occurred. The JSB contains the job name, job 10, and user 10 of the job. 

8.2.1.4 Location of Failure. This entry is the address from which the crash routine was cal/ed. 
In some cases, this entry pOints to the exact location of the crash. However, in most cases, this 
value is the location of a common crash point that can be entered from any of several locations. 

8.2.1.5 Status Register. This entry lists the value of the status register when the crash 
occurred. The last four bits (last digit in the entry) of the status register are the interrupt mask. The 
status register information is valuable when the crash code is in the range of > 10 through> 1 F, 
indicating an il/egal interrupt. When an il/egal interrupt occurs, the interrupt mask value is in the 
range of > 2 through> E (refer to the paragraph on forcing a system crash). When the crash code is 
> 6x, the interrupt mask value is 1. This value indicates that the crash was caused by one of the 
task error states occurring within the system or within a system task. 

8.2.1.6 CURMAP Addr. This entry lists the value of the current map file at the time of the crash. 
This information is useful when the crash code is> 61 (memory parity error). You can calculate the 
physical memory location using this information if the failure is in map O. If the failure is in map 1, 
use the values of the map registers in the TSB. 

8·6 2270510·9701 



I 

Analyzing System Problems 

SYSTEM DuMP ON 8/15/81 AT 10:17 -- VERSION 1.2.00 

CRASH CODE = 0062 ERROR IN OS - ILLEGAL INSTRUCTION 
EXECUTING TASK = 0000 
EXECUTING TASK JSB = 0000 
LOCATION OF FAILURE = OE92 
STATUS REGISTER AT TIME OF FAILURE C401 
JCASTR=9000 
COUNTRY CODE =UNITED STATES 
IMAGE NAME= S$SHIP 
MEMORY SIZE 756K BYTES 
CRASH FILE SIZE 756K BYTES 
CURMAP AD DR = 4622 

EXEtUTING WORKSPACE AT TIME OF DUMP 
30C6-0009 0000 FFFF 4622 OOOF OOOF 0000 0000 
3006-0006 FEOl 7F80 0000 lFEO 31A4 C190 301F 

TOP 64 WORDS OF CURRENT STACK 
7F40-0008 A356 4CFC A356 0000 96EE 0300 4CDA 
7F50-9DQ8 2D1E 0000 0180 0000 006E 4078 FOOD 
7F60-C316 8000 C354 7002 30B3 0064 C354 CCAA 
7F70-0000 CD08 0024 A386 0000 A3E2 E5CE 0000 
7F80-EA6C 0000 8050 4000 A356 0000 0000 CBE8 
7F90-373A AFB6 BOB6 37BC 0000 70AO 7FB6 7FBE 
7FAO-OBOO 7F44 0000 0300 4744 0300 3B4C 0000 

7: 

F" 

• V L. • V -. 
• T O. 
.$ 
• P @. • V 

7. 
.0 GD 

@. 
• T 

O. 

L. 

7FBO-37FE 0022 72AB 0000 5CCl 0000 5CCl FOOD 7. \. 

BL 

\. 

MACHINE ERROR (TRAP 2) WORKSPACE 
OE7C-0000 0002 0000 0080 0000 0060 lFAO lFCO 
OE8e-OOOF 0420 OBAO 0062 lFCO 30C6 076C D004 

TRAPPED WORKSPACE 
30C6-0009 0000 FFFF 4622 OOOF OOOF 0000 0000 
3006-0006 FEOl 7FBO 0000 lFEO 31A4 C190 301F 

LOCATIONS AROUND TRAPPED PC 
075C-1503 0420 08AO 002C 2EC2 COEO 2DDO 0000 
076C-2DCE C80B 2DDO 032B 0460 EBBC CB03 2DDO 

SVC (XOP 15) WORKSPACE 
31A4-0000 0000 2E1A 0000 00F4 0000 0000 0000 
31B4-6FOC 91F4 31C4 C10E 0000 90A4 COBA 209F 

CLOCK INTERRUPT WORKSPACE 
30C6-000Q 0000 FFFF 4622 OOOF OOOF 0000 0000 
3006-0006 FEOl 7F80 0000 lFEO 31A4 C190 301F 

HARDWARE TRAP VECTORS 
0000-30FO 114A 30EA 113E OE7C ODD6 OOCO 34FC 
0010-00CO 34FC 30C6 0766 OOCO 34FC 4BD6 3468 
0020-00CO 34FC 4A44 34BE 458A 34BE 496A 34E2 
0030-4926 34E2 48E2 34E2 OOCO 34FC OOCO 34FC 

XOP VECTORS 
0040-00CO C606 6B18 6B46 OOCO C606 OOCO C606 
0050-00C0 C606 OOCO C606 OOCO C606 OOCO C606 
0060-00CO C606 0000 0000 lC62 1CB2 lC2E 1C4E 
0070-1BA4 1BC4 OOCO C606 OOCO C606 31A4 C45C 

SYSTEM PATCH AREA 
3CFC-028C 0256 2043 2043 4F50 5952 4947 4B54 
300C-2031 3q38 3220 5445 5841 5320 494E 5354 
301C-5255 4D45 4E54 5320 494E 434F 5250 4F52 
3D2C-4154 4544 0010 0002 04EO 2DBO C060 2DBC 
303C-0460 1326 0016 0000 07C3 CB20 C626 OOOA 
304(-07C3 C80F 0002 0460 D2CO DEAD DEAD DEAD 
3F7C*DEAD DEAD DEAD DEAD DEAD DEAD 

O. 

F" 
1. O. 

• + 

1. 

F" 
1. O. 

o. ..J o. . :~. 4. 
4. O. 4. K. 4. 
4. JD 4. E. 4. 1. 4. 

1& 4. H. 4. 4. 4. 

• F 

• N 
1. . \ 

.V C C OP YR IG HT 
1 9B 2 TE XA S IN ST 

RU ME NT S IN CO RP OR 
AT ED 

• & .& 

Figure 8·2. General Information Block 

2270510·9701 8.7 



Analyzing System Problems 

8.2.1.7 System Patch Area. This entry lists patches that have been applied to the system. Use 
this information to verify that aI/ out-of-line patches have been applied to the system successfully. 
The beginning address of the patch area should be equal to the value assigned to NFPATCH. 
Examine the SYSMAP listing for your system to see the expected address. The last few lines of the 
patch area show the revision level of the release. Check the revision level to make sure that all 
recent patches have been applied. The patches are applied at the end of system generation. 

8.2.1.8 Executing Workspace at Time of Dump. The executing workspace contains the regis­
ters of the executing code at the time of the crash. 

8.2.1.9 Hardware Trap and Extended Operation (XOP) Vectors. Exmine the transfer vectors for 
hardware interrupts and XOPs to verify that they are intact. Since these values reside in the first 64 
words of physical memory, they can be destroyed by a system task that branches to memory loca­
tion O. Usually, the locations that are destroyed are locations> 0 through> 3 (power-up interrupt) 
or locations> 1A through> 1 F. Locations> 1A through> 1 F are destroyed when a task executes a 
BLWP instruction to location O. When the BLWP instruction is executed, the return context infor­
mation of the calling task is stored in locations> 1A through> 1 F. When a> 6x crash occurs and 
the interrupt mask in register 15 of the workspace for interrupt level 2 indicates a defined interrupt 
(mask value minus 1), check the interrupt trap values to determine if they are within the proper 
address range. Except for interrupt levels 0, 1, 2, and 5, the workspace pOinter and program 
counter for each interrupt level should contain addresses that are relatively close to each other. 

8.2.1.10 Special Workspaces. The works paces for the clock processor, the level 2 interrupt 
processor, and the SVC processor are printed last. These routines are entered through context 
switches and the return context is found in registers R13, R14, and R15 of these workspaces. 

If the crash code is > 6x, XANAL prints out the active workspace at the time of the crash and 16 
words of locations around the address in the program counter at the time of the interrupt. 

The clock workspace contains the location in the executing task where the last clock interrupt 
occurred. The SVC workspace contains the location of the last SVC or the scheduling location. 
These two locations can sometimes help to determine where a task was executing at the time of 
the crash. The interrupt 2 workspace contains diagnostic information about a > 6x crash. R13 
through R15 contain the context of the crash within the system. 

When looking at the saved status register for interrupt 2 (R15), notice the value of bit 8. If bit 8 is 
set to 1, the crash occurred in task code (map 1). If bit 8 is set to 0, the crash occurred in system 
code (map 0). 

8.2.2 Task States and JSBs 
The TS and JSB commands list the task states and JSBs of all tasks in memory at the time of the 
crash. Figure 8-3 shows example lists of task states and JSBs. 

8·8 2270510·9701 



Analyzing System Problems 

TASK STATES 

TASK NAME 1D WP PC ST STATE FLAGS STATION TSBAOR JSBAOR PROG FILE 
FILEMGR 0502 90A4 C08A 209F 0005 F320 91F4 71A4 S$SHIP 
SYNCOB 0301 6CE4 476A C5CF DE04 OCOO 9 9152 71A4 PROG 

FILEMGR 0502 90A4 C08A 209F 0005 F320 91F4 717A S$SH1P 
SYNCOB 0301 6CE4 476A C5CF DE04 OCOO 8 9152 717A PROG 

FILEMGR 0502 90A4 C08A 209F 0005 F320 91F4 7126 S$SHIP 
SYNCOB 0301 6CE4 476A C5CF DE04 OCOO 6 9152 7126 PROG 

FILEMGR 0502 90A4 C08A 209F 0005 F320 91F4 70FC S$SHIP 
SYNCOB 0301 6CE4 476A C5CF DE04 OCOO 5 9152 70FC PROG 

RPRCP 4G13 E27E E25E 209F 0004 C520 9410 6F88 S$UTIL 
FILEMGR 0502 90A4 C04C 249F 0024 F320 91F4 6FBB S$SHIP 
SCI990 0101 9D78 5680 21CF AC06 3000 39 9152 6F88 S$UTIL 
ANALZ iA12 7F06 17E2 C4CF AA04 4400 39 9368 6F88 S$UTIL 

XOI 620D 597A 1998 25CF A906 3000 39 92BO 6F88 S$UTIL 

FILEMGR 0502 90A4 C04C 249F 0024 0320 920E 6096 S$SHIP 
SCI990 0101 7EC6 7C78 21CF 0005 1000 9152 6D96 S$UTIL 

LGACCT 47F4 E7EC Cl88 C49F 0005 F300 A006 4C9E S$UTIL 
LGFORM 21E2 FC5C FC3C 209F 0004 C700 9B92 4C9E S$UTIL 
PMRWTK 2DD8 CIDO C008 849F 7904 C500 9A3C 4C9E S$UTIL 
JOBMGR 48D7 EOFC C1F6 C49F 0004 C720 99CA 4C9E S$UTIL 
DISKMGR 0619 COO6 C02C 849F 0024 F300 98C8 4C9E S$SHIP 
PMWRIT 0817 C006 C082 B09F 0024 F320 9856 4C9E S$SHIP 
IPC 0614 C232 C022 B09F 0024 0100 97E4 4C9E S$UTIL 
PMOVYL 0713 C006 C03A 849F 0024 D120 9772 4C9E S$SHIP 
SAVRES 6800 C008 C09E B09F 0024 0300 9570 4C9E S$UTIL 
FILEMGR 0509 90A4 C04C 209F 0024 F320 94FE 4C9E S$SHIP 
PMTERM 0408 C006 C264 089F 0005 Fl20 9476 4C9E S$UTIL 
NAMMGR 4306 COOA COAO B09F 0024 F120 937C 4C9E S$UTIL 
IOU 0305 C006 C030 849F 0024 F320 92F4 4C9E S$SHIP 
PMTLDR 0404 C006 Cl8C 309F 0024 F320 9282 4C9E S$SHIP 
DIOU 7502 COB2 C012 849F 0024 Fl20 919E 4C9E S$UTIL 
OPERATOR 6111 9022 C14E 959F 7909 9008 9656 4C9E S$UTIL 
MAILBOX 0710 lAOA 0588 C5CF 7909 1008 9700 4C9E S$UTIL 
PMTBID 0203 C006 C036 B09F 0024 F320 9210 4C9E S$SHIP 

Figure 8·3. Task States and JSB List (Sheet 1 of 2) 

2270510·9701 8·9 



Analyzing System Problems 

**** JSB LIST **** 
71A4-717A OOOB 6002 1404 OOFF 0000 0000 0000 · . · . · . · . 
71B4-AOC6 4CDA 5439 2020 2020 2020 2020 2020 L. 19 
71C4-2020 2020 0000 71A4 

717A-7i26 OOOA 6002 1404 OOFF 70FC 0000 0000 .& · . · . · . · . 
718A-AOO8 4CDA 5438 2020 2020 2020 2020 2020 L. 18 
719A-2020 2020 0000 717A 

7126-70FC 0008 6002 1404 OOFF 71A4 70FC 0000 · . · . · . · . 
7136-9EAE 4CDA 5436 2020 2020 2020 2020 2020 L. 16 
7146-2020 2020 0000 7126 • & 

70FC-6F88 0007 6002 1404 OOFF 7126 717A 0000 · . • & •• · . 
710C-9E12 4CDA 5435 2020 2020 2020 2020 2020 L. T5 
711C-2020 2020 0000 70FC 

6F88-6D96 0002 4005 OC02 AAFF 0000 0000 0000 @. 
6F98-9688 4CDA 4F20 2020 2020 2020 5359 5354 L. 0 SY ST 
6FA8-454D 2020 0000 6FS8 EM 

6D96-4C9E 0001 4002 1402 DOFF 70FC 0000 0000 L. @. 
6DA6-93F4 4CDA 5359 5324 494E 4954 2020 2020 L. SY S$ IN IT 
6DB6-2020 2020 0000 6D96 

4C9E-00OO 0000 SOlE 0002 OOFF 0000 0000 0000 ~ · . · . · . 
4CAE-9066 4CDA 5324 5348 4950 2020 2020 2020 L. S$ SH IP 
4CBE--2020 2020 0000 

Figure 8·3. Task States and JSB List (Sheet 2 of 2) 

8·10 2270510·9701 



I 

Analyzing System Problems 

The following paragraphs briefly describe each entry of the ANALZ listing shown in Figure 8-3. 

8.2.2.1 Task States. For each task in the system, the task state list contains the task 10, the 
task context at the last time the task was scheduled or performed an SVC, the current state of the 
task, the task flags, the TSB address, the JSB address, and the program file name. You may need a 
list of program files to identify these tasks. The task flag indicates task characteristics. Figure 8-4 
defines the flags in the flag word. 

o 

2279433 

2 3 4 5 6 7 8 9 10 11 112 13 14 15 

o - System task 
1 - Privileged task 
2 - Current segment set in memory 
3 - Take end action on error 
4 - I/O has been aborted for task 
5 - Task being aborted 
6 - Bypass security 
7 - Queue server task 
8 - Activate task outstanding 
9 - Initial task bid 

10 - Software privileged task 

Figure 8·4. Bit Assignment for the Flag Word 

Bit 2 of the task flag contains information for the active segment of the task at the time of the 
crash. When this bit is reset, the segment of the task has been rolled out to the disk. By examining 
this bit for each task, the systems programmer can determine which tasks were in memory and 
may be associated with the crash. 

8.2.2.2 JSB List. The JSB list contains all global data about the job including the job 10, job 
name, and priority. This information allows the systems programmer to associate a job with the 
task that was executing at the time of the crash. 

8.2.3 Analyzing System Crash Dumps 
The most common types of crashes are> 6x (> 60 through> 6F) crashes and> 1x (> 10 through 
> 1 F) crashes. The following paragraphs give suggestions on conditions to look for when analyz­
ing these crashes. 

The> 6x crash is caused by an invalid internal interrupt within the system or within a system task. 
Therefore, the status register at the time of failure Is > xxx1. The following steps indicate what to 
look for when a> 6x crash occurs. 

2270510-9701 8-11 



Analyzing System Problems 

Register 1 of the interrupt level 2 workspace contains the task error code that caused the crash. 
This code is displayed as a part of the crash code. The contents of registers 13, 14, and 15 show 
the location of the crash and the status at the time of the crash. If bit 8 of workspace register 15 is 
set to 1, the crash occurred in map file 1. If it is set to 0, the crash occurred in map file 0 (in system 
code). Register R14 contains the program counter value at the time of the crash. The 16 memory 
locations around the program counter value are also printed. Therefore, the systems programmer 
can decode the instructions previous to the program counter value (which was incremented by 2). 
The code around this location indicates the cause of the crash. The systems programmer can use 
the task workspace to check indexed addresses. For example, if a crash code is > 65 (a memory 
mapping violation), the systems programmer should decode the instructions using the task work­
space register information. 

When a task takes end action, the TSB for the task contains the address of a four-word area that is 
printed following the TSB. These words contain the error code and the context of the task at the 
time end action was taken. In the case of end action taken by a system task, the systems program­
mer should use this information to determine what forced a task to take end action. The systems 
programmer can then decode the location previous to this program counter value. 

The> 1x crash is an illegal interrupt at interrupt level x. This indicates that a device interrupted at 
an interrupt level that is not defined or a device interrupted from an expansion chassis and its 
position was not defined in the chassis. Check the hardware configuration and the system config­
uration listing. 

8.2.4 Forcing a System Crash 
A problem can occur in the system without resulting in a system crash, but it might prevent useful 
work on the system. For example, a system task could be in an endless loop. In such a case, it is 
desirable to force a system crash to obtain a crash dump for analysis. 

To force a crash, perform the following steps: 

1. Press HALT twice to ensure that the processor is using map file O. 

2. Press PC DISPLAY, MA ENTER, CLR, and MDE~ in that order, to set current memory 
address to o. 

3. Press RUN to resume execution. The machine instruction code executed at this pOint is 
> 0000, entered from the programmer panel. This is an illegal instruction and causes the 
system to crash with crash code> 62. 

4. Now, copy the crash dump to the crash file by pressing HALT and RUN. 

When you force the system to crash, the immediate cause of the crash is the illegal instruction 
you forced the computer to attempt to execute. However, you can examine other information 
(such as the executing task, hardware trap vectors, XOP trap vectors) to determine what caused 
the problem. The systems programmer should look for the location where the crash occurred. This 
location can then be used to trace the task that was executing when the problem occurred. 

~·12 2270510-9701 



9 

Adding Error Messages 

9.1 DNOS MESSAGE AND ERROR PROCESSING 

ONOS uses a single format for error messages from the operating system and all utilities. The 
method ONOS uses for message handling has the following features: 

• It provides informative, consistent messages. 

• It allows you to easily find expanded explanations of the errors. 

• It permits you to add your own messages. 

ONOS offers the following three levels of error reporting: 

• Internal error codes 

• Short, descriptive, English messages with message categories and identifiers used to 
find further explanation 

• Expanded online explanations 

This section describes the addition of messages and expanded explanations. 

Internal error codes appear if the supplied directories of message files are deleted from the sys­
tem disk. If the directory .S$MSG is on the system disk, short messages are supplied. If the direc­
tory .S$EXPMSG is also on the system disk and key indexed file (KIF) support is available, 
expanded explanations for errors are also available. 

9.1.1 Internal Error Codes 
When only the first level of error reporting is available, ONOS generates error messages formatted 
as follows: 

CCCCCCCC--INTERNAL CODE >MMMM vvvvvvvv 

2270510-9701 9·1 



Adding Error Messages 

Message category CCCCCCCC is a one- to eight-character string. The categories used by DNOS 
are as follows: 

Category 

ASSEMBLR 
DEBUGGER 
DNOSHLL 
EDITOR 
LINKER 
MAIL 
SCI 
STATUS 
SVC 
UTILITY 

Meaning 

Macroassembler messages 
Task Debugger messages 
DNOS high-level language messages 
Text Editor messages 
Link Editor messages 
Used by mailbox facility 
System Command Interpreter (SCI) messages 
Task status messages 
Supervisor call (SVC) messages 
Utility messages 

Displaying the message category CCCCCCCC is optional. Refer to Section 3 for a description of 
the S$CMSG interface routine. 

Error code MMMM is a four-digit, hexadecimal, ASCII-character internal error code. 

Variable text string VVVVVVVV is an optional, variable-length text string with logically separate 
pieces separated by semicolons. 

9.1.2 Short English Messages 
When the second level of error reporting is available, error messages have the following format: 

SSS CCCCCCCC-NNNN message message message message message message mes­
sage message message message (as many as five lines) 

Displaying the error source code SSS and message category CCCCCCCC is optional. Error source 
code SSS contains one~ two, or three characters. The following is a list of error source code 
characters: 

Code Meaning 

H Hardware 
I Informative 
S System 
U User 
W Warnrng 

Message category CCCCCCCC is one of the abbreviations defined 'for internal error codes. 

Additional abbreviations are used for support of various programming language and productivity 
tools. The abbreviations used by each language are described in the appropriate manual for the 
language. 

Message number NNNN can be used to locate further explanation of the message in the section 
for category CCCCCCCC within the DNOS Messages and Codes Reference Manual. 

9·2 2270510-9701 



Adding Error Messages 

9.1.3 Expanded Explanations Online 
For those systems that support expanded message files, the following information is reported to 
the user on request: 

Explanation: Text that explains the probable cause of the error and what the system has 
done 

User Action: Text that explains what the user should do to recover from the condition 

When an error message is displayed, enter a question mark (?) and press the Return key to display 
the expanded error message. 

9.1.4 Show Expanded Message (SEM) Utility 
The SEM utility displays an expanded explanation of a specified error message. You can display 
the expanded explanation of an error message immediately after the message appears by enter­
ing a question mark (?), and pressing the Return key. At any other time, you must enter an SEM 
command to display the expanded explanation. The information is written to the terminal local file 
(TLF) and displayed. Enter the command as follows: 

SHOW EXPANDED MESSAGE 
MESSAGE CATEGORY: alphanumeric 

MESSAGE 10: [{alphanumeric/integer}] 
INTERNAL ERROR CODE: UNKNOWN/integer 

The message category is the abbreviation for the category of the desired expanded message file. 
A message can be retrieved according to the message identifier sent to the screen or by the inter­
nal error code. A message identifier is the message number sent to the terminal that immediately 
follows the hyphen in the error message. An internal error code is the hexadecimal value used 
internally by DNOS. A common use of the INTERNAL ERROR CODE prompt is to display the mes­
sage for an error returned to a supervisor call (SVC) block. 

For example, the user might specify the following to display the explanation of the SVC error 
shown for the Assign LUNO Error, numbered 0315: 

SHOW EXPANDED MESSAGE 
MESSAGE CATEGORY: SVC 

MESSAGE 10: 0315 
INTERNAL ERROR CODE: UNKNOWN 

9.1.5 Displaying Messages 
The message is a combination of file-resident text and variable text. The file-resident text can con­
tain as many as 240 characters. Any character other than the question mark can appear in the text. 
The question mark is used as a position marker. It is replaced by variable text when the message 
is processed. Each question mark is followed by a decimal digit between one and nine to show 
which variable text element replaces the question mark. A question mark (?) followed by the char­
acter C implies that the current line of message text is filled with blanks; that is, C is an effective 
carriage returnlline feed sequence. 

Variable text is that part of the displayed message that can vary in each display of the message. It 
is determined at run time. It can be a pathnname, logical unit number (LUNO), opcode, or other 
execution-dependent information. 

2270510·9701 9·3 



Adding Error Messages 

When the message is being formatted for display, the disk-resident portion of the message is 
placed in the message output buffer. Each question mark is replaced by variable text supplied by 
the task that detected the error. The maximum length of variable text is 235 characters. This 
includes all variable text elements and delimiters that may be in the buffer. 

One question mark and digit is used for each element of variable text. When an element of variable 
text is null, the question mark remains in the message but the associated digit is removed. An 
element can contain as many as 235 characters. 

The variable text delimiter is the semicolon. More than one variable text element can be used in 
the variable text message. Two consecutive semicolons can be used to represent a null variable 
text element. 

If the files containing the file-resident portion of the message text are not on the system disk, the 
internal error code (previously described) is displayed. 

9.1.6 Message Examples 
The following examples show typical internal error codes and error messages for two error condi­
tions. The internal codes, message file texts, and message numbers shown in these examples are 
not necessarily those currently in the system. They are shown to illustrate the formatting of ONOS 
error messages. 

9.1.6.1 Assign LUNO Error. When the file specified in an Assign LUNO operation does not 
exist, the internal error code displayed on a system without a message text file might be as 
follows: 

SVC - INTERNAL ERROR CODE >0027 .PRINT.OUT 

The message category is SVC, the internal error code is > 0027, and the variable text is the path­
name of the nonexistent file .PRINT.OUT. When a message text file is present, an error message is 
displayed. The following is a sample error message for the same error: 

u SVC - FILE .PRINT.OUT DOES NOT EXIST 

The U identifies this as a user error, the message category is the same as that used in the internal 
error code, and the message is a composite of the message text and the variable text. The mes­
sage text is as follows: 

FILE 11 DOES NOT EXIST 

The variable text is as follows: 

10.PRINT.OUT 

The character count is a binary value. The characters replaced the ?1 of the message text. 

A message 10 in the error can be used to find additional information in the DNOS Messages and 
Codes Reference Manual. It is also the number thau identifies a supplementary message in the 
expanded message file. The following message example contains a message 10: 

U SVC - 0315 FILE .PRINT.OUT DOES NOT EXIST 

9·4 2270510·9701 



Adding Error Messages 

9.1.6.2 COBOL Complier Termination. The following is a sample display of the internal code 
displayed on a system without a message text file when the COBOL compiler has satisfactorily 
completed: 

COBOL - INTERNAL CODE >9010 .SOURCEiO 

The message category is COBOL. The internal error code is >9010. The variable text consists of 
the path name of the source file, .SOURCE, and the number of errors the compiler detected, O. 

When a message text file is present, an error message is displayed. The error message for COBOL 
completion could be: 

I COBOL -- .SOURCE COMPILED WITH 0 ERRORS 

The I identifies this as an informative message. The message category is the same as that dis­
played in the internal message code, and the message is a composite of the message text and the 
variable text. The message text is as follows: 

?1 COMPILED WITH ?2 ERRORS 

The variable text is as follows: 

9.S0URCEiO 

The character count is a binary value. The characters of the first element (up to the semicolon) 
replaced the ?1 of the message text. The 0 replaced the ?2. 

9.2 MESSAGE FILES 

Two types of message files can be maintained on the system disk: 

• Message files in the .S$MSG directory provide the fixed text portion of the error, infor­
mation, and completion messages used by SCI, SVCs, the languages, and utilities. 

• Expanded message files in the .S$EXPMSG directory contain the expanded 
explanations that are displayed when requested. 

Directory .S$MSG contains a message file for each of the language processors, the major utilities, 
and the SVC processors. The Build Message File (BMF) utility allows users to create message 
files for use in .S$MSG. 

Directory .S$EXPMSG contains an expanded message file corresponding to each message file. 
These files contain expanded explanations of the errors documented in the message files. The 
BEMF utility allows users to create expanded message files for use in the directory .S$EXPMSG. 

2270510-9701 9·5 



Adding Error Messages 

The messages files required by various application processors and utilities should use file names 
unique to those processors. The file name can be any name except those reserved for the system 
communications product and language processors. The following names are reserved: 

ASSEMBLR EDITOR NIO SMRG 
BASIC FORTRAN PASCAL STATUS 
COBOL FORT78CP PTP SVC 
COMM FORT78RT QUERY TAP 
DATADICT ICS3270 RPG TIFORM 
DBMS LAN S$ROUTIN TIP 
DEBUGGER LINKER SCI TIPE 
DNCS MAIL SLA UTILITY 
DNOSHLL 

To enable flexible naming for files, the source code contains a file indicator instead of the file 
name. The system uses the file indicator (hexadecimal value between> 00 and> 7F). This file indi­
cator is associated with a file name by a synonym $$FNxx in the SCI command procedure that 
calls the application processor. 

Application programs written by users can use files with file indicators greater than> 7F. Any 
conflict between file indicators in user programs is resolved by avoiding any common files or 
command procedures. 

9.2.1 Format of the Message Text Flies 
The message file is written by a utility called by the Build Message File (BMF) command. The input 
to this utility is a blank-suppressed sequential file. A file written by the Text Editor with default 
parameters is the intended input. A record length other than the default 80-character record length 
can be used. The following paragraphs describe the file contents. 

The first record of a message text file is a heading line. It must contain the following information: 

9·6 

• The lowest-value internal error code in the file in columns 1 through 4 (4 digits) 

• The highest-value internal error code in the file in columns 6 through 9 (4 digits) 

• The local language character for U (user error) in column 11 

• The local language character for S (system error) in column 12 

• The local language character for H (hardware error) in column 13 

• The local language character forW (warning) in column 14 

• The local language character for I (informative) in column 15 (the second record should 
be a blank line) 

2270510·9701 



Adding Error Messages 

Individual messages begin in record 3. Each message in the file has a header containing the 
following fields: 

• The error source indicator or combinations (such as USH) 

• One or more blanks 

• A left parenthesis 

• One or more four-digit hexadecimal internal error codes (separated by commas) 

• A right parenthesis 

This header can extend to several80-character lines when the applicable internal error codes can­
not all be written on one line. Terminate each line with the comma that separates the last internal 
error code on the line from the first code on the next line. 

The text of the message begins in column 1 of the next line and can be up to three lines long. This 
provides a maximum of 240 characters for the fixed-text portion of a message. The message 10, 
when it is to be displayed, precedes the message text on the first line and is included in the maxi­
mum number of characters. The message text is followed by a blank line. A text message can con­
tain any printable characters, with the following restrictions: 

• A question mark (and digit) anywhere in the message is replaced with variable text 
supplied by the task that reported the error. 

• The question mark and digit pair can be set off by blanks, have a blank on one side, or 
have nonblank characters on both sides. 

• A message can include as many as nine question marks, but none are required. 

A message can be associated with many internal error codes or with only one. The internal error 
code, perhaps by means of an EQU directive, appears in the source code of the task that issues an 
error message rather than the message itself. This allows you to add, modify, or delete messages 
without changing the source code. 

The internal error codes used within one message text file are independent of those used in 
another file. The user can choose any range of values. The values should be continuous to mini­
mize file space required since the .S$MSG file built from the message text file includes a con­
tinuous table of internal message numbers and their corresponding record numbers in the 
.S$MSG file. 

The standard message text files found in the .MESSAGES.TEXT directory have messages in 
uppercase English. 

22705 '10-9701 9·7 



Adding Error Messages 

The following is an example of a message text file: 

9050 9070 USHWI 

SU (9050) 
0059 ERROR ENCOUNTERED IN ASCII CONVERSION 

U (9052,9070) 
0061 ATTEMPT TO MODIFY BYTE AT AN ODD ADDRESS 

I (9053) 
0062 MODIFICATION PREVIOUSLY APPLIED 

The following example shows a message text using this file and internal error code 9051. The 
message category UTILITY is determined by selecting the file. The error source code S is supplied 
by the task that issues the message. The complete message displayed is as follows: 

5 UTILITY-0060 INTERNAL SUBROUTINE ERROR ENCOUNTERED 

9.2.2 Format of the Expanded Error Message Text Files 
The expanded message file is written by a utility called by the Build Expanded Message File 
(BEMF) command described in paragraph 9.3.2. The input to this utility is a blank-suppressed 
sequential file of BO-character records (normal Text Editor output), as described in the following 
paragraphs. 

Each message file can have a companion expanded message file in the expanded message file 
directory. This file should have the same name as its counterpart in the message file directory. 
These files contain the explanation and user action portions of the messages that appear in the 
DNOS Messages and Codes Reference Manual. The files for system messages contain text in 
uppercase and lowercase. 

Record 0 of an expanded message text file contains the characters for the headings for the mes­
sages (Explanation and User Action). These are In the same language as the messages in the file. 
Each heading must be enclosed in quotation marks to allow blanks in the phrases when 
appropriate. 

Subsequent records contain an explanation message and a user action message. For each pair of 
messages, the records contain the following: 

1. The characters % % are followed by a message identifier of up to 14 characters. The 
identifier must be the same as the external message number specified for this message 
in the .TEXT file. The pairs % % 1 and % 0/02 are reserved for the system. 

2. Starting on a new line, a paragraph explaining the message. The paragraph can contain 
as many as 20 lines. 

3. A blank line. 

9·8 2270510-9701 



Adding Error Messages 

4. A paragraph describing user action when the message is seen. The paragraph can 
contain as many as 20 lines. 

5. A blank line. 

Expanded explanations should be included for all of the entries in the message text file that con­
tain message IDs. The standard expanded message text files are found in the 
.MESSAGES.EXPTEXT directory. The following example shows an expanded message text file 
that corresponds to the example .TEXT file in the previous section. 

0/0 % 0059 

The attempt to convert to ASCII resulted in an error. 

Examine the program and determine why the input for the conversion was in error. 

0/0 0/00061 

The address specified for the change was an odd address. This routine does not process 
addresses with an odd value. 

Determine the source of the address, correct the error, and try the operation again. 

The requested modification has already been made .. 

This is an informative message only. 

9.3 MESSAGE FILE UTILITIES 

Three utilities are provided to build and use the message files. One of these utilities builds the 
message files from the message text files. Another creates expanded message files from the 
expanded message text files. A third utility retrieves the expanded explanation for the message 10 
given by the user. 

Each of these utilities is called by an SCI command. Figure 9-1 shows the functions of the utilities 
that process the message text files and the expanded message text files. 

2270510-9701 Change 1 9·9 



Adding Error Mess.ages 

USER DIRECTORY 

. S$MSG 

MESSAGE TEXT BMF 
FILE FOR THE .. 

.APPLIC -
ApPLICATION .SVC 

.UTILITY 

• • • 
EXPANDED 

.S$EXPMSG 

MESSAGE TEXT BEMF ... 
FILE FOR THE - .APPLIC 

ApPLICATION .SVC 

. UTILITY 

2279434 

Figure 9·1. Functions of Message File Utilities 

9.3.1 Message File Utility 
To create a message file in the .S$MSG directory, first write a message text file in any user direc­
tory. Then, use a Build Message File (BMF) command to write the file in the .S$MSG directory. The 
command is as follows: 

BUILD MESSAGE FILE 
I N PUT FILENAME: f i l ename@ 

OUTPUT FILENAME: filename@ 
OUTPUT FILE TYPE(REL/SEQ): REL/SEQ 

ERROR ACCESS NAME: filename@ 
MAXIMUM MESSAGE TEXT LENGTH: integer 

(RE L) 
(OUMY) 
(80) 

The input file name is the file pathname of the message text file that contains error messages for 
user programs. The output file name is the file name that must be placed in the .S$MSG directory 
for use by DNOS. The error access name is the pathname of a listing file used to document any 
errors in the message text file. If errors occur, correct them and reenter the command. The output 
file can be either a sequential or a relative record file. A relative record file (the default file) is 
accessed in less time. However, you can specify a sequential file when file size is important. The 
sequential file is more compact. The maximum message text length is the logical record length of 
the message text file specified as the input file. It is normally 80 characters. No translation of 
lowercase to uppercase is available. It is expected that the message text file contains uppercase 
letters. The .S$MSG file is also in uppercase letters. • 

9·10 2270510·9701 

•• ~ 



Adding Error Messages 

9.3.2 Expanded Message File Utility 
SCI can display any expanded explanation of the errors documented in the user message files. 
The expanded message text file can be developed in any user directory. You can then prepare this 
file for directory .S$EXPMSG by using the Build Expanded Message File (BEMF) command. Files 
in directory .S$EXPMSG are KIFs. 

BUILD EXPANDED MESSAGE FILE 
INPUT FILENAME: fi lename@ 

OUTPUT FILENAME: filename@ 
ERROR ACCESS NAME: filename@ 

CONVERT LOWER TO UPPER CASE?: YES/NO 
MAXIMUM MESSAGE 10 LENGTH: integer 

(DUMY) 
(NO) 
(4) 

The input file name is the file path name of the expanded text file. The output file name is the name 
of the file that must be placed into the .S$EXPMSG directory for use by ONOS. The error access 
file is the file pathname of a file that is used to document any errors in the expanded message file. 
When errors occur, delete the output file. Correct the expanded message file and reenter the 
BEMF command. 

Respond YES to the CONVERT TO UPPERCASE prompt when the system includes terminals that 
do not support lowercase characters and the input file contains lowercase letters. Otherwise, you 
can respond NO to the prompt. 

The maximum message 10 length is the length of the message number that is used to select the 
expanded explanation. The default value is 4. You can specify any value from 1 through 14. 

9.4 ERROR MESSAGE INTERFACE 

An application program uses routines S$TERM and S$CMSG (described in Section 3) to interface 
with the message files. Section 3 also describes the system synonyms related to these routines 
($$CC and others). 

Command procedures that use the application message file need to set a synonym $$FNxy to the 
message file name in use. The value chosen for xy must be greater than> 7F and must not conflict 
with any other application message file in use. The value assigned to the synonym must be the 
last component of the file name in the .S$MSG directory. For example, an accounting package 
might have a file .S$MSG.ACCOUNT for'which the synonym $$FN80 is set to ACCOUNT in each 
command procedure used by the accounting application. 

2270510-9701 9·11/9·12 





10 

International Considerations 

10.1 INTRODUCTION 

DNOS is an international operating system designed to meet the commercial requirements of the 
United States as well as most Western European countries and Japan. 

The international capabilities include the following: 

.' Data input and output via international peripheral devices designed to meet the 
language requirements of the following countries: 

Denmark/Norway 
France/Belgium 
French word processing 
Germany/Austria 
Japan 
United States 
United Kingdom 
Sweden/Finland 
Spain 
Switzerland 

• The ability to store and manipulate international data on any of the DNOS file types 

• Collating sequences dependent on country code for key indexed files (KIFs) 

• Translatable error messages 

• Translatable of SCI procedures 

• Use of special language characters in path names and synonyms 

2270510-9701 10·1 



International Considerations 

10.2 COUNTRY CODE 

DNOS interprets international data in accordance with the country code selected by the user dur­
ing system generation. This code reflects the nationality of the data terminals attached to the sys­
tem and defines the way data is processed for the complete user system. It also determines the 
way the device service routines (DSRs) interpret input and output data and the way in which (KIF) 
management orders user keys. 

The country codes that can be assigned during system generation are as follows: 

Response to 
Country Code 

Prompt 

AU 
B 
D 
FI 
FRA 
FWP 
G 
J 
N 
SP 
SWE 
SWI 
UK 
US 

Country 

Austria 
Belgium 
Denmark 
Finland 
France 
French Word Processi ng 
Germany 
Japan 
Norway 
Spain 
Sweden 
Switzerland 
United Kingdom 
United States 

NOTE 

For countries not listed, users should enter the default value (US) 
for the country code prompt during system generation. 

When using SCI, you can use the Show Country Code (SCC) command to show which country 
code is currently set. Table 10-1 shows the ASCII codes for special language characters. User pro­
grams can determine the country code assigned to their system by executing a Retrieve System 
Information (> 3F) supervisor call (SVC). 

10-2 2270510-9701 



International Considerations 

Table 10·1. ASCII Codes for Special Language Characters 

ASCII COD.E 

CO UNTRY 23 40 58 5C 50 5E 60 78 

US ASCII STANDARD # @ [ \ 1 " 
, { 

UNI TED KINGDOM £ @ [ \ j " 
, { 

GER MANY!AUSTRIA # @ A 6 u " 
, a 

SW EDEN/FINLAND * # E A 6 A u e a 

NOR WAY/DENMARK # @ A: 0 A " , ce 

SPA NISH ~-SPEAKING # @ i N t " 
, 0 

SW ITZERLAND £ a e r e " a 

FRA NCE ** 
FRE NCH WP £ a 0 ~ § " 

, e 

ITA LY ** 
HOL LAND ** 

I 

*C USES ASCII CODE >24. REPLACING THE $ CHARACTER IN US ASCII. 

** USES THE US ASCII STANDARD. 

2284937(1/2) 

10.3 INFORMATION INTERCHANGE CODES 

7C 70 7E 

: } -

: } -

0 u 13 

0 it u 

0 it -

ii T -

0 u "" 

u e- "" 

ONOS and its supported peripheral devices use the internationally accepted information inter­
change codes for the various countries supported. In most cases, this is a seven-bit ASCII-type 
code with a few special characters required for the local language. 

Japa.n uses an eight-bit code to represent both the Latin alphabet (A through Z) and the Japanese 
Katakana character set in one combined information interchange code (JISCII). Devices using this 
code must be put in a-bit mode by using the Modify Device State (MDS) command. For details 
about the M OS command, refer to the DNOS System Command Interpreter (SCI) Reference 
Manual. Table 10-2 shows the J ISCII codes for Japanese characters. 

The Japanese Model 911 VDT, which supports this extended character set, does not have the highl 
low intensity features available on the other versions of the Mode1911. 

22705"10·9701 10·3 



International Considerations 

JISCII 
CODE 
JAPANESE 
CHARACTER 

JISCII 
CODE 
JAPANESE 
CHARACTER 

JISCII 
CODE 
JAPANESE 
CHARACTER 

JISCII 
CODE 
JAPANESE 
CHARACTER 

JI SCII 
CODE 
JAPANESE 
CHARACTER 

!SC 

=¥ 

AD 

..::1 

8A 

:::J 

C7 

~ 

04 

-r 

2284937(2/2) 

A' 

4» 

AE 

::I 

88 

..,. 

C8 

~ 

05 

-=:I. 

Table 10·2. JISCII Codes for Japanese Characters 

A2 A3 A4 A .. 5 A6 A7 AS A9 AA AS AC 

r ...... .. - ~ ,. -1'" ~ X ~ ." 

AF 80 S, 82 83 84 85 86 87 88 89 

'V - ., .~ "? I :::l" ::n ~ ? '7 

BC 80 8E 8F CO C, C2 C3 C4 C5 C6 

:-, 7': 1:!' '--~ ~ ~ '~J T t, ~ --

C9 CA C8 CC CD CE CF DO 0' 02 03 

--'" ,,\ l::: 7 ' ... If' -::? - ~ -~ '=f:: -

06 07 08 09 OA 08 DC DO DE OF 

=:3 7 • .J It, L-·- 0 r-:J - 0 

-' , .. 

Local character extensions to ASCII required for international ASCII often replace special charac­
ters. The brackets ( [ ] ) used for the SCI prompt may not be available; local characters may have 
replaced them. For example, in German, the letters A U replace the brackets in the default SCI 
prompt. You can supply an appropriate substitute by entering the .OPTION SCI primitive. The for­
mat of the primitive is as follows: 

.OPTION PROMPT = "Any message" 

10·4 2270510·9701 



International Considerations 

10.4 KIF COLLATING SEQUENCES 

The KIF manager sorts user keys alphabetically (rather than according to the hexadecimal value 
of the letter) as it inserts records in a KIF. In German, Austrian, Swedish, Danish, Norwegian, and 
Finnish, the alphabetic order differs from English and a special collating sequence applies. 

The country code specified for the system determines the collating sequence for KIFs. For ex­
ample, the key letters V, U, U, and 0 are sorted by KIF as 0, U, U, and V in a German system. 

Key Order 
on Disk (German) 

o 
U 
U 
V 

Hexadecimal 
Value 

44 
55 
50 
56 

Once a KIF is written on a German system, the collating sequence in which the data is arranged is 
valid only for a German system. For example, if the file is physically transferred to a Swedish sys­
tem and a Show File (SF) command is executed, the data appears reasonably legible, although the 
U appears as an A on the Swedish VOT. However, the alphabetic sorting order of the keys is incor­
rect for the Swedish system. The Swedish A should not appear between the U and the V in the col­
lated access list. If you attempt to add data to the file, the key collating sequence is disrupted and 
the file becomes unusable. 

If you use binary data as keys, you may have several values that map to the same positions in 
sorted order. At most, the last four byte values of the ASCII codes will sort to the same value; that 
is, > FC, > FO, > FE, and> FF will all sort at the end as> FF. 

To successfully transfer a KIF between different international systems, convert the file to a 
sequential file by using the Copy KIF to Sequential File (CKS) command on the system on which 
the file was written. Then, create the KIF on the destination system. Use the Copy Sequential File 
to KIF (CSK) command to copy the records using the collating sequence of the destination sys­
tem. Since the new KIF is compatible with the destination system, you can insert records correctly 
using the CSK command. 

22705'10·9701 10·5 



International Considerations 

Table 10-3 shows the collating sequences for all supported languages. 

Table 10-3. Collating Sequences for All Supported Languages 

Country Collating Sequence 

France/Belgium ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 

France Word Processing ABCDEFGHIJKLMNOPQRSTUVWXYZ 
aabc9deeefghijklmnopqrstuuvwxyz 

Germany/Austria AABCDEFGHIJKLMNOOPQRSTUtiVWXYZ 
a§bcdefghijklmno6pqrs~tutivwxyz 

Japan (Katakana) ABCDEFGHIJKLMNOPQRSTUVWXYZ 

Norway/Denmark 

Sweden/Finland 

Spanish-speaking 
countries 

Switzerland 

United Kingdom 

abcdefghijklmnopqrstuvwxyz 

77 _"to? :x: ~ "f7 .:::J. :::3 .... -7 
-of ~ I :::=t :fJ =t= ? 7 ::J ..,. =-' ~ 
""t!" ~_JI ~ ~ • ~J:=r t ... :J""" = :x: ~ _-"" 
J " t:::: "/ '-... if;; -::? :=: 6. _-:~ ~ .". ...::t 
:::J ~ I _J n .. t--- 0 r-;J :......... 0 

ABCDEFGHIJKLMNOPQRSTUVWXYZ JE0A 
abcdefghijklmnopqrstuvwxyz~0a 

ABCDEEFGHIJKLMNOPQRSTUVWXYUZAAO 
abcdeefghijklmnopqrstuvwxyuzaa6 

ABCDEFGHIJKLMNNOPQRSTUVWXYZ 
abc9defghijklmnnopqrstuvwxyz 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
aaabc9deeefghijklmnoopqrstuuvwxyz 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 

2283037 

10-6 2270510-9701 



International ConsIderations 

10.5 INTERNATIONALIZING MESSAGES 

Section 9 describes the ONOS message facility in detail. The messages reside in a set of files, 
which facilitates translating them into the "local language. 

The .MESSAGES.TEXT directory contains the files of factory-built text messages in a form that 
can be text edited. Separate files are available for each of the language processors, System 
Command Interpreter (SCI), the major utilities, SVC error messages, and user-developed 
messages. 

The header record (first record) of each file contains the local language letters that correspond to 
the error source code letters U, S, H, W, and I. (See the paragraph entitled Short English Messages 
in Section 9 for the meanings of the error source code letters.) Edit that record to place the proper 
letters in columns 11 through 15 as described in the section on message files. 

For each error message, the .MESSAGES.TEXT directory contains edit files with source code, the 
internal error codes that select the message, and the message text. Edit the error source code 
field, substituting the letters defined in the header record for those in the file. Then edit the mes­
sage text, replacing the English words with a useful translation to the local language. You must 
also edit the corresponding expanded messages in the .MESSAGES.EXPTEXT directory. 

Edit the messages with care. To obtain the support you might require from time to time there must 
be a one-to-one correspondence between the English messages supplied by the factory and the 
messages in your language. Support personnel can locate the message associated with each 
internal error code and can recognize the message number but may not understand the transla­
tion. By retaining the internal error code relationship to the message and the message number 
relationship to explanatory information, you simplify support procedures. 

To generate the .S$MSG and .S$EXPMSG directories from the files that you edited, execute the 
batch stream named .BATCH.BUILO.MESSAGE1 that is shipped with ONOS. 

2270510-9701 10-7110-8 





11 

Differences Between OX10 and ONOS 

11.1 INTRODUCTION 

This section describes some of the differences between OX10 and ONOS that affect migrating 
from OX10 to ONOS. It also offers advice to help you overcome the differences. The categories of 
differences are as follows: 

• General environment 

• Oevice and file 1/0 operations 

• System Command Interpreter (SCI) user interface 

• SCI primitives and interface routines 

• Supervisor call (SVC) support 

• User-written system software 

• System console 

11.2 GENERAL ENVIRONMENT 

Most OX10 operating system applications programs can execute properly under ONOS. However, 
the environment in which they run is slightly different. Consequently, the programs might require 
several subtle changes. 

One of the features of ONOS is the job structure which allows the user to isolate a set of tasks 
with its own resources and run-time environment. Each task in ONOS exists within a job. A job can 
have job-local logical unit numbers (LUNOs), semaphores, and logical names. Access to many 
task characteristics is restricted to tasks within a single job. Among other things, the job struc­
ture allows some characteristics that are associated with a terminal in OX10 to be independent of 
a terminal in ONOS. 

2270510·9701 11·1 



Differences Between DXtO and DNOS 

Some of the particular differences between OX10 and ONOS with respect to the overall environ­
ment include the following: 

11·2 

• OX10 has no job architecture; the entire system essentially consists of one job. In 
ONOS, the job architecture allows users to isolate their tasks and resources from each 
other. This implies that a number of SCI commands and SVC operations produce differ­
ent results under the two systems. In particular, status commands such as Show Task 
Status (STS) and Show I/O Status (SIS) provide status for a particular job name or 10 in 
ONOS rather than displaying status for all tasks as in OX10. Similarly, the Kill Task (KT) 
command affects only tasks in the user's job in ONOS, while it may be used for any task 
in OX10. Also, ONOS provides a number of job status commands that are not in OX10. 
An operator interface is also provided so that a system operator can control any job in 
the system. The operator job is recognized by the operating system as a privileged job. 

• Files written in a OX10 environment may be used directly in a ONOS environment, with 
the exception of hash-placement key indexed files. Only sequential-placement KIFs are 
supported in ONOS and in current releases of OX10. 

• Ouring a ONOS initial program load (IPL), all disk volumes that are online are installed. 

• 

In OX10, disk volumes must be explicitly installed. 

OX10 requires a minimum main CPU memory of 256K bytes (where K equals 1024); ONOS 
requires at least 512K bytes. In general, running ONOS with the same user environment 
as OX10 requires more main CPU memory. 

• OX10 restricts the use of a given user 10 and passcode to one terminal at a time. ONOS 
allows the same user 10 and pass code to be active in any number of jobs at any number 
of terminals at anyone time. This feature can have a confusing effect on the permanent 
synonyms and logical names for the user 10, since each log-on receives the currently 
defined set of synonyms and logical names from a disk file and each log-off saves the 
current set to the file. 

• The system log device in OX10 can also be used as an SCI terminal. This is not allowed 
in ONOS, since a terminal being used for SCI is owned and opened by the job using the 
terminal. When SCI is in use at a terminal, the system job cannot assign a LUNO to the 
terminal and use it for logging. The log device becomes disabled if the terminal is in use 
when a log message is to be sent. To establish the terminal as the log device, use the 
Initialize System Log (ISL) command. 

• In addition to the temporary files which can be created with the Create File I/O opera­
tion, the ONOS environment supports job temporary files. These files are established 
using the Assign Logical Name (ALN) SCI command or the Assign Logical Name 
suboperation of the Name Manager SVC. A job temporary file is available only to tasks 
within a given job and the file exists only for the duration of the job. 

2270510·9701 



Differences Between DX10 and DNOS 

• The hard-break key sequence for ONOS and for OX10 is Attention/(Control)x. The 
sequence can be redefined by a user who modifies a ONOS table of command defini­
tions. The sequence of tasks killed in response to several break key sequences may dif­
fer in OX10 and ONOS. In OX10, only foreground tasks can be killed; SCI, however, 
cannot be killed. In ONOS, one task is killed each time the break key sequence is used. If 
only SCI is active, it is killed. The job at the terminal terminates and the terminal is again 
available for use. If tasks other than SCI are active, the order in which tasks are killed is 
foreground tasks, then background tasks, then SCI. 

• Nonreplicatable tasks installed in the program file .S$PROGA for OX10 have the same 
run-time 10 as installed 10 when they are bid. In ONOS the lOs are not the same when bid 
from the analogous program file .S$UTIL. User-written command procedures that do not 
check the run-time 10 synonym $$RI (which is set by the Execute Task (XT) command) 
must be changed to execute properly in both OX10 and ONOS environments. 

• Many internal system structures of ONOS are different from their counterparts in OX10. 
User programs that access structures such as the task status block (TSB) must be dif­
ferent for the two operating system environments. 

• For those with OX10 Release 3.3 or earlier, a Copy Oirectory (CO) command for a ONOS 
directory changes channels to aliases and does not copy software privileged tasks in a 
ONOS program file correctly. 

• Names of system files for various uses differ in OX10 and ONOS, as shown in Table 11-1. 

• In ONOS, when the destination for installing a task is specified as LUNO 00, file 
.S$SHAREO is implied; in OX10, .S$PROGA is implied. Specifying attached procedures 
not from a task's program file implies they are in the .S$SHAREO program file in ONOS. 

• The format of the S$CRASH file differs for the two systems. Therefore, if a disk with 
S$CRASH written by ONOS is loaded under OX10, it must be loaded twice. The first load 
fails but prepares the crash file for the second load. 

• OX10 provides conversion utilities to transport data in TX990 format to the OX10 disk 
formats. ONOS does not provide this facility. 

• OX5 support is not available with ONOS, but is available with OX10. 

• ONOS does not support the TILINK software package, but OX10 does. 

• ONOS does not support the 913 terminal and F0800 diskette, but OX10 does. 

2270510-9701 11·3 



Differences Between DX10 and DNOS 

Table 11·1. DX10/DNOS System File Names 

System File Name DX10 DNOS 

Log file 1 .S$SLG1 .S$LOG1 
Log file 2 .S$SLG2 .S$LOG2 
Accounting log file 1 None .S$ACT1 
Accounting log file 2 None .S$ACT2 
Program file .S$IMAGES System name 

(system kernel) 
Utilities program file .S$PROGA .S$UTIL 
User's shared program file .S$PROGA .S$SHARED 
System generation library .S$SYSGEN .S$SGU$ 
SCI command library (default) .S$PROC .S$CMDS 
Swap File .S$ROLLA .S$ROLLD.8$ROLLA 

11.3 DEVICE AND FILE 1/0 OPERATIONS 

Because the job orientation in ONOS replaces the station orientation of OX10 to some extent, the 
scope of LUNOs for I/O is different. ONOS I/O processing in general is more uniform than that of 
DX10. This introduces some differences in the user interface to the system. File management dif­
fers in the variety of options available. ONOS provides a number of options not available in OX10. 

Particular differences between OX10 and ONOS include the following: 

11·4 

• In OX10 an Open operation is not required for record-oriented devices. In ONOS an Open 
operation is required before I/O to any I/O resource is allowed. 

• In OX10, the data buffer address field (bytes 6 and 7) of an Assign LUNO I/O SVC block 
has no data returned to it by the I/O processing. In ONOS, resource type information is 
returned from the physical device table (PDT). This is different from the data returned by 
an Open operation. This difference should affect only those programs that reuse an SVC 
block for another call without clearing relevant fields first. 

• In DX10 global LUNO 00 is assigned to ST01; in ONOS it is assigned to OUMY. This dif­
ference should affect only those programs that are not associated with a specific ter­
minal when bid but that perform I/O to LUNO 00. 

• Station-local LUNOs, as specified by particular flag settings in OX10 code, are 
interpreted as job-local LUNOs in ONOS. ONOS does not support station-local LUNOs. 

• A task bid by SCI in the OX10 environment can assume that station-local LUNO 00 is 
assigned to the use'r's terminal. When a job is created in ONOS, it is given a job-local 
LUNO 00 assigned to OUMY. In ONOS, a task-local LUNO 00 is assigned to the user's 
terminal. This difference should be noticed only by a program which explicitly tries to 
assign task-local LUNO 00. 

2270510-9701 



Differences Between DX10 and DNOS 

• Communications software in DX10 uses the error byte of the I/O SVC block for informa­
tive codes as well as error codes. DNOS uses the error byte only for errors and sets the 
error flag in the system flags byte whenever the error byte is nonzero. DX10 communica­
tions software does not expect the error flag to be set for informative codes. 

• A task that enters its end-action routine in DX10 has LUNOs released before entering 
the end-action code. DNOS tasks can use the LUNOs in their end action code without 
having to reassign them because DNOS does not release LUNOs before taking end 
action. DNOS time-out during end action can be set using the Modify Scheduler/Swap 
Parameter (MSP) command. The default is 100 system time units. 

• DNOS and current releases of DX10 support sequential-placement KIFs. Hash­
placement files created under previous versions of DX10 must be converted to 
sequential-placement files on a DX10 system before attempting to use the files with 
DNOS. 

• On any KIF I/O operation in which a key is specified, DNOS requires that the key speci­
fied flag be set in the user flags byte (byte 5) of the SVC block, while DX10 does not. The 
operations for which the flag must be set include the following: 

Subopcode 41 (Read Greater) 

Subopcode 44 (Read Equal or Greater) 

• The extended call block flag of the user flags byte (byte 5) of the 110 SVC block is used in 
TX990 to mean logical track addressing. DX10 contains a special code to ignore it if set 
for devices that are not terminals. DNOS does not contain this code. 

• The DNOS 110 system stores two more words of the 110 SVC block than DX10 does for 
sequential file 110. These two words are not returned to the task. Therefore, a problem 
arises only if the call block is at the end of the task address space where two more 
words are not available. 

• The device LP$1 designates use of LP01 as a print device in DX10. In DNOS, LP$1 func­
tions as a print device only if it is defined as a logical name for one of the line printers in 
the system. 

2270510-9701 11·5 



Differences Between OX10 and ON OS 

11.4 SCI USER INTERFACE 

DNOS SCI provides essentially the same user interface to the operating system as DX10 SCI. Sev­
eral differences take advantage of new features in ONOS, and some differences provide a more 
uniform interface. A number of enhancements in speed and space have been developed. The 
specific differences are as follows: 

• ONOS provides a synonym and logical name table for each job; OX10 has a synonym 
table for each station. The tables for ONOS are considerably larger than those for OX1 O. 

• After a ONOS system is generated, a Modify Spooler Device (MSO) command must be 
executed for each device to be used with the Print File (PF) command. MSO sets up the 
appropriate tables for the spooling of output. All output from PF is through the spooler 
subsystem of ONOS. When the spooler is active, all devices that have been modified to 
be spool devices are available only to the spooler. Therefore, a command such as List 
Directory (LO) cannot have its output directed to a spooled device. It can be directed to a 
file which is then printed with PF, to a nonspooled device, or to a spooler logical name 
(that is, a logical name that has been assigned to a device available to the spooler). 
Batch streams written for OX10 that specify a line printer for output listings may require 
modification to run on ONOS. 

• The Print File (PF) command in OX10 calls the Show Output Status (SOS) command to 
show the current queue of files to the device specified for output. The ONOS PF com­
mand does not call SOS; the user must explicitly specify SOS after PF to monitor the 
output. 

• In OX10 the status of each terminal is reinitialized via a Modify Terminal Status (MTS) 
command during each IPL. In ONOS this is not required because the MTS command 
modifies the status on a disk file and not in memory only. This may not be a problem for 
most users. However, it may be a problem to the user who expects the terminal to return 
to the default status during an IPL. 

• DX10 SCI supports two types of task modes, foreground and background. ONOS sup­
ports the same two types of task modes in interactive jobs. In addition, ONOS supports 
batch jobs in which tasks run independently of a terminal. Batch jobs, like background 
tasks in interactive jobs, request that SCI process a file of commands (batch stream) as 
its primary input. Some batch streams that can be executed with Execute Batch (XB) in 
DX10 or ONOS cannot be executed with Execute Batch Job (XBJ) in ONOS. This is 
because the values of the synonyms $$ST and ME and the pathname of the terminal 
local file (TLF) are different when SCI is started with the XBJ command. The value of 
$$ST is 00, and the synonym ME is not assigned when using XBJ. This problem should 
not occur for mostbatch streams. 

• The primary command procedure library is named .S$CMOS in ONOS; it is .S$PROC in 
DX10. Batch streams that include a .USE that specifies .S$PROC for OX10 must specify 
.S$CMOS for ONOS. 

• In DX10 each of the major subsystems reports error and status conditions in its own 
way; in ONOS the error reporting mechanism is the same for all subsystems. 

11·6 2270510-9701 



Differences Between DX10 and DNOS 

11.5 SCI PRIMITIVES AND INTERFACE ROUTINES 

The structure of the SCI task in ONOS is different from that in OX10. OX10 SCI consists of a task 
with a number of overlays for various support functions such as modifying synonyms, handling 
user IDs, editing, and debugging. In ONOS, SCI is a single task and most of the utility functions 
are performed by independent tasks. Other differences in SCI interfaces and the primitives 
include the following: 

• User-written SCI command procedures and batch streams that directly bid standard SCI 
utilities using .OVLY or .BIO instead of using the standard command procedures in 
OX10 do not execute without modification for ONOS. The reasons are as follows: 

The parameters for .BIO have been augmented and defaults have been changed. 
Specifying a bid from LUNO = 00 indicates use of the program file .S$PROGA (the 
system program file) in OX10, but it specifies .S$SHAREO (the shared procedure 
program file) in ONOS. The program file in use for .BIO can be specified explicitly 
using the PROGRAM FILE = option in ONOS. Use of UTILITY as a keyword speci­
fies a bid from the utilities program file in ONOS, .S$UTIL. 

.OVLY is not supported in ONOS. 

Task IDs for standard system utilities in OX10 are not tne same as those used for 
ONOS. Therefore, bidding a task using the same installed 10 for both operating 
systems probably fails. 

Some utilities require different PARMS lists on the .BIO for ONOS and for OX10. 

Some utilities write out headers in ONOS using the .OATA primitive in the com­
mand procedure rather than having the text for the header in the utility itself, as in 
OX10. The effect of this difference is that in some cases of errors, the header 
appears as well as the error and a carriage return must be performed to receive the 
error message. 

• The synonyms representing Text Editor active ($$EA) and Debugger active ($$OA) are 
set by different tasks and to different values in ONOS than in OX10. In OX10 these 
synonyms are set by SCI just before reading a command from its primary input device 
(terminal or batch stream). In ONOS these synonyms are set by the Text Editor and 
Debugger tasks. In addition, these synonyms are both set by OX10 SCI to a value of N 
when SCI is started. DNOS SCI does not do this. The synonyms have no values until the 
appropriate utility sets them. Any user-written command procedure that accesses these 
synonyms may require changes. 

• Any user task that is linked with SCI run-time routines for OX10 must be relinked with 
ONOS SCI run-time routines. The ONOS versions of S$ routines must be used for tasks 
that run in the ONOS environment; the DX10 versions do not run in ONOS. The same 
caution applies to linking language programs with the S$ routines. 

• If an error occurs on the open of a file in S$OPEN, the error code returned is > 906A and 
not> 01 xx, where xx is the error byte. 

2270510-9701 11·7 



Differences Between DX10 and DNOS 

• Programs can be written in DX10 that link in S$STOP without linking in S$MAPS and 
S$SETS. This is not possible in DNOS. Two problems might arise: 

An error can occur when linking the program if the link control file explicitly 
includes the S$ routines rather thctn making use of a LIBRARY command at the 
beginning. 

The program can require more memory. This is not likely, however, since most of 
the DNOS S$ routines are shorter than the DX10 versions. 

• In DNOS, the synonym $$CC is set by some standard utilities that do not set the syn­
onym in DX10. Many utilities in DNOS set $$CC to a different value. This change was 
made to support DNOS error handling facilities. The change should not be noticed 
unless a batch stream includes a test for an explicit value of $$CC instead of testing for 
zero or nonzero values. Batch streams that must check for a particular error code in 
DNOS must access the synonym $$MN instead of $$CC. See the DNOS Messages and 
Codes Reference Manual for the exact message number to match a particular error 
code. 

• User IDs in DNOS can be eight characters long but only six characters long in DX10. 
Therefore, the value of the synonym $$UI can be set by SCI to an eight-character value in 
DNOS and a six-character value in DX10. This may be a problem when the synonym 
value is used as part of a pathname and consists of eight characters in DNOS. 

• The left bracket, right bracket, and back slash characters are valid characters in items 
of type NAME in DNOS SCI. For example, .OPTION PROMPT = [@ME] results in the 
prompt of [ME] in DNOS rather than the station number enclosed in brackets as in DX10. 
These characters serve as terminators when DX10 SCI scans for the end of an item of 
type NAME. Internationalization requires this change because several other alphabets 
require that equivalent ASCII code be allowed in items of type NAME. Using [@ MEA] 
resolves to the station number in either system. 

11.6 SVC SUPPORT 

The following are the differences between DNOS and DX10 support of SVCs in user tasks: 

11·8 

• In DX10, a task that issues an undefined SVC is terminated or goes into its end-action 
routine. DNOS returns an error code in the SVC block. The task continues to execute at 
the instruction following the SVC. 

• DNOS supports the following SVCs that DX10 does not support: 

SVC > 00: Create IPC Channel (subopcode 9D), Delete IPC Channel (subopcode 9E), 
Master Read (subopcode 19), Read Call Block (subopcode 1A), Master Write 
(subopcode 1 B), and Redirect Assign LUNO (subopcode 1C) for interprocess com­
munication (I PC). 

SVC > 3D (Semaphore Operations) 

SVC > 40 (Segment Management) 

2270510·9701 



SVC > 41 (Initiate Event) 

SVC > 42 (Wait for Event) 

SVC > 43 (Name Management) 

SVC > 45 (Get Encrypted Value) 

SVC > 46 (Get Decrypted Value) 

SVC > 47 (Log Accounting Entry) 

SVC > 48 (Job Management) 

SVC > 49 (Get Accounting Information from TSB) 

SVC > 4A (Modify BTA or JCA Size) 

SVC > 4C (Return Code Processor) 

SVC > 4F (Post Event) 

Differences Between DX10 and DNOS 

• In DX10, a task can issue the following SVCs to affect any other task; in DNOS, these 
SVCs affect only tasks within the requesting task's job: 

SVC > 07 (Activate Suspended Task) 

SVC > OE (Activate Time-Delayed Task) 

SVC > 2C (Read/Write TSB) 

SVC > 20 (Read/Write Task) 

SVC > 33 (Kill Task) 

SVC > 35 (Poll Status of Task) 

• The following SVCs have options in DNOS that are not available in DX10. Each of these 
uses fields that are marked as reserved in DX10. If DX10 tasks using these SVCs have all 
reserved fields set to zero, no compatibility problems should occur. 

SVC> 1 F (Scheduled Bid Task) 

SVC > 26 (Install Procedure Program Segment) 

SVC> 2B (Bid Task) 

SVC > 2E (Self Identification) 

2270510-9701 11·9 



Differences Between DX10 and DNOS 

11·10 

• In ONOS, SVC > OF (Abort I/O Requests by LUNO), has a different call block format and a 
different scope than in OX10. The SVC is valid only for privileged tasks in OX10. Any task 
may issue the SVC for its own LUNOs in ONOS. 

• In ONOS, SVC > 3F (Retrieve System Data) has a different call block format than in OX10 
to provide access to the new data structures of DNOS. 

• In OX10, it was recommended that users identify messages passed using the intertask 
message queue by the task run 10 of the task to receive the message. In DNOS, task run 
IDs are job-local rather than global. Thus, users of the Get Data (> 1 D) and Put Data 
(> 1C) SVCs need to be aware of this difference. DNOS users should use IPC for this 
type of exchange and avoid SVCs > 1 C and> 1 D. 

• In OX10, the table area reserved for the intertask message queue is specified during sys­
tem generation. In DNOS, the size of the queue is set to be a maximum of 2,000 bytes. 

• The following SVCs supported by early releases of DX10 are not supported by DNOS. In 
some cases, features of DNOS replace the functions of the SVCs no longer supported. 

SVC > 00, subopcodes > 8x (not supported since DX10 2.2) 

SVC > 05 (Bid Task; replaced by> 2B) 

SVC > 08 (Unconditional Character Input) 

SVC> 15 (Disk Utility; not supported since DX10 2.2) 

SVC> 16 (End of Program; replaced by> 04) 

SVC> 18 (Conditional Character Input) 

SVC> 19 (Set Condition Bit; not supported since DX10 2.2) 

SVC> 1A (913 VDT Utility; not supported since DX10 2.2) 

SVC> 1 E (Abort I/O by Call Block Address; not supported since DX10 3.2) 

SVC > 23 (Make Task Privileged) 

SVC > 30 (Get Event Character) 

SVC > 32 (Get System Table Address; not relevant to DNOS) 

SVC > 39 (Get Event Character by LUNO) 

SVC > 3A (Set Event Key; not supported in DX10) 

SVC > 3C (Diagnostic Dump; not supported in DX10 systems) 

2270510-9701 



Differences Between DX10 and DNOS 

• Some ONOS SVC processors return error codes that OX10 does not return. Some of the 
DX10 codes represent errors that cannot occur in ONOS; these codes have been 
assigned new meanings. If a program executes in both operating system environments 
and checks for a particular error code or for all error codes, the program must be 
reviewed carefully to ensure it is correctly checking for errors. A determined effort was 
made to retain identical codes in OX10 and ONOS for many common conditions. 

• The ReadlWrite Task SVC (> 20) processes requests to read or write to an odd-byte 
address boundary in ONOS. In OX10 the address is rounded down to the nearest even 
address. 

11.7 USER·WRITTEN SYSTEM SOFTWARE 

Since the internal data structures of ONOS differ from those of OX10, any user-defined SVC pro­
cessors that must be used with both ~ystems and that access system data structures must have 
source code modifications. User-defined SVC processors that are independent of the operating 
system structures need minimal modifications from OX10 format to fit into the ONOS table-driven 
scheme of access. All user-defined SVC processors must be reassembled and included in system 
generation to be linked into ONOS. Section 4 describes requirements for user-defined SVCs. 

User-written OSRs that must be used with both OX10 and ONOS must be rewritten for ONOS to 
make use of new interfaces to the 1/0 subsystem and to conform to changes in data structures. 
Consult the DNOS System Design Document and the section of this manual concerning OSRs for 
further information. 

Other user-written system tasks that access system data structures and are used with both oper­
ating systems must be modified for use in ONOS. See the DNOS System Design Document for 
details on system internals and how to write system tasks. 

11.8 SYSTEM CONSOLE 

ONOS allows a terminal to be designated as the system console. The user of that terminal 
becomes the system operator. OX10 has no parallel function in OX10. Some commands that have 
a global scope in OX10 have a job scope for ONOS users and a global scope for the ONOS system 
operator. 

To designate a terminal as system console and the user who is logged on at that terminal as sys­
tem operator, dnter the Execute Operator Interface (XOI) command. 

The command fails if a system console designation is in effect for another terminal. If no terminal 
is designated as system console, the terminal at which the command is entered becomes the sys­
tem console and continues to be the system console until a Quit Operator Interface (QOI) com­
mand is successfully executed at the system console. Refer to the DNOS System Command 
Interpreter (SCI) Reference Manual for further information about these commands and to the 
DNOS Operations Guide for general instructions on using the operator interface. 

2270510·9701 11·11 



Differences Between DX10 and DNOS 

A user must be designated system operator in order to perform the following functions: 

• Show status of any job in the system 

• Show status of all 1/0 in progress in the system 

• Force abnormal termination of any task in the system 

The system operator receives operator messages and requests until pressing the CMD key to acti­
vate SCI and enter other commands. Any messages are queued until the system operator again 
enters the XOI command. 

Operator messages are displayed following execution of each SCI command if the system opera­
tor enters a Receive Operator Messages (ROM) command while SCI is active. The command is as 
follows: 

[] ROM 
RECEIVE OPERATOR MESSAGES 

MESSAGES: ALL 

The system operator should enter the XOI command again after entering the SCI commands (that 
is, when the terminal is idle). Otherwise, messages are not displayed. 

When an operator message contains a request ID followed by an asterisk, the system operator 
must respond. The task that issued the request is suspended pending receipt of the response. 
When the system operator has performed the requested function and the operator interface task 
is active, the operator presses the F4 key and enters the number of the request to which he is 
responding. If the system operator is unable to perform the request and the operator interface 
task is active, the operator presses the F5 key, enters the number of the request, and indicates 
whether or not to terminate the request. The operator uses the Respond to Operator Interface 
Request (ROR) command and the Kill Operator Interface Request (KOR) command (which is 
described in the ONOS System Command Interpreter (SCI) Reference Manual) instead of the F4 
and F5 keys when SCI is active. 

11·12 2270510-9701 



12 

Special Features of ONOS 

12.1 INTRODUCTION 

You can use a number of features in DNOS to alleviate problems that exist in the DX10 environ­
ment. Many of these enhancements have no counterparts in DX10. The following paragraphs 
describe ways to utilize these DNOS features. Further detail is available in other DNOS manuals. 

12.2 DNOS JOB ARCHITECTURE 

DX10 users often require several background tasks to be active at the same time. As a DNOS user, 
you can activate batch jobs with the Execute Batch Job (XBJ) command. You can initiate any 
number of batch jobs at one time since each of these jobs is independent of any terminal and of 
any other job. However, during system generation, the systems programmer specifies the limit to 
the number of jobs that can be active at one time; the default value is 32. Any jobs initiated after 
this limit is reached are placed in a queue. When an active job terminates, a job from the queue 
becomes active. In addition to the active job limit, there is also a batch job limit. The systems pro­
grammer can therefore govern not only how many jobs are active, but how many can run in batch 
mode at the same time. 

Several users may be logged on with the same ID in different jobs or the same job. When several 
users are logged on at different terminals, but in the same job, they can each have their own SCI 
task governing the interaction. In this situation, each user begins the interactive session with the 
set of synonyms and logical names currently saved on disk as the permanent copy for that user ID. 
When the last user quits, his current set of synonyms and logical names becomes the new 
permanent copy. Having several users in the same job requires less system table area for job 
structures than having each user run in his own job. 

A feature known as the keyboard bid is used when you log on to SCI. By pressing the attention key 
followed by the exclamation point, you bid a log-on task, which in turn bids SCI. You have control 
of the task that is bid for this sequence. During system configuration, you can provide a table of 
entries showing what task to bid for a given sequence of attention plus some other key. You can 
define the sequence to bid a task after bidding a log-on task, or you can define it to bid a task 
within a running job. For example, you might define your own task to implement the PRINT key or 
to replace SCI. Details about using this feature can be found in the 1/0 section of the DNOS Sys­
tem Design Document. The SCI commands used with this feature are the Modify Command Defini­
tion Table (MCDT), Show Command Definition Table (SCDn, and Modify Device Configuration 
(MDC) commands. These commands are described in the DNOS System Command Interpreter 
(SCI) Reference Manual. 

2270150-9701 12-1 



Special Features of DNOS 

12.3 LOGICAL NAMES 

Logical names provide several features in DNOS including concatenated files, multifile key 
indexed file (KIF) sets, and access to the spooler from user tasks. 

You can create a concatenated set of sequential files or a concatenated set of relative record files 
by using the Assign Logical Name (ALN) command. Subsequently, the concatenated set is a 
single file. Access to the logical name from the SCI command level or from the user task actually 
affects the appropriate physical file of the concatenated set. The files can reside on one or more 
volumes. 

You can also use the ALN command to create a multifile KIF set. By using a logical name, you can 
treat two or more KIFs having the same characteristics as one file. The files in use can reside on 
one or more volumes. When you execute the ALN command, all files specified after the first file 
must be empty. This feature can extend a KIF that nearly fills a volume or uses as much space as 
desired on a single volume. When the first file becomes full, a second is created on another vol­
ume using the same characteristics as the first file. You then use the ALN command to specify a 
logical name associating the two files. 

You can also use logical names to customize user access to the spooler. Once you have made a 
device available to the spooler by using the Modify Spooler Device (MSD) command, users can 
direct output to that device by using the Print File (PF) command. You can also define your own 
logical names for particular spooler devices by using the ALN command. When you specify a 
spooler logical name, you can provide the default parameters for that name including such items 
as number of copies to print, whether or not to delete the file after printing, and the number of 
lines per page. You can also assign a global logical name to access spooler devices that are avail­
able to all system users. 

Once a Spooler device has an aSSigned logical name, you can use that logical name in any SCI 
command that generates an output listing. For example, you might respond to the LISTING 
ACCESS NAME prompt for the Execute Macro Assembler (XMA) SCI command with OUTPUT, if 
OUTPUT is a logical name for LP01. You can also use the PF command with the selected logical 
name. In addition, you can specify the logical name as your output device or file name for output. 
In all cases, the Spooler queues the output file for printing at the device specified with the ALN 
command. 

12·2 2270150-9701 



Special Features of ONOS 

12.4 SCI FEATURES 

A number of SCI features are obvious to users of DX10; others are more subtle. The following list 
describes the less obvious features: . 

• Error messages are of a uniform format and style for utilities supported on DNOS. 

• A synonym and logical name table is provided. Each table has as many as 12,000 bytes 
of space. 

• A fast VDT mode is available when the VDT terminal is identified as DEFAULT 
MODE = VDT in the Modify Terminal Status (MTS) command. This mode has several 
advantages: 

Menus are displayed quickly, using a single operation. 

Each screen of data displayed by the Show File (SF) command is written with a 
single operation. 

Function keys F6 (line numbers), F3 (horizontal scroll left), F4 (horizontal scroll 
right), Next Field, and Previous Field are effective with the SF command. 

• Graphics characters can appear in menus. 

• The Enter key allows you to accept all of the current prompt responses to a command 
procedure shown on the screen. 

• The Erase Input key allows you to reset any initial values of the responses shown on the 
screen and return to the first command prompt shown on the screen. 

12.5 INTERPROCESS COMMUNICATION (IPC) 

DX10 tasks use several limited mechanisms to exchange information between tasks. These 
include access to the system common data area and use of the intertask message queue with the 
Get Data SVC (> 1 D) and Put Data SVC (> 1C). DNOS IPC provides a considerably more flexible tool 
for communication. IPC functions like an I/O resource, making use of the I/O SVC (> 00) as the 
transmission mechanism. 

DNOS supports IPC flexibly from assembly language programs. The high-level languages and 
applications environment processors use IPC internally. High-level languages can use symmetric 
channels for resource-independent I/O like any I/O device, making use of ASCII Read and ASCII 
Write operations. Use of master/slave channels, however, requires careful writing of the owner 
task by using SVCs. 

2270150-9701 12·3 



Special Features of ONOS 

12.6 PERFORMANCE MONITORING 

The following utilities are available with both DX10 and DNOS for monitoring performance. These 
include the following: 

• The memory map available from the Show Memory Map (SMM) command 

• The memory statistics from the Show Memory Status (SMS) command 

• The current set of tasks active (in a job) as shown by the Show Task Status (STS) 
command 

• The various terminal, LUNO, and output status lists 

In addition, DNOS provides the following monitoring utilities: 

• Current table use and activity levels for various DNOS subsystems from the Execute 
Performance Display (XPD) command 

• The current set of jobs (and, optionally, tasks in these jobs) from the Show Job Status 
(SJS) command and the List Jobs (LJ) command 

• A dynamic display of tasks in a given job from the Execute Job Monitor (XJM) command 

12.7 PERFORMANCE OPTIMIZATION 

You can use several features of DNOS to optimize the performance of the 990 minicomputer. The 
following features aid in extending the device capacity and execution performance of the 
computer: 

• Alternate ways to structure SCI sessions 

• Keyboard bid of application tasks 

• Types of LU N Os 

• Batch jobs 

• Miscellaneous items 

12·4 2270150·9701 



Special Features of ONOS 

12.7.1 Alternate Ways to Structure SCI Sessions 
DNOS is flexible in the way in which SCI sessions are structured and started. The following 
features are useful in structuring an SCI session for your specific needs. 

• SCI is available to users in their own jobs or in the same jobs as other users. 

• You can log on to SCI from one terminal and then, by using the Execute Task (XT) 
command, activate other terminals. 

• You can log on to SCI at one terminal and start a user task that bids tasks at other 
terminals. 

Each execution of SCI uses approximately 100 bytes of system table area. You might want to use 
less system table area for applications that do not require SCI. However, applications developed 
with DNOS need access to synonyms and logical names that are created in the SCI environment. 
To access these, you must start the job executing without SCI in an environment that is defined by 
using SCI. You have several options for providing that environment. 

You can use an SCI job to establish a set of synonyms and logical names and save these in a file. 
When you log on using that ID, those synonyms and logical names are available. Terminals modi­
fied by the Modify Terminal Status (MTS) command can request name management files. By using 
the Snapshot Name Definitions (SND) command, you can save the names and parameters for the 
task that will be the application task to execute without SCI. You can then start the application 
task by using the keyboard bid. This allows applications that are written in high-level languages to 
execute without SCI. 

You can also use the SND command to save the required names for the application environment 
but not specify the parameters. A keyboard bid can then start an assembly language task that 
uses the S$BIDT routine from the SCI S$ routines to bid a task written in a high-level language and 
supply it with the required parameters. 

12.7.2 Keyboard Bidding of Tasks 
A DNOS user can bid an application task by using a predefined keyboard sequence. A keyboard 
bid sequence can be defined as active for some terminals but inactive for others. Keyboard bids 
are especially useful in environments where SCI is used only to bid an initial program. Direct initia­
tion of the application would eliminate the need for SCI entirely and reduce the amount of system 
overhead. Keyboard bids are processed by a Device Service Routine (DSR). For more details on the 
internal processing, refer to the section entitled Writing a DSR. 

2270150-9701 

CAUTION 

DNOS currently has keyboard bid sequences defined. Texas Instru· 
ments reserves the right to add sequences during subsequent 
releases of DNOS. 

12·5 



Special Features of ONOS 

Keyboard bidding makes use of the system directory .S$CDT. A file is created in this directory the 
first time an initial program load (IPL) takes place. The name of the file will be identical to the 
name of the kernel program file in use. This file contains a record for each device type. These 
records are known as Command Definition Tables (CDTs). One CDT pertains to 911 s, another for 
931s and so on. Each CDT may contain up to 16 command definition entries (CDEs). If you want 
more than one terminal type to have keyboard bid access to a task, you will need to modify the 
CDT for each terminal type. 

A CDE contains the information needed to execute a keyboard bid from the associated device. 
The keyboard sequence you use must have the following format: Attention key followed by 
another keyboard character. The selected character is stored in the CDE, along with the task ID 
and global LUNO for the program file from which the task is to be bid. The CDE may also contain 
two words of task bid parameters. 

Several options are indicated by a CDE. One may specify if the task is to be bid in the current job 
or in a new job. If the task is to be bid in a new job, a logon task is needed to create the job. The 
logon task ID and program file LUNO are stored in the CDE. If a logon task is used, an option 
allows the station number and/or the bid character as task bid parameters to be passed to the 
logon task. 

If the DNOS logon task is used to bid the application task, the even loading option is supported. 
With even loading, the task is bid in an existing job. The user ID of the job can be prompted for or 
specified in the CDE. All jobs running under the specified user ID are searched; the task is bid in 
the job containing the fewest tasks. 

The SCI commands provided to set up the command definition tables include the following: 

1. The Show Command Definition Table (SCDT) command allows you to examine the 
defined command definition entries for a given device in the command definition table. 

2. The Modify Command Definition Table (MCDT) command allows you to add or delete 
command definition entries to a command definition table. 

SCDT and MCDT are used to define keyboard sequences. The next step is to enable or disable 
sequences for specific terminals. 

During system generation, a CDE mask is defined for each device. The bits in this mask corre­
spond to an entry in the CDT associated with the device. For example, the CDT for a 931 might 
have the first four entries defined, indicated by a mask of > FOOO. For a particular terminal, this 
mask may be changed by using the Modify Device Configuration (MDC) command. Each terminal 
which uses something other than the supplied default sequences must have its CDE mask 
changed. Changes made will take effect after the next IPL. 

Refer to the DNOS System Command Interpreter (SCI) Reference Manual for details concerning 
the SCDT, MCDT, and MDC commands. 

12·6 2270150·9701 



Special Features of DNOS 

12.7.3 Types of LUNOs 
When you assign global LUNOs to files, some structures are placed in the system table area. If 
you wish to minimize the use of system table area, avoid using global LUNOs. 

While structures for global LUNOs are placed in the system table area, structures for job-local and 
task-local LUNOs are placed in the user's job communication area (JCA). These structures include 
the logical device table (LOT) and resource privilege block (RPB) for any assigned LUNO. An LOT is 
20 bytes long and an RPB is 18 bytes long. Other structures may also be in the JCA, if the LUNO is 
assigned to a file or IPC channel. 

If a Job has several tasks and each of these tasks accesses many resources, the large number of 
associated LUNO structures may tax the JCA. In this case, you may wish to consider shared 
LUNOs. The shared LUNO capability of ONOS minimizes the number of such structures for the 
same resource for tasks in the same job. When a given task assigns a shared LUNO to some 
resource and opens that LUNO, other tasks in the same job can also use the same LUNO without 
an Assign operation. Rather than having multiple LOTs and RPBs (that is, one pair for each Open 
operation issued), you have one LOT and as many RPBs as Assign operations. 

More than one task at a time can open a shared LUNO, but only one task at a time can open a job­
local LUNO. Each task that uses a shared LUNO must open that LUNO and is subject to the stand­
ard cross checking with other Open operations. 

No LUNOs are assigned to the program file when tasks are bid from .S$UTIL or .S$SHAREO with 
system-supplied commands. However, a LUNO is assigned when the .BIO is from SCI, and that 
LUNO remains until the task that was bid terminates. 

12.7.4 Batch Jobs 
ONOS can process both batch jobs and interactive jobs. Use of the Execute Batch Job (XBJ) 
command allows you to execute batch streams independent of terminals, leaving those terminals 
free for other operations. 

12.7.5 Miscellaneous Items 
A Copy Oirectory (CO) command of the system disk to a clean disk eliminates fragmentation 
(secondary allocations). This aids in minimizing secondary allocation table (SAT) structures for 
any shared files with structures in the system table area. 

Since a six-byte structure is built in the system table area for each directory level of a file name, 
complex directory structures can use large amounts of the system table area. Consequently, 
when organizing a disk directory structure, you should use a minimum number of directory levels 
for files that you frequently access. However, you should use at least one directory level and avoid 
putting files directly under .VCATALOG. Any change to a file directly under .VCATALOG locks 
.VCATALOG during an update and slows system response. Also, your directory should be large 
enough so that it is never more than 90 percent full. The 10 percent unused space maximizes the 
hashing algorithm. 

2270150·9701 12·7 



Special Features of ONOS 

12.8 SYSTEM CONFIGURATION UTILITY 

Modifications to the system table sizes and supported devices of DX10 require use of the system 
generation utility. In DNOS, you can make changes to tables, devices, and a number of other char· 
acteristics using an interactive utility while the system is running. The utility is accessed by the 
Execute System Configuration Utility (XSCU) command. Some of the changes are made while 
executing the utility. Others take effect when the system goes through its next IPL. 

12.9 S$SYSTEM DIRECTORY 

ONOS provides several tools for both the systems programmer and Texas Instruments field per· 
sonnel in the directory .S$SYSTEM on the DNOS system disk. This directory includes the file 
.S$SYSTEM.S$HSTRY and the command procedure directory .S$SYSTEM.S$$CMDS. 

The S$HSTRY file records information concerning the installation of software products sold by 
Texas Instruments. It is updated by the installation batch streams for languages and applications 
environment processors, by the Modify Volume Information (MVI) command, and by the com­
mands used to install a new version of DNOS. This history file is interrogated by the List Software 
Configuration (LSC) command when producing a report of the current state of software on the 
system. 

The command procedure directory .S$$CMDS includes the procedures needed to build the history 
file. Users who develop large applications might be interested in maintaining history records I' 
about installation of those applications. It also includes the XPROCCVT command to aid in con-
verting DX10 batch streams and command procedures for DNOS. Other members of the 
.S$SYSTEM.S$$CMDS directory are not intended for use by users. 

12.10 SYSTEM COMMAND PROCEDURES 

ONOS includes general system command procedures, which are described in the following para­
graphs. 

12.10.1 Begin Update Documentation (BUD) 
When used in a batch stream, the BUD command starts an update documentation sequence that 
ends with an EUD (End Update Documentation) command. It sends a message to the history file 
(.S$SYSTEM.S$HSTRY) indicating that installation or patching of the specified software product 
has begun. When used interactively, BUD does both the update and end update operations. 

Prompts 

12·8 

BEGIN UPDATE DOCUMENTATION 

VOLUME BEING UPDATED: volume name 
PACKAGE NAME: character(s) 

RELEASE NUMBER: character(s) 
RELEASE DATE: character(s) 

SYSTEM COMPONENT NAME: character(s) 
BEGIN NEW ENTRY?: [YES/NO] (YES) 

2270150·9701 



Special Features of ONOS 

Prompt Details 

VOLUME BEING UPDATED 
The disk volume for which the history information for this installation or patch batch stream 
is being executed. 

PACKAGE NAME 
From 1 to 33 characters specifying the product name or description. It may also be a part of a 
product, as in the case of products with pieces that are maintained or patched as a separate 
entity (for example, the kernel and utility portions of the DNOS operating system). 

RELEASE NUMBER 
From 1 to 7 characters representing the release level or revision level of the associated soft­
ware product. 

RELEASE DATE 
The eight-character date entered in the format MM/DDNY and associated with the release 
number. 

SYSTEM COMPONENT NAME 
From 1 to 11 characters specifying the keyword unique to each software product. This is 
essentially an abbreviation for the package name. Keywords beginning with ON and UT are 
reserved for the DNOS operating system. Other keywords are used by various products. 
Texas Instruments may modify or add to these keywords as new products become available 
without regard to conflict with any user's use of this command. 

BEGIN NEW ENTRY? 
YES or NO. This prompt controls formatting of the history file (.S$SYSTEM.S$HSTRY). You 
should accept YES (the initial value) except for DNOS kernel patching. For kernel patching, 
enter NO. 

Examples 

BUD VOLUME BEING UPDATED=DS01, 
PACKAGE NAME=DNOS OPERATING SYSTEM (KERNEL), 
RELEASE NUMBER=1.0.0, RELEASE DATE=8/01/81, 
SYSTEM COMPONENT NAME=DP, BEGIN NEW ENTRY?=NO 

BUD VOLUME BEING UPDATED=DS01, 
PACKAGE NAME=DNOS OPERATING SYSTEM (UTILITY), 
RELEASE NUMBER=1.0.0, RELEASE DATE=8/01/81, 
SYSTEM COMPONENT NAME=UT.S$$UTIL, BEGIN NEW ENTRY?=YES 

Assumptions 

A subsequent EUD command will be executed. 

2270150-9701 12·9 



Special Features of DNOS 

Notes 

1. The command is located in an alternate command directory reserved for Texas Instru­
ments commands. You must execute the primitive .USE.S$SYSTEM.S$$CMDS to 
access this command. 

2. The synonym $OT controls the target volume on which the .S$SYSTEM.S$HSTRY file 
resides. 

3. Since the BUD procedure is composed 'of SCI primitives only, it does not set the $$CC 
synonym and should not be followed by an EC command. If an error occurs in the BUD 
command, the batch stream in which it is used terminates. 

Related Commands 

EUD End Update Documentation 
LSC List Software Configuration 

12.10.2 End Update Documentation (EU D) 
The EUD command terminates an update documentation sequence that a BUD command began. 
It sends a message to the history file (.S$SYSTEM.S$HSTRY) indicating that installation or patch­
ing has completed. It also indicates the number of the last patch applied. 

Prompts 

END UPDATE DOCUMENTATION 

LAST PATCH: [<integer>] 
RELEASE NUMBER: [character(s)] 

Prompt Details 

LAST PATCH 
A user-defined integer value. This value allows you to monitor the last patch applied. For an 
installation batch stream, this field must be null in order to update the history file correctly. 

RELEASE NUMBER 
From 5 to 7 characters representing the release level or revision level of the associated soft­
ware product. The format is v.r.e, where v represents the version of the product, r represents 
the revision level, and e represents the latest change. This format must be followed exactly 
for the List Software Configuration (LSC) command to work properly. 

Assumptions 

A prior BUD command is executed. 

12·10 2270150·9701 



Special Features of DNOS 

Notes 

1. This command is valid only in batch streams and is intended for use by Texas Instru­
ments supplied software package installation and patch batch streams. The command 
is located in an alternate command directory reserved for Texas Instruments com­
mands. You must execute the primitive .USE .S$SYSTEM.S$$CMDS to access this 
command. 

2. Since the EUD procedure is composed of SCI primitives only, it does not set the $$CC 
synonym and should not be followed by an EC command. If an error occurs in the EUD 
command, the batch stream in which it is used terminates. 

Related Commands 

BUD Begin Update Documentation. 

12.11 MAINTAINING USER IDS 

If you attempt to copy a set of user IDs from one system disk to another, you must copy both the 
.S$USER directory and the .S$CLF file. If these two items are not from the same system version, 
various types of crashes and log-on problems can occur. Similarly, if you create a new system on 
an old system disk, you can preserve the old user IDs only if you preserve both the .S$USER direc­
tory and the .S$CLF file. 

When changing from DNOS 1.1 to DNOS 1.2, the old user IDs cannot be used because of changes 
needed to support file security on DNOS. You must assign new user IDs for the DNOS 1.2 system. 

12.12 SPOOLER SUBSYSTEM 

The spooler subsystem is the interface between users and output. It is designed to prevent 
unauthorized deletion or modification of output requests, yet give you complete control of 
requests that you initiate. The spooler subsystem consists of tasks that execute in the spooler job 
and tasks that execute in the user's job. The spooler job is created by the initialization batch 
stream, .S$ISBTCH, which contains an Execute Job (XJ) SCI command. 

12.12.1 Spooler Directory 
The spooler directory, .S$SDTQUE, must reside on the system disk. This directory contains two 
types of files, a banner sheet file and spooler queue files. 

2270150-9701 12-11 



Special Features of DNOS 

12.12.1.1 Spooler Banner Sheet File. The banner sheet 'file, .S$SOTQUE.S$BANNER, specifies 
the format of the banner sheet that is displayed if you specify YES in response to the BAN N ER 
SHEET prompt in the Print File (PF) SCI command or in the S$SPLR routine. The standard banner 
sheet displays the user's job name, the user 10, the pathname of the file being printed, the time, 
and the date. You can edit the banner sheet file to display customized banner sheets. The banner 
sheet file consists of various kinds of records that are 80 characters long. The following records 
are command records, which indicates that they are special display requirements: 

Command Records 

IJOB 
IUSER 
10ATE 
/TEXT,CCCCCCCC 
IFILE 

Description 

Displays enlarged user's job name 
Displays enlarged users ID 
Displays current date and time 
Displays enlarged characters CCCCCCCC 
Displays requested print file name 

If a record in the banner file is not a command record, the output device displays that record. By 
using the /TEXT command record and by editing the banner sheet file to contain specific display 
lines, you can create your own customized banner sheets. 

12.12.1.2 Spooler Queue File. The spooler queue file does not exist before the first initializa­
tion of your ONOS system. The spooler automatically creates the file. The name of the spooler 
queue file is .S$SDTQUE.< name of the generated operating system> . Each operating system that 
is generated has a unique queue file. This avoids possible conflicts in hardware differences that 
each generated operating system supports. 

The spooler obtains the task bid parameters specified on the SCI Execute Job (XJ) command in 
the system initialization batch stream. These two items, PARM1 and PARM2, allow each installa­
tion to configure the spooler queue file to its particular needs. The structure of the queue file is 
described in the DNOS SCI and Utilities Design Document. 

The queue file contains a number o'f class name records. These records contain class name 
entries that are pseudo names associated with specified devices. The PARM1 parameter in the XJ 
command specifies the number of class name records that are to be included in the file when it is 
created. Each class name record can contain 48 class name entries; the class name table (CNn 
template describes the class name record. 

The queue file contains a number of device table records. The device table records contain device 
entries. These entries contain information about each device available to the spooler or known to 
the spooler. The PARM2 parameter specifies the number of device table records that are to be 
included in the spooler queue file when it is created. Each device table record can contain 12 
device entries; the spooler device table (SDT) template describes the device table record. 

By editing the initialization batch stream .S$ISBTCH, you can structure the queue file for the par­
ticular needs of your installation. For example, if one class name record is sufficient (that is, no 
more than 48 class names are required) but 30 spooler devices are required, specify the XJ PARM1 
value as 1 to obtain the 48 class names. To obtain three device table records, specify The XJ 
PARM2 value as 3. Each device table record contains 12 entries, which support a total of 36 
:Jevices. 

12·12 2270150-9701 



Special Features of DNOS 

The first record of the queue file contains the name of the file, the version number of the operating 
system, the number of class name records, and the number of device table records. If the file 
exists already, the name in the file is compared to the name of the generated operating system. 
The version in the file is compared to the version of the operating system. The number of queue 
file class name records is compared to the value specified by PARM1, and the number of queue 
file device table records is compared to the value specified by PARM2. If any of these items do not 
correspond, the current file is deleted and recreated using the current parameters. 

Each record of the spooler queue file requires 768 bytes. The minimum size of the spooler queue 
file is four records, and the maximum size is 65,535 records. The file expands as it needs more 
space to continue operations. It is recommended that you regularly examine the size of the queue 
files in the .S$SDTQUE directory. You should delete old queue files that correspond to unused 
operating systems. If the current queue file is too large and is not needed, then you should follow 
the Spooler Clean-up routine described in paragraph that follows in this section. 

12.12.2 Spooler Device Attributes 
To change the attributes of a device that the spooler subsystem uses, use the Modify Spooler 
Device (MSD) SCI command. The ONOS System Command Interpreter (SCI) Reference Manual 
contains a complete description of the MSD command. 

12.12.3 Spooler Clean·up 
An unusual series of events can cause the spooler to stop functioning without allowing you to 
restart it in its current state. You must reinitialize the spooler environment by performing the 
following steps: 

1. Use the Show Output Status (SOS) command to see which files are waiting to be printed 
and to see the current devices available to the spooler and the class names assigned to 
each. Write down this information for later use. 

2. Using the operator console (issue an Execute Operator Interface (XOI) command if nec­
essary) determine the ID of the spooler job by using a List Jobs (LJ) command on all 
jobs. 

3. Kill the spooler job by using the Kill Job (KJ) command. 

4. Delete the spooler queue file by using the Delete File (DF) command and specifying the 
logical name S$SDTQUE for the pathname. 

2270150-9701 12·13 



Special Features of ONOS 

5. Restart the spooler job by issuing an Execute Job (XJ) command. Specify the following 
responses: 

EXECUTE JOB 

SITE: 
JOB NAME: 

PROGRAM FILE PATHNAME: 
TASK 10 OR NAME: 

PARM1 : 
PARM2: 

STATION 10: 
SYNONYM TABLE PATHNAME: 

PRIORITY: 
JCA SIZE: 

SPOOLER 
S$UTIL 
040 
1 (See previous discussion) 
1 (See previous discussion) 
OFF 
.S$USER.SPOOLER.SYN 
5 
MEDIUM 

6. Use the Modify Spooler Device (MSD) command and the list made in step 1 to reassign 
all devices and classes to the spooler. 

7. Execute the Print File (PF) command for each of the files that the SOS command 
showed as waiting to be printed. 

12.12.4 Spoo'ler Temporary Files 
The names of the spooler temporary files are based on the job ID and task ID of the user whose file 
is being printed. For example, the parameter xxxxxx of a spooler temporary file ID of .S$xxxxxx 
contains the job or task ID. If a temporary file remains after a system crash, you can delete it to 
save space. 

12·14 2270150·9701 



Appendix A 

Keycap Cross-Reference 

Generic keycap names that apply to all terminals are used for keys on keyboards throughout this 
manual. This appendix contains speci'fic keyboard information to help you identify individual keys 
on any supported terminal. For instance, every terminal has an Attention key, but not all Attention 
keys look alike or have the same position on the keyboard. You can use the terminal information in 
this appendix to find the Attention key on any terminal. 

The terminals supported are the 931 VOT, 911 VOT, 915 VOT, 940 EVT, the Business System 
terminal, and hard-copy terminals (including teleprinter devices). The 820 KSR has been used as a 
typical hard-copy terminal. The 915 VOT keyboard information is the same as that for the 911 VOT 
except where noted in the tables. 

Appendix A contains three tables and keyboard drawings of the supported terminals. 

Table A-1 lists the generic keycap names alphabetically and provides illustrations of the 
corresponding keycaps on each of the currently supported keyboards. When you need to press 
two keys to obtain a function, both keys are shown in the table. For example, on the 940 EVT the 
Attention key function is activated by pressing and holding down the Shift key while pressing the 
key labeled PREV FORM N EXT. Table A-1 shows the generic keycap name as Attention, and a 
corresponding illustration shows a key labeled SHIFT above a key named PREV FORM NEXT. 

Function keys, such as F1, F2, and so on, are considered to be already generic and do not need 
further definition. However, a function key becomes generic when it does not appear on a certain 
keyboard but has an alternate key sequence. For that reason, the function keys are included in the 
table. 

Multiple key sequences and simultaneous keystrokes can also be described in generic keycap 
names that are applicable to all terminals. For example, you use a multiple key sequence and 
simultaneous keystrokes with the log-on function. You log on by pressing the Attention key, then 
holding down the Shift key while you press the exclamation (J) key. The same information in a table 
appears as A ttentionl(Shift)!. 

Table A-2 shows some frequently used multiple key sequences. 

Table A-3 lists the generic names for 911 keycap designations used in previous manuals. You can 
use this table to translate existing documentation into generic keycap documentation. 

Figures A-1 through A-5 show diagrams of the 911 VOT, 915 VOT, 940 EVT, 931 VOT, and Business 
System terminal, respectively. Figure A-6 shows a diagram of the 820 KSR. 

2274834 (1/14) 

2270510-9701 A·1 



Keycap Cross-Reference 

A·2 

Generic Name 

Alternate 
Mode 

Attention 2 

Back Tab 

Command 2 

Control 

Delete 
Character 

Enter 

Erase Field 

Notes: 

911 
VOT 

None 

None 

Table A·1. Generic Keycap Names 

940 
EVT 

ALT ••• B':" 
"""""""""""""',: 

I : .j! III'" 
.. ,',.,., .•• ,., ... , ... ,.,.,.,., ..... , ....... , .... , ... " .. ,:; 

931 
VOT 

Fa 
u:J 

FFF.1 ~ 

Business 
System 
T nal 

The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions. 

'On a 915 VDT the Command Key has the label F9 and the Attention Key has the label F10 

2284734 (2/14) 

820 1 

KSR 

2270510-9701 



Generic Name 

Erase Input 

Exit 

Forward Tab 

F1 

F2 

F3 

F4 

Notes: 

Table A·1. Generic Keycap Names (Continued) 

911 
VOT 

940 
EVT 

931 
VOT 

SHIFTO '~, [8"" 
.. ",.,.,.:.,.,.,.:.,:,.: .. : .. :.,: .. :., .•. ,.,.,.,.,.,:,.,.,,:;; 

~ 
~ 

Business 
System 
Terminal 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions. 

2284734 (3/14) 

2270510-9701 

Keycap Cross-Reference 

820 1 

KSR 

fiiiI -~ ~ 
~ ~ 

A·3 



Keycap Cross-Reference 

A·4 

Generic Name 

F5 

F6 

F7 

Fa 

F9 

F10 

Notes: 

Table A·1. Generic Keycap Names (Continued) 

911 
VOT 

Fa·· . '; ~
'i; 

NH:.H.: ........ . 

940 
EVT 

931 
VOT 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions. 

2284'734 (4i14) 

2270510-9701 



Generic Name 

F11 

F12 

F13 

F14 

Home 

Initialize Input 

Notes: 

Table A·1. Generic Keycap Names (Continued) 

911 
VOT 

Fr1I U 

940 
EVT 

931 
VOT 

QSH,no I 
.: ........•.....••. : ............. . 

Fr1I ~ 

ness 
System 
Torr'n 11"& !!:III 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions. 

2284734 (5/14) 

2270510-9701 

Keycap Cross-Reference 

820' 
KSR 

[M ... 
•••••••••••••••••••••••••••••••••••• 

[M 
~ 

A·5 



Keycap Cross-Reference 

A·6 

Generic Name 

Insert 
Character 

Next 
Character 

Next Field 

Next Line 

Previous 
Character 

Previous Field-

Notes: 

Table A·1. Generic Keycap Names (Continued) 

911 
VOT 

or 

940 
EVT 

931 
VOT 

Fifl ~ 

Business 
System 
Terminal 

riiiJ -

[II", 
.. ,.,.......... ~: 

FiiiJ -

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions. 

2284734 (6/14) 

820' 
KSR 

None 

None 

None 

or 

None 

None 

2270510-9701 



Table A·1. Generic Keycap Names (Continued) 

Generic Name 

Previous Line 

Print 

Repeat 

Return 

Shift 

Skip 

Uppercase 
Lock 

Notes: 

911 
VOT 

940 
EVT 

931 
VOT 

See 
Note 3 

[rlJ" ;: 

'ii 
~ ~: 

RETURN .; 
':::'.' ••••.• :-•••• :-: •• ~ .•• ~ •••• -: ••• :, •• :-:= . 

Business 
System 
Terminal 

See 
Note 3 

FBI···· -
'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions. 

'The keyboard is typamatic, and no repeat key is needed. 

2284734 (7/14) 

2270510·9701 

Keycap Cross-Reference 

820 1 

KSR 

~ 
~ 

None 

None 

A·7 



Keycap Cross-Reference 

2284734 (8/14) 

A·a 

Table A·2. 

Function 

Log-on 
Hard-break 
Hold 
Resume 

Frequently Used Key Sequences 

Key Sequence 

Attention/(Shift)! 
Attention/(Control)x 
Attention 
Any key 

Table A·3. 911 Keycap Name Equivalents 

911 Phrase 

Blank gray 
Blank orange 
Down arrow 
Escape 
Left arrow 
Right arrow 
Up arrow 

Generic Name 

Initialize Input 
Attention 
Next Line 
Exit 
Previous Character 
Next Character 
Previous Line 

2270510-9701 



~ 
~ 
C1I ..... 
9 
co 
~ ..... 

l> 
cD 

\ 
V 

CURSOR CONTROL 
AND EDIT 

2284734 (9/14) 

SPECIAL COr-________ A~ ________________________________________________ ~ 

\~----------------------~v~------------------~ 
DATA ENTRY 

Figure A·1. 911 VOl Standard Keyboard Layout 

V 

NUMERIC PAD 

i 
~ 
C) 

a 
C'I.) 
C'I.) 

:b 
(I) 

CD' 
~ 
~ 

~ 



» .:.. 
Q 

N 
N 

""'" o 
c.n 
~ 

o 
cO ...... 
o 
~ 

\ 
V 

CURSOR CONTROL 
AND EDI T KEYS 

2284734 (10;14) 

FUNCTION 
KEYS STATUS LEDS 

I~ ______________________________________ ~A \ I A_ ~ 

\ V~-----------------------------------------
DATA ENiRY 
KEYS 

Figure A·2. 915 VOl Standard Keyboard Layout 

'10. 

o o o 0 
IDLE EXEC TEST COMM 

o 0 o o 
ERR MODE OSOl OS02 

v 

NUMERIC 
KEY PAD 

"" 

~ g 
"t:I 
C) 

a 
(I) 
(I) 

:h 
CD 
(j)' 
(j; 
::s 
(') 
CD 



I\) 
I\) 
...... 
o 
01 
...a. 
o 
cb 
....... 
o 
...a. 

:J> 
~ .... 

,-

[KlrKI[[I@]rKI[!]J]]~m[[ll]DJl!] [II IBIDIIlDI I . I 

~~ ~.. . ... .. 

2284734 (11/14) 

Figure A·3. 940 EVT Standard Keyboard Layout 

[II 

~ 
~ 
~ 

~ 
CI) 
CI) 

:0 
CD 
CD' 
~ 
:l 
(') 
CD 



» 
.:... 
~ 

I\) 
I\) 
....... 
o 
~ 
o 
cO 
....... 
o 
~ 

STATUS 

2284734 (12/14) 

"j~ 

ON/OFF REV 
LINE BKGND 

DISPLAY 
BRIGHT DIM 

SPEC 
CHAR 

.-.-.-.-.~.~.-.-.~ ...... ioO_O_O_O_O.O .... ~_. "_0_0_"_"_" ............. ~.~.~.~ ••••••••• ~ ••••••••••••• ~ •••••••••••••••• N:~~--:~~:.:.:.:.:.·;o;io;.~,;~_. 

Figure A·4. 931 VOl Standard Keyboard Layout 

,~ 

liJIfll:J8J 

liIIo.. 

I 
() 

C3 en en 
:b 
(J) 

CD' 
~ 
:::J 
o 
(J) 



I\) 
I\) 

~ .... 
o 
cO 
~ .... 

~ 
~ 
w 

" 

L~l~l[,:Jr~lL:JL:JL:Jr..:..l (
ERASE ~I~ I--~ 
~~~~~j 

228 4734 (1 3/ t 4)

Figure A·5. Business System Terminal Standard Keyboard Layout

~
~
(")

a en en

i
CD'
Cil
:::J
(')
CD

~

.:...
~

I\)
I\)
......
o
~
o
tb
o ...

[Q][g][g]

0 01
t:t ~

·-·-·-·-·-·-·-·-·:·~·~·~·~·_·_·_·_·_·_·_·_·_·_·.·.~.·.·o ;.:.: •. ~.~.~ •.... ~.

2284734 (14/14)

•

Figure A·6. 820 KSR Standard Keyboard Layout

1!l "..,.

~
~
C) a
(I)
(I)

~
CD'
CiJ
~
C')
Cb

Alphabetical Index

Introduction

HOW TO USE INDEX

The index, table of contents, list of illustrations, and list of tables are used in conjunction to ob­
tain the location of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre­
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the subject material of the manual together
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

• Sections - Reference to Sections of the manual appear as "Sections x" with the sym­
bol x representing any numeric quantity.

• Appendixes - Reference to Appendixes of the manual appear as "Appendix y" with the
symbol y representing any capital letter.

• Paragraphs - Reference to paragraphs of the manual appear as a series of
alphanumeric or numeric characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual in which the paragraph may be
found.

• Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number.

Tx-yy

• Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number.

FX-yy

• Other entries in the Index - References to other entries in the index preceded by the
word "See" followed by the referenced entry.

2270510-9701 Index-1

~bort Entry Point 5.4.2.4
~bsolute Disk Address See ADU
~ccess Privileges 2.1.2.3
~ccount Numbers 6.3.1
~ccount Verification 6.3.1
~ccounting

Data 6.2
Files See .S$ACT1, S$ACT2 Files
Subsystem Implementation 6.3
Subsystem Requirements 6.3.2
~CNM Field Prompt Type 3.4.4.1
~ctive Job Limit 12.2
~dd 32-Bit Integers Routine 3.10.4.1
~DR 2.3.1.1,2.3.1.3
~DU 2.2.4
~lias Descriptor Record See ADR
~Iternate Termination Routine 3.10.1.15
~rithmetic Utility Routines 3.10.4
~rming Character 5.4.4
,SCCHK Routine 5.5.7
~SCCK2 Routine 5.5.7
~SCII Codes,

Special Language Characters T10-1
~synchronous:

Data Structure:
Allocation 5.6.4
Linkages F5-13

Device Support T5-2
DSR:

Building 5.8
Design Overview 5.6.1
Logic Flow F5-11
Structure 5.6, F5-10

Interrupt Processing Flow F5-12
Multiplexer Interrupt Decoder 5.3.3.4

~atch:
Job 1.5.1, 11.4

Limit 12.2
Stream 12.10.3

~egin Update Documentation
Command Procedure 12.10.1

IEMF Utility 9.2.1
lid Task Routine 3.10.3,5.5.3,12.7.1
lidding a Task 1.3.3
lidding DSR Tasks 5.4.4
lit Map 2.2.3.2
:Iank:
Adjustment 2.1.3.2
Suppression 2.1.3.2

:Iank-Suppressed:
File 2.1.1.1
Record T2-12

:Iocked:
File 2.1.1.2
Relative Record File 2.3.3.2

:Iocking 2.1.3.1
:Iocking Buffer 2.1.3.1

rldex-2

Branch Table Processor Routine 5.5.1
BRB 5.3.2
BRSTAT Routine 5.5.1
BTA " 1.1,5.3.2
BUD Command Procedure 12.10.1
Buffer Table Area See BT A
Buffered Request Block See BRB
Build Expanded Message File

Utility 9.2.,9.2.2
Build Message File Utility 9.2.1
Business System Terminal

Keyboard Layout FA-5
B-Tree 2.3.4.4, F2-15, F2-16

CDE 5.4.4, 12.7.2
CDR 2.3.1.1,2.3.1.4
COT . 5.4.4, 12.7.2
Channel 1.2, 1.5.4.1

Activity Master/Slave 1.5.4.3
ActivitySymmetric 1.5.4.3
Characteristics 1.5.4.3
Creation 1.5.4.2
Descriptor Record See CDR
Scope . 1.5.4.1

CIC Command 1.5.4.5
Clock Interrupt Processor 1.3.10
Close File Routine 3.10.2.5
Collating Sequences 10.1

Supported Languages T10-3
Command:

Definition Entry See CDE
Definition Table See COT
Deletion 3.8.6
Library, User 3.8.4
Privilege Levels 3.5.1, T3-7
Procedure 3.2.2,3.8

Design 3.8.1
Installation 3.8.3
Library,.S$CMDS 11.4
SCI 12.11.3
User-Defined 3.2

Processor 3.2.3, 3.8
Design 3.8.2
Installation 3.8.3
Interface Routines 3.9,3.9.1

Snapshot Name Definitions 12.7.1
SND 12.7.1
User-Defined 3.8.4

Common Table Area 12.5
Compare Strings Routine 3.10.3.3
Concatenated:

File 12.3
Sets 1.5.3.3

Context Switch 1.1
Controller:

Error 8.1.1
Interrupt Decoder HSR Subroutine .. 5.7.9
Type Codes T5-5

2270510-9701

Convert:
ASCII to Binary Integer Routine .. 3.10.3.1
Binary Integer to ASCII Routine .. 3.10.3.2

Conversion Utilities 11.2
Copy String Routine 3.10.3.4
Country Code 10.2
CPU Memory Requirements 11.2
Crash Code 8.2.1.1
Create:

IPC Channel (CIC) Command 1.5.4.5
Message Routine 3.10.1.13
Operator Message 3.10.6.2

CURMAP Address 8.2.1.6
Current:

Jobs Set 12.6
Table Use 12.6

Data:
Block 2.3.4.4, F2-17
Buffer Address Field 11.3
Format 6.2.2
Structures 5.3.1

Debugger Active Synonym 11.5
DEFAULT Field Prompt Type 3.4.4.2
Delayed Reentry Point 5.4.2.2
Delete:

IPC Channel (DIC) Command 1.5.4.5
Protection 2.1.2.1

Deleting Commands 3.8.6
Design Criteria 5.4.1
Device:

Information Block See DIB
Interrupt Decoder 5.3.3
I/O Operations 11.3
Service Routine See DSR

DI B 5.3.1, 5.4.1, 5.6.4
DIC Command 1.5.4.5
Directory:

File 2.1.1.4,2.3.1
Characteristics 2.3.1.1
Dump F2-10
Structu re F2-4

Overhead Record Format F2-5
Structure r F2-3

Disk:
Access Frequency 2.2.2
File Structure 2.3
Format Information T2-1
Organization 2.2
Physical Organization 2.2.3
Space 2.1.3.2

Allocation 2.2.2
Volume Information 2.2.3.1, F2-1

Disk Fragmentation, Eliminating 12.7.5
Divide 32-Bit Integers Routine 3.10.4.4
DNOS:

CPU Memory Requirements 11.2
Environment 11.2
Job Architecture 12.2

2270510-9701

Index

Physical Layout F1-1
SVCs 11.6
Subsystems 1.5
System:

File Names T11-1
Generation 11.4

DSR 5.1, 5.4, 5.4.3
See also Asynchronous DSR

Debugging Techniques 5.9
Design Overview, Asynchronous 5.6.1
Entry Points 5.4.2
Installation 5.8
Link Control Stream 5.8
Listing Example 5.10, F5-14
Memory Map F5-8
Structure F5-7
Support Routines 5.5
Task Activation 5.4.4
Templates 5.3.1

DSRITSR Entry Points T5-1
DX10 System File Names T11-1
DX10-to-DNOS .BID/.OVLY

Converter 12.11.3
Dynamic:

Display of Tasks 12.6
Modification of Run Time

Parameters 1.3.8
Priority Tasks 1.3.7

ELEM ENT Field Prompt Type 3.4.4.3
Enable/Disable Status Change Notification

HSR Subroutine 5.7.4
End:

Operator Interface Subsystem Interface
Session

Routine 3.10.6.4
Update Documentation Command

Procedure 12.10.2
End-of-File See EOF
ENDRCD Routine 5.5.2
Entry Point:

Abort 5.4.2.4
Hardware Interrupt 5.4.2.1
Initial Request 5.4.2.7
Power-Up Initialization 5.4.2.3
Priority Scheduler 5.4.2.6
Time-Out 5.4.2.5

Entry Points:
DSR 5.4.2
DSRITSR T5-1

EOF 2.1.3.6
EOR Processor Routine 5.5.2
Error:

Codes, Internal 9.2.1
Interrupt 5.4.2.1
Message Interface 9.4
Reporting 9.1

ERSTAT Routine 5.5.2
EUD Command Procedure 12.10.2

Index-3

Index

Exclusive:
All Privilege 2.1.2.3
Write Privilege 2.1.2.3

Execute:
Batch Job (XBJ) Command 1.5.1.2
Job (XJ) Command 1.5.1.2

Executing:
Task 8.2.1.2
TaskJSB 8.2.1.3
Workspace 8.2.1.8

Execution Priorities 1.3.7
Expanded:

Message Files 9.2.1
Message File Utility 9.3.2

Expanding Files 2.1.3.5
Expansion Chassis:

Interrupt 5.3.3.3
Interrupt Decoder F5-3

Expert Mode 3.8.5
Extended:

Call Block Flag 11.3
Operations See XOPs

Extending SCI 3.2

Failure Location 8.2.1.4
Fast VDT Mode 12.4
FDB 1.4.3
FDR 2.3.1.1,2.3.1.2
Field Prompt 3.4.4

List 3.5.1
Types T3-4

File:
Characteristics 2.1.3
Concatenated 12.3
Concatenation Restrictions 1.5.3.3
Descriptor Block See FDB
Descriptor Record See FDR
Directory 2.1.1.4,2.3.1

Characteristics 2.3.1.1
Indicator 9.2.1
I/O Operations 11.3
Name 2.3.1.1
Organ ization 2.1
Protection 2.1.2
Sharing 2.1.2
Types 2.1.1

Flag Word 8.2.2.1, F8-4
Flash Crash Routine 8.1.2

General Information Block F8-2
Generic Keycap Names .. Appendix A, TA-1
Get:

Buffer Routine 5.5.9
Event Character Routine 5.5.6
Parameter Routine 3.10.1.3
Queued Character Routine 5.5.5
Synonym Value Routine 3.10.1.7
TCA Routine 3.10.1.1
Terminal Status Routine 3.10.1.5
20-Bit TILINE Address Routine 5.5.11

Index-4

GETC Routine 5.5.5
GTADDR Routine 5.5.11

Halt Job (HJ) Command 1.5.1.2
Hard Break Key Sequence 11.2
Hardware:

Interrupt:
Entry Point 5.4.2.1
Processing F5-9

Map Option 1.1.1
Service Routine See HSR
Trap 8.2.1.9

Hash Placement KIF 11.2
HJ Command 1.5.1.2
HSR 5.6, 5.6.1, 5.6.4

Baud Rate Codes T5-4
Common Subroutines 5.7
Object Modules T5-3
Required Information 5.7
Subroutine Classes 5.7

Idle State 1.3.2
JIIegallnterrupt Routine 5.3.3.6, F5-6
Image File 2.1.1.4
Immediate Write Option 2.1.3.3
Indicator Lights 8.1.1
Information Interchange Codes 10.3
Initial:

Program Load See IPL
Request Entry Point 5.4.2.7

Initialization Problems, System 8.1
Initialize:

Mailbox Interface Routine 3.10.7.1
Operator Interface Routine 3.10.6.1
System Data Base Routine 3.10.1.2

Input Interrupt 5.4.2.1
INT Field Prompt Type 3.4.4.4
Interface:

Routine Buffers 3.9.2
Routines 3.10

SCI " 3.10.1
Internal:

Error Codes 9.2.1
Interrupt Processor 1.3.11

International:
Data 10.2
Languages 10.1

Internationalizing Messages 10.5
Interprocess Communication See IPC
Interrupt:

Decoder:
Asynchronous Multiplexer 5.3.3.4
Device 5.3.3
Expansion Chassis F5-3
Multiple Devices F5-2
Return Routine F5-5
Routines 5.3.3
Single Device F5-1

Expansion Chassis 5.3.3.3
Mask 5.4.2

2270510-9701

Multiple-Device 5.3.3.2
Processing F5-9
Service Routine See ISR
Single-Device 5.3.3.1

Intertask Message Queue 11.6, 12.5
10FCDT Routine 5.5.3
10GEC Routine 5.5.6
10GUB Routine 5.5.9
10MPIN Routine 5.5.10
10MPOT Routine 5.5.8
IPC 1.5.4,12.5

SCI Commands 1.5.4.5
Supervisor Calls 1.5.4.4

IPL 1.3.1,1.4,8.2
IRB 5.3.2
ISR 5.4.2.1, 5.6, 5.6.1, 5.6.2

Functions 5.4.2.1
110:

Request Block See IRB
Subsystem 5.3

Japanese Character Codes T10-2
JCA 1.1.2.1
JISCII T10-2
Job:

Architecture 11.2,12.2
Control Capabilities 1.5.1.2
Global Data 8.2.2.2
Initialization 6.2.1
Management Request SVC 1.5.1.1
Status Block (JSB) 1.1.2.1
Structure 1.1.2.1
Temporary Files 1.5.3.2,11.2
Termination 6.2.1

Jobs 1.5.1
JSB 1.1.2.1,8.2.2

Executing Task 8.2.1.3
List 8.2.2.2, F8-3

KDR 2.3.1.1,2.3.1.5
Kernel 1.1
Key:

Descriptor Record See KDR
Sequences TA-2

Keyboard:
Bid 12.2,12.7.2
Layout:

Business System Terminal FA-5
820 KSR FA-6
911 VDT FA-1
915 VDT FA-2
931 VDT FA-4
940 EVT FA-3

Sequence, Predefined 12.7.2
Status Block See KSB

Keycap Name Equivalents, 911 VDT ... TA-3
Keycap Names, Generic .. Appendix A, TA-1
Keyword List 3.3

2270510-9701

Index

KIF 2.1.1.3,2.3.4
Collating Sequence 10.4
Disk Usage 2.3.4.6
Hash Placement 11.2
Keys 2.3.4.1
Log ical Record 2.3.4.5
Manager 10.4
Multifile 12.3

Sets 1.5.3.3
Records 2.3.4.2
Sequential Placement 11.3
Structure 2.3.4.4, F2-13

Kill Job (KJ) Command 1.5.1.2
KJ Command 1.5.1.2
KSB 5.4.1

Language:
Line 3.3
Processors 10.5

Library, User Command 3.8.4
Limit Registers 1.1.1
Link Editor Control Stream 3.8.3
Load, TILINE 8.1.1
Loader:

Flashing Crash Codes, System T8-2
Phases, System T8-1

Local Display File Routines 3.10.2
Locking, Record 2.1.2.2
Logical:

Address Space 1.1.1
Name 3.1,3.4.2,12.3
Names 1.5.3.1
Name Table 3.1, 11.3, 12.4
Records 2.1.3.1
Record Size 2.1.3.1

LP$1 Function 11.3
LUNO:

Types 12.7.3
00 . 11.2, 11.3

Mailbox Subsystem
Interface Routines 3.10.7

Map 12.6
File 1.1.1
In Buffer Routine 5.5.10
Option 1.1.1
Out Current Buffer Routine 5.5.8

Master/Slave:
Channel 1.5.4.3
OwnerTask 1.5.4.3

MB$INT Routine 3.10.7.1
MB$RCV Routine 3.10.7.3
MB$RLS Routine 3.10.7.4
MB$SND Routine 3.10.7.2
Memory:

Mapping 1.1.1
Resident User Tasks 1.1
Statistics 12.6

Index-5

Index

Message:
File Utilities 9.3.1,F9-1
Processing Synonyms T3-3

Migrating Between DX10 and DNOS ... 11.1
Modify Job Priority Command 1.5.1.2
MJP Command 1.5.1.2
Monitoring Utilities 12.6
Multifile KIF 12.3
Multiple-Device Interrupt 5.3.3.2
Multiple Devices, Interrupt Decoder ... F5-2
Multiplexing Hidden Request Queue .. 5.4.5
Multiply 32-Bit Integers Routine 3.10.4.3
Multivolume File Sets 1.5.3.3, 1.5.3.4

Name:
Definition 3.4.3

Stages 1.5.3.5
Management 1.5.3
Name Manager, SVC 3.4.1
Manager Task 3.1

NAM E Field Prompt Type 3.4.4.5
Names, Reserved 9.2.1
Nonreplicatable Tasks 11.2
Nucleus 1.1

OI$BGN Routine 3.10.6.1
OI$COM Routine 3.10.6.2
OI$END Routine 3.10.6.3
OI$WAT Routine 3.10.6.2
Open:

File Routine 3.10.2.1
File Specifying User 10 Routine .. 3.10.2.2
Operation 11.3

Operator Interface Routines 3.10.6
Output a Character HSR Subroutine ... 5.7.5
Output Interrupt 5.4.2.1

Partial Bit Map 1.1,2.2.3.2, T2-2
PDT 5.3.1, 5.4.1

Special Extension 5.8
Performance:

Monitoring 12.6
Optimization 12.7

PF Command 11.4
Physical:

Device Table See PDT
Record Length 2.1.3.1
Records 2.1.3.1

Power-Up Initialization:
HSR Subroutine 5.7.1
Entry Point 5.2.3

Primary KIF Key 5.4.2.3
Primitives 3.5
Print File Command 11.4
Priority Scheduler Entry Point 5.4.2.6
Procedure Library 3.2.2
Program:

File 2.1.1.4
Image Loader 1.4.2

Errors 8.1.2

Index-6

Put TCA Routine 3.10.1.11
PUTCBF Routine 5.5.4
PUTEBF Routine 5.5.4

Queue 1.1.2.3
Character Routine 5.5.4
Event Character Routine 5.5.4
Servers . 1.1.2.3
Structure F1-4

RANGE Field Prompt Type 3.4.4.6
ROB T4-1
Read:

HSR Subroutine 5.7.3
On Iy Privi lege 2.1.2.3

Input Signal or Function Operational
Parameters and Information
HSR Subroutine 5.7.7

Receive Mail Routine 3.10.7.3
Record:

Blocking 2.1.3.1
Locking 2.1.2.2
Logical 2.1.3.1
Physical 2.1.3.1

Reentry Point, Delayed 5.4.2.2
Relative Record:

File 2.1.1.2, 2.3.3, 12.3.7
File, Blocked 2.3.3.2
File, Unblocked 2.3.3.1

Release:
Mailbox Routine 3.10.7.4
TCA Routine 3.10.1.11

Report TILINE Error Routine 5.5.13
Request:

Descriptor Block See ROB
Flow 5.3.2
Information Block See RIB
Operation Code 5.3.2
Time Interval Notification

HSR Subroutine 5.7.8
Reserved Names 9.2.1
Resume Job (RJ) Command 1.5.1.2
Return Routine 5.3.3.5
Return Time and Date Routine 3.10.1.10
RE-ENTER-ME Routine 5.4.2.2
RJ Command 1.5.1.2
ROM Loader 1.4.1

Errors 8.1.1
Run-Time Routines 11.5

SAT Structures 12.7.5
SCI 3.1

Access to Logical Names
and Synonyms F3-2

Batch Mode 3.1
Command 3.3

Procedures 11.5,12.11.3
Features 12.4
Interactive Mode 3.1
Interface Routines 3.10.1,11.5

2270510-9701

Language:
Syntax 3.3
Maintained Synonyms T3-2
Modes of Operation F3-1
Primitive 3.2.1,3.3, 11.5

Batch Stream 3.6
Error Processing 3.7

Primitives 3.5, T3-5, T3-6
Run-Time Routines 11.5
Sessions, Structuring 12.7.1
Special Characters T3-1

Task 11.5
User Interface 11.4
Variables 3.4

SCS Command 1.5.4.5
Search Name Correspondence

Table Routine 3.10.1.8
Secondary Allocation

Table Structures 12.7.5
Security Option Initialization 1.4
Segment Management 1.5.2
Send Mail Routine 3.10.7.2
Sequential:

File 2.3.2
Files 2.1.1.1
Placement KI F 11.3
Record Placement 2.3.4.4, F2-14

Set:
Channel Speed HSR Subroutine ... 5.7.6.1
Data Character Format

HSR Subroutine 5.7.6.2
Device Parameters Suboperation ... 5.4.4
Synonym Value Routine 3.10.1.6

Shared Privi lege 2.1.2.3
Show:

Channel Status (SCS) Command .. 1.5.4.5
Job Status (SJS) Command 1.5.1.2

Single-Device Interrupt 5.3.3.1
Single Device, Interrupt Decoder F5-1
SJS Command 1.5.1.2
Snapshot Name Definitions

Command 12.7.1
SND Command 12.7.1
Special:

Language Characters 10.1, T10-1
Usage File Protection 2.1.2.4
Usage Files 2.1.1.4
Works paces 8.2.1.10

Split List Into Components
Routine 3.10.1.9

Spooler -............. 12.3,12.12
Banner Sheet File 12.12.1.1
Clean-Up 12.12.3
Device Attributes 12.12.2
Di rectory . 12.12.1
Interface Routine 3.10.5
Job 12.12
Queue File 12.12.1.2
Temporary Files 12.12.4

2270510·9701

Index

Static Priority Tasks 1.3.7
Station Local LUNOs 11.3
Status:

Interrupt 5.4.2.1
Register 8.2.1.5

STRING Field Prompt Type 3.4.4.7
String Utility Routines 3.10.3
Subroutines See HSR Subroutines,

Routines
Subtract 32-Bit Integers Routine ... 3.10.4.2
SVC Processor 4.1, 4.2, 4.3
SVC Call Block 4.2.1
SVC Definition Tables 4.2.2
SVC Sysgen Requirements 4.2.4
SVCs, Differences Under DNOS 11.6
Symmetric Channel 1.5.4.3
Synonym 3.1

Evaluation 3.4.1
NameTable 12.4
Table 3.1,11.4

Synonyms 3.4.1
System:

Command Interpreter See SCI
Command Procedures 12.10
Components 1.1
Configuration Utility 12.8
Crash 8.1.1

Dumps 8.2.3
Forci ng 8.2.4
Problems 8.2
Routine 1.3.12

Disk ... -....................... 1.1.2.4
File Names 11.2, T11-1
Files 1.1.2.4
Flow 1.3
Initialization Problems 8.1
Interrupt Decoder Routines 5.3.3
Loader . 1.4.3
Error F8-1

Flashing Crash Codes T8-2
Phases T8-1

Loaders 1.4
Log Device . 11.2
Memory Mapping 1.1.1
Patch Area 8.2.1.7
Restart Task 1.4
Structure ; 1.1
Tables 1.1
Table Sizes 12.9
Tasks 1.1

S$:
Files 1.1.2.4
Interface Routines 3.1
Routines ; 3.9, 11.5

S$BIDT Routine 3.10.1.3,5.5.3,12.7.1
S$CLOS Routine 3.10.2.5
S$CMSG Routine 3.10.1.13
S$CRASH File 11.2
S$GTCA Routine 3.10.1.1

Index-7

Index

S$IADD Routine 3.10.4.1 Transfer:
S$IASC Routine 3.10.3.2 PDT Information to Task Memory
S$IDIV Routine 3.10.4.4 Routine 5.5.12
S$IMUL Routine 3.10.4.3 Vectors 1.1
S$INT Routine 3.10.3.1
S$ISUB Routine 3.10.4.2

Trap, Hardware 8.2.1.9
TSB 1.1.2.2

S$MAPS Routine 3.10.1.7 TSR 5.6, 5.6.1, 5.6.2
S$NEW Routine 3.10.1.2
S$OPEN Routine 3.10.2.1 Unblocked:

Error 11.5 File 2.1.1.2
S$OPNS Routine 3.10.2.2 Relative Record File 2.3.3.1
S$PARM Routine 3.10.1.4
S$PTCA Routine 3.10.1.11

Undetected Write Error, Preventing .. 2.1.3.3
Unit Select Error 8.1.1

S$RTCA Routine 3.10.1.12 Unsolicited Interrupt 5.4.2.1
S$SCOM Routine 3.10.3.3 User Command Library 3.8.4
S$SCPY Routine 3.10.3.4 User Flags Byte 11.3
S$SETS Routine 3.10.1.6 User IDs 11.2, 11.5, 12.11
S$SNCT Routine 3.10.1.8 User-Defined:
S$SPLR Routine 3.10.5 Commands 3.8.4
S$SPLT Routine 3.10.1.9 DSRs 11.7
S$STAT Routine 3.10.1.5 SVC Processors 11.7
S$STOP Routine 3.10.1.15 System Software 11.7
S$TAD Routine 3.10.1.10
S$TERM Routine 3.10.1.14 Wait for Operator Response
S$WEOL Routine 3.10.2.4 Routine 3.10.6.3
S$WRIT Routine 3.10.2.3 Write:

EOL to File Routine 3.10.2.4
Table Overflow, Preventing 3.8.1 Operational Parameters HSR
Task: Subroutine 5.7.6

Activation 1.3.3
Bidding a 1.3.3

Output Signal or Function HSR
Subroutine 5.7.2

Characteristics 8.2.2.1 Protection 2.1.2.1
Flag 8.2.2.1
JSB, Executing ". 8.2.1.3

To File Routine 3.10.2.3

Priority 1.3.7 XANAL 8.2
RunlDs " ... 11.6 Commands T8-3
Scheduler -................ 1.3.4
States 8.2.2, 8.2.2.1, F8-3

Listing 8.2.1
XBJ Command 1.5.1.2

Status Block (TSB) 1.1.2.2 XFERM Routine 5.5.12
Structure 1.1.2.2, F1-3 XJ Command 1.5.1.2
Termination 1.3.9,6.2.1 XOP:

Temporary Files 2.1.3.4 Processing 1.3.6
Terminal: Vectors 8.2.1.9

Local File See TLF XOPs 1.1
Service Routine See TSR XPROCCVT Converter 12.11.3

Terminate and Return to SCI
Routine 3.10.1.13 YESNO Field Prompt Type 3.4.4.8

Termination, Task 1.3.9
Text Editor Active Synonym 11.5
TILERR Routine 5.5.13
TILINE:

Load , 8.1.1

$$CC Synonym 11.5
$$DA Synonym 11.5
$$EA Synonym 11.5

Logical Address Space 1.1.1
Peripheral Control Space See TPCS

.BID Primitive 3.5.9

.DATA Primitive 3.5.13
Time Slicing 1.3.5
Time-Out Entry Point 5.4.2.5
Timing Interrupt 5.4.2.1
TLF 3.1

.DBID Primitive 3.5.10

.ELSE Primitive 3.5.2

.ENDIF Primitive 3.5.2

.EOD Primitive 3.5.13
TPCS 1.1.1 .EOP Primitive 3.5.1

Status " .. 8.1.1 .EVAL Primitive 3.5.6

Index-8 2270510-9701

Index

.EXIT Primitive 3.5.5 .S$LOG1,.S$LOG2 Files 1.1.2.4

.IF Primitive 3.5.2 .S$MAI L Channel 1.2

.LOOP Primitive 3.5.7

.MENU Primitive 3.5.17
.S$MSG Directory 1.1.2.4,9.2
.S$MVI File 1.1.2.4

.MESSAGES.TEXT Directory 9.2.1,10.5

.OPTION Primitive 3.5.16
.S$OPER Channel 1.2
.S$PWCS File 1.1.2.4

Use With International ASCII 10.4 .S$ROLLA, .S$ROLLD Files 1.1.2.4
.PROC Primitive 3.5.1 .S$SCA File 1.1.2.4
.PROMPT Primitive 3.5.3 .S$SDTQUE Directory 12.12.1
.QBID Primitive 3.5.11 .S$SDTQUE.S$BANNER File 12.12.1.1
.RBID Primitive 3.5.12 .S$SECURE File 1.1.2.4
.REPEAT Primitive 3.5.7 .SSGU Directory ~ 1.1.2.4
.SC1990 Library 3.9.1 .S$SHARE Fi Ie 1.1.2.4
.SHOW Primitive 3.5.18 .S$SHARED File 1.1.2.4
.SPLIT Primitive 3.5.8 .S$SPOOLChannel 1.2
.STOP Primitive •.................. 3.5.14 .S$SYSLIB Directory 1.1.2.4
.SVC Primitive 3.5.19 .S$SYSTEM Directory 1.1.2.4, 12.9

Disallowed SVCs with T3-8 .S$SYSTEM.S$HSTRY File 12.9
.SYN Primitive 3.5.4 .S$USER Directory 1.1.2.4
.S$ACCCHN Channel 1.2 .S$UTIL File 1.1.2.4
.S$ACT1, .S$ACT2 Files 1.1.2.4,6.1
.S$CDT Directory 1.1.2.4

.S$XBJ Channel 1.2

.S$UTI L 6.3.3
.S$CDTQUE Directory 1.1.2.4
.S$CLF Fi Ie 1.1.2.4

.UNTIL Primitive 3.5.7

.USE Primitive 3.5.15
.S$CMDS: .WHILE Primitive 3.5.7

Command Procedure Library 11.4
Directory 1.1.2.4,12.9

.S$CRASH File 1.1.2.4
7-Bit Character Check Routine 5.5.7
8-Bit Character Check Routine 5.5.7

.S$DIAG File 1.1.2.4 820 KSR Keyboard Layout FA-6

.S$DSTCHN Channel 1.2 911 VDT:

.S$EXPMSG Directory 1.1.2.4

.S$IPL File 1.1.2.4, 1.4.3
Keyboard Layout FA-1
Keycap Name Equivalents TA-3

.S$ISBTCH File 1.1.2.4,1.4

.S$ISLIST Fi Ie 1.1.2.4
915 VDT Keyboard Layout FA-2
931 VDT Keyboard Layout FA-4

.S$LANG File 1.1.2.4

.S$LOG1 File 1.1..2.4
940 EVT Keyboard Layout FA-3

2270510-9701 Index-9!lndex-10

w
z
:::l

" z o
..J
<C
t­
::)
o

USER'S RESPONSE SHEET

Manual Title: ONOS Systems Programmer's Guide (2270510-9701)

Manual Date: March 1985 Date of This Letter: ________ _

User's Name: ________________ __ Telephone: ___________ _

Company: ______________________ __ Office/Department: ________ _

Street Address: __ _

City/State/Zip Code: _________________________________ __

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD ------------------------

111111

BUSINESS REPLY MAIL I
FIRST CLASS PERMIT NO. 7284 DALLAS, TX)

POSTAGE WILL 8E PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS GROUP

.AnN: TeCHNICAL PUBLICATIONS
P.O. Box 2909 MIS 2146
Austin, Texas 78769

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-- -- -- -- - -- -- -- --.-- -- -- -- -- -- --
FOLD

