DNOS {y

Systems
Programmer’s
Guide

_IEXAS INSTRUMENTS

“

© Texas Instruments Incorporated 1981, 1982, 1983
All Rights Reserved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and to inventions
disclosed herein and patents which might be granted thereon disclosing or employing the materials,
methods, techniques or apparatus described herein, are the exclusive property of Texas Instruments
incorporated.

MANUAL REVISION HISTORY

DNOS Systems Programmer’s Guide (2270510-9701)
Originallssue it 1 August 1981

Revision. e 1 October 1982
Revision. .. o 15 November 1983

The total number of pages in this publication is 372.

The computers offered in this agreement, as well as the programs that Tl has created to
use with them, are tools that can help people better manage the information used in their
business; but tools — including TI computers — cannot replace sound judgment nor make
the manager’s business decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his /her business.

DNOS Software Manuals

This diagram shows the manuals supporting DNOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

1046-01604¢¢C

AlIDNOS Users:
DNOS Concepts and Facilities DNOS System Command DNOS Messages and DNOS Master Index to
2270501-9701 Interpreter (SCI) Reference Manual Codes Reference Manual Operating System Manuals
2270503-9701 2270506-9701 2270500-9701
DNOS Operations Guide DNOS Text Editor DNOS Reference Handbook
2270502-9701 Reference Manual 2270505-9701
2270504-9701
High-Level Assembly Productivity Communications Systems
Language Users: Language Users: Tools Users: Software Users: Programmers:
COBOL Reference Manual 990/99000 Assembly DNOS Sort/Merge DNOS DNCS/SNA DNOS System Generation
2270518-9701 Language Reference User’s Guide User’s Guide Reference Manual
Manual 2272060-9701 2302663-9701 2270511-9701
DNOS COBOL 2270509-9701
Programmer’s Guide DNOS TIFORM DNOS DNCS DNOS Systems
2270516-9701 DNOS Assembly Reference Manual Operations Guide Programmer’s Guide
Language 2276573-9701 2302662-9701 2270510-9701
DNOS Performance Programmer’s Guide
Package Documentation 2270508-9701 DNOS Query-990 DNOS DNCS 914A DNOS Online Diagnostics
2272109-9701 User’s Guide User’s Guide and System Log Analysis
DNOS Link Editor 2276554-9701 2302664-9701 Tasks User’s Guide
T! Pascal Reference Manual Reference Manual 2270532-9701
2270519-9701 2270522-9701 DNOS Data Base DNOS 3270 Interactive
Management System Communications Software ROM Loader User's Guide
DNOS Ti Pascal DNOS Supervisor Cail Programmer’s Guide (ICS) User’'s Guide 2270534-9701
Programmer’s Guide SVC) Reference 2272058-9701 2302670-9701
2270517-9701 anual
2270507-9701 DNOS Data Base DNOS 3780/2780
FORTRAN-78 Reference Administrator User's Emulator User’s Guide
Manual Guide 2270520-9701
2268681-9701 2272059-9701
DNOS DNCS System
DNOS FORTRAN-78 Data Dictionary Generation Reference
Programmer’'s Guide User’s Guide Manual
2268680-9701 2276582-9701 2302648-9701
MATHSTAT-78 DNOS TIPE DNOS DNCS X.256
Programmer’s Reference Reference Manual Remote File Transfer
1“,52%'5%;'7 9701 2308786-9701 (RFT) User’s Guide
FORTRAN-78 ISA gNOG‘i TlPGE id o
- xercise Guide i
Extensions Manual Security 2308787-9701 Subsystem RTG Source
Managers: DNOS COBOL Program User’s Guide Code Users:
TI BASIC Reference Manual Generator User's Guide 2302676-9701
2308769-9701 DNOS Securit 2234375-9701 DNOS System
) Manager’s Guide Design Document
SP% Il Programmer’s 2308954-9701 2270512-9701

uide
939524.9701

DNOS SCI and Utilities
Design Document
2270513-9701

DNOS Software Manuals Summary

Concepts and Facilities
Presents an overview of DNQOS with topics grouped by operating system functions. All new users (or
evaluators) of DNOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each
device supported by DNOS.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
adetailed presentation of all SCl commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on DNOS and describes each of the editing commands.

iMessages and Codes Reference Manuai
Lists the error messages, informative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Master Index to Operating System Manuals
Contains acomposite index to topics in the DNOS operating system manuals.

Programmer’s Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer’s guide covers oper-
ating system information relevant to the use of that language on DNOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Documentation

Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 990/12
Computer and Business System 800.

Link Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

DNOS System Generation Reference Manual
Explains how to generate a DNOS system for your particular configuration and environment.

User’s Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

User’s Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution
under DNOS.

Systems Programmer’s Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

Online Diagnostics and System Log Analysis Tasks User’s Guide
Explains how to execute the online diagnostic tasks and the system log analysis task and how to inter-
pret the resuits.

ROM Loader User’s Guide
Explains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNOS system SCI, and the utiiities.

DNOS Security Manager’s Guide
Describes the file access security features available with DNOS.

iv 2270510-9701

Preface

This manual discusses the functional characteristics of the Texas Instruments Distributed
Network Operating System (DNOS) and is intended for the systems programmer. It provides
information required for modifying the DNOS system to meet the specific needs of an
applications environment. Directed to object-level implementation, this manual is not a detailed
guide for the user who has access to source code.

This manual contains the following sections and appendixes:
Section

1 DNOS System Overview — Discusses the structure, flow, and loading of the system and
the distinctive DNOS subsystems. The subsystems described are job management,
segment management, name management, and interprocess communication (IPC).

2 Disk and File Organization — Describes the files that DNOS supports and the disk
structures that support the files.

3 Extending SCI — Describes the System Command Interpreter (SCI), the use of SCI
primitives, and the procedure for adding commands to support a specific applications
environment.

4 Writing an SVC Processor — Explains the procedure for writing supervisor call (SVC)
processors for applications-oriented SVCs and for including these processors in a
custom-generated system. ‘

5 Writing a DSR — Describes the input/output (I/O) system and how to write a device
service routine (DSR). This section also describes the interrupt types and the DSR
support routines.

6 DNOS Accounting System — Discusses the capabilities and use of the accounting
system.

7 File Security — Explains what a programmer needs to know about a system that
supports file security.

8 Analyzing System Problems — Describes system crashes that occur during system
loading and after the system begins executing. This section discusses both the system
crash dump and utility XANAL, which lists the data in the dump. It also explains how to
force a system crash. \

2270510-9701 v

Preface

Section

9 Adding Error Messages — Discusses error processing and explains how to add error
messages required for user-supplied system programs.

10 International Considerations — Explains the method and results of changing the
country code of the system and how to customize DNOS for a particular country.

11 Differences Between DX10 and DNOS — Describes the differences between DX10 and
DNOS as they relate to migration of DX10 to DNOS.

12 Special Features of DNOS — Describes some special features of DNOS and how they
are used.

The DNOS software manuals shown on the support manual diagram (frontispiece) contain related
information. The ROM Loader User’s Guide (part number 2270534-9701) contains information

about how to load DNOS from devices accessible on the TILINE* peripheral bus and on the
communications register unit (CRU).

DO T ol P O L P R e R e T T s P R T e v
TILINE IS aTEgISIEITU UauTiliaiR Ui 1 TAQD 1HID1 WO 1HTLUI pUiGlCu,

Vi 2270510-9701

Contents

Paragraph

—t b h e d b ok wd
oL LaaaLn
oo fo oo o
WM A

-
w w
N =

1.3.3
1.3.4
135
1.3.6
1.3.7
13.8
1.39
1.3.10
1.3.11
1.3.12
1.4
1.4.1
1.4.2
1.4.3
1.5
1.5.1
1.5.1.1
1.5.1.2
1.5.2
153
1.5.3.1
15.3.2
1.5.3.3
1.5.3.4
1.5.3.5

2270510-9701

Title Page

1 — DNOS System Overview

DNOS System Structure i i i i i it ettt et aeaaanens 11
SystemMemory Mapping.c.oiiiiiiii it e ettt i e e 1-3
Fundamental Structure of DNOS i it iiainnneens 1-5

JOb StructUreo i it i e a e a s 15
I T3 1-5
QUEUE SBIVEIS . . .t ittt ittt it tieteeiterensenecassnrearnannnsasnnnns 1

SystemM Files . ..ot i i et ettt a e, 1-6

Channels for DNOSFuNctionsc.iiiiiiiiiiiii it iainarannnann 19

SYStEM FlOW ...ttt i i e i it et i 1-10
Initial Program Load (IPL)ttt i i i ittt et e 1-11
SystemildleStatec i i ittt 1-11
Task Activation e e ea e eaaaaaaeaeae e 1-11
TaskScheduling i i it e et innnaenannnnns 1-11
TimeSlicing ettt aaiaeaaaeneaeaa e 111
XOP ProCessiNg .. .vviiiitneineiea e ienaeancanencaransanasaneannenns 1-11
Execution Prioritiest i e i e e e 1-12
Dynamic Modification of Run-Time Parameters 113
Task Termination ittt it eceeantanannncannnnns 1-14
Clock Interrupt Processor ciii ittt i e tntntnasacaananans 1-14
Internal Interrupt Processor.ot i it i ittt ettt r e a e 1-14
SystemCrashRoutine 0 ittt it 1-15

IPLand SystemLoaders.ttt ittt tasn e 1-15
10V I e Vo [T R 1-16
Programimage Loader.c.ciiiiiii ittt iin et aananas 1-16
System Loader.o it e e 117

DNOS SUDSYSIEMS ... i i i i i i ittt it e e 1-18
JobManagement e i e r e 1-18

Supervisor Call (SVC) ..ottt ittt i i e ettt et 1-18
SCICOmMMaNdscoiviiiiiiiie i i 1-19
SegmentManagement i i i e e 1-19
NameManagementoiiiiiirirnrnrnenreararnrnanannaranan 1-21
Logical Namesottt it i et et e e 1-21
JobTemporaryFilest i it e i et 1-21
FileConcatenationottt ittt ieeaannaeaaannns 1-21
Multivolume File Capability i e 1-23
Stages of Name Definition...... i i 1-23

vii

.......

Paragraph

1.5.4

1.5.4.1
15.4.2
1543
1.5.4.4
1545

2.1
2141
2.1.1.1
2.1.1.2
2.1.1.3
21.14
2.1.2
21.2.1
21.2.2
21.23
2124
213
2.1.3.1
2132
2133
2134
2.1.35
2.1.36
2.2
2.21
222
2.23
2.2.3.1
2232
2.2.4
23
2341
2.3.14.1
23.1.2
2313
2314
2.3.1.5
2.3.1.6
2.3.2
2.3.3
2.3.3.1
2.3.3.2
234
2341

viii

Title Page’
Interprocess Communication(IPC) ittt iiiianeenn 1-24
Channel Definitiono it i i i e vttt i e 1-24
Channel Creation ittt it it ettt i e e e cnnens 1-25
Channel Characteristicsc.viiiiiiiiii i i ittt ieesananeneens i-25
IPCSupervisorCals (SVCS) ciii ittt e ie v e ta it cannnranananeas 1-27
IPCSCI COMMANAS. . oottt iii ittt tnettre e rnanennnrnennssennnnans 1-27

2 — Disk and File Organization

File Organization. i i i i i it e e e 21
=0 137/ o - 21
Sequential Filesttt ittt ine s snaernanrenanans 2-1
Relative Record Filesttt i i i et et e e nanes 22
KeyIndexed Files(KIFS).coiiiiiiiiii ittt et e tnaernnennas 2-2
SpecialUsage Filesottt it i i i ir s are e e eas 2-3
File ProtectionandSharing it 23
DeleteandWrite Protection. it i i i eiarannn 2-3
Record LOCKING i i i i e i i e et it 2-4
AccessPrivileges i e e et 2-4
Special Usage FileProtection iiiiian.. RN 24
FileCharacteristicst i i i i et ittt it i 25
RecordBlocKingcoiiiii i i i i it i e e et 25
Saving Disk Spacettt e 2:6
Immediate Write it i it et ettt 26
Temporary Attribute i e 27
Expandability......... et eerae e 2-7
End-of-File (EOF)ottt i i it e ittt ettt eaeneannans 2-7
Disk Organization i ittt e, 28
DiskCharacteristicscviii i it i i i it ittt ettt i 2-8
Disk Space AllocationtoFiles..............cco ittt 29
Physical Organizationof aDNOSDisk ittt iiiann.., 210
Volumelnformation i it ii e 210
2T, =T o 215
Displaying and Modifying Absolute Disk Addressescouun.. 215
Disk File Structurest ittt it it renesanansnna.s 21D
Directory Filet i i i i i i i i it n e sntanrannenn 2-16
Directory FileCharacteristics i it it i i e i e ens 2-18
File DescriptorRecord (FDR)o i i i i et e inee e 2-18
Alias DescriptorRecord (ADR).ttt i ittt e e 2-23
Channel DescriptorRecord (CDR)ttt ettt in e inneenn 2-25
Key DescriptorRecord (KDR)t i i e e e i e 2-30
ExampleofaDump Directoryttt i i et 2-32
Sequential Files i i it e 2-32
Relative ReCOrd Fileso it i i st ittt e nann e nnns 2-37
Unblocked Relative Record Files 2-37
Blocked Relative Record Files. i i it i i e 2-40
KeyIndexed Files (KIFS)o i i i e e e et e e e et 2-40
Ll) 2-40

2270510-9701

Paragraph®

2.3.4.2
2.3.4.3
2.3.4.4
2.3.45
2.3.46

3.1

3.2
3.2.1
3.2.2
3.23
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.4.1
3.4.4.2
3443
3.4.4.4
3.4.45
3.4.4.6
3.44.7
3.4.438
3.5
3.5.1
3.6.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.8.1
3.56.8.2
3.5.9
3.5.10
3.5.11
3.56.12
3.5.13
3.5.14
3.5.15
3.5.16
3.5.17
3.5.18

2270510-9701

Contents

Title Page
Q2 1= o o] o I X 2-41
KIF Keyand RecordExampleciiiiiiiiiiiiiniiii i, 2-41
Structure Of KIFS . . . oo ittt i e it ittt it et e e 2-42
Descriptionof Logical Recordcciiiiiiiii it ittt iaeas 2-51
KIFDISKUSAQE ..o iiiiiiii ittt ie it et e e e e acanasasteannsnenns 2-52

3 — Extending SCI
Sl OVEIVIBW . ittt ittt ittt e e e e e a e 31
User-Defined SCl Command Proceduresc.coiiiiinnenrncnnnnanns 33
SCIPHMItIVE ..ttt i i i i i i i i et e e ei ettt 34
Command Procedurecciiiicrinnrarnsassesnsasaesnssnransnss 3-4
Command ProCeSSOrvuriti e ieinaeatatatssssssensasnasosenssnsnss 34
SCILanguage SYNtaX ... vviutrene e ci i i it 34
SClLanguage Variablescuciiiiiititiiiiai e tatararanararananan 3-6
SYNONYIMIS ..ttt ti ettt ittt it eeceaeaeasasanasansnaaassasarensnasansnnn 3-7
LogicalNamesttt ittt ieananrnarennsanannnananss 311
Environment and Scope of Name Definitions e eeareeaaea 3-11
FieldPrompts ... Ceeeieiiiaaaeaaas 3-12
ACNM Field Prompt Type. .. o oo it i ittt et et s enannns 3-13
DEFAULT Field Prompt TYpeottt i ittt e et eteneenaennenns 314
ELEMENT Field Prompt Typeiiiiiiiiiiiiiieaiarsesnrnannnnns 3-14
INTField Prompt TYpettt i i it ieeatneranaacnaaanns 3-15
NAME Field Prompt Type i i ittt tii e taetasnannnanss 3-15
RANGE Field Prompt Type ittt ittt ete e e s e ananans 315
STRINGField Prompt Typeottt ittt it tee e e enenannn. 3-15
YESNO Field Prompt Type oottt i e e st enasaanacnanaenns 3-i6
SCIPHMItIVES .. . i i i i e e e et e et 3-16
PROC and .EOP Primitivesciiiiiiiiiiiii ittt entnnennnns 318
JAF, .ELSE, .ENDIF Primitives ittt it ettt it it anaeenn 3-20
PROMPT Primitive . ..ot i i i i i i it e et araraaananannnns 322
SYNPrimitive .. it ettt et 3-23
EXIT Primitive . . i i e e ie e 3-24
EVALPrimitive ..o it i i iia e .. 32D
.LOOP, .UNTIL, .WHILE, and .REPEAT Primitives 3-26
SPLIT Primitive . .. i i i e e e e e e 3-28
Usingthe First SPLITFormatciiiiiiiiiiit it it tninenannnns 3-28
Usingthe Second .SPLITFormatccoiiiiiiiiiinnrnrannnnnns 3-29
BID PrimMItIVE . . . i i it e e a e 3-30
DBID Primitive i i i e i et e e e i e, 3-31
QBID Primitive i i i i it et et i, 3-32
RBID Primitive i i i i e e e, 3-32
.DATA and .EODPrimitivescc ittt ittt e ieraranannnnn 3-33
STOP PHMItIVE . .ot i i i i i ettt 3-34
USE PHMItIVE .. o i i e ettt e, 3-35
OPTION Primitiveo i i i it i st ittt ettt enaanns 3-36
MENU Primitive ... i i i i i et i it 3-38
SHOW Primitive ... i it e et e 3-39

ix

Contents

Paragraph

3.5.19
3.6

3.7

3.8

3.8.1
3.8.2
3.8.3
3.8.4
3.85
3.8.6

3.9

3.9.1
3.9.2
3.10
3.10.1
3.10.1.1
3.10.1.2
3.10.1.3
3.10.1.4
3.10.1.5
3.10.1.6
3.10.1.7
3.10.1.8
3.10.1.9
3.10.1.10
3.10.1.11
3.10.1.12
3.10.1.13
3.10.1.14
3.10.1.15
3.10.2
3.10.2.1
3.10.2.2
3.10.2.3
3.10.2.4
3.10.2.5
3.10.2.6
3.10.3
3.10.3.1
3.10.3.2
3.10.3.3
3.10.3.4
3.10.4
3.10.4.1
3.10.4.2
3.10.4.3
3.10.4.4
3.105
3.10.6

Title Page
SVC PrMItIVe ... o e e, 3-39
SCI Primitive Batch StreamExamplettt iiiiiie e 3-44
Error Processing for Primitives i it it ii e 3-46
Command Procedures and Command Processorsccveurevnnnnnnns 3-46
Command Procedure Design. ...ttt it it e teaiarannnes 3-46
Command ProcessorDesignttt i it it i 3-51
Iinstalling Command Procedures and Command Processors 353
UsingNew Commandsciiiiii it et ittt arnenannnnns 3-54
Expert Mode Considerations i i i et 3-54
DeletingCommandsttt ittt e et e, 3-65
Command ProcessorinterfaceRoutines i, 3-56
Interface Routine Referencest iiiii it ianarnennn 3-56
Buffers for Interface Routines i it i e 3-57
Interface Routine Descriptionsttt ittt tianaennran 358
SClinterface Routinesttt i i i it et et e eneanas 358
Get TCA(SEGTCA) ..iii ittt ittt i it teiei e raetesssanaannennannes 3-58
Initialize System DataBase (SENEW) il e 3-58
Bid Task Routine (SEBIDT) oottt ittt sttt e e e e enens 359
Get Parameter(S$PARM) i e 3-62
Get Terminal Status (SESTAT)o ittt it et ittt et ennnnn 3-64
Set Synonym Value (SESETS)ciiiiiiiiii it it e it eaenens 3-64
GetSynonymValue(SSMAPS), 3-65
Search Name Correspondence Table (S$SNCT)ot 3-66
Split List Into Components(S$SPLT)civir ittt ieiarns 3-67
ReturnTimeand Date(S$TAD) ...ttt et 3-68
o IO (53 107 . T 3-69
Release TCA(SERTCA)ottt it it et et sttt er e aeaaraannsn 3-69
Create Message (SECMSG) ...ttt i ittt e e iiaaaeean 369
Terminate and Returnto SCI(SSTERM) i i, 372
Alternate Termination(SESTOP)t ittt 373
Local Display File Routinesottt i ie e 3-73
Open File (SSOPEN)ottt it i r e st e i einneens 3-74
Open File SpecifyingUseriD(S$OPNS)ttt iii it et i 374
Write toFile (SEWRIT)ot i i i i i s et et e arnnnens 375
Write End-of-Line to File(SSWEOL)t 3-75
Close File (SBCLOS) ... ii ittt it i ittt et s e st st ey 3-75
Local DisplayFileExamplecciiiiiiiiiiii it iii i enannnnns 3-76
String Utility Routinescoiiiiiiii i it i e 37
Convert ASClito Binary Integer (SSINT) ittt ieeens 377
Convert Binary Integerto ASCIH(S$IASC) 3-78
Compare Strings (SESCOM)o i i i i i i sttt s e 379
Copy Sting (SESCPY) . . .ot e et ..380
Arithmetic UtilityRoutines. i i i it e e 3-81
Add 32-Bitintegers (SSIADD) i i e e e 3-81
Subtract 32-Bit Integers(S$ISUB) i i i 3-82
Multiply 32-BitIntegers (SSIMUL) it i eie e 3-83
Divide 32-Bit Integers (SSIDIV) . .. oot i e e e e 3-84
SpoolerInterface Boutine(S$SPLR) it385
Operator Interface Routines i i 3-88

2270510-9701

Contents

Paragraph Title Page
3.10.6.1 Initialize OperatorInterface (OISBGN)o, 3-89
3.10.6.2 Create OperatorMessage (OI8COM). ittt ittt en e 3-89
3.10.6.3 Wait for Operator Response (OI8WAT)ottt ittt it i inens 3-90
3.10.6.4 End Operator Interface Subsystem Interface Session (OI$END) 3-90
3.10.7 Mailbox Subsystem Interface Routinest 391
3.10.7.1 Initialize Mailbox Interface (MBSINT)ttt i aens 3-91
3.10.7.2 SendMail (MBSSND).t i it i ittt e i e aiaenrnnn. 391
3.10.7.3 Receive Mail (MBSRCV) it i ittt ettt et e eannnns 392
3.10.7.4 Release Mailbox (MBSRLS)ttt it i e i e i eeeeen 3-92

4 — Writing an SVC Processor

4.1 Need foran SV ProCESSOr i it ittt ittt ittt ia e teatnaesnasnansnns 4-1
4.2 How to Write an SVC Processor ... iiiin ittt ittt e teteesanaaenans 41
421 SVC Call BIOCK ...ttt it i i ittt ettt et ta e et e enaanenaaas 4-1
422 SVC DefinitionTablesiiiiiiiiiii it i et i et iannnnn 4-1
423 SVCProcessorDetailscoiiiiiiiii it i i ettt e e 4-4
4.2.4 System Generation Requirements i i, ...46
5 — Writing a DSR

5.1 Lo (oo 11 T3 4T o P 5-1

5.2 Preparation i i it er et e e 5-1

5.3 O SUbSYStemM . ..o it i e e ci e 5-2
5.3.1 Data StruCtUres . . .o i e i i i et e e 5-2
5.3.2 ReqUESt FIOW it i i i i ittt tenennrasennnnnsannnns 5-3
5.3.3 DevicelnterruptDecoderottt it ittt et e 5-4
5.3.3.1 Single-Devicelnterrupt i i i i i it e e 5-4
5.3.3.2 Multiple-Device Interrupt i i i e 55
5.3.3.3 ExpansionChassisiInterruptc i il i ii e 57
5.3.3.4 Asynchronous Multiplexer Interrupt Decoder, 5-10
5.3.35 ReturnRoutine i i i i i ittt tarencannnnnnas 5-13
5.3.3.6 illegaiinterrupt Routine i i 513
5.4 Device Service ROUtines i e 5-13
5.4.1 DesignCriteria. i i i it e 5-14
5.4.2 DSRENtry POINtS ..o ot e e 5-16
5.4.2.1 Hardware Interrupt Entry Point.o i 5-17
5.4.2.2 Delayed Reentry Point i 519
5.4.2.3 Power-Up Initialization Entry Point i i i 5-19
54.2.4 Abort Entry Point 5-20
5.4.2.5 Time-OutEntry Point e 5-20
5.4.2.6 Initial Request Entry Point 5-20
5427 Priority SchedulerEntry Point i 5-20
5.4.3 Body of the DS Rottt e 5-20
544 BiddingaTask FromtheDSR............. o i e 5-21

5.45 Multiplexing Hidden RequestQueueo, 5-21

5.5 DSRSupport Routines i i 5-22

2270510-8701 Xi

Contents

Paragraph

5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8
559
5.5.10
5.5.11
56.5.12
56.5.13
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.4
5.7
5.7.1
7.2
5.7.21
5.7.2.2
5.7.23
5.7.2.4
5.7.2.5
5.7.2.6
5.7.3
5.74
5.7.5
5.7.6
5.7.6.1
5.7.6.2
5.7.7
5.7.8
5.7.9
5.8

5.9
5.10

6.1
6.2
6.2.1
6.2.2
6.3

xii

Title Page

Branch Table ProcessorRoutine.ccoiiiiiirniniien s 5-22
End-of-Record ProcessorRoutine ittt 5-24
BidTask Routinel it i ettt erenae e iannnns 5-24
Queue Event Character or Queue CharacterRoutine 5-25
Get Queued CharacterRoutineottt i i e e eeenns 5-26
GetEventCharacter ...ttt it i ittt e ettt 5-26
CharacterCheck Routinesttt tre st ananans 5-27
Map Out Current BufferRoutinec ittt inannen, 5-28

(€ T= 08 = 17 T P 5-28
Map In Buffer. i i e e e e e 5-29
Get 20-Bit TILINEAddresscovviinnn. i erere e 5-29
Transfer PDT InformationtoTaskMemory iiiiiiavnn.. 5-30
Report TILINEEror. i i i i it e i e saaesnannann 5-30
Asynchronous DSRStructure ittt i it ietaranennns 5-31
Asynchronous DSR DesignOverviewot iiciirnrnrnrncnrnnns 5-34
Terminal Service Routine (TSR)ccoi i i i it tetieennans 5-36
Interrupt Service Routine (ISR)ttt i 5-37
Hardware Controller Service Routine(HSR). 5-38
Asynchronous Data Structure Allocation.................o, 5-39
HSR Common Subroutinest PR 5-41
Power-Up Initializationc.cciiiireiiiiii i iiiiaieennnnnn e 5-42
Write Qutput SignalorFunction i e 5-43
HSTBIL Subroutine ...ttt i i e it ettt aeiennannnnn 5-43
HSTCR SUDIoUtiNg i i i i it e ittt e e rannraeananas 5-43
HSTCTHSubroutineciviennn. et ree e, 5-44
HSTRS Subroutineottt i i i i ittt cnenanens 5-44
HSTTB SUbrouting oottt ittt it iiaeeananeannnns 5-44
HSTUIL SUDIOUtINE . ..o v v ittt ittt et ittt ettt i et e e raraearannsas 5-44
Read InputSignalorFunction......... i, 5-44
Enable/Disable Status Change Notification 5-45
OutputaCharacterciiiiiii it i e s ittt et eannanns 5-46
Write Operational Parametersttt et 5-46
SetChannelSpeed(BaudRate).............ccoiiiiiiiiiii it 5-47
SetDataCharacterFormatttt it i 5-48
Read Operational Parameters and Information.................cciveunn... 5-48
Request Time Interval Notification o i i iiiiii i, 5-49
Controllerinterrupt Decodero ittt i iaiaaann 5-50
DSRiINstalialion i i i i i it et et e 5-51
Debugging Techniques ittt ittt catr e nneannn 5-52
DSREXAMPIEt i e et e e e et 5-52

INtrodUCHiON e i e e 6-1
AccountingData e e 6-1
Descriptionof AccumulatedData i i i i e 6-2
Data Format i 6-2
Implementation et 6-6
2270510-9701

Paragraph

6.3.1
6.3.2
6.3.3

7.1
7.2
7.21
722
7.23
7.24
7.2.5
73
7.3.1
7.3.2
733
7.34
7.3.5
7.4
7.5
76
7.6.1
7.6.2
7.6.3
76.4
7.6.5
7.6.6

8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.11
8.2.1.2
8.2.1.3
8.2.1.4
8.2.1.5
8.2.1.6
8.2.1.7
8.2.1.8
8.2.1.9
8.2.1.10

2270510-9701

Contents

Title Page
Account NuUmbers i i i et 6-7
System Generation Requirements ittt 6-7
Application Program Requirementst iiainnaeranennann 6-7

7 — File Security

Introduction................ @ et et tem e e a e 7-1
ACCESS GrOUPS .. ittt ittt ittt te e e atnnearasararassasacnsansnnsacsnns 71
SYSMGR AccessGroupMember ittt e 7-2
AccessGroup leader i i i i i e a e 7-2
AccessGroupMember......................... e et ceeeriaaaaes 7-2
Creation ACCESS GrOUP .. .viiiiiianinriascarasenensanneeensanarannnnn 72
Modifications to Access Groups and AccessRights 7-3
ACCESS RIGhESt i i i i i i i e i et te i e e 7-3
1070 11 go] I YooY 7-4
REad ACCESS .. ittt ii i i iie sttt ace et tansasaaraasaa ettt s 7-4
LT 1 G X =T 7-4
EXECULE ACCeSS . ..ottt ittt ittt ae et atseanacaanssnannaaannnns 7-4
Delete ACCESS i i ittt ittt enasasataccasarosasaasascnasansnnss 74
ExampleofaSecuredSystemccoivveininnnnnnnn A, 7-4
Important Points About Access Rights to SecuredFiles 7-7
o o To =T 0 T 0 =7 ¢ 7-8
110 Utility Operations that SpecifyaUserID i, 7-8
SeCUNtY BYpPass ittt i i it e e e e 79
Special Rename File SVC Option ittt iiiiiiiiiiiiiiaiarannnns 79
Open Routine SpecifyingUserID(S$OPNS)o, 7-10
No-Echo Option for SCIPromptResponse.c.ciiiiiiieninerannnnns 7-10
Read File Characteristics Option i il it it 7-10

8 — Analyzing System Problems

System InitializationProblems i i 8-1
ROMLoaderErors i e B
ProgramImage LoaderErmorsttt iiiierntntnnrannnsnnnans 8-2
System LoaderErrors et etasteteas e it 8-2

SystemCrash Problemst i i e st e it e 8-4
Organizationof the XANAL Listingttt it ie e, 8-6

Crash Codeiiiiiii ittt et et taeneeeraeneenranrarannenns 8-6
Executing Task ..ottt i i i et i i e et e e, 8-6
Executing TaskJSB i i i i ittt ten e aennaannn 86
Locationof Failure ittt i iiararaeraranannnn 86
Status Register i i i i i i e i ittt e e 8-6
CURMAP Addr i i i it et te s i rneaaernnnnanannns 8-6
SystemPatch Area i i i it it e e 8-8
Executing Workspace at TimeofDump i .. 88
Hardware Trap and Extended Operation (XOP)Vectors 838
ST oL o Eo LAY T] o - Ve =T 88

Contents

Paragraph

8.2.2
8.2.21
8222
8.2.3
8.2.4

9.1
9.1.1
9.1.2
9.1.3
9.14
9.1.5
9.1.6
9.1.6.1
9.1.6.2
9.2
9.2.1
9.22

o2
.2

9.3.1
9.3.2
9.4

10.1
10.2
103
10.4
10.5

1.1
11.2
11.3
114
11.5
11.6
11.7
11.8

xiv

Title Page
TaskStates and JSBS i i i i i i e e 88
TaskStatesot i i i i i ettt e 8-11
0 15 = 8 T 8-11
Analyzing System Crash DUMPS iiii ittt it i et e ittt caenanns 8-11
ForcingaSystemCrashttt i it i e et et iarnnnns 812
9 — Adding Error Messages
DNOS Message and Error Processingccvviiiiiiiiiiiiiiinnnenernnns 91
Internal Error Codesttt it ittt ettt et 9-1
Short EnglishMessages.ot iiii ittt it ittt e ettt s e enannans 9-2
Expanded ExplanationsOnline ittt i 9-3
Show Expanded Message(SEM)Utility 9-3
DisplayingMessagesttt i i i it et et e et e 9-3
Message Examples.ccoiiiiiiiiiii i i it i it et e e 9-4
ASSIgN LUNO EITOr i i i i i i et sttt et enennnnns 94
COBOL CompilerTermination.ciiiiiiininiiii e iniiinnrneenn. 95
Message Files i i i i it it ettt ettt 9-5
FormatoftheMessage TextFiles......... ... i it iiinnnnennn. 9-6
Format of the Expanded Error Message TextFiles 9-8
Message FileUtilities L . i e e 99
Message File Utility i i i i i i iaeanan 8-10
Expanded Message FileUtility i, 9-11
ErrorMessagelInterfacettt i i i i e et 9-11
10 — International Considerations
INtrodUCH ON . . . e e e 10-1
Country Code. ... o i e ettt a e 10-2
Information InterchangeCodes ittt i 10-3
KIF Collating SequencCesttt it i ie it ta e aneannnens 10-5
InternationalizingMessages it it it ettt 10-7
11 — Differences Between DX10 and DNOS
IntrodUCHiON e e et e e 111
General ENVITONmMENt it i ettt it e e et 11-1
Deviceand Filel/lOOperations ittt innraennns 11-4
SClUSserInterface ittt it it et earaane s 11-6
SCI Primitives and Interface Routines ittt ienennnn. 11-7
SV O SUPPOM .ottt i e e e e e 11-8
User-Written System Softwareot i i 11-11
System CoNSOle e et e 11-11

2270510-9701

Paragraph

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.8
12.9
12.10
12.10.1
12.10.2
12.11
12.12
12.12.1
12.12.1.1
12.12.1.2
12.12.2
12.12.3
12.124

Appendix

A

2270510-9701

Title

12 — Special Features of DNOS

Introduction
DNOS Job Architecture
Logical Names
SCI Features
Interprocess Communication (IPC)
Performance Monitoring
Performance Optimization

Alternate Ways to Structure SCI Sessions

Keyboard Bidding of Tasks

Miscellaneous ltems
System Configuration Utility
System Command Procedures

Begin Update Documentation (BUD)

End Update Documentation (EUD)
Spooler Subsystem

Spooler Directory

Spooler Banner Sheet File

Spooler Device Attributes

Spooler Temporary Files

Appendixes

Title

Keycap Cross-Reference s,

Types Of LUNOS ittt e e st e e ia e
BatChJobS . .ot it i it

SSSYSTEM DITECIOTY -+« e v eeeuneereannnaennneennaenns
MRINAINING USETIDS .-+« evveeneerenaerennaaeennnnns

SpoolerQueueFile, e .

.................................

SpoolerClean-upciiiiiin it e it a e

Contents

Page

Xv

Contents

illustrations
Figure Title Page
11 Physical Layout of DNOS ittt i ittt st ettt enens 1-2
1-2 990 TILINE Logical AddressSpaceExamplecciiiinnvnnnn.. 1-4
1-3 DNOS Task Structuret ittt ra e aneaeaennn 16
1-4 DNOS Queue StruCtUre ittt tr e e eeetnaaannenennns 1-7
1-5 DNOSSystemFlow e et e e e e en e, 1-10
21 Volume Information Format (2 Sheets) e 2-11
2-2 Partial Bit Mapiii i i i it it e ettt et e 2-15
2-3 Directory Structure ittt i i it i it e e 2-16
2-4 Directory File Structureciiiiiiiniiiiiiiiee i eerenrannnnnens 2-17
25 Directory Overhead Record Format et 2-18
26 FDRFormat(28heets)cuiiiiiiiiiii ittt it et eaa e, 219
2-7 ADRFoOrmat i i i i i i e et ittt 2-23
28 CDRFormatciiiiiiiiiiinanns et taarereeanaaeaaa, 2-26
29 KDRFOrmat ittt tra e ratanesnesansannanannannn 2-31
2-10 DumpofaDirectory File ittt ieinnnn 2-33
2-11 Sequential File Format(2Sheets)c. ittt eiiiiinannn. 2-35
2-12 Blank-Suppressed Recordc.vieeviinniinnnnnnnnneenennn. 2:38
2-13 KIFStructure i - . &
2-14 Sequential Record PlacementMethod 2-44
2-15 B-TreeBlock Format ittt ittt enrinnnnns 2-45
2-16 B-TreeExample(2Sheets) ittt iirernnenn 2-48
2-17 DataBlock Format ittt it sttt a et 2-50
31 SCIModesof Operationcciiiiiiiiiiiii it iinnresiiraenennn 32
3-2 SCl Access to Logical Namesand Synonyms cciiiinnninn.. 32
4-1 Formatof RPUDATModule iiiiiiiiiiiiinnnnnnns ciaaea. 43
4-2 User-Defined SV i i i i ettt et 45
5-1 Interrupt DecoderforSingleDevice ...t 5-5
5-2 Interrupt Decoder for Multiple Devices, 5-6
5-3 Expansion Chassis Interrupt Decoder(3Sheets) 5-7
54 Asynchronous Muitipiexer interrupt Decoder{(2Sheets) 511
55 Interrupt Decoder Return Routine ittt innenn. 5-13
58 Megalinterrupt Routine i 5-13
57 DSR S IUCIUIE .. .ottt i i i i e e ettt 5-14
5-8 Memory Map for DSRExXecutionc.iiiiiiiiiiiirinranrnnns 5-15
5-9 Hardware Interrupt Processingc.oiiiiiiiiiiii i i 5-17
5-10 Asynchronous DSRStructurettt it 5-33
5-11 Asynchronous DSRLogiCFlow it 5-35
512 Interrupt Processing Flow i i i it 5-38
5-13 Asynchronous Data StructureLinkages i i i i 5-40
5-14 DSR Listing Example{(16Sheets) i 5-53
7-1 Access Groups and Secured Filesccvounn.. R 75
7-2 Creating an ACCESS GrOUD ..o i ittt et ettt et e e 7-6
xvi 2270510-9701

Contents

Figure Title Page
8-1 System Loader Error i i i i it it e e 8-2
8-2 General Information BlOoCK i it i it et 8-7
83 Task Statesand JSB List(2Sheets)cciiiiiiiiiiii it 89
8-4 Bit Assignment forthe FlagWord i it 8-11
9-1 Functions of Message File Utilities 9-10
Tables
Table Title Page
21 Format Information for SupportedDiskscc. it iiiiiianant. 29
31 Special SCICharactersc.ciiiiiiiiiiiinenrernncarennsnennanas 35
3-2 SCI-Maintained SynonymMScitiiiiiiiriiracantararararannnns 310
3-3 Message Processing Synonymsciiiiirniesierearnrnnennnnenen 3-11
3-4 Valid Field Prompt TYpesc. ittt it ettee ittt eeaenne 312
35 SCl Primitive Notationc.c. it ittt et inenanaan. 3-17
36 SCIPHmItIVeS ... e e e e araeaaaa. 3-17
3-7 Command Privilege Levels ... i i it 3-19
3-8 Disallowed SVCs for SVC Primitiveciiiiiiiiiiiininnnnn.. 343
4-1 Request Definition Block(RDB)Formatt iiininnnnnnn. 4-2
4-2 RIBFOrmMatii it i i i ettt ensataraannsarananrananns 4-4
5-1 DSR/MSRENtry POINts i i i i i i ittt et etencenanens 5-16
5-2 Asynchroncus Device SUPPOrt it i i i e et 5-31
5-3 HSRObject Modulesttt aeiiinrarennnnaenennns 5-39
5-4 HSRBaudRate Codescciiiiiiiiiii e iirtneneataracarannnn 5-47
55 Controller TYpe Codes iii ittt ittt ittt et asesasnenennnens 5-49
8-1 System LoaderPhasesottt iitetearataaraenaaans 8-3
8-2 System Loader (Flashing)CrashCodes iiiiiiiinnnnnnnn. 8-3
8-3 XANAL COomMmMaNdsitiiititiit ittt te e teteensaranneasasarnnns 8-5
10-1 ASCII Codes for Special Language Charactersciuan.n 10-3
10-2 JiSCliCodes forJapaneseCharacterscciiiiiiiiiiinnnnnn. 10-4
10-3 Coliating Sequences for All Supported Languages cccv..... 10-6
1141 DX10/DNOS System FileNamesttt i e it e e e e 11-4
2270510-9701 xvii/xviii

DNOS System Overview

1.1 DNOS SYSTEM STRUCTURE

The Texas Instruments Distributed Network Operating System (DNOS) is a general-purpose oper-
ating system for the Texas Instruments Business Systems and Model 990 Computers. It allocates
system resources to the jobs executing on the computer system to provide maximum perfor-
mance based on information supplied by the user and on real-time performance analysis. In the
DNOS environment, a job is a set of one or more cooperating programs (tasks) and performs one
or more functions.

DNOS has two parts; one is memory resident and the other is disk resident. The memory-resident
portion, called the kernel, is loaded into memory during the initial program load (IPL). (The
memory-resident parts of the system are linked together when the operating system is generated.)
The kernel must reside in main memory before any processing can occur.

The kernei provides support for activating and terminating tasks and for processing supervisor
calls (SVCs) and interrupts. It also provides support for system tasks in the form of common
routines and functions callable from system tasks.

Disk-resident modules of the system are brought into main memory from disk storage as they are
needed to perform specific functions. This disk-resident part of DNOS consists of various system
tasks that perform primarily queue-serving functions.

Figure 1-1 shows a physical layout of DNOS. In the figure and elsewhere in this manual, the right
angle bracket (>) preceding a value indicates a hexadecimal value.

The kernel includes the following parts:

Transfer Vectors

A transfer vector is a pair of consecutive memory words. The first word contains the address
of a 16-word workspace register area. The second word contains the address of a subroutine
entry point. A transfer vector is used to perform a type of control transfer called a context
switch. An example of a transfer control switch is the transfer of control to an interrupt sub-
routine when an interrupt occurs. Business Systems and Model 990 Computers support 16
transfer vectors for interrupts. They also support 16 transfer vectors for extended operations
(XOPs). XOPs perform system-defined functions implemented by software.

Nucleus

The nucleus contains routines that support queuing, synchronization, linking to other rou-
tines, and managing the scheduler. The nucleus portion also includes the system table area.

2270510-9701 1-1

DNCS System Overview

MAIN MEMORY

> 00000
”
INTERRUPT TRANSFER VECTORS
XOP TRANSFER VECTORS
NUCLEUsS
DNOS
MEMORY ﬁ
SPACE
SYSTEM TABLES
SYSTEM COMPONENTS
SCHEDULER
SVC PROCESSORS
DSRs
SysTEM Joe JCA
MEMORY RESIDENT SYSTEM TASKS
MEMORY RESIDENT USER TASKS
BUFFER TABLE AREA
\ (DEVICE BUFFERS)
”
"y A
USER s ud USER o'
MEMORY ﬁ DyYNAMIC MEMORY
SPACE
MaAXiMUM

2279382

rrmimoml b muemand £ MAIAS
nySilar LaySul i winGS

1-2 2270510-9701

DNOS System Overview

System Tables
All the data structures needed to support system operations are located in the table areas.
These areas include segment management table areas, file management table areas, the
system job communication area, and the partial bit map for the system disk.

System Components
System components include the scheduler, Supervisor Call (SVC) processors, and the device

service routines (DSRs). You use these components temporarily, as segments mapped into
the logical memory space as required.

In addition to the kernel, DNOS memory space also contains the following:

System Tasks
The memory-resident system tasks are loaded into memory next to the system segments.
The memory-resident tasks include file management, disk management, and the task loader.

Memory-Resident User Tasks
All user-written, memory-resident tasks reside in the area next to the memory-resident sys-
tem task area.

Partial Bit Maps

The partiai bit maps for ali disks except the system disk reside beiow the memory resident
tasks.

Buffer Table Area

The buffer table area (BTA) is allocated immediately after the memory-resident user tasks.
This expandable area includes buffers used for handling input and output for devices.

The rest of memory is avaiiabie for user tasks, ianguage processors, and utiiities. The user

dynamic memory is allocated to tasks from the end of physical memory to allow the buffer area to
expand.

1.1.1 System Memory Mapping

The hardware map option provides three map files; each defines up to 64K (K equals 1024) bytes of
logical memory space. This space can be located anywhere in the 2048K-byte TILINE address
space and can be divided into as many as three segments.

Each map file provides three 16-bit bias registers (B1, B2, and B3) and three limit registers (L1, L2,
and L3). The limit registers contain values that define the lengths of the three segments. These
segments form the 64K bytes of logical address space. The bias registers contain values that
define the physical locations of the three segments. Refer to Figure 1-2 for a view of the logical
and TILINE address space with map option. The logical addresses in the three segments are
mapped into TILINE beet (32-byte) addresses.

2270510-9701 1-3

DNOS System Overview

TILINE ADDRESS SPACE

2048K BYTES 00000
LOGICAL ADDRESS SPACE
0000
SEGMENT 1
L1
SEGMENT 2
SEGMENT 3
L2
SEGMENT 3
L3
F800
TPCS
FCO00
ROM LOADER SEGMENT 2
FFFF ‘
LOCATED ON
CPU BoARD
FFCO00
TPCS
FFEOQO
FFFFF

2279383

Figure 1-2. 990 TILINE Logical Address Space Example

1-4 2270510-9701

DNOS System Overview

Usually, the operating system dedicates the three map files to software functions. The system
uses map 0 for operating system code and for facilitating special hardware features. Transfer vec-
tors for interrupts and XOPs are in map 0. This map is one means of addressing the TILINE periph-
eral control space and read-only memory (ROM) loader. The TILINE peripheral control space is a
range of TILINE addresses reserved for access to TILINE device controllers. After setting up a
map file, a user might also access TILINE peripheral control space using long-distance instruc-
tions. The ROM loader is a program that executes during IPL to load the operating system into
memory.

Both system tasks and user tasks use map 1. The long-distance instructions use map 2 to access
memory outside the segments currently mapped into the logical memory space.

1.1.2 Fundamental Structure of DNOS
The fundamental structure of DNOS is the job structure. A job is a collection of cooperating tasks
(programs) that you initiate or a program automatically initiates to perform one or more functions.

The task structure is within the job structure. Many of the DNOS system tasks are queue servers,
tasks dedicated to processing entries on queues. Queues and queue servers play an important
role in maintaining system flow. For storing system data, DNOS maintains a set of system files.

1.1.2.1 Job Structure. A job is the fundamental entity that receives logical resources. DNOS
maintains a job status block (JSB) for each job in the system. The JCA is a block of memory that
contains control information for a specific job including the job’s priority, name, ID, and related
information. The JSBs are created in the system table area as a linked list for the jobs in the
system.

The JSB provides a link to the job communication area (JCA), which contains a queue of the tasks
in the job, the semaphores defined for the job, and their job-local information. Semaphores pro-
vide synchronization of tasks within a job. The JCA for the job currently executing is kept:in
memory.

1.1.2.2 Tasks. A taskis aprogram that executes under control of the operating system. It con-
sists of an address space, a program counter, a workspace pointer, and a status register. At least
one task exists for each job.

Associated with each task is a task status block (TSB), which is a block of memory containing
information about the task. The TSBs within each job are on a task queue located in a JCA. Each
TSB can be placed on the active queue, the waiting-on-memory (WOM) queue, or the waiting-for-
table-area queue, according to the priority order within the job.

Figure 1-3 shows the DNOS task structure.

2270510-9701 1-5

DNOS System Overview

SYSTEM TABLE AREA JCA
QUEUE ANCHOR I—_' TSB Ll TSB TSB
. JSB
FOR JOBS
JCA
JsSB » TSB
I
|
i JCA
JSB
L1 s TsB | TsB
2279384

Figure 1-3. DNOS Task Structure

1.1.2.3 Queue Servers. Information queues and queue servers are important concepts in
DNOS. A queue is a first-in, first-out list of data to be processed. In DNOS, each queue consists of
a queue anchor and the queued blocks of data in memory. The queue anchors are located in the
memory-resident nucleus and in the JCAs. Each queue anchor contains the address of the newest
and the oldest queue entries. Each data item or block is linked to the next data item or block in the

queue.

A queue server is a task that processes its associated queue. Placing an entry in the queue acti-
vates the queue server. Operating as a system task under DNOS, the queue server queues an entry
and then processes it. The queue server continues to queue and process queue entries until the
queue is empty, at which time the server suspends itself or terminates.

Figure 1-4 shows the DNOS queue structure.
1.1.2.4 System Files. Various functions of DNOS use system directories and files. Some are
required if you choose certain options; otherwise, you can remove them. Also, other software sys-
tems and the languages used with DNOS place S$ files on the system disk. Remove these only if
you are sure your environment does not need them.

The system disk is the disk from which IPL is done. It is known by the device name set during sys-

tem generation. For example, if IPL is done from DS04, the file .S$CMDS is the same as
DS04.S$CMDS.

1-6 2270510-9701

DNOS System Overview

QUEUE ANCHOR QUEUE ENTRIES
NEWEST ENTRY PROCESSOR
> DATA
OLDEST ENTRY r
QUEUE LINK
| PROCESSOR
DATA
QUEUE LINK
PROCESSOR
—¥ DATA
QUEUE LINK
PROCESSOR
' DATA
»
0000
2284927
Figure 1-4. DNOS Queue Structure
DNOS functions use the following directories:
Directories Description
.S$CDT Files used by the system to process keyboard bids at devices.
.S$CMDS Command procedures provided with DNOS to access the utilities

using a System Command Interpreter (SCI) environment.

.S$EXPMSG Key indexed files (KIFs) of expanded error and status messages.
If you remove this directory (your option), you cannot use the
question mark (?) key to display details on the screen when a
message appears.

.S$MSG Relative record files of basic error and status messages. If you
remove this directory (your option), all messages appear in abbre-
viated form, as in the following:

SVC-INTERNAL CODE > 0027 .PRINT.OUT.

2270510-9701 1-7

DNOGS Sysiem Oveiview

.S$SDTQUE Files of spooler data, one for each generated system. Do not
delete these uniess you deleted the generated sysiem or you
need to recreate one of the files.

.S8SGUS Files created by system generation. You can delete subdirecto-
ries for systems no longer in use, but you should keep those for
systems in use. For further information about these files and
directories, refer to the DNOS System Generation Reference

Manual.

.S$SYSLIB Overlay management for automatic overlay loading.

.S$SYSTEM Special systems programming command procedures and the
software configuration history file. Section 12 describes these
procedures.

.S$USER Directory with subdirectories for each user ID defined for the

system. Each subdirectory contains user synonyms and logical
names; you must not delete any of these subdirectories. The
SYSTEM and SYSMGR user IDs are created during IPL.
.SCI990 Linkable object for the SCl interface (S$) routines.
DNOS functions use the following files:
Files Description

.S$ACT1, .S$ACT2 Accounting log files. You need these if the accounting option is
enabled. You cannot modify the file currently in use by the

system.

S$CLF Capabilities list file used by SCI. Used in conjunction with the
S$USER directory.

.S$CRASH Crash file to which a system crash can be written.

SEDIAG File used by online diagnostics when checking the state of the
disk.

.SS$IPL System loader.

.S$ISBTCH Initial batch stream executed during the initialization of the sys-

tem after an IPL.

SS$ISLIST Listing file for .S$ISBTCH. You can delete this file if you do not
need the listing.

.SSLANG Languages program file.

1-8 2270510-9701

DNOS System Overview

.S$LOG1,.S8LOG2 System log files used to record error and status information
about the active system. You cannot modify the file currently in

use by the system.

S$MVI File used by the Modify Volume Information (MVI) processor to
record changes to the disk.
.S$PWCS Image file for performance tools microcode. This file is present if

the DNOS performance package is installed.

.S$ROLLD.S$ROLLA System roli file used for swapping segments from memory.

.S$SCA File of information about users that is used by the log-on task
and SCI.

.S$SECURE Program file containing support programs for file security.

.S$SHARED Shared program file, used for sharable procedures and special
tasks provided by the system. This program file reserves task IDs
and procedure IDs >00 through >2F for software provided by
Texas Instruments. All other IDs are intended for users.

.S$SHIP Kernel program file for the system shipped to the users. You can
delete this file if you use a different system as the standard
system.

.SSUTIL System utilities program file.

1.2 CHANNELS FOR DNOS FUNCTIONS

DNOS functions use the following channels. Each channel is served by an owner task in the
S$UTIL program file.

2270510-9701

Files Description
.S$ACCCHN Channel that processes accounting file entries.
.S$DSTCHN Channel used by the spooler device scheduler.
SSMAIL Channel used for the Create Message (CM) function and other
SCI message functions.
.S$OPER Channel used for system operator functions.
.S$SPOOL Channel used by the spooler.
.S$XBJ Channel used for processing the Execute Job (XJ) and Execute

Batch Job (XBJ) commands.

1-9

DNOS System Overview

1.3 SYSTEMFLOW

The following paragraphs describe how the operating system responds to requests for service.
Figure 1-5shows the flow of control and information in DNOS.

< ERROR PATH >
HALT-LOAD
SEQUENCE ONLY
PROGRAMMER
ANEL.)
FORCED ERROR
- DNOS CONDITION ERROR
A ROOTINE | | ERfoR IN DNOS,
LOADS KERNEL
INITIAL AND MEMORY HARDWARE ERROR
PROGRAM |- — —{ RESIDENT TASKS,
LOAD INSTALLS DISK
VOLUMES, ETC.
SYSTEM
k HALT
SETS UP SYSTEM
SYSTEM LOG _AND ACCOUNTING,
RESTART — ——] BIDS REQUIRE
TASK SYSTEM TASKS,
ETC.
Q_—_’
SERVE A
REQUEST OF
THE FUNCTION-
ING SYSTEM
f ¢ v +
EXECUTE PROCESS PROCESS OPERATING FOR MEMORY
TASK sVC HARDWARE SYSTEM MANAGEMENT,
CODE REQUEST INTERRUPT SUPPORT —— =1 TIMING,
EEEFORMANCE ,

EXPIRED YES

2279386

Figure 1-5. DNOS System Flow

1-10 2270510-9701

DNOS System Overview

1.3.1 Initial Program Load (IPL)

System operation begins with IPL. The IPL program is loaded into main memory and performs
housekeeping functions (such as determining the size of physical memory and initializing physi-
cal memory). The IPL program then relocates into upper memory and reads the kernel into lower
memory. Next, the IPL program performs a variety of system initialization functions. The operating
system is then activated.

1.3.2 System ldle State

DNOS enters the idle state immediately after IPL and when no programs or users require system
services. However, the logical structure of the system changes dynamically when tasks are exe-
cuted under control of the operating system.

1.3.3 Task Activation
Bidding a task is the process of preparing a task for execution. This process involves building and
initializing the necessary data structures and activating the task. If the task procedural segments
are already in memory, the system checks to see that the task is not being killed and that its job is
not terminating. If these conditions are met, the task is placed on the active queue. Otherwise,
task activation aborts.

If the task procedural segments are not in memory, the task is put on the waiting-on-memory
(WOM) queue to be processed by-the task loader. After the task is loaded into memory, the checks
described for tasks already in memory are performed. Either the task is placed on the active queue
or task activation aborts, as appropriate. '

1.3.4 Task Scheduling

The task scheduler places tasks into execution. First it selects a task to execute; then, it instructs
the central processing unit (CPU) to begin executing the task. The task executes until it releases
control of the CPU. Then, the scheduler selects the next task for execution.

Each JCA contains a queue of TSBs for tasks ready to execute in priority order. Each JSB carries
the priority of the highest-priority task on its active queue; the queue of active JSBs is ordered by
this priority.

The scheduler selects the highest-priority active task for execution. When a task reaches the end
of its allotted execution time, its TSB goes back to the JCA active queue if the task is to remain
active; the task remains unqueued if it is to be suspended. When a task suspends, the scheduler
might need to change the priority of the highest active task in the JSB and reorder the JSB on the
JSB queue. -

1.3.5 Time Slicing

Time slicing is the technique of executing each task in turn for a specified period of time. The
clock interrupt processor controls timing. The clock interrupt routine counts the number of clock
cycles during task execution. When the count reaches a specified number, the routine
reschedules the task. Each clock tick is either 8.33 milliseconds (for 60-Hertz line frequency) or 10
milliseconds (for 50-Hertz line frequency).

1.3.6 XOP Processing

When the scheduler places a user task into execution, the task controls the CPU until its time
slice ends. The only exceptions are when an external interrupt occurs or a task issues an XOP
instruction. The I/O subsystem activates immediately in response to a device interrupt. A context
switch occurs when an XOP instruction is issued.

2270510-9701 111

DNOS System Qverview

When an XOP 15 is issued, control passes via the XOP transfer vector table to the SVC decoding
routine; this routine is the XOP processor for XOP 5. it determines which SVC is desired by
decoding the SVC code in the call block and then relinquishes control to the SVC processor.

If a queue server processes the request, the SVC preprocessor buffers the call block into the sys-
tem table area and queues the buffered call block onto the proper queue. This activates the asso-
ciated queue server task and suspends the task that issued the SVC. If system code that is not a
queue server processes the request, the SVC is completed and control returns immediately to the
task that issued the SVC.

1.3.7 Execution Priorities

The scheduling of DNOS tasks is based on run-time priority. Run-time priorities have a range of 0
(high) through 255 (low). To calculate a run-time priority when a task is bid, DNOS must first look at
the installation priority of the task. An installation priority is assigned to a task when it is installed
in a program file. When assigning run-time priorities, DNOS differentiates between tasks that are
either priority 0 or real-time tasks and those that are not.

The run-time priority of real-time tasks and priority 0 tasks is identical to their installation
priorities.

The run-time priority of all other tasks is influenced by the following three factors:
] The installation priority of the task (1, 2, 3, 4)
e The mode of the task (whether foreground or background)
e The priority of the job under which the task is running

Be careful to note that the installation priority given a task (1, 2, 3, 4) that is not a priority 0 or real-
time task is relative. Such tasks normalily have run-time priorities between 128 and 255.

The run-time priority of a real-time or priority 0 task is the same as its installed priority. Therefore,
a system task with an installed priority of 0 has a run-time priority of 0. A real-time task with an
installed priority of 56 has a run-time priority of 56.

System tasks usualiy have an installed priority of 0. Real-time tasks have an installed priority
range between 1 (high) and 127 (low). Therefore, run-time priorities are also in the same range.

The run-time priority of all other tasks is handled in a different manner. Tasks in this group usually

pick up a run-time priority between 128 and 255 (refer to the paragraph describing dynamic modifi-
cation of run-time parameters for exceptions).

112 2270510-9701

DNOS System Overview

First, DNOS looks at the installed priority (1, 2, 3, or 4) of the job in which the task is being bid and
whether the task is executing in foreground or background. When determining which instaliation
priority to give a task, you should normally use the following scheme:

. Assign priority 1 to foreground tasks that are heavily interactive.
e Assign priority 2 to foreground tasks that are compute-bound.

e Assign priority 3 to only those tasks that always execute in background, as priority 3 is
the lowest of the four priority classes.

e Assign priority 4 to tasks that alternate between an I/O bound state and a compute-
bound state. This priority level is proper for most tasks in a computing environment. The
run-time priority of a priority 4 task running in foreground is lower than that of a priority 1
running in foreground task but greater than that of a priority 2 task running in fore-
ground.

Second, DNOS looks at whether the task is executed in foreground or background. Any task,
regardless of its installed priority, is treated as a priority 3 task if you bid it in background mode.

Third, DNOS is heavily influenced by the priority of the job in which the task is bid (range: 0 (high)
through 31 (low)). A low-priority task in a high-priority job often has a higher run-time priority than
high-priority tasks in a low-priority job. For example, a background task in a priority 2 job is
assigned a higher run-time priority than a foreground task in a priority 29 job.

1.3.8 Dynamic Modification of Run-Time Parameters

DNOS allows the dynamic modification of run-time priorities. This is called the priority modifica-
tion option. If you disable this option, the run-time priority of a task will not change during its exe-
cution unless the job priority under which the task is running is explicitly changed. If you enable
this option, the run-time priority of a foreground task varies during its execution.

To enable this option, use the Modify Scheduler/Swap Parameters (MSP) SCl command to modify
dynamic priority range parameters. There is a one parameter for each of the four installed task
priorities (1, 2, 3, or 4). Unless you are very familiar with dynamic priority range parameters, you
should use the following values when you modify the parameters: 4, 4, 0, 8. These values yield the
maximum system performance for most environments. To disable this option, set the parameters
back to their defauit vaiues (0, 0, 0, 0).

If you accept the defaults (0, 0, 0, 0) for the dynamic priority range parameters (refer to the Modify/
Swap Parameters SCI command), tasks in this group pick up a run-time priority between 128 and
255. Modifications to the parameters, however, can yield a run-time priority higher than 128.

To understand this process, consider the following. As a task executes, an indicator shows
whether the task is I/O-bound or compute-bound. The indicator also shows the number of suspen-
sions over a fixed time period (the previous .5 seconds, for example), recomputing the number at
the end of each task execution period. DNOS uses this indicator to modify the run-time priority of
tasks (raising priority for I/O-bound tasks and lowering it for compute-bound tasks).

2270510-9701 1-13

DNOS System Overview

The degree to which a run-time priority can vary for tasks depends on the value of the dynamic

priority range for that priority class. For example, if you use the MSP command to assign dynamic
priority range parameters of 4, 4, 0, and 8, the following events occur:

e The run-time priority of priority 1 and priority 2 tasks would vary by plus 4 (/O bound
tasks) or minus 4 (compute-bound tasks).

e The run-time priority of priority 3 would be unaffected.
¢ The run-time priority of priority 4 tasks would vary by plus 8 or minus 8.

Test results show that modifying dynamic priority parameters can improve the mean response
time of DNOS in environments where system activity is very heterogeneous. if an environment
tends to be homogeneous (similar activity going on at each station), modification of dynamic
priority parameters can cause inconsistent system performance between tasks.

For background (or batch) tasks, an aging factor further modifies the run-time priority. The priority
of an older task is raised slightly more than the priority of a newer task. To raise the priority, the
power of 4 that represents the execution time in seconds is used. That is, a task that has executed
for 4 seconds is raised 1 priority level; one that has executed for 16 seconds is raised 2 levels, and
so on. At the end of 18 hours of execution, the priority of a task is raised 8 levels.

1.3.9 Task Termination
A task terminates when one of the following occurs:

. The task issues a termination SVC.
) Another task issues a Kill Task SVC for this task.
* The task aborts by executing an illegal operation.

if the task specifies end action (execution after abnormal termination), execution resumes at the
specified end-action address for a certain length of time. Otherwise, the task releases its
resources and goes to the terminate task queue, where the termination processor task
deallocates it.

1.2.10 Clock Interrupt Processor

The clock interrupt processor gathers performance statistics, keeps track of time, and decides
when a system time unit has expired for the executing task. The time and date appear in the fol-
lowing form: year, day (Julian), hour, minute, second, and tick (8.33-millisecond unit). A 32-bit tick
counter also keeps track of time in clock ticks. The time, date, and 32-bit tick counter are updated
on each clock tick.

1.3.11 Internal interrupt Processor

Instruction execution errors (for example, illegal opcodes and privileged instructions) cause inter-
nal interrupts (interrupt level 2). The internal interrupt processor handles these interrupts. If an
interrupt occurs in task code, the processor kills the task or puts it into its end-action code; con-
trol returns to the scheduler. However, if the error occurs in operating system code, in interrupt
processing code, or while scheduling is inhibited, the processor calls the system crash routine.

1-14 2270510-9701

DNQS System Overview

1.3.12 System Crash Routine

When a module detects an internal operating system error, it branches to the system crash routine
and passes a crash code that indicates the type of error. The crash routine halts the system and
displays the crash code on the programmer panel of the computer. Pressing HALT and RUN on the
programmer panel saves the state of the system at the time of the crash and writes an image of
memory to the crash file on disk. You can then analyze the crash.

1.4 IPL AND SYSTEM LOADERS

IPL is the process of loading the operating system into memory. Before you can enter any system
command into the system for execution, the IPL procedure must bring DNOS into memory. To per-
form an IPL, press in sequence HALT and LOAD on the front panel of the computer. For a Busi-
ness System 300, turn the power off and on to perform an IPL.

When an IPL procedure completes, the system restart task is bid. The task performs the following
initialization activities:

e Defining channels needed by DNOS
e Assigning system-required global logical names
e (Creating log and accounting files
. Deleting temporary files
e Creating the SYSTEM user ID
The task also performs initialization activities that enable DNOS to offer the security option:
e ltcreates the SYSMGR user ID.

o It creates the SYSMGR access group. (The SYSMGR access group is created only when
the S$CLF file needs to be created.)

The IPL process checks to see that the crash file on the system disk is large enough to contain the
entire system memory image. if the file is not large enough, the IPL process attempts to delete the
existing .S$CRASH file and creates a larger one. If the IPL process encounters an error when it
tries to delete the file, the first person to log on the system is shown a message that says that the
crash file is either too small or it does not exist.

The file .S$ISBTCH serves as a batch stream for adding unique system procedures that are per-
formed immediately following IPL. For example, you can include procedures to assign global logi-
cal names, initialize certain functions, monitor devices, or delete certain directories. Executing
.S$ISBTCH also invokes the SCI command procedure M$00. This batch stream executes in a job
named SYSSINT. For this job, the synonym $$Ul is not defined.

2270510-9701 1-15

DNOS System Oveiview

The following paragraphs describe what happens between pressing the LOAD switch and
initiating a job from a terminal.

Three loaders are involved in an IPL procedure: the ROM loader, the program image loader, and
the system loader. The ROM loader brings the program image loader into memory from the system
disk. The program image loader locates the system loader on the disk and loads the system
loader. The system loader loads the system image and transfers control to the system. The
following paragraphs discuss each loader in detail.

1.4.1 ROM Loader

The ROM loader (bootstrap loader) resides in TILINE peripheral control space starting at location
> FCO00. You can program this loader to ioad from devices accessible on the TILINE bus and on the
communications register unit (CRU). The IPL is performed from a system disk (a TILINE device).
(This manual does not describe using the ROM loader for other devices.)

Location >80 contains a negative value that indicates the TILINE device to be used as the load
device. Location > 82 contains the TILINE address of the load device. This address specifies the
location of the TILINE peripheral control space for loading the TILINE device commands. The
default is > F800. To load the system on a 990/10 or 990/12 computer (using a disk controller) at an
address other than > F800, you must change the contents at location > 82.

Refer to the ROM Loader User’s Guide for a description of how to use the ROM loader and how to
modify the value for the default load device.

1.4.2 Program Image Loader

The program image loader resides on track 1 of every DNOS-formatted disk that was specified as a
system disk. It can load any stand-alone program from an image file or object file on disk into
memory. The following criteria determine the program to be loaded:

. If the diagnostic flag in the volume information is nonzero, the diagnostic task is loaded
and the flag is reset to zero. Section 2 describes the volume information in detail.

e If no diagnostic is specified, the loader checks to see if the file pathname of either a
primary or a secondary system loader is specified. If so, the image loader loads the sys-
tem loader indicated by the flag, as follows:

G — Load primary
1 — Load secondary
-1 — Load secondary

If the flag equals — 1, the image loader resets the flag to 0.

. If no system loader is specified, the image loader loads the system image indicated by
the image flag, which is used in the same manner as the system loader flag.

The program image loader normally loads a program image starting at memory location > A0. This

default load address is stored in the second word of the loader. You can change it by using the
Viodify AUSGiute DisK (MAD) Coiiiiaind.

1-16 22705109701

DNOS System Overview

1.4.3 System Loader

The system loader resides on the system disk in an image file called S$IPL. The program image
loader loads it into memory. The system loader executes with interrupts masked to level 2, inhibit-
ing interrupts from devices. Once loaded into memory, the loader initializes physical memory and .
determines the actual size of physical memory in the computer.

As the loader finishes a particular phase of the load process, it displays the phase on the program-
mer panel indicators, starting at the leftmost indicator.

The following lists in sequential order the phases of the load process:

Phase
Number Description
1 Loader relocation complete
2 Successful opening of kernei program file
3 Successful loading of root, verification of system version, and loading
of writable control source (WCS)
4 Successful loading of special table areas
5 Successful initialization of system overlay table and crash file
6 Successful loading of JCA segments
7 Successful loading of DSRs and scheduler
8 Successful loading of memory-resident system tasks
9 Successful loading of user memory-resident tasks

The loader first relocates itself into high-order physical memory. It then opens the program file
that contains the kernel and loads the WCS (when applicable). Next, the loader loads the system
root and initializes the crash file. If a crash occurs during the remainder of the load operation, the
crash file contains useful information about the crash. Special table areas are loaded next,
followed by the system job JCA, DSRs, the scheduler, and memory-resident system tasks.

Next, the loader performs some special initiailization, such as the following:

e Determining which of the disk drives defined is the disk from which the system was
loaded and marking it as the system disk

L Installing the system disk

] Creating file descriptor blocks (FDBs) for the system files used during the load process

2270510-9701 117

DNOS System Overview

The next step in the load process is to install all online disk volumes. The final phase of the loader
execution is aiiocation of the bufier tabie area (iocated in user memory, immediately foliowing the
memory-resident part of the operating system and all memory-resident tasks) and initialization of
the system anchors for the free user memory of the buffer table area. The memory containing the
loader is considered part of user memory. After all initialization is performed, the loader transfers
control to the power-up interrupt processor of the operating system.

1.5 DNOS SUBSYSTEMS

DNOS includes several subsystems that implement capabilities including job management, seg-
ment management, name management, and interprocess communication (IPC). User commands
interpreted by SCI can access these capabilities. User programs access these capabilities by
executing SVCs. The following paragraphs describe these subsystems and the relevant
commands.

1.5.1 Job Management
A job is an entity that performs a user-defined function within the system. It can include one or
more tasks, and it can be either interactive or batch.

An interactive job is initiated when a user logs on at a terminal. You can also initiate an interactive
job by entering an Execute Job (XJ) command. The terminal specified in response to the STATION
ID prompt is the terminal used for interaction.

A batch job consists of one or more tasks that do not require interaction with a terminal and that
execute in the background. The commands that direct the execution of the task or tasks of the job
are supplied in afile. To initiate a batch job, enter an Execute Batch Job (XBJ) command.

Job management is the subsystem of DNOS that performs the system functions required to initi-
ate, execute, and terminate jobs. Management of resource allocation by jobs provides a level of
protection between jobs. Once a job is initiated, execution of the tasks of a job is independent of
the execution of tasks within other jobs.

1.5.1.1 Supervisor Call (SVC). The Job Management Request SVC is the interface of a task with
the job management subsystem. This SVC performs the foliowing job management operations:

o Create Job

Halt Job

o Resume Job

. Modify Job Priority
° Map Job Name

. Kill Job

] Get Job Information

118 2270510-9701

DNOS System Overview

A task requests creation of a job by requesting a Create Job operation. If the request is valid, the
job is created with a unique job ID. This ID is used throughout the system as the identifier of the
new job. The job is set into execution if the job limit is not exceeded. If the limit is exceeded, the
job is queued, waiting for an executing job to terminate.

Various control capabilities are available for interpreting and modifying the status of jobs. The
use of these capabilities depends on the requester’s ability to prove ownership (by user ID) of the
job. The types of requests available include those to show job status, kill the job, halt the job,
resume the job, and modify job priority.

1.5.1.2 SCI Commands. The following commands are available through SCI to execute jobs
and to perform various operations on jobs currently executing under the user’s ID:

Execute Batch Job (XBJ)
The XBJ command creates a job having batch SCI as its initial task.

Execute Job (XJ)
The XJ command creates an interactive job with operating parameters differing from those of
the creating job.

Show Job Status (SJS)
The SJS command displays the status of any jobs currently executing under the user's 1D.

Halt Job (HJ)
The HJ command suspends a job currently executing under the user’s ID.

Kill Job (KJ)
The KJ command forces termination of a job currently executing under the user’s ID.

Resume Job (RJ)
The RJ command resumes execution of a job that has been previously halted.

Modify Job Priority (MJP)
The MJP command modifies the priority of a job while it is executing.

List Jobs (LJ)
The LJ command allows you to list the current status of a particular job or all jobs on the
system.

1.5.2 Segment Management

The segment management feature enables tasks to dynamically change the current segment set
mapped by the task. This feature also enables a task to guarantee access to a segment until it is
no longer needed and enables a task to write segments to disk.

Segmentation allows more than three segments of a task to be in memory. The program can map
three segments in the program address space simultaneously. This feature allows faster execu-
tion speed than overlay loading. If enough memory is available, it also enables a program to
exceed the 64K-byte address boundary.

2270510-9701 119

DNOS Sysiem Overview

The two types of segments are memory-based and disk-based. The Create Segment operation of
the Segment Management SVC creates a memory-based segment at run time. The newiy creaied
segment is mapped into one of three segments by specifying the segment position or by replacing
an existing spare one using the segment run-time ID. Segments not in a task address space are
released from memory if the segment reserve count is 0. The reserve count keeps track of the cur-
rent usage of the segment.

The Reserve Segment operation of the Segment Management SVC increments the reserve count.
For a task to retain access to segments not in the task address space, the user must request a
Reserve Segment operation. Such segments are reserved until the user requests the Release
Segment operation of the SVC.

A disk-based segment is either a segment instalied in a program fiie or a physical record of a reia-
tive record file. To install a segment, use the Install Task (IT), Install Procedure (iP), or Install
Program Segment (IPS) command. One, two, or three segments can be brought into memory when
the task is loaded for execution. This is accomplished by the IT command with specification of
attached procedures. The Change Segment operation of the Segment Management SVC loads
installed segments into memory while the program is executing. The Force Write Segment opera-
tion can write the disk-based segments that are updateable back to their home file position.

You can place an unmapped segment physically in memory by requesting a Load Segment opera-

tion. The Unload Segment operation releases the segment from memory. The Set Exclusive Use of

Segment operation prevents other tasks from accessing an unmapped segment. The Reset Exclu-
sive Use of Segment operation releases the segment from exclusive use. Like a Reserve Segment

Viwoe

operation, the Exclusive Use of Segment operation allows a task to retain access to a segment not
in the task address space.

The Segment Management SVC supports the following operations:
] Change Segment
e Create Segment
. Reserve Segment
. Release Segment
e Check Segment Status
] Force Write Segment
. Set/Reset Release/Modifiable Flag
i Load Segment
. Unload Segment
* Set Exclusive Use of Segment

. Reset Exclusive Use of Segment

1-20 2270510-9701

DNOS System Overview

1.5.3 Name Management
The following paragraphs introduce the concept of logical names and describe their uses with
files.

1.5.3.1 Logical Names. A logical name is a system variable from one to eight characters long,
defined by the user. The value of the logical name is a pathname or device name. The parameters
of the pathname supply related information. A logical name provides a name by which a resource
is known to the job. The user can reference the logical name instead of the pathname or device
name. A logical name also provides a mechanism for passing parameters associated with the
resource.

A logical name may be global or job local in scope. Any user can assign a global logical name that
is available to all system users. In contrast, a job-local logical name is available only to the
specific job for which it is defined.

Logical names permit three extensions to the standard file types: job temporary files, logically
concatenated files, and multivolume files. A logically concatenated file is a group of files known
collectively by a single logical name. A multivolume file can exist on one or more disk volumes.

1.5.3.2 Job Temporary Files. Job temporary files are used only within the scope of a job. These
temporary files are local to the job that is active when the files are created; they are deleted along
with the job. Any task within the job can access a job temporary file.

To create a job temporary file, specify the parameters for the file on a Create Logical Name opera-
tion of the Name Management SVC; then, use the Assign LUNO operation of the I/O Operations
SVC to assign a LUNO to the logical name, automatically creating the file.

Access to the file is by logical name. You can use a job temporary file to accumulate output data
from multiple tasks or to pass data from one task to another.

The mechanism used to keep a job temporary file from being deleted gives the file the appearance
of always having a LUNO assigned. For this reason, operations that require no LUNOs to be
assigned to the file (that is, DF, MFN, or XE with exclusive use) will not succeed. A volume that has
a job temporary file currently in use cannot be unioaded until the file has been deleted.

Job temporary files are implicitly deleted when the job terminates. They can also be deleted by
releasing the logical name used to access the file. In the event of a system crash, temporary files
are deleted at the next IPL.

1.5.3.3 File Concatenation. You can logically concatenate sequential and relative record files
by setting the values of a logical name to the pathnames of a set of files. Logical concatenation
allows access to the set of files in sequence without physically concatenating the files. When
required, you can physically concatenate the files via the Copy/Concatenate (CC) SCl command. A

“multifile set is a set of KIFs whose pathnames are the values of a logical name. The files in the set
are associated in a nonreversible manner. Individual components of concatenated and multifile
sets can be on separate disks.

2270510-9701 1-21

DNOS System Overview

Several restrictions apply to the concatenation of files:
e The files must be of the same type.

. The files cannot be special use files such as directories, program files, KIFs, or image
files.

. Relative record files to be concatenated must have the same logical record size.
e A concatenation of files cannot contain blocked and unblocked records.

e You must release any LUNO assigned to a file before concatenating the file.

e You cannot concatenate a file with itself.

o You cannot use a logical name at one site to concatenate files at another site.

Special rules apply to combining KIFs in a multifile set. At the first definition of the set, the follow-
ing rules apply:

o All but the first file must be empty.

J No file can be a member of an existing multifile set.

. All files must have the same physical record size and the same key definitions.
In subsequent definitions of these sets, the following rules apply:

° The same files as in the first definition must be associated in the same order.

e You cannot omit any of the files that were in the original set.

e You can add one empty file at the end but not at any other position.
You can access a KIF of a multifile set only as an unblocked file.
A multifile set of KIFs permits a larger KIF than one disk can store. When a KIF can no longer
expand because of insufficient space on the disk, you can create a new file on another disk. By
using a logical name, you can use the two files as one. The second file is, in effect, an extension of
the first. if the first file contains 5000 physical records and physicai record 5001 is required, the

first physical record of the second file, record 0, is used.

The following lists the file utility operations of the 1/0 Operations SVC that apply to concatenated
and multivolume sets:

. Assign LUNO
. Release LUNO

] Verify Pathname

1-22 ' 2270510-9701

DNOS System Overview

The Assign Logical Name (ALN) SCI command associates files collectively with a logical name.
Actual logical concatenation or creation of a multifile set occurs when you assign a LUNO to the
logical name. You can access a concatenated file only for the duration of the logical name. You
can specify files by pathname, synonym, logical name, or a logical name and pathname combina-
tion. However, all forms must resolve to valid pathnames. All files in the concatenation or multifile
set must be precreated and online when you use the logical name.

The last file in a concatenation set can be expandable. All other files become nonexpandable until
the logical name is released or the job terminates.

When a single end-of-file (EOF) mark appears at the end-of-medium (EOM), the EOF is masked.
This allows you to access concatenated files logically as a single file without receiving intermedi-
ate EOF marks. Note that any intermediate EOF mark not at the EOM is always returned. If you
encounter two EOF marks at the EOM, a single EOF is returned.

Several users can access the same concatenated or mulitifile set if the access privileges permit.
Two concatenated files are identical when they consist of the same pathnames in the same order.
An error occurs if any of the precreated files of a concatenated file are being accessed indepen-
dently. This maintains file integrity. To delete a concatenated file, you must delete the individual
files.

To back up individual components of a concatenated file or a multifile set, use the standard direc-
tory utiiities. You cannot back them up by using the logical name. After backing up the files to a
new medium, you can assign a new logical name to them and use them as before.

1.5.3.4 Multivolume File Capability. A multivolume file is a concatenated file or a multifile KIF
set that is made up of files on two or more volumes. The same rules and limitations apply to
concatenating files on different volumes as files on the same volume.

1.5.3.5 Stages of Name Definitions. Ail logical names associated with a given job are located
in a unique segment in memory. Stages are used to divide the logical names within a name seg-
ment into independent groups. The same names can appear in more than one stage, but changing
the value of a name in one stage does not affect the value of the name in any other stage.

Each stage within a name segment has a unique stage number between 0 and 255, and each task
within a job is associated with a stage number. A task is not restricted to this stage. it can entera
new stage, and after some time executing there, it can return to its previous stage. Both of these
operations are subopcodes of the Name Manager SVC. These operations are used by system soft-
ware and are not documented with the standard user SVC.

When the first user logs on with a given user ID and job name, a name segment is created and ini-
tialized with the names retrieved from the file .SSUSER.< USER ID>.SYN. Each defined user ID
has a directory under .S$USER. The files in these directories are used to store name definitions
while the user IDs are not being used and to recreate stage zero when a user logs on. Initially, only
stage 0 exists. However, as soon as any foreground SCI task begins executing, it issues an Enter
New Stage operation. The first SCI task that is bid in a new job initializes stage 1 with the names
of stage 0 and associates SCI with the new stage.

2270510-9701 1-23

DNOS System Overview

When a user reconnects to an existing job, a similar set of events occurs. LOGON bids the new
SC! under stage 0; SCl executes an Enter New Stage operation; a new stage number is aiiocaied
and initialized with the names of its parent stage (stage 0); and the new stage number is asso-
ciated with the new SCI. Note that even though a user’s disk-resident name file might change
between the time that he logs on and the time that another user reconnects to his job, both users
start execution with the same name definitions. The reason for this is that stage 0 is initialized
only once and is never changed. However, if another user logs on with the same user ID and job
name but does not reconnect, he begins execution with the current names in the synonym file
since he is creating a new job whose name segment has not been initialized.

After SCI has finished initializing itself, a user can begin executing commands and programs. Any
task which is bid by SCI and runs in the foreground begins executing with the same stage number
as its parent task, SCI. This is true for all command processors that are bid by the .BiD and .RBID
primitives and for all user tasks that are bid via the Execute Task (XT) command. All command
processors that are bid by the .QBID and .DBID primitives and all batch streams that are bid via
the Execute Batch (XB) command begin execution in a new stage. SCI handles the latter case by
executing an Enter New Stage operation and performing a regular bid. After the new task has
begun executing in the new stage, SCI executes a Return to Previous Stage operation. A task bid
in this fashion cannot change the name definitions of its parent stage.

When a user executes the Quit SCI (Q) command, SCI executes a Save Names operation. This
operation causes the names associated with the stage of the requesting task to be saved in a
specified file. For SCI, this file is always .SSUSER.< USER ID>.SYN. Even if more than one user is
reconnected to a job, this operation is performed after each user logs off. The file will reflect the
name definitions of the last user to log off. Therefore, it is necessary for users to cooperate when
sharing a a single name segment.

1.5.4 Interprocess Communication (IPC)
IPC provides communication between two or more tasks. Information passes through
communication channels, and IPC is responsible for managing channel activity.

1.5.4.1 Channel Definition. A channel is a path through which data flows between two or more
tasks. A single owner task controls each channel. One or more other tasks, called requesting
tasks, can exchange data with the owner task. The scope of a channel can be global, job local, or
task local, as follows:

Global Scope
A channel having global scope is potentially accessible by any task in the system. The owner
task is nonreplicatable and cannot be bid automatically by an Assign LUNO (AL) SCI com-
mand of a correspondaing SVC. Multiple tasks can concurrentiy use a giobai channei that
permits shared access.

Job-Local Scope
A channel having job-local scope is accessible by any task in the job. The owner task is repli-
catable, one copy per job. The channel can be created as sharable, and the owner task can be
bid automatically when the first AL command or corresponding SVC assigns a LUNO to the
channel.

1-24 2270510-9701

DNOS System Overview

Task-Local Scope
A channel having task-local scope is accessible within a task. The owner task is replicated
for each requester task. By definition, the channel is not sharable, and the owner task is bid
automatically when the first AL command or corresponding SVC assigns a LUNO to the
channel. Each requester task can independently assign a LUNO, open the channel, perform
1/0, close the channel, and release the LUNO.

1.5.4.2 Channel Creation. Creating a channel consists of the following steps:

1. Install the channel owner task in an existing program file or in a newly created program
file. For a job-local or task-local channel, you must install the owner task as a
replicatable task. The owner task of a global channel is not replicatable.

2. Create the channel by executing a Create IPC Channel (CIC) command or the corre-
sponding SVC operation. This creates the channel with the specified characteristics.

1.5.4.3 Channel Characteristics. DNOS channels can be defined as symmetric channels or
master/slave channels. Symmetric channels function with simple read and write requests, where
one correspondent on the channel issues a read and another issues a write. The data written
passes to the reader’s buffer when a pair of requests match. In a master/slave channel, the master
task receives the entire buffered SVC block for processing. The master (owner) task processes the
block and returns the resulting block to the requesting (slave) task.

Symmetric Channel Activity. Symmetric channels communicate messages or data in a rela-
tively restricted fashion. Tasks can be written to exchange information or facilitate use of com-
mon resources. The operations addressed to the channel by such tasks are limited to Open,
Close, Read, Write, Read Status, and Write EOF.

When a task opens the channel, the access privileges requested are checked against those pre-
viously granted to other users of the channel. The same rules apply for channels as for other
resources when granting or denying access. For example, if one requesting task opens a channel
with privileges of exclusive all, no other task can open the channel. Shared access, which allows
both Read and Write operations by all channels, is appropriate for most Open operations.

The channel definition can require more restrictive access privileges than a task specifies. A
requesting task can open a symmetric channel established as a nonshared channel in any mode;
however, the channel functions with only one task at a time. This is necessary for a symmetric
channel since the owner task has no way of differentiating requesting tasks from each other.

Any of the following can issue a Close: an owner, a requesting task, or the system when process-
ing an abnormal termination by a task on the channel. When a Close is issued by (or for) a request-
ing task, IPC processes the Close and the channel closes for that task.

On other operations to a symmetric channel, IPC must find a match before the operation is per-

formed. That is, one task must issue a Read and the other a Write before either operation will be
processed. If a mismatch occurs, both the requester and the owner tasks are informed of the error.

2270510-9701 1-25

DNOS System Overview

When an owner issues a Close, IPC processes the request and the channel is marked as dormant
for aii tasks for which it is currently open. This setting causes requesting tasks to receive errors
on any operation except Open and Close. When a requesting task on a dormant channel issues a

close, the channel becomes a closed channel for that task, and it is available to be opened.

Master/Slave Channel Activity. A master/slave channel is established when the owner task pro-
cesses all requests from requesting tasks. The master/slave owner task can be written in assembly
language using the Master Read, Master Write, and Read Call Block operations described in sub-
sequent paragraphs; it can also be written in a high-level language with subroutine support to
access these operations.

When accessing a master/slave channel, a requesting task may need to pass a set of parameters
to the master task. The user can specify these parameters as part of an Assign Logical Name
suboperation of the Name Manager SVC. Then, DNOS can pass them to the owner task as part of
an AL command or a corresponding SVC.

To receive such parameters, an owner task may process Assign LUNO operations from requesting
tasks. The owner receives the request with Master Read. The owner task then requests a Master
Write of the assign block. Owner tasks that process assigns also process Release LUNO calls.

The owner task can process I/0O Abort requests and all /O Utility requests. You must specify these
options in the Create IPC Channel (CIC) command.

While using a master/slave channel, the owner task processes 110 operations to a channel from

requesting tasks The owner task issues a Master Read to obtain a request for processing and
issues a matching Master Write to return messages or status information to the requesting task.

IPC performs several operations for the master/slave channel as it does for the symmetric chan-
nel. In particular, IPC deals with an Open or Close issued by an owner task as described for
symmetric channels. The owner Open specifies the channel access privileges in a manner consis-
tent with I/O resources. The owner task processes Open and Close operations from a requesting
task processed by the owner task. IPC modifies some internal counts to keep track of requesting
task Open and Close operations when the owner executes a Master Write of the Open or Close
block.

IPC passes to the owner task all /O operations issued to the channel by the requesting task. The
operations are processed accordingly. The owner task uses the following operations exclusively:

] Open

e Close

¢ Master Read

¢ Read Call Block
e Master Write

. Read Status

1-26 2270510-9701

DNOS System Overview

1.5.4.4 IPC Supervisor Calls (SVCs). The IPC operations are a subset of the operations that the
110 Operations SVC provides. In addition to those listed in the preceding paragraph for master .
tasks, the following operations apply to IPC channels:

e Create IPC Channel
e Delete IPC Channel
e Open
e Symmetric Read
. Symmetric Write
e Write EOF
e Close
1.56.4.5 IPCSClICommands. The following SClcommands support IPC capabilities:

Create IPC Channel (CIC)
The CIC command creates a global, job-local, or task-local channel. A global channel is
accessibie by any task in the system, and the owner task is nonrepiicatable. A job-local chan-
nel is accessible by any task in the job, and the owner task is replicatable. The owner task of
atask-local channel is replicatable for each task in any job.

Delete IPC Channel (DIC)
The DIC command deletes the disk-based definition of the channel specified.

Show Channel Status (SCS)
The SCS command displays information about a specified active channel. This information
includes channel owner, type of channel, scope of channel, maximum message length,
shared or not shared scope, number of current assigns, number of current opens, and current
access privileges.

2270510-9701 1-27/1-28

2

Disk and File Organization

2.1 FILE ORGANIZATION

DNOS provides disk file support for applications and system programs. A file is a named and
organized collection of records. Disk files are written on any of several disk media used with
DNOS. You can access the files through the I/O subsystem. The following paragraphs describe
the types of files, ways of protecting and sharing them, and their characteristics.

2.1.1 File Types
DNOS supports three types of disk files:

e Sequential files

o Relative record files

. Key indexed files (KIFs)
Relative record files include three special usage groups:

° Directory files

e Program files

. Image files
2.1.11 Sequential Files. In a sequential file, the order in which the records are written deter-
mines record organization. You cannot alter the record sequence by adding or deleting records
except in the following cases: :

e Youcan add records in sequence following the last record in the file.

¢ Youcan rewrite arecord if the record length does not change.
On a blank-suppressed file, the blank-suppressed record length must not change during a rewrite
operation; the internal size of the record must be the same. Records in a sequential file are of
variable length, and you access the records serially (record 0 first, record 1 next, and so on).

Records are accessed in the order in which they were originally written.

Encountering an end-of-file (EOF) on a read of a sequential file indicates that the file is positioned
after the last record.

2270510-9701 21

Disk and File Organization

2.1.1.2 Relative Record Files. A relative record file consists of records that are identified by

~mnidiam lm affandt tha fila o a atvima ~f laninal ranar As annh anr\eesnﬂ by a renl\rr‘ numher. The
POSItion. in e1ect, tné 1iie is a Swring o1 10giCai recoras, eacn actessed Oy Yecorg NnuUMmiel. 1 ne

first logical record is record 0. Therefore, to access the tenth record, you should enter 9 in the
appropriate field of the I/O supervisor call (SVC) block. You can access relative record fiies
sequentially by placing a starting value in the record number field of the I/O SVC block. DNOS
automatically increments the record number after each read or write. The range of record numbers
is from 0 to one less than the number of records in the file. The upper limit is 16,777,216. Records
in a relative record file are of fixed length. The length is specified when the file is created.

DNOS converts the record number to a physical address on the disk (track and sector). It can
directly access any record with one disk access.

Relative record files can be biocked or unbiocked. Generaiiy, blocking ailows faster processing.
You can delay actual disk transfers of memory buffers for blocked relative record files. Once a
buffer for a block is allocated in memory and the block is read from disk, all Read operations from
that block reference the memory buffer for the block. Unless you select the immediate-write
option, information directed to records already in memory is not written back to disk until DNOS
requires the memory space allocated to the blocking buffer or until the file is closed.

When DNOS reads an EOF on arelative record file, the record number is used but not incremented
in the SVC block.

2.1.1.3 Key Indexed Files (KIFs). A KIF consists of data records that you can access by con-
tent. You can define various fields within a record as a key. Each record can have up to 14 keys,

with access through each key independent of the other keys. For example, the records in an
employee file might be accessed by employee ID, employee name, and employee social security
number.

In addition to random access by key value, KIFs have the following features:

. You can access records sequentially in the sort order of any key.

e At file creation, you can give a key the attribute of allowing duplicates (that is, of allow-
ing two or more records in the file with the same value for this key).

e At file creation, you can give a key the attribute of being modifiable. This allows you to
change the key value when you write a record. Also, a modifiable key value can be miss-
ing in the record but added later on a rewrite. Note that you cannot assign this attribute
to the first (primary) key.

. Key fields can overlap if their attributes match.

. A key can be up to 100 contiguous characters long.

. Records can be of variable length and can change in size on a rewrite.

. Positioning on partial keys is allowed.

. Records are automatically blank compressed.

. Record-level locking (temporary exclusive-all access) is supported.

2-2 2270510-9701

Disk and File Organization

e Thefile can grow in size.

. Preimage logging of modified blocks maintains file integrity. As a result, system
crashes and power failures cause the loss of only the last /O operation.

¢ AKIF cannot contain records of odd or zero length.
e The EOF on a KIF is analogous to the EOF on a relative record file.
2.1.1.4 Special Usage Files. DNOS supports three special types of relative record files:
Directory File
Contains information necessary to locate other files and descriptive information about those
files. It does not contain user data.
Program File
Contains executable programs or segments in memory image form. A program file usually
contains more than one program.
Image File
Has a logical record size that equals the physical record size, which in turn equals the disk
sector size. Image files usually contain a memory image of some code. These files are
designed so that a program image can be read into memory in one disk access.
2.1.2 File Protection and Sharing
DNOS ensures disk file integrity and allows you to control the use and modification of files by
means of the following features:
¢ Delete and write protection
. Record locking
* Access privileges
e Special usage file protection
21.21 Delete and Write Protection. Standard I/O calls modify the delete and write protection
file attributes. Files are initially created without protection. You must make a subsequent l/O call
to change the protection status.
An attempt to write to or delete a write-protected file fails and returns an error code. (Write protec-
tion includes delete protection.) These protective attributes are not intended for file security.

(Nonprivileged SVCs are available to remove write and delete protection.) Instead, they provide
protection against user error or program flaws that might otherwise destroy valuable data.

2270510-9701 23

Disk and File Organization

2.1.2.2 Record Locking. Record locking restricts access to a record in a file. This means that
although several users share access to a given file, you can lock individual records within the file
to provide exclusive (single-user) read and write access. This is not a security feature, since any
file user can unlock a locked record; however, this feature can ensure that record updates occur
one at a time. For example, inventory files can be accessible from several terminals. Record lock-
ing can prevent two or more users from attempting to update a record simultaneously, causing an
undetected loss of one of the updates.

2.1.2.3 Access Privileges. To assist intertask I/O synchronization, DNOS supports several dif-
ferent access modes for all /O resources. These modes define the relationship between logical
units and resources and prevents conflicting accesses by other logical units. Four access modes
apply to files. Enforcement of file access privileges is through the Open, Open Rewind, and Open
Random operations of the /O Operations SVC. The SVC fails if you request an operation with a
conflicting privilege level. You can change access privileges if no access conflicts result.

With respect to access privileges, a Write operation is any operation that alters the contents of a
file. The access privileges, which conform to the American National Standards Institute (ANSI)
standard, are as follows:

. Read-Only — Allows the calling program to read but not write. Gives other programs
read-only, shared, and exclusive write access.

e Shared — Allows the calling program to read and write. Gives other programs read-only
and shared access. '

. Exclusive write — Allows the calling program to read and write. Allows other programs
to read but not write.

. Exclusive all — Allows the calling program to read and write. Does not allow other pro-
grams to have access.

The Open, Open Rewind, Open Random, and Modify Privileges operations use bits 3 and 4 of the
user flags in the 1/0 SVC block to select the following access privileges:

Code Meaning
00 Exclusive write
01 Exclusive all
10 Shared
11 Read only

2.1.2.4 Special Usage File Protection. To prevent accidental use of special usage files (pro-
gram, directory, and image files) as data files, you must set two flags in the I/O SVC block for the
Assign LUNO operation. These flags indicate whether the LUNO is being assigned to a program
file, a directory, an image file, or a file with no special usage. You must set the proper flags to set
the LUNO; otherwise, an error code is returned. The fiags are bits 1 and 2 in byte 16 of the /0 Oper-
ations SVC block. For further details, refer to the DNOS Supervisor Call (SVC) Reference Manual.

2.4 2270510-9701

Disk and File Organization

2.1.3 File Characteristics
The following paragraphs describe these characteristics of DNOS files:

. Record blocking

Saving disk space

. Immediate write

. Temporary attribute
. Expandability

J End-of-file

2.1.3.1 Record Blocking. A file consists of a collection of data entities called logical records.
The logical records do not necessarily correspond to the physical records (that is, to the physical
division of data on the disk). Logical records are the data groupings of a file as seen by a program.
Physical records are the buffers physically transferred between memory and disk.

The length of the logical records within a file can be constant or variable, depending on the file
type. For relative record files, logical records are of fixed length. This makes it possible for the
system to calculate the physical position of any logical record relative to the beginning of the file.
This characteristic makes possible random access of a logical record in relative record files.

Sequential files and KiFs allow variable-length logical records. For KIFs, the logical record length
is always an even number of bytes. For sequential files, the logical records can be any number of
bytes, including zero.

When you create a file, you must specify the logical record size. For relative record files, the size
must be exact. For sequential files and KIFs, the record size is used to calculate the amount of
disk space initially allocated to the file; the specified size should be an estimate of the average
logical record size. The more accurate the estimate, the better the utilization of disk space.

The physical record length is specified when the file is created and cannot be changed.

it is often advantageous to store muitipie iogicai records in a physical record. This is caiied
blocking.

Since disk transfer and latency times are relatively long, usually you should choose physical
records large enough to include several logical records. When a task first issues a read request,
DNOS actually reads an entire physical record into memory. The physical record is stored in an
area of memory called a blocking buffer. Only the part that corresponds to the requested logical
record is passed to the requesting task.

Subsequent read and write requests to a physical record in memory do not cause immediate disk
access; instead, they reference the record image in memory. DNOS keeps an accessed physical
record, which usually contains several logical records, in memory until the memory area is needed
for other purposes or the file is closed. Blocking logical records and the deferred write capabilities
can substantially improve system throughput, especially for sequential files.

2270510-9701 2-5

Disk and File Organization

If no physical record size is specified at creation time, DNOS assigns a default physical record
size based on the file type. Sequential files and KIFs support variable-length records. Since DNOS
can split logical records into two or more physical records in a sequential file, the physical record
size can be smaller than the largest logical record. However, this results in inefficient processing
of the file.

2.1.3.2 Saving Disk Space. Blank suppression and blank adjustment are two methods of saving
disk space within a file by storing data in a more compact form. These methods apply only to KIFs
and sequential files. While blank suppression always occurs on KIFs, it is optional on sequential
files.

Blank suppression replaces strings of blanks by a count of blanks when writing to disk and
restores the blank string when reading from disk. In operation, blank suppression is transparent to
the user. Usually, you should specify blank suppression for a source file, a listing file, or a text file,
since these files tend to contain many blanks. However, keep in mind that blank suppression
increases by one word the length of records containing no blanks.

The second method, blank adjustment, applies to sequential files and /O devices with variable
record lengths. Blank adjustment truncates trailing blanks on output and restores them on input.
To use this feature, you must set the blank adjust flag bit in an I/O SVC block.

2.1.3.3 Immediate Write. When DNOS writes a record of a blocked file, the record is.placed in a
blocking buffer in memory. The record in the buffer remains in memory as long as possible. Subse-
only when DNOS needs the memory occupied by the blocking buffer or the file is closed. This
delaying of disk writes increases system throughput. However, although the disk write is actually
delayed, it is reported as being complete. Consequently, errors that occur during the write cycle
are unexpected and in some situations may not be detected. DNOS supports an immediate-write
option, specified when a file is created, for files that cannot risk an undetected write error.

The most common undetected error is disk failure. For example, you might update a record in a
block and be informed that the update has been successfuily completed. However, when the
block is actually written to disk, possibly several minutes later, an 1/0 error might occur. This error
is returned on the next call to the LUNO after the error. The error is returned even if the callisnot a
Write operation.

When deciding whether to include the immediate-write option, remember that undetected errors
are rare and that files (especially sequential files) with this option are less efficiently processed.
Therefore, you should reserve this option for sensitive files that cannot risk loss of data. KIFs
always include the immediate-write option.

2-6 2270510-9701

Disk and File Organization

2.1.3.4 Temporary Attribute. When you create a file, it usually remains in existence until you
explicitly delete it. However, under DNOS you can also create temporary files as follows:

Create a temporary file using an Assign LUNO operation of the I/O SVC with the tempo-
rary file bit set. In this case, the file remains in existence only as long as the LUNO is
assigned. If you do not specify a name, DNOS assigns a unique temporary file name.
However, the pathname portion of the I/O SVC block can indicate the disk volume on
which the file is to be created. By using the Rename File operation of the I/O Operations
SVC, you can explicitly name the file and specify it as permanent. Otherwise, it is
deleted the first time its LUNO is released.

Create a temporary file using a Create File operation of the I/O Operations SVC with the
temporary bit set and a pathname supplied. You can assign one or more LUNOs to the
file using the pathname. The file remains in existence as long as at least one LUNO is
assigned. When the last LUNO is released, the file is deleted.

Create a job-temporary file by using the Assign Logical Name SVC or the Assign Logical
Name (ALN) SCI command followed by either the Create File (CF) command or the
Assign Luno (AL) command. The discussion of name management in Section 1
describes how to create a job-temporary file using these commands.

2.1.3.5 Expandability. When you create a file using the Create File operation of the I/O Opera-
tions SVC, you can give the file a fixed size via the primary aliocation parameter. Alternatively, you
can create the file as expandable and give the primary allocation as its initial allocation. When the
file exceeds its primary allocation, it is augmented with secondary allocations. The secondary
allocation parameter is the size of the first secondary allocation. Subsequent secondary alloca-
tions automatically and progressively increase in size over the previous allocation. Files add up to
a maximum of 16 secondary allocations.

2.1.3.6 End-of-File (EOF). An EOF is a logical position within a relative record file or KIF. it is an
actual record within sequential files. When read, it sets the EOF status bit. No data is transferred.
The EOF status bit is bit 2 of the system flags.

2270510-9701 2.7

Disk and File Organization

Relative record files have one EOF that corresponds to the record following the highest-numbered
written record. Sequential files can have more than one EOF. A sequential file is analogous to a
reel of magnetic tape that can contain several files separated by EOFs. A sequential file can con-
sist of multiple data sets or subfiles marked by EOFs. A KIF has a logical EOF that corresponds to
the record following the record with the largest primary key. For a KIF, the EOF applies only to
Read ASCII operations and Forward Space operations that access the file sequentially in primary
key order.

The internal representation of an EOF in a sequential file is a record of zero length. Either a Write

EOF operation or a Close and Write EOF operation writes the EOF. Writing an EOF does not
prevent writing more records to the file.

2.2 DISK ORGANIZATION
The organization of files on the disk is related to the following:

° Disk characteristics

. Allocation of space on the disk

U Physical organization of the disk
2.21 Disk Characteristics
All tracks on disks are initialized in a one-sector-per-record format. This record size is a character-
istic of the type of disk and is not necessarily the physical record size for files to be created on the
disk.
Disks are logically divided into allocatable disk units (ADUs). An ADU is made up of one or more
complete sectors of the disk. The number of sectors per ADU varies according to the disk type
(see Table 2-1) to provide a number of ADUs per disk less than 65,536. Each ADU on the disk can

be addressed by a 16-bit word. ADU numbers start with 0, the first ADU starting on track 0,
sector 0.

2.8 2270510-9701

Disk and Fiie Organization

Table 2-1. Format Information for Supported Disks

Available

Disk Space No. No. No. Sec./ Sec./ Bytes/

Type (M Bytes) ADUs Heads Cylinder Track ADU Sec.
DS10 47 16,320 2 408 20 1 288
DS25 22.3 25,840 5 408 38 3 288
DS50 44.6 51,616 5 815 38 3 288
DS80 62.7 40,819 5 803 61 6 256
DS200 169.5 65,381 19 815 38 9 288
DS300 238.3 62,045 19 803 61 15 256
FD1000 1.15 4,004 2 77 26 1 288
CMD 16 13.5 52,544 1 821 64 1 256
CMD 80 67.3 43,786 5 821 64 g 256
wD800-18 18.5 24,087 3 651 37 3 256
WD800-43 43.2 56,203 7 651 37 3 256
WDB800A-43 42.8 55,744 3 871 64 3 256
WDB800A-100 99.9 65,034 7 871- 64 6 256
WD500A 17.0 22,208 3 694 32 3 256

2.2.2 Disk Space Allocation to Files
Disk space is allocated to files in multiples of ADUs. The ADU size, physical record length, and
logical record length determine how efficiently disk space is utilized. Consider the following disk
access characteristics:

o Physical records start on sector boundaries.

. Physical records that do not start on an ADU boundary cannot span an ADU boundary.

. Logical records can span physical record boundaries in sequential files only.
For efficient utilization of disk space by a file, the physical record size should be an integer mul-

tiple of the sector size and an integer multiple or a factor of an ADU. If the file is a relative record
file, the physical record size should be an integer multiple of the logical record size.

2270510-9701 29

Disk and File Organization

An additional consideration in file definition is frequency of disk access. A disk access is required
only when an /O operation addresses a record that is not in the buffered physical record. As a
rule, the physical record length should be at least three times the logical record length, allowing
file management to buffer logical records.

2.2.3 Physical Organization of a DNOS Disk
Disks initialized under DNOS have the following physical layout:

. Track 0/Sector 0 — Contains volume information such as the volume name and the loca-
tion of VCATALOG.

. Track 0/Sector 1 — Contains bad ADU list.

. Remainder of track 0 — Contains bit maps indicating disk allocation information. The
largest available block is recorded at the beginning.

e Track 1 — Contains the disk program image loader and a copy of sectors 0 and 1 of
track 0, used for recovery from a major disk failure.

. Remaining tracks — Available for file ailocation.

e Reserved tracks — Contain alternate location of bad tracks on disks that support bad
track mapping.

2.2.3.1 Volume Information. The information stored in track 0, sector 0 of all disks initialized
under DNOS is called volume information. Figure 2-1 shows the format of this 164-byte block of
information. In this figure and those that follow, reserved fields are fields that DNOS does not cur-
rently use but might use in the future.

2-10 2270510-9701

Disk and File Organization

Dec HEX

0-7 0-7 VoLUME NAME

8-9 8-9 NuMBER oF ADUs

10-11 A-B Bi1T MapP SeEcTOR No. No. oF BIT MAPs
12-13 Cc-D BYTES PER PHYSICAL RECORD
14-15 E~-F PROGRAM IMAGE LOADER TRACK NUMBER
16-21 10-15 RESERVED
22-23 16-17 NuMBER oF Bap ADUs
24-25 18-19 PROGRAM IMAGE LOADER ENTRY POINT
26-27 1A-1B LENGTH OF PROGRAM IMAGE L.OADER
28-35 1C-23 RESERVED
36-37 24-25 PROGRAM IMAGE LOADER TRACK NUMBER
38-45 26-2D RESERVED
46-53 2E-35 PRIMARY SYSTEM IMAGE FILE NAME
54-61 36-3D SECONDARY SYSTEM IMAGE FILE NAME
62-63 3E-3F SYSTEM IMAGE SELECT FLAG
64-65 40-41 VCATALOG STARTING ADU
66-67 42-43 VCATALOG PHYsicAL RECORD SIZE
68-69 44-45 SECTORS/ADU
70-73 46-49 CREATION DATE
74-81 4A-51 PRIMARY PROGRAM FILE NAME

2279387 (1/2)

Figure 2-1. Volume Information Format (Sheet 1 of 2)

2270510-9701 2-11

Disk and Fiie Organization

2279387 (2/2)

212

DEC
82-89

90-91

92-99

100-107

108-109

110-117

118-125

126-127

128-135

136-137

138-143

144-151

152-159

160~-161

162-163

HEx

52-59

SECONDARY PROGRAM FILE NAME

5A-5B

ProGrAM FILE SELECT FLAG

5C-63

PRIMARY OVERLAY FILE NAME

64-6B

SECONDARY OVERLAY FiLE NAME

6C-6D

OVERLAY FILE SELECT FLAG

6E-75

PriMARY SYSTEM LOADER FILE NAME

76-7D

SECONDARY SYSTEM LOADER FILE NAME

7E-7F

SYSTEM LOADER SELECT FLAG

80-87

DiaGNOSTIC FILE NAME

88-89

DIAGNOSTIC SELECT FLAG

8A-8F

RESERVED

90-97

WRITABLE CONTROL. STORAGE FiLE NAME

98-9F

WCS SECONDARY FILE

AO0-A1

SELECT SWITCH

A2-A3

TRACK 1 SELECT FLAG

Figure 2-1.

Volume Information Format (Sheet 2 of 2)

2270510-9701

Disk and File Organization

The volume information shown in Figure 2-1 contains the following field descriptions:

10

11

12-13

26-27

28-35

36 — 37

38-45

46 — 53

54 — 61

62 - 63

64 —65

66 — 67

68 — 69

70—-73

2270510-9701

Description
Volume name, one to eight characters, blank filled to the right.

Total number of ADUs contained in the volume. This field varies by disk
type.

The number of the sector in track 0 in which the first bit map resides.
Total number of bit maps.

The number of bytes per physical record (that is, sector) in track 0. This
value is also disk dependent.

The number of the track that contains the disk program image loader.
This field is initialized to 1.

Reserved.
Total number of bad ADUs on the disk.

Entry point address of the disk program image loader (initialized to > A4,
the entry point of the loader when it is loaded at iocation > A0).

Total byte length of the disk program image loader.
Reserved.

Second copy of the track that contains the disk program image loader
(initialized to 1).

Reserved.

Name of the primary system image file (one to eight characters). Zero at
initialization.

Name of the secondary system image file. Zero at initialization.
System select flag. Zero at initialization.

Number of the ADU in which the volume directory (VCATALOG) begins.
Physical record size of the VCATALOG directory file.

Number of sectors per ADU (disk dependent).

Disk creation date.

213

Disk and File Organization

NOTE

The remaining fields of the volume information block apply to sys-
tem disks only. They are not given values when the disk is initial-
ized. The Modify Volume Information (MVI) command writes the

field values.
Byte Description
74 - 81 Primary system program file name
82-89 Secondary system program file name
90-91 System program file select flag
92 -99 Primary system overlay file name
100 - 107 Secondary system overlay file name
108 - 109 System overlay file select flag
110-117 Primary system loader file name
118-125 Secondary system loader file name
126 — 127 System loader select flag
128-135 Diagnostic file name
136 -137 Diagnostic select flag
138 — 143 Reserved
144 - 151 Writable control store (WCS) file name
152 — 159 WCS secondary file
160 — 161 Select switch
162 - 163 Track 1 select flag

214 2270510-9701

Disk and File Organization

2.2.3.2 Bit Map. To identify which areas on the disk are allocated and which are free, DNOS
maintains a bit map of allocated ADUs. The bit map is located in track 0 of each disk, starting at
sector 2 and continuing through as many sectors as necessary.

The bit map is divided into 128-word partial bit maps. Each partial bit map is located in a separate
sector in track 0. The first word of each partial bit map contains the number of the ADU that begins
the largest block of free disk space located in that part of the disk, which is mapped by the partial
bit map. Each bit in the remaining 127 words represents an ADU. If the bit is zero, the ADU is free;
if it is one, the ADU is allocated (or the ADU is on a bad track). Each partial bit map contains 127
16-bit words of information and maps 2032 ADUs. Figure 2-2 shows the structure of a partial bit

map.

BYTE O
RELATIVE ADU No. oF LARGEST AVAILABLE BLOCK
PARTIAL ALLOCATION BiT MAP
~ ~A
BIT = 1 MEANS
ﬂr’ Ve o
ADU ALLOCATED
2279388

Figure 2-2. Partial Bit Map

2.2.4 Displaying and Modifying Absolute Disk Addresses
The following SCIi commands are available to display or modify absolute disk addresses:

Command Description
SAD Show Absolute Disk
SADU Show Allocatable Disk Unit
MAD Modify Absolute Disk
MADU Modify Allocatable Disk Unit

2.3 DISKFILE STRUCTURES

The structure of the directory file is a key to the organization of files on a disk. The following para-
graphs describe the directory structure and the structure of each type of file that DNOS supports.

2270510-9701 2-15

Disk and File Organization

2.3.1 Directory File
A directory contains information necessary to iocate other fiies and descriptions of those fiies.

Figure 2-3 illustrates the way in which all directories are connected in a network. The top of this
network is the volume directory, called VCATALOG. VCATALOG is created on each volume when
the disk is initialized. It maintains information about directories, system files, and user files.

VCATALOG
DIRECTORY)]

USER DIRECTORY SYSTEM
FILES FILES
USER o DIRECTORY]
FILES IRECTORY

USER USER USER

FILES FILES FILES

2279389

Figure 2-3. Directory Structure

2.3.1.1 Directory File Characteristics. Directory files are unblocked relative record files con-
sisting of one logical record per physical record. Figure 2-4 shows the file structure of a directory.
Record 0 contains overhead information in the format shown in Figure 2-5. Each of the remaining
records is of one of the following types:

. File descriptor record (FDR) — Describes a file and its location on the disk.

. Alias descriptor record (ADR) — Describes an alias for a file, includes the location of the
file, and points to the FDR of the file.

2-16 2270510-9701

Disk and File Organization

. Channel descriptor record (CDR) — Describes a channel, specifies the program file of
the owner task of the channel, and points to the FDR of the program file.

. Key descriptor record (KDR) — Describes the keys defined for a KIF. An entry in the FDR
of the KIF points to the KDR. Thus, each KIF requires two directory entries.

Subsequent paragraphs describe the types of records in a directory.

File names in a directory are hashed to a record number, 1 through N, where N is the last record in
the directory. If a file name hashes to a record number and the record is unused, an FDR for the file
being inserted is built in that record. If the record is already used, a linear search from the hashed
record finds a free record. For KIFs, a linear search is performed from the FDR to locate an avail-
able record for the key descriptor block.

Rec. No.

)

OVERHEAD RECORD

N

2279390

2270510-9701

Figure 2-4. Directory File Structure

FDRs , ADRs,

TCDRs , AND KDRs

217

Disk and File Organization

Dec HEex
o-1 0-1 NUMBER OF RECORDS IN DIRECTORY
2-3 2-3 NuUMBER OF FILES IN DIRECTORY
4-5 4-5 NUMBER OF AVAILABLE RECORDS
6-7 6-7 No. oF TEMP, FiLEs CURRENTLY DEFINED
8~15 8~F FiLE NAME oF DIRECTORY
i6-i7 10-11 LEveEL NUMBER OF DIRECTORY
18-25 12-19 FILE NAME oF PARENT
26-63 1A-3F RESERVED

2279391

Figure 2-5. Directory Overhead Record Format

The directory ov.erhead record, record 0 of all directories, contains the following:
° Maximum number of records (entries) in the directory
° Number of currently defined files
. Number of available records (entries)

U] File name of the directory

. Level number of the directory in the disk hierarchy (VCATALOG is level 0)

[]
-n

2.3.1.2 File Descriptor Record (FDR). Each file cataloged under the directory is represented by
an FDR. Figure 2-6 shows an FDR.

2-18 2270510-9701

Disk and File Organization

DEc HEX ‘
0-1 0-1 HasH KEY COuNT
2-3 2-3 HAsH KEY
4-11 4-B FILE NAME
12-15 C-F RESERVED
16-17 10-11 FLacs
18-19 12-13 PHYsICAL RECORD SI1ZE
20-21 14-15 LoGicAL RECORD SIZE
22-23 16-17 PRIMARY ALLOCATION SIZE
24-25 18-19 PRIMARY ALLOCATION ADU
26-27 1A-1B SECONDARY ALLOCATION SIZE
28-29 1C-1D OFFSET TO SECONDARY ALLOCATION TABLE
30-31 1E-1F RECORD NUMBER OF FIRST ALIAS
32-35 20-23 END OF MEDIUM LoGicAL RECORD NUMBER
36-39 24-27 EnD oF MeEDIUM BLock NUMBER
40-41 28-29 END OF MEDiuM OFFSET
42-45 2A-2D FREE BLOCK QUEUE HEAD]
46-47 2E-2F Brock No. oF B-TReEe RooT (PRIMARY KEY) KIF
48-49 30-31 BrLocK NUMBER OF FIRST DATA BLOCKS > F1LES
ONLY
50-51 32-33 ToTaL NUMBER OF DATA BLOCKS '
52-53 34-35 REcorD NUMBER OF KEY DESCRIPTORS J
54-59 36-3B DATE AND TIME OoF LAST UPDATE
60-65 3C-41 DATE AND TIME FILE CREATION
66 42 ADUs /BLockK BLocks/ADU

2279392 (1/2)

Figure 2-6. FDR Format (Sheet 1 0of 2)

2270510-9701 219

Disk and File Organization

Dec Hex
68-69 44-45 MINIMUM RECORD SI1zZE
j
70-71 46-47 SIZE OF SECONDARY ALLOCATION
SECONDARY
72-73 48-49 STARTING ADU OF ALLOCATION
> ALLOCATION
TABLE
L ADDITIONAL SECONDARY ALLOCATIONS A
—~ (AS REQUIRED, 16 MAXIMUM) —~
132-133 84-85
2279392 (2/2)
Figure 2-6. FDR Format (Sheet 2 of 2)
The FDR shown in Figure 2-6 contains the following information:
Byte Description
0-1 Hash key count. The number of records in the directory that
hashed to this record number.
2-3 Hash key. The result of the hash algorithm for the file name in this

FDR. The hash value might not be the number of this record. When
the hash value record has already been written, DNOS searches
linearly for an unused record.

4-11 File name (eight characters).
12-15 Reserved.
16—-17 File usage flags.
18—-19 Physical record size in bytes. Must be an even number.
20-21 Logical record size in bytes. Must be an even number if the file is
unblocked.
22-23 Primary allocation size, in ADUs.
24-25 Primary allocation starting ADU number (starting disk address).
26 - 27 Secondary allocation size in ADUs.
28 — 29 Offset into this FDR of the secondary allocation table. When the

file is not expandable or before a secondary aliocation has been
made, the field contains 0.

220 2270510-9701

Byte

30-31

32-35

36 -39

40-41

42 - 45

46 — 47

48 — 49
50 — 51
52 -53
54 — 59
60— 65
66
67

68 — 69

70-133

22705109701

Disk and File Organization

Description

Record number of the ADR for the file’s first alias or of the CDR.
Contains zero when no alias is defined and no CDR exists.

Logical record number of the end-of-medium (EOM). The EOM is
the end of the last space allocated to the file.

The logical block (physical record) number of the EOM.

The offset into the EOM block of the logical record following the
EOM record.

Block number of the first block in a queue of KIF blocks with avail-
able space. Each block points to the next block in the queue. A

block is a physical record of the file. This number is used only for
KIFs.

The block number of the B-tree root block of the primary key. The
block following this is the KIF root block for key 2, and so on. This
field is also the total number of blocks that can be used for
logging.

The block number of the first KIF data block.

The total number of data blocks in the KIF.

Record number of the KDR.

Date of the last update to the file.

Creation date of the file.

The number of ADUs per physical record.

The number of physical records per ADU.

The minimum size for a KIF logical record; the KIF must contain all
of the keys defined.

The secondary allocation table, which contains two-word entries.
The first word of an entry contains the size, in ADUs, of the first
secondary allocation. The second word contains the starting ADU
of the allocation. The table can contain as many as 16 entries and
is used only when the file expands. Unused fields contain zeros.

2-21

Disk and File Organizaticn

The file usage flags in bytes 16 and 17 have the following meanings:

o-1 2-3 4 5-6 7 | 819 |10 |11 [12]13-14 |15

2279394

Bit(s) » Meaning

0-1 File usage, as follows:
00 — No special usage
01 — Directory file
10 — Program file
11 — Image file

2-3 Format, as follows:
00 — Binary
01 — Blank compressed

4 Allocation type, as follows:
1 — Expandable
0 — Primary allocation only

5-6 File type, as follows:
01 — Sequential
10 — Relative record
11 — Key indexed

7 Write protected, as follows:
1 — Write protected
0 — Not write protected

8 Delete protected, as follows:
1 — Delete protected
0 — Not delete protected

9 Temporary file, as follows:
1 — Temporary file
0 — Not a temporary fiie

10 Blocked, as follows:
1 — Unblocked
0 — Blocked

2.22 2270510-9701

Disk and File Organization

Bit(s) Meaning
1M Reserved
12 Immediate write, as follows:

1 — Immediate write mode
0 — Deferred write mode

13-14 Reserved
15 Reserved

2.3.1.3 Alias Descriptor Record (ADR). An alias is an alternate name for a file. A directory con-
tains an ADR for each alias of any file in the directory. The assignment of a record number for an
ADR is similar to the assignment of a record number for an FDR. The alias is hashed to derive a
record number. When the record is available, the ADR is written to that record. Otherwise, DNOS
searches the file linearly from that record to locate an available record; DNOS writes the ADR in
the first available record.

The number of aliases a file can have is limited only by the number of empty records available in
the directory. An ADR implements each alias. The ADRs for the aliases of a file are linked to the
FDR of the file and to each other.

The program file of a task that is the owner task of an IPC channel has one or more CDRs linked to
the FDR of the file along with any ADRs associated with the file.

Figure 2-7 shows the format of the ADR, which is similar to that of the FDR. It includes 34 bytes. A
flag identifies the record as an ADR. A field of the ADR contains the record number of the FDR for
the file. Another field contains the record number of the next ADR or CDR linked to the FDR. When
no record is linked to the ADR {that is, this ADR is the end of the linked list), this field contains 0.

Dec HEx

o-1 0-1 HAsH KEy COUNT

2-3 2-3 HAsH KEY

4-11 4-B ALIAS

12-15 Cc-F RESERVED

16-17 10-11 FLAGS

18-29 12-1D RESERVED
30-31 1E-1F REcorD NUMBER oF NEXT ADR or CDR
32~-33 20-21 REcorD NUMBER oF FDR

2279393

Figure 2-7. ADR Format

2270510-9701 2-23

Disk and File Organization

The ADR shown in Figure 2-7 contains the following information:
Byte Description

0-1 Hash key count. The number of records in the directory that hashed
to this record number.

2-3 Hash key. The result of the hash algorithm for the alias in this ADR.
The hash value might not be the number of this record. When the
hash value record has already been written, DNOS searches linearly
for an unused record.

411 Alias. The alias in this item is an alternate name for the file (that is,
a secondary name by which a previously defined file is also known).
The primary name for a file is supplied in the FDR. Secondary
names are documented in the ADR.

12-15 Reserved.

16-17 File usage flags. These apply to the file and are identical to those in
the FDR except that bit 11 is set to identify this record as an ADR.

18- 29 Reserved.

30-31 Record number of next alias. This is a pointer chaining forward to

another ADR for the same file, if one exists. If one does not exist,
this value is 0.

32-33 Record number of actual file. A pointer to the directory file record
that contains the file descriptor for this particular file.

The file usage flags in bytes 16 and 17 apply to the file described in the FDR at the record in bytes
30 and 31. The flags have the following meanings:

0-1 2-3 4 5-6 7 8 |9 |10 |11 j12]13-14 |15
2279395

Bit(s) Meaning

0-1 File usage, as follows:

00 — No special usage
01 — Directory file

10 — Program file

11 — Image file

2-3 Format, as follows:

00 — Binary
01 — Blank compressed

2-24 i 2270510-9701

Disk and File Organization

Bit(s) Meaning

4 Allocation type, as follows:
1 — Expandable
0 — Primary allocation only

5-6 File type, as follows:
01 — Sequential
10 — Relative record
11 — Key indexed

7 Write protected, as follows:
1 — Write protected
0 — Not write protected

8 Delete protected, as follows:
1 — Delete protected
0 — Not delete protected

9 Temporary file, as follows:
1 — Temporary file
0 — Not a temporary file

10 Biocked, as follows:
1 — Unbiocked
0 — Blocked
1 ADR; setto 1.
12 Immediate write, as follows:

1 — Immediate write mode
0 — Deferred write mode

13-14 Reserved
15 Reserved; set to 0.
2.3.1.4 Channel Descriptor Record (CDR). The CDR describes an IPC channel. it is associated
with the program file of the channel owner task and is linked to the FDR of the program file along
with any aliases for the file.
The allocation of a record in the directory for a CDR is similar to the allocation of an ADR. The
channel name is hashed and the result is used as a record number. When the record is already

occupied, the next available record is used.

Figure 2-8 shows the format of the CDR.

2270510-9701 2.25

Disk and File Organization

DEcC
0-1

4-11

12-15

16-17

18

20

22-23

24-29

30-31

32-33

146-255
2279396

HEX
0-1

10-11

12

14

16-17

18-1D

HasH KEY COUNT

HasH KEY

CHANNEL NAME

RESERVED

FLAGS

CHANNEL FLAGS

INSTALLED ID

DEFAULT RESOURCE

RESOURCE TYPE FLAGS

MAXIMUM MESSAGE LENGTH

RESERVED

REcoOrRD NUMBER oF NEXT CDR oOR ADR

REcOrRD NUMBER OoF FDR

RESERVED

User ID

RESERVED

RESERVED

Figure 2-8. CDR Format

The CDR shown in Figure 2-8 contains the following information:

4-11

12-15

16-17

2-26

Description

Hash key count. The number of records in the directory that hashed .
to this record number.

Hash key. The result of the hash algorithm for the.channel number.
The hash value might not be the number of this record. When the
hash value record has already been written, DNOS searches linearly
for an unused record.

Channel name (eight characters).

Reserved.

File usage flags; bit 15, the channel descriptor flag, is set to one.

2270510-9701

Byte
18
19

20

21
22-23
24-29

30-31

32-33

34-143
144

145 — 255

Disk and File Organization

Description
Channel flags. These flags define the channel.
Installed ID of owner task.
Default resource type. The resource type of the channel as it
appears to the requesting task. The significance of the contents of
this byte depends on the resource type flag (as described in a sub-
sequent paragraph).
Resource type flags.
Maximum length for messages that the channel transfers.
Reserved.
Record number of next CDR or ADR. The record number of the next
record in the linked list of CDRs and ADRs. This field contains 0
when this CDR is the last record in the list.

Record number of FDR of the channel owner task program file.

Reserved.

User ID. The user ID of the user who created the IPC channel.

Reserved.

Of the file usage flags in bytes 16 and 17, bits 0 through 14 are reserved. Only bit 15, the CDR flag,
applies. The flags have the following meanings:

2279397

2270510-9701

O-1 2-3 4 5-6 7 8|9 {1011 |12 }13-14 |15
Bit(s) Meaning
0-14 Reserved.
15 CDR, as follows:

1 — Record is a CDR
0 — Record is not a CDR

2:27

Disk and File Crganization

The channel flags, byte 18, define the channel attributes as follows:

2279398

Bit(s) Meaning

0-1 Scope of channel, as follows:
00 — Task locai
01 — Job local
10 — Global

2 Shared, as follows:
1 — Channel is shared.
0 — Channel is not shared.

3 Symmetric, as follows:
1 — Symmetric channel
0 — Master/slave channel

4 Assign, as follows:
1 — Channel owner processes assign LUNO.
0 — Channel owner does not process assign LUNO.

5 Abort, as follows:
1 — Channel owner processes abort request.
0 — Channel owner does not process abort request.
6 110 utility, as follows:
1 — Channel owner processes I/O utility request.
0 — Channel owner does not process l/O utility request.

7 Reserved.

2.28 22705109701

Disk and File Organization

When the device resource type flag (bit 6, byte 21) is set, the default resource type (byte 20) has the
following significance:

0 — Dummy device
1 — Special device
2 — 743 keyboard send/receive (KSR)
3 — 733 automatic send/receive (ASR)
4 — 733 cassette drive
5 — Reserved
6 — Single-sided diskette drive
7 — Disk drive
8 — Magnetic tape drive
9 — Teleprinter device (TPD)
10 — 911 VDT
11 — Serial printer
12 — Parallel printer
13 — Four-channel communication controller (FCCC)
14 — Communication interface module (CIM)
15 — Industrial device
16 — Card reader
17 — 940 VDT
18 — 931 VDT
19 — Reserved
20 — Bit-oriented/character-oriented asynchronous
interface module (BCAIM)

When the file resource flag (bit 7, byte 21) is set, the default resource type (byte 20) has the follow-
ing significance:

Value Device

Reserved
Sequential file
Relative record file
Directory file
Program file
image fiie

OB N-=2O

2270510-9701 2-29

Disk and Fiie Organization

The resource type flags in byte 21 define the default resource type in byte 20. The flags are as
follows:

0-4 51617

2279399

Bit(s) Meaning
0-4 Reserved.

5 Channel resource flag, as follows:
1 — Default resource is an IPC channel. Byte 20 con-
tains a channel resource type.
0 — Default resource is not an IPC channel.

6 Device resource flag, as follows:
1 — Default resource is a device. Byte 20 contains a
device resource type.
0 — Default resource is not a device.

7 File resource flag, as follows:
1 — Default resource is a file. Byte 20 contains a file
resource type.
0 — Default resource is not a file.

When the channel resource type flag (bit 5, byte 21) is set, the default resource type (byte 20)
should contain 0 for a symmetric channel.

2.3.1.5 Key Descriptor Record (KDR). If the file being inserted is a KIF, the KDR requires
another directory record. DNOS locates this record by searching linearly from the FDR of the file.
The KDR is inserted in the first available directory record following the FDR.
A KiF has a primary key and can have as many as 13 secondaiy Keys. A KDR describes the keys
that access records in the file. Figure 2-9 shows the format of a KDR.

2-30 2270510-9701

Disk and File Organization

DEC HEX

o-1 o-1 HasH KEY COUNT

2-3 2-3 -3

4-5 4-5 RESERVED

6-7 6-7 NUMBER OF KEYsS

8 8 FLAGS CHAR COUNT oF KEY 1
10-11 A-B OFFSET TO KEY 1

fe-13 c-D ~ SECONDARY KEYS ~

T (FOUR BYTES EACH AS DEFINED FOR KEy 1)

62~-63 3E-3F

2279400

Figure 2-9. KDR Format

The KDR shown in Figure 2-9 contains the following information:

Byte Description

0-1 Hash key count. The number of records in the directory that hashed to
this record number. The KDR is not hashed. When this value is greater
than 0, an FDR, ADR, or CDR has been written in the next available
record because this record is occupied.

2-3 Hash key. This field corresponds to the hash key field of other direc-
tory records and contains — 3, indicating that this is a KDR.

4-5 Reserved.

6-7 The number of keys defined for this KIF. A maximum of 14 keys are

available for any KIF. One key, the primary key, is required. Keys 2
through 14 are optional secondary keys. :

8 Primary key flags.
9 The key length, in bytes (characters), for the primary key.
10-11 The byte number of the first character of the key within the KIF data
record.
12-63 Data for the secondary keys, if any. Four bytes in the format shown

for the primary key (that is, key flags, key length, and key offset) are
supplied for each secondary key.

2270510-9701 2-31

Disk and File Organization

The key flags are defined as follows:

0-3 415 6] 7
2279401
Bit(s) Meaning
0-3 Reserved.
4 Sequential placement flag. Applies only to primary key, as follows:

1 — Created by system using sequential placement scheme.
0 — Created by system using hash placement scheme.

5 Value present fiag, as follows:
1 — Value need not always be present. (Valid only for secondary
keys.)
0 — Value must always be present.

6 Sequential commands flag, as follows:
1 — Sequential commands are desired.
0 — Sequentiai commands are not desired.

7 Duplicates flag, as follows:
1 — Duplicate values are allowed for this key.
0 — Unique values are required for this key.

2.3.1.6 Example of a Dump Directory. Figure 2-10 shows a dump of the directory file .JB.DIR.
The directory contains a sequential file {.JB.DIR.SEQ), an image file (.JB.DIR.IMAG), a program file
(.JB.DIR.PROG), and a KIF {(JB.DIR.KEYFILE). The directory also contains an ailias for the KIF
(.JB.DIR.KEYFILE) and the KDR for the KIF. The directory was created to have seven entries in
addition to record 0 (the directory overhead record).

2.3.2 Sequential Files

.Sequentiai fiiles support variabie-iength iogicai records. Logicai records can span physicai record
boundaries regardless of ADU boundaries. When a logical record spans a physical record bound-
ary, it is divided into partial records in separate physical records. The first word of each physical
record has two flags, which indicate the following:

* Whether the first logical record is continued from the preceding physical record

° Whether the last logical record is continued to the following physical record

2-32 2270510-9701

FILE ACCEZS NAME:

RECORD: QOOOO0

0000 0007 0004

0010 Q002 4A42
SAME

QOFE QOO0

RECORD: 000001

00Q0 0000 0005

0010 0ANO O=00
SAME

0O0z4 O7BD O10E
SAME

Q020 4Q4F 4EZ0
SAME

QOFE Q000

RECORD: 000002

OO0 0001 0002

0010 3CZ0 0120

Q020 0000 0023

OO20 D000 OO0

0040 YIiEA 01032
SAME

0020 4A4F 4E20
SAME

QOFE Q000

RECORD: Q00003

QOO0 0000 0000
SARE

O0FE Q000

RECORD: 000004

0000 0002 0004

0010 1E0Z 0200

0020 0000 Q000

0030 0027 0059

0040 Y1EE 0101
SAME

Q00 4A4F 4EZ0
SAME

OOFE Q000

RECORD: GO0005S

0000 0001 FFFD

0010 OO00 OO0
SAME

QOFE 0000

RECORD: GOO00&

Q000 0000 Q004

0010 1EL1Z2 0000

QOZ0 Q004 Q000
ZAME

OOFE 0000

RECORD: 000007

QOO0 0000 0004

0010 C420 0120
SAME

0034 O7BO O10E
SAME

0070 4A4F 4EZO
SAME

OOFE Q000

2270510-9701

0001

2020

5345

0030

S052
0120
0000
Q000
0000

4R45
00o1c
Q000
Q005
Q01D

2020

4B45
Q000
[s1nlnln]

4v41n0
0120

Y118

2020

JB.DIR

4449

2020

0000
2020

2020
QASA

010E

0000

4F47
0011
003z
O7BD
0000

2020
4CAE
Q000
010K
Q000

2020 0000

0000 0000

5920
0O0ZA
0029
O7RD
0000

2020
4CRBF
Q001
Q10E
QOO0

2020 0000

Q002 Q=0D
COO0D O

5944
QOO0
0000

4241
QOO0
Q000

4147
0011

2020
4CEY
O7B0O O10E

Q000

2020

Figure 2-10.

5220
Q200

“1F1

Q000

2020
0001
QOO0
210R
Q000

2020
0001
Q000
7124
0000

Q000

Q000
0000

4520
[aln]als]
QOO0

2020
001

¥1FO

0000

2020
GO0

o

oal
o)

o)

0101

Q000

0000
0000
0000
0O7BDO
0000

0000

Q000

G000
Q000
0029
O7BD
0000

QOO0

0014
0000

QOO0
QOO0
Q000

2020

Q000

QOO0
0000

Q000

Q000

QOO0
0000
Q000
010E
Q000

Q000

QOO0
0006
0027
O10E
OQ0O0

0000

QOO
OOO0

0000
Q000
0000

Q000
QOO0

QOO0

QOO0

Dump of a Directory File

JB

e
T~ m

.Y

=)
L

B

LI

Disk and File Organization

233

Disk and Fiie Organization

The flag bits, when set to 1, have the following meanings:
Bit Meaning

0 First logical record in this physical record is continued from the preceding
record.

1 Lastlogical record in this physical record continues in the next record.
Figure 2-11 shows the format of a sequential file. Each logical record or partial record is preceded
by a header word and followed by a trailer word. The header and trailer words contain the number
of bytes of user data. An EOF is signified by a zero-length record (zero header and trailer).
When a record ends with only one or two words remaining in the physical block, there is no room
for another partial record (header/dataltrailer). In this special case, the next record begins in the

following block; the last word of the physical record is effectively a physical record trailer. It con-
tains the number in the last trailer plus the number of unused bytes (two or four).

Logical records of a sequential file can be blank suppressed. (The sequentiai fiie is created biank
suppressed.) In blank-suppressed files, words that contain two blanks are removed. A blank-
suppressed logical record has the following format:

. Header word

. Byte containing a count of words of blanks

. Byte containing a count of words that contain at least one nonblank character

. Data characters

* Repetitions of items 2 through 4

. Trailer word

2-34 2270510-9701

Disk and File Organization

PHYSICAL RECORD O

DEc HEX

0 o) 0|1 FLAGS
2 2 8 | REcorD 0 HEADER
4 4 L L

- LoGICAL RECORD O DATA ,.r
10 A
12 C 8 | RECORD O TRAILER
14 E E | RECOrRD 1 HEADER
16 10 A ~

"’ LoGicAL RECORD | DATA +
28 iC
30 1E E | REcorD | TRAILER
32 20 A | RECcorD 2 HEADER
34 22 i

’L' LoGgicAL RECORD 2 DATA ’

'T (PARTIAL) 'T
42 2A
A4 2C A | RECORD 2 TRAILER

2279402 (1/2)

Figure 2-11. Sequential File Format (Sheet 1 of 2)

2270510-9701 2-35

Disk and File Organization

PHYSICAL. RECORD 1

Dec Hex

0 0 110 FrLaGs
2 2 4 | RECORD 2 HEADER
4 4

A LoGicAaL RECORD 2 DATA ﬁL

I (PARTIAL) ~
8 8
10 A 4 | RECORD 2 TRAILER
12 C A | RECOrRD 3 HEADER
14 E

A A

LoGicAL REcOrRD 3 DATA

Vs ud ls
22 16
24 18 A | RECORD 3 TRAILER
26 1A A | REcorD 4 HEADER
28 iC

Faaad ~

LoGicAL REcCORD 4 DATA

-~ ~
36 24
38 26 A | RECORD 4 TRAILER
40 28 0

™~ EOF
42 2A 0
44 2c 2 PHYsIcAL RECORD
TRAILER

Figure 2-11. Sequential File Format (Sheet 2 of 2)

2-36 2270510-9701

Disk and Fjle Organization

Figure 2-12 shows a blank-suppressed record. Notice that items 2 and 3 precede each group of
characters (item 4) and that the number of words in item 3 is the length (in words) of item 4. In
Figure 2-12, counts are hexadecimal, and hexadecimal ASCIl representations are shown for
characters.

INPUT RECORD:

COLUMN: . 0 0 ! ! 2 2 3 3 [X X) 8
1 5 0 5 0 5 0 5 0
FIRST LAST AGE (CoLumns 33-
80 BLANK)

2279403

2.3.3 Relative Record Files

A relative record file is a file in which each logical record can be randomly accessed by its unique
record number. All records in a relative record file are of the same length. Relative record files can
be unblocked or blocked:

. Unblocked — The logical record size is greater than half of the physical record size.

. Blocked — The logical record size is less than or equal to half of the physical record
size.

2.3.3.1 Unblocked Relative Record Files. Each logical record of a relative record file occupies
one physical record of the file. A physical record should be any integral multiple of contiguous
sectors. File accesses require reading or writing all sectors of a physical record. One disk access
can read multiple contiguous sectors. Records read from unblocked relative record files are trans-
ferred directly from the disk to the user buffer without intermediaté system buffering. When the
user specifies a particular record of the file, the record number is converted to an absolute ADU
number and a sector offset within the ADU. The absolute disk address is then passed to the disk
device service routine (DSR) to perform the actual data transfer. The disk DSR converts the ADU
and relative sector to the physical track and sector disk address that the disk controller hardware
requires.

2270510-9701 2-37

Disk and File Organization

A PRECEDING L.oGICAL RECORDS ~
T (IF ANnY) T
0016 RECORD HEADER
00 03 0 WORDS BLANKS, 3 WORDS DATA
46 49 F 1
52 53 R S
54 20 T BLANK
04 02 4 WORDS BLANKS, 2 WORDS DATA
ac a1 L A
53 54 S T
05 02 5 WORDS BLANKS, 2 WORDS DATA
20 41 BLANK A
47 45 G E
18 00 24 WORDS BLANKS, 0 WORDS DATA
0016 RECORD TRAILER
~ SUCCEEDING LoGIcAL RECORDsS ~
T (IF ANY) T
2279404

Figure 2-12. Blank-Suppressed Record

2-38 2270510-9701

Disk and File Organization

Each physical record must begin on a sector boundary. A physical record that begins on a sector
boundary that is not also an ADU boundary cannot span the ADU boundary. The disk format for
unblocked relative record files is as follows. In the first format, the record is larger than the ADU;
in the second format, the record is smaller than the ADU.

Unblocked Relative Record File

Record Size > ADU Size

RECORD
N
/S \
ALL DATA ALL DATA ALL DATA UNUSED
AW Y AN A /
\/ N \"2
ADU ADU ADU
2279405
Record Size < ADU Size
PHYSICAL
I\
/ N\
LOGICAL
ALL DATA ALL DATA ALL DATA
FIRST RECORD SECOND RECORD THIRD RECORD UNUSED
/
—V
ADU
2279406
2270510-9701 2-39

Disk and Fiie Organizaiion

2.3.3.2 Bilocked Relative Record Files. These files are similar to unblocked relative record files
except that multiple logical records can be stored in each physical record. Logical records cannot
span physical records. Records are transferred via intermediate blocking buffers that are in the
general pool of user space. The disk format for blocked relative record files is as follows:

Blocked Relative Record File

PHYSICAL RECORD 1 PHYSICAL RECORD 2
REC 1 REC 2 REC 3 | REC 4 REC5 | REC6 | REC7 | REC 8
4 LOGICAL RECORDS UNUSED 4 LOGICAL RECORDS UNUSED
\ /
v .
ADU

2279407

2.3.4 KeyIndexed Files (KIFs)
A KIF is a file in which you can access records by the value of a character string called a key. Each
KIF can have as many as 14 keys, with access through each key independent of the other keys.

Each entry of data made to the file is called a record. DNOS reads the records of other file types by
identifying their positions in the file. In contrast, DNQS reads the records of KIFs by identifying a
portion of the content of the record.

2.3.41 KIF Keys. A character field used to identify a record is called a key. A key is defined at
the file level and applies to every record in the file. It is a static set of values that cannot be
changed except by reconstructing the file. A KIF must have at least one key. KIF key fields are
defined when the file is created and can be from 1 to 100 characters long.

The first key defined is the primary key; the others are defined as secondary keys. The primary key
need not be in the first portion of a record; also, secondary key fields can physically precede the
primary key within a record.

When you define a key, you can specify the following:
. Whether the key permits duplicates
. Whether the key is modifiabie

If the value of a key must be unique throughout an entire file, the key must not permit duplicates.
This prevents a record from being inserted into the file if the record has the same key value as a
record already in the file. For example, keys such as employee numbers and social security num-
bers should not be duplicatable, while keys such as names and salaries should permit duplicates.

If a key is modifiable, you can change its value after a record with that key value has been inserted
into the file. A key containing a person’s salary should be modifiable, while a key containing the
person’s social security number should not be modifiable. If a record with a nonmodifiable key
contains incorrect data, the only way to correct it is to delete and reenter the record. The primary
key cannot be modifiable.

2-40 2270510-9701

Disk and File Organization

2.3.4.2 KIF Records. As you enter records into a KIF, they are logically sorted by key value. If
more than one record has the same key value, they are sorted in the order they were entered.

The records of a KIF can be read either randomly or sequentially. When the records are read ran-
domly, a key number and key value must be given for each Read operation. When the file is read
sequentially, a key number and key value is supplied for the first read. The sorted order of that key
determines the sequence of logical records returned by subsequent Read operations. The
operation requests the next record either in forward or backward order.

2.3.4.3 KIF Key and Record Example. Since a key is defined for each record in the KIF, the
records should contain related information, at least for the key portion. For example, related infor-
mation could be a number (social security or employee number) or a name. The following example
illustrates a KIF record and the keys the record contains:

1-9 10-20 21-30 31-40 41-46 47 48-52
123456789 DOE JOHN ANDREW 004442 l M | 02400 |
2279408

Key Columns Definitions
1 41-46 Employee number
2 01-09 Social security number
3 10-20 Last name
4 21-30 First name
5 31-40 Middle name
6 10-40 Full name
7 47 — 47 Sex
8 48 - 52 Monthly salary

The record is 52 characters long and contains 7 fields. Since the name fields are used in more than
one key, the record has 8 keys. Although this example does not include characters between keys,
you have the option of entering bianks or other data between keys. Also, in the example every
column is defined to be in at least one key. This is not required. Quite often only a small portion of
the record is defined to be part of a key, while the rest of the record contains data. The only require-
ments are that a primary key must be included and that no key can be longer than 100 characters.

2270510-9701 2.41

Disk and File Organization

Since the primary key does not have to be in any particuiar position or have any qualities different
from the other keys, you cannot determine which key is the primary key by looking at a KIF record.

Instead, you can determine the primary key by entering a Map Key Indexed File (MKF) command.
The primary key is identified as key number 1, as in the following example:

Start Duplicates

Key Column Length Modifiable* Allowed*
1 41 6 N N
2 1 9 N N
3 10 11 Y Y
4 21 10 Y Y
5 31 10 Y Y
6 10 31 Y Y
7 47 1 N Y
8 48 5 Y Y

Note:

* Y indicates yes and N indicates no.

2.3.4.4 Structure of KIFs. The structure of a KIF consists of the prelogging area, the B-tree
blocks, the data blocks, and the free chain blocks. A block is another term for a physical record.
Figure 2-13 shows the structure of the KIF before any records have been inserted. The allocation
for the file includes an area reserved for data and the B-tree area. The EOM is at the beginning of
that area. As records are inserted, B-tree blocks and data blocks are added, moving the EOM
toward the end of the allocation. The EOM indicates the current extent of the file. (KIFs are
expandable.)

You can also compress these files. When you copy KIFs using the Copy Directory (CD) command

or the Restore Directory (RD) command, you can compress the size to the EOM with the compress
(CMP) option.

242 2270510-9701

Disk and File Organization

PRELOGGING
AREA

B-TREE
RooTs

FREE CHAIN

-EOM-

> FUTURE DATA AND B-TREE AREA

EnD OF
ALLOCATION

2279409

Figure 2-13. KIF Structure

Prelog Area
The first (18 x K) + 3 physical records, where K is the number of keys defined for the file, are
the KIF prelog blocks. Any physical record modified is first copied to a prelog block to pre-
vent data loss in case of a fatal error during the data transfer. If a fatal error occurs, the
logged image is written back into the original record on the next open of the file.

B-Tree
The next K physical records are the root nodes of the B-trees. Every defined key has a B-tree
(up to 14 B-trees).

Free Chain
One block is created initially adjacent to the B-tree roots to contain the chain of free blocks.
The block is accessed using a pointer in the file control block (FCB). The FCB is a memory-
resident data structure of the file descriptor block.

When B-tree blocks become empty, the freed blocks are placed on the free chain. When a
record is deleted from a data block, the data block is placed on the free chain. When a record
is inserted into the file, it is placed in a block on the free chain.

Data Blocks
Data blocks contain the logical records of the file. All user data (logical records) is blank
suppressed when stored in data blocks. The following paragraphs describe the structure of
B-trees and data blocks.

2270510-9701 243

Disk and File Organization

Sequential Record Placement.

When you insert data records into a KIF, the data records are

piaced in the data area sequentiaily. When you deiete records from a fiie, avaiiabie biocks are
placed on the free chain to utilize available space. The KIF uses the available space on the free
chain before using any space after the EOM. Figure 2-14 shows sequential record

placement.

2279410

2-44

PRELOGGING
AREA

B-TREE
RooTs

FREE CHAIN

Dara

FREE

DATA

B~-TREE

FREE

DATA

EOM

END OF
ALLCCATION

> DATA AND B-TREE AREA

Figure 2-14. Sequential Record Placement Method

2270510-9701

Disk and File Organization

B-Trees. A B-tree is a balanced tree. It has multiple branches per node, and all leaf nodes are at
the same level. DNOS B-trees can include as many as nine levels.

Each node of a B-tree occupies one physical record of a KIF and is called a B-tree block. The root
node is initialized when the file is created, but all other nodes are created as records are added.
Each B-tree block contains a few words of overhead and several pointer/key value pairs.
Figure 2-15 shows the format of a B-tree block.

Dec HEX
0-3 0-3 Brock NUMBER
4-5 4-5 L.oc NUMBER
6-7 6-7 SPACE REMAINING
811 8-B PREDECESSOR POINTER
OR FREE CHAIN POINTER
12-15 C-F SUCCESSOR POINTER
16 10 No. oF ENTRIES FLaGs
18 12 SEeQ. INPUT Pos. SEQ. INPUT COUNTER
20-23 14-17 BrLock NUMBER POINTER
VALUE
24-25 18-19 ID (LEAF NODE) OR RESERVED PAIR
26-n 1A=-n KEY VALUE
Yasd r~
~ ADDITIONAL POINTER/VALUE PAIRS ~
n= 26 (>1A) + LENGTH OF KEY
2279411

Figure 2-15. B-Tree Block Format

2270510-9701 2-45

Disk and File Organization

The fields of the B-tree block are as follows:

Byte Description
0-3 Physical record number of this B-tree block. Used for unlogging.
4-5 Log number that file management assigns when this block is logged.
6-7 Number of available bytes remaining in this B-tree block.
8-11 Preceding node on the same level; zero if leftmost.
12-15 Next node on the same level; zero if rightmost.
16 Number of pointer/value pairs in the B-tree block.
17 Flags, as follows:

Bits 0 — 6 — Reserved

Bit 7 — Set to 1 for leaf node; otherwise, set to zero
18 Sequential input position.
19 Sequentiai input countef.
20-23 Physical record number of the next lower node if this is not a leaf

node. If it is a leaf node, physical record number of the data block
containing the logical record associated with the key value.

24-25 For a leaf node, the ID of the logical record within the data block.
Otherwise, this word is reserved.

26—-n The actual key characters.

The remainder of the B-tree block contains more pointer/value pairs, each containing a physical
record number and a key value (as in the pair that begins at byte 20). These entries in a B-tree block
are kept sorted in increasing order of key vaiue. The smaiiest key vaiue is the first entry.

The log number in the B-tree block and in data blocks is a number that file management assigns
when any operation that modifies any block in the file is performed. The same log number is
placed in all blocks being modified during the operation. This is done as the blocks are logged
(that is, copied into the prelog area). If you need to restore the file due to unsuccessful completion
of the operation, the records in the prelog area with the log number of the operation are unlogged
{copied back into the file).

2-46 2270510-9701

Disk and File Organization

The sequential input position, byte 18, and the sequential input counter, byte 19, require some
explanation. When the B-tree block is created, byte 18 is set to 0 and byte 19 to the number of
pointer/value pairs available plus 1. After the first insert, byte 18 is set to the number of keys in the
block greater than the inserted key, and the value in byte 19 decreases by 1. Subsequent inserts
decrease the value in byte 19 by 1 if the number of keys in the block greater than the inserted key
equals the value in byte 18. If byte 19 equals 1 when the B-tree block is about to split, the ratio of
the split will be 90/10 instead of 50/50. The 90/10 ratio indicates that the top 90 percent of the keys
are placed in one block and the remaining 10 percent in another.

If the block is not a leaf node, each pointer field points to the root of the subtree that contains all
key values less than or equal to the key value associated with the pointer. That is, the highest
key value contained in the subtree is the key value associated with the pointer, as shown in
Figure 2-16.

Figure 2-16 shows the development of the B-tree for a key of an example file. The key is two char-
acters long, and each node has three pointer/value pairs. When the file is created, the root node
contains one pointer/value pair, containing > FFFF, the maximum value of the key. The first opera-
tion inserts a record with a key of AG, resulting in two pointer/value pairs in the root node. inserting
another record, key MO, fills the root node.

The next record to be inserted has a key value of B0O. The root node is split, producing a second
level in the B-tree. For purposes of this example, all splits are 50/50. The new level contains two
nodes, and the root node contains pointers to these nodes. The root node now contains keys BC
and > FFFF. The left node at the new level contains keys A0 and B0, and the right node contains
keys M0 and > FFFF. Inserting a record with a key of A1 fills the left node at the bottom (leaf node)
level.

When the record with a key of A2 is inserted, the left node splits, resulting in three leaf nodes. The
nodes contain keys A0 and A1, A2 and B0, and M0 and > FFFF, from left to right. When the record
with key A3 is inserted, it fills the center leaf node.

Inserting the record with a key of A4 again forces a new level. All nodes except the left and right
leaf nodes are modified. The root node now contains keys A3 and > FFFF. The second level con-
sists of two nodes. The left node contains keys A1 and A3, and the right node contains keys B0
and > FFFF. The new level contains four nodes with keys A0 and A1, A2 and A3, A4 and B0, and M0
and > FFFF, from left to right.

2270510-9701 2-47

Disk and File Organization

CREATION MaAx
INSERT AOQ A0 | Max
INSERT MO A0 | MO | Max
INSERT BO BO | Max
A0 BO MO | Max
INSERT A1 BO | Max
A0 | A1} BO MO |Max
INSERT A2 Al | BO |Max
A0 | Ai Az | BO MO | Max

2279412 (1/2)

Note:

2-character keys; maximum is >FFFF; 3 keys per B-tree block

Figure 2-16. B-Tree Exam

2-48 2270510-9701

Disk and File Organization

INSERT A3 A0 | BO |Max
AO | A1 A2 | A3 | BO MO |Max
INSERT A4 A3 |Max
Al | A3 BO | Max
Ao | A1 A2 | A3 A4 | BO MO |Max

2279412 (2/2)

Figure 2-16. B-Tree Example (Sheet 2 of 2)

2270510-9701 2-49

Disk and File Organiaztion

(2]

Data Blocks. A data block is a physical record of the file and contains a few words of overhead
and several logical records as shown in Figure 2-17. The word following the last logical record has
a zero value.

DEC HEX
0-3 0-3 BLock NUMBER
4-5 4-5 Lo NUMBER
6-7 6-7 SPACE REMAINING
8-11 8-B FREE CHAIN POINTER
12-13 C-D HicHEsT LoGicaL RECORD ID UseD
’
14-15 E-F RECORD SizZE
i6-i17 io-11 LoGicAL RecorD ID
L FIRsT
18- 12— C RECORD
~ Ao .
RECORD
la g o
P
~ . ~
~ ADDITIONAL RECORDS ~
~
REcORD Si1ZE
LoGicAL REcorD ID
LAST
RECORD
A - '
P r RECORD ~
Py
0
~ ~
~/ ~
2279413

Figure 2-17. Data Block Format

2.50 2270510-9701

Disk and File Organization

The fields of a data block are as follows:

Byte Description

0-3 Physical record number of the block.

4-5 Log number that file management assigns when this block is logged.
6-7 The number of bytes remaining in the block.

8-—-11 Free chain pointer. The block is placed in the free chain when a logical

record is deleted from the block. The block may or may not include
active logical records.

12-13 Highest ID assigned to any logical record within the data block.
14-15 Size (in bytes) of the first logical record inclusive.
1617 The ID assigned to the first logical record.

18— First logical record.

Additional records (if any) follow the first record. For each record, the size and ID precede the
record. A word of zeros (the record size of the next record) follows the last logical record.

23.4.5 Description of Logical Record. A logical record in a KIF is a blank-suppressed record
(described in paragraph 2.3.2). The first word of a blank-suppressed record contains the number of
words of blanks removed and the number of words of data that follow. Following the specified
words of data is another word with similar counts related to the next portion of the record. This
pattern continues through the entire record, as shown in the following example:

222222222 PUBLIC JOHN CUE 333333 M 44444

2279414

2270510-9701 2-51

Disk and File Organization

The record is written to the file as follows:

RECORD SIZE

LOGICAL RECORD ID
NUMBER OF WORDS OF BLANKS
// NUMBER OF DATA WORDS FOLLOWING

0030 0003 0008 3232 3232 3232 3232 3250 5542
4320 0202 4AAF 484E 0302 4355 4520 0306 3333
3333 4034 3434 3434 NUMBER OF DATA WORDS FOLLOWING

NUMBER OF WORDS OF BLANKS

2279415

4C49
3333

The records of a KIF that has only a primary key are a special case. The characters of the key are
replaced by blanks in each record and are suppressed. The following example shows the record
given in the preceding exampie with a primary key consisting of the entire name, columns 10

through 40:

SINGLE KEY ID =3 KEY = ENTIRE NAME

THE KEY FIELD CONTAINS BLANKS

O01E 0003 0005 3232 3232 3232 3232 3220
3333 3333 3333 4034 3434 3434
2279416

OF 06

The record contains 30 bytes instead of 48. The first word following the record number shows 5
words of data instead of 8. The word that precedes the last block of data replaces a field of 30

blanks.

2.34.6 KIF Disk Usage. This paragraph explains how to calculate the size of a KIF. The accu-
racy of the estimate depends on the accuracy of the parameters used in the calculation. These

parameters are as follows:
. Physical record size
] Average blank-suppressed logical record size
. Sizes of all the keys
e Size of an ADU on the disk on which the file is created
. Maximum number of logical records

. Whether the input is sorted

2-52

2270510-9701

Disk and File Organization

The most difficult parameter to estimate is the average blank-suppressed logical record size. This
is the average size of a logical record if all blanks are removed from all the records. You can easily
determine the maximum number of logical records if the records are already in a sequential file.
Otherwise, you must estimate this value. The other values are well defined and should require no
estimations.
The disk allocation of a KIF consists of three specific areas:

. Prelogging area

. B-tree nodes

¢ Data records

The prelogging area is the only area of the three that has an absolute value. The following formula
calculates the number of physical records of disk space required for this area:

NPRprelog = (18 *K) + 3
where:

K is the number of keys.

NOTE

In the following formulas, [RD] means to round the number down to
the nearest integer, and [RU] means to round the number up to the
nearest integer.

The B-tree nodes are the records that contain the structures that make KiFs function differently
from other file types. Only leaf nodes are included in this calculation so that the file estimate can
be low by a few records. The following formulas estimate the number of physical records required
for these structures:

X = PRS — 20([RD]
KS + 6

Y = #LR[RU]
X

NPRB-tree = Y + (SPLIT * Y)[RU]

2270510-9701 2.53

Disk and File Organization

where:

PRS is the physical record size.

KS is the size of the key.

#LR is the maximum number of logical records.

SPLIT is 0.1if the input is already sorted with respect to the key; otherwise, it equals 0.25.
You must determine a B-tree value for each key in the file.

The last area includes the data records. The following formulas estimate the number of physical
records required for this area:

X = PRS — 16[RD]
LRS + 6

NPRdata = #LR[RU]
X

where:

PRS is the physical record size.

LRS is the average blank-suppressed logical record size. (If the file has only one key, this
value should not include the iength of the key; that is, assume that the key consists of all

blanks.)

#LR is the maximum number of logical records.

The 16 bytes subtracted from the PRS are the overhead of the physical data block. The 6 bytes
added to the LRS are the overhead of each logical record.

The following formula calculates the total number of physical records required:

K
TPR = NPRprelog + NPRdata + = NPR B-tree i
i=1

where:

K is the number of keys.

2-54 2270510-9701

Disk and File Organization

Finally, the following formula calculates the total number of ADUs required:

if PRS > = ADU

then number of ADUs required = PRS[RU] * NPR total

ADU

else number of ADUs required = 1

PRS

*NPR total

where:
PRS is the physical record size.

ADU is the ADU size.

The following are examples of these calculations.

EXAMPLE 1

A) NPRprelog = (18 * 1) + 3 = 21
B) 864 -20mmp - 32

20+ 6

PRS =864

ADU = 864

LRS = 60 (Average blank-compressed key size)
KS =20

K =1

#LR =800

Sorted input (SPLIT =.1)

800 » 800 _
BRI + (1 * S IRUJ) [RU] = 25 + 3

NPR B-tree = 28
C) 864 — 16[RD] = 12
60 + 6

NPRdata = 800[RU] = 67
2

2270510-9701

2-55

Disk and File Organization

NPRtotal = NPRprelog + NPR B-tree + NPRdata

=21+ 28 + 67

= 116

ADUs = 8641py;+ 116 = 116
864

EXAMPLE 2
PRS = 864
ADU = 864
LRS =60
KS1 =20
KS2 =20
KS3 =20
K =3
#LR = 2600

Random input (SPLIT = .25)

A) NPRprelog = (18*3) + 3 = 57
B) 864 — 20[RD] = 32
20 + 6
2600 [RU] + (.25 * 2600 [RU])[RU] = 82 + 21
32 32
NPR B-tree(1) = 103 key 1

NPR B-tree(2) = 103 key 2
NPR B-tree(3) = 103 key 3

C) 864 — 16/Rp) = 12
60 + 6

NPRdata = 2600 [RU] = 217
12

NPRtotal = NPRprelog + NPR B-tree(1) + NPR B-tree(2) + NPR B-tree(3) + NPRdata
=57 + 103 + 103 + 103 + 217
= 583

ADUs = 864 Ry + 583 = 583
864

2-56 2270510-9701

3
Extending SCI

31 SCIOVERVIEW

The System Command Interpreter (SCI) is the principal interface between the operating system
and the user. SCI operates in a job and executes commands in both the interactive and batch
modes. Thus, SCI can execute in an interactive job at a terminal or from a batch stream without an
associated terminal. Except for the way in which it accesses commands and their parameters, SCI
executes in the same manner for the interactive mode as for the batch mode.

In the interactive mode, SCI displays prompts that request the values of command parameters.
SCl can have one associated foreground task and one background task in the interactive mode.

In the batch mode, you specify parameters by field prompt assignments in the command stream.
The batch stream executes in background. A background task or an SCi batch job receives a copy
of the synonyms and logical names when execution begins. Changes in the background or the
batch mode synonyms and logical names do not affect the foreground values.

You can initiate an independent SCI batch job by using the Execute Batch Job (XBJ) command.
Since batch jobs do not require associated terminals to execute, you can start any number of
themn from a terminal. Figure 3-1 illustrates the concept of SCl interactive and batch modes.

The name manager task maintains synonyms and logical names for jobs running under DNOS.
Synonyms are local to a job; however, logical names are either job-local or global in scope. You
can access synonyms and logical names for the job from SCI utilities or user tasks by issuing
supervisor calls (SVCs) to the name manager. The name manager retrieves synonym and logical
name definitions. However, you should call the appropriate SCI interface S$ routines to access
synonyms rather than issuing the SVC. This allows you to conform to any change in SCI imple-
mentation by linking the updated version of the S$ routines.

A synonym is a variable in the SCi language and represents either a string of characters or a null
value. It functions as an alternative for another string. It is usually shorter than the text it replaces
and more convenient to use.

A logical name is a user-specified character string used to name a resource within the scope of a
job. A resource can be referenced by the logical name instead of a pathname or a device name.
Consequently, a logical name resolves to a pathname or device name. A logical name can also
appear as the first component of a pathname. Unlike synonyms, logical names can have asso-
ciated parameters. This provides a general method of passing user-defined parameters to a task.
Parameters are used to provide execution time values for SVC control blocks. Figure 3-2 shows
the flow for accessing synonym and logical name tables from an SCI utility.

2270510-9701 31

Extending SCI

2279417

BACKGROUND ¢

FOREGROUND

XB or
QBID

XBJ

JoB 2

BATCH SCI

JOB 3

OR

BACKGROUND SCI

BACKGROUND TASK

Figure 3-1.

USER JoB

BaTcH SCI

SCI Modes of Operation

SYSTEM JoB

REQUEST
sci/
UTILITY

SVC or
S $ ROUTINE

-

NAME
MANAGER

SYNONYM

TABLE

LoGicAaL
NAME
TABLE

2279418

3-2

SCi Access io Logicai Names and Synonyms

2270510-9701

Extending SCi

The synonym table and logical name table are copied from a disk file when a user logs on. The file
is usually identified with the user ID in the .S$USER directory. However, it is also possible to use
the Modify Terminal Status (MTS) command to have the user specify the file during logon. The
name manager accesses memory copies of synonyms and logical names. The synonym and logi-
cal name table in memory are written back to the disk file when the interactive SC| terminates.

When several users are logged on with the same user ID and job name, they can share an environ-
ment of synonyms and logical names by responding YES to the RECONNECT prompt at log-on.
Each user starts the session with the same set of synonyms and logical names. Each has his own

environment as he makes changes. The environment of the last person to sign off from this job is
saved on the disk.

In the interactive mode, SCI also uses the terminal local file (TLF). It provides a buffer on disk for
lines to be displayed to the user. The lines are buffered so that the interactive SCI user can scroll
through them. The name of the file is determined from the SCI mode and the terminal number, as
follows:

] Foreground: .S$FTLFxx (xx = terminal number)

e Background: .S$BTLFxx(xx = terminal number)

e Batch SClJob: .S$JLxxxx (xxxx = job ID)

3.2 USER-DEFINED SCl COMMAND PROCEDURES

You can extend SCI by defining SCl command procedures for specific applications or by redefin-
ing or modifying the command procedures supplied with the system.

The next paragraphs give a brief overview of the following topics:
e SCl primitives
° Command procedures
. Command processors

After the overview, these topics are covered in detail as the rest of the section explains how to
create your own SCl command procedures and command processors.

2270510-9701 3-3

Extending SC!

3.2.1 SCi Primitive

A primitive is the basic building block of the SCi language. Primitives aliow you to creaie com-
mand procedures, which enable you to create additional commands that meet your application

needs.

3.2.2 Command Procedure

A command procedure is a sequence of SCI statements (commands, primitives, or menu displays)
that SC! executes. A command and its associated field prompts are defined in the command
procedure.

You can use any existing SCl commands and any of the SCI primitives in a command procedure.

SCI command procedures are stored in a directory caiied a procedure library. Use separate
libraries for the SCI commands provided with DNOS and for those you create. This precaution
enables you to modify the libraries separately, since new releases can effect the SCI command
library that comes with DNOS.

3.2.3 Command Processor

A command processor is a task that an SCl procedure executes to perform a specified action. The
processor can be written in either a high-level language or assembly language. The processor can
access synonyms and logical names to communicate with SCI. For many applications, the proce-
dure calls the processor without passing any data to the processor. In more complicated cases,
the procedure passes parameters to the processor via the PARMS parameter of .BID, .DBID,
or .QBID.

The instructions or statements of the source code for the command processor vary with the lan-
guage used and the action to be performed. The command processor can contain any number of
instructions and can use the services of SCI.

3.3 SCILANGUAGE SYNTAX
The SCI language consists of a set of commands (primitives), special characters, and variables.
Command procedures use several SCI characters specifically defined for use in these procedures.

Table 3-1 defines these special characters and the SCI language syntax, and subsequent para-
graphs discuss primitives and variables.

3.4 2270510-9701

Extending SCI

Table 3-1. Special SCI Characters

Character Meaning

! Indicates the end of a record. Comments may occur after the ! but cannot
span lines.

* If it is in column 1, it indicates a comment statement; if it precedes a valid
field prompt type (Table 4-4), it indicates that the field prompt is optional.

@ Indicates that SCI should treat the character string following the @ sign
(and preceding the next nonalphanumeric character) as a synonym. If the
synonym was previously defined, the value of the synonym replaces the @
sign and character string; otherwise, the value of the synonym is defined as
the character string itself.

& indicates that the character string following the ampersand is a field
prompt. The value replaces the ampersand and the character string; if no
value is specified, a null string is indicated.

- If it precedes a valid field type, the initial value and the user response are
not echoed at the terminal. In a batch stream, the response is replaced by
four dashes.

A Delimits synonyms when concatenating them with other values or
synonyms.

= If it is in column 1, it causes the line in a batch stream to be executed but
not written to the listing file.

In the following examples, lowercase characters indicate values supplied by the user; items
enclosed by[]are optional.

The basic syntax of acommand in the SCI language is:
command[field prompt(s)]

where:

command is the SCI command and field prompt(s) is a list of field prompt assignments.

At least one blank space must separate the command from the field prompt(s); blank spaces can
also be entered before the command. Commas separate field prompts which can continue on
successive lines.

2270510-9701 3-5

Extending SC!

The basic syntax of a primitive in the SCIl language is:
primitive [keyword list]
where:

primitive is the SCI primitive and keyword list is a list of keywords associated with the
primitive.

At least one blank space must separate the primitive from the keyword list; blank spaces can also
be entered before the primitive. The keywords are separated with commas and can continue on
successive lines.

Any SCI language line (except a comment line) whose last nonblank character is an equals sngn
(=) oracomma(,) is continued on the following line.

The following example is processed as a single SCl command:

IDT YEAR=1980, MONTH=4,DAY=27,
HOUR=18 ,MINUTE=56

Note that blank spaces can also follow or precede the commas separating field . prompts. A
continued list of field prompts can begin anywhere on subsequent lines. Field prompts on succes-
sive lines are usually placed directly below the initial line of field prompts for appearance and
readability only.
3.4 SCIiLANGUAGE VARIABLES
SCl language uses the following three types of variables:

e Synonyms

. Logical names

. Field prompts
Synonyms and logical names allow you to reference an 1/O resource by an abbreviated name of
the resource and are applicable to every task in a job. Field prompts are assigned values deter-

mined by the field prompts within a command. The following paragraphs define these variables
and discuss their uses.

3-6 2270510-9701

Extending SCI

3.4.1 Synonyms
Synonyms are names that you assign to represent I/O resources using any of the following:

] .SYN primitive

] Assign Synonym (AS) command

e S$SETS used in an application program

. Name Manager SVC (> 43) execution
The first three are user interfaces to the Name Manager SVC. This section discusses the .SYN
primitive, S$SETS, and the AS command. The DNOS System Command Interpreter (SCI) Manual
explains the AS command and the DNOS SVC Reference Manual explains the Name Manager SVC

execution.

The following example shows how the .SYN primitive defines a synonym equivalent to the direc-
tory component of a pathname:

-SYN MY=DS02.MKC.SOURCE

The preceding example assigns the synonym MY to represent the directory DS02.MKC.SOURCE.
As aresult, afile in this directory can be referenced as follows:

[1 SF
PATHNAME: MY_.DATA

When using synonyms, there are three ways to determine a synonym value, as follows:

o In the context of an SCI command procedure, preéede the synonym name with an at
sign (@)

e Use S$MAPS/S$SNCT in an application program.
U] Execute the Name Manager SVC (> 43).

The first two are user interfaces to the Name Manager SVC. S$MAPS and S$SNCT are discussed
later in this section.

When the @ sign precedes the synonym name in a string or expression, the synonym value

replaces the synonym. For example, if the string DEVICE is previously defined as a synonym with
the value LPO1:

“LISTING DEVICE IS QDEVICE"

is evaluated by SCl as:

“LISTING DEVICE IS LPO1"

2270510-9701 3.7

Extending SCI

If a synonym does not have a previously assigned value,
For instance, if the synonym MY has not been defined, th

SCl uses the synonym name as the value.
& lowing is true:

~ £l
nec ol

.SYN X=aMY.MKC.DATA

is equivalent to

.SYN X=MY.MKC.DATA

SClI reads the synonym string characters from right to left, identifying the string following the @
sign as a synonym name. If there is more than one @ sign within a string of characters and the @
signs are not preceded by a special character (that is, the character is not a dollar sign, bracket,
back slash, or alphanumeric), the string following the first @ sign encountered is evaluated and

the synonym name is replaced by the value.
For example, if the following synonym is defined as:
.SYN GHI=123

and is used in the following synonym definition:

.SYN ABC=aDEFAaGHI
SCl evaluates the string GHI, reading from right to left, and replaces the synonym with its defined

value as follows:

.SYN ABC=aDEF123

SCI begins reading from right to left again, finds the @ sign and evaluates the entire string
@DEF123 (not @ DEF). Since DEF123 has not previously been defined, the .SYN primitive assigns
the character string DEF123 as the value for the synonym ABC. .

Assuming the GHI synonym is stiii defined as 123 and the synonym DEF is assigned the following
value:

.SYN DEF=SRC

the foliowing synonym definition:

.SYN ABC=3DEF _R3GHI
would be evaluated as follows:

.SYN ABC=SRC.123

2270510-9701

Extending SC/

In situations where there is no special character in the string, use the caret (*) to separate two
synonyms or enclose a synonym. The caret allows proper synonym evaluation by SCIl, demon-
strated in the following example.

The synonyms OBJ and PGM are defined and used in the following .SYN primitive:

-SYN 0BJ=MY
.SYN PGM=PROGA

.SYN RESULT=a0BJ*APGM

SCl evaluates the synonyms OBJ and PGM separately when the caret is inserted and defines the
synonym RESULT as:

.SYN RESULT=MYPROGA

This process of reading and evaluating synonyms applies to all commands and is not unique to
the .SYN primitive; the .SYN primitive is used only as an example for simplicity. When a line is read
by SCI, textual substitution is performed immediately from right to left, without regard to the
command being processed. After the synonym is evaluated, the command line is processed
accordingly.

Because of the textual substitution on a line-by-line basis, a primitive split over severai lines can
have different results from a primitive written on one line. Consider the following example:

-.SYN X=ABC
.SYN D=1
.SYN D=aXx, E=ab

These lines generate the value ABC for D and the string 1 for E. Now, consider a second example:

.SYN X=ABC

.SYN D=1

.SYN D=aX,
E=aDb

These lines generate the value ABC for both D and E because the textual substitution in the last
line occurs after the .SYN D = @X line is processed.

A synonym can be used without any problems to represent an entire pathname or only the first
component of a pathname. However, because of the significance of special characters in the eval-
uation of synonyms, the use of synonyms to represent secondary components of a pathname can
cause problems. For example, if S is a synonym defining SOURCE and is used in
@VOL1.MYDISK.S, the synonym is not properly evaluated with the @ sign preceding the path-
name. Synonyms can be used as secondary components if the @ signs are properly placed in the
string evaluation. The correct synonym representation is VOL1.MYDISK.@S and is evaluated as
VOL1.MYDISK.SOURCE.

2270510-9701 3.9

Extending SCI

The period acts as a delimiter in concatenation for synonyms. For example, if the synonym ABC

has a vaiue of XYZ, the concaienation of ABC to the character siring .DEF wouid have the
following results:

@ABC.DEF=XYZ.DEF

A character string can be concatenated to a synonym, as shown in the following example (where
LAST represents the character string):

LASTaXxYZ
where:
@XYZ represents the value of a synonym.
In addition to the synonyms you create, SCl maintains some syndnyms which can be accessed by

command procedures. These synonyms are listed in Table 3-2.

Table 3-2. SCI Maintained Synonyms

Synonym Definition
$$BT Task run iD of iast background task.
$$BC Completion code of last executed background task.
$$CL List of current command procedure directories
$$MO Two-digit hexadecimal code for the SCl mode:
00 = Batch mode
01 = TTY mode
OF = VDT mode
$$SI Eight-character site name for this system.
$8ST Two-digit decimal station number (for example, 09). When executing in a

batch job, $$ST is assigned a value of 00.
$3UI User ID of one to eight characters (for example, SYSTEM).

ME Four-character station name (for example, ST09). When executing in a
batch job, ME is not assigned a value. '

Table 3-3 lists the synonyms which are generated by command processors and SC| when using
the error handling facility.

3-10 2270510-9701

Extending SCI

Table 3-3. Message Processing Synonyms

Synonym Definition

$3CC Hexadecimal completion code that can be returned by a command proces-
sor via the SSTERM or S$STOP routine

$$ES Error source indicator for the last status or error message

$$FN File name within directory .S$MSG from which the last message was
generated

$SMN Internal message number of the last error or status message declared by

either SCl or a command processor

$SVT Text string containing information about the last error or status message

3.4.2 Logical Names

Logical names appear functionally equivalent to synonyms, but they are significantly different.
Like synonyms, logical names are sets of names and values; however logical name values can
include a set of parameters in addition to the resource name.

The logical name value is always assumed to be an /O resource. Values associated with the logi-
cal names are descriptions of 1/0 resources, such as logically concatenated files or spooler
devices. Logical names can have pathnames and- descriptive parameters (for example, job-
temporary or ANSI format) and can be job-local or global in scope. The resolution automatically
occurs within DNOS each time the logical name is used in a context as an 1/0 resource. Treat the
logical name as an I/O resource once it is defined.

There are two ways that you can define a logical name:

U Execute the Assign Logical Name (ALN) command.

. Execute the Name Manager SVC (> 43).
The ALN command is a user interface to the Name Manager SVC and is described in the DNOS
System Commad Interpreter (SCI) Reference Manual. Refer to the DNOS SVC Reference Manual
for an explanation of the Name Manager SVC.
3.4.3 Environment and Scope of Name Definitions
Within a single job, each task has access to the set of synonyms and logical names that other
tasks of the job have assigned. The effects that these name definitions have on an executing task
can be thought of as the task’s environment.
When a background task is started via a .QBID primitive, a new snapshot of the SCI environment is

made and the new task executes in that environment. None of the synonym and logical name defi-
nitions changed by either task (subsequent to the bid) affect the environment of the other.

2270510-9701 3-11

Extending SCI

3.4.4 Field Prompts
A fieid prompt is the character string which requests a vaiid response to execute an SCi com-
mand. This character string contains a maximum of 28 characters, including embedded blanks.

Reference to the field prompt value can be made by preceding the field prompt with an ampersand
(&). The following example refers to the value of the specified field prompt:

&INPUT PATHNAME OR LUNO

Field prompt values can include an assigned synonym. To reference a field prompt which con-
tains a synonym as its value, the at sign (@) precedes the ampersand. The following example indi-
cates that the synonym resolution is to be performed on the field prompt value:

A&INPUT FILE PATHNAME OR LUNO

Use the ampersand also when concatenating character strings, strings, and variables. For
instance, the character string ABC is concatenated to the value of the fieid prompt FILE in the
following example:

ABC&FILE
A field prompt can specify an appropriate response type for the acceptable values. When defining
response types for field prompts, enclose the response type in parentheses to indicate that a list

can be accepied as the value.

Table 3-4 lists the types of valid field prompts. The brackets [] indicate optional items and the
parentheses () indicate an initial value for the prompt.

Table 3-4. Valid Field Prompt Types

Types Items
ACNM [(initial value)]
DEFAULT (initial value)
ELEMENT (response[= replacement],...)[(initial value)]
INT [(initial value)]
NAME [(initial value)]
RANGE (lower bound, upper bound)[(initial value)]
STRING [(initial value)]
YESNO [(initial value)]

3-12 2270510-9701

Extending SCI

The following features are common among field prompts:

e An asterisk (*) preceding the field prompt type indicates a response is optional and
need not be supplied.

. If an initial value begins with a dollar sign ($), then a null string is used as the initial
value.

. The value of a field prompt can be a single value or a value list; however, DEFAULT can
only be a single value. When defining a field prompt type in a command procedure,"
enclose the type in parentheses to aliow a value list. Code a value list as a sequence of
single items separated by commas when defining the response to a field prompt inter-
actively. However, if a value list is entered in a batch stream, enclose the list in
parentheses. If a list contains only one item, parentheses are not required.

For example, in a command procedure, FILE=ACNM declares the field prompt
FILE and requires a value of the type ACNM. INPUT=(ACNM) indicates that
INPUT can be a single value or a list of values which are of the ACNM type. When
defining responses to these prompts interactively, FILE=DS04.LIST and
INPUT = MY.MKC.PROGA,MY.MKC.PROGB are valid value assignments for FILE and
INPUT, respectively.

. Each field prompt type can have a specified initial value. Enclose initial values which
are lists in quotation marks (“”’). The DEFAULT type requires that an initial vaiue be
specified. Represent the null value for a field prompt, referred to as a null string, by a
pair of quotation marks (‘")

* Afield prompt can be specified as having more than one possible field prompt type. For

example, a response to a prompt can be a pathname or LUNO as used in this Execute
Task (XT) command prompt:

PROGRAM FILE OR LUNO=ACNM/RANGE(O,O0FF)

The preceding example is known as an alternate prompt type. Separate each field prompt
type by a slash (/). The DEFAULT type cannot be specified as an alternate type.

The following paragraphs discuss each field prompt type and its formai. The prompts used in the
format examples are used for simplicity and may not be in their complete forms.

3.4.4.1 ACNM Field Prompt Type. The ACNM field prompt type allows a response that is a file
name, channel name, or device name. The following is an exampie of the ACNM field prompt type:

FILE PATHNAME=*ACNM("@SFP'")

2270510-9701 3-13

Extending SCI

in the previous example:
e The asterisk indicates that the response is optional.
e Theresponse must be a single value.

. The at sign (@) preceding the set of characters, SFP, indicates the string represents a
synonym.

. The parentheses around the set of characters, “@SFP”, indicate that SCI will use the
value of the synonym as the initial value for the field prompt.

e The quotation marks around @SFP cause the entire value of the synonym to be
shown. Without the quotation marks, invalid parameter messages can occur.

3.4.4.2 DEFAULT Field Prompt Type. The DEFAULT field prompt type assigns a default value to
a field prompt. The DEFAULT type has the following three characteristics:

< Syniax is not checked.

. Field prompts of the DEFAULT type are not displayed in interactive mode but they can
be explicitly assigned a value in batch mode or expert mode.

A ie o
assigned to the field prompt in batch mode or expert mode.
The following example illustrates the DEFAULT field prompt type:
DISPLAY=DEFAULT(Y)

The Y is a response previously assigned to the field prompt. It is only necessary to enter a
response when you do not want the default.

3.44.3 ELEMENT Field Prompt Type. The ELEMENT field prompt type allows a list of accept-
able responses to a field prompt to be specified. Using the near-equality algorithm discussed in
the System Command Interpreter (SCI) Reference Manual, SCl attempts to match the response
entered with each element in the list. If the response fails to match any item or matches more than
one item, the type verification fails. Each item in the list can have a replacement value. Whenever a
specific item in the list is matched, the value assigned to the field prompt is the replacement value
and not your response. if the terminai is in defauit VDT mode (see the Modify Terminai Status
(MTS) command in the System Command Interpreter (SCI) Reference Manual), the replacement
value is echoed to the screen and replaces your response.

The following example illustrates the ELEMENT field prompt type:
ARE YOU SURE=ELEMENT(Y=YES,6N)

In this example, the response must begin with aY or N character. It is recommended that replace-
ment values match the response in accordance with the near-equality algorithm.

~ o~ A -

IT you IESDOFG Wltﬁ \UU' bl:iul'il-\ Iﬂe vaiue OI ARCc ‘i'uu bun!: |S Y:b nOweVef |I me responae
was NO WAY, the value of ARE YOU SURE is NO WAY.

3.14 2270510-9701

Extending SCI

3.4.4.4 INT Field Prompt Type. The INT field prompt type allows a response to be a 32-bit
hexadecimal or decimal integer expression in the range of >80000000 through >7FFFFFFF
(— 2147483648 through 2147483647). The following example illustrates the INT field prompt type
with the initial value enclosed in parentheses:

PARM1= INT(0)

In this example, the parentheses around the value zero indicate the initial value.

3.4.4.5 NAME Field Prompt Type. The NAME field prompt type allows a response to be a char-
acter string beginning with a dollar ($) sign or a letter (A — Z). The remaining characters of the
string can contain letters, numbers, $, [,], or \. The following example illustrates the NAME field
prompt type:

TASK NAME=*NAME

In this example, an asterisk preceding the field prompt type indicates that the response is
optional.

3.4.4.6 RANGE Field Prompt Type. The RANGE field prompt type has the same function as the
INT type; however, in addition, you can specify numeric upper and lower bounds. The following
example illustrates the RANGE field prompt type:

LUNO=*RANGE(0,255)
In this example:

e The asterisk preceding the field prompt type *RANGE(0,255) indicates that the response
is optional.

¢ Theresponse must be in the range of 0 through 255.
3.4.4.7 STRING Field Prompt Type. A STRING field prompt type allows a response that is a
string which does not contain quotation marks, exclamation marks, equals signs, parentheses, or
commas.
The initial value specified for a STRING type can be enclosed by quotation marks, denoting it as a
quoted string. A quoted string can contain quotation marks, exclamation marks, equals signs,
parentheses, or commas within the enclosed string. However, you must be cautious when you use
a string containing quotation marks, as they must always be used in pairs.
An error occurs if an unpaired quotation mark is used within the string, as in the next example:

“"ENTER TO "RESUME OPERATION"

2270510-9701 3-15

Extending SCi

There should always be an even number of quotation marks in a quoted string, as in the next
example:

“"ENTER TO "RESUME OPERATION""
A pair of double quotation marks can also be used to represent a null string (“”).
The following example illustrates the STRING field prompt type:
INPUT=*(STRING) ("@SXES$S")

The following statements are true:

. The parentheses around the field prompt type STRING indicate that the response can
be a single value or a value list.

e The asterisk preceding the field prompt type (STRING) indicates that the response is
optional.

¢ The at sign (@) preceding the characters XES indicates that the value of the synonym
is to be substituted for the string XES.

o The parentheses around the set of characters “@XES” indicate that the value of the
synonym XES is used as the initial value for the field prompt.

e The quotation marks enclosing the set of characters @XES allow the value of the
synonym XES to be a list of values.

3.4.4.8 YESNO Field Prompt Type. The YESNO field prompt type allows a response that is an
alphabetic character string beginning with a Y or an N character. The following example illus-
trates the YESNO field prompt type:

ARE YOU SURE?=YESNO

In this example, the response must begin witha Y oran N.

3.5 SCiPRIMITIVES

SCI primitives are the lowest-level members of the SCI language and are used to create command
procedures and command processors. When applicable, primitives follow the guidelines dis-
cussed in the preceding paragraphs. Table 3-5 lists the SCI primitive notations and Table 3-6 lists
the available primitives and their associated parameters. Subsequent paragraphs discuss each
SCl primitive.

3.16 2270510-9701

Extending SCi

Table 3-5. SCI Primitive Notation

Notation Meaning
Uppercase Enter the item as shown.
Lowercase Enter an item of this type.
No marks The item is required.
[1 The item is optional.
Item...item More than one item of this type can be used.
items are separated by commas.
ltalics Indicates the type of item required.
/ Indicates alternate items.
Table 3-6. SCI Primitives
Primitive
Command Parameters
..PROC namel(full name)][= int][,field prompt list]
.EOP
.PROMPT [(full name)][= int][,field prompt list]
.SYN name = “value”...name = “value”
.EVAL [mode][= YES/NO,Iname = value
SPLIT LIST = {list),FIRST = name][,REST = name] or
LIST = “string”’[,FIRST = name}[,REST = name]
[,CHARACTER = “string”’][,POSITION = int][,STATUS = name}
.SVC [$name |DATA/BYTE/TEXT = value(s)...
[$name JDATA/BYTE/TEXT = value(s)
F op1,relation,op2
.ELSE
ENDIF
.LOOP
WHILE opl,relation,op2

2270510-9701

3-17

Extending SC!

Table 3-6. SCI Primitives (Continued)

Primitive
Command Parameters
.REPEAT
{UNTIL op1l,relation,op2
EXIT
.BID TASK = namelint[,LUNO = int][,CODE = int]
[,PROGRAM FILE = acnm][,PARMS = (string...string)]
[LUTILITY]
.DBID TASK = namelint[,LUNO = int][, CODE = int]
[,PROGRAM FILE = acnm][,PARMS = (string...string)}
LUTILITY]
.QBIiD TASK = nameiint{,LUNO = ini][,CODE = ini]
[PROGRAM FILE = acnm][,PARMS = (string...string)]
LUTILITY]
.DATA [acnm][,EXTEND[= YES/NOIJ][,SUBSTITUTION[= YES/NO]}
[LREPLACE[= YES/NO]]
.EOD
.STOP [TEXT = string][,CODE = int}
.USE [pathname...pathname}
.OPTION [PROMPT] = string]], MENU[= namel]
[,PRIMITIVES| = YES/NOJJ[,LOWERCASE[= YES/NO]]
.MENU [menu name)
.SHOW filename...filename

8.5.i .PROC and .EOP Primitives

You can use the .PROC primitive to begin an SCI procedure definition which must end with the
.EOP primitive. Use the .PROC primitive to install the command procedure into a command proce-
dure library. The following represents the .PROC format:

.PROC name[(full name)][= intl.field prompt list]
The name parameter, which must be the first parameter, defines the name of the procedure. You

can give an optional full name, enclosed in parentheses, immediately following the name. The fu//
name is displayed on the terminal when the procedure is executed.

3-18 2270510-9701

Disk and File Organization

2.23.2 Bit Map. To identify which areas on the disk are allocated and which are free, DNOS
maintains a bit map of allocated ADUs. The bit map is located in track 0 of each disk, starting at
sector 2 and continuing through as many sectors as necessary.

The bit map is divided into 128-word partial bit maps. Each partial bit map is located in a separate
sector in track 0. The first word of each partial bit map contains the number of the ADU that begins
the largest block of free disk space located in that part of the disk, which is mapped by the partial
bit map. Each bit in the remaining 127 words represents an ADU. If the bit is zero, the ADU is free;
if it is one, the ADU is allocated (or the ADU is on a bad track). Each partial bit map contains 127
16-bit words of information and maps 2032 ADUs. Figure 2-2 shows the structure of a partial bit

map.

BYTE O
RELATIVE ADU No. oF LLARGEST AVAILABLE BrLock
PARTIAL ALLOCATION BiT MaP

r~ ~/
BIT = 1 MEANS

T e
ADU ALLOCATED r

2279388

Figure 2-2. Partial Bit Map

2.2.4 Displaying and Modifying Absolute Disk Addresses
The following SCl commands are available to display or modify absolute disk addresses:

Command Description
SAD Show Absolute Disk
SADU Show Allocatable Disk Unit
MAD Modify Absolute Disk
MADU Modify Allocatable Disk Unit

2.3 DISKFILE STRUCTURES

The structure of the directory file is a key to the organization of files on a disk. The following para-
graphs describe the directory structure and the structure of each type of file that DNOS supports.

2270510-9701 2-15

Disk and Fife Organization

2.3.1 Directory File
A directory contains information necessary to locate other files and descriptions of those fiies.

Figure 2-3 illustrates the way in which all directories are connected in a network. The top of this
network is the volume directory, called VCATALOG. VCATALOG is created on each volume when
the disk is initialized. It maintains information about directories, system files, and user files.

VCATALOG

[

DIRECTORY]

USER DIRECTORY SYSTEM
FILES FILES
USER o DIRECTORY!
FILES IRECTORY

USER USER USER

FILES FILES FILES

2279389

Figure 2-3. Directory Structure

2.3.1.1 Directory File Characteristics. Directory files are unblocked relative record files con-
sisting of one logical record per physical record. Figure 2-4 shows the file structure of a directory.
Record 0 contains overhead information in the format shown in Figure 2-5. Each of the remaining
records is of one of the following types:

. File descriptor record (FDR) — Describes a file and its iocation on the disk.

. Alias descriptor record (ADR) — Describes an alias for a file, includes the location of the
file, and points to the FDR of the file.

2-16 2270510-9701

Extending SCI

Table 3-5. SCI Primitive Notation

Notation Meaning
Uppercase Enter the item as shown.
Lowercase Enter an item of this type.

No marks The item is required.

[1] The item is optional.
Item...item More than one item of this type can be used.
Items are separated by commas.
Italics Indicates the type of item required.

/

Indicates alternate items.

Table 3-6. SCI Primitives

Primitive
Command Parameters
. .PROC namef(full name)]| = intl[,field prompt list]

.EOP

.PROMPT [(full name)]| = int[,field prompt list]

.SYN name = “‘value”...name = “value”

.EVAL [mode)[= YES/INO,Jname = value

SPLIT LIST = (list)[,FIRST = name][,REST = name] or
LIST = ““string”[,FIRST = name][,REST = name}
[CHARACTER = “string”’]l,POSITION = inf][,STATUS = name]

.SVC [$name]DATA/BYTE/TEXT = value(s)...
[$name]DATA/BYTE/TEXT = value(s)

AF op1,relation,op2

.ELSE

ENDIF

.LOOP

WHILE opl,relation,op2

2270510-9701

3-17

Extending SC!

Table 3-6. SCI Primitives (Continued)

Primitive

Command Parameters

.REPEAT

.UNTIL opl,relation,op2

EXIT

.BID TASK = namelint{,LUNO = int][, CODE = int]
[,PROGRAM FILE = acnm][,PARMS = (string...string)]
LUTILITY]

.DBID TASK = namelint{,LUNO = int][,CODE = int}
[,PROGRAM FILE = acnm][,PARMS = (string...string)]
LUTILITY]

.QBID TASK = namelint] LUNQ = int][, CODE = inf]
[,PROGRAM FILE = acnm][,PARMS = (string...string)]
[,UTILITY]

.DATA [acnm][,EXTEND[= YES/NO]J[,SUBSTITUTION[= YES/NO]] -
[,LREPLACE[= YES/NO]]

.EOD

.STOP [TEXT = string][, CODE = int]

.USE [pathname...pathname]

.OPTION [PROMPT[= string]l[, MENU[= name]]
[,PRIMITIVES] = YES/NOJJ[,LOWERCASE[= YES/NO]]

.MENU [menu name}

SHOW filename...filename

3.5.1 .PROC and.EOP Primitives

You can use the .PROC primitive to begin an SCI procedure definition which must end with the
.EOP primitive. Use the .PROC primitive to install the command procedure into a command proce-

dure library. The following represents the .PROC format:

.PROC namej(full name)][= int][,field prompt list]

The name parameter, which must be the first parameter, defines the name of the procedure. You
can give an optional full name, enclosed in parentheses, immediately following the name. The full

name is displayed on the terminal when the procedure is executed.

3-18

2270510-9701

Extending SCI

The int field is optional and determines the privilege level used for the procedure being defined.
This field must follow the full name if you specified a full name. Table 3-7 shows the different priv-
ileges which can be specified.

Command privilege levels are assigned according to your system knowledge and job require-
ments. If a user ID privilege level is numerically lower than the privilege level assigned to a particu-
lar command, you cannot issue that command. The system manager uses the Assign User ID (AUI)
or the Modify User ID (MUl) command to establish privilege levels. Privilege levels can be assigned
with respect to the power of the command and the knowledge and trustworthiness of the user. The
default value for the privilege level is 0.

Table 3-7. Command Privilege Levels

Level Meaning
0 Lowest level of access privilege; for example, Create File (CF)
1 Defined by the System Manager
2 System access level; for example, Kill Task (KT)
3 Defined by the System Manager
4 Management access Ievel;bfor example, Assign User ID (AUI)
5 Defined by the System Manager
6 Combination of System and Management; for example, Execute System Generation

Utility (XSGU)

7 Defined by the System Manager

The field prompt list is a character string following the optional privilege level. A field prompt list
is formatted as:

field prompt = field prompt type
where:
the field prompt type is one of those listed in Table 3-4 and follows the rules defined for it.

A maximum of 22 field prompts can be defined for a command.

2270510-9701 3-19

Extending SCI

The following exampie illustrates the .PROC and .EOP primitives used in a command procedure:

.PROC EX (EXAMPLE PROC)=0,

INPUT PATHNAME=ACNM

SF FILE="&INPUT PATHNAME"
.EOP

In this example, the full name of the command procedure is EXAMPLE PROC and the SCI com-
mand is EX. The specified privilege level is zero, therefore, the command is available to any user.
INPUT PATHNAME is a field prompt. INPUT PATHNAME requires an ACNM field prompt type for
its response. The SF command uses the response to INPUT PATHNAME as an initial value. This
command procedure could be used to install the EX command on the system.

When you issue the EX command, EXAMPLE PROC is displayed along with the INPUT
PATHNAME prompt. The cursor is positioned in the response field and is ready for your entry.
Press the RETURN key after you enter a response. The SF command is bid by the EX command
procedure and the file identified for the INPUT PATHNAME response is displayed. (It is not neces-
sary to completely understand the command procedure at this point. Details of command proce-
dures are explained later in this section.)

It is good programming practice to indent the command procedure to show the control structures
in it. The .PROC processor preserves such indentation when it creates the output file.

3.5.2 _IF, ELSE, .ENDIF Primitives

The SCI language uses the constructions IF-THEN and IF-THEN-ELSE to create a conditional
primitive. The .IF primitive must be used in conjunction with the .ENDIF primitive. The .ELSE primi-
tive is an optional primitive used with the .IF and .ENDIF primitives. The .ENDIF primitive termi-
nates the .IF primitive.

JAF opi, reiation, op2
.ELSE

.ENDIF
if the .iF condition is true, ithen staiements immediateiy foliowing the .iF primitive are executed. if
the condition is false, any statements following the .ELSE primitive (if present) are executed. Exe-
cution then continues with statements following the .ENDIF primitive.

3-20 2270510-9701

Extending SC/

The .IF primitive must contain a condition using a relation defined in the following list:

Relation Meaning
op1,EQ,0p2 op1is equal to op2
op1,NE,op2 op1is not equal to op2
op1,GT,0p2 op1is greater than (follows) op2 in the ASCII collating
sequence
op1,LT,0p2 op1 is less than (precedes) op2 in the ASCIl collating sequence
op1,GE,op2 either GT or EQ is true for op7 and op2
op1,LE,op2 either LT or EQ is true forop7 and op2
op1,1S,0p2 op1is of type op2
op1,ISNOT,0p2 op1 is not of type op2

The EQ, NE, GT, LT, GE, and LE relations allow op? and op2 to be strings, variables, or concaten-
ated strings. The relation parameter designates the type of comparison which is performed on the
operands. If both op7 and op2 are numeric, a nhumeric comparison is made; otherwise, a string
comparision is performed.

The IS and ISNOT relations require op2 to be a field prompt type; alternate types cannot be speci-
fied. A check is made to verify that op7 satisfies the type specified by op2. The following example
illustrates the IS relation:

STATION ID = RANGE(O,O0FF)/ELEMENT(ME) ("@3ST")

.IF '"&STATION ID", IS, RANGE(O,O0FF)
.SYN XTSID="&STATION ID"

.ELSE

.SYN SXTSID="asST"

-.ENDIF

Note that the field prompt defines alternate types of responses, RANGE and ELEMENT. The .IF
statement verifies that the value specified was of the RANGE type.

2270510-9701 3-21

Extending SCI

You can use any SCI primitives (excluding .PROC and .EOP primitives) between the .iF and .ENDIF
primitives. You can use the .IF primitive within other .IF primitives with a maximum of 32 levels of
nested conditionals. The following example uses the .IF, .ELSE, and .ENDIF primitives; IAN and
OAN of the CC (Copy Concatenate) command represent the input and output pathnames,

respectively.

.PROC EX(EXAMPLE PROC)=0,

INPUT PATHNAME=ACNM,

OUTPUT PATHNAME=ACNM,

DISPLAY OR COPY?=ELEMENT(D=D,C=C) (DISPLAY)
.IF &DISPLAY,EQ,D

SF FILE="&INPUT PATHNAME"

.ELSE
CC IAN="&INPUT PATHNAME",
OAN="&OUTPUT PATHNAME"
-.ENDIF
.EOP

The IF primitive compares the &DISPLAY to the character D. &DISPLAY is the value of the
response to the DISPLAY OR COPY? prompt; the character D represents a possible value for the
response. If &DISPLAY and D are equivalent, the SF command procedure is bid and the value rep-
resented by &INPUT PATHNAME is displayed. If the response to DISPLAY OR COPY? does not
match D, the .ELSE primitive bids the Copy/Concatenate (CC) command procedure to copy the
contents of the file specified for INPUT PATHNAME to the file specified for QUTPUT PATHNAME.
The .ENDIF primitive terminates the .IF comparison and execution continues with the primitives
or commands following the .ENDIF.

3.5.3 .PROMPT Primitive

The .PROMPT primitive reduces the need for secondary command procedures, avoiding large
command procedure libraries. Additional overhead involved in processing a new command proce-
dure is also eliminated. The syntax for the .PROMPT primitive is as follows:

.PROMPT [(full name)][= int][,field prompt list]

The field prompts defined by .PROMPT are displayed on a different screen from those defined by
.PROC (that is, the screen is cleared and the new prompts are displayed).

The full name parameter is optional and specifies a character string to be displayed when the
primitive is executed in interactive mode. The int parameter is the lowest privilege level assigned
to the user ID which permits execution of the procedure. The priviiege ievei specified for PROMPT
can be higher than the level specified by .PROC; however, it is not recommended. The field prompt
list parameter is a series of field prompts.

3-22 2270510-9701

Extending SCI

The following example illustrates the .PROMPT primitive:

.PROC EXC(EXAMPLE PROC)>=0,
INPUT PATHNAME=ACNM,
OUTPUT PATHNAME=ACNM,
DISPLAY OR COPY?=ELEMENT(D=D,C=C)(DISPLAY)
IF &DISPLAY,EQ,D
SF FILE="&INPUT PATHNAME"
.ELSE
CC IAN="&INPUT PATHNAME",
OAN="&OUTPUT PATHNAME"
.PROMPT (SUPPLEMENTARY QUESTION),
DELETE FILE?=ELEMENT(Y=Y,N=N) (NO)
.IF &DF,EQ,Y
DF PATHNAME="&INPUT PATHNAME"
-ENDIF
.ENDIF
.EOP

The .PROG, .IF, .ELSE, and .ENDIF primitives execute as previously explained. The .PROMPT prim-
itive displays the DELETE FILE? prompt. The character string SUPPLEMENTARY QUESTION

defines the optional full name parameter.

3.5.4 .SYN Primitive
-The .SYN primitive assigns values to synonyms. Synonyms and their values are maintained in the

synonym table. The .SYN primitive has the following format:
.SYN name = “value’...name = “value”

The name parameter specifies the synonym name. The vajue parameter is a siring, variable, or
concatenated expression. Quotation marks enclosing the value are recommended to ensure cor-
rect interpretation of the value string.

A string enclosed in quotation marks indicates that the value specified is a list and is to be treated
as a single item. A value list must be enclosed in quotation marks as shown in the following

example:

SYNA=%1,23" Legal

SYNA=1,23 lllegal
Synonyms can be assigned string values containing special characters. To properly handle the
special character, enclose the string in quotation marks. For instance, as a special character, the

exclamation mark (!) indicates an end of record. If you use the ! in a character string, enclose the
string in quotes to include the characters following it. For example:

.SYN A="“HELLO!THERE” THERE is included in the string.
.SYN A=HELLO!THERE THERE is not included in the string and is regarded as a
comment.

2270510-9701 323

Extending SCI

To avoid synonym table overflow, delete synonyms which are no longer necessary. Assigning a
null value (‘") to a specified synonym deletes the synonym from the synonym tabie.

The following example illustrates the .SYN primitive used in a command procedure:

.PROC EX(EXAMPLE PROC)=0,
INPUT PATHNAME=ACNM,
OUTPUT PATHNAME=ACNM,
DISPLAY OR COPY?=ELEMENT(D=D,C=C) (DISPLAY)
-SYN $SEXSIP="&INPUT PATHNAME"
-.SYN SEXOP="&0UTPUT PATHNAME"
-IF &DISPLAY,EQ,D
SF FILE=Q$EXSIP
.ELSE
CC IAN=QSEXSIP,
OAN=SEXSOP
.PROMPT (SUPPLEMENTARY QUESTION),
DELETE FILE?=ELEMENT(Y=Y,N=N) (NO)
JIF &DF,EQ,Y
DF PATHNAME=Q$EXSIP
-ENDIF
.ENDIF
.EOP

This example is similar to the example for the .PROMPT primitive. In addition, this command pro-
cedure assigns values to the synonyms EXIP and EXOP which you can access by other com-
mand procedures.

3.5.5 .EXIT Primitive

The .EXIT primitive terminates the execution of the current command procedure. (Use the .EOP to
terminate the definition of the command procedure.) The .EXIT primitive can be used as often as
necessary at any point within a command procedure definition. Do not use the .EXIT primitive
however, within a batch stream.

The .EXIT primitive does not have any parameters to be defined, and it uses the foliowing format:

LEXIT

3-24 2270510-9701

Extending SCI

An example of the .EXIT primitive used in a command procedure is as follows:

.PROC EX(EXAMPLE PROC)=0,
INPUT PATHNAME=ACNM("QSEXSIP'"),
OUTPUT PATHNAME=ACNM("QSEX$O0OP'"),
DISPLAY OR COPY?=ELEMENT(D=D,C=C) (DISPLAY)
.SYN SEXSIP="&INPUT PATHNAME" ’
.SYN SEX$0P="&0UTPUT PATHNAME"
.IF &DISPLAY,EQ,D
SF FILE=Q$EXSIP
SEXIT
.ENDIF
CC IAN=QSEXS$IP,0AN=3SEXSOP
.PROMPT (SUPPLEMENTARY QUESTION),
. DELETE FILE?=ELEMENT(Y=Y,N=N) (NO)
.IF &DF,EQ,Y
DF PATHNAME=Q$EXSIP
.ENDIF
.EOP

If the following statement from this example is true:
.IF &DISPLAY,EQ,D

then the SF command procedure is bid to display the file represented by the synonym EXIP. The
.EXIT primitive then terminates the execution of the EX command procedure. If the .IF comparison
is false, execution of the command procedure continues with the primitives and commands fol-
lowing the .ENDIF primitive for that .IF comparison.

3.5.6 .EVAL Primitive

The .EVAL primitive evaluates a numeric expression, converts the result to decimal or
hexadecimal ASCII format, and stores it as the value of a specified synonym. The .EVAL primitive
has the following format:

.EVAL [mode][= YES/NO}],name = value

The mode parameter must be ihe keyword DEC (decimai) or HEX {hexadecimai), to specify the
conversion mode. If you specify the mode parameter with one of these keywords and enter Y in
response, the mode specified is the numeric base to which the result is converted. If you enter N,
the result is converted into the mode that you did not specify. You can also enter the mode
parameter without a Y/N response; in this case, the Y is assumed. The mode parameter is not
required and automatically defaults to the decimal mode if it is not specified.

The name parameter specifies the name of the synonym to which the resulting value is assigned.

2270510-9701 3-25

Extending SC/

The value parameter is the numeric decimal or hexadecimal integer expression to be evaluated.
inth metic e i

H ~ vith il
ne arnmmeu

...... 2o o el romad Aan A e

Synonyms can be assigned numeric values and used as operands in
The valid arithmetic operators are:

unary plus or addition
unary minus or subtraction
multiplication

division

I

The character K can also be used within an expression to denote the constant value 1024.

The following examples illustrate valid .EVAL primitives. (Assume the synonym THREE has a
value of 3 and the synonym TWO has a vaiue of 2, the vaiue shown in parentheses to the right of
the example is the value assigned to the synonym RESULT.)

.EVAL DEC=Y,RESULT = @ THREE*5- @ TWO (13)
.EVAL DEC=N,RESULT= @THREE*'5- @ TWO >D)

.EVAL DEC,RESULT = @THREE*5- @ TWO (13)
.EVAL RESULT=@THREE*5-@TWC {13
.EVAL HEX=Y,RESULT= @THREE*5-TWO (>D)
.EVAL HEX=N,RESULT = @ THREE*5 - TWO (13)
.EVAL HEX,RESULT = @ THREE*5-TWO cD

The .EVAL primitive is useful in establishing counters for loop primitives. Refer to the paragraph
concerning the .LOOP, .UNTIL, .WHILE, and .REPEAT primitives for an example of its use.

3.5.7 .LOOP,.UNTIL, .WHILE, and .REPEAT Primitives

Use the .LOOP, .UNTIL, .WHILE, and .REPEAT primitives to repeat groups of SCI statements
within command procedures to form a loop. Use the .LOOP primitive to begin a loop and the
.REPEAT primitive to terminate it. You can use the .UNTIL or WHILE primitives at any point
between the .LOOP and .REPEAT primitives. The loop primitives have the following format:

.LOOP
UNTIL op1, relation, op2
WHILE opl, relation, op2
.REPEAT

The .UNTIL and .WHILE primitives each contain two operands and a re/ation parameter which is a
numeric or string compare operation of the type described with the .IF primitive. Op7 and op2
parameters can be sirings, variabies, or concatenated sirings.

3-26 2270510-9701

Extending SCI

The basic structure of a loop in an SCl command procedure is:

.LOOP

SCI statements
UNTIL or WHILE

SCI statements
_REPEAT

The .LOOP primitive begins the loop and the .REPEAT primitive ends it. The loop must contain at
least one .WHILE or .UNTIL primitive at any point within the loop. The SCI statements within the
loop are executed until the condition of the .WHILE primitive is false or until the condition of the
.UNTIL primitive is true. When either of these conditions is met, SCI executes the first statement
following the .REPEAT primitive.

If multiple .UNTIL and .WHILE primitives are contained within a loop, SCI discontinues the loop
when the first .UNTIL or WHILE condition becomes true or false, respectively. SCI then continues
with execution following the .REPEAT primitive.

You can also use the .IF primitive within the loop primitives. However, the total depth of nested
loops with nested .IF statements cannot exceed 32.

The following example contains the loop primitives used within a command procedure.

.PROC EX(EXAMPLE PROC)>=0,
INPUT PATHNAME=ACNM("QSEX$IP"),
OUTPUT PATHNAME=ACNM("QSEX0P"),
DISPLAY OR COPY?=ELEMENT(D=D,C=C)(DISPLAY),
PRINT THE FILE?=ELEMENT(Y=Y,N=N) (NO), '
LISTING DEVICE=NAME("@EXSL'"),
NUMBER OF COPIES?=INT("@$NUM")

.SYN $SEXSIP="&INPUT PATHNAME"

.SYN $EXSOP="&0UTPUT PATHNAME"

.IF &DISPLAY,EQ,D
SF FILE=QS$EXSIP
SEXIT

.ELSE

CC IAN=ASEX$IP,0AN=3SEXSOP
.IF &PRINT,EQ,Y
.SYN $EXSL=&LIST
-SYN $NUM="&NUMBER OF COPIES"

.LOOP
UNTIL @$NUM,EQ,O
PF FILE=Q$SEXSIP,L=a$EXSL

2270510-9701 3-27

Extending SCi

.EVAL S$NUM=a$NUM-1
-REPEAT
.SYN SNUM=""
.PROMPT (SUPPLEMENTARY QUESTION),
DELETE FILE?=ELEMENT{(Y=Y, N=N)(NO)
.IF &DF ,EQ,Y
DF PATHNAME=QSEXSIP
-ENDIF
-ENDIF
.ENDIF
.EOP

in the preceding example, the combination of the .LOOP, .UNTIL, .EVAL, and .REPEAT primitives
creates a counter mechanism.

If the .IF comparison of this command procedure is true:

.IF &PRINT, EQ, Y

the .SYN primitives are performed, the synonym EXL is given the value of the LISTING DEVICE
response, and the synonym $NUM is given the value of the NUMBER OF COPIES? response. The
loop is initiated and the .UNTIL primitive compares the value of $NUM with 0. If §NUM is nonzero,
the Print File (PF) command procedure is bid and prints the file specified by INPUT PATHNAME to
the LISTING DEVICE specified. The EVAL primitive then decrements the value of $NUM by one

e Vo O

and the .REPEAT primitive causes the loop to repeat. When the value of $NUM is 0, SCI execution
continues with the statements immediately following the .REPEAT primitive.

3.5.8 .SPLIT Primitive
The .SPLIT primitive splits a value list in two, assigning the first part to one synonym and the
second part to another. The primitive can have either of the following formats:

SPLIT LIST = (list),FIRST = name][,REST = name]

or
LIST = “string”’[,FIRST = name][,REST = name]
[LCHARACTER = “string’’][,POSITION = int][[STATUS = name]

Use the first format to split items separated by commas. Use the second format when the items
are separated by characters other than commas.

3.5.8.1 Using the First .SPLIT Format. In the first format, the LIST parameter contains one
value or a list of values. The first item of the list is assigned as the value of the synonym name of
the FIRST parameter and the remainder of the list is assigned as the value of the synonym name
of the REST parameter.

The operation of the .SPLIT primitive is as follows:

LIST FIRST REST
(A,B,C) A (B,C)
A A null
null nuii nuii
((X,Y),2,G) (X,Y) Z,G)

3-28 2270510-9701

Extending SCI

Items in the value list must be separated by commas. Parentheses can be used to control the split-
ting of the list.

The following example illustrates the first format as used in a command procedure:

.PROC EXC(EXAMPLE PROC)>=0,
INPUT PATHNAME=ACNM("QSEX$IP'"),
OUTPUT PATHNAME(S)=(ACNM)
.SYN $EXSIP="&INPUT PATHNAME"
.SYN EX0P="(&OUTPUT PATHNAME)"
.LOOP
.WHILE "QEXOP'",NE,SEXS0P
.SPLIT LIST="aEXS0P",
FIRST=EXOUT,
REST=EX0P

cc IAN="QS$EXSIP" ,0AN="QEXOUT"
.REPEAT

.SYN EXouT=""

.EOP

In this example, the file specified with the INPUT PATHNAME prompt is copied to the file(s) speci-
fied with the OUTPUT PATHNAME(S) prompt.

The .SPLIT primitive within the loop determines the current output file to which the input file is to
be copied. When one copy is complete, .SPLIT updates the current output file to the next output
file specified in response to the OUTPUT PATHNAME(S) prompt.

The .WHILE primitive within the loop ensures that the input file is copied to all of the specified
output files. When all copy processes are complete, execution continues with the primitives and
commands following the .REPEAT primitive.

3.5.8.2 Using the Second .SPLIT Format. In the second format, the LIST parameter contains a
character string.

The CHARACTER keyword contains a single character or a list of characters. The first occurrence
of any of the characters in the list causes a split to occur. What precedes the character and the
character itseif go to FIRST; what remains goes to REST. Specifying by CHARACTER is useful for
splitting pathnames whose nodes are separated by periods or colons.

The POSITION keyword is an integer value that specifies a character within the string. The integer
value determines after which character in the string the split will occur. A 0 or negative value
causes the FIRST synonym to be null and the REST synonym to contain the entire string. A value
equal to or greater than the character length of the string causes FIRST to contain the entire string
and REST to be null. Specifying POSITION is useful for splitting files that follow a naming conven-
tion, where you need to break off a certain number of leading characters and where any character
could be found at the location of the split.

When writing the .SPLIT primitive you may indicate CHARACTER, POSITION, or both. When

CHARACTER and POSITION are both present, the first condition to be satisfied determines the
location of the split.

2270510-9701 3-29

Extending SCi

The STATUS keyword is a synonym that will be set in one of the following ways:

] For a split by CHARACTER, the synonym is set to the character on which the split
occurred (namely, the character specified).

] For a split by POSITION, the synonym is set to the character preceding the split.
] For a split that does not occur, the synonym is set to null.

The following example illustrates the second format as used in a command procedure. The syn-
onym NAME already has the value DB1.PAYMENT. ~

.SPLIT LIST="GNAME",FIRST=DIR, REST=NAME,
CHARACTER=(",'", ":"), STATUS=CHR

This command line assigns the value DB1 to the synonym DIR and assigns the value PAYMENT to
the synonym NAME. CHR, the synonym for the STATUS keyword, is set to *'.”’.

In the following example, the synonym NAME already has the value ABCDEFG.

.SPLIT LIST="aANAME",FIRST=PART1, REST=PARTZ,
POSITION=3, STATUS=CHR

Ay 1l o oo Do 4 o d ol o
1

This command iine assigns the vailue ABC to the synonym PART1 and assigns the value DEFG 1o

the synonym PART2. CHR, the synonym for the STATUS keyword, is set to “C”’.
in the next example, the command line specifies a split by both CHARACTER and POSITION.

.SPLIT LIST="QNAME",FIRST=SITE, CHARACTER=":",
POSITION=8, STATUS=CHR

This command iine breaks the contents of NAME at the first colon or after the eighth character,
whichever condition is satisfied first. The synonym SITE receives the first part of NAME. Since
REST is not specified, the second part of NAME is discarded. CHR will be set to either “:” or the
eighth character of NAME.

3.5.3 .BID Primitive

The .BID primitive specifies the execution of a DNOS task. Tasks initiated with the .BID primitive
share synonyms and logical names with SCI and must execute serially (that is, such tasks can
only execute at a terminal one at a time).

The .BID primitive has the following format:

.BID TASK = namelint[,LUNO = int][, CODE = int]
[,PROGRAM FILE = acnm][,PARMS = (string...string)],UTILITY]

3-30 2270510-9701

Extending SCI

The TASK =namelint parameter is required and identifies a task located in a program file. The
value can be specified as a name or as an integer. The LUNO = int parameter is optional and speci-
fies a LUNO assigned to the program file. The default value for LUNO is the LUNO assigned to the
.S$SHARED program file. CODE is an optional value containing an integer from 0 through 255 that
can be accessed by the task as a binary value. The defauit value for CODE is 0. PROGRAM FILE is
the access name of the program file. If you specify PROGRAM FILE, you cannot specify LUNO.
PARMS is optional and contains a list of character strings, separated by commas, that can be
accessed by the task. UTILITY specifies that the program which is to be bid exists on the .S$UTIL
utilities program file. If you specify UTILITY,you cannot specify either LUNO or PROGRAM FILE.
SClI transfers control to the task upon encountering the .BID primitive. When the task terminates,
SCI processes the next statement in the procedure.

The following example illustrates the .BID primitive:

.PROC EX(EXAMPLE PROC)=0,
INPUT PATHNAME=ACNM("QSEXS$SIP"),
OUTPUT PATHNAME(S)=(ACNM),
PRINT THE FILE?=ELEMENT(Y=Y,N=N) (NO)

-SYN $EXSIP="&INPUT PATHNAME"
-.SYN $EXSOP=""&0UTPUT PATHNAME"
.SYN SEXSP="&PRINT"

.BID TASK=>40,PARMS=("QSEXSIP","QSEXSOP" ,"ASEXSP')
.EOP

In this example, the .BID primitive bids a task with a task ID of > 40 residing in the .S$SHARED
program file.

The values for synonyms EXIP, EXOP, and EXP are set to be the responses entered for the
INPUT PATHNAME, OUTPUT PATHNAME(S), and PRINT THE FILE? prompts, respectively. The
task uses these synonym values as parameters during execution.

3.5.10 .DBID Primitive

The .DBID primitive specifies the execution of a task as a background task in a suspended state.
The .DBID primitive enables you to debug the command processor using the SCI debugger. A
snapshot of synonyms and logical names is taken when a task is executed by .DBID, allowing you
to execute another foreground task concurrently.

The .DBID primitive has the following format:

.DBID TASK = namelint[,LUNO = int][, CODE = int]
[, PROGRAM FILE = acnm][,PARMS = (string...string)][,UTILITY]

2270510-9701 3-31

Extending SCi

The parameter definitions of the .DBID primitive are identical to the .BID primitive parameters. The
following example illustrates the .DBID primitive as it is used in a command procedure.

.PROC EX(EXAMPLE PROC)>=0,
INPUT PATHNAME=ACNM("aSEXSIP'"),
OUTPUT PATHNAME(S)=(ACNM),
PRINT THE FILE?=ELEMENT(Y=Y,N=N) (NO)
-SYN SEXSIP="&INPUT PATHNAME"
-SYN $EXSOP="&0UTPUT PATHNAME"
-SYN SEXSP="&PRINT"
.DBID TASK=USERTASK,PARMS=("QSEXSIP" ,"QEXSOP'" , "ASEXSP"),
PROGRAM FILE=.USERPROG
.EOP

The .DBID example bids the task by name, USERTASK, from the program file .USERPROG and
executes as a background task in suspended state, performing the same functions as the .BID
primitive exampie.

3.5.11 .QBID Primitive

The .QBID primitive specifies the execution of a task as the background task of a terminal. In the
interactive mode, SCI processes the next input command after initiating execution of the task and
the task executes concurrently. In the batch mode, SCl is suspended until the task terminates. A
snapshot of synonyms and logical names is taken when a task is executed by .QBID.

The .QBID primitive has the following format:

.QBID TASK = namelint[,LUNO = int][, CODE = int]
[PROGRAM FILE = acnm][,PARMS = (string...string)][,UTILITY]

The .QBID and .DBID primitive parameter definitions are identical. The following example uses the
.QBID in a command procedure:

.PROC EX(EXAMPLE PROC)=0,
INPUT PATHNAME=ACNM("QSEX$IP"),
OUTPUT PATHNAME(S)=(ACNM),
PRINT THE FILE?=ELEMENT(Y=Y,N=N)(NO)
.SYN SEXSIP="&INPUT PATHNAME®
.SYN EXSOP="&0UTPUT PATHNAME"
-SYN SEXEP="&PRINT"
.QBID TASK=USERTASK,PARMS=("QSEXSIP" ,"DEXSOP" ,“ASEXSP'),
PROGRAM FILE=.USERPROG

.EOP

This example bids the task (USERTASK) from the program file .USERPROG and executes as a
background task at the terminal, performing the same functions as the .BID primitive example.

3.5.12 .RBID Primitive
The .RBID primitive bids several system utilities. The primitive must be used with great care, so
that system utilities are not affected. Refer to the DNOS SCI and Utilities Design Document for

£ravthar infarmatinn nanaarnina
Ad SA LIS

] rain~ tha DODIM neimnidiva
P i T UVIIUTI Y LT s PHTTTHUYG,

3-32 2270510-9701

Extending SCI

3.5.13 .DATA and .EOD Primitives
The .DATA primitive copies data directly to a file from the command input stream. You must use
the .EOD primitive to terminate the data stream. The .DATA primitive has the following format:

_DATA [acnm][,EXTEND[= YES/NOJ|[,SUBSTITUTION[= YES/NO]]
[, REPLACE[= YES/NOJ]

The acnm specifies the file or device to which the data is to be copied. If the acnm is not specified,
the Terminal Local File (TLF) is assumed. Since the TLF is displayed when the command proce-
dure completes execution, the .DATA primitive can be used to send status and error messages to
the bidding terminal and place debugging statements in a procedure to track the path of
execution.

There are three parameters (EXTEND, SUBSTITUTION, and REPLACE) which affect the copying
process. The EXTEND parameter specifies whether the data file is to be opened extended. This
allows you to concatenate several data streams under one pathname. If you do not specify the
EXTEND parameter, the default is taken and the data file is not opened extended. If you use the
TLF, the file is always opened extended.

The SUBSTITUTION parameter specifies whether textual substitution is to be done on the data
stream before it is copied to the specified acnm. Textual substitution causes the appropriate
values to be substituted for field prompts preceded by ampersands (&) and synonyms preceded by
at signs (,). Multiple blanks are also compressed to a single blank unless they are enclosed by quo-
tation marks (‘). Any characters after an exclamation mark (!) and any comment lines are omitted.
If you do not specify SUBSTITUTION, the default is taken and textual substitution is not
performed.

You can use the REPLACE parameter in a data stream to replace an existing file specified by
acnm. If you do not specify REPLACE, the default is taken and file replacement is performed. If
you use the TLF, the REPLACE parameter is ignored. If you specify both EXTEND and REPLACE,
EXTEND is used.

Foliowing is an example of the .DATA and .EOD primitives:

.PROC EX(EXAMPLE PROC)=0,
INPUT PATHNAME=ACNM("QASEX$IP"),
OUTPUT PATHNAME=(ACNM)
-SYN $EXSIP="&INPUT PATHNAME"
-SYN $EXSOP="(&OUTPUT PATHNAME)"
.LooP
.WHILE "QEXSOP",NE,EXOP
.SPLIT LIST="Q@EX0P",
FIRST=EXOUT,
REST=EX0P
CC IAN="Q3SEXSIP", OAN="QREXOUT"
.DATA
COPY COMPLETED
.EOD
.REPEAT
.EOP

2270510-9701 3-33

Extending SCI

In this example, the .DATA and .EOD primitives are used to output the following message to the
TLF when an input file has been copied to a specified output fiie:

COPY COMPLETED

In the previous example, if the message was to be appended to the contents of a file (for instance,
.KCOUT), the following EXTEND option must be specified for the .DATA primitive:

.DATA .KCOUT,EXTEND=YES
COPY COMPLETED
.EOD

3.5.14 .STOP Primitive
The .STOP primitive terminates execution of SCl and has the following format:

.STOP [TEXT = string][,CODE = int]

In batch mode, the string specified by the TEXT parameter is optional and can be used to create a
message to send to the interactive SCi in piace of the message BATCH SCi HAS COMPLETED.
The CODE parameter is optional and is used to set the synonym $$BC in the synonym table of the
bidding task (SCI) when a batch stream completes. The $$BC synonym is deleted by SCl when a
background task is initiated. The TEXT and CODE parameters are ignored when SCl is not in batch
mode.

You cannot enter the .STOP primitive interactively at a terminal if any of the following operations
are in progress at the terminal:

e Textediting

] Debugging

. Execute System Configuration Utility (XSCU) session

° Background activity
When the .STOP primitive is processed, SCI execution does not terminate immediately. The M$01
procedure executes, saving synonyms and logical names (in the same way the Q command does).

Refer to the System Command Interpreter (SCI) Reference Manual for details about the M$01
procedure.

The following example illustrates the interactive use of the .STOP primitive:

.PROC LO(TERMINAL IS LOGGING OFF)=0 !FULL NAME DISPLAYED

.SvC D=(0200,20) !TIME DELAY SVC
.STOP ITERMINATE SCI
.EOP

In this example, the .STOP primitive is used within a command procedure to stop SCl and log off
the terminal after a short time delay. (The .SVC primitive is explained later in this section.)

3-34 2270510-9701

Extending SCI

Following is an example of a command procedure written to stop a batch stream:

SBATCH (STOP BATCH EXECUTION),
TEXT=*STRING, CODE=*INT

.IF as$sM0, NE, O

.EXIT

-.ENDIF

SDT

.STOP TEXT="&TEXT', CODE="&CODE"

Note that during the processing of .STOP, the value of $$CC is changed. Therefore, if you use
$$CC in the CODE = portion of .STOP, the value will be from .STOP processing, not from previous

activity.

3.5.15 .USE Primitive
The .USE primitive specifies alternate procedure libraries to be used by SCI. The .USE primitive

has the following format:
.USE [pathname 1[,pathname 2[,pathname 3[,pathname 4 [,pathname 5]1}]

From one to five pathnames follow the .USE statement. Each pathname specifies a command
library. Once invoked, the menus and command procedures are taken from these libraries. If a
menu or command procedure is not found after searching the library specified by pathname 1,
then the library specified by pathname 2 is searched, and so on. The .USE primitive remains in
effect until it is replaced by another .USE or until a log-off/log-on sequence occurs.

To revert to the standard system library, specify a .USE primitive with no operands. In this case,
the default value .S$CMDS is taken as pathname 1 and the remaining pathnames are null.

The synonym $$CL is set each time a .USE is issued. The value assigned to $3CL is the string of
libraries specified in the .USE statement. When installing a command procedure, SCI places the
command definition into the directory specified by pathname 1.0ne of the pathnames must con-
tain the main menu specified by the .OPTION primitive discussed in subsequent paragraphs.

NOTE

If the main menu cannot be found after executing the .USE primi-
tive, a warning message is output. You must execute another .USE
primitive to specify the correct command procedure directory con-
taining the main menu.

2270510-9701 3-35

Extending SCI

The .USE primitive affects only the SCI session in which it was executed. Every SCI session
begins with the system library .S$CMDS as the default library. A .USE primitive executed from an
interactive terminal has no effect on any batch SCl executed from the terminal.

The following example illustrates the .USE primitive for the interactive mode:

[1 .USE

.USERLIB,.S$CMDS

This statement enables you to access the command procedures in the .USERLIB library and the
.S$CMDS system library.

In the following example, the .USE primitive is used in a command procedure to access com-
mands in the directory .USERLIB. When the .PROC primitive is encountered, SCl installs the EX
(Example Proc) command procedure into the .USERLIB library.

.USE
.PROC

.SYN
.SYN
-SYN

T™rn
e 4

.EOP

.USERLIB,.S$CMDS

EX(EXAMPLE PROC)=0,

INPUT PATHNAME=ACNM("Q$SEXSIP"),

OUTPUT PATHNAME(S)=(ACNM),

PRINT THE FILE?=ELEMENT(Y=Y,N=N)(NO)

SEXSIP="&INPUT PATHNAME"

$EXSOP="(&0UTPUT PATHNAME)"

EXP="&PRINT"

TASK=USERTASK, PARMS=("GSEXSIP", "a$EXSOP", "AaSEXSP™),

PROGRAM FILE=.USERPROG

3.5.16 .OPTION Primitive
The .OPTION primitive enables you to modify some basic interface characteristics of SCI to suit
your local language or application requirements.

The .OPTION primitive has the following format:

.OPTION [PROMPT] = string]]l, MENU[= namelJ[, PRIMITIVES[= YES/NO]]
[LOWERCASE[= YES/NOJ]

3-36

2270510-9701

Extending SCI

The parameter definitions are as follows:

Keyword Assigned Value Function

PROMPT An alternative prompt charac- Enables you to specify the
ter string which must be less SCl prompt. The default
than 50 characters in length. SCl prompt is [] repre-

sented by the ASCII codes
>7Band >7D.

MENU Main menu name. (SCI will Enables you to specify your
automatically prefix the spec- own main menu which is
ified menu with M$ to obtain displayed after each menu
the menu file name in your display cycle in VDT mode.
PROC library). The default SClI menu is

named LC.

PRIMITIVES YES or NO Enables you to allow or

disallow the use of primi-
tives at the primary level. In
the case of interactive SCi,
you are allowed or disal-
lowed to use primitives at
the keyboard. In batch SCI,
you are either allowed or
disallowed the use of primi-
tives in the batch stream.
The default is YES.

LOWERCASE YES or NO Enables you to allow or
disallow lowercase to
uppercase mapping of
input to SCI. The default is
NO. Use of the LOWER-
CASE option does not
apply to batch stream pro-
cessing or the foilowing
SCl command processors:

CvD DCOPY
INV MS
XANAL Mvi

2270510-9701 3-37

Extending SCi

The following example shows the use of the .OPTION primitive to display the station number.
MYMENU is a user constructed menu which is to be displayed, replacing the SCI main menu.

.PROC NP(NEW PROMPT PROC)
.OPTION PROMPT="STa$$ST" ,MENU=MYMENU,PRIMITIVES=YES
.EOP .

The synonym $$ST in this example represents the station number of the user’s terminal.

In the following example, the .OPTION primitive is used to select the EDIT menu found in
.S$CMDS.MSEDIT for display at each menu display cycle of SCI. This command also disables
primitives at the primary level. ‘

.OPTION MENU=EDIT,PRIMITIVES=NO

The next example illustrates the use of the .OPTION primitive to select a user-constructed menu
(PROPRE) found in the user command library with the file name .M$PROPRE, replacing the SCi

main menu displayed. This command also enables the use of lowercase characters as inputs to
SCi.

.OPTION MENU=PROPRE,LOWERCASE=YES

3.5.17 .MENU Primitive
The .MENU primitive causes SCi to dispiay a specified menu the nexi time SCi is in command
mode. The .MENU primitive has the following format:

.MENU [menu name]
There are three variations of the menu name parameter:

. No menu specified — The use of a .MENU with no menu specified causes screen con-
tents to remain unchanged in the next menu cycle.

Menu name — If you specify a menu name (one through six alphanumeric characters),
SCI will display the menu in the next menu cycle, whether the station is in TTY or VDT
mode. SCI appends the characters M$ at the beginning of the name to obtain the file
name within your command procedure library file where the menu resides.

o *Menu name — If you specify a menu name preceded by an asterisk, the menu is dis-
plaved only if the station is in VDT mode.

An equivalent aiternative to the .MENU primitive is the slash (/) symbol. It is defined as follows:

/ is equivalent to MENU
IDEV is equivalent to .MENU DEV
/*DEV is equivalent to .MENU *DEV

3-38 2270510-9701

Extending SCI

The following exampie illustrates the .MENU primitive:

.PROC NM(NEW MENU PROC)
.MENU MYMENU
.EOP

This example specifies MYMENU to be displayed on the terminal. SCI searches the command
library for the file MSMYMENU and displays the menu in that file on the next menu display cycle.

3.5.18 .SHOW Primitive
The .SHOW primitive displays the contents of a specified file or files to an interactive terminal or

batch listing file. The .SHOW primitive has the following format:
.SHOW filenamel,filename...filename]
where:
filename is the name of a file.
The .SHOW primitive cannot display program files, image files, or directories.

.SHOW is equivalent to the Show File (SF) command. The function keys used with the SF com-
mand are applicable to the .SHOW primitive. Refer to the SF command in the System Command
Interpreter (SCI) Reference Manual for descriptions of the function keys.

The following example illustrates the .SHOW primitive used in the SF command procedure:

.PROC SF(SHOW FILE)=0,

INPUT FILENAME=ACNM("Q$SFSIP')
.SYN $SFSIP="ZINPUT FILENAME"
.SHOW DASSFSIP
.EOP

In the previous example, the .SHOW primitive displays the file specified as the response to the
INPUT FILENAME prompt. The .SHOW primitive is not limited to the SF command procedure; it
can be used in any command procedure.

3.5.19 .SVC Primitive
The .SVC primitive allows you to issue supervisor calls (SVCs) from the SCI procedure language.
The format of the .SVC primitive is as follows:

.SVC [$name | DATAIBYTE/TEXT = value(s)...[$name] DATA/ BYTE/TEXT = value(s)

The optional $name parameter is a synonym that can be used to retrieve information returned to
the SVC call block by DNOS. The DATA, BYTE, and TEXT parameters enable you to describe the
SVC call block with value(s) as they might appear in assembly language. The execution of this
command causes SClI to build the supervisor call block and issue the SVC. The synonym 3CC is
set to >00 if the SVC completes normally; otherwise, SCI sets an error condition enabling the
command procedure to test for abnormal cases via the $$CC and $$MN synonyms. The $$CC and
$$MN synonyms are described elsewhere in this manual.

2270510-9701 ' 3-39

Extending SC!

There are some SVCs which cannot be used with the .SVC primitive. These limitations are signifi-
cant and are described in Tabie 3-8.

To use the .SVC primitive, perform the following steps:

1. Determine the SVC to be issued. Make sure that it does not fall into any of the catego-
ries of disallowed SVCs.

2. Format the SVC call block using the DATA, BYTE, and TEXT parameters. After each
parameter, insert an equals sign (=).

a. M the SVC definition requires a pointer to a text string, replace the pointer (which is
always a DATA value) with the text. The following example illustrates this use in
the System Log SVC when written in assembly language:

svcs DATA >2100
DATA 0
DATA POINTER
DATA 0
POINTER BYTE 20
TEXT 'TEXT FOR LOG MESSAGE'

The following is an example of .SVC primitive used to issue the System Log SVC:

.SVvC DATA=>2100,
DATA=0,
DATA="TEXT FOR LOG MESSAGE",
DATA=0

SCl realizes the text supplied for the pointer is not a data value and stores the text
string with the preceding byte iength count. A pointer to this string is generated by
SCl and placed in the SVC block.

b. If the SVC definition requires text within the call block, you must declare the field
length of the text. To do this, place the field length within parentheses before the
text. Following is an example of this use in the Map Task Name to ID SVC when

written in assembly language:
y language:

SvCB DATA >3100
DATA O
TEXT SCI990
DATA OFFO0O0
DATA O

3-40 2270510-9701

Extending SCI

The following is an example of the .SVC primitive used to issue the Map Task
Name to ID SVC:

SVC DATA=>3100,
DATA=0,
TEXT=(8)SCI990,
DATA=0FFOO,
DATA=0

This example causes the field to be blank filled with the text left-justified.

3. Ifyou are using a list of DATA or BYTE values, enclose the list in parentheses, as shown
below for the System Log Message SVC:

.SVC DATA=(>2100,0,""MESSAGE FOR SYSTEM LOG",0)
A list of TEXT is not allowed.
4. Information returned by DNOS is retrieved from the call block by placing a label name

before the DATA, BYTE, or TEXT field of interest. The label name must begin with a $, as
shown below when issuing the Map Task Name to ID SVC using the .SVC primitive:

.SVC DATA=(>3100,0),
TEXT=(8)SCI1990,
BYTE=0FF,

$TASKID BYTE=0,
DATA=0

After the SVC is issued, STl assigns the hexadecimal ASCIi value of the DATA or BYTE
parameter or the text string of the TEXT parameter to the system $TASKID. If a list of
values was specified as the DATA or BYTE parameter, the synonym is assigned the first
item of the list. Such synonyms are assigned whether or not an error occurs when the
SVC is executed.

2270510-9701 3-41

Extending SC!

The following examples illustrate uses of the .SVC primitive.

The first example uses the .SVC primitive to cause a time delay of 100 system time units, as shown
below:

.SVC DATA=(0200,100)

The second example uses the .SVC primitive to kill a task with a run ID value equivalent to the
value of the synonym $$RI. The state of the task terminated is converted to ASCIl (base 16) and the
synonym $STATE is assigned that value.

.SVC DATA=03300,
BYTE=(a$$RI,0),
$STATE BYTE=(0,0,0,0)

In the third example, the .SVC primitive is used to assign a global LUNO to the directory .S$CMDS
and return the LUNO that was assigned as the value of $$LU. A special feature of the DATA field is
shown here. If any element in the DATA list cannot be converted into a number, SCI allocates
memory and copies the element as a string (preceded by a byte count), placing the address of the
string in the SVC block.

.SYN TYPE=02000 ! TYPE IS DIRECTORY FILE
.SYN SCOPE=01000 ! THE LUNO SCOPE IS GLOBAL
.SVC DATA=0,

BYTE=>91,

$$LU BYTE=0,
DATA=(0,0,0,0,0,0,3TYPE+@aSCOPE+0400,0,0),
DATA=.S$CMDS

The advantages of the .SVC primitive as opposed to bidding a separate task to perform the SVC
are as follows:

. Efficiency — The overhead involved to bid a task is avoided.

o Generality — Some functions are supported by the operating system and are not avail-
able in the standard set of SCI commands.

3-42 2270510-9701

Extending SCI

Table 3-8. Disallowed SVCs for.SVC Primitive

SVC Type Restrictions

Privileged SVCs Since SCI is not a privileged task, privileged SVCs cannot be
issued. DNOS enforces this limitation. Refer to the DNOS
Supervisor Call (SVC) Reference Manual to determine if the
desired SVC is privileged.

External Data Blocks SVCs that use external data blocks (other than text string for-
mat for input) are not allowed. SCI enforces this limitation and
disallows the following SVCs:

SvVC Subopcode Function
>00 >05 Read Characteristics
>09 Read ASCII
>0A Read Direct
>0B Write ASCII
>0C Write Direct
>10 Rewrite
>40->52 All KIF Subopcodes
>03 Get Date and Time
>0A Convert Binary to
Decimal
>0B Convert Decimal to
Binary
>0C Convert Binary to Hexa-
decimal
>0D Convert Hexadecimal to
Binary
>1C Put Data
>1D Get Data
>3B Initialize Date and Time
>3F | Retrieve System Data
>45 Encrypt Data
>46 Decrypt Data
>47 Log Accounting Entry
>4C Return Code Processor

2270510-9701 3-43

Extending SCI

Table 3-8. Disallowed SVCs for .SVC Primitive (Continued)

SVC Type Restrictions
Special SVCs SV(Cs that might jeopardize the internal functioning of SCl are
not allowed. SCI enforces this limitation and disallows the fol-
lowing SVCs:
SVC Function
>01 Wait for /10
>04 Terminate Task
>0F Abort /O by LUNO
>10 Get Common
>12 Get Memory
>13 Release Memory
>14 Load Overlay
>1B Release Common
>40 Segment Manager
>43 Name Manager

3.6 SCIPRIMITIVE BATCH STREAM EXAMPLE

The following example uses SCI primitives in a batch stream to install a program in a program file.
The first command of every batch stream should be the Batch SCI (BATCH) command and the last
command should be the End Batch SCI (EBATCH) command. The BATCH command clears un-
necessary synonyms and EBATCH indicates that there are no more commands to be processed in

the batch stream.

3-44

2270510-9701

Extending SC!

EXAMPLE

BATCH LS=YES

ITE2ZE2222 2222222t s 2 X2 2 222222222222 2 222 2222222222222 223

*

ASSEMBLE, LINK AND INSTALL THE EXAMPLE TEST TASK
ASSUME: SOURCE = SOURCE DIRECTORY
OBJECT = OBJECT DIRECTORY

LISTING = LISTING DIRECTORY

PROG = PROGRAM FILE

CONTROL = LINK CONTROL DIRECTORY
LINK = LINKED QUTPUT DIRECTORY
LINKMAP = LINKMAP DIRECTORY

222222222 RRRRRRRRRR Rt 2 s 2 2 222 22X X222 X2 X2 X2 XXX

ASSEMBLE EXAMPLE SOURCE MODULES: EXAMPLEO1, EXAMPLEOZ2

X ¥ % N ¥ F X % H F F * * *

MA SOURCE=SOURCE.EXAMPLEO1, OBJECT=O0BJECT.EXAMPLEO1,
LISTING=LIST.EXAMPLEO1, OPTIONS=(XREF,DUN,BUN,TUN)

EC

XMA SOURCE=SOURCE.EXAMPLEO2, OBJECT=0BJECT.EXAMPLEO2,
LISTING=LIST.EXAMPLEO2, OPTIONS=(XREF,DUN,BUN,TUN)

EC

X222 2R EEX 2222222 R X222 22222222 2 X2 232232 XX2 222 X2 2 X322 XXX X222 2 2)

*

* IF NO ASSEMBLY ERRORS THEN LINK THE EXAMPLE TASK

*

.IF @EC,EQ,0

XLE CONTROL=CONTROL.EXAMPLE, LINKED OUTPUT=LINK.EXAMPLE,
LISTING=LINKMAP.EXAMPLE

EC

.ENDIF

[E 22X XX2 2222222222222 22222222222 2222222 2 2 2 2 2 2 2 2 2 XX 2222 2 2222 X 2 R 24

*

* IF NO ERRORS OCCURRED DURING THE LINK

* DELETE THE CURRENT TASK

*

.IF @SESC,EQ,0

DT PROGRAM FILE=PROG, TASK NAME=EXAMPLE

.ENDIF

XXX 222 22222222222 2222222222 2 XXX 222 22 X2 2 X2 X222 22 XX22 2 XXX 22X 23

: ,

* IF NO ERRORS OCCURRED DELETING THE OLD TASK

* INSTALL THE NEW PROGRAM

*

.IF @$ESC,EQ,0

IT PROGRAM FILE=PROG, OBJECT PATHNAME=LINK.EXAMPLE
EC

.ENDIF

I 2222222 X222 22222222222 2Rt 2 22222222222 22 22222 ts2 2222222222222 22 1
*

* INSTALLATION OF EXAMPLE PROGRAM COMPLETE
*

EBATCH TEXT="INSTALLATION COMPLETE, ERRORS=3ESC",CODE=a$ESC

2270510-9701 345

Extending SC!

*

* IF NO ERRORS OCCURRED DELETING THE OLD TASK

* INSTALL THE NEW PROGRAM

*

.IF R3ESC,EQ,0

IT PROGRAM FILE=PROG, OBJECT PATHNAME=LINK.EXAMPLE
EC

-ENDIF

Ahkkkhhkhhhhkhhhkhkhhkhhkhdhhhhkhhhhhkhdkhkhkhkkhhhhkhkhhhkhhkhhhhrrhhdrrhhkkhhhhhhhdk
*

* INSTALLATION OF EXAMPLE PROGRAM COMPLETE
*

EBATCH TEXT="INSTALLATION COMPLETE, ERRORS=3ESC",CODE=3SESC

3.7 ERROR PROCESSING FOR PRIMITIVES

If SCI encounters a syntax error within the parameters of a primitive in a command procedure, the
command procedure execution aborts. if the error occurs on a primitive that is in a batch stream,
the batch stream terminates at the point of error.

If the destination file cannot be accessed for the .PROC or .DATA primitives, SCI scans until it
encounters an .EOP or .EOD primitive. SCI then sets the synonym 3CC to an error condition and
continues processing. For example, if a batch stream is executed and the destination file for a
.PROC or .DATA primitive is not accessible, SCI continues to execute the remaining procedures.

3.8 COMMAND PROCEDURES AND COMMAND PROCESSORS

In addition to the command procedures and command processors supplied with the DNOS operat-
ing system, the system programmer can write new procedures and processors which fulfill user
requirements. The rules of the SCl language syntax and the SCI primitives discussed earlier in this
section are applied when writing new procedures and processors. The following paragraphs dis-
cuss the design of command procedures and command processors and the various options
available.

3.8.1 Command Procedure Design

A command procedure is a sequence of statements that is executed each time you issue an SCI
command. The command procedure is composed of SC! statements including commands, primi-

tives, and menu invocations executable by SCI.
Command precedures are designed to:
] Collect responses to field prompts
. Assign values to synonyms to be used by this or other procedures

. Call command processors and/or other command procedures

3-46 2270510-9701

Extending SCI

Procedures can collect responses to field prompts and perform various actions such as compari-
sons with the .IF primitive. For example, the Install Task (IT) command tests the response to the
field prompt ATTACHED PROCEDURES? and may issue additional field prompts, depending on
the result of the comparison.

A synonym can be enclosed in parentheses after the field prompt type and defined as the initial
value of the field prompt in a command procedure, as in the following:

.PROC SF(SHOW FILE),
FILE PATHNAME=*ACNM("QSFP'")

-.SYN $SFSP="&FILE PATHNAME"

.IF "&FILE PATHNAME", NE, ""
.SHOW QA&FILE PATHNAME
.ENDIF

.EOP

In this procedure, the value of the synonym SFP is the initial value for FILE PATHNAME. The @
sign preceding the synonym designates the synonym value. When you first log on the system,
SFP has no assigned value and the field prompt has no initial value displayed. After you execute
the first SF, the synonym is assigned the value which is entered as the initial value for FILE
PATHNAME in subsequent SF executions.

In addition to assigning synonyms within the command procedure, the use of a synonym as an
initial value enables the command procedure to recall the synonym with its last assigned value.
Initial values are not required to be synonyms in command procedures; they can be numbers or
strings. For initial values that are synonyms, values are not required to be assigned for the
synonyms. For example, if the synonym ,FILE has no value assigned, the character string FILE fol-
lowing the, sign is assigned as the value.

After all references are resolved, if the initial value for a field prompt begins with a $ sign, then the
field prompt is given a null value (not the string that begins with the $ sign as the initial value).

The ability of one procedure to call other procedures offers you several advantages. It allows one
procedure to perform a simple field prompt test and branch to other command procedures, thus
simplifying user input. As an example of such a procedure, the CF command can be written as
follows:

.PROC CF (CREATE FILE - SEQ, REL, KEY, DIR, PRO, IMG),
FILE TYPE=ELEMENT(SEQ, REL, KEY, DIR, PRO, IMG) (SEQ)
*
.IF "g$$M0"", EQ, O
MSG T="ERROR: USE SPECIFIC FILE TYPE CREATE IN BATCH"
.ELSE
.IF "“&FILE TYPE", EQ, SEQ
CFSEQ
.ENDIF
.IF “&FILE TYPE'", EQ, REL
CFREL
.ENDIF

2270510-9701 3-47

Extending SCi

.IF "&FILE
CFKEY

.ENDIF

.IF "&FILE
CFDIR

.ENDIF

.IF "&FILE
CFPRO

.ENDIF

.IF "EFILE
CFIMG

.ENDIF

.ENDIF

.EOQOP

TYPE",

TYPE",

TYPE",

TYPE",

EQ,

EQ,

EQ,

EQ,

KEY

DIR

PRO

IMG

In the batch mode of SCIl operation, the top level procedure of a nested command definition must
recognize all field prompts of the command, including those used by the nested procedure. In the
foliowing exampie, the field prompt OBJECT ACCESS NAME is used in the nested procedure and
must be specified in the top level procedure.

.PROC RUNCEXECUTE APPLICATION PROGRAM),
LANGUAGE(COBOL,PASCAL)=NAME,

! XCP PROMPT
OBJECT ACCESS NAME

i CHECK FOR BATCH MODE

.IF "a$$M0",EQ,0
.IF "&LANGUAGE",EQ,"COBOL"

XCP OBJECT ACCESS NAME="&0BJECT ACCESS

-ENDIF
JEXIT
.ENDIF

! INTERACTIVE MO
.IF "&LANGUAGE',EG,"C

XCP
-EXIT
.ENDIF

.IF "&LANGUAGE" ,EQ,"PASCAL"

XPT
JEXIT
.ENDIF

m
(]
A+

-

DE
oBOL"

NAME"

2270510-9701

Extending SCI

The top-level procedure RUN calls the Execute COBOL Program (XCP) command; however, the
RUN procedure is divided into two parts. The first part of the RUN procedure is used for batch
execution. The XCP command is called with the appropriate field prompt values, assuming all
synonyms are assigned correct values prior to execution.

NOTE

Synonyms can be set by previous command procedures in a batch
stream. Therefore, you must take appropriate action so that the cor-
rect synonyms are used.

The second part of the RUN procedure is used for interactive mode. When the XCP command is
called, field prompt values are not assigned so that they will be prompted at the terminal.

NOTE

As soon as a procedure terminates, its field prompts and their
values are destroyed.

The following examples show how to call the RUN procedure in batch and interactive modes.

Example of batch mode:

RUN LANG=COBOL,0BJ=0.TEMP
Example of interactive mode:

[IRUN
EXECUTE APPLICATION PROGRAM
LANGUAGE: COBOL

EXECUTE COBOL PROGRAMKVERSION:3.3.1 81196>
OBJECT ACCESS NAME: O.TEMP
MESSAGE ACCESS NAME:
SWITCHES: 00000000
FUNCTION KEYS: NO

If a command procedure uses the .PROMPT primitive in the interactive mode to gather responses
from additional screens of prompts, special provisions must be made for batch execution. The
procedure must include DEFAULT type prompts for all .PROMPT screens along with the first
screen of prompts. For example, the following CIC command procedure includes DEFAULT types
for the RESOURCE TYPE and PROCESS ASSIGNS? prompts that are to be displayed in the second
screen.

2270510-9701 3-49

Extending SC/

CIC(CREATE IPC CHANNEL)=Z2,

CHANNEL PATHNAME = ACNM,

OWNER TASK PROGRAM FILE= ACNM,

OWNER TASK NAME OR ID = NAME/RANGE(O,O0FF),
CHANNEL TYPE = ELEMENT(S=SYMMETRIC,
M=MASTER/SLAVE) (SYMMETRIC),

CHANNEL SCOPE = ELEMENT(G=GLOBAL,

T=TASK,J=J0B) (GLOBAL),
MAXIMUM MESSAGE LENGTH
SHARED CHANNEL ACCESS?
RESOURCE TYPE DEFAULT(CHAN),
PROCESS ASSIGNS? DEFAULT(NO)

.IF "&CHANNEL TYPE",EQ,MASTER/SLAVE
.PROMPT (MASTER/SLAVE CHANNEL ATTRIBUTES),
RESOURCE TYPE = INT

PROCESS ASSIGNS?=ELEMENT(Y=YES,N=NO) (NO)

RANGE(1,03000) (100),
ELEMENT(Y=YES,N=NO) (YES),

(procedure continues)

The field prompts from .PROMPT screens are defined without type information. This allows the
use of a single command procedure in both interactive and batch modes, but prompt the field
promipts in groups in interactive mode.

The following examples show how to use the CIC procedure in batch mode and interactive mode.
Example of batch mode:

CIC CHANNEL PATHNAME=.MKC.REPORT,
OWNER TASK PROGRAM FILE=.MKC.COMPILE,
OWNER TASK NAME OR ID=TAX,
CHANNEL TYPE=MS,
CHANNEL SCOPE=T,
MAXIMUM MESSAGE LENGTH=100,
SHARED CHANNEL ACCESS?=YES,

RESQURCE TYPE=CHAN,

PROCESS ASSIGNS?=NO
Example of interactive mode:

ficic
CREATE IPC CHANNEL
CHANNEL PATHNAME: .MKC.REPORT
OWNER TASK PROGRAM FILE: .MKC.COMPILE
OWNER TASK NAME OR ID: TAX
CHANNEL TYPE: MS
CHANNEL SCOPE: TASK

MAXIMUM MESSAGE LENGTH: 100
SHARED CHANNEL ACCESS: YES

3-50 2270510-9701

Extending SC/

MASTER/SLAVE CHANNEL ATTRIBUTES
RESOURCE TYPE: CHAN
PROCESS ASSIGNS?: NO

All of the field prompts and values which are defined within a procedure are stored in a table until
the procedure terminates. Therefore, when a procedure calls another procedure (or itself), all of
the field prompts and values for both procedures are stored in the table. As a result of deep level
nesting, the table can become full and cause the command procedure to abort with the following

message:

U SCI-0036 FIELD PROMPT TABLE OVERFLOW

To prevent tabie overflow, you should avoid deep levels of nesting and recursive procedures. To
avoid nesting and still call numerous procedures, call as many procedures as possible at the
same level. Procedures do not have access to one another’s field prompts. Recursive procedures
can usually be avoided by using iterative loops within a command procedure.

3.8.2 Command Processor Design

A command processor can be written in any language supported by DNOS. The command proces-
sor is invoked by the command procedure using the .BID or .QBID primitive to initiate the program
as a foreground task or a background task, respectively. If the program is run as a foreground
task, SCI execution is suspended until the task completes. Processors that involve long-term exe-
cution should operate in background, rather than foreground.

The following code is a simple example of a processor written in assembly language invoked by
the command procedure EXP (defined in the next section):

EXAMPLE
IDT EXPRO
* THIS IS THE EXAMPLE COMMAND PROCESSOR CALLED BY
* EXP. IT GETS THE 2 PARAMETER VALUES AND RETURNS
* THEM AS A MESSAGE IN THE MESSAGE BUFFER. THE
* MESSAGE IS THEN DISPLAYED WHEN THE RETURN TO THE
* COMMAND INTERPRETER IS MADE.
REF S$GTCA,S$PARM,SSRTCA,S$STOP
DATA WS,PC,ERRORO
WS BSS 32 PROCESSOR WORKSPACE
MSG BYTE 255 TOTAL MESSAGE SIZE
BSS 255 MESSAGE BUFFER
ERRO BYTE 17
TEXT ':END ACTION TAKEN'
ERR1 BYTE 27
TEXT ':ERROR RETURNED FROM S$PARM'
ERRZ2 BYTE 27
TEXT ':ERROR RETURNED FROM S$GTCA'
PC BLWP QAS$GTCA GET THE TCA
MOV RO,RO TERMINATE
JNE ERROR?Z IF ERROR
LI R4 ,MSG GO GET

2270510-9701 3.51

Extending SCI

RETURN
*

ERRORO

*
ERRORA1

*
ERRORZ2

THE FIRST
PARAMETER,WHICH IS
"&EXAMPLE NAME"
TERMINATE
IF ERROR
SET R7 = NUMBER OF
CHARACTERS READ IN
R4 POINTS TO LAST CHARACTER

OF FIRST STRING

R7 = LENGTH OF
REMAINING BUFFER
R6 = LAST CHARACTER OF 1ST STRING

R4 NOW POINTS TO THE
REMAINING BUFFER
GO GET THE SECOND
PARAMETER,WHICH IS
"&NUMBER"
TERMINATE
IF ERROR
@MSG CONTAINS LENGTH OF MESSAGE
RESTORE LAST CHAR OF 1ST STRING

RETURN MESSAGE

RELEASE TCA
RETURN TO SCI

RETURN FROM S$GTCA

LI R3,1
BLWP BS$PARM
BYTE R3,R4
MOV RO,RO
JNE ERROR1
MOVB aMSG,R7
SRL R7,8
A R7 ,R4
NEG R7
Al R7,255
MOVB *R4,R6
SWPB R7
MOVB R7,*Ré&
LI R3,2
BLWP AS$PARM
BYTE R3,R4
MOV RO,RO
JNE ERROR1
AB *R4 ,AMSG
MOVB R6,*Ré4
NORMAL NO ERROR RETURN
LI R2,MSG
CLR R1
BLWP @SSRTCA
BLWP @S$STOP
END ACTION
LI R2,ERRO
LI R1,>8000
JMP RETURN
ERROR RETURN FROM S$PARM
LI R2.ERR1
LI R1,>8000
JMP RETURN
ERROR
LI R2,ERR2
LI R1,>8000
JMP RETURN
END

Note that the processor receives its parameters and returns control to SCI by calling various inter-
face routines (S3GTCA, S$RTCA, S$STOP, S$PARM). These routines are discussed later in this

section.

The command processor terminates by calling S$STOP and control returns to the command pro-
cedure statement foilowing the .BiD primitive which invoked the processor.

3-52

2270510-9701

Extending SCI

3.8.3 Installing Command Procedures and Command Processors

After the command procedure and command processor (if applicable) are created, install each of
them before using the new command. Install the command procedure in a procedure library.
Although you can install user-defined commands in the .S$CMDS command procedure library, it is
recommended that you install them in a separate user library to prevent accidental alterations of
supplied commands. Install the command processors, if used, in a program file.

You can install command procedures interactively or through batch execution. The following
example creates a user command procedure library on the system disk and installs the EXP com-
mand in that library interactively:

[LICFDIR PATHNAME=SYSVOL.USERLIB,MAXENT=101
[]1.USE SYSVOL.USERLIB,.S$CMDS
[1.PROC EXP(EXAMPLE PROCEDURE),
EXAMPLE NAME=STRING('"SAMPLE'"),
NUMBER=INT
.BID TASK=>55,PARMS=("&EXAMPLE NAME'",'"&NUMBER'"),

PROGRAM FILE=.USERPROG

The Create Directory Fiie (CFDiR) command creates the user iibrary which is then specified in the
.USE primitive. By specifying .S$CMDS as the secondary library in the .USE primitive, the standard
SCI commands are still available to use. Enter the command procedure statements following the
.USE primitive. If several procedures are to be entered in the same library, additional .USE primi-
tives are not necessary.

A batch stream is more efficient than interactive entry, particularly when defining several proce-
dures. The sequence to create a batch stream for the above command procedure is as follows:

1. Issue the Execute Text Editor (XE) command without specifying an input FILE ACCESS
NAME.

2. Edit the above SCI statements into the file. Include the BATCH and EBATCH commands
as the first and last commands, respectively.

3. Issue the Quit Edit (QE) command, do not abort the edit, and specify some file (for
example, MKC.NEWPROC) as the OUTPUT FILE ACCESS NAME.

Refer to the DNOS Text Editor Reference Manual for information about the Text Editor.
Install the command procedure by issuing the Execute Batch (XB) command, specifying
MKC.NEWPROC as the INPUT ACCESS NAME. When the batch stream completes, check the list-

ing file for errors. If no errors occurred, the command procedure is installed in the library
SYSVOL.USERLIB.

2270510-9701 3-53

Extending SC!

The task called by the .BID primitive is the assembly code example used in the paragraphs dis-
cussing the command processor. Before instailing the command processor, you must compiie or
assemble the processor and any routines it calls (excluding the S$ routines, which exist in object
form), then link edit the processor. If the processor uses the S$ interface routines, the link edit
control file must use the library .SCI990.S$OBJECT containing the S$ routines. Following is an
example of the Link Editor control stream needed to link the example processor with the interface

routines:

LIBRARY .SCI990.S$OBJECT S$ routines

PHASE 0, MYPROCH1 Name of linked object module
INCLUDE .MYPROC1 Processor object module
END

After you link edit the processor, install it in a program file using the Install Task (IT) command.

3.8.4 Using New Commands

After you install the command procedures in the .S$CMDS library and the command processors in
program files, you can issue new commands whenever SCI prompts for a command. If you install
the new commands in a user command library, you must specify that library by executing the .USE
primitive before the commands are available.

The following example specifies a command library, other than .S$CMDS, to be used by SCI:

{1.USE SYSYOL.USERLIB
[IEXP
EXAMPLE PROCEDURE

The last .USE primitive executed specifies the current library. Executing the .USE primitive with-
out a pathname defaults to the system library, .S$CMDS.

3.8.5 Expert Mode Considerations

The way SCI commands are entered interactively in expert mode is similar to the way these com-
mands are entered in batch mode. Enter the command and answer the following prompts and res-
ponses necessary for command execution. The foiiowing is an exampie of the Show Fiie (SF)
command:

SF F=DS02.USER.TEMP

After you press the RETURN or ENTER key, the file that you specified is displayed.

If a command requires additional prompt responses, separate them by commas. If you execute a
command using this method and exclude a prompt necessary for command execution, SCl allows
you to enter a response to that prompt. For instance, suppose SOURCE FILE, DESTINATION FILE,
and LISTING FILE were the prompts for a command. Responses to the SOURCE FILE and DESTIN-
ATION FILE prompts must be supplied, but response to the LISTING FILE is optional. If you enter
aresponse to only the SOURCE FILE prompt:

EX S=DS02.USER.SOURCE

3-54 2270510-9701

Extending SCI

then SCI displays the prompts of the command as if you had only entered the command name.
The cursor is positioned at the prompt which needs a response, as in the following:

SOURCE FILE: ©DS02.USER.SOURCE
DESTINATION FILE: (cursor positioned here)
LISTING FILE:

This enables you to enter the response to the DESTINATION FILE prompt. If necessary, you can
change the response to the SOURCE FILE at this point. However, SCI will not allow you to enter a
response to the LISTING FILE prompt; you can only modify responses preceding the cursor posi-
tion. Press the RETURN key and the command will execute.

If a response requires a list of values, this list must be enclosed in parentheses if you are using
expert mode.

When you issue a command procedure interactively to call another command procedure and it
does not specify any field prompts or values for the second procedure, the field prompts for the
second procedure are displayed. However, if you enter a command procedure in expert mode to
call another command procedure, the prompts are not displayed for the second procedure.

Another type of expert mode is used when the the initial or default value is to be used. Enter the
command with a period as in the foliowing:

SF.

Press the RETURN or ENTER key so the file specified as the initial or default value will be dis-
played. You cannot use this type of expert mode uniess the nonoptional command prompts have
predefined initial or default values. For example, the SF command does not have a defauit value
and the initial value is not assigned until after the first execution of the command. Therefore, if SF
has not been execiited previously, the SF. command would not show a file.

3.8.6 Deleting Commands

If you want to delete a command, delete the command procedure from the command procedure
library and the command processor (if applicable) from the program file in which they are
installed. Before deleting the command processor, ensure that it is not called by other command
procedures.

Delete a command procedure by entering a Delete File (DF) command. The following example
deletes the EXP command installed in a user library:

DF PATHNAME=SYSVOL.MYLIB.EXP

Delete a command processor by using the Delete Task (DT) command.

2270510-9701 3-55

Extending SCI

3.9 COMMAND PROCESSOR INTERFACE ROUTINES

A processor communicates with SCI through command processor interface routines (S$ routines).
For example, a processor uses the S$PARM routine to obtain the parameters supplied with the
.BID, .DBID, or .QBID primitives. Calling S$ routines allows you to write processors similar to
those supplied with DNOS, which contain calls to S$ routines that are transparent to the user.
Since S$ routines require an assembly language interface, high-level language users must provide
assembly language routines to call them. Refer to the appropriate language manual for details on
interface routines.

Several other DNOS processors provide interfaces similar to the SCl interfaces. These include an
interface to the mailbox message subsystem and one to the operator interface subsystem. Rou-
tines with names beginning with MB$ are interfaces to the mailbox message subsystem, and
those beginning with OI$ are interfaces to the system operator subsystem. The library with the S$
routines includes these interface routines.

3.9.1 Interface Routine References

References to interface routines in a command processor are external references. Each refer-
enced routine must be listed in a REF assembler directive in the command processor prograim.
Branch and Link Workspace Pointer (BLWP) instructions call interface routines. Sometimes, data
follows a routine, as specified in the calling sequences of the routine. The following example
shows the REF directive and the BLWP instructions required in a command processor that calls
the following interface routines: Get TCA (S$GTCA), Terminate and Return to SCI (S$TERM), and
Release TCA (S$RTCA).

SRS

REF S$GTCA, SSRTCA, SSTERM

BLWP @S$GTCA

BLWP @S$RTCA

BLWP @S$TERM
Any task using S$ routines must be linked with the routines. They are located in library .SCI990,
which must be specified for link editing. Tasks written for DX10 must be relinked with DNOS S$

routines to execute on DNOS.

If the S$ routine library for DX10 has been linked with a DNOS task, the foiiowing error message
appears when the task executes:

ERROR TASK ID >xx HAS BEEN LINKED TO DX10 S$SROUTINES

3-56 2270510-9701

Extending SCI

where:

xx is the installed ID of the task.

This message appears when the S$GTCA routine or the Initialize System Data Base (SSNEW)
routine executes.

3.9.2 Buffers for Interface Routines
Many of the S$ interface routines require buffers. The form of these buffers is as follows:

LABEL BYTE CNT
BSS CNT

CNT represents the number of bytes in the buffer, excluding the count byte. When the buffer con-
tains a character string, the form is as follows:

LABEL BYTE CNT
TEXT ___.
CNT EQU $ - LABEL -1

In this example, symbol CNT represents the number of characters in the string provided by the
TEXT directive.

The resulting buffer has the following form:

ARRY
. (SN ¢
STRING N n
LENGTH C1 c2 c
J)
SRS
BYTE BYTE

2279419

where:
string length indicates the number of characters in the string.

buffer size represents one byte for each character in the string plus one byte reserved for the
length count.

Unless otherwise indicated, all references to buffers in the descriptions of the interface routines
refer to a buffer with the byte count in the first byte, as in the preceding examples.

If you create a buffer of length n and you designate the buffer in a routine that returns a value, the
length byte will receive the length of the returned string.

2270510-9701 3-57

Extending SCI

3.10 INTERFACE ROUTINE DESCRIPTIONS
The six major classes of interface routines are as follows:
. SClinterface routines
. Local display file routines
e String utility routines
* Arithmetic utility routines
] Mailbox message routines
. Operator interface routines

3.10.1 SClInterface Routines

The SCi interface routines access parameters (PARMS and CODE), iocate and modify synonyms
defined for the session, and return control to SCI. Only tasks bid with the .BID, .QBID, or .DBID
primitives can use these routines. The communications area (TCA) serves as an information buffer
between SCI and the command processors. A call to the SSGTCA routine must precede any calls
to these S$ routines. After a call to the SSRTCA routine, a call to any of these routines is not valid.
You can cali the S3TERM routine and the Alternate Termination (S$STOP) routine any time, since
they call S$GTCA.

3.10.1.1 Get TCA (SSGTCA). Routine S$GTCA makes information available to a command pro-
cessor. You must call this routine before a command processor can access synonym values or get

parameters passed to it by the SCI procedure. After a successful call to S§GTCA, the processor
can retrieve the values of CODE and PARMS.

Cailing Sequence
BLWP aS$GTCA

Registers Used

RO — Error code returned by SSGTCA
Error Codes

> FF05 — Unable to access name correspondence table (NCT)
3.10.1.2 Initialize System Data Base (SSNEW). S$NEW initializes a data base for use by the var-
ious system routines according to the terminal state, mode, and ID. Some command processors
do not call SSGTCA because they do not need to access the TCA; however, these processors must

call SENEW before they can use any other S$ routines. Processors that call SSGTCA need not call
SSNEW.

3-58 2270510-9701

Extending SCI

Calling Sequence

BLWP DSSSNEW

Registers Used

RO — Error code returned by SSNEW

Error Codes
> FFFF — SSNEW previously called

3.10.1.3 Bid Task Routine (S$BIDT). S$BIDT allows tasks that are normally bid via the .BID or
.QBID primitives to be bid from another task. S$BIDT allows a task to replicate the SCI environ-
ment at the time a .BID is performed. This capability is also available in COBOL through C$BID
(which in turn uses S$BIDT) and is available to other languages through an interface to an
assembly language routine.

By using S$BIDT, a task can execute other user-written tasks or a system task directly, without
returning to SCI to have the .BID primitive execute the task. This allows the task to retain control
and avoids the problem of having to reenter the task again to resume processing upon return from
SCL .

Since S$BIDT can bid any task that the .BID or .QBID primitives can bid, the routine can invoke
tasks that are part of the operating system release as well as user-written tasks. For example, you
have an application task that prompts the user for a directory pathname. You could use the
S$BIDT routine to call the List Directory task in order to produce an alphabetized listing of the
members in the directory. The application program could then read this alphabetized listing and
prompt the user for desired actions on selected members. After interfacing with the user, the
application task could use S$BIDT to call the Copy Directory task to copy specified members to
another directory.

Use of the S$BIDT routine does, however, have several drawbacks:

e To call a task directly with S$BIDT routine means bypassing the command procedure.
Therefore, you risk the fact that a call to a released operating system task may not work
on a later release of the operating system due to a change in the .BID caliling sequence.

U] The task using S$BIDT must be invoked via a .BID, .QBID, or .DBID primitive. However, a
task bid via S$BIDT can issue an S$BIDT call to enable concatenation. If the task using
S$BIDT is invoked via XT (Execute Task) or XTS (Execute Task and Suspend SCl), the
results can be unpredicatable.

. If the task calling S$BIDT has opened the terminal local file (TLF), the task bid by the
S$BIDT routine will be unablie to get access to the TLF and may terminate without per-
forming the desired action. You can get around this problem, however, by having one of
the tasks use an alternate pathname. You can either use DUMY or define your own path-
name.

2270510-9701 3-59

Extending SCI

e If the S$BIDT routine encounters errors when bidding the task, it returns error code.
However, any error code returned by a task that is called via the S$BIDT routine is very
difficult to access. If one of your application programs absolutely needs to access this
error code, contact your Customer Representative for information.

As with all S$ routines, a task must call either SSGTCA or SSNEW (to perform the necessary initial-
izations) before it calls S$BIDT.

Calling Sequence
BLWP AS$BIDT
Registers Used

RO — Set to 0 by S$BIDT if the task was bid successfully. Set to a nonzero error code by
S$BIDT if the task was not bid successfully.

R1 — The calling task sets the MSB to the task ID of the task to be executed and the LSB to
the LUNO assigned to the program fiie of the task to be executed.

R2 — Set by the calling task to contain the address of an address table. Each of the
addresses in the table points to a parameter that will be passed to the task to be exe-
cuted. This address table must contain a 0 as its last entry. If R2 itself is 0, the parame-

aa I\f thA r Y- H 2 Ve 1 &nak are moaonand da dbha daalsda A Axecuted.

-
icio v T Laliiny tas MAOOTU LV LNIT 1aSKiouc e

R3 — The calling task sets the MSB to the CODE to be passed to the task to be executed. The
MSB has an integer range between 0 and 255. It is 0 if no CODE is to be passed; all
other values correspond to the CODE keyword which may optionally appear on the .BID
statement. The calling task uses the LSB to set flag bits:

Bit 8 — If set to 1, the run ID of the bid task is returned in the MSB of R1. If set to 0, R1
remains unchanged.

Bit 9 — If set to 1, the calling task is associated with the same station of the caller. If
set to 0, the task is not associated with a station.

Bit 10 — If set to 1, the task shares the synonym tabie with the caller. If set to 0, the
calling task gets a snapshot of the current synonyms in a table of its own.

Bit 11 — Setto 0.

Bit 12 — If set to 1, the calling task is terminated after the called task is bid.

Bit 13 — Setto 0.

Bit 14 — Set to 0.

Bit 15 — If set to 1, the calling task is suspended until the called task is terminated.

If neither bit 12 or bit 15 of R3 is set to 1, the called task and the calling task will run

concurrently. Therefore, you must not expect the function of the called task to finish
at any particular time.

3-60 2270510-8701

Extending SCI

Error Codes

> FFFD — S$BIDT is unable to make a snapshot of the current synonyms.

> FFFE — S$BIDT is unable to bid the task specified.

S$BIDT can return any error returned by an S$ routine. You can refer to the SCl section of the
DNOS Messages and Codes Manual for help.

To illustrate the use of the S$BIDT routine, the following example shows you how to have S$BIDT
call the Copy/Concatenate (CC) processor:

1.

2270510-9701

Examine the command procedure to determine the input values needed for the S$BIDT
routine.

CC(COPY/CONCATENATE),

INPUT ACCESS NAME(S) =(ACNM) ("asSFP"),

OUTPUT ACCESS NAME =ACNM

REPLACE? =ELEMENT(Y=YES,N=NO) (NO),
MAXIMUM RECORD LENGTH =*INT

.SYN SFP="&INPUT ACCESS NAME"

*BID TASK CCAF

.BID TASK=011, UTILITY, CODE=1,

PARMS=((&INPUT ACCESS NAME),"@&OUTPUT ACCESS NAME",
NO,"&REPLACE'",NO,"&MAXIMUM RECORD LENGTH'")

Set up the proper data structure to invoke the command procedure. Notice that the CC
command procedure prompts for responses. It then bids task > 11 with a code value of 1
and passes six parameters. Under DNOS 1.2, you could invoke the CC procedure with
the following data structure:

ADRTBL DATA INPUT
DATA QUTPUT
DATA PARM3
DATA REPLAC
DATA PARMS
DATA MAX
DATA 0

INPUT BYTE 5
TEXT (.IN)
OUTPUT BYTE 4

TEXT .0UT
PARM3 BYTE 2

TEXT NO
REPLAC BYTE 1

TEXT Y
PARM5 BYTE 2

TEXT NO
MAX BYTE 0

3-61

Extending SC!

Notice how the parameters being passed match up with the six parameters of the CC
command procedure. The first parameter passed to the CC procedure is a five-byte
string “(.IN)”’, which represents the input file. The second parameter is a four-byte string
“.0UT”, which represents the output file. The third parameter is aiways “NO’”. The
fourth parameter is a one-byte string “Y”, which indicates the output file is to be
replaced if one already exists. The fifth parameter is always “NO”. The sixth parameter,
maximum record length, is not being used. Notice also how ADRTBL is terminated by a
0 and has parameters with the following format: byte 0 is equal to the number of charac-
ters in the parameter; bytes 1 through N contain the ASCII characters of the parameter.

Set up code to execute the command procedure. Assuming you are using DNOS 1.2 and
the calling task is on S$UTIL, you could bid the CC task with the following code:

LI R1,>11FF TASK ID >11, LUNO FF

LI R2,ADRTBL ADDRESS OF TABLE

LI R3,>0101 CODE >01, SUSPEND CALLER
BLWP Q@S$BIDT BID CC UTILITY TASK

This code sets up the registers with the values needed by the CC utility and then passes
control to the S$BIDT routine. S$BIDT collects the input parameters, performs other
processing necessary to replicate the SCI environment for the bid, and bids the CC task
with a copy of the caller’s synonyms and logical names.

By following the general principles of this example, you can use the S$BIDT routine to execute
other DNOS or user-written tasks.

3.10.1.4 Get Parameter (SSPARM). S$PARM returns the parameters in the TCA to the command
processor. These are the PARMS parameters of the .BID, .QBID, or .DBID primitive. These parame-
ters are text strings separated by commas. Place an integer indicating the number of the parame-
ter desired in register Ra. Place the address of a buffer into which the text string is to be copied in
register Rb. If the buffer is too short, an error code is returned in register RO. Registers Ra and Rb
are specified in the two bytes immediately following the call to SSPARM.

Calling Sequence

BLWP ASSPARM

BYTE Ra,RbD

Registers Used

RO — Error code returned by S$PARM
Ra — Index of desired parameter
Rb — Address of a buffer in which to place the parameter text string

Error Codes

3-62

>901B — Output buffer too small
> FF05 — Unable to access NCT

2270510-9701

Extending SCI

Example

This example retrieves the second parameter text string. The .BID primitive for task EXAM is as
follows:

.BID TASK = EXAM, CODE = 37, PROG = VOL.TEST.PROG,
PARMS = ("&NAME", "QOLDVAL'"))

The command processor accesses the parameter as follows:

BUF BYTE 20
BSS 20
EVEN
REF S$GTCA, SSPARM, SSRTCA, SSTERM
BLWP dSSGTCA GET TCA
MOV RO, RO CHECK FOR ERRORS
JNE ERROR
LI R4, 2 ESTABLISH PARAM INDEX
LI R5,BUF ESTABLISH BUFFER POINTER
BLWP ASSPARM GET 2ND PARM
BYTE R4,R5 S$PARM INFO
MOV RO,RO CHECK FOR ERRORS
JNE ERROR
BLWP AaSSRTCA RELEASE TCA
MOV RO,RO CHECK FOR ERRORS
JNE ERROR
ERROR LI R1,>C000 CONDITION CODE=C000
CLR R2 NO VARIABLE TEXT
LI R3,2 SCI ERROR
MOV RO,Ré& MESSAGE NUMBER

BLWP dSSTERM TERMINATE TASK

2270510-9701 3-63

Extending SCI

3.10.1.5 Get Terminal Status (S$STAT). S$STAT returns the status of the terminal from which
d

the command processor was activated. The information is returned as a 32-bit integer. The first
byte contains the following:
Bit Contents
0 Reserved
1-3 User privilege code. The hexadecimal values and privilege

levels are as follows:

Lowest level of access

User defined

System access level

User defined

Management access level

User defined

System and management access level
User defined

N WN=O

4-7 Current terminal mode, in the form of a hexadecimal number:
0 Batch mode or background

1 TTY mode
F VDT mode

The second byte contains the station ID, the third byte is reserved, and the fourth byte contains
the CODE value of the most recent .BID, .DBID, or .QBID.

Calling Sequence
BLWP @S$STAT

Registers Used

RO — Error code returned by S$STAT
R3 — Address of 32-bit buffer

Error Codes

None (currently)

You can issue a call to S$STAT prior to a call to SSGTCA,; also, you can issue a call to it after call-
ing S$RTCA if you call SSNEW first.

3.10.1.6 Set Synonym Value (S$SETS). The S$SETS routine defines or redefines a synonym in
the NCT. Place the synonym in a text string buffer at the address in register Ra. Place the value to
be assigned the synonym in a buffer at the address in register Rb. If register Rb contains 0 or the
address of a zero-length string, the synonym is deleted from the TCA.

3-64 2270510-9701

Calling Sequence

BLWP Q@SS$SETS
BYTE Ra,Rb

Registers Used

RO — Error code returned by S$SETS
Ra — Address of synonym name text string
Rb — Address of synonym value text string

Error Codes

> FF05 — Unable to access NCT
> FF06 — Synonym table overflow

Example

SYNAME BYTE 5
TEXT 'SYNO1'
VALUE BYTE 14
TEXT 'DS02.LIB.INPUT'

LI R3,SYNAME
LI R4,VALUE
BLWP @S$SETS

BYTE R3,R4
MoV RO,RO
JNE ERROR

Extending SCI

3.10.1.7 Get Synonym Value (SSMAPS). S$MAPS searches the NCT for the synonym name in a
buffer at the address in register Ra. With this routine, you can access only synonyms defined by
S$SETS or by the .SYN primitive. When the synonym is found and the output buffer is large
enough, the value is placed in the buffer at the address in register Rb. If the buffer is too small, an
error code is returned in register RO. If the synonym is not found in the TCA, a zero-length string is
copied into the buffer. When the synonym name contains a period (.), the text preceding the period

is replaced by its synonym value, if one exists.
Calling Sequence

BLWP @S$MAPS
BYTE Ra,Rb

2270510-9701

3-65

Extending SCi

Registers Used
RO — Error code returned by SSMAPS
Ra — Address of synonym name text string buffer
Rb — Address of synonym value text string buffer
Error Codes

>901B — Output buffer too small
> FF05 — Unable to access NCT

Example

SYNAME BYTE 4

TEXT 'SYNM'
VALUE BYTE 40
BSS 40
LI R2,SYNAME Ra=2
LI R3,VALUE Rb=3
BLWP @ASEMAPS
BYTE R2,R3
MOV RO,RO
JNE ERROR

3.10.1.8 Search Name Correspondence Table (S$SNCT). S$SNCT searches the NCT for the
synonym that is right before or after the character string at the address in register Ra. The NCT in
the TCA contains synonyms. The value in register RO determines whether the search is for the
predeceding or the succeeding character in the ASCIHl character sequence. The original string
need not appear in the table.

When the desired synonym is found, the synonym is placed in the buffer at the address in register
Ra. its value may be placed in the buffer at the address in register Rb. If no synonym is found, a
null string (length 0) is placed in the buffer at the address in register Ra. When Ra contains the
address of a zero-length string and RO contains 0, the routine returns the first synonym in ASCIl
code order. When Ra contains the address of a zerc-length string and RO contains — 1, the routine
returns the last synonym in ASCII code order. When register Rb contains 0, no value is returned.
The synonym is returned in the buffer at the address in register Ra. Use S$SNCT to access syno-

nyms in ASCl! code order,

3-66 2270510-9701

S$SNCT assumes the following:

Extending SCI

e The Ra and Rb buffers are 255 bytes long (if Rb is not 0).

e The character count value in the first byte of each buffer is a count of the string cur-
rently in the buffer. Unless Rb is 0, S$SNCT does not check the buffer length before writ-

ing in the buffer.
Calling Sequence

BLWP @S$SNCT
BYTE Ra,Rb

Registers Used

RO — Set to 0 to search for successor and — 1 to search for predecessor
Ra — Address of buffer containing original string; synonym name is returned here
Rb — Pointer to the buffer that receives either the value of the synonym found or 0

Error Codes

None (currently)
Example

SYN BYTE 3

NAME TEXT 'SYN'
BSS 252

VALUE BYTE 255
BSS 255

LI RO,O

LI R3,SYN

LI R4,VALUE
GETNXT BLWP @S$SNCT

BYTE R3,R4

MOVB *R3,R1

JE@ OUT
*PROCESS THE SYNONYM

3.10.1.9 Split List Into Components (S$SPLT).

LENGTH OF SYN BUF

LENGTH OF VALUE BUF

RO — GET SUCCESSOR
R3 — NAME OF SYN
R4=VALUE BUFFER

GET NEXT SYN

DEFINE 'A' AND 'B'
MOVE RO,RO IN ERROR
CHECK FOR END OF NCT

S$SPLT divides a list and returns the first ele-

ment and the remainder of the list separately. SSSPLT copies the first element (all text that pre-
cedes the first comma of the list) in the buffer at the address in register R1 into the buffer at the
address in register R2. The routine also copies the remainder of the list into the buffer at the
address in register R3. Registers R1 and R3 can contain the same address.

2270510-9701 3-67

Extending SCI

Calling Sequence
BLWP QaS$SPLT

Registers Used

RO — Error code returned by S$SPLT

R1 — Address of list text string

R2 — Address of buffer to receive first element of list
R3 — Address of buffer to receive remainder of list

Error Codes

>901B — Output buffer too small
> FFFF — Unbalanced parentheses

Example

LIST BYTE 33 LENGTH OF LIST
TEXT '(20,LIST ACCESS'
TEXT 'NAME,OUTPUT FILE)'

FIRST BYTE 20 LENGTH OF 'FIRST' BUF
BSS 20
LT R1,LIST R1 —= LIST POINTER
LI R2,FIRST R2 — FIRST POINTER
MOV R1,R3 R3 — REST POINTER =R1
BLWP aSS$SPLT
MOV RO,RO
JNE ERROR

3.10.1.10 Return Time and Date (S$TAD). S$TAD returns the time and date information that
DNOS maintains. The routine issues an SVC to obtain the date and time block. The date and time
from the block are formatted and returned to the cailing task. For an initialized date, the string has
the following form:

HR:MIN:SEC WEEKDAY, MONTH, DAY, YEAR.

When the time and date have not been initialized, only the time is returned. The values returned
represent the elapsed time since power was applied to the computer.

Calling Sequence

BLWP AS$TAD

Registers Used

RO — Error code returned by S$TAD
R1 — Address of buffer for time and date

3-68 2270510-9701

Extending SCI

Error Codes
>901B — Output buffer too small
Example

This example shows a string returned by S$TAD:

14:48:16 FRIDAY, NOV 07, 1980.

3.10.1.11 Put TCA(SSPTCA). S$PTCA shouid be called before the processor terminates or calls
S$RTCA. This routine is provided for compatibility with other Model 990 Computer operating sys-
tems and for future DNOS development.

Calling Sequence
BLWP AS$PTCA
Registers Used
RO — Error returned by S$PTCA
Error Codes
None (currently)
3.10.1.12 Release TCA (S$RTCA). index(S$RTCA Routine) S$RTCA releases the TCA. The
command processor should call it just before terminating. This routine is provided for compatibil-
ity with other Model 990 Computer operating systems and for future DNOS deveiopment.
Calling Sequence
BLWP @S$RTCA
Registers Used
RO — Error code returned by SSRTCA
Error Codes
None (currently)
3.10.1.13 Create Message (SSCMSG). S$CMSG writes a message in a buffer using information
supplied in registers defined in the calling sequence. Use routine S$CMSG to return an error or

status message when the command processor continues processing after issuing the message.
Use routine S$TERM to issue an error or status message and terminate the task.

2270510-9701 3-69

Extending SC!

Calling Sequence
BLWP S$CMSG
Registers Used

RO — Error code returned by S$CMSG.

R1 — Address of the buffer in which the message is returned. The address must be a word-
aligned (even) address. (The first full word contains the buffer length in bytes.)

R2 — Address of buffer that contains the variable text.

R3 — Error source information.

R4 — Internal message code.

R5 — Address of buffer that contains either the final component of the message file path-
name or 0.

R6 — Address of buffer that contains additional variable text; applies only when bit 4 of error
source information word is set to 1.

R7 — Extra flags word, if R3 so indicates.

Error Codes
>901B — Output buffer is too small

Calling this routine requires some analysis of the error condition prior to the call, specifically the
following:

. For an SVC error, execute a Return Code Processing SVC (opcode > 4C) to obtain the
message number and other required data.

. Obtain the file name component of the message file pathname by accessing the value
of a synonym. You can also obtain the file name if the message file is a system message
file with a known file name or if the message file is specified with a file indicator.

Register R1 contains the address of a buffer into which the routine places the message. A mes-
sage can be more than 255 characters long; the first word of the buffer contains the length of the
text portion (the remainder) of the buffer. The address must be a word-aligned address. The buffer
must allow enough space for the message from the file and any anticipated variable text.

Set register R2 to one of the following:

¢ The address of a buffer that contains the variabie text for the message

e The address of a zero-length buffer when no variable text is required

o Zero

The count includes the semicolons (;) that separate the variable text elements. A message can

contain as many as nine variable text elements. You must place data in the buffer that corre-
sponds to the variable text elements defined for the message.

3-70 2270510-9701

Extending SC/

Register R3 contains error source information consisting of four hexadecimal digits. In most
cases, register R3 is set to 0, indicating that all error source information comes from the file. To
override the file information, set the leftmost hexadecimal digit to specify the error source as
follows:

Value Meaning

Use source information in error file
Warning

Usererror

System error

User or system error

Hardware error

User or hardware error

System or hardware error

User, system, or hardware error
Informative message

TMOP>POOEN 2O

Set the second digit to 0 when no additional variable text is required; set it to 8 to place additional
text at the end of the message. When you set this digit to 8, you should place the address of the
buffer that contains this text in register R6. To suppress header information, add 1 to the second
digit (making it 9 or 1). Set register R7 to > 8000 to indicate header suppression. A 1in the second
digit of R3 indicates that register R7 is an additional flags word.

Set the third and fourth digits to the file indicator of the message file, as follows:

Setting Meaning
>00 No message file or file identified in register R5
>01 SVC error message file
>02 Utility error message file
> Xy Last component of the pathname to which synonym $$$$FNxy

is assigned (where xy is greater than or equal to > 80)
Set register R4 to the internal message code of the desired message.

Set register R5 to the address of a buffer that contains the file name (last) component of the file
pathname of the message file that contains the message or that is set to 0. The first byte of the
buffer must contain the number of bytes of the file name component. This register should be set
to 0 if the file indicator in R3 identifies the message file or if no message file is specified. When
the file indicator is 0 and register R5 contains either 0 or the address of a null string, an abbrevi-
ated message is written. The abbreviated message consists of the file indicator, message num-
ber, and variable text.

Set register R6 to the address of a buffer that contains additional variable text. Set it to 0 when no
additional text is required. When the second digit of the value in R3 is not set to 8, register R6 does
not apply. Additional variable text is placed at the end of the specified message independently of
any question marks in the file message.

If bit 7 of register R3 equals 1, register R7 is used as an additional flags word. If bit 0 of register R7
equals 1, message headers are suppressed.

2270510-9701 3-71

Extending SC!

Section 9 provides further information on message file format.

3.10.1.14 Terminate and Return to SCI (S$TERM). S$TERM sets the termination synonyms and
terminates the calling task. The following are the termination synonyms:

Synonym Meaning
$$CC Condition code
$SVT Variable text
$$ES Error source
$$SMN Internal message code
$$FN Message file name

Calling Sequence

BLWP @SSTERM

Registers Used

R1 — Value for condition code $$CC

R2 — Address of buffer that contains variable text

R3 — Error source information

R4 — One of the following:
€ (normal termination)
Internal message number (non-SVC-detected error)
Address of SVC block (SVC-detected error to report)

SCl uses the values of the termination synonyms to provide a warning or error message. When you
call routine S$TERM at successful termination of a command processor, set registers R1 through
R4 to 0 to terminate without issuing a message.

The condition code synonym contains the severity code. Set register R1 to one of the following
values:

Value Meaning

> 4000 Terminated with 2 warning message

> 8000 Terminated with an error message for a recoverable error

> C000 Terminated with an error message for a fatal (unrecoverable
error

Set register R2 to the address of a buffer that contains the variable text for the message. Set it to 0
when no variable text is required. The count of characters in the buffer includes the semicolons (;)
that separate the variable text elements. A message can contain as many as 9 variable text ele-
ments but no more than 235 characters of text. Data must be placed in the buffer that corresponds
to the variable text elements defined for the message.

3-72 2270510-9701

Extending SCI

Register R3 contains error source information consisting of four hexadecimal digits. In most
cases, register R3 is set to 0, indicating that all error source information comes from the file. If you
need to override the file information, set the most significant digit to specify the error source as
follows:

Value Meaning

Use source information in error file
Warning

User error

System error

User or system error

Hardware error

User or hardware error

System or hardware error

User, system, or hardware error
Informative message

TMO» OO AN—-O

Set the second digit to 0. Set the third and fourth digits to the file indicator of the message file, as
follows:

Setting Meaning
>00 No message file
>01 SVC error message file
>02 Utility error message file
> Xy Last component of the pathame to which synonym $$FNxy is .
assigned

Set register R4 to the message number unless the file indicator in register R3 is > 01 {SVC error).
For an SVC error, set R4 to the address of the SVC block.

3.10.1.15 Alternate Termination (S$STOP). S$STOP is included in DNOS to support command
processors for earlier operating systems. S§STOP terminates a command processor and returns
control to SCI. Routine SSTERM performs a similar function with the added capability of providing
error messages in DNOS format. Use SSTERM in any command processors you write.

3.10.2 Local Display File Routines

The TLF is a file of ASCII data to be displayed. Use the TLF for short messages and listings. SClI
provides a TLF for foreground, background, and batch job modes. SCI displays the contents of the
foreground TLF immediately prior to displaying the command prompt. The contents of the back-
ground TLF appear on the screen when you enter either a WAIT or a Show Background Status
(SBS) command. SCI copies the batch mode TLF into the batch listing file. After displaying the
TLF, SCl deletes each message.

The routines described in the following paragraphs open files, close files, and build and write
records to the file. The maximum length of a TLF record is 134 characters. Data items are written
at specific columns, and each line is terminated by a call to SSWEOL. When the text is directed to
a device instead of to a file, these routines add the required device control characters to the text.
Only tasks executed by means of the .BID, .QBID, or .DBID primitives can successfully call these
routines.

2270510-9701 3-73

Extending SCI/

3.10.2.1 Open File (SSOPEN). S$OPEN opens the TLF or a user-specified fiie for write access.
D "~

1 contains 0, SSOPEN opens the TLF.

Calling Sequence
BLWP @aS3OPEN
Registers Used

RO — Error code returned by S$OPEN
R1 — 0 or the address of the buffer that contains the pathname of the device to call or file to
open

Error Codes

> A1xx — Assign or open error, I/O error code xx
>9022 — Invalid use of device
>9026 — Invalid file type

3.10.2.2 Open File Specifying User ID (SSOPNS). S$OPNS opens a specified file in the same
way S$OPEN does but has one additional feature: when the Assign LUNO is performed on the file,
a specified user ID and passcode are used for security purposes. However, if the calling task is a
security bypass task, the passcode field is ignored.

If register R1 contains 0, SBOPNS opens the TLF.
Calling Sequence

BLWP @SSOPNS
Registers Used

RO — Error code returned by S$OPNS.

R1 — 0 or the address of the buffer that contains the pathname of the device or file to open

R2 — Address of a buffer with the user ID parameters. The buffer begins with two bytes val-
ues. The first byte has a value of > 02; the second a value of > 10. These bytes are then
followed by two eight-character fields. The first contains the user ID; the second the
password. Each of these iwo fieids shouid be righi filied with bianks if the vaiues are
less than eight characters long.

Error Codes
> A1xx — Assign or open error, /O error code xx

>9022 — !nvalid use of device
>9026 — Invalid file type

3.74 2270510-9701

Extending SC!

3.10.2.3 Write to File (S3WRIT). S$WRIT concatenates the text string addressed by register R1
with the current line to be written to the file. When register R2 contains 0 or a positive value, the
value specifies the column (0 through 133) in which the text begins. A negative value in R2 is not
valid. When any byte in the string contains > 7F, the immediately preceding character is repeated.
The byte following the byte that contains >7F specifies the number of repetitions. The string
should not contain device control characters, such as a line feed; SSWRIT supplies these as
needed.

Calling Sequence

BLWP a@SSWRIT

Registers Used

RO — Error code returned by SSWRIT
R1 — Address of text to be written
R2 — Starting column in the record

Error Codes

>FFF8 — Fileisnotopen

>FFF9 — Start position is too small

>FFFA — Text buffer overflow
3.10.2.4 Write End-of-Line to File(SSWEOL). S$WEOL terminates the current line to be written
and writes it to the file. If SSWRIT has not supplied any text since the file was opened or since the
previous line was written, SSWEOL writes a blank line.
Calling Sequence

BLWP QSSWEOL

Registers Used

RO — Error code returned by SSWEOL

Error Codes

>A1xx — /O error xx has occurred
>FFF8 — Fileis notopen

3.10.2.5 Close File (S3CLOS). S$CLOS terminates writing to the file. You should call S$CLOS if
the file was opened prior to a call to SSTERM. When register R1 contains 0 and the file is the TLF,
the TLF appears on the screen after the command completes and before the termination message
appears.

When R1 contains a nonzero value, the lines that were written to the TLF since the last call to
S$OPEN or SSOPNS are erased from the TLF.

2270510-9701 3-75

Extending SCI/

Calling Sequence
BLWP
Registers Used

RO — Error code returned by S$CLOS

R1 — Display flag

Error Codes

aS$CLOS

> FFF8 — TLF is not open

3.10.2.6 Local Display File Example.
display file routines:

Example
M1
M2
3-76

BYTE
TEXT
BYTE
TEXT

CLR
BLWP
MOV
JNE

LI
LI
BLWP
MoV
JNE

Li
LI
BLWP
MoV
JNE

10

The following example includes a call to each of the local

'THIS IS A'

16

'TLF TEST MESSAGE'

R1
ASSOPEN
RO,RO
ERROR

R1,M1
R2,0
ASSWRIT
RO,RO
ERROR

RT,M2
R2,11
ASSWRIT
RO,RO
ERROR

TLF TO BE OPENED
OPEN TLF
TEST FOR ERROR

MESSAGE ADDRESS
COLUMN ADDRESS
WRITE M1

TEST FOR ERROR

MESSAGE ADDRESS
COLUMN ADDRESS
WRITE M2

TEST FOR ERROR

2270510-9701

Extending SCI

BLWP dSSWEOL WRITE END-OF-LINE

MOV RO,RO TEST FOR ERROR
JNE ERROR
CLR R1 CLEAR DISPLAY FLAG
BLWP @S$CLOS CLOSE & DISPLAY TLF
MOV RO,RO TEST FOR ERROR
JNE ERROR

ERROR LI R1,>C000 CONDITION CODE=C000
CLR R2 NO VARIABLE TEXT
LI R3,2 SCI ERROR
MOV RO,R4 MESSAGE NUMBER

BLWP ASSTERM TERMINATE TASK

3.10.3 String Utility Routines
The string utility routines copy, compare, and convert character strings. The string buffer required
by these routines has the form previously described.

An empty buffer reserved for string storage should indicate the size of the buffer (minus 1) in the
first byte.

The string utility routines are as follows:

e SSINT — Convert ASCII to Binary Integer

e S$IASC — Convert Binary Integer to ASCII

e S$SCOM — Compare Strings

e S$SCPY — Copy String
3.10.3.1 Convert ASCII to Binary Integer (S$INT). SS$INT converts an ASCII text string that repre-
sents an integer expression into a 32-bit binary value. The integer expression to be converted can
contain the standard arithmetic operators +, —, *, and /. Register R4 contains the base of the
numbers to be converted. When the ASCII string contains numbers beginning with > or 0, the
numbers are converted as hexadecimal numbers regardless of the base specified in register R4.
Calling Sequence

BLWP QASS$SINT

Registers Used

RO — Error code returned by S$INT

R2 — Address of buffer that contains ASCII code to be converted to binary integer

R3 — Address of a 32-bit buffer in which the converted value is stored
R4 — Base of number represented by the input string; a 0 value indicates base 10

2270510-9701 3-77

Extending SCI

Error Codes

>9002 — Invalid integer expression
> FFFF — Divide by zero

Example

BUFF BYTE LNG TEXT STRING TO BE CONVERTED
TEXT '33000°'

LNG EQU $-BUFF-1 LENGTH CALCULATION

NMB BSS 4 BUFFER FOR BINARY VALUE
LI R2,BUFF ADDRESS OF TEXT STRING
LI R3,NMB BUFFER ADDRESS FOR BINARY NO
LI R4, 0 SET FOR BASE 10
BLWP QSSINT CONVERT TEXT STRING TO BINARY
MOoVv RO,RO PASS ERROR CODE
JNE ERROR

3.10.3.2 Convert Binary Integer to ASCII (S$IASC). SS$IASC converts a 32-bit binary integer into
an ASCII text string representing that number. The 32-bit integer is converted as a two’s comple-
ment number or a 32-bit positive binary number, depending on the base specified in register R3. If
the base is 0, the number is converted as a two’s complement binary integer. It is converted into
the ASCIi representation of the decimal (base 10) number with leading blanks and a minus sign for
a negative number. If the base does not equal 0, the 32-bit integer is considered to be positive; it is
converted into the ASCII representation of the integer in the specified base, with leading zeros.

Calling Sequence
BLWP QSS$SIASC
Registers Used

RO — Error code returned by S$IASC.

R1— Address of the 32-bit integer.

R2 — Address of the buffer to receive the ASCIi text string. The first byte of the buffer must
contain the buffer length minus 1. The buffer must be large enough to contain the larg-
est possible values.

R3 —In byte 0, number of ASCIl characters to be returned; 0 means variable number;
maximum is 32.

In byte 1, base (for example, 10 or 16) into which integer is to be converted prior to
representation in ASCI; 0 means decimal.

3-78 2270510-9701

Extending SCI

Error Codes

>901B — Output bufferis too small
>FFFF — Field width is greater than 32

Example

BUFF BYTE 15 BUFFER FOR ASCII VALUE
BSS 15

NMB DATA >20 NUMBER = >20
DATA 0
LI R2,BUFF ADDRESS OF TEXT STRING
LI R1,NMB ADDRESS OF BINARY NUMBER
LI R3,0 VARIABLE LENGTH/BASE 10
BLWP AS$IASC CONVERT BINARY TO ASCII
MOV RO,RO PASS ERROR CODE
JNE ERROR

<

3.10.3.3 Compare Strings (S$SCOM). S$SCOM compares two strings and sets the equal and
arithmetic greater than bits (bits 1 and 2) of the status register and register RO to the results of the
comparison. If one string is shorter than the other, it is treated as if it is filled to the right with null
characters (> 00). If one string is a substring of the other (matching from the left), RO is set to 0.
The addresses of the two strings are in registers Ra and Rb. Registers Ra and Rb are specified in
the two bytes immediately following the call.

Calling Sequence

BLWP @S$SCOM
BYTE Ra.Rb

Registers Used
RO — Substring test code returned by S$SCOM: 0 = one string is a substring — 1 = strings
do not match

Ra — Address of the buffer that contains the first string
Rb — Address of the buffer that contains the second string

Error Codes

Status returned in RO

2270510-9701 3-79

Extending SC!

SECOND

BYTE
TEXT
BYTE
TEXT
LI
LI
BLWP
BYTE
JEQ
MoV
JEQ

6
'SUBSTR'
9

'"SUBSTRING'

R3,FIRST
R5,SECOND
aSESCOM
R3,R5

ourt

RO,RO

sus

LENGTH OF
STRING
LENGTH OF
STRING

R3 POINTS TO FIRST
R5 POINTS TO SECOND
COMPARE THE TWO
DEFINE 'A' AND 'B'
THIS JUMP WILL NOT
OCCUR

THIS JUMP WILL OCCUR

FIRST

SECOND

3.10.3.4 Copy String (S$SCPY). S$SCPY copies the string at the address in register Ra into the
buffer at the address in register Rb, placing the length of the copy string in the first byte of the
buffer. Registers Ra and Rb are specified in the two bytes immediately following the call. The
buffer containing the string to be copied must not overlap the receiving buffer. If the length of the
receiving buffer is less than the length of the string to be copied, an error code is returned in regis-
ter RO. When register Ra contains 0 or the address of a null string (zero length), the first byte of the
buffer at the address in register Rb is set to 0.

Calling Sequence

BLWP aS$SCPY

BYTE Ra,Rb

Registers Used

RO — Error code returned by S$SCPY
Ra — Address of buffer that contains text to be copied
Rb — Address of buffer to receive copy

Error Codes

>901B — Output buffer too small

Exaimpie

STRING BYTE 7

copPy

3-80

TEXT
BYTE
BSS
LI
LI
BLWP
BYTE
MOV
JNE

LENGTH OF STRING

'COPY ME'

20 LENGTH OF BUFFER

20

R1,STRING R1=POINTER TO STRING
R8,COPY R8=POINTER TO BUFFER
AS$SCPY CALL S$SCOPY

R1,R8 DEFINE 'A' AND 'B'
RO,RO TEST FOR ERROR

ERROR

2270510-9701

Extending SCI

ERROR LI R1,>C000 CONDITION CODE=CO000
CLR R2 NO VARIABLE TEXT
LI R3,2 SCI ERROR
MOV RO, R4 MESSAGE NUMBER
BLWP ASSTERM TERMINATE TASK

3.10.4 Arithmetic Utility Routines
The arithmetic utility routines perform addition, subtraction, multiplication, and division with 32-
bit signed integer operands. The operands must be in binary form. All of the routines allow the
addresses of the operands and the addresses of the results to be the same. The logical greater
than, arithmetic greater than, and equal bits in the status register (bits 0 through 2) are set or reset
as assembly language instructions would set them.
The following routines are available:

S$IADD — Add 32-bit integers

S$ISUB — Subtract 32-bit integers

S$IMUL — Multiply 32-bit integers

S$IDIV — Divide 32-bit integers
3.10.4.1 Add 32-Bit Integers (S$IADD). S$IADD adds two 32-bit integers in two’s complement

form. The sum is a 32-bit two’s complement integer. Registers R1 and R2 contain the addresses of
the two integers, and the sum is placed in the address in register R3.

Calling Sequence
BLWP Q@S$IADD
Registers Used
RO — Error code returned by S$IADD
R1 — Address of the 32-bit buffer containing the addend
R2 — Address of the 32-bit buffer containing the addend
R3 — Address of the 32-bit buffer for the sum

Error Codes

> FFFF — Numeric overflow

2270510-9701 3-81

Extending SCI

Example

NUM1 DATA >0000 BUFFER FOR 32-BIT INTEGER
DATA >1111

NUMZ2 DATA 0 BUFFER FOR 32-BIT INTEGER
DATA >0145

RESLT BSS &4 BUFFER FOR 32-BIT SUM
LI R1,NUM1 ADDRESS OF INTEGER
LI R2,NUM2 ADDRESS OF INTEGER
LI R3,RESLT ADDRESS OF RESULT BUFFER
BLWP @SS$IADD PERFORM ADDITION
MOV RO,RO PASS ERROR CODE
JNE ERROR

3.10.4.2 Subtract 32-Bit Integers (S$ISUB). S$ISUB subtracts 32-bit integers. If register R1 con-
tains 0, S$ISUB calculates the negative of the number at the address in register R2, that is, 0
minus the number.

Calling Sequence
BLWP QS$ISUB
Registers Used
RO — Error code returned by S$ISUB
R1 — Address of the 32-bit buffer containing the minuend
R2 — Address of the 32-bit buffer containing the subtrahend
R3 — Address of the 32-bit buffer for the difference

Error Codes

> FFFF — Numeric overflow

3-82 2270510-9701

Example
NUM1
NUM2

RESLT

3.10.4.3 Multiply 32-Bit Integers (S$IMUL).

DATA >0000
DATA >1111
DATA O :
DATA >0145
BSS 4

L1 R1,NUMT
L1 R2,NUM2
LI R3,RESLT
BLWP assIsus
MOV RO,RO
JNE ERROR

BUFFER FOR
BUFFER FOR

BUFFER FOR

ADDRESS OF
ADDRESS OF
ADDRESS OF

PASS ERROR

Extending SCI

32-BIT INTEGER
32-BIT INTEGER

32-BIT RESULT

INTEGER
INTEGER
RESULT BUFFER

CODE

S$IMUL multiplies two 32-bit integers. Registers R1

and R2 contain the addresses of the integers, and S$IMUL places the 32 least significant bits of
the product in the buffer at the address in register R3. No overflow indication is returned.

Calling Sequence

BLWP @S$SIMUL

Registers Used

RO — Error code returned by S$IMUL

R1 — Address of the 32-bit buffer containing the multiplier
R2 — Address of the 32-bit buffer containing the multiplicand
R3 — Address of the 32-bit buffer for the product -

Error Codes

None (currently)

2270510-9701

3-83

Extending SCI

Exampie
NUM1
NUM2

RESLT

DATA >0000
DATA >1111
DATA O
DATA 0145
BSS 4

LI R1,NUM1
LI R2,NUM2
LI R3,RESLT
BLWP @aS$IMUL
MOV RO,RO
JNE ERROR

BUFFER FOR 32-BIT INTEGER
BUFFER FOR 32-BIT INTEGER

BUFFER FOR 32-BIT INTEGER

ADDRESS OF INTEGER
ADDRESS OF INTEGER
ADDRESS OF RESULT BUFFER
PERFORM MULTIPLICATION

3.10.4.4 Divide 32-Bit Integers (S$IDIV). S$IDIV divides the 32-bit integer at the address in reg-
ister R1 by the 32-bit integer at the address in register R2. The routine places the quotient in the 32-
bit buffer at the address in register R3 and the remainder in the 32-bit buffer at the address in
register R4. When registers R3 and R4 contain the same address, the quotient is stored at the

address and no remainder is stored.

Calling Sequence

BLWP QJSS$IDIV

Registers Used

RO — Error code returned by S$IDIV

R1 — Address of the 32-bit buffer containing the dividend
R2 — Address of the 32-bit buffer containing the divisor
R3 — Address of the 32-bit buffer for the quotient

R4 — Address of the 32-bit buffer for the remainder

Error Codes

> FFFF — Divide by zer

~

2270510-9701

Extending SCI

Example

NUM1 DATA >0000 BUFFER FOR 32-BIT INTEGER
DATA >1111

NUM2 DATA 0 BUFFER FOR 32-BIT INTEGER
DATA >0145

QUOT BSS 4 BUFFER FOR 32-BIT QUOTIENT

RMDR BSS 4 BUFFER FOR 32-BIT REMAINDER
LI R1,NUM1 ADDRESS OF INTEGER
LI R2,NUM2 ADDRESS OF INTEGER
LI R3,QUO0T ADDRESS OF QUOTIENT BUFFER
LI R&,RMDR ADDRESS OF REMAINDER BUFFER
BLWP @SS$IDIV PERFORM DIVISION
MOV RO,RO PASS ERROR CODE
JNE ERROR

3.10.5 Spoolerinterface Routine (S$SPLR)

The S$SPLR routine allows you to access the spooler subsystem from your task environment. This
routine supports all spooler commands that SCI supports.-It can be called only from assembly
language routines.

Routine S$SPLR builds a print request message to the spooler subsystem from information you
provide.

Calling Sequence
BLWP Q@S$SPLR
Registers Used

RO — Error code (returned)
R1 — Address of Spooler Control Block (SCB)

Note that R1 is changed to point to an SVC block if error < 90FF is returned in RO.

2270510-9701 3-85

Extending SC/

The following values are valid for the SCBOP field:

3-86

Offset (in Bytes)

0SCBOP
1SCBFLO
2SCBFLG
4SCBSID
10 SCBDEV
18 SCBUSR
20 SCBJNM
22 SCBPTH

24 SCBFRM

28 SCBCOP
29 SCBLPP
30 SCBPRI

31 SCBXXX

32 SCBDVP

Value

~NOoOOEAWN =

Data Type
Byte
Boolean
Boolean
Character
Character
Pointer
Pointer

Pointer

Pointer

Print file message
Halt output message

Contents
Spooler message code
Flags
Informative flags
SpoolerID
Device or class name
SCl string for user 1D
SCI string for job name
SCl string for file pathname

SClI string for requested form

Number of copies
Lines per page
Job priority
Reserved

SCI string for device or ciass
name

Meaning

Resume output message

Kill output message

Modify output message
Modify Spooler device message
Verify validity of device or class name message

2270510-9701

Extending SC/

The following are SCBFLO field definitions:

Bit Name
0 SCFDVP
1 through 7

Meaning

True; use SCBDVP rather than SCBDEV
Each bit is reserved and must be 0

The following are SCBFLG field definitions:

Bit Name
0 SCFUSE
1 SCFAVL
2 SCFPGD
2 SCFR1
3 SCFR2
5 SCFANS
6 SCFBNR
7 SCFDAP
8 SCFIMM
9 SCFR3
10 SCFR4
1 SCFR5
12 SCFSHR
13 SCFDAL
14

15

Meaning

True; delete the spooler device

True; not available to the spooler

True; reverse paging on resume output

Reserved; mustbe 0

Reserved; must be 0

True; ANSI file

True; no banner sheet desired

True; delete after printing

True; halt immediately, not at end-of-file (EOF)
Reserved; mustbe 0

Reserved; must be 0

Reserved; must be 0

Reserved; mustbe 0

True; delete always (even if a kill output is done later)
Reserved; mustbe 0 ’
Reserved; mustbe 0

S$SPLR makes the following assumptions about the SCB.

The device or class name entry must be left justified and blank filled to the right.

The SCBUSR, SCBPTH, SCBJNM, and SCBFRM fields are SCI string pointers.

SCBJNM and SCBUSR fields are handled in a special manner. S$SPLR uses the job
name and user ID that the job manager SVC > 48 (Get Job Information) block returns if
the field is 0, the length of the string is 0, or the lengtih of the siring exceeds eight char-
acters. Otherwise, S$SPLR uses the user-supplied string.

When the SCBOP field specifies a print file message, S$SPLR uses the default form
name STANDARD if the SCBFRM field is 0, the length of the string is 0, or the length of
the string exceeds eight characters.

2270510-9701

3-87

Extending SC/

Tha CADCIMN £iald ia rats,s
HIC OVDUIWV HITIU IO 1T

o If the SCBCOP field is 0 or greater than 127, a value of 1 is used.

o You can send messages using the Modify Spool Device (MSD) command to the spooler,
but S$SPLR does not change class name definitions. Also, you cannot specify class
names in defining any new device to the spooler.

. If you want to use the Modify Output function, a value of >FF in the SCBPRI and
SCBCPY fields indicates that the previous value does not change.

Error Codes
0 — Successful completion
>90FF — returnedinR1
>9110 — Invalid device name or class name
>006B — Invalid spooler message code (error in S$SPLR)
>910F — Spooler cannot assign spool ID to requested file
>8112 — invalid pathname received
>9187 — Accessis not appropriate to honor request
>9194 — Deviceis not available now
>9195 — Device cannot be remote/shared an available to spooler simultaneously
>925F — Invalid concatenated pathname syntax
>0205 — Number of characters in concatenate pathname set exceeds decimal 256
>9207 — Invalid calling sequence to S$SPLR
>9206 — SCB aligned on an odd-address boundry
>9255 — Invalid spooler ID sent to spooler
>907D — Invalid priority specified
>9191 — Device is active; request cannot be honored
>91983 — Maximum allowable number of devices has been entered

>94FF — Errors returned by the job manager SVC > 48, and the l/O subsystem for
assign, open, write, close, and release LUNO SVC requests

If an error occurred on an open, write, or close of the spooler channel .S$DSTCHN, you must either
close the LUNO, release the LUNO, or both. Since the DNOS error processor SVC expects the SVC
block causing the error to be intact, no intermediate operations could have been performed using
the call block that caused the error. Therefore, SSSPLR cannot close or release the LUNOs, and
you must perform these operations after calling the return code processor. if you choose to termi-
nate on the error condition, the operating system closes or releases the LUNOs automatically.

3.10.6 Operator Interface Routines

These routines allow user-written tasks to create operator messages and tc receive responses
made by the operator.

The operator interface routines are as follows:

¢ OI$BGN — initializes operator interface subsystem

] OI$COM — Creates an operator message

3-88 2270510-9701

Extending SCI

e OISWAT — Causes the task to wait for an operator response

° OI$SEND — Terminates the operator interface subsystem session
3.10.6.1 Initialize Operator Interface (OI$SBGN). Routine OI$BGN must be called before the
operator interface is available for use by the calling task. It assigns a LUNO to the operator inter-
face IPC channel.
Calling Sequence

BLWP QA0I$BGN

3.10.6.2 Create Operator Message (OISCOM). Routine OI$COM initiates an operator message
and returns immediately to the calling task.

Calling sequence

BLWP 30I$COM
Registers Used

R1 — MSB: time-out in minutes LSB: number of prompts (0 - 2)

R2 — Address of buffer containing operator message

R3 — Address of buffer containing first prompt (if any)

R4 — Address of buffer containing default response for first prompt (if any)

R5 — Address of buffer containing second prompt (if any)

R6 — Address of buffer containing default response for second prompt (if any)

Error Codes

>90FF — SVCerror

>9100 — Number of prompts is greater than 2

>9101 — Address pointer of operator response is 0

>9102 — Operator message lengthisO

>9103 — Address pointer of first prompt and default is 0
>9104 — lllegal operator message length

>9105 — Address pointer of second prompt and default is 0
>9106 — Prompt has illegal message length

>910C — OI$COM called previously with reply outstanding
>910F — Time delay exceeded

A 0 time-out value specified in the lower byte of register R1 indicates that no response is required.
A second prompt cannot be specified unless a first prompt is specified. If prompts are specified,
default responses are optional. A 0 value, or an address pointing to a null string (length of 0), in
any of the buffer registers indicates no string.

if no error is returned, the specified message is sent to the operator interface subsystem as an ini-
tiated operation. To receive responses from the operator, OISWAT must be called.

2270510-9701 3-89

Extending SCI

o~

w

31063 WaitforQ
esponse.

[*.]

WAT to wait for an operator

perator Response (OISWAT). The caller uses Oi

-

Calling Sequence

BLWP Q0ISWAT
BYTE Ra,Rb

Registers Used

Ra -— Address of buffer in which operator response to first prompt is to be placed
Rb — Address of buffer in which operator response to second prompt is to be placed

A zero value in either register indicates no buffer.

Error Codes

>90FF — SVCerror

>9107 — Address pointerof messageis0

>9108 — Message bufferistoo small

>9109 — No message outstanding

>910A - Negative response by operator

>910B — Previous message timed out without response
>910E — Operatorinterface not initialized

>9110 — Operator interface error returned

Only one operator message may be outstanding at any given moment. No error is given if a task
sends a message that completes, and then sends another message without testing for a response
to the first message. An operator can cause a negative response to be returned by issuing a KOR
(Kill Operator Request) command. If a negative response is returned, OISWAT will set the status
register to a not equal status. Otherwise, an equal status is returned.

3.10.6.4 End Operator Interface Subsystem Interface Session (OISEND). Routine OI$END ter-
minates communication with the operator interface subsystem and releases the LUNO to the
operator channel.

Calling Sequence
BLWP QAO0ISEND
Error Codes
>90FF — SVCerror

After calling this routine, the operator interface may no longer be used until a new call to OI$BGN
is made. Any outstanding operator messages are aborted.

2270510-9701
3-90

Extending SCI

3.10.7 Mailbox Subsystem Interface Routines
The mailbox subsystem interface routines route messages among tasks. The routines are as
follows:

) MBSINT — Initializes mailbox interface

. MB$SND — Allows atask to send mail to an addressee

. MBS$RCV — Allows a task to receive mail

e MBS$RLS — Allows a task to stop receiving mail
3.10.7.1 Initialize Mailbox interface (MB$INT). Routine MBSINT must be called before any other
mailbox interface routines may be called. This routine assigns a LUNO to the mailbox channel and
initializes the mailbox interface.
Calling Sequence

BLWP aMBSINT

Registers Used a 1

RO — Error code returned by MBSINT
R1 — Address of SVC call block if an error is returned

Error Codes
>90FF — SVC error _
3.10.7.2 Send Mail (MB$SND). Routine MB$SND allows a task to send mail to an addressee.
Calling Sequence | |
BLWP AMB$SND
Registers. Uéed

R1 — Address of buffer that contains message text
R2 — Address of buffer that contains name of addressee (one to eight characters)

Error Codes

>90FF — SVCerror

>9100 — No message buffer specified

>9101 — No addressee buffer specified
>9102 — Message length of 0 specified
>9103 — lliegal addressee buffer length

>9104 — All-blank addressee specified

2270510-9701 391

Extending SCi

3.10.7.3 Receive Mail (MB$RCV). Routine MB$RCV allows a task to receive mail addressed to
any one of up to three names.

Calling Sequence
BLWP aMB$RCV
Registers Used
R1 — Address of buffer that contains message text
R2 — Address of buffer that contains time and date
R3 — Name list in the format:

< length of list> < name length> < name> ...

Each name can be one to eight characters in iength.

The time and date returned is in ASCH string format. It is same format as SCI displays when a
Create Message (CM) message is received. it is the time and date when maiibox received the maii,
not when the mail was requested through MBSRCV.

Error Codes

>90FF — SVCerror

>9105 — Allblank name specified in name list
>9106 — Name length exceeds eight characters
>9107 — Name list length exceeds 28 characters
>9108 — Noname list specified

>9109 — Time and date buffer too small

>910A -— Message buffer too small

>910B — No time and date buffer specified
>910C — No message buffer specified

3.10.7.4 Release Mailbox (MBSRLS). Routine MB$RLS allows a task to stop receiving mail from
the mailbox. This routine can receive any mail that has been received since the last caill to
MB$RCV.

Calling Sequence
BLWP QMBS$RLS
Registers Used

R1 — Address of buffer that contains message text
R2 — Address of buffer that contains time and date

Errors Codes

>90FF — SVCerror

3-92 2270510-9701

4

Writing an SVC Processor

4.1 NEED FOR AN SVC PROCESSOR

About 70 supervisor calls (SVCs) are included with DNOS to perform services and provide access
to data structures. However, certain situations require additional, special SVCs. DNOS allows you
to write your own SVC processor and include it as part of DNOS during system generation.

4.2 HOWTO WRITE AN SVC PROCESSOR

To add an SVC to DNOS, you must design the call block for the SVC, build several tables, write a
processor for the SVC, and include relevant information during system generation.

4.21 SVC Cali Block

Because of the close relationship between the SVC call block and the SVC processor, only the
writer of the processor can design the call block. Except for the first three bytes, you must deter-
mine the size and content according to the SVC functions to be performed.

Byte 0 of the call block must contain the SVC opcode. The standard set of SVCs uses opcodes
ranging from 0 through > 7F. You can implement SVCs using opcodes from > 80 through > FF. You
can specify one or more opcodes using any codes within the user-defined range.

The SVC processor returns a code in byte 1 of the SVC cali block. This code is 0 when the SVC
completes normally. A code other than 0 is returned when an error occurs or a warning is
appropriate.

Byte 2 of the call block contains a subopcode when an SVC supports several operations. When an
SVC performs only one operation, you can use byte 2 for any purpose.

To allow for adaptations or extensions to an SVC and its processor, you shouid inciude a reserved
word at the end of the defined call block. Also, you should make the block an even number of
bytes beginning on a word boundary.

4.2.2 SVC Definition Tables

To enable the processor to operate as efficiently as possible, the operating system copies some
or all of the call block into a special structure for use by the SVC processor. You must specify how
much information to copy and how much to return to the user task in a pair of tables defined for
each SVC. These tables are included in a module of definition information for use by system gen-
eration. The module can be built in any file but must include the following:

o The IDT name, RPUDAT

o DEF statements for RPUMAX and RPUTAB

2270510-9701 4-1

Writing an SVC Processor

A REF statement for each SVC processor entry point
A byte named RPUMAX that contains the largest user-defined SVC opcode

A table named RPUTAB that contains a two-word entry for each SVC opcode in the
range > 80 through RPUMAX

A request description block (RDB) for each user-defined SVC

A return information block (RIB) for each user-defined SVC that returns data to the
calling task

The entries in the table RPUTAB consist of two words each. The first word contains > E000, and
the second contains the address of the RDB for the SVC opcode being defined. The first entry in
the table is for SVC opcode > 80. Each successive entry is for the next SVC opcode in sequence. If
a particular opcode is not defined in the system being generated, the entry in RPUTAB must con-
sist of two words of zero. The RPUDAT module must be assembled, and the object module path-
name of the module must be supplied to the system generation program. Figure 4-1 shows an
example of RPUTAB that lists two SVCs defined by the user.

An RDB includes the address of the SVC processor, the address of the RIB, and how much
information to supply to the SVC processor. Table 4-1 explains the format of an RDB.

Table 4-1. Request Definition Block (RDB) Format

Fleld Size Contents
Word Flags, > 1000 for user-defined SVCs
Word Address of the SVC processor
Word Address of the RIB for this SVC (zero if no RIB is defined)
Word Size of the call block in bytes
Byte Number of bytes of the call block to be copied by DNOS for the
SVC processor (starting at byte 0)
Byte Zero
Word Zero

Figure 4-1 shows several RDB definitions for user-defined SVCs.

The operating system uses an RIB to return data from the system copy of the call block to the call-
ing task. If only the error byte of the call block is returned, no RIB is needed. An RIB must be speci-
fied in the RPUDAT module when any other information is to be returned. Table 4-2 shows the
format of an RIB. The pair of byte fields can be repeated if information is to be returned from sev-
eral noncontiguous areas in the call block.

2270510-9701

ADDIT
SvCc ¢

* * ok % * ¥

RPUTAB

RPUMAX

*

RDBUBO

RDBU82

RIBU8O

RIBU82

2270510-9701

ION,
ODE.

IDT

DEF

REF

DATA
DATA
DATA
DATA
DATA
DATA
BYTE

DATA
DATA
DATA
DATA
BYTE
BYTE
DATA
DATA
DATA
DATA
DATA
BYTE
BYTE
DATA
DATA
BYTE
DATA
DATA
BYTE
BYTE
DATA
END

Writing an SVC Processor

THIS MODULE HAS THE DATA TABLES TO ENABLE PROCESSING OF
USER-DEFINED SVCS. RPUTAB IS THE TABLE OF RDB AND PROCESSOR
ADDRESSES FOR THE SVCS. THE SET OF RDB DEFINITIONS FOLLOWS,
AND RIB DEFINITIONS ARE INCLUDED FOR RELEVANT CASES. 1IN

RPUMAX IS DEFINED TO BE THE MAXIMUM USER-DEFINED

'RPUDAT'

RPUMAX,RPUTAB LABELS TO ACCESS USER DATA
svco80,svco82 LABELS OF ENTRY POINTS

>E000 SVC80 - FIND CPU TIME

RDBUSO

0 SKIP SVC81

0

>E000 SVC82 - SPECIAL ADD

RDBU8?2

>82 MAXIMUM USER-DEFINED CODE

>1000 FLAGS

svco8o PROCESSOR

RIBU8O RETURN INFORMATION BLOCK

6 MAXIMUM CALL BLOCK SIZE

2 COPY ONLY TWO BYTES

0 RESERVED

0 RESERVED

>1000 FLAGS

svco82 PROCESSOR

RIBU82 RETURN INFORMATION BLOCK

16 MAXIMUM CALL BLOCK SIZE

16 COPY ALL

0 RESERVED

0 RESERVED

0 RESERVED

2,4 START AT OFFSET 2, RETURN 4 BYTES
0 RESERVED

0 RESERVED

2,6 START AT OFFSET 2, RETURN 6 BYTES
12,4 AND AT OFFSET 12, RETURN 4 BYTES
0

Figure 4-1. Format of RPUDAT Module

4-3

Writing an SVC Processor

Table 4-2. RIB Format

Field Size Contents
Word Zero
Byte Offset in the call block from which the return of data should begin
Byte Number of bytes to return
Word Zero

Figure 4-1 shows a source module for defining two user SVCs using SVC opcodes >80 and > 82
with opcode > 81 omitted.

4.2.3 SVC Processor Details
The SVC processor must define its own entry point in a DEF directive. It must save and restore
system registers by using two macro calls: SPUSH 1 as the first instruction and SPOP 1 as the last
instruction. The processor runs as part of the operating system kernel, making use of an operating
system workspace. Upon entry to the processor, the following registers are set:

o Register 1 — Points to the system copy of the requesting call block

] Register 4 — Poinis to the requester task status bicck (TSB)

] Register 5 — Points to the requester-saved map file

] Register 10 — Points to an internal operating system stack

] Register 13 — Requesting task workspace pointer

. Register 14 — Requesting task program counter

. Register 15 — Requesting task status register

The SVC processor must not alter registers 10, 13, 14, and 15.

Register 1 contains the address of the system copy of the requester’s call block. The processor
usually gathers all the information it needs from this copy. The processor alters the copied cali
block to pass information back to the requesting task. The second byte of the call block should
always be used for returning a status code. If necessary, the processor can also access the

requester task area to get or return data using long distance instructions, with register 5 as the
map file pointer.

When the processor finishes its work, it must return to the operating system by issuing the
following:

CLR RO
SPOP 1

4-4 2270510-9701

Writing an SVC Processor

The operating system then returns information as specified in the RIB for the SVC performed.
Finally, control passes back to the task that issued the SVC.

Figure 4-2 shows a processor for user-defined SVC >80, corresponding to the definitions in
Figure 4-1.

TITL 'SVC080 PROCESSOR -- GET EXECUTION TIME'

khkhkhkhkhhkhkhkhkhkhkhkhkhkhkdhkhkhkhkhhhkhkhdhhkhhhhkhkhkhkhkhhkhbhhhkhkhrhkhhkhhhkhkhkhhkhkhkkidk

* THIS EXAMPLE PROCESSOR IS FOR USER-DEFINED SVC >80. IT «*
* RETURNS THE AMOUNT OF CPU TIME USED BY THE TASK SO FAR. *

* IT ACCESSES THE FIELD "TSBCPT" IN THE TSB. *
* *
* THE CALL BLOCK HAS THE FORM: *
* *
* B e e btk et + *
* 00 ! 80 ! ERROR CODE ! *
* D e it T + *
* 02 ! TIME EXECUTING SO FAR J *
* t———— -——=—+ *
* 04 ! IN INTERNAL CLOCK TICKS ! *
* e, e e, e + *
* *
* *
* UPON ENTRY R1 POINTS TO THE COPY OF THE CALL BLOCK *
* R4 POINTS TO THE TSB OF THE REQUESTER *
[ZZXS RS R R EASRR R RS RS RRRRRRRRRARRRRRRSRRRRRRRRR R R SRR SR

IDT 'sSvco080'

DEF SVCO080 ENTRY POINT

LIBIN ©DSC.MACROS.TEMPLATE TO USE TSB EQUATES
COoPY DSC.TEMPLATE.ATABLE.TSB ...

LIBIN DSC.MACROS.FUNC FOR O0S FUNCTIONS
SVC080 EVEN

SPUSH 1 SAVE RETURN ADDRESS

MOV ATSBCPT(R4),32(R1) MOVE EXECUTION TIME

MOV Q@TSBCPT+2(R4),a4(R1) ...INTO CALL BLOCK

CLR R2 GET A ZERO

MOVB R2,31(R1) SHOW NO ERROR

CLR RO PREPARE FOR RETURN

SPOP 1 RETURN TO DNOS

END

Figu