
The
Connection Machine
System

*Lisp Dictionary

Version 6.1
October 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, February 1990
Revised, October 1991

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this

document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Connection Machine ® is a registered trademark of Thinking Machines Corporation.
CM, CM-l, CM-2, CM-200, and CM-S are trademarks of Thinking Machines Corporation.
Paris, *Lisp, and Lisp/Paris are trademarks of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.
Sun, Sun-4, Sun Workstation, SPARC, and SPARCstation are trademarks of Sun Microsystems, Inc.
SunOS and Sun FORTRAN are trademarks of Sun Microsystems, Inc.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
CommonLoops is a trademark of Xerox CoIporation

Copyright © 1991 by Thinking Machines COIporation. All rights reserved.

Thinking Machines COIporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

(

\

/

Contents

About This Manual . xv

Customer Support .. xix

Part I *Lisp Overview

Chapter 1 *Lisp Functions and Macros.. 3

1.1 Basic Pvar Operations .. 3
1.1.1 Pvar Allocation 3

1.1.2 Pvar Data 'f:ype Declaration and Conversion 4

1.1.3 Pvar Referencing and Modification 4

1.1.4 Pvar Information 5

5 1.2 *Lisp Function Definition•.....................

1.3 Processor Selection . 6

1.4 Operations on Simple Pvars . 6

1.4.1 Boolean Logical Operators. 6

1.4.2 Numeric Pvar Operations 6

Numeric Predicates 6

Relational Operators 7

Math Operators 7

Trigonometric Functions .. 7

Floating-Point Pvar Operators 7

Floating-Point Pvar Information Functions 7

Complex Pvar Operators . 8
Bitwise Integer Operators 8

Bitwise Logical Operators 8

1.4.3 Character Pvar Operations 8

Character Pvar Operators 8

Character Pvar Attribute Operators :........... 9

Character Pvar Predicates 9

Character Pvar Comparisons. 9

Version 6.1, October 1991 iii

iv *Lisp Dictionary
11111 1IIIIIIIIIIIIIIIIIIIIIIIiilliilliilllllillii::lillllillii!liiElllIiIE ill1 JIIIlm::!: j iIii 1IiI1lI!::Ililli!!illlliliLIIII:!i iiil II ; I] II II! iii! 1I11 I: j i iliiilili 1111 j II I III : 11111111:11 iii;: [I (

I

"-

1.5 Operations on Aggregate Pvars 9
1.5.1 Array Pvar Operations 9

Basic Array Pvar Operations 9
Vector Pvar Operations 10

1.5.2 Structure Pvar Operations 11

1.6 Processor Addressing Operations 12
1.6.1 Processor Enumeration, Ranking, and Sorting 12
1.6.2 SendlNEWS Address Operators 12
1.6.3 Address Object Operators 12

1.7 Inter- and Intra-Processor Communication Operations 13
1.7.1 Inter-Pvar Communication Operators 13
1.7.2 NEWS Communication Operators 13

1.7.3 Front-End Array to Pvar Communication Operators 13
1.7.4 Scan and Spread Operators 13
1. 7.5 Segment Set Scanning Operators 14

1.7.6 Global Communication Operators 14

1.8 VP Set Operations 14

1.8.1 VP Set Definition Operators 14
1.8.2 VP Set Geometry Functions 15 (

1.8.3 Flexible VP Set Allocation Operators 15
" 1.8.4 VP Set Deallocation Operators 15

1.8.5 Current VP Set Operators 15
1.8.6 VP Set Operators 15

1.9 General Information Operations 16

1.10 Entertainment Operations 16

1.11 Connection Machine Initialization Functions 16

Chapter 2 *Lisp Global Variables ~ 17

2.1 Predefmed Pvars .. . 17

2.2 Configuration Variables .. . 17

2.3 Initialization List Variables 19

2.4 Configuration Limits .. . 20
2.4.1 Array Size Limits 20
2.4.2 Character Attribute Size Limits•..•............. 20

2.5 Error Checking 22

2.6 *Lisp Compiler Code-Walker 23

2.7 Pretty-Printing Defaults .. . 23

Version 6.1, October 1991

/

Contents v
11]11101111 : IIIIIIIIII!! II 111111:1 [!ilillil i!lliI! III i J!III!I!Jllili iIilllliliilllimlliii![llllllIliIIlllllIi:::::IIIIIIII:::mlllilllIll lllii liiiilJlllll::liliiiililiEiilllElilii III! iI:::IIIIj]llII:;;l1~

Chapter 3 *Lisp Glossary 25

3.1 Connection Machine Terminology.... 25
3.1.1 Machines.. 25
3.1.2 Processors ... 26

3.1.3 Fields... 26
3.1.4 Connection Machine Memory.......... 27

3.2 "'Lisp Terminology. 27
3.2.1 Parallel Variables (Pvars) 27

Pvar Classes . 28
Pvar Types . 29

3.2.2 Processor Addressing 29
3.2.3 VIrtual Processor Sets. 30

Classes of VP Sets 31

3.2.4 Important VP Sets 32

3.3 Background Terminology . 32

Chapter 4 *Lisp Type Declaration 33

4.1 Pvar Types. 33

4.2 Using Type Declarations .. 36
4.2.1 "'Lisp Declaration Operators . 36

4.2.2 Basic Rules of Type Declaration 39
Declaring Pvars .. 40

Declaring Pvar Functions 41
Declaring Scalar Expressions. 42

4.3 General Pvars ... 44

4.4 Mutable Pvars . 45

4.5 Mutable General Pvars 46

4.6 Rules of "'Lisp Type Declaration and Coercion.. 47

Chapter 5 *Lisp Compiler Options 53

5.1 Setting Compiler Options. 53
5.1.1 Using the Compiler Options Menu 53

5.1.2 The Standard Options Menu......... 54
5.1.3 The Extended Compiler Options Menu..... 54

Using the Compiler Menu on a Symbolics Front End 55
5.1.4 Setting "'Lisp Compiler Variables Directly 56

5.2 "'Lisp Compiler Options.. 57

Version 6.1, October 1991

vi *Lisp Dictionary
iii i1iElI II II 111111 JI iiiI:II: iillililii Elill!! Iiii 111111 [HI !!I 1111111 1I1 JiliiliiIllli!!liliilli!!::1 1IIIillii!!IIIIiliii!IliiII III!: iiii!::: I :::11 I: II!:::ii!liiilif!!!iII!i!i!Ii!iiifiilliElliiIIEiUn

Part n *Lisp Dictionary

abslf .. [Function].... 79
acosll, acoshll .. [Function] 81
add-initializatlon [Function].... 83
address-nth, address-plus-nth, address-rank [Function] 86
address-nth!!, address-plus-nth!l, address-rank!! [Function] 88
allaslf ... [Macro] 90
*all .. [Macro] 94
allocate If .. [Macro] 98
allocate-processors-for-vp-set [Function] ... 101
allocate-vp-set-processors [Function] ... 101
allocated-pvar-p .. [Function] ... 104
alpha-char-pll .. [Function] ... 106
alphanumericpll .. [Function] ... 108
amapll .. [Function] ... 110
*and ... [*Defun] ... 112
andll .. [Macro] ... 114
*apply .. [Macro] ... 117
arefll .. [Function] ... 119
array II ... [Function] ... 123
*array-dimenslon, array-dlmensionll [*Defun, Function] ... 125
*array-dimensions, array-dimensionsll [*Defun, Function] . .. 127
*array-element-type .. [*Defun] ... 129
array-in-bounds-pll .. [Function] ... 130
*array-:-rank, array-rankll [*Defun, Function] ... 132
array-row-maJor-indexll [Function] ... 134
array-to-pvar ... [*Defun] ... 136
array-to-pvar;Jrld ... [*Defun] ... 140
*array-total-size. array-total-slzell [*Defun] ... 143
ashll .. [Function] ... 145
aslnll. asinhll ... [Function] ... 148
atanll, atanhll .. [Function] ... 150
bitlf ;............................. [Function] ... 152
blt-andll, bit-andc1 II. bit-andc211. bit-eqvll. bit-Iorll. bit-nand II ,

blt-norll. bit-notll. bit-orc111, bit-orc21!. bit-xorll [Function] ... 153
boolell .. [Function] ... 156
booleanpll ... [Function] ... 158
both-case-pll .. [Function] ... 160
bytell ... [Function] ... 162
byte-positlonll. byte-size II [Function] ... 164
*case. casell .. . [Macro] ... 166
ceilingll .. . [Function]... 169
char=lI. char/=II. char<II. char<=II, char>II,char>=1I [Function]... 171
characterll ... [Function]... 173
characterpll .. [Function] . .. 175

Version 6.1. October 1991

Contents vii
~: ii!iiillli! l!!1lI::::i:::::ii!::ElI!!!IIII III III! ElIIIIIiii!!11iI11 ililiiiiililil illlill Ii Bill I II ill II 1111I I I1I1I11 i1!!lllliIllll EIiI!! I II I II JIIII Ii ! i 11 lim i 5!:J!III!!Im.a

/

char-bitll .. [Function]... 177
char-bits II ... [Function] ... 179
char-codell .. [Function] ... 181
char-downcasell .. [Function] ... 183
char-equalll .. [Function] ... 184
char-f1lpcasell .. [Function] ... 186
char-fontll ... [Function] ... 188
char-greaterpll ... [Function] ... 190
char-lntll .. [Function] ... 192
char-lesspll .. [Function] ... 194
char-not-equalll .. [Function] ... 196
char-not-greaterpll ... [Function] ... 198
char-not-Iesspll .. [Function] ... 200
char-upcasell .. [Function] ... 202
clsll ... [Function] ... 204
code-charll .. [Function] ... 206
coercell ... [Function] ... 208
*cold-boot ... [Macro] ... 212
comparell .. [Function] ... 217
complexll .. [Function] ... 218
complexpll ... [Function] ... 220
*cond, condll .. [Macro, Function] ... 222
conJugatell ... [Function] ... 227
copy-seqll ... [Function] ... 228
cosll, coshll .. [Function] ... 230
countll, count-ifll, count-lf-notll [Function] ... 231
create-geometry [Function]... 234
create-segment-setll .. [Function] ... 238
create-vp-set .. [Function] ... 241
cross-product [Function] ... 244
cross-productll ... [Function] ... 246
cube-from-grid-address [Function] ... 248
cube-from-grld-addressll [Function] ... 250
cube-from-vp-grid-address [Function] ... 253
cube-from-vp-grid-addressll [Function] ... 255
*deallocate ... [Function] ... 258
*deallocate-*defvars ... [Function] ... 260
deallocate-def-vp-sets [Function]... 262
deallocate-geometry .. [Function] ... 264
deallocate-processors-for-vp-set [Function] ... 265
deallocate-vp-set-processors [Function] ... 265
deallocate-vp-set ... [Function] ... 268
*decf .. [Macro] ... 270
*defsetf .. [Macro] ... 272

\ *defstruct .. [Macro] ... 274

Version 6.1, October 1991

viii
lliill III

*Lisp Dictionary
IIJllilll!lllllllIlIIliillilllllllllllllllllllllillllllllllllillllllillllllllllllliilillllll!ilEIIIIli

*defun . [Macro] ... 280
*defvar .. [Macro] .. , 286
def-vp-set ... [Macro] ... 291
delete-lnltlallzatlon .. [Function] ... 296
deposlt-bytell .. [Function] ... 298
deposit-field II .. [Function] ... 300
describe-pvar [Function]... 302
descrlbe-vp-set .. [Function]... 304
dlglt-charll ... [Function] ... 307
dlglt-char-pll [Function]... 309
dimenslon-address-iength [Function] ... 311
dlmenslon-slze ... [Function] ... 313
do-for-selected-processors [Macro] . .. 315
dot-product ~ [Function]... 317
dot-productll : .. [Function]... 319
dpbll [Function] ... 321
*ecase, ecasell ... [Macro] ... 323
enumeratell .. [Function] ... 326
eqll ... [Function] ... 328
eqlll .. [Function] ... 330
equalll .. [Function] ... 332
equalpll ... [Function] ... 333
evenpll .. [Function] ... 334
everyll .. [Function] ... 335
expll .. [Function] ... 337
exptll ... [Function] ... 338
fceilingll ... [Function] ... 340
ff100rll ... [Function] ... 342
*fill .. [*Defun]... 344
findll, flnd-Ifll, find-If-notll .. [Function] ... 346
floatll .. [Function] ... 349
float-epsllonll .. [Function] ... 351
float-slgnll ~ .. [Function] ... 353
floatpll .. [Function] ... 355
floorll ... [Function] ... 356
front-endll ... [Function] ... 358
front-end-pll ... [Function].:. 360
froundll ... [Function] ... 362
ftruncatell ... [Function] ... 364
*funcaU . [Macro] . .. 366
gcdll .. [Function] ... 368
graphlc-char-pll .. [Function] ... 369
gray-code-from-lntegerll [Function] ... 370
grid ~ .. [Function] ... 371
grldll [Furtcti<>n] ... 373

Version 6.1, October 1991

I

\

Contents
"::IEi! !:I!O!;:::::iill:m i I i!llliilllllll]11][11: 1111 IIlIiIIillilliiilill!lIilliil:Ji:lllilililllm:::iUIIIIIIiI 111II111!!IliIiilliilllllliiil!i!JIIIIlI :: ii I iIiIli m:::Uill!iIEi!I:

ix
i"'i($}

grid-frorn-cube-address [Function] ... 375
grid-frorn-cube-addressll [Function] ... 377
grid-frorn-vp-cube-address [Function] ... 380
grld-from-vp-cube-addressll .. [Function] ... 382
grid-relative II .. [Function]... 385
help . .. [Function] ... 387
*if . .. [Macro] ... 388
iff I .. [Macro] ... 391
imagpartll .. [Function] ... 394
*Incf .. [Macro] ... 395
initialize-character .. [Function] ... 397
int-charll .. [Function] ... 400
integer-from-gray-codell [Function] ... 402
*integer-iength .. [*Defun] ... 403
Integer-iengthll ... [Function] ... 404
integer-reversell .. [Function] ... 406
integerpll .. [Function] ... 407
isqrtll ... [Function] ... 408
Icmll .. [Function] ... 409
Idbll .. [Function] ... 411
Idb-testll .. [Function] ... 413
least-negative-fioatll,least-posltlve-fioatll [Function] ... 414
lengthll .. [Function] ... 416
*Iet, *Iet* .. . [Macro] . . . 418
let-vp-set " [Function] ... 424
*light ... [*Defun] ... 426
*lisp .. [Function] ... 428
IIst-of-actlve-processors [Function] ... 430
load-bytell ... [Function] ... 432
loap . [Macro] . .. 434
*Iocally .. [Macro] ... 435
logll '.' .. [Function] ... 438
*Iogand .. '" [*Defun] ... 440
logandll, logandc111, logandc211, logeqvll, logiorll, lognandll, lognorll,

lognotll, logorc111. logorc211, logxorll [Function] ... 442
logbltpll ... [Function] ... 445
logcountll .. [Function] ... 446
*Ioglor ~ ... [*Defun] ... 447
logtestll .. [Function] ... 449
*Iogxor :........................ [*Defun] ... 450
lower-case-pll ... [Function] ... 452
make-arrayll : [Function] ... 453
make-charll .. [Function] ... 455
*map '. .. [Function] ... 457
mask-fleldll .. [Function] ... 459
*max ... [*Defun] ... 461

Version 6.1, October 1991

x *Lisp Dictionary
11!lllml!11 II! 1m! 11111ii 1111I I 11111111 IIIIII! ill lliE 11111 111!IIIIEIililliliillillll IIIii iiI 1IIIIiIliiiillJlIIII ii1ii1!IIIIIII!Iii!!lllliliilliEill!!lliIl!!llIilll ii:::I!liiEilliIl !Ii:l lilllll:::: Ii: I I 1.1 : Ii lIIill

maxI! .. [Function] ... 462
*mln ... [*Defun] ... 463
minI! .. [Function] ... 464
minuspll ... [Function] ... 465
modll ... [Function] ... 466
most-negatlve-fioatll, most-posltlve-fioatll [Function] ... 467
negatlve-fioat-epsilonll [Function] ... 469
*news .. [*Defun] ... 471
newsll ... [Macro] ... 476
news-borderll "..................... . [Macro] ... 481
*news-dlrectlon .. [*Defun] ... 483
news-directlonll .. [Macro] ... 485
next-power-of-two->= [Function] ... 487
notll .. [Function] ... 489
notanyll .. . [Function]... 490
noteveryll .. [Function] ... 492
*nreverse ... [*Defun] ... 494
nsubstitutell, nsubstltute-ifil, nsubstltute-if-notll [Function] ... 496
nullil .. [Function] ... 499
numberpll .. . [Function]... 500
oddpll ... [Function] ... 501
off-grid-border-pll [Function]... 502
off-grid-border-relatlve-directlon-pll [Function] ... 505
off-grid-border-relatlve-pll [Function] ... 507
off-vp-grid-border-pll [Function] ... 509
*or .. [*Defun] ... 511
orll ... [Macro] ... 513
phasell .. [Function] ... 516
pluspll .. [Function] ... 517
position II, position-Ifll, posltion-if-notll [Function] ... 518
power-of-two-p .. [Function] ... 521
ppme .. [Macro] . . . 522
ppp ... ~ . [Macro] ... 524
pppll [Macro] ... 529
ppp-address-obJect ... [Function] ... 531
ppp-css ... [Macro] ... 533
pppdbg ... [Macro] . .. 535
ppp-struct ... [Function] ... 537
pref .. [Macro] .. . 540
prefll ; . [Macro] ... 544
pretty-print-pvar [Macro] ... 552
pretty-print-pvar-ln-currently-selected-set [Macro] ... 553
*processorwlse .. [*Defun] ... 555
*proclalm .. [Macro] ... 557
*pset ... , [Macro] ... 561

Version 6.1, October 1991

(
\

Contents

pvar-exponent-length [Function] ... 571
pvar-Iength .. [Function] ... 572
pvar-Iocation ... [Function] ... 573
pvar-mantlssa-Iength [Function] ... 574
pvar-name ... [Function] ... 575
pvarp ... [Function] ... 576
pvar-plist .. [Function] . .. 577
pvar-to-array ... [*Defun] ... 578
pvar-to-array-grid ... [*Defun] ... 581
pvar-type .. [Function] ... 585
pvar-vp-set .. [Function] ... 586
randomll ... [Function] ... 587
rankll ... [Function] ... 589
realpartll ... [Function] ... 594
reduce!! ... [Function] ... 595
reduce-and-spread!! .. [Function] ... 598
rein!! .. [Function] ... 601
reversel! ... [Function] ... 602
*room ... [Function] ... 604
rot!! .. [Function] ... 606
round!l .. [Function] ... 607
row-maJor-arefll .. [Function]... 609
row-major-sideways-arefll [Function] ... 611

sblt!! .. [Function] .. . 614
scale-f1oatll .. [Function] ... 615
scanll ... [Function] ... 616
segment-set-end-address {-bits}

segment-set-processor-not-in-any-segment
segment-set-start-address {-bits} [Function] ... 624

segment-set-end-addressll {-bitsll}
segment-set-processor-not-in.any-segmentll
segment-set-start-addressll {-bitsll} [Function] ... 626

segment-set-scanll ... [Function] ... 628
selfll [Function]... 631
self-addressll .. [Function] ... 633
self-address-gridll .. [Function] ... 635
*set ... [Macro] ... 638
*setf [Function]... 640
set-char-bitll ... [Function] ... 644
set-vp-set [Function]... 646
set-vp-set-geometry .. [Function] ... 647
sideways-areftl ... [Function] ... 649
*sideways-array ... [*Defun] ... 653
sideways-array-p .. [Function]... 655
signum!! .. [Function] ... 656
sinll, sinh!! ... [Function] ... 657

Version 6.1, October 1991

xi

xii *Lisp Dictionary
11111 II III I!: : 11111::1111 I1111 il:! i 11111I11 III II iI 1IIIIIIIlEII!lIIiili !IIII:: : iii! 111111] ::1 II lllllllli!iiiiilillii! I I: ::11111::111::: i::: !Ii

*slicewlse .. [*Defun]... 658
somell .. [Function]... 659
sortll .. [Function] ... 661
spreadll " ... [Function] ... 665
sqrtll .. [Function] ... 668
standard-char-pll ... " [Function] ... 670
strlng-char-pll ... [Function] ... 671
structurepll .. [Function] ... 672
subseqll [Function] ... 673
substltutell, substitute-IfII, substitutB-if-notll, [Function] ... 675
*sum ... [*Defun] ... 678
taken-asll ... [Function] ... 679
tanll, tanhll .. [Function] ... 681
*trace .. . [Macro] . .. 682
trace-stack .. [Function] ... 684
truncatell .. [Function] ... 692
typed-vectorll .. [Function] ... 693
typepll .. [Function] ... 695
*undefsetf .. [Function] ... 697
un*defun .. [Function] ... 698
*unless [Macro] ... 699
unproclalm ... " [Function] ... 701
*untrace ... [Macro] ... 702
upper-case-pll ... [Function] ... 704
v+, V-, v*, vi .. [Function] ... 705
v+II, v-II, v*II, viII ... [Function] ... 706
v{+,-,*,I}-constant .. [Function] ... 708
v+scalarll, v-scalarll, v*scalarll, v/scalarll " [Function] ... 709
vabs .. [Function] ... 711
vabsll ... [Function] ... 712
vabs-squared .. [Function] ... 714
vabs-squaredll ... [Function] ... 715
vcelllng .. [Function] ... 717
vectorll . [Function]... 718
vector-normal•............... [Function] ... 720
vector-normalll ... [Function] ... 722
vfloor ... [Function] ... 724
vp-set-deallocated-p, vp-set-dlmenslons

vp-set-rank, vp-set-total-size, vp-set-vp-ratlo [Function] ... 725
vround .. [Function]... 727
vscale ... [Function] ... 728
vscalell .. [Function] ... 729
vscale-to-unlt-vector [Function] ... 731
vscale-to-unlt-vectorll [Function]... 733
*vset-components ... [*Defun]... 735
vtruncate .. [Function] ... 737

Version 6.1, October 1991

Contents xiii
m:mliiii::liEiliJI:::::.ii:i!i:Ii.i!i:: :: ·~·:~lm:llW1@:mlmll:W::!!.: Ii :·IlWiWW.5~W.$~...,!tw.&.&m'M@l:::: i@l%'imlw.M*m:.w0.wJ@W~

*warm-boot .. [Macro] ., . 738
*when ... [Macro] .. . 741
with-css-saved ... [Macro] ... 744
with-processors-allocated-for-vp-set [Macro] ... 747
*wlth-vp-set ... [Macro] ... 749
*xor .. [*Defun] ... 752
xorll .. [Function] ... 754
zeropll .. [Function] ... 756
II ... [Function] ... 757
=11,1=11, <II, <=11, >11, >=11 [Function] ... 761
+11, -II, *11, III ... [Function] ... 763
1+11 ... [Function] ... 765

\
/

Version 6.1, October 1991

~,

/

About This Manual

Objectives

The ""Lisp Dictionary is a complete reference source for the essential constructs of the ""Lisp language.
It is intended to provide quick access to the defmitions of all ""Lisp functions, macros, and global vari­
ables. It is not intended to explain the conceptual basics of programming in ""Lisp, although a glossary
of important and frequently used terms is included.

Note: This document reflects the ""Lisp language as implemented on the Connection Machine models
CM-2 and CM-200. The ""Lisp Glossary, in particular, is specific to these models in its descriptions of
hardware features. Connection Machine model CM-S users should also refer to the Porting to CM-5
""Lisp document for differences between the two implementations.

Intended Audience

This reference dictionary is intended for readers with a working knowledge of Common Lisp, as de­
scribed in Common Lisp: The Language, and a general understanding of the Connection Machine sys­
tem. The Getting Started In ""Lisp guide is a good source for the level of introductory information you
need to use this dictionary-in particular, its appendices provide a concise overview of the CM system.
The first chapter of the CM User s Guide is also a good source for this information, and the Connection
Machine Technical Summary provides a more in-depth introduction to the CM, including a detailed
look at how the CM operates.

Revision Information

This revised edition of the dictionary conforms with Version 6.1 of the ""Lisp software, as implemented
on the CM-2 and CM-200. It does not describe the changes implemented in Version 7.0 of the ""Lisp
software for the CM-S. These changes are currently documented in the manual Porting to CM-5 ""Lisp.

Organization of This Manual

The ""Lisp Dictionary is divided into two parts.

Part I, """Lisp Overview," provides a complete list of the functions, macros, and important global vari­
ables of ""Lisp, as well as several chapters of useful overview material.

Part II, """Lisp Dictionary," is a complete dictionary of all functions and macros in the ""Lisp language.

Version 6.1, October 1991 xv

xvi
lilllllllllilllllliEi

*Lisp Dictionary
]IIiil I iii[iIIl 11111; Ilillllllllllll:mlllllllllllllllllllllililllliiimlllllilll!Jlll11:11111111 lllIill Ilillillllllllllllllilliil 1111;1;: 11111 !ill III: 111111111:11Il1;:::111111

Organization of This Manual, cont.

Part L *Lisp Overview

Chapter 1. *Lisp Functions and Macros
A list of the names of all functions and macros in *Lisp, grouped by purpose.

Chapter 2. *Lisp Global Variables
Descriptions of the important global variables in *Lisp.

Chapter 3. *Lisp Glossary
Definitions of important terms used here and in other *Lisp manuals.

Chapter 4. *Lisp Type Declaration
A list of *Lisp data types, exact instructions for using (and not using) type declara­
tions in *Lisp code, and a summary of the data type coercion rules of *Lisp.

Chapter S. *Lisp CompHer Options
Descriptions of the effects of each of the many *Lisp compiler options.

Part ll. *Lisp Dictionary
A complete dictionary of the *Lisp language, including all *Lisp functions and macros.

Related Documents

• Getting Started In *Lisp
This manual provides both an overview of*Lisp and an introduction to *Lisp programming.

• Porting to CM-5 *Lisp
This manual provides a summary of the changesmad.e to the *Lisp language in Version 7.0 for
theCM-S.

• Paris Reference Manual
This manual describes Paris (for]2JlIallel instruction s..et), the low-level programming lan­
guage of the CM-2 and CM-200. *Lisp prognimmers who wish to make use of Paris calls
from *Lisp should refer to the Paris manual for more information.

• CM User s Guide
This manual provides overview and introductory material for new users of the CM.

• Common Lisp: The Language, by Guy L. Steele Jr. (Burlington, Mass.: Digital Press, 1984).
This book defines the de facto industry standard Common Lisp. The second edition, pub­
lished in 1990, includes information about changes and extensions recommended by the
ANSI technical committee X3Jl3 for the forthcoming ANSI standard Common Lisp.

Version 6.1. October 1991

\.

/

Preface xvii
i1iliIlliiiilllliiiiiili:iEllli I I j I:: : : I : liIE iI ::::: I fIlE i:j I ::::liIlji!il!ii!illiiIi.i:::::::!1l!ililiiijmi 11 lEi] i i Iii I iIill I III II :111:11: I111 1111: i J: ::: !! I I:: J II:illl1i!l:!! I Ii

Notation Conventions

Symbol names and code examples in running text appear in bold, as in *cold-boot. Code examples set
off from the main text appear in a typewriter style typeface, as follows:

(pref a 23)

Names that stand for pieces of code (metavariables) appear in italics, as inpvar-expression. In function
or macro definitions, argument names appear in italics. Keywords and argument list symbols
(&optlonal, &rest, etc.) appear in bold:

pref pvar-expression send-address &key :vp-set

Argument names typically indicate the data type(s) accepted forthat argument; for example, argument
names containing the term pvar must be parallel variables. The name integer-pvar restricts an argu­
ment to a parallel variable with integer values. Functions typically signal an error when given argu­
ments of an improper type.

The table below summarizes these notation conventions:

Convention Meaning

boldface Symbol names, keywords, and code examples in text.

italics Metavariables and argument names.

typewriter Code examples set off from text.

=> Evaluates to.

==> Expands into (macros, for example).

<=> Are equivalent (produce the same result).

Version 6.1, October 1991

Customer Support
! ~I IMr f IMr BIUlU Iwm r; flTIPJrur H mu:w ann 1m HllTIUt WI; WW I I .. ~

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back­
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

u.s. Mail:

Internet
Electronic Mail:

uucp
Electronic Mail:

Telephone:

For Symbolics Users Only

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

customer-support@think.com

ames!think!customer-support

(617) 234-4000
(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil­
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To : customer-support@think.com

Please supplement the automatic report with any further pertinent information.

xix

Part I

*Lisp Overview

Chapter 1

*Lisp'Functions and Macros
:mi,

This chapter provides an overview of the functions and macros of *Lisp, organized in cate­
gories of functionally related operations. Only the names of functions are shown; consUlt
the corresponding entry in the dictionary for argument lists and descriptions.

1.1 Basic Pvar Operations

*Lisp includes basic operations to allocate, access, modify, and deallocate pvars.

1.1.1 Pvar Allocation

These operations allocate/deallocate permanent pvars:

*deallocate-*defvars *defvar

These operations allocate/deallocate global pvars:

allocatell *deallocate

These operations allocate local pvars for the duration of a body of code:

*Iet *Iet*

This operation returns a temporary pvar with the same value in each processor:

II

Version 6.1, October 1991 3

4 *Lisp Dictionary
1111111111 1111I11 i!III!1 1111111 ! iii 1111111 !ililililil Iii !ill Ii lIiillll!! ; 111!I1Iii11: I) Ii! I I: I!;

These operations return a temporary pvar of a specific data type:

arrayll
typed-vectorll

front-endll
vectorll

make-arrayll

1.1.2 Pvar Data Type Declaration and Conversion.

These forms are used to declare/undeclare the data type of a pvar:

*Iocally *proclalm unproclalm

These operations are used to convert pvars from one data type to another:

coerce II taken-asll

1.1.3 Pvar Referencing and Modification

This operation is used to reference the values of a pvar:

pref

These operations are used to modify the values of a pvar:

*set *setf

These operations are used to defme *setf methods for user-defmed functions:

*defsetf *undefsetf

This operation is used in passing aggregate pvar elements to user-defined functions, to pre­
vent copies of those elements from being made:

alias II

Version 6.1, October 1991

(

(

(

Chapter 1. *Lisp Functions and Macros
::I: I i II Jill! iii lliiilillllllllilllIllllillil1 1111 j 11111111 iIIllllllllill:I!liIIll!IlllllII:::::iilil 11111: i:::1! 11lI111

1.1.4 Pvar Information

These predicate operations test the data type of a pvar:

booleanpll
front-end-pll
structurepll

characterpll
Integerpll
typepll

complexpll
numberpll

These operations return general information about a pvar:

aUocated-pvar-p
pvar-mantissa-Iength
pvar-pUst

describe-pvar
pvar-name
pvar-type

IIII! !II

floatpll
strlng-char-pll

pvar-exponent-length
pvarp
pvar-vp-set

These operations return Paris-level information about a pvar:

pvar-length
pvar-locatlon

Returns Paris field length of a pvar. in bits.
Returns Paris field-id of a pvar.

These operations are used to print the values contained in a pvar:

ppp
ppp-css
pretty-print-pvar

pppll ppp-address-obJect
pppdbg ppp-struct
pretty-print-pvar-In-currently-selected-set

1.2 *Lisp Function Definition

These Common Lisp operations are used to defme. call. and trace *Lisp functions:

apply
trace

defun
untrace

funcaU

5
III

These *Lisp operations are used to defme. call. and trace user-defmed *Lisp functions that
must reset the *Lisp stack (see the defmition of*defun for more information):

*apply
*trace

Version 6.1, October 1991

*defun
un*defun

*funeaU
*untrace

6 *Lisp Dictionary
1111111111111111111111 I i 1111111 111111i III 1i!l11111 11111 ililliiillllllillillllilliillllllill lillliillll!liIillilililllilllllllilllllllllllillliHlllllillilil:::II:!iIll!illl!lll::iliIil!

1.3 Processor Selection

These forms conditionally bind the currently selected set of processors during the
evaluation of their body, forms or clauses:

*all
eondll
If II

*ease
*ecase
*unless

easell
eeasell
*when

This form iterates over the currently selected set of processors:

d()-for-selected-proeessors

*eond
*If
with-css-saved

These forms return a list of the send addresses of all active processors:

Iist-of-active-processors loap

1.4 Operations on Simple Pvars

*Lisp includes specialized operations for simple (boolean, numeric, or character) pvars.

1.4.1 Boolean Logical Operators

These operations perform logical operations on boolean pvars:

andll notll orll xorll

1.4.2 Numeric Pvar Operations

*Lisp includes operations that perform tests and math operations on numeric pvars.

Numeric Predicates

evenpll
oddpll

mlnuspll
pluspll

nullli
zeropll

Version 6.1, October 1991

(

::~\

Chapter 1. *Lisp Functions and Macros 7
li I j II it Ii I iii I iii:: : II llil J!l1l]![IIi]: :iII:: :: I lIIIIiiEJI:H: I II IIilIlIi 1111111111:::::':::111 jjj !IImH : :::1111111:: :lnll::::lII:::;:::: : lillilll:1 : III : Iii: ·:Iii_

Relational Operators

=11
1=11
eqll

Math Operators

+11
1+11
comparell
floorll
Icmll
mod II
signumll

-II
1-11

<II
<=11
eqlll

*decf
gcdll
log II
random II
sqrtll

*11
absll
expll
*incf
maxll
rem II
truncate II

Trigonometric Functions

acosll
acoshll
cosll
cosh II

aslnll
asinhll
sinll
slnhll

Floating-Point Pvar Operators

fcellingll
float-slgn!!
scale-floatll

ffloorll
froundll

Floating-Point Pvar Information Functions

float-epsllonll
most-posltive-floatll

Version 6.1, October 1991

least-positlve-floatll
most-negative-floatll

>11
>=11
equalpll

atan!!
atanhll
tanll
tanh!!

III
ceiling II
exptll
isqrtll
min II
roundll

floatll
ftruncatell

least-negative-floatll
negative-float-epsilonll

8
1111111111111111111111:111:11111111111::: llIIliI!llill HlllllllllllIiiT:: liIllli!:IIi!lIIlll[[[iiI!liiil :1111111 1111

*Lisp Dictionary
Ii: I[lE III I!!::::::::::::ill!lllil!::m:: lilll i [:::1 ii Ii II IIIIEIIII:::!!!

Complex Pvar Operators

absll
conJugateli
realpartll

Bitwise Integer Operators

ashll
byte-position II
deposit-bytell
dpbll
integer-from-gray-codell
Integer-reversell
Idb"
mask-field II

Bitwise Logical Operators

boolell
logandc211
logeqvll
lognorll
logorc211

clsll
Imagpartll

complexll
phase!!

logandll
lotbitpll
logiorll
lognotll
logtest!!

byte II
byte-slzell
deposit-field II
gray-code-from-lntegerll
integer-lengthll
load-bytell
Idb-testll
rotll

logandc111
logcountll
lognandll
logorc111
logxorll

1.4.3 Character Pvar Operations

*Lisp includes operations that construct, test, and compare character pvars.

Character Pvar Operators

characterll
char-Intll
diglt-charll

char-downcasell
char-upcasell
int-charll

char-flipcasell
code-char! I
make-charll

Version 6.1, October 1991

(

(

(

Chapter 1. *Lisp Functions and Macros
IIIHI III I i ii:mm:I!!I!iiII!:lI!E!::iUi IlliIiiI::JEliliiil:liii Ii illli!il !11m!! Ii] i I1111 Jiliillll!1E mil 1I111111!!!Iillllll Illiliillllillli!liil!!illiliiillllllil!l1!!

Character Pvar Attribute Operators

char-bitll
char-fontll

Character Pvar Predicates

alpha-char-pll
characterpll
lower-case-pll
upper-case-pll

char-bltsll
Inltlalize-character

alphanumerlcpll
diglt-char-pll
standard-char-pll

Character Pvar Comparisons

char-II
char/=II
char-equalll
char-not-equalll

char< II
char<=11
char-greaterpll
char-not-greaterpll

1.5 Operations on Aggregate Pvars

char-codell
set-char-bltll

both-case-pll
graphlc-char-pll
string-char-pll

char>II
char>=11
char-lesspll
char-not-lesspll

9
: liI!ilillllillill!lm li ;mE

*Lisp includes specialized operations for aggregate (array, structure, or front-end) pvars.

1.5.1 Array Pvar Operations

*Lisp includes operations to create, modify, and test multidimensional array pvars. Also
included are specialized operations for one-dimensional array pvars (vectors).

Basic Array Pvar Operations

These operations return a temporary array pvar:

array!! make-arrayll

Version 6.1, October 1991

10
1IIIIIIIIIIIIIIIiIIllllillllllllllll!IIIII!illllllllllillilllllllillllll111111111111111111111

·Lisp Dictionary
1IIIIIIIIIImiillllllllllilllill!llliliiillllllili!lillllllillii1 lilllllill 1IIiIIliii!lliii!illllllllililillllllllliill:lII!:Iililli!l!liIlillilli

These operations obtain information about an array pvar:

*array-dlmenslon
*array-dlmenslons
*array-element-type
*array-rank
*array-total-slze
array-row-maJor-indexll

array-dlmenslonll
array-dlmensionsll
array-in-bounds-pll
array-ran~11
array-total-slzell
sldeways-array-p

These operations access elements of array pvars:

arefll
row-major-sldeways-arefll

row-maJor-arefil
sldeways-arefll

These operations map a function over a set of array pvars:

amapll *map

These are specialized operations for bit-array pvars:

bltll
blt-eqvll
blt-notll
sbltll

blt-andll
blt-Iorll
blt-ore111

blt-ande111
bit-nand II
blt-orc211

blt-ande211
blt-norll
blt-xorll

These operations convert arrays to and from a sideways (slicewise) orientation:

*proeessorwlse *sideways-array *slicewise

Vector Pvar Operations

These operations return a temporary vector pvar:

typed-vectorll veetorll

These are specialized operations' for vector (one-dimensional array) pvars:

eross-productll
v-II
v+scalarll
v/sealarll
vector-normalll
*vset-components

dot-product! I
V"'II
v-scalarll
vabsll
vscalell

v+1I
vIII
V"'scalarll
vabs-squaredll
vscale-to-unit-vectorll

Version 6.1, October. 1991

/
\
'--

(

\.

Chapter 1. *Lisp Functions and Macros 11
: I:: Ii iii :: iliiiI!iWl::m:III iii :: iii i:iIiiI!i ! i : ::I i :ilFJiii!!!i!ilii I: ii mimi; i iii II: mi: ![) i IIIII!III Ii i I 1111!i1ll1 II: Ii III!I!I : :111 llil IllIiilliiiii!!!i!!I!!II

These are serial (front-end) equivalents to the parallel vector operators:

cross-product
v­
v+-constant
v/-constant
vceiling
vround
vtruncate

dot-product
v*
v--constant
vabs
vector-normal
vscale

These are specialized operations for sequence pvars:

copy-seqll
count-If-notll
find II
lengthll
*nreverse
nsubstitute-if-notll
positlon-if-notll
somell
substitute-ifll

countll
everyll
find-iftl
notanyll
nsubstitutell
position!!
reducell
subseqll
substltute-If-notll

v+
vi
v*constant
vabs-squared
vfloor
vscale-to-unlt-vector

count-lftl
*fill
find-lf-notll
noteveryll
nsubstitute-ifll
posltlon-iftl
reverse II
substitutell

Note that in *Lisp, sequence pvars are defined as one-dimensional array (vector) pvars.

1.5.2 Structure Pvar Operations

This operation dermes a parallel structure type and dermes functions that create and access
instances of that parallel structure type:

*defstruct

Version 6.1, October 1991

12 *Lisp Dictionary
1111[iilllllllllllllllllllill i!!I[!IJIIil lliill iliilllll!!IiililllllililillilliCill!l!Iiilll i !liIilIIJII[iiliilllil!llIllii!lli :iill ill II iIi!iiiiilillII I Ii !lim;; III! JIll HIIiIIII

1.6 Processor Addressing Operations

*Lisp includes operators that provide processor addressing information.

1.6.1 Processor Enumeration, Ranking, and Sorting

This operator enumerates the currently active processors:

enumeratell

These operators rank and sort values in the currently active processors:

rankll sortll

1.6.2 Send/NEWS Address Operators

These operators provide access to the send and grid addresses of processors:

cube-rron.-grid-address
cube-rrom-vp-grid-address
grid-from-cube-address
grid-rrom-vp-cube-address
self-addressll

cube-from-grld-addressll
cube-from-vp-grid-addressll
grid-rrom-cube-addressll
grid-from-vp-cube-addressll
self-address-gridll

These operations are tests for off-grid processor addresses:

off-grid-border-pll
off-grld-border-relative-pll

off-grid-border-relatlve-direction-pll
off-vp-grid-border-pll

1.6.3 Address Object Operators

These operators create and manipulate address objects:

address-nth
address-plus-nth
address-rank
grid grid II
selfll

address-nthll
address-plus-nthll
address-rankll
grid-relatlvell

Version 6.1, October 1991

(

(

(

'\

;

Chapter 1. *Lisp Functions and Macros 13
i@t,'%.'t\Wmi@WiW1W~*,,*,§:~"*~<illm@:1ID~~~'W%t !.:: ·@@limit [: I 1 1.11: m:mmm

1.7 Inter- and Intra-Processor Communication Operations

*Lisp provides operations that transfer values between pvars, exchange values between
different processors, execute scans and reductions across processors, and perfonn global
tests.

1.7.1 Inter-Pvar Communication Operators

These operators transfer values between pvars using global routing:

prefll *pset

1.7.2 NEWS Communication Operators

These operators transfer values between pvars using NEWS communication:

*news
*news-direction

news II
news-directionll

news-border II

1.7.3 Front-End Array to Pvar Communication Operators

These operators transfer values between arrays on the front end and pvars on the
Connection Machine:

array-to-pvar
pvar-to-array

array-to-pvar-grld
pvar-to-array-grld

1.7.4 Scan and Spread Operators

These operators perfonn scans and reductions, and spread values across processors:

reduce-and-spreadll
spreadll

Version 6.1, October 1991

scan II

14
IIIIUI: I ill l! II Iii! Iii liliU:I! I I : l!ii!i!II1i:!!Ii!i!iiII:~immiI: I!!iil i iii : ::i iJI : I !Ii Hi Ii i Ii II! : :

1.7.5 Segment Set Scanning Operators

*Lisp Dictionary
Iii: i :1 II IIIIIIJiUiiIl!lilli!:; i :

These operators create and manipulate segment set objects, and perform segmented scans:

create-segment-setll segment-set-scanll
segment-set-end-bits segment-set-end-bitsll
segment-set-end-address segment-set-end-addressll
segment-set-start-bits segment-set-start-bltsll
segment-set-start-address segment-set-start-addressll
segment-set-processor-not-ln-any-segment
segment-set-processor-not-in-any-segmentll

1.7.6 Global Communication Operators

These operators perform a global test or function, returning a single front-end value:

*and
*Iogxor
*sum

*integer-Iength
*max
*xor

1.8 VP Set Operations

*Iogand
*min

*Ioglor
*or

These operations defme, allocate, and deallocate fixed-size and flexible VP sets.

1.8.1 VP Set Definition Operators

This operation is used to defme permanent VP sets, both fixed-size and flexible:

def-vp-set

These operations are used to define and allocate temporary, fixed-size VP sets:

create-vp-set let-vp-set

These operations are math utilities that are useful in defining the size of VP sets:

next-power-of-two->= power-of-two-p

Version 6.1, October 1991

(

Chapter 1. *Lisp Functions and Macros 15
Fi::::J! j: Ii : Ii :::: iii :::: I:: i !!I'g!i E:: i !i i.!l!I:!!!iI!!!!!I!iii!i::::::::::::iiii!!l iii:::::;: i: :: !.I: jiLi. i!: ::::::::::::.:::':.m::WIi~!»::::U:EI::::::.m:::

1.8.2 VP Set Geometry Functions

These operations create and deallocate the geometry objects used in defming VP sets:

create-geometry deallocate-geometry

1.8.3 Flexible VP Set Allocation Operators

These operations are used to modify the geometry of a flexible VP set:

allocate-vp-set-processors
deallocate-vp-set-processors
set-vp-set-geometry

allocate-processors-for-vp-set
deallocate-processors-for-vp-set
with-processors-allocated-for-vp-set

1.8.4 VP Set Deallocation Operators

These operations are used to deallocate VP sets:

deallocate-def-vp-sets deallocate-vp-set

1.8.5 Current VP Set Operators

These operations are used to select the current VP set and to get information about its size:

set-vp-set
dlmenslon-slze

1.8.6 VP Set Operators

*with-vp-set
dimenslon-address-Iength

These operations are used to obtain information about any VP set:

describe-vp-set
vp-set-rank

Version 6.1, October 1991

vp-set-deallocated-p
vp-set-total-size

vp-set-dimensions
vp-set-vp-ratio

16 *Lisp Dictionary
111111:::111 illlillil ; iI 11:11 III I I I II mil : Iii: I !l1Ii I ! ;-: Ii IIi iiRlIillliiir::!i1 Ii::: : iiU:::::ii.i::: ii

1.9 General Information Operations

This operator provides a limited help function for *Lisp symbols:

help

:::: g:

These operators trace and display the current levels of CM memory use:

*room trace-stack

:::::: :!

This macro uses the *Lisp compiler to expand a piece of *Lisp code so that you can see
the resulting LisplParis code:

ppme

1.10 Entertainment Operations

This operator provides access to the front-panel LED's:

*lIght

1.11 Connection Machine Initialization Functions

These operators reinitialize the Connection Machine system:

*cold-boot *warm-boot

These operators add and remove forms from the cold- and warm-boot initialization lists:

add-initialization delete-initialization

This operator toggles between the *lisp and user packages in the *Lisp interpreter and in
the *Lisp simulator:

*lIsp

Version 6.1, October 1991

(

(

\.

./

Chapter 2

*Lisp Global Variables

2.1 Predefined Pvars

These are permanent pvars that are predefmed by *Lisp as parallel equivalents for the
Common Lisp constants t and nil. It is an error to use either til or nilll as the destination for
*set, *pset, or any other form that modifies its argument.

This is a predefmed pvar with the value nil in each processor:

nilll [Constant]

This is a predefmed pvar with the value t in each processor:

til [Constant]

2.2 Configuration Variables

*Lisp provides a number of configuration-dependent variables with values that are set by
operators such as *cold-boot, set-vp-set, and *with-vp-set. A program that depends only
on these configuration variables will run on a Connection Machine system in any grid con­
figuration and at any VP ratio.

It is an error to access these variables before *cold-boot has been called for the first time.
Also, the user must not modify the values of any of these configuration variables.

Version 6.1, October 1991 17

18
1llIIIIIiilillilillllllllllili illlil!l!IilllllIE

current-cm-configuratJon

Ilill
*Lisp Dictionary

111111111111111111111111111111111 Ii !!Il1iiliiililllli!il1 III 1!!11111IiII i 1I11 1 II 1IIIiI!]]]11

[Variable]

The value of this variable is a list of integers. The 11th element of the list is the size of
the nth dimension in the current machine configuration.

current-grld-address-lengths [Variable]

The value of this variable is a list of integers. The nth element of the list defmes the number
of bits necessary to hold a grid (NEWS) address coordinate for the nth dimension of the
current VP set.

current-send-address-length [Variable]

The value of this variable is the number of bits needed to hold the send address of a single
processor in the current VP set. The variable *log-number-of-processors-lImit* is an obso­
lete equivalent.

current-vp-set [Variable]

This variable is always bound to the current VP set. Its value changes whenever the current
VP set changes. It is bound by default to the *default-vp-set*. The operators set-vp-set and
*wlth-vp-set can be used to change the current VP set.

default-vp-set [Variable]

The value of this variable is the default VP set, the VP set that is current when no other VP
set is current. If no initial dimensions are specified, the first time ·cold-boot is called,
default-vp-set is bound to a two-dimensional VP set with a VP ratio of one.

Iog-number-of-processors-llmlt [Variable]

This obsolete variable is equivalent to the variable *current-send-address-length*. It pro­
vides the base 2 logarithm of the number of processors attached.

minimum-size-for-vp-set [Variable]

The value of this variable is the minimum number of virtual processors with which a VP
set may be defined. In the current implemehtation, this is also the number of physical pro­
cessors that is currently attached. The product of the dimensions of any VP set must be
greater than or equal to the value of this variable.

Version 6.1, October 1991

(

(
\

Chapter 2. ·Lisp Global Variables 19
iili!liii!l:l!iiiUIililiilii!il: [I Ji i: i : : !! il "J ii I iii iii: 10 I II!IU:: j] : i: iii: Ii Jj liUi!!iIl"!lliiilili!!! i j m: HI ::mw: " ; !iiW5l!

number-of-dlmenslons [Variable]

This variable is always bound to the number of dimensions in the current VP set. Its value
changes whenever the current VP set changes.

number-of-processors-limit [Variable]

This variable is always bound to the number of virtual processors in the current VP set. Its
value changes whenever the current VP set changes.

2.3 Initialization List Variables

These variables each contain a set of forms that are executed automatically before and after
each execution of *cold-boot and *warm-boot. The *Lisp functions add-initialization and
delete-Initialization are used to add and remove forms from these lists.

*after-*cold-boot-inltializatlons* [Variable]

The forms in this list are executed immediately following any call to *cold-boot.

*after-*warm-boot-inltlallzations* [Variable]

The forms in this list are executed immediately following any call to *warm-boot.

*before-*cold-boot-Inltlallzatlons* [Variable]

The forms in this list are executed immediately prior to any call to *cold-boot.

*before-*warm-boot-initializations* [Variable]

The forms in this list are executed immediately prior to any call to *warm-boot.

Version 6.1, October 1991

20 *Lisp Dictionary
I ! Illiiiiii!illll!il!E II !iiI i!i IIII II i11111111i111il111 ilili!iIillliiill ::::ill!lIIi!liIIJlElilillllllli!i!ill!l!i!fi! III il!ilIIiiIDiiilli iii 111:m Ii I : i !I i :: lliiliillllll!!lliIIII!l! iii n I Ii

2.4 Configuration Limits

These constants and variables determine the size limits for specific *Lisp data types. Other
than as documented here, they should not be modified in any way.

2.4.1 Array Size Limits.

These constants are implementation-dependent limits on the dimension length, rank, and
total size of array pvars. They should not be modified in any way.

*array-dimension-limit [Constant]

This is the upper exclusive bound on the extent of a single array pvar dimension. Each
dimension specified for an array pvar must be less than *array-dlmension-limlt. The value
of*array-dlmenslon-limlt is guaranteed to be greater than or equal to 1024.

*array-rank-lImlt [Constant]

This is the upper exclusive bound on the number of dimensions a pvar array can have. The
number of dimensions specified for a *Lisp array pvar must be less than *array-rank-limit.

The value of *array-rank-limit is guaranteed to be greater than or equal to 8.

*array-total-slze-llmit [Constant]

This is the upper exclusive bound on the product of all the dimensions specified for an
array pvar. The total number of elements a parallel array can have must be less than *array­

total-slze-limlt. The value of*array-total-size-lImlt is guaranteed to be greater than or equal
to 1024.

2.4.2 Character Attribute Size Limits

These variables represent user-specified limits on the length and value of the code, bits, and
font attributes of character pvars. These variables may be set to values other than the de­
faults by calling the *Lisp function Inltlalize-.character. The value of these variables should
not be modified by the user in any other way.

Version 6.1, October 1991

(
I

""

(

\

Chapter 2. *Lisp Global Variables 21
~iI::::::lIiii;::"iII:am :Ii _;::;::::::JIi:::H~m. :::1 1::::i&Hmlll:ilWilfM.mw.m:::::.:: ~;:: ~ . "':~iii:::: i Wi::::: i_DB

Note that if the InltlaliztH:haracter function is used, it must be called immediately prior to
calling "cold-boot, because the values of the attribute variables below are used in initializ­
ing *Lisp and the Connection Machine system.

"char-bits-length [Variable]

This defmes the length in bits of the bits subfield of a pvar character. The default is 4 bits.

"char-bits-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character bits attribute.
The default is 16.

"char-code-Iength [Variable]

This defines the length in bits of the code subfield of a pvar character. The default is
8 bits. Pvars of type (pvar string-char) have only a code field and are the same length as
"char-code-length.

"char-code-lImit[Variable]

This is the upper exclusive bound restricting the value of the pvar character code attribute.
The default is 256.

"char-font-tength [Variable]

This defmes the length in bits of the font subfield of a pvar character. The default is 4 bits.

"char-tont-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character font attribute.
The default is 16.

"character-length [Variable]

This defmes the total length in bits of a pvar of type pvar character. The default is 16 bits.

Version 6.1, October 1991

22 *Lisp Dictionary
1IIIIIIiIlliEiEiillillllll!II 11111111111 IlliiIii II II iiil: lilliE i!Illlll!iiii ::: I111111 Ii Ii I Iiil! liil::I!I: i I II 111II 11111:111 :1111:::iI!l:: : iII!1 ill !i1111:1 :: 11I11 II1I111 I Ell! illl II Iii! iillllll 1111

*character-lImlt [Variable]

This is the upper exclusive bound restricting the integer value contained by a pvar of type
character.

2.5 Error Checking

These variables control the error-checking measures taken by the *Lisp interpreter and
compiler in evaluating and compiling code. These variables may be freely modified by the
user to contain any of the specified legal values.

interpreter-safety [Variable]

This variable determines the amount of run-time error checking performed by the *Lisp
interpreter. The value of*lnterpreter-safety* must be an integer between 0 and 3, inclusive.
The effect of each setting is given below.

o Most run-time error checking disabled.
1 Minimal run-time error checking; for any error signaled, an error message is

not emitted until the next time a value is read from the eM.
2

3

safety

Reserved for future expansion, do not use.
maximum run-time error checking; error messages emitted immediately.

[Variable]

This variable determines the amount of error-checking code generated by the *Lisp com­
piler. The value of*safety* must be an integer between 0 and 3, inclusive. The effect of each
setting is given below.

o Low safety. Error conditions are prevented from being signalled.
1 Error conditions are signalled, but notification of an error does not occur

at the time the error takes place.
2 Identical to a *safety* level of3 or 1, depending on the value (t or nil) of the

variable *immediate-error-if-Iocation*, modifiable at run time.
3 High safety. Errors signalled immediately, with detailed error messages.

Version 6.1, October 1991

,
r

\

(

\

Chapter 2. *Lisp Global Variables 23
11m: jj [j Ii M II lin i llil}!j. I:: I I ::I!n~iW@::m;!ii:::::::::,Uif_.,y,tmg'W;WI:W%fli~.:mw.1 :::::Uiiiini!ii:)$W.W~

immedlate-error-if-Iocation [Variable]

Determines the action taken at run-time by code compiled with a *safety* value of2. If the
value of this variable is t, such code behaves as if compiled with a *safety* value of 3. If
the value of this variable is nil, such code behaves as if compiled with a *safety* value of 1.

warning-Ievel [Variable]

This variable controls the type of warnings generated by the *Lisp compiler. The value of
warnlng-Ievel must be one of the symbols :high, :normal, or :none. The effect of each
setting is given below.

:hlgh

:normal

:none

Detailed warnings emitted whenever a section of code is not compiled.

Warnings generated only for invalid arguments and type mismatches.

Prevents generation of any warnings.

2.6 *Lisp Compiler Code-Walker

slc:*us&-code-walker* [Variable]

This boolean variable controls whether the code-walker portion of the *Lisp compiler is
active. For more information about the code-walker, see the *Lisp Release Notes Version
5.2. For more information about compiling *Lisp code, see the *Lisp Compiler Guide
Version 5.2.

2.7 Pretty-Printing Defaults

These variables provide global defaults for the keyword arguments of all of the pvar pretty
printing operations. Some functions do not include keywords that correspond to all these
global variables; consult the dictionary defmition of each printing function for a list of the
keyword defaults used.

Version 6.1, October 1991

24 *Lisp Dictionary
1IIIIIIIIIIIIIIIIIIIIIIIII!!ill illliilli 1IIIIIIiliil!lilillIlliilEi 1illillillllllllilliiIIII II iI EEl III I II I : Imilliillili:illllii!iliillliililil ~mi nllllillimmu: III II iI! II I i I I !Ii III "I ill

ppp-default-mode [Variable]

This variable provides the default for the :mode keyword argument. Its initial value is
:cube. Its other legal value is :grid.

ppp-default-format [Variable]

This variable provides the default value for the :format keyword argument. Its initial value
is the string "-a ".

ppp-default-per-line [Variable]

This variable provides the default value for the :per-llne keyword argument. Its initial value
is nil.

ppp-default-start [Variable]

This variable provides the default value for the :atart keyword argument. Its initial value
is zero.

ppp-default-end [Variable]

This variable provides the default value for the :end keyword argument. Whenever the cur­
rent VP set changes and whenever *cold-boot is called, *ppp-default-end* is reset to the
current value of *number-of-procesaors-llmlt*.

ppp-default-tltle [Variable]

This variable provides the default value for the :tltle keyword argument. Its initial value
is nil, indicating that no title should be printed.

ppp-default-orderlng [Variable]

This variable provides the default value for the :ordering keyword argument. Its initial val­
ue is nil, indicating that no special grid dimension ordering is required.

ppp-default-proceaaor-Ilat [Variable]

This variable provides the default value for the :proceasor-list keyword argument. Its ini­
tial value is nil, indicating that all processors between :start and :end should be displayed.

Version 6.1, October 1991

(
I

~

\
\

Chapter 3

*Lisp Glossary
;:::: :is; 1iBl\ .; ; rn

This chapter contains a glossary of special terms and concepts used in descriptions of the
*Lisp language.

3.1 Connection Machine Terminology

These are tenns directly relating to the Connection Machine and its relationship to the
*Lisp language.

3.1.1 Machines

Connection
Machine

front end

The Connection Machine (CM) consists of a large number of proces­
sors that operate on data in parallel, linked together by an internal
communications network and controlled by an external front-end
computer.

The external computer system that transmits instructions and data to
the processors of the CM and receives data returned by the processors
as a result of their operations is called the front end.

Version 6.1, October 1991 25

26 *Lisp Dictionary
1IIIIilIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHlII!lIIIIIIIIIIIII111111111111111I1111I1111iII111 11111 IlIIlillllilllllillll!lil illil II 111I1 II1I111 II; ill II111 1,1: 1111I11111 II Jill: m :IIEIIIIiIIII I :;

3.1.2 Processors

processors

physical
processors

virtual
processors

active
processors

currently
selected set

3.1.3 Fields

The conceptual entities that operate on data in parallel within the eM
are called processors. Each processor has an associated local memory,
within which data is stored and manipulated. Each processor is also
connected to all other processors by an intern.a1 communications net­
work. The term "processors" can be used to refer to the physical
processors of the eM, but it is most commonly used to refer to the
virtual processors simulated by the machine. This is the convention
observed in this document.

The single-bit processing units within the eM that operate on data in
parallel are called the physical processors of the machine. Each physi­
cal processor simulates the actions of one or more virtual processors.

The conceptual processing entities simulated by the physical proces­
sors of the eM are called virtual processors. This simulation is
transparent to the user. No matter how many virtual processors are
simulated, each has its own associated memory and operates indepen­
dently of the others.

Each processor maintains an internal flag that determines whether it
is active, that is, whether or not it executes the instructions it receives.
Only the active processors of the eM execute any given operation.

The set of all currently active eM processors is called the currently
selected set. The currently selected set is changed by using *Lisp spe­
cial forms such as *all, *when, *If, *cond, and *case.

field Data is stored on the eM infields. A field consists of a contiguous set
of bits at the same location in the memory of each processor.

allocation!
deaUocation

value of a field

A field is created by allocating, or reserving, the same number of bits
in the memory of each processor. When a field is no longer needed, it
can be deallocated, freeing the memory for use in other fields.

The value of a field in any given processor is simply the value con­
tained in the set of bits allocated for the field in that processor's
memory.

Version 6.1, October 1991

(

- ,

/

Chapter 3. *Lisp Glossary 27
m::!il!:mm:::i!i:::i::ii::::::::-mn::mn:!in:m:IIILIJj:!1ii!:::::r::~::i!!mJl!immm;~~Mlli! .! : im::: ! m !w.m:: Ii! ! i iii; ! m I ::II I ::: III 1111:111 I 1111

3.1.4 Connection Machine Memory

heap/stack

cold boot

warm. boot

Fields are allocated in two areas of memory on the CM known as the
heap and the stack. Fields allocated on the heap are permanent, and
persist until the user explicitly deallocates them. Fields allocated on
the stack are temporary, and are automatically deallocated whenever
the stack is cleared.

The Connection Machine operation that resets the internal state of the
machine and clears its memory is called a cold boot. All Connection
Machine fields are deallocated during a cold boot.

The Connection Machine operation that resets the internal state of the
machine and clears the stack, but does not clear the heap, is called a
warm boot. Fields allocated on the stack are deallocated during a
warm boot.

3.2 *Lisp Terminology

These are terms relating to the data structures and operations of the *Lisp language.

3.2.1 Parallel Variables (Pvars)

parallel variable

value of a pvar

corresponding
value

The *Lisp data structure that represents a collection of values stored
one-per-processor on the CM is called a parallel variable, or pvar. A
pvar consists of a field allocated on the CM and a front-end data struc­
ture that contains the location, length in bits, and data type of that
field.

In any given processor, the value of a pvar is simply the value of its
associated field in that processor.

Given tWo pvars, A and B, for the value of A in any processor there is
a corresponding value of B located in the memory of the same proces­
sor. Operations on pvars typically act by combining the corresponding
values of two or more pvars.

Version 6.1, October 1991

28 *Lisp Dictionary
11111111111II111111II11!IIIIIIIIIIIIIIIIIIIIIIIII:II1111I:11111111111111111111 IIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIII 1I11I1III1I11 1lIIIIIIIIIIIIIIIIIiiilil II 11iI1ii: I IlIiifliI!llIiiiiil!!IIlllilillll!m:111111ii1111 iii::liIiiili:I::::iI:11IJ m:::::!il::::m:

scalar value

pvar contents

Pvar Classes

A front-end data type, such as an integer, a character, or a structure
object, is called a scalar value.

The contents of a pvar is the entire set of scalar values stored in the
field of that pvar.

There are two main classes of pvars, heap pvars and stack pvars, corresponding to the two
types of Connection Machine memory.

heap pvars

stack pvars

Heap pvars are relatively permanent, long-term storage locations for
data, with global scope and dynamic extent. Heap pvars are divided
into permanent pvars and global pvars.

Stack pvars are temporary storage locations for data, with lexical
scope and dynamic extent. They are automatically deallocated when­
ever the stack is cleared Stack pvars are divided into local pvars and
temporary pvars.

permanent pvars Permanent pvars are created by the *defvar macro. They are named
global pvars and are automatically reallocated whenever the CM is
cold-booted, unless explicitly deallocated by the user.

global pvars Global pvars are created by the allocatell function. They are identical
to permanent pvars, with the exception that global pvars are not
reallocated when the CM is cold booted

local pvars Local pvars are created by the *Iet and *Iet* macros. They are allocated
on the stack as local variables for the duration of a body of code.

temporary pvan Temporary pvars are returned by most functions and macros in *Lisp.
They are temporary storage locations intended to contain values only
until those values are copied to pvars of one of the above classes. It is
an error to attempt to modify any temporary pvar value.

Version 6.1, October 1991

(
\

Chapter 3. *Lisp Glossary 29
1:11[1 :::::::::::[[:::m:!ii::::iIJ:~::::: liI:::Tn!li:::IIi::;;;;g;:::::llit@Mi~~~g;: iiifWW'&"12mHWWl! om : i :::::1!m*,~

PvarTypes

Heap and stack pvars are divided into three groups based on the data types of their values:
simple pvars, aggregate pvars, and general pvars. Simple and general pvars may also be
declared as mutable pvars.

simple pvars Simple pvars contain either boolean, numeric, or character values.

aggregate pvars Aggregate pvars contain either arrays, structure objects, or pointers to
front-end data structures.

general pvars General pvars can contain values of differing data types, with the ex­
ception that general pvars may not contain aggregate data objects such
as arrays or structures. General pvars are not as efficient as simple or
aggregate pvars, because type-checking overhead is required by their
use and because code containing general pvars cannot be compiled.

mutable pvars Mutable pvars are simple or general pvars that have been declared to
contain values of unspecified bit sizes. *Lisp code containing simple
mutable pvars cannot be compiled as efficiently as code containing
simple pvars of fixed size.

3.2.2 Processor Addressing

The value of a pvar in any processor may be accessed and modified. To do this, it is neces­
sary to specifY a processor's address within the eM. There are two basic schemes in *Lisp
for assigning addresses to processors: send addressing and grid addressing.

configuration

send address

An abstract arrangement of processors that groups them in an
n-dimensional array, such as a line, a plane, or a cube, is called a con­
figuration. The number of dimensions in a configuration is the rank of
that configuration. The geometry of the current VP set determines the
current configuration. Note: the terms grid, machine configuration,
and NEWS grid are sometimes used synonymously with configuration.

Each processor has a unique send address, roughly corresponding to
the location of the processor within the hardware. Send addresses
range between zero and one less than the total number of processors.
(In previous versions of *Lisp, this was referred to as the cube address
of the processor.)

Version 6.1, October 1991

30
illiiillililmlilill;;; 1111111111111111111111111 11:1 !i!llliiiI!!ililmlll!! II Iii I II iii I: I :lli i i rill

*Lisp Dictionary
II In II' i&.l@l

grid address

address object

A list of coordinate integers that specify a processor's position in a
given configuration is called that processor's grid address. The num­
ber of coordinates in a grid ·address must be equal to the rank of the
configuration. For example, the grid address of a processor in a two­
dimensional configuration is a list of two integers.

An address object is a data structure that can be used as a send address
but that specifies a given processor's grid address. Address objects are
more flexible than grid addresses because they automatically translate
grid addresses between different processor configurations. This flexi­
bility is obtained at the cost of efficiency, however; address objects are
less efficient than other forms of processor addressing.

3.2.3 Virtual Processor Sets

geometry A geometry is a description of the size and shape of a particular con­
figuration of virtual processors. It can be either a list of integers or a
geometry object.

geometry object A geometry object is a front-end data structure that contains a speci­
fied geometry. It is used to define the size and shape of virtual
processor sets.

virtual
processor set

VP set object

VP ratio

A virtual processor set, or VP set, is an arrangement of virtual proces­
sors in a specified n-dimensional geometry. A VP set can have pvars
associated with it, and values may be transferred between pvars asso­
ciated with different VP sets. Only one VP set, known as the current
VP set, may be active at any given time.

A front-end data structure defming the geometry and associated pvars
of a virtual processor set is called a VP set object.

The number of virtual processors simulated by each physical proces­
sor on the eM for a given VP set is referred to as the virtual processor
ratio, or VP ratio, of the VP set.

Version 6.1, October 1991

(
\

\

Chapter 3. ""Lisp Glossary 31
1i\([::::;:;;::::::::iIi!iliillillliiiii::i!i!li!;:;:;:iill]ii!IlIJiiili::C:!i!i::::ii : : ;;iI!i!iilliii::::::i:::::: I :::1 iilIIE:::;:II!::: : I i I:: :lilIi:I ::1m ;i; ill :: liIIlii; lillililillEEii iiilil

Classes of VP Sets

There are two main classes of VP sets, permanent and temporary. Permanent VP sets are
further divided intoflXed-size andjlexible VP sets.

permanent
VPset

temporary VP
sets

fIxed-size
VPset

flexible
VPset

defined

instantiated

A permanent VP set is defmed using the def-vp-set operator. Perma­
nent VP sets are automatically reallocated when the eM is cold booted
until the user explicitly deallocates them. Pennanent VP sets can be
either fzxed-size or jlexible.

A temporary VP set is defmed using either the create-vp-set or the
let-vp-set operator. They are deallocated during a cold boot, as are
their associated pvars. Temporary VP sets are always fixed-size.

AflXed-size VP set has a specific geometry that does not change. Fix­
ed-size VP sets are defined by calling def-vp-set with specific
geometry infonnation.

Ajlexible VP set has no geometry initially-its shape and size is deter­
mined by the user at run-time. Flexible VP sets are defined by calling
def-vp-set without providing specific geometry infonnation. Flexible
VP sets must be instantiated before they can be used (see below).

A permanent VP set (fixed or flexible) is defined by the def-vp-set

operator. A temporary VP set is defmed either by the create-vp-set or
the let-vp-set operator.

Fixed-size VP sets can be used immediately. Flexible VP sets must be
instantiated (assigned a temporary geometry) by an operator such as
allocate-processors-for-vp-set before they can be used.

~rsion 6.1. October 1991

32 *Lisp Dictionary
IllmiiiIilIElIliEllilIliilm]IiillEii!HlI!]IIIi::illi 1111 Ii II :!I1i:::I1 III lill::1I: I iiil: m:: illiJlllllm: : Iii ::! : II::: i 1IiI11::::::iiil®.$!il!liI::: ill: Ii .! I II lIIillii ; i !liii"

3.2.4 Important VP Sets

current VP set

current
configuration

default VP set

At anyone time, there is one active VP set: the current VP set. Only
pvars associated with this VP set are directly accessible, and unless
otherwise specified, newly declared pvars are associated with the cur­
rent VP set. The variable *current-vp-set* is always bound to the
current VP set.

The rank and size of the current VP set, i.e., the size and shape of the
set of processors currently in use, is often referred to as the current
configuration of the machine.

When the CM is cold booted for the first time, a default VP set is
created. Until some other VP set is created and selected, the default VP

set remains current and determines the configuration of the CM. The
variable *default-vp-set* is always bound to the default VP set.

3.3 Background Terminology

The naming convention for *Lisp operators, along with other useful background informa­
tion, is described here.

!!

*

parallel
equivalent of

Functions that have names ending in !! (pronounced bang-bang) re­
turn a pvar result. The !! is intended to resemble "II", the mathematical
symbol for parallelism. Note: These functions return temporary pvars
that may be reclaimed whenever the *Lisp stack is cleared; these tem­
porary pvars must be copied into a more permanent class of pvar (by
*set, for example) if you want to keep them.

Functions and macros with names ending in * (pronounced star), per­
form parallel operations but do not always return a pvar. The name of
the language itself, "*Lisp" (star-Lisp), comes from this convention.

This phrase is used to describe the correspondence between a Com­
mon Lisp function and a *Lisp function function that perform similar
operations. For example, mod!! is the parallel equivalent of Common
Lisp's mod. This means that modll performs the same calculation as
mod, but that modll takes parallel variables as arguments and performs
the mod operation for each active processor within the CM.

Version 6.1, October 1991

(

(

\

(

Chapter 4

*Lisp Type Declaration

This chapter describes the different types of parallel variables, or pvars, available in *Lisp,
discusses type declaration and the rules of type coercion, and explains how to use type
declarations in *Lisp.

4.1 Pvar Types

A pvar is defmed by the kind of values that can be stored in it. The following pvar types
are supported in *Lisp:

general

unsigned-byte

string-char

front-end

defined-float

array

boolean

complex

structure

signed-byte

character

For most pvar types, *Lisp provides several equivalent forms that may be used in
declarations. For instance, for almost any valid pvar type specifier (pvar x), x-pvar is also
a valid type specifier.

Each pvar type is listed below with equivalent type forms. Each pair of forms separated by
<=> is equivalent and may be used interchangeably within *proclaim, declare, and the

forms, as well as with the operators coereell and taken-asll.

general - A value of any data type for each processor.

(pvar t) <=> general-pvar

front-end - A reference to a front-end value for each processor.

(pvar front-end) <=> front-end-pvar

Version 6.1, October 1991 33

34
Ilillllllllillllllill!llllli 111111111111111111 lliillllill IlllIiilllllllliiilllliillilllillllliilllillilii

*Lisp Dictionary
III illlilii"illllllliiillllllilillil!l!IElilllllllliilliiilil!iilillllliiillilI!: I%i!ii! liIill! 1I111111 :1 II 1111

boolean - Either t or nil for each processor.

(pvar boolean) <=> boolean-pvar

unsigned-byte - A non-negative integer for each processor.

(pvar (unsigned-byte width» <=> (unsigned-pvar width)
<=> (unsigned-byte-pvar widffl)
<=> (field-pvar width)

(pvar bit) <=> (pvar (unsigned-byte 1»

signed-byte - A signed integer for each processor.

(pvar (signed-byte width» <=> (signed-pvar width)
<=> (signed-byte-pvar widffl)

(pvar fixnum) <=> (pvar (signed-byte [anum-length))
<=> fixnum-pvar

(pvar integer) <=> (pvar (signed-byte *»

defined-float - A floating-point number for each processor.

(pvar (defined-float significand-length exponent-length»
<=> (float-pvar significand-length exponent-length)

(pvar short-float) <=> (pvar (defined-float
<=> short-float-pvar

(pvar single-float) <=> (pvar (defined-float
<=> single-float-pvar

(pvar double-float) <=> (pvar (defined-float
<=> double-float-pvar

(pvar long-float) <=> (pvar (defined-float
<=> long-float-pvar

(pvar float) <=> (pvar (defined-float
<=> float-pvar

character - A Common Lisp character for each processor.

(pvar character)
(pvar string-char)

<=> character-pvar
<=> string-char-pvar

15

23

52

74

*

8»

8»

11»

21»

*»

Version 6.1, October 1991

(

""

(
\

Chapter 4. ""Lisp TYpe Declaration 35
Ii ! ! I: III! iii! I! III III 1IIIIiIllliiillillilillili I iIIJ:lllElilliiilliiiiiiiIi!!l::::!iIIlI!II!iliillliillliiETIiliilliillllliililiIi:::ii!:11111:::::1 111[11111 [Iii: 111I1111111ii1il:::ii!:::II!11ii11 illllllllliillllillllli!!!IIlllllll

complex - A complex number for each processor.

(pvar (complex (defined-float significand exponent»)
<=> (complex-pvar significand exponent)

(pvar (complex short-float»
<=> (pvar (complex (defined-float 15 8»)
<=> short-complex-pvar

(pvar (complex single-float»
<=> (pvar (complex (defined-float 23 8»)
<=> single-complex-pvar

(pvar (complex double-float»
<=> (pvar (complex (defined-float 52 11»)
<=> double-complex-pvar

(pvar (complex long-float»
<=> (pvar (complex (defined-float 74 21»)
<=> long-complex-pvar

(pvar complex)
<=> (pvar (complex (defined-float * *»)
<=> complex-pvar

array - A Common Lisp array for each processor.

(pvar (array element-type dimensions»
<=> (array-pvar element-type dimensions)

(pvar (vector element-type length»
<=> (vector-pvar element-type length)

(pvar (string length» <=> (string-pvar length)
<=> (pvar (vector string-char length»

(pvar (bit-vector length» <=> (bi t-vector-pvar length)
<=> (pvar (vector (unsigned-byte 1) length»

structure - A Common Lisp structure for each processor.

(pvar structure-name) <=> structure-name-pvar
Note: structure-name must be a parallel structure type defmed by *defstruct.

*Lisp allows mutable pvar types (pvars of varying bit-length). The most flexible type of
pvar in *Lisp is the general mutable pvar. Mutable pvars and the general mutable pvar type
are described in separate sections later in this chapter.

Version 6.1, October 1991

36 *Lisp Dictionary
111111illllllllllllllllllllllllll!111ii11l11111l1 I ;; 11111111111 III 1 :11111111 ::IIIIII! III !iill:ilillllll!iillllllllll!!!::::ill I1111 iii I II ill 1111 1111::111]][I Iii IlIiEIi![i! II ::: :.iliililill

4.2 Using Type Declarations

Type declarations are useful for two reasons. First, interpreted code executes faster if type
declarations are provided for all allocated pvars. Second, the *Lisp compiler will only com­
pile *Lisp code that references pvars that are declared to be of a defmite type. (For this
reason, code that uses general or mutable pvars generally will not compile.)

This section provides a basic guide to the methods and use of type declaration in *Lisp. It
includes a description of the operators used for type declaration, along with a set of guide­
lines for the use of type declarations in user code.

Type declarations represent promises made by you to the compiler that only values of the
declared type will be assigned to a variable or returned by a declared form. Type declara­
tions do not cause type coercion. It is an error for a program to violate a type declaration,
and the results of an incorrectly declared expression are not defined. Also, if a type
declaration is changed, all compiled code that depends on that declaration must be recom­
piled.

4.2.1 *Lisp Declaration Operators

Three operators are used for type declaration in *Lisp: the Common Lisp declaration oper­
ators declare and the, and the *Lisp declaration operator *proclaim. A general description
of the use of each of these operators appears below.

The *proclalm operator is used in the following ways:

• To declare the data type of a permanent pvar defmed by *defvar, as in

(*proclaim '(type (pvar single-float) my-pvar»
(*defvar my-pvar (random!! 1.0»

which declares the permanent pvar my-pyar to be of type (pyar single-float).

• To declare the pv'ar data type returned by a user-defined *Lisp function, as in

(*proclaim
'(ftype (function (pvar pvar) (field-pvar 16»

my-pvar-function»

which declares that the pvar returned by the function my-pyar-function is of type
(fleld-pyar 16).

Version 6.1, October 1991

(
"

(
\;

Chapter 4. *Lisp Type Declaration 37
imiNmWlIlWi: : .::::Mll(~~1 :1115';:::::::::11.: ::;; ::IIil::::::;:::iiliiJlIJ::: ji: i::i::i1~m:!i!!!i::::i!Iiiilii!:ii!:-Ii:::::I:i!::i!i:::iiilill:l:IIII!lii!i!i:::11!l iiiililll!ii!i!!!!I!!!I!

• To declare the data type of scalar variables and user-defmed functions that are
used in a pvar expression (any expression that returns a pvar as its value), as in the
following examples:

•

(*proclaim '(type (unsigned-byte 8) *my-limit*»
(defvar *my-limit* 20)
(*set data-pvar

(+!! (random!! *my-limit*) (random!! *my-limit*»)

the global variable *my-limit* used in the two calls to II is declared to be of type
(unsigned-byte 8).

An example of a function declaration is given by the expressions

(*proclaim '(ftype (function () fixnum) die-roll»
(defun die-roll () (+ (random 6) (random 6) 2»
(*set dice-pvar (die-roll»

in which the user-defmed function die-roll is declared to return a f1xnum result.

Important: Do not use *proclaim to declare the returned values of Common Lisp
functions. Instead, use the Common Lisp the operator as shown in the section on
the below.

To declare that a user-defined *Lisp function will be defmed with *defun:

(*proclaim '(*defun fn»
(*proclaim '(ftype (function (t t) single-float-pvar fn»
(*proclaim '(type single-float-pvar z» (*defvar z)
(defun bar () (*set z (fn 3.0 4.0»)
(*defun fn (a b)

(declare (type single-float-pvar a b»
(+!! a b»

This is important because *defun operators are really macros, not functions, so if
a *defun operation is referenced before it is defmed (as in a file of *Lisp code), the
"forward references" to the operator will be compiled incorrectly.

The Common Lisp declare operator is used in the following ways:

• To declare the pvar data type oflocal pvars created by *Iet or *Iet*, as in

(*let «pvar-1 (random!! 1.0» (pvar-2 (random!! 10»)
(declare (type single-float-pvar pvar-1»
(declare (type (field-pvar 8) pvar-1»
(pvar-computation pvar-1 pvar-2»

Version 6.1, October 1991

38 *Lisp Dictionary
I 1 1 1 111111111111111 1IIIililliillliillillii!l:IIilliilllllilili 1 liiIi 1IIIIIIil 11111 llil 111111 1111 iIIl II}IIII!::: II Ii! Ii II I illlill

• To declare the data types of arguments to functions defmed by defun or *defun. For
example,

(*defun pvar-computation (pvar-1 pvar-2)
(declare (type single-float-pvar pvar-1»
(declare (type (field-pvar 8) pvar-2»
(combine-pvars pvar-1 pvar-2»

• To declare the data types of scalar local and looping variables, as in

(let «limit (+ 2 (random 8»»
(declare (type fixnum limit»
(*let «sum-pvar 0»

(do ((i 0 (+ i 2»)
«>= i limit) sum-pvar)
(declare (type fixnum i»
(*set sum-pvar

(+!! sum-pvar (random!! i)
(random!! limit»»»

The Common Lisp the operator is used to declare the data type of an expression in situa­
tions not covered by either of the above two operators.

• To declare the data type returned by a Common Lisp expression, as in

(*set data-pvar
(the (unsigned-byte 32)

(+ normal-limit extra-limit»»

• To make "on the spot" declarations where a single inline declaration is preferable
to a more global, widespread declaration. For example,

(*set data-pvar
(log!! (the double-float-pvar figures-pvar»)

(*set (the (pvar unsigned-byte 16) data-pvar)
(the (pvar (unsigned-byte *»

(if store-three-pvar-p 3 0»)

Note that it is no less efficient to use *proclalm or declare in place of the wherever this is
possible, i.e., in declaring the data types of pvars and the data types returned by
user-defined *Lisp functions .. Readability and maintainability of code can often be
improved by doing so.

Version 6.1, October 1991

(

\

/
(

(

\ .

../

Chapter 4. *Lisp Type Declaration 39
.Li1I!I.iU: .: :::::::·.::mrn· : iLcrrT [::am i i .. :!i: .. : [~~fj ii{ [! !: iin:U!i!J::::i iI: [!I!::!!!: J::!! illlllilll!il!iIJlI!JiJll!il!ii illllll

4.2.2 Basic Rules of Type Declaration

The following is a set of basic guidelines for the declaration of *Lisp data objects. These
rules describe the data objects that must be declared in order to permit code to compile, and
describe how these objects should be declared. These rules also describe which data objects
should not be declared.

Declaring Pvars

• Declare with *proclaim the data type of permanent pvars defined by *defvar.

• Declare with declare or the the data type of global pvars created by allocate II wher­
ever these pvars are used.

• Declare with declare the data type of local pvars defined by *Iet and *Iet*.

• Don't declare the pvar data type of temporary pvars returned by II.

Declaring Pvar Functions

• Declare with declare the arguments of a user-defined *Lisp function (i.e., a func­
tion defined by either defun or *defun).

• Declare with *proclaim the returned value of a user-defmed *Lisp function.

.• Declare with *proclaim all *defun defmitions prior to all type declarations for and
calls to these defmitions.

• Don't declare the pvar data type returned by any predefined *Lisp operator.

Declaring Scalar Expressions

• Declare with *proclalm the data type of any scalar global variable that is used in a
pvar expression.

• Declare with declare the data type of any scalar local variable that is used in a pvar
expression (i.e., a variable defined by let, let*, or the do family of looping opera­
tors).

• Declare with the the data type of any scalar expression other than a variable (i.e.,
a call to a Common Lisp function) that is used in a pvar expression.

• Don't declare the data type of scalar constants used in pvar expressions.

The next three sections provide examples for each of these rules.

Version 6.1, October 1991

40 *Lisp Dictionary
::::1Ii11i:::1Ii I! 1111: III Ii 11m [:111 x !il1111 lIllililii ::Iii;:: i II! Ii: IIIii 1m ElIIii III [iIi:I!liEiliilllllliinU!i!lliii!mlillllliJii:!I ! i II iI [II:I:! I i I III! Ii!iiijjjiilll!11

Declaring Pvars

• Declare with *proclalm the data type of permanent pvars defmed by *defvar. For
example, the *Lisp forms

(*proclaim ' (type (pvar (unsigned-byte 8» perm-pvar»
(*defvar perm-pvar (random!! 255»
(*proclaim ' (type boolean-pvar y-or-n-p-pvar»
(*defvar y-or-n-p-pvar (zerop!! (random!! 2»)

declare perm-pvar to be of type (pvar (unsigned-byte 8», and y-or-n-p-pvar to be
of type boolean-pvar.

• Declare with declare or the the data type of global pvars created by allocatell wher­
ever these pvars are used. For example, in

(setq a-pvar (allocate!! 0.0 nil 'single-float-pvar»
(*set (the single-float-pvar a-pvar) (random!! 10.0»
(dotimes (i 3)

(*incf data-pvar (the single-float-pvar a-pvar»»

the the operator is used to declare a-pvar to be of type single-float-pvar.

Another example is

(defvar pvars nil)
(dotimes (i 10)

(push (allocate!! 0.0 nil 'single-float-pvar) pvars»
(defun randomize-nth-pvar (n)

(*set (the single-float-pvar (nth n pvars»
(random!! 1. 0)))

in which the is used to declare whichever allocated pvar is selected from the float­

pvars list to be of type single-float-pvar.

• Declare with declare the data type of local pvars defined by *Iet and *Iet*.

For example,

(*let «local-pvar (random!! 32»}
(declare (type (unsigned-byte~pvar 8) local-pvar})
(*!! (+!! local-pvar local-pvar) 2»

(*let* «float-pvar (random!! 5.0)}
(integer-pvar (floor!! float-pvar)})

(declare (type short-float-pvar float-pvar»
(declare (type (field-pvar 6) integer-pvar)}
(abs!! (-!! float-pvar integer-pvar»)

Version 6.1, October 1991

\

(

Chapter 4. ·Lisp TYpe Declaration 41
li::::iI!!!i::::J.I{;imJ:i!milElIiiElil:::!!II::mIiIiimlIi1ilLi!!l!imlm:::I::::I.![:! :;';;::::ii1II;$i!:::::liiiU I; j Ii II Iiilill!:::li!iiiiiliEll!Ii :: I i:1 : IIIii II JIIIIII!IIIII 111111111111ill!iii ::1 IE

• Don't declare the pvar data type of temporary pvars returned by II.

For example, the following declarations are unnecessary:

ii; These declarations are unnecessary.
(the (unsigned-byte-pvar 5) (!! 3»
(the character-pvar (!! #\C»
(the (array-pvar single-float (3» (!! #(1.0 2.0 3.0»)

Declaring Pvar Functions

• Declare with declare the arguments of a user-defined *Lisp function (i.e., a func­
tion defined by either defun or *defun).

For example, in

(*defun global-range (argument-pvar)
(declare (type (field-pvar 256) argument-pvar»
(- (*max argument-pvar) (*min argument-pvar»)

the argument-pvar to global-range is declared to be of type (fleld-pvar 256), and in

(defun zero-pvar-when (test-pvar float-pvar)
(declare (type boolean-pvar test-pvar»
(declare (type double-float-pvar float-pvar»
(if!! test-pvar float-pvar (!! 0.0»)

the test-pvar argument is declared to be of type boolean-pvar, and the float-pvar

argument of type double-float-pvar.

• Declare with *proclaim the returned value of a user-defmed *Lisp function.

For example, in

(*proclaim
'(ftype (function (pvar pvar) (pvar single-float»

surface-area!!»

the function surface-areall is declared to return a (pvar single-float) value.

Version 6.1, October 1991

"'Lisp Dictionary 42
111IIIIIIIIIIillllllllillilliiJii Illilllllllilllllllllllllii!liiiilii!llillllllJllll!iIJiIIIII!:III! 11IJ1:::::illlilliiiiIillIIIIIiJ!lJilill:: IJiliilliii!iiiillliillillil

• Declare with *proclalm all *defun definitions prior to all type declarations and calls
to these operations. This is important because *defun operators are really macros,
not functions, so if a *defun operation is referenced before it is defmed (as in a file
of ·Lisp code), the "forward references" to the operator will be compiled incor­
rectly.

(*proclaim '(*defun xyzzy-foo»

(*proclaim
'(ftype (function (t t) (pvar single-float» xyzzy-foo»

(*defun xyzzy-foo (a b)
(declare (type single-float-pvar a b»
(+!! a b»

• Don't declare the pvar data type returned by any predefined *Lisp operator.

For example, the following declarations are unnecessary:

;;; These declarations are unnecessary.
(*proclaim '(function evenp!! (t t) (pvar boolean»)
(*proclaim '(ftype (function (t) boolean-pvar) evenp!!»
(*set data-pvar (the single-float-pvar (log!! (!! 3»»

Declaring Scalar Expressions

• Declare with *proclaim the data type of any scalar global variable that is used in a
pvar expression. For example, in

(*proclaim '(type single-float global-variable»
(defvar global-variable 50)
(*set data-pvar (log!! (!! global-variable»)

the global-varlable used to initialize data-pvar is declared to be a single-float.

In the expression

(*proclaim '(type character special-char»
(defvar special-char #\Return)
(*if (char=!! char-pvar (!! special-char»

(handle-special-char char-pvar)
(handle-normal-char char-pvar»

the variable speclal-char is declared to be of type character. Note that the *proclalm

operator must be used instead of Common Lisp's proclaim. Otherwise, the *Lisp
compiler will not have access to these declarations.

Version 6.1, October 1991

(

\

!

\

(

Chapter 4. *Lisp Type Declaration 43
III1II1 I IIIII! 1l1li1 1IIIl!iii!Iiliililillllllllllilliillilliiliilliillilillillilili1111II11!lilliIiU!il11 Iii I i1iJililllllll : [] JlIII]1lllllill II il[: III : II II I! : ::

• Declare with declare the data type of any scalar local variable that is used in a pvar
expression (i.e., a variable defined by let, let*, or the do family of looping opera­
tors). For example, in

(do « i 1 (* i 2»)
«> i 256) data-pvar)

(declare (type fixnum i»
(*incf (data-pvar (!! i»»

the iteration variable I is declared to be of type f1xnum.

Another example is the expression

(let «maximum-limit 10)
(minimum-limit 2.5»

(declare (type fixnum maximum-limit»
(declare (type single-float minimum-limit»
(*set condition-pvar
(cond!! «>!! highest-reading-pvar (!! maximum-li­

mit))
(front-end-pvar!! 'TOO-HIGH»

«<!! lowest-reading-pvar (!! minimum-limit»
(front-end-pvar!! 'TOO~LOW»

(t!! (front-end-pvar 'WITHIN-LIMITS»»)

in which the local variables maximum-limit and minimum-limit are declared to be
of type f1xnum and type single-float, respectively.

Important: Because the iteration variable of dotlmes is always of type flxnum, it
is unnecessary to use declare to declare the type of this variable. For example,

iii The declaration in this dotimes call is unnecessary.
(dotimes (i 50) (*incf data-pvar (!! (the fixnum i»»

• Declare with the the data type of any scalar expression other than a variable (i.e.,
a call to a Common Lisp function) that is used in a pvar expression.

For example, in

(*proclaim '(type fixnum sum elements»
(*set data-pvar (the short-float (/ sum elements»)

the expression (/ sum elements) is declared to be of type short-float.

Version 6.1, October 1991

44
111Ii1111 1111 1IIIIIIIiiilllllillilliiiiililililllllllilii

In the expression

"'Lisp Dictionary
iillllilillllii!illillllll!illlIlili 1i!lllIlillililllllllllillllllil!!ilillllllli: IiliJIIIII::iliJlill 111m 111IIl!illllliilllll

(*proclaim '(type fixnum total»
(*set data-pvar (+!! (the fixnum (+ total 4»

(the fixnum (- total 4»»

the expressions (+ total 4) and (- total 4) are declared to be of type fixnum.

Note that all variables used in these scalar expressions must also be declared, as
shown in this example.

• Don't declare the data type of scalar constants used in pvar expressions.

For example, the following declarations are unnecessary.

;;; The declarations in these forms are unnecessary.
(*set pi-pvar (!! (the short-float 3.14159»)
(*set space-char-pvar (!! (the character t\Space»)
(*set array-pvar (!! (the (array fixnum (5)

t (1 2 3 4 5»»

4.3 General Pvars

This section describes the general pvar data type in more detail.

(pvar t)

A pvar that is declared explicitly as (pvar t) is a general pvar. Before a general pvar is initial­
ized, it is referred to as void.

General pvars are allowed to contain, in different processors at the same time, data belong­
ing to any pvar. type except the array or structure types.

Whenever a general pvar is used, "'Lisp checks to see which data types it contains. Then,
each data type the general pvar contains is checked to verify that it satisfies the domain
requirements of the operation being performed. All this run-time checking takes time.
General pvars therefore offer almost complete generality with a correspondingly severe
reduction in run time efficiency.

When data of a particular type is stored in a general pvar, "'Lisp ensures that the parameters
for that type are identical across all the values of that type. If an attempt is made to store
pvars of the same type but with divergent parameters into a general pvar, "'Lisp will coerce
each pvar into a single type with identical parameters.

Version 6.1, October 1991

(

I
I

\

(

45 Chapter 4. *Lisp Type Declaration
m~l@iWl$'mll'~%m%twwmWWmlMif%m,@M(@~Wiiffi~~W::Un::mwz@:un:' wn:n::W::lWn:'jM5:_m:w~

For example, when source values of type (defined-float 52 8) are stored in a general pvar
containing values of type (defined-float 2311), the source values are copied and they and
all the original values in the destination are coerced into type (defined-float 52 11).

General pvars can receive data from any pvar that is not of type array or structure. When
data of a particular pvar type is stored in a general pvar, *Lisp applies rules of type coercion
specific to that pvar type.

Within a *set form, a general pvar destination is always expanded as necessary to hold
whatever size data is provided by the source. If the source is a general pvar, *set executes
as though it were called once for each type of data contained in the source general pvar.
Thus, given a general pvar source containing boolean, signed-byte, and complex data, the
*set operation effectively performs the following sequence. First, only the processors con­
taining boolean data are activated. Next, the boolean data is copied to a boolean pvar.
Finally, *set is called with the general destination pvar and the boolean source pvar. This
process is repeated for the signed-byte and complex data types.

If a *set with a general pvar destination does not have a general pvar source, the *set opera­
tion depends on the type of the source pvar, as described under each pvar type in Section
4.6, "Ru1es of *Lisp Type Declaration and Coercion," below.

4.4 Mutable Pvars

Pvars may be declared to be mutable, which allows them to contain data of varying size
and type. To declare a pvar as mutable, specify the symbol * in place of one or more param­
eters in the type specification of the pvar. For example,

(*let (mutable-signed-pvar)
(declare (type (signed-pvar *) rnutable-signed-pvar»
...)

(*proclaim '(type (pvar (defined-float * *»
mutable-float-pvar»

(*defvar mutable-float-pvar)

Version 6.1, October 1991

46 *Lisp Dictionary
1I1I III:::: II ;:J II i!iilllllllllll lIIl 111111111 j[II: millilili 111 III :llllIIliiI:::iiililllllliliili : 111[1 I1111I1 ill I i! I : : :II II I IFil II II :I II Ii ill Ii Iii i II ; I!lii iii I II

4.5 Mutable General Pvars

Pvars that are not declared to be of a specific type default to a type known as mutable gen­
eral. Before a mutable general pvar is initialized, it is said to be void.

This is the form used within declarations to explicitly declare a mutable general pvar:

(pvar *)

For example, the following forms proclaim random-rnutable-pvar to be a mutable general
pvar and then allocate the pvar random-mutable-pvar.

(*proclaim ' (type (pvar *) random-mutable-pvar»
(*defvar random-mutable-pvar)

If a mutable general pvar is void and a pvar of any specific data type is *set into it, then
the mutable general pvar will assume the characteristics of that type, but will retain its sta­
tus as a mutable general pvar. Once a mutable general pvar has contained data of two or
more distinct types, however, it loses its mutable quality and becomes an ordinary general
pvar. For example, if a pvar declared to be of type (pvar *) has both integers and characters
stored in it, it becomes a pvar of type (pvar t).

For the purpose of this definition, the following groups of pvar types are considered as
distinct with respect to their effect on a mutable general pvar:

boolean
signed-byte and unsigned-byte
character and string-char
defined-float
complex

The signed-byte pvar type is considered a super type that subsumes the unsigned-byte pvar
type. Similarly, the character pvar type is considered to subsume the strlng-char pvar type.
Thus, during a session, a mutable general pvar may hold both string-char and character

data and still retain its status as a mutable general pvar. Similarly, if a mutable general pvar
of type unsigned-byte has signed-byte data stored in it, it changes into a mutable general
pvar of type signed-byte.

This is significant because if a mutable general pvar has held only one distinct type of data,
no tests are performed on the types it contains. Thus, the run-time execution speed of code
using mutable general pvars that have held only one distinct type of data is much faster than
the execution speed of the same code using general pvars.

Version 6.1, October 1991

(
\

I
\

(

\

Chapter 4. *Lisp Type Declaration 47
I:i :i ill IE [j]! :!iI]!!i!!i: mll!!!!!11!! Iii g!%l; I iii !!I1iI:: : Ii: I ::m:::::i!iW: :;:.i::]:::i!.i::::~;m.J:T;:g:Z::::liiJTI[[ii!iI] ::: :c:m;;I:tti~

Given these distinctions in type membership, so long as no data of a different type is *set

into a mutable general pvar, the mutable general pvar will behave exactly as though it was
a mutable pvar of the same type as the data last stored it.

Aggregate (array and structure) pvars are a special case. Aggregate pvars may only be *set

into a mutable general pvar if the mutable general pvar is void. In this case, the mutable
general pvar ceases to be a mutable general pvar and becomes an aggregate pvar of the
same type and size as the source pvar.

4.6 Rules of *Lisp Type Declaration and Coercion

This section defmes the *Lisp rules of type declaration and coercion. For each *Lisp pvar
type listed below, the following questions are answered:

• Can pvars of this type be declared mutable?

• What types of data can be stored into a pvar of this type?

• What type coercions take place if the data is not of the same type as the pvar?

• What happens when data of this type is stored in a general pvar?

In each case, the latter two questions are answered by explaining the type coercions that
occur when *set is used to copy a pvar of one type into a pvar of another type. Coercions
performed by other *Lisp operators (such as coerce II) behave similarly.

Note that when *set is used to copy values from a source pvar into a destination pvar, the
source pvar is copied and then type converted if necessary. The (possibly converted) copy
of the source pvar is then stored in the destination pvar. No coercion takes place on the
original copy of the source pvar.

(pvar boolean) boolean-pvar

Boolean pvars have no parameters associated with them and are therefore never mutable.

When boolean values are stored in a general pvar, no type conversion is performed.

Within *set forms, boolean destination pvars can receive data of type boolean only.

A general pvar can be *set into a boolean pvar if and only if all the active data in the general
pvar is boolean.

Version 6.1. October 1991

48 *Lisp Dictionary
I::: I111 111111111 Iii 1111111:1111111111:::1111111 1 Iii :: Iii iiiilil II I I i I I III! III II iii Ii: I Iii : lil!illiill: Ii I: liilill ::::::::::::IIIIIiIIi:lliiilillili!!!llliIi"IIiIliiEIIliJiill:::illliWillll::::IlIliIl®!

(pyar front-end)

Front-end pvars have no parameters associated with them and are therefore never mutable.

When front-end values are stored in a general pvar, no type conversion is performed.

Within *set forms, front-end destination pvars can receive data of type front-end only.

A general pvar can be*set into a front-end pvar if and only if all the active data in the gen­
eral pvar is of type front-end.

(pyar string-char) string-char-pYar

Pvars of type string-char have no parameters associated with them and therefore can never
be declared as mutable.

When data of type string-char is put into a general pvar, it is converted to type character.

Within *set forms, string-char destination pvars can receive data of type string-char or
type character only. If the source pvar is of the character data type, then the expression
(*and (string-char-pll source» must return t.

A general pvar can be *set into a strlng-char pvar if and only if all active data in the general
pvar is of type string-char. That is, (*set destination source) is valid if destination is a
string-char pvar and if (*and (strlng-char-pll source» returns t for the general pvar source.

(pyar character) character-pyar

Character pvars have no parameters associated with them and therefore can never be de­
clared as mutable.

When character data is put into a general pvar, no type conversion is performed.

Within *set forms, character destination pvars can receive source data of type string-char
or of type character only.

A general pvar can be *set into a character pvar if and only if all the active data in the
general pvar is of type string-char or of type character.

Version 6.1, October 1991

(

<

Chapter 4. ItLisp Type Declaration 49
I I if lilJEnl E I . IITsm 1 j Illr!il:::iW!FHii!!!liilil i It!&ffi!!i I iii i: i: i } mm,~:: II I:.::!::::m_~

(pyar (unsigned-byte length» (field-pYar length)

Pvars of type unslgned-byte are also known as field pvars. They have one parameter asso­
ciated with them, a length in bits. This length may be specified as any positive integer, or
as *. Pvars declared as (pyar (unsigned-byte *» or (field-pyar *) are mutable. For instance,

(declare (type (field-pvar 16» ubsixteen)

declares an unsigned-byte pvar of exactly 16 bits per processor. On the other hand,

(declare (type (field-pvar *» ub-mut)

declares a mutable unsigned-byte pvar.

Pvars declared as (pyar (unsigned-byte *» are initially allocated 1 bit per processor. They
can, however, contain unsigned values of any length.

When data of type unsigned-byte is put into a general pvar, it is first converted to an
equivalent quantity of type signed-byte.

Within *set forms, destination pvars of type unslgned-byte can receive source data of type
unsigned-byte or of type slgned-byte only. If the source data is of type signed-byte, then
all the data values must be non-negative; the source data is coerced to type unsigned-byte

before storage is effected. If the destination is of type (unsigned-byte *), then data of any
number of bits is allowed. Otherwise, it must be possible to represent every active datum
in the source using the number of bits specified for the destination's length.

A general pvar can be *set into a pvar of type unsigned-byte if and only if all the active data
in the general pvar satisfies all the constraints detailed in the preceding paragraph.

(pyar (signed-byte length» (signed-pyar length)

Pvars of type signed-byte have one parameter associated with them, a length in bits. This
length may be specified as any positive integer greater than 1, or as *. Pvars declared as
(pyar (signed-byte *» are mutable. For instance,

(*proclaim ' (type (pvar (signed-byte *» s-mut»

proclaims a mutable signed-byte pvar. Mutable signed-byte pvars are initially allocated 2

bits per processor. They can, however, contain signed values of any length.

If source data of type signed-byte is moved into a general pvar, and if the source data length
is larger than the length of the signed-byte data already contained in the destination, the
signed-byte data already contained in the general pvar destination is sign-extended to ac­
commodate the increased size.

Version 6.1, October 1991

so
lIilillili

*Lisp Dictionary
iiiliiiiiilllllllllllil!ilililill 11:11 111111 I jjj 111111 !I 111111111111111 III: 11II1111 Ilmlll!Ii;l I

Within *set forms, slgned-byte pvars can receive source data of type unslgned-byte or of
type signed-byte only. If the source data is of type unslgned-byte, it is coerced into type
slgned-byte before *set storage takes place. If the destination is of type (signed-byte *), then
source data of any bit length is allowed. Otherwise, it must be possible to represent every
active datum in the source using the same number of bits as the slgned-byte destination.

A general pvar can be *set into a signed-byte pvar if and only if all the active data in the
general pvar satisfies all the constraints detailed in the preceding paragraph.

(pvar (defined-float significand exponent))

Pvars of type defined-float have two parameters associated with them: each defines the
number of bits allocated per processor to store a portion of a floating-point number. The
first parameter specifies the significand length; the second parameter specifies the expo­
nent length.

The significand length may be any positive integer greater than or equal to 1 and less than
cm:*maxlmum-signlficand-length*. The exponent length may be any positive integer
greater than or equal to 2 and less than cm:*maximum-exponent-length*.

Mutable defined-float pvars are declared using * instead of a value for both significand
length and exponent length. For example:

(declare (type (pvar (defined-float * *») mut-float)

It is illegal to specify only one of these parameters as *. Mutable floating-point pvars are
initially allocated 23 bits for the significand and 8 for the exponent, in each processor­
with the sign bit, the total length is 32 bits.

When defined-float data is put into a general pvar, floating-point numbers with one repre­
sentation may be coerced into floating-point numbers of another representation. If
defined-float data with significand length SL and exponent length EL is copied into a gen­
eral pvar containing defined-float data with significand length GSL and exponent length
GEL, both the copied source and all floating-point values originally in the destination are

coerced into a representation with (max SL GSL) significand length and (max EL GEL) expo­
nent length. If there was originally no floating-point data in the general destination pvar,
this has no effect; GSL and GEL are both zero in this case. If, however, floating-point data
of a different representation resides in the destination pvar, such coercion may have reper­
cussions with respect to overflow, underflow, precision, and accuracy.

The above rule of floating-point coercion for data stored in general pvars also applies to
data stored in mutable defined-float pvars, i.e., pvars that are declared to be of the type
(pvar (defined-float * *».

Version 6.1. October 1991

(

Chapter 4. *Lisp Type Declaration 51
:iImlill':::ilil::liilli::::::::::: Ii i :!::: MMm!;::::::.!:m!!::::::IIIJW:ii<li i'I;': ::·iii:iMi I: :lin: I!m:;::::::iIliJllill:::::::::::::mliLE!i i:::::::::i<li

Within *set forms, defined-float pvars can receive source data of type unslgned-byte, type
signed-byte, or type defined-float only. If the source data is of type unsigned-byte or type
signed-byte, a copy of it is converted to type defined-float using the *Lisp floatll operation.
This implies that, even if the destination is a mutable defined-float pvar, it is an error to
attempt to store unslgned-byte or signed-byte source data in that destination unless the
source data can be represented in the same floating-point format as is the destination pvar
data. If this error is made, an overflow error may be signaled depending on the interpreter
or compiler safety level in use.

If the *set source data is of the same floating-point format as that of the destination, a sim­
ple data copy is done.

If the *set source data is of a floating-point format larger than the destination in either sig­
nificand length or exponent length, and if the destination is not a mutable defined-float

pvar, then it is an error.

If the *set destination is a mutable defined-float pvar, then a copy of both the source and
the destination data are converted to a floating-point representation defined by the maxi­
mum of their significand and exponent lengths. After this conversion, a simple data copy
is done.

A general pvar can be *set into a defined-float pvar if and only if all the active data in the
general pvar satisfies the constraints in the preceding paragraphs.

(pvar (complex (defined-float significand exponent)))

*Lisp supports complex pvars with real and imaginary parts of type defined-float only.

The restrictions on complex pvar parameters are identical to the restrictions on
defined-float pvar parameters. The real and imaginary parts are always of exactly the same
type. Mutable complex pvars are declared with a * instead of with an integer value for each
parameter. For example, this form defines a mutable complex pvar:

(*proclaim ' (type (pvar (complex (defined-float * *»)
mcmplx))

Since complex pvars can contain only defined-float components, the coercion rules for put­
ting complex data into a general pvar are identical to those for defined-float data. Note

however that complex data is completely independent of defined-float data with respect to
coercion: the existence of either type of data in a general pvar does not affect the represen­
tation of the other type.

The rule of complex coercion for data stored in general pvars also applies to data stored in
mutable complex pvars.

Version 6.1, October 1991

S2 *Lisp Dictionary
lilll!::ll1!IIIIIilI Ii; II Iii! I: ::111:: I IIII;::::: II II Iii Iii!! : iJ : 1iJ: :: IE 1iii11:m:!IIIiiWi:ii1 I iilllilliiill::::: iii III I: II :: ill !lililliiIIiii:::llii1 : Ii! I: ij 1Jj: ::;::::m:::::::

Within *set forms, complex pvars can receive source data of type unsigned-byte, signed­

byte, defined-float, or complex only. If the *set source data is of type unsigned-byte,

signed-byte, or defined-float, it is coerced into the floating-point format determined by the
complex destination, following the same rules as for pvars of type defined-float. The source
data is then converted to complex data of the same floating-point format as the destination,
with 0.0 as its imaginary part. Finally, a simple data copy is done.

General pvars can be *set into complex pvars if and only if all the active data satisfies the
constraints in the preceding paragraph.

(pvar (array element-type dimensions»

Array pvars may not be declared mutable.

Array pvars may not be stored in general pvars. There is one exception: an array pvar may
be stored in a void mutable general pvar. A void mutable general pvar is a pvar of type (pvar
*) that has never had any data stored in it. When an array pvar is stored in a void mutable
general pvar, that mutable general pvar becomes an array pvar with the same type and size
as the array pvar which has been stored in it.

Within *set forms, array pvars can receive source data from other arrays pvars of the same
shape. Effectively, *set is called on each element of the destination and source. The normal
rules of type coercion with respect to the destination apply to *set operations acting on
arrays.

(pvar struct-name)

A pvar of type struct-name may be declared only after struct-name has been defmed with
*defstruct.

Structure pvars may not be declared mutable.

Structure pvars may not be stored in general pvars. There is one exception: a structure pvar
may be stored in a void mutable general pvar. A void mutable general pvar is a pvar of type
(pvar *) that has never had any data stored in it. When a structure pvar is stored in a void
mutable general pvar, that mutable general pvar becomes a structure pvar with the same
type and size as the structure pvar that has been stored in it.

Within *set forms, structure pvars can receive source data from other structure pvars of
exactly the same type. A simple bit copy is performed.

Version 6.1, October 1991

(

Chapter 5

*Lisp Compiler Options

This chapter describes the many compiler options you can use to control the way in which
your *Lisp code is compiled, and also describes the means by which you can modify those
options.

5.1 Setting Compiler Options

The compiler options control the behavior of the *Lisp compiler, including the degree of
optimization it performs while generating code. There are two ways to set the compiler
options: using a menu and directly modifying the values of *Lisp global variables.

5.1.1 Using the Compiler Options Menu

The options menu can be displayed by typing:

> (in-package '*lisp)
> (compiler-options)

For The Curious: You can also display the current settings of the *Lisp compiler options
(without modifying them) by typing:

(slc::report-options)

In the Lucid Common Lisp version of *Lisp this function takes an optional argument that
if non-nil adds the Lucid compiler options to the displayed list:

(slc::report-options t)

Version 6.1, October 1991 53

54 *Lisp Dictionary
l!:i!iIIllIlll liE I III 111:II!liiiEIilllliiillllllll!IIIIIIIIIIIJII!!IIliiilllllll! mill I ! II I II: mm III liIIiilli!!iiiiillliinn:::: II :: liillliilliflil::WI! lIm:::::: : I : j! !!11:::::11IIi1iil11111

5.1.2 The Standard Options Menu

The standard options menu lists the following options. (Default values are shown.)

Starlisp Compiler Options

Compile Expressions (Yes, or No) Yes

Warning Level (High, Normal, None) Normal

Inconsistency Reporting Action (Abort, Error, Cerror, Warn, None) Warn

Safety (0, 1, 2, 3) 1

Print Length for Messages (an integer, or Nil) 4

Print Level for Messages (an integer, or Nil) 3

PullOut Common Address Expressions (Yes, or No) No

Use Always Instructions (Yes, or No) No

On a UNIX front end. options are listed one at a time. each with its current value. To keep
the current value for an option and go on to the next option. press Return. To change the
option, type the desired value and press Return. At the end of the options list, confIrmation
is requested:

Do the assignment? (Yes, or No)

To save the options you've selected, type Yes and press Return. To cancel the changes
you've made, type No and press Return.

5.1.3 The Extended Compiler Options Menu

Not all available options for controlling the behavior of the *Lisp compiler are listed by
default when the options menu is invoked. The options that are not in the default menu
provide capabilities that are not generally needed.

To invoke the options menu with all options listed, type the following:

(compiler-options :class :all)

Version 6.1, October 1991

(

Chapter 5. *Lisp Compiler Options 55
~:::[j: I; liliili: :I : :::::!.I~~m:t%.'0.WM1w.l"%~Wi%.~m-%W..%g:tlmM.wMl®.t.Wi\Wit..!:::::::::·::Witk"mlmW'§lWim

The extended options menu lists the following options. (Default values are shown.)

Starlisp Compiler Options

Compile Expressions (Yes, or No) Yes

Warning Level (High, Normal, None) Normal

Inconsistency Reporting Action (Abort, Error, Cerror, Warn, None) Warn

Safety (0, 1, 2, 3) 1

Print Length for Messages (an integer, or Nil) 4

Print Level for Messages (an integer, or Nil) 3

Optimize Bindings (No, Cspeed<3, Yes) Cspeed<3

Peephole Optimize Paris (No, Cspeed<3, Yes) Cspeed<3

PullOut Common Address Expressions (Yes, or No) No

Use Always Instructions (Yes, or No) No

Machine Type (Current, Compatible, Cml, Cm2, Cm2-FPA, Simulator) Current

Add Declares (Everywhere, Yes, No) No

Use Undocumented Paris (Yes, or No) Yes

Verify Type Declarations (No, Current-Safety, Yes) Current-Safety

Constant Fold Pvar Expressions (Yes, or No) Yes

Speed (0, 1, 2, 3) 1

Compilation Speed (0, 1, 2, 3) 1

Space (0, 1, 2, 3) 1

Strict THE Type (Yes, or No) Yes

Immediate ~rror If Location (Yes, or No) Yes

Optimize Check Stack Expression (Yes, or No) Yes

Generate Comments With Paris Code (Yes, Macro, No) Yes

Using the Compiler Menu on a Symbolics Front End

On a Symbolics front end, changes are made by clicking the mouse on desired options and
by typing new values where appropriate. To exit the menu and save the options you've
selected, click the left mouse button on the Exit box. To exit the menu without saving the
new selections, click on the Abort box.

Also, there are two alternate methods of invoking the options menu on a Symbolics front
end:

• At a Lisp Listener, type the command

:Set Compiler Options

• In the editor, type

meta-x Set Compiler Options

Version 6.1. October 1991

56 *Lisp Dictionary
Ii!l Ii IlliIIlll!i!I!iII!iIlI[ii1ll1liIiiiiii!i!!iil:::::::::C! III: iii :::::rE!!" : I ::::":"!i liII:: "i1~7~1'B" '::: : :1 :1:: rim::::. I I" :::::::iJ:::::::::'l%~

5.1.4 Setting *Lisp Compiler Variables Directly

In addition to using the compiler options menu, compiler options may be changed by
changing the value of associated *Lisp global variables, or, for certain options, by using a
global declaration.

To set the values of compiler option variables, use the following operators:

setq compiler-let optlmlze/*optimize

These operators are described below, along with examples of their use.

setq

The simplest way to interactively modify the value of a compiler variable is to setq it to
a new value. For example, you'll often want to modify the values of the compiler variables
warnlng-Ievel and *safety*. You can use setq to change them, like this:

(setq *warning-level* :high *safety* 3)

complier-let

The Common Lisp special form complier-let can be used to selectively change the value
of any *Lisp compiler option for a region of code. For example

(compiler-let ((*compilep* t) (*safety* 0)
(*use-always-instructions* t»

...)
insures that the *Lisp compiler operates with a safety level of 0 and enables the use of Paris
-always instuctions for the region of code enclosed by the compiler-iet form.

optimize
*optimize

The Common Lisp optimize declaration specifier may be used within either a *proclaim

form or a declare form to change optimization levels for both the Common Lisp compiler
and *Lisp compiler. The *optlmlze declaration specifier, used within a *proclaim or a de­

clare form, changes the optimization level for the *Lisp compiler only; it does not affect
the Common Lisp compiler.

The following properties may be set by using optimize and *optlmize:

safety speed space compilation-speed

Version 6.1, October 1991

(
\

Chapter 5. *Lisp Compiler Options 57
~:::m: : mw: ;:;;:Ii:~~Ii:i..;:1!:l s::!r:L!i.e W~t!m::;:::::·:CJf.'m:: .. k::::::;

For example,

(*proclaim '(optimize (safety 3»)

sets the safety level to 3 for both compilers, and

(*proclaim '(*optimize (safety 3»)

sets the safety level to 3 only for the *Lisp compiler.

The Common Lisp declare form may be also used with either the optimize or the *optimize

declaration specifier to change the *Lisp optimization levels. For example:

(*let ((truth t!!»
(declare (optimize (safety 3»)
(foo (bar truth»)

In this example the declare form sets both the Common Lisp and the *Lisp safety levels at
3 for the entire body of the *Iet form.

5.2 *Lisp Compiler Options

All compiler options are listed below, in alphabetical order. Each is listed in the form

Name
Values: legal values for this option
Default: the default value for this option
Variable: the global variable associated with this option
A description of the compiler option, and of the effects of each of its values.

Note: Often the value displayed for a compiler option on the options menu will not be the
same as the corresponding Lisp value stored in the compiler variable. For example, many
compiler options are displayed as Yes or No choices on the menu, yet the corresponding
variable will have values of either t or nil. In such cases, the appropriate Lisp values for the
compiler option will be shown in parentheses after the values that appear on the options
menu.

Version 6.1. October 1991

58
11111111111111111111 I 1111111111111111111

*Lisp Dictionary
mllllllilli IIIII1IIIII1I11I 1111111111111111 Ii I1II I IIIII!!IIIIIIIII!III!!IIIIIIIIIIII:JIIIJ!II II ii II 11III11 [Ii 1111111111 !IIIIII jj I IIIII11 iilil 1iI111 III!! IIJIIII

Add Declares

Values:
Default:
Variable:

Everywhere (:everywhere), Yes (t), No (nil)

No (nil) on Symbolics front ends, Yes (t) on other front ends
add-declares

The Add Declares compiler option determines if and how the *Lisp compiler will generate
code that includes type declarations for stack address computations.

A value of Everywhere (:everywhere) causes the compiler to generate type declarations
using both declare and the forms. A the form is used wherever declare is not legal.

A value of Yes (t) causes the compiler to generate type declarations wherever a declare
form is appropriate.

A value of No (nil) prevents the compiler from generating any type declarations. The de­
fault value on Symbolics front ends is nil because the Symbolics implementation generally
ignores type declarations.

Compile Expressions

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (t)
compllep

The Compile Expressions option enables or disables the "'Lisp compiler.

A value of Yes (t) enables the *Lisp compiler; a value of No (nil) disables it.

By default, the compiler is enabled.

Compilation Speed

Values:
Default:
Variable:

0, 1,2,3
1
compllatlon-speed

Note: Except as a constraint on the Optimize Bindings and Peephole Optimize Paris options,
the Compilation Speed option is not currently used by the *Lisp compiler.

The Compilation Speed compiler option advises both the Common Lisp and the *Lisp com­
pilers of the relative importance of compilation speed.

Version 6.1, October 1991

(
\

Chapter 5. *Lisp Compiler Options 59
~~: : ;;: :: m:::::! g I JlHiiti@::::::r::ii@f i WilL;; ::m:::::FiVi. 1\::: : II!! !1m Ii II Ii Ii:::!::::: : ::;111 ililli iIIl! III

A value of 0, (low compilation speed) means compilation speed is totally unimportant.

A value of 1, the default, means compilation speed is of little importance.

A value of 2 means compilation speed is of moderate importance.

A value of 3 means compilation speed is extremely important. Note: At this value, both
Optimize Bindings and Peephole Optimize Paris are disabled.

Constant Fold Pvar Expressions

Values:
Default:
Variable:

Yes (t), No (nil)

Yes (t)
constant-fold

The Constant Fold Pvar Expressions compiler option determines whether or not the *Lisp
compiler will constant fold certain pvar expressions.

A value of Yes (t) allows the compiler to constant fold pvar expressions in which all argu­
ments to certain *Lisp functions contain identical values in all active processors. Examples
of these kinds of arguments are nllll, til, and calls to the function II (this includes scalar
constants that are promoted to pvars).

A value of No (nil) prevents the compiler from constant folding.

For example, with this option enabled, expressions containing constant arguments, such as:

(+!! (the (unsigned-byte 32) x-position) 128 32 5)

are automatically simplified by performing the obvious arithmetic on the front-end. For
example, the above expression is simplified to:

(!! (the (unsigned-byte 32) (+ x-position 128 32 5»)

Constant-folding is done wherever possible. For example, the expression

(+!! (the (unsigned-byte-pvar 32) x-position) 128 32 5)

is simplified to

(+!! (the (unsigned-byte-pvar 32) x-position) 165)

Constant folding can often make *Lisp code more efficient.

Version 6.1, October 1991

*Lisp Dictionary 60
11111111111111111111 1IIIIIIIIIIilIIIIII[III! 1111111111111111 lililllillllillilil I II I j I111111 IlEilll i 11JI11:i: i i : I mlllt:: 1 lillIE ::::m:::m!llllllIiliillllll !Ii I III ;. iiiiil::::Iil::11

For example, with constant folding enabled,

(*sum (-!! 1.0»

compiles into:

(progn ;; Constant global sum - *sum.
(* -1.0 (cm:global-count-always cm:context-flag»)

whereas without constant folding, the same expression compiles into:

(let* «slc::old-next-stack-field (cmi::next-stack-field»
(-!!-index-2 (+ slc::old-next-stack-field 32»)

(prog1
(progn

(cm:allocate-stack-field
(- -!!-index-2 slc::old-next-stack-field»

;; Move constant - !!.
(cm:move-constant slc::old-next-stack-field 1065353216 32)
(cm:lognot(+ slc::old-next-stack-field 31)

(+ slc::old-next-stack-field 31) 1)
(cmi::global-float-add slc::old-next-stack-field 23 8)
(cm:deallocate-upto-stack-fie1d s1c::old-next-stack­

field»)

Clearly, constant folding allows the compiler to generate more efficient code.

Generate Comments With Paris Code

Values:
Default:
Variable:

Yes (t), Macro (:macro), No (nil)
Yes (t)
generate-comments

The Generate Comments With Paris Code compiler option controls whether or not the *Lisp
compiler inserts comments into the LisplParis code it generates.

A value of Yes (t) causes the compiler to generate comments

A value of Macro (:macro) causes the compiler to generate comments when forms are ma­
croexpanded using the Symbolics editor command Macro Expand Expression.

A value of No (nil) prevents the compiler from placing comments in LisplParis code.

Version 6.1, October 1991

(
\

Chapter 5. *Lisp Compiler Options 61
~'a~!!i!~!·!:::!,fffi:W~%::!I!~.Mg..am:~%WlW~W%&~@llW.J.\'!m~

Immediate Error If Location

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (t)
immediate-error-if-Iocatlon

The Immediate Error If Location option may be changed at run time to change the level of
safety used by code compiled at a Safety level of 2.

The default value of Yes (t) makes such code run as if compiled at Safety level 3.

A value of No (nil) makes the code run as if compiled at Safety level!.

See the description of the Safety compiler option for more information.

Inconsistency Reporting Action

Values: Abort (:abort), Error (:error), Cerror(:cerror),
Warn (:warn), None (:none)

Default: Warn (:warn)
Variable: *inconslstency-action*

The Inconsistency Reporting Action option controls the behavior of the compiler when an
inconsistency is discovered. An inconsistency usually indicates an implementation error in
the compiler.

An value of Abort (:abort) causes the compiler to report a discovered compiler inconsisten­
cy and immediately abort the compilation.

A value of Error (:error) causes the compiler to report a discovered compiler inconsistency
using the Common Lisp function error. This signals a fatal error and enters the debugger.

A value ofCerror (:cerror) causes the compiler to report a discovered compiler inconsisten­
cy using the Common Lisp function cerror. This signals a continuable error and enters the
debugger. The program may be resumed after the error is resolved.

The default value of Warn (:warn) causes the compiler to report a discovered compiler in­
consistency using the Common Lisp function warn. This prints a warning message but
normally does not enter the debugger.

A value of None (:none) instructs the compiler not to take any special action when an in­
consistency in the compiler is discovered.

Version 6.1, October 1991

*Lisp Dictionary 62
111111111111111111 !!illlllillilillilililllilliilllllll! IIII111 :1 11!!!1111!ii II I1llllliillllllllllllllllllElII 11:11 11111111 mil llilil III I 111111111111 :: : Ii III ii Ii ::: l:iIi::liliIJI ::E!!i II i!illlillliill!llllililiII:

Machine .TYpe

Values: Current (:current), Compatible (:compatlble),
CMI (:cm1), CM2 (:cm2), CM2-FPA (:cm2-fpa),
Simulator (:simulator)

Default: Current (:current)
Variable: *machlne-type*

Note: This option is not currently used by the *Lisp compiler.

The Machine Type option directs the *Lisp compiler to generate code that is either specific
to one of the Connection Machine models or compatible across models.

The default value of Current (:current) instructs the compiler to generate code specific to
the current machine type.

A value of Compatible (:compatlble) instructs the compiler to generate code compatible
across machine types.

A value of CMI (:cm1) allows the compiler to generate code specific to Connection Ma­
chine model CM-I.

A value ofCM2 (:cm2) allows the compiler to generate code specific to the CM-2.

A value of CM2-FPA (:cm2-fpa) allows generation of code specific to the CM-2 with the
floating-point accelerator. When machine type CM2-FPA is specified, the *Lisp compiler
generates Paris instructions that take advantage of the floating point accelerator hardware.
This is the most useful value of the Machine Type option.

A value of Simulator (:simulator) allows the compiler to generate code specific to the simu­
lator. Note: This value is currently equivalent to the Compatible setting.

The example below demonstrates how the Machine Type option interacts with other compil­
er options. Code generated by compiling a *sum expression using three different
combinations of the Machine Type and Use Always Instructions options is shown. Each
successive combination produces more efficient code. Safety is set to 0 in all cases to elimi­
nate error detection code, so that the examples are more readable.

Consider the following *Lisp code:

(*proclaim '(type (pvar single-float) sf1 sf2»
(*sum (*!! (+!! sfl (!! 128.0» sf2»

Version 6.1, October 1991

/

\

Chapter 5. *Lisp Compiler Options 63
1W1l_ill iii :.:::::n;;::::::::I1I11:;:;:IEIIliilliiliiiil:::II!IIliEi!!iii!illiliIm!i1i!l!iiEiililiiiiIiiIiI::::I:!Tll!ill!iiii:iil rl! III!!!: [II: I ii1l1iiEElI iii IlIiliilliilllm:liiiiili 11111%ml1l1i!! ::::1111111

When the Machine Type option is set to Compatible (:compatible) and the Use Always In­
structions option is set to No (nil), the compiler generates the following code:

(let* «slc::old-next-stack-field (cm:allocate-stack-field 32»
(*!!-index-2 (+ slc::old-next-stack-field 32»)

(declare (ignore *!!-index-2»
(prog1

(progn ;; Move constant - !!.
(cm:move-constant slc::old-next-stack-field 1124073472 32)
(cmi::clear-mem cm:overflow-flag)
(cm:f-add-2-1l slc::old-next-stack-field

(pvar-location sf1) 23 8)
;; The result of a (two argument) float +!! overflowed.
(cmi::error-if-location cm:overflow-flag 394259 nil)
(cm:f-multiply-2-1l slc::old-next-stack-field

(pvar-location sf2) 23 8)
;; The result of a (two argument) float *!! overflowed.
(cmi::error-if-location cm:overflow-flag 394003)
(cmi::global-float-add slc::old-next-stack-field 23 8»
(cm:deallocate-upto-stack-field slc::old-next-stack-

field»)

However, when Machine Type is set to CM2-FPA (:cm2-fpa) and Use Always Instructions
is set to No (nil), the compiler generates the following, more efficient, code:

(let* «slc::old-next-stack-field (cm:allocate-stack-field 32»
(*!!-index-2 (+ slc::old-next-stack-field 32»)

(declare (ignore *!!-index-2»
(prog1

(progn
(cmi::clear-mem cm:overflow-flag)
(cm:f-add-constant-3-1l slc::old-next-stack-field

(pvar-location sf1) 128.0 23 8)
;; The result of a (two argument) float +!! overflowed.
(cmi::error-if-location cm:overflow-flag 394259 nil)
(cm:f-multiply-2-1l slc::old-next-stack-field

(pvar-location sf2) 23 8)
;; The result of a (two argument) float *!! overflowed.
(cmi::error-if-location cm:overflow-flag 394003)
(cmi::global-float-add slc::old-next-stack-field 23 8»
(cm:deallocate-upto-stack-field slc::old-next-stack-

field»)

Version 6.1, October 1991

64 *Lisp Dictionary
IIIIIIIIIIIIIIIIII!IIIIIII I:J!IIIilllliEl!E illll! jjj 111I1I1111 iii 1:::::1 II: Ii :1111111 Ii :1 ::11 ill!! i! :: i : i i :: r I: ::: ::: j : I :

The most efficient code is generated when Machine Type is set to CM2-FPA (:cm2-fpa) and
Use Always Instructions is set to Yes (t):

(let* ((slc::old-next-stack-field (cm:allocate-stack-field 32»
(*!!-index-2 (+ slc::old-next-stack-field 32»)

(declare (ignore *!!-index-2»
(prog1

(progn
(cmi::clear-mem cm:overflow-flag)
(cm:f-add-const-always-3-1l slc::old-next-stack-field

(pvar-location sf1) 128.0 23 8)
;; The result of a (two argument) float +!! overflowed.
(cmi::error-if-location cm:overflow-flag 394259 nil)
(cm:f-multiply-always-2-1l slc::old-next-stack-field

(pvar-location sf2) 23 8)
;; The result of a (two argument) float *!! overflowed.
(cmi::error-if-location cm:overflow-flag 394003)
(cmi::global-float-add slc::old-next-stack-field 23 8»
(cm:deallocate-upto-stack-field slc::old-next-stack-

field»)

Macroexpand Inline Forms

Note: this option applies only to users on Symbolics front ends.

Values:
Default:
Variable:

Yes (t), No (nil)

Yes (t)
macroexpand-inline-forms

This option controls the way the command Macro Expand Expression All expands inline
function forms.

The default value of t causes the command Macro Expand Expression All to expand inline
forms as if they were macros.

A value of nil prevents the command Macro Expand Expression All from expanding inline
forms as if they were macros.

Expanding inline function forms as if they were macros may make the *Lisp compiler's
output more difficult to read. For example, consider the following *set expression:

(*set u8 u4)

Version 6.1. October 1991

(

\

Chapter 5. *Lisp Compiler Options
~~_~~;··::JiY~FMfjj . II!!IE@f6 :::r

65
:::::::::::::::::illlIiII::r]!Ii!il!il::::miiii::::::::Eilllllllliiiiii iii: m iilElillli; !!ill!i ~

With Macroexpand Inline Forms set to nil, an invocation of Macro Expand Expression All
displays:

(progn
;; Move (coerce) source to destination - *set.
(cm:unsigned-new-size (pvar-!ocation u8)

(pvar-!ocation u4) 8 4)
nil)

With Macroexpand Inline Forms set to t, an invocation of Macro Expand Expression All dis­
plays:

(progn
;; Move (coerce) source to destination - *set.
(cm:unsigned-new-size (aref uS 1)

(aref u4 1) 8 4)
nil)

Notice that function calls like pvar-locatlon have been turned into calls to aref.

Macroexpand Print Case

Note: this option applies only to users on Symbolics front ends.

Values: No (nil),
Downcase (:downcase), Upcase (:upcase)
Capitalize (:capitalize)

Default: No (nil)
Variable: *macroexpand-print-case*

This option controls the print case used to display the expansions produced by the
Macroexpand Expression command.

A Macroexpand Expression value of nil (the fault) causes the value of the variable *print­
case* to be used.

A non-nil Macroexpand Expression value is used instead of *print-case*.

Version 6.1, October 1991

66 *Lisp Dictionary
1111111111111111111 iii Ii 1111 ii!l!illllilliillllillii 11111I 1111111:11 !!II I 1111111111111 ; I! Illilil 11111111111 IIII IIi! II mill: EiiliilliE! iIlil!lIli1liIII :l::JillEllllllll [:1 11 iii! Ii IIIi 11111111 illJlIi1iIi

Macroexpand Repeat

Values:
Default:
Variable:

Yes (t), No (nil)

Yes (t)
macroexpand-repeat

Note: this option applies only to users on Symbolics front ends.

This option controls the way the command Macro Expand Expression works.

A value of t causes Macro Expand expression to use the Common Lisp macroexpand func­
tion, which repeatedly calls macroexpand-1 to expand a macro expression.

A value of nil causes Macro Expand Expression to use the Common Lisp macroexpand-1

function, which does not repeat.

Optimize Bindings

Values:
Default:
Variable:

No (nil). Cspeed<3 (cspeed<3). Yes (t)
Cspeed<3 (cspeed<3)
optlmlze-blndlngs

The Optimize Bindings option provides control over compilation speed by altering the num­
ber of temporary bindings generated by the *Lisp compiler.

A value of Yes (t) enables this option and causes extra bindings to be removed. When bind- .
ing QPtimization is enabled. some temporary variables are eliminated and others are used
repeatedly.

A value of No (nil) disables binding optimization. When the binding optimization option
is disabled. the code produced by the compiler is more readable because it uses unique
temporary address variables to represent each value represented.

The default value ofCspeed<3 varies binding optimization based on the value of the *com­
pllatlon-sp&ed* variable. If compilation speed is 3 (the highest possible value). then
optlmlze-blndings is set to nil. If compilation speed is less than 3, then *optimize-bind­
Ings* is set to t.

Version 6.1, October 1991

/

\

Chapter 5. *Lisp Compiler Options 67
1!!IIII!liIJillI: "j ill Iii n 11! j]U;:rIll::![I1II I ill Ii! ! I[I ; 1!I1111iI!:::11 j I Ii !I !III!I!mlli!!ilillil! :::: m!Iliilili!ill!lli::lllilli i2ll1111111Il.illi!II!I!I: !II ':iIilliiillilililillii!IIIIII!lLiI!ilil!iiiliiil

Optimize Check Stack Expression

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (yes)
optimlze-check-stack

The Optimize Check Stack Expression compiler option determines how the *Lisp compiler
manages the temporary stack space used by the LisplParis code it generates.

The default value of Yes (t) makes the compiler try to remove the length expression from
calls to cm:allocate-stack-field.

A value of No (nil) disables this optimization.

Peephole Optimize Paris

Values:
Default:
Variable:

No (nil), Cspeed<3 (3), Yes (t)
Cspeed<3 (3)
optimlze-peephole

The Peephole Optimize Paris option controls the *Lisp compiler's peephole optimization of
generated LisplParis code.

A value of Yes (t) causes the *Lisp compiler to optimize the LisplParis code it generates.
A value of No (nil) prevents this optimization.

The default value of Cspeed<3 varies peephole optimization based on the value of the
compilation-speed variable. If compilation speed is 3 (the highest possible value), then
optlmlze-peephole is set to nil. If compilation speed is less than 3, then *optimize-peep­
hole* is set to t.

Print Length for Messages
Print Level for Messages

Values: an integer or nil
Length Default: 4
Level Default: 3
Variables: *slc-prlnt-Iength* *slc-print-level*

These options control how much of a list expression the compiler prints when generating
a warning about that expression.

Version 6.1. October 1991

68 ·Lisp Dictionary
1IlllIllllllil!lllllIlllIllllIlIIill!llilllllllllillill II 1IIIiIillllllllllllllllllllllllllllilii 1li1111111l!11111 I 11111 11ilI11 1IIIIIIiIlilii ill 1m: i liII i IlIIm: Ii Iii ill lililillilli II I1E1I1IE1liiiUliE!IIli!lIill I! : :

As in Common LisPt the Print Level indicates how many levels of data object nesting will
be printe~ counting from O.

The Print Length indicates how many elements at each level will be printedt counting
from 1.

For both variablest if the value nil is specifiedt no limit is imposed.

The Common Lisp variables *prlnt-length* and *prlnt-level* are bound to these variables
when compiler messages are printed.

,
Pull Out Common Address Expressions

Values:
Default:
Variable:

Yes (t)t No (nil)
No (t)
pull-out-subexpresslons

Note: This option is not fully implemented and therefore may not work in some cases.

The Pull Out Common Address Expressions option determines whether the compiler per­
forms common subexpression elimination on address expressions such as calls to
pvar-Iocatlon. Enabling this option cant in certain circumstancest increase perfonnance
significantly.

A value of Yes (t) enables this optimization; a value of No (nil) disables it. This optimiza­
tion is off by default.

When enable~ this option trims the code executed on the front end; it does not affect the
code executed on the Connection Machine. If a program already has a high Connection
Machine utilizationt this option will do little to improve the execution time. Conversely, if
a program has a low Connection Machine utilizationt enabling Pull Out Common Address
Expressions can reduce execution time. The potential benefit is usually greater for larger
expressionst where there are more opportunities for common addressing expressions.

For examplet consider the following *set expression:

(*set s16 (+!! (*!! s8 s8-2) s16-2»

Version 6.1, October 1991

(

\

j

Chapter 5. *Lisp Compiler Options 69
!t. 't't%%iWiW®WmWWiMI%'W"4fM::::::.I:m:s:::::::::.::::::::::::::::iiI!IIIili!!iI!i!!iI::::::':··.K::::::: lllEin: : I: :::I:T: i :i '!~f.%.iMW!t

Here is the code produced with this option disabled:

(progn
(cm:multiply (pvar-!ocation s16) (pvar-location s8)

(pvar-location s8-2) 16 8 8)
(cm:+ (pvar-location s16) (pvar-location s16-2) 16)
(cmi::error-if-location cm:overflow-flag 66575)

nil)

Here is the code produced by the compiler with this option enabled:

(let* «pvar-location-s16-1 (pvar-location s16»
(pvar-location-s8-2 (pvar-location s8»
(pvar-location-s8-2-3 (pvar-location 88-2»
(pvar-location-s16-2-4 (pvar-location s16-2»)

(cm:multiply pvar-location-s16-1 pvar-location-s8-2
pvar-location-s8-2-3 16 8 8)

(cm:+ pvar-location-s16-1 pvar-location-s16-2-4 16)
(cmi::error-if-location cm:overflow-flag 66575)
nil)

Notice that pvar-location is executed four times when Pull Out Common Address Expres­

sions is enabled, versus five times when it is disabled.

Rewrite Arithmetic Expressions

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (t)
rewrite-arithmetic-expressions

This option determines whether the compiler optimizes arithmetic operations such as

(*set x (+!! x y z»

using the associative rules of arithmetic.

The default value of Yes (t) allows the compiler to rewrite arithmetic operations as if they
were associative.

A value of No (nil) prevents this arithmetic-rewriting optimization.

When this option is enabled, the *Lisp compiler may produce more efficient code in some
cases.

Version 6.1. October 1991

70 *Lisp Dictionary
!IIII!IIII 11111 I IIII! lill! lllillliiillilliiilli I: III II [:n lii:I 1!III!IIIIiII!II II: II Jilliliilill I II! ilIll I iii! II II ill II!I!

When this option is disabled, the *Lisp compiler evaluates expressions in the order in
which they appear.

Regardless of the current Rewrite Arithmetic Expressions setting, you can force a specific
order of evaluation by explicitly directing the computation:

(progn (*set x (+!! x y» (*set x (+!! x z»)

Usage Note: When computing with floating-point data, results may vary depending on
how this option is set. For example, consider the expression

(*set x (+!! x y z»

The laws of arithmetic allow this to be computed as either of the following expressions:

(*set x (+!! x (+!! y z») (*set x (+!! (+!! x y) z»

Given the limitations imposed by fixed-precision floating-point arithmetic, the two ways
of evaluating the original expression may not yield identical results if x, y, and z are float­
ing-point or complex pvars.

Safety

Values:
Default:
Variable:

0, 1,2,3
1
safety

The Safety option controls what kind of code the compiler generates to detect error condi­
tions, and also controls how these error conditions are reported.

At a safety level of 0 (low safety) no error-checking code is generated

At the default safety level of 1, limited error-checking code is generated, so an error may
not be signalled at the exact point in your code at which it occurred.

At a safety level of 2, the generated code implements either level 1 or level 3 safety, de­
pending on the value of the compiler variable *immediate-error-if-Iocation*. (See
description of the Immediate Error If Location compiler option.)

At a safety level of 3, (high safety), full error-checking code is generated, so that an error
will always be signalled at the exact point in your code at which it occurred.

In general, high safety produces slow but safe code, and should be used for debugging
purposes, while low safety produces the fastest code.

Version 6.1. October1991

(

'"

(

\

./

Chapter 5. *Lisp Compiler Options 71
mm'mW-~::WiiI:mlIm::::m:::::~::::W:Elm:mm~ mwWI m; mi W'm~wmrimllmwlw: wmm' iWllwwwwmW@W!W@IW!iilWiEim::::m: i~lnwmwwm~ mwwmirimlllMwW'&:::::rn:::n :: s:::m: Ii i :::: r:m:

Space

Values:
Default:
Variable:

O. 1. 2. 3
1
space

Note: This option is not currently used by the *Lisp compiler.

The Space compiler option advises both the Common Lisp and the *Lisp compilers of the
relative importance of the space utilization of compiled code, including both the size of the
generated code and its run-time space utilization.

A value of 0, means code size and instruction space utilization are totally unimportant.

A value of 1. the default, means code size and space utilization are of little importance.

A value of 2 means code size and space utilization are of moderate importance.

A value of 3 means code size and space utilization are extremely important.

Speed

Values:
Default:
Variable:

O. 1,2,3
I
speed

Note: This option is not currently used by the *Lisp compiler.

The Speed compiler option advises both the Common Lisp and the *Lisp compilers of the
relative importance of speed in the resulting code.

A value of 0, (low speed) means speed of execution is totally unimportant.

A value of I, the default, means speed of execution is of little importance.

A value of 2 means speed of execution is of moderate importance.

A value of 3 means speed of execution is extremely important.

Version 6.1. October 1991

72 *Lisp Dictionary
IIIII!! !l1I111 ii1IIiiIiililiiillllil I 1IIIIillllilililllillIliiillllilii lliIiIIl!ii:.:lIIilIliiiiilli!ii1i1 Ii Iii i !I : liill!! iii lII!illlli!I!1E : ~ II: lillie: I : rilE Ii ::iIi

Use Always Instructions

Values:
Default:
Variable:

Yes (t), No (nil)
No (nil)
use-always-Instructions

Note: This option may generate undocumented Paris instructions.

The Use Always Instructions option determines whether or not the *Lisp compiler generates
unconditional -always Paris instructions for stack operations.

A value of Yes (t) enables the use of the Paris -always instructions; a value of No (nil)

disables their use. This option is disabled by default.

For an example of code generated when this option is set to Yes, see the last example under
the Machine Type option description.

Use Code Walker

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (t)
slc::*use-code-walker*

This option controls whether the code walker portion of the *Lisp compiler is enabled.

The default value of Yes (t) enables the code walker. A value of No (nil) disables the code
walker.

The code walker allows the *Lisp compiler to fmd type declarations it would otherwise
miss, and to compile *Lisp code more thoroughly.

If the code walker is enabled, the compiler sees declarations in all locations permitted by
Common Lisp, and will compile all properly declared code.

If the code walker is disabled, the compiler will only see declarations within *defun, *Iet,

Iet, and *Iocally forms, and will only compile code within these *Lisp forms:

*set

*or

*max

*pset

*and

*min

*setf

*)cor

*Iocally

pref

*Iogior

*sum

*Iogand

*integer-Iength

*Iogxor

Additionally, the predicates for *when, *unless, *If, and *cond and the variable initialization
forms for *Jet and *Iet* variables will be compiled, but the body code of these forms will
not.

Version 6.1, October 1991

(
(

'"

(."

.. /

/

Chapter 5. *Lisp Compiler Options 73
t i Iii:W: : iii:: 1::1 H:::::I J: u::n::::::::!!: Ii : 11m:::: lmll i::: ilill:Uililii!i liililiiilii I!III !lIEl j I Jim Iml Ii: j Ii]1I1i!j}jjiliiilillilill

Use Undocumented Paris

Values:
Default:
Variable:

Yes (t), No (nil)

Yes (t)
use-undocumented-paris

The Use Undocumented Paris compiler option determines whether or not the code gener­
ated by the *Lisp compiler uses undocumented Paris instructions.

The default value of Yes (t) allows the use of undocumented Paris instructions. In many
cases, enabling this option significantly increases the execution speed of compiled *Lisp
code.

A value of No (nil) disallows the use of most undocumented Paris instructions.

For example, with Use Undocumented Paris set to Yes (t), compiling

(*sum (if!! bl sB sB-2»

results in code that includes three internal, undocumented Paris functions in the CMI pack­
age. When the same *sum statement is compiled with this option set to No (nil), the
generated code includes only documented functions in the CM package.

If the Use Undocumented Paris option is disabled, it still allows the *Lisp compiler to gen­
erate undocumented Paris routines in cases where no appropriate documented Paris
instructions exists. However, if a documented instruction exists, it will be used, even if the
undocumented instruction is faster.

Verify Type Declarations

Values: No (nil), Current-Safety (:current-safety), Yes (t)
or an integer between 0 and 3

Default: Current-Safety (:current-safety)
Variable: *verify-type-declaratlons*

The Verify Type Declaration compiler option determines whether or not the *Lisp compiler
generates type verification code for arguments to user-defined functions that have been
given either the or declare type declarations.

This option is primarily useful for debugging *Lisp programs. The most common user er­
rors are declaring pvar arguments incorrectly and violating type declarations.

Version 6.1, October 1991

74 *Lisp Dictionary
111111: 111 111111111111::illililllillllllliiiii!::!IIIIIIIII:mllIl!ilIl:i 11111111111111:1111111: !!I 11111: II: iili!iii!illllllli:::!!!:::IIUliIIilllll!llliillllli I II Ii Ill!IiEli!i:!liiiiiil

These errors are often hard to track down because the results of violating a type declaration
can be unpredictable. With the Safety option set at 3, and the Verify Type Declarations option
enabled, the compiler generates code to catch erroneous and violated type declarations im­
mediately.

The legal integer values for this option are:
o No error checking is done.
1 Minimal error checking is done.
2 Moderate error checking is done (more than levell, but less than level 3).
3 Full type verification error checking is done.

A value of Yes (t) causes to the compiler to generate the maximum amount of error check­
ing code, and is equivalent to a value of 3.

A value of No (nil) prevents the compiler from generating any type verification code and
is equivalent to a value of O.

The default value of Current-Safety (:current-safety) sets the verification level based on
the current safety level. If the Safety option is set to 0, and Verify Type Declarations is set
to Current-Safety, no verification code is generated. With Safety at 3, verification becomes
likewise set to 3, and so on.

As an example, consider the following *sum expression.

(*surn (the (field-pvar 32) quux»)

At a Verify Type Declarations level of O. the compiler generates no type checking code, so
this *sum expression compiles into

(crn:global-unsigned-add (pvar-location quux) 32)

At Verify Type Declarations levell, the compiler generates minor error checking code:

(progn
(if (not (*lisp-i:internal-pvarp quux»
(slc::error-doesnt-rnatch-declaration

quux '(pvar (unsigned-byte 32»»
(crn:global-unsigned-add (pvar-location quux) 32»

In this case, a test is done to make sure that quux is a pvar.

Version 6.1. October 1991

Chapter 5. *Lisp Compiler Options 75
1m i 1111111 II!IElllllilllliili 111111 1111 ElIIIIIliIIE :1 1111111 1IIIIIiIlliililliiilJlIlIi iilllIllIlIiElllillillllliiiiilllliII: 11111111111:1111 HI 1111111111111111 :11111 1111Ii11ij1il11l1

At Verify Type Declarations level 2, the compiler generates more error checking code:

(progn
(if (not (and(*lisp-i:internal-pvarp quux)

(eq (pvar-type quux) :field»)
(slc::error-doesnt-match-declaration

quux ' (pvar (unsigned-byte 32»»
(cm:global-unsigned-add (pvar-location quux) 32»

Here, the verification code insures that quux is a field-pvar.

At Verify Type Declarations level 3, the compiler generates the maximum error checking
code:

(progn
(if (not (and(*lisp-i:internal-pvarp quux)

(eq (pvar-type quux) : field)
(eql (pvar-length quux) 32»)

(slc::error-doesnt-match-declaration
quux ' (pvar (unsigned-byte 32»»

(cm:global-unsigned-add (pvar-location quux) 32»

In this case, the verification code tests that quux is a fleld-pvar of length 32.

Warning Level

Values:
Default:
Variable:

High (:hlgh). Normal (:norrnal), None (:none)
Normal (:norrnal)
warnlng-level

The Warning Level option controls the warnings produced by the *Lisp compiler.

A warning level value of High (:hlgh) causes the compiler to generate a warning whenever
an expression is not compiled. The warning tries to explain why the expression is not com­
piled. Usually the cause is a lack of type declarations, as shown in the following example:

(*proclaim ' (type (pvar (signed-byte 8» s8»
(*set s8 (+!! s8 variable»

Version 6.1, October 1991

76
1111 Iliiilllllllilllil milil illllll

*Lisp Dictionary
mlill 111111111111111 111111 Ililillilllillii!illllllllil ilIiillilHllEIIlii!illllllil1

Attempting to compile the above code with the warning level set to High (:hlgh), produces
the following warning:

;;;

, , ,

Warning: *Lisp Compiler: While compiling VARIABLE:

The expression (*LISP-I::*SET-1 sa (+!! sa VARIABLE» is not compiled

because the *Lisp compiler cannot find a declaration for VARIABLE

By contrast, the following form can be successfully compiled because the data type ofvarl­
able is supplied

(*proclaim '(type (pvar (signed-byte 8» s8»
(*set s8 (+!! s8 (the (pvar (signed-byte 8» variable»)

The default warning level of Normal (:norrnal) causes the compiler to generate warnings
only for invalid function arguments and type mismatches.

For example, with warning level set to Normal (:norrnal), an attempt to compile

(*proclaim ' (type (field-pvar 8) u8»
(*proclaim ' (type boolean~pvar bl»
(*set u8 (-!! bl»

results in this warning:

Warning: While compiling B1:

Function -I! expected a numeric pvar argument but got a boolean pvar argument.

At a warning level value of None (:none) the compiler does not signal warnings.

Version 6.1, October 1991

!III! i .1im!

Part II

*Lisp Dictionary

*Lisp Dictionary absll
; :7~rr; mIT ; mum m :mmll! JIIIi:::r:ICN1RtI1m :::::::!!IW ; I. iI!!ij !Rmm:I!!:: lW 1

absl! [Function]

Takes the absolute value of the supplied pvar.

SYNTAX

absll numeric-pvar

ARGUMENTS

numeric-pvar Numeric pvar. Pvar for which absolute value is calculated.

RETURNED VALUE

absolute-value-pvar
Temporary numeric pvar. In each active processor, contains the
absolute value of the corresponding value of numeric-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The absll function takes the absolute value of numeric-pvar. It returns a temporary
pvar that contains in each active processor the absolute value of the corresponding
value of numeric-pvar. The absll function provides the same functionality for numeric
pvars as the Common Lisp function abs provides for numeric scalars.

EXAMPLES

For non-complex numeric pvars, absll returns the positive magnitude of numeric-pvar
in each active processor. For example, the following are equivalent:

(abs!! pvar) <=>
(abs!! (!! -5)) <=>

Version 6.1, October 1991

(if!! (rninusp!! pvar) (-!! pvar) pvar)
(!! 5)

79

absll
191!

*Lisp Dictionary
11 Ul1II11II!1I1lU! III 11111111111111 II 11111 UII U! mill II n III m l1li1 11!111llUlfliHfl IIll n f W] U

For complex PVar8, absll returns the complex magnitude of numeric-pvar in .each
active processor, as a floating-point number.

(abs!! complex-pvar) <->
(sqrt!! (+!! (expt!! (realpart!! complex-pvar) (!! 2»

(expt!! (imagpart!! complex-pvar) (!l 2»»

(absll (ll #c(4 3») <=> (!! 5.0)

NOTES

80

It is an error if any of the num~c-pvar arguments contains a non-numeric value in any
active processor.

Version 6.1, October 1991

/
\

"

\

*Lisp Dictionary aeosll, aeoshll
I! 21! f g 211m fl!NlIll!nll HI !J Ullill ! If! ! ImIUmlI limu IUli11i H ! !1J !!I!iKnlffifl! ! lHlii!! Iml m II I ! ! 1

acosl!,acoshl!
Take the arc cosine and arc hyperbolic cosine of the supplied pvar.

SYNTAX

aeosll
acoshll

numeric-pvar
numeric-pvar

ARGUMENTS

[Function]

numeric-pvar Numeric pvar. Pvar for which the arc cosine (arc hyperbolic
cosine) is calculated.

RETURNED VALUE

arc-cosine-pvar Temporary numeric pvar. In each active processor, contains the arc
cosine (arc hyperbolic cosine) in radians of the corresponding value
of numeric-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The acosll function calculates the arc cosine of numeric-pvar in all active processors.
It returns a temporary pVar containing in each active processor the arc cosine in radians
of the corresponding value ofnumeric-pvar. Similarly, the aeoshll function calculates
the arc hyperbolic cosine of numeric-pvar in all active processors. The aeosll and
aeoshll functions provide the same functionality for numeric pvars as the Common
Lisp functions aeos and acosh provide for numeric scalars.

Version 6.1, October 1991 81

acosll,acoshll *Lisp Dictionary
T r 11 11 m N m Wi Hilum !flU 1I11111$m II T lIT $W 1m f

EXAMPLES

If numeric-pvar contains non-complex values, acosll returns the arc cosine in each
active processor, while acoshll returns the arc hyperbolic cosine in each active proces­
sor. For example:

(acos!! (!! -1.0»
(acosh!! (!! 11. 591953))

<-> (!! 3.1415927)
<-> (!! 3.1415927)

If numeric-pvar contains complex values, acosll returns the complex arc cosine in
each active processor, while acoshll returns the complex arc hyperbolic cosine in each
active processor:

(acos!! (!! ic(-1.0 0.0»)
(acosh!! (!! ic(11.591953 0.0»)

<-> (!! ic(3.1415927 0.0»
<-> (!! ic (3.1415927 O. 0»

NOTES

82

It is an error if numeric-pvar contains integer or floating-point values of magnitude
greater than 1.0 in any active processor. Complex values with magnitude greater than
1.0 are allowed.

It is an error if numeric-pvar contains a non-numeric value in any active processor.

Version 6.1, October 1991

*Lisp Dictionary add-initlalization
€. 1 IJ1MmiWmmMWmw g 111:; 1m MJ i i J iffiilJll { 1m: JmlJ1PMl~ 1 ,,'If li If q II: lm~ : : ITm

add-initialization [Function]

Appends a *Lisp form to one or more initialization lists, which are evaluated before and
after *cold-'boot and *warm-boot.

SYNTAX

add-Initialization name-of-form form init-list-name

ARGUMENTS

name-of-form Character string. Name of initialization being added.

form Any *Lisp fomi. Code to evaluate at initialization time.

init-list-name Symbol or list of symbols. Initialization list(s) to which the code
is to be added.

RETURNED VALUE

nil Executed for side effect.

SIDE EFFECTS

The list or lists specified by init-list-name are modified by appending the initialization
specified by form.

DESCRIPTION

The function add-initialization adds a named initialization form to one or more of the
following *Lisp initialization lists:

• *before-*cold-boot-initializations*

*Lisp code evaluated immediately prior to any call to *cold-boot.

• *after-*cold-boot-initializations*

*Lisp code evaluated immediately after any call to *cold-boot.

Version 6.1, October 1991 83

add-initialization ·Lisp Dictionary
7 U UI !1!!wn ! 1m 11m 11 TMILI :nr iilliRnllJl1 1 Ii iilliR II Wi!! mUIUW! ! I! !1

• *befor&-*warm-boot-Inltlallzatlons*

*Lisp code evaluated immediately prior to any call to *warm-boot.

• *after-*warm-boot-Inltlallzatlons*

*Lisp code evaluated immediately after any call to *warm-boot.

The forms in these lists are evaluated in the order in which they were added to the
initialization lists.

The argument name-of-form is a character string that names the *Lisp code being
added to the specified list(s). The argumentform may be any executable *Lisp form.

The init-list-name must be either one of the initialization list symbols above or a list
of these symbols. In the latter caset the form is added to each initialization list named.

The function delete-initialization may be called with name-of-form to remove the ini­
tialization from the list(s).

EXAMPLES

84

The function add-Initialization is the correct way to add an initialization form to any of
the above lists. For example,

(add-initialization "Recompute Important Pvars"
, (recompute-important-pvars *number-of-processors-limit*)
'*after-*cold-boot-initializations*)

adds an initialization named "Recompute Important Pvars" to the list *after-*cold-boot­
initializations*, which calls a user-defined function named recompute-Important-pvars

with the current number of processors.

The same initialization can be added to more than one list. For example,

(add-initialization "Yell About Booting"
, (format t "*Lisp has just been booted.")
, (*after-*cold-boot-initializations*

*after-*warm-boot-initializations*))

adds an initialization to both *after-*cold-boot-initializations· and *after-*warm-boot­

initializations·, which displays a warning message immediately after any call to
·cold-boot or *warm-boot.

Because add-lnltlalization is a function, the form and init-/ist-name arguments must be
quoted if they are not meant to be evaluated during the call to add-lnitialization.

Version 6.1, October 1991

(

I

\

*Lisp Dictionary add-initlalizatlon
RF I@ am f mmrnnqggU!mminl!f!!8 P!!!!!l lRF!!W___ 'jQ r::r:w

NOTES

Adding two foons with the same name to the same list is permissible only if the forms
are the same according to the function equal; otherwise an error is signaled.

REFERENCES

See also the related operation delete-initialization.

See also the following Connection Machine initialization operators:
·cold-boot *warrn-boot

See also the character attribute. initialization operator initlaliz~haracter.

Version 6.1. October 1991 85

address{-nth, -plus-nth, -rank} *Lisp Dictionary
r 1001 [1211 i 1111 ill! nnw 1 ; UN! W rim 1 @ 0l@ r g @!BUI n l:0ltH m WNUlll j! 1 IT ;gm@iIITW

address-nth, address-plus-nth,
address-rank [Function]

These are the scalar couterparts of the functions address-nthll, address-plus-nthll, and
address-rankll

address-nth returns the coordinate of an address object along a specified dimension.
address-plus-nth increments the coordinate of an address object for a specified dimension.
address-rank returns the number of coordinates specified by an address object.

SYNTAX

address-nth address-object dimension => coordinate
address-plus-nth address-object increment dimension => inc-addresss-obj

=> rank address-rank address-obj

ARGUMENTS

address-object

dimension

increment

Front-end address object. as created by the function grid.

Integer. Zero-based number of the dimension to be returned or
incremented (for address-nth and address-plus-nth only).

Integer. Amount by which the specified dimension is to be
incremented (for address-plus-nth only).

RETURNED VALUE

coordinate Integer. The coordinate of address-object along the dimension
specified by dimension.

inc-addresss-obj Address object. Copy of address-obj with the coordinate specified
by dimension incremented by increment.

rank Integer. Number of coordinates in address-obj.

SIDE EFFECTS

None.

86 Version 6.1, October 1991

(

(

'\

J

*Lisp Dictionary address(-nth, -plus-nth, -rank}
11:: r 1 1:1152111 1 I 11 I 1 li1 mmmlll1lll UlmmlR II 1R I mml!1liTlll lllW :m~!J·; iI ! f· !: I 111m t 111!*.: Vi fWmm

DESCRIPTION

The function address-nth returns the grid (NEWS) coordinate of address-object along
the dimension specified by dimension. The argument dimension must be an integer
between 0 and one less than the number of dimensions in address-object.

The function address-plus-nth increments the nth coordinate of address-obj, where n
is the grid (NEWS) dimension specified by dimension.

The function address-rank returns the number of coordinates in address-obj.

EXAMPLES

(setq addr-obj (grid 12 3 0 29»

(address-nth addr-obj 0) => 12
(address-nth addr-obj 3) => 29

(address-pIus-nth addr-obj 5 0) <=>

(address-rank addr-obj) => 4

REFERENCES

See also the related operations
address-nthll

grid grid II

address-plus-nthll

grld-relatlvell

Version 6.1, October 1991

(grid 17 3 0 29)

address-rankll

selfl!

87

address{-nthlf, -plus-nthlf, -ranklf} *Lisp Dictionary
mmmlllllmilm!211 I 11 i1 1.I 1 00 I PM 11 1 UIIIII n! !! Ill! 2 II UII1111 Imm I If

address-nthll, address-plus-nth II ,
address-rankll
These functions perform simple operations on address object pvars.

[Function]

address-nthlf creates an address object pvar containing the specified coordinates.
address-nthlf returns a copy of an address object pvar with each of its values incremented

along the specified dimensions.
address-ranklf returns a pvar containing the rank of each value of an address object pvar.

SYNTAX

address-nth I I
address-plus-nthlf

address-ranklf

ARGUMENTS

address-obj-pvar dimension-pvar => coordinate-pvar
address-obj-pvar increment-pvar dimension-pvar

=> inc-address-pvar
address-obj-pvar => rank-pvar

address-obj-pvar Address object pvar, as created by the function gridlf.

dimension-pvar Integer pvar. Zero-based number of the dimension to be
retrieved/incremented (address-nthll and address-plus-nth II
only).

increment-pvar Integer pvar. Amount by which the coordinate specified by
dimension-pvar is to be incremented (address-plus-nthll only).

RETURNED VALUE

coordinate-pvar Temporary integerpvar. In each active processor, contains the coor­
dinate of the corresponding value of address-obj-pvar along the
dimension specified by dimension-pvar.

inc-address-pvar Temporary address object pvar. In each active processor, contains a
copy of the value of address-obj-pvar with the coordinate speci­
fied by dimension-pvar incremented by increment-pvar.

rank-pvar Temporary integer pvar. In each processor, contains the number of
coordinates in the corresponding value of address-obj-pvar.

88 Version 6.1, October 1991

(
,

\

*Lisp Dictionary address{-nthll. -plus-nthll. -rankll}
UiW1I!lMllli ~ WII : limn 1m :Jfllill mmruw2Kll m i H 111 1111 :uml If T g 221 WWl 1 71 r ,,. 1111 ! !! li!!ilim:1Irr

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

For each processor, address-nthll returns the nth grid (NEWS) coordinate of address­
object-pvar, where n is the dimension specified by the corresponding value of
dimension-pvar.

For each processor, address-plus-nthll returns an address object pvar that is a copy of
address-obj-pvar with the dimension specified by dimension-pvar incremented by
increment-pvar.

For each processor, address-rankll returns in each processor the number of coordinates
in the corresponding value of address-obj-pvar.

EXAMPLES

(address-nth! ! (grid! ! x y z) (! !
(address-nth! ! (grid! ! x y z) (! !

(address-pIus-nth!! (grid! ! (! ! x)
(! ! 5) (! ! 1»

<=>
(grid! ! (! ! x) (+! ! y (! ! 5» (! !

(address-rank! ! (grid! ! (! ! x) (! !

REFERENCES

See also the related operations
address-nth

grid grldll

Version 6.1, October 1991

address-plus-nth

grid-relative I I

1))
2))

(! !

z»

y»)

=> (! ! y)
=> (! ! z)

y) (! ! z))

<=> (! !

address-rank

8elfll

2)

89

allasll
111m !P q

*Lisp Dictionary
n I. ' Ull'

aliasll [Macro]

Returns the actual contents of the specified subfield of a pvar, redefmed as a temporary
pvar of appropriate size and type.

SYNTAX

allasll sub field-selector

ARGUMENTS

sub field-selector Pvar subfield selector. Must be a call to either aref!! or
row-major-arefll, a call to a structure pvar slot accessor defmed by
*defstruct, or a call to one of the functions Imagpartll, realpartll, or
load-bytell.

RETURNED VALUE

aliased-pvar A temporary pvar of the same data type as the referenced pvar sub­
field, such that the data contained'in the aliased pvar is identical to
the data contained in the pvar subfield, rather than being a copy of
the data (i.e., the aliased pvar references the same area of eM
memory as the subfield selector.)

DESCRIPTION

90

In *Lisp, a parallel array accessor, such as arefl! or row-maJor-arefll, returns a tempo­
rary pvar that is a copy of the element being referenced. Likewise, a parallel structure
slot accessor, as defined by a call to *defstruct, returns a temporary pvar that is a copy
of the parallel structure slot being accessed. Other pvar operations that return subfields
of a pvar, such as Imagpartll, realpartll, and load-bytell, by defmition return a copy of
the referenced subfield. For most purposes, this copying is transparent and makes no
difference.

1\vo important exceptions are:

• passing a pvar subfield to a user-defmed function that must modify the sub­
field directly

Version 6.1, October 1991

./

'\....

/
i

\

(

"

*Lisp Dictionary alias"
!tID)! '! r:~ !! un: H !~%)lm:WI!:ummn J:,jiIMWfi*reWC; :lm!!ii1l1~ ili'f n%ill~f i lliMMM nl! 'wW" t nmm

• passing a pvar subfield to any function or macro where the size of the pvar
subfield makes copying inefficient (i.e., a structure slot that contains another
structure of considerable size).

In these two cases, the aliasll macro can be used to specify that the actual contents of
the pvar subfield should be returned, rather than a copy.

The aliasll macro creates and returns a temporary pvar defined in such a way that the
contents of the pvar are the actual contents of the referenced pvar subfield. The aliasll

macro in effect "renames" or "aliases" the portion of a pvar referenced by the supplied
sub field-selector. The aliased-pvar returned by allasll may be freely referenced and
modified as a pvar of the same data type as the pvar subfield.

Important: The alias II macro is necessary only in the two cases mentioned above. In
all other cases, use of the alias" macro has no effect and detracts from readability of
code. In some cases, explicit use of the alias II macro is redundant. The following func­
tions effectively perform an aliasll operation on their arguments:

*setf *pset *news

EXAMPLES

The sub field-selector argument to aliasll can be an array reference, i.e., a call to either
arefll or row-maJor-arefll. For example, given the array defined by

(*defvar array-pvar (!! ,2A«1 2 3) (456»»

both of the following expressions modify the same element of the array.

(modify-array-element
(alias!! (aref!! array-pvar (!! 1) (!! 1»»

(modify-array-element
(alias!! (row-major-aref!! array-pvar (!! 4»»

The sub field-selector argument to alias!! can also be a structure slot reference, i.e., a
call to a slot accessor function created by *defstruct.

Version 6.1, October 1991 91

allasll *Lisp Dictionary
171 nnw!? mUI! mrm mwm 11 Hrll!!!!!! 1 Jnr If i

92

The following code illustrates how to use allasll with structure pvars:

(*defstruct history-struct
(description nil :type (vector string-char 1000»
(sickness-id a :type (unsigned-byte 32»)

(*defstruct patient
(id-no a :type (unsigned-byte 8»
(doctor a :type (unsigned-byte 8»
(sick-p t : type boolean)
(case-history nil :type (pvar (array history-struct (100»»
)

(defun modify-patient-slot (slot-pvar value)
(declare (type (field-pvar *) slot-pvar value»
nil
(*set slot-pvar value»

(defun in-error ()
(*let «ellen (make-patient!!»)

(declare (type (pvar patient) ellen»
(modify-patient-slot (patient-sick-p!! ellen) nil!!)
(ppp (patient-sick-p!! ellen) :end 5»)

(defun correct ()
(*let «ellen (make-patient! I»~)

(declare (type (pvar patient) ellen»
(modify-patient-slot

(alias!! (patient-sick-p!! ellen» nil!!)
(ppp (patient-sick-p!! ellen) :end 5»)

The In-error function is in error because (patlent-slck-pll ellen) returns a temporary
pvar containing a copy of the data in ellen's sick-p slot. This pvar is allocated on the
stack. The function modlfy-foo-slot then attempts to *set this temporary pvar, rather
than the actual data stored in the structure ellen. The original data is not modified.

The correct function is correct because allasll returns the actual slot slck-p from ellen
as a pvar that can be modified by a call to the user-defmed function modlfy-patlent­
slot.

The sub field-selector argument to allasll can also be one of the pvar subfield opera­
tions imagpartll, realpartll,and load-byte!!. (Due to its implementation, alias II cannot
be applied to these three operators in the *Lisp simulator.)

For example,

(alias!! (imagpart!! complex-pvar»
(alias!! (realpart!! complex-pvar»
(alias!! (load-byte!! integer-pvar position-pvar size-pvar»

Version 6.1, October 1991

(

\

*Lisp Dictionary allasl!
Illl in m nun mF:lIIlllUUl II in lIIllllIIllll t; II. n r n i ; !i§;W nmnrllll! 111 111m Ii Wliff j Ii! !limn

Besides passing pvar subfields to functions that modify those fields, aUasl! may also
be used to prevent copying of large pvar subfields.

For example, in the expression

(hypoeondriae-p!! {alias!! (patient-ease-history!! ellen)))

the user-defined function hypochondriac-pI! does not modify the case-history slot of
ellen. Even so, using aliasl! in this expression is more efficient because it prevents the
possibly quite large case-hlstory slot from being copied in the process of passing it to
the function hypochondrlac-pn.

An example of when not to use the aliasll macro is provided by the expression

{*set dest-pvar
{+! ! {alias!! {aref!! array-pvar (!! 0)))

{alias!! (structure-slot!! strueture-pvar))))

Neither of the calls to aliasl! are necessary in this expression, because no modification
of the referenced location takes place. It is also unnecessary and redundant to apply
alias" to the arguments of the *Lisp functions *setf and *pset. For example, in the ex­
pression

(*setf {alias!! (aref!! array-pvar (!! 3))) (!! 2))

the *setf macro effectively performs an aliasl! operation on its first argument, so the
extra call to allasn is unnecessary.

Also, in many cases it is not necessary to use the operator aliasn in combination with
arefll to prevent the copying of large array pvars, because the *Lisp compiler is able
to recognize and optimize cases where this copying is unnecessary. See the dictionary
entry for arefll for more information.

NOTES

The aliasn macro may not be applied to an array reference that uses indirect addressing,
i.e., a call to arefll with an index pvar containing different values in each processor. The

, aliasn macro also may not be applied to array accessors that operate on arrays in side­
ways (slicewise) orientation. These operators are:

sideways-arefll row-maJor-sldeways-arefll

REFERENCES

See also the related operator taken-asl

Version 6.1, October 1991 93

*all *Lisp Dictionary
] laiR Iff 1 UJ nm I 1 If !i1R1Wi m 1 PI q TIff! I H II ['fin ' : 11m film m1:U' [i!F 1_

*all [Macro]

Executes *Lisp forms with all processors selected.

SYNTAX

*all &body body

ARGUMENTS

body

RETURNED VALUE

body-value

SIDE EFFECTS

*Lisp forms. Any number of statements, which are executed in
order.

Scalar or pvar value. Value of final form in body.

Temporarily binds currently selected set to include all processors during execution of
the forms in body.

DESCRIPTION

The macro *all is one of the processor selection operations. It executes a set of *Lisp
forms with the currently selected set bound to include all processors in the current VP
set. The value of the fmal expression in the body of the *all form is returned.

EXAMPLES

94

The most common use of the *all macro is to ensure that all processors are selected
before the execution of a section of code. For example, the form

(*all (*set every-proc (!! 5»)

Version 6.1, October 1991

/

*Lisp Dictionary *all
wm~W'i!k"':'f""'biJmmo~MW. . w.P :: ,WlliW!1lmm,M~~m*rm:!IWmrrmrmq~Ri !ll!!ll!i1%.pwrm!ll!i1%.~!ll!~ 00l~! !ll!i1%.rw~mJrml::!ll!R 00l!1 wm m!%.$!!

selects all processors and then uses *set to store 5 as the value of every-proc in every
processor. Using *all guarantees that every-proc has the same value in every processor
after this operation.

Processor selection macros can be nested. The expression

(*all
(*set numeric-pvar (random!! (!! 10.0»)
(*when «!! numeric-pvar (!! 1»

(*set numeric-pvar (I!! numeric-pvar»»

uses *all to select all processors, *set to store a random floating-point value between 0
and 10 into numeric-pvar for every processor, and *when to select only those processors
in which the value stored in numeric-pvar is less than 1. In these processors, //I is used
to calculate the reciprocal of the value in numeric-pvar, and *set is used to store the
calculated value back into numeric-pvar.

Because *all temporarily binds the currently selected set, and restores its original value
upon exiting, it can be used within other processor selection macros to temporarily
reselect all processors. For example, the expression

(*when «!! data-pvar (!! 100»
(I (*sum data-pvar)

(*a11 (*sum data-pvar»»

uses *when to select those processors in which the value of data-pvar is less than 100.
The global function *sum is used to take the sum of the values in these processors. Then
*all is used to temporarily rebind the currently selected set so that *sum can be used to
take the sum of the values of data-pvar in all processors. The result returned by the
entire expression is the ratio between the sum of the values of data-pvar that are less
than 100 and the sum of all values of data-pvar.

NOTES

The *cold-boot and *warm-boot operations force reselection of all processors, but these
operations also reset *Lisp and clear the *Lisp stack. See the definitions of *cold-boot

and *warm-boot for more information.

It is not necessary to use *all around every body of code. The *all macro is only neces­
sary only in three cases:

• Around the body of functions that need all processors active, but are called
from within code that restricts the currently selected set.

Version 6,1, October 1991 95

*all *Lisp Dictionary
mnm 111 m i lim II nm IIWIlI! ml r Imll I pr iff f iml! Wi I1ml fi1 :! TIl I :iIi HllIi11ilU lliillf Rlllm!!?

96

• Around any code that requires all processors to be selected temporarily. For
example, see the selective sum and division example above, which momentari­
ly changes the currently selected set.

• Within code that changes the current VP set. Each VP set keeps track of its own
currently selected set of active processors. To avoid using a previously
restricted set of active processors when switching betweert VP sets, use *all.

An example of the last case is:

(def-vp-set fred' (16384»
(def-vp-set wilma' (8192»

(*with-vp-set fred
(*when «!! (self-address!!) (!! 100»

(format t "-%In FRED, 41= active procs should be 100, -
and is: -d" (*sum (!! 1»)

(*with-vp-set wilma
(format t ",-%In WILMA, 41= active procs should be 8192, -

and is -d" (*sum (!! 1»)
(*with-vp-set fred

(format t "-%In FRED, the 41= active procs should still -
be 100, and is -d" (*sum (!! 1»)

(*all
(format t "In FRED, the 41= active procs should now -

be 16384, is -D" (*sum (!! 1»»)
(format t "-%In WILMA, 41= active procs should still -

be 8192, is: -d" (*sum (!! 1»»
(format t "-%In FRED, 41= active procs should again -

be 100, is: -d" (*sum (!! 1»»)

This example produces the following output:

In FRED, 41= of active procs should be 100, and is: 100
In WILMA, 41= of active procs should be 8192, and is: 8192
In FRED, 41= of active procs should still be 100, and is: 100
In FRED, 41= of active procs should now be 16384, is: 16384
In WILMA, 41= of active procs should be 8192, is: 8192
In FRED, 41= of active procs should again be 100, is: 100

Note the use of*all within the *with-vp-set forms in this example to ensure that all the
processors of the newly selected VP set are active. Note also the use of the *Lisp idiom
(*sum (II 1» to determine the number of active processors.

,
Forms such as throw, return, return-from, and go may be used to exit an external block
or looping construct from within a processor selection operator. However, doing so will

Version 6.1, October 1991

/

*Lisp Dictionary *all
11:1: l:nEm;;;iii:::cmnmm.iif1l1 lir:mmil1!1lITIr!1UiiP··W 7t:11_!IT ! imm iiifi!IWrm!l1mmmnm!llMlii! n

leave the currently selected set in the state it was in at the time the non-local exit form
is executed. To avoid this, use the *Lisp macro with-cslHSaved. For example,

(defun safe-division. (y x)
(*when (evenp!! (self-address!!»

(block division
(with-css-saved
(*all

(*if (>!! y (!! 0»
(if (*or (=!! (!! 0) x»

(return-from division nil)
(/ !! y x»»»»

Here return-from is used to exit from the division block if the value ofxin any proces­
sor is zero. When the wlth-css-saved macro is entered, it saves the state of the
currently selected set. When the code enclosed within the with-cslHSaved exits for any
reason, either normally or via a call to an non-local exit operator like return-from, the
currently selected set is restored to its original state.

See the dictionary entry for with-cslHSaved for more information.

Implementation Note:

If the last body form is either a *all or a *when form, then the inner form does not savel
restore the state of the current selected set. This is mainly an optimization feature--it
does not change the semantics of your code.

REFERENCES

See also the related operators
*case
*if

casell

iftl

Version 6.1, October 1991

*cond

*unless

condll

*when

*ecase ecasell

with-cslHSaved

97

allocate II
.11 31

allocate I I

*Lisp Dictionary
nIP]:!11! I ill! mm 11 lnll m lHrm; Hi 111 HI: :11l!2m ill:n : . n ·1 . ?l:l n

[Macro]

Allocates a global pvar.

SYNTAX

allocatell &optlonal pvar-initial-value name type

ARGUMENTS

pvar-initial-value Pvar expression. If supplied, is value with which global pvar is
initialized. If not supplied, a pvar with undefined values is created.

name

type

Symbol. If supplied, stored as the symbolic name of the allocated
pvar.

Data type specification. If supplied, determines the data type of
. the allocated pvar. Must be compatible with data type of
pvar-initial-value argument. If not supplied, a general mutable
pvar is created.

RETURNED VALUE

global-pvar The created global pvar is returned.

SIDE EFFECTS

The returned pvar is allocated on the heap.

DESCRIPTION

98

This operation creates a global pvar with the specified pvar-initial-value, name, and
type. Global pvars are deallocated during a call to *cold-boot, and are not automatically
reallocated, as are permanent pvars created by *defvar.

Version 6.1, October 1991

/
\

*Lisp Dictionary allocate!!
Uimi ; f mm Mti n mI! f1!l121111i@m

EXAMPLES

Global pvars of any data type may be allocated on the heap using allocate!!:

(setq a (allocate!! (!! 5)))

(setq b (allocate!! (evenp!! (random!! (!! 2)))
'new-pvar 'boolean-pvar))

(setq heap-pvar
(allocate!! (!! #(1 2 3)) nil

'(pvar (array (unsigned-byte 8) (3)))))

(ppp heap-pvar :end 2)
=> # (1 2 3) # (1 2 3)

The following example shows how allocate!! may be used to allocate pvars within any
VP set, and also how allocate!! is useful for creating an unspecifed number of global
pvars on demand.

(def-vp-set fred (list *minimum-size-for-vp-set*))

(defvar list-of-pvars nil)

(de fun main
(*with-vp-set fred

(loop
(process-data)
(when (extra-pvar-needed)

(push (allocate!! (!! 0) nil
'(pvar (unsigned-byte 32)))

list-of-pvars)))))

By defining the list-of-pvars with allocatell, the global pvars pushed onto the list may
be explicitly deallocated with the *deallocate operator whenever they are no longer
needed.

NOTES

Usage Note:

The allocate!! macro is intended to be called within user code, not at top level. It acts
much like the malloc operator in the C language, in allowing the programmer to
dynamically allocate CM memory within a program. Pvars allocated using allocate!!

are automatically deallocated during a *cold-boot. It is an error to attempt to reference
a global pvar deallocated by *cold-boot.

Version 6.1, October 1991 99

allocateJl *Lisp Dictionary
n I1!i R W IUKPililliJJW WIlIiR 1m Rill r l!l1 I T If [' 11m ·lniilf

Language Note:

Global pvars and permanent pvars are allocated on the CM heap. In contrast to global
pvars, which are allocated by allocate!! and deallocated with *deallocate, permanent
pvars are allocated by *defvar and must be deallocated by the function *deallo­
cate-*defvars.

A global pvar created with allocatell is simply returned. A permanent pvar created with
*defvar is bound to a global variable. Permanent pvars are reallocated during a call to
*cold-boot; global pvars are simply deallocated.

REFERENCES

100

See also the pvar allocation and deallocation operations
array!!

*deallocate

front-endll

make-arrayll

"

*deallocate-*defvars

*Iet
typed-vectorll

*defvar

Iet
vectorll

See the *Lisp glossary for deftnitions of the different kinds of pvars that are allocated
on the CM stack and heap.

Version 6,1, October 1991

c

*Lisp Dictionary allocate-processors-for-vp-set
~Will W1!1i11 HHiUf mn:mr liliIT) lItf 1fT 21 r H1 n f . n

allocate-processors-for-vp-set
allocate-vp-set-processors

[Function]

[Function]

Instantiates the specified flexible VP set, allocating virtual processors according to the
supplied dimensions or geometry.

SYNTAX

allocate-processors-for-vp-set vp-set dimensions &key :geometry

ARGUMENTS

vp-set

dimensions

;geometry

RETURNED VALUE

nil

SIDE EFFECTS

Flexible VP set. VIrtual processor set defined with def-vp-set.

Integer list or nil. Size of dimensions with which to instantiate
vp-set. Must be nil if geometry argument is supplied.

Geometry object obtained by calling the function create­

geometry. Defmes geometry ofvp-set.

Evaluated for side effect.

Defines geometry of and instantiates vp-set, and allocates any associated pvars.

DESCRIPTION

This function is used during program execution to instantiate a flexible VP set. A flex­
ible VP set is a VP set that has been defined by calling def-vp-set without supplying
specific dimensions or geometry. By omitting the geometry from a def-vp-set call and
later calling allocate-processors-for-vp-set, it is possible to create VP sets with dimen­
sions and geometries determined at run time. For example, VP set geometries might
depend on characteristics of data that are read from a file during program execution.

Version 6.1, October 1991 101

allocate-processors-for-vp-set *Lisp Dictionary
Him w::maillmW711Hu::::nr mil gYIm W r m 2U!.llnilllRl!Wmr ! ill Y

It is an error to invoke allocate-processors-for-vp-set before *cold-boot has been in­
voked, or to pass a fixed~size VP set as an argument.

The argument vp-set must be a flexible VP set defined by a call to the def-vp-set macro
in which the dimensions argument was nil and the :geometry-definltion-form keyword
argument was either nil or unsupplied.

The dimensions argument must be a list of integers or nil. If a list of integers is supplied,
each integer must be a power of 2. The product of the dimensions must be at least as
large as *minimum-sJze-for-vp-set* and, if larger than the physical machine size, a
power-of-two multiple of the physical machine size. Such a list specifies the dimen­
sions of a virtual array of processors named vp-set. The dimensions argument must be
nil if an argument is supplied to the keyword :geometry.

If a :geometry keyword argument is supplied, it must be a geometry object. If geometry
is provided, it incorporates information about the dimensions of the VP set being de­
fined. (A geometry object may be obtained by calling the function create-geometry.

See the definition of create-geometry for more details.)

EXAMPLES

102

This example shows how allocate-processors-for-vp-set, along with its companion
function deallocate-processors-for-vp-set, may be used to instantiate a flexible VP set
several times with a different geometry at each invocation.

(def-vp-set disk-data nil
:*defvars ((disk-data-pvar nil nil (pvar single-float))))

(defun process-files (&rest diskfiles)
(*cold-boot)
;;; at this point, disk-data-pvar has no memory allocated
;;; on the CM
(dolist (file diskfiles)

(let ((elements (read-number-of-elements-in file)))
(allocate-processors-for-vp-set disk-data

(list (next-power-of-two->= elements)))
;;; now disk-data-pvar has CM memory allocated
(let ((array-of-data (read-data-from-disk file)))

(array-to-pvar array-of-data disk-data-pvar
:cube-address-end elements)

(process-data-in-cm disk-data disk-data-pvar))
(deallocate-processors-for-vp-set disk-data))))

Version 6.1, October 1991

\

*Lisp Dictionary allocate-processo for-vp-set
§1 ; I;; ill! m em I i 1mW fila;; fiI@IIl]!amnrm lll!lm gmr fIlllllIIIIml! If W PI! HIIH m!IT' I1f

NOTES

The function allocate-vp-set-processors is an obsolete alias for allocate­

processo for-vP-Set, and behaves identically.

REFERENCES

See also the following VP set defInition and deallocation operators:
def-vp-set

deallocate-def-vp-sets

create-vp-set

deallocate-vp-set

See also the following geometry defmition operator:
create-geometry

let-vp-set

The following math utilities are useful in defIning the size of VP sets:
next-power-of-two->= power-of-two-p

See also the following flexible VP set operators:
deallocate-vp-set-processors

set-vp-set-geometry

Version 6.1, October 1991

deallocate-processo for-vP-Set

wlth-processors-allocated-for-vp-set

103

alloc:ated-pvar-p
I I i I !1f11I1l11U!lI!llJll!fmlmmll Hrmm I i II If !ill!!! !Ill! pm if fil

*Lisp Dictionary
mIlll! 1 mll1!RllEMllW

allocated-pvar-p [Function]

Tests whether a pvar has eM memory allocated for it and, if so, whether it is on the stack
or the heap.

SYNTAX

allocated-pvar-p pvar

ARGUMENTS

pvar

RETURNED VALUE

allocated-p

SIDE EFFECTS

None.

DESCRIPTION

Pvar expression.

A symbol. If pvar is allocated, either :stack or :heap is returned,
indicating where it is allocated. If pvar is not allocated then nil is
returned.

This function determines whether or not pvar has eM memory allocated for it. The
return value of allocated-pvar-p is either :stack, :heap, or nil. If its argument has been
allocated on the *Lisp stack and has not been deallocated, :stack is returned. If its argu­
ment has been allocated on the *Lisp heap and has not been deallocated, :heap is
returned. Otherwise nil is returned.

104 Version 6.1, October 1991

./

_.--.......,.\

/

*Lisp Dictionary allocated-pvar-p
I I I IIiIiHIff!IHii!l II 111111 ?Tn HE 1! IT n RUlni F l!lllil!2IlRil i HI lFI

EXAMPLES

(allocated-pvar-p (!! 3» => :stack
(allocated-pvar-p (allocate!! (!! 3») => :heap

(setq x (!! 3» => t<field-pvar 12-2>
(*warm-boot) => nil
(allocated-pvar-p x) => nil
(setq y (allocate!! (!! 2»)
=> t<field-pvar-* allocate!!-return 1336-2>
(*cold-boot) => 512
(32 16)
(allocated-pvar-p y) => nil

REFERENCES

See also the following general pvar information operators:
descrlbe-pvar

pvar-length

pvar-name

pvar-type

Version 6.1, October 1991

pvar-exponent-length

pvar-Iocatlon

pvarp

pvar-vp-set

pvar-mantlssa-length

pvar-pllst

105

alpha-char-pll *Lisp Dictionary
]!l! !I!D!211!1r] r ! rm 1 mar I I lilmiHT IHllmill] I rm w rr ! au mE

alpha-char-pll [Function]

Performs a parallel test for alphabetic characters on the supplied pvar.

SYNTAX

alpha-char-pll character-pvar

ARGUMENTS

character-pvar Character pvar. Tested in parallel for alphabetic characters.

RETURNED VALUE

alpha-charp-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of character-pvar is an
alphabetic character. Contains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The function alpha-char-pll is a parallel character predicate. It returns a temporary
pvar containing t in each active processor where the corresponding value of character­
pvar is an alphabetic character, and nil in all other active processors. The function
alpha-char-pll provides the same functionality for character pvars that the Common
Lisp character predicate alpha-char-p provides for scalar characters.

EXAMPLES

106

Alphabetic characters are all of the characters between tAA and tAZ, #\a and #Az. inclu­
sive. The pvar that alpha-char-pll returns contains t in each processor where the
corresponding value of character-pvar is one of these characters.

Version 6.1, October 1991

____ I

*Lisp Dictionary alpha-char-pll
m n :: 21112:::::: :11 .~.~ ,.; ~:MlM~~~%f%$.%~illlli;:::illlli: ::::n%f%%f%! :;1 _:mm!!I1ilW©lll$

For example, if char-pvar contains the values #\A, #\newline, #\Q, tAz., #\5, #\1, etc., then
the pvar returned by

(alpha-char-p!! char-pvar)

will contain the values t, nil, t, t, nil, nil, etc.

The function alpha-char-pll is most useful in combination with the processor selection
operators. For example, if text-pvar is a character pvar representing a string of text,
then

(*when (alpha-char-p!! text-pvar)
(* sum (!! 1»)

returns the number of alphabetic characters in the string. Here, the macro *when is used
to select only those processors containing an alphabetic character. Then, ·sum is
applied to the constant pvar (111) to return a count of the number of selected processors.

Version 6.1, October 1991 107

alphanumerlcpll *Lisp Dictionary
m 1 j 1 mm nil 1H r: j l!!lWl'H % 1 1 n Hi 1

alphanumericp! ! [Function]

Performs a parallel test for alphanumeric characters on the supplied pvar.

SYNTAX

alphanumericpll character-pvar

ARGUMENTS

character-pvar Character pvar. Tested in parallel for alphanumeric characters.

RETURNED VALUE

a/phanumericp-pvar
Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of character-pvar is an
alphanumeric character. Contains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

108

The function alphanumerlcpll is a parallel character predicate. It returns a temporary
pvar containing t in each active processor where the corresponding value of character­
pvar is an alphabetic or numeric character, and nil in all other active processors. Thus,
the following forms are equivalent:

(alphanumericp!! character-pvar)
<=>
(or!! (alpha-char-p!! character-pvar)

(digit-char-p!! character-pvar))

The function alphanumericpll provides the same functionality for character pvars that
the Common Lisp character predicate alphanumericp provides for scalar characters.

Version 6.1. October 1991

\

(
I

\..

/'

I\.

*Lisp Dictionary
[!if f!! l~ n :®m un:[: 1111 "1~!:mmn,

EXAMPLES

alphanumerlcp!l
~~®®M®®M®®M®®Mn:mil®mn,~~

Alphanumeric characters are all of the characters between tAA and tAZ., #\a and #\z, and
#\0 and #\9 inclusive. The pvar that alphanumerlcpll returns contains t in each processor
where the corresponding value of character-pvar is one of these characters. For exam­
ple, if char-pvar contains the values tAA, #\newline, #\Q, #\z, #\5, #\!, etc., then the pvar
returned by

(alphanumericp!! char-pvar)

will contain the values t, nil, t, t, t, nil, etc.

The function alphanumericpll is most useful in combination with the processor selec­
tion operators. For example, iftext-pvar is a character pvar representing a string of text,
then

(*when (alphanumericp!! text-pvar)
(*sum (!! 1»)

returns the number of alphanumeric characters in the string. The macro ·when is used
to select only those processors containing an alphanumeric character, and then ·sum is
applied to the constant pvar (111) to return a count of the number of selected processors.

Version 6.1, October 1991 109

amapll *Lisp Dictionary
@a!!HlI r mil In!) :: pm r f ::r ; f g 11 f if! f ! @i r

amapl! [Function]

Maps a function in parallel over a set of array pvars.

SYNTAX

amapll operator array-pvar &rest array-pvars

ARGUMENTS

operator Parallel function. Must accept the same number of arguments as
the number of array-pvar arguments supplied.

array-pvar, array-pvars
Array pvars. Combined in parallel using operator.

RETURNED VALUE

result-pvar Temporary array pvar. In each active processor, contains an array
whose value in each element is the result of combining the corre­
sponding elements of the arrays in the array-pvars using the
specified operator.

SIDE EFFECTS

The resulting pvar is allocated on the stack.

DESCRIPTION

110

The amapll function maps the supplied operator over the supplied array pvars. The
operator is applied in turn to each set of elements having the same row-major index
in the supplied array-pvars. Thus, the nth time function is called, it is applied to a list
containing the nth element in row-major order from each of the array-pvars.

The returned array pvar contains in each active processor an array whose value in any
given element is the result of applying operator to the values of the corresponding
elements of the arrays in the supplied array-pvars.

Version 6.1, October 1991

(
\
\..

(

*Lisp Dictionary amapll
Ilmg 1 :::mmill1i iii i lim i N [il!1lf:HI Il1i

The *Lisp function amapll is similar to the Common Lisp function map, but while map

works only on vectors, amapll works on any type of array pvar. The amapll function
requires no result type specification, as map does, because the result is always returned
as an array pvar.

For vectors, the amapll function behaves much like the map function in accepting vec­
tor pvar arguments of different element sizes and in limiting the mapping operation to
the length of the shortest vector pvar supplied. For all other types of array pvars, how­
ever, amapll expects the array sizes of the supplied array-pvars to be identical.

EXAMPLES

The amapll can be used to emulate vector operators such as the parallel vector addition
function v+lI. For example, v+/I is equivalent to calling amapll with an operator of'+II.
Thus:

(v+!! a b) <==> (amap!! ,+!! a b)

As another example, if y and x are vector pvars of length n, then

(*set y (amap!! 'log!! (amap!! 'cos!! x)))

is equivalent to

(dotimes (j n)
(*setf (aref!! y (!! j))

(log!! (cos!! (aref!! x (!! j))))))

REFERENCES

Also see the function *map, which behaves somewhat like amapll but does not return
a value.

Version 6.1, October 1991 111

*Lisp Dictionary *and
lSI 1 mama p II m IJIU21nn!!fflllU I !Ill!!If r 7!f1r! m 1m II rr f I m!li f

*and [*Defun]

Takes the logical AND of all active values in a pvar, returning a scalar value.

SYNTAX

*and pvar-expression

ARGUMENTS

pvar-expression Pvar expression. Pvar to which global AND is applied.

RETURNED VALUE

and-scalar Scalar boolean value. The logical AND of the values in pvar.

SIDE EFFECTS

None.

DESCRIPTION

The *and function is a global operator. It returns a scalar value of t if the value of pvar­
expression in every active processor is non-nil, and returns nil otherwise.

If there are no active processors, this function returns t.

EXAMPLES

112

The function *and can be used to detennine whether any value of a pvar fails a given
predicate. For example,

(*and (evenp!! numeric-pvar»

returns t if every value of numerlc-pvar is even, and nil if any value is odd.

The following is a simple function defmition using *and:

Version 6.1, October 1991

/

(
\,

*Lisp Dictionary
l11l1nWliUiillHIII:nml121lml mmW1H 1 . !Iml!l!llli limn! !!!PI! ifF I j}m!WWI

*and
il2 r f IIU!!Uili!il1J r un mt

(*defun *t (pvar) (*and (eql!! pvar t!!»)

The function *t returns t if and only if its pyar argument is equal to til, that is, if it
contains the value t in every ~rocessor.

The function *and is also useful for determining whether an operation has been per­
formed on all values of a pvar. For example, the function defined by

(defun value-list (pvar)
(*let ((checked-pvar nil!!»

(do ((return-list nil»
((*and checked-pvar) return-list)

(*when (not!! checked-pvar)
(let ((minumum (*min pvar»)

(push minimum return-list)
(*when (=!! pvar (!! minimum»)

(*set checked-pvar t!!»»»)

returns a list of the numeric values contained in pyar in all of the currently active pro­
cessors. The variable checked-pyar, initially set to nllll, indicates which of the currently
selected processors have already been checked

Each time around the do loop, *when is used to select all active processors which have
not been checked. The minimum value contained in these processors is found using
*mln, and pushed onto return-list. The variable checked-pyar is modified, using *set,
to indicate that all processors having this value have been checked.

Each time around the loop, checked-pyar is checked using *and. When (*and checked­
pyar) returnst, indicating that all of the currently active processors have been checked,
the loop exits, and return-list, the list of collected values, is returned.

REFERENCES

See also the related global operators:
*Integer-length
*Iogior
*min
*xor

*Iogand
*Iogxor
*or

See also the related logical operators:
and II notll orll

Version 6.1, October 1991

*max
*sum

xorll

113

and!! *Lisp Dictionary
I!!IIf RIH]!!! w mil R r fUm r r i

andll [Macro]

Performs a parallel logical AND operation in all active processors.

SYNTAX

and!! &rest pvar-exprs

ARGUMENTS

pvar-exprs Pvar expressions. Pvars to which parallel AND is applied.

RETURNED VALUE

and-pvar Temporary pvar. In each active processor, contains the value nil if
any of the pvar-exprs evaluate to nil in that processor; contains the
value of the last of the pvar-exprs otherwise.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

114

The and!! function performs a parallel logical AND operation. In all active processors,
it evaluates each of the supplied pvar-exprs in order from left to right. As soon as one
of the pvar-exprs evaluates to nil in a processor, that processor is removed from the
currently selected set for the remainder of the and!!.

The temporary pvar returned by and!! contains the value of the last of the pvar-exprs
in those processors for which each of the previous pvar-exprs evaluated to a non-nil
value, and nil in all other active processors. If no pvar-exprs are supplied, the pvar tl!
is returned.

The function and!! provides functionality for boolean pvars similar to that which the
Common Lisp function and provides for boolean values.

Version 6.1, October 1991

'-

/

\,

*Lisp Dictionary andll
illi!m'JmlW'mml I: '! I :; ll.~dt I I rmm Hi An_tm:~.iIlI!W~W% ,. jn:WA:wrnrnl'J~1~llm:;; '"JW::':Jllllr:~

EXAMPLES

The and!! function can be used either as a straightforward logical operator or as a
means of controlling evaluation. For example, the pvar returned by

(and!! (integerp!! numeric-pvar)
(>=!! numeric-pvar (!! -5»
«=!! numeric-pvar (!! 5»)

contains t in each active processor for which the value of numeric-pvar is an integer
between -5 and 5, inclusive, and nil in all other active processors. We could add numer­

Ic-pvar as the final argument, so:

(and!! (integerp!! numeric-pvar)
(>=!! numeric-pvar (!! -5»
«=!! numeric-pvar (!! 5»
numeric-pvar)

This now returns a pvar containing the original value from numeric-pvar in each pro­
cessor where that value is an integer between -5 and 5, and nil in all other active
processors.

Because and!! controls the selected set in which its arguments are evaluated, it can be
used to control evaluation of pvar expressions. The expression

(if! ! (and!! (integerp!! data-pvar)
(plusp!! data-pvar»

(sqrt!! data-pvar»

returns a pvar whose value in each active processor is the square-root of the corre­
sponding value of data-pvar, if that value is a positive integer, and nil otherwise.

Version 6.1, October 1991 115

andll *Lisp Dictionary
@ 1J 11 i;: TIl](1 . IT 11! F r ; 1'1J Pll 'F

NOTES
Language Note:

Remember that andll changes the currently selected set as it evaluates its arguments.
This can have unwanted side effects in code that depends on unchanging selected sets,
particularly code involving communication operators, such as scanll.

For example, the expressions

(ppp (and!! (evenp!! (self-address!!»
«!! (scan!! (self-address!!) '+!!) (ll 3»)

:end 8)
T NIL T NIL NIL NIL NIL NIL

(ppp (and!! «!! (scan!! (self-address!!) '+!!) (!! 3»
(evenp!! (self-address!!»)

:end 8)
T NIL NIL NIL NIL NIL NIL NIL

exemplifY a case in which using andll may cause a non-intuitive result because of its
deselection properties. In the fIrst expression, the scan" operation is performed only
in the even processors. In the second expression, the scan" operation is performed in
all processors, resulting in a different set of displayed values.

This is the result of andll deselecting those processors that fail any clause before ex­
ecuting the next clause. One can avoid this in the following manner:

(*let «bl (evenp!! (self-address!!»)
(b2 «!! (scan!! (self-address!!) , +!!) (!! 3»»

(declare (type boolean-pvar bl b2»
(and!! bl b2»

REFERENCES

116

See also the related global operators:
*and

*Iogior

*min

*xor

*integer-length

*Iogxor

*or

See also the related logical operators:

not" orll

*Iogand

*max

*sum

xorll

Version 6.1, October 1991

(
\

*Lisp Dictionary *apply
mru~ H::. J'~. :-: j :mw~~~· 1:' Mgill"$&MW&~.&WWOOlW""~.-W.@MW~:mllru~~

*apply [Macro]

Applies a parallel function defined with *defun to a set of arguments.

SYNTAX

*apply function &rest args

ARGUMENTS

function

args

RETURNED VALUE

result

SIDE EFFECTS

*Lisp function.

Set of scalar or pvar values. Arguments to which function is
applied. Last argument supplied must be a list.

Scalar or pvar. Result of applyingfunction to the supplied args.

None aside from those produced by function.

DESCRIPTION

This is the parallel equivalent of the Common Lisp apply operator, but is intended to
be used with functions defined using *defun. Each of the supplied args except the last
are collected into a list, which is then appended to the last of the args. The function is
applied to the resulting list.

The *apply operator can be used to call functions defined with defun, as well, but it is
more efficient to use apply instead.

Version 6.1. October 1991 117

*apply *Lisp Dictionary
l1iIH Wl IT 1lf HI T111nm lmmm;;UmnU!!1 fI n H2H2! iUilnH2 1f 1f immRmI m Ii Ii em no Tjit _!Ill: 1::! :!M!!1!!1I~

EXAMPLES

(*defun percent-difference!! (pvar1 pvar2)
(*!! (/!! (-!! pvar2 pvar1) pvar1) (!! 100»)

(*apply 'percent-difference! !
(! ! 2) (list (! ! 4))) <=> (! ! 100.0)

(*apply 'percent-difference! !
(list (! ! 5) (! ! 2))) <=> (! ! -60.0)

NOTES

It is an error to use the Common Lisp apply operator with a function defmed using
*defun. Also, just as apply cannot be applied to macros, so *apply cannot be applied to
macros with the exception of operations defined by *defun. (Observant readers will
notice that an operation defmed by *defun actually is a macro in disguislr-see the dic­
tionary entry for *defun for more information.)

It is legal to provide a lambda form as thefunction argument to *apply. However, in this
case there is no difference between using apply or using *apply, and using apply is pre­
ferred for clarity.

REFERENCES

118

See also the following related operations:
*defun

*trace

*funcall

un*defun *untrace

Version 6.1, October 1991

,/

\

(
(
\

\.

*Lisp Dictionary
W1I !!fin Ii mllU!I!'$n!I!'$UIIl\ : D n 1~lmjjInl!'$mM1M!!mlil1WlmiU rPM!:J i d!

arefll
g II It%~:i §I!'$!~IMllm Ill[i n: f :wtim

arefll [Function]

Performs a parallel array reference on the supplied array pvar.

SYNTAX

areffl array-pvar &rest subscript-pvars

ARGUMENTS

a"ay-pvar

subscript-pvars

RETURNED VALUE

value-pvar

SIDE EFFECTS

Array pvar. Pvar from which values are referenced.

Integer pvars. Non-negative indices of the array location to be
referenced in each processor. The number of subscript-pvars
must equal the rank of a"ay-pvar.

Temporary pvar. Value retrieved in each processor.

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a pvar on the "'Lisp stack. The result pvar contains, in each pro­
cessor, a copy of the a"ay-pvar element specified by subscript-pvars. The type of the
returned pvar is the same as the element type of a"ay-pvar.

One subscript-pvar argument must be given for each dimension ofa"ay-pvar. Each
subscript-pvar must contain non-negative integers within the legal range of
coordinates for that dimension.

Version 6.1, October 1991 119

arefll
7 f RIFf] If If nil r! 1III

*Lisp Dictionary
RTf rna 1 f

EXAMPLES

120

A sample call to arefll is

(aref!! 2by5-array-pvar. (!! 1) (!! 4»

which returns a pvar containing in each processor a copy of the element (1,4) of
2by5-array-pvar that is stored in that processor. An actual example of an array refer­
enceis

(*defvar array-pvar (!! t2A((1 2 3) (4 5 6»»

(aref!! array-pvar (!! 0) (!! 2» <=> (!! 3)

Here, the element (0,2) of the array-pvar in each processor is 3, so the call to arefll with
constant subscript-pvar arguments (pvars having the same value in each processor)
returns a pvar containing the value 3 in each processor.

The *setf operator may be used with arefll to modify array locations in parallel. For
example,

(*setf (aref!! array-pvar (!! 0) (!! 2» (!! 9»

The subscript-pvar arguments to arefl! can contain different values in each processor.
This is known as non-constant array indexing. An example of non-constant indexing
is

(*proclaim ' (type (vector-pvar single-float 2) xyzzy»
(*defvar xyzzy)

(defun non-constant-indexing-example ()
(*setf (aref!! xyzzy (!! 0» (!! 1.0»
(*setf (aref!! xyzzy (!! 1» (!! -1.0»
(ppp (aref!! xyzzy

(if!! (evenp!! (self-address!!» (!! 0) (!! 1»)
:end 8»

(non-constant-indexing-example)
1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0

Version 6.1, October 1991

/

(

*Lisp Dictionary arefll
i'II ·~im [wpm nmmm 11m· !.%nXi·WI . I II m 1 :]WmIU!IE PI tlii1!iTIl mm niimm: 111m 1m iffi ffi linn i!lmiliEil

NOTES

Performance Note:

In general, especially for large arrays, the CM-2 implementation of non-constant in­
dexing can be"very slow. See *sldeways-array and sideways-arefll for a means of using
the CM-2 architecture to do fast non-constant indexing into arrays.

Usage Note:

In most cases, it is unnecessary to use the operator aliasl! in combination with arefl! to
prevent the copying of pvars, because the *Lisp compiler is able to recognize and opti­
mize cases where this copying is unnecessary.

For example,

(*proclaim ' (type (array-pvar single-float (4))
data-array-pvar))

(*defvar data-array-pvar (!! f(O.O 1.0 2.0 3.0)))

(defun bad-example (x)
(*set (the single-float-pvar x)

(+! ! (alias!! (aref!! da ta-array-pvar (!! 0)))
(alias!! (aref!! data-array-pvar (!! 1))))))

It is unnecessary to use aliasl! to avoid having a copy of the data in elements 0 and 1
of data-array-pvar being made. As long as the *Lisp compiler is compiling the code,
then

(defun good-example (x)
(*set (the single-float-pvar x)

(+!! (aref!! data-array-pvar (!! 0))
(aref!! data-array-pvar (!! 1)))))

is equivalent and will not result in any temporary pvars being used. In general there is
no need to use alias II when performing array accessing except in certain special cases
that are discussed under the dictionary entry for allasll.

Version 6.1, October 1991 121

arefll
111111

REFERENCES

DililUl n lIFUIlm ff nm"!11 Ui

See also the related array-referencing operations:
row-major-arefll
row-maJor-sldeways-arefll sldeways-arefll

*Lisp Dictionary
! 11 m m ! II! limmm:; m [II li11!!! mil:: : mE mnw I i IT

The following operations convert arrays to and from sideways orientation:
*processorwlse *sldeways-array *slicewlse

122 Version 6.1. October 1991

(

*Lisp Dictionary arrayll
Him a~!! !!lIn I! iJi!Hl!! !L II jJi . ill!! !1il!I!!U!!1i!1i!!;l'!W !!11l!!M I r : 111! ! 12 : Iill!l!1i!1i!1i1il!l'@! l1 TTT!

array!! [Function]

Creates and returns an array pvar. In each active processor, an array of the specified dimen­
sions is created and initialized with corresponding values from the specified pvars.

SYNTAX

arrayll dimensions &rest content-pvars

ARGUMENTS

dimensions

content-pvars

RETURNED VALUE

array-pvar

SIDE EFFECTS

Integer list. Specifies dimensions of array to store in each
processor.

Pvars. In each processor, specify, in row-major order, the values
to be stored in that processor's array. The number of
content-pvars supplied must match the number of array elements
specified by dimensions.

Temporary array pvar. Contains in each active processor an array of
the specified dimensions containing the values of the content­
pvars.

The returned pvar is allocated on the stack.

DESCRIPTION

The array II function creates an array pvar with the specified dimensions, initialized to
contain the values of the specified content-pvars.

The returned array-pvar consists of an array in each active processor. The values of
each processor's array elements are copied, in row-major order, from the correspond­
ing values of each supplied content-pvar.

Version 6.1. October 1991 123

arrayll *Lisp Dictionary
IElj!!liBlm Tm m :mn:@ i!Ij r; ! fI j .

EXAMPLES

(array!! '(2 2) (!! 0) (!! 1)

(!! 2) (!! 3»

<=>
(!! :fI: 2A ((0 1) (2 3»)

NOTES

The standard rules of coercion are used to determine the element type of the new paral­
lel array. Thus, a mixture of integer and floating-point elements yields a floating-point
result. A mixture of floating-point and complex elements yields a complex result. An
error is signaled if the data types present are not all compatible. For instance, a string­
char element and a floating-point element are not compatible.

REFERENCES

124

See also the pvar allocation and deallocation operations
allocatell

*deallocate
front-endll

mak&-arrayll

II

*deallocate-*defvars
*Iet
typed-vectorll

*defvar

Iet
vectorll

Version 6.1, October 1991

*Lisp Dictionary *array-dimenslon, array-dlmenslonll
rnW_W1.11iWllmmC .. l l~ lW$'[:n:..n :: (·n:~m 17 r ~lnti!i!ml;mwm

*array-dimension
array-dimension!!
Return the length of an array pyar along a specified dimension.

SYNTAX

*array-dimension

array-dlmenslonll

ARGUMENTS

array-pvar

array-pvar dimension
array-pvar dimension-pvar

Array pyar.

[*Oefun]

[Function]

dimension Scalar integer. Index of an array dimension of array-pvar.

dimension-pvar

RETURNED VALUE

Integer pyar. In each processor, the index of an array dimension of
array-pvar.

For *array-dimension:

length Scalar integer. Length of array-pvar along specified dimension.

For array-dimensionll:

length-pvar

SIDE EFFECTS

Temporary integer pyar. Contains in each active processor the
length of array-pvar along the specified dimension.

For array-dimensionll, the returned pyar is allocated on the stack.

Version 6.1, October 1991 125

*array-dimenslon, array-dlmenslonll *Lisp Dictionary
1]! I! 11 1 PH I lUiii!lmlli [HI m m!!! lllli!EmilII! ! iff! mnE II! 1m ! 1m 11 !1m!!!!!! li3i!l!!:lliiWW 1111 in lua

DESCRIPTION

The *array-dlmenslon function returns an unsigned integer equal to the size of the di­
mension of an'ay-pvar referenced by dimension. The argument dimension must be an
unsigned integer between 0 and 1 less than the rank of array-pvar.

The array-dlmenslonll function returns a pvar containing. in each processor. an un­
signed integer equal to the length of the dimension-pvar dimension of array-pvar. The
argument dimension-pvar must be a pvar containing. in each processor. an unsigned
integer less than the rank of an'ay-pvar.

EXAMPLES

(*defvar my-array-pvar (array!! ' (2 1) (!! 0) (!! 1)))

(*array-dimension my-array-pvar 0) => 2
(*array-dimension my-array-pvar 1) => 1

(*defvar array-pvar (array!! ' (2 1) (!! 0) (!! 1)))

(ppp (array-dimension!! array-pvar
(mod!! (self-address!!) (!! 2)))

:end 12)
21212121212 121

REFERENCES

126

See also the related array pvar information operators:
*array-dlmenslons

*array-element-type

*array-rank

*array-total-slze

array-row-rnaJor-lndexll

array-dimensionsll

array-In-bounds-pll

array-rankll

array-total-slzell

sldeways-array-p

Version 6.1. October 1991

!

\.

/

*Lisp Dictionary *array-dlmenslons, array-dimensionsll
l!:': :1 :n::: ,!!II m !tl!llWiiln: : trWMP Tn .iEmr: @@ n nl~lm fiB ff 1 Jill m m m 1m u n PI:ml1J

*array-dimensions
array-dimensions II

Return a list of the lengths of each dimension of an array pvar.

SYNTAX

*array-dimenslons

array-dlmenslonsll

ARGUMENTS

a"ay-pvar

RETURNED VALUE

a"ay-pvar
a"ay-pvar

Array pvar.

For *array-dimensions:

[*Defun]

[Function]

lengths-list Scalar integer list. Lengths of the dimensions of a"ay-pvar.

For array-dlmenslonsll:

lengths-pvar Temporary vector pvar. In each active processor, contains a vector
enumerating the lengths of the dimensions of a"ay-pvar.

SIDE EFFECTS

For array-dimensionsll, the returned pvar is allocated on the stack.

DESCRIPTION

The *array-dlmenslons function returns a front-end list enumerating the dimensions of
a"ay-pvar. This list is of length (*array-rank array-pvar).

The array-dimensionsll function returns a vector pvar containing, in each processor, a
vector whose nth element is the length of the nth dimension of a"ay-pvar.

Version 6.1, October 1991 127

*array-dlmenslons. array-dlmenslonsll *Lisp Dictionary
l1li7 f flUI 11m! 11m i Wi IwmmH II !! if i IIIIlIlI1lf f 1 IIMlm1iiRfll] i

EXAMPLES

(*setmy-array-pvar (array!! '(21) (!! 0) (!! 1»)

NOTES

(*array-dimensions my-array-pvar)
(array-dimensions!! my-array-pvar)

=> (2 1)

<=> (!! # (2 1»

By definition, all arrays in an array pvar have the same size and shape. Thus, the pvar
returned by array-dlmenslonsll will always have the same value in all processors.

REFERENCES

See also the related array pvar information operators:

128

*array-dlmenslon

*array-element-type

*array-rank

*array-total-size

array-row-maJor-indexll

array-dlmenslonll

array-in-bounds-pll

array-rankll

array-total-slzell

sldeways-array-p

Version 6.1, October 1991

/

*Lisp Dictionary *array-element-type
1 TTUI!Il !Il ; nnm!! mill! H ! 1111 !!1! ! nm:nm 1m 1 til ::7i117iUmmmmnlm f ! fiI!II 1 11! U f!nnmm

*array-element-type [*Defun]

Returns type specifier for the elements of an array pvar.

SYNTAX

*array-element-type a"ay-pvar

ARGUMENTS

a"ay-pvar Array pvar. Pvar for which element type is to be returned.

RETURNED VALUE

type-spec Type specifier for elements of a"ay-pvar.

DESCRIPTION

This function returns a front-end type specifier for the elements of a"ay-pvar.

EXAMPLES

(*array-element-type (array!! '(1 1) (!! 0»)
=> (PVAR (UNSIGNED-BYTE 1»

REFERENCES

See also the related array pvar information operators:
*array-dimension

*array-dimensions

array-ln-bounds-pll

*array-rank

*array-total-size

array-row-major-lndexll

Version 6.1, October 1991

array-dimensionll

array-dimensionsll

array-:-rankll

array-total-sizell

sideways-array-p

129

array-ln-bounds-pll
1iI.1!llfllmn .UF .11 nmum f'JIll ! r!PP i f IT Tn m j IT

*Lisp Dictionary
7 iI rrr !ium 7 m

array-in-bou nds-p II [Function]

Tests in parallel whether array subscripts are within the bounds of an array pvar.

SYNTAX

array-In-bounds-pll array-pvar &rest subscript-pvars

ARGUMENTS

array-pvar

subscript-pvars

Arraypvar.

Integer pvars. Subscripts to be checked against bounds of
array-pvar.

RETURNED VALUE

in-boundsp-pvar Temporary boolean pvar. Contains t in every processor where the
subscript-pvars represent a valid reference to array-pvar. Con­
tains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

130

This function returns a boolean pvar with t in every processor where the values of the
supplied subscript-pvars represent a valid reference to array-pvar and nil elsewhere.

Version 6.1. October 1991

(
\.

(

I

-" \

*Lisp Dictionary array-in-bounds-pll
n n: ji 1m IITn I:U:: !f m: II; U! j ;;m ; WIll! Wli:;!RI J!1!1!RM F 11 HUWllm:mr !!RM!fnl! 111 II !RM!f

EXAMPLES

(*set my-array-pvar (array!! ' (1 1) (!! 0)))

(array-in-bounds-p!! my-array-pvar (!! 0) (!! 0)) <=> t!!
(array-in-bounds-p!! my-array-pvar (!! 2) (!! 0)) <=> nil!!

REFERENCES

See also the related array pvar information operators:
*array-dimenslon
*array-dimensions
*array-element-type
*array-rank
*array-total-size
array-row-maJor-lndexll

array-dimensionll
array-dimensionsll

array-rankll
array-total-sizell
sideways-array-p

See also the related array-referencing operations:
arefll row-maJor-arefil
row-maJor-sldeways-arefil sideways-arefll

Version 6.1, October 1991 131

*array-rank, array-rankll
n;111 A AA] mm mimE!! if lillmmnlf

*array-rank
array-rankll

! fill!l ill J!! nmnA nr !

Return the number of dimensions of an array pvar.

SYNTAX

*array-rank
array-rankll

ARGUMENTS

array-pvar

array-pvar
array-pvar

Array pvar.

RETURNED VALUE

For *array-rank:

m
*Lisp Dictionary

mnrrn:m§!! !

[*Defun]

[Function]

rank Integer. Number of dimensions of array-pvar.

For array-rankll:

rank-pvar Temporary integerpvar. Contains in each active processor the rank,
or number of dimensions, of array-pvar.

SIDE EFFECTS

For array-rankll, the returned pvar is allocated on the stack.

DESCRIPTION

132

The *array-rank function returns an unsigned integer equal to the number of dimen­
sions in array-pvar.

The array-rankll function returns a pvar containing, in each processor, an unsigned
integer equal to the number of dimensions in array-pvar.

Version 6.1, October 1991

(
I
\

/

*Lisp Dictionary *array-rank, array-rankll
Ci gUI! 111 Ii I II!® ~>. :n: .III! IT ; i i1H! !J:1m: i ilillI!!i11ii iii ill rilur:m!i!i!!II!!I!1i! 11

EXAMPLES

(*array-rank (array!! '(2 1) (!! 0) (!! 1») => 2

(array-rank!! pvar) <=> (!! (*array-rank pvar»

NOTES

By defInition, all arrays in an array pvar have the same size and shape. Thus, the pvar
returned by array-rankll has the same value in all processors.

REFERENCES

See also the related array pvar information operators:
*array-dimension

*array-dimenslons

*array-element-type

*array-total-size

array-row-maJor-indexll

Version 6.1, October 1991

array-dimensionll

array-dimensionsll

array-In-bounds-pll

array-total-sizell

sldeways-array-p

133

array-row-major-indexll *Lisp Dictionary
2111 mn Imil 11 1· lmi fl n ffllnmlllm W1I!1i g 11 n nn: f ;: Ii III :mwm J Jilffi HI 11 :: ! J J : r

array-row-major-index! ! [Function]

Converts array subscripts to row major indices in parallel.

SYNTAX

array-row-major-Indexll array-pvar &rest subscript-pvars

ARGUMENTS

array-pvar Arraypvar.

subscript-pvars Integer pvars. Must contain subscripts valid for array-pvar.

RETURNED VALUE

indices-pvar Temporary integer pvar. In each processor, contains the corre­
sponding row major index in array-pvar for the set of subscripts in
the subscript-pvars.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

134

In each processor, this function converts the array pvar subscripts contained in sub­
script-pvars into row-major indices for array-pvar.

The subscript-pvars must contain valid array-pvar subscripts. Each of these &rest

arguments corresponds to a dimension of array-pvar, they must be given in order,
starting with dimension o. The number of subscript-pvars arguments must equal the
rank of array-pvar.

In each processor the returned indices-pvar contains a single integer, the row-major
index of the array element specified by the values of the subscript-pvars. This pvar of
row-major indicies may be used to access the array-pvar via the function row-major­
arefll.

Version 6.1, October 1991

/
i
\

*Lisp Dictionary
TIilnimln1l!! 11 PI nann TiM II! 1 ! MIn llilln m UTI 12 11!n i PI Wi

array-row-major-lndexll
urn 1 !Ii f ff 111m If m f F iff

EXAMPLES

Consider a two-dimensional array pvar, as defined by

(*defvar arr!! (!! #2A «10 30) (20 40»»

The row-major index of each element in arrll can be determined as follows:

(ppp a :end 4) => 0 1 0 1
(ppp b :end 4) => 0 0 1 1
(ppp (array-row-rnajor-index!! arr!! a b)

:end 4) => 0 2 1 3

That the row-major indices are independant of the contents of the array elements can
be see by evaluating the expression

(ppp (aref!! arr!! a b) :end 4) => 10 20 30 40

REFERENCES

See also the related array pvar information operators:
*array-dimension

*array-dimensions

*array-element-type

*array-rank

*array-total-size

sideways-array-p

Version 6.1, October 1991

array-dimenslonll

array-dlmenslonsll

array-ln-bounds-pll

array-rankll

array-total-sizell

135

array-to-pvar
_ 11111 iJI iJllIlilllnl [M121n m!J~ Mil 1 TI R r mIT mm r

*Lisp Dictionary
1 ii1m 11 m!liiHf § 1 iff

array-to-pvar [*Defun]

In send (cube) address order, copies values from a front-end vector to a pvar.

SYNTAX

array-to-pvar source-array &optlonal dest-pvar
&key :array-offset

ARGUMENTS

source-array

dest-pvar

:array-offset

:start

:end

:start :cube-address-start
:end :cube-address-end

Front-end vector. Array from which values are copied.

Pvar. An allocated pvar in any VP set, into which values are
stored. If not supplied, array-to-pvar creates a temporary pvar in
the current VP set.

Integer. Offset into source-array of fIrst value to copy.
Default is O.

Send address. Processor at which copying starts. Default is O.

Send address. Processor at which copying ends. Default is
number-of-processors-limit •

:cube-address-start, :cube-address-end

RETURNED VALUE

dest-pvar

136

Obsolete aliases for :start and :end keywords, retained for
software compatibility only.

The destination pvar, containing values copied from source-array.
If a dest-pvar argument is supplied, values are copied into it. If not,
a temporary pvar is created and returned.

Version 6.1, October 1991

/

'\,

j

*Lisp Dictionary
Jill I if! wnffilill II R

SIDE EFFECTS

array-t~var
11 II i if III I! I I 1 1

The contents of source-a"ay, beginning at the element specified by a"ay-ojfoet, are
copied into dest-pvar. All values of dest-pvar from :start to :end are modified, regard­
less of the currently selected set. If the dest-pvar argument is not supplied, a temporary
pvar is allocated on the stack.

DESCRIPTION

This function copies data from source-a"ay to dest-pvar in send-address order. The
source-a"ay must be one-dimensional. If a dest-pvar is not provided, array-to-pvar

creates a temporary destination pvar. If a temporary destination pvar is created, its
value in processors to which array-to-pvar did not write is undefmed..

It is legal for source-a"ay to contain more elements than can be stored in dest-pvar.
The extra elements are ignored. It is an error, however, for source-a"ay to contain
fewer elements than are needed to fill dest-pvar.

This function is especially useful for copying data into the eM. It is much faster than
setting pvar elements individually using *setf and pref.

EXAMPLES

After the following forms are evaluated,

(*defvar pvar)
(setq array (make-array

(array-to-pvar array pvar)

The value of pvar is (II 3).

NOTES

Usage Note:

nurnber-of-processors-limit
:initial-element 3»

It is an error to supply both a :cube-address-start and a :start argument. Likewise, it
is an error to supply both a :cube-address-end and a :end argument.

Version 6.1. October 1991 137

array-to-pvar *Lisp Dictionary
IIi1l!Hfil!m!U I JiIi1lIlIB? m11 ! 1i1l!li!!li1l: IT Mil 11 illi1l: i !!ii !!Ii! W i liilH11 m n n

Performance Note:

138

This operation is fastest when pvars of a specific non-aggregate type are used, slower
when general pvars are used, and very slow if aggregate pvars are used. The examples
below shows how to move aggregate data effiCiently into the eM.

The following expression.s defme a *defstruct type and create a structure pvar of that
type.

(*defstruct foo
(a a :type t :cm-type (pvar (unsigned-byte 32»)
(b 0.0 :type t :cm-type (pvar single-float»
)

(*proclaim '(type (pvar foo) a-foo-pvar»
(*defvar a-foo-pvar)

n the first example, an array of structure objects of type foo is created on the front end,
and then copied in one operation to a structure pvar on the eM. This method of trans­
ferring data is very slow, but is relatively straightforward.

(defvar a-foo-array
(make-array *number-of-processors-limit*

:element-type 'foo»

(defun init-a-foo-array ()
(dotimes (j *number-of-processors-limit*)

(setf (aref a-foo-array j) (make-foo»
»

(defun move-a-foo-array-data-from-front-end-to-cm ()
(array-to-pvar a-foo-array a-foo-pvar)
)

The next example is very fast, although it is somewhat non-intuitive. The expressions
below create a single front-end structure object, and initialize its slots with arrays of
values that will form the slot values of the structure pvar on the eM. Moving the data
to the eM involves a separate array transfer for each slot, copying the array of elements
for that slot to the structure pvar on the eM.

iii create single front-end structure object
(defvar a-foo (make-foo»

Version 6.1. October 1991

(
I

\

(

*Lisp Dictionary array-to-pvar
lOO!HOO~!!OOlm: :!liiIg;OOll:oorilOO!l!!liiIW!liilWw!l!.ll!l!m~Wm~mMM: gW2TWi!IiIWMWMt wnwr:oowwmw·mnnnoomm~:!11 LTIl!l!FU lmwmnnnn un~; :::n a IW@IT

;;; initialize the object's slots with arrays
;;; instead of single values
(defun init-a-foo ()

(setf (foo-a a-fool
(make-array *number-of-processors-limit*

:element-type '(unsigned-byte 32)))
(setf (foo-b a-fool

(make-array *number-of-processors-limit*
:element-type 'single-float)))

;;; perform one array-to-pvar transfer for each slot
;;; (note use of alias!! to prevent slot copying)
(defun move-a-foo-data-from-front-end-to-cm ()

(array-to-pvar (foo-a a-fool
(alias!! (foo-a!! a-foo-pvar)))

(array-to-pvar (foo-b a-fool
(alias!! (foo-b!! a-foo-pvar))))

ill!! WI !

To summarize, using a single front-end structure object with arrays as slot values and
moving each array separately is much fast~r than using an array of structures and mov­
ing the array into the eM in a single operation.

REFERENCES

See also these related array transfer operations:
array-to-pvar-grid

pvar-to-array pvar-to-array-grld

See also the *Lisp operation pref, which is used to transfer single values from the eM
to the front end.

The *Lisp operation *setf, in combination with pref, is used to transfer a single value
from the front end to the eM.

Version 6.1, October 1991 139

array-to-pvar-grld *Lisp Dictionary
1I!!1 I 1 1 Ul ! H 1 !!1l1 1 ! n ! i TIl IF alliin !!1li rr If IIf !PH ! HI 1 ! TIifiUilil r i1i 111m

array-to-pvar-grid [*Defun]

In grid (NEWS) address order, copies values from a front-end array into a pvar.

SYNTAX

array-to-pvar-grld source-a"ay &optlonal dest-pvar

ARGUMENTS

source-array

dest-pvar

:array-offset

:grld-start

:grld-end

RETURNED VALUE

dest-pvar

140

&key :array-offset
:grld-start
:grld-end

Front-end ,array. Array from which values are copied. Must have
a rank equal to *number-of-dimensions*.

Pvar. An allocated pvar into which values are stored. If not
supplied, array-to-pvar-grid creates a temporary pvar in the
current VP set.

Integer list. Set of offsets into source-a"ay indicating first value
to copy. Default is value of (make-llst *number-of-dlmenslons*

:Initial-element 0).

Integer list, specifying NEWS (grid) address of processor at which
copying starts. Default is value of (make-list *number-of­

dlmensions* :initial-element 0).

Integer list, specifying NEWS (grid) address of processor at which
copying ends. Default is *current-cm-configuration*.

The destination pvar, containing values copied from source-a"ay.
If dest-pvar is supplied, values are copied into it. If not, a tempo­
rary pvar is created and returned.

Version 6.1, October 1991

*Lisp Dictionary
~ mH[!ffl g mr 1m;

array-to-pvar-grid
! TI !in ;;;:mn!l : 2m

SIDE EFFECTS

The contents of source-array, beginning at the element specified by the :array-offset

argument, are copied into dest-pvar. All values of dest-pvar specified by the :grid­

start and :grid-end arguments are modified, regardless of the currently selected set. If
the dest-pvar argument is not supplied, a temporary pvar of the appropriate size is allo­
cated on the stack.

DESCRIPTION

This function copies data from source-array to dest-pvar in grid (NEWS) address
order.

The keyword arguments to :array-offset, :grid-start, and :grld-end must be lists of
length *number-of-dimenslons*.

The data from source-array, starting with element :array-offset as the upper comer, are
copied into dest-pvar, with :grld-start and :grld-end specifying the upper and lower
comers, respectively. The value returned by array-to-pvar-grid is dest-array. If dest­
pvar is unprovided or nil, array-to-pvar-grld creates a temporary destination pvar. If a
destination pvar is created, its value in processors to which array-to-pvar-grid did not
write is undefmed.

It is legal for source-array to contain more or fewer elements than can be stored in
dest-pvar. Extra elements are ignored, and copying an array with fewer elements
modifies only a subset of the values of dest-pvar.

EXAMPLES

The following expressions select a two-dimensional grid configuration, defme a two­
dimensional front-end array, and then copy a portion of the array into a pvar on the
eM.

(*cold-boot :initial-dimensions '(128 128»

(defparameter an-array
(make-array' (5 5) :element-type 'single-float

:initial-element 0.0»

(*proclaim '(type single-float-pvar grid-pvar»
(*defvar grid-pvar)

Version 6.1, October 1991 141

array-to-pvar-grld *Lisp Dictionary
I! ! !I g m: NllllllllIlJli!lH12 11m II lat I ! II! 1m I 1 IT!! I 8111 I unm1l1l111ii P me! mlI2!111l1ll111 ! Imllfilfilm l1!!rr IffIHlllmll!I HI I !i! !!II11RI!! !If mm! I IT

The following call transfers the 4 x 4 subarray of an-array whose comers are

(1 1) (4 1)

(1 4) (4 4)

to the 4 x 4 subgrid of grld-pvar whose grid-address comers are

(2 3) (6 3)

(2 7) (6 7)

(array-to-pvar-grid an-array grid-pvar
:array-offset '(1 1)
:grid-start ' (2 3»

Notice that since the dimensions of an-array are (5,5), and copying is specified to begin
at (1,1), an array of only (4,4) elements is copied. This in tum means that only a (4,4)
subgrid of values is modified in grid-pvar.

NOTES

This function is especially useful for copying image data into the Connection Machine.
It is much faster than setting pvar elements individually with *setf and pref.

REFERENCES

142

See also these related array transfer operations:
array-to-pvar

pvar-to-array pvar-to-array-grid

See also the *Lisp operation pref, which is used to transfer single values from the CM
to the front end.

The *Lisp operation *setf, in combination with pref, is used to transfer a single value
from the front end to the CM.

Version 6.1, October 1991

I
\

(

\.

·Lisp Dictionary *array-total-size, array-total-slzell
limn m!j!

*array-total-size
array-total-sizell

i f wnw

Return the total size of each array contained in an array pvar.

SYNTAX

*array-total-slze array-pvar
array-total-slzen array-pvar

ARGUMENTS

array-pvar Array pvar.

RETURNED VALUE

For *array-total-slze:

: 111111] if

[*Defun]

[Function]

total-size Scalar integer. Total size (product of the lengths of each dimension)
of each array contained in array-pvar.

For array-total-slzell:

size-pvar

SIDE EFFECTS

Temporary integer pvar. In each active processor, contains the total
size (product of the lengths of each dimension) of the correspond­
ing value of array-pvar.

For array-total-sizen, the returned pvar is allocated on the stack.

Version 6.1. October 1991 143

*array-total-slze, array-total-slzell *Lisp Dictionary
1 lIE 1£ !lIm 1Tf:13111m

DESCRIPTION

The *array-total-slze function returns an unsigned integer equal to the total number of
a"ay-pvar elements contained in each processor. Notice that the result is not the total
number of array elements in all processors. Rather, it is the number of elements in a
single processor and this count is the same for all processors.

(*array-total-size array-pvar) <=>
(apply 1'* (*array-dimensions array-pvar»

The array-total-slzell function returns, in each processor, an unsigned integer equal to
the total number of array elements contained in that processor.

EXAMPLES

(*array-total-size
(array!! ' (2 2) (!! 0) (!! 1) (!! 2) (!! 3») => 4

(array-total-size!!
(array!! '(22) (!! 0) (!! 1) (!! 2) (!! 3») <=> (!! 4)

NOTES

By defmition, an array pvar consists of one array per processor and each array has the
same size and shape. Thus, the pvar returned by array-total-slzell has the same value
in all processors.

(array-total-size!! array-pvar) <=>
(!! (*array-total-size array-pvar»

REFERENCES

144

See also the related array pvar information operators;
*array-dlmenslon

*array-dimensions

*array-element-type

*array-rank
array-row-maJor-indexll

array-dimensionll

array-dlmenslonsll

array-ln-bounds-pll

array-rankll
sideways-array-p

Version 6.1, October 1991

*Lisp Dictionary ashll
11I! 111 n 11111111111 ill ! millmiiffFi l1Ir ! n I'RI jJff! II mH mI! I i II ?1m! rr film!!! iMml!i1ffm!l!2!1! mmMiM ~

ash!! [Function]

Performs a parallel arithmetic shift of the supplied pvars.

SYNTAX

ashll integer-pvar count-pvar

ARGUMENTS

integer-pvar

count-pvar

RETURNED VALUE

shifted-pvar

SIDE EFFECTS

Integer pvar. Value to be shifted

Integer pvar. Number of bits by which to shift - to the left if
positive, to the right if negative.

Temporary integer pvar. Contains in each processor the result of
shifting the corresponding value of integer-pvar the number of bit
positions specified by count-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

The ash!! function performs a parallel arithmetic shift operation. It returns a temporary
pvar that contains in each active processor the result of shifting the corresponding
value of integer-pvar the number of bit positions specified by count-pvar.

The values in integer-pvar are shifted to the left in those processors where count-pvar
is positive, and to the right where count-pvar is negative. In either case, the values
from integer-pvar are treated as two's-complement integers, and the sign bit is always
preserved. In left shifts, zero bits are added from the right; in right shifts, copies of the
sign bit are added from the left.

Version 6.1, October 1991 145

ash II *Lisp Dictionary
Ilii2!! 1 JlP TI 1 am m ! II If ;II! I nil! r unm If:r r mlTIIII;II!!!1 n 11! m rr

The ashll function provides the same functionality fornumeric pvars as the Common
Lisp function ash provides for numeric scalars.

EXAMPLES

When the values of count-pvar are positive, the corresponding values of integer-pvar
are shifted to the left.

(ash! ! (! ! 2) (! ! 0» <=> (! ! 2)
(ash! ! (! ! 2) (! ! 1» <=> (! ! 4)
(ash! ! (! ! 2) (! ! 3)) <=> (! ! 16)
(ash! ! (! ! 2) (! ! 9» <=> (! ! 1024)

When the values of count-pvar are negative, the corresponding values of integer-pvar
are shifted to the right.

(ash! ! (! ! 2) (! ! -1» <=> (! ! 1)
(ash! ! (! ! 2) (! ! -2» <=> (! ! 0)
(ash! ! (! ! 16) (! ! -3» <=> (! ! 2)
(ash! ! (! ! 1024) (! ! -9» <=> (! ! 2)

The argument count-pvar can contain both positive and negative values. For example,
if shlft-pvar contains the values -2, -1,0, 1,2, etc., then the pvar returned by

(ash!! (!! 4) shift-pvar)

contains the values 1,2,4, 8, 16, etc.

NOTES

Complier Note:

146

This operation will not compile if the bit-length of the count-pvar argument is not
explicitly declared, because the amount of space allocated by the compiler for an ashll

operation depends on the bit-length of this argument.

If the count-pvar argument is declared to be of a data type whose length is unspecified,
such as flxnum in (ashll (the (unslgnec:l-byte 4) pvar) (II (the flxnum x))), the compiler will
signal an error because there is not enough space to represent the result produced by
the largest possible value for this argument. (Specifically, if x had the value 232 then
ashll would try to create a pvar roughly 232 bits in length!)

Version 6.1, October 1991

*Lisp Dictionary ashll
~. ! rr n m! !IIm::1II rwmnnn:1f!IH2Ilmm: ~ f II n I i1IT !u!II!:i:::::n~: §alinE! !1E!ffl f 12m !lin: Iffl!!H!:1

Declarations that explicitly specify the length of the count-pvar argument will com­
pile. For example, (ashll (the (unsigned-byte 4) pvar) (the (field-pvar 4) x-pvar)) will
compile because the result can at most be 19 bits in length (4 bits from the source pvar,

shifted by up to 15 bits as specified by x-pvar).

Version 6.1, October 1991 147

asin!!. asinhll *Lisp Dictionary
U!!1II 12 f IHili!! I m:umID I nm I 1 IH !lll1ill1!lJj:mmn UI! g nffiffif'ffiWi 121 mI ! 1; II

." · hIt aSln .. , aSln .. [Function]

Take the arc sine and arc hyperbolic sine of the supplied pvar.

SYNTAX

aslnll
aslnhll

numeric-pvar
numeric-pvar

ARGUMENTS

numeric-pvar Numeric pvar. Pvar for which the arc sine (arc hyperbolic sine) is
calculated.

RETURNED VALUE

arc-sine-pvar Temporary numeric pvar. In each active processor, contains the arc
sine (arc hyperbolic sine) in radians of the corresponding value of
numeric-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

148

The aslnll function calculates the arc sine of numeric-pvar in all active processors. It
returns a temporary pvar containing in each active processor the arc sine in radians of
the corresponding value of numeric-pvar. Similarly, the asinh!l function calculates the
arc hyperbolic sine of numeric-pvar in all active processors. The asinll and asinhll

functions provide the same functionality for numeric pvars as the Common Lisp func­
tions asin and aslnh provide for numeric scalars.

Version 6.1, October 1991

(

*Lisp Dictionary asinll. aslnhll
:lim. HW~! : 1iIM!l!mlt1 1 iii 111m 12! g; IN n ! 1m r iFEEl! ~mnl!1 r r il; lilW:C m lli; :w:::;;; ~l!!1iOOJU

EXAMPLES

If numeric-pvar contains non-complex values. asln!! returns the arc sine in each active
processor. while asinhll returns the arc hyperbolic sine in each active processor.
For example:

(asin!! (!! 1.0))

(asinh!! (!! 11.548740))

<=> (!! 1.5707963)

<=> (!! 3.1415927)

If numeric-pvar contains complex values. asln!! returns the complex arc sine in each
active processor. while aslnh!! returns the complex arc hyperbolic sine in each active
processor:

NOTES

(asin!! (!! tc(1.0 0.0)))

(asinh!! (!! tc(11.548740 0.0)))

<=> (!! #c(1.5707963 0.0))
<=> (!! #c(3.1415927 0.0))

It is an error if numeric-pvar contains integer or floating-point values of magnitude
greater than 1.0 in any active processor. Complex values with magnitude greater than
1.0 are allowed.

It is an error if numeric-pvar contains a non-numeric value in any active processor.

Version 6.1, October 1991 149

atanll, atanhll *Lisp Dictionary
Hi 11 ; un;rm j l1i!i!!!Mf fl I r n r 11 TIl!1! H 1 mIll liI!!lUl1flllimllmTIlm Illf1l00mm EEiIfH! IH oomM

atanll,atanhll [Function]

Take the arc tangent and arc hyperbolic tangent of the supplied pvar(s).

SYNTAX

atanll numeric-pvar &optional denominator-pvar
atanhll numeric-pvar

ARGUMENTS

numeric-pvar Numeric pvar. Pvar for which arc tangent (arc hyperbolic tangent)
is calculated. Numerator of value if denominator-pvar is supplied
(for atanll only).

denominator-pvar Numeric pvar. Ifsupplied, denominator of value (for atanll only).

RETURNED VALUE

arc-tangent-pvar Temporary numeric pvar. In each active processor, contains the arc
tangent (arc hyperbolic tangent) in radians of the corresponding
values in numeric-pvar and (if supplied) denominator-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

150

The atanll function calculates the arc tangent in all active processors.

If only one argument is given, atanll returns a temporary pvar containing in each active
processor the arc tangent in radians of the corresponding value of numeric-pvar. The
argument numeric-pvar may contain either real or complex values in this case.

If two arguments are given, the returned pvar contains in each active processor the arc
tangent of the quotient of numeric-pvar and denominator-pvar. The numeric-pvar and
denominator-pvar arguments may not contain complex values in this case. The quad-

Version 6.1, October 1991

*Lisp Dictionary atanll, atanhll
1M! 11 2 I a· !Ii 21111 MmJilt ml!!llIl g] Piil t 1 t m I II : 12ut2lRltn fflmmgl I I

rant of the result is determined by the respective signs of the two arguments. The angle
returned in each processor is in standard position, with one side on the x-axis and the
other in the same quadrant as the point defined by (numeric-pvar, denominator-pvar)
in that processor.

The atanhll function calculates the arc hyperbolic tangent of numeric-pvar in all active
processors. It returns a temporary pvar containing in each active processor the arc hy­
perbolic tangent in radians of the corresponding value of numeric-pvar. The atanhll
function provides the same functionality for numeric pvars that the Common Lisp
function atanh provides for numeric scalars.

The atanll and atanhll functions provide the same functionality for numeric pvars as
the Common Lisp functions atan and atanh provide for numeric scalars.

EXAMPLES

If numeric-pvar contains non-complex values, atanll returns the arc tangent in each
active processor, while atanhll returns the arc hyperbolic tangent in each active proces-
sor:

(atan! ! (! ! 1. 0)) <=> (! ! 0.7853982)
(atan! ! (! ! 3) (! ! 4» <=> (! ! 0.6435011)
(atan! ! (! ! -3) (! ! 4» <=> (! ! -0.6435011)
(atanh! ! (! ! .1» <=> (! ! 0.10033534)

If numeric-pvar contains complex values, atanll returns the complex arc tangent in
each active processor, while atanhll returns the complex arc hyperbolic tangent in each
active processor.

NOTES

(atan!! (!! #C(0.27175258 1.08392333») <=> (!! #C(1.0 0.0»
(atanh!! (!! *c(O.O 0.0») <=> (!! #C(O.O 0.0»

An error is signalled if numeric-pvar and denominator-pvar both contain 0 in any ac­
tive processor, or if either argument contains a non-numeric value in any active
processor.

For atanhll: An error is signalled if the argument numeric-pvar contains a non-com­
plex value of magnitude greater than or equal to 1 in any active processor.

Version 6.1, October 1991 151

bHII *Lisp Dictionary
11 mnmTW1!I!I!ll n rn Him 11]1 IfUIi ! IMP TI IT

bitll [Function]

Selects in parallel a bit at a given location in a bit array pvar.

SYNTAX

bltll bit-array-pvar &rest pvar-indices

ARGUMENTS

Bit array pvar. Array from which bit is selected. bit-array-pvar

pvar-indices Integer pvars. Must contain valid subscripts for bit-array-pvar.
Specifies location of bit to return.

RETURNED VALUE

bit-pvar Temporary bit pvar. In each processor. contains the bit retrieved
from the corresponding array of bit-array-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function extracts a bit-length pvar from a bit-array pvar.

Note: There is no significant efficiency advantage to using this function in place of
arefll; the two are equivalent. Furthermore. you should use aret" instead because bit"
will not exist in future versions of *Lisp.

REFERENCES

152

See also these related bit-array pvar operations:
blt-andll bH-andc211 bit-notll blt-orc1ll bit-eqvll
blt-andc111 bit-norll bit-orc211 bH-xorll bH-iorll

bit-nandll

sblt"

Version 6.1, October 1991

/

\.

(

\

----. \

*Lisp Dictionary blt-{lop}II
nJIII: [11m [wen!!1!i::1 ! If1I1H n llI! 1 :i1rmmrem!!OOii1IP mm . Wi 11 r r mnw!:! nrnmlll r:nlw Ii j 1

bit-andll, bit-andc111, bit-andc211, bit-eqvll,
bit-ior!!, bit-nand!!, bit-nor!!, bit-not!!,
bit-orc111, bit-orc211, bit-xorll [Function]

Perform parallel bitwise logical operations on the supplied bit array pvars.

SYNTAX

bit-notll bit-array-pvar-l &optlonal destination

bit-andll bit-array-pvar-l bit-array-pvar-2 &optional destination
blt-andc1 II bit-array-pvar-l bit-array-pvar-2 &optional destination
blt-andc211 bit-array-pvar-l bit-array-pvar-2 &optional destination
blt-eqvll bit-array-pvar-l bit-array-pvar-2 &optional destination
blt-Iorll bit-array-pvar-l bit-array-pvar-2 &optional destination
bit-nand II bit-array-pvar-l bit-array-pvar-2 &optional destination
bit-norll bit-array-pvar-l bit-array-pvar-2 &optional destination
bit-orc111 bit-array-pvar-l bit-array-pvar-2 &optional destination
blt-orc211 bit-array-pvar-l bit-array-pvar-2 &optional destination
bit-xorll bit-array-pvar-l bit-array-pvar-2 &optlonal destination

ARGUMENTS

bit-array-pvar-l, bit-array-pvar-2

destination

RETURNED VALUE

Bit array pvars. Combined by bitwise logical comparison.

Either the value t, the value nil, or a bit array pvar. Determines
where the result is stored. Defaults to nil.

bit-array-result-pvar

Version 6.1. October 1991

Temporary bit array pvar. In each active processor, contains the bit­
wise logical result. The returned pvar is either a pre-allocated pvar
or a temporary pvar, depending on the value of destination.

153

blt-{lop)1I *Lisp Dictionary
lli1i1!Um Rli 111m J 1ft !1m fil m [HPJ! m: 12:8 3m grrrrr:w:: [f Wml g : 11 ICi i HlJIlliIT

SIDE EFFECTS

If destination is nil or not supplied, the returned pvar is allocated on the stack. If desti­
nation is t, bit-array-pvar-l is destructively modified to contain the result. If
destination is a bit array pvar, then destination is destructively modified to contain the
result.

DESCRIPTION

154

These functions perform logical bitwise operations on the contents of their arguments.
The result in each case is a bit array pvar of the same rank and dimensions as the origi­
nal bit array pvars. It is an error if the arguments are not bit-array pvars of identical
rank and dimensionality.

The logical operation performed by each *Lisp function is:

blt-andll

bit-andc111

blt-andc211

blt-eqvll

blt-Iorll

blt-nandll

blt-norll

blt-notll

blt-orc111

blt-orc211

blt-xorll

Bitwise logical AND.
Bitwise logical AND, with bit-array-pvar-l complemented.
Bitwise logical AND, with bit-array-pvar-2 complemented.
Bitwise logical equivalence ..
Bitwise logical inclusive OR
Bitwise logical NAND.
Bitwise logical NOR.
Bitwise logical NOT.
Bitwise logical inclusive OR, with bit-array-pvar-l
complemented.
Bitwise logical inclusive OR, with bit-array-pvar-2
complemented.
Bitwise logical exclusive OR.

If supplied, the optional destination argument must be either t, nil, or a bit array pvar
with the same rank and dimensions as the bit-array-pvar arguments. It defaults to nil.
If destination is nil, the operation returns a temporary bit array pvar. If destination is
a bit-array pvar, the result of the operation is destructively stored in that pvar. If desti­
nation is t, the result of the operation is destructively stored in bit-array-pvar-l.

Version 6.1, October 1991

c

,I

(

\.

"'Lisp Dictionary bit-{Jop}1I
12 !I! r::mi[! !.!I!II mMIJI!: MIflI !lummi !II f !1fHj~ m! M n11 :r 2_ m g;~ g cr II! i HII!!,\m ifW ; ! II! rm

~"

_/

EXAMPLES

(*defva:r bitarr1 (! ! #(1 0 1 0»)
(*defvar bitarr2 (! ! #(1 1 0 0»)

(bit-and! ! bitarr1 bitarr2) <=> (! ! #(1 0 0 0»

(bi t-andc1! ! bitarr1 bitarr2) <=> (! ! #(0 1 0 0»
<=> (bit-and (bit-not! ! bitarr1) bitarr2)

(bi t-andc2 ! ! bitarrl bitarr2) <=> (! ! #(0 0 1 0»
<=> (bit-and bitarr1 (bit-not! ! bitarr2))

(bit-eqv! ! bitarr1 bitarr2) <=> (! ! #(1 0 0 1»

(bit-ior! ! bitarr1 bitarr2) <=> (! ! #(1 1 1 0»

(bi t-nand! ! bitarr1 bitarr2) <=> (! ! #(0 1 1 1))

(bit-nor! ! bitarr1 bitarr2) <=> (! ! #(0 0 0 1»

(bit-not! ! bitarr1) <=> (! ! #(0 1 0 1»

(bi t-orc1! ! bitarr1 bitarr2) <=> (! ! #(1 1 0 1))
<=> (bit-or! ! (bit-not! ! bitarr1) bitarr2)

(bi t-orc2 ! ! bitarr1 bitarr2) <=> (! ! #(1 0 1 1»
<=> (bit-or! ! bitarr1 (bit-not! ! bitarr2))

(bit-xor! ! bitarr1 bitarr2) <=> (! ! #(0 1 1 0»

REFERENCES

See also these related bit-array pvar operations:
bitll sbitll

Version 6.1, October 1991 155

boolell *Lisp Dictionary
?Ii 1lI!if:!!l!l!11l1QiUWn ;;g :i!2IR 1I lin iHW1 : n 1 nil 11ll1!1Hi!1lI!Rf:!!!!f:!!!!!11 un !nH NTIi!II!!iU!I!!iU11!11m!11mnl!!i!f?

boolell [Function]

Applies boolean operations in parallel to the supplied integer pvars and returns an integer
pvar.

SYNTAX

boolell op-pvar integer-pvarl integer-pvar2

ARGUMENTS

op-pvar Integer pvar. Contains in each processor one of a set of operation
constants, described below, that determine the boolean operation
perfonned in that processor.

integer-pvar 1, integer-pvar2
Integer pvars. Pvars to which the boolean operation in op-pvar is
applied.

RETURNED VALUE

integer-result-pvar Temporary integer pvar. In each processor, contains the result of
applying the boolean function specified by op-pvar to integer­
pvarl and integer-pvar2.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

156

The function boolell is the parallel equivalent of the Common Lisp boole function.

In each active processor, the logical operation specified by the value of op-pvar is
perfonned on the values contained in integer-pvarl and integer-pvar2.

Version 6.1. October 1991

(,-

(

I",

(

\

/

*Lisp Dictionary boolell
11 1 !! m 11 l2il1i1lll!llmTIWliEi!!mm 111m M Im!l ·111 iliUm iii n 1 II!!mmIU I!mm!Rl2Wilimmll1111m !I@ I m Iii n liP

The following Common Lisp integer constants are acceptable as components of the
op-pvar argument:

boole-clr

boole-set

boole-eqv

boole-xor

EXAMPLES

boole-and

boole-ior

boole-nor

boole-nand

A simple call to boolell is

(boole!! (!! boole-and) n1 n2)

boole-1

boole-2

boole-c1

boole-c2

boole-andc1

boole-andc2

boole-Orc1

boole-orc2

which performs a boole-and operation in each processor on n1 and n2. Note that this
is equivalent to the expression

(logand!! n1 n2)

Different logical operations can be performed in different processors. For example, to
have boole-and execute in all odd processors and boole-ior execute in all even proces­
sors, use the form

(boole!! (if!! (oddp!! (self-address!!»
(!! boole-and)
(!! boole-ior»

n1 n2)

REFERENCES

See the definition of the boole function in Common Lisp: The Language.

Version 6.1, October 1991 157

booleanpll *Lisp Dictionary
I !!! 1!I1I1El11!l1Rllmmlll1ml! I m nmHff! m 2 2 1 II 7 1I11!!!!I111il! I! 1!l1I!1111!IIUm! llil i1 ITMm mlMI!!!EI

booleanpll [Function]

Performs a parallel test for boolean values on the supplied pvar.

SYNTAX

booleanpll value-pvar

ARGUMENTS

value-pvar

RETURNED VALUE

booleanJrpvar

SIDE EFFECTS

Pvar expression. Pvar to be checked for boolean values.

Temporary boolean pvar. Has the value t in each processor in which
value-pvar contains either t or nil. Contains nil in all other active
processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This predicate returns t in each processor in which value-pvar contains either t or nil,

and returns nil in every other processor. When using general pvars, this can be useful
to determine which processors contain boolean values.

Standard Common Lisp does not have a boolean type. *Lisp defines such a type as
boolean <=> (member t nil).

EXAMPLES

(booleanp!! nil!!) => t!!

158 Version 6.1. October 1991

/

\

*Lisp Dictionary
mmliiNIUg; r aUi r Pill 1 r n 711 IT

REFERENCES

See also these related pvar data type predicates:
characterpll

floatpll

numberpll

typepll

Version 6.1, October 1991

complexpll

front-end-pll

strlng-char-pll

booleanpll
12nn!lmr I

Integerpll

structurepll

159

both-case-pll *Lisp Dictionary
TIl I [ffi rmmmn 1 !IIi! i I 1m w WI '9'1im 11 n flU WE mwu In Ai H!IIUmnmAin i13 m 1111 m1m! I Ii !!J fi

both-ease-pll [Function]

Performs a parallel test for alphabetic characters which have both uppercase and lowercase
forms.

SYNTAX

both-case-pll character-pvar

ARGUMENTS

character-pvar Character pvar. Tested in parallel for dual-case characters.

RETURNED VALUE

both-casep-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of character-pvar is a dual-case
character. Contains nil in all other processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

160

This predicate tests the case of the character components of character-pvar.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only elements of type character or string-char.

Where character-pvar contains characters that may be represented in either upper or
lower case, regardless of their current case, both-case-pll returns t. Non-Roman fonts,
for example, may include alphabetic characters that do not have uppercase or lower­
case counterparts.

For each function, the return value is nil in those processors containing character data
that fails to pass the test criterion.

Version 6.1, October 1991

/
/

*Lisp Dictionary both-case-pll
0000 1m! mm roT 1 1111l!fmn Jlll] 9191 nil] m ill mm? :1m 11

'--.~-",

I
~.-/

(both-case-p! ! (! ! *\c» <=> t! !
(both-case-p! ! (! ! *\T» <=> t! !
(both-case-p! ! (! ! *\3» <=> nil! !

Version 6.1, October 1991 161

bytell *Lisp Dictionary
ll1illl TT nrrnlillilH!!ll 1 mliIT!rnlf Pi

byte I I [Function]

Creates and returns a byte-specifier pvar suitable as an argument to byte-manipulation
functions such as Idbll and dpbll.

SYNTAX

bytell size-pvar position-pvar

ARGUMENTS

size-pvar Integer pvar. Specifies size in bits of byte to be manipulated.

position-pvar Integer pvar. Specified bit position at which byte starts.

RETURNED VALUE

bytespec-pvar Temporary integer pvar. In each active processor, contains a byte­
specifier integer formed by combining the values of size-pvar and
position-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

162

This function is the parallel equivalent of the Common Lisp function byte. It takes two
integer pvars representing the size and position of a byte pvar. -

The arguments size-pvar and position-pvar may contain different values in each proc­
essor. The return value of bytell is a byte specifier pvar suitable for use as an argument
to byte-manipulation functions such as Idbll and dpbll.

Version 6.1, October 1991

/
\

"

,/

../

*Lisp Dictionary byte"
HI IT liii!1l1 n n nr n m g; i m f 111 1 ImnW!if1lffi In!!lmli WH:r 1m!? 111m nm ffi Wi I rrm Iwml 1 1·· fl 1 NIH!! ffiiUm!

EXAMPLES

Consider an integer pvar that can be manipulated by one of the byte manipulation func­
tions. If this integer pvar is specifed by a size-pvar of (II 16) and a position-pvar of
(113). we have. in each processor. a 16-bit byte that starts at bit 3 (zero-based). The call
to bytell in this instance is

(byte!! (!! 16) (!! 3»

REFERENCES

See also these related byte manipulation operators:
byte-posltlonll byte-slzell

deposlt-bytell

Idbl!

mask-field I!

Version 6.1. October 1991

deposit-field I!

Idb-testl!

dpbl!

load-bytel!

163

byte-{posltlon,slze)1I
111l1li !lIm I mllillfl!! 7111 I! m T H

byte-position II
byte-sizell

*Lisp Dictionary
m mil 11 111m 1f!!!Ii n 2m 1 ! I I 1 r n J

[Function]

Extract the byte position and size component from a byte-specifier pvar.

SYNTAX

byte-posltlonll bytespec-pvar
byte-slzell bytespec-pvar

ARGUMENTS

bytespec-pvar Byte-specifier pvar, as returned by the function byte!!.

RETURNED VALUE

position-pvar Temporary integer pvar. In each active processor, contains the ex­
tracted component of bytespec-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The functions byte-posltlonll and byte-slzell each take a byte specifier pvar, created by
calling bytell, as their argument. The integer pvar returned is a copy of the position­
pvar or size-pvar originally given as an argument to bytell. Thus:

(byte-posi tion! !
(byte-size! !

(byte!! size pos» <=>
(byte!! size pos» <=>

(!! pos)
(!! size)

EXAMPLES

164

(byte-posi tion! !
(byte-size! !

(byte!! (!! 16) (!! 3») <=>
(byte!! (!! 16) (!! 3») <=>

(!! 3)
(!! 16)

Version 6.1. October 1991

/
i

(
\

*Lisp Dictionary byte-{posltion,size}U
InnE nIH!! ! 1 'WiilllFmEDD nmmm !111m I! ! mwml'f11'f11!ilm_nli em! mgmmm::r:lffI2RTIII1I!I ililf mr If! mm;w

REFERENCES

See also these related byte manipulation operators:
byte" deposlt-bytell deposit-field II dpb"
Idbll Idb-test" load-byte" mask-field"

"\

Version 6.1, October 1991 165

*case, casell *Lisp Dictionary
! HI iii ! mil r Ii! r HHH I 11 l!n IT n:mmrnn liifill1lWmJW 1 IUri 1IIIIIf fililum J

*case, case II [Macro]

Evaluates *Lisp forms with the currently selected set bound according to the value of a
pvar expression.

Returns a pvar obtained by evaluating *Lisp forms with the currently selected set bound
according to the value of a pvar expression.

SYNTAX

*caselcasell value-expression (/cey-expression-l &rest body-forms-l)
(/cey-expression-2 &rest body-forms-2)

(key-expression-n &rest body-forms-n)

ARGUMENTS

value-expression Pvar expression. Value to compare against key-expression-n in
each clause.

key-expression-n Scalar expression. Evaluated, compared with value-expression.
Selects processors in which to perform the corresponding
body-forms. May also be a list of such expressions, in which case
each expression is compared with value-expression.

body-forms-n *Lisp forms. These forms are evaluated with the currently
selected set restricted to those processors in which value­
expression is eqlll to (II key-expression-n).

RETURNED VALUE

166

For *case:

nil Evaluated for side effect only.

For casell:

case-value-pvar
Temporary pvar. In each active processor, contains the value
returned by body-forms-n if and only if value-expression is eql to
key-expression-n.

Version 6.1, October 1991

(

/

\.

(

I
-./

*Lisp Dictionary *case,casell
1 . r . 1 ·lm1:NnTII12 !WIn ffl!i1 r r !wu~:m T 1 rr IlmP r n n lila nil R

SIDE EFFECTS

For*case:

None aside from those of the individual body-forms.

For casell:

The returned pvar is allocated on the stack.

DESCRIPTION

The *case and casell macros are parallel equivalents of the Common Lisp case opera­
tion. The two operators each select groups of processors to execute different portions
of *Lisp code. Unlike case, however, ·case and casell evaluate all clauses.

The main difference between *case and casell is that *case is used only for the side
effects of its body fonns, while casell also constructs and returns a value-pvar that con­
tains the value returned by its body-forms.

EXAMPLES

When the following fonns are evaluated,

(*defvar result (!! 1»
(*case (mod!! (self-address!!) (!! 4»

(0 (*set result (!! 0»)
«1 2) (*set result (self-address!!»)
(otherwise (*set result (!! -1»»

result is bound to a pvar with the values 0, 1,2, -1,0,5,6, -1, etc.

Similarly, when

(case!! (mod!! (self-address!!) (!! 4»
(0 (!! 0»
«1 2) (self-address!!»
(otherwise (!! -1»)

is executed, the returned pvar contains the values 0, 1,2, -1,0, 5, 6, -1, etc.

Version 6.1, October 1991 167

*case. easell *Lisp Dictionary
B ll1lilll lIWfmR! I 1117 nBI \1111! R? 1 Ii n J 11 J J n m 7" 11m !1Ii111l g IT IT r Mrnm J g ;; : g ffllP '1

NOTES
Usage Notes:

It is an error for two *ease or easel I clauses to contain the same key-expression. If two
easell clauses contain the same key, the returned pvar contains the values returned by
the body forms in the first of the clauses.

Forms such as throw, return, return-from, and go may be used to exit a block or looping
construct from within a processor selection operator such as *ease or casell. However,
doing so will leave the currently selected set in the state it was in at the time the non­
local exit form is executed. To avoid this, use the *Lisp macro wlth-css-saved. See the
dictionary entry for with-css-saved for more information.

Performance Note:

Currently, *case and casell clauses execute serially, in the order in which they are
supplied. At any given time, therefore, the number of processors active within a *case
or casell clause is a subset of the currently selected set at the time the *ease or easell
form was entered. Providing a large number of clauses therefore can result in ineffi­
cient processor usage.

REFERENCES

168

See also the related operators
*all
*If

*cond
Ifll

condll
*unless

*ecase
*when

ecasell
with-css-saved

Version 6.1, October 1991

/

*Lisp Dictionary ceiling II
m!illlllln III Hm J ffl! 1Il!! ·!IJ!!ffllHlEl!!lfilmUm! f mill! imp UlffHlilli§I1ff!IfUJJI nil g

ceilingll [Function]

Performs a parallel ceiling operation on the supplied pvar(s).

SYNTAX

celllngil numeric-pvar &optlonal divisor-numeric-pvar

ARGUMENTS

numeric-pvar Non-complex numeric pvar. Value for which the ceiling is
calculated.

divisor-numeric-pvar

RETURNED VALUE

ceiling-pvar

SIDE EFFECTS

Non-complex numeric pvar. If supplied, numeric-pvar is divided
by divisor-numeric-pvar before the ceiling is taken.

Temporary integer pvar. In each active processor, contains the ceil­
ing of numeric-pvar, divided by divisor-numeric-pvar if supplied.

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function ceiling, except that only
one value-the quotient of the division-is computed and returned.

EXAMPLES

(ceiling!! (!! 4.5» <=> (!! 5)

Version 6.1, October 1991 169

celllngtt *Lisp Dictionary
II! 1 f Ill! PH n 11l111U HlIU Ullf !! ! m 121iliHm:IIH1!IiliTInlliillfl !I alUm!!1 HIm! 111li1il ;

REFERENCES

See also these related rounding operations:
floorll roundll truncatell

See also these related floating-point rounding operations:
fceillngll ffloorll froundll ftruncatell

170 Version 6.1, October 1991

*Lisp Dictionary char{=.I=.<.<=.>.>=}1I
. m mH!lffi! rrwmr:rnmrn W!mfr HITjfH mHlff IHilU lin Iff Ill! I HlffllUlHl

char-II, char/=lI, char<lI,
char<=II, char>lI,char>=1I [Function]

Perform a case-sensitive parallel comparison of the supplied character pvars.

SYNTAX

char=1I character-pvar &rest character-pvars
char/=II character-pvar &rest character-pvars
char< II character-pvar &rest character-pvars
char<=11 character-pvar &rest character-pvars
char>1I character-pvar &rest character-pvars
char>=11 character-pvar &rest character-pvars

ARGUMENTS

character-pvar, character-pvars
Character pvars. Compared in parallel.

RETURNED VALUE

char-compar~on-pvar

Temporary boolean pvar. Contains t in each active processor where
all of the supplied character-pvar arguments satisfy the character
comparison. Contains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The tests performed by these operations are as follows:

char=1I

char/=1I

char<II

Version 6.1, October 1991

case-sensitive Ascn value equality
case-sensitive Ascn value inequality
case-sensitive strictly increasing Ascn ordering

171

char(=,I=,<,<=,>,>=}I' *Lisp Dictionary
g l! m rmll r n r un 1 r 11 12 i 1m ! if 1I r I r IT rn firm!! n

char<=11

char>"
char>=11

EXAMPLES

(char=! !
(char=! !
(char=! !
(char=! !
(char=! !
(char=! !
(char=! !

(char/=
(char/=
(char/=
(char/=
(char/=
(char/=
(char/=

(char<! !
(char<! !
(char<! !
(char<! !
(char<! !

(char<=! !
(char<=! !
(char<=! !
(char<=! !
(char<=! !

(char>! !
(char>! !
(char>! !
(char>! !
(char>! !

(char>=! !
(char>=! !
(char>=! !
(char>=! !
(char>=! !

172

(!
(!
(!
(!
(!
(!
(!

(! !
(! !
(! !
(! !
(! !

(! !
(! !
(! !
(! !
(! !

(! !
(! !
(! !
(! !
(! !

(! !
(! !
(! !
(! !
(! !

case-sensitive nondecreasing Ascn ordering
case-sensitive strictly decreasing Ascn ordering
case-sensitive nonincreasing Ascn ordering

#\c) #\c» <=> t! !
#\c) #\e)) <=> nil! !
#\c) #\3» <=> nil! !
#\c) #\z» <=> nil! !
#\c) #\c) (! ! #\c)) <=> t! !
#\c) #\c) (! ! #\e)) <=> nil! !
#\c) #\Z) (! ! #\e)) <=> nil! !

#\c) #\c» <=> nil! !
#\c) #\e» <=> t! !
#\c) #\3» <=> t! !
#\c) #\z» <=> t! !
#\c) #\c) (! ! #\c)) <=> nil! !
#\c) #\c) (! ! #\e» <=> nil! !
#\c) #\Z) (! ! #\e» <=> t! !

#\c) (! ! #\c» <=> nil! !
#\c) (! ! #\e» <=> nil! !
#\c) (! ! #\3» <=> nil! !
#\c) (! ! #\z)) <=> t! !
#\A) (! ! #\B) (! ! #\Z)) <=> t! !

#\c) (! ! #\c)) <=> t! !
#\c) (! ! #\e» <=> nil! !
#\c) (! ! #\3» <=> nil! !
#\c) (! ! #\z» <=> t! !
#\1) (! ! #\5) (! ! #\5)) <=> t! !

#\c) (! ! #\c» <=> nil! !
#\c) (! ! #\e)) <=> t! !
#\c) (! ! #\3)) <=> t! !
#\c) (! ! #\z)) <=> nil! !
#\z) (! ! #\j) (! ! #\a)) <=> t! !

#\c) (! ! #\c)) <=> t! !
#\c) (! ! #\e» <=> t! !
#\c) (! ! #\3» <=> t! !
#\c) (! ! #\z» <=> nil! !
#\5) (! ! #\1) (! ! #\1)) <=> t! !

Version 6.1, October 1991

\

"

~\

*Lisp Dictionary character!!
film ii n llTI g ! rr n 1 ! I fiR 1 Ii1!llii121 TIn! n III! 1W n 1 r I! mrr IlmllliifWlmiii IIIII!!!!!! Iftlllil M

characterll [Function]

Coerces the supplied pvar into a character pvar.

SYNTAX

character!! char-or-int-pvar

ARGUMENTS

char-or-int-pvar Pvar containing only integer or character values. Pvar to be
coerced into a character pvar. Must be a pvar of type character,
string-char, integer, or a general pvar containing only elements of
these types.

RETURNED VALUE

char-pvar Temporary character pvar. In each active processor, contains the
character equivalent of the corresponding value of char-or-int­
pvar, or the value nil if coercion could not be performed.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

Type coercion is attempted on the argument char-or-int-pvar. In processors where
this is successful, the resulting character is returned. In processors where this is unsuc­
cessful, character!! returns nil.

(character!! char-or-int-pvar)
<=>
(coerce!! char-or-int-pvar ' (pvar character»

Version 6.1. October 1991 173

characterll *Lisp Dictionary
1f I T I nI! Hium

REFERENCES

See also the related character pvar constructor make-charll.

See also the related character pvar attribute operators:
char-bltll char-bltsll
char-fontll lnltlallze-character

174

char-codell
set-char-bltll

Version 6.1, October 1991

I

\.

(

(

*Lisp Dictionary
1 MIl :!lUll HlP! 1 I r n 11 mmmnmm:m: III mun m; g 1 Ml

characterp! !
Performs a parallel test for character values on the supplied pvar.

SYNTAX

characterpll pvar

ARGUMENTS

characterpll
HI

[Function]

pvar Pvar expression. Pvar to be tested for character values.

RETURNED VALUE

characterp-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor where pvar contains a character value. Contains nil in all other
active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns t in all active processors where the supplied pvar contains charac­
ter data and nil in all other active processors.

EXAMPLES

(characterp!! (!! #\c» <=> t!!
(characterp!! (!! 0» <=> nil!!

Version 6.1, October 1991 175

characttl'pll
f f

REFERENCES

See also these related pvar data type predicates:
booleanpll complexpll

ftoatpll front-end-pll
numberpll strln~har-pll

typepll

176

31m JIIff1mr!

*Lisp Dictionary
111

Inttgerpll
structurepll

Version 6.1, October 1991

(

\.

*Lisp Dictionary char-bltll
1 I fllI2 11m ! n lm:iIMllm:nmIllRl::: : Il! 5 In nnl!! mil m pm! I D II! r J :;

char-bitll [Function]

Tests the state of a single flag bit of the supplied character pvar.

SYNTAX

char-bltll character-pvar bit-name-pvar

ARGUMENTS

character-pvar

bit-name-pvar

RETURNED VALUE

jlag-state-pvar

SIDE EFFECTS

Character pvar. Pvar for which bit selected by bit-name-pvar is
tested.

Integer pvar. Selects bit to be tested in each active processor. Must
contain integers in the range 0 to 3 inclusive.

Temporary boolean pvar. Contains the value t in each active proces­
sor where the flag bit named by bit-name-pvar in character-pvar
is set. Contains nil in all other active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This function tests the bit-name-pvar bit setting of character-pvar.

In those processors where character-pvar contains a character element that has the
bit-name-pvar bit set, char-bltl! returns t. It returns nil where character-pvar contains
a character element that does not have the bit-name-pvar bit set.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character and string-char elements.

Version 6.1, October 1991 177

char-bitll *Lisp Dictionary
Hrn 11m: TI II! TITIIl [TIun!! I n U f f 1[11 1 f 11 :

Unlike its Common Lisp analogue, the argument bit-name-pvar must be an integer
pvar (either an unsigned-byte or a signed-byte pvar). The following correspondence
holds between legal values for the bit-name-pvar argument and the recommended
Common Lisp control-bit constants:

Common Lisp *Lisp

:control (II 0)

:meta (II 1)
:super (II 2)
:hyper (II 3)

For example:

(char-bit!! (!! :f/:\control-x) (!! 0» => t!!

(char-bit!! char-pvar (!! x» <=>
(logbi tp!! (!! x) (char-bi ts!! char-pvar»

REFERENCES

See also the related character pvar attribute operators:
char-bits II char-codell

char-fontll Inltlallze-character set-char-bitll

178 Version 6.1. October 1991

(

"

(

/
,
\

"'Lisp Dictionary char-bitsll
R 11 m: 111111 n [mim ! J mJ r ! iii! 1 Ii wr l! r urm i !In nm If!' 11 I! ! I Em! wm Pnin m f n ill f

char-bitsll [Function)

Extracts in parallel the bits attribute of a character pvar.

SYNTAX

char-bits II character-pvar

ARGUMENTS

character-pvar Character pvar. Pvar from which to extract the bits attribute.

RETURNED VALUE

char-bits-pvar Temporary integer pvar. In each active processor, contains an inte­
ger representing the bits attribute of the corresponding value of
character-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a pvar that contains the bits attribute of each character element
of character-pvar.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

By definition, the font and bits attributes of a string-char pvar are zero. It is always the
case that:

(char-bits!! string-char-pvar) <=> (!! 0)

Version 6.1, October 1991 179

char-bltsll *Lisp Dictionary
_ mwF m f fiF [mRm rm[rnn F ! ! I r RRlW I ff Hli 1m unH 11 f! ! 11 11 I II IF III III !!i!!M .

REFERENCES

See also the related character pvar attribute operators:
char-bltll char-codell
char-fontll inltialize-character set-char-bitll

180 Version 6.1. October 1991

(
(

"-

(

\

/

*Lisp Dictionary char-codell
1 !! i !!lIIlfiIllI:r Inn f: r Ii In i1! : 1111 mIN III1 II! lim I! : ill ! I ;:mn I j mnMilWmlm!mlm! $.1 if IMtl!lm! I!IN immmm!lm:! i Ii ihllll!llrrni

char-codell [Function]

Extracts in parallel the code attribute of a character pvar.

SYNTAX

char-codell character-pvar

ARGUMENTS

character-pvar Character pvar. Pvar from which to extract the code attribute.

RETURNED VALUE

char-code-pvar Temporary integer pvar. In each active processor, contains an inte­
ger representing the code attribute of the corresponding value of
character-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a pvar that contains the code attribute of each character element
of character-pvar.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

(char-code!! #\A) <=> (!! 65)

REFERENCES

See also the related character pvar attribute operators:
char-bitll char-bits"
char-fontll initialize-character set-char-bitll

Version 6.1, October 1991 181

char-codeU
1I11III1 J r Fl In

*Lisp Dictionary
!jiRII mli!mim 111!Um1R1lRI!2IRmm m Ii! i 11m 11!! I I [n 1 !1m

See also the related character/integer pvar conversion operators:
char-lntll cod&-eharll dlglt-charll
Int-charll

182 Version 6.1, October 1991

/

\..

~,

*Lisp Dictionary
\ II m liP!; .; H II 111 II IT I ill !!lllIijj U!l~fi ; i lEiil f1iiiBCj!l nflia IffU; l!! IlH I. Im!!ln

char-downcase! !

char-downcase!l
: i .li! : ! m! iMlIIl2liif 1I11!1iINm

[Function]

Converts uppercase alphabetic characters in the supplied pvar to lowercase.

SYNTAX

char-downcasell character-pvar

ARGUMENTS

character-pvar

RETURNED VALUE

downcase-pvar

SIDE EFFECTS

Character pvar. Pvar containing characters to be converted. Must
be a pvar of type character or string-char, or a general pvar
containing only elements of these types.

Temporary characterpvar. In each active processor, contains a copy
of the corresponding value of character-pvar, with uppercase char­
acters converted to their lowercase equivalents.

The returned pvar is allocated on the stack.

DESCRIPTION

This function attempts to convert the case of each character element of character­
pvar. The returned value is a pvar containing converted characters where possible and
intact original character values elsewhere. During these case conversions, the values
of the bits and font attributes are not changed. Notice that only alphabetic characters
are affected by case conversion. Thus, characters with non-zero bit-field values are not
changed.

EXAMPLES

(char-downcase! ! (! ! #\C)) <=> (! ! #\c)
(char-downcase! ! (! ! #\c» <=> (! ! #\c)
(char-downcase! ! (! ! #\3» <=> (! ! #\3)

Version 6.1, October 1991 183

char-equalll *Lisp Dictionary
!liII!lillrm~ I 1 I 1 fl II II ! li_lemlnenil f 1 T ?H! I ! nu

char-equalll [Function]

Performs a case-insensitive parallel comparison of the supplied character pvars for
equality.

SYNTAX

char-equalll character-pvar &rest character-pvars

ARGUMENTS

character-pvar Character pvar. Compared in parallel for case-insensitive equality.

character-pvars Character pvars. Compared in parallel for case-insensitive
equality.

RETURNED VALUE

char-equal-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor where all of the supplied character-pvar arguments contain the
same character. regardless of case. Contains nil in all other active
processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

184

This function makes a case-insensitive comparison between the character element of
character-pvar in each processor and the character elements of each of the character­
pvars in the same processor. Differences in case. bit. and font attributes are ignored.

A boolean pvar is returned. It contains t in all active processors where the test is true
and nil in all active processors where the test is false.

Version 6.1, October 1991

(
"'-..

·Lisp Dictionary
1m ! IJ mm:!!lm !iUIf!1ll.iH1 11m II Hi 1! Ill!! 12 2f11R1 2HJ1f11HIm!RTDH II f!l21l!:J!! IEIf f~f! r Wi 2m

char-equalll
U!21lmll!l!!!j] n~

The argument character-pvar and each of the optional character-pvars must be a
character pvar, a string-char pvar, or a general pvar containing only character or
string-char elements.

EXAMPLES

(char-equal! ! (! ! #\c) (! ! #\c» <=> t! !
(char-equal! ! (! ! #\c) (! ! #\C» <=> t! !
(char-equal! ! (! ! #\c) (! ! #\3)) <=> nil! !
(char-equal! ! (! ! #\c) (! ! #\z» <=> nil! !

Version 6.1, October 1991 185

char-flipcasefl *Lisp Dictionary
If ! !i!!!§§i! HI Wlnl! nmrmoon m Ii Ii am 11 W emllm 1 I 11111 n ffR mi 11I1lU /moon If In IlliUI

char-flipcasell [Function]

In the supplied pvar, converts uppercase characters to lowercase, and vice-versa.

SYNTAX

char-fllpcasefl character-pvar

ARGUMENTS

character-pvar Character pvar. Pvar containing characters to be converted. Must
be a pvar of type character or string-char, or a general pvar
containing only elements of these types.

RETURNED VALUE

downcase-pvar Temporary character pvar. In each active processor, contains a copy
of the corresponding value of character-pvar, with uppercase char­
acters converted to lowercase, and lowercase characters converted
to uppercase.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

186

This function attempts to invert the case of each character element of character-pvar.
The return value is a pvar containing converted characters where possible and intact
original character values elsewhere. During these case conversions, the values of the
bits and font attributes are not changed. Notice that only alphabetic characters are
affected by case conversion. Thus, characters with non-zero bit field values are not
changed.

Version 6.1, October 1991

(

\

/
I

\

"'Lisp Dictionary
M!H!!!IIII rlml m lillliillifim

EXAMPLES

:ii1ITI!UII1il!1I1iI!

(char-flipcase! !
(char-flipcase! !
(char-flipcase! !

Version 6.1, October 1991

(! !
(! !
(! !

char-f1lpcasell
: Enw II : 'Will jl En mEH i~:I~!! IIIU!i!! In: lilln II mil m Wi ill 81i

#\C)) <=> (! ! #\c)
#\c)) <=> (! ! #\C)
#\3)) <=> (! ! #\3)

187

char-font"
11 n MI !mIll U II 1m III ~n Ii1 In !@l m !fUll!!! Hi

·Lisp Dictionary
un I Iii 1 11 l! IT[f Mini If r n 1 t:W

char-fontll [Function]

Extracts in parallel the font attribute of a character pvar.

SYNTAX

char-font" character-pvar

STNTAX

ARGUMENTS

character-pvar

RETURNED VALUE

font-pvar

SIDE EFFECTS

Character pvar. Pvar from which to extract the font attribute. Must
be a character pvar, a string-char pvar, or a general pvar
containing only character or string-char elements.

Temporary integerpvar. In each active processor, contains a integer
representing the font attribute of the corresponding value of
character-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a pvar that contains the font attributes of each character element
of character-pvar.

NOTES

188

By definition, the font and bits attributes of a string-char pvar are zero. Thus, it is
always the case that:

(char-font!! string-char-pvar) <=> (!! 0)

Version 6.1. October 1991

/

\

(
\

\

*Lisp Dictionary char-fontll
iI mi!RliIflWlli lilliE I:!m; n: Mmmllm'!lmI ll. iff 1 n r PI : n. fir mm 1 W TI R r r TIl1! F1 Iillff

REFERENCES

For a discussion of Common Lisp character attributes (code, bits, and font), see
Common Lisp: The Language, Chapter 13.

See also the related character pvar attribute operators:
char-bltl! char-bits I! char-codel!
Inltialize-character set-char-bitl!

Version 6.1, October 1991 189

char-greaterpU *Lisp Dictionary
11]! lill i1 II film IT TIP 11 fP! ! lfUill fJ nIH ; ggq ; 7 II! ~@i!!!tt

char-greaterpll [Function]

Performs a case-insensitive parallel comparison of the supplied character pvars for
decreasingorde~

SYNTAX

char-greaterpll character-pvar &rest character-pvars

ARGUMENTS

character-pvar

character-pvars

Character pvar. Compared in parallel for case-insensitive
decreasingorde~

Character pvars. Compared in parallel for case-insensitive
decreasingorde~

RETURNED VALUE

char-greaterp-pvar
Temporary boolean pvar. Contains the value t in each active pro­
cessor where the supplied character-pvar arguments are in
case-insensitive decreasing order. Contains nil in all other active
processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

190

This function makes a case-insensitive comparison between the character element of
character-pvar in each processor and the character elements of each of the character­
pvars in the same processor. Differences in case, bit, and font attributes are ignored.

A boolean pvar is returned. It contains t in all active processors where the test is true
and nil in all active processors where the test is false.

Version 6.1, October 1991

(

\

(

*Lisp Dictionary
!WII IIf] I 111: Ii r 11m I ilfllili ill 211 tl iT! If n lIi1ililiRnl!i i TI r:::mmiiiliili2i1iIllTI

char-greaterpll
imTIU!!! !

The argument character-pvar and each of the optional character-pvars must be a
character pvar, a string-char pvar, or a general pvar containing only character or
string-char elements.

EXAMPLES

(char-greaterp!! (!! #\Z) (!! #\N) (!! #\A)) <=> t!!
(char-greaterp!! (!! #\Z) (!! #\z)) <=> nil!!

Version 6.1, October 1991 191

char-Intn
w

char-inti I

Alliin!; !111 Rill Rum I HI! [wnl
*Lisp Dictionary
III Hi wlm ElIIlITlm 7 I!II

[Function]

Converts the supplied character pvar into an integer pvar.

SYNTAX

char-Intn character-pvar

ARGUMENTS

character-pvar

RETURNED VALUE

integer-pvar

SIDE EFFECTS

Character pvar. Pvar to be converted. Must be a pvar of type
character or string-char, or a general pvar containing only
elements of these types.

Temporary integerpvar. In each active processor, contains the inte­
ger value of the character in character-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

This function translates a character pvar into an integer pvar.

The return value is a non-negative integer pvar that holds the implementation-depend­
ent encoding of each character in character-pvar.

EXAMPLES

(char-int!! (!! t\A» <=> (!! 65)

192 Version 6.1. October 1991

(

/

(

\

/

*Lisp Dictionary char-IntI!
W II! I i rr n m!!IIIJIIUprnlll! mlllf lUll! rrnRm II! R I 1 urn 111 I I 1m millml IIIlli11!11ll11!1 mil!!!

NOTES

The char-lntll function relies on the Connection Machine system's encoding of charac­
ters. Results obtained from this function should not be expected to conform to results
obtained from the Common Lisp function char-lnt run on front-end machines.

REFERENCES

See also the related character/integer pvar conversion operators:
char-codell code-charll dlglt-charll
Int-charll

Version 6.1, October 1991 193

chal'-lesspll *Lisp Dictionary
un; PI Immllli! 1!H7 lUI nilT !mIIU@i I 7 n

char-Iesspll [Function]

Performs a case-insensitive parallel comparison of the supplied character pvars for increas­
ing order.

SYNTAX

char-lesspll character-pvar &rest character-pvars

ARGUMENTS

character-pvar Character pvar. Compared in parallel for case-insensitive
increasing orde~

character-pvars Character pvars. Compared in parallel for case-insensitive
increasing order.

I

I\.

RETURNED VALUE"

char-greaterp-pvar
Temporary boolean pvar. Contains the value t in each active pro­
cessor where the supplied character-pvar arguments are in
case-insensitive increasing order. Contains nil in all other active
processors.

SIDE EFFECTS

The returned pvai' is allocated on the stack.

DESCRIPTION

194

This function makes case-insensitive comparisons between the character element of
character-pvar in each processor and the character elements of each of the character­
pvars in the same processor. Differences in case, bit, and font attributes are ignored.

A bool~an pvar is returned. It contains t in all active processors where the test is true
and nil in all active processors where the test is false.

Version 6.1, October 1991

/

*Lisp Dictionary
r q HI 1m nwr rmm:!!I:1ln!li ::n:r rmlmUiW numa w;m::r;r 1 ;;

char-Iesspll
TI:i HmM!!: Willi n

The argument character-pvar and each of the optional character-pvars must be a
character pvar, a string-char pvar, or a general pvar containing only character or
string-char elements.

EXAMPLES

(char-lessp!! (!! #\A) (!! #\N) (!! #\Z» <=> t!!
(char-lessp!! (!! #\Z) (!! #\z» <=> nil!!

Version 6.1, October 1991 195

char-not-equalll
llliIll1lF

char-not-equalll

*Lisp Dictionary
!1ill!111111i!!i1Ii li Rff !!!J 11M r ! 11 R M II lUll Tn ! 11

[Function]

Performs a case-insensitive parallel comparison of the supplied character pvars for
inequality.

SYNTAX

char-not-equalll character-pvar &rest character-pvars

ARGUMENTS

character-pvar Character pvar. Compared in parallel for case-insensitive
inequality.

character-pvars Character pvars. Compared in parallel for case-insensitive
inequality.

(
',,-,

RETURNED VALUE "

char-equal-pvar Temporary boolean pvar. Contains the value t in each active pro­
cessor where all of the supplied character-pvar arguments contain
different characters, case-insensitive. Contains nil in all other active
processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

196

This function makes case-insensitive comparisons between the character element of
character-pvar in each processor and the character elements of each of the character­
pvars in the same processor. Differences in case, bit, and font attributes are ignored.

A boolean pvar is returned. It contains t in all active processors where the test is true
and nil in all active processors where the test is false.

Version 6.1, October 1991

(

*Lisp Dictionary char-not-equalll
IT !lfH IT ffi r ·Wl IT W~ rMI r Iff NJ!!IllIIllWl ! 11 I ! n

The argument character-pvar and each of the optional character-pvars must be a
character pvar, a string-char pvar, or a general pvar containing only character or
string-char elements.

EXAMPLES

(char-nat-equal!! (! ! #\c) (! ! #\c» <=> nil! !
(char-nat-equal!! (! ! #\c) (! ! #\C» <=> nil! !
(char-nat-equal!! (! ! #\c) (! ! #\3» <=> t! !
(char-nat-equal!! (! ! #\c) (! ! #\z» <=> t! !

Version 6.1, October 1991 197

char-not-greaterpll *Lisp Dictionary
111 HI! I III 1I1J Ill! IIJIl fI 1m I !n 'IlHRIL RI!JIlJllJn· m I 11J1l m

char-not-greaterpll [Function]

Performs a case-insensitive parallel comparison of the supplied character pvars for nonde­
creasing order.

SYNTAX

char-not-greaterpll character-pvar &reat character-pvars

ARGUMENTS

character-pvar

character-pvars

Character pvar. Compared in parallel for case-insensitive
nondecreasing order.

Character pvars. Compared in parallel for case-insensitive
nondecreasing order.

RETURNED VALUE

char-not-~ateYjp-pvar

Temporary boolean pvar. Contains the value t in each active pro­
cessor where the supplied character-pvar arguments are in
case-insensitive nondecreasing order. Contains nil in all other ac­
tive processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

198

This function makes case-insensitive comparisons between the character element of
character-pvar in each processor and the character elements of each of the character­
pvars in the same processor. Differences in case, bit, and font attributes are ignored.

A boolean pvar is returned. It contains t in all active processors where the test is true
and nil in all active processors where the test is false.

Version 6.1, October 1991

/

*Lisp Dictionary char-not-greaterpll
IIH! 1 !l m mmn nliim fnllU!I!!HHWmmme miHIIH i mr Ui r l! g WMlfii Wl1!Immli II ri W 1ft! 1

The argument character-pvar and each of the optional character-pvars must be a
character pvar, a string-char pvar, or a general pvar containing only character or
string-char elements.

EXAMPLES

(char-not-greaterp!! (!! :ft\Z) (!! :ft\N) (!! :ft\A» <=> nil!!
(char-not-greaterp!! (!! :ft\Z) (!! :ft\z» <=> t!!

Version 6.1, October 1991 199

char-not-lesspll *Lisp Dictionary
11111161 19111IH Ii fill r %1 U!IIIllli!!! 211 r 1

char-not-Iesspll [Function]

Performs a case-insensitive parallel comparison of the supplied character pvars for nonin­
creasing order.

SYNTAX

char-not-lesspll character-pvar &rest character-pvars

ARGUMENTS

character-pvar Character pvar. Compared in parallel for case-insensitive
nonincreasing order.

character-pvars Character pvars. Compared in parallel for case-insensitive
nonincreasing order.

RETURNED VALUE

char-not-greaterp-pvar
Temporary boolean pvar. Contains the value t in each active pro­
cessor where the supplied character-pvar arguments are in
case-insensitive nonincreasing order. Contains nil in all other active
processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

200

This function makes case-insensitive comparisons between the character element of
character-pvar in each processor and the character elements of each of the character­
pvars in the same processor. Differences in case, bit, and font attributes are ignored.

A boolean pvar is returned. It contains t in all active processors where the test is true
and nil in all active processors where the test is false.

Version 6.1. October 1991

I

\"

*Lisp Dictionary
fil mimcu SIR i 1

char-not-lesspll
r I Iwsmw Iii 11I! 'l!iilllffrr

The argument character-pvar and each of the optional character-pvars must be a
character pvar, a string-char pvar, or a general pvar containing only character or
string-char elements.

EXAMPLES

(char-not-lessp!! (!! #\A) (!! #\N) (!! f\Z» <=> t!!
(char-not-lessp!! (!! #\Z) (!! #\z» <=> nil!!

Version 6.1, October 1991 201

char pcasetl ·Lisp Dictionary
~mr U!!Imlnn 111m 111 I'll !IT 111 '11llr R r I m 'II f n nell! , leRII, !mI lim N I mmmm mn"

char-upcasell [Function]

Converts lowercase alphabetic characters in the supplied pvar to uppercase.

SYNTAX

char pcasell character-pvar

ARGUMENTS

character-pvar Character pvar. Pvar containing characters to be converted. Must
be a pvar of type character or string-char, or a general pvar
containing only elements of these types.

RETURNED VALUE

upcase-pvar Temporary character pvar. In each active processor, contains a copy
of the corresponding value of character-pvar, with lowercase char­
acters converted into their uppercase equivalents.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

202

This function attempts to convert the case of each character element of character­
pvar. The return value is a pvar containing converted characters where possible and
intact original character values elsewhere. During these case conversions, the values
of the bits and font attributes are not changed. Notice that only alphabetic characters
are affected by case conversion. Thus, characters with non-zero bit field values are not
changed.

Version 6.1, October 1991

*Lisp Dictionary
I!flJlnllltHi u!pm: I!iHIl H! U 1f1U !IT g m HZUl1 i mil m !'lU 111m fIJ r WI W I

EXAMPLES

(char-upcase! ! (! ! #\C)) <=> (! ! #\C)
(char-upcase! ! (! ! #\c)) <=> (! ! #\C)
(char-upcase! ! (! ! #\3» <=> (! ! #\3)

Version 6.1, October 1991

char-upcasell
IT 21 1m 1 Ii!f

203

clsll
l! I liIill n H m; P1mm i !!lmmHllnnn iii 21 UIUf.1lliliWm I mlmnJ!1lllllmlnm lflH 1

*Lisp Dictionary
In

cis!! [Function]

Performs a parallel conversion of phase angles into unit-length complex numbers.

SYNTAX

clsll numeric-pvar

ARGUMENTS

numeric-pvar Non-complex numeric pvar. Phase angle in radians to convert to
a complex number.

RETURNED VALUE

cos-i-sin-pvar Temporary complex pvar. In each active processor, contains a
unit-length complex number with a phase angle equal to the corre­
sponding value of numeric-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

204

This function is the parallel equivalent of the Common Lisp function cis. It returns a
temporary complex pvar whose value in each processor is a complex number of unit
length, whose phase is the value of the corresponding value of numeric-pvar.

(cis!! (!! 3.1415927» <=> (!! #C (-1. 0 2. 3841858e-7))

Another way to view this function is as returning the position on a unit circle, centered
on the complex plane, that corresponds to the angle stored in each processor of a pvar
(see Figure 1).

Version 6.1, October 1991

*Lisp Dictionary
1 1 I I1qlll!~Il1Il1r,lIi11:1!im!!!mI!iU@nm! ! lH W1 !! 1 if run!!

cis II
11 i i 1 1111UIIi1!iWW!Wl m i; llillmm;

REFERENCES

imaginary axis

--angle

b
iL--t-- real axis

(cisll (II angle» <=> (II #c(a b»

Figure 1. The function clsll calculates positions on a unit circle
centered in the complex plane.

See also these related complex pvar operators:
absll complexll
conjugatell Imagpartll phasell
realpartll

Version 6.1, October 1991 205

code-charll
Imlnlmum n In Ir g

code-chari I

li n H . n liP 11 llliminSllll!1! Ilil 111m!! RlI f

*Lisp Dictionary
Ii! ru IT! ! n f i ! Ii

[Function]

Converts numeric pvar of character codes to a character pvar with the supplied attributes.

SYNTAX

code-charll code-pvar &optlonal bits-pvar Jont-pvar

ARGUMENTS

code-pvar Non-negative integer pvar. Code attribute of character pvar.

bits-pvar Non-negative integer pvar. Bits attribute of character pvar.

Jont-pvar Non-negative integer pvar. Font attribute of character pvar.

RETURNED VALUE

char-pvar Temporary characterpvar. In each active processor, contains a char­
acter with the code, bits, and font attributes specified by the
corresponding values of code-pvar, bits-pvar, and Jont-pvar.
Contains nil in processors where the specified character can not be
constructed.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

206

This function attempts to construct a character pvar with the specified attributes. In
processors where this can be done, the resulting character is returned. In processors
where this can not be done, nil is returned.

All three arguments must be non-negative integer pvars. The optional bits-pvar argu­
ment and the optionalJont-pvar argument each default to (II 0).

Version 6.1, October 1991

*Lisp Dictionary code-charll
1l 1 1 111 ml i IT! rmr:umJi!!f!!!rmmrmmIJ 1 H r !HIIi!~fiIJjjl1l j H H nnn! f 11 P J f

EXAMPLES

(code-char!! (!! 65» <=> (!! t\A)

REFERENCES

For a discussion of Common Lisp character attributes (code, bits, and font), see
Common Lisp: The Language, Chapter 13.

See also the related character pvar attribute operators:
char-bltll char-bitsll
char-fontll Inltlallze-character

char-codell
set-char-bltll

See also the related character/integer pvar conversion operators:
char-coden char-lntll dlglt-charll
lnt-charll

Version 6.1, October 1991 207

coercel!
71l!lll '!Iilll!l

*Lisp Dictionary
I mn n il!I!!IIlIff

coerce II [Function]

Performs a parallel type coercion on the supplied pvar.

SYNTAX

coercel! pvar type-spec

ARGUMENTS

pvar Pvar expression. Pvar containing values to be coerced.

type-spec Type specifier. Must specify a valid *Lisp pvar type.

RETURNED VALUE

coerced-pvar Temporary pvar. Result of coercingpvar to the pvar type specified
by type-spec.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

208

The coercel! function is the parallel equivalent of the Common Lisp coerce func­
tion. This function attempts to convert pvar to the type indicated by type-spec. If this
is possible, the result is returned as a new pvar allocated on the *Lisp stack. If pvar is
already of type type-spec, a copy of pvar is returned. If the specified conversion is not
possible, an error is signaled.

Important: in many simple cases, type conversion is perfonned automatically. For
example, arithmetic operations such as +I! and pvar copying functions such as *set

automatically coerce their arguments according to the rules of *Lisp type coercion. It
is only necessary to explicitly coercel! a pvar in special cases, such as converting a
numeric pvar to a larger bit size or altering the element type of an array pvar.

Version 6.1, October 1991

'\
/'

*Lisp Dictionary coerce!!
i m 1111liiUUl liH 2m 10m fI lllf!1RI1UIm! HRW 11 nUT wnH 1111 II11m1lm:mum Iff aM IW

EXAMPLES

It is not generally possible to convert a given pvar to any data type; only certain con­
versions are permitted:

• An integer pvar (a signed-byte or unsigned-byte pvar) may be converted to an
integer pvar type of a different byte size. For instance, a pvar of type (pvar

(unslgned-byte 8» may be coerced to (pvar (slgned-byte 16»

(*proclaim ' (type (pvar (unsigned-byte 8» data-8»
(*defvar data-8 (random!! (!! 20»)
(*proclaim ' (type (pvar (unsigned-byte 16» data-16»
(*defvar data-16)
(*set data-16

(coerce!! data-8 ' (pvar (signed-byte 16»»

Conversions to smaller byte sizes are also legal. For example, a pvar of type
(pvar (unslgned-byte 8» may be coerced to (pvar (unsigned-byte 4»

(*proclaim ' (type (pvar (unsigned-byte 4» data-4»
(*defvar data-4 (random!! (!! 4»)

(*set data-4 (coerce!! data-8 ' (pvar (signed-byte 4»»

• Integer pvars may be converted to floating-point pvar types. For example, a
pvar of type (unslgned-byte-pvar 16) may be converted to a pvar of type (pvar

single-float)

(*proclaim ' (type single-float-pvar data-sf»
(*defvar data-sf)

(*set data-sf (coerce!! data-16 ' (pvar single-float»)

• A floating-point pvar may be converted to a floating-point pvar of a different
size. For instance, a pvar of type (pvar single-float) may be coerced to a pvar of
type (pvar double-float)

(*proclaim ' (type double-float-pvar data-df»
(*defvar data-df)

(*set data-df (coerce!! data-sf' (pvar double-float»)

Version 6.1. October 1991 209

coerce I!
w WWf p'I!fi!I$ W!PW pnn Win IililiU lVRl

*Lisp Dictionary
UII 7

210

• An integer pvar or a floating-point pvar may be converted to a complex pvar.
For example, a single-float pvar can be converted to a complex pvar for which
both exponent and significand are of type double-float

(*proclaim ' (type double-complex-pvar data-df-complex»
(*defvar data-df-complex)

(*set data-df-complex
(coerce!! data-sf 'double-complex-pvar»

• A complex pvar may be converted to a complex pvar of a different size. Thus,

a pvar of type slngle-complex-pvar can be converted to a pvar of type double­

complex-pvar

(*proclaim ' (type single-complex-pvar data-sf-complex»
(*defvar data-sf-complex (complex!! (!! 1.0) (!! -1.0»)

(*set data-df-complex
(coerce!! data-sf-comp1ex 'doub1e-comp1ex-pvar»

• An integer pvar may be converted to a character pvar. This conversion is iden­
tical to that performed by the function Int-charll

(*proclaim ' (type character-pvar data-char»
(*defvar data-char)

(*set data-char
(coerce!! (random!! (!! 65» 'character-pvar»

• A string-char array pvar of length 1 may be converted to a character pvar.

(*proc1aim ' (type (pvar (array string-char (1»)
data-string-char»

(*defvar data-string-char (!! "C"»
(*set data-char

(coerce!! data-string-char 'character-pvar»

• Any pvar, except an array or a structure pvar. may be converted to a general
pvar.

(*proclaim ' (type (pvar front-end) data-front-end»
(*defvar data-front-end (front-end!! 'commander»
(*proclaim ' (type (pvar t) data-general»
(*defvar data-general)

(*set data-general (coerce!! data-front-end ' (pvar tIl)

Version 6.1. October 1991

(

\

*Lisp Dictionary coerce!!
§i!I? 1 i IIH T W UI!!i'Bmmw 11:1 If n J mmr7T!i'BmnmmWnmWi mWI HI HI 1 nT!i 1 I ! m 1 m_

• An array pvar's element type may be converted in accordance with the permit­
ted conversions mentioned above. For instance, an array pvar with elements of
type single-float may be coerced to an array pvar with elements of type
double-float.

NOTES

(*proclaim '(type (pvar (array single-float (20»)
data-array-sf))

(*defvar data-array-sf
(make-array!! '(20)

:initial-element (random!! (!! 2.0»
:element-type 'single-float»

(*proclaim '(type (pvar (array double-float (20»)
data-array-df))

(*defvar data-array-df)

(*set data-array-df (coerce!! data-array-sf
'(pvar (array double-float (20»»)

Explicit type conversion functions may be used in place of coerce".

Examples of *Lisp functions in this category are:
ceiling" character" complex"
float!! floorll round"
truncate"

REFERENCES

See also the related *Lisp declaration operators:
*Iocally *proclaim unproclalm

See also the related type translation function taken-asll.

Version 6.1, October 1991 211

*cold-boot
T 19[if lff 'IfI!iifP

*cold-boot

if fI! iUII! 1II11J!M? I P fI!
*Lisp Dictionary

f r

[Macro]

Initializes *Lisp, resets the Connection Machine hardware, and defines the current machine
configuration and default VP set.

SYNTAX

*cold-boot &key :safety
:Inltlal-dlmenslons
:Inltial-geometry-definltion
:undefine-all
:physlcal-size

&allow-other-keys attach-keywords

ARGUMENTS

:safety

:Inltial-dlmenslons

An integer between 0 and 3, inclusive. Specifies a value for the
*Lisp variable *interpreter-safety*. Defaults to 3, the highest
safety level.

A list of integers, each of which must be a power of2. Dermes the
dimensions of the *default-vp-set*. Defaults to a two-dimensional
grid with a VP ratio of 1.

:Inltlal-geometry-deflnltlon

Geometry object, as returned by create-geometry. May be
supplied instead of an :Inltial-dlmenslons argument to define the
geometry of the *default-vp-set*.

:undeflne-all Boolean value. Determines whether currently dermed VP sets and
permanent pvars are reallocated. Defaults to nil, indicating that VP

sets and permanent pvars should be reallocated.

:physlcal-slze Physical-size argument (either a number of processors or a
keyword selecting a machine size or sequencer). Passed to
cm:attach if *cold-boot calls it to attach to a CM

attach-keywords Other keywords. These extra keyword arguments are passed along
to cm:attach if *cold-boot calls it to attach to a CM.

212 Version 6.1, October 1991

(
\

*Lisp Dictionary *cold-boot
WiI!mlillili! WI !!Iil!iIliWi!lil!illiW!!lrWII!WI!il~WiI~WnWgOO!r WWIWJlrWWilwmw~l!il~ i$IWiWW!l!lWilUiwmM·UiWW!lil!illiW!!l_!W~$Ui@iLJ;lMMWIiUiWBillm T~~ 11 ~

RETURNED VALUE

physical-size

dimensions

SIDE EFFECTS

The value of *minimum-size-for-vp-set*, equal to the number of
physical processors attached.

The value of*current-cm-configuration*, a list of integers defining
the geometry of the *default-vp-set*.

Initializes *Lisp and Connection Machine hardware. If :undefine-all is nil, reallocates
permanent pvars and VP sets. Attempts to attach to CM hardware if not already
attached.

DESCRIPTION

The *cold-boot macro initializes the *Lisp system and resets the Connection Machine
hardware. It should be called immediately after loading in the *Lisp software and at­
taching to a Connection Machine, and before executing *Lisp code that does anything
other than defming pvars (with *defvar) and defining VP sets. The *cold-boot macro
may also be called from top level at any time to change the processor configuration of
the Connection Machine.

In general, *cold-boot should be called only from top level or at the very beginning of
the main function of a program. It should never be called at any other point in a pro­
gram, because it resets the entire state of *Lisp and the Connection Machine.

The :safety keyword argument specifies a value for the *Lisp global variable
interpreter-safety. See the description of *interpreter-safety* in Chapter 2, "*Lisp
Global Variables", for a description of interpreter safety levels.

The keyword arguments :Inltlal-dlmenslons and :initlal-geometry-definition specify the
geometry of the initial VP set bound to the *Lisp global variable *default-vp-set*. One
or the other but not both of these keyword arguments may be provided.

The :inltlal-dimenslons keyword argument specifies the dimensions of the Connection
Machine processor configuration. For example, an :initial-dimensions argument of (32

1664) specifies a three-dimensional processor configuration with dimensions 32 x 16
x 64. The dimensions must be powers of 2. The product of the dimensions must be
either equal to the number of physical processors attached, or equal to a power of two
multiple of the number of attached processors.

Version 6.1, October 1991 213

*cold-boot *Lisp Dictionary
llfiffiWlIf mmilll! ! m !HEnKin!!! mnn 7fi1!! l!Iilll11!iUmm fiU

214

If! 7fi

The :Inltlal-geometry-deflnltlon allows the use of a geometry object to specify the pro­
cessor configuration. Supplying a geometry object instead of a list of dimensions
permits greater control over the routing pattern and processor address mapping of the
default VP set. See the definition of create-geometry for more information about creat­
ing and using geometry objects.

If neither the :Inltlal-dlmenslons nor the :Initial-geometry-definltion arguments is
supplied, the dimensions default to the same configuration as that used in the previous
call to *cold-boot. If there was no previous call, the default is a two-dimensional grid
with a VP ratio of 1.

The :undeflne-all keyword determines whether all permanent VP sets and permanent
pvars are reallocated. If :undeflne-all is nil, the default, all permanent VP sets and per­
manent pvars are automatically reallocated If this argument is non-nil, ·cold-boot
dea1locates and destroys all permanent pvars and all VP sets with the exception of the
default-vp-set and its associated geometry object.

In detail, calling *cold-boot performs the following operations in sequence:

• evaluates in order the forms on the *before-*cold-boot-lnltlallzatlons* list

• deallocates all previously defined pvars, including permanent pvars

• deallocates all previously defined VP sets

• attempts to attach to Connection Machine hardware-if not already attached­
and calls the Paris function cm:cold-boot if successful

• sets the value of the variable *Interpreter-safety*

• instantiates the VP set bound to *default-vp-set* with a geometry based on the
values of the :Inltlal-dlmenslons and :Initial-geometry-deflnition arguments

• if :undeflne-all is nil, redefines all permanent VP sets in an arbitrary order, and
instantiates all fixed-size VP sets

• if :undeflne-all is nil, reallocates and reinitializes, using *defvar, permanent
pvars that belong to instantiated VP sets

• selects the VP set *default-vp-set*, making it the *current-vp-set*

• evaluates in order the forms on the *after-*cold-boot-initlalizations* list

Version 6.1, October 1991

\

*Lisp Dictionary
!!TI1!!!m 1!um!!2Ifl:l I I m WE 1m r I I

*cold-boot
lmITIIU:l!!lI!l1lll!!l!iHf!ll!IT:HE Jill i!j ifliU l!i1iUmM!l2i1 ilIT!!l1!!12i1!!!:m:

EXAMPLES

Here are some sample calls to *cold-boot, defIning various confIgurations of proces­
sors.

(*cold-boot :initial-dimensions ' (64 64))
(*cold-boot :initial-dimensions ' (64 64 32))
(*cold-boot :initial-dimensions ' (2 2 2 2 2 2 2 2 2 2 2 2))

Here is a sample call to *cold-boot using a geometry object to defIne the processor
confIguration.

(defvar my-geometry
(create-geometry :dimensions ' (2 32 2) :weights ' (2 1 3)))

(*cold-boot :initial-geometry-definition my-geometry)

The next two examples assume that a Connection Machine with 8K processors is
attached, and that ·no previous call to *cold-boot has been made. The fIrst example
defmes a confIguration with a VP ratio of I, i.e., one virtual processor for each physical
processor. Because no dimensions are supplied, a 2-dimensional grid of processors is
defmed, with dimensions 64 by 128.

(* cold-boot)
8192
(64 128)

;8k physical processors

The second example defmes a confIguration with a VP ratio of 2, i.e., twice as many
virtual processors as physical processors.

(*cold-boot
:initial-dimensions ' (128 128)) ;16k virtual processors

8192
(128 128)

Notice that the user does not specify the VP ratio explicitly. As long as the dimensions
specifIed are equal to either the number of physical processors attached, or to a power­
of-two multiple of the number of attached processors, the proper VP ratio will be
determined automatically and transparently.

Version 6.1, October 1991 215

*cold-boot "'Lisp Dictionary
!ll'lW 1Rlllf1ll1n m liiWl111 l! 1111 1 1111[11111 I

NOTES

Style Note:

A typical "'Lisp progr~ has the format

(defun top-level ()
(initialize-non-em-variables)
(*eold-boot :initial-dimensions *my-own-dimensions*)
(initialize-em-variables)
(main-function))

There are many reasonable exceptions to this general pattern. For instance, it is possi­
ble to define VP sets and permanent pvars before calling *cold-boot. However, VP sets
defmed in this way remain uninstantiated and pvars likewise do not actually contain
data until *cold-boot has been called.

Language Notes:

The "'Lisp simulator permits an :Inltlal-dimenslons argument containing non-power-of­
two dimensions, but issues a warning that such code cannot be executed on the CM-2
hardware.

If the function Inltlallze-character is used to defme the code, bits, or font field sizes of
character pvars, it must be called immediately prior to calling *cold-boot, because the
"'Lisp global variables set by Inltlallze-character are used in initializing "'Lisp and the
Connection Machine system. See Chapter 2, ""'Lisp Global Variables" for a list of
global variables controlling character attributes. See also the dictionary entry for inltlal­
lze-character.

Usage Note:

The :safety keyword argument to *cold-boot also determines the safety level for Paris
operations. If the value supplied for :safety is 0, Paris safety is turned off. Any other
value for the :safety argument turns Paris safety on.

See Also:

See also the related Connection Machine initialization operator *warm-boot.

See also the initialization-list functions add-Initialization and delete-initialization.

See also the character attribute initialization operator initlalize-character.

216 Version 6.1, October 1991

(

'\
\

*Lisp Dictionary compare II
M!Ki!!Rlw:mlll !lmlmllIUI1111H'ii IffliflH!TI W!f1r;m!!mU!RlUiI@I1iMmm!! Gaw]? ! liurp Ii If f 1m n millr

compare!! [Function]

Performs a parallel magnitude comparison on the supplied pvars.

SYNTAX

comparell numeric-pvarl numeric-pvar2

ARGUMENTS

numeric-pvar 1, numeric-pvar2
Non-complex numeric pvars to be compared.

RETURNED VALUE

compare-pvar Temporary integer pvar. In each active processor, contains either 1,
0, or-l depending on whether the value of numeric-pvar 1 is great­
er than, equal to, or less than the value of numeric-pvar2.

SIDE EFFEC.TS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a pvar having values -1,0, or 1, depending on whether its fIrst
argument is less than, equal to, or greater than its second argument, respectively. The
arguments numeric-pvarl and numeric-pvar2 must both be non-complex numeric
pvars. A pvar of type (pvar (signed-byte 2» is returned.

EXAMPLES

(compare!! pvarl pvar2) <=> (signum!! (-!! pvarl pvar2»

Version 6.1, October 1991 217

complexll *Lisp Dictionary
IIImnmmlll I r IliI un RIm n m ffl WI1lUg mlf!] III r n IJllll1lflEimmJII In IIltl!! r)11m Aim Rlll!1Im m

complexll [Function]

Creates and returns a complex numeric pvar.

SYNTAX

complex" realpart-pvar &optlonal imagpart-pvar

ARGUMENTS

realpart-pvar Non-complex numeric pvar. Real part of new complex pvar.

imagpart-pvar Non-complex numeric pvar. Imaginary part of new complex pvar.

RETURNED VALUE

complex-pvar Temporary complex pvar. In each active processor, contains a com­
plex value with real and imaginary components equal to the
corresponding values of realpart-pvar and imagpart-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

218

This function returns a complex pvar that has, in each processor, the realpart-pvar
component as its real part and the imagpart-pvar component as its imaginary part.
Conversion according to the rule of floating-point contagion takes place as necessary.
That is, the bit field lengths of the exponent and significand components of floating­
point numbers in all active processors are guaranteed to be as large as the largest
representation of either component in any active processor.

Note: Because in *Lisp complex number pvars always have floating-point real and
imaginary components, if the realpart-pvar and imagpart-pvar arguments are not
floating-point pvars, their values are coerced to floating-point values.

Version 6.1, October 1991

"'Lisp Dictionary
fi1 !!!ni! ! mr:: ~m!l1$!II!~i!i!~ !!wrrmnmrm II! I! n e Hi rmg :mH m:mnm :iIIi!1m n2i1iIlIWl r; ! ! lllil

complexll
!1m2 m!fin IU!! I i!i!!~

The arguments realpart-pvar and imagpart-pvar must be non-complex numeric pvars.
If imagpart-pvar is not specified, then an imaginary part pvar of (II 0) is provided.

(complex!! (!! 2) (!! 3» <=> (!! #C(2 3»

(complex!! realpart-pvar)
<=>
(coerce!! realpart-pvar ' (pvar (complex float»

REFERENCES

See also these related complex pvar operators:
absll cis II
conJugatell
realpartll

Version 6.1, October 1991

Imagpartll phasell

219

complexpll *Lisp Dictionary
mIIlf211 f II !!IlIIlIlIIfl1i!l!f lUll U I!fIm n !f! n II i ! !!Ijln Hli!l!!!n!!ll!lIUII!IJ1!li [52 !!II!I

complexpll [Function]

Performs a parallel test for complex values on the supplied pvar.

SYNTAX

complexpll pvar

ARGUMENTS

pvar

RETURNED VALUE

comp/exp-pvar

SIDE EFFECTS

Pvar expression. Pvar to be tested for complex values.

Temporary boolean pvar. Contains the value t in each active proces­
sor where pvar contains a complex value. Contains nil in all other
active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This predicate returns t in each processor whose value of pvar is a complex number;
it returns nil elsewhere.

EXAMPLES

(complexp!! (!! fc(2 3») <=> t!!

220 Version 6.1, October 1991

*Lisp Dictionary complexpll
liP 1 mum un m 11 mm Hi!! II un 1m InmRf! ! If WI!lin lmi! m n 011 nRI nUl ilIUm nl!! ffllUfl ?lIW lIU 12m 2

REFERENCES
See also these related pvar data type predicates:

booleanpll

floatpll

numberpll

typepll

Version 6.1. October 1991

characterpll

front-end-pll

strlng-char-pll

integerpll

structurepll

221

*cond, condit *Lisp Dictionary
nUmlllllnlllK lim ERn mRiu n IlIUIil !III! 1 min mmn~ 2m III 2 iI In

*cond
condll

[Macro]

[Function]

Evaluate *Lisp forms with the currently selected set bound according to the results of a
series of boolean tests.

SYNTAX

*cond/condlt (test-pvar-l body-forms-l)
(test-pvar-2 body-forms-2)

(test-pvar-n body-forms-n)

ARGUMENTS

test-pvar-n

body-forms-n

Boolean pvar expression. Selects processors that perform the
corresponding body-forms.

*Lisp forms. Evaluated with the currently selected set bound to
those processors in which test-pvar-n has the value t and all
previous test-pvar expressions have the value nil.

RETURNED VALUE

222

For *cond:

nil Evaluated for side effect only.

For condit:

cond-value-pvar Temporary pvar. In each active processor, contains the value
returned by value-forms-n if and only if test-pvar-n has the value t
and all previous test-pvar expressions have the value nil.

Version 6.1, October 1991

*Lisp Dictionary *cond, condl!
wrmng;g!l~m 1m nm:m :mUlllfiIll:lWlmliI11l:! I UilH 11m r r 1111 nil Iii I 11mI'

SIDE EFFECTS

For *cond:

None other than those of the body-forms.

For cond!!:

The returned pvar is allocated on the stack.

DESCRIPTION

The *cond and condl! macros are parallel equivalents of the Common Lisp cond opera­
tion. The two operators each select groups of processors to execute different portions
of *Lisp code. Unlike cond, however, *cond and condl! evaluate all clauses.

The currently selected set with which each of the clauses is evaluated is determined by
the test-pvar expressions. The forms in body-forms-n are evaluated with the currently
selected set bound to those processors in which test-pvar-n has the value t and all pre­
vious test-pvar expressions have the value nil. Providing tl! as the final test-pvar
expression selects all remaining processors.

The main difference between the *cond and condl! is that *cond is used only for the
side-effects of its body forms, while condl! also constructs and returns a value-pvar that
contains the value returned by its body-forms.

If there are no clauses, condl! returns nilll. Otherwise, condll is roughly equivalent to
the following pseudo-code:

(if!! pvar-l
(progn all-the-forms-for-clausel)
(cond!! (rest clauses»

However, if there are no value-forms in a given clause, the test-pvar itself is used as
the value of the clause, analogous to the Common Lisp condo

If any active processor is not assigned a value by one of the clauses, the value of the
returned pvar in that processor is nil, as if an implicit fmal clause of (til nllll) were eva­
luated. An explicit fmal clause of the form

(t!! (!! default-value»

can be used to specify some other "default" processor value.

Version 6.1, October 1991 223

*cond, condlJ *Lisp Dictionary
Ii In mliEllllllilllii iiill m : mmililll 1m l!11I11 1m H il fl If mil mIni!!! Ilifn! !i TIm !in! I!ffU 11 !mUll! filim!

EXAMPLES

When the *cond expression

(*defvar result)
(*let «mod4 (mod!! (self-address!!) (!! 4»»

(*cond
«=!! mod4 (!! 0» (*set result (!! 0»)
«<=!! (!! 1) mod4 (!! 2»

(*set result (self-address!!»)
(t!! (*set result (!! -1»»)

is evaluated, result is bound to a pvar so that is has the values displayed by:

(ppp result :end 10)
o 1 2 -1 0 5 6 -1 0 9

Similarly, when the condlJ expression

(ppp (*let «mod4 (mod!! (self-address!!) (!! 4»»
(cond!! «=!! mod4 (!! 0» (!! 0»

: end 8)

«<=!! (!! 1) mod4 (!! 2» (self-address!!»
(t!! (!! -1»»

is evaluated, it displays the values

o 1 2 -1 0 5 6 -1

NOTES

Usage Note:

Forms such as throw, return, return-from, and go may be used to exit a block or looping
construct from within a processor selection operator like *cond or condll. However,
doing so will leave the currently selected set in the state it 'Was in at the time the non-lo­
cal exit form is executed. To avoid this, use the *Lisp macro wlth-css-saved. See the
dictionary entry for wlth-css-saved for more information.

Performance Note:

224

Currently, *cond and condll clauses execute serially, in the order in which they are
supplied. At any given time, therefore, the number of processors active within a *cond
clause is a subset of the currently selected set at the time the *cond form was entered.
Providing a large number of clauses to ·cond (and likewise condl\) therefore results in
potentially low overall use of processors.

Version 6.1, October 1991

/

/
I

*Lisp Dictionary *cond, condl!
lim!M M 1 1n TI ., W nmunmITI TIl H m-olW,Nl mllWHEITI! 9 nnmmnn !Ii THna lW1 1m TImE

Language Note:

Even if there are no selected processors, all body forms are evaluated. For example, in
the expression

(*cond
«minusp!! (self-address!!» (do-negative-actions»
«plusp!! (self-address!!» (do-positive-actions»
«zerop!! (self-address!!» (do-zero-actions»
(t!! (when (*or t!!)

(error "This clause cannot be executed"»»

the call to do-negatlve-actlons is evaluated, even though no processors have a negative
self address. The do-positive-actions call is evaluated with the currently selected set
bound to all processors with a positive send address, and the do-zero-actlons is eva­
luated by the single remaining processor with a send address of O. The fmal til clause
is also evaluated, even though all processors have been selected by the two preceding
clauses.

Note the use, in the fmal til clause, of the standard *Lisp idiom (*or til) to detennine
whether any processors remain active. Since all processors have been selected by pre­
ceding clauses, (*or til) returns nil, preventing the call to error from being evaluated.
Using an enclosing (when (*or til) ...) of this kind is a simple method of preventing
evaluation of any *cond clause that should not be evaluated when no processors are
selected.

Complier Note:

Because an implicit (til nilll) clause is evaluated to obtain a value for any active proces­
sor not assigned a value by one of the supplied clauses, the *Lisp compiler can
occaisionally fail to compile an apparently correct condll expression, if the clauses re­
turn other than pvars of type boolean.

For example, given the following declarations

(*proclaim I (type single-float-pvar x y»
(*defvar x)
(*defvar y)

Version 6.1, October 1991 225

*cond, condll
Inn r lmull! I I

·Lisp Dictionary
"IT I 11 0 M g r TJm If

the function

(defun does-not-compile ()
;; Note that no final t!! clause is included, so an
;;'implicit (t!! nil!!) clause is provided.
(*set (the single-float-pvar x)

(cond!! «minusp!! (the single-float-pvar y» (!! -1.0»
«plusp!! (the single-float-pvar y» (!! 1.0»»)

does not compile. The *Lisp compiler signals an error because the implicit (til nllll)

clause returns boolean values that cannot be stored in a pvar of type slngl&-fJoat-pvar.

Adding an explicit final clause that returns single-float values, as in

(defun does-compile ()
;; A final t!! clause that returns a single-float
;; result is included, so this function will be compiled.
(*set (the single-float-pvar x)

(cond! !
«minusp!! (the s ingle-floa t-pvar y» (!! -1. 0»
«plusp!! (the single-float-pvar y» (!! 1.0»
(t!! (!! 0.0»

»)

allows this function to compile.

REFERENCES

226

See also the related operators
*all

*unless

*case"

*when

casell *ecase

wlth-css-saved

ecasell *if if II

Version 6.1, October 1991

(

(
\

\

*Lisp Dictionary
min 11 E : i j(lInm:n Hi un WlIEEmiUn 11mTI1112ll1inIHlf in m!wm II @ IT II~! UHm!!~~1 n w

conjugatell
ii i!!ll:: I ilI!m!! I ! an 1

conjugatell [Function]

Calculates in parallel the complex conjugate of the supplied pvar.

SYNTAX

conjugatell numeric-pvar

ARGUMENTS

numeric-pvar Numeric pvar. Pvar for which the complex conjugate is
calculated.

RETURNED VALUE

conjugate-pvar Temporary numeric pvar. Contains in each active processor the
complex conjugate of the corresponding value ofnumeric-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

Returns a temporary pvar whose value in each processor is the complex conjugate of
the corresponding value of numeric-pvar. (The conjugate of a complex number is
another complex number with the same real component and the negation of the imagi­
nary component of the original number.)

(conjugate!! (!! #C(4 5))) <=> (!! #c(4 -5))

REFERENCES

See also these related complex pvar operators:
absll cisll
imagpartll phase II

Version 6.1, October 1991

complexll

realpartll

227

copy-seqll
] Wrllllllml@

*Lisp Dictionary
fill [m nilln !I!§§ffH!!IInnrmUJIIlI mr II 1m! !!f!

copy-seq I I [Function]

Returns a copy of the supplied sequence pvar.

SYNTAX

copy-seqll sequence-pvar

ARGUMENTS

sequence-pvar Sequence pvar. Pvar to be copied. Must be a vector pvar.

RETURNED VALUE

copy-seq-pvar Temporary sequence pvar. Contains in each active processor a copy
of the corresponding value of sequence-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a copy of sequence-pvar. For example.

(copy-seq!! data-pvar)

returns a copy of data-pvar as a temporary pvar on the stack.

EXAMPLES

(*defvar seq-pvar (!! #(1 2 3 4)))

(ppp seq-pvar :end 5)
f (1 2 3 4) f (1 2 3 4) # (1 2 3 4) # (1 2 3 4) # (1 2 3 4)

228 Version 6.1, October 1991

(
\

\ ,

·Lisp Dictionary
Plmllm:: mmm1&Wl!

eopy-seqll
F Tin m r Wi!! mH] m i ! if n!!RUIIIl 2] at nllll1m:m: l!!1&!!ff mmmrm iii]

NOTES

(*let «seq-copy (copy-seq!! seq-pvar»)
(*setf (pref seq-copy 2) *(4 3 2 1»
(ppp seq-copy :end 5»

* (1 2 3 4) * (1 2 3 4) * (4 3 2 1) * (1 2 3 4) * (1 2 3 4)

(ppp seq-pvar :end 5)
* (1 2 3 4) * (1 2 3 4) * (1 2 3 4) * (1 2 3 4) * (1 2 3 4)

Compiler Note:

The *Lisp compiler does not compile this operation.

REFERENCES

See also these related *Lisp sequence operators:
*fill lengthll

*nreverse
subseqll

reducell reversel!

See also the generalized array mapping functions amapll and *map.

Version 6.1. October 1991 229

cosll,coshll *Lisp Dictionary
au 11 Iml~ Hil fimlfi r i [I r W fIT 1 m

cos II , cosh II [Function]

Take the cosine and hyperbolic cosine of the supplied pvar.

SYNTAX

cosll radians-pvar
coshll radians-pvar

ARGUMENTS

radians-pvar

RETURNED VALUE

result-pvar

SIDE EFFECTS

Numeric pvar. Angle, in radians, for which the cosine (hyperbolic
cosine) is calculated.

Temporary numeric pvar. In each active processor, contains the
cosine (hyperbolic cosine) of radians-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

The function cosll returns the cosine of radians-pvar.
The function coshll returns the hyperbolic cosine of radians-pvar.

EXAMPLES

230

(cos!! (!! 0»
(cosh!! (!! 1»

<=> (!! 1)
<=> (!! 1.5430806)

Version 6.1, October 1991

\

.Lisp Dictionary countll, count-ifll, count-if-notll
Hm m dE ff1 f 1 In!1f 227m! I W!!!:7 PI 1m!1i 1 17 !1i n m N Ii T r 1 If

count!!, count-if!!, count-if-not!! [Function]

Perform a parallel count on a sequence pvar, returning in each processor the number of
sequence elements that match a given item or pass/fail a test.

SYNTAX

countll

count-ifll
count-if-notll

ARGUMENTS

item-pvar

test

item-pvar sequence-pvar
&key :test :test-not
test sequence-pvar &key
test sequence-pvar &key

:start :end :key :from-end
:start :end :key :from-end
:start :end :key :from-end

Pvar expression. Item to match in sequence-pvar. Must be of the
same type as the elements of sequence-pvar.

One-argument pvar test. Used to test elements of sequence-pvar.

sequence-pvar Sequence pvar. Contains sequences to be searched.

:test

:test-not

:start

:end

:key

:from-end

Version 6.1, October 1991

Two-argument pvar predicate. Test used in comparisons. Indicates
a match by returning a non-nil result. Defaults to eqlll.

Two-argument pvar predicate. Test used in comparisons. Indicates
a match by returning a nil result.

Integer pvar. Zero-based index of sequence element at which
counting starts in each processor. If not specified, counting begins
with first element.

Integer pvar. Zero-based index of sequence element at which
counting ends in each processor. If not specified, counting
continues to end of sequence.

One-argument pvar accessor function. Applied to sequence-pvar
before counting is performed.

Boolean. Whether to begin search from end of sequence in each
processor. Note: This argument is currently ignored.

231

countll, count-lfll, count-lf-notll *Lisp Dictionary
1!i'mlili lIlff!1lf ITliHUlilil lUi 1M lIRn Ii illlPli r III 1 ar i &?RIIlflfJH

RETURNED VALUE

count-pvar Temporary integerpvar. In each active processor, contains the num­
ber of matching elements of sequence-pvar. If no matching
elements are found, (II 0) is returned

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

232

These functions are the parallel equivalent of the Common Lisp count, count-if, and
count-if-not functions.

1{l each processor, the function countll searches sequence-pvar for elements that match
item-pvar. It returns a pvar containing a count of the matching elements found in each
processor. Elements of sequence-pvar are tested against item-pvar with the eqlll oper­
ator unless another comparison operator is supplied as either of the :test or :test-not

keyword arguments. The keywords :test and :test-not may not be used together. A
lambda form that takes two pvar arguments and returns a boolean pvar result may be
supplied as either the :test and :test-not argument.

In each processor, the function count-lfll searches sequence-pvar for elements that
satisfy the supplied test. It returns a pvar containing a count of the sequence elements
found in each processor. A lambda form that takes a single pvar argument and returns
a boolean pvar result may be supplied as the test argument.

In each processor, the function count-if-notll searches sequence-pvar for elements that
fail the supplied test. It returns a pvar containing a count of the sequence elements
found in each processor. A lambda form that takes a single pvar argument and returns
a boolean pvar result may be supplied as the test argument.

The keyword :from-end takes a boolean pvar that specifies from which end of
sequence-pvar in each processor the operation will take place.

Arguments to the keywords :start and :end define a subsequence to be operated on in
each processor.

The :key keyword accepts a user-dermed function used to extract a search key from
sequence-pvar. This key function must take one argument: an element of sequence­
pvar.

Version 6.1, October 1991

/
\.

.,\

/

*Lisp Dictionary
fi lit II !lin I'

count". count-lfll. count-lf-not"
II m! 1m m mlm 1m: 7 !Il! rmlfW!!U nm ill1mm II! n !Ill 1m nom I 11 Y

NOTES
Complier Note:

The *Lisp compiler does not compile this operation.

REFERENCES

The functions countll, count-lfll, and count-lf-notll are similar to the *Lisp functions
find", flnd-lfll, and flnd-lf-notll. Unlike the flndll functions, however, a countll search
continues until sequence-pvar is exhausted.-

These functions are members of a group of similar sequence operators,
listed below:

countll
find II
nsubstltutell

position"
substitute II

count-lfll
flnd-lfll
nsubstltute-lfll
posltlon-ifll
substitute-lfll

count-lf-notll
flnd-lf-notll
nsubstltute-lf-notll
positlon-If-notll
substltute-lf-notll

See also the generalized array mapping functions amapll and *map.

Version 6.1, October 1991 233

create-geometry *Lisp Dictionary
1M iii ! r 71 H n H 1 fl Un! i lliillUm!!! rim n mlm H ! H! n II lUi ! m !Tn;; M 11:1: 11I1H1! q liliW!i@

create-geometry [Function]

Creates and returns a geometry object.

SYNTAX

creat&-geometry &key :dlmenslons :welghts :orderlng
:on-chlp-bits :off-chip-bits

ARGUMENTS

:dlmenslons

:welghts

:orderlng

Required argument. A list of integers, each of which must be a
power of 2. Defmes the size of each dimension specified by the
returned geometry object.

List of integers, one for each dimension. Indicates relative
frequency of NEWS communication expected for each dimension.
Default value assigns equal weight to each dimension. If a
:weights argument is supplied, neither of the :on-chip-bits and
:off-chlp-blts arguments should be supplied.

List of symbols, one for each dimension. Only the symbols
:news-order and :send-order may be supplied in the list. Controls
optimization of address translation for each dimension. Default
value assigns the symbol :news-order to each dimension.

:on-chlp-blts, :off-chlp-blts

RETURNED VALUE

geometry-obj

SIDE EFFECTS

None.

234

Lists of integers, one for each dimension. Determine processor
address translation. These ,arguments are provided in *Lisp as a
direct hook into Paris.

Geometry object, suitable as an argument to "'cold-boot, def-vp­

set, create-vp-set, set-vp-set-geometry, and allocate-processors­

for-vp-sel

Version 6.1. October 1991

*Lisp Dictionary create-geometry
mW.i::r ~rmlU~W; IliMBlin IT f !~.! l! lit !l!WW UI1 liW .

DESCRIPTION

The create-geometry function creates and returns a data structure known as a geometry
object. Geometry objects are used to defme the shape of virtual processor sets. In addi­
tion, they permit control over interprocessor communication speed within a VP set.
This can be particularly useful when it is critical to optimize the performance of scan­
ning operations along specific dimensions of a VP set.

Specifying a :dimensions keyword argument is mandatory. The value of the
:dimensions keyword must be a list of integers, each of which must be a power of 2.
These dimensions specify an n-dimensional hypercube of virtual processors. The prod­
uct of the dimensions must be a power of two multiple of the physical machine size.

If supplied, the value of :weights specifies the relative frequency of NEWS communi­
cation along each dimension. Given the specified weighting, the Connection Machine
allocates virtual processors for optimal performance.

For example, consider a three-dimensional VP set in which near neighbor communica­
tion is estimated to be twice as frequent in dimension 1 as in either dimension 0 or 2.
In this case, the :weights argument should be the list '(121).

If supplied, the value of :ordering controls optimization of address translation for each
dimension. For dimensions specified as :news-order, send addresses are gray-coded
and mapped into NEWS addresses. This ensures that processors with neighboring send
addresses are actually NEWS neighbors within the machine. For dimensions specified
as :send-order, no special address translation is done. Processors with neighboring
geometry positions along these dimensions have neighboring send addresses.

The :on-chip-bits and :off-chip-bits arguments together specify a pair ofbitmasks that
map send addresses into NEWS addresses, providing maximum control over inter­
processor communication patterns at the hardware level. These arguments are provided
in *Lisp as a direct hook into Paris.

EXAMPLES

The create-geometry function is most often used to specify the geometry of a VP set.
For example,

(def-vp-set three-dee nil
:geometry-definition-form

(create-geometry :dimensions ' (64 128 8)
:weights ' (1 3 1)
:ordering , (:send-order :news-order :send-order)))

Version 6.1, October 1991 235

create-geometry *Lisp Dictionary
jm RI mCim un f mr 71 T 1 1 :n:mIT1lml:miml Wn!

defmes a three-dimensional VP set, thre&-dee. The geometry object returned by create­

geometry specifies that NEWS communication will take place along dimension 1 of
thre&-dee three times as often as along either dimension 0 or 2. Also, the geometry
object specifies that only dimension 1 of thre&-dee should be optimized for NEWS
addressing.

The create-geometry function may also be used to instantiate an existing flexible VP
set, as in

(def-vp-set flexible-vp-set nil
:geometry-definition-form nil)

(allocate-processors-for-vp-set
flexible-vp-set
nil
:geometry (create-geometry :dimensions ' (32 128 64)))

which assigns a three-dimensional geometry to the VP set fJexlble-vp-set.

Finally, the create-geometry function may be used to specify the geometry of the
default-vp-set. For example,

(*cold-boot :initial-geometry-definition
(create-geometry :dimensions ' (32 128)))

defmes a two-dimensional default VP set.

NOTES

236

The create-geometry function makes it possible to optimize a VP set geometry for
NEWS communication along certain dimensions and for general send-address commu­
nication along other dimensions.

The :welghts, :ordering, :on-chip-bits, and :off-chip-bits arguments default to reason­
able values if not specified. These arguments affect only the run-time performance of
interprocessor communication. They do not affect the data transmitted in any way.

The majority of *Lisp users will never need to use the :on-chip-bits and :off-chlp-bits

arguments; the :welghts argument is usually sufficient.

Version 6.1, October 1991

/

/

(
\

'--

/

/

*Lisp Dictionary
am: f J: m; II 1 !i

REFERENCES

i ifn:: m f illn:::H ! IM:d f . J g JUlllli7IiG;
create-geometry

i lIT ill i ill I;; 111! !:n :r: 11m 1:1 1. m

See the definitions of *cold-boot, def-vp-set, create-vp-set, let-vp-set, set-vp-set­
geometry, and allocate-processors-for-vp-set for discussions on how to use geometry
objects.

See the Concepts section of the Paris Reference Manual for more information on the
effect of address orderings. Also in the Paris Reference Manual, see the dictionary
entry for CM:create-detailed-geometry.

Version 6.1, October 1991 237

create-segment-setll *Lisp Dictionary
. n 1 r 1 1illil rnn 1Ft 1 1 ifl Imn M f Jli lll®!I1iI . J JiMfiJUI TI 1 UJ

create-segment-setll [Function]

Creates and returns a segment set structure pvar that defines a segment set.

SYNTAX

create-segment-setll &key :start-bit :end-bit

ARGUMENTS

:start-bit

:end-bit

Boolean pvar. Specifies processors that start a segment. If not
supplied, starting processors are determined from :end-bit

argument.

Boolean pvar. Specifies processors that end a segment. If not
supplied, starting processors are determined from :start-bit

argument.

RETURNED VALUE

segment-set-obj Segment set pvar, suitable for use as the third argument in a call to
the segment-set-scanll operation.

SIDE EFFECTS

None.

DESCRIPTION

238

This function returns a segment set pvar suitable for use as the third argument in a call
to the segment-set-scanll operation.

The two keyword arguments to create-segment-setll specify which processors are in­
cluded in the segments of the segment set. These are boolean pvars, one or the other
but not both of which may be nllil.

The :start-blt argument may be a pvar containing the value t in each processor that
starts a segment and nil in all other processors. Alternatively, to signify that the :end-blt

Version 6.1, October 1991

(

\

*Lisp Dictionary create-segment-setll
iWRUi Il llii! :m:EI:mll:ilm:Pll!! P iW:m:vlwunw 1· ! dnl!tmm!l!M!:lF!l!11I!fI1f11[1· IT ::!lrii.iW$

argument is to be used to determine where the segments start, :start-bit may be nilll or
simply not supplied.

Likewise, the :end-bit argument may b~ a pvar containing the value t in each processor
that ends a segment and nil in all other processors. To signify that the :start-bit argu­
ment is to be used to determine where the segments end, :end-blt may be nilll or simply
not supplied.

With these arguments, it is possible to specify a segment set from which certain proces­
sors are entirely excluded. However, if either argument to create-segment-setll is not
supplied, completely adjacent segments are defmed.

When constructing pvars to supply as :start-blt or :end-bit arguments, take care to
properly interleave the starting and ending processors for each segment. It is an error
to specify overlapping segments.

From the segment start and end information, a structure pvar is constructed. The struc­
ture pvar created by a call to create-segment-setll is defmed as follows:

(*defstruct segment-set
(start-bits nil :type boolean)
(end-bits nil :type boolean)
(processor-not-in-any-segment nil :type boolean)
(start-address a

:type (signed-byte 32)
:cm-type (pvar (signed-byte

(1+ *current-send-address-length*»»
(end-address a

:type (signed-byte 32)
:cm-type (pvar (signed-byte

(1+ *current-send-address-length*»»)

The start-bits and end-bits slot pvars contain the :start-bit and :end-bit argument pvars
supplied to create-segment-set!l. The processor-not-in-any-segment slot pvar is t in
each processor excluded from the segments in the set and nil elsewhere.

The send address of every first and last processor in each segment is calculated and
stored with the segment-set structure in the start-address and end-address slot pvars.
In each processor that is included in a segment, the start-address slot pvar contains the
send address of the fIrst processor in the segment and the end-address slot pvar con­
tains the send address of the last processor in the segment. For processors excluded
from all segments in the set, the start-address and end-address slot pvars each
contain-I.

Version 6.1, October 1991 239

*Lisp Dictionary create-segment-setll
!If nnrlill IInrlml 1II&Innri KIIlI 1lll&Ilnrlll'I&IRHi I 5 r mrr 1 r iI!I

REFERENCES

240

See also these related segment set operators:
segment-set-scanll

segment-set-end-blts
segment-set-end-address

segment-set-start-blts

segment-set-start-address

segment-set-end-bitsll
segment-set-end-addressll

segment-set-start-bltsll

segment-set-start-addressll

segment-set-processor-not-ln-any-segment

segment-set-processor-not-ln-any-segmentll

Version 6.1, October 1991

*Lisp Dictionary creat&-vp-set
Hillin Uii 11m Ii1 I !iI!!l!l!!H i IIlI in mil ElM!! nnnm III 111! S 111 I m Iff! 111 i n Iillwrr 11m WlmiIIWF2!111llRil II i m

create-vp-set [Function]

Creates and returns a VP set definition object.

SYNTAX

create-vp-set dimensions &key :geometry

ARGUMENTS

dimensions

:geometry

RETURNED VALUE

vp-set-obj

SIDE EFFECTS

None.

DESCRIPTION

Either nil or a list of integers, each of which is a power of 2.
Specifies the dimension sizes of the VP set object returned.

Either nil or a geometry object as returned by create-geometry.

Specifies geometry of VP set object returned.

VP set object. Descriptor object for newly created VP set.

This function is used to derme a VP set during program execution. It is an error to
invoke create-vp-set prior to the first *cold-boot. Any VP set allocated using create­

vp-set will be destroyed with the next *cold-boot.

The return value of create-vp-set is a front-end VP set structure.

The dimensions argument must be a list of positive integers or nil. If a list is supplied,
each integer in the list must be an integral power of two and the product of all the inte­
gers in the list must be at least as large as *mlnlmurn-slze-for-vp-set*. Iflarger than the
physical machine size, the product of all dimensions must be a power-of-two multiple
of the physical machine size. The dimensions argument must be nil if an argument is

Version 6.1, October 1991 241

create-vp-set *Lisp Dictionary
Ul: :%in 1 BE fU!f! _ r: II !]:: fli: 11 !mm!i!11 Milll:m 1 21m [m 1m ; W: I m

supplied to the keyword :geometry. If not nil, dimensions logically specifies an n­
dimensional array of virtual processors.

,The argument to :geometry must be a geometry object obtained by calling create­
geometry. If the :geometry argument is provided, it incorporates information about the
dimensions of the VP set being defined. (See the defmition of create-geometry for
more details.)

EXAMPLES

242

The *Lisp forms

(setq x (create-vp-set ' (512 8 32))
(setq y (create-vp-set (append (vp-set-dimensions x) , (2 2))))

create two VP sets. The first, x, is created with a 3-dimensional configuration. The
second, y, is created with a 5-dimensional configuration, using the function vp-set­
dimensions to obtain the dimension sizes specified for the x VP set.

The create-vp-set function is normally used during program execution, not at top
level. Below is an example of how create-vp-set might be used in a program.

(defun make-2d-vp-set (linear-vp-set n linear-pvar)
(let ((new-vp-set (create-vp-set (list n n))))

(*with-vp-set new-vp-set
(*let ((new-pvar (!! 0)))

(*with-vp-set linear-vp-set
(*when «!! (self-address!!) (!! n))

(*pset :no-collisions linear-pvar new-pvar
(cube-from-vp-grid-address! !
new-vp-set (self-address!!) (self-address!!)))

(*with-vp-set new-vp-set
(ppp new-pvar :mode :grid :end ' (4 4)))))))

(deallocate-vp-set new-vp-set)))

This example uses create-vp-set to create an n x n vp set, new-vp-set. It then creates
a pvar, new-pvar, within the two-dimensional new-vp-set, and uses *pset to store the
first n elements ofllnear-pvar into the main diagonal elements ofnew-pvar. With new­
vp-set selected, a function is called to perform an operation on the new-pvar, and
finally deallocate-vp-set is called to deallocate the new-vp-set.

Because n is used to determine the dimensions of VP sets, n must be a power of two.

Version 6.1. October 1991

(

\

*Lisp Dictionary create-vp-set
mmm§!mrulmFml1mnm: 1m I l!®iIimlmm~mw~%mgm§W§§m\!l:m~§Wm!fmr §§m§§mfml !fm: :~MWfm~_!lm@_~~ m!:~:: :::. DW iii C!: !! l:m : w: g O\M!~

An example of how this function might be called is:

(defparameter vp-set-size 32)
(def-vp-set ld-vp-set (list vp-set-size»

:*defvars «ld-pvar (self-address!!»»

(make-2d-vp-set ld-vp-set vp-set-size ld-pvar)

0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

REFERENCES

See also the following VP set definition and deallocation operators:
def-vp-set

deallocate-def-vp-sets

let-vp-set

deallocate-vp-set

See also the following geometry defmition operator:
create-geometry

The following math utilities are useful in defining the size of VP sets:
next-power-of-two->= power-of-two-p

See also the following flexible VP set operators:
allocate-vp-set-processors
deallocate-vp-set-processors

set-vp-set-geometry

allocate-processors-for-vp-set
deallocate-processors-for-vp-set

with-processors-allocated-for-vp-set

These operations are used to select the current VP set:
set-vp-set *with-vp-set

See also the following VP set information operations:
dimension-size
descrlbe-vp-set

vp-set-dimenslons

vp-set-total-size

Version 6.1, October 1991

dimension-address-Iength
vp-set-deallocated-p

vp-set-rank

vp-set-vp-ratio

243

cross-product
1 II! mit! pr! 1 II IT

cross-product

"'Lisp Dictionary
2 :: 1 II !lli! 1i!l11f!2!iMi1!iI! If WI!: !; j : I ffP2l$1m

[Function]

Returns the cross product of two front-end vectors.

SYNTAx

cross-product vectorl vector2

ARGUMENTS

vectorl, vector2 Front-end vectors, for which the cross product is returned.

RETURNED VALUE

cross-prod-vector Front-end vector. Cross product ofvectorl and vector2.

SIDE EFFECTS

None.

DESCRIPTION

244

This is the serial (front end) equivalent of cross-productll. The cross product of the two
vectors is computed. The result is returned as a vector. The vector arguments must be
of length 3

(cross-product #(1 2 3) #(4 5 6» => #(-3 6 -3)

Version 6.1, October 1991

/

" \

*Lisp Dictionary
q WI Ifj erg r; qq

cross-product
1i.!~m!i:mm :m:!ln [TaJ.!l!tWl!r IT ,npooWl [mIT" 7!1iT.::,]H~$1i!

REFERENCES

This function is one of a number of front-end vector operators, listed below:
cross-product dot-product v+ v- v* vI

v+-constant
vabs

v--constant
vabs-squared

v*-constant
vceiling

vfloor vround vscale
vscale-to-unit-vector vtruncate

v/-constant
vector-normal

These functions are the serial equivalents of the corresponding vector pvar operations.
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions.

Version 6.1, October 1991 245

cross-productll *Lisp Dictionary
r f nil iJi n~ml11 1m IlnHlIlmmrnnmr r 1 JIN IT f J mmm:rw:nrmlllfr !lnH II !~r: 'I!i!llfu.rrr.n:I.~

cross-product! ! [Function]

Performs a parallel cross product operation on the. supplied vector pvars.

SYNTAX

cross-productll vector-pvar 1 vector-pvar2

ARGUMENTS

vector-pvar 1, vector-pvar2
Vector pvars, for which the cross product is returned.

RETURNED VALUE

cross-prod-vector-pvar
Temporary vector pvar. In each active processor, contains the cross
product of the corresponding values of vector-pvar 1 and vector­
pvar2.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

246

In each processor, the cross product of the two vector pvars is computed. The result is
returned as a vector pvar.

(cross-product!! (!! #(1 2 3» (!! #(4 5 6») <=>
(!! #(-3 6 -3»

The arguments vector-pvar 1 and vector-pvar2 must be pvar vectors of length 3.

Version 6.1, October 1991

*Lisp Dictionary cross-productll
~I!i!i!!j iJj!:I!i!I!i!I!i!!:;r!g!~1!]nU!mr:::'DlrjmmH:;:m :[U\!l;:m:!m~l1~:n:m_ m~ IClift !!l1 !!)~

NOTES
Compiler Note:

The *Lisp compiler does not compile this operation.

REFERENCES

This function is one of a number of related vector pvar operators, listed below:
cross-productll dot-productll v+II v-II v*1I vIII

v+scalarll

vabsll

v-scalarll

vabs-squaredll

vscale-to-unit-vectorll

Version 6.1, October 1991

v*scalarll

vector-normalll

*vset-components

v/scalarll

vscalell

247

cube-from-grld-address *Lisp Dictionary
111111 II I I UiHII I UlR UlIUlIlJm ! N fU nm n IIi I1Im!!!1 UIIIU Uil nH 111 !In 1 I

cube-from-grid-address [Function]

Converts a grid (NEWS) address in the current VP set into a send (cube) address.

SYNTAX

cube-from-grld-address coordinate &rest coordinates

ARGUMENTS

coordinate, coordinates
A set of integers representing a grid (NEWS) address in the current
VP set. The number of coordinates supplied must equal the rank
of the current VP set.

RETURNED VALUE

send-address Integer. The send (cube) address corresponding to the set of
coordinates.

SIDE EFFECTS

None.

DESCRIPTION

248

This function translates a series of integers specifying the grid (NEWS) address of a
single processor in the current VP set into a single integer specifying the send (cube)
address of that processor.

Each argument specifies a coordinate point along one axis in an n-dimensional grid. At
least one argument is required and the number of integer values supplied must equal
the rank of the current machine configuration.

Version 6.1, October 1991

*Lisp Dictionary cube-from-grid-address
1 mil mml! 1 jill: !" j~,m)w~~~ww: iWl:AW!IWl!l1WlWWlllllllffi lWlfllffiffiWlimmWllllIlllWlImWllEWll!!llffillWllllWWl}Wl_WW)l!!ffill)l!!)ffilll!!llillffil)llffi)l!!Illl~~ffill\{WlW;ffill"!iml ~ffillEWlJ~; !!W!jjWlimllffiMNffilli!iffill:~iiffill;mffill:_WW:::~: : W: il

EXAMPLES

For example, assuming a three-dimensional configuration is in effect:

(cube-from-grid-address 10 20 30) => 1036

Here, the processor located at coordinates (10, 20, 30) has a send (cube) address of
1036.

NOTES

Note that the send (cube) address corresponding to a particular grid address is not pre­
dictable from the grid address values alone. It also depends on the geometry of the
current VP set, on the number of physical processors attached, and on the system soft­
ware version in use. In particular, the relationship between send and grid addresses in
the *Lisp simulator is different from that of the actual CM-2 hardware.

It is an error to rely on a specific, fixed relation between send and grid addresses except
as provided by *Lisp address conversion functions such as cube-from-grid-address,
cube-from-vp-grld-address, grld-from-cube-address, and grld-from-vp-cube­
address.

REFERENCES

See also these related send and grid address translation operators:
cube-from-grid-address!1
cube-from-vp-grld-address
grld-from-cube-address
grid-from-vp-cube-address
self-addressll

Version 6.1, October 1991

cube-from-vp-grid-addressll
grld-from-cube-addressll
grld-from-vp-cube-addressll
self-address-grldll

249

cube-from-grld-addressll *Lisp Dictionary
11 mllil! iii! 111111 If! 1 [! n I IIImIllillll1l111!! 121 In [1m III mllin I!1IIm ;!in 11 : r1 n ma

cube-from-grid-add ress! ! [Function]

Performs a parallel conversion from grid (NEWS) addresses in the current VP set to send
(cube) addresses .

SYNTAX

cube-from-grld-addressll coordinate-pvar &rest coordinate-pvars

ARGUMENTS

coordinate-pvar, coordinate-pvars
A series of integer pvars representing, in each processor, a grid
(NEWS) address in the current VP set. The number of
coordinate-pvars supplied must equal the rank of the current VP
set.

RETURNED VALUE

send-address-pvar Temporary integer pvar. In each active processor, contains the send
(cube) address corresponding to the values of the coordinate-pvars.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

250

This function translates a series of coordinate-pvars, specifying a grid (NEWS) address
in each processor in the current VP set, into a single pvar that contains the correspond­
ing send (cube) address in each processor.

This is the parallel equivalent of cube-from-grld-address.

Version 6.1, October 1991

/

*Lisp Dictionary cube-frorn-grid-addressll
~ 1 1 :!Wn:gil::n:[~]~W;!ml.iM%i:!tWm! : ill! r!Wll . n i!!!1{ ;!: : i!~2 v:nn:.r it!! III::I' : lm!!W!Wll

EXAMPLES

For example, assuming a three-dimensional configuration is in effect:

(cube-from-grid-address!! (!! 10) (!! 20) (!! 30»
=> (!! 1036)

Here, the send (cube) address of the processor located at coordinates (10, 20,30),1036,
is returned in all active processors.

NOTES

Note that the send (cube) address corresponding to a particular grid (NEWS) address
is not predictable from the grid (NEWS) address values alone. It also depends on the
geometry of the current VP set, on the number of physical processors attached, and on
the system software version in use.

For example, on the eM hardware, the expression

(*cold-boot :initial-dimensions '(32 16»
(ppp (cube-from-grid-address!!

(self-address-grid!! (!! 0»
(self-address-grid!! (!! 1»)

:mode :grid :end '(4 4»

may display the following:

0123
4567
89 10 11
12 13 14 15

On the *Lisp simulator, the same code displays

0163248
1173349
2 183450
3 193551

It is an error to rely on a specific, fixed relation between send and grid addresses except
as provided by *Lisp address conversion functions such as cube-from-grid-addressll,

cube-from-vp-grid-addressll, grid-from-cube-addressll, and grid-from-vp-cube­

addressll.

Version 6.1, October 1991 251

cube-from...grid;-addressll *Lisp Dictionary
r n If I r r m i 11 PI i ! mnrnl!ll!!PI!! HI! q a II ff un f filill!!! I IT I

REFERENCES

252

See also these related send and grid address translation operators:
cube-from...grld-address

cube-frorn-vp-grld;-address

grid-from-cube-address

grld-frorn-vp-cube-address

self-addressll

cube-frorn-vp-grid-addressll

grid-from-cube-addressll

grid-from-vp-cube-addressll

self-address...gridll

Version 6.1, October 1991

*Lisp Dictionary cube-from-vp-grld-address
W,1I;}1!!I1IRgmmml !iI! Iii~wn I m II Jim WW!'L[mHmIW: :; Tin II II: m ::n Ii nIl: :: PIX in :::::i!!il!! Him!! u:: i I

cube-from-vp-grid-address [Function]

Converts a grid (NEWS) address in the specified VP set into a send (cube) address.

SYNTAX

cube-from-vp-grid-address vp-set coordinate &rest coordinates

ARGUMENTS

vp-set VP set object. VP set for which the supplied coordinates are
converted. Must be both defmed and instantiated.

coordinate, coordinates

RETURNED VALUE

send-address

SIDE EFFECTS

None.

DESCRIPTION

A set of integers representing a grid (NEWS) address in vp-set.
The number of coordinates supplied must equal the rank of
vp-set.

Integer. The send (cube) address corresponding to the set of coordi­
nates.

This function translates a series of integer coordinates that specify the grid (NEWS)
address of a single processor in vp-set into a single integer specifying the send (cube)
address of that processor.

Version 6.1, October 1991 253

cub~from-vp-grld-address
Riiifn "" n it m n. rrns nnw;: lTI amm ;:

*Lisp Dictionary
:\IIra m: 1 :nR!:lnl!!}ifD1m !; ::; I

EXAMPLES

For example, assuming the VP set my-vp has a three-dimensional geometry,

(cube-from-vp-grid-address my-vp 10 20 30) => 1036

Here, the processor located at coordinates (10, 20, 30) in the my-vp VP set has a send
(cube) address of l~,.·",Jhis means that the processor at coordinates (10, 20,30) in
my-vp can be accessed directly via the send address 1036, as in

(pref (self-address!!) 1036) => 1036

Using this conversion mechanism, it is unnecessary to make my-vp the current VP set
in order to access processors via grid addresses within my-vp, as in

(*with-vp-set my-vp
(pref (self-address!!) (grid 10 20 30») => 1036

NOTES

Note that the send (cube) address corresponding to a particular grid (NEWS) address
is not predictable from the grid (NEWS) address values alone. It also depends on the
geometry of the current VP set, on the number of physical processors attached, and on
the system software version in use.

It is an error to rely on a specific, fixed relation between send and grid addresses except
as provided by *Lisp address conversion functions such as cube-from-grld-address,

cube-from-vp-grld-address, grid-from-cube-address, and grld-from-vp-cube­

address.

REFERENCES

254

See also these related send and grid address translation operators:
cub~from-grid-address

cu be-from-vp-grJd-address I I

grid-from-cube-address

grid-from-vp-cube-address

self-addressll

cube-from-grid-addressll

grid-from-cube-addressll

grid-from-vp-cube-addressll

self-address-gridll

Version 6.1. October 1991

./

\.

,./

"Lisp Dictionary cube-from-vp-grid-addressll
H f!": mm i1 ! nlM !PI! 1:n lUi" mn :!nm ;nm!I2i1li WHI !! !nIH f H Wi n IT I!!I ru ;m;m

cu be-from-vp-g rid-add ress II [Function]

Performs a parallel conversion from grid (NEWS) addresses in the specified VP set into
send (cube) addresses.

SYNTAX

cube-from-vp-grid-addressll vp-set coordinate-pvar &rest coordinate-pvars

ARGUMENTS

vp-set VP set object. VP set for which the coordinates in the supplied
coordinate-pvars are converted. Must be both defined and
instantiated.

coordinate-pvar, coordinate-pvars

RETURNED VALUE

A set of integer pvars representing in each processor a grid
(NEWS) address in vp-set. The number of coordinate-pvars
supplied must equal the rank of vp-set.

send-address-pvar Temporary integerpvar. In each active processor, contains the send
(cube) address corresponding to the values of the coordinate­
pvars.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function converts a series of coordinate-pvars, specifying the grid (NEWS) ad­
dresses of processors in vp-set, into a single pvar that specifies the send (cube)
addresses of those processors. This is the parallel equivalent of cube-frorn-vp-grid­

address.

Version 6.1. October 1991 255

cube-from-vp-grld-addressll *Lisp Dictionary
lim Err 1 r a !!l1!! :::mEIIII!iU! l!I!m I nuJTI !~$lI!1l!;lliim!lIllmlnn!!1ni!

EXAMPLES

For example, assuming the VP set my-vp has a three-dimensional geometry,

(cube-from-vp-grid-address!!
my-vp (!! 10) (!! 20) (!! 30» => (!! 1036)

Here, the send (cube) address of the processor located at coordinates (10, 20,30) in the
my-vp VP set, 1036, is returned in all active processors.

NOTES

256

Note that the send (cube) address corresponding to a particular grid (NEWS) address
is not predictable from the grid (NEWS) address values alone. It also depends on the
geometry of the current VP set, on the number of physical processors attached, and on
the system software version in use.

For example, on the eM hardware, the expression

(def-vp-set two-dim' (32 16»
(ppp (cube-from-vp-grid-address!! two-dim

(self-address-grid!! (!! 0»
(self-address-grid!! (!! 1»)

:mode :grid :end ' (4 4»

may display the following:

0123
4567
891011
12 13 1415

On the *Lisp simulator, the same code displays

0163248
1 173349
2183450
3 193551

It is an error to rely on a specific, fixed relation between send and grid addresses except
as provided by *Lisp address conversion functions such as cube-frorn-grid-addressll,
cube-from-vp-grld-addressll, grld-from-cube-addressll, and grid-from-vp-cube­
addressll.

Version 6.1, October 1991

*Lisp Dictionary cube-frorn-vp-grld-addressll
1m i I I Tlllliiml M l IT If If fin !!iT77r raw W!lI nn : ill r m l!!1iIiiEifil If i m 11M n IIII!

REFERENCES

See also these related send and grid address translation operators:
cube-from-grld-address cube-from-grld-addressll
cube-frorn-vp-grid-address
grid-from-cube-address

grid-from-vp-cube-address
self-addressll

Version 6.1, October 1991

grid-from-cube-addressll
grid-frorn-vp-cube-addressll
self-address-gridll

257

*deallocate

*deallocate
Dea1locates a global pvar.

SYNTAX

*deallocate pvar

ARGUMENTS

IUtlUmrmnl

*Lisp Dictionary
n;: mnumns i Wn:i;~li

[Function]

pvar Pvar expression. The global pvar to deallocate. Must have been
allocated by allocatell.

RETURNED VALUE

nil Evaluated for side effect.

SIDE EFFECTS

Deallocates the global pvar pvar, freeing the heap memory assigned to it on the eM.

DESCRIPTION

This function deallocates the supplied global pvar, which must have been allocated by
allocatell.

EXAMPLES

(allocate!! global-pvar)

;code using global-pvar

(*deallocate global-pvar)

258 Version 6.1. October 1991

(
\

(

*Lisp Dictionary *deallocate
00Wt.' ®m~_~J~ffl§m&~.lmlK: 1 . 1~n:3;:';W}ml:www*%p..ffillM:DJffl§Mm; 1 ummw

NOTES

It is an error to use a pvar after it has been deallocated. The order in which pvars are
deallocated does not matter.

Global pvars and permanent pvars are allocated on the CM heap. In contrast to global
pvars, which are allocated by allocate!! and deallocated with deallocate*, permanent
pvars, are allocated by *defvar and must be deallocated by the function *deallocate­

*defvars.

REFERENCES

See also the pvar allocation and deallocation operations
allocatell

*deallocate-*defvars

front-endll

make-arrayll

II

arrayll

*defvar

*Iet

typed-vectorll

Iet

vectorll

See the *Lisp glossary for definitions of the different kinds of pvars that are allocated
on the CM stack and heap.

Version 6.1, October 1991 259

*deallocate-*defvars *Lisp Dictionary
111 n 1M ! ill nUl ! I mW!i!l! f! ! r :m::umml ; m n :11 HI IT r

*deallocate-*defvars [Function]

Deallocates some or all permanent pvars allocated by *defvar.

SYNTAX

*deallocate-*defvars &rest pvar-names

ARGUMENTS

pvar-names A series of symbols naming permanent pvars that have been
allocated by *defvar, or one of the symbols :prompt, :all, :all­

noconfirm, or nil. Specifies the pvars to deallocate.

RETURNED VALUE

nil Evaluated for side-effect.

SIDE EFFECTS

Deallocates the permanent pvars specified by pvar-names, freeing the eM heap
memory they have occupied.

DESCRIPTION

260

This function deallocates the pvars specified in pvar-names.

If pvar-names is nil or :prompt, the user is prompted with the name of each pvar ever
declared with *defvar, and given the option of deallocating the pvar, or of skipping it
and going on to the next pvar. Skipped pvars are not deallocated.

If pvar-names is :all, then after the user is prompted for confirmation all pvars allo­
cated with *defvar are deallocated.

If pvar-names is :all-noconflrm, then all pvars declared with *defvar are deallocated.

Version 6.1, October 1991

I

\

"'Lisp Dictionary
moomnnl !!! 1!li1iiiWl ' ! ! I

*deallocate-*defvars
11 ::r: i:: f HI!l!!:UI :00!I!lI!l!!ii i1 :llIllIllI,OO! I -:oo:%m II g Illmlm i!; mllI!lWIi II Em l: Uii IIi1!!llll

EXAMPLES

Here are some sample uses:

(*deallocate-*defvars 'faa) ;delete faa pvar

(*deallocate-*defvars 'faa 'bar) ;delete faa and bar pvars

(*deallocate-*defvars :prompt)

(*deallocate-*defvars)

(*deallocate-*defvars :all)

NOTES

;get prompted for pvars
;to delete

;get prompted for pvars
;to delete

;delete all pvars declared
;with *defvar

Before deallocating any permanent pvar, be certain that no library functions depend
on that pvar.

The two predefmed pvars, til and nilll. can never be deallocated.

Global pvars and permanent pvars are allocated on the CM heap. In contrast to global
pvars, which are allocated by allocate!! and deallocated with deallocate*, permanent
pvars, are allocated by *defvar and must be deallocated by the function *deallo­

cate-*defvars.

REFERENCES

See also the pvar allocation and deallocation operations
allocate II

*deallocate

front-endll

make-arrayll

II

arrayll

*defvar

*Iet

typed-vectorll

Iet

vector! I

See the "'Lisp glossary for defmitions of the different kinds of pvars that are allocated
on the CM stack and heap.

Version 6.1, October 1991 261

deallocate-def-vp-sets *Lisp Dictionary
. 11 TIl 1 ~1 i nlHf!! rU1I1! lj! ill! m r r w IT! 11 f W . r; !!'1J!:rm

deallocate-def-vp-sets [Function]

Deallocates some or all permanent VP sets, which were defined using def-vp-set.

SYNTAX

deallocate-def-vp-sets &rest vp-sets

ARGUMENTS

vp-sets VP sets to be deallocated, or the keyword :all.

RETURNED VALUE

nil Evaluated for side effect.

SIDE EFFECTS

Deallocates VP sets specified by vp-sets using deallocate-vp-set.

DESCRIPTION

This function deallocates each of the supplied vp-sets, using deallocate-vp-set. If the
vp-sets argument is the single keyword :all, all VP sets defined using def-vp-set are
deallocated.

EXAMPLES

(deallocate-def-vp-sets vp-set-l vp-set2)
(deallocate-def-vp-sets :all)

REFERENCES

262

See the *Lisp glossary for defmitions of the kinds ofVP sets that may be allocated and
deallocated.

Version 6.1, October 1991

(
\

(
I
\

*Lisp Dictionary deallocate-def-v~ets
_ iN : i: ilFi!1i! m i1 T ii ::I!!1Im&W Ii HiIWlim 2 im! tllfi1U!!!!iI Ii n ill I nn::m!lf r ! 1n!ii1 iii il: [lFi!:!I! 1111

./

See also the following VP set definition and deallocation operators:
def-~et create-v~et

let-v~et deallocate-vp-set

Version 6.1, October 1991 263

deallocat8-1Jeometry
1m; m liIi"il I g minD ! 11 W[1 111 n tUIlI!; !jJiliiFH rill r i urE I!€<1MI1I

deallocate-geometry
Deallocates an existing geometry object.

SYNTAX

deallocat8-1Jeometry geometry

ARGUMENTS

*Lisp Dictionary
J j mil In 1%1 Iii! j nl!1 12 Ii Ir_

[Function]

geometry Geometry object. Geometry to be deallocated.

RETURNED VALUE

nil Evaluated for side effect.

SIDE EFFECTS

The geometry specified by geometry is deallocated.

DESCRIPTION

The geometry specified by geometry must be a geometry object, as created by the
*Lisp operator creat8-1Jeometry. The specified geometry is deallocated.

EXAMPLES

NOTES

(setq my-geo (create-geometry :dimensions ' (32 16)))
(deallocate-geometry my-geo)

It is an error to delete a geometry that is currently associated with an active VP set.

264 Version 6.1, October 1991

(
\

(
r

~/

"Lisp Dictionary deallocate-processors-for-vp-set
T : i ITI II II I U!l If M!11[n:::i1ilEfi 1 i ill J nnlllUTI! I I IWIll:! I ! 1

deal I ocate-processors-fo r-vp-set
deallocate-vp-set-processors

[Function)

[Function)

Deinstantiates a flexible VP set, deallocating any associated pvars.

SYNTAX

deallocate-processors-for-vp-set vp-set &key :ok-if-not-Instantiated

ARGUMENTS

vp-set Flexible VP set. VIrtual processor set defmed with def-vp-set.

:ok-if-not-instantiated

RETURNED VALUE

nil

SIDE EFFECTS

Boolean value. Determines whether error is signalled if vp-set
does not currently have any processors allocated.

Evaluated for side effect.

Deinstantiates VP set, and deallocates eM memory assigned to associated pvars. Defi­
nitions of permanent pvars are retained, and these pvars are reallocated when the VP

set is reinstantiated.

DESCRIPTION

Deallocates all processors previously allocated for the specified VP set by a call to allo­

cate-processors-for-vp-set.

The vp-set parameter must be a flexible VP set for which processors have been allo­
cated by either allocate-processors-for-vp-set or allocate-vp-set-processors. The
specified VP set itself is not destroyed and the defmitions of any associated permanent
pvars are retained. However, all other pvars, including global pvars created by

Version 6.1, October 1991 265

deallocate-processors-for-vp-set *Lisp Dictionary
1 !IT IT 1 1 ! H ! 1m ! mnU!!!m:m !IT ! 111m IT PH H r 1 IT :Hi !Ii

allocatell t are deallocated and destroyed by a call to the deallocate-processors-for-vp­

set function.

The :ok-lf-not-lnstantlated keyword takes a boolean argument and defaults to nil. It
detennines whether or not an error is signaled if the provided VP set is not instantiated
at the time of the call.

EXAMPLES

This example shows how allocate-processors-for-vp-se~ along with its companion
function deallocate-processors-for-vp-sett may be used to instantiate a flexible VP set
several times with a different geometry at each invocation.

(def-vp-set disk-data nil
:*defvars ((disk-data-pvar nil nil (pvar single-float»»

(defun process-files (&rest diskfiles)
(*cold-boot)
;;; at this point, disk-data-pvar has no memory allocated
;;; on the CM
(dolist (file diskfiles)

(let ((elements (read-number-of-elements-in file»)
(allocate-processors-for~vp-set disk-data

(list (next-power-of-two->= elements»)
;;; now disk-data-pvar has CM memory allocated
(let ((array-of-data (read-data-from-disk file»)

(array-to-pvar array-of-data disk-data-pvar
:cube-address-end elements)

(process-data-in-cm disk-data disk-data-pvar»
(deallocate-processors-for-vp-set disk-data»»

NOTES

266

The function deallocate-vp-set-processors is an obsolete alias for the function
deallocate-processors-for-vp-se~ and behaves identically.

Version 6.1, October 1991

(
\"

(
\
"-

/
I

~.

*Lisp Dictionary deallocate-processors-for-vp-set
~Wl.W:wm&~OOli.I&~~*~t%W.w*.mmmiil:,~

REFERENCES

See the *Lisp glossary for a definition of flexible VP set and for definitions of all the
kinds of VP sets that may be allocated and deallocated.

See also the following flexible VP set operators:
allocate-vp-set-processors
set-vp-set-geometry

allocate-processors-for-vp-set
with-processors-allocated-for-vp-set

See also the following VP set definition and deallocation operators:
def-vp-set create-vp-set let-vp-set

deallocate-def-vp-sets deallocate-vp-set

Version 6.1, October 1991 267

deallocate-vp-set *Lisp Dictionary
!1 H _IV! mil!! 1 II!! !Mill:!Wi: 11 ! 1m ml' 1 Eli H lmiffiWWI1HW ! 1

deallocate-vp-set [Function]

Deallocates a permanent or temporary VP set and its associated pvars.

SYNTAX

deallocate-vp-set vp-set &optional deallocate-geometry-p

ARGUMENTS

vp-set VP set object. VP set to be deallocated.

deallocate-geometry-p
Scalar boolean value. Determines whether the geometry object
associated with the VP set is deallocated.

RETURNED VALUE

returned-value Returned value.

DESCRIPTION

This function deallocates the supplied vp-set regardless of whether it was created by
a call to def-vp-set or to create-vp-set. All pvars belonging to vp-set are deallocated
as well. If vp-set was defined by def-vp-set, then the symbol that names the VP set is
made unbound.

The optional argument, deallocate-geometry-p, is a boolean value that determines
whether the geometry object associated with the specified VP set is to be deallocated.
The default is t; the assocated geometry object is deallocated by default.

NOTES

Usage Note

268

The let-vp-set form automatically calls deallocate-vp-set using the default argument
to deallocate-geometry-p. Do not assign a geometry object that should be preserved
to a temporary VP set created with let-vp-set.

Version 6.1, October 1991

*Lisp Dictionary deallocate-vp-set
9 : l:: 1RN : !fin In! L :%g~ 1m: HI U"i!B;"Jn: l:H :BiwmwM 11m: WK miH • Li" lUW ~"

REFERENCES

See the *Lisp glossary for definitions of pennanent and temporary VP sets.

See also the following VP set defmition and deallocation operators:
def-vp-set
let-vp-set

Version 6.1, October 1991

create-vp-set
deallocate-def-vp-sets

269

*decf
! ! 111 mlill! TIl:]I TI I g i!l1J1111 J Jum 1 Ii 111 ! mmmil11i1 111

*Lisp Dictionary
n amm m DR n jlilTITIi1:l min m 11

*decf [Macro]

Destructively decrements each value of the supplied pvar.

SYNTAX

*decf numeric-pvar &optional value-pvar

ARGUMENTS

numeric-pvar Pvar expression. Pvar to be decremented.

value-pvar Numeric pvar. Amount to subtract from numeric-pvar. Defaults
to (II 1).

RETURNED VALUE

nil Evaluated for side effect.

SIDE EFFECTS

Destructively decrements each value of pvar by the corresponding value of value­
pvar.

DESCRIPTION

Destructively decrements each element of numeric-pvar by the corresponding value
ofvalue-pvar. The value-pvar argument defaults to (1I1).

EXAMPLES

(*decf count-pvar (!! 3))

270 Version 6.1, October 1991

(

\,

*Lisp Dictionary *decf
:111111111 n 1 . i ! 11 1 1 II ; lIIiI!; . i !1i~mClmii gii!l::::!!IPE l __ .wI@fW II I mWPi1!!!!f II

NOTES
Usage Note:

A call to the *decf macro expands as follows:

(*decf data-pvar (!! 4»
==>

(*setf data-pvar (-!! data-pvar (!! 4»)

For this reason, the numeric-pvar must be a modifiable pvar, such as a permanent,
global, or local pvar. It is an error to supply a temporary pvar as the numeric-pvar to
*decf.

REFERENCES

See also the related macro *incf.

The function 1-11 can be used to non-destructively perform a subtraction by 1 on its
argument pvar. See the dictionary entry on 1-11 for more information.

Version 6.1, October 1991 271

*defsatf -Lisp Dictionary
111111 11 l1li1111 111l1li7 Hi ftn w l1li IT r flfPi PI flnlU

*defsetf [Macro]

Assigns an update function to be used whenever *self is called on the specified access
function.

SYNTAX

*defself accessor-jUnction update-jUnction

ARGUMENTS

accessor-jUnction Symbol. The name of a parallel structure accessor function.

update-jUnction Symbol. The name of an update function to be called whenever
·self is called on accessor-jUnction.

RETURNED VALUE

update-jUnction Name of update function assigned~

SIDE EFFECTS

Assigns update-jUnction as function to be called whenever ·self is called on accessor­
jUnction.

DESCRIPTION

Defmes the update-jUnction used for a given accessor-jUnction in a call to ·self.

EXAMPLES

(*defsetf 'get-pvar-value 'modify-pvar-value)

272 Version 6.1, October 1991

I

\

·Lisp Dictionary *defsetf
.I!!liI!Iii I III WI lEI W! mill 11111 nl 11 Rim: ; 1m 1 T 1 7i2ml!1RHRlllrqUllf!1! if !Ilil Pni

REFERENCES

See also the dictionary entry for the *setf macro.

The macro *undefsetf may be used to remove the assignment made by *defsetf. See the
defmition of *undefsetf for more information.

Version 6.1, October 1991 273

*defstruct *Lisp Dictionary
11 r f 1 liif11!11lm: Ji§illl:ml!t!! :rmn:fi§ mm tIlf2! ME In I C f11 til 1 r

*defstruct [Macro]

Defmes a structure pvar type.

SYNTAX

*defstruct structure-name
&optlonal documentation &rest slot-descriptors

*defstruct (structure-name &rest options)
&optlonal documentation &rest slot-descriptors

ARGUMENTS

274

structure-name Symbol. Name of structure type.

options Series of structure option specifiers, described below, that control
naming conventions and structure inheritance. Each supplied
option must be of the form

(:keyword &rest values)

documentation String. Documentation string for structure.

slot-descriptors At least one slot descriptor of the form
(slot-name default-init &rest slot-options)

The three components of the slot-descriptors argument are described below.

slot-name

default-init

slot-options

Symbol. Name of slot.

Front-end value. Single default value for all elements of the slot.
Spread to all processors by the function" when a parallel structure
object is created. If the :cm-Inltlal-value or :cm-uninltiallzed-p slot
options are specified, then this argument is ignored when a
parallel structure object is created.

Series of slot option keyword/value pairs of the form
:keyword value

Version 6.1, October 1991

~/

*Lisp Dictionary *defstruct
!!!:n:mmmWi! :lIi! I.::: 11::00;U l! m:l&1lM 1. H!:n::t:::::nn ::iI !w~m~ mmn iIi!!ti.l!0W;, n !UK 1!l!1!l! : ;

RETURNED VALUE

structure-name Returns name of structure type.

SIDE EFFECTS

Defines both front-end and parallel structure types, along with constructor, accessor,
copying, and modification operations for both stucture types.

DESCRIPTION

The macro *defstruct defmes structure pvar types in *Lisp. A call to *defstruct defmes
both a Common Lisp scalar structure type and a Connection Machine parallel structure
type. Further, *defstruct defmes both scalar and parallel constructor, accessor, and
assignment operations for these new data types. This double functionality of*defstruct
allows structures to be passed back and forth between the Connection Machine system
and the front-end computer.

A call to *defstruct does the following:

• defines a front-end defstruct type structure-name, with slots corresponding to

the slot-descriptors of the *defstruct

• defmes a new pvar type, (pvar structure-name); pvars of this type can contain

only elements of type structure-name

• defmes a parallel constructor function make-structure-namell, which creates

pvars of type (pvar structure-name)

• defmes pvar accessors of the form structure-name-slot-name!! that take a

pvar argument of type (pvar structure-name) and return a copy of the structure
slot slot-name in parallel

• defines *setf methods for these pvar accessors to permit modification of the

structure pvar slots

• defines a *Lisp predicate, structure-name-pll to test whether a pvar is a paral­

lel structure of the newly defined type

• defmes a sequence pvar copying operation copy-structure-namell, that takes a

pvar of type (pvar structure-name) and returns a copy of it

Version 6.1, October 1991 275

*defstruct *Lisp Dictionary
IT !IT illil:1 ifni 112M II mil! ! R!I WI 11m WiinliilW if] 11 'ma

276

• permits the operations II, *setf of pref, array-to-pvar, pvar-to-array,

array-to-pvar-grid, and pvar-to-array-grld to accept a front-end defstruct

object as the value stored in a structure pvar of the corresponding type

Keyword options in the options list control slot properties and naming conventions that
apply to the parallel structure type as a whole. The keywords that may be supplied in
the options list are described below.

• :conc-name

Symbol. Used instead of structure-name as the prefix of slot accessor func­
tions. If this keyword is supplied with a value of nil, or with no value at all, no
prefix is attached to slot accessor functions.

• :cm-constructor

Symbol. Used as the name of the structure pvar constructor function instead of
the default, make-structure-namell.

• :parallel-cm-predicate

Symbol. Used as the name of the structure pvar predicate instead of the
default, structure-name-pll.

• :include

Symbol. Names a structure pvar type previously defmed by *defstruct that is to
be included in the definition of the new structure pvar type.

• :cm-uninitialized-p

Boolean value. If t, is equivalent to supplying the :cm-uninitialized-p slot
option in every slot-options list of the *defstruct form. Has no effect if nil.

In addition, almost all structure option keywords permitted by the Common Lisp
defstruct operator may be included in the options list. (See Chapter 19, "Structures,"
in Common Lisp: The Language) The values supplied for these keywords are passed
directly on to defstruct, and therefore have their normal effect. The only keywords that
are not allowed are :type, :named, and :inltial-offset.

Each slot-descriptor argument describes one slot of the parallel structure type being
defmed. The slot-name is used to name the slot in both the parallel structure type and
the front-end structure type.

The value of default-init for each slot must be a form that returns a valid front-end
value conforming to the type of the slot, as specified by the :type slot option. This value
is distributed to all processors, as if by the function II. If either of the options :cm­

uninitialized-p or :cm-Inltlal-value is specified in the slot-options list, then the
default-:init argument for that slot is ignored and can be specified as nil.

Version 6.1, October 1991

(

\

(

\

/

*Lisp Dictionary *defstruct
nTW: 1 If: Ii: 1mM:! :: f· ~~1iXWlli:!Wt$.tMm!'1@~«@i$»WWI~~rJ;W$.fU.M%",W~!%w% rnc.XWi.wmlll

Keyword options in the s!ot-options list of each slot control typing and initialization
of that slot.

One keyword option, :type, must be specified for each slot.

• :type
1YJ>e specifier. Specifies data type of structure slot, for both front-end struc­
tures and structure pvars. This argument must specify a Common Lisp data
type that is also valid as a pvar element type. Slots may not be specified as
either general or mutable.

All other permissible slot-options keywords are described below.

• :cm-type
Type specifier. Specifies data type of structure pvar slots, allowing extra con­
trol of structure pvar data types. Overrides data type specified by :type
argument, but must be of a compatible data type (i.e., a more specific defini­
tion of the same basic data type).

• :cm-inltlal-value

*Lisp form. Evaluated when structure pvars are created to provide default val­
ue for this structure slot. If unspecified, structure slot is initialized using
default-init argument.

• :cm-uninitialized-p

Boolean value. If t, structure objects are created with this slot uninitialized.
Has no effect if nil. It is an error to supply a value for :cm-initlal-value if the
:cm- uninitiallzed-p argument is t. It is also an error to attempt to access an
uninitialized structure slot before a value has been stored into it.

• :read-only

Boolean value. 1ft, indicates that the slot is not to be modified. Has no effect if
nil. It is an error to try to modify a slot that has been declared as :read-only.

EXAMPLES

An example of a call to *defstruct is

(*defstruct elephant
(wrinkles 30000 :type (unsigned-byte 16»
(tusks t : type boolean»

Version 6.1, October 1991 277

*defstruct *Lisp Dictionary
Wi): g 111) nm!ilnw 2)ll:)Uill: I R:.'$rm,'$'" ;mww:m@liR\M:m,:lW'~~~

278

This expression defmes both the front-end structure type elephant and a parallel struc­
ture type of (pvar elephant). The front-end structure type is automatically defmed by
a call to defstruct of the form

(defstruct elephant
(wrinkles 30000 :type (unsigned-byte 16»
(tusks t :type boolean»

which defmes a set of construction, accessor, predicate, and copying functions for the
front-end structure type. The call to *defstruct also defmes a set of parallel construc­
tion, accessor, predicate, and copying functions, described below. A parallel structure
construction function called make-elephantll is defined to create pvars of type (pvar

elephant). For example, the expression

(*defvar jumbo!! (make-elephant!! :wrinkles (!! 0»)

defmes a variable jumboll that contains a pvar with a wrinkle-free, tuskless elephant in
each processor.

Parallel slot accessor functions, elephant-wrinkles!! and elephant-trunkll, are defmed,
each of which takes a single argument of type (pvar elephant) and returns a copy of the
contents of the specified slot as a pvar. For example,

(elephant-wrinkles!!
(elephant-tusks!!

jumbo! !) <=> (!! 0)
jumbo! !) <=> t!!

Methods are defmed for *setf so that these slots can be modified in parallel. For exam­
ple, the expression

(*setf (elephant-wrinkles!! jumbo!!) (!! 4000»

modifies the value of the wrinkles slot of each elephant structure in jumbo!! so that
every elephant is moderately wrinkled. Methods are also defmed for *setf so that a
single value of a structure pvar of type (pvar elephant) can be modified.

(*setf (pref jumbo! !O)
(make-elephant :wrinkles 4000 :tusks t»

A parallel structure predicate, elephant-pI!, is defined. This takes a single pvar argu­
ment and returns til if it is of type (pvar elephant).

(elephant-p!! jumbo!!) => t!!

Finally, a parallel structure copying function, copy-elephantll, is defmed. It takes a
pvar of type (pvar elephant), and returns a copy as a temporary pvar.

(*defvar jumbo-copy!!)
(*set jumbo-copy!! (copy-elephant!! jumbo!!»

Version 6.1, October 1991

,

\

*Lisp Dictionary *defstruct _.I _t 1

W@Mml~~>ml!IIIiiiHlmml!!:n_Ullil.WW an~ 1 f f f ! ! ! : ~Wf@WfIWfiW!

NOTES
Language Note:

Structure pvar slot accessor functions return a copy of the structure slot. If it is neces­
sary to obtain the actual contents of the slot rather than a copy (e.g., to pass a slot to
a function that modifies the slot's contents), use the macro alias!! in combination with
the slot accessor function. However, it is only necessary to use the alias!! operator in
specific circumstances. See the definition of alias II for more information on where and
when it should be used.

Important: the *setf macro automatically accesses the actual value specified by a slot
accessor, so it is unnecessary to use alias II in combination with ·setf. For example, the
expression

(*setf (alias!! (elephant-wrinkles!! jumbo!!» (!! 4000»

can be equivalently, and more efficiently, written as

(*setf (elephant-wrinkles!! jumbo!!) (!! 4000»

Usage Note:

It is an error for any two slots to have the same name. Also, if any slot is given a slot­
name of p, the p slot accessor structname-p will be shadowed by the structname
structure pvar predicate structname-p. To get around this, use the *defstruct :conc­

name option with an argument such as structname-get-slot.

REFERENCES

For a more detailed discussion of the *defstruct macro and of structure pvars in general,
along with more examples of the use of *defstruct, see Chapter 4, entitled "Structure
Pvars," in the *Lisp Reference Manual Supplement Version 5.0.

The *defstruct macro is a parallel version of the Common Lisp defstruct macro. For a
discussion of defstruct, and of the use of structures in Common Lisp, see Chapter 19,

"Structures," in Common Lisp: The Language.

Version 6.1, October 1991 279

*defun "'Lisp Dictionary
1 1 Wmlmllml I gn ii!1!l1!l11l III m 12 iff iTI f H I n~!Igl 11 II iii Uii!1I1

*defun [Macro]

Defmes a "'Lisp operator that takes pvar arguments and/or returns a pvar value, and auto­
matically resets the eM stack upon exiting.

Note: In most cases, you can (and should) use defun rather than *defun. The differences are
presented below. Read this entry completely before using *defun to define "'Lisp functions!

SYNTAX

*defun fn-name arg-list &optional declarations documentation &body body

ARGUMENTS

fn-name Symbol. Name of function.

arg-list List of arguments. Identical to the arglist parameter of defun.

declarations Optional type declaration forms.

documentation Optic.nal documentation strings.

body "'Lisp forms. Body of function.

RETURNED VALUE

fn-name Symbol. Name of parallel function being defmed.

SIDE EFFECTS

Defines both a macro namedfn-name and a function with a symbol name derived from
fn-name.

280

Note: Because fn-name is defmed as a macro, not a function, you must use the "'Lisp
operators *apply and *tuncaU to apply and funcall fn-name, and there are other things
to be aware of-see below for more information.

Version 6.1, October 1991

I

\

/

(

*Lisp Dictionary *defun
I j. tit rut.UiinOO~ilW'.,*%n;:;;t~aJ$W~N%'ili~@mW$#Wi~~Ii'mil.m:~

DESCRIPTION

In general, user-defined functions containing *Lisp expressions may be defined using
the Common Lisp defun operator. However, temporary pvars created during execution
of some user-defmed *Lisp functions can cause *Lisp to run out of stack space. The
*Lisp operator *defun should be used in place of defun to defme such functions.

The *defun macro is analogous to the Common Lisp defun and can be used in place of
it in defming a function that accepts pvar arguments or returns a pvar result. However,
the *defun macro adds extra code to reset the CM stack when the function exits, thus
deallocating any temporary pvars that have been created during execution of the func­
tion. For efficiency, the *defun macro should be used only to defme functions that must
reset the CM stack.

The declarations argument can be any number of *Lisp declaration forms. These
forms can include, but are not limited to, type declarations for the arguments to the
function being defined by *defun. The documentation argument may be any number of
documentation strings for the function.

There are two cases where a user-defmed function would have to reset the CM stack.
One is where the function will be called outside of *Lisp operators, such as *set and
*when, that automatically reset the *Lisp stack when they exit. Another is where the
function will be used within a complicated *Lisp expression that causes *Lisp to run
out of stack space.

There are four rules to use in determining which *Lisp operators clear the CM stack,
and therefore where it may be necessary to use *defun:

• Operators defmed by *defun always reset the CM stack. These operators are

indicated, both in their Dictionary entries and in the table of contents, by the
notation [*Defon].

• All of the pvar pretty printing operators (ppp, ppp-css, etc.) reset the eM stack.

• The following macros reset the CM stack:

*all *and *apply *cond *case *decf

*ecase *funcall *if *integer-length *incf

*Iet *Iet* *Iogand *Iogior *Iogxor *map

*max *min *or pref *pset *set

*setf *sum *unless *when with-css-saved *xor

• Functions whose names end in " do not reset the CM stack.

A heuristic to follow in deciding whether or not to use *defun to defme a function is
that a user-defined function that takes pvar arguments and does not return a pvar value

~rsion 6.1, October 1991 281

*defun
n m Iii! !I!I ill f!; m;;mmllUlif r: JIlin lbft IIIII! ? 1ffi11rnm 1111mW!

*Lisp Dictionary
IWmf ill j 1m! c:;:m:g

(such as the log-sum-pvar example below) should be defmed using *defun, because
these functions will most likely be called outside of a form such as *set that takes care
of resetting the stack. Conversely, a user-defined function that takes pvar arguments
and does return a pvar value should not be defmed with *defun, unless its use causes
*Lisp to run out of stack space.

One can declare that a function has been defmed by *defun with the *proclaim operator.
This allows the Common Lisp compiler to see that the "function" defined by *defun is
actually a macro. For example,

(*proclaim '(*defun fool)

(defun bar (x) (foo x»

(*defun foo (x) (*sum x»

Without the call to *proclaim, when bar is compiled the call to foo is treated as a func­
tion call. When foo is defined with *defun, it is actually defmed as a macro, so that the
call to foo within bar will not execute properly. Declaring that foo will be defined by
*defun prior to the definition of any function that calls foo allows Lisp to compile these
functions properly.

EXAMPLES

282

A sample call to *defun is

(*defun simply-functional (x y z)
"A quite simple function of three complex arguments."
"Author: Dent"
(declare (type single-complex-pvar x y z»
(+!!xyz»

An example of a case where *defun is necessary is the expression

(let «total 0»
(dotimes (i limit)

(setq total (log-sum-pvar (random!! (!! i»»»

If the function log-sum-pvar is defined by

(defun log-sum-pvar (pvar)
(log (*sum pvar»)

and if the value of limit is very large, the expression above will run out of stack space.
The problem is that the expression (random II (II i» creates a temporary pvar on the CM
stack on each iteration. The function log-sum-pvar does not reset the stack when it

Version 6.1, October 1991

\

*Lisp Dictionary *defun
~"M;m;ru.m.wmwwmt~'W!i!mI"W@,#:mIWm;$'NmMtWJM§§liMit'ml%)ll*J$;t*Wib_<M~~%tmE%

exits, and neither does any operator surrounding it within the dotimes loop. As the loop
repeats, new temporary pvars are created on the stack until the stack is exhausted.

A better defmition is

(*defun log-sum-pvar (pvar)
(log (*sum pvar»)

This adds code that resets the CM stack following each invocation of log-sum-pvar.
If log-sum-pvlir is defmed in this way, the example will execute normally.

An example of a case where the use of*defun is not necessary, and is in fact inefficient,
is the expression

(dotimes (i limit)
(*set result-pvar (+!! result-pvar (pvalue (!! i»»)

If the function pvalue is defmed using defun, as in

(defun pvalue (data-pvar)
(expt!! data-pvar (random!! (!! 10»»

the CM stack will not be exhausted even if limit becomes very large. The reason is that,
like many *Lisp macros, *set automatically resets the stack after its argument expres­
sions have been evaluated. If, in the example above, the function pvalue was defmed
with *defun, then the function would waste time needlessly resetting the stack each
time around the dotimes loop.

Another example of a case in which *defun may be necessary is

(*proclaim ' (ftype (function (t t t t) single-float-pvar)
componen t! !))

(defun component!! (x y z w)
(declare (type single-float-pvar x y z w»
(+!! (*!! x y) (cos!! z) (sqrt!! w»)

(de fun stack-hog (x)
(*set x

(+! ! (componen t! ! (! ! 3.0) (! ! 4.0) (! !

(componen t! ! (! ! 3.0) (! ! 4.0) (! !
(componen t! ! (! ! 3.0) (! ! 4.0) (! !
(component! ! (! ! 3.0) (! ! 4.0) (! !

5.0) (! ! 6.0))
5.0) (! ! 6.0))
5.0) (! ! 6.0»
5.0) (! ! 6.0»»)

A call to stack-hog results in a large number of temporary pvars being allocated. Each
call to componentll allocates four temporary pvars, and the body of component!! gener­
ates one or more temporary pvars as it executes. None of these pvars are reclaimed
until the *set form exits.

Version 6.1, October 1991 283

*defun *Lisp DiCtionary
_m l!i!!j[lli!lm~ml Iii!!! nli,~ gp·SmwtlH 111 I! T -1 n 11 ~mu>;~

By defIning component!! with *defun, rather than defun, any temporary pvars allocated
during the evaluation of each componentll fonn are reclaimed when the fonn exits.
These include temporary pvars allocated during evaluation of the function's arguments
(i.e., the constant expressions (II 3.0), (II 4.0), etc., in the example above) and also any
temporary pvars generated by the execution of the body of componentll.

By reclaiming the stack each time a call to component!1 exits, the amount of stack space
required in executing stack-hog is signifIcantly reduced. If a user-defmed function
defmed with defun is consistently causing an application to run out of stack space, then
it should be redefmed with *defun.

Important: By redefming a function with *defun, when the function has previously
been defmed by defun, the function is being redefIned as a macro. All fonns in which
the function is called must therefore be recompiled.

An example of a case where it using *defun is not necessary is

(*defun pvalue (pvar)
(expt!! pvar (random!! (!! 10»»

If pvalue is defIned with *defun in this way, then the expression

(dotimes (i limit)
(*set result-pvar (+!! result-pvar (pvalue (!! i»»)

will execute unnecessarily slowly. The *set macro automatically resets the stack when
it exits, but because the pvalue function was defmed with *defun, it will perfonn an
extra, redundant stack reset operation each time around the loop. RedefIning pvalue
with defun will improve perfonnance:

(defun pvalue (pvar)
(expt!! pvar (random!! (!! 10»»

NOTES

Implementation Note:

A call to *defun perfonns two defmitions. It defmes both a macro named fit-name and
a function with a symbol name derived fromJn-name. The macro expands into a call
to the function, with enclosing code that records the original state of the stack and
ensures that the stack is reset when the function exits.

Usage Notes:

To undefme functions created with *defun, use the *Lisp operator un*defun.

284 Version 6.1, October 1991

I

\

*Lisp Dictionary *defun
~WlllW£%:mw4t:c f1!'-mi'~W~P~mI5%Jm';$wmw~wmwi&\i&!IF!: n. 1 we 1 rwm.Mtm

To apply *defun functions to lists of arguments, use the *Lisp operators *apply and
*funcall. It is an error to use the Common Lisp operators apply and funcall for these
purposes.

The *Lisp tracing operations for *defun functions are *trace and *untrace. It is an error
to use the Common Lisp operators trace and untrace to trace a function defmed with
*defun.

In the hardware version of *Lisp, *defun uses underlying support functions to deal
with stack memory reclamation. These underlying functions require that a CM be
attached and cold-booted, so *defun functions likewise will not execute properly unless
CM hardware is attached and cold-booted.

Compiler Note:

If a *defun is referenced prior to its defmition in a file, then the Lisp compiler will not
recognize it as a macro call (as you might intend), but will instead treat it as a call to
an ordinary function. The "external" operator defined by *defun is a macro rather than
a function, so these calls will signal an error.

There is a special *proclaim declaration that can be used to avoid this problem. For
example:

(*proclaim '(*defun xyzzy-foo))

(*proclaim
'(ftype (function (t t) (pvar single-float)) xyzzy-foo))

(*proclaim '(type single-float-pvar z)) (*defvar z)

(defun bar ()
(*set z (xyzzy-foo (!! 3.0) (!! 4.0))))

(*defun xyzzy-foo (a b)
(declare (type single-float-pvar a b))
(+!! a b))

The *proclaim form declaring that a function is a *defun must be placed in the file prior
to all references to that function, including its defmition. In essence, the *proclaim form
"forward references" the *defun defmition, informing the compiler that a function will
eventually be defined by *defun.

Important: Any type declarations for a *defun form must come after the (*proclalm

'(*defun ... » form and before the actual *defun definition, as shown in the above
example, or these declarations will not be used correctly.

Version 6.1, October 1991 285

*defvar *Lisp Dictionary

*defvar [Macro]

Allocates a new permanent pvar.

SYNTAX

*defvar pvar-name &optlonal initial-value-pvar documentation-string vp-set

ARGUMENTS

pvar-name Symbol. Bound to newly allocated pvar.

initial-value-pvar Pvar expression. If supplied, used to initialize the values of the
returned pvar.

documentation-string

vp-set

Optional documentation string.

VP set object. VP set to which the new pvar will belong. Defaults
to the value of*default-vp-set*.

RETURNED VALUE

pvar-name Returns pvar-name, the symbol to which the new pvar has been
bound.

SIDE EFFECTS

Allocates a permanent pvar named pvar-name and binds it to the symbol pvar-name.

DESCRIPTION

286

This creates a new pvar that is permanently allocated. The pvar-name argument is a
symbol that is bound globally to the allocated pvar. The optional argument
initial-value-pvar may be any previously allocated pvar or pvar expression. The
*defvar macro creates a new pvar, initializes it to the contents of initial-value-pvar,
and binds pvar-name to that new pvar using setq. If no initial-value-pvar argument
is given, the allocated pvar is uninitialized. During a *cold-boot operation, unless the

Version 6.1, October 1991

*Lisp Dictionary *defvar
WWiM~! nnw @!!~z.wMW;gsn:· ::: Wi I [Mimi ::T ::: ill l! E tll!i!liiUWiW@.oom:m::m:rm 11112 Iii j 1 il I! I R ! l:m!! ! :iHi iRW:mt.m

:undeflne-all argument to *cold-boot has been specified as t, all pvars allocated by
*defvar are reallocated and the supplied initial-value-pvar expression is reevaluated to
reinitialize the pvars.

The optional argument vp-set defmes the VP set to which the newly created pvar
belongs. It defaults to the value of *default-vp-set*.

The *defvar operator is intended to be used only at top level. It is an error to call *defvar
from within a user-defmed function, as in

(de fun wrong-use-of-*defvar (x)
(*defvar pvar (!! x)}
(*defvar pvar-squared (!! (* x x)}}}

The *Lisp operator allocate II should be used instead to dynamically allocate global
pvars from within a user-defined function. See the definition of allocatell for more
information.

EXAMPLES

The *defvar macro may be used to create a pvar with a specific initial value, as in

(*defvar pi!! (!! 3.14159265»

or with a value that is the result of a calculation, as in

(defpararneter upper-bound 65536)
(*defvar lirnit-pvar (-I! (!! upper-bound) (self-address! I)}}

The *defvar macro may also be used to create a pvar with no initial value, into which
a value will later be stored by a call to an operator such as *set:

(*defvar scratch-pvar)

(*set scratch-pvar (II! (1+!! (self-address!!}})}

Note that it is an error to access the contents of a pvar defmed in this way until an
operator such as *set has been used to store a value into the pvar.

Array pvars and structure pvars may be created by a call to *defvar. However, when
allocating either of these pvar types using *defvar, it is advisable to declare the type of
pvar with *proclaim. Undeclared pvars into which any other type of data has been
stored cannot be used to hold arrays or structures. For example,

(*defvar x)
(*set x (!! 3»
(*set x (!! *(1 2 3)}} iii This operation is not allowed

Version 6.1, October 1991 287

*defvar *Lisp Dictionary

288

11M q UP 1 mll111!IRlmrr IiRH : mill] I III! i HU!::1Riliimr: r.: :mmm 11 n: i1iT::; ! m.! Inn;;

The *defvar macro can be used to create an array pvar in two ways: by directly creating
the array pvar on the eM with a function such as make-arrayll, as in

(*proclaim ' (type (pvar (array character (3 4 5») fum»
(*defvar fum (make-array!! ' (3 4 5)

:element-type ' (pvar string-char)
:initial-element #\L»

(ppp (aref!! fum (!! 1) (!! 2) (!! 0» :end 10)
#\L #\L #\L #\L #\L #\L #\L #\L #\L #\L

or by simply using the " operator to copy a front-end array into all processors, as in

(*proclaim ' (type (pvar (array (unsigned-byte 8») fee»
(*defvar fee (!! #(1 2 3»)
(ppp fee :end 3)
(1 2 3) # (1 2 3) # (1 2 3)

Likewise, structure pvars can be defmed by *defvar in two ways: by use of the parallel
constructor function defmed by *defstruct, for instance

(*defstruct elephant
(wrinkles 30000 :type (unsigned-byte 16»
(tusks t :type boolean»

(*proclaim ' (type (pvar elephant) jumbo!!»
(*defvar jumbo!! (make-elephant!! :wrinkles (!! 300)

: tusks t!!»

(*proclaim ' (type (pvar elephant) jumbo-copy!!»
(* de fvar jumbo-copy!! jumbo!!)

or by using" to copy a front-end structure of a type defined by *defstruct to all proces­
sors, as in

(*defvar white-elephant-pvar
(!! (make-elephant :wrinkles 0 :tusks nil»)

The vJr-set argument can be used to specify the VP set to which the newly created pvar
belongs. For example,

(def-vp-set ptbarnum ' (128 128»

(*defvar ptbarnum-jumbo (!! 4.0) "Weight in tons" ptbarnum)

defmes a VP set named ptbarnum, and a permanent pvar associated with ptbamum
named ptbarnum-jumbo.

Version 6.1, October 1991

/

(

\.

(
\

"'Lisp Dictionary *defvar
i : ' i f rnmwm: ;:: miijrel~mH fin f i2 [reliC mnJ1i:1llrelIW2 il1fiim;p 1 1ft:J in i;;n!! 1m:: im! I

The def-vp-set operator provides a way to lexically associate the definitions of perma­
nent pvars with the defInition of the VP set to which they belong. See the defInition of
def-vp-set for more information.

NOTES

Language Note:

Both permanent pvars and global pvars are allocated on the eM heap. Permanent pvars
are allocated by *defvar and must be deallocated by the function *deallocate-*defvars.
In contrast, global pvars are allocated by allocatell and must be deallocated with *deal­
locate.

Style Note:

It is a good idea not to provide an initial-value-pvar argument to *defvar that is com­
plex or dependant on global variables for its value. In these cases, reevaluation of the
initialization form when the pvar is reallocated by *cold-boot may cause an error.

For example, the code fragment

(*cold-boot :initial-dimensions ' (128 128»
(setq image-or-nil

(make-image-array :dimensions ' (128 128»)
(*defvar image!!

(array-to-pvar-grid image-or-nil nil
:grid-end ' (128 128»)

(setq image-or-nil nil)
(*cold-boot) ;;; Error signalled in redefinition

signals an error on the second invocation of*cold-boot because "'Lisp tries to reallocate
Image!! using the variable image-or-nll, which has been set to nil.

A better way to defme pvars of this type is to use *defvar to declare the pvar, without .
an initial-value-pvar argument. The *set operator can then be used within an initial­
ization routine to specify the value of the pvar, as in the following example:

(*defvar data-pvar)
(defun initialize-pvars ()

(*set data-pvar
(complicated-operation-returning-data-pvar»)

Version 6.1, October 1991 289

*defvar *Lisp Dictionary
Ii !HI ?In I 1 ilfliU Ii mi!!PI! ! 1 PH J p mal WI r n

REFERENCES

290

See also the pvar allocation and deallocation operations
allocatell arrayll

*deallocate
front-endll

mak4HIrrayll
II

*deallocate-*defvars .

*Iet
typed-vectorll

See also the *Lisp predicate allocated-pvar-p.

Iet
vectorll

See the *Lisp glossary for defInitions of the different kinds of pvars that are allocated
on the CM stack and heap.

See Chapter 4, "*Lisp Types and Declaration," for more information about pvar types,
type coercion, and undeclared pvars.

Version 6.1, October 1991

I

\

*Lisp Dictionary def-vp-set
_::::wm:m:r"I:::lIIDmalli~mmw~:mw&wWii@~W~%i'0&,'Wlli~"'%;~~~Mll,m"'B@;1WW1W ;;; ': v mllim

def-vp-set [Macro]

Defmes a permanent VP set object, possibly with associated pvars.

SYNTAX

def-vp-set vp-set-name vp-set-dimensions
&key :geometry-definition-form :*defvars

ARGUMENTS

vp-set-name Symbol. Name ofVP set to which VP set object is bound.

vp-set-dimensions List of integers or nil. Defines dimensions of VP set.

:geometry-definition-form

:*defvars

RETURNED VALUE

vp-set-name

SIDE EFFECTS

Geometry object or nil. Defmes geometry ofVP set.

List of pvar specifiers. Defmes pvars created with *defvar that are
associated with the new VP set.

Symbol. Name of newly defmed VP set.

Creates a VP set and binds it to the symbol vp-set-name. Defmes all pvars specified
by the :*defvars keyword argument by using *defvar.

DESCRIPTION

The def-vp-set macro defmes a permanent VP set named vp-set-name and should be
used only at top level. Unless the user explicitly specifies that they should be deallo­
cated, permanent VP sets and the pvars associated with them are automatically
reallocated during a *cold-boot operation. The def-vp-set macro does not alter the
value of *current-vp-set*. Use the set-vp-set or *with-vp-set operators to change the
current VP set.

Version 6.1, October 1991 291

def-vp-set *Lisp Dictionary
H III III 1 lfIl ! r! 1 !IIi£! 1 r IT! j[1ml J mi. !lm M 1 dEn.11 I Pi¥< I n 1 l' M i:O !

292

The def-vp-set macro returns the symbol vp-set-name, after binding it to a VP set
object with the specified vp-set-dimensions and associated :*defvars.

The vp-set-dimensions argument must be a quoted list of positive integers, a form that
evaluates to a list of positive integers, or nil. If an argument is supplied to the keyword
:geometry-deflnltion-form, the vp-set-dimensions argument must be nil. If not nil, vp­
set-dimensions specifies an n-dimensional array of virtual processors, where n is the
length of the list of integers supplied.

Each dimension must be a power of two. The product of all dimensions must be equal
to either the physical machine size or a power-of-two multiple of the physical machine
size. The total size specified by vp-set-dimensions must be at least as large as
mlnlmum-slze-for-vp-set.

The argument to :geometry-definition-form must be a form which, when evaluated,
returns a geometry object. Examples of appropriate forms are: a call to
create-geometry, a symbol bound to the result of a call to create-geometry, and a user­
defmed form that evaluates to a geometry object. See the definition of create-geometry
for a description of geometry objects.

If either vp-set-dimensions or a :geometry-definition-form is supplied, the VP set vp­
set-name is created as ajixed-size VP set; its geometry is fixed and does not change.
The returned VP set is initialized and allocated at *cold-boot time. If either vp-set­
dimensions or a :geometry-definitlon-form is supplied and a *cold-boot has already
been executed, the VP set vp-set-name is initialized and allocated immediately.

Ifboth vp-set-dimensions and the :geometry-definition-form argument are nil, then the
returned VP set is defmed as aflexible VP set. This type ofVP set has no specific geom­
etry until it has been instantiated by calling the function allocate-processors-for­
vp-set or with-processors-allocated-for-vp-set. This may be done any time after a call
has been made to *cold-boot.

The keyword :*defvars takes a list of lists, each of which specifies a permanent pvar
that is associated with the VP set vp-set-name. Each sublist must be of the form

(symbol &optional initial-value-form documentation pvar-type)

Here, symbol is bound to a pvar with initial value initial-value-form, documentation
documentation, and type pvar-type.

For each such sublist, if pvar-type is not nil, a form with the following construction is
evaluated.

, (*proclairn ' (type ,pvar-type ,symbol»

Version 6.1, October 1991

(
""

~.

*Lisp Dictionary def-vp-set
) 111 : II UOI ::: ?D:::II:: :!E:nIi!1!~~~m@:nm@&rmh:IM:llliIM:llli!"?MI?DU:~ ;;:~

Whether or not pvar-type is nil, the following form is evaluated:

, (*defvar ,symbol ,initial-value-form ,documentation vp-set)

where vp-set is the ·symbol vp-set-name given as the first argument to def-vp-set.

The :*defvars keyword provides the ability to textually associate pvars with their VP

sets. Note that pvars thus specified are allocated and initialized only when the VP set
set-name is instantiated. Such pvars are reallocated and reinitialized by *cold-boot.

EXAMPLES

This expression creates a three-dimensional VP set named fred with dimensions 1024
by 32 by 128.

(def-vp-set fred' (1024 32 128»

This expression creates a two-dimensional VP set named george with a VP ratio of 32,
i.e., thirty-two virtual processors for each physical processor attached.

(def-vp-set george (list *minimum-size-for-vp-set* 32»

The expression

(def-vp-set anne ' (65536)
:*defvars ((x (!! 1) nil (field-pvar 2»

(y (self-address! !»»

creates a one-dimensional VP set named anne, and dermes two permanent pvars asso­
ciated with anne as if by the following forms:

(def-vp-set anne' (65536»
(*proclaim '(type (field-pvar 2) x»
(*defvar x (!! 1) nil anne)
(*defvar y (self-address!!) nil anne)

If the arguments vp-set-dimensions and :geometry-definition-form are both nil, then a
VP set with no initial geometry, known as aflexible VP set, is defined. Flexible VP sets
must be instantiated before use, by either of the instantiation operators
allocate-processors-for-vp-set or with-processors-allocated-for-vp-set. For exam­
ple, the pair of expressions

(def-vp-set gumby nil)
(allocate-processors-for-vp-set gumby '(128 64 32»

Version 6.1, October 1991 293

def-vp-set *Lisp Dictionary
!!I! mHH%1 !!lifT;' t ; t) tt

defmes a flexible VP set named gumby, and instantiates gumby as a three-dimensional
VP set. The expression

(deallocate-processors-for-vp-set gumby)

deinstantiates gumby, so that it may be instantiated with a different number ofproces­
sors. The expression

(with-processors-allocated-for-vp-set gumby
:dimensions '(128 64 32)
(user-defined-function»

performs the same instantiation and deinstantiation automatically, temporarily instan­
tiating gumby during the execution of the user-deflned-function.

NOTES

Because the newly created VP set object is simply bound as the value of the symbol
vp-set-name, it is a good idea to choose a vp-set-name that will not be used as the
name of a global variable. For example, if the expressions

(def-vp-set data-set' (512 512»

and

(*defvar data-set (random!! (self-address!!»)

are evaluated in order, the permanent pvar created by *defvar will replace the VP set
created by def-vp-set as the value of the symbol data-set.

REFERENCES

294

See the *Lisp glossary for defmitions of permanent, temporary, fixed-size, and flexible
VP sets.

See also the following VP set definition and deallocation operators:
create-vp-set

deallocate-def-vp-sets

let-vp-set

deallocate-vp-set

See also the following geometry defmition operator:
create-geometry

The following math utilities are useful in defining the size of VP sets:
next-power-of-two->= power-of-two-p

Version 6.1, October 1991

*Lisp Dictionary def-vp-set
~ if I Inl!!llm!!l1lf! mI ! : !

See also the following flexible VP set operators:
allocate-vp-set-processors

deallocate-vp-set-processors

set-vp-set-geometry

allocate-processors-for-vp-set

deallocate-processors-for-vp-set

wlth-processors-allocated-for-vp-set

These operations are used to select the current VP set:
set-vp-set *with-vp-set

See also the following VP set infonnation operations:
dlmenslon-size

descrlbe-vp-set

vp-set-dlmenslons
vp-set-total-slze

Version 6.1, October 1991

dimenslon-address-length

vp-set-deallocated-p
vp-set-rank

vp-set-vp-ratlo

295

delete-lnltlallzatlon
nrmlillilillm 7 nlllITl! f rr! ilTIlHI itllitlEm

delete-initialization

Removes *Lisp code placed on initialization lists by add-initlalization.

SYNTAX

delete-lnitlalization name-of-form init-list-name

ARGUMENTS

*Lisp Dictionary
IMtllll1lH: m::lllim IT

[Function]

name-of-form Character string. Name of initialization form to remove.

init-list-name Symbol or list of symbols. Initialization list(s) from which the
specified initialization form is removed.

RETURNED VALUE

nil Executed for side effect.

SIDE EFFECTS

The named initialization form is removed from the initialization list or lists specified
by init-list-name.

DESCRIPTION

The function delete-lnitiallzation removes a named initialization from one or more of
the following *Lisp initialization lists:

• *before-*cold-boot-initializations*

*Lisp code evaluated immediately prior to any call to *cold-boot.

• *after-*cold-boot-initializations*

*Lisp code evaluated immediately after to any call to *cold-boot.

• *before-*warm-boot-initiallzations*

*Lisp code evaluated immediately prior to any call to *warm-boot.

296 J'ersion 6.1, October 1991

(
\

·Lisp Dictionary delete-Initialization
III R ? ! ! I ! II! illl: i I Rlll1iI1!I 1: m:1 RHn fl:nU!!1I11l1rm "IW i au 15

• *after-*warrn-boot-lnltlallzatlons*

·Lisp code evaluated immediately after to any call to *warm-bool

The arguments are specified in the same manner as the first and third arguments for
add-lnltlallzatlon.

EXAMPLES

The function delete-lnltlallzatlon is the recommended way to remove initializations
from the above lists. For example, the expression

(add-initialization "Recompute Important Pvars"
, (recompute-important-pvars *number-of-processors-limit*)
'*after-*cold-boot-initializations*)

adds an initialization form named "Recompute Important Pvars" to the list
*after-*cold-boot-lnHlallzatlons*. Evaluating the expression

(delete-initialization "Recompute Important Pvars"
'*after-*warm-boot-initializations*)

will remove the initialization form.

REFERENCES

See also the related operation add-lnltlallzatlon.

See also the following Connection Machine initialization operators:
*cold-boot *warm-boot

See also the character attribute initialization operator initlallze-character.

Version 6.1. October 1991 297

deposH-bytell
IilBiIIlIIIRIII ilmMl! W IUIIj!

*Lisp Dictionary
Tim 11 1m1!!HlIJ.nm n: m UBiI!i!2mi1i H fi:! m :: 11111 mil! IIIJ.

deposit-byte I I [Function]

Performs a parallel byte deposit operation on the supplied pvars.

SYNTAX

deposlt-bytell intrr-pvar position-pvar size-pvar byte-pvar

ARGUMENTS

into-pvar

position-pvar

size-pvar

byte-pvar

Integer pvar. Integer into which byte is deposited

Integer pvar. Bit position, zero-based, at which value of byte-pvar
is deposited.

Integer pvar. Bit size of byte to deposit.

Integer pvar. Byte to deposit into into-pvar.

RETURNED VALUE

newbyte-pvar Temporary integerpvar. In each active processor, contains a copy of
into-pvar with size-pvar bits beginning at position-pvar replaced
by low-order bits of byte-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

298

The deposit-bytell function returns a pvar whose contents are a copy of into-pvar with
the low-order size-pvar bits of byte-pvar inserted into the bits starting at location
position-pvar.

When the into-pvar is positive, zeros are appended as high order bits of byte-pvar as
needed. When the into-pvar is negative, ones are appended as high order bits of byte­
pvar as needed.

Version 6.1, October 1991

(
"

(
\,

*Lisp Dictionary deposit-byte!l
~mmr ! l!mW! I iii { ;;;ttluru~~W.@\WW.lW.W'W.m\W!$iMMf.iWA:P~t'11e~l!mWlimm;OO®L.·: ",."i'1mT:$iW

EXAMPLES

The returned value may have more bits than into-pvar if the inserted field extends
beyond the most significant bit of into-pvar. For example,

(deposit-byte!! (!! #B11) (!! 1) (!! 2) (!! #B10»

returns

(!! 5) <=> (!! #B101)

NOTES

Usage note:

This function is especially fast when both position-pvar and size-pvar are constants,
as in (II positive-integer).

REFERENCES

See also these related byte manipulation operators:
byte II byte-positionll byte-sizell
deposit-fieJdll dpbll

Jdbll Idb-testll load-bytell
mask-field!!

Version 6.1, October 1991 299

deposit-field I I *Lisp Dictionary
!! i HI : !! '. T? : I ft m II ml!ii1m1!M2W~W~~:: m: I ft$. !: ;;<11] II II m!ml!ml!

deposit-field! ! [Function]

Performs a parallel bit field copy operation on the supplied pvars.

SYNTAX

deposit-field II into-pvar bytespec-pvar integer-pvar

ARGUMENTS

into-pvar

bytespec-pvar

integer-pvar

Integer pvar. Integer into which bit field is copied.

Byte specifier pvar, as returned from bytell. Determines position
and size of byte in into-pvar which is replaced

Integer pvar. Integer from which bit field is copied.

RETURNED VALUE

newbyte-pvar Temporary integerpvar.1n each active processor, contains a copy of
into-pvar with size-pvar bits beginning at position-pvar replaced
by the corresponding bits of integer-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

300

The function deposit-field II is the parallel equivalent of the Common Lisp function
deposit-field. The newbyte-pvar result contains, for each processor, a copy of the value
of into-pvar with the byte specified by bytespec-pvar replaced by the corresponding
bits of of integer-pvar. The result therefore agrees with integer-pvar in the byte speci­
fied, and with the original value of newbyte-pvar everywhere else.

Version 6.1, October 1991

*Lisp Dictionary deposit-field II
i iiIII_ :. m ! :. mli rn::::m i!!n:lm::::i:!liIi:t::::::I:1 I!imlim:r:: Dem:rlninE: 1 ; II::: · m t~

EXAMPLES

(deposit-field newbyte-pvar (byte!! size-pvar position-pvar)
integer-pvar)

<=>
(dpb!! (ldb!! (byte!! size-pvar position-pvar) newbyte-pvar)

(byte!! size-pvar position-pvar) integer-pvar)

REFERENCES

See also these related byte manipulation operators:
bytell byte-positionll byte-sizell
deposit-bytell dpbll
Idbll Idb-testll load-bytell
mask-field II

Version 6.1, October 1991 301

descrlb~pvar ·Lisp Dictionary
n! 1 1 1 11 $I Uil[11 !Jl i mllli mum :Uf 0; %llllli% m : :rml

descri be-pvar [Function]

Displays information about a pvar.

SYNTAX

describe-pvar pvar &optional stream

ARGUMENTS

pvar Pvar expression. Pvar to describe.

stream Stream object. Defaults to *standard-output*.

RETURNED VALUE

nil Evaluated for side effect only.

SIDE EFFECTS

Prints formatted description of pvar to strea11J,.

DESCRIPTION

302

This function prints out information about pvar in a neat format. The printed informa­
tion includes memory location, field ID, length, type, and VP set of the pvar.

Version 6.1, October 1991

\

/
i
~

*Lisp Dictionary
il: Miili r~ 1

describ.-pvar
7 Q. r m II~ li Tim! [jifIJ ; in It iii!! T :;;: lfi::lI'm.mr::; m I In!:iWiWl :

EXAMPLES

(describe-pvar (!! 2))
=>
Pvar Name: nil

Location: 4
Field Id: 65536
Length: 2
Type: :field
Vp Set Name: *default-vp-set*
Vp Dimensions: (32 16)
Constant value: 2

nil

REFERENCES

See also the following general pvar information operators:
allocated-pvar-p

pvar-Iength

pvar-name

pvar-type

Version 6.1, October 1991

pvar-exponent-Iength

pvar-Iocatlon

pvarp

pvar-vp-set

pvar-mantissa-Iength

pvar-pllst

303

describe-vp-set *Lisp Dictionary
r T I II Iffl1l H1l !W 1M pmf IT 1 If!

describe-vp-set [Function]

Displays information about a VP set.

SYNTAX

describe-vp-set vp-set &key :*defvars :verbose :stream

ARGUMENTS

vp-set

:*defvars

:verbose

:stream

VP set object. VP set to be described.

Boolean value. Determines whether pvars associated with the
specified VP set are described. Defaults to t.

Boolean value. Determines whether to display detailed
information about the VP set. Defaults to nil.

A stream. Defaults to *standard-output*. Stream to which output
is printed.

RETURNED VALUE

nil Evaluated for side effect only.

SIDE EFFECTS

Prints formatted description of vp-set to the *standard-output* stream. If :*defvars

argument is t, displays information about each pvar associated with vp-s~t.

DESCRIPTION

304

This function prints information about vp-set. The information displayed by describe­

vp-set is derived from the front-end VP set structure created when vp-set was defmed.

The argument vp-set must be a temporary or permanent VP set that has been defmed.
If vp-set has not been allocated, describe-vp-set will show most slot values as nil.

Version 6.1, October 1991

*Lisp Dictionary
Mlllm jj JW!l11Nm n H :: !! 2immnmn

describe-vp-set
n; 1 m am %: B::IT!!! i!!1i!!!!il1!111!! !!iW i" n

The keyword argument to :verbose must be a boolean. It defaults to nil. If the default
is used, only the most generally useful information is printed when descrlbe-vp-set is
invoked. If :verbose is t, additional information, such as the length of the grid address
for each dimension, is printed.

EXAMPLES

A sample call to descrlbe-vp-set is shown below.

(describe-vp-set *current-vp-set*)
vp set name: *default-vp-set*
geometry allocation form: nil
dimensions: (32 32)
geometry-id: 1
nesting-level: 1
*defvars belonging to *default-vp-set*

name: a-foo, initial-value-form: (*lisp-i:make-foo!!),
type: (pvar (structure fool)
name: cube-temp, initial-value-form: (!! 0),
type: (pvar (unsigned-byte *current-send-address-length*))

In the example above, *current-vp-set* is examined and discovered to be
default-vp-set, a two-dimensional VP set with two associated pvars, a-foo and cube­

temp. The geometry-Id is a unique number identifying the geometry of this VP set. The
nesting-level is the number of nested *with-vp-set forms currently in effect for this VP

set.

(describe-vp-set *default-vp-set* :verbose t)
vp set name: *default-vp-set*
geometry allocation form: nil
dimensions: (32 32)
geometry-id: 1
nesting-level: 1
paris vp id: 1
geometry rank: 2
grid-address-lengths: (5 5)
*defvars belonging to *default-vp-set*

name: foo, initial-value-form: (!! 2),
type: nil
name: cube-temp, initial-value-form: (!! 0),
type: (pvar (unsigned-byte *current-send-address-length*))

Here, *default-vp-set* is described in more depth by supplying a :verbose value of t.
The grid-address-Iengths list is the value to which *current-gricl-address-lengths* is
bound when this VP set is the currently selected VP set.

Version 6.1, October 1991 305

descrlbe-vp-set
I g !ilE ;11 I 1111!!!!11!il I m Iii m: 1ij Ii mm !II Mf$!i ?

REFERENCES

*Lisp Dictionary
FIg N I I III 11 12 am !ml i jmmlllllmmi I E I g nil m lIT [j I I m!l!! !! mn I j! III

See also the following VP set infonnation operations:

306

dlmenslon-slze

vp-set-deallocatec:l-p

vp-set-dlmenslons

vp-set-total-slze

dlmenslon-address-length

vp-set-rank

vp-set-vp-ratJo

Version 6.1, October 1991

/

(

\

*Lisp Dictionary digit-charl!
wmn III j i! :till;:: rNmnmrn:::m: iiH\%.mt H!HI::n:IU·! :: !:r11l!:::~1W . r rI:JV:cw:)iW@lm

digit-char! ! [Function]

Performs a parallel conversion from integer digits to characters.

SYNTAX

digit-charll digit-pvar &optional radix-pvar font-pvar

ARGUMENTS

digit-pvar

radix-pvar

Jont-pvar

RETURNED VALUE

char-pvar

SIDE EFFECTS

Integer pvar. Numeric value to construct as a character.

Integer pvar. Radix for which to construct character. Defaults to (II
10).

Integer pvar. Font attribute for newly constructed character.
Defaults to (II 0).

Temporary characterpvar. In each active processor, contains a char­
acter in the font specified by Jont-pvar which is the digit
representation of digit-pvar in the radix specified by radix-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

This function attempts to construct a character pvar containing, in each processor, a
character of fontJont-pvar representing the value of digit-pvar in radix radix-pvar. In
each processor where this is possible, the resulting character is returned. In each
processor where this is not possible, nil is returned.

All arguments must be non-negative integer pvars.

Version 6.1, October 1991 307

dlglt-char" *Lisp Dictionary
111m:: 1 In in ; PI! Ilium 1 PI! ill !!IIHIRUWIW 1 R 7 7 1 it J :r 1 f!! 1 q In I!iI III 2; '!!l"$W

The function dlgit-charll will never return nil in a processor where the value ofJont­
pvar is 0, that of radix-pvar is between 2 and 36 inclusive, and that of digit-pvar is
less than radix-pvar.

Characters returned by dlglt-char" are always in upper case.

EXAMPLES

(digit-char!! (!! 14) (!! 16)) => (!! #\E)

REFERENCES

See also the related character/integer pvar conversion operators:
char-codell char-IntI! code-charll
dlgit-charll Int-charll

308 Version 6.1, October 1991

(

!
\.,

!'

\

/
/

*Lisp Dictionary digit-char-pll
W:1OOr ::;!i:amw.~1iiW&ErWtm%;WiW~WW.J%"lmr@~%m@!f#®li*%W;_'&I:lW2%ll%t'%~J$

digit-char-p! ! [Function]

Perfonns a parallel test for digit characters on the supplied pvar.

SYNTAX

digit-char-pll character-pvar &optional radix-pvar

ARGUMENTS

character-pvar Character pvar. Pvar to be tested for digit characters.

radix-pvar

RETURNED VALUE

Integer pvar. Determines radix of digit characters that are accepted
as valid.

digit-charp-pvar Temporary pvar. Contains the numeric value of character-pvar,
where character-pvar contains a valid digit character in the radix
radix-pvar, in each active processor. Contains nil in all other active
processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function tests character-pvar for digits of radix radix-pvar.

In each processor where character-pvar contains a character that is a digit in the base
specified by radix-pvar, dlglt-char-pll returns a non-negative integer indicating the
numeric value of the digit. In those processors where the elements of character-pvar
are not digits of the specified radix, digit-char-p!l returns nil.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements. The argument radix-pvar must
be a positive integer pvar and defaults to (II 10).

Version 6.1, October 1991 309

digit-char-pll
'l!!HIInTIiiill n I If. f f 2 Hffll! ;;;:: J!~r:Dfnl:lmm

EXAMPLES

(digit-char-p!! (!! *\3» <=> (!! 3)

NOTES

Language Note:

Digit character pvars are always graphic character pvars.

310

*Lisp Dictionary
II!! :tn· (jl!nl~

Version 6.1, October 1991

I

"

c

-""

*Lisp Dictionary dlmension-address-Iength
F IT! II : ~u i ~WiillllOOl:1W1:; ilmlUOO!1!lllllmmlnnmlHlmlfllOOl: llIlrml::!mI:m1ll1l? OOE ~1t~1!Illl!lliml!l1:mI!llilllln!l1m1mmllnmEii!!!mlmWllllEmI! !!W1!EllIlmllllll§ lmEWllIl! illilm mlmml.llIllfmlmlWmmlmlmWllmlWi\$,!I1

dimension-address-Iength [Function]

Returns the number of bits necessary to represent a NEWS address coordinate for the speci­
fied dimension in the current VP set.

SYNTAX

dimension-address-Iength dimension

ARGUMENTS

dimension

RETURNED VALUE

bit-length

SIDE EFFECTS

None.

DESCRIPTION

Integer. Zero-based number of dimension for which address
length is returned.

Integer. Number ofbits needed to represent a NEWS address coordi­
nate for dimension in the current VP set.

This function returns the number of bits necessary to represent a grid address coordi­
nate for the specified dimension. This is simply the element of the list *current-grid­

address-iengths* corresponding to the specified dimension.

The argument dimension must be between 0 and one less than the rank of the current
VP set.

Version 6.1, October 1991 311

dlmenslon-address-length
r r mill r f1 II ill ill f lmm n I lIZ 1!

EXAMPLES

If the value of *current-cm-conflguratlon* is (32 16), then

(dimension-address-length 0) => 5

REFERENCES

312

See also the following VP set information operations:
dlmenslon-slze
descrlbe-vp-set
vp-set-c:llmenslons
vp-set-total-slze

vp-set-c:leallocated-p
vp-set-rank
vp-set-vp-ratlo

il

*Lisp Dictionary
w r 1 If

Version 6.1, October 1991

\

*Lisp Dictionary dlmenslon-size
lin §u : :i iII!i ! !~Hi !;- 1 ! lW :: i'I JlWmm11Will 11 lmMruwR liT ii. WHIm> I_run . n WllM

dimension-size [Function]

Returns the size of the specified dimension of the current VP set.

SYNTAX

dlmension-size dimension

ARGUMENTS

dimension Integer. Zero-based number of dimension for which the size is
returned.

RETURNED VALUE

dimension-size Integer. Size of specified dimension in current VP set.

SIDE EFFECTS

None.

DESCRIPTION

This function returns the size of the specified dimension of the current VP set.

The dimension argument can be any non-negative integer less than the rank of the
current machine configuration.

EXAMPLES

If the value of*current-cm-conflguratlon* is (3216), then

(dimension-size 0) => 32

Version 6.1, October 1991 313

dlmensiolHSize
If R ~! In I mill 11 E IRilli? m mmm lIIomllllH : lKiiHR i g g

REFERENCES

See also the following VP set infonnation operations:
dlmension-address-length

314

descrlbe-vp-set

vp-set-dlmenslons

vp-set-total-slze

vp-set-deallocat,d-p

vp-set-rank

vp-set-vp-ratio

*Lisp Dictionary
11m I : 1: If . I :lnl

Version 6.1, October 1991

/

/
I.

*Lisp Dictionary do-for-selected-processors
w::: m[:::"IIml!l~m! l'm~;w_g~],%t"'I¢'~%~al!WllmiOO!m:L~A!:oo!:l~

do-for-selected-processors [Macro]

Iteratively binds a symbol to the send address of each active processor while executing the
body of the fonn.

SYNTAX

do-for-selected-processors (symbol) &body body

ARGUMENTS

symbol

body

RETURNED VALUE

nil

SIDE EFFECTS

Symbol. Bound to the send address of each active processor.

*Lisp fonns. Evaluated for each active processor.

N onnally returns nil, unless a non-local exit operator such as return

is used within the body.

None other than those produced by the forms in body.

DESCRIPTION

This fonn evaluates body as many times as there are active processors in the currently
selected set. On each iteration, symbol bound to the send address of a different active
processor.

Version 6.1. October 1991 315

d~for-selected-processors ·Lisp Dictionary
11!« min n I!I :::11·: :: Ii! ! I 1-%:' :me I I: I 1m l21t%11!:! I n !~il!!i!i.::n_ml :Ii flmM : ':1

EXAMPLES

Using d~for-selected-processors, the function list-of-actlve-processors could be
written as

(defun my-list-of-active-processors ()
(let «result nil»

(do-for-selected-processors (proc)
(push proc result»

(nreverse result»)

NOTES

As with the Common Lisp dotlmes, the return function may be used to exit the d~for­
selected-processors form immediately, returning a value. Normally, d~for-selected­
processors returns nil.

Also, remember that while the supplied body forms are evaluated once for each active
processor, each loop is evaluated in the currently selected set, so that all parallel opera­
tions are performed only by active processors. If you want the body to be executed by
all processors, include a call to *all, as in:

(do-for-selected-processors (proc)
(*all

body-forms ... »

REFERENCES

316

See also the related operation IIst-of-active-processors.

See also the related processor selection operators
*all

*If

*case

*cond
*ecase

If II

casell
condll

ecasell

*unless *when

wlth-css-saved

Version 6.1, October 1991

*Lisp Dictionary dot-product
~mf 1 . I WIllIIt 1 W1Il!mlMmlUl : 1 i:W: j mR;! :: iK: M i 2 M.mill: :if i! . m r 1 ! II III I I r 'WI

dot-product [Function]

Returns the dot product of two front-end vectors.

SYNTAX

dot-product vectorl vector2

ARGUMENTS

vectorl, vector2 Front-end vectors for which the dot product is returned.

RETURNED VALUE

dot-prod-vector Front-end vector. Dot product ofvectorl and vector2.

SIDE EFFECTS

None.

DESCRIPTION

This is the front-end equivalent of dot-productll.

EXAMPLES

(dot-product #(1.0 2.0 3.0) #(4.0 5.0 6.0» => 32.0

NOTES

For those not familiar with dot products, the dot product of two vectors

(xIo x2, x3, ... xn) and (Ylo Y2, Y3, "'Yn)

Version 6.1, October 1991 317

dot-product *Lisp Dictionary

The dot-product operation returns the dot product ofvectorl and vector2.

REFERENCES'

318

This function is one of a number of front-end vector operators, listed below:
cross-product dot-product v+ v- v* vi
v+-constant v-constant v*-constant v/-constant

vabs vabs-squared vcelling vector-normal
vtloor vround vscale

vscale-to-unit-vector vtruncate

These functions are the serial equivalents of the corresponding vector pvar operations.
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions.

Version 6.1, October 1991

(
,

(
\.

*Lisp Dictionary dot-product!!
lWitm~AiMm'l~~%Jl!~;!lJliMi:minlnUlll!tl~j- in 21 ~n: :DlEm! I: 11 i 1 llillII iiI!! iIii! liIi:: iiiITIMmll

dot-productll [Function]

Performs a parallel dot product operation on the supplied vector pvars.

SYNTAX

dot-product!! vector-pvarl vector-pvar2

ARGUMENTS

vector-pvar 1, vector-pvar2
Vector pvars, for which the dot product is returned. Both vector
pvars must have the same number of elements.

RETURNED VALUE

dot-prod-pvar Temporary pvar. In each active processor, contains the dot product
of the corresponding values of vector-pvar 1 and vector-pvar2.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a scalar pvar of the proper type and size. In each processor, the
inner product of the two vectors is returned.

The following forms are equivalent:

(dot-product!! cl-pvar c2-pvar)
<=>
(reduce!! #'+!! (amap!! #'*!! cl-pvar c2-pvar))
<=>
(*let «result (!! 0)))

(dotimes (j (*array-total-size (cl-pvar)))
(*incf result (*!! (aref!! cl-pvar (!! j))

(aref!! c2-pvar (!! j)))))

result))

Version 6.1, October 1991 319

dot-productll *Lisp Dictionary
w !nmlilillU 1 I ! F 2m I ! fHil 1 fll!1!iI!1 iii m glFi m: m!

EXAMPLES

(dot-product!! (!! #(1.0 2.0 3.0))
(!! #(4.0 5.0 6.0)))

<=>
(!! 32.0)

REFERENCES

This function is one of a number of related vector pvar operators, listed below:

320

cross-productll dot-productll v+1I v-II v*1I vIII
v+scalarll
vabsll

v-scalarll

vabs-squaradll
vscala-to-unit-vactorll

v*scalarll

vactor-normalll
*vsat-componants

v/scalarll

vscalell

Version 6.1, October 1991

, ,

"

/ ,

*Lisp Dictionary dpbll
!!lIiIIHUiIi ! r lIlii 1 I Wlim ill j! 111!OlllU l! mil! 111 !ii!!111! : r I lLYilW

dpb!l [Function]

Performs a parallel byte deposit operation on the supplied pvars.

SYNTAX

dpbll byte-pvar bytespec-pvar into-pvar

ARGUMENTS

byte-pvar

bytespec-pvar

into-pvar

RETURNED VALUE

newbyte-pvar

SIDE EFFECTS

Integer pvar. Byte to deposit.

Byte specifier pvar, as returned by byte". Determines position and
size of the byte that is replaced in into-pvar.

Integer pvar. Integer into which byte is deposited.

Temporary integerpvar. In each active processor, contains a copy of
into-pvarwith the byte specified by bytespec-pvarreplaced by the
value of byte-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

This function is the parallel equivalent of the Common Lisp function dpb.

The function dpbll returns an integer pvar that is a copy of into-pvar with the byte
specified by bytespec-pvar replaced by the corresponding byte from byte-pvar.

Version 6.1, October 1991 321

dpbll *Lisp Dictionary
I: IE! ru! m: i m mm ! 1 ,IT! 11 !IT : : rnH!l ! ! m i v i iii ! "I ii nil I If

The following forms are equivalent:

(deposit-byte!! integer-pvar pos-pvar size-pvar newbyte-pvar)
<a>
(dpb! !

newbyte-pvar (byte!! size-pvar position-pvar) integer-pvar)

REFERENCES

322

See also these related byte manipulation operators:
bytell byte-positlonll
deposlt-bytell
Idbll
mask-fleldll

deposit-field II

Idb-testll

byte-sizell

load-byte II

Version 6.1, October 1991

I

\

\

(

*Lisp Dictionary *ecase, ecasell
~lR: ::.~ !t:i~@ 1 ~.ml_t'!R.wWwtiifM%%WtJ .. @%:'%~Bf~1'$W%%1@.W&w.;w~~~

*ecase, ecase!! [Macro]

Evaluates *Lisp forms with the currently selected set bound according to the value of a
pvar expression.

SYNTAX

*ecase/ecasell value-expression (key-expression-l &rest body-forms-l)
(key-expression-2 &rest body-forms-2)

(key-expression-n &rest body-forms-n)

ARGUMENTS

value-expression Pvar expression. Value to compare against key-expression-n in
each clause.

key-expression-n Scalar expression. Evaluated, compared with value-expression.
Selects processors in which to perform the corresponding
body-forms. May also be a list of such expressions, in which case
each expression is compared with value-expression.

body-forms-n *Lisp forms. These forms are evaluated with the currently
selected set restricted to those processors in which value­
expression is eqll! to (II key-expression-n).

RETURNED VALUE

For *ecase:

nil Evaluated for side effect only.

For ecasell:

case-value-pvar Temporary pvar. In each active processor, contains the value
returned by body-forms-n if and only if value-expression is eql to
key-expression-n.

Version 6.1, October 1991 323

*ecase,ecasell *Lisp Dictionary
m I f 11 IUIRlllmmJi! Iii Inl!! 1ml inllRii :!lill1:1112 !1m I ! I imP jfl1P TIU III

SIDE EFFECTS

For*ecase:

None aside from those of the individual body-forms.

For ecasell:

The returned pvar is allocated on the stack.

DESCRIPTION

The *ecase and ecasell macros are parallel equivalents of the Common Lisp ecase
operation. The two operators each select groups of processors to execute different por­
tions of *Lisp code. Unlike ecase, however, *ecase and ecasell evaluate all clauses.

The main difference between *ecase and ecasell is that *ecase is used only for the side
effects of its body forms, while ecasell also constructs and returns a value-pvar that
contains the value returned by its body-forms. Both *ecase and ecasell signal an error
if any active processors do not evaluate one of the supplied clauses.

EXAMPLES

324

When the following forms are evaluated,

(*defvar result (!! 1»
(*ecase (mod!! (self-address!!) (!! 4»

(0 (*set result (!! 0»)
« 1 2) (* set resul t (self-address!!»)
(3 (*set result (!! -1»»

result is bound to a pvar with the values 0, 1,2, -1,0,5,6, -1, etc.

Similarly, when

(ecase!! (mod!! (self-address!!) (!! 4»
(0 (!! 0»
«1 2) (self-address!!»
(3 (!! -1»)

is executed, the returned pvar contains the values 0, 1,2, -I, 0,5,6, -1, etc.

Version 6.1, October 1991

(
I
\

*Lisp Dictionary *ecase, ecasell
~~mW~:I::U ... n:~w:m·:!nm1iwnmr~!ft%m!?wA!t}{~

NOTES
Usage Notes:

It is an error for two *ecase or ecasell clauses to contain the same key-expression. If
two ecasell clauses contain the same key, the returned pvar contains the values re­
turned by the body forms in the fIrst of the clauses.

Forms such as throw, return, return-from, and go may be used to exit a block or looping
construct from within a processor selection operator such as *ecase or ecasell. How­
ever, doing so will leave the currently selected set in the state it was in at the time the
non-local exit form is executed. To avoid this, use the *Lisp macro with-css-saved.

See the dictionary entry for with-css-saved for more information.

Performance Note:

Currently, *ecase and ecasell clauses execute serially, in the order in which they are
supplied. At any given time, therefore, the number of processors active within a *ecase

or ecasell clause is a subset of the currently selected set at the time the *ecase or ecasell

form was entered. Providing a large number of clauses therefore can result in ineffi­
cient processor usage.

REFERENCES

See also the related operators
*all

*if

*cond

if II

Version 6.1, October 1991

condll

*unless

*case

*when

casell

with-css-saved

325

enumeratell *Lisp Dictionary
Ilill!!!lli!!!1 ::t:HI!! fifE ITI!I!2!!:!I' !!!!!!iUW in! unUI Ei!'! : KiI::!! I 11

enumerate!! [Function]

Returns a pvar with a unique integer in each active processor.

SYNTAX

enumeratell

ARGUMENTS

Takes no arguments.

RETURNED VALUE

enumerated-pvar Temporary pvar. Contains a unique integer value in each active
processor.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a pvar that contains, in each active processor, a unique number
from 0 up to one less than the number of selected processors. The numbers are ordered,
with 0 placed in the processor with the smallest send address, 1 placed in the processor
with the next smallest send address, and so on. .

(enumerate!!) <=> (1-!! (scan!! (!! 1) '+!!))

EXAMPLES

326

The enumerate!! function enumerates active processors. For example, the expression

(ppp (if! ! (oddp!! (self-address!!))
(enumerate! !) (!! 99))

:end 10)

M:?rsion 6.1, October 1991

(
~

l

*Lisp Dictionary
~r.lM jlWmJ i..

displays the following values

99 0 99 1 99 2 99 3 99 4

enumeratell
]I1!Rt j !ij WI [jjj 1 iii

Note that only the odd processors (those selected by the (oddpll (self-addressl!» test
form) are enumerated.

The enumeratell function is often used to pack values in active processors into the first
n processors, where n is the number of active processors. For example

(*defvar pvar-to-be-packed (random!! (!! 10»)
(ppp pvar-to-be-packed :end 10)
831922143 1

(*defvar packed-pvar (!! 0»
(*when (evenp!! (self-address!!»

(*pset :no-collisions pvar-to-be-packed packed-pvar
(enumerate!!»)

(ppp packed-pvar :end 5)
81213

The values in the active (even) processors are packed into the first nl2 processors.

NOTES

If all processors in the eM are selected, enumeratell is equivalent to the function self­

addressll. However, in this case, calling self-addressll itself is much more efficient.

REFERENCES

See also the related functions
rankll

self-addressll

Version 6.1, October 1991

selfll

self-address-gridll sortll

327

eqll
I 1IIl1lJ!]

eqll

""Lisp Dictionary
! § TI If U g g l!U;;l!i ! I:II!! lill ililllllHlI!! nmg!!! TI Iii! !![i! ! !II!

[Function]

Performs a parallel comparison of the supplied pvars for identical values.

SYNTAX

eqll pvarl pvar2

ARGUMENTS

pvarl, pvar2

RETURNED VALUE

eq-pvar

SIDE EFFECTS

Simple pvars. Compared in parallel for identical values.

Temporary boolean pvar. In each active processor, contains the
value t ifpvarl andpvar2 contain identical values. Contains nil in
all other active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function eq. It performs a parallel
. comparison of the supplied pvars for identical numeric and character values.

EXAMPLES

(eq!! (!! 4t\c) (!! 4t\c» <=> t!!

328 Version 6.1, October 1991

\
"-

·Lisp Dictionary
Mil III r 1 r I! ! ! i i U! 1 M! f 1 ! lUll! II

NOTES

Language Note:

m rrr I !l
eqll

r liiiillOlWllli! IllIiff

There is no fundamental difference between the operations performed by the functions
eqUl and eqll in ·Lisp. This differs from Common Lisp, where eql and eq are defmed
such that eql performs a less restrictive test than eq. Both eqll and eqUl are included in
"'Lisp for readability, and programmers should use the test that most clearly indicates
the type of comparison being performed.

Version 6.1, October 1991 329

*Lisp Dictionary eqUl
If 11m fW!!U!I lUI! ! [111£ !!!!!HJUf URI !IIilIllillll! : i ®l§

eqlll [Function]

Performs a parallel comparison of the supplied pvars for identical values.

SYNTAX

eqUl pvar 1 pvar2

ARGUMENTS

pvar 1, pvar2

RETURNED VALUE

eql-pvar

SIDE EFFECTS

Simple pvars. Compared in parallel for identical values.

Temporary boolean pvar. In each active processor, contains the
value t if pvar 1 and pvar2 contain identical values. Contains nil in
all other active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function eql. It performs a parallel
comparison of the supplied pvars for identical values. Numbers of the same type and
value are considered identical by eqUl, as are character objects that represent the same
character.

EXAMPLES

(eql!! (!! :ft\c) (!! :ft\c» <=> t!!

330 Version 6.1, October 1991

\

(
\

*Lisp Dictionary eqlll
~§!I~m~jj _j)uml%:~H:mmtml%!m~m •• mmmmm1'1m]immmmm~mu ~m.mmWl!l~mmmriilllm$i.*~'WWW~_wmr~~~~§,%l©~JrW;;·;;;:~

NOTES

Language Note:

There is no fundamental difference between the operations performed by the functions
eqlll and eqll in *Lisp. This differs from Common Lisp, where eql and eq are defmed
such that eql performs a less restrictive test than eq. Both eq!l and eqlll are included in
*Lisp for readability, and programmers should use the test that most clearly indicates
the type of comparison being performed.

Version 6.1. October 1991 331

equalll *Lisp Dictionary
mimi Ii mlItillli till2!m! !m: till! till!:!mH@: llil1lJ! till!! 1lt!!mimllmll!mf@lI1lJIIMIltIWIlt%@l@IIMIlt!m@till@tillIlMOOililW:llltW@@OOilOOiltill::!!in:;I: ~ Ii I 2 l: I ! I II Ii!IIEI!!:!

equalll [Function]

Performs a parallel comparison of the supplied pvars for equality.

SYNTAX

equalll pvarl pvar2

ARGUMENTS

pvar 1, pvar2

RETURNED VALUE

equal-pvar

SIDE EFFECTS

Pvars. Compared in parallel for equality.

Temporary boolean pvar. In each active processor, contains the
value t if the values of pvar 1 and pvar 2 are equal.

The returned pvar is allocated on the stack.

DESCRIPTION

332

This function is equivalent to eqlll if pvar 1 and pvar2 are boolean or character pvars.
Ifpvarl andpvar2 are numeric pvars, it is equivalent to =11. If the parameters are bit­
vectors or strings, equalpll performs the appropriate elementwise comparison.
Otherwise if the parameters are structure or array pvars, equal!! returns nilll ..

Version 6.1, October 1991

c

·Lisp Dictionary equalpll
~UII~!! lw.luiilmtlm!;il®;I~E lw.lilw.I! 1m! nm: __ i$w.lIf§w.l1 mm 1il®!I_~~m_~&~lf§jw.lllWlmftlmmil®w.Iw.I~Wfiiiilm:iiilail®~~~il®ilW~aw.li$i!!mllm%t'W§%:r::mwl Ii n%l~mwt! I I ! in ::::elill

equalp!! [Function]

Performs a parallel comparison of the supplied pvars for equality.

SYNTAX

equalpll pvar1 pvar2

ARGUMENTS

pvar 1, pvar2

RETURNED VALUE

equalp-pvar

SIDE EFFECTS

Pvars. Compared in parallel for equality.

Temporary boolean pvar. In each active processor, contains the
value t if the values of pvar 1 and pvar 2 are equal.

The returned pvar is allocated on the stack.

DESCRIPTION

This function is equivalent to eqlll if pvar 1 and pvar 2 are boolean pvars. It is equiva­
lent to char-equalll if they are character pvars. If pvar 1 and pvar2 are numeric pvars,
it is equivalent to =11. If the parameters are structures or arrays, equal pI! returns the
logical AND of calling itself on the slot pvars or element pvars, respectively, of the
structures or arrays.

Version 6.1, October 1991 333

evenpll *Lisp Dictionary
lIlii!mlj)~illIlij ml1!!illlllil l!!1!m!il11 =:mlitl !ill 1~1m=:lm!!1!!I"~~litll!il.,. JIit!~-jlimj r-~.tilllli1m"l ·i·.mm:&~~M%lli1&~~

evenpll [Function]

Performs a parallel test for even numeric values on the supplied pvar.

SYNTAX

evenp" integer-pvar

ARGUMENTS

integer-pvar Integer pvar. Pvar to be tested for even values.

RETURNED VALUE

evenp-pvar Temporary boolean pvar. Contains the value t in each active proces:­
sor where the corresponding value of integer-pvar is even.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The pvar returned by this predicate contains t in each processor where the value of the
argument integer-pvar is even, and nil in all others. It is an error if any component of
integer-pvar is not an integer.

EXAMPLES

(ppp (evenp!! (self-address!!)) :end 12)

displays

T NIL T NIL T NIL T NIL T NIL T NIL

334 Version 6.1, October 1991

*Lisp Dictionary
liD H:: iil! . 1!l'!Iu:n

everyll

m III !!1i!JllTPWliX'i
every!!
~;

[Function]

Tests in parallel whether the supplied pvar predicate is true for every set of elements having
the same indices in the supplied sequence pvars.

SYNTAX

every!! predicate sequence-pvar &rest sequence-pvars

ARGUMENTS

predicate Boolean pvar predicate. Used to test elements of sequences in the
sequence-pvar arguments. Must take as many arguments as the
number of sequence-pvar arguments supplied.

sequence-pva~sequence-pvars

RETURNED VALUE

every-pvar

SIDE EFFECTS

Sequence pvars. Pvars containing, in each processor, sequences to
be tested by predicate.

Temporary boolean pvar. Contains the value t in each active proces­
sor in which every set of elements having the same indices in the
sequences of the sequence-pvars satisfies the predicate. Contains
nil in all other active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

The every!! function returns a boolean pvar indicating in each processor whether the
supplied predicate is true for every set of elements with the same indices in the
sequences of the supplied sequence-pvars.

In each processor, the predicate is frrst applied to the index 0 elements of the sequences
in the sequence-pvars, then to the index 1 elements, and so on. The nth time predicate

Version 6.1. October 1991 335

everyll
191 II 111 11 I 111 1m 7

·Lisp Dictionary
I I q m IT i 7 2!

is called, it is applied to the nth element of each of the sequences. If predicate returns
nil in any processor, that processor is temporarily removed from the currently selected
set for the remainder of the operation. The operation continues until the shortest of the
sequence-pvars is exhausted, or until no processors remain selected.

The pvar returned by everyll contains t in each processor where predicate returns the
value t for every set of sequence elements. If predicate returns nil for any set of
sequence elements in a given processor, everyll returns nil in that processor.

EXAMPLES

(every!! 'equalp!! (!! t(l 2 3» (!! t(l 2 3»)
(every!! '<!l (II t(l 2 3» (I! t(2 3 0») <=>
(every!! '<I! (!l t(l 2 3» (!! t(2 3 41») <=>

NOTES
Complier Note:

The *Lisp compiler does not compile this operation.

REFERENCES

See the related functions notanyl!, noteveryl!, and som,".

See also the general mapping function amapll.

<=>
nil! !

t!!

t! !

336 Version 6.1, October 1991

(

'"

*Lisp Dictionary expll
BW !: : ! I: iil!!!::::::!!1 Iii Ii lEEilm I:: ! mmil m :1II1! n:m II! mlmJl Iii: i fillI1 :11:!!! 12m! II! I!IIIJII~ 1[: ;;:;: 1!ID!1!11! 1m!! ! : ::llllllfiml

exp! ! [Function]

Computes in parallel the value of e raised to the power specified by the supplied pvar.

SYNTAX

expll numeric-pvar

ARGUMENTS

numeric-pvar

RETURNED VALUE

exp-pvar

SIDE EFFECTS

Numeric pvar. Power to which e is raised.

Temporary numeric pvar. Contains in each active processor the
value of e raised to the power specified by the corresponding value
of numeric-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

This function computes and returns the value of e raised to the power numeric-pvar
in each processort where e is the base of the natural logarithms. Both complex and
non-complex arguments are accepted.

EXAMPLES

(exp! ! (! ! 1» <=> (! ! 2.7182817)
(exp! ! (! ! 3» <=> (! ! 20.085535)
(exp! ! (! ! #c(2 2») <=> (! ! #c(-3.0749323 6.7188506))

Version 6.1. October 1991 337

exptll *Lisp Dictionary
i: HI ! I I HiI:1 71111M!M!111 r illlR IT li! : Iii:l il!niaim:

expt!! [Function]

Computes in parallel the result of raising the first supplied pvar to the power specified by
the second.

SYNTAX

exptll base-pvar power-pvar

ARGUMENTS

base-pvar

power-pvar

RETURNED VALUE

expt-pvar

SIDE EFFECTS

Numeric pvar. Value to be raised to a power.

Numeric pvar. Power to which base-pvar is raised.

Temporary numeric pvar. In each active processor, contains the
result of raising the value of base-pvarto the power specified by the
corresponding value of power-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

This function computes and returns a pvar containing base-pvar raised to the power
power-pvar in each processor.

EXAMPLES

(expt!! (!! 2) (!! 3» <=> (!! 8)

338 Version 6.1, October 1991

*Lisp Dictionary exptll
ru:-.'W":mwm~~~~"m-*l:~~W:i~j:;;~;**:?:tW:;:~i*m:~~:~i:r:i~mW~.ift:ffl:;::*:&~~:%~~$.~;~;~~"W*f?~~~~~:1*1~*;.m%W*~:;*W:1*W.*$w.:r.;.$.$~~~twmw$.©N%.':$~~1W:::s1}

NOTES

The function expt!' will signal an error if its arguments are of one pvar type, yet contain
values that would produce a result of another pvar type.

For example, it is an error if base-pvar and power-pvar are integer pvars and
power-pvar contains negative values in any processor. (This would produce a floating­
point result for that processor.) Likewise, it is an error if base-pvar and power-pvar
are floating-point pvars and base-pvar contains negative values in any processor. (This
would produce a complex result in that processor.)

The reason exptll is defmed in this way is so that the pvar it returns can be guaranteed
to be of a specific pvar type. If exptll were allowed to return different data types in
different processors, then it would have to return a general pvar as its result. Not only
is this inefficient, it would also prevent exptll expressions from compiling, because the
*Lisp compiler does not compile expressions involving general pvars.

The general rule is that the exptll function will not return a floating-point pvar as its
result unless at least one of its arguments is already a floating-point pvar or has been
coerced to a floating-point pvar by use of either f10atll or coerce!!. Likewise, exptl! will
not return a complex pvar as its result unless at least one of its arguments is already a
complex pvar or has been coerced to a complex pvar by use of complexll or coerce!!:

For example:

(expt!! 2 -3) ;; Inverse of cube of 2, signals error

(expt!! (!! 2) (float!! (!! -3»} <=>
(expt!! (!! 2) (coerce!! (!! -3) 'single-float-pvar» <=>
(!! 0.125)

For example,

(expt!! -1 .5) ;; Square root of -1, signals an error

(expt!! (complex!! (!! -1» (!! .5» <=>
(expt!! (coerce!! (!! -1) 'single-complex-pvai} (!! .S)} <=>
(!! #c(-9.362676e-8 1.0»

As a side note, it is also an error for both base-pvar and power-pvar to be 0 in the same
processor, unless power-pvar contains integer values - in this case, the result is the 1
coerced to the same data type as the value of base-pvar.

Version 6.1, October 1991 339

fceillngll
II : n! 1 !!IJ i g!i[II !!IiIE iilllNlI2! mx p n pm: mE H n In ii

fcei ling II

IH!I! :

*Lisp Dictionary
i1! i III

[Function]

Performs a parallel floating-point ceiling operation on the supplied pvar(s).

SYNTAX

fcelllngll numeric-pvar &optional divisor-numeric-pvar

ARGUMENTS

numeric-pvar Non-complex numeric pvar. Value for which the floating-point
ceiling is calculated.

divisor-numeric-pvar
Non-complex numeric pvar. If supplied, numeric-pvar is divided
by divisor-numeric-pvar before the ceiling is taken.

RETURNED VALUE

Jceiling-pvar Temporary floating-point pvar. In each active processor, contains
the floating-point ceiling of numeric-pvar, divided by divisor­
numeric-pvar if supplied.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

340

This function is the parallel equivalent of the Common Lisp function fceiling. The
value returned by fceilingll is the same as that returned by ceiling", except that the
result in each processor is always a floating-point number rather than an integer. The
following forms are equivalent:

(fceiling!! data-pvar) <=> (float!! (ceiling!! data-pvar»

The argument pvars may contain either integer or floating-point values.

Version 6.1, October 1991

/

\

*Lisp Dictionary fceillng!!
~ .. ;;;;jj;:::1;::;;j:iIWWilt~~:11 g,~~JII1%W.@W,wt1WTh1i'~,$;iI1mw:11W&:MmtW~"

REFERENCES

See also these related rounding operations:
ceilingJl floor" round"

See also these related floating-point operations:
ffloor" float!!
float-signll
scale-float!!

Version 6.1, October 1991

fround"

truncate"

ftruncatell

341

ffloorll *Lisp Dictionary

ffloor!! [Function]

Performs a parallel floating-point floor operation on the supplied pvar(s).

SYNTAX

ffloorll numeric-pvar &optlonal divisor-numeric-pvar

ARGUMENTS

numeric-pvar Non-complex numeric pvar. Value for which the floating-point
floor is calculated.

divisor-numeric-pvar
Non-complex numeric pvar. If supplied, numeric-pvar is divided
by divisor-numeric-pvar before the floor is taken.

RETURNED VALUE

.fJloor-pvar Temporary floating-point pvar. In each active processor, con­
tains the floating-point floor of numeric-pvar, divided by
divisor-numeric-pvar if supplied.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

342

This function is the parallel equivalent of the Common Lisp function ffloor. The value
returned by ffloorll is the same as that returned by f1oorll, except that the result in each
processor is always a floating-point number rather than an integer. The following
forms are equivalent:

(ffloor!! data-pvar) <=> (float!! (floor!! data-pvar»

The argument pvars may contain either integer or floating-point values.

Version 6.1, October 1991

(

(
\
\

*Lisp Dictionary ffloorll
!Jilll !!! HElm: M~ {Mill@! !liM! L : !i! I W:: !t:Iliili!! III! III!! m I II :mll r 1m.1 II! : in I IMlIiil!!l!!lIli'iWWUl : 1I.1I1:U::lIIW!iinlllW

REFERENCES

See also these related rounding operations:
ceiling II f100rll roundll

See also these related floating-point operations:
fceilingll f10atll
float-signll
scale-float! I

Version 6.1, October 1991

froundll

truncatell

ftruncatell

343

*fill *Lisp Dictionary
m !!1m 71RnmUifI! 11!lm 1111 r 1111111111 Wit 'IllilfijRlIICIl :1 n IFf !?iIllll1ll

*fill [*Defun]

Destructively modifies some or all elements in each sequence of the supplied sequence
pvar to contain specified values.

SYNTAX

*fill sequence-pvar item-pvar &key :start :end

ARGUMENTS

sequence-pvar

item-pvar

:start

:end

Sequence pvar. Pvar containing sequences to be modified.

Pvar containing values to be stored in sequences.

Integer pvar. Zero-based index of sequence element at which to
start fill operation. Default is (II 0).

Integer pvar. Zero-based index of sequence element at which to
end fill operation. Default is (Iengthll sequence-pvar).

RETURNED VALUE

sequence-pvar Returns the modified sequence pvar.

SIDE EFFECTS

None.

DESCRIPTION

344

This function destructively modifies sequence-pvar by filling each sequence element
with the value from item-pvar.

The argument sequence-pvar must be a vector pvar. The argument item must be a pvar
of the same type as the elements of sequence-pvar. The :start and :end arguments
defme a subsequence of elements to be modified in each sequence.

Version 6.1, October 1991

*Lisp Dictionary *fill
!1I!!1I!oo1?M!oowriiooaooaw!1I!W'!1I!WOOWlOOWlWa1?M!riWlmWl!1l!Woo.wOOIlmi~ooa~aOOaWmmi!1l!11WOO~ll!WmW.WlWl§la!a"_!!iWi!!i!!iU· __ i1!11!OOOO1?M!WWWWil@W'-!W!,&&!§)WilWJ@WlWlmllliIIIWi,m'jt1?M!.H!!i!!i~MHW.1I

NOTES
Compiler Note:

The *Lisp compiler does not compile this operation.

REFERENCES

See also these related *Lisp sequence operators:
copy-seqll lengthll

*nreverse
subseqll

reducell reverse II

See also the generalized array mapping functions amapll and *map.

Version 6.1, October 1991 345

flndll, find-lfll, flnd-lf-notll *Lisp Dictionary
II! UIII I Ell ':: in$! 2 IM:: r: : ; : :: ! !.'E2 Ii 1 TT IlL

findll, find-ifll, find-if-notll [Function]

Perform a parallel search on a sequence pvar, returning in each processor the fITst sequence
element that matches a given item or passes/fails a test.

SYNTAX

flndll item-pvar sequence-pvar &key :test :test-not :start :end
:key :from-end :return-value-if-not-found

find-lfll test sequence-pvar
&key :start :end :key :from-end :return-value-if-not-found

flnd-lf-notll test sequence-pvar
&key :start :end :key :from-end :return-value-if-not-found

ARGUMENTS

item-pvar

test

sequence-pvar

:test

:test-not

:start

:end

:key

:from-end

346

Pvar expression. Item to match in sequence-pvar. Must be of the
same type as the elements of sequence-pvar.

One-argument pvar test. Used to test elements of sequence-pvar.

Sequence pvar. Contains sequences to be searched.

Two-argument pvar predicate. Test used in comparisons. Indicates
a match by returning a non-nil result. Defaults to eqll!.

Two-argument pvar predicate. Test used in comparisons. Indicates
a match by returning a nil result.

Integer pvar. Index, zero-based, of sequence element at which
search starts in each processor. If not specified, search begins with
fITSt element.

Integer pvar. Index, zero-based, of sequence element at which
search ends in each processor. If not specified, search continues to
end of sequence.

One-argument pvar accessor function. Applied to each element in
sequence-pvar before test is performed.

Boolean. Whether to begin search from end of sequence in all
processors. Defaults to nil.

Version 6.1, October 1991

*Lisp Dictionary findll, find-if!!, find-if-not!!
§HI;: jj n: I g:::;:I:::®iIlBllflml1iml'WmaWiW.®l:filll@amWiWH: 'w.m:wMm&%!liW:WWW:~~"'W$W1i:1 :. ,~

:return-value-if-not-found

RETURNED VALUE

jind-pvar

SIDE EFFECTS

Pvar expression. Value to return in processors where sequence­
pvar does not contain the item in item-pvar. Default is nilll.

Temporary pvar, of same data type as elements of sequence-pvar.
In each active processor, contains a copy of the fIrst matching ele­
ment of sequence-pvar. Contains the value of the argument
:retum-value-if-not-found for processors where no match is found.

The returned pvar is allocated on the stack.

DESCRIPTION

These functions are the parallel equivalent of the Common Lisp find, find-lf, and find­

If-not functions, with an additional keyword, :retum-value-if-not-found.

In each processor, the function find!! searches sequence-pvar for elements that match
item-pvar. It returns a pvar containing a copy of the fIrst matching element found in
each processor. Elements of sequence-pvar are tested against item-pvar with the eqlll
operator unless another comparison operator is supplied as either of the :test or :test­

not arguments. The keywords :test and :test-not may not be used together.

In each processor, the function find-ifl I searches sequence-pvar for elements satisfying
test. It returns a pvar containing a copy of the fIrst matching element found in each
processor. The function find-if-notl! searches sequence-pvar for elements failing test.
It returns a pvar containing a copy of the fIrst matching element found in each
processor.

Arguments to the keywords :start and :end defIne a subsequence to be operated on in
each processor.

The :key keyword accepts a user-defmed function used to extract a search key from
sequence-pvar. This key function must take one argument: an element of sequence­
pvar.

Version 6.1, October 1991 347

findll, find-ifll, find-if-notll *Lisp Dictionary
mew 1 -1; I; 17 Hil f : 1 R0U'WWl : ::_~ nil 1m i:imi:! II WWWUW?

In any processor failing the search, the value of the :return-value-if-not-found argu­
ment is returned. The keyword argument to :return-value-lf-not-found must be a pvar
and defaults to nlill.

The keyword :from-end takes a boolean pvar that specifies from which end of
sequence-pvar in each processor the operation will take place.

EXAMPLES

(find!! (!! 9) (!! #(149») <=> (!! 9)
(find-if!! 'evenp!! (!! #(149») <=> (!! 4)
(find-if-not!! 'evenp!! (!! #(149») <=> (!! 1)

NOTES

Compiler Note:

The *Lisp compiler does not compile this operation.

REFERENCES

348

These functions are members of a group of similar sequence operators,
listed below:

countll count-ifli count-If-notll

flndll find-ifll find-if-notll

nsubstltutell nsubstltute-lfll nsubstitute-if-notll
position II position-ifll position-if-notll

substitute!! substitute-Ifl! substltute-if-notll

See also the generalized array mapping functions amapll and *map.

Version 6.1, October 1991

(

*Lisp Dictionary
mll!!l!. Ilill ini iii !!i:%li@liJ~gi ii IU MiWi I i I III in III II) ii: E1 Rnm: 2 :% :::

float!!

Converts the numeric values of a specified pvar into a floating-point format.

SYNTAX

floatll numeric-pvar &optlonal float-format-pvar

ARGUMENTS

floatll
HI ?lmm

[Function]

numeric-pvar Non-complex numeric pvar. Pvar to be converted to floating-point
format.

float-format-pvar Floating-point pvar. If supplied, determines the floating-point
format into which numeric-pvar is converted. Defaults to a pvar
in single-float format.

RETURNED VALUE

float-pvar

SIDE EFFECTS

Temporary numeric pvar. In each active processor, contains a copy
of the value of numeric-pvar converted to floating-point format.

The returned pvar is allocated on the stack.

DESCRIPTION

This function converts any non-complex numeric pvar to a floating-point representa­
tion. In processors where number-pvar already contains floating-point numbers, those
numbers are simply copied; elsewhere, single-float numbers are produced. When the
optional argumentfloat-format-pvar is given, number-pvar is converted to a match­
ing floating-point format (single- or double-precision).

Version 6.1, October 1991 349

·f1oatll
, 11 7 jj Imumn:m:: fiHiHi:: : li!tn!l~! 3. H

REFERENCES

350

See also these related floating-point operations:
fcelllngll ff100rll

float-signll

scale-f1oatll
froundll ftruncatell

*Lisp Dictionary
:7 !! li'!'I'!:: % ,

Version 6.1, October 1991

*Lisp Dictionary fJoat-epsllonll
MTg<li1mllln: II 1!~~m.wrnm!Wffi.W!$!I! !"iI!!Ii: : I!!:r:::~fi.il! 1i1i:n .: 1iIIII!Il i I :w::m

float-epsilon! ! [Function]

Returns a pvar containing the smallest positive floating-point value representable in the
fonnat of the supplied floating-point pvar.

SYNTAX

float-epsllonll jloating-point-pvar

ARGUMENTS

jloating-point-pvar
Floating-point pvar. Detennines fonnat of returned pvar.

RETURNED VALUE

epsi/on-pvar Temporary floating-point pvar. In each active processor, contains
the smallest positive value representable in the same format as the
corresponding value of jloating-point-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

In each processor, the value returned by fJoat-epsllonll is the smallest positive floating­
point number, e, that can be represented by the eM in the same floating point format
as jloating-point-pvar and for which

(not (= (float 1 e) (+ (float 1 e) e»)

is true when evaluated.

Version 6.1, October 1991 351

f1oat-epsilonll *Lisp Dictionary
11 I fiji Ii li l! iii ! m Ii !R ft f! I U II ij mllllnillmll um llmm: :ml I I ! llA2 I 11m lif:: iH

(

\
REFERENCES

See also these related floating-point pvar limit functions:
least-negatlve-f1oatll least-positlve-f1oatll

most-negatlve-f1oatll most-posltive-f1oatll negative-f1oat-epsllonll

352 Version 6.1. October 1991

*Lisp Dictionary
1 i 111:11 11111111 :II 7 i IIUIn

float-sign I I

I 11II 11I71llmi ! m iII11H1l11!
float-slgnll

1::IPm 111111 ~1iJ1II1I:m: .]1 In : 11111IlW@11il Ii! :: !I ! I

[Function]

Returns a unit value floating-point pvar with the same sign as the supplied pvar.

SYNTAX

float-signll sign-pvar &optlonal value-pvar

ARGUMENTS

sign-pvar Floating-point pvar. Determines sign of result

value-pvar Floating-point pvar. Determines absolute value of result Defaults
to (1I1.0).

RETURNED VALUE

sign-value-pvar Temporary floating-point pvar. In each active processor, contains a
floating-point value with the same sign as sign-pvar and the same
absolute value as value-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a floating-point pvar result with the same sign as sign-pvar and
the same absolute value as value-pvar.

EXAMPLES

(float-sign!! (!! 0.08»
(float-sign!! (!! -0.08»

Version 6.1, October 1991

<=>
<=>

(!! 1.0)
(!! -1.0)

353

float lgnll
!Hlllln mil n ImHU AI ifnII' mnln 11 FlU m m 1]!

REFERENCES

354

See also these related floating-point operations:
fealllngli ffloorll
froundll
scale-floatll

ftruneatell

*Lisp Dictionary
I n

floatll

c
Version 6.1, October 1991

*Lisp Dictionary floatpll
Mm.!?I! !~T rIm)]J :J_~,:r'mt:ii n liJii:wm;mmm"! "iml:I'3lP';: ::::: IlIi! ~MMUi

floatpll [Function)

Performs a parallel test for floating-point values on the supplied pvar.

SYNTAX

floatpll pvar

ARGUMENTS

pvar

RETURNED VALUE

jloatp-pvar

SIDE EFFECTS

Numeric pvar. Pvar to be tested for floating-point values.

Temporary boolean pvar. Contains the value t in each active proces­
sor where the pvar contains a floating-point value, and nil in all
other active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function floatp. It returns the value
t in each active processor where the pvar contains a floating-point value, and nil in all
other active processors.

REFERENCES

See also these related pvar data type predicates:
booleanpll

front-enci-pll

numberpll

typepll

Version 6.1, October 1991

characterpll

integerpll

string-char-p!1

compJexpl1

structurepll

355

floorU *Lisp Dictionary
1111ilun !ll!H! 1lllWUll n 1 r I Ii! 11 j fi In. FilWil

floorll [Function]

Performs a parallel floor operation on the supplied pvar(s).

SYNTAX

floorll numeric-pvar &optional divisor-numeric-pvar

ARGUMENTS

numeric-pvar Non-complex numeric pvar. Value for which the floor is
calculated.

divisor-numeric-pvar
Non-complex numeric pvar. If supplied, numeric-pvar is divided
by divisor-numeric-pvar before the floor is taken.

RETURNED VALUE

jloor-pvar Temporary integer pvar. In each active processor, contains the floor
of numeric-pvar, divided by divisor-numeric-pvar if supplied.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function floor, except that only one
value - the floor of the quotient of numeric-pvar and divisor-numeric-pvar - is
computed and returned.

REFERENCES

See also these related rounding operations:

celllngll round II truncatell

356 Version 6.1, October 1991

c

*Lisp Dictionary f100rll
f Ull HI! IN ; I:; 11 Nwmmw~:m.:m.liUWmm!I nnn :lKlH 1 P%"%LOO';;:OO.:m. .. ,"%lWOO;;:m.D®l ___ OO'';;_::OO::::W;~OOW'AWWW; ::::

See also these related floating-point rounding operations:

fcelllngll ff100rll froundll ftruncatell

Version 6.1, October 1991 357

front-endll *Lisp Dictionary
ill! nn m!!!I!!i@!l1r 11 !DIi!i11if II: Jlj:!l1i r if: !!i!W, DE 71;1117 1m

front-end II [Function]

Returns a pvar whose values are references to a front-end object.

SYNTAX

front-endll scalar-object

ARGUMENTS

scalar-object Front-end scalar object. Object referenced by the returned pvar.

RETURNED VALUE

front--end-pvar Temporary pvar. In each active processor, contains a reference to
the front-end object scalar-object.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

358

This function returns a pvar of type (pvar front-end). Note that a general pvar - that
is, a pvar of type (pvar t) - can store a front-end pvar.

Front-end pvars may be passed as arguments only to *Lisp operations that access,
move, or compare data, but not to operations that combine or compute with data. Oper­
ations that may take front-end pvar arguments include

eqll

prefll

scan!! (with copy!!)

if II

pref

*set

news II

*pset

setf (with pref)

Version 6.1, October 1991

(
~.

*Lisp Dictionary front-endll
1i n I I :n 7 U" . n !8 IE!': m I r m II: I !1!!mmm:: IIIE ! H! 1If1H!I :::II!! Tn II

EXAMPLES

Front-end pvars are useful for storing parallel data that has meaning when taken in
combination with other data stored on the Connection Machine. For example, a front­
end pvar can be used to store the symbolic names of a number of test subjects, such as
simulated biological organisms. The expression

(*defvar names (front-end!! 'nothing»

defmes a front-end pvar with symbolic values (initially, every value in names is a refer­
ence to the symbol nothing). Symbolic names can be stored into a front-end pvar by
using setf with pref, as in

(setf (pref names 0) 'mutant-79)

Computations on other pvars can use the values stored in a front-end pvar for display
or reference purposes, as in the examples below.

(*defun survivors ()
(*when survived-simulated-catastrophe

(format t "The survivors are:-%")
(do-for-selected-processors (proc)

(format t (pref names proc»»)

(*defun describe-microbe (bug-name)
(*when (eq!! names (front-end!! bug-name»

(format-description-for-selected-microbes»)

REFERENCES

See also the pvar allocation and deallocation operations
allocate!!

*deallocate

*Iet

make-array!!

II

Version 6.1, October 1991

array II

*deallocate-*defvars

Iet

typed-vector!!

*defvar

vector!!

359

front-enc:l-pll *Lisp Dictionary
1 i r I "111m f TIl iii! ! !! m r I ! § g fl Iff 11! in g Iff In iii!

front-end-pll [Function]

Performs a parallel test for front-end references on the supplied pvar.

SYNTAX

front-end-pll pvar

ARGUMENTS

pvar Pvar expression. Tested in parallel for front-end reference values.

RETURNED VALUE

front-endJrpvar Temporary boolean pvar. Contains the value t in each active proces­
sor where the value of pvar is a front-end reference. Contains nil in
all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function tests pvar and returns t in those processors containing pointers to a front­
end object and nil elsewhere. Note that if pvar is a general pvar, t could be returned in
some processors while nil is returned in others.

EXAMPLES

(*defvar names (front-end!! 'nothing»

(front-end-p!! names) => t

360 Version 6.1. October 1991

[

, , ['

*Lisp Dictionary front-end-pll
i r filllnn!! III 7 I !Im!! n n 1111 iliPlillin Him!!! nl!!lmllmlr 1 Ii i II II! ! I lrmm 11 i i n f i If

REFERENCES

See also these related pvar data type predicates:
booleanpll characterpll
floatpll Integerpll
numberpll
typepll

Version 6.1, October 1991

string-char-pll

complexpll

structurepll

361

froundll *Lisp Dictionary
Q ll1l12 lIT l TI if I flFiP I m min III i r i I n am:: !!In

froundll [Function]

Performs a parallel floating-point round operation on the supplied pvar(s).

SYNTAX

fround!! numeric-pvar &optlonaJ divisor-numeric-pvar

ARGUMENTS

numeric-pvar Non-complex numeric pvar. Value for which the floating-point
round is calculated.

divisor-numeric-pvar
Non-complex numeric pvar. If supplied, numeric-pvar is divided
by divisor-numeric-pvar before rounding is done.

RETURNED VALUE

Jround-pvar Temporary floating-point pvar. In each active processor, contains
the floating-point rounded value of numeric-pvar, divided by
divisor-numeric-pvar if supplied.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

362

This function is the parallel equivalent of the Common Lisp function fround. The value
returned by fround!! is the same as that returned by round!!, except that the result in
each processor is always a floating-point number rather than an integer. The following
forms are equivalent:

(fround!! data-pvar) <=> (float!! (round!! data-pvar»

The argument pvars may contain either integer or floating-point values.

Version 6.1, October 1991

/~

i.
"-

*Lisp Dictionary froundll
j] . l!!!:l j m emmm i 1:; ·inTIaI Him! \W@.IW@! i Iii Ii; mw~mm!!ltt!!lbiWjJli!Mnngt::IliWIHil&~li'l!W; 11 UilMI

REFERENCES

See also these related rounding operations:
ceiling II floorll rou nd II

See also these related floating-point operations:
fcelllngll ffloorll
float-signll

scale-floatll

Version 6.1, October 1991

ftruncatell

truncate II

floatll

363

ftruncatell *Lisp Dictionary
Hi!l! III nn ill ")]i!ll %i!ll)if: Mi iI ;;! j i mil! 2!!. !lIT "iii jm:lilll I:Tllm: i ImE III: m I IIIml 7I111121lm mini :m 1!lIHI! I

ftruncatell [Function]

. Performs a parallel floating-point truncati.on on the supplied pvar(s).

SYNTAX

ftruncatell numeric-pvar &optional divisor-numeric-pvar

ARGUMENTS

numeric-pvar Non-complex numeric pvar. Value for which the floating-point
truncation is calculated.

divisor-numeric-pvar
Non-complex numeric pvar. If supplied, numeric-pvar is divided
by divisor-numeric-pvar before truncation is done.

RETURNED VALUE ~.

jtruncate-pvar Temporary floating-point pvar. In each active processor, contains
the floating-point truncated value of numeric-pvar, divided by
divisor-numeric-pvar if supplied.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

364

This function is the parallel equivalent of the Common Lisp function ftruncate. The
value returned by ftruncatell is the same as that returned by truncatell, except that the
result in each processor is always a floating-point number rather than an integer. The
following forms are equivalent:

(ftruncate!! data-pvar) <=> (float!! (truncate!! data-pvar))

The argument pvars may contain either integer or floating-point values.

Version 6.1, October 1991

*Lisp Dictionary
li mil! I 11 i n H 1 1; ii!§ 1 m tlf 121 if r t Hiltil!l 1P Em fi~1IWi! lilI :mIl m I:i

REFERENCES

See also these related rounding operations:
ceilingfl floorll roundfl

See also these related floating-point operations:
fcelllngll moorll
float-slgnfl froundll

Version 6.1, October 1991

truncatefl

floatll
scale-floatll

ftruncatell
jj] 11 gJlt

365

*funcaU *Lisp Dictionary
! m 11 11 n i ! 11 r In I 1· WI 11m WgEn! if 1. f IIIRn :Im f !2!llM111 m:m::; En II Ii T Ii! : IT! II 8!fI1!!

*funcall [Macro]

Applies a parallel function defined by *defun to a set of argwnents.

SYNTAX

*funcaU function &rest arguments

ARGUMENTS

function Symbol or function object. Function to call.

arguments Scalar or pvar expressions. Argwnents to pass to function.

RETURNED VALUE

returned-value Scalar or pvar value. Value returned by function.

SIDE EFFECTS

None other than those of the supplied function.

DESCRIPTION

This is used just as Common Lisp's funcaU, but is intended to be used with functions
defmed by *defun.

EXAMPLES

366

(*defun difference!! (pvar1 pvar2) (-!! pvar1 pvar2»
(*funcall 'difference!! (!! 3) (!! 4») <=> (!! -1)

Version 6.1, October 1991

/-

*Lisp Dictionary
'liB! J 1 1 I H 1 p!mm FmlHm r III m;l 11 liU IIU

NOTES
Errors:

Tmil ::
*funeaU

! :

It is an error to use Common Lisp's funcaU with a function defmed using *defun. Also,
just as funeall cannot be applied to macros, so *funeaU cannot be applied to macros with
the exception of operations defmed by *defun. (Observant readers will notice that an
operation defmed by *defun actually is a macro in disguise - see the dictionary entry
for *defun for more information.)

REFERENCES

See also the following related operations:
*apply *defun

*traee un*defun *untraee

Version 6.1, October 1991 367

gcdll ·Lisp Dictionary
1 I I nil HII FIlIHIIlR? Fill!] I ill1 rmnillll!!i Iff I I I IIII!!!!!!! ffH 11 i!

gcdll [Function]

Computes in parallel the greatest common denominator of the supplied integer pvars.

SYNTAX

gcdll &rest integer-pvars

ARGUMENTS

integer-pvars Integer pvars. Pvars for which gcd is to be calculated.

RETURNED VALUE

gcd-pvar Temporary integer pvar. In each active processor, contains the
greatest common denominator for the corresponding values of the
integer-pvars.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

368

This function takes zero or more integer pvars and computes. in each processor. the
greatest common divisor of all of the argument pvar components in that processor. The
function always returns a non-negative integer pvar. Specifically:

If no arguments are given. 0 is returned in each processor.

If one argument is given, its absolute value is returned in each processor.

If two arguments are given. the gcd of the two pvar components is returneq in
each processor.

If three or more arguments are given, the behavior is:

(gcd!! abc ... z) <=> (gcd!! (gcd!! ab) c ... z)

Version 6.1, October 1991

*Lisp Dictionary graphlc-char-pll
1 Q 1 1 i 1 1M f If Q 1111! ! II II n I 1 !lIfRiMiflUl1lEi ! r f Iff l!i!1!i gr !r mmrl1 TIl fIT

graphic-char-pll [Function]

Performs a parallel test for graphic characters on the supplied pvar.

SYNTAX

graphic-char-pll character-pvar

ARGUMENTS

character-pvar

RETURNED VALUE

Character pvar. Tested in parallel for alphabetic characters. Must
be a character pvar, a string-char pvar, or a general pvar
containing only elements of type character or string-char.

graphic-char,p-pvar

SIDE EFFECTS

Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of character-pvar is an graphic
character. Contains nil in all other processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns t in those processors where character-pvar contains a printing
character and nil elsewhere. On the Connection Machine, only characters with Ascn
values ranging from 32 to 127, inclusive, are considered graphic, printing characters.
Any character pvar with a bits field of non-zero value is not a graphic character pvar.

Version 6.1, October 1991 369

gray-code-from-Integerll "'Lisp Dictionary
IIII!!IIJ IFI!I1!!R1R ji 2 W r I ! ! I! 111 Pi IT ? 1 1Im!!I!l1liilli1l1: 1 7!1

gray-code-from-jntegerll [Function]

Performs a parallel conversion from integers to Gray code values on the supplied pvar.

SYNTAX

gray-code-from-lntegerll integer-pvar

ARGUMENTS

integer-pvar Integer pvar. Pvar to be converted to gray code values. Must
contain unsigned integers.

RETURNED VALUE

gray-code-pvar Temporary unsigned integer pvar. In each active processor, con­
tains the gray code representation of the corresponding value of
integer-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function converts each integer component of the integer-pvar argument into a
Gray code representation. Binary reflected Gray code is used.

REFERENCES

See also the related function Integer-from-gray-codell.

370 Version 6.1, October 1991

/

(

'"

*Lisp Dictionary grid
! t :WI1iRlW It lii: :=IIl~ .n: .• ,1Ill1 ::mwlImmit :t r 11,m 1 1 2m WiIll1§I :r::: j :Ii· : rr:::::n r II i1 itml1*1:Ml r 1 IP I!! IIiIUl'

grid [Function]

Creates and returns an address object containing the supplied integers as grid (NEWS) coor­
dinates.

SYNTAX

grid &rest integers

ARGUMENTS

integers

RETURNED VALUE

address-object

SIDE EFFECTS

None.

DESCRIPTION

Scalar integers. Coordinates for the returned address object.

Address object, allocated on front end. Contains the supplied inte­
gers as grid (NEWS) coordinates.

This function creates and returns a front-end address object that contains the specified
integers as grid (NEWS) coordinates.

EXAMPLES

(*cold-boot :initial-dirnensions '(8 4»
.

(pref (self-address!!) (gridV. 4 2» <=> 18

Version 6.1. October 1991 371

grid
I M UmH! J II i n 12m 1!! !n ! !

REFERENCES

See also the related operations
address-nth address-nth I I
address-plus address-plusll
address-plus-nth
address-rank
grid II
grid-relativell

address-plus-nthll

address-rankll

selftl

372

*Lisp Dictionary
1 \jj IIIJW!Mlmlll!IM1I! mr ! i IT m

Version 6.1, October 1991

*Lisp Dictionary gridll
W ::]lI!:!i} E! m9!C::il:n:!!i!mmmlK,*.®~r~w~r:UX:i$';':ii:t ::w:.IUWl'mLm1$!,*~~

gridll [Function]

Creates and returns an address-object pvar with grid (NEWS) coordinates specified by the
supplied pvars.

SYNTAX

grid!! &rest integer-pvars

ARGUMENTS

integer-pvars Integer pvars. Coordinates for the returned address-object pvar.

RETURNED VALUE

addness-object-pvar
Temporary address-object pvar. In each active processor, contains
an address object with the coordinates specified by the correspond­
ing values of the integer-pvars.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function creates and returns a pvar of address objects containing the specified
integer-pvars as grid (NEWS) coordinates.

EXAMPLES

(*cold-boot :initial-dimensions ' (8 4))

(pref!! (self-address!!) (grid!! (!! 4) (!! 2))) <=> (!! 18)

Version 6.1, October 1991 373

grldll
11 F I !I!m_n T ! :!ffi1lm ::11 Tin II

REFERENCES

374

See also the related operations
address-nth address-nthll

address-plus
address-plus-nth

address-rank
grid

grid-relative! I

address-plusll
address-plus-nthll

address-rankll

selfll

*Lisp Dictionary
WI nmm 111m rr i1! i_m! :: r :: Ii!i

I

Version 6.1, October 1991

*Lisp Dictionary grid-from-cube-address
i c ! ~ I c:![. llliWfIi::C' iUlmm :in !Ii~i:f1:fJ : WI:i: :J . 2!ll$;RIOOiIF:! l! i'i ':~@\ . iWWilR

grid-from-cube-address [Function]

Converts a send (cube) address into a grid (NEWS) coordinate in the current VP set for a
specified dimension.

SYNTAX

grid-from-cube-address send-address dimension

ARGUMENTS

send-address

dimension

RETURNED VALUE

coordinate

SIDE EFFECTS

None.

DESCRIPTION

Integer. Send address to be converted.

Integer. Number of the dimension for which the coordinate
corresponding to send-address is to be returned. Zero-based.

Integer. Grid (NEWS) coordinate in the current VP set, of the pro­
cessor specified by send-address along the specified dimension.

This function takes a send-address and returns the grid (NEWS) coordinate for the
specified dimension in the current VP set. This function executes entirely in the
front-end computer.

The send-address argument is a single integer representing the send address of a single
processor. It is translated into a single integer representing the grid address of that pro­
cessor along the specified dimension.

The send-address argument must be a non-negative integer within the current machine
configuration's range of send addresses. This range extends from zero through
(1- *number-of-processors-limit*), inclusive.

Version 6.1, October 1991 375

grtd-tont-Cube-address *Lisp Dictionary
If 1 n lU!!! nn 1111111 IIlIUU IUm IUiIIll1 %!flfRRIrrH 11 rr nlf 1

The dimension argument must be a non-negative integer between zero and one less
than the rank of the current machine configuration.

EXAMPLES

Assume a four-dimensional machine configuration has been defmed, and that the pro­
cessor referenced by send address 6534 has a grid address of (6 52 75 259).

(grid-from-cube-address 6534 2) => 75

Here, the grid address component corresponding to dimension 2 is returned. To obtain
all the grid address components for a given send-address, call grtd-front-Cube-address
repeatedly, specifying a different dimension each time.

NOTES

Note that the send (cube) address corresponding to a particular grid address is not pre­
dictable from the grid address values alone. It also depends on the geometry of the
current VP set, on the number of physical processors attached, and on the system soft­
ware version in use. In particular, the relationship between send and grid addresses in
the *Lisp simulator is different from that of the actual CM-2 hardware.

It is an error to rely on a specific, fixed relation between send and grid addresses except
as provided by *Lisp address conversion functions such as cube-from-grld-address,
cube-from-vp-grld-address, grld-from-cube-address, and grld-from-vp-cube­
address.

REFERENCES

376

See also these related send and grid address translation operators:
cube-from-grld-address cube-from-grtd-addressll
cube-from-vp-grtd-address
grtd-front-Cube-addressll
grtd-from-vp-cube-address
self-addressll

cube-from-vp-grid-addressll

grid-from-vp-cube-addressll
self-address-grtdll

Version 6.1, October 1991

/

*Lisp Dictionary grid-from-cube-addressll
iWl::r::r: ;::; .11.·: HWW£J1W!.*.~·:·TW!.*.n iiWllWlBW; : j!' 1 ::: WX:mi 1·' :i!~ lim! ! jj]' aliiii! IiI!: !I1ml

grid-from-cu be-address I I [Function]

Performs a parallel conversion from send (cube) addresses into grid (NEWS) coordinates
in the current VP set.

SYNTAX

grid-from-cube-addressll send-address-pvar dimension-pvar

ARGUMENTS

send-address-pvar Integer pvar. Send address to be translated.

dimension-pvar Integer pvar. Number of the dimension for which the coordinate
corresponding to send-address-pvar is to be returned. Zero­
based.

RETURNED VALUE

coordinate-pvar Temporary integer pvar. In each processor, contains the grid
(NEWS) coordinate in the current VP set, of the processor speci­
fied by send-address-pvar along the dimension specified by
dimension-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function takes a send-address-pvar and returns a pvar containing the grid
(NEWS) coordinate in the current VP set for the specified dimension-pvar for each
selected processor.

In each processor, this function translates the send (cube) address specified that proces­
sor's value of send-address-pvar into a corresponding grid address along the
dimension specified by the local value of dimension-pvar. This is the parallel equiva­
lent of grid-from-cube-address.

Version 6.1, October 1991 377

grld-from-cube-addressll *Lisp Dictionary
T i Pi liTl1InI2l1 i iHinE ! T 1 1 11 r!!in I11liIDW' ID; 1 iii fflMm i i liIDW

The send-address-pvar argument must be pvar containing a non-negative integer in
each processor. Each of these integers must be within the range zero through (1- *num­
ber-of-processors-limlt*), inclusive.

The dimension-pvar argument must be a pvar containing, in each processor, a
non-negative integer between zero and the rank of the current machine configuration
minus one.

The return value of grld-from-cube-addressll is an integer pvar containing
non-negative integers. In each processor the integer returned is the dimension-pvar
grid address component of the processor referenced by send-address-pvar.

EXAMPLES

378

Assume a four-dimensional machine configuration has been defmed, and that the pro­
cessor referenced by send address 6534 has a grid address of (652 75 259).

(grid-from-cube-address!! (!! 6534) (!! 2» => (!! 75)

Here, the grid address component corresponding to dimension 2 is returned in all active
processors.

A more extensive example of grid-from-cube-addressll is detailed below.

(*cold-boot :initial-dimensions 1(128 128))

(ppp (self-address!!) :mode :grid :end '(4 4) :format "-30 ")

0 1 2 3
8 9 10 11

16 17 18 19
24 25 26 27

(ppp (grid-from-cube-address! !
: mode :grid :end '(4 4)

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

(ppp (grid-from-cube-address! !
: mode : grid

o 000
1 111
2 222
3 333

:end I (4 4)

(self-address! !) (! ! 0))
:format "-30 ")

(self-address! !) (! ! 1))
:format "-30 ")

Version 6.1, October 1991

\,-

/

(

*Lisp Dictionary grid-from-cube-addressll
\Ill? ~~; 1*!*:il%$~tru*W*llil*!*llilli~;Ii~m;m*.~;!II~H*2mlll;*. ~~1 mw~~:mj mWl*!*llimlliR*lli*mj!ll!ll;mmml.*\Ill*llillimwl*!*rumj~iif(j~~ ;g 1 .·~n~m m

NOTES

Note that the send (cube) address corresponding to a particular grid (NEWS) address
is not predictable from the grid (NEWS) address values alone. It also depends on the
geometry of the current VP set, on the number of physical processors attached, and on
the system software version in use.

It is an error to rely on a specific, fixed relation between send and grid addresses except
as provided by *Lisp address conversion functions such as cube-from-grld-addressll,

cube-from-vp-grld-addressll, grid-from-cube-addressll, and grid-from-vp-cube­

addressll.

REFERENCES

See also these related send and grid address translation operators:
cube-from-grid-address

cube-from-vp-grid-address

grid-from-cube-address

grid-from-vp-cube-address

self-addressll

Version 6.1, October 1991

cube-from-grid-addressll

cube-from-vp-grid-addressll

grld-from-vp-cube-addressll

self-address-gridll

379

grld-frorn-vj>-Cube-address "'Lisp Dictionary
11111 1m? !!! "!l21112 :::: n: Ii r: HIR TII:mn lii g r 2m Hi ~]j :n: He PIIUi 1j m: 1j:: II M T r g IT . :

grid-from-vp-cu be-add ress [Function]

Converts a send (cube) address into a grid (NEWS) coordinate for the specified VP set.

SYNTAX

grJd-from-vj>-Cube-address vp-set send-address dimension

ARGUMENTS

vp-set

send-address

dimension

VP set object. VP set in which the supplied send-address is
converted.

Integer. Send address to be converted.

Integer. Number of the dimension for which the coordinate
corresponding to send-address is to be returned. Zero-based.

RETURNED VALUE

coordinate Integer. Grid (NEWS) coordinate in the specified vp-set, of the pro­
cessor specified by send-address along the specified dimension.

SIDE EFFECTS

None.

DESCRIPTION

380

This function translates send-address, an integer representing the send address of a
single processor in vp-set, into an integer representing the grid address of that proces­
sor along the specified dimension in vp-set.

The send-address argument must be a non-negative integer within vp-set's range of
send addresses.

The dimension argument must be a non-negative integer between zero and one less
than the rank of vp-set's dimensions.

Version 6.1, October 1991

!
\

*Lisp Dictionary grid-from-vp-cube-address
lim :: :: Mi@:::::' :C:::~n:H:::;! II:: ; 1 ? l! m:;r if !R i i 911 1 f i lin.

EXAMPLES

Assume that my-vp has a four-dimensional geometry, and assume that the processor
referenced by send address 6534 has a grid address of(6 52 75 259) within the geome­
try of my-vp.

(grid-from-vp-cube-address my-vp 6534 2) => 75

Here, the grid address component corresponding to dimension 2 is returned. To obtain
all the grid address components for a given send-address in a given vp-set, call grid­
from-vp-cube-address repeatedly, specifying a different dimension each time.

NOTES

Note that the send (cube) address corresponding to a particular grid (NEWS) address
is not predictable from the grid (NEWS) address values alone. It also depends on the
geometry of the current VP set, on the number of physical processors attached, and on
the system software version in use.

It is an error to rely on a specific, fixed relation between send and grid addresses except
as provided by *Lisp address conversion functions such as cube-from-grld-address,

cube-from-vp-grld-address, grld-from-cube-address, and grid-from-vp-cube­
address.

REFERENCES

See also these related send and grid address translation operators:
cube-from-grld-address

cube-from-vp-grid-address

grld-from-cube-address

grid-from-vp-cube-addressll

self-addressll

Version 6.1, October 1991

cube-from-grid-addressll
cube-from-vp-grld-addressll

grid-from-cube-addressll

self-address-grldll

381

grld-from-vp-cube-addressll *Lisp Dictionary
!! : iI mm1fl1!11 211m: !12m!:: !!1D!! H 211 t mm DI : I E2:2II~:t m:nr:::: :1:)t p;~

grid-from-vp-cu be-add ress II [Function]

Performs a parallel conversion of send (cube) addresses into grid (NEWS) coordinates for
the specified VP set.

SYNTAX

grld-from-vp-cube-addressll vp-set send-address-pvar dimension-pvar

ARGUMENTS

vp-set VP set object. VP set for which grid (NEWS) coordinates are
returned.

send-address-pvar Integer pvar. Send address to be translated.

dimension-pvar Integer pvar. Number of the dimension for which the coor­
dinate corresponding to send-address-pvar is to be returned.
Zero-based.

RETURNED VALUE

coordinate-pvar Temporary integer pvar. In each processor, contains the grid
(NEWS) coordinate in the specified vp-set, of the processor speci­
fied by send-address-pvar along the dimension specified by
dimension-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

382

This function performs a parallel conversion of send (cube) addresses into grid
(NEWS) coordinates for the specified vp-set. This is the parallel equivalent of grld­

from-vp-cube-address.

Version 6.1, October 1991

(
\ ,-

*Lisp Dictionary grid-from-vp-cube-addressll
rm~t:mllWlm:KWM!l!.1lmttttttZtttt~ §lliit1lpmlmllTIWlldHdZtttt§lllttmmr: r:!!Wl! l§llltt! mntttt§llltt:mlHr:!%dmd:llmmmr:!1llffir:!!d.i .lffiir:!tttti lffiir:!tttt§lllttm[l!lmlllr:!I!lldllffi®§lli· tttmrmlffi®

The value of send-address-pvar in each processor is assumed to be an integer repre­
senting the send address of a single processor in vp-set. This is translated into an
integer representing the grid address of that processor along the dimension specified
by the value of dimension-pvar.

The send-address-pvar must be a pvar containing a non-negative integer in each proc­
essor. Each of these integers must be within the range of valid send addresses for
vp-set.

The dimension-pvar argument must be a pvar containing. in each processor. a
non-negative integer between zero and the rank of vp-sefs dimensions minus one.

EXAMPLES

Assume the VP set my-vp has a four-dimensional machine geometry. and that the pro­
cessor referenced by send address 6534 has a grid address of(6 52 75 259) in my-vp.

(grid-from-vp-cube-address!!
my-vp(!! 6534) (!! 2» => (!! 75)

Here. the grid address component corresponding to dimension 2 in my-vp is returned
in all active processors.

NOTES

Note that the send (cube) address corresponding to a particular grid (NEWS) address
is not predictable from the grid (NEWS) address values alone. It also depends on the
geometry of the current VP set. on the number of physical processors attached. and on
the system software version in use.

It is an error to rely on a specific. fixed relation between send and grid addresses except
as provided by *Lisp address conversion functions such as cube-from-grld-address".

cube-from-vp-grid-addressll. grid-from-cube-addressll. and grld-from-vp-cube­

addressll.

Version 6.1, October 1991 383

grid-frorn-vp-cube-addressll *Lisp Dictionary
r 1 i 1 1711 1111111 11! II IT! I I ~ m II t?

REFERENCES

See also these related send and grid address translation operators:

384

cube-frorn-grld-address cube-frorn-grid-addressll

cube-frorn-vp-grld-address
grl«l-frorn-cube-address

grld-from-vp-cube-address
self-addressll

cube-frorn-vp-grld-addressll
grld-from-cube-addressll

self-address-g rid II

Version 6.1, October 1991

*Lisp Dictionary grld-relatlvell
III I min In : r:: II: II!! IT r IR mmm m~! i IT TIl mJl ; Uf' I n Ii: IIRm n;;:: : g j Ii IT g llilt

grid-relative! ! [Function]

Returns an address-object pvar containing, for each processor, the grid (NEWS) coordinates
of the processor a specified distance away along each dimension of the geometry of the
current VP set.

SYNTAX

grid-relatlvell &rest relative-coord-pvars

ARGUMENTS

relative-coord-pvars

RETURNED VALUE

Integer pvars. SpecifY relative distance along each dimension of
the current VP set.

address-object-pvar

SIDE EFFECTS

Temporary address-object pvar. In each active processor, contains
an address object with the absolute grid (NEWS) coordinates of the
processor specified by relative-coord-pvars.

The returned pvar is allocated on the stack.

DESCRIPTION

This function is equivalent to

(grid! ! (+! ! integer-pvar-O (self-address-grid!! (! ! 0)))

(+! ! integer-pvar-1 (self-address-grid!! (! ! 1)))
(+! ! integer-pvar-2 (self-address-grid!! (! ! 2)))
...)

Version 6.1, October 1991 385

grid-relative I!
II un m In Rlmi f1 1m H 2!1 f1 !!f2P

,REFERENCES

See also the related operations

386

address-nth address-nth I I

address-plus
address-plus-nth
address-rank
grid
selfl!

address-plusll
address-plus-nth II

address-rankll
grid I!

*Lisp Dictionary
Ni ii1:Plrr

c
Version 6,1, October 1991

*Lisp Dictionary help
~; i! [I!!ill 1m r ~ mWWfM 1 mili mWl Iltwmw~ 'I Ri' .iWWi.tMW*WW~$OOl!§ffi~~wr.ww.OOl%M~ ThlWM

help [Function]

Prints out a brief description of a *Lisp symbol.

SYNTAX

help &optlonal symbol

ARGUMENTS

symbol

RETURNED VALUE

nil

SIDE EFFECTS

*Lisp symbol. Symbol about which to print description.

Evaluated for side effect only.

Prints a brief description of the supplied symbol, or, if no symbol is supplied, a mes­
sage describing where to fmd information about *Lisp.

DESCRIPTION

When given no argument, help prints a message describing where to fmd information
about *Lisp. When given a symbol defmed by the *Lisp language, help prints informa­
tion about the symbol, including whether it is a function, a macro, a function defmed
by *defun, or a variable, and whether the symbol is new as of Connection Machine
System Software Version 5.0.

Version 6.1, October 1991 387

*If *Lisp Dictionary
Emf 11 HIP F r n FT lilf? m 11 !mlfJ[IIlFTlli!!12IP! WIiR! !PIIII!;; mIT!! nwn

*if [Macro]

Evaluates *Lisp forms with the currently selected set bound according to the logical value
of a pvar expression.

SYNTAX

*If test-pvar then-form &optlonal else-form

ARGUMENTS

test-pvar

then-form

else-form

Pvar expression. Selects processors in which to evaluate
then-form and else-form.

Pvar expression. Evaluated with the currently selected set
restricted to those processors for which the value of test-pvar is
not nil.

Pvar expression. If supplied, evaluated with the currently selected
set restricted to those processors in which the value of test-pvar
is nil.

RETURNED VALUE

nil Evaluated for side effect only.

SIDE EFFECTS

Temporarily restricts the currently selected set during the evaluation of then-form and
else-form.

DESCRIPTION

388

This operator is analogous to the Common Lisp conditional if, with two essential dif­
ferences. Both then-form and else-form are evaluated - in mutually exclusive sets of
processors. Also, unlike Common Lisp's If, the *If macro returns no values and is
executed only for its side effects.

Version 6.1, October 1991

/

*Lisp Dictionary *if
~.1 !J: I f ilmW: n:n~:::::::::::]: ':11WilmU' rum n 11!111!TIT:N I :IfUWiW 1: 1 Hili [mr

The then-form argument is evaluated with the currently selected set bound to those
processors in which test-pvar evaluates to a non-nil value. The optional else-form
argument is evaluated with the currently selected set bound to those processors in
which test-pvar evaluates to a nil value.

EXAMPLES

(*defvar winners)
(*defvar losers)
(*if (zerop!! (random!! (!! 100»)

(*set winners (!! 1»
(*set losers (!! 1»)

Important: Even if no processors are selected by test-pvar, both then-form and else­
form are evaluated.

(setq a 5 b 7)
(*if nil!! (setq a 7) (setq b 5»
a => 7
b => 5

In many cases, the macros *If and if II can be used interchangeably. For example, these
two expressions are equivalent, although in this case the latter expression is preferred
as being more concise:

(*if (evenp!! data-pvar)
(*set bit-pvar (!! 1»
(*set bit-pvar (!! 0»)

<=>
(*setbit-pvar (if!! (evenp!! data-pvar) (!! 1) (!! 0»)

As with all processor selection operators, calls to *if may be nested. Each call to *If

subselects from the currently selected set, whether the selected set is the entire set of
processors attached, or a subset selected by an enclosing operator. For example,

(*defvar result (!! 0»
(*if (evenp!! (self-address!!»

(*if (zerop!! (mod!! (self-address!!) (!! 4»)
(*set result (!! 4»
(*set result (!! 2»)

(*set result (!! 1»)
(ppp result) => 4 1 2 1 4 1 2 1 4 1 ...

Version 6.1, October 1991 389

*if *Lisp Dictionary
r n [nnlm 11 I f In mUllin f1Il II InH f I Ill5lHl En

NOTES
Usage Note:

Forms such as throw, return, return-from, and go may be used to exit an external block
or looping construct from within a processor selection operator. However, doing so will
leave the currently selected set in the state it was in at the time the non-local exit form
is executed. To avoid this, use the *Lisp macro with-css-saved. For example,

(block division
(with-css-saved

(*if (>!! y (!! 0»
(if (*or (=!! (!! 0) x»

(return-from division nil)
(/ !! y x»»)

Here return-from is used to exit from the division block if the value ofx in any proces­
sor is zero. When the wlth-css-saved macro is entered, it saves the state of the
currently selected set. When the code enclosed within the with-css-saved exits for any
reason, either normally or via a call to a non-local exit operator like return-from, the
currently selected set is restored to its original state.

See the dictionary entry for with-css-saved for more information.

Style Note:

As with the Common Lisp if operator, if no else-form is present, it is stylistically better
to use the *when operator. Additionally, if the test-pvar is of the form

(*if (not!! test) ...

it is preferable to use the *unless operator, as in

(*unless test ...

REFERENCES

390

The *Lisp operator if II behaves exactly like *If, but returns a pvar based on the evalua­
tion of its arguments. See the dictionary entry for If I I for more information.

See also the related operators
*all

*ecase

*case

ecasell

casell

*unless

*cond

*when

condll

with-css-saved

Version 6.1, October 1991

(

*Lisp Dictionary
~::!!

·fll I ..

ml! i ilil ~ll 1M
ifll

i Ii II nun:: !mliEil!

[Macro]

Returns a pvar obtained by evaluating *Lisp forms with the currently selected set bound
according to the logical value of a pvar expression. .

SYNTAX

Ifli test-pvar then-form &optional else-form

ARGUMENTS

test-pvar

then-form

else-form

RETURNED VALUE

then-else-pvar

SIDE EFFECTS

Pvar expression. Selects processors in which to evaluate then­
form and else-form.

Pvar expression. Evaluated with the currently selected set
restricted to those processors for which the value of test-pvar is
not nil.

Pvar expression. If supplied, evaluated with the currently selected
set restricted to those processors in which the value of test-pvar
is nil. Defaults to nilli.

Temporary pvar. Contains the value of then-form in all active pro­
cessors where test-pvar evaluates to a non-nil value. Contains the
value of else-form in all other active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This operator is analogous to the Common Lisp conditional if, with one essential differ­
ence. Both then-form and else-form are evaluated, in mutually exclusive sets of
processors.

Version 6.1, October 1991 391

ifll *Lisp Dictionary
1 iii IliUl R 1 liB [li m8m! Tlil!lf iii [lng n f Ullnl

The then-form argument is evaluated with the currently selected set bound to those
processors in which test-pvar evaluates to a non-nil value. The optional else-form
argument is evaluated with the currently selected set bound to those processors in
which test-pvar evaluates to a nil value.

The ifll macro returns a pvar that contains the value of then-form in all processors in
which test-pvar is non-nil, and the value of else-form in all processors in which test­
pvar is nil.

(if!! question-pvar yes-pvar no-pvar) <=>

(*let (result)
(*when question-pvar (*set result yes-pvar»
(*unless question-pvar (*set result no-pvar»
resul t)

EXAMPLES

392

An example that demonstrates the usefulness ofifl! is the following function to take the
absolute value of a pvar:

(defun my-abs!! (pvar)
(if!! (>!! pvar (!! 0»

pvar
(-!! pvar»)

Important: Even if no processors are selected by test-pvar, both then-form and else­
form are evaluated. For example,

(setq a 5 b 7)
(if!! nil!!

(progn (setq a 7) (!! 0»
(progn (setq b 5) (!! 1») => (!! 1)

a => 7
b => 5

In many cases, the macros *if and Ifll can be used interchangeably. For example, these
two expressions are equivalent, although in this case the latter expression is preferred
as being more concise:

(*if (evenp!! data-pvar)
(*set bit-pvar (!! 1»
(*set bit-pvar (!! 0»)

(*set bit-pvar (if!! (evenp!! data-pvar) (!! 1) (!! 0»)

Version 6.1, October 1991

*Lisp Dictionary IfII
IT 11 I 1 1 1 111m 1 fffflUlIffff (1111 R I nil llinlUUmn ! lUll In n lf1l1lfn 111m I 1 lR

As with all processor selection operators, calls to Ifli may be nested. Each call to IfII
subselects from the currently selected set, whether the selected set is the entire set of
processors attached, or a subset selected by an enclosing operator. For example,

(*defvar result (!! 0»

(*set result
(if!! (evenp!! (self-address!!»

(if!! (zerop!! (mod!! (self-address!!) (!! 4»)
(!! 4)
(!! 2»

(!! 1»

(ppp result) => 4 1 2 1 4 1 2 1 4 1 .••

REFERENCES

The *Lisp operator *If behaves exactly like Ifll, but does not return a pvar. See the
dictionary entry for *1' for more information.

See also the related operators
*all
*case
*cond

*ecase
*unless
wlth-css-saved

Version 6.1, October 1991

casell
condll

ecasell
*when

393

imagpartll *Lisp Dictionary
IT IT Ii! Mil 1 i !l m 1m! Inl! F! IT ! 1111 .! E 1 r IIfll lilln

imagpart!! [Function]

Extracts the imaginary component from a complex pvar.

SYNTAX

imagpartll numeric-pvar

ARGUMENTS

numeric-pvar Numeric pvar. Pvar from which imaginary component is
extracted.

RETURNED VALUE

imagpart-pvar Temporary numeric pvar. In each active processor, contains the
imaginary component of the corresponding value of numeric-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns a temporary pvar containing in each processor the imaginary
component of the complex value in numeric-pvar. Note that numeric-pvar need not
be explicitly a complex-valued pvar. Non-complex values are automatically coerced
into complex values with a zero imaginary component. Note that you can apply *setf

to an Imagpartll call to modify the imaginary component of a complex numeric pvar.

REFERENCES

See also these related complex pvar operators:
absll cis II
conjugatell phasell

394

compJexll
realpartll

Version 6.1, October 1991

*Lisp Dictionary *incf
~oom!k~W~~@lt:mwmMMMWifi*'1r%m'W@i@tw\WiMWA%WMMmlllllM[f~@Wi%%W'*'fuWi%%'~'W'/dW4#Wm

*incf [Macro]

Destructively increments each value of the supplied pvar.

SYNTAX

*incf numeric-pvar &optional value-pvar

ARGUMENTS

numeric-pvar

value-pvar

RETURNED VALUE

nil

SIDE EFFECTS

Pvar expression. Pvar to be incremented.

Numeric pvar. Amount to add to numeric-pvar. Defaults to
(II 1).

Evaluated for side effect.

Destructively increments each value of pvar by the corresponding value of value-pvar.

DESCRIPTION

Increments each element of pvar by the corresponding value of value-pvar. The
value-pvar argument defaults to (/11).

EXAMPLES

(*incf count-pvar (!! 3»

Version 6.1, October 1991 395

*Incf
m \II! til II:: Ii ill! iii I I in:: ! 1

NOTES
Usage Note:

A call to the *Incf macro expands as follows:

(*incf data-pvar (!! 4»
==>

(*setf data-pvar (+!! data-pvar (!! 4»)

*Lisp Dictionary
11 N !

For this reason, the numeric-pvar must be a modifiable pvar, such as a permanent,
global, or local pvar. It is an error to supply a temporary pvar as the numeric-pvar to
*Incf.

REFERENCES

396

See also the related macro *decf.

The function 1+11 can be used to non-destructively perform a addition by 1 on its argu­
ment pvar. See the dictionary entry on 1+/1 for more information.

Version 6.1. October 1991

I

\..

*Lisp Dictionary initialize-character
m un :"j i lWl : Ii: j .: lWlIWt l· !Ii! r Ii! 11: U! w: II: I ! 1_m::::IW:r:11I lWliiiiii~ i .

initialize-character [Function]

Sets bit widths of *Lisp character attributes. If used, must be called prior to calling *cold­

boot.

SYNTAX

Inltlallze-character &key :code :blts :font :front-end-p :constantp

ARGUMENTS

:code Integer. Number of bits to allocate for code attribute.

: bits Integer. Number of bits to allocate for bits attribute.

:font Integer. Number of bits to allocate for font attribute.

:front-end-p Boolean value. Whether to directly copy character attribute
widths used on the front end.

:constantp Boolean value. Asserts whether or not the supplied values will
remain constant for every succeeding call to *cold-boot. Used for
optomization purposes by the *Lisp compiler.

RETURNED VALUE

nil Evaluated for side effect only.

SIDE EFFECTS

Sets the values of the following global variables:

• *char-bits-Iength

• *char-bits-limit

• *char-code-length

• *char-code-limit

• *char-font-length

Version 6.1, October 1991 397

Inltlallze-character *Lisp Dictionary
:::! HUH:: : j Emil I:: ?II Imur :1 : 1!l ::

• *char-font-limlt

• *character-length

• *character-llmit

Determines whether the *Lisp compiler will assume that the bit widths of *Lisp char­
acter fields do not change.

DESCRIPTION

398

This function sets the values of the *Lisp character attributes, which are stored in
global character variables. The Inltlalize-character function must be called before
*cold-boot is invoked, because these attributes are set when the machine is cold booted,
not when the call to Initialize-character is made.

The keywords :code, :bits, and :font take integer values specifying how many bits will
be allocated for each attribute of any character pvar. The defaults are :code 8, :bits 4,

and :font 4.

The value for :code must be greater than or equal to 7.

The value for :bits must be greater than O.

The value for :font must be greater than or equal to O.

The keyword :front-end-p takes either t or nil as a value, defaulting to nil. It determines
whether character pvar attribute widths should be copied from the format being used
on the front end machine. If :front-end-p is t, the global character variables are set to
match the character storage format of the front end machine.

The keyword :constantp takes a boolean value. This is used to assert whether or not the
sizes of character attributes will remain constant across execution sessions. The *Lisp
compiler uses this distinction to choose between producing compiled code that uses the
global character variables and producing compiled code that substitutes hard coded
values for these variables. Code compiled with :constantp t will run reliably only when
the character attributes are the size specified at compile time. Code compiled with
:constantp nil need not be recompiled to operate reliably with different character attrib­
ute sizes.

Version 6.1, October 1991

*Lisp Dictionary InltiallztH:haracter l1li_ ;-; nrl ~ IliIml! I mil:! II illlImlml: III ; II II :1!11111l illfui 11m! 1111' I:" II!noom.m

REFERENCES

For a discussion of Lisp character attributes, see the Characters chapter of Common
Lisp: The Language.

See also the Connection Machine initialization function *cold-boot.

See also the initialization-list functions add-lnitlalization and delete-Initialization.

See also the related character pvar attribute operators:
char-bltll char-bitsll char-codell
char-fontll set-char-bitll

Version 6.1, October 1991 399

Int-charll
I I II? 1 ! i

int-charll

T IIMI I
*Lisp Dictionary

PHI! r

[Function]

Converts the supplied integer pvar into an character pvar.

SYNTAX

Int-charll integer-pvar

ARGUMENTS

integer-pvar Integer pvar. Pvar to be converted.

RETURNED VALUE

character-pvar Temporary character pvar. In each active processor, contains the
character corresponding to the value of i1'f,teger-pvar.

SIDE EFFECTS

The returned pvar is allocate4 on the stack.

DESCRIPTION

400

This function is the converse of char-lntll. It converts an integer pvar into a character
pvar. The return value is a character pvar which, if given to char-intll, will return
integer-pvar.

The argument integer-pvar must be a non-negative integer pvar.

The Int-charll function relies on the Conneqtion Machine system's encoding of charac­
ters. Results obtained from this function should not be expected to conform to results
obtained from the Common Lisp function Int-char run on front-end machines.

Version 6.1, October 1991

\,

*Lisp Dictionary Int-charll
II! mill 11M iiRl nmm ? I1IfRi n IEllnl1lllll!M HI 1111 n !il lRirr:1I1I!!mII!RiITnl mimi Ii iill!

REFERENCES

See also the related character/integer pvar conversion operators:
char-cod.II char-lntll code-charll
dlglt-charll Int-charll

Version 6.1, October 1991 401

Integer-frorn-gray-codell *Lisp Dictionary
!lnillR !!I!!I!! m 1m! !!11m I!j I 12 I 7 l!! r n 7: mW!1' !111f

i nteger-from-gray-code II [Function]

Performs a parallel conversion from Gray code values to integers on the supplied pvar.

SYNTAX

Integer-frorn-gray-codell gray-code-pvar

ARGUMENTS

gray-code-pvar Integer pvar. Gray code value to be converted to a non-Gray­
coded integer.

RETURNED VALUE

integer-pvar Temporary integerpvar. In each active processor, contains the inte­
ger value corresponding to the Gray code value in integer-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function treats each component of the argument pvar as a Gray-coded integer and
converts it to a non-Gray-coded integer. The gray-code-pvar argument should contain
unsigned integers.The function returns a pvar containing the unsigned results. Binary
reflected Gray code is used.

REFERENCES

See also the related function gray-code-from-integerll.

402 Version 6.1, October 1991

/

\

*Lisp Dictionary *integer-length
mmm! l:mioomm:::_ii!%mWi*~~_~~=~'W & _@%iill~.&l··:: :&

*integer-Iength [*Defun]

Determines the minimum bit-length needed to represent every value of an integer pvar.

SYNTAX

*integer-Iength integer-pvar

ARGUMENTS

integer-pvar

RETURNED VALUE

integer-length

SIDE EFFECTS

None.

DESCRIPTION

Integer pvar. Pvar for which minimum bit-length is determined.

Scalar integer. Minimum bit-length needed to represent every value
of integer-pvar.

This returns a scalar value that is the minimum bit-length needed to represent every
integer value contined in integer-pvar. If no processors are selected, this function
returns O.

REFERENCES

See also the related global operators:
*and

*Ioglor

*mln

*xor

Version 6.1. October 1991

*Iogand

*Iogxor

*or

*max

*sum

403

Integer-lengthll
nIl 1:21illlill] :11111:111:1 ill III; 111 gil 'W : linn.,,,] q f g;

*Lisp Dictionary
1

integer-length II [Function]

Determines in parallel the minimum bit-length needed to represent each value of an integer
pvar.

SYNTAX

Integer-iengthlJ integer-pvar

ARGUMENTS

integer-pvar

RETURNED VALUE

length-pvar

SIDE EFFECTS

Integer pvar. Pvar for which minimum bit-lengths are determined.

Temporary integerpvar. In each active processor, contains the mini­
mum bit-length needed to represent the corresponding value of
integer-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

404

This function determines, in each processor, the number of bits required to represent
that processor's component of integer-pvar; it returns a non-negative integer pvar con­
taining the results.

Version 6.1, October 1991

!

\

*Lisp Dictionary integer-length I I
! !! %)li.!~;:r;= T $%)liMft1:n:: "~~iWW:m;wwtWcl%~ .%®0

EXAMPLES

For example,

(integer-length!! (! ! 0)) <=> (! ! 0)

(integer-length!! (! ! 1)) <=> (! ! 1)

(integer-length!! (! ! 3)) <=> (! ! 2)
(integer-length!! (! ! 4)) <=> (! ! 3)
(integer-length! ! (! ! 7)) <=> (!! 3)
(integer-length! ! (! ! -1)) <=> (! ! 0)
(integer-length! ! (! ! -4» <=> (! ! 2)
(integer-length!! (! ! -7» <=> (! ! 3)
(integer-length!! (! ! -8» <=> (! ! 3)

Version 6.1. October 1991 405

Integer-reverse I I *Lisp Dictionary
!til I U!!!i!!·

integer-reverse II [Function]

Returns a pvar containing a bit-reversed copy of the values of the supplied integer pvar.

SYNTAX

integer-reversell integer-pvar

ARGUMENTS

integer-pvar

RETURNED VALUE

reversed-pvar

SIDE EFFECTS

Integer pvar. Pvar containing values to be reversed.

Temporary integerpvar. In each active processor, contains a copy of
the corresponding value of integer-pvar with the bits reversed,
high-order exchanged with low-order and vice versa.

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns an integer pvar of the same type and length as the argument. The
result pvar contains a bit-reversed copy of integer-pvar's bits, treated as an unsigned
integer. The high-order bits become the low-order bits and vice versa.

NOTES

Usage Note:

406

This function relies on the internal representation of pvars in the Connection Machine
system and therefore cannot work in the *Lisp simulator.

Version 6.1, October 1991

(

/

\.

~I

integerpll
II ~r !iiI~))!j!! :Ii r~lfM;j .IT! jj!!~liM®m~{%(@

integerp!! [Function]

Performs a parallel test for integer values on the supplied pvar.

SYNTAX

integerpll pvar

ARGUMENTS

pvar

RETURNED VALUE

integerp-pvar

SIDE EFFECTS

Pvar expression. Pvar to be tested for integer values.

Temporary boolean pvar. Contains the value t in each processor
where pvar contains an integer value. Contains the value nil in all
other active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function integerp.

REFERENCES

See also these related pvar data type predicates:
booleanpll

floatpll

numberpll

typepll

Version 6.1, October 1991

characterpll

front-end-pll

string-char-pll

complexpll

structurepll

407

Isqrtll *Lisp Dictionary
81; n If 1 fill n 111 11 !11m HI fm IIIf II f I I l[r ~l

isqrtll [Function]

Calculates in parallel the square root of the supplied integer pvar.

SYNTAX

Isqrtll integer-pvar

ARGUMENTS

integer-pvar

RETURNED VALUE

isqrt-pvar

SIDE EFFECTS

Integer pvar. Must contain only non-negative values. Pvar for
which the square root is calculated.

Integer pvar. In each active processor, contains the square root of
the corresponding value of integer-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function Isqrt.

408 Version 6.1, October 1991

/
\

*Lisp Dictionary
amOO!mil~IW:;"%f""

lemll
wtffi"~lmfiWl_~.l&Jm%; ;"@W)%$l" 00!iW00!iW1&'~" ;;7

Icmll [Function]

Computes in parallel the least common multiple of the supplied integer pvars.

SYNTAX

lemll integer-pvar &rest integer-pvars

ARGUMENTS

integer-pvar, integer-pvars
Integer pvars. Pvars for which LCM is to be calculated.

RETURNED VALUE

lcm-pvar Temporary integer pvar. In each active processor, contains the least
common multiple of the corresponding values of the integer-pvars.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The function lemll takes one or more integer-pvars and computes, in each processor,
the least common multiple of the values of the integer-pvars in that processor. It
always returns a non-negative integer pvar. Specifically:

• If one argument is given, its absolute value is returned in each processor.

• If two arguments are given, the lem of the two pvar components is returned in

each processor.

• If three or more arguments are given, the behavior is:

(lcm!! abc ... z) == (lcm!! (lcm!! ab) c ... z)

• If one or more arguments (component values) are zero, then the result is zero.

Version 6.1, October 1991 409

lemll *Lisp Dictionary
IT 1 II! n I I 2111111n HI nliIllllil mE!! I liIll! PI:::::I!

• For two arguments that are not both zero, the behavior is:

(lem!! a b) <=>
(trunea te!! (abs!! (* !! a b)) (ged!! a b))

(

410 Version 6.1, October 1991

*Lisp Dictionary Idb!!
!fW.iiilliilraWWW(iKlWMll~iM;m**;ml***i&b*$?~~~%%O/lM%M(i;miW%l"\'1;m@i',",*:wr6WtMi@i$l@W~~$W~iOOJ

Idbll [Function]

Extracts a byte in parallel from the supplied pvars.

SYNTAX

Idbll bytespec-pvar integer-pvar

ARGUMENTS

bytespec-pvar Byte specifier pvar, as returned from bytell. Determines position
and size of byte in integer-pvar that is extracted.

integer-pvar Integer pvar. Integer from which byte is extracted.

RETURNED VALUE

byte-pvar Temporary integerpvar. In each active processor, contains a copy of
the byte of integer-pvar specified by bytespec-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The function Idbll is similar to the function load-byte!! and is the parallel equivalent
of the Common Lisp function Idb. The bytespec-pvar specifies a byte of integer-pvar
to be extracted. The result is returned as a non-negative integer pvar. The following
forms are equivalent.

(load-byte!! integer-pvar position-pvar size-pvar)

<=>
(ldb!! (byte!! size-pvar position-pvar) integer-pvar)

~rsion 6.1, October 1991 411

Idbll *Lisp Dictionary
r n r Ii :lf1IlMl1I1lmK II m:lllnHIIU::i HrE n !I!!U ~iIIII1if!rH;11I1 .fE::· 1'1111

REFERENCES

412

See also these related byte manipulation operators:
byte" byte-positionll
deposit-byte II

Idb-testll
deposit-fieldU
load-bytell

byte-sizell
dpbU
mask-fieldU

Version 6.1, October 1991

(

\

*Lisp Dictionary Idb-testll
~; . %@1tJ~~;:: WWlmli!!m :1 :m!!:r::! ::11 i:m:m.~:::m::n llmlt 2;g _

Idb-testll [Function]

Tests in parallel whether a specified byte is non-zero in the supplied integer pvar.

SYNTAX

Idb-testll bytespec-pvar integer-pvar

ARGUMENTS

bytespec-pvar Byte specifier pvar, as returned from bytell. Determines position
and size of byte in integer-pvar which is tested.

integer-pvar Integer pvar. Integer in which byte is tested.

RETURNED VALUE

byte-test-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor in which the byte of integer-pvar specified by bytespec-pvar is
non-zero. Contains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function is a predicate test and the parallel equivalent of Idb-test. It returns t in
those processors where the byte field of integer-pvar specified by bytespec-pvar is
non-zero. Elsewhere, it returns nil.

REFERENCES

See also these related byte manipulation operators:
bytell byte-position!l

deposit-bytell deposit-fieldll

Idbll load-byte II

Version 6.1, October 1991

byte-slzell

dpbll

mask-field I I

413

least-negative-float!!, least-positive-f1oatll *Lisp Dictionary
:: :n l!!mm.111 ~jml 1 !~~ww.:; .. ,;;: WiiM'mMMr#i····· R::ndn*~~

least-negative-float! !
least-pos itive--fl oat! ! [Function]

Return a pvar containing the negative/positive floating-point value closest to zero in the
fonnat of the supplied floating-point pvar.

SYNTAX

least-negative-f1oatll jloating-point-pvar
least-posltlve-f1oatll jloating-point-pvar

ARGUMENTS

jloating-point-pvar
Floating-point pvar. Detennines fonnat of returned pvar.

RETURNED VALUE

least-neglpos-pvar Temporary floating-point pvar. In each active processor, contains
the negative/positive floating-point value closest to zero and
representable in the same fonnat as the corresponding value ofjloa­
ting-point-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

414

This function returns a floating-point pvar with the same fonnat (single or double pre­
cision) as the argument jloating-point-pvar. In each processor, the returned value is
the negative (or positive) floating point number closest to zero in the floating-point
fonnat of jloating-point-pvar.

Version 6.1, October 1991

(

'""

*Lisp Dictionary least-negatlve-f1oatll,least-posltive-fJoatll
~~%WW\m.rn.J!lWJW%i! !@Meli! Ei .M!W\>'M ! 1 1112 n_~m!; 1 iiI!!;: mnlI: TI1jIilI[!I! 1 f illlllli! Ilf

EXAMPLES

The argument jloating-point-pvar may be any floating point pvar of the required
format. For example,

(least-negative-float!! (!! 0.0» <=> (!! -1. 1754944e-38)

(least-positive-float!! (!! 0.0» <=> (!! 1.1754944e-38)

The same result would be obtained with any single-precision floating-point pvar
argument.

REFERENCES

See also these related floating-point pvar limit functions:
f1oat-epsilonll

negative-f1oat-epsllonll

Version 6.1, October 1991

most-negative-f1oatll most-posltive-f1oatll

415

lengthll
mi!!!I I ! mil! nUllRl1i

lengthll

*Lisp Dictionary
mml11 1!lIlmR 11 111 I 11111111 fliillmJllJifUf llfTIHIIIUilUllllRmmlm 1i111l!lli1 Ii! n

[Function]

Returns a pvar containing the lengths of the sequences in the supplied pvar.

SYNTAX

lengthll sequence-pvar

ARGUMENTS

sequence-pvar Sequence pvar. Pvar containing sequences for which lengths are
determined.

RETURNED VALUE

length-pvar Temporary integer pvar. Contains in each active processor the
length of the sequence in sequence-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

416

This function returns a positive integer pvar containing in each processor the number
of elements in the corresponding sequence of sequence-pvar.

The argument sequence-pvar must be a vector pvar. The pvar returned by length II

holds the same value in each processor. The following forms are equivalent:

(length!! sequence-pvar)
<=>
(!! (*array-total-size sequence-pvar»

Version 6.1. October 1991

/

*Lisp Dictionary
mnw I I1111! lIm 1m!! § III W!]I j

NOTES
Compiler Note:

I ! I! II r g n ! I::: f i I II II iii

The *Lisp compiler does not compile this operation.

REFERENCES

See also these related *Lisp sequence operators:
copy-seql! *fill

*nreverse
subseql!

reducell reversell

See also the generalized array mapping functions amapl! and *map.

Version 6.1, October 1991

length II
HI I II"! I

417

·Iet, ·Iet· *Lisp Dictionary
1111 i n Iii nUl f 1· mml!!ffii2R:! II Ii i jj mE: I !I i ii

*Iet, *Iet* [Macro]

Allocate local pvars that exist only during the evaluation of a set of forms.

SYNTAX

·Iet*(&rest var-descriptors)
&optlonal declarations
&body body

ARGUMENTS

var-descriptors A series of local pvar descriptors. Each descriptor can be either a
list of the form (symbol pvar-expression) to specify a local pvar
with an initial value, or just symbol to specify a local pvar without
an initial value.

The var-descriptor components symbol and pvar-expression are described below.

symbol Symbol to which the corresponding local pvar is bound.

pvar-expression Pvar expression. Defmes initial value of local pvar.

declarations Optional type declaration forms.

body *Lisp forms. Evaluated with the specified bindings in effect.

RETURNED VALUE

last-form-value Returns value oflast body form evaluated. May be either a pvar or a
front-end value. If a local pvar is returned, it becomes a temporary
pvar.

SIDE EFFECTS

Allocates the specified local pvars on the stack during the evaluation of the body forms.

418 Version 6.1, October 1991

*Lisp Dictionary *Iet, *Iet*
!l!.il !l'ImW.~I~.@l.illWMWil@i.ilmIIW*MlWa;%llll%.V'dilil%~*<%W&AWll.W~%WiWli@ri%Mg1iW%m'Wdilil%aw%W%Wm

DESCRIPTION

The *Iet macro is used to allocate local pvars that exist only during the evaluation of
a series of *Lisp forms. The *Iet* macro behaves identically to *Iet except that, as with
Common Lisp's let* form, variable descriptors are evaluated in sequence, so that the
value bound to each variable can be used in defining the values of succeeding vari­
ables.

The first argument of a call to *Iet must be a list containing any number of local pvar
descriptors. Each descriptor can be a list consisting of a symbol that will name the local
pvar, followed by a pvar-expression that will be used to initialize the pvar. Optionally,
if no pvar-expression is required, the descriptor may be abbreviated to just the symbol.

The following call to *Iet illustrates the two possible var-descriptor forms:

(*let (no-init ;;; this local pvar isn't initialized
(inited (!! 0») ;;; this pvar is initialized to 0

(*set no-init inited)
no-init) => (!! 0)

The *Iet macro expects its first argument to be a list of pvar descriptors; even if no local
pvars are defmed, an empty list must be provided as the first argument to *Iet.

(*let ()
(*!! (self-address!!) (!! 5»)

The declarations argument can be any number of *Lisp declaration forms. These
forms can include, but are not limited to, type declarations for the local pvars defmed
by the variable descriptors of the *Iet.

Local pvars survive only for the extent of the supplied body forms, but may be
accessed and modified by any functions these forms call. In other words, the symbols
defmed by the *Iet macro have lexical scope (as in Common Lisp), whereas the pvars
themselves have dynamic extent that terminates when the *Iet form is exited.

The *Iet macro returns the value of the last form of body. If a local pvar is returned as
the value of the *Iet, it becomes a temporary pvar and its contents should be copied into
another pvar. The *Iet macro is not able to return multiple values.

Version 6.1, October 1991 419

*Iet, *Iet*
en I 1 I i IT m! l1lU I nW·lf11 iii I:fmllllilii::I1I!::nm·; II,;

*Lisp Dictionary
II IT· if

EXAMPLES

420

This *Iet example ''rolls'' a pair of dice in each processor and returns the maximum roll
value obtained in all processors as a single front~end value.

(*let «die1 (1+!! (random!! (!! 6»»
(die2 (1+!! (random!! (!! 6»»)

(declare (type (field-pvar B) die1 die2»
(*max (+!! die1 die2»)

This *Iet* example does the same thing. Notice that the value of the local pvar dice-roll
depends on the values of the previously defined local pvars die1 and die2.

(*let* «die1 (1+!! (random!! (!! 6»»
(die2 (1+!! (random!! (!! 6»»
(dice-roll (+!! diel die2»)

(*max dice-roll»

Here is a call to *Iet that defines only one local pvar. Note that the first argument to this
*Iet call is still a list of lists.

(*let «local-pvar (!! 3»)
(*!! local-pvar (!! 5»)

The *Iet macro expects its first argument to be a list of local pvar descriptors. This
expression would not work, for example, if it was mistakenly written as

(*let (local-pvar (!! 3»
(*!! local-pvar (!! 5»)

;;; Error: Not a list of lists

The *Iet macro is also able to allocate local pvars without initial values. In the following
example, the pvars x and y are not initialized by the *Iet operator.

(*let (x
y
(scratch-pvar (!! 0»)

(declare (type string-char-pvar x y»
(*set' x (get-first-data-pvar»
(*set y (get-second-data-pvar»
(operate-on-pvars x y scratch-pvar»

The contents of uninitialized local pvars such are not defmed until values have been
stored into them by an operator such as *set, as in the above example. It is an error to
attempt to reference the contents of an unintialized pvar before its values have been
defmed in this way. For example, the following expression is in error, and its returned
value is not defmed:

(*let (x)
(declare (type single-float-pvar x»
(pref x 0» ;;; Error: value of x has not yet been defined

Version 6.1, October 1991

/

\.

*Lisp Dictionary *Iet, *Iet*
:.I! i : 1[!lH II! IIII 11 1 !1!!1:::::!RnI!!W:: n lim*, 111 u:m.\ll!~t$A!! I! iii i.WF n ;;;:0 i iin!iT I

In general it is wise to declare the pvars allocated by *Iet. This allows the *Lisp compil­
er to compile expressions involving those pvars. Here is the die-rolling example with
dle1 and dle2 declared:

(*let «diel (1+!! (random!! (!! 6»»
(die2 (1+!! (random!! (!! 6»»)

(declare (type (field-pvar 8) diel die2»
(*max (+!! diel die2»)

The length of a local pvar allocated by *Iet may be determined at run time.
For example:

(*let «processor-address (self-address! I»~)
(declare

(type (field-pvar *current-send-address-length*)
processor-address»

This type of declaration insures that pvars are defined efficiently, with the exact bit­
size that is required.

A more complex type declaration example is provided by the following defmition:

(defun make-me-a-float (type)
(let «s (if (eq type : single) 23 52»

(e (if (eq type :single) 8 11»)
(*let «my-float (!! 0.0»)

(declare (type (pvar (defined-float s e» my-float»
my-float»)

This function returns a floating point pvar of either single or double precision,
depending on the value of its type argument.

Array pvars can be allocated on the *Lisp stack by declaring them appropriately from
within a *Iet or a *Iet* form. However, when allocating an array using *Iet or *Iet*, it is
wise to explicitly declare the type of the pvar because undeclared pvars that have held
any other type of data cannot hold arrays.

Version 6.1, October 1991 421

*Iet, *Iet* *Lisp Dictionary
~~Wl W1jW:::W1Wl W2~ ___ 1 mlRmlllmlf_mml: MfMlm7~~Fmi!lWImr::J1%WiWl n l fml%llllifii:: URI II ::1:1 tTl f2iii 11 nil! i !!1m!:::::

422

Here are some examples of the creation of local array pvars:

(*let (foo)
(declare (type (pvar (array single-float (3 3») fool)
(*setf (aref!! foo (!! 0) (!! 1» (!! 2.3»
(aref (pref foo 0) 0 1)
)

=> 2.3

(*let «bar (make-array!! '(3 3 3)
:element-type ' (pvar boolean)
:initial-element t)

»
(declare (type (pvar (array boolean (3 3 3») bar»
(ppp bar : end 1)
)

=>
#3A(«T T T) (T T T) (T T T»

«T T T) (T T T) (T T T»

«T T T) (T T T) (T T T»)

It is possible to allocate array pvars whose dimensions are known only at run time. A
properly constructed array pvar type declaration within a *Iet or a *Iet* form is used. The
dimensions specification of the declaration may be given in one of two ways:

• A list of dimension values, (x y z), may be given, such that x, y, and z each

evaluate to integers at run time.

• A variable may be named. Its value at run time must be a list of integers.

For example:

(defun make-2d-array-pvar (x y)
{*let (temp-array)

{declare (type (pvar (array single-float (x y»)
temp-array))

temp-array))

Here,· the formal parameters x and y are bound to specific values upon invocation of
make-2d-array. The dimensions of temp-arrayare then determined upon execution of
the form.

Any array pvar declaration form expects a list of integers specifying array dimensions.
Consider the following two function defmtions:

Version 6.1, October 1991

*Lisp Dictionary
~g m ! I ii!mWl!!: Im!!!!!8m !!I!I • !: Him 2 ij I 1H & ; 1m UC WI I I II!

*Iet, *Iet*
q

(defun good-make-array-pvar (input-scalar-array)
(let «dims (array-dimensions input-scalar-array»)

(*let (temp)
(declare (type (pvar (array single-float dims» temp»
temp»)

(defun bad-make-array-pvar (input-scalar-array)
(*let (temp)

(declare (type (pvar (array single-float
(array-dimensions input-scalar-array»)

temp))
temp))

The bad-make-array-pvar function defInition is in error because it places the fonn
(array-dimenslons Input-scalar-array) inside the declare fonn. The declaration should
instead contain a list of integer dimensions or a symbol bound to such a list.

The good-make-array-pvar function defInition works properly because the symbol
dims is bound to a list of integers, the result of evaluating (array-dimensions
input-scalar-array), outside of the declare fonn. The symbol dims is then supplied to
the declare fonn, which, when executed, fInds dims properly bound to a list of integers.

NOTES
The pvar-expression fonns used to initialize local pvars are evaluated in the currently
selected set in effect outside the *Iet fonn, even if operators such as *all or *when are
used in the body of the *Iet fonn to change the currently selected set.

The *Iet fonn (*let «x nil» ...) will not perfonn scalar promotion on the
nil initialization fonn, because supplying nil as an initialization fonn indicates that the
pvar x should not be initialized. The proper way to create a local pvar with nil in every
processor is: (*let «x nil!!» ...)

REFERENCES
See also the pvar allocation and deallocation operations

allocate!!

*defvar
typed-vector! I

array/!

front-endll

*deallocate

Iet
vectorll

See also the *Lisp predicate allocated-pvar-p.

Version 6.1, October 1991

*deallocate-*defvars

make-arrayll

II

423

let-vp-set *Lisp Dictionary
1 I i !l 1 in 11 W ! 1 I: 11 R 1 IT r m

let-vp-set [Function]

Creates a temporary VP set that exists only during the evaluation of a set of forms.

SYNTAX

let-vp-set (vp-set-name vp-set-creation-form) &body body

ARGUMENTS

VJrset-name Symbol to which the temporary VP is bound.

vp-set-creation-form
VP set expression. Defmes temporary VP set.

body *Lisp forms. Evaluated with vp-set-name bound to the VP set.

RETURNED VALUE

last-form-value Returns value oflast body form evaluated.

SIDE EFFECTS

Allocates the specified VP set during the evaluation of the body forms, then deallocates
it, using deallocate-vp-set.

DESCRIPTION

424

This macro creates a temporary VP set that may be used only within the supplied body
forms. The symbol vp-set-name is bound to the VP set object returned by vp-set­
creation-form, which should be either a call to create-vp-set or a form that makes such
a call. The body forms are then executed. Finally, deallocate-vp-set is called to deallo­
cate vp-set-name and the form is exited.

The returned value of let-vp-set is the value of the last form in body.

Version 6.1, October 1991

*Lisp Dictionary let-vp-set
B!III!!i!!! !ilni~_.! ! _I1U!! Ii ! m ~! Im!!!I!!!]!II!!! !!1

EXAMPLES

(progn
(let-vp-set (temp-cube (create-vp-set ' (32 32 32»)

(*with-vp-set temp-cube
(*let «thoughts (!! 5»

(random (random!! (!! 10»»
(declare (type (field-pvar 8) thoughts random»
(*set thoughts (*!! random thoughts»»)

(format t "Now the temp-cube vp-set no longer exists"»

Notice that the temporary VP set created by a let-vp-set form must be explicitly
selected with a *wlth-vp-set form before it is used. Notice also that the temp-cube VP

set is deallocated upon exit of the let-vp-set.

REFERENCES

See also the following VP set definition and deallocation operators:
def-vp-set

deallocate-def-vp-sets

create-vp-set

deallocate-vp-set

See also the following flexible VP set operators:
allocate-vp-set-processors

deallocate-vp-set-processors

set-vp-set-geometry

allocate-processors-for..Jtlp-set

deallocate-processors-for-vp-set

with-processors-allocated-for-vp-set

These operations are used to select the current VP set:
set-vp-set *with-vp-set

See also the following VP set information operations:
dlmension-size

descrlbe-vp-set

vp-set-dlmenslons
vp-set-total-slze

Version 6.1. October 1991

dimension-address-length

vp-set-deallocated-p

vp-set-rank
vp-set-vp-ratio

425

*lIght
!

*light

*Lisp Dictionary
!Ii: !!!! II! II II!! 121112111111111 II: Ii;! liIlI!i[111m:! 111 1!1

[*Defun]

Sets the pattern displayed on the front panel LEOs.

SYNTAX

*light boolean-pvar

ARGUMENTS

boolean-pvar Boolean pvar. Determines pattern displayed on front panel LEOs.

RETURNED VALUE

nil Evaluated for side effect only.

SIDE EFFECTS

Sets front panel LEOs based on the value of the supplied boolean-pvar.

DESCRIPTION

426

This function provides control of the patterns displayed on the front-panel LEOs.

Each LEO is connected to sixteen processors with sequential send addresses. The *lIght

function affects only those LEOs for which all sixteen processors are selected. Each
LEO is turned on if all of its corresponding sixteen processors contain the value nil in
boolean-pvar, and turned off if any processor is non-nil. The state (lit/unlit) of the
remaining (unselected) LEOs is unchanged.

Version 6.1, October 1991

(
.~

*Lisp Dictionary
~Mi§~\!!1.m I !!m~m I;). 1m]!;]!;. II

NOTES

Usage Note:

:: I I: .. III!
*lIght

I. ; II liID; II II I w.oo

Before using the *Ilght function, it is necessary to call the Paris function CM:set­

system-Ieds-mode with an argument of nil to disconnect the LEDs from their normal
processor monitoring mode, in which each LED is turned on whenever any of the six­
teen processors to which that LED is connected are active.

Version 6.1, October 1991 427

*lisp *Lisp Dictionary
rmrlij)jj!l!1! ::021 g : II! r: Nt 111! :: I !lUn:llfil n IN iii mil I _ 11 !1m

*lisp [Function]

Switches between user and *lIsp packages.

SYNTAX

*lIsp &optional select-*lisp

ARGUMENTS

select-*lisp Boolean value or the keyword :toggle. If supplied, determines
which package is selected. If not, defaults to :toggle.

RETURNED VALUE

None. Returns no values.

SIDE EFFECTS

Changes the value of *package*.

DESCRIPTION

428

The function *lIsp makes switching the current package from user to *lisp and back
again easy. It should be called only at top level. The select-*lisp argument determines
which package is selected. A value of t sets the current package to *lIsp. A value of nil

sets the current package to user. The keyword :toggle, the default, toggles between the
user and *lisp packages.

Version 6.1, October 1991

- ,

_/

~
\

EXAMPLES

Called with an argument of :toggle, the default, the function *lisp toggles the current
package between the user and *lIsp packages:

(in-package 'user)

(*lisp : toggle)
Default package is now *LISP.

(*lisp) ;;; :toggle is the default
Default package is now USER.

An argument of t forces selection of the *lisp package, and an argument of nil forces
selection of the user package:

(in-package ' user)

(*lisp t)
Default package is now *LISP.

(*lisp t)
Default package is now *LISP.

(*lisp nil)
Default package is now USER.

(*lisp nil)
Default package is now USER.

NOTES

Editorial Note:

The *lisp function was written by William R. Swanson, who also compiled and edited
the *Lisp Dictionary.

Version 6.1, October 1991 429

Iist-of-active-processors *Lisp Dictionary
1m!!!!! nmmllmmm!!1! iRl j ! ! r . : :111 ! @;I :m1!WI!!I!IH I Ifill: :Iml IE 1111111 11111 ; III

list-of-active-processors [Function]

Returns list containing the send addresses of all active processors.

SYNTAX

Iist-of-active-processors

ARGUMENTS

Takes no arguments.

RETURNED VALUE

send-address-list List of integers. Send addresses of all active processors.

SIDE EFFECTS

None.

DESCRIPTION

This simply returns a list of the send addresses of all the currently selected processors.
The order of this list is not specified. This function could be written as:

(defun my-list-of-active-processors ()
(let ((return-list nil»

(do-for-selected-processors (processor)
(push processor return-list»

(nreverse return-list»)

REFERENCES

430

See also the defmition of loap, a predefined alias for IIst-of-actlve-processors, and the
looping operator d~for-selected-processors.

Version 6.1, October 1991

(

(."

/

*Lisp Dictionary Iist-of-active-processors
IT ElIl1ll11 I H! r Ii mlll1Ullllllflll1P r VI 11111111 1l1li :EI1 [I!IH HI III I:: : j 11121111111 I: ! '~

See also the related processor selection operators
*all
*If If II

*case casell
*cond condll
*ecase ecasell
*unless *when
wlth-css-saved

Version 6.1. October 1991 431

load-bytell *Lisp Dictionary
$" nlllUlilill II til II!!II!JF ngl lIII n 1 n!!ll I uun 11ImmlfHHHl HI MI! I !

load-byte I I [Function]

Extracts a byte in parallel from the supplied integer pvar.

SYNTAX

load-bytell integer-pvar position-pvar size-pvar

ARGUMENTS

integer-pvar

position-pvar

size-pvar

Integer pvar. Pvar from which byte is extracted.

Integer pvar. Bit position, zero-based, of byte of integer-pvar to
extract.

Integer pvar. Bit size of byte to extract.

RETURNED VALUE \

pyte-pvar Temporary integer pvar. In each active processor~ contains the byte
of integer-pvar specified by position-pvar and size-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

432

The function load-bytell extracts a byte in parallel from the supplied integer-pvar.

In each processor~ this function extracts a byte from the value of integer-pvar~ of size
in bits specified by size-pvar and starting at the position specified by position-pvar
(position 0 corresponds to the least significant bit)~ The following forms are equiva­
lent:

(load-byte!! integer-pvar position-pvar size-pvar)
<=>
(ldb!! (byte!! size-pvar position-pvar) integer-pvar)

Version 6. J. October J 99 J

"'Lisp Dictionary load-bytell
1m!! II!!!!! !!I mill II I 11! III 1II!!IIIi I mllmlll 11 1Ilm; Till ilIlII 11! lUi IIliAI: I I :: Il1 !!11m II 1!1 I III I 1 i!1iiiiiii!lIi11Pil!il

EXAMPLES

In any processor in which zero bits are extracted, the resulting field contains zero. Out­
of-range bits are treated as zero for positive integers, and one for negative integers. For
example,

NOTES

(load-byte!! (!! 1) (!! 2) (!! 3»
(load-byte!! (!! -1) (!! 2) (!! 3»

Usage Note:

<=> (!! 0)

<=> (!! 7)

This operation is especially fast when both position-pvar and size-pvar are constants,
as in

(load-byte!! data-pvar (!! 2) (!! 3»

REFERENCES

See also these related byte manipulation operators:
bytell byte-positlonll
deposlt-bytell
Idbll

Version 6.1, October 1991

deposit-field II

Idb-testll

byte-slzell
dpbll
mask-fieldll

433

loap *Lisp Dictionary
i i niH i U1WIII121R11 UJH!1II1I l1iHl1lU III!! II 11 !1I!11i1!11111111! milllN Imll! UlIlm!1 ::111m IRIll1iWD11 TIl I !~

loap [Macro]

Returns list containing the send addresses of all active processors.

SYNTAX

loap

ARGUMENTS

Takes no arguments.

RETURNED VALUE

address-list List of integers, representing the send addresses of all of the active
processors.

SIDE EFFECTS

None.

DESCRIPTION

This macro is an alias for IIst-of-active-processors.

434 Version 6.1, October 1991

*Lisp Dictionary *Iocally
~~1;;'iiiii~1; 1._ml.' iml!::r~,!I[;I::!!iBl.B:::: 1'IIIIIIe::::' :

*Iocally [Macro]

Provides the *Lisp compiler with declarations that remain in effect for the duration of a
body form.

SYNTAX

*Iocally declaration-l declaration-2 ... declaration-n &body body

ARGUMENTS

declaration-n Declaration forms.

body *Lisp forms. Compiled with the specified declarations in effect.

RETURNED VALUE

last-form-value Returns value of last body form evaluated.

SIDE EFFECTS

None.

DESCRIPTION

This macro is used to provide declarations for the *Lisp compiler. The declarations
declaration-l through declaration-n are used by the compiler for the body of the body
form. A *Iocally declaration must be a declare form. Any valid compositions of declare

may be used within a *Iocally form, including optimize and *optimize forms.

The *Lisp compiler's code walker largely eliminates any need to use the "'locally opera­
tor. See Chapter 4, "*Lisp Type Declaration," for a description of this feature and of
other operators that should be used instead of *Iocally.

Version 6.1. October 1991 435

*Iocally *Lisp Dictionary
lii]m!!!! i2lfllllijjjm1l Eiimmmr mill ~11 m II cm 111 i IiImwrmm ! Ii i Ii H mill emil I iMlilliM limn ! 1 1 II ,mum 2R if

EXAMPLES

436

A simple example of the use of *Iocally is

(setq allocated-pvar
(allocate!! (!! 0.0) nil ' single-float-pvar»

(*locally
(declare (type single-float-pvar allocated-pvar»
(*let (result-pvar)

(*set allocated-pvar (random!! (!! 10.0»»
(dotimes (i 3)

(*incf result-pvar allocated-pvar»)

in which allocated-pvar is declared to be of type single-float-pvar.

An example of the use of *Iocally in a function definition is

(defun *locally-test (j)
(*locally

(declare (type fixnum j»
(*let (temp)

(declare (type (unsigned-byte-pvar 32) temp»
(*set temp (!! j»
(ppp temp :end 8»»

The use of *Iocally in this function declares the type of the scalar argument j, allowing
this function to execute more efficiently in both interpreted and compiled form.

(*locally-test 1.0)
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The following example displays many of the locations in which *Iocally can be used to
provide a localized declaration.

(*cold-boot :initial-dimensions ' (8 4»

(*proclaim ' (type single-float-pvar result-pvar»
(*defvar result-pvar)

(defun *locally-example (result)
(*locally

(declare (type single-float-pvar result»
(do-for-selected-processors (j)

(*locally
(declare (type fixnum j»
(flet

«local-pvar-function (x)
(*locally

(declare (type single-float-pvar x result»
(declare (*optimize (safety 0»)

Version 6.1, October 1991

'~

*Lisp Dictionary *Iocally
ww~~w~[m!~jj!~!!!~!i=iI~;m~;i!I~!i~:~j:=: ~~i!~!i~~$k~;m~m:~!'m~~~~N~NWN:~:lmM$r=$*~~=~==N@~::i=iOO=~N::wm«~NN1 mt%~mtml11~r~~r==ii$!ii~I~~~N~~

(*set result (+!! x (!! j»)
»)

(dotimes (i *number-of-processors-limit*)
(*locally

(declare (type fixnum i»
(*let «temp (*!! (+!! (float!! (!! i» (!! j»

(sin!! (!! j»»)
(declare (type single-float-pvar temp»
(local-pvar-function temp)
»»»»

(*locally-example result-pvar)

(ppp result-pvar :end 6)
5.94665 5.94665 5.94665 5.94665 5.94665 5.94665

REFERENCES

See also the related *Lisp declaration operators:
*proclaim unproclaim

See also the related type translation function taken-as!l.

See also the related type coercion function coercell.

Version 6.1, October 1991 437

logll *Lisp Dictionary
imfliiiil IMI!!HRlIIl !iRilfi!! lUg Ii W 1m 1 !II! m:m IT i ! i : I !II: :12111: 1 JIll! 11M

logll [Function]

Takes the logarithm of the supplied pvar.

SYNTAX

logll numeric-pvar &optional base-pvar

ARGUMENTS

numeric-pvar

base-pvar

Numeric pvar. Pvar for which logarithm is calculated.

Numeric pvar. If supplied, detennines base in which logarithm is
calculated. Defaults to base of natural logarithms.

RETURNED VALUE

/og-pvar Numeric pvar. In each active processor, contains logarithm of the
corresponding value of numeric-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function returns the logarithm of the argument numeric-pvar in the base
base-pvar. If base-pvar is absent, the natural logarithm is returned.

The argument numeric-pvar must be either a non-negative floating-point pvar or a
non-negative integer pvar. The argument base must be a positive, non-complex
number pvar.

EXAMPLES

(log!! (!! 4) (!! 2» <=> (!! 2.0)

438 Version 6.1, October 1991

*Lisp Dictionary
oommm! :!!In!! ill !

NOTES

; we ; 1::::1 mimI! 1m rUff m; 1lfrfrrliP
log II

P C;;;:;:W.I!il!

The function logll will never return a complex pvar as its result unless numeric-pvar
is complex, or is coerced into complex form by use of the functions complexll or
coercell, as shown below.

(log! ! (coerce!! (!! -1) '(pvar (complex single-float»»

<=>
(log!! (complex!! (!! -1.0»)

<=>
(!! #C(O.O 3.1415927»

Version 6.1, October 1991 439

*Iogand *Lisp Dictionary
min i I III! !II!! r m f ! I II 11! U ! IU!I!lmi!li 1 II!! ! m W 1 11! I 111m E!IIIII!llnlliiiJ

*Iogand [*Defun]

Returns bitwise logical AND of all values in the supplied integer pvar.

SYNTAX

*Iogand integer-pvar

ARGUMENTS

integer-pvar Integer pvar. Pvar for which logical AND is calculated.

RETURNED VALUE

logand-integer Integer. Bitwise logical AND of all values in integer-pvar.

SIDE EFFECTS

None.

DESCRIPTION

This returns a Lisp value that is the bitwise logical AND of the contents of integer-pvar
in all selected processors. This returns the Lisp value -1 if there are no selected proces­
sors.

EXAMPLES

440

(*logand (!! 7» => 7
(*when nil!! (*logand (!! 7») => -1
(*logand (if!! (evenp!! (self-address!!»

(!! 6)

(!! 3») => 2
(*logand (!! 0» => 0

Version 6.1, October 1991

*Lisp Dictionary
jilllI:Ilmlllm J I 1i!11! I f i I mill !!IR!I!!I !!!Im 2RJnffnllllllfi!! lil2I11Inlili

REFERENCES

See also the related global operators:
*and
*Ioglor
*mln
*xor

*Integer-length
*Iogxor
*or

See also the related logical operators:
and II notll

Version 6.1, October 1991

orll

j[j Illmnall lilm!! IIIn:lm II In

*max
*sum

xorll

*Iogand
mmlil!! !

441

log{op}1I *Lisp Dictionary
mllI~~r m!imI%11mlll00!~~71iiWrn IWIIJi1!l!f ~HmUl%1UmE Illl1Q llMi =m=mmmliWrliffI!lliOOf' Ul) ! WT IT' i .;; QI!IliI!Ili 11" .t1N' P" i: W

logandll, logandc111, logandc211, logeqvll,
logiorll, lognandll, lognorll, lognotll,
logorc111, logorc211, logxorll [Function]

Perform parallel bitwise logical operations on the supplied integer pvars.

SYNTAX

lognotll integer-pvar

logandll &rest integer-pvars
logeqvll &rest integer-pvars
loglorll &rest integer-pvars
logxorll &rest integer-pvars
logandclll integer-pvar 1 integer-pvar2
logandc211 integer-pvar 1 integer-pvar2
lognandll integer-pvar 1 integer-pvar2
lognorll integer-pvar 1 integer-pvar2
logorc111 integer-pvar 1 integer-pvar2
logorc211 integer-pvar 1 integer-pvar2

ARGUMENTS

integer-pvar(s) Integer pvars. Combined using bitwise logical operations.

RETURNED VALUE

logand-pvar

SIDE EFFECTS

Temporary integer pvar. In each active processor, contains the bit­
wise logical combination of the supplied integer-pvars.

The returned pvar is allocated on the stack.

DESCRIPTION

These functions perform logical bitwise operations on their arguments.

442 Version 6.1, October 1991

/

*Lisp Dictionary log(op}! I
ll1!11i1I1I:::::::W.milmmaw. iii!! Imr:mmi,:w;n.~mim~! ... Tm!~~ Hi· 'mx: %mll!m i 1: : : f~!mnt :::: iT: ii1 !~

The logical operation performed by each *Lisp function is:

Bitwise logical AND
Bitwise logical AND, with integer-pvar-l complemented
Bitwise logical AND, with integer-pvar-2 complemented
Bitwise logical equivalence
Bitwise logical inclusive OR
Bitwise logicalNAND
Bitwise logical NOR
Bitwise logical NOT

log and II

logandclll

logandc211

logeqvll

logiorll

lognandll

lognorll

lognotll

logorc111

logorc211

logxorll

Bitwise logical inclusive OR, with integer-pvar-l complemented
Bitwise logical inclusive OR, with integer-pvar-2 complemented
Bitwise logical exclusive OR

For functions that accept any number of integer-pvar arguments, the value returned if
no pvars are provided is (11-1) for logandll and logeqvll, (II 0) for logiorll and logxorll.

EXAMPLES

(logand! ! (! ! 7) (! ! 7)) <=> (! ! 7)
(logand! ! (! ! 7) (! ! 3)) <=> (! ! 3)
(logand! ! (! ! 7) (! ! 6) (! ! 3)) <=> (! ! 2)
(logand! ! (! ! 7) (! ! 0)) <=> (! ! 0)

(logandc1! ! pvar1 pvar2)
<=> (logand! ! (lognot! ! pvar1) pvar2)

(logandc2! ! pvar1 pvar2)
<=> (logand! ! pvar1 (lognot! ! pvar2))

(logeqv! ! (! ! 7) (! ! 7» <=> (! ! -1)
(logeqv! ! (! ! 7) (! ! 3}) <=> (! ! -5)

(logeqv! ! (! ! 7) (! ! 6) (! ! 3» <=> (! ! 2)
(logeqv! ! (! ! 7) (! ! O)} <=> (! ! -8)

(logior! ! (! ! 0» <=> (! ! 0)
(logior! ! (! ! 7) (! ! 7» <=> (! ! 7)
(logior! ! (! ! 7) (! ! 3» <=> (! ! 7)
(logior! ! (! ! 4) (! ! 1) (! ! 0)) <=> (! ! 5)

(lognand!! pvar1 pvar2)
<=> (lognot!! (logand!! pvar1 pvar2»

(lognor!! pvar1 pvar2)
<=> (lognot!! (logior!! pvar1 pvar2})

(logorc1!! pvar1 pvar2)
<=> (logior!! (lognot!! pvar1) pvar2)

(logorc2!! pvar1 pvar2)
<=> (logior!! pvar1 (lognot!! pvar2»

Version 6.1, October 1991 443

log{op}1I *Lisp Dictionary
1I1111i 111:1:111 Ii 1111 ml!!:!li J im I !~m; 1E ;; f: EWiI ffi ;; ! 1m g ii n n· ! :It! !IIDrlli lllIamJiIil In!lm g ;!iIliIiIl1IH::i jj

(lognot! ! (! ! -1)) <=> (! ! 0)

(logxor! ! (! ! 7) (! ! 7)) <=> (! ! 0)
(logxor! ! (! ! 1) (!! 3) (!! 4)) <=> (! ! 6)
(logxor! ! (! ! 0) (! ! 1) (! ! 2) (! ! 4)) <=> (! ! 7)

NOTES

Usage Note

444

Like Common Lisp, *Lisp concentually represents integer pvars as having infinitely
many bits, that is, *Lisp sign extends the 1 or a 0 sign bit of an integer pvar as many
bits as needed. This means that performing lognot!l on a non-negative integer pvar will
result in a signed integer pvar with negative values:

(*proclaim ' (type (field-pvar 2) x»)

(*defvar x 1)

(ppp (lognot!! x) :end 4)
-2 -2 -2 -2

Attempting to perform

(*set x (lognot!! x»

will not work because x has been declared unsigned, and the call to lognotll will return
a signed integer pvar, which ·set would then attempt to copy back into the unsigned
integer pvar x.

To do an ''unsigned'' lognotll, try something like this:

(*set x (load-byte!! (lognot!! x) 0 xlen»

where xlen is the original length of x, in bits.

Version 6.1, October 1991

*Lisp Dictionary
mImE! II .rell ::ml!::::m H ; m: 11E I III! II U i! n mill!!! fi!! i I!! i1U2H1 !

logbltpll
HmIIiil 11m :::::::0 111111 I :: mil'

logbitpll [Function]

Tests in parallel whether a specified bit of the supplied integer pvar is set.

SYNTAX

logbltpll index-pvar integer-pvar

ARGUMENTS

index-pvar Integer pvar. Index, zero-based, of bit to be tested.

integer-pvar Integer pvar. Pvar on which parallel bit test is perfonned.

RETURNED VALUE

logbitp-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor where the bit in integer-pvar specified by index-pvar is set
(equal to 1). Contains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This predicate function tests in parallel whether a specified bit of the supplied integer
pvar is set. In each processor, logbitpll examines the bit specified by index-pvar in the
value of integer-pvar, where 0 specifies the least significant bit. The returned pvar has
the value t wherever the selected bit is a one-bit; otherwise it has the value nil.

(logbitp!! index-pvar byte-pvar)
<=>

(plusp!! (ldb!! (byte!! index-pvar (!! 1» byte-pvar»

Version 6.1. October 1991 445

logcountll *Lisp Dictionary
iIIH11li1 Ullli]1[1 nli iii IRI r < Hi il 1 wrw::: lOOt

logcountll [Function]

Detennines in parallel the number of set bits in an integer pvar.

SYNTAX

logcountll integer-pvar

ARGUMENTS

integer-pvar Integer pvar. Pvar in which set bits are counted.

RETURNED VALUE

bitcount-pvar Integer pvar. In each active processor, contains the number of set
bits in the corresponding value of integer-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This function detennines, in each processor, the number of one-bits in that processor's
value of integer-pvar and returns a non-negative integer pvar containing the result. If
the component of intege~-pvar is positive, then the one-bits in its binary representation
are counted. If the component of integer-pvar is negative, then the zero-bits in its
two's-complement binary representation are counted.

EXAMPLES

446

(ppp (logcount!! (self-address!!») =>
o 1 1 2 122 3 1 2 2 3 2 334 .

(logcount!! (!! 7» <=> (!! 3)

Version 6.1, October 1991

\

(,
,

"\

*Lisp Dictionary
llmM:::: : r: L~~fllI!!i1 1:1~11B I Iii! III lin H !!m;

*Iogior

ill !!!lnlHIl
*10910r

t U :;I!

[*Defun]

Returns bitwise logical inclusive OR of all values in the supplied integer pvar. :

SYNTAX

*109ior integer-pvar

ARGUMENTS

integer-pvar Integer pvar. Pvar for which logical inclusive OR is calculated.

RETURNED VALUE

logior-integer Integer. Bitwise logical inclusive OR of all values in integer-pvar.

SIDE EFFECTS

None.

DESCRIPTION

This returns a Lisp value that is the bitwise logical inclusive OR of the contents of
integer-pvar in all selected processors. This returns the Lisp value 0 if there are no
selected processors.

EXAMPLES

(*logior (!! 7» => 7
(*when nil!! (*logior (!! 7») => 0
(* logior (if!! (evenp!! (self-address!!»

(!! 6)
(!! 3») => 7

(*logior (!! 0» => 0

Version 6.1, October 1991 447

*I09lor *Lisp Dictionary
fa 11 lIll r min 121 I III !lil 1 . Ii F f 9 !If? a "119m Iilml!! !II II 1112

I

REFERENCES ~

See also the related global operators:
*and *integer-length *Iogand
*Iogxor *max
*min *Qr *sum
*xor

See also the related logical operators:
and II notll orll xorll

/

/
I

\.

448 Version 6.1, October 1991

*Lisp Dictionary logtestll
Elii!!!1! !! il! II ~!! ! 11 H n milmlil!1lUllmUII!! inn r : HI H r !!In I n n!l!li Ed 1111 11 i!Jj II iRll!l!l

logtestll [Function]

Performs a parallel test on the supplied integer pvars for bits which are set in both pvars.

SYNTAX

logtestll integer-pvar 1 integer-pvar2

ARGUMENTS

integer-pvar 1, integer-pvar2
Integer pvars. Tested in parallel for bits set in both pvars.

RETURNED VALUE

logtest-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor where the values of integer-pvar 1 and integer-pvar2 contain
corresponding bits that are set in both pvars. Contains nil in all other
active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This predicate function is true in each processor where any of the one-bits in
integer-pvar 1 is also a one-bit in integer-pvar2. The behavior is:

(logtest!! pvarl pvar2)
<=>

(not!! (zerop!! (logand!! pvarl pvar2»)

Version 6.1, October 1991 449

*Iogxor
En 1 fI r f [mm iii

*Iogxor

gil j) III!

·Lisp Dictionary
I I llfifllli1! 111If1ii fii mPH! n j i Wi ! ! mfifmm 1m IT

[*Defun]

Returns bitwise logical XOR of all values in the supplied integer pvar.

SYNTAX

*Iogxor &rest integer-pvar

ARGUMENTS

intege1'-pvar Integer pvar. Pvar for which logical inclusive XOR is calculated.

RETURNED VALUE

logxor-integer Integer. Bitwise logical inclusive XOR of all values in integer-pvar.

SIDE EFFECTS

None.

DESCRIPTION

This returns a Lisp value that is the bitwise logical exclusive OR of the contents of
integer-pvar in all selected processors. This returns the Lisp value 0 if there are no
selected processors.

EXAMPLES

450

(*let «test (!! 0»)
(*setf (pref test 0) 1)
(*setf (pref test 1) 2)
(*setf (pref test 2) 4)
(*logxor test»

=> 7

Version 6.1, October 1991

/
.\.

"'Lisp Dictionary
! II ~w:m: :n! 1!! IT ! 1m: I WI! ! 1!::E::rWlIE HlP;; . mu m i?

REFERENCES

See also the related global operators:
*and

*Ioglor
*mln

*xor

*Integer-length

*max

*or

See also the related logical operators:
andll notll

Version 6.1, October 1991

orll

*Iogxor
WlW)j '1 m::! . 11m!! ['1m ww!n;;;;;~

*Iogand

*sum

xorll

451

lower-case-pll *Lisp Dictionary
ililillil! H W:!IIIIIIIII!!!!l!: mr:: 111: ilml ! il!ilj ! Ii !lin: I ~ !

lower-ease-pll [Function]

Performs a parallel test for lowercase characters on the supplied pvar.

SYNTAX

lower-case-pll character-pvar

ARGUMENTS

character-pvar Character pvar. Tested in parallel for lowercase characters.

RETURNED VALUE

lowercasep-pvar Temporary boolean pvar. Contains the value t in each active proces­
sorwhere the corresponding value of character-pvaris a lowercase
alphabetic character. Contains nil in all other processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

452

This predicate returns a pvar that has the value t in each processor where the supplied
character-pvar contains a lowercase character, and the value nil in all other processors.

Version 6.1, October 1991

(
I

\

"

/

*Lisp Dictionary make-arrayll
W!€ -:::.1 i1flRl ?Iilt':lm!nl! ::r; iiWmrml';;; ~;: ill k~Tln@~ ! ><~

make-arrayll [Function]

Creates and returns an array pvar.

SYNTAX

make-arrayll dimensions &key :element-type :initial-element

ARGUMENTS

dimensions

:element-type

:Initial-element

RETURNED VALUE

array-pvar

SIDE EFFECTS

Integer, or list of integers. Dimensions of array pvar.

Common Lisp or *Lisp type specifier. Specifies data type of
elements, and must be supplied.

Scalar or pvar value. If supplied, determines initial value of array
elements.

Temporary array pvar with the specified dimensions. Data type and
initial contents are as specified by the :element-type and :Initial­

element arguments.

The returned pvar is allocated on the stack.

DESCRIPTION

The function make-arrayll returns an array pvar on the *Lisp stack.

The dimensions argument is either a single non-negative integer or a list of non­
negative integers. Each integer must be less than *array-dimenslon-limit. If a list of
dimensions is given, the length of the list must be less than *array-rank-limit. The
product of all dimensions must be smaller than *array-total-size-limit.

Version 6.1, October 1991 453

make-arrayll
fIi!

*Lisp Dictionary
H!iIH!WI : 1 i

Any valid fixed-size Common Lisp type or pvar type of ftxed size may be specified as
the value of :element-type. It is an error to not provide an :element-type argument
when calling make-arrayll.

The value of :initial-element may be either a front-end scalar or a pvar. If it is a scalar,
the function" is used to convert it to a constant pvar. In either case, make-arrayll stores
the value of initial-element in each processor into each element of the corresponding
array. If initial-element is not specified,· the contents of the newly created array are
undefmed.

Unlike its Common Lisp counterpart, make-arrayll does not support the following key­
word parameters: :initlal-contents, :adJustable, :fill-polnter, :displaced-to, and
:dlsplaced-lndex-offset.

EXAMPLES

(*defvar new-array-pvar)
(*set new-array-pvar

(make-array!! '(2 2 2)
:element-type '(complex single-float)
:initial-element #c(S.3 0.0»)

(aref (pref new-array-pvar 0) 0 1 0) => #C(S.3 0.0)

A pvar consisting of a three-dimensional array containing single-precision complex
numbers in each processor is defmed and bound to the symbol new-array-pvar. The
value (II 5.3) is *set into new-array-pvar so that, in all active processors, each array
element is initialized. An arbitrary array reference in processor 0 verifies the presence
of an initial pvar array element value.

REFERENCES

454

See also the pvar allocation and deallocation operations
allocate II arrayll

*deallocate
front-endll
typed-vectorll

*deallocate-*defvars

*Iet
vectorll

*defvar

Iet

II

Version 6.1, October 1991

*Lisp Dictionary make-charll
~~.mJOl n ~'m''WWl~ 11 HIM; : II HI aMl!iimll!M;?!Cm:m I!I m: mi ::! r II: En: I I

make-chari I [Function]

Creates and returns a copy of a character pvar with modified bits and font attributes.

SYNTAX

make-charll character-pvar &optional bits-pvar font-pvar

ARGUMENTS

character-pvar

bits-pvar

font-pvar

RETURNED VALUE

char-pvar

SIDE EFFECTS

Character pvar. Determines code attribute of returned character
pvar.

Integer pvar. If supplied, determines bits attribute of returned
character pvar. Defaults to (II 0).

Integer pvar. If supplied, determines font attribute of returned
character pvar. Defaults to (II 0).

Character pvar. In each active processor, contains a copy of the cor­
responding va~ue of character-pvar, with bits and font attributes as
specified by bits-pvar and font-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

This function attempts to construct a character pvar with the same code attribute as
character-pvar and with the bits and font attributes specified by the optional bits-pvar
andfont-pvar arguments. In processors where this can be done, the resulting character
is returned. In processors where this can not be done, nil is returned.

~rsion 6.1, October 1991 455

make-charll
RlIIUIIi lieu 11111111I11III115 I !JlIIlI II mnlle II Ii!! 7 III 11lml

REFERENCES

*Lisp Dictionary
: m In I MI U nn un ru nUl r mI

See also the related character pvar constructor characterll.

See also the related character pvar attribute operators:
char-bltll char-bitsll char-codell
char-fontn Inltlallze-character set-char-bitll

456 Version 6.1, October 1991

/

*Lisp Dictionary *map
!11m !iii T til [1m [!!II I m;m i!!!~ I f I II: !I1mmllfllUm: . .Immu: ! i! Mi\!!lll : 11 1111 :::m.1Sm

*map [Function]

Maps a function in parallel over the supplied array pvars.

SYNTAX

*map operator &rest array-pvars

ARGUMENTS

operator Symbol or functional object. Function to be applied.

array-pvars Array pvars. Pvars containing arrays thatfimction is mapped over.

RETURNED VALUE

nil Evaluated for side effect only.

SIDE EFFECTS

None other than those of the supplied jUnction.

DESCRIPTION

The *map function maps the supplied operator over the supplied array pvars. The
operator is applied in turn to each set of elements having the same row-major index
in the supplied array-pvars. Thus, the nth time jUnction is called, it is applied to a list
containing the nth element in row-major order from each of the array-pvars.

The *Lisp function *map is similar to the Common Lisp function map, but while map

works only on vectors, *map works on any type of array pvar.

For vectors, *map behaves much like map in accepting vector pvar arguments of differ­
ent element sizes and in limiting the mapping operation to the length of the shortest
vector pvar supplied. For all other types of array pvars, however, *map expects the
array sizes of the supplied array-pvars to be identical.

Version 6.1, October 1991 457

*map *Lisp Dictionary
If· lli'JllwnrHl1ff1 !m1l!!!1!? I un r ! IT : I : I :: : I

EXAMPLES

Suppose we have two matrices and we wish to add the two matrices together element
by element, multiplying the result of the addition by a constant, and storing the overall
result back in the []fst matrix. This can be accomplished by

(*proclaim ' (type (pvar (array single-float (3 3»)
matrix1 matrix2»

(*defvar matrix1
(!! #2A«1.0 2.0 3.0) (4.0 5.0 6.0) (7.0 B.O 9.0»»

(*defvar matrix2
(!! i2A«3.0 2.0 1.0) (6.0 5.0 4.0) (9.0 B.O 7.0»»

(defun *map-example (single-float-constant)
(declare (type single-float single-float-constant»
(*map

i' (lambda (element1 element2)
(declare (type single-float-pvar elementl element2»
(*set element1 (*!! (+!! element1 element2)

matrix1
matrix2
»

(*map-example 2.0)

(pref matrix1 0)

(!! single-float-constant»»

=> i2A«B.0 B.O B.O) (20.0 20.0 20.0) (32.0 32.0 32.0»

REFERENCES

See also the related function amapll.

458 Version 6.1, October 1991

(

*Lisp Dictionary mask-field! I
wmtW1i 1 i:'WltW1Will;i!M,wW!:al:amlililoomwt Ii I :awn];i·j j r _~'@iW!WE

mask-field I I [Function]

Copies a bit field in parallel from the supplied integer pvar.

SYNTAX

mask-field!! bytespec-pvar integer-pvar

ARGUMENTS

bytespec-pvar

integer-pvar

RETURNED VALUE

newbyte-pvar

SIDE EFFECTS

Byte specifier pvar, as returned from bytell. Determines position
and size of bit field in integer-pvar which is copied.

Integer pvar. Integer from which bit field is copied.

Temporary integer pvar. In each active processor, contains an inte­
ger that agrees with the corresponding value of integer-pvar in the
bit field specified by bytespec-pvar, and has zero bits elsewhere.

The returned pvar is allocated on the stack.

DESCRIPTION

The function mask-field II is the parallel equivalent of the Common Lisp function
mask-field. It is similar to Idb!!; however, the result contains, for each processor, the
byte of integer-pvar that is in the position specified by bytespec-pvar, rather than in
position 0 as with Idb!!. The newbyte-pvar result therefore agrees with integer-pvar
in the byte specified, but has zero bits everywhere else.

Version 6.1, October 1991 459

mask-field I I *Lisp Dictionary
III lIIijoo:mm::: q ! 111111 IU IUIIIII:1I r H" m 1 q!1 II! Dill Ii!! !1 I ff Qf . I n: 111111111 I 2Ii

The following forms are equivalent:

(mask-field (byte!! size-pvar pos-pvar) bits-pvar)
<=>

(logand!! bits-pvar
(dbp!! (!! -1) (byte!! size-pvar pos-pvar) 0»

REFERENCES

460

See also these related byte manipulation operators:
bytell byte-positionll
deposit-byte II

Idbll
deposit-field II

Idb-test!!

byte-slzell
dpbll
load-bytell

Version 6.1, October 1991

/ ,

(
'",-

*Lisp Dictionary *max
iimm jji !I! Mil!!!!! [I l!ii!!_m:!![if !!nlWflmIjj 11!1 jj !51[jlllm!!l:::rllilU!$iil If 11 If! i:::WI::r!m!!lli1iW~ ! f

*max [*Defun]

Returns the maximum numeric value contained in the supplied pvar.

SYNTAX

*max numeric-pvar

ARGUMENTS

numeric-pvar

RETURNED VALUE

max-value

SIDE EFFECTS

None.

DESCRIPTION

Numeric pvar. Pvar for which maximum value is determined.

Scalar value. Maximum numeric value contained in the numeric­
pvar.

This returns a scalar value that is the maximum of the contents of numeric-pvar in all
selected processors. This returns the Lisp value nil if there are no selected processors.

EXAMPLES

(*max (mod!! (self-address!!) (!! 5») <=> 4

REFERENCES

See also the related global operators:
*and
*Ioglor

Version 6.1, October 1991

*Integer-length
*Iogxor

*Iogand
*min

*or
*sum

*xor

461

maxll
11 IWRlm

maxll

mn TI· .fn:mWI1ITIPlll
*Lisp Dictionary .,.,R .: i!!

[Function]

Determines in parallel the maximum numeric value of the supplied pvars.

SYNTAX

maxll numeric-pvar &rest numeric-pvars

ARGUMENTS

numeric-pvar, numeric--pvars
Non-complex numeric pvars. Pvars for which the maximum value
is determined.

RETURNED VALUE

max-pvar Temporary numeric pvar. In each active processor, contains the
maximum of the corresponding values of the supplied numeric­
pvar arguments.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This returns a pvar that contains in each processor the maximum of the corresponding
values of the supplied numeric-pvars in that processor.

EXAMPLES

(ppp (max!! (mod!! (self-address!!) (!! 2»
(mod!! (self-address!!) (!! 3»» =>

012112012112012 ...

462 Version 6.1, October 1991

/

(

.'"" \

*Lisp Dictionary
IU)1

*min

Wllll!!1 HH
*mln

_lJill'%~

[*Defun]

Returns the minimum numeric value contained in the supplied pvar.

SYNTAX

*mln numeric-pvar

ARGUMENTS

numeric-pvar

RETURNED VALUE

min-value

SIDE EFFECTS

None.

DESCRIPTION

Numeric pvar. Pvar for which minimum value is determined.

Scalar value. Minimum numeric value contained in the numeric­
pvar.

This returns a scalar value that is the minimum of the contents of numeric-pvar in all
selected processors. It returns the Lisp value nil if there are no selected processors.

EXAMPLES

(*min (mod!! (self-address!!) (!! 5») <=> 0

REFERENCES

See also the related global operators:
*and
*Iogxor

Version 6.1, October 1991

*integer-Iength

*max
*Iogand

*or

*Iogior
*sum *xor

463

minI! *Lisp Dictionary
mIll? a 1 I! II ! l! ! 7JI I !II! fWD f 11111111 I nn ill! li'

minll [Function]

Determines in parallel the minimum numeric value of the supplied pvars.

SYNTAX

minI! numeric-pvar &rest numeric-pvars

ARGUMENTS

numeric-pvar, numeric-pvars
Non-complex numeric pvars. Pvars for which the minimum value
is detennined.

RETURNED VALUE

max-pvar Temporary numeric pvar. In each active processor, contains the
minimum of the corresponding values of the supplied numeric­
pvar arguments.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This returns a pvar that contains in each processor the minimum of the corresponding
values of the supplied numeric-pvars in that processor.

EXAMPLES

(ppp (min!! (mod!! (self-address!!) (!! 2»
(mod!! (self-address!!) (!! 3»» =>

o 1 0 0 0 1 0 1 0 0 0 1 01 ...

464 Version 6.1, October 1991

\

"

(

*Lisp Dictionary minuspll
12 mimi ij :11m: mill!' 1IIIIIIImm:i2lIiilll[ll11i11 11 rr 11 !1i In 11 r nm::ImmEll I HI II IIUI II III iIllil~

minuspll [Function]

Performs a parallel test for negative values on the supplied pvar.

SYNTAX

minuspll numeric-pvar

ARGUMENTS

numeric-pvar Numeric pvar. Tested in parallel for negative values.

RETURNED VALUE

minusp-pvar

SIDE EFFECTS

Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of numeric-pvar is negative.
Contains nil in all other active processors.

The returned pvar is allocated on the stack.

DESCRIPTION

The pvar returned by this predicate contains t for each processor where the value of
the argument numeric-pvar is less than zero, and nil in all others.

NOTES

(rninusp!! (!! -1»
(rninusp!! (!! -0.0»

Version 6.1. October 1991

<=> t!!
<=> nil!!

465

modI! *Lisp Dictionary
j[1111111 :!mm!!I!!!HII! me ! m 1!l rn 1m 1 , ! H T 1: ;: 1m!: .

modll [Function]

Performs a parallel modulo operation on the supplied pvars.

SYNTAX

modI! numeric-pvar divisor-pvar

ARGUMENTS

numeric-pvar Non-complex numeric pvar. Pvar for which modulo remainder is
calculated.

divisor-pvar Integer pvar. Pvar by which numeric-pvar is divided.

RETURNED VALUE

remainder-pvar Temporary numeric pvar, of same type as numeric-pvar. In each
active processor, contains the result of dividing the value of
numeric-pvar modulo the value of divisor-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function mod. It is an error if
divisor-pvar contains zero in any active processor.

EXAMPLES

(ppp (mod!! (self-address!!) (!! 5») =>
01234 0 1 2 3 4 012 3 4 . . .

466 Version 6.1, October 1991

*Lisp Dictionary most-negative-float!!. most-posltive-f1oatll
1!~mMllilli!!tiWW~l®llili;;;m! 11 : I:Mtil!! I:: inn ;M~r:im iMtMtM :: WnMillMm:m:im:: !: r:: I:d:-: : m!J :::mm 1i moo! n: ~~

most-negative-floatll
most-positive-floatll [Function]

Return a pvar containing the floating-point value that is closest to negative or positive in­
finity in the fonnat of the supplied floating-point pVar'

SYNTAX

most-negatlve-f1oatll jloating-point-pvar
most-positive-f1oatll jloating-point-pvar

ARGUMENTS

jloating-point-pvar
Floating-point pvar. Detennines fonnat of returned pvar.

RETURNED VALUE

most-neg/pos-pvar Temporary floating-point pvar. In each active processor, contains
the floating-point value closest to negative (or positive) infmity that
is representable in the same format (single- or double-precision) as
the corresponding value ofjloating-point-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

These functions return a floating-point pvar with the same format (single- or double­
precision) as the jloating-point-pvar argument. In each processor, the returned value
is the floating point number closest to negative (or positive) infmity.

Version 6.1, October 1991 467

most-negative-floatll, most-posltive-floatll *LispDictionary
VB 1li 11 Pi iJ 1 I 1 1 Il!IlIiilHi f11! ! 1 ! m 1 ! 1m 1 ! Em Ill! :r 11: R n; m!l:l@II'!IM11I!11

EXAMPLES

The argument jloating-point-pvar may be any floating point pvar of the required
format. For example,

(most-negative-float!! (!! 0.0» <=> (!! -3. 4028235e38)

(most-positive-float!! (!! 0.0» <=> (!! 3.4028235e38)

The same results would be obtained with any single-precision floating-point pvar
argument.

REFERENCES

468

See also these related floating-point pvar limit functions:

float-epsllonll

negative-f1oat-epsilonll

least-negative-f1oatll least-positlve-floatll

Version 6.1. October 1991

/
\.

/

*Lisp Dictionary negative-f1oat-4psilonll
If i llii! JimmiC ':mj}!!!!IW~~~L:':;wm c::g '::;miF!!iim':!Iii I :'mfn :!~

negative-float-epsilon II [Function]

Returns a pvar containing the smallest negative floating-point value representable in the
format of the supplied floating-point pvar.

SYNTAX

negative-fJoat-4psilonll jloating-point-pvar

ARGUMENTS

jloating-point-pvar
Floating-point pvar. Determines format of returned pvar.

RETURNED VALUE

epsilon-pvar Temporary floating-point pvar. In each active processor, contains
the smallest negative value representable in the same format as the
corresponding value of jloating-point-pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

In each processor, the value returned by negative-f1oat-4psilon!l is the smallest nega­
tive floating-point number e that can be represented by the eM in the same floating
point format as jloating-point-pvar and for which

(not (= (float 1 e) (- (float 1 e) e»)

is true when evaluated.

Version 6.1. October 1991 469

negative-float-epsilonll
!II ! II III ~i1!ll !f 1m. !!II!@ II!I!lmlllm· m m r I! Ii : fIIl!I!:m::m

REFERENCES

!. ::1111 Ii!
*Lisp Dictionary

niH r: sa

See also these related floating-point pvar limit functions:

470.

float-epsllonll

most-negatlve-floatll

least-negatlve-floatll

most-positlve-floatll

least-positive-floatll

Version 6.1, October 1991

*Lisp Dictionary
~ww.mw@w.~ H1l'1Utii@1CWWl _ .. _w~ iWF:

*news
! Ki:m :L~I!:mW.l&ml!:dm%IBl.~wm

*news [*Defun]

Performs grid (NEWS) communication, copying values from the source pvar to the destina­
tion pvar.

SYNTAX

*news source-pvar dest-pvar &rest relative-coordinate-integers

ARGUMENTS

source-pvar Pvar expression. Pvar from which values are copied.

dest-pvar Pvar expression. Pvar in which values are stored.

relative-coordinate-integers

RETURNED VALUE

nil

SIDE EFFECTS

Series of integers. Specifies relative distance over which copy
takes place along each dimension of the current VP set. The
number of arguments must be equal to the rank of the current
machine configuration.

Executed for side effect only.

Destructively alters dest-pvar to contain values from source-pvar transmitted across
the grid.

DESCRIPTION

This function does near-neighbor store communication. Each active processor in the
current VP set takes the value of source-pvar and stores it in the supplied dest-pvar,
in the processor that is relative-coordinate-integers away across the n-dimensional
grid of the current VP set.

Version 6.1, October 1991 471

*news
llH I! ! !II! 1 IIIIM IH

*Lisp Dictionary
Wllim: J 17

The source-pvar argument is evaluated only by processors in the currently selected set,
but the dest-pvar argument can be modified in any processor. In other words, even
though only active processors transmit values from source-pvar, values can be
received and stored in dest-pvar by any processor, active or not.

The relative-coordinate-integer arguments specify a single relative grid address used
by all active processors in determining the address of the destination, i.e., if the nth
relative-coordinate-integer argument is the value j, then each active processor will
transmit a value to the processor j units away along dimension n.

The grid addresses calculated by a *news operation are toroidal, i.e., there are no upper
or lower bounds on the values of the relative-coordinate-integer arguments. Where
grid addresses are produced that specify processors off the edge of the current grid,
those addresses wrap around to the opposite edge of the grid.

EXAMPLES

472

The *news macro can be used to perfonn global shift~ of data across processor grids
of any dimension. However, the macro is most commonly used on two-dimensional
grids, where each processor has four neighbors, one each to the "left" and "right" along
dimension 0, and one each "up" and "down" along dimension 1.

The following expressions define such a grid, along with two pvars that will be used
in the following examples.

(*cold-boot :initial-dimensions ' (32 16»
(*defvar source (random!! (!! 10»)
(*defvar dest)

A call to ppp displays the grid of values stored in the source pvar.

(ppp source : mode :grid :end ' (4 4) :format "-2D

7 9 8 6
9 5 2 7

6 2 4 2
8 5 9 1

If)

The following example of a call to *news shifts the entire grid over 1 to the right and
down 1. Values are wrapped around from the right and lower edges to the left and upper
edges.

Version 6.1. October 1991

/
I

l

""

,
\

*Lisp Dictionary *news
1SWil~:::!iW~I::J: jj!?tll!W!lWI!ii1i rwm:l~1~!I.ml!WJiH:1I:m!!:: :: T!. :1iW~y ::;.: Wi . i1~; .. ! !ii r: W 1!!! ;wnww@w@

(*news source dest 1 1)
(ppp dest :mode :grid :end '(4 4) :format "-2D ")

8 5 8 1
6 7 9 8

8 9 5 2
4 6 2 4

The next example shows that the value of the dest-pvar in unselected processors can
be altered by a call to *news. The processors in the even columns, which are selected,
send data to the processors in the odd columns, which are not selected. Even though
the processors in the odd columns are deselected, they may still recieve and store
values.

(*set dest (! ! 0))

(*when (evenp! ! (self-address-grid!! (! ! 0)))

(*news source dest 1 0))

(ppp dest : mode :grid :end I (4 4) :format "-2D ")

0 7 0 8
0 9 0 2
0 6 0 4
0 8 0 9

NOTES

Notice that *news is to news!! as *pset is to pref!!. Thus, while *news sends information
to processors, newsll retrieves information from processors. Like *news, newsll
assumes a toroidal arrangement of grid addresses, i.e., addresses wrap around the grid.

Performance Note:

Although seemingly symmetric, the CM-2 *Lisp implementation of newsll is faster
than the CM-2 *Lisp implementation of *news.

Usage Note:

The grid address assigned to a processor by a one-dimensional VP set is not the same
as the processor's send address. For example, given the one-dimensional grid defmed
by

(*cold-boot : initial-dimensions
(list *minimum-size-for-vp-set*»

the following expression displays in send address (:mode :cube) order the send
addresses of a sample set of processors:

Version 6.1, October 1991 473

*naws
POOlE E JICEm !!In I n lIT HI lfmTIP !

*Lisp Dictionary
! J2i1 I r q'!'IMM:: utm: 11::

474

(ppp (self-address!!) :mode :cube :start 24 :end 40)

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

and this expression displays the grid addresses of the same processors in send address
order:

(ppp (se1f-address-grid!! (!! 0» :mode :cube
:start 24 :end 40)

24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55

Notice that the grid addresses of the last eight processors in this example are different
from their send addresses. In general, there is no simple way to relate the grid address
assigned to a processor by a VP to the send address of that processor except by the
*Lisp address conversion functions cube-from-grld-address, cube-from-vp-grid­

address, grid-from-cube-address, and grid-from-vp-cube-address. The. assignment
depends on such factors as the size and shape of the VP set, and on the number of physi­
cal processors attached.

Of course, if the grid addresses are displayed in grid address (:mode :grid) order, the
addresses displayed will be sequential:

(ppp (se1f-address-grid!! (!! 0» :mode :grid
:start 24 :end 40)

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

However, in this example, the processors for which the addresses are being displayed
are not the same as in the previous two examples. Displaying processor grid addresses
in grid address order by defmition displays the addresses of those processors whose
grid addresses are sequential.

The errors produced by neglecting this distinction are more pervasive than these exam­
ples demonstrate. For example, it is a common mistake to expect the expression

(ppp (news!! (self-address!!) 1) :mode :cube
:start 24 :end 40)

to display a series of sequential send addresses. In fact, it displays this:

24 25 26 27 28 29 30 31 48 33 34 35 36 37 38 39

Version 6.1, October 1991

/
I
I

(

\

*Lisp Dictionary
~!:r:!!:t:it! II1!i!:mUl n::r: 2:: n:UlMoom

The following expression produces the expected result:

(ppp (news!! (self-address-grid!! (!! 0» 1)
:mode :grid :start 24 :end 40)

24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39

REFERENCES

See also these related NEWS communication operators:

news"
*news-directlon

news-borderll

news-directionll

See also these related off-grid processor address tests:

*news
w.wx::::: n I:: ::::::::mmm:

off-grid-border-pll off-grid-border-relative-direction-pll
off-grid-border-relative-pll off-vp-grid-border-pll

See also these related processor communication operators:
prefl! *pset

Version 6.1. October 1991 475

newsll *Lisp Dictionary
t!i2];P i ;i P:H II m TII!:! I!]jf f 11 i : i!!IIK IIi! !iUS mn!i1li if! 111 mil H f :i1 IIllff"",," f~" q

news!! [Macro]

Performs grid (NEWS) communication, returning a pvar containing values copied from the
supplied pvar.

SYNTAX

newsll source-pvar &rest relative-coordinate-integers

ARGUMENTS

source-pvar Pvar expression. Pvar from which values are copied.

relative-coordinate-integers
Set of integers. Specifies relative distance over which copy takes
place along each dimension of the current VP set. The number of
arguments must be equal to the rank of the current machine
configuration.

RETURNED VALUE

news-value-pvar Temporary pvar, of same type as source-pvar. In each active pro­
cessor, contains a copy of the value of source-pvar from the
processor specified by the set of reiative-coordinate-integers.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

476

This macro does near-neighbor fetch communication. Each processor in the currently
selected set retrieves the value of source-pvar from the processor that is
relative-coordinate-integers away across the n-dimensional grid of the current VP set.

Even though only active processors retrieve values from source-pvar, values can be
retrieved from any processor, not just those in the currently selected set. In other words,

Version 6.1, October 1991

!
\

\

" \

*Lisp Dictionary newsll
~~~: i:: i m i mI§,:n:,iwmm:.tlm$" II j :.m_m:_um:_~nD"..wm~wml:"· 'UW: liE m;;mm 

it is legal for the grid address specified by relative-coordinate-integers to cause values 
to be retrieved from processors that are not in the currently selected set. 

The relative-coordinate-integer arguments specify a single relative grid address used 
by all active processors in determining the address of the destination, i.e., if the nth 
relative-coordinate-integer argument is the value j, then each active processor will 
retrieve a value from the processor j units away along dimension n. 

The grid addresses calculated by a news!! operation are toroidal, i.e., there are no upper 
or lower bounds on the values of the relative-coordinate-integer arguments. Where 
grid addresses are produced that specify processors off the edge of the current grid, 
those addresses wrap around to the opposite e~ge of the grid. 

EXAMPLES 

The news" macro can be used to perform global shifts of data across processor grids 
of any dimension. However, the macro is most commonly used on two-dimensional 
grids, where each processor has four neighbors, one each to the "left" and "right" along 
dimension 0, and one each ''up'' and "down" along dimension 1. 

The following expressions define such a grid, along with two pvars that will be used 
in the following examples. 

(*cold-boot :initial-dimensions '(32 16)) 
(*defvar source (random!! (!! 10))) 

(*defvar dest (!! 0)) 

A call to ppp displays the grid of values stored in the source pvar. 

(ppp source : mode :grid :end '(4 4) :format "-2D If) 

7 9 8 6 

9 5 2 7 

6 2 4 2 
8 5 9 1 

The following example of a call to newsll shifts the entire grid over 1 to the left and 
up 1. Values are wrapped around from the left and upper edges to the right and bottom 
edges (not shown). 

(ppp (news!! source 1 1) :mode :grid :end '(4 4) 
:format "-2D If) 

5 2 7 4 
2 4 2 5 
5 9 1 3 
6 7 6 1 

Version 6.1. October 1991 477 



newsll 
1fT f FllW: no 1 i 

*Lisp Dictionary 
J W@1! flU 1! ii1i12 lll@~! iTI I liP;; .llTwa::~ 

478 

The next example shows that the value of the source-pvar in unselected processors can 
be retrieved by selected processsors during a call to newsll. The processors in the even 
columns, which are selected, retrieve data from the processors in the odd columns, 
which are not selected. 

(*set dest (!! 0» 

(*when (evenp!! (self-address-grid!! (!! 0») 
(*set dest (news!! source 1 0») 

(ppp dest : mode :grid : end' (4 4) : format "-20 ") 

9 0 6 0 
5 0 7 0 
2 0 2 0 
5 0 1 0 

The source-pvar argument to newsll is evaluated only in those processors from which 
data is being retrieved, not in the processors doing the retrieving. This means that oper­
ations signalling an error when the entire set of processors is selected may be perfectly 
legal when the currently selected set is restricted to a subset of processors. For exam­
ple, consider the expression 

(*when (evenp!! (self-address-grid!! (!! 0») 
(*set dest 

(round! ! 
(news!! (/!! (!! 24) (self-address-grid!! (!! 0») 

1 0»» 

(ppp dest : mode :grid :end ' (4 4) : format "-20 ") 

24 0 8 0 
24 0 8 0 
24 0 8 0 
24 0 8 0 

If the III operation in this example was performed with the entire set of processors 
selected, then a division by 0 would have occurred in the left-most column of proces­
sors because (self-address-gridll (II 0» returns 0 for each processor in that column. The 
division was actually performed only in the processors belonging to the odd columns, 
i.e., those processors having data retrieved from them, so no error was signalled. 

Version 6.1, October 1991 

\ 



*Lisp Dictionary newsll 
m~w:" ":UW<Wl~!%1' i%1i%1mm:!%1! OO11:OO1i%1lmMm!l!I!%1!i!%1! 001!%1m.wm~~lillOO1!%1m.lilmn:001!.mlm11lm:MMm!%1nmMmmmmmi j!%1l!!jmFffi!l!lln m·ml!%1. ;m)l.mUmlmM~: __ 

NOTES 

Notice that news!! is to *news as pref!! is to *pset. Thus, while newsll retrieves informa­
tion from processors, *news sends information to processors. Like newsll, *news 
assumes a toroidal arrangement of grid addresses, i.e., addresses wrap around the grid. 

Performance Notes: 

Although seemingly symmetric, the CM-2 *Lisp implementation of newsll is faster 
than the CM-2 *Lisp implementation of*news. 

Also, when newsll is invoked with relative coordinates that are powers of two, as in 

(news!! pvar 8 16) 

the CM-2 implementation of *Lisp uses special Paris instructions that are able to 
quickly retrieve the data. The above call to newsll is therefore signficantly faster than 
a call to newsll with non-power-of-two arguments, such as 

(news!! pvar 7 15) 

Usage Note: 

The grid address assigned to a processor by a one-dimensional VP set is not the same 
as the processor's send address. For example, given the one-dimensional grid defmed 
by 

(*co1d-boot : initial-dimensions 
(list *minimum-size-for-vp-set*)) 

the following expression displays in send address (:mode :cube) order the send 
addresses of a sample set of processors 

(ppp (self-address!!) :mode :cube :start 24 :end 40) 

24 25 2627 28 29 30 31 32 33 34 35 36 37 38 39 

and this expression displays the grid addresses of the same processors in send address 
order: 

(ppp (self-address-grid!! (!! 0)) :mode :cube 
:start 24 :end 40) 

24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 

Notice that the grid addresses of the last eight processors in this example are different 
from their send addresses. In general, there is no simple way to relate the grid address 
assigned to a processor by a VP to the send address of that processor except by the 

Version 6.1, October 1991 479 



news" 
~~iII!i : 1i11 

*Lisp Dictionary 
; 1 1£:jjjIl!Ti911: UWil2 ! I ; HI 11 ::/flit.: i j::rm !: 1m 

*Lisp address conversion functions cube-from-grid-address, cube-from-vp-grid­

address, grld-from-cube-address, and grid-from-vp-cube-address. The assignment 
depends on such factors as the size and shape of the VP set, and on the number ofphysi­
cal processors attached. 

Of course, if the grid addresses are displayed in grid address (:mode :grid) order, the 
addresses displayed will be sequential: 

(ppp (self-address-grid!! (!! 0)) :mode :grid 
:start 24 :end 40) 

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

However, in this example, the processors for which the addresses are being displayed 
are not the same as in the previous two examples. Displaying processor grid addresses 
in grid address order by definition displays the addresses of those processors whose 
grid addresses are sequential. 

The errors produced by neglecting this distinction are more pervasive than these exam­
ples demonstrate. For example, it is a common mistake to expect the expression 

(ppp (news!! (self-address!!) 1) :mode :cube 
:start 24 :end 40) 

to display a series of sequential send addresses. In fact, it displays this: 

24 25 26 27 28 29 30 31 48 33 34 35 36 37 38 39 

The following expression produces the expected result: 

(ppp (news!! (self-address-grid!! (!! 0)) 1) 
:mode :grid :start 24 :end 40) 

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

REFERENCES 

480 

See also these related NEWS communication operators: 
*news 

*news-directlon 

news-borderll 

news-direction!1 

See also these related off-grid processor address tests: 
off-grid-border-pll off-grld-border-relative-direction-pll 

off-grid-border-relative-pll off-vp-grid-border-pll 

See also these related processor communication operators: 
prefll *pset 

Version 6.1, October 1991 

( 
\ , 



""Lisp Dictionary news-borderll 
[11m I::::I! Ii II !llm2m:mmn:: !~:Mll! t I i im@.1li II! ;;Hllr!lll~rlr:;%%mi!! .":Mllmu:lW%W%"liIlW :11!i :.:mll 

news-border! ! [Macro] 

Performs grid (NEWS) communication, returning a pvar containing values copied from the 
supplied source pvar, with references off the grid satisfied by the supplied border pvar. 

SYNTAX 

news-border!! source-pvar border-pvar &rest relative-coordinate-integers 

ARGUMENTS 

source-pvar Pvar expression. Pvar from which values are copied. 

border-pvar Pvar expression. Value returned for all references off the grid. 

relative-coordinate-integers 

RETURNED VALUE 

Set of integers. Specifies relative distance over which copy takes 
place along each dimension of the current VP set. The number of 
arguments must be equal to the rank of the current machine 
configuration. 

news-value-pvar Temporary pvar. In each active processor, contains a copy of the 
value of source-pvar in the processor specified by the set of 
relative-coordinate-integers, or the value of border-pvar, where 
the location specified is off the grid. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This macro performs the same operation as newsll, with the exception that, wherever 
a processor would be directed to retrieve a value from a location off the grid of the 
current VP set, the processor instead returns the value of the supplied border-pvar. 

Version 6.1, October 1991 481 



news-borderll *Lisp Dictionary 
1f f ! !lll I IiI!!WII I III! IBW in H linn nn: !!11 'mm m' 'iimfflll'n nln I I : 

EXAMPLES 

A sample call to news-borderll is 

(news-border!! pvar border-pvar 1 1) 

The news-borderll macro can be used to perform global shifts of data with a specific 
"boundary" value stored in all processors that attempt to read information from outside 
the boundaries of the grid. For example, given the two-dimensional grid configuration 
defmed by 

(*cold-boot :initial-dimensions ' (128 128» 

the expression 

(ppp (news-border!! 
(self-address-grid!! (!! 0» (!! -1) -1 -1) 

:mode :grid 
:end ' (4 4) 
:format "-20 ") 

performs a diagonal shift of data "downwards" and "rightwards" across the grid, pro­
ducing the following output: 

-1 -1 -1 -1 
-1 0 1 2 
-1 0 1 2 
-1 0 1 2 

The value -1 is stored into processors along the ''top'' and "left" edges of the grid 
because these are the processors that attempt to read outside the grid in this operation. 

REFERENCES 

482 

See also these related NEWS communication operators: 
*news 
*news-direction 

newsll 
news-direction!l 

See also these related off-grid processor address tests: 
off-grld-border-pll off-grid-border-relative-direction-p!1 
off-grld-border-relative-pll off-vp-grld-border-pll 

See also these related processor communication operators: 
prefll *pset 

Version 6.1, October 1991 

/ 

\ , 

( 



*Lisp Dictionary *news-direction 
WllnmllmlmmllmmlGIIlllMmWlml§iml@lllli! m0mT0i.~mlMW_mmM)mlrWWWMmi~wmllll::::Illl;;Im:nWllml1fflw: ~M) mll ~MW __ ~~~'&1§i0!:i1fflI§i",tWmUill!J0W~~ 

*news-direction [*Defun] 

Perfonns NEWS (grid) communication along a single dimension, copying values from the 
source pvar to the destination pvar. 

SYNTAX 

*news-directlon 

ARGUMENTS 

source-pvar destination-pvar 
dimension-scalar distance-scalar 

source-pvar Pvar expression. Pvar from which values are copied. 

destination-pvar Pvar expression. Pvar into which values are stored. 

dimension-scalar Integer. Dimension along which to perfonn copy. 

distance-scalar Integer. Distance over which values are copied. 

RETURNED VALUE 

nil Executed for side effect only. 

SIDE EFFECTS 

Destructively alters destination-pvar to contain values from source-pvar transmitted 
across the NEWS grid. 

DESCRIPTION 

Perfonns a *news operation on the source pvar, along the specified dimension and at 
the specified distance. Each active processor in the current VP set sends source-pvar 
data to the processor that is distance-scalar processors away along the dimension­
scalar axis, and stores it in destination-pvar. 

The source-pvar and destination-pvar parameters must both be in the current VP set. 

Version 6.1, October 1991 483 



*news-direction 
1f R N n f iii I i Hi 

*Lisp Dictionary 
lilliJiI! Wi ilHfflHilH: I HI n %I®% If: I ! 

The source-pvar argument is evaluated only by processors in the currently selected set, 
but the destination-pvar argument can be modified in any processor. In other words, 
even though only active processors transmit values from source-pvar, values can be 
received and stored in destination-pvar by any processor, not just those in the currently 
selected set. 

The dimension-scalar parameter must be an integer in the range [O .. (N -1 )], where N 
is the number of dimensions defmed for the current VP set. 

The distance-scalar parameter must be an integer. The sign of this value determines 
in which direction along the specified dimension data is sent. Grid addresses wrap 
around where necessary. 

This function permits *news operations along a given dimension without requiring 
specification of the total number of dimensions in the current VP set. Thus, assuming 
a three-dimensional machine configuration, 

(*news-direction my-pvar my-result 2 3) 
<=> 
(*news my-pvar my-result 0 0 3) 

EXAMPLES 

This function is particularly useful when writing subroutines that must do NEWS oper­
ations along a particular dimension of the currently defmed grid but may be called with 
VP sets of differing ranks active. 

(defun shift-upward-along-y-axis (dest-pvar 
source-pvar 
distance) 

(*news-direction source-pvar dest-pvar 1 (- distance))) 

REFERENCES 

484 

See also these related NEWS communication operators: 
*news 
news-dlrectlonll 

news!! 

See also these related off-grid processor address tests: 

news-borderll 

off-grld-border-pll off-grid-border-relative-direction-pll 
off-grld-border-relatlve-pll off-vp-grld-border-pll 

See also these related processor communication operators: 
prefll *pset 

Version 6.1, October 1991 

'", 



*Lisp Dictionary news-dlrection!1 
;mf!j!m!:r~{!1fu! mlil.a~w@~:._m!l%· ~! ImI! .n 1%: §ill§) mI!H.m.i'I%:1!~Wmlj n=TI1IIO;; §illTI ~~I%TI ~m~WmI!IlI%!I%1i~lmlj :101!%!%~Jl%i _«'W1W1W{!!Il'~«.ll ; Wi ;;111.: lli.:m 

news-direction I I [Macro] 

Performs NEWS (grid) communication along a specified dimension, returning a pvar con­
taining values copied from the supplied pvar. 

SYNTAX 

news-directionll source-pvar dimension-scalar distance-scalar 

ARGUMENTS 

source-pvar Pvar expression. Pvar from which values are copied. 

dimension-scalar Integer. Dimension along which to perform copy. 

distance-scalar Integer. Distance over which values are copied. 

RETURNED VALUE 

news-value-pvar Temporary pvar, of same type as source-pvar. In each active pro­
cessor, contains a copy of the value of source-pvar in the processor 
distance-scalar away along the dimension specified by dimen­
sion-scalar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

Performs a newsll operation on the specified pvar, along the specified dimension and 
at the specified distance. Each active processor in the current VP set retrieves source­
pvar data from the processor that is distance-scalar processors away along the 
dimension-scalar axis. 

The source-pvar parameter must be in the current VP set. 

Version 6.1, October 1991 485 



news-dlrectionll *Lisp Dictionary 
r IwmtI IlIn!! 1 II II! I r I!l.U!H filii 1M ;; 11 r .I m J : fm::t:!!Ii i I ~; :i. r m ill IT! I I: !WIll m lIT: jj :; In me: : I ! iE!!! H:: 

Even though only active processors retrieve values from source-pvar, values can be 
retrieved from any processor, not just those in the currently selected set. In other words, 
it is legal for the grid address specified by dimension-scalar and distance-scalar to 
cause values to be retrieved from processors that are not in the currently selected set. 

The dimension-scalar parameter must be an integer in the range [O .. (N -1)], where N 
is the number of dimensions dermed for the current VP set. 

The distance-scalar parameter must be an integer. The sign of this value determines 
from which direction along the specified dimension data is retrieved. Grid addresses 
wrap around where necessary. 

This function permits news II operations along a given dimension without requiring 
specification of the total number of dimensions in the current VP set. Thus, assuming 
a three-dimensional machine configuration has been defined, the following equiva­
lence holds: 

(news-direction!! my-pvar 1 2) 
<=> 
(news!! my-pvar 0 2 0) 

EXAMPLES 

This function is particularly useful when writing subroutines that must do NEWS oper­
ations along a particular dimension of the currently defined grid but may be called with 
VP sets of differing ranks active. 

(defun shift-upward-along-y-axis (pvar distance) 
(news-direction!! pvar 1 distance») 

REFERENCES 

486 

See also these related NEWS communication operators: 
*news 

*news-directlon 

news!! 

See also these related off-grid processor address tests: 

news-borderll 

off-grld-border-pll off-grid-border-relative-direction-pll 

off-grid-border-relative-pll off-vp-grid-border-pll 

See also these related processor communication operators: 
prefll *pset 

Version 6.1, October 1991 

/' 

I 
, 



/ 

*Lisp Dictionary next-power-of-two->= 
~~~RlIlX$! .. iBmt· :i :~:" J J ::m" . n @%I!i!1l1iIlCiEiC::!i!ii:OOii!nJ!U; r : i 

next-power-of-two->= [Function]

Returns the next power of two greater than or equal to the supplied integer.

SYNTAX

next-power-of-two->= positive-integer

ARGUMENTS

positive-integer Value for which the next higher power of two is determined.

RETURNED VALUE

power-oj-two Integer. Next power of two greater than or equal to positive-integer.

SIDE EFFECTS

None.

DESCRIPTION

This function returns the first consecutive integer satisfying power-of-two-p that is
greater than or equal to positive-integer.

EXAMPLES

(next-power-of-two->= 356) => 512

Version 6.1, October 1991 487

next-power-of-two->= *Lisp Dictionary
r IUI!!HlIIIiIIIII Ii JlJl f§ IlmSliII1 r II nil!: m nIDn nm III I~ WrIll1ll !flU: Ill:: 11 ;i !i!i II 11

NOTES
Usage Note:

This function is useful in computing the dimensions of VP sets, because each dimen­
sion of a VP set must be an integral power of two in size, and the total number of
processors in a VP set must be a power of two multiple of the number of physical
processors available.·

For instance, if a data file has 23,432 items, a call to next-power-of-two->=, specifically

(next-power-of-two->= 23432) => 32768

can be used to detennine that a VP set of size 32768 is required to process the data.

REFERENCES

488

See also the related predicate power-of-two-p.

The next-power-of-two->= function is most useful in combination with the following
VP set definition operators:

def-vp-set create-vp-set let-vp-set

Persian 6.1, October 1991

/

c

*Lisp Dictionary notl!
~: .:1 lIWm Hi!: li2i!!i: I ElmgDIII!!fj %[@Ium.!!!! !!!! I;::'; iiWl1l!::L : In I1&I1&C!": r!.! ml :i:;!~ :1 .;: W~ltW

not!! [Function]

Performs a parallel logical negation on the supplied pvar.

SYNTAX

nolll pvar

ARGUMENTS

pvar Pvar expression. Pvar for which the logical negation is
determined.

RETURNED VALUE

not-pvar Temporary boolean pvar. Contains t in those active processors
where pvar contains the value nil. Contains nil in all other proces­
sors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This returns t for all processors in which pvar is nil, and nil otherwise.

REFERENCES

See also the related global operators:
*and
*Iogior

*mln

*xor

*integer-Iength

*Iogxor

*or

See also the related logical operators:
andll orll

Version 6.1, October 1991

*Iogand

*max

*sum

xorll

489

notanyll *Lisp Dictionary
Wm:W!tIllll: II!mmIl!mmWll1111! Il!!litllll!!litllli 1II1II1 WiII21!i1IUiliiI!i1WnI!i1JI!!litlllI!i1WW! 1!i1! iliiW!1 1!i1W! II1II1 II!mmI II!i1! ilii Wlil.IIIIIIWI.!1!i1W1 WI": lIIIIilOilii WIIIIII!!litlllI!i1WI 1!i1~IIIIIWW~~iWW 111 il: ~

notanyll [Function]

Tests in parallel whether the supplied pvar predicate is false for every set of elements hav­
ing the same indices in the supplied sequence pvars.

SYNTAX

notanyll predicate sequence-pvar &rest sequence-pvars

ARGUMENTS

predicate Boolean pvar predicate. Used to test elements of sequences in the
sequence-pvar arguments. Must take as many arguments as the
number of sequence-pvar arguments supplied.

sequence-pvar,sequence-pvars
Sequence pvars. Pvars containing, in each processor, sequences to
be tested by predicate.

RETURNED VALUE

notany-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor in which every set of elements taken from the sequences of the
sequence-pvars fails the predicate. Contains nil in all other active
processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

490

The notanyll function returns a boolean pvar indicating in each processor whether the
supplied predicate is false for every set of elements with the same indices in the
sequences of the supplied sequence-pvars.

In each processor, the predicate is fIrst applied to the index 0 elements of the sequences
in the sequence-pvars, then to the index 1 elements, and so on. The nth time predicate

Version 6.1, October 1991

*Lisp Dictionary notanyll
~lm~iQ; I: Im~~-IWil'0®ll' ®llmW::m'i!lm'I~iQ;mWn~iQ;m';;®llr®ll.: ®ll:lWKm'i ®ll;;'®llM'~&iWWi§iU : r -::mm ::: : III

is called, it is applied to the nth element of each of the sequences. If predicate returns
t in any processor, that processor is temporarily removed from the currently selected
set for the remainder of the operation. The operation continues until the shortest of the
sequence-pvars is exhausted, or until no processors remain selected.

The pvar returned by notanyll contains t in each processor where predicate returns the
value nil for every set of sequence elements. If predicate returns t for any set of
sequence elements in a given processor, notanyl! returns nil in that processor.

EXAMPLES

(notany!! 'equalp!! (!! #(123)) (!! #(941))) <=> t!!

NOTES

Compiler Note:

The *Lisp compiler does not compile this operation.

REFERENCES

See the related functions every!!, notevery!!, and somell.

See also the general mapping function amap!!.

~r.sion 6.1, October 1991 491

noteveryll
11 I ; 11!j i 111111

noteveryll

jj[! 1i!7
*Lisp Dictionary

.mll r ;. ~iiK! . Hi In; ! I iii iii lMl!! i n:; Ii jij!ll Ii !mll if !

[Function]

Tests in parallel whether the supplied pvar predicate is false for at least one set of elements
having the same indices in the supplied sequence pvars.

SYNTAX

noteveryll predicate sequence-pvar &rest sequence-pvars

ARGUMENTS

predicate Boolean pvar predicate. Used to test elements of sequences in the
sequence-pvar arguments. Must take as many arguments as the
number of sequence-pvar arguments supplied.

sequence-pva~sequence-pvars

Sequence pvars. Pvars containing, in each processor, sequences to
be tested by predicate.

RETURNED VALUE

notevery-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor in which at least one set of elements having the same indices in
the sequences of the sequence-pvars fails the predicate. Contains
nil in ali other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

492

The noteveryll function returns a boolean pvar indicating in each processor whether the
supplied predicate is false for at least one set of elements with the same indices in the
sequences of the supplied sequence-pvars.

In each processor, the predicate is flrst applied to the index 0 elements of the sequences
in the sequence-pvars, then to the index I elements, and so on. The nth time predicate

Version 6.1, October 1991

./

/

*Lisp Dictionary noteveryll
~~!1! .IW : i~C::· I.! -:;;!mi!!IIIi!!1iWWImOOWOO®WImOOW: IW!lWE WE ImUw:;mWiImIlmmmmWWllm: iI®WWWIWIi! 1m:: ml IWI !)WmWOOIm~liliilWn!WI!I:wmWilffimiiilll WI Wi W. [W. 1WllWI!I

is called. it is applied to the nth element of each of the sequences. If predicate returns
nil in any processor. that processor is temporarily removed from the currently selected
set for the remainder of the operation. The operation continues until the shortest of the
sequence-pvars is exhausted. or until no processors remain selected.

The pvar returned by noteveryll contains t in each processor where predicate returns
the value nil for at least one set of sequence elements. If predicate returns t for every
set of sequence elements in a given processor. noteveryll returns nil in that processor.

EXAMPLES

(notevery!! 'equalp!! (!! # (1 2 3» (!! # (1 2 4») <=> t!!

NOTES

Compiler Note:

The *Lisp compiler does not compile this operation.

REFERENCES

See the related functions everyll, notanyll, and somell.

See also the general mapping function amap!l.

Version 6.1, October 1991 493

*nreverse
1m mlm II : i i f P

*nreverse

IE 1.
*Lisp Dictionary

r I I : II W ITID II i! fiii1i1i1P1P1i: I I. Ii I r II! i1 I pm! j! II: mE!! 11:

[*Defun]

Destructively reverses each sequence stored in the supplied sequence pvar.

SYNTAX

*nreverse sequence-pvar

ARGUMENTS

sequence-pvar

RETURNED VALUE

sequence-pvar

SIDE EFFECTS

None.

DESCRIPTION

Sequence pvar. Pvar containing sequences to be reversed.

Sequence pvar. The supplied sequence-pvar with each of its
sequences destructively reversed.

The function *nreverse destructively modifies sequence-pvar to contain its elements
in reverse order. The argument sequence-pvar must be a vector pvar.

EXAMPLES

(*nreverse (!! #(1 2 3 4») <=> (!! #(4 321»

NOTES

Compiler Note:

The *Lisp compiler does not compile this operation.

494 fersion 6.1, October 1991

*Lisp Dictionary
Hi I :: I ill !!I!I!!IJ! I i I I: ! ::: _©II i I ! m: II E!.: 1 wm I:-:rrW{'J[M ::;;mmnm "

REFERENCES

See also these related *Lisp sequence operators:
copy-seqll *fill length II

reducell reversell subseqll

See also the generalized array mapping functions amapll and *map.

Version 6.1, October 1991

*nreverse
;T ® iii1mmmu: :;;;:/c

495

nsiJbstltuteU nsubstitute{-Ifll.-if-notU} *Lisp Dictionary
I r U I 1 ? r I r I I UP HI I! I Wf 1fT aM If ~ imll

nsubstitute!!,
nsubstitute-if!!, nsubstitute-if-not!! [Function]

Performs a destructive parallel substitution operation on a sequence pvar, replacing speci­
fied old items with new items.

SYNTAX

nsubstltutell

nsubstltute-lfll

nsubstltute-lf-notll

ARGUMl:NTS

new-item

old-item

test

sequence-pvar

:test

:test-not

:start

:end

496

new-item old-item sequence-pvar
&key :test :test-not

:start :end :key :from-end :count
new-item test sequence-pvar

&key :start :end :key :from-end :count
new-item test sequence-pvar

&key :start:end :key:from-end :count

Pvar expression, of same data type as sequence-pvar. Item to
substitute for old-item in each processor.

Pvar expression, of same data type as sequence-pvar. Item to be
replaced in each processor.

One-argument pvar predicate. Test used in comparisons. Indicates
a match by returning a non-nil result. Defaults to eqlll.

Sequence pvar. Pvar containing sequ~nces to be modified.

Two-argument pvar predicate. Test used in comparisons. Indicates
a match by returning a non-nil result. Defaults to eqlll.

'!\vo-argument pvat predicate. Test used in comparisons. Indicates
a match by returning a nil result.

Integer pvar. Index of sequence element at which substitution
starts in each processor. If not specified, search begins with first
element. Zero-based.

Integer pvar. Index of sequence element at which substitution ends
in each processor. If not specified, search continues to end of
sequence. Zero-based.

Version 6.1, October 1991

/
\

"

*Lisp Dictionary nsubstitute!! nsubstitute{-if!!,-if-not!!}
~1: Ii:: f :Ii :. ii iiI! .;r:miiU!l!fllfii!l_l:nil!~I~1!1~m:I i 't!'i!J!E II!!· .WIW::UmEiImrlm i: 11 :~mww::!:!: :iil~

: key

:frorn-end

:count

RETURNED VALUE

One-argument pvar accessor function. Applied to sequence-pvar
before search is performed.

Boolean. Whether to begin substitution from end of sequence in
each processor. Defaults to nil.

Integer pvar. Maximum number of replacements to perform in
each processor. Defaults to (length!! sequence-pvar)

sequence-pvar Sequence pvar. The supplied sequence-pvar with each of its
sequences destructively modified.

SIDE EFFECTS

Destructively modifies sequence-pvar, replacing elements matching old-item with
copies of new-item.

DESCRIPTION

These functions are the parallel equivalent of the Common Lisp nsubstitute functions,
and are the destructive counterparts of the non-destructive substitute!! functions.

In each processor, the function nsubstitute!! searches sequence-pvar for elements that
match old-item. Each such element is destructively modified to contain the value
specified by new-item. Elements of sequence-pvar are tested against old-item with the
eqlll operator unless another comparison operator is supplied as either of the :test or
:test-not arguments. The keywords :test and :test-not may not be used together. A
lambda form that takes two pvar arguments and returns a boolean pvar result may be
supplied as either the :test and :test-not argument.

The function nsubstitute-iff' searches sequence-pvar for elements satisfying test. Each
such element is destructively modified to contain the value specified by new-item. A
lambda form that takes a single pvar argument and returns a boolean pvar result may
be supplied as the test argument.

The function nsubstitute-If-not!! similarly searches sequence-pvar for elements fail­
ing test.

Version 6.1, October 1991 497

nsubstitutell nsubstitute{-Ifll,-If-notll} *Lisp Dictionary
MMM~ II: II nun: .! : : :: WII: :! I ; ! I l! TIl -I m l! !!TIl lIm')j if 111111:: I 2i ITiHlil! :: [II II: l' ;:

The keyword :from-end takes a boolean pvar that specifies from which end of
sequence-pvar in each processor the operation will take place.

Arguments to the keywords :start and :end defme a subsequence to be operated on in
each processor.

The :key keyword accepts a user-defmed function used to extract a search key from
sequence-pvar. This key function must take one argument: an element of sequence­
pvar.

The :count keyword argument must be a positive integer pvar with values less than or
equal to (length!! sequence-pvar). In each processor at most count elements are substi­
tuted.

NOTES
Compiler Note:

The *Lisp compiler does not compile this operation.

REFERENCES

This function is one of a group of similar sequence operators. listed below:
countll count-lfll count-If-notll

findll find-lfll find-if-notll

nsubstltutell nsubstitute-ifll nsubstitute-If-notl!

position II posltlon-Ifll posltlon-If-notll

substitutell substitute-ifll substitute-If-notlI

See also the generalized array mapping functions amapll and *map.

498 Version 6.1, October 1991

(

*Lisp Dictionary nullli
!II:: !!I:mImn:II!~:m::I[~ : 1 ! 2: ii: fi!: mn ; (mil(o !II]! ~m::!llllamI(En: j ~) i!LllIllllWili!! °i:% g :: r~

nulill [Function]

Performs a parallel test for nil values on the supplied pvar.

SYNTAX

null II pvar

ARGUMENTS

pvar

RETURNED VALUE

null-pvar

SIDE EFFECTS

Pvar expression. Pvar to be tested for nil values.

Temporary boolean pvar. Contains t in those active processors
where pvar contains the value nil. Contains nil in all other proces­
sors.

The returned pvar is allocated on the stack.

DESCRIPTION

This function is functionally equivalent to notll.

Version 6.1, October 1991 499

numberpll
1 n

numberpll

F!1!i

·Lisp Dictionary
l.r r 111 m i iI1! 119m m nnw H: ml: '!~mml:u !Illl m Imlw~

[Function]

Performs a parallel test for numeric values on the supplied pvar.

SYNTAX

numberpll pvar

ARGUMENTS

pvar

RETURNED VALUE

numberp-pvar

SIDE EFFECTS

Pvar expression. Pvar to be tested for numeric values.

Temporary boolean pvar. Contains t in those active processors
where pvar contains a numeric value. Contains nil in all other active
processors.

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function numberp.

REFERENCES

See also these related pvar data type predicates:

500

booleanpll

floatpll

string-char-pll

typepll

characterpll

front-end-pll

structurepll

complexpll

integerpll

Version 6.1, October 1991

/

.~

/

/

!

*Lisp Dictionary oddpll
~1lM:r.,.mI!ilii! : : Ml\.I~~W1%',,*Q~=W.M~'1I%iWl'mlllf@%-wm:mw'&..mf);a'# : !i!l~

oddp!1 [Function]

Performs a parallel test for odd values on the supplied integer pvar.

SYNTAX

oddpll integer-pvar

ARGUMENTS

integer-pvar

RETURNED VALUE

oddp-pvar

SIDE EFFECTS

Integer pvar. Pvar to be tested for odd values.

Temporary boolean pvar. Contains t in each active processor where
integer-pvar contains an odd value. Contains nil in all other active
processors.

The returned pvar is allocated on the stack.

DESCRIPTION

The pvar returned by this predicate contains t for each processor where the value of
the argument integer-pvar is odd, and nil in all others. It is an error if any component
of integer-pvar is not an integer.

Version 6.1, October 1991 501

off-grid-border-pll *Lisp Dictionary
n::: li l@) f : ((l:~ : fl:W:! ! :!!!illl1iM nil W: TIm !if II II mmn:!i It.a! 11 !lWnHU I : l~!!!W::: f1i1i! um

off-grid-border-p! ! [Function]

Performs a parallel test on the supplied pvar(s) for grid (NEWS) addresses that are outside
the currently specified grid dimensions.

SYNTAX

off-grid-border-pll coordinate-pvar &rest coordinate-pvars

ARGUMENTS

coordinate-pvar, coordinate-pvars
Integer pvars. Pvars specifying a grid (NEWS) address in each
processor. The number of arguments must be equal to the rank of
the current machine configuration.

RETURNED VALUE

off-gridp-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding values of the coordinate-pvars
specify a location outside the currently specified grid dimensions.
Contains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

502

This function tests grid addresses for validity. In each processor, the grid address tested
is the integer series constituted by that processor's values of the coordinate-pvar argu­
ments. This function determines whether or not these grid addresses are within the
bounds defmed by the current VP set.

This function returns a boolean pvar that has the value t in each processor where the
supplied coordinate-pvars specify a grid address that is invalid given the current grid
dimensions, and nil otherwise.

Version 6.1, October 1991

\

*Lisp Dictionary off-grid-border-p!l
~~~~JWMJI.4Killgm '*"~,\WWWiiillgillmWl:illi!ill!WtKlOO~$#ffiilliif1, 

EXAMPLES 

This example dermes a two-dimensional grid configuration, and generates a pair of 
pvars that contain random grid addresses. 

(*cold-boot :initial-dimensions '(4 4» 
(*defvar x-coordinate (random!! (!! 6») 
(*defvar y-coordinate (random!! (!! 6») 

(ppp x-coordinate :mode :grid) 

4 5 5 5 
4 2 2 2 

2 1 5 3 
5 1 2 3 

(ppp y-coordinate :mode :grid) 

0 1 0 5 
0 0 2 4 

1 1 4 4 

5 3 1 1 

Some of the grid addresses specified by the pvars will lie outside the grid of the VP set. 
A call to off-grid-border-pll determines which grid addresses actually do lie outside 
the grid. 

(ppp (off-grid-border-p!! x-coordinate y-coordinate) 
:mode :grid :forrnat "-38 ") 

T T T T 
T NIL NIL T 

NIL NIL T T 

T NIL NIL NIL 

REFERENCES 

This function tests whether the supplied grid addresses are within the grid dimensions 
of the current VP set. See the related function off-vp-grid-border-pll for a way to test 
grid addresses in VP sets other than the current one. 

See also these related NEWS communication operators: 
*news 

*news-dlrection 

Version 6.1, October 1991 

newsll 

news-directionll 

news-border!! 

503 



off-grld-border-pll 
Will II! IMilFI! jill HI! I IE! 1m ! Iii m:!!!!!1 fin I I Ii !II lillil ! Ii III II! !RIm 11 I! I I I g In i! ! mimi I 

See also these related off-grid processor address tests: 
off-grid-border-relatlve-dlrectlon-pll 
off-grld-border-relatlve-pll 

*Lisp Dictionary 
TI! .11 ! :: E1 Hili I :! ffiI I ! rr ! II! ! ! E!I i I 

See also these related processor communication operators: 
prefll *pset 

504 Version 6.1, October 1991 

( 

\ 

( 
\ 



*Lisp Dictionary off-grld-border-relatlve-direction-pll 
$iiI : i: ij ~M~!mW'..aw;*.ii"i!%W~mnt~lm*:*,ml~:mw;r~~~;twwa IT"",! 

off-grid-border-relative-direction-pll [Function] 

Perfonns a parallel test for processors that access a location beyond the boundaries of the 
currently specified grid along the specified dimension. 

SYNTAX 

off-grld-border-relative-directlon-pll dimension-scalar distance-scalar 

ARGUMENTS 

dimension-scalar Integer. Dimension along which to test references. 

distance-scalar Integer. Distance along dimension to test. 

RETURNED VALUE 

off-gridp-pvar 

SIDE EFFECTS 

Temporary boolean pvar. Contains the value t in each active proces­
sor for which distance-scalar represents an access along the 
dimension specified by dimension-scalar that is beyond the bound­
ary of the currently specified grid. Contains nil in all other active 
processors. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

Tests the relative grid addresses indicated by the specified dimension-scalar and 
distance-scalar for validity. A boolean pvar is returned. 

The dimension-scalar argument must be an integer that is in the range [O .. (N -1)], 
where N is the number of dimensions defmed for the current VP set. 

The distance-scalar argument must be an integer and may be negative. The sign of this 
value determines in which direction along the specified dimension relative addresses 
are calculated. 

Version 6.1, October 1991 505 



off-grld-border-relatlve-direction-pll *Lisp Dictionary 
!!I:! !!iII!!!! 

The return value of this function is a boolean pvar that contains t in each processor for 
which an invalid relative address is specified and nil elsewhere. 

If, for an active processor P in the current VP set, there exists another processor that 
is distance-scalar processors away along the dimension-scalar axis, then the result 
returned in processor P is nil. 

EXAMPLES 

This function is similar to off-grid-border-pll and off-grid-border-relative-pll. How­
ever, it pemrits relative address verification along a single dimension without requiring 
specification of the total number of dimensions in the current VP set. Thus, the follow­
ing forms are equivalent, 

(off-grid-border-relative-direction-p!! 1 5) 
<=> 
(off-grid-border-relative-p!! 050) 

assuming a three-dimensional machine configuration. 

REFERENCES 

506 

See also these related NEWS communication operators: 
*news 
*news-direction 

news II 
news-directionll 

See also these related off-grid processor address tests: 
off-grld-border-pll 
off-grld-border-relative-pll off-vp-grid-border-pll 

See also these related processor communication operators: 
prefll *pset 

news-borderll 

Version 6.1, October 1991 

/ 

( 

\ 



*Lisp Dictionary off-grid-border-relative-pll 
WWOIU: !!m:mm:'l!Ia~%~Wm:M@wmwr@W$JW~*'~tlm!Wi&MmW,Jimlii@!§5mW~*!Wlilif"... $1 = 

off-g rid-border-relative-p I I [Function] 

Perfonns a parallel test on the supplied pvar(s) for relative grid (NEWS) addresses that are 
outside the currently specified grid dimensions. 

SYNTAX 

off-grid-border-relative-pll relative-coord-pvar &rest relative-coord-pvars 

ARGUMENTS 

relative-coord-pvar, relative-coord-pvars 

RETURNED VALUE 

off-gridp-pvar 

SIDE EFFECTS 

Integer pvars. Pvars specifying a relative grid (NEWS) address in 
each processor. The number of arguments must be equal to the 
rank of the current machine configuration. 

Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding values of the relative-coord-pvars 
specify a location outside the currently specified grid dimensions. 
Contains nil in all other active processors. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function tests relative grid addresses for validity. In each processor, the 
relative-coord-pvar arguments specify a relative grid address. Specifically, the jth 
relative-coord-pvar argument specifies for each processor the distance between that 
processor and the processor to be referenced, along the jth dimension. The off-grid­

border-relative-p!l function determines whether or not the relative grid address in each 
processor is within the bounds of the current grid configuration. 

Version 6.1, October 1991 507 



off-grid-border-relative-pll 
n1I!!TI I HIII!r II 

*Lisp Dictionary 
I 11'1 I iIlII:mW%m; I >=mrff~ i_.w~ 

EXAMPLES 

This example defmes a two-dimensional grid configuration, and then makes a call to 
off-grld-border-relative-pll that tests the same relative grid address, (-1,-1), in each 
processor. As the result of this operation shows, the only processors for which this rela­
tive grid address is off the edge of the grid are those processors on the "top" and "left" 
edges of the grid. 

(*cold-boot :initial-dimensions ' (128 128» 

(ppp (off-grid-border-relative-p!! (!! -1) (!! -1» 
:mode :grid :end ' (4 4) :format "-38 ") 

T T T T 
T NIL NIL NIL 

T NIL NIL NIL 
T NIL NIL NIL 

The off-grld-border-relative-pll function can also be used to easily select all processors 
within two processors of the border. 

(*when (or!! (off-grid-border-relative-p!! (!! -2) (!! -2» 
(off-grid-border-relative-p!! (!! 2) (!! 2» ) 

(check-border-condition» 

REFERENCES 

508 

The off-grid-border-relative-p!l function is similar to off-grid-border-pll except that 
the relative-coord-pvars specify relative grid addresses rather than absolute addresses. 

See also these related NEWS communication operators: 
*news 
*news-direction 

news II 

news-directionll 

See also these related off-grid processor address tests: 

news-borderll 

off-grid-border-pll off-grid-border-relative-direction-p!1 
off-vp-grid-border-pll 

See also these related processor communication operators: 
prefll *pset 

Version 6,1, October 1991 



*Lisp Dictionary off-vp-grid-border-pll 
W~\$lWtl\immll;Wr)}!f:Ullli:im1imtB~~ liT, E!!Ii H I ~ .'Wllllllhlllllll tI ffiF:%% In; II lim TTl ; :~ 

off-vp-g rid-border-p! ! [Function] 

Performs a parallel test on the supplied pvar(s) for grid (NEWS) addresses that are outside 
the grid dimensions of the supplied VP set. 

SYNTAX 

off-vp-grid-border-pll vp-set coordinattrpvar &rest coordinattrpvars 

ARGUMENTS 

vp-set VP set object. The grid addresses specified by the supplied 
coordinate-pvars are tested to determine whether they are within 
the grid boundaries of VJrset. 

coordinattrpvar, coordinattrpvars 

RETURNED VALUE 

off-gridp-pvar 

SIDE EFFECTS 

Integer pvars. Pvars that specify a grid (NEWS) address in each 
processor. The number of coordinate-pvar arguments must be 
equal to the number of dimensions in vp-set. 

Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding values of the coordinate-pvars 
specify a location outside the grid dimensions of vp-set. Contains 
nil in all other active processors. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function tests grid addresses for validity relative to a specified VP set. 

The return value of off-vp-grid-border-pll is a boolean pvar. It contains t in each pro­
cessor for which the local values of the coordinattrpvars specify an invalid grid 
address. In all other processors, nil is returned. 

Version 6.1, October 1991 509 



off-vp-grld-border-pll *Lisp Dictionary 
m mE :!II i:; nil f .: 1:: 1m: i:: iWi In :$: IT: :: F~:::; Ii f!TI:lf$lI!I:n:IEm I; f1i: 

EXAMPLES 

This example creates a two-dimensional VP set, two-d-vp-set, a one-dimensional VP 
set, my-vp-set, and a pair of pvars belonging to my-vp-set that contain random grid 
addresses within two-d-vp-set. 

(def-vp-set two-d-vp-set '(4 4)) 
(def-vp-set my-vp-set '(8)) 

(*defvar y-coordinate (random!! (!! 5)) nil my-vp-set)) 
(*defvar x-coordinate (random!! (!! 5)) nil.my-vp-set)) 

(ppp x-coordinate) 
1 4 1 3 0 0 3 1 

(ppp y-coordinate) 
402 2 3 1 1 4 

A call to off-grid-border-p!l, specifically 

(*with-vp-set my-vp-set 
(ppp (off-vp-grid-border-p!! two-d-vp-set 

x-coordinate y-coordinate))) 
T T NIL NIL NIL NIL NIL T 

demonstrates that the coordinate pairs contained in processors 0, 1, and 7 of the two 
coordinate pvars are invalid for two-d-vp-set. 

As this example shows, it is not necessary for the coordinate-pvar arguments to belong 
to the specified vp-set, or to even have the same size (number of elements). 

REFERENCES 

510 

This function is similar to off-grid-border-pll except that it permits testing of grid 
addresses within a specific VP set other than the current one. 

See also these related NEWS communication operators: 
*news 
*news-direction 

news II 
news-directionll 

See also these related off-grid processor address tests: 

news-borderll 

off-grid-border-pll 
off-grid-border-relative-pll 

off-grid-border-relative-direction-pll 

See also these related processor communication operators: 
prefl! *pset 

Version 6.1, October 1991 



*Lisp Dictionary *or 
\t,"1I;~ii!WSf<R,@,·M"'!i1!!S1"W@wmtt.l@f%;W'l*'WM1t:m@b'W~MMW11mmllimMmMww@mMmmWW1W%W~ii!::i···ij~~~ 

*or [*Defun] 

Takes the logical inclusive OR of all values in a pvar, returning a scalar value. 

SYNTAX 

*or pvar-expression 

ARGUMENTS 

pvar-expression Pvar expression. Pvar to which global inclusive OR is applied. 

RETURNED VALUE 

or-scalar Scalai' boolean value. The logical inclusive OR of the values in 
pvar. 

SIDE EFFECTS 

None. 

DESCRIPTION 

The *or function is a global operator. It returns a scalar value of t if the value of pvar­
expression in any active processor is non-nil, and returns nil otherwise. 

If there are no active processors, this function returns nil. 

EXAMPLES 

Two examples of the use of global operators such as *or are 

(*defun =t!! (pvar) (not (*or (not!! pvar») 
(*defun =nil!! (pvar) (not (*or pvar») 

Version 6.1, October 1991 511 



*or *Lisp Dictionary 
1 fUf 1m m f fill i 11 121 1m i IIII! III III mn: II lill iii: n iff m I 121111111! !limE I inl if!!!: !III.: 111 Iii m 

NOTES 

To determine whether there are any processors currently selected, a handy idiom is 

(*or t!!) 

which returns t only if there are selected processors. 

REFERENCES 

512 

See also the related global operators: 
*and 

*Ioglor 
*mln 

*Integer-length 

*Iogxor 

*sum 

See also the related logical operators: 
andll notll orll 

*Iogand 

*max 
*xor 

xorll 

Version 6.1. October 1991 



*Lisp Dictionary orll 
Nil JI WlI!!! [i!!: !! J i! 1m ;:wwlml!!!!p ; ! 11 W!llli) 

or!! [Macro] 

Performs a parallel logical inclusive OR operation in all active processors. 

SYNTAX 

orll &rest pvar-exprs 

ARGUMENTS 

pvar-exprs 

RETURNED VALUE 

or-pvar 

SIDE EFFECTS 

Pvar expressions. Pvars to which parallel inclusive OR is applied. 

Temporary boolean pvar. Contains in each active processor the log­
ical inclusive OR of the corresponding values of the pvar-exprs. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The orll function performs a parallel logical inclusive OR operation. It evaluates each 
of the supplied pvar-exprs in order. from left to right, in all active processors. As soon 
as one of the pvar-exprs evaluates to a non-nil value in a processor, that processor is 
removed from the currently selected set for the remainder of the orll. 

The temporary pvar returned by or!! ~ontains the value of the last of the pvar-exprs 
evaluated in each processor. If no pvar-exprs are supplied, the pvar nilll is returned. 

The function orll provides a functionality for boolean pvars similar to that provided by 
the Common Lisp function or for boolean values. 

Version 6.1, October 1991 513 



or!! *Lisp Dictionary 
! R f 1 I ! r 1 1m 1.,. r f 1 Ie I ::lTnm .1 .r; il;;;W I ·;;;;C .2 

EXAMPLES 

A simple example of the use of the or!! macro is 

(ppp (or!! (evenp!! (self-address!!» 
«!! (self-address!! (!! 3»» 

:end 10) 

T T T NIL T NIL T NIL T NIL 

NOTES 
Language Note: 

514 

Remember that orll changes the currently selected set as it evaluates its arguments. This 
can have unwanted side effects in code that depends on unchanging selected sets, par­
ticularly code involving communication operators, such as scanl!. 

For example, the expressions 

(ppp (or!! (evenp!! (self-address!!» 
«!! (scan!! (self-address!!) '+!!) (!! 5») 

:end 8) 

T T T T T NIL T NIL 

(ppp (or!! «!! (scan!! (self-address!!) '+!!) (!! 5» 
(evenp!! (self-address!!») 

:end 8) 

T T T NIL T NIL T NIL 

exemplify a case in which using or!! may cause a non-intuitive result because of its 
deselection properties. In the fIrst expression, the seanl! operation is performed only 
in the odd processors. In the second expression, the scan!! operation is performed in 
all processors, resulting in different set of displayed values. 

This is the result of orl! deselecting those processors that satisfy any clause, before 
executing the next clause. One can avoid this in the following manner: 

(* let «b1 (evenp!! (self-address!!») 
(b2 «!! (scan!! (self-address!!) '+!!) (!! 3»» 

(declare (type boolean-pvar b1 b2» 
(or!! b1 b2» 

Version 6.1, October 1991 

\ 

( 
~ 



*Lisp Dictiona1Y or!! 
WtIliI;~I'&~~ig%%mml:m-llm. j j llm,%'1'ffiillli~~~Wtl!it=mwm:t~:lW%l)2lilll'm'W 

REFERENCES 

See also the related global operators: 
*and 

*Iogior 

*min 
*xor 

*integer-Iength 

*Iogxor 

*or 

See also the related logical operators: 
and II notll 

Version 6.1, October 1991 

*Iogand 

*max 
*sum 

xorll 

515 



phase!! 
111111111117 RW!!i:1I12H II 1 R 

phasell 

n 1 n 
*Lisp Dictionary 

1 UgH 1 ~ m II i l:m 

[Function] 

Returns a pvar containing the phase angle of the supplied complex pvar. 

SYNTAX 

phase!! numeric-pvar 

ARGUMENTS 

numeric-pvar Numeric pvar. Pvar for which the phase angle is calculated. 

RETURNED VALUE 

phase-ang-pvar Numeric pvar. In each active processor, contains the phase angle of 
the corresponding complex value in numeric-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function returns a temporary pvar containing in each processor the phase angle, 
in radians, of the complex value in numeric-pvar. Note: numeric-pvar need not explic­
itly contain complex values. Non-complex values are coerced to complex values with 
a zero imaginary component. 

REFERENCES 

See also these related complex pvar operators: 
abs!! cis!! 

conjugate!! Imagpart!! 

516 

complex!! 

real part!! 

Version 6.1, October 1991 



*Lisp Dictionary pluspll 
wlm n m;;! t t ;;m.ttmm.m*@.t~t3.~"*"-t! T :!img~@\lMll~umg t w·· an .... 1 w, 1 . W 

pluspU [Function] 

Performs a parallel test for positive values on the supplied pvar. 

SYNTAX 

pluspll numeric-pvar 

ARGUMENTS 

numeric-pvar 

RETURNED VALUE 

plusIrPvar 

SIDE EFFECTS 

Numeric pvar. Tested in parallel for positive values. 

Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of numeric-pvar is positive. 
Contains nil in all other active processors. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The pvar returned by this predicate contains t for each processor where the value of 
the argument number-pvar is greater than zero, and nil in all others. 

Version 6.1, October 1991 517 



posltionll, posltlon-ifll, posltion-If-not!! *Lisp Dictionary 
!m Ii RIm mmllUllil ! !li HIli ~iinrm un I!!!! :111. rW!!!P1W ill I 1iiIWI iii II HI : illll! 

"t· " POSI IOn .. , 

position-if!!, position-if-not!! [Function] 

Performs a parallel search on a sequence pvar, returning in each processor the positional 
index of the fIrst sequence element matching the supplied item or passing/failing a test. 

SYNTAX 

position II 

position-lfll 
posltlon-If-notll 

ARGUMENTS 

item-pvar 

test 

sequence-pvar 

:test 

:test-not 

:start 

:end 

:key 

518 

item-pvar sequence-pvar &key :test :test-not 
:start :end :key :from-end 

test sequence-pvar &key :start :end :key :from-end 
test sequence-pvar &key :start :end :key :from-end 

Pvar expression. Item to match in the corresponding value of 
sequence-pvar. Must be of the same data type as the elements of 
sequence-pvar. 

One-argument pvar predicate. Used to test elements of 
sequence-pvar. 

Sequence pvar. Contains sequences to be searched. 

Two-argument pvar predicate. Test used in comparisons. Indicates 
a match by returning a non-nil result. Defaults to eqlll. 

Two-argument pvar predicate. Test used in comparisons. Indicates 
a match by returning a nil result. 

Integer pvar. Index, zero-based, of sequence element at which 
search starts in each processor. If not specifIed, search begins with 
fIrst element. 

Integer pvar. Index, zero-based, of sequence element at which 
search ends in each processor. If not specifIed, search continues to 
end of sequence. 

Oon-argument pvar accessor function. Applied to each element in 
sequence-pvar before test is performed. 

Version 6.1, October 1991 



*Lisp Dictionary 
!1fflImm,~~t;;%%",rm.~v.%%mm.~~~%~~mm"!il_W 

position II, positlon-ifll, posltlon-lf-notll 
"? !. stem M! !l 

:from-end 

RETURNED VALUE 

position-pvar 

SIDE EFFECTS 

Boolean. Whether to begin search from end of sequence in all 
processors. Defaults to nil. 

Temporary pvar, of same data type as elements of sequence-pvar. 
In each active processor, contains the numeric index of the fIrst 
matching element of sequence-pvar. Returns the value -1 in pro­
cessors where no match was found. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

These functions are the parallel equivalents of the Common Lisp position functions. 

In each processor, the function position II searches sequence-pvar for elements that 
match item-pvar. It returns a pvar containing the index of the fIrst match found in each 
processor. In any processor (ailing the search, the returned pvar contains -1. Elements 
of sequence-pvar are tested against item-pvar with the eqlll operator unless another 
comparison operator is supplied as either of the :test or :test-not arguments. The key­
words :test and :test-not may not be used together. A lambda form that takes two pvar 
arguments and returns a boolean pvar result may be supplied as either the :test and 
:test-not argument. 

The function position-if!! searches sequence-pvar for elements that satisfy the supplied 
test. It returns a pvar containing the index of the fIrst such element found in each proc­
essor. In any processor failing the search, the returned pvar contains -1. A lambda form 
that takes a single pvar argument and returns a boolean pvar result may be supplied as 
the test argument. Similarly, the function position-if-not!! searches sequence-pvar for 
elements that fail the supplied test. 

Arguments to the keywords :start and :end defme a subsequence to be operated on in 
each processor. 

The :key argument specifies a one-argument pvar function that is applied in parallel to 
each element of sequence-pvar before the comparison with item-pvar is performed. 
This argument can be used to select a key value from a structure, or to manipulate the 
values being compared. 

Version 6.1, October 1991 519 



position II , positlon-Ifll, position-if-notll "'Lisp Dictionary 
Him 2 1 1 f1 If ! 1 III1 fie ! 12 m 11m: milliE!!!!! [ !Wi ! 11m m f1N rill:: [liZ! !iIflHIfl!i!N IJ Ii E 11161 : 

The keyword :from-end takes a boolean pvar that specifies from which end of 
sequence-pvar in each processor the operation will take place. 

EXAMPLES 

(*defvar vector-pvar (!! #(1 2 3 4 5 6 7») 

(position!! (!! 4) vector-pvar) 
(position!! (!! 4) vector-pvar 

<=> (!! 3) 

:test '=!! :key '1-!!) <=> (!! 4) 

NOTES 
Compiler Note: 

The "'Lisp compiler does not compile this operation. 

REFERENCES 

520 

The functions position II, position-ifll. and posltion-if-notll are similar to the find II 

functions. Here, however, it is the indices of the matching elements, rather than the 
elements themselves, that are returned. 

These functions are members of a group of similar sequence operators, 
listed below: 

countll count-ifll count-If-notll 

find II flnd-ifll find-If-not!! 

nsubstitutell nsubstitute-ifll nsubstitute-if-notll 
positlonll posltion-Ifll positlon-If-notll 

substitute II substitute-Ifll substltute-if-notll 

See also the generalized array mapping functions amapll and *map. 

Version 6.1. October 1991 

( 
I", 

( 

I", 

! 
I 



*Lisp Dictionary power-of-two-p 
lUmlnTI 1 g IllIlfiil 19 f! !fI 1 Ii II HI ! ill 1 '1ll11n 11m II 

power-of-two-p [Function] 

Tests whether the supplied integer is an integral power of two. 

SYNTAX 

power-of-lwo-p positive-integer 

ARGUMENTS 

positive-integer Integer. Positive integer to be tested. 

RETURNED VALUE 

power-of-two-p Scalar boolean value. The value t if positive-integer is an integral 
power of two, and nil otherwise. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function returns t if positive-integer is a power of two, otherwise it returns nil. 

REFERENCES 

See also the related function next-power-of-lwo->=. 

The power-of-lwo-p function is most useful in combination with the following VP set 
defInition operators: 

def-vp-set create-vp-set let-vp-set 

Version 6.1, October 1991 521 



ppme *Lisp Dictionary 
i! ! !i !IIIIII: m I! l! l!1immill! W M) r! II IT I iilllillmlW Iii Ii IIM;flliiilillmi I Ie; run! 

ppme [Macro] 

"Pretty-print Macroexpand", used to examine code produced by the *Lisp compiler. 

SYNTAX 

ppme form 

ARGUMENTS 

form 

RETURNED VALUE 

nil 

SIDE EFFECTS 

*Lisp form to be macroexpanded and pretty-printed. 

Used for side effect only. 

Pretty-prints the macroexpansion (and thus the *Lisp compilation) of the form. 

DESCRIPTION 

522 

One of the best ways to see the effect of the *Lisp compiler on your code is to compile 
it in such a way that the Lisp/Paris form of the code is displayed. 

The *Lisp compiler includes a macro that you can use to display the expanded form 
of a piece of code. Called ppme (short for "pretty print macroexpand"), it essentially 
performs a call to pprlnt and macroexpand-1 to display the expanded form of a piece 
of *Lisp code. 

Version 6.1, October 1991 

/ 



*Lisp Dictionary ppme 
~~~~"1;lt11W:i®!~%-=t*~m~w<wmt~=*@~i&~mWW$:IZmiwmw:.~~:r~~~-«m.g· .. :m.g[ __ "m.g:::m.g: ):m.g~, WWW" 

EXAMPLES

A sample call to ppme is

> (setq *safety* 0)
> (ppme (*set (the single-float-pvar a)

(+! ! (the single-float-pvar b)
(the single-float-pvar e»»

The resulting compiled code looks like this:

NOTES

(progn ;; (*set (the single-float-pvar a) (+!!
(em:f-add-3-11 (pvar-loeation a)

(pvar-loeation b)
(pvar-loeation e)
23
8)

nil)

Usage Note:

The ppme macro only expands a piece of code when the outermost operator of the code
is a macro. To expand other *Lisp expressions, such as

(+!! (the single-float-pvar b) (the single-float-pvar e»

enclose them in a *Lisp macro such as *set, as shown in the example above.

Version 6.1, October 1991 523

ppp
~H

ppp

:II : § jj 11 w.::w 1m

*Lisp Dictionary
!ri mr

[Macro]

Prints the values of the supplied pvar in neatly formatted style.

SYNTAX

ppp pvar &key

ARGUMENTS

pvar

:mode

:format

:per-line

:tltle

:start

:end

:ordering

524

:mode :format :per-Iine :title :start :end
:ordering : processor-list : print-arrays
:return-argument-pvar :pretty :stream

Pvar expression. Pvar to be printed.

Either of:cube or :grid. Determines mode (send/grid) offormatted
output. Defaults initially to :cube. (See Notes section, below.)

String. Format directive used to print each value. Defaults initially
to "-5 ".

Integer or nil. Number of values to print on the same line. Defaults
initially to nil, indicating that no line-breaks are to be printed.

String or nil. Text to display as title line, or nil for no title. Defaults
initially to nil.

Integer or list of integers. Send/grid address of processor at which
to start formatting values. Defaults initially to o.

Integer or list of integers. Send/grid address of processor at which
to end formatting values. Default value is the current value of the
global variable *number-of-processors-limit*.

List of integers or nil. Specifies order in which grid dimensions are
traversed in formatting of values. This argument is meaningless
unless the value of the :mode argument is :grid. Defaults initially
to nil.

Version 6.1, October 1991

*Lisp Dictionary ppp
Il III IliIl! TIl IIII! 111111 !!In I1II1! i 1l1li] TIm min I!l WI I II![112!!If I I ; W W2m I I 'lJiilUliE I nil 1 Tim

:processor-llst

:print-arrays

List of integers or nil. Send addresses of processors between :start

and :end for which values are formatted. This argument is
meaningless unless the value of the :mode argument is :cube.

Defaults initially to nil.

Scalar boolean. Determines whether arrays are displayed in full.
Defaults to t.

:return-argument-pvar

:pretty

:stream

RETURNED VALUE

pvar-or-nil

SIDE EFFECTS

Scalar boolean. Determines whether ppp returns the supplied pvar
as its value. Defaults to nil.

Scalar boolean. Value that Common Lisp global variable
print-pretty is bound to during printing. Defaults to nil.

Stream object. Stream to which output is printed. Defaults to nil,

which directs output to *standard-output*. An argument of t
directs output to *terminal-io*.

Depending on the value supplied for the :retum-argument-pvar ar­
gument, either the supplied pvar argument or nil.

Prints the selected values of pvar to the stream specified by the :stream argument.

DESCRIPTION

This macro is an alias for the macro pretty-print-pvar, which performs identically.

The ppp macro prints out the value of pvar in all specified processors, regardless of the
currently selected set. If ppp accesses a processor that has no defined value for pvar,
the output produced is not defmed.

The keyword :mode can have the value :cube or :grid; in the latter case the pvar is
printed out using grid addressing rather than cube addressing.

If the :per-line argument is nil, no newlines are ever printed between values; otherwise,
the number of values specified by the :per-llne argument are printed on each line.

Version 6.1, October 1991 525

ppp ·Lisp Dictionary
.. fU!i;iIl!!!Im 2 1 If ! 1 ! 1 f1i 1 IllijT!

The keyword :format has as its value a string that controls the printing format for each
value; its value is used directly by the Common Lisp format function.

The :ordering keyword argument to ppp takes a list of integers specifying axes. It is
valid only when used in conjunction with the :grid value of the :mode keyword and is
most useful for printing a pvar defmed in a VP set of more than two dimensions. With
the :ordering keyword argument to ppp, the user can specify which "slices" of the n-di­
mensional grid are to be displayed. The last two dimensions specified in the .:ordering

list are the two dimensions that are shown as a single slice.

The keyword argument :pretty controls whether output values are pretty-printed. The
value of the :pretty argument is bound as the value of the variable *print-pretty* for the
duration of the call to ppp.

EXAMPLES

526

A sample call to ppp is

(ppp (self-address! I»~
o 1 2 3 4 5 6 7 8 9 10 11 12 . • .

The output produced by ppp may be tailored by use of the many keywords. For
example,

(ppp (self-address!!) :end 7)
0123456

(ppp (self-address! !) :start 6
:per-line 6

6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

:end 24
: format "-3D")

(ppp (*!! (self-address!!) (self-address!!»
:start 1 :end 4 :format "-R "
:title "The monolith's dimensions are")

The monolith's dimensions are: one four nine

The :processor-llst argument may be used to select specific processors to display, but
only when the printing :mode is :cube, as it is by default. For example,

(ppp (*!! 2 (self-address! I»~
:processor-list ' (1 2 3 5 7 11 13 17 19»

Version 6.1, October 1991

,i , ,

~"",

~

*Lisp Dictionary ppp
m IT l!i§! ogum iJ!P fir ff lii§!!!! I! f! roo! ! I!H III %WIlma! I !

displays the output

2 4 6 10 14 22 26 34 38

The :grld option to the :mode keyword causes the output of ppp to be displayed in grid­
address fonnat. For example, assuming a two-dimensional grid,

(ppp (self-address!!) :mode :grid :end ' (8 4) : format "-30")

displays output similar to

0 1 2 3 16 17 18 19
4 5 6 7 20 21 22 23
8 9 10 11 24 25 26 27

12 13 14 15 28 29 30 31

The :orderlng argument may be used to specify the order in which grid dimensions are
displayed. For example,

(ppp (self-address!!) :mode :grid :end ' (6 4)
:ordering , (I 0) :format "-30")

displays output similar to

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

16 20 24 28
17 21 25 29

The keyword argument :pretty can be used to cause the output of some pvar values to
be displayed in a cleaner format. Calling ppp on a structure pvar, for example, yields
output such as the following:

tS(PERSON :NAME 0 :AGE 0 :SEX NIL) tS{PERSON :NAME 0 :AGE 0 :SEX
NIL) tS{PERSON :NAME 0 :AGE 0 :SEX NIL)

If the keyword argument :pretty is given the value t, this structure is printed as:

tS{PERSON : NAME 0
:AGE 0
:SEX NIL)

tS{PERSON : NAME 0
:AGE 0
:SEX NIL)

tS{PERSON : NAME 0
:AGE 0
:SEX NIL)

Version 6.1. October 1991 527

ppp *Lisp Dictionary
IIiIIft ! HUIli lUI m 11m I mil I R UUmlHiI!lII HfQ n ! n J UII I PI

NOTES

There are global variables that specify the defaults for each of the keyword arguments
except:

:pretty
:stream

:prlnt-arrays :return...argument...pvar

See Chapter 2, "*Lisp Global Variables," in Part I of this Dictionaty for a list of these
variables and the default values to which they are initially bound

Simulator Note:

The number of processors defmed by default in the *Lisp simulator is very much lower
than the number of processors generally available using CM hardware. Therefore,
while using the *Lisp simulator, if ppp is called with no keyword arguments, as in

(ppp data -pvar)

then only a few values will be displayed. The same call to ppp executed with CM hard­
ware attached can potentially display thousands or millions of values. When using CM
hardware, it is prudent to use the :start and :end keywords (or the global variables con­
trolling their defaults) to limit the number of values displayed.

REFERENCES

528

See also these related pvar pretty-printing operations:
pppll

ppp-css ppp-address-obJect
pppdbg
pretty-prlnt-pvar

ppp-struct

pretty-print-pvar-llH:urrently-selected-set

Version 6.1, October 1991

\

(

*Lisp Dictionary pppU
lmRl!J:: II!II 1111111:: !i!!!!rmll]l: nil!!": IFli mm W m II In I 1m mn Iii !II !lIm !lI:!lW IIITiIW!!iiTInlIT mUIII!!1n1! !!!!IliIiHI

pppU [Macro]

Prints the values of the supplied pvar in neatly formatted style, and returns the supplied
pvar as its value.

SYNTAX

pppll pvar &rest keyword-args

ARGUMENTS

pvar Pvar expression. Pvar to be printed and returned.

keyword-args Keyword arguments. Accepts same keyword arguments as ppp.

RETURNED VALUE

pvar The supplied pvar argument is returned.

SIDE EFFECTS

Prints selected values of pvar to the stream specified by the :stream argument.

DESCRIPTION

The function pppU is identical to ppp except that it returns its pvar argument. The argu­
ment pvar may be any pvar. The keyword-args are identical to those for ppp, with the
exception of :return-argument-pvar.

NOTES

There are global variables that specify the defaults for each of the keyword arguments.
See Chapter 2, "*Lisp Global Variables," in Part I of this Dictionary for a list of these
variables.

Version 6.1, October 1991 529

pppll
1 !!P Pi iii !!in 1

REFERENCES

See also these related pvar pretty-printing operations:
ppp

ppp-css

*Lisp Dictionary
IT!! 11 m !!!IU::: m:i!H~~!m :1Hlimwm

ppp-address-obJect
pppdbg

pretty-print-pvar

ppp-struct

pretty-print-pvar-in-currently-selected-set

530 Version 6.1, October 1991

\

(

*Lisp Dictionary ppp-address-object
m In t t m ii! r 'mm!l ~~tt% mffP ~! .,'. tmm ·wm::I .. UlMllMW .. ;: mim

ppp-address-object [Function]

Prints the values of the supplied address-object pvar in neatly formatted style.

SYNTAX

ppp-address-object address-object-pvar &key :tltle :start :end :mode

ARGUMENTS

address-object-pvar

:mode

:title

:start

:end

RETURNED VALUE

nil

SIDE EFFECTS

Address-object pvar. Pvar to be printed.

Either of :cube or :grid. Determines mode (send/grid) of formatted
output.

String or nil. Text to display as title line, or nil for no title.

Integer. Send address of processor at which to start formatting
values.

Integer. Send address of processor at which to end formatting
values.

Evaluated for side effect only.

Prints selected values of address-object-pvar to *standard-output* stream.

DESCRIPTION

This function is a specialized pretty-printer for address-object pvars.

Version 6.1, October 1991 531

ppp-address-object *Lisp Dictionary
: ::Ii I[] :n un ::min:: H TIl in!!! liIllimIlllmlli11: ! m mill) ! iF :Ii !Ii IE !iH me [: :::::111111 :il i:Il: Il nil

NOTES

There are global variables that specify the defaults for each of the keyword arguments.
See Chapter 2, "*Lisp Global Variables," in Part I of this Dictionary for a list of these
variables.

REFERENCES

See also these related pvar pretty-printing operations:
ppp pppll

ppp-css

pppdbg ppp-struct
pretty-print-pvar pretty-print-pvar-in-currently-selected-set

532 Version 6.1, October 1991

(
I

\

*Lisp Dictionary
OMWW i);; ll!a~mm'MilWAM!!Wii®llli~@t'ill@ili'liW13WMI§!iiW&WW_J.ifNxw.m:t'mme\!iMWW@>A~;

ppp-css
.eLL wm*

ppp-css [Macro]

Prints out the send address, and the value of the supplied pvar, for each processor of the
currently selected set

SYNTAX

ppp-css pvar &key :format :start :end :title :mode

ARGUMENTS

pvar

:format

:start

:end

:tltle

:mode

RETURNED VALUE

nil

SIDE EFFECTS

Pvar expression. Pvar from which values are printed.

String. Format directive used to print each value.

Integer. Send address of processor at which to start formatting
values.

Integer. Send address of processor at which to end formatting
values.

String or nil. Text to display as title line, or nil for no title.

Either of :cube or :grid. Determines mode (sendINEWS) of
formatted output.

Evaluated for side effect only.

Prints send addresses and values from pvar to the *standard-output* stream.

DESCRIPTION

This macro is an alias for pretty-print-pvar-In-currently-selected-set.

Version 6.1, October 1991 533

ppp-css *Lisp Dictionary
ru I ": : m :: in!!!: : mil nm iii. i %imil©-:lmili1l@"%iU~~~~%imili1l)l!%Wii%i@i1l: '·":Wi1l@ru";mm

NOTES

There are global variables that specify the defaults for each of the keyword arguments.
See Chapter 2, "*Lisp Global Variables," in Part I of this Dictionary for a list of these
variables.

REFERENCES

534

See also these related pvar pretty-printing operations:
ppp pppll

ppp-address-object

ppp-struct pppdbg

pretty-print-pvar pretty-print-pvar-in-currently-selected-set

Version 6.1. October 1991

./

\

"

"-.

*Lisp Dictionary pppdbg
~;~ijii ;:n 1 un]] m if n 1 11 ~ 1 ! :n .;;' 1 1 1 "00

pppdbg [Macro]

Prints the values of the supplied pvar in neatly fonnatted style, displaying the fonn that is
evaluated to provide the pvar as a title.

SYNTAX

pppdbg pvar &rest keyword-args

ARGUMENTS

pvar

keyword-args

RETURNED VALUE

pvar-or-nil

SIDE EFFECTS

Pvar expression. Pvar to be printed.

Keyword arguments. Accepts same keyword arguments as ppp.

Depending on the value supplied for the :return-argument-pvar ar­
gument, either the supplied pvar argument or nil.

Prints selected values of pvar to the stream specified by the :stream argument.

DESCRIPTION

This macro is equivalent to ppp, except that the :title keyword argument defaults, not
to nil (no title), but to the original fonn supplied as the pvar argument for pppdbg. The
argument pvar may be any pvar. The keyword-args are identical to those for ppp.

Version 6.1, October 1991 535

pppdbg *Lisp Dictionary
III III mmul WI mml r Iml l'llli r 11m mllillililmlli PIn lUlU Iml1m

EXAMPLES

For example, the expression

(pppdbg (self-address!!) :end 10)

displays the following:

(SELF-ADDRESS!!): 012 3 4 5 6 7 8 9

NOTES

There are global variables that specify the defaults for each of the keyword arguments.
See Chapter 2. "*Lisp Global Variables," in Part I of this Dictionary for a list of these
variables.

REFERENCES

See also these related pvar pretty-printing operations:
ppp ppplJ

ppp-css ppp-address-obJect
ppp-struct

pretty-prlnt-pvar pretty-prlnt-pvar-ln-currently-selected-set

536 Version 6.1, October 1991

/

(
\

*Lisp Dictionary ppp-struct
§iiI! [I !Ii [mm 11 :nl iln !TlIifl::rDlil111111II:~liilmmmlil1&m E!fElKmi11111111il! mr iBm!!!! 1m mn [[ElU ! r 1 1m!]11

ppp-struct [Function]

Prints the contents of the supplied structure pvar in a readable format.

SYNTAX

ppp-struct pvar per-line &key :start :end :print-array
:stream :width :title

ARGUMENTS

pvar

per-line

:start

:end

:print-array

:stream

:width

:tltle

RETURNED VALUE

nil

Version 6.1, October 1991

Structure pvar. Pvar to print in readable format.

Positive integer. Number of values to display per line.

Integer. Send address of processor at which printing starts.
Defaults to O.

Integer. Send address of processor at which to printing ends.
Defaults to *number-of-processors-limit*.

Boolean. Determines whether arrays are printed out in full.
Defaults to t.

Stream object or t. If supplied, output is written to the specified
stream. Defaults to t, sending output to *standard-output*.

Integer. Width, in characters, of each value displayed. Defaults to
8 characters.

String or nil. Text to display as title line, or nil for no title. Defaults
to name of pvar's structure type.

Evaluated for side effect only.

537

ppp-struct "'Lisp Dictionary
11 I I 1 I mill! 1 in 1 m ;nWEi!I!llIlili!ll!Mlliiil nling Ii : mill! Un!!liiiif J nil! iIJ :NlmH HilflJHm:: -;;Wi 11 ~:: mini, [j mil :r j::: 1 ii': W'JWm

SIDE EFFECTS

The contents of pvar from processor start up to processor end is written to stream in
a readable format.

DESCRIPTION

The function ppp-struct attempts to print out the structure pvar pvar in readable
format, with processor values for each slot being shown left to right, one line per slot.
The number of values displayed per line is determined by per-line.

The keyword arguments :start, :end, :print-array, and :stream control the amount,
format, and destination of the output exactly as with ppp.

The argument :wldth determines the printed width of each slot value, and defaults to
8 characters.

The argument :title defaults to t, which specifies that the title printed out is the name
of the *defstruct of which pvar is an instance of. If nil, no title is printed out. If it is
a string, then that string is used as the title.

EXAMPLES

538

(*defstruct person
(ssn 0 :type (unsigned-byte 32))
(age 0 :type (unsigned-byte 16))
(height 0.0 :type single-float)
(weight 0.0 :type single-float)
)

(ppp-struct a-person 5 :end 10 :width 10)

*DEFSTRUCT PERSON

SSN: 219101296 545417079 833166928 508389095
AGE: 43 76 9 96
HEIGHT: 0.7566829 6.0384245 6.8458276 2.9526687
WEIGHT: 52.873016 11.53174 29.510529 223.5896

SSN: 604959766 822929695 445946453 856011938
AGE: 27 28 88 68
HEIGHT: 2.01059 5.2301087 6.1360407 1. 8808416
WEIGHT: 82.76129 200.76877 165.2837 48.37853

NIL

945762998
63
6.9201202
244.65019

684206262
98
6.9195743
154.92798

Version 6.1, October 1991

\
\
'-

\"

*Lisp Dictionary ppp-struct
~~~lSi*"iWWW1£$JM$-=Wlli%Wi'lWWWsTh"1Wl:lli<'iiill§il%'~~%!!mmn~q. ·Llil." 

NOTES 

There are global variables that specify the defaults for each of the keyword arguments 
except: 

• :print-array 

• :stream 

• :wldth 

See Chapter 2, "*Lisp Global Variables," in Part I of this Dictionary for a list of these 
variables. 

REFERENCES 

See also these related pvar pretty-printing operations: 
ppp pppll 
ppp-address-object 

pppdbg 

pretty-print-pvar 

Version 6.1, October 1991 

ppp-css 

pretty-print-pvar-ln-currently-selected-set 

539 



pref 
HElP 7 F i W J ! :::!J)j ! 

*Lisp Dictionary 
.!1 Pi i 1!7r~~ 

pref [Macro] 

Retrieves the value of the supplied pvar in a single processor. 

SYNTAX 

pref pvar-expression send-address &key :vp-set 

ARGUMENTS 

pvar-expression Pvar or pvar expression. Pvar from which value is accessed. 

send-address Integer or address object. Send address of processor from which 
value is accessed. 

:vp-set VP set object. VP set to which the result of pvar-expression 
belongs. Defaults to the value of *current-vp-set*. 

RETURNED VALUE 

scalar-value Value obtained by evaluating pvar-expression with the single 
processor specified by send-address selected. 

SIDE EFFECTS 

None. 

DESCRIPTION 

540 

This macro returns, as a Lisp value, the value of pvar-expression in the processor 
specified by send-address. The pvar returned by pvar-expression may be any type of 
pvar, and may belong to any VP set. 

The :vp-set argument determines the VP set in which the supplied pvar-expression is 
evaluated. If a :vp-set argument is not specified, pvar-expression is assumed to belong 
to the current VP set. It is only necessary to supply a value for the :vp-set argument if 
pvar-expression is an expression that must be evaluated in a VP set other than the 
current VP set. 

Version 6.1, October 1991 



*Lisp Dictionary 
liI § mEl I § ;; ~"W" i@iM i j j 11 j ~HJi i mri· ; r IJEI ill ilii!l[!!Ii ~i!ljjI!lITIill: Immnm I! 

EXAMPLES 

The expression 

(pref foo 17) 

returns the value of pvar foo in processor 17. 

Tim: m j i!!!::rm 
pref 

W:!!.iiil!ilil 

The macro *setf may be applied to pref to store a value into a single processor of a pvar. 
For example. the expression 

(*setf (pref foo 17) (* 19 99» 

sets the value of pvar foo in processor 17 to 1881. 

The send-address argument may reference any processor; it is not limited to proces­
sors in the currently selected set. The pref macro may be used to access any processor. 
whether or not that processor is currently active. in which the pvar-expression contains 
valid data. 

For example. the result returned by the expression 

(*all 
(*let «x (self-address!!») 

(*when «!! (self-address!!) (!! 10» 
(pref x 30»» 

is defmed. even though the call to *when deselects processor 30. The contents of the 
local pvar x is set in all processors prior to the call to *when. so that when pref is called 
to access the value of x in processor 30. that value is defmed. 

The result of the following similar expression is not defined. however. 

(*all 
(*when «!! (self-address!!) (!! 10» 

(*let «x (self-address!!») 
(pref x 30»» 

This example is in error. for the contents of x are determined after the currently 
selected set has been restricted. excluding processor 30. The local pvar x therefore has 
no defmed value in that processor. The value returned by this example is undefined. 

The pref function may be used to read values using grid addresses in either of two 
ways. One way is to call the function cube-frorn-grld-address (or cube-frorn-vp-grld­

address). as in 

(pref data-pvar (cube-from-grid-address 10 5 2 4» 

Version 6.1. October 1991 541 



pref *Lisp Dictionary 
llimlll!!mlllfnil§! 1Iil§Ni:lllffilll!!mllllil§Ru!!UnUlllm111!!UldUIIlmllNm:: !!U) RII~I!RII! mlllRllllllmRL%W.U'mIII:r r j )l.IIRIIRIIllh'%W'ffimfimWRIIUllOOkmmTI ; II : _,WRII'd'JiWiimmmmm 

(assuming that data-pvar belongs to a four-dimensional VP set). The other is to supply 
an address object by calling the function grid, as in 

(pref data-pvar (grid 10 5 2 4)} 

NOTES 

Performance Note: 

To read a single array element from an array pvar there are two possibilities. The first 
is to copy the entire array containing the element from the CM to the front end, and 
then to reference the element itself. The second and much faster method is to perform 
a parallel array reference on the CM, and then to select a single value from the resulting 
pvar. 

As a specific example, assume an array pvar has been defmed by 

(*defvar my-array-pvar 
(vector!! (self-address!!) (-!! (self-address!!}») 

(pref my-array-pvar 3) 

~ .. 

#(3 -3) ~ 

542 

The first method copies an entire array from my-array-pvar with pref, and then uses the 
Common Lisp aref operator to reference a single array element on the front end. For 
example, 

(aref (pref my-array-pvar 3) 1) 
-3 

The second method performs a parallel array reference on the CM with arefll, and then 
uses pref to access a single value from the resulting pvar. 

(pref (aref!! my-array-pvar (!! I)} 3) 
-3 

This second method is much faster for array pvars containing large arrays because less 
data is transmitted between the CM and the front end. Even for expressions involving 
small arrays, the second method is more efficient because the *Lisp compiler is able 
to recogize and compile expressions of this type. 

Of course, this same principle applies to reading data from a single slot of a structure 
pvar. It is in general more efficient to perform a parallel reference on the CM than it 
is to copy an entire array or structure from the CM to the front end and performing a 
serial reference on the front end. 

Version 6.1, October 1991 



*Lisp Dictionary pref 
tillW 11: lW%%t'tUJll®® -lti£W..r~!WlW:n! lW®ltUl[!mtU!!: HI um: . 1 : l:Ii 1:::I·!l f 

Usage Note: 

The global variable *lIsp-i:*pref-subselects-processors* determines whether the pref 
operation evaluates its pvar-expression argument in all active processors, or whether 
evaluation takes place only in the processor specified by send-address. 

If *lisp-i:*pref-subselects-processors* is set to nil, the default, then pref evaluates its 
pvar-expression argument in all active processors, regardless of the value of the 
send-address argument. 

If *lisp-I:*pref-subselects-processors* is set to t, then pref evaluates its pvar­
expression argument with only the single processor specified by send-address 
selected. 

REFERENCES 

See also the II operator, which takes a single value and broadcasts it to all processors. 

See also the following four operations that move more than one element at a time 
between the front end and the eM: 

array-to-pvar 

pvar-to-array 

See also the related operations: 
prefl! *pset 

Version 6.1, October 1991 

array-to-pvar-grld 

pvar-to-array-grld 

*set *setf 

543 



prefll 
J!1l r 

prefll 

r i r i! 
*Lisp Dictionary 

rIP r rw:~OOl!JjW!iHWrrmmml n! r 2: I! 

[Macro] 

Perfonns a parallel retrieval of values from the supplied pvar. 

SYNTAX 

prefll pvar-expression send-address-pvar &key :collision-mode :v~set 

ARGUMENTS 

pvar-expression Pvar expression. Pvar from which values will be retrieved. 

send-address-pvar Pvar containing send addresses or address objects. Address of 
processor from which the value of pvar-expression is retrieved. 

:collision-mode 

:vp-set 

A symbol. Must be one of :colllsions-allowed, :no-collisions, 

:many-collislons, or nil. Specifies method used to resolve 
collisions. Defaults to nil. 

VP set object. VP set to which the pvar returned by 
pvar-expression belongs. Defaults to VP set of pvar-expression. 
If pvar-expression is an expression rather than a pvar, this 
argument defaults to *current-v~set*. 

RETURNED VALUE 

pre/-pvar 

SIDE EFFECTS 

Temporary pvar. In each active processor, contains the value of 
pvar-expression in the processor whose address is the correspond­
ing value of send-address-pvar. 

The returned pvar is allocated on the stack. 

544 Version 6.1, October 1991 



*Lisp Dictionary 
;: :: iJj 

DESCRIPTION 

preHI 
llm 

The prefl! macro is an interprocessor and inter-VP set communication operation. It 
returns a pvar containing in each active processor the value of pvar-expression in the 
processor specified by send-address-pvar. 

Each active processor retrieves a value from the pvar returned by pvar-expression. 
Specifically, each processor retrieves the value of pvar-expression in the processor 
specified by the value of send-address-pvar. 

The processors from which these values are being retrieved need not be in the currently 
selected set. Also,pvar-expression need not be in the current VP set. The prefl! opera­
tion allows data to be retrieved from non-active processors and from pvars in VP sets 
other than the current one. 

The keyword argument :collision-mode determines the communication method used 
when there are collisions. A collision occurs when a single value of pvar-expression 
is accessed by more than one processor, i.e., when the value of send-address-pvar is 
the same in two or more active processors. The Connection Machine arranges that all 
processors involved in a collision get the same value, but depending on the number of 
collisions that occur, one of a number of strategies may be used to provide efficient 
communication. 

The :collision-mode argument has four legal values: 

• :nCH:ollisions 

This option asserts that no two processors will attempt to reference the same 
value. If two processors do attempt to access the same value, the result is unde­
fined. The :nCH:ollisions option is significantly faster than any of the options 
that allow collisions, with the exception of the nil option. 

• :collisions-a"owed 

This option asserts that collisions are allowed, but that relatively few collisions 
will'actually occur. The time required to complete the prefl! operation is pro­
portional to the maximum number of processors involved in a collision. 

• :many~ollisions 

This option asserts that many collisions will occur, and is especially useful 
when large numbers of processors are accessing the same value. This option 
is slower than the preceding two, but the algorithm used ensures that the preHI 

operation takes constant time regardless of the number of collisions. 

Version 6.1, October 1991 545 



prefl! *Lisp Dictionary 
i iii:: :: . ii !l i11 !II!! 

546 

!lImp] If fUr IT Hll!i!ilI!!!l1iUHT 

• nil 

This option is the default, and asserts that any number of collisions may occur. 
While this option is faster than either :colllsions-allowed or :many-collisions, 

and can even be faster than :no-colllsions in some cases, it uses significantly 
more memory. If this option requires more memory than is currently available, 
the :many-collislons option will automatically be used instead. 

The :colllsion-mode argument allows *Lisp to optimize communication in cases where 
each value of send-address-pvar is unique (i.e., :no-collislons), or when many values 
of send-address-pvar are the same (Le., :many-collisions). Note that this argument 
represents an assertion by the user about what can be expected to happen. If this asser­
tion is violated, the prefll operation will run much more slowly. In the case of the 
:no-colllsions option, some data can be lost, as well. 

The :vp-set argument determines the VP set in which the supplied pvar-expression is 
evaluated. It is only necessary to supply a value for the :vp-set argument if pvar­
expression is an expression that must be evaluated in a VP set other than the current VP 

set. 

The send-address-pvar argument specifies the send addresses of processors either in 
the current VP set or another VP set. If pvar-expression is a symbol bound to a pvar 
and no :vp-set argument is specified, the values of send-address-pvar are interpreted 
relative to the VP set to which pvar-expression belongs. If pvar-expression is an ex­
pression and no :vp-set argument is specified, the values of send-address-pvar are 
interpreted relative to the *current-vp-set*. If pvar-expression is an expression and a 
:vp-set argument is specifed, the values of send-address-pvar are interpreted relative 
to the :vp-set argument. 

The actual evaluation of pvar-expression is performed only in those processors from 
which values are being retrieved. Both the send-address-pvar and :vp-set arguments 
are used to determine the set of processors in which pvar-expression is evaluated: 

• If pvar-expression is a symbol bound to a pvar, then pvar-expression is 
evaluated in the set of processors specified by send-address-pvar in the VP set 
to which pvar-expression belongs. 

• If pvar-expression is an expression and no :vp-set argument is provided, then 
pvar-expression is evaluated in the set of processors specified by send­
address-pvar in the current VP set. 

• If pvar-expression is an expression and a :vp-set argument is specified, then 
pvar-expression is evaluated in the set of processors specified by send­
address-pvar in the VP set specified by the :vp-set argument. 

Version 6.1. October 1991 



*Lisp Dictionary pref!! 
~ll$®llilli~%!@;lW'~%lWO'JW.t%%MW~ww:tlW.d!%tW»D'$.'Wm:*'\'OOi.%$JWlI1%lmil%w.m.~4@"_m;mM')W, 

Examples of these three cases are shown below. 

EXAMPLES 

Here is a sample call to prefl!: 

(*defvar pvar-a (random!! (!! 10») 
(*defvar pvar-b) 
(*set pvar-b (pref!! pvar-a (self-address! !») 

The value of pvar-a in each processor is copied and returned by prefl!, and stored in 
pvar-b by *set. In this example, no interprocessor communication takes place; each 
processor is simply getting data from itself. 

More interesting uses of prefl! involve exchanging values between processors. For 
example, the expression 

(*set backwards-pvar 
(pref!! pvar (-!! (!! (1- *number-of-processors-limit*» 

(self-address! !»» 

stores the values of pvar into backwards-pvar in reverse order of send addresses. 

The expression 

(*set pvar-a 
(pref!! pvar-a (mod!! (1-!! (self-address! !» 

(!! *number-of-processors-limit*»» 

shifts the value of pvar-a in each processor to the processor with the next higher send 
address (with wraparound). 

This example demonstrates that pvar-expression is evaluated only in the processors 
from which values are being retrieved: 

{*all 
{*when {not!! {=!! (self-address! !) 

{!! (1- *number-of-processors-limit*»» 
{ppp (pref!! (/!! (!! 1. 0) (self-address!!» 

(1+!! (self-address! !») 
:end 4») 

1.0 0.5 0.3333334 0.25 

Each processor retrieves data from its successor in send address order. (The call to 
*when excludes the processor with the highest address.) If the expression 

(/!! (!! 1.0) (self-address!!)) 

Version 6.1, October 1991 547 



prefl! *Lisp Dictionary 
15111111 Illl'l1Jl!!lIIIIWlI12! liII!!! 11 mm rr 11! Hi:n Eilmliil !rrrrrr 

548 

was evaluated in the currently selected set of processors, including processor 0, then 
a division by zero would occur. However, no processor retrieves a value from proces­
sor 0 in the above example,so processor 0 does not evaluate the division form in the 
call to prefll, and no division by zero occurs. Note also that a value is retrieved from 
the processor with the highest address, even though that processor is not currently 
active. 

The next example demonstrates that pvar-expression is evaluated in the VP set 
specified by the :vp-set argument, and only in the processors in that VP set from which 
values are retrieved (in this case a single processor). 

(def-vp-set fred' (256 256» 
(*defvar fred-pvar (self-address-grid!! (!! 0» 

"Fred X coordinate" fred) 
(def-vp-set barney' (65536» 

(*with-vp-set barney 
(ppp 

(pref! ! 
(progn 

(format t "-%The current vp set is -S" 
*current-vp-set*) 

(format t "-%The number of active processors is -5" 
(* sum (!! 1») 

fred-pvar) 
(grid!! (!! 25) (!! 25» 
:vp-set fred) 

:end 5» 

This example produces the following output: 

The current vp set is #<VP-SET Name: FRED, Dimensions ... > 
The number of active processors is 1 
25 25 25 25 25 

The prefll operation can also be used to transfer values between different VP sets, as 
in the following example. 

(*proclaim ' (type (pvar (unsigned-byte 4» 
matrix diagonal-elements» 

(def-vp-set diagonal-vp-set ' (8192) 
:*defvars «diagonal-elements (!! 0»» 

(def-vp-set matrix-vp-set ' (128 128) 
:*defvars «matrix (random!! (!! 10»») 

Version 6.1, October 1991 

\ 



c 

*Lisp Dictionary prefl! 
WY" : ::j:m I111!F 1 m) ! ;gHiU : %Ml%Alb% :: ij 1" HM -tww::"n l!' g , r 

These forms defme two VP sets, diagonal-vp-set and matrix-vp-set, with one and two 
dimensions respectively. Two pvars are also defined, one associated with each VP set, 
that have the following initial values: 

(ppp matrix :mode :grid :end ' (5 5)) 

DIMENSION 0 (X) -----> 

5 6 3 5 6 
4 9 4 5 6 
3 9 1 5 2 
2 6 2 3 9 
4 0 9 3 4 

(ppp diagonal-elements :end 5) 

o 0 000 

The following function uses prefl! to copy values from matrix that are stored along the 
diagonal of the matrlx-vp-set grid into the diagonal-elements pvar. 

(defun retrieve-diagona1-e1ements () 
(*with-vp-set diagona1-vp-set ;;; VP set of dest-pvar 

(*when «!! (self-address!!) (!! 128» 
(*set diagonal-elements 

(pref!! matrix-vp-set 
(cube-from-vp-grid-address!! 

ff Treat pair of send addresses from one-d 
;; as grid address in two-d, and convert 
;; to corresponding send address in two-d 
(self-address! !) 
(self-address!!» 

:vp-set matrix-vp-set 
» ») 

VP set of dest-pvar 

Following a call to retrieve-diagonal-elements, the matrix and diagonal-elements pvars 
display as: 

(ppp matrix :mode :grid :end ' (5 5)) 

DIMENSION 0 (X) -----> 

5 6 3 5 6 
4 9 4 5 6 
3 9 1 5 2 
2 6 2 3 9 
4 0 9 3 4 

(ppp diagonal-elements :end 5) 

59134 

Version 6.1, October 1991 549 



pref!! *Lisp Dictionary 
~i~ii!U!lim! ill! Hllm:!! H !!~!1I!H UlnIHlI11ili II: :m:: g : ::fI1TIWC Ii WE r: ;~ili: !TI; H!!17 ell::!'! r "!2 

Note the use of cube-from-vp-grid-addressll to determine the send addresses of the 
diagonal elements in matrlx-vp-set. The send address of each element of the diagonal­

elements pvar is used twice to form a grid address along the diagonal of the matrix pvar. 
This grid address is then converted by cube-from-vp-grid-addressll into the appropri­
ate send address within matrix-vp-set. 

Another way of converting grid addresses to send addresses within a prefll form is the 
use the grid!! function. For instance, the above call to prefll could have been written as 

(pref!! matrix (grid!! (self-address!!) (self-address!!») 

See the defInition of grid!!, and Section 6.5, "Address Objects" of the *Lisp Reference 
Supplement, Version 5.0, for more information. 

NOTES 

Usage Note: 

The default value (nil) of :collision-mode invokes the Paris instruction cm:get-IL, 

which uses the CM-2 backward routing hardware. As the number of collisions 
increases, this tends to be faster than :collisions-allowed and :many-collisions, but it 
can require much more temporary memory. 

Performance Note: 

550 

A call to prefl! with no collisions is implemented using two calls to *pset: one to send 
the address of the processor requesting the data to the processor from which the data 
is to be retrieved, and another to send the data requested back to the requesting proces­
sor. 

It is often possible to rewrite an algorithm that uses pref! I (in which data is retrieved) 
into an algorithm using *pset (in which data is sent, rather than retrieved), halving the 
communications time required. 

For example 

(*when «!! (self-address!!) (!! 100» 
(*set dest (pref!! source 

(+!! (self-address!!) (!! 100»») 

could be rewritten as 

(*when (and!! «==!! (!! 100) (self-address!!» 
«!! (self-address!!) (!! 200») 

(*pset source dest (-!! (self-address!!) (!! 100»» 

Version 6.1, October 1991 

( 
\"-.. 



prefl! *Lisp Dictionary 
)l;; : m;g~! !1 !!Ii II wsm ! m m: 11 nil PI! mil!! ;!! I: I!U nUl ml: JEUIIIIf::::tfIllliliiill ill ! II 

Style Note: 

The pref!! macro may be used with *setf. However, a call to *setf of the form 

(*setf (pref!! dest-pvar address-pvar) source-pvar) 

is equivalent to a call to *pset of the form 

(*pset :no-collisions source-pvar dest-pvar address-pvar) 

Calling *pset directly in this case is preferable as being more readable. 

REFERENCES 

See also the macro *pset, which performs a parallel store operation. 

See also these related NEWS communication operators: 
*news 

*new~lrectlon 

news!! 

new~lrectlonll 

See also these related off-grid processor address tests: 

news-border!! 

off-grid-border-pll off-grJd-border-relatlve-directlon-p11 

off-grld-border-relative-pll off-vp-grJd-border-p11 

Version 6.1, October 1991 551 



pretty-prlnt-pvar *Lisp Dictionary 
II ~m fHHllm! W 1 II m:tllI!11IT:!!l Hl2nmllllll: rJl9:mm: 21: UmllR r Ii! 211111 i 1 !l H 

pretty-print-pvar 
Prints the values of the supplied pvar in neatly formatted style. 

SYNTAX 

pretty-prlnt-pvar pvar &key :mode :format :per-llne :tltle :start :end 
:orderlng :processor-llst :print-arrays 
:return-argument-pvar :pretty :stream 

ARGUMENTS 

See the entry for ppp for a description of the arguments. 

RETURNED VALUE 

[Macro] 

pvar-or-nil Depending on the value supplied for the :retum-argument-pvar 
argument, either the supplied pvar argument or nil. 

SIDE EFFECTS 

Prints the selected values of pvar to the stream specified by the :stream argument. 

DESCRIPTION 

This macro has an alias ppp, which operates identically. See the definition of ppp for 
information and examples of both of these macros. 

REFERENCES 

See also these related pvar pretty-printing operations: 
pppll ppp-address-obJect ppp-css 
pppdbg ppp-struct 

pretty-prlnt-pvar-in-currently-selected-set 

552 Version 6.1, October 1991 



c 

*Lisp Dictionary pretty-print-pvar-In-currently-selected-set 
fiiifll jlillllll! I 111 mmr n f : Iii II ITlmmm:m11 II fil11!R1I11IT! :mlill 1·1 : II I. ill ·1111 lmmni 111 ITli 111111111 ;;!!!1l II [ 1111i!f! I 

pretty-print-pvar- [Macro] 

i n-cu rrently-selected-set 

Prints out the send address and value of the supplied pvar for all processors in the currently 
selected set. 

SYNTAX 

pretty-prlnt-pvar-in-currently-selected-set pvar 
&key :format :start :end :tltle :mode 

ARGUMENTS 

pvar 

:format 

:start 

:end 

:title 

:mode 

RETURNED VALUE 

nil 

SIDE EFFECTS 

Pvar expression. Pvar from which values are printed. 

String. Format directive used to print each value. 

Integer. Send address of processor at which to start formatting 
values. 

Integer. Send address of processor at which to end formatting 
values. 

String or nil. Text to display as title line, or nil for no title. 

Either of:cube or :grid. Determines mode (send/grid) offormatted 
output. 

Evaluated for side effect only. 

Prints send addresses and values from pvar to the ·standard-output* stream. 

Version 6.1, October 1991 553 



pretty-prlnt-pvar-in-currently-selected-set 
::II! PI ! !I! . :mw! a Hl TI 

DESCRIPTION 

J ! 

*Lisp Dictionary 
H 

This function prints out the the cube address and value of pvar for all processors in the 
currently selected set. 

NOTES 

There are global defaults for each of the keyword arguments. 

See Chapter 2, "*Lisp Global Variables," for a list of these variables. 

REFERENCES 

554 

This macro has an alias, ppp-css. 

See also these related pvar pretty-printing operations: 
ppp pppll 

ppp-address-obJect 
pppdbg 
pretty-print-pvar 

ppp-struct 

Version 6.1, October 1991 



*Lisp Dictionary *processorwlse 
T . i i T Wf 1 .. if IT .1 mi· TtilWlO nin; : :! 1;;; run f IT Ti l iii ::: IN n'l :t 1m) ;:::: 11! II 1 

*processorwise [*Defun] 

Converts a sideways (slicewise) array to the normal, processorwise orientation. 

SYNTAX 

*processorwise array-pvar 

ARGUMENTS 

array-pvar 

RETURNED VALUE 

t 

SIDE EFFECTS 

Array pvar. Sideways (slicewise) array pvar to be converted. 

Evaluated for side effect only. 

Converts array-pvar from sideways to normal, processorwise orientation. 

DESCRIPTION 

Converts a sideways (slicewise) array to a normal, processorwise orientation. 

The array-pvar parameter must be a sideways (slicewise) array, otherwise an error is 
signaled. 

NOTES 

The function *processorwise is equivalent to a call to *sideways-array with an array 
argument that is in sideways (slicewise) orientation. 

There are some important restrictions on the size of arrays passed as arguments to 
*processorwise. 

The array-pvar argument must be an array pvar that contains elements whose lengths 
are powers of2 or multiples of32. Further, the total number of bits the array occupies 

Version 6.1, October 1991 555 



·processorwlse *Lisp Dictionary 
%1 r r m fTI ;]1 III! IU I! 21m n g 11 Ilm:::!liM IJIIilmM 11 111m!! 1111 UI!!!III n min IIHiill IIIrl!!lImrm!i1 r 11211 ilni; 21 llmnliilH 

in eM memory must be divisible by 32. This number can be determined either by 
(pvar-length array-pvar) or by multiplying the total number of elements in the array by 
the size of an individual element. 

The ·processorwlse function is most efficient when the array elements of array-pvar 
are each 32 bits long. 

REFERENCES 

See also the functions ·sldeways-array, sldeways-array-p, and ·slicewlse. 

556 Version 6.1, October 1991 

/ 
( 

\., 



*Lisp Dictionary 
im llii jI[ 11! He lim~'1LI ::lM,,~£!" q:lliiU, 1 run: Ilwmmt:"" lll~ 

*proclaim 
":; nlMm'I®'WtIli@ 

*proclaim [Macro] 

Records a global declaration about *Lisp variables and functions. Also provides the *Lisp 
compiler with information about Common Lisp variables. 

SYNTAX 

*proclaim declaration 

ARGUMENTS 

declaration 

RETURNED VALUE 

nil 

SIDE EFFECTS 

*Lisp declaration form. Proclamation to be recorded. This 
argument is evaluated, so declaration forms must be quoted. 

Evaluated for side effect only. 

Records declaration as a global declaration about *Lisp variables and functions. 

DESCRIPTION 

The *Lisp version of the Common Lisp proclaim function. It is used to make global 
declarations, including the data types of global pvar variables and user-defined 
functions. 

Version 6.1, October 1991 557 



*proclalm *Lisp Dictionary 
oJomnm mil: !l III :::!IIllIlMU!J! ! q 11111 11 i 1 

EXAMPLES 

558 

The *proclalm macro is commonly used in five ways: 

• To provide type declarations for permanent pvars defmed by *defvar. 

(*proclaim ' (type (pvar single-float) my-float-pvar» 
(*defvar my-float-pvar) 

(*proclaim 
, (type (vector-pvar (array (unsigned-byte 32) (4 4» 3) 

my-nested-arrayl my-nested-array2» 
(*defvar my-nested-arrayl) 
(*defvar my-nested-array2) 

• To provide function declarations so that the *Lisp Compiler has infonnation 

regarding the returned value of user-defmed *Lisp functions. 

For example, 

(*proclaim 
, (ftype (function (single-float-pvar single-float-pvar) 

single-float-pvar) 
hypotenuse! ! ) ) 

'0. 
informs the *Lisp compiler that the hypotenusell function takes two single 
float pvars as arguments and returns a single float pvar as a result. 

The expression 

(*proclaim ' (ftype (function (&rest t) (pvar boolean» 
my-and! !» 

informs the *Lisp compiler that the my-andll function takes any number of 
arguments of any type, and returns a boolean pvar. 

Currently, the *Lisp compiler does not use the infonnation about arguments 
provided in function or ftype *proclaim fonns. The declaration for each argu­
ment in these fonns may be completely specified for documentation purposes, 
or may be specified simply as t. However, the number of argument declara­
tions provided must match the number of arguments accepted by the function. 

• To provide the *Lisp compiler with infonnation about scalar variables used in 

pvar expressions. Note that *proclaim is used instead of proclaim, so that the 
*Lisp compiler will have access to the declarations. 

(*proclaim ' (type double-float two-pi» 
(defparameter two-pi (* pi 2.0» 

(*proclaim ' (type fixnum x-dimension y-dimension» 

Version 6.1, October 1991 

\ 
~. 



L 

*Lisp Dictionary *proclaim 
.1!!111ru1I11IW 11 mil! I· I· :1 m: :. l!1!Wi!9 g;~ .i!l1 :""'~;~·c ....... ::mm~ 

NOTES 

(defvar x-dimension 3) 
(defvar y-dimension 4) 

• To define or change the compiler settings for the *Lisp compiler. 

For example, 

(*proclaim ' (*optimize (safety 3») 

informs the *Lisp compiler that full safety should be enabled globally. For 
more information about the *Lisp compiler and the many compiler settings 
available, see the *Lisp Compiler Guide, Version 5.0. 

• To inform the Lisp compiler that a symbol will later be defmed with *defun, 

and will therefore be a macro rather than a function. 

For example, 

(*proclaim ' (*defun fool) 

(defun bar (x) (foo x» 

(*defun foo (x) (*sum x» 

Without the call to *proclaim, when bar is compiled the call to foo is treated as 
a function call. When foo is defmed with *defun, it is actually defined as a 
macro, so that the call to foo within bar will not execute properly. Declaring 
that foo will be defmed by *defun prior to the defmition of any function that 
calls foo allows Lisp to compile these functions properly. 

Syntax Notes: 

The declaration argument of*proclaim must be quoted to prevent evaluation,just as in 
Common Lisp the declaration argument to proclaim must be quoted. 

Also, nearly all calls to *proclaim end with a double parentheses, as the above examples 
show. It is a good rule of thumb to recheck any *proclaim form ending with a single 
parenthesis or with more than two parentheses, for it may contain an error. Note the 
exception given by the fourth example above. The use of*proclaim to declare the *Lisp 
compiler safety level ends in three parentheses, but is nevertheless correct. 

Complier Note: 

The use of the Common Lisp proclaim operator to inform the *Lisp compiler of type 
information is obsolete and no longer supported. 

Version 6.1. October 1991 559 



*proclalm 
n!ll2 ~ i Ii n Wi lin ! TI ! mlllU I gil !!1l11lliiH ninon! !II 

REFERENCES 

See also the related *Lisp declaration operators: 
*Ioca/ly unproclalm 

See also the related type translation function laken-asll. 

See also the related type coercion function coercell. 

560 

""Lisp Dictionary 
m 111111111 I n !Ill! 

Version 6.1, October 1991 



·Lisp Dictionary *pset 
1!ll:i1~!1 ~1 !lIIIH!lII!i!mn~~[j!~] !TIn!llmnnml! ~i!IIWI: 1!lII2 :nnjunnmi1mlll!~! i!lllRi!nnjjnnr:III!lTI~; nnnn~I~lWInn!llll!llnn~l!im[!~: 1WI'!lIIn ]nniW!~::::~]!lIIn!llli: 1iI:~;:n ; ···:twnnnnnTI!llnH 1. T1 I. :: : ;;gm 

*pset [Macro] 

Copies values from the source pvar into the destination pvar. This operation may be used 
to transfer values between processors in the same VP set and between processors in differ­
ent VP sets. 

SYNTAX 

*pset combine-method source-pvar destination-pvar dest-address-pvar 
&key :notify :vp-set :collision-mode :combine-with-dest 

ARGUMENTS 

combine-method Keyword. Specifies the method used to combine multiple values 
sent to the same processor. Must be one of: :default, :no-collisions, 

:overwrite, :or, :and, :Iogior, :Iogand, :add, :max, :min, :queue 

source-pvar Pvar from which values are copied. The value in each active 
processor must be of a data type that can legally be stored in 
destination-pvar. The source-pvar argument must belong to the 
current VP set. 

destination-pvar Pvar into which values are copied. May belong to any VP set. 

dest-address-pvar Pvar containing send addresses or address objects. Addresses 
must be valid for the VP set to which destination-pvar belongs. 

: notify 

:vp-set 

: collision-mode 

Boolean pvar used to indicate in which processors 
destination-pvar is altered. If supplied, it is set to t in those 
processors that receive a value. Must belong to the same VP set as 
destination-pvar. 

VP set object. If supplied, it must be the VP set to which 
destination-pvar belongs. Used for optimization purposes only. 

The :collislon-mode keyword argument is superfluous, and is 
retained for compatibility purposes. 

:comblne-with-dest Boolean. Controls whether or not the values already contained in 
the destination pvar are combined with the values being sent from 
the source processors. Defaults to nil, which causes the values of 
the destination pvar to be overwritten by values from the source 
pvar. 

Version 6.1, October 1991 561 



*pset 
!!i IT: ! !HIli n mr I li1l!1!1!~!!ru:11 !ffi 

"Lisp Dictionary 
1: n: n· UTlml! at IllJlmilillii Hil Iii j :: WI: 

RETURNED VALUE 

nil Evaluated for side effect only. 

SIDE EFFECTS 

In each processor specified by dest-address-pvar, destination-pvar is overwritten 
with either a single source-pvar value or a combination of source-pvar values. 

If notify-pvar is supplied, it is set to t in each processor in which destination-pvar 
received a value; elsewhere it is unaffected. 

DESCRIPTION 

562 

The *pset macro is an interprocessor and inter-VP set communication operation. It 
copies values from one pvar to another. Source values from one processor may be 
copied to a different processor. Also, source-pvar and destination-pvar may belong to 
different VP sets. 

Using a mailbox analogy, the values in source-pvar are messages, the values in dest­
address-pvar are the addresses of the mailboxes to which they are sent, and 
destination-pvar is the set of mailboxes into which the messages are delivered. 

The arguments value-pvar and dest-address-pvar are only evaluated by the active 
processors of the current VP set. These arguments must be pvars belonging to the 
current VP set. 

The dest-pvar argument may be any pvar in any VP set; it does not need to belong to 
the current VP set. 

The dest-address-pvar may contain integer values that constitute valid send addresses 
for the VP set to which dest-pvar belongs. Alternatively, an address object pvar may 
be used as the value of the dest-address-pvar argument. 

For all processors in the currently selected set, the value of value-pvar is sent to the 
processor addressed by dest-address-pvar, and stored into destination-pvar in the 
processor addressed by dest-address-pvar. 

When dest-address-pvar contains duplicate addresses, some processors receive more 
than one value. When this occurs, the values received are combined according to the 
method specified by combine-method. The effect of each legal combine-method value 
is described below. 

Version 6.1, October 1991 



*Lisp Dictionary 
too? ; I §I .®:iI!mlW: .r I Em. 

:default 

:no-collislons 

:overwrite 

:or 

:and 

:Iogior 

:Iogand 

:add 

:max 

:mln 

:queue 

; .mWlll1mi; II "In! ,um!~ I 
*pset 

m 

An error is signaled if any processor receives more than one 
value. 

Asserts that no more than one value will be sent to each pro­
cessor. If any processor does receive multiple values, the code 
is in error. 

One arbitrarily selected value is stored; all other values are 
ignored. 

The logical OR is stored. 

The logical AND is stored. 

The bitwise OR is stored. The source-pvar must contain 
integers only. 

The bitwise AND is stored. The source-pvar must contain 
integers only. 

The numerical sum is stored. 

The numerical maximum is stored. 

The numerical minimum is stored. 

Queues colliding values as a vector in the destination pvar. 

The optional :notify argument must be a pvar. When *pset has finished executing, the 
value of the :notify pvar is t in each processor where destination-pvar has been altered, 
in other words, wherever a processor has received and stored a source-pvar value in 
destination-pvar - even if the value stored happens to be the same as the original 
value - the : notify pvar is set. The value of the :notify pvar is left unchanged in proces­
sors where the destination-pvar has not been altered. 

If supplied, the vp-set argument must be the VP set to which destination-pvar belongs. 
This argument is available solely for optimization and readability. If a vp-set argument 
is not supplied, *Lisp determines the proper VP set from destination-pvar. 

The collision-mode argument is superfluous as of Version 5.0, and is retained for com­
patibility purposes. 

The :combine-wlth-dest argument controls whether or not the values already con­
tained in the destination pvar are combined with the values being sent from the source 
processors. Defaults to nil, which causes the values of the destination pvar to be over­
written by values from the source pvar. 

Version 6.1, October 1991 563 



*pset *LispDictionary 
\liRiIil WI II mil II Dllm::: i!f@!Mltll Ell!: hi mil!! lim 21' iT1UPiil]: "J!' 1 i: m ! li 1 § ! U i! III 1m :UIffi M\Ii If Hi 

EXAMPLES 

564 

Here is a simple call to *pset: 

(*defvar pvar-a (random!! (!! 10))) 
(*defvar pvar-b) 
(*pset :no-collisions pvar-a pvar-b (self-address!!)) 

The value of pvar-a in each processor is stored in the corresponding processor of pvar­

b. Because there is no possibility of more than one value being sent to the same 
processor, the :no-collisions option is used to increase efficiency. This example is iden­
tical in operation to a call to *set: 

(*set pvar-a pvar-b) 

In this example, data is copied from one pvar to another within each processor, so no 
interprocessor communication takes place. 

More interesting uses of *pset involve exchanging values between processors: 

(de fun backwards (pvar) 
(*let (backwards-pvar) 

(*pset :default pvar backwards-pvar 
(-!! (!! (1- *number-of-processors-limit*)) 

(self-address! !) ) ) 
backwards-pvar)) 

This function takes any pvar and returns a copy of that pvar with its values in reverse 
send-address order. The *pset macro is used to transfer the value of pvar from each 
processor to the processor's opposite in terms of send addresses, where the value is 
stored in backwards-pvar. So, for example, 

(*cold-boot :initial-dimensions ' (10)) 
(ppp dest :end 10) 
987 654 3 2 1 0 

The next example is another function that calls *pset, this time to obtain the sum of the 
values of a pvar: 

(defun my-*sum (pvar) 
(declare (type (pvar (unsigned-byte 10)) pvar)) 
(pref (*let (the-sum-goes-here) 

(declare (type (pvar (unsigned-byte 32)) 
the-sum-goes-here)) 

(*all (*pset :add pvar the-sum-goes-here (!! 47))) 
the-sum-goes-here) 

47) ) 

Version 6.1, October 1991 

( 

"~ 



*Lisp Dictionary 
I II!; r Ii UP 1 lW; lj; p l!1:I!!::I::~ m I:;! !I • : t : r 

*pset 
::::~ 

The function my-*sum uses *pset to sum a pvar over all the Connection Machine pro­
cessors. Each processor sends its value to the same address, processor 47 (any legal 
send address can be substituted for 47). The values are collected using the :add method, 
which calculates and stores the sum. The pref operation is then used to read and return 
the sum. (Note: the *Lisp function *sum performs the same operation much more effi­
ciently than this example.) 

An example of a realistic use for *pset is: 

(*defvar data-pvar (random!! (!! 10») 

(defun histogram (pvar) 
(declare (type (pvar (unsigned-byte 4» pvar» 
(*let ((histogram (!! 0») 

(declare (type (pvar (unsigned-byte 
*current-send-address-length*» 

histogram) ) 
(*pset :add (!! 1) histogram pvar) 
histogram) ) 

This function creates and returns a histogram of the values in pyar. The call to *pset 

causes each processor to treat its value of pyar as a send address and send the value I 
to the processor at that address. The :add combine method is used, so each processor 
stores in histogram a count of the number of values in pyar which are the same as its 
send address. For example: 

(*defvar data-pvar (random!! (!! 10») 
(ppp data-pvar :end 20) 
5 3 9 4 1 7 091 4 1 9 2 0 9 0 3 6 0 7 

(ppp (histogram data-pvar) :end 14) 
5273 6397 6808 7468 6952 8403 7691 4569 7774 4201 0 0 0 0 

This shows that, for example, there are 6808 occurrences of the value 2 in data-pyar. 

The *pset macro may also be used to transfer values between VP sets, as in the follow­
ing example. 

(*proclaim '(type (pvar (unsigned-byte 16» 
one-d-pvar two-d-pvar» 

(def-vp-set one-d ' (128) 
:*defvars ((one-d-pvar (1+!! (self-address!!»») 

(def-vp-set two-d '(128 128) 
:*defvars ((two-d-pvar (!! 0»» 

Version 6.1, October 1991 565 



*pset 
!W!I!l1 Imll I TImf f I I!!i1U! 112 !llIin:r fl !!iili 

*Lisp Dictionary 
fl mi! I· l!UTI!!! ! m U!WII!!] !I U!I!I!:Tlm1IIIi!2 mill 

566 

These forms defme two VP sets, one-d and two-d, with one and two dimensions 
respectively. The VP set two-d is defmed as a square grid with as many processors 
along its edge as there are processors in one-d. 

Two pvars are also defined, one associated with each VP set, having the following ini­
tial values: 

(ppp one-d-pvar :end 10) 
1 2 3 4 5 6 7 8 9 10 

(ppp two-d-pvar :mode :grid :end '(5 5» 

DIMENSION 0 (X) -----> 

o 0 0 0 0 
o 0 0 0 0 
o 0 0 0 0 
o 0 0 0 0 
o 0 0 0 0 

The following expression uses the *pset macro to copy one-d-pvar into two-d-pvar in 
such a way that the values of on&-d-pvar are stored on the diagonal of the grid of the 
two-d VP set. 

(*with-vp-set one-d ;;; VP set of source-pvar 
(*pset :no-co11isions one-d-pvar two-d-pvar 

(cube-from-vp-grid-address!! two-d 
, , , Treat pair of send addresses from one-d 
;;; as grid address in two-d, and convert 
;;; to corresponding send address in two-d 
(self-address! !) 
(self-address! I»~ 

:vp-set two-d» ;;; VP set of dest-pvar 

(ppp two-d-pvar :mode :grid :end '(5 5» 

DIMENSION 0 (X) -----> 

1 0 0 0 0 
o 2 0 0 0 
00300 
o 0 0 4 0 
00005 

Note the use of cube-from-vp-grid-addressll to convert send addresses from on&-d 

into send addresses for two-d along the diagonal of the grid. The send address of each 
value of one-d-pvar is used twice to form a grid address along the diagonal of two-d­
pvar. This grid address is then converted by cube-from-vp-grid-addressll to the 
appropriate send address within the two-d VP set. 

Version 6.1, October 1991 

/ 

1'<..... 

/ 
\ 



*Lisp Dictionary *pset 
II_mil]: : 1ii!:::]1 IT! 52 :W! m R I Ii IT In ;Ul!!iWil@ : 1m! iii: I II Oi!i 111 1!1 I m TIW::1 I I III 

Another way of converting grid addresses to send addresses within a *pset form is the 
use the gridll function. For instance, the above call to *pset could have been written as 

(*pset :no-collisions one-d-pvar two-d-pvar 
(grid!! (self-address!!) (self-address!!» 
:vp-set two-d) 

See the definition of gridll, and Section 6.5, "Address Objects" of the *Lisp Reference 
Supplement, Version 5.0, for more information. 

When :comblne-wlth-dest is nil (the default), the source values and dest values are not 
combined, with the result that source values simply overwrite destination values in 
each processor. When :combine-with-dest is t, the source and dest values are summed. 

The following function demonstrates this feature: 

(defun show-combine-with-dest () 
(*let (source dest) 

(declare (type (field-pvar 32) source dest» 
(*set source (self-address!!» 
(*set dest (self-address!!» 
(*pset :add source dest (self-address!!) 

:combine-with-dest nil) 
(ppp dest :end 4) 
(*set dest (self-address!!» 
(*pset :add source dest (self-address!!) 

:combine-with-dest t) 
(ppp dest :end 4») 

A sample call to this function looks like: 

(show-combine-with-dest) 
o 1 2 3 
o 2 4 6 

Finally, the following function defmition shows how the :notify argument to *pset can 
be used: 

(defun send-and-add (source dest address) 
"This function sums source into dest, and then counts" 
"How many processors actually swnmed up data." 
(*let (notify-pvar) 

(declare (type boolean-pvar notify-pvar» 
(*all (*set notify-pvar nil!!» 
(*pset :add source dest address :notify notify-pvar) 
(*all (*when notify-pvar 

Version 6.1, October 1991 

(format t "-%-D processors swnmed data" 
(*sum (!! 1»»») 

567 



*pset *Lisp Dictionary 
11 If 2 Will !lmn n mlu 1I12 i In !!lllli! min l!iIl n IUIT IU'Imm !l1li11lllm1!l t I I ill If I If 111m 

568 

This function may be called with any number of processors selected. All processors are 
made active temporarily to initialize notify-pYar, and then a call is made to *pset to 
perform a send operation. The value of notify-pyar is then used to display the number 
of processors that actually transmitted data. First all processors are selected (since 
some processors receiving data may not be in the currently selected set), and then notl· 
fy-pyar is used to select those processors that in fact received data. With these 
processors active, a call to *sum is made to return a count of those processors. 

The :queue combiner specifies that *Lisp should use the Paris cm:send-to-queue32-11 
instruction, which queues multiple values arriving at a single destination processor into 
an array. The first element of the array stores the number of values that have arrived 
at that processor. 

The simplest way to think of using the :queue combiner is as a queue­
structure *defstruct, such as the following: 

(defparameter float-queue-length 6) 

(*defstruct float-queue 
(count 0 :type (unsigned-byte 32» 
(vector (make-array 6 :element-type~ingle-float) 

:type (vector single-float 6») 
(*proclaim ' (type float-queue-pvar queue» 

(*defvar queue) 

A simple function that initializes this queue structure and uses the :queue combiner is: 

(defun queue-example () 
(*setf (float-queue-count!! queue) (!! 0» 
(*setf (float-queue-vector!! queue) 

(make-array!! 6:initial-element (!! -1.0) 
:element-type'single-float-pvar» 

(*when «!! (self-address!!) (!! 6» 
(compiler-let «*compilep* nil» 

(*pset :queue (float!! (self-address!!» queue 
(random!! (!! 6»») 

(ppp queue : end 6» 

Note that the *Lisp compiler does not recognize the :queue argument in Version 6.0, 
and thus the compiler must be disabled around the *pset form to prevent warning mes­
sages from being generated. 

The output from a call to this function might be: 

(queue-example) 
#S(FLOAT-QUEUE :COUNT 1 :VECTOR #(2.0 0.0 0.0 0.0 0.0 0.0» 
#S(FLOAT-QUEUE : COUNT 2 :VECTOR #(0.0 5.0 0.0 0.0 0.0 0.0» 
#S(FLOAT-QUEUE :COUNT 1 :VECTOR #(1.0 0.0 0.0 0.0 0.0 0.0» 

Version 6.1, October 1991 

/ 

( 

" 



~/ 

*Lisp Dictionary *pset 
~ 1i I mlil!!1KI!I!i~.!I!nl~;; DW~_!W!iil@ em iliI!· eiWWit~~_mww III II: 2;;:2: mimtdiH. * I [! : Rlmwm 

#S(FLOAT-QUEUE :COUNT 0 :VECTOR #(0.0 0.0 0.0 0.0 0.0 0.0» 
#S(FLOAT-QUEUE :COUNT 0 :VECTOR #(0.0 0.0 0.0 0.0 0.0 0.0» 
#S(FLOAT-QUEUE :COUNT 2 :VECTOR #(4.0 3.0 0.0 0.0 0.0 0.0» 

If more values are received in a destination processor than can be stored in the array, 
arbitrary values in excess will be discarded. In this case the count value will reflect the 
total number of values received, regardless of whether they were discarded or not. 

The :queue combiner has the restriction that the destination-pvar argument must have 
a length of at least 64 bits; 32 bits for the count, and 32 bits for at least one element. 
The length must also be a multiple of 32 bits. The source-pvar argument must be 
representable in 32 bits. 

NOTES 

The *pset macro invokes the general routing hardware of the Connection Machine. 
While providing flexibility in communication of values between processors, the gener­
al router is less efficient than the communication methods employed by more 
specialized operators, such as *news, newsl! and scanl!. 

Performance Considerations: 

The :or and :and combination methods are faster if the source-pvar contains only 
boolean values (t or nil). 

Cautions: 

The :notlfy pvar argument is unaltered in processors where destination-pvar is 
unaltered. The implications are: 

Errors: 

• This allows one to track the cumulative effects of mUltiple *pset calls. 

• User code is responsible for the initial value of the :notlfy pvar. In many cases it 
is advisable to *set the :notify pvar to nilll in all processors prior to executing 
*pset. 

It is an error if any value copied is of a data type that cannot be stored in destination­
pvar. 

It is an error if source-pvar and destination-pvar are structure pvars of a type defmed 
to include a variable-length field, and if the length of that field is different in source­
pvar and destination-pvar. For instance, if the length of the field is dependent on the 

Version 6.1, October 1991 569 



*pset *Lisp Dictionary 
In: a: Iii! W ! ~i 1: 1 "fl "I 11 I iliE 1!'! IliR n!i m f ITI 1 J 

value of *current-send-address-length*, and if source-pvar and destination-pvar 
belong to VP sets of different sizes, then *pset will fail. 

REFERENCES 

570 

The function *pset copies data from one pvar to another, much as *set does. However, 
*pset is also able to exchange data between processors, whereas *set performs only a 
straight copy operation. See the *set Dictionary entry for details. 

See also the related processor-communication operator prefll. 

See also these related NEWS communication operators: 
*news 
*news-dlrectlon 

news II 
news-directionll 

See also these related off-grid processor address tests: 

news-border" 

off-grld-border-pll off-grld-border-relativtHflrectlon-pll 

off-grld-border-relative-pll off-vp-grld-border-pll 

Version 6.1, October 1991 



~' 

*Lisp Dictionary pvar-exponent-Iength 
I! I n!llm M 17M mnHum H l! J 7%\ wnll 

pvar-exponent-Iength [Function] 

Returns bit length of exponent of the supplied floating-point or complex pvars. 

SYNTAX 

pvar-exponent-Iength pvar 

ARGUMENTS 

pvar Floating-point or complex pvar. Pvar for which exponent bit 
length is determined. 

RETURNED VALUE 

exponent-length Integer. Length in bits of exponent field of supplied pvar. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function returns the bit-length of the exponent of pvar. The argument pvar may 
be any pvar, but only floating-point or complex pvars return meaningful values. 

Note: This function has no meaning in the *Lisp simulator, and returns no useful value. 

REFERENCES 

See also the following general pvar information operators: 
allocated-pvar-p 

pvar-Iength 

pvar-name 

pvar-type 

Version 6.1, October 1991 

descrlbe-pvar 

pvar-Iocation 

pvarp 

pvar-vp-set 

pvar-mantissa-Iength 

pvar-pllst 

S71 



pvar-Iength 
] 

pvar-Iength 

l::r t iI: HiI] i.: iii] r :1 f III::: 11 , 
*Lisp Dictionary 

[Function] 

Returns bit length of the CM field associated with the supplied pvar. 

SYNTAX 

pvar-Iength pvar 

ARGUMENTS 

pvar Pvar expression. Pvar for which field bit length is determined. 

RETURNED VALUE 

bit-length Integer. Length in bits of CM field associated with pvar. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function returns the bit length of the field associated with pvar. This function can 
be used to supply field length arguments in calls to Paris routines. The argument pvar 
may be any pvar. 

Note: This function has no meaning in the *Lisp simulator, and returns no useful value. 

REFERENCES 

572 

See also the following general pvar information operators: 
allocated-pvar-p 

pvar-location 

pvar-name 

pvar-type 

descrlbe-pvar 

pvar-mantissa-Iength 

pvarp 

pvar-vp-set 

pvar-exponent-Iength 

pvar-plist 

Versio1! 6.1, October 1991 

/ 



pvar-location 
E: : 1 I ill:®! : !II! II! II"! m:U: ! liE (WE lEi j. • It! n mr !\IIl ! 

pvar-Iocation [Function] 

Returns field-id of the CM field associated with the supplied pvar. 

SYNTAX 

pvar-Iocation pvar 

ARGUMENTS 

pvar Pvar expression. Pvar for which field-id is determined. 

RETURNED VALUE 

field-id 

SIDE EFFECTS 

None. 

DESCRIPTION 

Integer. Field-id of CM field associated with pvar. 

This function returns the field-id of the field associated with pvar. This function can 
be used to supply field-id arguments in calls to Paris routines. The argument pvar may 
be anypvar. 

Note: This function has no meaning in the *Lisp simulator, and returns no useful value. 

REFERENCES 

See also the following general pvar information operators: 
allocated-pvar-p descrlbe-pvar pvar-exponent-length 
pvar-Iength 
pvar-name 

pvar-type 

Version 6.1, October 1991 

pvar-mantlssa-Iength 
pvarp 
pvar-vp-5et 

pvar-pllst 

573 



pvar-mantissa-Iength *Lisp Dictionary 
IInmm i 1I1!! f i ! m i!lliflfl iii lIIf1n mllllf!Uliil ! m ! l1n!!i!!mr ·j)imW! 1!I]HIl III ~ 

pvar-mantissa-Iength [Function] 

Returns bit length of the mantissa of the supplied floating-point or complex pvars. 

SYNTAX 

pvar-mantissa-length pvar 

ARGUMENTS 

pvar Floating-point or complex pvar. ~var for which mantissa bit 
length is determined. 

RETURNED VALUE 

exponent-length Integer. Length in bits of mantissa field of supplied pvar. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function returns the bit-length of the mantissa ofpvar. 

Note: This function has no meaning in the *Lisp simulator, and returns no useful value. 

REFERENCES 

See also the following general pvar information operators: 

574 

allocated-pvar-p 

pvar-length 

pvar-name 

pvar-type 

describe-pvar 

pvar-location 

pvarp 

pvar-vp-set 

pvar-exponent-Iength 

pvar-plist 

Version 6.1. October 1991 



*Lisp Dictionary 
~'limm~.;.w %ill% i i 

pvar-name 
I! :mg nm mi ::J!nmn;; mmmm iii: urn:1 :: g llllhl 

pvar-name [Function] 

Returns the symbolic name of the supplied pvar. 

SYNTAX 

pvar-name pvar 

ARGUMENTS 

pvar Pvar expression. Pvar for which symbolic name is returned. 

RETURNED VALUE 

name-symbol Symbol. Symbol recorded as the name of pvar. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function returns the symbolic name of pvar. 

The argument pvar may be any pvar, but temporary pvars return nil. 

REFERENCES 

See also the following general pvar information operators: 
allocated-pvar-p 

pvar-Iength 

pvarp 

pvar-type 

Version 6.1, October 1991 

describe-pvar 

pvar-Iocation 

pvar-plist 

pvar-vp-set 

pvar-exponent-Iength 

pvar-mantissa-Iength 

575 



pvarp *Lisp Dictionary 
I· 1 1 ! 1 Iff 11111 m If l! llUHII WH ;:r 111m!! [111m]! 1!IWli! g nnn 7 : : :nr H !" mn H 

pvarp [Function] 

Tests whether the supplied object is a pvar. 

SYNTAX 

pvarp object 

ARGUMENTS 

object Common Lisp or *Lisp data object to be tested. 

RETURNED VALUE 

pvarp Boolean. The value t if object is a pvar, and nil otherwise. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This returns t if the argument is a pvar and nil if it is not. 

REFERENCES 

See also the following general pvar infonnation operators: 

576 

allocated-pvar-p 

pvar-Iength 

pvar-name 

pvar-vp-set 

describe-pvar 

pvar-location 

pvar-plist 

pvar-exponent-Iength 

pvar-mantissa-Iength 

pvar-type 

Version 6.1, October 1991 

.~. 

./ 



·Lisp Dictionary 
~ ]! . 111 f 

pvar-pJist 
)w:~ Fi1!lfMim 17 U I ::m I UIFllWtF R : !1111111i11! ill 

pvar-plist [Function] 

Returns the property list of the supplied pvar. 

SYNTAX 

pvar-plist pvar 

ARGUMENTS 

pvar Pvar expression. Pvar for which property list is returned. 

RETURNED VALUE 

property-list List. Property list of pvar. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function returns the property list of pvar. The argument pvar may be any pvar. 

The ''property list" of a pvar is not currently used by ·Lisp. It exists so that users may 
write their own functions to store and access the property lists of pvars. The expression 
(setf (pvar-pllst pvar » may be used to modify the property list slot of a pvar. 

REFERENCES 

See also the following general pvar information operators: 
allocated-pvar-p descrlbe-pvar pvar-exponent-length 
pvar-Iength pvar-locatlon pvar-rnantlssa-Iength 
pvar-name pvarp pvar-type 
pvar-vp-set 

Version 6.1, October 1991 577 



pvar-to-array 
IIJ 1 J 12 I I . 11I11R1111 m1m 1119 i!: j[nRl~!m 

*Lisp Dictionary 
II! m : r: 1m g::;!i Ui n: iR !!:! . nil I :1Ii1!: .: I: : :r . ill! j Hi : RTi: :n:m 

pvar-to-array [*Defun] 

Copies values from a pvar to a front-end vector in send-address order. 

SYNTAX 

pvar-to-array source-pvar &optional dest-a"ay 
&key :array-offset :start end 

:cube-address-start :cube-address-end 

ARGUMENTS 

source-pvar 

dest-a"ay 

:array-offset 

:start 

:end 

Pvar. Pvar from which values are copied. 

Front-end vector. Array into which values are stored. If this 
argument is nil, the default, a front-end array of the appropriate 
size is created and returned. 

Integer. Offset into dest-a"ay at which fIrst value is stored. 
Default is o. 

Send address. Processor at which copying will start. Default is o. 

Send address. Processor at which copying will end. 
Default is *number-of-processors-limit*. 

:cube-address-start :cube-address-end 

Obsolete aliases for the :start and :end keywords, retained for 
software compatibility only. 

RETURNED VALUE 

dest-a"ay The destination array, into which values have been copied. 

SIDE EFFECTS 

578 

The contents of source-pvar from :start to :end are copied into dest-array beginning 
at :array-offset. 

Version 6.1, October 1991 



*Lisp Dictionary pvar-to-array 
!1 jEll: :M!1i!~:;;::r mii ': m rmwi 1m: '&'wn ::i .-;. rmwi 

DESCRIPTION 

This function moves data from source-pvar into dest-array in send-address order. 

If provided, dest-array must be one-dimensional. If a dest-array is not provided, an 
array is created of size :end minus :start. 

The data from source-pvar in processors :start through 1 - :end are written into the 
dest-array elements starting with element :array-offset. The result returned by pvar­

to-array is dest-array. 

EXAMPLES 

A sample pvar-to-array call is the expression 

(pvar-to-array (self-address!!) nil 
:start 3 
:end 10) 

which returns the array 

4/: (3 4 5 6 7 8 9) 

A call to pvar-to-array that uses the :array-offset keyword is 

(pvar-to-array (self-address!!) nil 
:array-offset 2 
:start 3 
:end 10) 

which returns the array 

4/:(NIL NIL 3 4 5 6 7 8 9) 

NOTES 

Usage Note: 

It is an error to supply a value for both :cube-address-start and :start in the same func­
tion call. Likewise, it is an error to provide :cube-address-end and :end arguments in 
the same function call. 

Version 6.1, October 1991 579 



pvar-to-array 
1Il!!llWnm IIHH11Un 

*Lisp Dictionary 
!! IU!! r III!! H UP!!!! I 111m; i 1 !@ 1: n 11 :Iff 111!i; :i T 

Performance Note: 

The pvar-to-array function performs most efficiently when used on non-aggregate 
pvars of declared type and when the front-end array is of corresponding type to that of 
the pvar. 

For instance, transferring data from a pvar of type single-float into an array whose ele­
ment type is single-float is very efficient. Transferring a general pvar into an array 
whose element type is t will not be as efficient. 

Transferring aggregate pvars (structures and arrays) using a single call to one of the 
functions array-to-pvar, pvar-to-array, pvar-to-array-grid, or array-lo-pvar-grid is 
very slow. See the performance note under the defmition of array-to-pvar for a discus­
sion of how to transfer aggregate data efficiently between the front end and the eM. 

Syntax Note: 

Remember that when no dest-array argument is specified to the pvar-to-array and 
pvar-to-array-grld functions, a nil must be provided instead if keyword arguments are 
to be used. 

REFERENCES 

580 

See also these related array transfer operations: 
array-to-pvar 
pvar-to-array-grld 

array-to-pvar-grld 

See also the *Lisp operation pre', which is used to transfer single values from the eM 
to the front end. 

The *Lisp operation ·setf, in combination with pre', is used to transfer a single value 
from the front end to the eM. 

Version 6.1. October 1991 

/ 



*Lisp Dictionary pvar-to-array-grid 
~W'L® J.ill.11!1::;'ill .; : w.-s:~:$aill\illl:m1!1mt%:&!W __ ;t®lWW2IlMW*tg lrWWW& id : Ii 

pvar-to-array-grid [*Defun] 

Copies values from a pvar to a front-end array in grid address order. 

SYNTAX 

pvar-to-array-grid source-pvar &optional dest-array 
&key :array-offset 

ARGUMENTS 

source-pvar 

dest-array 

:array-offset 

:grid-start 

:grid-end 

RETURNED VALUE 

dest-array 

SIDE EFFECTS 

: grid-start 
:grid-end 

Pvar. Pvar from which values are copied. 

Front-end array into which values are stored. Must have a rank 
equal to *number-of-dimensions*. If this argument is nil, the 
default, a front-end array of the appropriate size is created and 
returned. 

Integer list. Set of offsets into source-array indicating location at 
which first value is stored. Default is (make-list *number-of­

dimensions* :initial-element 0). 

Integer list, specifying inclusive grid address of processor at 
which copying will start. Defaults to the value of the form 
(make-list *number-of-dimensions* :initial-element 0). 

Integer list, specifying exclusive grid address of processor at 
which copying will end. Defaults to the value of the variable 
*current-cm-configuration*. 

The destination array, into which values have been copied. 

The contents of source-pvar from :grid-start to :grid-end are copied into dest-array 
beginning at :array-offset. 

persian 6.1, October 1991 581 



pvar-to-array-grld *Lisp Dictionary 
:;;;~@l! u' rI! ~ W~ II _~:11 t it:' ',Ii! m, I ';' 

DESCRIPTION 

This function moves data from source-pvar into dest-array in grid address order. 

If provided, dest-array must have the same number of dimensions as the current eM 
configuration. If dest-array is not specified, an array is created with dimensions :grid­

end minus :grld-start, where the subtraction is done element-wise to produce a list 
suitable for make-array. The data from source-pvar in the sub-grid defined by :grid­

start and :grid~nd as the inclusive ''upper-left .. and exclusive "lower-right" comers, 
respectively, are written into a similar sub-grid of dest-array starting with element 
:array-offset as the upper;.left comer. The arguments :array-offset, :grld-start, and 
:grld-end must be lists oflength *number-of-dimensions*. The value returned by pvar­
to-array-grid is dest-array. 

EXAMPLES 

582 

Assuming a two-dimensional grid has been defmed, for which 

(ppp (self-address!!) :mode :grid :end '(4 4» 

displays the values 

o 4 8 12 
1 5 9 13 
2 6 10 14 
3 7 11 15 

then when the expression 

(pvar-to-array-grid (self-address!!) nil 
:grid-start '(1 1) : grid-end , (4 3» 

is evaluated, it returns the array 

#2A( (5 6) (9 10) (13 14» 

and the expression 

(pvar-to-array-grid (self-address!!) nil 
:array-offset '(1 1) 
:grid-start '(1 1) : grid-end , (4 3» 

when evaluated, returns the array 

#2A «NIL NIL NIL) (NIL 5 6) (NIL 9 1 0) (NIL 13 14» 

Version 6.1, October 1991 

\ 

./ 



c 

*Lisp Dictionary 
i. 

pvar-to-array-grld 
!U? ! g ! I lim2l1 

The following example shows the use of pvar-to-array-grid to extract a subgrid from 
a pvar and store it into a predefined front-end array: 

(*cold-boot :initial-dimensions ' (128 128» 

(defparameter an-array 
(make-array , (10 10) 

:element-type 'single-float 
:initial-element 0.0» 

(*proclaim ' (type single-float-pvar data-pvar» 
(*defvar data-pvar (float!! (self-address!!») 

(ppp data-pvar :mode :grid :end ' (5 5) :format "-5F ") 
DIMENSION 0 (X) -----> 

0.0 1.0 2.0 3.0 4.0 
8.0 9.0 10.0 11.0 12.0 

16.0 17.0 18.0 19.0 20.0 
24.0 25.0 26.0 27.0 28.0 

128.0 129.0 130.0 131.0 132.0 

The following call to pvar-to-array-grld transfers the 4 x 4 subgrid of data-pvar whose 
comers are 

(1 1) (4 1) 
(1 4) (4 4) 

to the 4 x 4 subarray of an-array whose comers are 

NOTES 

(2 3) (6 3) 

(2 7) (6 7) 

(pvar-to-array-grid data-pvar an-array 
:array-offset ' (2 3) 
:grid-start ' (1 1) 
: grid-end ' (5 5» 

(aref an-array 2 3) => 9.0 

Performance Note: 

The pvar-to-array-grid function performs most efficiently when used on non­
aggregate pvars of declared type and when the front-end array is of corresponding type 
to that of the pvar. 

Version 6.1, October 1991 583 



pvar-to-array-grid *Lisp Dictionary 
1 nnw i )jj !!Uili Iill T:W!2 m fii min ililiEIRili !! 1I:fI I Mil !. IT! jj mmmmm;MlWfl1NU:~! 1m 

For instance, transferring data from a pvar of type single-float into an array whose ele­
ment type is single-float is very efficient. Transferring a general pvar into an array 
whose element type is t will not be as efficient. 

Transferring aggregate pvars (structures and arrays) using a single call to one of the 
functions array-to-pvar, pvar-to-array, pvar-to-array-grid, or array-to-pvar-grid is 
very slow. See the performance note under the definition of array-to-pvar for a discus­
sion of how to transfer aggregate data efficiently between the front end and the eM. 

Syntax Note: 

Remember that when no dest-array argument is specified to the pvar-to-array and 
pvar-to-array-grid functions, a nil must be provided instead if keyword arguments are 
to be used. 

REFERENCES 

584 

See also these related array transfer operations: 
array-to-pvar 

pvar-to-array 

array-to-pvar-grid 

See also the *Lisp operation pref, which is used to transfer single values from the eM 
to the front end. 

The *Lisp operation *setf, in combination with pref, is used to transfer a single value 
from the front end to the eM. 

Version 6.1, October 1991 

( 
.~ 

/' 
i 
~ 



c 

*Lisp Dictionary 
!HI 

pvar-type 
I I !11 nllHUr r i Q I IT 

pvar-type [Function] 

Returns the data type of the supplied pvar. 

SYNTAX 

pvar-lype pvar 

ARGUMENTS 

pvar Pvar expression. Pvar for which data type is determined. 

RETURNED VALUE 

data-type Symbol representing *Lisp data type for pvar. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function returns the data type of pvar. The argument pvar may be any pvar. 

Note: This function always returns the value t in the *Lisp simulator. 

REFERENCES 

See also the following general pvar information operators: 
allocated-pvar-p 
pvar-Iength 
pvar-name 
pvar-vp-set 

Version 6.1, October 1991 

descrlbe-pvar 
pvar-locatlon 
pvarp 

pvar-exponent-length 
pvar-mantissa-length 
pvar-pllst 

585 



pvar-vp-set *Lisp Dictionary 
n! q mmIT iiii$lmUI iii I II ! Mm!!ITm J n B.ln I j]J' i: 1 m J m m: : :! R! f i! J : 

pvar-vp-set [Function] 

Returns the VP set to which the supplied pvar belongs. 

SYNTAX 

pvar-vp-set pvar 

ARGUMENTS 

pvar Pvar expression. Pvar for which VP set is returned. 

RETURNED VALUE 

vp-set *Lisp VP set object. VP set to which pvar belongs. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function returns the VP set to which pvar belongs. 

The argument pvar may be any pvar. 

REFERENCES 

See also the following general pvar information operators: 

586 

allocated-pvar-p 

pvar-length 
pvar-name 

pvar-type 

describe-pvar 

pvar-Iocation 
pvarp 

pvar-exponent-Iength 

pvar-mantissa-Iength 

pvar-pllst 

Version 6.1, October 1991 



[ 

r·-.. '. 
/ 

*Lisp Dictionary random II 
IIJllnm 1 : I f 1I111:ili:Wlllll mm] 11 f lIn mill: ::m fRii: :lIIm i 1fI! IlIlIm I 2 ! 1 mIRl!lm 

random!! [Function] 

Returns a pvar with a random value in each processor. 

SYNTAX 

randomll limit-pvar 

ARGUMENTS 

limit-pvar 

RETURNED VALUE 

random-pvar 

SIDE EFFECTS 

Non-complex numeric pvar. Upper exclusive bound on random 
number selected. Must contain positive values. 

Temporary numeric pvar, of same type as limit-pvar. In each 
active processor, contains a random value between 0 inclusive and 
the value of limit-pvar exclusive. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function is the parallel equivalent of Common Lisp's random function, and returns 
a pvar containing a random value in each processor. 

Version 6.1, October 1991 587 



random!! "'Lisp Dictionary 
] m n HaH]IIIIIIT11m1l1V ]1 ill!!!] 1 IT 1111' !lUfF!!!I]!!! nm!!!11II' 1II'U i !!!ll ! II Ilf ! ill 

EXAMPLES 

For example, when the expression 

(ppp (random!! (!! 10» :end 10) 

is evaluated, the first ten values of the random-valued pvar returned by randomll are 
displayed, for example 

8 9 1 3 4 027 6 5 

NOTES 

588 

This operation is faster when provided constant pvar arguments, as in the example 
above, than when applied to non-constant pvar arguments, as in 

(*set random-data (random!! data-pvar» 

Version 6.1, October 1991 

/'~ 

I 

\ 
'-. 

/' 



*Lisp Dictionary rankll 
~IT :m: ::m::ifu::w:::mmmm"m",mlrwwm:::wr wwmmr .0011 ww,qm...,m:nnn; :w:: :gggi I ~1m!' _~mmg' [I!!.;'Bm..~*m;m1Imw'%'1!! 11 n 1 II Iwr 

rankll [Function] 

Performs a parallel comparison, numerically ranking the values of the supplied numeric 
pvar. 

SYNTAX 

rankll numeric-pvar predicate &key :dimension :segment-pvar 

ARGUMENTS 

numeric-pvar 

predicate 

:dlmension 

:segment-pvar 

RETURNED VALUE 

rank-pvar 

SIDE EFFECTS 

Non-complex numeric pvar. Pvar containing values to be 
compared. 

Two-argument pvar predicate. Determines type of ranking. 
Currently limited by implementation to the function <=11. 

Integer or nil. Specifies dimension along which to perform 
ranking. The default, nil, specifies a send-address order ranking. 
If not nil, this argument must be an integer between 0 inclusive 
and *number-of-dimensions* exclusive. 

Segment pvar or nil. Specifies segments in which to perform 
independent rankings. The default, nil, specifies an unsegmented 
ranking. 

Temporary integer pvar. In each active processor, contains the 
numeric rank of the corresponding value of numeric-pvar among 
all of the active values of numeric-pvar, under the relation speci­
fied by predicate. 

The returned pvar is allocated on the stack. 

Version 6.1, October 1991 589 



rank II *Lisp Dictionary 
IT mllill 1m i! H 11 mn Ii m 11 min um ! limp 

DESCRIPTION 

590 

The rankll function returns a pvar containing values from 0 through one less than the 
number of active processors. The order of the values in the returned rank-pvar indi­
cates the ranking of the values in the supplied numeric-pvar. 

The ranking is performed so that for any two active processors pi and p2, if the value 
of rank-pvar in pi is less than the value of rank-pvar in p2, then the value of numeric­
pvar in processor pi satisfies the supplied predicate with respect to the value of 
numeric-pvar in processor p2. (The current implementation limits predicate to the 
operator <=11.) 

The keywords, :dlmenslon and :segment-pvar permit rankings to be taken along 
specific grid dimensions and within segments. 

The :dlmenslon keyword specifies whether the ranking is done by send address order 
or along a specific dimension. If a dimension is specified, ranking is performed only 
along that dimension. The default value, nil, specifies a send-address order ranking. 

For example, assuming a two-dimensional grid, a :dimension argument of 0 causes 
ranking to occur independently in each "row" of processors along dimension O. A 
:dlmension argument of 1 causes ranking to occur independently in each "column" of 
processors along dimension 1 (see Figure 2). 

DIM 0 DIM 0 

D~rri D~ffi 0 4 8 12 
1 5 9 13 

1-

- 1-

2 6 10 14 - I .. 

3 7 11 15 ... 1-
, 

(self-addressll) :dimension 0 :dimension 1 

Figure 2. Effect of different :dimension arguments, 
assuming a two-dimensional grid 

The :segment-pvar argument specifies whether the ranking is performed separately 
within segments. The default is nil; rankll is by default unsegmented. If provided, the 
:segment-pvar value must be a segment pvar. A segment pvar contains boolean values, 
with a non-nil value in the first processor of each segment and nil in all other proces-

Version 6.1, October 1991 



""Lisp Dictionary rankll 
In 91 § ; I mmmlmm r [ Ii [II; II iMIllm1Uli II ill r r 1 I I 2 r IT 

sors. If a segment pvar is specified, then the ranking is done independently within each 
segment. 

If both a :dlmenslon and a :segment pvar argument are specified, then the ranking is 
done independently for each "row" along the specified dimension and independently 
within segments for each row. 

EXAMPLES 

A simple call to rankll is 

(rank!! numeric-pvar '<=!!) 

If the first 12 elements of numerlc-pvar are 

o 20 4 16 8 12 10 14 6 18 2 22 

then the first 12 values of the returned rank-pvar are 

o 10 2 8 4 6 5 7 3 9 1 11 

An example of rankll with a :segment-pvar argument is 

(rank!! numeric-pvar '<=!! 
:segment-pvar (evenp!! (self-address!!))) 

If the first 12 elements of numerlc-pvar are 

o 2 4 2 1 7 5 3 4 7 8 2 

then the first 12 values of the returned rank-pvar are 

o 1 100 1 1 0 0 1 1 0 

An example of rankll with a :dlmenslon argument is 

(rank!! (self-address!!) '<=!! :dimension 1) 

Assuming a two-dimensional VP set geometry, if the expression 

(*defvar random-values (random!! (!! 32))) 
(ppp random-values :mode :grid :end ' (4 4)) 

displays the values 

Version 6.1, October 1991 591 



rank" *Lisp Dictionary 
flU! nlll l!II!mu Jl IIlfll!llllI!ll!! If!! U II II 

o 7 8 15 
1 6 10 13 
2 5 9 14 
3 4 11 12 

then the expression 

(ppp (rank!! random-values '<=!! :dimension 1) 
:mode :grid :end '(4 4» 

will display the values 

o 3 0 3 
1 2 2 1 
2 1 1 2 
3 0 3 0 

The function sort" might be implemented using a combination of rank" and *pset, as 
follows: 

(*cold-boot :initial-dimensions '(8» 

(*defvar random-values (random!! (!! 32») 
(ppp random-values) 
22 17 5 31 0 4 12 4 

(defun my-sort!! (unsorted-pvar) 
(*let (sorted-pvar) 

(*pset :no-collisions unsorted-pvar sorted-pvar 
(rank!! sorted-pvar) 

sorted-pvar) ) ) 

NOTES 

The ranking performed by rank" is not guaranteed to be stable. If numeric-pvar con­
tains the same value in two or more active processors, the ordering returned for these 
values in rank-pvar is arbitrary and indeterminate. 

Compiler Note: 

The *Lisp compiler does not compile rankll if a :segment-pvar argument is supplied. 

592 Version 6.1, October 1991 



*Lisp Dictionary 
II! 1 Rl i i mmlum fl 111m lam OlE! 

REFERENCES 

See also the related functions 
enumeratell 

self-addressll 

Version 6.1, October 1991 

M :iI Wi if III mnmmuu I IliRliliMil!li :lliiDmD 

selfll 

self-address-gridll sortll 

rankll 

593 



realpartll *Lisp Dictionary 
n: 8@1 1 IS % m I! : Ifill!! 11 ! 112 11 1iImmn% IImelll! mlilleIEl%lmlf!! f m!ii2i1 fifllltiUrw 

realpartll [Function] 

Extracts the real component from a complex pvar. 

SYNTAX 

realpartll numeric-pvar 

ARGUMENTS 

numeric-pvar Numeric pvar. Pvar from which real part is extracted. 

RETURNED VALUE 

reaipart-pvar Temporary numeric pvar. In each active processor, contains the real 
part of the corresponding value of numeric-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function returns a temporary pvar containing in each processor the real compo­
nent of the complex value in numeric-pvar. Note that numeric-pvar need not be 
explicitly a complex-valued pvar. Non-complex values are automatically coerced into 
complex values with a zero imaginary component. Note that you can apply ·setf to an 
Imagpartll call to modify the imaginary component of a complex numeric pvar. 

REFERENCES 

See also these related complex pvar operators: 
absll cisll 

conJugatel1 Imagpartll 

594 

complexll 

phasell 

Version 6.1, October 1991 



*Lisp Dictionary reduce II 
}!!;Wi ":":r:::Wllm'%ll!ll'W@s [ ;;§ jj;~~m ll'<"l!nt!: f ; i}!!;W@iiiTii::r::M : lli: « : 

reduce!! [Function] 

Combines elements of a sequence pvar in parallel using a binary pvar function. 

SYNTAX 

reducell function sequence-pvar &key :from-end :start :end :Initial-value 

ARGUMENTS 

function 

sequence-pvar 

:from-end 

:start 

:end 

:initial-value 

RETURNED VALUE 

reduce-pvar 

SIDE EFFECTS 

Two-argument pvar function. Used to combine elements of 
sequence-pvar in parallel. 

Sequence pvar. Pvar containing sequences to be reduced. 

Scalar boolean. Whether to begin search from end of sequence. 
Defaults to nil. 

Integer pvar. Index, zero-based, of sequence element at which 
reduction operation starts. If not specified, search begins with first 
element. 

Integer pvar. Index, zero-based, of sequence element at which 
reduction operation ends. If not specified, search continues to end 
of sequence. 

Pvar, of same type as elements of sequence-pvar. If supplied, is 
included in reduction operation as first value supplied to function. 

Temporary pvar, of same type as elements of sequence-pvar. In 
each active processor, contains result of reducing the correspond­
ing sequence of sequence-pvar by the suppliedfunction. 

The returned pvar is allocated on the stack. 

Version 6.1, October 1991 595 



reducell 
! m j; jj II !ilin; 

*Lisp Dictionary 
Wi ; if l!J Jlj HI liiaC I I II I f 

DESCRIPTION 

The function reducell is similar to the Common Lisp function reduce. It operates in 
each processor to combine all the elements of sequence-pvar, two at a time, using 
jUnction. A pvar containing the reduction result in each processor is returned. 

The argument function must be a binary operation that accepts pvar arguments of the 
type contained in sequence-pvar. The argument sequence-pvar must be a vector pvar. 

The keyword :from-end takes a boolean and defaults to nil. Reduction is left-associa­
tive in any processor with a :from-end value of nil. Otherwise, reduction is right­
associative. 

The keywords :start and :end defme a subsequence of sequence-pvar. 

The keyword :initial-value takes a pvar of the same type as the elements of sequence­
pvar and provides an initial value for the reduction calculation. If an :initial-value value 
is supplied, it is logically placed at the beginning of sequence-pvar and included in the 
reduction. If :from-end is t, the value of :initial-value is logically placed at the end of 
sequence-pvar. 

EXAMPLES 

The expression 

(reduce!! #'+!! number-sequence-pvar) 

adds up the elements of number-sequence-pvar in each processor. 

NOTES 

Language Note: 

Although the function reducell is in many way similar to the Common Lisp function 
reduce, it is not exactly identical, for while reduce can return any Common Lisp value, 
reduce II can only return a pvar of the same type as the elements of sequence-pvar. 

Complier Note: 

596 

Because of the utility of the reducell function for vector pvar operations, the *Lisp 
compiler will compile this function, but only under certain conditions. Specifically, for 
reducell to compile, the function argument must be a compilable function, and none of 
the keyword arguments may be used. 

Version 6.1, October 1991 



*Lisp Dictionary 
llil ! Ilmm!IR !illml eli! I !1m!; ! I Hn 11: U!Ul 121 I 

REFERENCES 

See also these related *Lisp sequence operators: 
copy-seqll *fill 

*nreverse reverse I! 

reduce!! 
mil! i 1m m HIP m! 11m j! !!I!ii!!!I!]j 

length I! 

subseql! 

See also the generalized array mapping functions amapl! and *map. 

Version 6.1. October 1991 597 



reduee-and-spreadll 
III I II! IT TI r ! lniillllifi!1C i1! r !iF 

*Lisp Dictionary 
IT IIi m: 1m I tilll HI liI!lliIllll!!!ii1!! 

reduce-and-spread! ! [Function] 

Perfonns a scan II reduction along the specified dimension of the currently defmed grid, 
and then a backwards copyU scan to spread the result values to all processors along the 
scanned dimension. 

SYNTAX 

reduce-and-spreadll pvar function dimension 

ARGUMENTS 

pvar 

function 

dimension 

RETURNED VALUE 

scan-pvar 

SIDE EFFECTS 

Pvar expression. Pvar containing values to be reduced. 

Two-argument pvar function. Determines type of reduction. May 
be any of +11, andll, orll, /ogandll, /og/orll, /ogxorJl, max!!, minU, 

and copyU. 

Integer or nil. Index, zero-based, of dimension of currently 
defmed grid along which reduction is perfonned, and the result 
values are copied. A value of nil indicates that a send-address 
reduction and spread should be perfonned. 

Temporary pvar. A copy of pvar to which the reduction operation 
specified by function has been applied, with the result spread to 
every processor along the dimension specified by dimension. 

The returned pvar is allocated on the stack. 

598 Version 6.1, October 1991 

,/ 

( 

/ 

I 

" 



*Lisp Dictionary reduce,-and-spreadll 
H1@ ; Ii: !j n::::::::: : !I: mool!:E!II; F . ; _;;;;V~II!" :wa J::jum:Ur:i! 11::: lm11M ; : i lEi i eli!!! "W 

DESCRIPTION 

Conceptually, this function first performs a 

(scan!! pvar function :dimension dimension) 

It then takes the scan" result from the last active processor along the scanning dimen­
sion and performs a backwards copy!! scan. A pvar containing the result of this copy 
scan is returned. Thus, the scanll results are spread to all the processors which partici­
pated in the reduce-and-spreadll. 

The dimension argument determines the grid dimension along which the operation is 
performed. It must be either a non-negative integer scalar within the range of dimen­
sions of the VP set to which pvar belongs, or nil. If dimension is nil, send-address order 
scanning is done. 

For example, assuming a two-dimensional grid, a dimension argument of 0 causes 
ranking to occur independently in each "row" of processors along dimension o. A 
dimension argument of 1 causes ranking to occur independently in each "column" of 
processors along dimension 1 (see Figure 3). Because the grid has only two 
dimensions, the only valid arguments for dimension are 0, 1, and nil. 

DIM 0 DIM 0 DIM 0 

D~ffi 0 4 8 12 
1 5 9 13 

D~fij ... 
.. D~rm 

2 6 10 14 - .. 
3 7 11 15 - ... , 

(self-addressll) dimension = 0 dimension = 1 

Version 6.1, October 1991 

Figure 3. Effect of different dimension arguments, 
assuming a two-dimensional grid. 

599 



reduce-and-spreadll *Lisp Dictionary 
7 I 1 I HII I IIIIRlIIIIIIIIIIII I I UIH fl lli1i1 11 R 1 I 1!R 

EXAMPLES 

This example shows how reduce-and-spread may be used, assuming a two-dimension­
al grid configuration for simplicity. Note that the reduction and spread operation is 
performed along dimension I, that is, down the "columns" of the grid. 

(*cold-boot :initial-dimensions ' (4 4» 

(ppp (self-address! !) : mode : grid : format "-2D If) 

0 4 8 12 
1 5 9 13 
2 6 10 14 
3 7 11 15 

(ppp (reduce-and-spread!! (self-address!!) ,+!! 1) 
:mode :grid : format "-2D If) 

6 22 38 54 
6 22 38 54 
6 22 38 54 
6 22 38 54 

NOTES 
Performance Note: 

This function is provided because it may be significantly faster to use it than to do a 
scanll followed by a reverse copy scan. 

REFERENCES 

See also these related operations: 
scanll segment-set-scanll spread II 

600 Version 6.1, October 1991 

/~ 

I 

/ 

( 

'",-



*Lisp Dictionary remll 
c: !! i ! I !:i n i:: I.EI! ; 1 "dEW liI7:t!il !W!liim i iilill 1 !lD'!i1i.I!!!lli ~.. 122 lim: mUll mml 11 iliff U rm 

remll [Function] 

Calculates in parallel the remainder of a division on the supplied pvars. 

SYNTAX 

remll numeric-pvar divisor-pvar 

ARGUMENTS 

numeric-pvar 

divisor-pvar 

RETURNED VALUE 

remainder-pvar 

SIDE EFFECTS 

Non-complex numeric pvar. Pvar for which remainder is 
calculated. 

Integer pvar. Pvar by which numeric-pvar is divided. 

Temporary numeric pvar, of same type as numeric-pvar. In each 
active processor, contains the remainder from dividing the value of 
numeric-pvar by the value of divisor-pvar. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function is the parallel equivalent of the Common Lisp function rem. It is an error 
if divisor-pvar conUtins zero in any processor. 

persion 6.1. October 1991 601 



reversell "'Lisp Dictionary 
nil I 11 11 ! 1 r II! f n Im!:JDU m1 R HI! Ii! m!Hl 1 I! IIHn ! 

reverse!! [Function] 

Returns a copy of the supplied sequence pvar in which each sequence has been reversed. 

SYNTAX 

reversell sequence-pvar 

ARGUMENTS 

sequence-pvar Sequence pvar. Pvar containing sequences to be reversed. 

RETURNED VALUE 

reverse-pvar Temporary sequence pvar. In each active processor, contains a 
reversed copy of the corresponding sequence of sequence-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function returns a sequence pvar that is a reversed copy of sequence-pvar. The 
argument sequence-pvar must be a vector pvar. The following equivalence always 
holds: 

(reverse!! sequence-pvar) 
<=> 
(*nreverse (copy-seq!! sequence-pvar» 

NOTES 

Compiler Note: 

The "'Lisp compiler does not compile this operation. 

602 Version 6.1, October 1991 

c 



*Lisp Dictionary 
§"immnre I. I.WMi mUn! : 

REFERENCES 

See also these related *Lisp sequence operators: 
copy-seqll *fill 

*nreverse reducell 

:n 

length II 

subseqll 

See also the generalized array mapping functions amapll and *map. 

Version 6.1, October 1991 

reverse II 
lIiil1lm 

603 



*room *Lisp Dictionary 
1 n If I Hi I @!7ll Hli eWI! I go:: i'lWt: mnrn 

*room [Function] 

Prints and returns information about CM memory use. 

SYNTAX 

*room &key :how :prlnt-statlstlcs :stream 

ARGUMENTS 

:how 

:print-statistlcs 

:stream 

RETURNED VALUES 

stack-bytes 

temp-bytes 

defvar-bytes 

overhead-bytes 

SIDE EFFECTS 

None. 

DESCRIPTION 

One of :by-vp-set, :by-pvar, or :totals. Specifies how usage 
information is to be displayed. Default is :by-vp-set. 

Scalar boolean. Whether to print results as well as returning 
values. Defaults to t. 

Stream. object or t. Stream. to which results are printed. Defaults 
to t, sending output to ·standard-output* stream.. 

Integer. Number of bits of CM memory in use by temporary pvars 
on the *Lisp stack. 

Integer. Number of bits of CM memory in use by permanent pvars 
on the *Lisp heap that were created by allocate". 

Integer. Number of bits of CM memory in use by permanent pvars 
on the *Lisp heap that were created by *defvar. 

Integer. Number of bits of CM memory in use as overhead. 

Collects and prints information about CM memory usage. 

604 Version 6.1, October 1991 



*Lisp Dictionary *room 
:{ : ::r: ::&m,'fi:WF i: :: r II! :: H:'_~ffl_:F! iii mimi!! [ mIG i i mF:mt i 

The *room function returns four values. Each return value indicates the total amount 
of eM memory in use for a particular purpose at the time of the call. 

The fIrst return value reports the total number of bits of eM memory allocated 
on the *Lisp stack. 

The second return value reports the total number of bits of eM memory on the 
heap allocated to pvars created with allocate!!. 

The third return value reports the total number of bits of eM memory on the 
heap allocated to pvars created with *defvar. 

The fourth return value reports the total number of bits of eM memory in use 
as overhead, including overhead for the *Lisp VP mechanism and overhead for 
Paris. 

The :how keyword argument must be either :by-vp-5et (the default), :by-pvar, or 
:totals. If the value of :how is :bY-Yp-set, then the four statistics are collected and 
printed for each existing *Lisp VP set. If the value of :how is :by-pvar, then statistics 
are given for each pvar as well as for each VP set. If the value of :how is :totals, then 
only summary information is printed. The :how keyword argument specifIes only how 
memory information is printed; it has no impact on the values returned by *room. 

The :print-statistics keyword defaults to t. If it is set to nil, the results are returned but 
not printed and the :how keyword is ignored. 

The :stream keyword defaults to t, indicating that output goes to the standard output 
device. An alternate stream may be specifIed. 

Version 6.1, October 1991 60S 



rotl! 
!ml'E ]11U11m nn 211 I II :U . 21IIi :; :i::: i lllIil !Ii illiIliJIIIl ill 12m I: ill:r:tilJll: 

*Lisp Dictionary 
j;um: iUWW::::TU 

rot!! [Function] 

Performs a parallel bit rotation on the supplied integer pvar. 

SYNTAX 

rotl! integer-pvar n-pvar word-size 

ARGUMENTS 

integer-pvar 

n-pvar 

word-size 

RETURNED VALUE 

rot-pvar 

SIDE EFFECTS 

Integer pvar. Pvar containing values to be rotated. 

Integer pvar. Number of bits to rotate integer-pvar. Positive value 
rotates towards high-order bits, negative towards low-order bits. 

Integer pvar. Number of low-order bits of integer-pvar that are 
rotated. 

Temporary integerpvar. In each active processor, contains a copy of 
the low-order word-size bits of integer-pvar rotated the number of 
bits specified by the value of n-pvar. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function returns integer-pvar rotated left n-pvar bits, or rotated right if n-pvar 
is negative. The rotation considers each value of integer-pvar to be an integer oflength 
word-size bits. 

NOTES 

This function is especially fast when n-pvar and word-size are both constant pvars. 

606 Version 6.1, October 1991 

( 
I 

\.-



*Lisp Dictionary round II 
~!i!!i:ii.::m:: !m~i!!ii:mn!ti~lWiWMW.0W!! M0W!t .m:m:m iiw.Rili •. i!!!iii i in?: t:· 

roundll [Function] 

Performs a parallel round operation on the supplied pvar(s). 

SYNTAX 

roundll numeric-pvar &optional divisor-numeric-pvar 

ARGUMENTS 

numeric-pvar Non-complex numeric pvar. Value to be rounded. 

divisor-numeric-pvar 

RETURNED VALUE 

round-pvar 

SIDE EFFECTS 

Non-complex numeric pvar. If supplied, numeric-pvar is divided 
by divisor-numeric-pvar before rounding. 

Temporary integer pvar. In each active processor, contains the 
rounded value of numeric-pvar, divided by divisor-numeric-pvar 
if supplied. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This is the parallel equivalent of the Coqunon Lisp function round, except that only 
one value (the rounded quotient) is computed and returned. The roundll function 
rounds numbers to the nearest integer. If a number is exactly halfway between two 
integers, it is rounded towards the even integer. 

Version 6.1, October 1991 607 



roundll 
! III 11l In lin I f7 I 1 IImml1! iliU 

REFERENCES 

See also these related rounding operations: 
celllngll floorll truncatell 

See also these related floating-point rounding operations: 
fcelllngll ff100rll froundll 

608 

llNl1 

"'Lisp Dictionary 
IlfriJlTilli? IT 

ftruncatell 

Version 6.1, October 1991 



*Lisp Dictionary row-maJor-arefll 
! 11! r JimL a!!!m: H I 111l!lIm !iIIlmlT I I !Ii!!!!lln 

row-maj or-a ref! ! [Function] 

References the supplied multidimensional array pvar as a vector pvar with elements in row­
major order. 

SYNTAX 

row-rnajor-arefll array-pvar row-major-index-pvar 

ARGUMENTS 

array-pvar Array pvar. Pvar to be referenced. 

row-major-index-pvar 
Integer pvar. Index of element in array-pvar to retrieve. 

RETURNED VALUE 

row-major-aref-pvar 
Temporary pvar, of same type as elements of array-pvar. In each 
active processor, contains the element of array-pvar at the location 
referenced by row-major-index-pvar. 

SIDE EFFECTS 

The returned pyar is allocated on the stack. 

DESCRIPTION 

References the specified array pvar as if it were a vector pvar, with elements taken in 
row-major order. The result is returned as a pvar. 

The array-pvar argument may be any array pvar. If this is a vector pvar (a one­
dimensional array pvar), then this function is equivalent to arefll. 

The row-major-index-pvar must contain integers in the range [O ... N], where N is one 
less than the total number of elements in array-pvar. In each processor, this value 
specifies the row-major index of a single element in the component array. 

Version 6.1, October 1991 609 



row-maJor-arefll *Lisp Dictionary 
! nil Ii liT : ::mm I !l 2IlflmrUm 21111 ~lmI iIlllllliI 

EXAMPLES 

Consider the following: 

(*defvar my-array (!! #2A «5 8) (3 0»» 
(pref (row-major-aref!! my-array (!! 2» 19) => 3 

In each processor is stored the array: 5 8 
3 0 

The element with row-major index 2 is referenced using row-major-arefll. This results 
in a pvar whose value is 3 everywhere. The pref function then references this value in 
the 19th processor. yielding 3. 

It is legal to compose *setf with row-maJor-arefll. For example. 

(*setf (row-major-aref!! my-array (!! 2» (!! 25» 

stores the value 25 in the third element of the component array in each processor. 

(pref (row-major-aref!! my-array (!! 2» 19) => 25 

NOTES 
Usage Note: 

The row-maJor-arefll function can be used to implement subroutines that perform 
operations on arrays of any dimensionality. 

REFERENCES 

610 

See also the related array-referencing operations: 
arefn row-maJor-sideways-arefll sideways-arefll 

The following operations convert arrays to and from sideways orientation: 
*processorwise *sideways-array *sllcewise 

See also the *map and amapll functions for another way to iterate in row-major order 
over the elements of array pvars of any dimensionality. 

Version 6.1, October 1991 



*Lisp Dictionary row-major-sideways-arefll 
~: t y;: ii;[i: Tn: 1 : ; 1 n, ·J:!IM~",*t~OOiMOOiMill:OO" illOO,:m!It®~'~w.w I ;]I: % .,w' " 

row-major-sideways-aref! ! [Function] 

References the supplied multidimensional sideways (slicewise) array pvar as a vector pvar 
with elements in row-major order. 

SYNTAX 

row-major-sldeways-arefll array-pvar row-major-index-pvar 

ARGUMENTS 

array-pvar Sideways array pvar. Pvar to be referenced. 

row-major-index-pvar 
Integer pvar. Index of element in array-pvar to retrieve. 

RETURNED VALUE 

row-major-aref-pvar 
Temporary pvar, of same type as elements of array-pvar. In each 
active processor, contains the element of array-pvar at the location 
referenced by row-major-index-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

References the specified sideways (slicewise) array pvar as if it were a vector pvar, 
with indices taken in row-major order. The result is returned as a pvar. 

The row-major-index-pvar must contain integers in the range [O .. N], where N is one 
less than the number of elements in array-pvar. In each processor, this value specifies 
the row-major index of a single element in the component array. 

Version 6.1, October 1991 611 



row-rnaJor-sideways-arefJl *Lisp Dictionary 
AI n i . FlIIH[1 !iii li11! Ii !iii!!1 iJJllI2ii! I! II I Ii iJj YO 111I1 

EXAMPLES 

612 

Consider the following: 

(*proclaim '(type (array-pvar (unsigned-byte 8) '(2 2» 
my-sideways-array» 

(*defvar my-sideways-array (!! f2A «5 8) (3 0»» 

In each processor is stored the array: 5 8 
3 0 

The array is turned sideways, and is verified to be sideways. 

(*slicewise my-sideways-array) 
(sideways-array-p my-sideways-array) => T 

In the following example, a different index into my-sldeways-array is calculated in 
each processor, and then the array elements corresponding to those indices are 
accessed using row-maJor-sldeways-arefJl. 

(ppp (row-major-sideways-aref!! my-sideways-array 
(mod!! (self-address!!) (!! 4») 

:end 14) 

5 8 3 0 5 8 3 0 5 8 3 058 

It is legal to compose ·setf with row-major-sideways-arefJl. For example, 

(*setf (row-major-sideways-aref!! my-sideways-array 
( !! 2» 

( !! 25» 

stores the value 25 in the third element of the component array in each processor. 

(ppp (row-major-sideways-aref!! my-sideways-array 
(mod!! (self-address!!) (!! 4») 

:end 14) 

5 8 25 0 5 8 25 0 5 8 25 0 5 8 

Version 6.1, October 1991 



c 

*Lisp Dictionary row-major-sideways-arefll 
~~WJ,%ti®%&rniIiV~%@ID1W%fim~WlIW§@=*@IWw€ Wfi .'; 3; ! g .1 II: K@ 

REFERENCES 

See also the related array-referencing operations: 
arefll 

sideways-arefll 

row-major-arefll 

The following operations convert arrays to and from sideways orientation: 
*processorwise *sideways-array *slicewise 

Version 6.1, October 1991 613 



sbltll ·Lisp Dictionary 
Illm!1! I WI!!! I I W TIl WW"'lIT n I WI! In nzHI !1!12IIlU m!1!!'iIlIllH 11m illl I i @TIZ 

sbitll [Function] 

Selects in parallel a bit at a given location in a simple bit array pvar. 

SYNTAX 

sbltll bit-a"ay-pvar &rest pvar-indices 

ARGUMENTS 

pvar-indices 

Simple bit array pvar. Array from which bit is selected. 

Integers. Must be valid subscripts for bit-array-pvar. Specifies 
location of bit to return. 

RETURNED VALUE 

bit-pvar Temporary bit pvar. In each processor, contains the bit retrieved 
from the corresponding array of bit-array-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

614 

This function returns a temporary pvar whose value in each processor is the element 
of the bit-array in bit-a"ay-pvar referenced by pvar-indices. This function is similar 
to bitll, but bit-a"ay-pvar is expected to be a simple array, i.e., a non-displaced, static 
array that has no fill pointer. 

Note: There is no significant efficiency advantage to using this function in place of 
araffl; the two are equivalent. Furthermore, you should use arefll instead because sbitll 

will not exist in future versions of *Lisp. 

Version 6.1, October 1991 

/ 



*Lisp Dictionary 
m !:1UIIIIIJ::: I:! n 

scale-floatll 
!Ii :mllll[j[ 11: IF mm !!IIUIIT 2 r:: m !1lIlUI!!I:lIIl1ll!!!ilmlll::m TIl 

scale-float! ! [Function] 

Multiplies the supplied floating-point pvar by the specified power of two. 

SYNTAX 

scale-floatll float-pvar power-of-two-pvar 

ARGUMENTS 

float-pvar Floating-point pvar. Pvar to be scaled. 

power-of-two-pvarlnteger pvar. Power of two by whichfloat-pvar is scaled. 

RETURNED VALUE 

scale-float-pvar Temporary floating-point pvar. In each active processor, contains 
the corresponding value of float-pvar multiplied by two to the 
power specified by power-of-two-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function takes a floating-point pvar and an integer pvar; it returns, in each proces­
sor, that processor's float-pvar component multiplied by two to that processor's 
power-of-two-pvar component power. 

EXAMPLES 

(scale-float!! (!! 3.5) (!! -1» <=> (!! 1. 75) 
(scale-float!! (!! 1. 0) (!! 2» <=> (!! 4.0) 

Version 6.1, October 1991 615 



scan II *Lisp Dictionary 
I em I I I 1lJ num n lim lllH l! Irq ; iF r IT I ill I !lIE 

scanll [Function] 

Performs a cumulative reduction operation on the supplied pvarJ either by send address or 
along a specified dimension of the currently defmed grid. 

SYNTAX 

seanll pvar jUnction &key :directlon :segment-pvar :segment-mode 
:include-self :dimenslon :Identity 

ARGUMENTS 

pvar 

jUnction 

:directlon 

:segment-pvar 

:segment-mode 

:Include-self 

:dimension 

:identity 

616 

Pvar expression. Pvar containing values to be scanned. 

Two-argument pvar function. Detennines type of scan. May be 
any of +IIJ *IIJ andllJ orllJ logandllJ logiorllJ logxorllJ maxllJ mlnllJ 

and copyllJ or a user-defined functionJ in which case a value must 
be supplied for the :identity argument. 

Either :forward or :backward. Detennines direction of scan through 
send addresses or across grid. Default is :forward. 

Boolean pvar containing the value t in each processor that starts 
a segmentJ and the value nil elsewhere. Determines segments 
within which scanning takes place. If not suppliedJ an 
unsegmented scan is performed. 

Either :start, :segment, or nil. Controls whether the :segment-pvar 

argument is evaluated in all processors or only active ones. 

Boolean. Detennines whether to include the value contained in 
each processor in the scan calculation for that processor. Default 
is t. 

Integer. IndexJ zero-basedJ of dimension of currently defined grid 
along which scanning is performed. If not suppliedJ a send­
address order scan is performed 

Scalar. Identity element forjUnction. Must be supplied if jUnction 
is not a specialized scanning function. Ignored otherwise. 

Version 6.1, October 1991 

( 



·Lisp Dictionary scan II 
1!ilmilW I Ii HI Hill!! 12m I l! !!I!I!IIUI j:i:!liI IIlC:UU!IIn! i I q 11 11111 H II ;;;; Iii! !11m mmjlmnlRiEIF j j II ;] 

RETURNED VALUE 

scan-pvar 

SIDE EFFECTS 

Temporary pvar. A copy of pvar to which the scanning operation 
specified by function has been applied 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The scanll function performs a cumulative reduction operation on the supplied pvar, 
either by send address or along one dimension of the currently defined grid. 

"Reducing" in this context refers to the Common Lisp function reduce, which accepts 
two arguments, function and sequence. The reduce function applies function, which 
must be a binary associative function, to all the elements of the sequence. For example, 
if + were the function all the elements in sequence would be summed. In the case of 
a scanll function, the sequence becomes the pvar values contained in the ordered set 
of selected processors. 

For each selected processor, the value returned to that processor is the result ofreduc­
ing the pvar values in all the processors preceding it. Its own pvar value is also, by 
default, included in the reduction. 

Thefunction argument may be one of the associative binary pvar functions +11, andll, 
orll, logandll, loglorll, logxorll, maxll, minll, or copyll, in which case an efficient 
"specialized scan" is performed. In addition, other associative binary pvar operators 
may be supplied, including user-defmed pvar functions, in which case a less efficient 
"generalized scan" is performed. 

The function *11 is a special case; if used to perform a scan on a floating-point pvar, it 
performs as efficiently as one of the specialized scan operators listed above. If applied 
to any other numeric arguments, it is treated as a generalized scan operator. 

The :directlon keyword controls the direction of the scan through send addresses or 
across the grid. The default value for this argument, the keyword :forward, causes the 
scan to be performed in order of ascending send or grid addresses. The keyword :back­
word causes the scan to be performed in descending order. 

The :segment-pvar argument provides a limited segmented scan functionality, which 
permits independent scans to be perfomed within mutually exclusive groups of proces­
sors, known as "segments." It must be a boolean pvar containing the value t in each 

Version 6.1, October 1991 617 



scan II *Lisp Dictionary 
1 Iii lmJH!1Jf l' 11 !illll! 11K ililimillim 11: [Olin I!lli1i!i II r 

processor that starts a segment, and nil elsewhere. The end of each segment is deter­
mined by the starting point of the next segment. More advanced segmented scans, in 
particular scans with non-contiguous segments, are possible through the function 
segmented-set-scanll. 

If :segment-pvar is provided, and :segment-mode is given the value :segment, then the 
segment pvar for the scanll operation is interpreted in all processors without respect to 
the currently selected set. If :segment-mode is given the value :start, the segment pvar 
is examined only in those processors that are currently active. 

The boolean keyword argument :include-self controls whether the scan result 
calculated in each processor includes the value of pvar in that processor. When 
:include-self is nil, the result of the scan II operation is undefmed in the fIrst active pro­
cessor of the fIrst segment. Also, when :Include-self is nil, the result of the scanll 

operation in the first processor of each of the other segments is the cumulative result 
of the scanll operation over all active processors in the immediately preceding 
segment. 

The :dlmenslon keyword value defaults to nil, indicating that the scan is performed in 
send address order. Alternatively, dimension may be given as an integer between 0 and 
one less than the rank of the current VP set. If dimension is an integer value, the scan 
operation is performed along that dimension. If desired, dimension may be specified 
as :X, :y, or :z; these are equivalent to dimensions 0, 1, and 2. For example, the expres­
sion 

(scan!! pvar 'copy!! :dimension :z) 

copies the value of each point in the x, y plane at z=0 into the corresponding point in 
the x, y plane at z=1, and thence to x, y at z=2, and so on to z=n, where n is the extent 
ofz. 

If a generalized scan is performed, an :identity keyword value must be supplied. If sup­
plied, the value of :identlty must be the identity value for jUnction. That is, if jUnction 
is applied to the pvar (II identity) and any legal pvar value P, the result is P. It is an error 
to specify the :Identlty keyword for specialized scans. 

EXAMPLES 

618 

If jUnction is the function +11, scan II performs a summation over the set of selected 
processors, ordered by cube address as shown below: 

(self-address! !) => 0 1 2 3 4 5 6 7 
(scan! ! (self-address! !) , +! !) ) => 0 1 3 6 10 15 21 28 

Version 6.1. October 1991 

/ 
I 

\,-



,-.-. 

*Lisp Dictionary 
" 1 ! Ii! [iii )]111 [ ! I IE !i@!!Ii rlwr n !in WI OIl.. 

scan" 
Sill '''PIij lEi:: 

In the next example there are four segments. The fIrst is 0, 1,2; second is 3; third is 
4,5,6; and fourth is 7 .... 

=> 0 1 234 5 6 7 ••• (self-address!!) 
segment-pvar => t nil nil t t nil nil t 

(scan!! (self-address!!) '+!! 
:segment-pvar segment-pvar) => 0 1 334 9 15 7 ... 

The direction of the scanning is normally from lowest to highest cube-address. If the 
:dlrection argument is :backward, then the scan is from highest to lowest cube-address. 
When scanning backward, segments are sequences of processors in descending cube­
address order. For example, below we see three segments: the first is 7, 6, 5; the next 
is 4; and the last is 3, 2, 1, O. 

(self-address! !) => 0 1 2 3 4 5 6 7 ... 
segment-pvar => nil nil nil t t nil nil t 

(scan! ! (self-address! !) , +! ! 
:segment-pvar segment-pvar 
: direction :backward) => 6 6 5 3 4 18 13 7 ... 

Following are two further examples using +11 with segmented scans. (The "*" indicates 
a pvar value that is not defmed.) 

(self-address! !) => 0 1 2 3 4 5 6 7 ... 
segment-pvar => t nil nil t t nil nil t 

(scan! ! (self-address! !) , +! ! 
:segment-pvar segment-pvar 
:include-self t) => 0 1 3 3 4 9 15 7 ... 

(scan! ! (self-address! !) , +! ! 
:segment-pvar segment-pvar 
:include-self nil) => * 0 1 3 3 4 9 15 ... 

The use of the keyword argument :Include-self with a value of nil prevents each proces­
sor from including its own value for (self-addressll) in the scan. Note that the result of 
the scan is not defmed for processor 0 in the second scan example, and that result of 
the scan in the frrst processor of each of the other segments is the cumulative sum of 
the values in the immediately preceding segment. 

Version 6.1, October 1991 619 



scan I! *Lisp Dictionary 
llllm:rr:mr: lUll I j][jlmlll1ll ;mnl 2 . 7iI I Url Ii I fill! I liiU mil! tlEel gam 211i!lili nm [tim ram! II I 2 II!: iilli:lmllIli 

620 

The next example, using the maxI! function, illustrates the double effect achieved when 
:Include-self is nil. (Again, the "*" indicates a pvar value that is not defined.) 

pvar => 1 10 5 20 3 4 5 6 ... 
segment-pvar => t nil nil t t nil nil t 

(scan! ! pvar 'max! ! 
:segment-pvar segment-pvar 
: include-self t) => 1 10 10 20 3 4 5 6 ... 

(scan! ! pvar 'max! ! 
:segment-pvar segment-pvar 
:include-self nil) => * 1 10 10 20 3 4 5 ... 

The next example demonstrates the used of copyll with segmented scans: 

(self-address! ! ) => 0 1 2 3 4 5 6 7 ... 
segment-pvar => t nil nil t t nil nil t 

(scan! ! (self-address! !) , copy! ! 
:segment-pvar segment-pvar 
: include-self t) => 0 0 0 3 4 4 4 7 

The scanl! function can also be used to l'erform scans on multi-dimensional grids. For 
example, assuming a two-dimensional grid is defmed for which the expression 

(ppp (self-address!!) :mode :grid :end ' (4 4)) 

displays the values 

o 4 8 12 
1 5 9 13 
2 6 10 14 
3 7 11 15 

then the expression 

(ppp (scan!! (self-address!!) '+!! :dimension 0) 
:mode :grid :end ' (4 4)) 

displays the values 

o 4 12 24 
1 6 15 28 
2 8 18 32 
3 10 21 36 

and the expression 

(ppp (scan!! (self-address!!) ,+!! :dimension 1) 
:mode :grid :end ' (4 4)) 

Version 6.1, October 1991 



[ 

*Lisp Dictionary scan!! 
1 I I !i!: illIJ :nn:IHilJIV\ I:;;;; :::1: rIir::5a.~"~1l!mY~~~1Wm 

displays the values 

o 4 8 12 
1 9 17 25 
3 15 27 39 
6 22 38 54 

The following example shows a segmented backwards copy" scan along dimension I 
of the grid with an :include-self value of nil. If the expression 

(ppp (self-address!!) :mode :grid :end ' (4 5» 

displays the values 

o 5 10 15 
1 6 11 16 
2 7 12 17 
3 8 13 18 
4 9 14 19 

then 

(ppp (scan!! (self-address!!) , copy! ! 
:dimension 1 
:direction :backwards 
:segment-pvar (evenp!! (self-address-grid!! (!! 1») 
:include-self nil) 

:mode :grid 
:end ' (4 4» 

displays the values 

2 7 12 17 
2 7 12 17 
4 9 14 19 
4 9 14 19 

The :segment-mode keyword corresponds directly to the smode argument of the Paris 
cm:scan-with-... operators. (See the discussion of the smode argument on pp. 35-38 of 
the Connection Machine Parallel Instruction Set (Paris) Reference Manual.) This fea­
ture allows one to divide the virtual processors into segments via a segment pvar, and 
then perform scans on those segments without worrying about whether the processors 
containing the segment bits in the segment pvar are actually in the currently selected 
set. 

The :segment-mode argument defaults to :start if a :segment-pvar argument is 
provided. This default behavior is consistent with the semantics of scanll in previous 
releases. 

Version 6.1, October 1991 621 



scan II *Lisp Dictionary 
!IilIlmlim;U:!H mlllli!' IflJ2 2flJH if i! qr llfl!IiI!ilOO!flJf! ilii. I Ii!lIiIi1i!lIIlH f f !!I!ii!i:U!: Iii 

622 

If no :segment-pvar argument is provided. :segment-rnode defaults to nil, and has no 
effect on the scanll operation. 

The difference between the :start and :segment values for the :segment-mode 

argument is illustrated by the following function: 

(defun difference-between-segment-and-start () 
(*let «source (self-address!!» dest segment) 
(declare (type (signed-pvar *current-send-addresslength*) 

source dest» 
(declare (type boolean-pvar segment» 
(*set segment (evenp!! (self-address! I»~) 
(*set dest (!! -1» 
(*when (not!! (=!! (!! 2) (mod!! (self-address!!) (!! 4»» 

(*set dest 
(scan!! source '+!! :segment-pvar segment 

:segment-mode :start» 
(ppp dest :end 4) 
(*all (*set dest (!! -1») 
(*set dest 

(scan!! source ,+!! :segment-pvar segment 
:segment-mode :segment» 

(ppp dest :end 4»» 

A sample call to this function looks like: 

(difference-between-segment-and-start) 
o 1 -1 4 
o 1 -1 3 

In the first scan, because processor 2 (counting from O) is not in the currently selected 
set, the fact that there is a t in that processor in the segment pvar is ignored, and the 
scan segment extends over processors 0, 1,2 and 3. (Processor 2, being deselected, 
does not receive a value). Processor 3 receives the sum of the values 0,1 and 3, i.e., 4. 

In the second scan, with :segment-mode :segment, even though processor 2 is not en­
abled, the fact that the segment pvar has a t value within it is recognized, and the first 
four processors are broken into two scan segments, 0,1 and 2,3. Processor 3 only 
receives the sum of the value in processor 3 now (because processor 2 is disabled). 

Finally, an example of a "generalized" scan is the following expression. A function that 
performs 2 x 2 parallel matrix multiplication is supplied as the value of jimction, and 
specifies the identity matrix as the :identity argument. 

(scan!! my-parallet-matrix 'my-matmult2x2!! 
:identity (make-array' (2 2) :initial-contents ' «1 0) (0 1»» 

Version 6.1, October 1991 



*Lisp Dictionary 
I 1. IT f 1 1. 111m!!! 1. 

NOTES 
Usage Notes: 

III 
scan II 

liliHil mm ]-! iii l: r... B.ll iT"i IW$ 

Because operations defmed by *defun are actually macros in disguise (see the entry on 
*defun), *defun operations will not work as function arguments to scanll. If possible, 
use defun to defme these operations instead, or use defun to create a function that calls 
the *defun you wish to use. 

Performance Notes: 

Providing a generalized function to scanll results in significantly slower performance 
than providing one of the standard, specialized functions. 

Scans are performed essentially in constant time. However, at high VP ratios scan per­
formance is improved because of the high number of sends performed between virtual 
processors located on the same physical chip. 

Complier Note: 

Generalized scans do not compile. 

REFERENCES 

See also these related operations: 
create-segment-setll 

segment-set-scanll 

Version 6.1, October 1991 

reduce-and-spreadll 

spread II 

623 



segment-set-{property} ""Lisp Dictionary 
lin! n!SmnlJljllllliil!liIll!lml!llllliUm . frill! m!lll wr . r mn r I ar ) Ii T I Dr f I rr 

segment-set-end-address {-bits} 
segment-set-processor-not-in-any-segment 
segment-set-start-address {-bits} [Function] 

Return infonnation about a segment set structure object. 

SYNTAX 

segment-set-end-address segment-set-object 
segment-set-end-blts segment-set-object 
segment-set-processor-not-ln-any-segment segment-set-object 
segment-set-start-address segment-set-object 
segment-set-start-bits segment-set-object 

ARGUMENTS 

segment-set-object 

RETURNED VALUE 

Segment set structure object (any single value from a segment set 
pvar created by create-segment-setll). 

Each of the above functions returns a single value, as described below: 

624 

end-address 

end-bits 

Integer. Send address of last processor in segment to which 
segment-set-object belongs. 

Boolean. The value t if this segment set object is the last in its 
segment, and the value nil if not. 

pnocessor-not-in-any-segment 

start-address 

start-bits 

Boolean. The value t if this segment set object is not a member of 
any segment in its segment set, and the value nil if not. 

Integer. Send address of fIrst processor in segment to which 
segment-set-object belongs. 

Boolean. The value t if this segment set object is the fITst in its seg­
ment, and the value nil if not. 

Version 6.1, October 1991 

( 

\" 



*Lisp Dictionary segment-set-{property} 
11W! iii: m: m 11 [U[WR:W:i:iirm :c: : i r ::i r mn Li i· q i ; 

SIDE EFFECTS 

None. 

DESCRIPTION 

These are the scalar versions of the corresponding parallel segment set accessor func­
tions. They take a segment set object, as returned by create-segment-setll, and return 
information about it, as described in the Returned Value section above. 

REFERENCES 

For information about segment set structure objects, see the dictionary entry for create­

segment-setll. 

See also these related segment set operators: 
segment-set-scanll 

segment-set-end-addressll 

segment-set-end-bitsll 
segment-set-processor-not-in-any-segmentll 

segment-set-start-addressll 

segment-set-start-bitsll 

Version 6.1, October 1991 625 



segment-set-{property)11 
Iml jj m Ii Ii! W I lIP ill Ii I 

*Lisp Dictionary 
E 

segment-set-end-addressll {-bitsll} 
seg ment-set-processor-not-i n-any-segmentll 
segment-set-start-addressll {-bitsll} [Function] 

Returns in parallel information about the supplied segment set pvar. 

SYNTAX 

segment-set-end-addressll 

segment-set-end-bltsll 

segment-set-pvar 
segment-set-pvar 

segment-set-processor-not-ln-any-segmentll segment-set-pvar 
segment-set-start-addressll segment-set-pvar 
segment-set-start-bitsll segment-set-pvar 

ARGUMENTS 

segment-set-pvar Segment set pvar, as returned by create-segment-setll. 

RETURNED VALUE 

626 

Each of these functions returns a single temporary pvar, as described below: 

end-address-pvar In each active processor, send address oflast processor in segment 
to which the processor belongs. 

end-bits-pvar In each active processor, the value t if the processor is the last in its 
segment, and the value nil if not. 

processor-not-in-any-segment-pvar 
In each active processor, contains the value t if processor is not a 
member of any segment, and the value nil otherwise. 

start-address-pvar In each active processor, send address of first processor in segment 
to which the processor belongs. 

start-bits-pvar In each active processor, the value t if the processor is the fIrst in its 
segment, and the value nil if not. 

Version 6.1, October 1991 

/~ 

/ 



*Lisp Dictionary 
l!ii]mTMII 1Ii1!!!2 :11 :m: rmm 

SIDE EFFECTS 

1ItM~.!! IIIIW§!2 I ;!! 

The returned pvar is allocated on the stack. 

DESCRIPTION 

segment-set-{property}11 
§&m$ 

These functions take a segment set pvar, as returned by create-segment-setll, and re­
turn information about it, as described in the Returned Value section above. 

REFERENCES 

For information about the components of a segment set structure pvar, see the dictio­
nary entry for create-segment-setll. 

See also these related segment set operators: 
segment-set-scan 

segment-set-end-addressll 

segment-set-end-bitsll 

segment-set-processor-not-in-any-segmentll 

segment-set-start-addressll 

segment-set-start-bitsll 

Version 6.1, October 1991 627 



segment-set-scanll 
1111 m ill!lli:t: iii H': 11!11I111!!!191 !fur m 

*Lisp Dictionary 
1 m'ml!@!.! II Ii ! lii nm.r: n)j ;:mm :. ;:., g:::~ll 

segment-set-scan! ! [Function] 

Within the segment sets defmed by the supplied segment set pvar, performs a cumulative 
reduction operation on the supplied pvar, as with the function scanll. 

SYNTAX 

segment-set-scanll pvar scan-operator segment-set-pvar 
&key :direction 

:check-for-processors-not-in-segment-set 
:activate-all-processors-In-segment-set 

ARGUMENTS 

pvar 

function 

Pvar expression. Pvar containing values to be reduced. 

Two-argument pvar function. Determines type of reduction. May 
be any of +11, and!!, orll, logandll, logiorll, logxorll, maxI!, minI!, 

and copyll. 

segment-set-pvar Segment set pvar, as returned by create-segment-setll. 

:directlon 

Determines segments within which scanning takes place. 

Either :forward or :backward. Determines direction of scan 
through send addresses or across grid. Default is :forward. 

:check-for-processors-not-in-segment-set 

Boolean. Whether to signal an error if segment-set-pvar includes 
processors that are not defined to be in any segment. 

:activate-all-processors-in-segment-set 

Boolean. Whether to temporarily bind currently selected set so 
that all processors included in a segment of segment-set-pvar are 
active for duration of scan. 

RETURNED VALUE 

scan...:.pvar 

628 

Temporary pvar. A copy of pvar to which the scanning operation 
specified by function has been applied. 

Version 6.1, October 1991 



*Lisp Dictionary segment-set-scan!! 
:a:nmmll ! H1II1mrn: ::TNI:m!ll!!:: en nut:;:· WWI:1 nrs'!iW}: I::'.' .... ; !1w.~m::;· ::m!!:~:a*~%MMt.:1t.W:L·~. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

A segment-set-scanl/ operation works the same way as the scanl/ operation, except 
that it uses segment sets. It performs a specified associative binary *Lisp function over 
the values contained in the processors of each segment. This is done as a reduction 
analogous to the Common Lisp sequence function reduce. The cumulative result ofthe 
reduction is stored in each processor within a segment. For each segment, the scan 
operation is reinitiated; results obtained within one segment are not carried over into 
the next. 

Unlike scanl/, segment-set-scanll has no :dimenslon keyword; only scans using send 
address order are presently supported. Also, segment-set-scanll has no :include-self 
keyword; in a segment-set-scanll operation each processor always receives the result 
of applying the scan operation to all processors in its segment, including itself. 

The pvar argument may be any pvar acceptable to the function specified as the function 
argument. 

The function may be one of the following associative binary parallel functions: 

+1/, andl/, orl/, maxll, minl/, copyll, logand!/, logiorll, logxorll 

The segment-set-pvar must be a segment set pvar, as returned by the function 
create-segment-setll. (See the dictionary entry of create-segment-setll for more infor­
mation.) 

The :dlrectlon keyword argument may be given as either :forward or :backward and 
defaults to :forward. A forward scan operation is performed in ascending send address 
order. Descending send address order is used if a backward direction is specified. 

The :check-for-processors-not-in-segment-set keyword takes a boolean value and 
defaults to nil. 1ft is specified, segment-set-scanl/ checks for processors which are in 
the CSS but which are not included in the segment set. If any are found, an error is 
signaled. If the default is used, the pvar value in processors which are in the CSS but 
which are not included in the segment set are simply ignored. 

The :actlvate-all-processors-in-segment-set keyword takes a boolean value and 
defaults to t. If the default is used, all processors in the segment set are activated for 
the duration of the segment-set-scanl/ operation. IfnI! is specified, the scan operation 
skips the pvar value in any processor that is not in the CSS, regardless of whether that 
processor is included in a segment of the segment set. This can fragment segments by 

Version 6.1, October 1991 629 



segment-set-scanll *Lisp Dictionary 
! iF !!I ! IT : 11 MI m 1 1 ! ! 11; f~!;mjf r 11 if jli un; ! 

allowing "holes" of deactivated processors. When a scan encounters a segment thus 
fragmented, it ignores any deactivated processors and carries the cumulative value of 
the scan into the next active processor in the segment. 

Notice that the last option enables scans that operate only in those processors both 
active when the function is entered and inside one of the segments defmed by the 
segment set. 

REFERENCES 

630 

See also these related segment set operators: 
segment-set-end-bits 

segment-set-end-address 
segment-set-start-bits 

segment-set-start-address 

segment-set-end-bltsll 
segment-set-end-addressll 

segment-set-start-bitsll 

segment-set-start-addressll 

segment-set-processor-not-in-any-segment 

segment-set-processor-not-in-any-segmentll 

Version 6.1, October 1991 

( 
"'-



*Lisp Dictionary self" 
'" ::: & ! ! g::?§)': II tm, g .. !II &to lTE : i g '@'wmli~"*m$.t@lmi!M'1W':*,~m.wl: 1 nr i ° EM miN K! jjjmw.m:!::::: :mwmW&w~ 

selfll [Function] 

Returns an address-object pvar containing the NEWS (grid) coordinates of each processor. 

SYNTAX 

self!! 

ARGUMENTS 

Takes no arguments. 

RETURNED VALUE 

address-object-pvar 
Temporary address-object pvar. In each active processor, contains 
an address object representing the NEWS (grid) coordinates of that 
processor. 

SIDE EFFECTS 

The returned value is allocated on the stack. 

DESCRIPTION 

This function returns an address object pvar that contains the grid coordinates of each 
processor. It is equivalent to: 

(grid!! (self-address-grid!! (!! 0)) 
(self-address-grid!! (!! 1)) 

(self-address-grid!! (!! n)) 

where n is (1- *number-of-dimensions*). 

Version 6.1, October 1991 631 



selfll 
1! 1 l! III il PI P [Wi rrm: rn I I!I f 11111:1 rn fill I ! mllJllllmti am 

*Lisp Dictionary 
mEIIWI!H!11111!11Ii1!ll!i1iR 

REFERENCES 

632 

See also the related functions 
enumerate II 
self-addressll 

See also the related operations 
address-nth 

address-plus 

address-plus-nth 

address-rank 

grid 

grid-relatlvell 

rankll 

self-address-gridll 

address-nthll 

address-plusll 

address-plus-nthll 

address-rankll 

grid!! 

sortll 

Version 6.1. October 1991 

,/ 



*Lisp Dictionary self-addressll 
1!! [1 ifu"m 1 f mm:!i!:.11 1 1m' 1 i :r ml: TI!1[1%!f!I!:n § IImMl~IIII!II:t 

self-address! ! [Function] 

Returns a pvar containing, in each processor, the send address of that processor. 

SYNTAX 

self-addressll 

ARGUMENTS 

Takes no arguments. 

RETURNED VALUE 

self-address-pvar Temporary integerpvar. In each active processor, contains the send 
address of that processor. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function returns a pvar that contains the send address of each selected processor. 

EXAMPLES 

An example of a call to self-addressll from top level is the expression 

(ppp (self-address!!) :end 10) 

which displays the following: 

o 1 2 3 4 5 678 9 

The self-addressll function is most commonly used in combination with processor 
selection operators to select a specific subset of processors. For example, 

Version 6.1, October 1991 633 



self-addressll *Lisp Dictionary 
1m I :mw! ! 1 11m I r 1 ~ 11 Ell1Iml! 2 f 111 ~ IT Him! mau!: Ii :r~ 

(ppp (if!! (evenp!! (self-address!!)) 
( !! 0) 
( !! 1)) : end 1 0) 

010 1 0 1 0 1 0 1 

More complex selections of processors can be specified by combining the self­

address II function with mathematical operators such as modll. 

(*defvar mod-pvar) 
(*set mod-pvar (mod!! (self-address!!) (!! 4))) 

(ppp mod-pvar :end 14) 
o 1 2 3 0 1 2 3 0 1 2 3 0 1 

(ppp (if!! «!! mod-pvar (!! 2)) 

( !! 1) 

( !! 0)) 
:end 14) 

1 1 0 0 110 011 001 1 

REFERENCES 

634 

See also these related operations: 
enumeratell 
self-address-grldll 

rankll 

sortll 

selfl! 

See also these related send and grid address translation operators: 
cube-from-grld-address 

cube-from-vp-grid-address 

grld-from-cube-address 
grld-from-vp-cube-address 

cube-from-grid-addressll 

cube-from-vp-grid-addressll 

grld-from-cube-addressll 

grid-from-vp-cube-addressll 

Version 6.1, October 1991 

"' .. 



""'-

*Lisp Dictionary self-addresS;Jrldll 
sm~_E mil !!WII ~·!WI:W·~~!! m· WI W.1W.wmSWlliliW.K"I!!LIWI·!: L!! m: I!:: I:: ::: n II iWw.;:wm1 II! ill ilL r: r : ::: I: mn: :::m I . §i!m 

self-add ress-g rid I I [Function] 

Returns a pvar containing in each processor the grid (NEWS) coordinate of that processor 
along a specified dimension. 

SYNTAX 

self-addreSS-iJridll dimension-pvar 

ARGUMENTS 

dimension-pvar Integer pvar. Dimension for which the grid (NEWS) coordinate of 
the corresponding processor is detennined. 

RETURNED VALUE 

coord--pvar 

SIDE EFFECTS 

Temporary integer pvar. In each active processor, contains the grid 
(NEWS) coordinate of that processor along the dimension specified 
by dimension-pvar. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function returns a pvar that contains the coordinate, along the dimension specified 
by dimension--pvar, of each selected processor. 

The dimension-pvar argument must be a pvar containing a non-negative integer in 
each processor. Each of these integers must be less than the rank of the current VP set. 

Version 6.1, October 1991 635 



*Lisp Dictionary 

EXAMPLES 

Assuming a two-dimensional grid, the expression 

(ppp (self-address-grid!! (!! 0» :mode :grid :end ' (4 4» 

displays the values 

012 3 
o 1 2 3 
o 1 2 3 
o 1 2 3 

and the expression 

(ppp (self-address-grid!! (!! 1» :mode :grid :end ' (4 4» 

displays the values 

o 000 
1 1 1 1 
2 2 2 2 
3 3 3 3 

The following code fragment selects the diagonal elements of the grid, 

(*when (=!! (self-address-grid!! (!! 0» 
(self-address-grid!! (!! 1») 

and the following fragment selects the tridiagonal elements of the grid: 

(*when (or!! (=!! (self-address-grid!! (!! 0» 
(self-address-grid!! (!! 1») 

(=!! (self-address-grid!! (!! 0» 
(1+!! (self-address-grid!! (!! 1»» 

(=!! (self-address-grid!! (!! 0» 
(1-!! (self-address-grid!! (!! 1»») 

NOTES 

Language Note: 

636 

A processor's grid address is distinct from its send address, even on a one-dimensional 
grid, and there is no guarantee that the two will be the same under any circumstances. 

Version 6.1, October 1991 

/" 

\. 



*Lisp Dictionary self-address-grldll 
! g ; n ; ~g u ': :i:: :limEn;;: !j 1: mil iii! Im:§! :::n "IT;;: I1!R!!:mm ! ! .::: TITI llIlllln !urn!! 7 IIIIJ[IIl 

For example, assuming a one-dimensional grid has been defined, the following results 
might be obtained: 

(ppp (self-address!!) :end 12) 

o 1 2 3 4 5 6 7 8 9 10 11 

(ppp (self-address-grid!! (!! 0)) :end 12) 

3 2 0 1 5 4 6 7 256 255 253 254 

Performance Note: 

The computation of a grid self address using self-address-grldll takes a signficant 
amount of time. Rather than calling self-address-gridll over and over again, it is pref­
erable to call it once. For example, the tridiagonal element selection example above 
may be more efficiently written as 

(*let «x-addr (self-address-grid!! (!! 0))) 
(y-addr (self-address-grid!! (!! 1)))) 

(declare (type (field-pvar *current-send-address-Iength*) 
x-addr y-addr)) 

(*when (or!! (=!! x-addr y-addr) 
(=!! x-addr (1+!! y-addr)) 
(=!! x-addr (1-!! y-addr))) 

) ) 

REFERENCES 

See also these related operations: 
enumeratell 

self-addressll 

rankll 

sortll 

selfll 

See also these related send and grid address translation operators: 
cube-from-grld-address 

cube-from-vp-grld-address 

grid-fronH:ube-address 

grid-from-vp-cube-address 

Version 6.1, October 1991 

cube-from-grid-addressll 

cube-from-vp-grid-address!1 

grld-from-cube-addressll 

grid-from-vp-cube-addressll 

637 



*set *Lisp Dictionary 
) ::lim) lfl iii!! ! !If ,t :mp 111m IE:: : ~J:I::mmm Ii iTIlIW iWii2!ii11 mlliwm: f Wi PHil Hlinnw:m 

*set [Macro] 

Copies the supplied source pvars into the supplied destination pvars. 

SYNTAX 

*set destination-pvar-l source-pvar-l 
destination-pvar-2 source-pvar-2 

destination-pvar-n source-pvar-n 

ARGUMENTS 

destination-pvar Pvar expression. Pvar into which values are copied. Must evaluate 
to a non-temporary pvar. 

source-pvar Pvar expression. Pvar from which values are copied. May 
evaluate to any pvar. 

RETURNED VALUE 

nil Evaluated for side effect only. 

SIDE EFFECTS 

The macro *set evaluates each pair of source-pvar and destination-pvar arguments in 
order. In all active processors, the value of source-pvar is copied into the pvar obtained 
by evaluating destination-pvar. 

DESCRIPTION 

638 

This macro sets the contents of destination-pvar to the contents of source-pvar in all 
processors of the currently selected set, for each pair of source-pvar and destination­
pvar arguments. Note that both source-pvar and destination-pvar are evaluated. 

It is an error to attempt to *set the value of a temporary pvar. Temporary pvars are 
returned by *Lisp functions such as II and +11. The *Lisp simulator catches this error 
and prints an error message. Neither the *Lisp interpreter nor the *Lisp compiler 
catches this error. 

Version 6.1, October 1991 

/ 



*Lisp Dictionary 
it f1irm i W IIi i llWml%li"; inn i :: ']21 iiT;:; n: .. iii 

EXAMPLES 

'J[ :w . nffiU;: I:!m!R: W:n: ii: 
*set 

111: 

The following examples show how *set may be used to copy values between pvars: 

(*defvar pvar1 (!! 2» 
(*defvar pvar2 (self-address! I»~ 
(*defvar dest) 

;;; set dest to product of pvar1 and pvar2 in each processor 
(*set dest (*!! pvar1 pvar2» 

(ppp dest :end 8) 
o 2 4 6 8 10 12 14 

;;; set dest to the value of pvar1 in each processor 
'" where the value of pvar2 is less than 4 
(*when «!! pvar2 (!! 4» 

(*set dest pvar1» 

(ppp dest :end 8) 
2 2 2 2 B 10 12 14 

As an example of how not to use *set, consider the function foo below .. 

(defun foo (x) (*set x (!! 5») 

These calls to the function foo violate the rule against setting the value of a temporary 
pvar, and are therefore in error: 

(foo (!! 3» 
(foo (cos!! (+!! a b») 

To modify array elements and structure pvar slots, use the *setf macro. See the dictio­
nary entry for *setf for more information. 

NOTES 

Important: 

The *set macro evaluates its first argument, as does the Common Lisp set operator. The 
values contained in this argument, which must be a permanent, global, or local pvar, 
are destructively modified. 

Version 6.1, October 1991 639 



·setf *Lisp Dictionary 
mil! 1m n 1 7l 111 r 11m ! m !! I f Hi 1 ill U! n 1!111I!117l1!!l1! In I !TIn !I!l ! Ii: 1111 

*setf [Function] 

Destructively modifies the pvars specified by the supplied accessor functions to contain the 
values specified by the supplied pvar expressions. 

SYNTAX 

·setf pvar-accessor-l pvar-expression-l 
pvar-accessor-2 pvar-expression-2 

pvar-accessor-n pvar-expression-n 

ARGUMENTS 

pvar-accessor *Lisp pvar accessor expression. Indicates pvar to be modified. 

pvar--expression Pvar expression. Value to be stored at the specified location. 

RETURNED VALUE "-

nil Evaluated for side effect only. 

SIDE EFFECTS 

Destructively modifies the location specified by pvar-accessor to contain the value of 
pvar-expression, for each pair of pvar-accessor and pvar-expression. 

DESCRIPTION 

640 

This is the *Lisp equivalent of the Common Lisp setf macro. This operation takes one 
or more sets of pvar-accessor and pvar-expression pairs. It evaluates the pvar-expres­
sion of each pair, and converts the pvar-accessor to an expression that modifies the 
specified location. For each pair, the location referenced by the pvar-accessor is modi­
fied to contain the value of pvar-expression. The ·setf macro must be used-and the 
Common Lisp setf must not be used-to modify locations referenced by pvar accessor 
expressions. 

Version 6.1, October 1991 



*Lisp Dictionary *setf 
11111 rll:mlll IDlf1I p;; iI1!lI1nm~2!1lliill!lmf1l1 r:mllll) :: ~~I t I g 2 l!! ill f1I Hllllr ! F ?iln: f1I Jill iII:::::I 

Each pvar-accessor must be one of: 

a symbol whose value is a pvar, in which case the *setf call behaves like a call 
to *set. 

a call to one of the operators 

arefll 

row-major-arefll 

pref 

realpartll 

load-bytell 

sideways-arefll 

row-maJor-sideways-arefll 

prefll 

imagpartll 

Idbll 

a call to a structure slot accessor defmed by *defstruct 

a call to a function for which an appropriate modifier has been defmed by the 
use of *defsetf. 

an expression of the form (the data-type pvar-accessor), where pvar-accessor 
is one of the possible forms listed above 

EXAMPLES 

The operation performed by *setf depends on the type of pvar-accessor to which it is 
applied. For example, a call to *setf such as 

(*setf (pref int-pvar 387) 15) 

changes the value of int-pvar in processor 387 to 15. 

The most common use of *setf is to change the value of pvar array elements and pvar 
structure slots. For example, 

(*setf (aref!! 3by6-array-pvar (!! 2) (!! 5» (!! 28» 

changes the value of element 2, 5 of aby6-array-pvar in each processor to 28. 

(*setf (foo-struct-slotl!! foo-struct-pvar) (!! 84» 

changes the slot1 value of the structure pvar foo-struct-pvar to 84 in each processor. 

Accessor forms can be nested, as in the expression 

(*setf (pref (aref!! array-pvar (!! 3» 29) 100) 

Version 6.1, October 1991 641 



*setf *Lisp Dictionary 
nu lW 1 11 III I 111111I!!~11 ! !!II !!ililmliill!] I. HI II! J 

which changes the value of element 3 of array-pvar in processor 29 to 100. Not all 
nestings of operators work, however. For example, the expression 

(*setf (aref (pref array-pvar 29) 3) 100) 

will not perform the same operation as the above example, because the operator aref 

is not one of the parallel accessors that *setf recognizes. 

NOTES 

Using *setf to modify the realpartll and Imagpartll parts of a complex pvar is a *Lisp 
extension; there is no corresponding functionality in Common Lisp (that is, you can't 
setf the raalpart or Imagpart of a scalar complex value). 

Usage Note: 

The *setf macro implicitly performs an alias II operation on array pvar references and 
parallel structure slot accessor forms. (See the entry for the allasll macro.) It is there­
fore unnecessary to explicitly enclose these types of arguments in calls to aliasll. For 
example, the alias II is unnecessary in the expression: 

(*setf (alias!! (aref!! array-pvar (!! 3») (!! 29» 

Performance Notes: 

642 

Applying *setf to a parallel array reference with nonconstant indices, as in 

(*setf (aref!! array-pvar (random!! (!! 6») (!! 4» 

is permitted in the CM-2 implementation of *Lisp, but is relatively inefficient com­
pared with applying *setf to references with constant indices, such as 

(*setf (aref!! array-pvar (!! 6» (!! 4» 

On the other hand, using *setf on sideways arrays with non-constant indices is an effi­
cient operation. (See the defInitions of *sideways-array and sideways-arefll for more 
information.) 

Also, applying *setf to prafll is equivalent to a call to *pset: 

(*setf (pref!! dest-pvar address-pvar) source-pvar) 
<=> 

(*pset :no-collisions source-pvar dest-pvar address-pvar) 

Calling *pset directly is preferred as being more stylistically correct, as these two forms 
are functionally equivalent and the latter is somewhat more readable. 

Version 6.1, October 1991 

( 
\, 



*Lisp Dictionary *setf 
: : iT :. ::: 1[j mlill [ill! if m::::::::nm: Ul!!IT!!:::: > Ii! w:: f ( : I:::: ::0::(:: f I: fIli f~ 

_/ 

REFERENCES 

See also these related operations: 
*defsetf *set *undefsetf 

Version 6.1, October 1991 643 



set-char-bltn 
Inp 1 1 Il!1U 

*Lisp Dictionary 
1:JIUlllmilll U! H l! m !1 ! ! ff! f n! ! ! 1 '!mm mllD::m 1 1TI:illlffill illm 1: n:ril g mil! 11 i 

set-char-bitll [Function] 

Sets the state of a single flag bit of the supplied character pvar. 

The returned pvar is allocated on the stack. 

SYNTAX 

set-char-bitll character-pvar bit-name-pvar newvalue-pvar 

ARGUMENTS 

character-pvar 

bit-name-pvar 

newvalue-pvar 

Character pvar. Pvar for which bit selected by bit-name-pvar is 
set. 

Integer pvar. Selects bit to be tested in each active processor. Must 
contain integers in the range 0 to 3 inclusive. 

Boolean pvar. State (set/cleared) to which specified bit is set. 

RETURNED VALUE 

new-char-pvar Temporary character pvar. In each active processor, contains a copy 
of the character in character-pvarwith the flag bit specified by bit­
name-pvar set to the value specified by newvalue-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

644 

This function constructs a copy of character-pvar with the bit-name-pvar bit set to 
newvalue-pvar in each processor. It returns a pvar containing characters that resemble 
those in character-pvar except that the bit-name-pvar bit is set on or off depending 
on the value of the boolean pvar, newvalue-pvar. 

Version 6.1, October 1991 

/ 



*Lisp Dictionary 
fu~~~XlIi:::::::cn::::::::U::::::::!"'W~M:$}..Xl!XlWWW::%MMMW&~ n 

set-char-bitll 
1: 

The argument character-pvar may be a character pvar, a string-char pvar, or a general 
pvar containing only character or string-char elements. 

The argument bit-name-pvar must be an integer pvar in the range (II 0) through (II 3), 

inclusive. The same correspondence holds between legal values for the bit-name-pvar 
argument to set-char-bit! I and the Common Lisp control-bit constants as detailed 
above for char-bitll. 

EXAMPLES 

NOTES 

(set-char-bit!! (!! #\x) (!! 0) t!!) => (!! #\control-x) 

(set-char-bit!! (!! #\control-x) (!! 0) t!!) 
=> (!! #\control-x) 

(set-char-bit!! (!! #\control-x) (!! 0) nil!!) 
=> (!! #\x) 

Unlike its Common Lisp analogue, the argument bit-name-pvar must be an integer 
pvar (either an unsigned-byte or a signed-byte pvar). The following correspondence 
holds between legal values for the bit-name-pvar argument and the recommended 
Common Lisp control-bit constants: 

Common Lisp *Lisp 

:control (II 0) 
: meta (II 1) 
:super (II 2) 
:hyper (II 3) 

REFERENCES 

See also the related character pvar attribute operators: 
char-bit!! 

char-font!! : 

Version 6.1, October 1991 

char-bits II 

initialize-character 

char-codell 

set-char-bitll 

645 



set-vp-set *Lisp Dictionary 
rol! TIm g]!11 lJlIH:: :if :II!!!!:) IDIm 7 1 m I 11 mIl ]Nm E m!!! ; 

set-vp-set [Function] 

Make the specified VP set the current VP set. 

SYNTAX 

set-vp-set vp-set 

ARGUMENTS 

vp-set VP set object. VP set to be made current. Must be defmed, and 
must be allocated if voidable. 

RETURNED VALUE 

vp-set The supplied vp-set argument is returned. 

SIDE EFFECTS 

Sets the value of *current-vp-set* to vp-set. 

DESCRIPTION 

This function changes the currently selected VP set to vp-set. 

The argument vp-set must be a VP set that is both defmed and, in the case of flexible 
VP sets, instantiated. 

The return value of a call to set-vp-set is vp-set. 

REFERENCES 

646 

See also the following VP set operators: 
create-vp-set 
deallocate-vp-set 
let-vp-set 

deallocate-def-vp-sets 

def-vp-set 
*wlth-vp-set 

Version 6.1, October 1991 



*Lisp Dictionary 
;:gp ;!i 1: : : I!. ~ 7i! i m iTI!1 1llllIng:m 121! 

set-vp-set-geometry 
Modifies the geometry of a VP set. 

SYNTAX 

set-vp-set-geometry vp-set geometry-obj 

ARGUMENTS 

vp-set VP set for which the geometry is altered. 

set-vp-set-geometry 
:m II lilii!!!i!!!!!! iii. 

[Function] 

geometry-obj Geometry object, as returned by create-geometry. Defines new 
geometry of vp-set. 

RETURNED VALUE 

nil Evaluated for side effect only. 

SIDE EFFECTS 

The geometry of vp-set is altered to the dimensions specified by geometry-obj. 

DESCRIPTION 

Modifies the geometry of the specified vp-set, rearranging its values into the configu­
ration specified by geometry-obj. The vp-set argument must be a defined and 
instantiated VP set. 

The parameter geometry-obj must be a geometry object created with create-geometry, 
and the number of processors it specifies must match the total number of processors 
in vp-set. 

Important: The set-vp-set-geometry operation only changes the arrangement of pro­
cessors in a VP set, not the total number of processors. The effect of supplying a 
geometry-obj that would change the total number ofVP's in the vp-set is undefmed. 

Version 6.1, October 1991 647 



set-vp-sat-geometry *Lisp Dictionary 
IF niH 1!11 I mllil il! 1 iil! If 1 re n I !InRi 1 m m! lID II 2m1 j IT 1 1 111 1 If? [mit 

EXAMPLES 

(setq geometry-I (create-geometry :dimensions ' (256 256») 
(setq geometry-2 (create-geometry :dimensions ' (65536») 

(setq vp-set-I (create-vp-set nil :geometry geometry-I» 

(set-vp-set-geometry vp-set-I geometry-2) 

REFERENCES 

648 

See also the following flexible VP set operators: 
allocate-vp-set-processors allocate-processors-for-vp-set 
deallocate-vp-set-processors deallocate-processors-for-vp-set 
with-processors-allocated-for-vp-set 

See also the following geometry definition operator: 
create-geometry 

See also the following VP set deftnition and deallocation operators: 
def-vp-set create-vp-set let-vp-set 

Version 6.1, October 1991 



*Lisp Dictionary sldeways-arefll 
I! ! llIimll1!! §11l1ll1! II 1 J un i T r: I I m~ i i 1j[i1iillini !Ull ifilGlfni 1ii! Wi I iilli lllf§liimi!li 

sideways-aref! ! [Function] 

Performs a parallel array reference on the supplied sideways array pvar. 

SYNTAX 

sideways-arefll array-pvar &rest subscript-pvars 

ARGUMENTS 

array-pvar 

subscript-pvars 

RETURNED VALUE 

value-pvar 

SIDE EFFECTS 

Array pvar from which values are referenced. Must have been 
turned sideways by *sideways-array or *slicewise. 

Integer pvars. Specify array element to be referenced in each 
processor. 

Temporary pvar. Value retrieved in each processor. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function performs a parallel array reference, similar to arefll, on an array that has 
been turned sideways by *sideways-array or *slicewise. In general, especially for large 
arrays, non-constant indexing can be very slow. Turning arrays sideways allows the 
CM-2 architecture to do non-constant indexing in constant time. However, sideways 
arrays can only be referenced by using sideways-arefll. 

One subscript-pvar argument must be given for each dimension of array-pvar. Each 
subscript-pvar must contain non-negative integers within the range of indices for that 
dimension. 

Version 6.1, October 1991 649 



sldeways-arefll *Lisp Dictionary 
jj Hit' I:: II! i! 1 ill 11 HU I! f 1 !I! ill 

EXAMPLES 

650 

These expressions declare and define an array pvar that can be turned sideways. In 
each processor, the array [ 5.0 8.0 ] is,stored 

[3.00.0 ] 

(*proclaim '(type (array-pvar single-float' (2 2» 
my-sideways-array» 

(*defvar my-sideways-array (!! #2A«5.0 8.0) (3.0 0.0»» 

The array is turned sideways, and is verified to be slicewise. 

(*sideways-array my-sideways-array) 

(sideways-array-p my-sideways-array) => T 

The following expression defmes two pVarS containing non-constant indices, and then 
uses sldeways-arefll to perform a parallel array reference on the array pvar 
my-sldeways-array. 

(*let «index-1 (mod!! (self-address!!) (!! 2»» 
(index-2 (mod!! (floor!! (self-address!!) (!! 2» 

(!! 2»» 
(ppp (sideways-aref!! my-sideways-array 

index-2 index-l) 
:end 14» 

5.0 8.0 3.0 0.0 5.0 8.0 3.0 0.0 5.0 8.0 3.0 0.0 5.0 8.0 

The above example uses modI! for clarity. It can also be written as: 

(*let «index-1 (load-byte!! (self-address!!) (!! 0) (!! 1») 
(index-2 (load-byte!! (self-address!!) (!! 1) (!! 1»» 

(ppp (sideways-aref!! my-sideways-array 
index-2 index-l) 

:end 14» 

The sldeways-arefll function may also be used with *setf to modify the values stored 
in a sideways array. For example. given the following declarations 

(*proclaim '(type (array-pvar single-float' (2» 
my-sideways-array» 

(*defvar my-sideways-array (!! #(5.0 0.0») 

Version 6.1, October 1991 

"'--



*Lisp Dictionary sldeways-aref! I 
Ii!! i:i1!!!1!: : :: 1 ::21 di : Ti!!ii:waWW,l'Iii: !!Ii: R nl:millimIDmlW~~.nj[j .' E%Wf~~~ 

this example demonstrates the use of*setf to store values into an array pvar using con­
stant indices: 

(*setf (sideways-aref!! my-sideways-array (!! 1» (!! 6.0» 

(ppp (sideways-aref!! my-sideways-array 
(mod!! (self-address!!) (!! 2») 

:end 14) 

5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 

and this example shows the use of *setf with non-constant indices. 

(*setf (sideways-aref!! my-sideways-array 
(mod!! (self-address!!) (!! 2») 

(!! 7.0» 

(ppp (sideways-aref!! my-sideways-array (!! 0» :end 14) 
7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 

(ppp (sideways-aref!! my-sideways-array (!! 1» :end 14) 
5.0 7.0 5.0 7.0 5.0 7.0 5.0 7.0 5.0 7.0 5.0 7.0 5.0 7.0 

Note that the result of the second example depends on the result of the fIrst. 

NOTES 

The sideways-arefll function works in the same way as aref!! does except that it is a 
special accessor defmed to operate on sideways arrays only. Requiring this distinction 
allows the *Lisp compiler to generate efficient code to reference sideways arrays with­
out requiring declarations that identify arrays as being sideways. 

There are some important restrictions on the size of arrays passed as arguments to 
sideways-arefll. The array-pvar argument must be an array pvar that has been turned 
sideways. Arrays that have been turned sideways must contain elements whose lengths 
are powers of2 or multiples of32. Further, the total number of bits the sideways array 
occupies in eM memory must be divisible by 32. This number can be determined either 
by (pvar-Iength array-pvar) or by multiplying the total number of elements in the array 
by the size of an individual element. 

Version 6.1, October 1991 651 



sldeways-arefll *Lisp Dictionary 
WffiiW!J:W1W1W2&'!w:w:nwt~wm~mWl1~~m@:::,@"::@-miWg2~iI!:~_W:Wi MH@@n~I@@l@' @il@r@· WWWW1i@.W:Wl§w-mmW:WWI:Wt@nWrrWIWIW;Wi/@iW2i@I@IMiMM:~m 

REFERENCES 

652 

See also the related array-referencing operations: 
areffl 

row-major-sldeways-areffl 

row-major-aref!1 

The following operations convert arrays to and from sideways orientation: 
*processorwlse *sldeways-array *slicewlse 

See the defmition of the *sideways-array operation for more infonnation about side­
ways arrays. 

Version 6.1, October 1991 



*sideways-array 

*sideways-array [*Defun] 

Toggles an array between processorwise and sideways (slicewise) orientations. 

SYNTAX 

*sldeways-array array-pvar 

ARGUMENTS 

array-pvar 

RETURNED VALUE 

t 

SIDE EFFECTS 

Array pvar to be converted. 

Evaluated for side effect only. 

Converts array-pvar to sideways orientation if it is in normal orientation. Converts 
array-pvar back to normal orientation if it is in sideways orientation. 

DESCRIPTION 

The function *sldeways-array forces array-pvar to be addressed in a sideways 
(slicewise) ordering. Calling *sideways-array on an array that is already sideways 
returns it to a processorwise ordering. 

EXAMPLES 

The following example shows how one might use slicewise arrays. Given the vector 
pvar defined by 

(*proclaim ' (type (vector-pvar single-float 20) 
my-sideways-vector» 

(*defvar my-sideways-vector 
(make-array!! 20 :element-type 'single-float-pvar» 

Version 6.1, October 1991 653 



*sldeways-array *Lisp Dictionary 
1 m !! 111m IIIHI IJI I 111 fi1 1 elm:: iii:] IV Ii mcn ili f r; I 

the following code example calls a user-defmed function to fill my-sideways-vector 

with data, uses *sldeways-array to turn. it sideways so that it can be accessed using indi­
rect addressing, calls another user-defmed function to operate on the sideways vector 
pvar, and finally uses *sldeways-array again to return. it to processorwise orientation, 
so that its values can be accessed and displayed. 

(defun main () 
(fill-my-sideways-vector-with-values) 
(*sideways-array my-sideways-vector) 
(do-computations-on-my-sideways-vector) 
(*sideways-array) 
(ppp my-sideways-vector :end 10» 

NOTES 
Implementation Note: 

Turning an array sideways (slicewise) allows the CM-2 hardware to more efficiently 
reference arrays using indirect addressing. On the CM-2, indirect addressing is array 
referencing in which a different array element is accessed in each processor. 

Usage Notes: 

There are some important restrictions on the size of arrays passed as arguments to 
*sldeways-array. These restrictions extend to the related functions *processorwise and 
*slicewise. 

The array-pvar argument must be an array pvar that contains elements whose lengths 
are powers of2 or multiples of32. Further, the total number of bits the array occupies 
in eM memory must be divisible by 32. This number can be determined either by 
(pvar-length array-pvar) or by multiplying the total number of elements in the array by 
the size of an individual element. 

The *sldeways-array function is most efficient when the array elements of array-pvar 
are each 32 bits long. 

REFERENCES 

654 

See also the functions *processorwise, sideways-aref!l, sldeways-array-p, and 
*sllcewise. 

Version 6.1. October 1991 

./ 

/ 

,/ 

\ 

"--



·Lisp Dictionary 
!1!IIIIIUilmIIII!!!II:m:: ! I 11: 1m 1 liZ: H IllmIT:I!!!! iii I[ m Ii :11::: !:Imn n: Wi! : niiif: in! 

sideways-array-p 

sideways-array-p 
IliIJJ:!mmIM,tmr;; '. imw 

[Function] 

Tests whether the supplied array is currently in sideways (slicewise) orientation. 

SYNTAX 

sldeways-array-p a"ay-pvar 

ARGUMENTS 

a"ay-pvar Array pvar. Pvar to be tested for sideways orientation. 

RETURNED VALUE 

sideways-a"ay-p Boolean. The value t if a"ay-pvar is in sideways (slicewise) orien­
tation, and the value nil if it is in nonnal orientation. 

SIDE EFFECTS 

None. 

DESCRIPTION 

Tests the specified array pvar, returning t if it is sideways (slicewise) and nil otherwise. 

Turning an array sideways, via one of the functions *sldeways-array, *slicewise, or 
*processorwise, allows special Connection Machine hardware to more efficiently ref­
erence arrays using indirect addressing. On the CM, indirect addressing is array 
referencing in which a different array element is accessed in each processor. 

REFERENCES 

For more infonnation on giving an array pvar a sideways orientation, see the dictionary 
entries for *processorwise, *sldeways-array, and *sllcewlse. 

Version 6.1, October 1991 655 



signum!! *Lisp Dictionary 
Tl mr I m112 111 m r J!j r R f m1r: i 7 I fi!" 1 gg :Ii Iij !llIiIIMF:!I111 !IIi 

signumll [Function] 

Returns a pvar indicating the sign of the supplied pvar. 

SYNTAX 

signum!! numeric-pvar 

ARGUMENTS 

numeric-pvar Numeric pvar. Pvar for which sign is determined. 

RETURNED VALUE 

signum-pvar Temporary pvar, of same type as numeric-pvar. In each active pro­
cessor, contains the signum of the value of numeric-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

656 

This function returns a pvar containing the signum of the values of the numeric-pvar 
argument. This is defmed as follows: 

For integer and floating-point values, this function returns -1,0, or 1 in each processor 
according to whether the value of numeric-pvar in that processor is negative, zero, or 
positive. For floating-point pvars, the result is a floating-point pvar of the same format 
as the numeric-pvar argument. 

For complex pvars, this function returns in each processor either the unit-length com­
plex value that has the same phase as the value of numeric-pvar, or complex zero, if 
numeric-pvar contains a complex zero. 

Version 6.1, October 1991 

\ 
"-



*Lisp Dictionary sin!!, slnhll 
m: .:!:: !: ~l! ":1 p< . ill'%;. 1:' : J u i - .: i1 mr . i1: g lim F2! ;::: I .j i ;;; _~ 

." . hIt Sin .. , sin .. [Function] 

Takes the sine and hyperbolic sine of the supplied pvar. 

SYNTAX 

sinl/ radians-pvar 
sinhll radians-pvar 

ARGUMENTS 

radians-pvar 

RETURNED VALUE 

result-pvar 

SIDE EFFECTS 

Numeric pvar. Angle, in radians, for which the sine (hyperbolic 
sine) is calculated. 

Temporary numeric pvar. In each active processor, contains the sine 
(hyperbolic sine) of radians-pvar. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The function sinll returns the sine of radians-pvar. 

The function sinh II returns the hyperbolic sine of radians-pvar. 

Version 6.1, October 1991 657 



*slicewlse 
EII!!I!I Enl IIII! r:: !ill! liiliN 

*slicewise 

; 1 
*Lisp Dictionary 

ml :1112111:mil mil I iii IIIE]I IRr lilllilm In 11112 iii! n I II HI m!!!IIlllimiillliml III iii li!rr::i!ii : : Em IIIII!! mff 

[*Defun] 

Converts a normal, processorwise array to sideways (slicewise) orientation. 

SYNTAX 

*sllcewise array-pvar 

ARGUMENTS 

array-pvar Array pvar. Normal orientation array pvar to be converted. 

RETURNED VALUE 

t Evaluated for side effect only. 

SIDE EFFECTS 

Converts array-pvar from nOlmal orientation to sideways orientation. 

DESCRIPTION 

Converts a normal, processorwise array to slicewise (sideways) orientation. An error 
is signalled if the array is not in processorwise orientation. Thming an array sideways 
allows the CM to efficiently get array values using indirect addressing (array refer­
ences in which a different array element is accessed in each processor). 

The array-pvar argument must contain elements with lengths that are powers of 2 or 
multiples of32, and the pvar-Iength of the array must be divisible by 32. The *sllcewlse 

function is most efficient when the array elements of array-pvar are each 32 bits long. 

REFERENCES 

See also the functions *processorwise, *sldeways-array, and sideways-array-p. 

658 Version 6.1, October 1991 



*Lisp Dictionary somell 
IMWtJWW&l'ml' Ii: mtlll!Wm! :IIIIiIMru::m::UJ I :~wmWk 008 WPW:! w: @It@: :wnwru::W$)@' W::WlW. :OO:Ml. WWWfm·"Ml.KMlWWW: w: W' WW::Wfmi WW"WW:: w'I'wmumm 

somell [Function] 

Tests in parallel whether the supplied pvar predicate is true for at least one set of elements 
having the same indices in the supplied sequence pvars. 

SYNTAX 

somell predicate sequence-pvar &rest sequence-pvars 

ARGUMENTS 

predicate Boolean pvar predicate. Used to test elements of sequences in the 
sequence-pvar arguments. Must take as many arguments as the 
number of sequence-pvar arguments supplied. 

sequence-pva~sequence-pvars 

RETURNED VALUE 

some-pvar 

SIDE EFFECTS 

Sequence pvars. Pvars containing, in each processor, sequences to 
be tested by predicate. 

Temporary boolean pvar. Contains the value t in each active proces­
sor in which at least one set of elements having the same indices in 
the sequences of the sequence-pvars satisfies the predicate. Con­
tains nil in all other active processors. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The some II function returns a boolean pvar indicating in each processor whether the 
supplied predicate is true for at least one set of elements with the same indices in the 
sequences of the supplied sequence-pvars. 

In each processor, the predicate is first applied to the index 0 elements of the sequences 
in the sequence-pvars, then to the index 1 elements, and so on. The nth time predicate 

Version 6.1, October 1991 659 



somel! *Lisp Dictionary 
,mnmlmiimilmlfl1mg!!!!1i lmilmiIM2!ruHmiWmmmiiWmmmi::m:2iWm!!!!1 mig le:l1Ilill:::m:rlmmi_lml!!!!i!!mi:: e::_!!!!&mil e'; lilll m?§fI11 rel!ru2!!!!::!!!!: II!!!!! !miiWiWe'~ilW!~~tliIt .; II .. ;: ~ 

is called, it is applied to the nth element of each of the sequences. If predicate returns 
t in any processor, that processor is temporarily removed from the currently selected 
set for the remainder of the operation. The operation continues until the shortest of the 
sequence-pvars is exhausted, or until no processors remain selected. 

The pvar returned by somell contains t in each processor where predicate returns the 
value t for at least one set of sequence elements. If predicate returns nil for every set 
of sequence elements in a given processor, somel! returns nil in that processor. 

EXAMPLES 

(some! ! 
(some! ! 
(some! ! 
(some! ! 

NOTES 

Complier Note: 

'equalp! ! (! ! 
'equalp! ! ( ! ! 
'equalp! ! (! ! 
'equalp! ! ( ! ! 

#(1 2 3» ( ! ! 
#(1 2 3» ( ! ! 
#(1 2 3» (! ! 
#(1 2 3» ( ! ! 

The *Lisp compiler does not compile this operation. 

REFERENCES 

#(1 
#(1 
#(1 
#(2 

See the related functions everyl!, notanyl!, and noteveryl!. 

See also the general mapping function amap!l. 

660 

2 3») <=> t! ! 
2 6) » <=> t! ! 
2 3 4») <=> t! ! 
6 9») <=> nil! ! 

Version 6.1, October 1991 

/ 



*Lisp Dictionary sortl! 
~:t.:::w.~~w.:_~l4~*~*W$£:.::;:;:.::;mm~w.J§W:illitWKWW:;1:;:~;::--= .. m;&~:l$~.@mtiii®.:¥t~mt:"l 

sortl! [Function] 

Performs a parallel sort on the values of the supplied pvar. 

SYNTAX 

sortl! pvar predicate &key :dimension :segment-pvar :key 

ARGUMENTS 

numeric-pvar 

predicate 

:dimension 

:segment-pvar 

:key 

RETURNED VALUE 

sort-pvar 

SIDE EFFECTS 

Non-complex numeric pvar. Pvar containing values to be sorted. 

Two-argument pvar predicate. Determines type of sort. Currently 
limited by implementation to the function <=!1. 

Integer or nil. Specifies dimension along which to perform 
ranking. The default, nil, specifies a send-address order ranking. 
If not nil, this argument must be an integer between 0 inclusive 
and *number-of-dimensions* exclusive. 

Segment pvar or nil. Specifies segments in which to perform sort. 
The default, nil, specifies an unsegmented sort. 

One-argument pvar function. Applied to pvar before sort is 
performed. 

Temporary pvar. In all active processors, contains the values of 
pvar sorted into the order specified by predicate. 

The returned pvar is allocated on the stack. 

Version 6.1, October 1991 661 



sortll *Lisp Dictionary 
f'~:: 1 : n~r: 1: iN i;~il!i&lW!...mmmrrmrll!iIN:i!j :W::;:::: : ·'11:1:121 Wimrml::nl Ii l! r:: :::n:::miIN'l 1 :;1 II !Ii r 1 ::2 1 

DESCRIPTION 

662 

In all active processors, sortll sorts the values of the supplied pvar. 

The keywords, :dimension and :segment-pvar permit rankings to be taken along specif­
ic grid dimensions and within segments. 

The :dlmenslon keyword specifies whether the sorting is done by send address order 
or along a specific dimension. If a dimension is specified, sorting is performed only 
along that dimension. The default value, nil, specifies a send-address order sort. 

For example, assuming a two-dimensional grid, a :dimension argument of 0 causes 
sorting to occur independently in each "row" of processors along dimension O. A 
:dlmension argument of 1 causes sorting to occur independently in each "column" of 
processors along dimension 1 (see Figure 4). 

DIM 0 DIM 0 

D~ffi D~fij 0 4 8 12 
1 5 9 13 

I .. 

I .. 

2 6 10 14 ... I .. 

3 7 11 15 - I ... 

(self-addressll) :dimension 0 , :dimension 1 

Figure 4. Effect of different :dlmension arguments, 
assuming a two-dimensional grid. 

The :segment-pvar argument specifies whether sorting is performed separately within 
segments. The default is nil; sortll is by default unsegmented. If provided, the 
:segment-pvar value must be a segment pvar. A segment pvar contains boolean values, 
t in the first processor of each segment and nil in all other processors. If a segment pvar 
is specified, then sorting is done independently within each segment. 

If both a :dlmension and a :segment pvar argument are specified, then the sort is done 
independently for each "row" along the specified dimension and independently within 
segments for each row. 

The :key argument allows selection of a key on which the sort is done. For instance, 
a *defstruct (parallel structure) slot accessor function could be provided as the :key 

argument and a pvar of the associated *defstruct type could be supplied as the pvar 

Version 6.1. October 1991 



*Lisp Dictionary sort!! 
~~~OOVAiir@§@.aww· w.mliWWmm,w, iWimWim·mWWW"'illi~.wW$mIW Wam\,i!: j 1:> i 

argument. A sortll with these arguments would sort the values of the supplied pvar
based on the value of the accessed slot in each processor.

EXAMPLES

A sample call to sort!! is

(sort!! numeric-pvar)

Assume that numerlc-pvar contains the following values, with * standing for an
unselected processor:

7 * 2 3 * 106

Assuming that all other active processors contain values greater than those shown here,
the result of the above call to sortll is a pvar containing the values

o * 1 2 * 3 67. . .

Notice that data in unselected processors remains unchanged.

A sample call to sortll with a :segment-pvar argument is

(sort!! data-pvar '<=!!
:segment-pvar (evenp!! (self-address!!)))

If data-pvar contains the values

o 2 4 2 1 7 5 3 4 7 8 2 ...

then (again assuming that all other processors contain larger values than those shown
here) the returned pvar would contain the values

o 2 2 4 1 7 3 5 4 7 2 8 ...

An example of sortll with a :dlmension argument is

(sort!! data-pvar '<=!! :dimension 1)

Assuming the two-dimensional VP set geometry defmed by

(*cold-boot :initia1-dimensions '(4 4))

if the expression

(ppp data-pvar :mode :grid)

Version 6.1, October 1991 663

sortll
I 11 j ! If 1 r !IUH ill! ff ~ :mnlUl Elil

*Lisp Dictionary
1 ! I iii 11m! ! Hum mmlli1i1 11 gllij lI! !11m

displays the values

10 1 11 13
8 15 9 6
532 7
4 12 0 14

then the expression

(ppp (sort!! (self-address!!) ,<=!! :dimension 1) :mode :grid)

will display the values

4 1 0 6
532 7
8 12 9 13

10 15 11 14

A sample call to sortll with a :key argument is

(sort!! foo '<=!! :dimension 0 :key 'foo-a!!)

If foo is an instance of a *defstruct parallel structure with a slot named foo-all, then this
expression sorts foo based on the value of the a slot in each processor. Also, because
the :dlmenslon argument is 0, the sort takes place independently for each coordinate
along dimension o.

NOTES

The sort performed by sortll is not guaranteed to be stable. If numeric-pvar contains
the same value in two or more active processors, the order in which these values are
returned in rank-pvar is arbitrary and indeterminate.

Complier Note:

The *Lisp compiler does not compile sortll if a :segment-pvar argument is supplied.

REFERENCES

664

See also the related functions
enumeratell

self-addressll
rankll

self-address-grldll

selfH

Version 6.1, October 1991

r'
I

\,

*Lisp Dictionary spread II
: 1 '7 ::: r w:m:lltmwm:mw W'~~~flW,@))!f®'~W,W.4i",m,"'~llWlwm i ! i: 11 ! . ~@:iW

spreadU [Function]

Spreads values of a pvar from one coordinate of a grid dimension to all coordinates along
that dimension.

SYNTAX

spreadll pvar dimension coordinate

ARGUMENTS

pvar

dimension

coordinate

RETURNED VALUE

spread-pvar

SIDE EFFECTS

Pvar expression. Pvar containing values to be spread.

Integer or nil. Index, zero-based, of dimension along which values
are spread. If nil, a send-address order spread is performed, and
coordinate specifies a send address.

Integer. Coordinate along dimension from which to spread values.

Temporarypvar, of same type as pvar. Contains the result of spread­
ing the values of pvar from the specified coordinate of the grid
dimension specified by dimension to all processors along the length
of the dimension.

The returned pvar is allocated on the stack.

DESCRIPTION

This function spreads data across the Connection Machine processors along dimension
dimension. The data is taken from the processor at the specified coordinate and spread
to all active processors along the specified dimension. (See Figure 5.)

Version 6.1, October 1991 665

. ~: ; ;'f

,

spread II *Lisp Dictionary
1] j[j] ! f lUmllmEll iIInw m IW::! i 1 lQ :mUl!l11i1i!if @'!!!I I 11 ; g; '" I!§ ! II wm: IT . .]. ! r ;!WW.:~

0 4 8 12 ..
1 5 9 13
2 6 10 14 - '-
3 7 11 15 - ...

(self-addressll) dimension = 0 dimension = 1

Figure 5. Effect of different dimension arguments,
assuming a two-dimensional grid.

It is an error if coordinate specifies any processors that are not in the currently selected
set.

EXAMPLES

Assuming a two-dimensional grid, and a pvar, numerlc-pvar, containing the values

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

then the expression

(spread!! numeric-pvar 0 2)

returns a pvar containing the values

3 3 3 3 3
8 8 8 8 8

13 13 13 13 13
18 18 18 18 18
23 23 23 23 23

666 Version 6.1, October 1991

/

*Lisp Dictionary spreadll
f n m H nm:::mwmmm:::n! In: r m: [l1lrnllltW TP::! m! Ell :! IIII11Fl

NOTES
Performance Note:

The expression

(!! (pref x 10»

can be used to spread data to all processors faster than the equivalent, but less efficient
expression

(spread!! x nil 10)

which performs a send-address spread of data across all active processors.

REFERENCES

See also these related operations:
reduc&-and-spreadll

Version 6.1, October 1991

scanll segment-set-scanll

667

sqrt!l *Lisp Dictionary
m!!1!!l!I1:mill!!!II:W]!WlIum:IJ!l!I1nWmWUHmlrrmli m!l!l1!1lMr :WI IMtllMMIMtllMMIMtllIMtllMM~~X:~!l!I1t:i!l!l1i EiII!!Wimli' W!.III!l!I1:!l!I1::!wnWWmmlllll!l!l1i !l!I17i11!!WW'limIim~~,n ~ i Mm:

sqrt!! [Function]

Takes the square root of the supplied numeric pvar

SYNTAX

sqrtll numeric-pvar

ARGUMENTS

numeric-pvar

RETURNED VALUE

sqrt-pvar

SIDE EFFECTS

Numeric pvar. Pvar for which the square root is calculated.

Numeric pvar. In each active processor, contains the non-negative
square root of the corresponding value ofnumeric-pvar.

The returned pvar is allocated on the stack.

DESCRIPTION

668

This returns the non-negative square root of its argument, if the argument is not com­
plex. If the argument is complex, the principal square root is returned. Unlike
Common Lisp, it is an error to provide a negative non-complex value to sqrt!1.

The non-negative square root of numeric-pvar is returned.

Version 6.1, October 1991

(

*Lisp Dictionary. sqrtll
~w I:tml;::::: ·j· II gqlm;: rmilll:mmr umcmwl:1fI1Iiii:I::I::'llimli:m;:;;::!!! I m TIll l12m!lm::r :I:muml::::m 1!!I!!!I:J!!il18I!1!!!!f

NOTES

The function sqrtll will signal an error if its arguments are of one pvar type, yet contain
values that would produce a result of another pvar type. For example, it is an error if
numeric-pvar is either an integer or float pvar containing values less than zero in any
processor. (This would produce a complex result in that processor.)

The reason sqrtll is defmed in this way is so that the pvar it returns can be guaranteed
to be of a specific pvar type. If sqrtll were allowed to return different data types in
different processors, then it would have to return a general pvar as its result Not only
is this inefficient, it would also prevent sqrtll expressions from compiling, because the
*Lisp compiler does not compile expressions involving general pvars.

The general rule is that the sqrtll function will not return a complex pvar as its result
unless the supplied numeric-pvar argument is already a complex pvar or has been
coerced to a complex pvar by use of complexll or coercell:

(sqrt!! (coerce!! (!! -1) , (pvar (complex single-float»»
<=>

(sqrt!! (complex!! (!! -1»)

<=>
(!! #c(O.O 1.0»

Version 6.1, October 1991 669

standard-char-pll *Lisp Dictionary
II ill iliURI n !:1M IrmiI pm : II ::.am :IT mflHIl 11m : g §f m m~1Iil mPH 1m ill lliF 1 ; mil: III I: :!I2!1IIE:!! ilUm!

standard-char-p II [Function]

Performs a parallel test for standard characters on the supplied pvar.

SYNTAX

standard-char-pll character-pvar

ARGUMENTS

character-pvar Character pvar. Tested in parallel for standard characters.

RETURNED VALUE

standand-charp-pvar
Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of character-pvar is an
character of type standard-char. Contains nil in all other processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

670

This function returns t in those processors where character-pvar contains an element
of type standard-char; it returns nil elsewhere. The Common Lisp definition of
standard-char is used, i.e., a standard character is a character with zero bits and font
attributes, that is defmed as part of the Common Lisp standard character set.

Version 6.1, October 1991

""Lisp Dictionary strlng-char-pll
~~~ .; r mIT].r n .!litmnnm~w;m.m.lli. ] n It imam: WlIW ilL: Em: m ]f1l!! ,mIlE!!:;;!: HiI::!!:: ::!!!!!1!!!i!ii! i! j i! I! Iii 11m: IE! 

string-char-pll [Function] 

Performs a parallel test for string characters on the supplied pvar. 

SYNTAX 

string-char-p!l character-pvar 

ARGUMENTS 

character-pvar Character pvar. Tested in parallel for string characters. 

RETURNED VALUE 

standand-cha~-pvar 

SIDE EFFECTS 

Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of character-pvar is an 
character with bits and font attributes equal to zero. Contains nil in 
all other processors. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function returns t in those processors where character-pvar contains string-char 
data and nil in processors where character-pvar contains character data. Characters of 
type string-char have zero bits and font attributes. 

REFERENCES 

See also these related pvar data type predicates: 
booleanp!l 

floatpll 

numberpll 

Version 6.1, October 1991 

characterpll 

front-end-p!l 

structurepll 

complexpll 

Integerpll 

typepll 

671 



structurepll *Lisp Dictionary 
lnimeiImmm ! IU!inllml mrs I mu f r f r 1 Big m! r ! Q g f2 I I r ! IT 1 m I !liillf 

structurepll [Function] 

Tests whether the supplied pyar is a structure pyar. 

SYNTAX 

structurepll pvar 

ARGUMENTS 

pvar 

RETURNED VALUE 

boolean-pvar 

SIDE EFFECTS 

Pvar expression. Pvar to be tested. 

A temporary pvar equal to til if pvar is a structure pvar~ and nilll 

otherwise. 

The returned pyar is allocated on the stack. 

DESCRIPTION 

This function returns a boolean pyar with the value til if pvar is a structure pyar and 
nllll if not. 

REFERENCES 

See also these related pyar data type predicates: 

672 

booleanpll 

floatpll 

numberpll 

characterpll 

front-end-pll 

string-char-pll 

complexpll 

Integerpll 

typepll 

Version 6.1, October 1991 



*Lisp Dictionary 
WE' If 1 r f m ! I 1 :: mn 

subseq!l 

1m liP J ; I 
subseqll 

T: 1m 

[Function] 

Extracts a subsequence in parallel from the supplied sequence pvar. 

SYNTAX 

subseqll sequence-pvar start &optional end 

ARGUMENTS 

sequence-pvar 

start 

end 

RETURNED VALUE 

subseq-pvar 

SIDE EFFECTS 

Sequence pvar. Pvar from which subsequence is extracted. 

Integer pvar. Index, zero-based, of start of sequence to extract. 
Must contain identical values in all active processors. 

Integer pvar. Index, zero-based, of end of sequence to extract. 
Must contain identical values in all active processors. 

Sequence pvar. In each active processor, contains the subsequence 
of sequence-pvar specified by start and end. 

The returned value is allocated on the stack. 

DESCRIPTION 

This function returns, in each processor, a sequence pvar of the same type as 
sequence-pvar and of length (-II end start). The resulting sequence pvar contains a 
copy of the values of the elements found in sequence-pvar. 

The argument sequence-pvar must be a sequence pvar. The arguments start and end 
must be non-negative integer pvars within the range of indices for sequence-pvar. 
Unlike most of the other sequence pvar operations, both start and end must contain 
uniform values in all active processors. Thus, the value of (-II end start) must be the 
same across all active processors. 

Version 6.1, October 1991 673 



subseqll 
1m!!! I!!!! 111!!!!IIMllml1J1!I!!!1! lUlU w nuw 1m 1m 1 mMnK I !!! 

EXAMPLES 

(setq abed (typed-vector!! ' (pvar character) 

(!! f\A) (!! f\B) (!! f\C) (!! f\D))) 

(setq be (subseq!! abed (!! 1) (!! 2)) 

(ppp (aref!! be (!! 0) (!! 1)) :end 3) 

=>f\B f\C f\B f\C f\B f\C 

NOTES 
Complier Note: 

The *Lisp compiler does not compile this operation. 

REFERENCES 

See also these related *Lisp sequence operators: 
copy-seqll *fiU 
*nreverse reducell 

lengthll 
reversel! 

See also the generalized array mapping functions amapll and *map. 

*Lisp Dictionary 
m 

674 Version 6.1. October 1991 



*Lisp Dictionary substitutell, substitute-ifll, substitute-if-notll 
mi: i:inn: lH " In::W1l":m: m m;: :n;p; 11M: " :'W"'Tlill:Waat%li1H'! in 'iJan' If ::::m@:t~ 

su bstitute II, 
su bstitute-ifll, substitute-if-notll, [Function] 

Performs a parallel substitution operation on the supplied sequence pvar, replacing speci­
fied old items with new items. 

SYNTAX 

substitutell new-item old-item sequence-pvar 
&key :test :test-not 

:start :end :count :from-end :key 
substitute-Ifll new-item test sequence-pvar 

&key :start :end :count :from-end :key 
substitute-if-notll new-item test sequence-pvar 

&key :start :end :count :from-end :key 

ARGUMENTS 

new-item Pvar expression, of same data type as sequence-pvar. Item to 
substitute for old-item in each processor. 

old-item Pvar expression, of same data type as sequence-pvar. Item to be 
replaced in each processor. 

test One-argument pvar predicate. Test used in comparisons. Indicates 
a match by returning a non-nil result. Defaults to eqill. 

sequence-pvar Sequence pvar. Pvar containing sequences to be mpdified. 

:test Two-argument pvar predicate. Test used in comparisons. Indicates 
a match by returning a non-nil result. Defaults to eqlll. 

:test-not Two-argument pvar predicate. Test used in comparisons. Indicates 
a match by returning a nil result. 

:start Integer pvar. Index of sequence element at which substitution 
starts in each processor. If not specified, search begins with first 
element. Zero-based. 

:end Integer pvar. Index of sequence element at which substitution ends 
in each processor. If not specified, search continues to end of 
sequence. Zero-based. 

Version 6.1, October 1991 675 



substltutell, substltute-lfll, substltute-lf-notll *Lisp Dictionary 
If 11 f· i $loom if 1m IIII!I:§ rn m; lipmI1~:n::WX$l j 11 :: If r ; 11 

:count 

:frorn-end 

: key 

Integer pvar. Maximum number of replacements to perform in 
each processor. Defaults to (length II sequence-pvar) 

Boolean. Whether to begin substitution from end of sequence in 
each processor. Defaults to nil. 

One-argument pvar accessor function. Applied to sequence-pvar 
before search is performed. 

RETURNED VALUE 

substitute-pvar Temporary sequence pvar. In each active processor, contains a copy 
of the sequence from sequence-pvar with each element matching 
old-item replaced by new-item. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

676 

These functions are the parallel equivalent of the Common Lisp substitute functions. 

In each processor, the substitute II function searches sequence-pvar for elements that 
match old-item. The function returns a copy of sequence-pvar with each matching 
sequence element modified to contain the value specified by new-item. Elements of 
sequence-pvar are tested against old-item with the eqlll operator unless another com­
parison operator is supplied as either of the :test or :test-not arguments. The keywords 
:test and :test-not may not be used together. A lambda form that takes two pvar argu­
ments and returns a boolean pvar result may be supplied as either the :test and :test-not 

argument. 

In each processor, the function substitute-ifll searches sequence-pvar for elements sat­
isfying test. The function retunis a copy of sequence-pvar with each matching 
sequence element modified to contain the value specified by new-item. A lambda form 
that takes a single pvar argument and returns a boolean pvar result may be supplied as 
the test argument. Similarly, the function substltute-if-notll searches sequence-pvar 
for elements failing test. 

Arguments to the keywords :start and :end defme a subsequence to be operated on in 
each processor. 

Version 6.1. October 1991 



*Lisp Dictionary substitute!!, substitute-ifl!, substitute-if-not!! 
imnmt.%k~~'WWillf~~~~~~: ''] 1:1 1. :,] 1. 

The :key keyword accepts a user-defmed function used to extract a search key from 
sequence-pvar. This key function must take one argument: an element of sequence­
pvar. 

The keyword :from-end takes a boolean pvar that specifies from which end of 
sequence-pvar in each processor the operation will take place. 

The :count keyword argument must be a positive integer pvar with values less than or 
equal to (length!! sequence-pvar). In each processor at most count elements are substi­
tuted. 

NOTES 
Compiler Note: 

The *Lisp compiler does not compile this operation. 

REFERENCES 

This function is one of a group of similar sequence operators, listed below: 
count!! count-if!! count-if-not!! 

findll find-ifll find-if-notll 

nsubstitute!! nsubstitute-ifll nsubstitute-if-notl! 

position I I position-ifll position-if-notll 

substitute! I substitute-ifll substitute-if-notll 

See also the generalized array mapping functions amapll and *map. 

Version 6.1, October 1991 677 



*sum *Lisp Dictionary 
Inn!! ViFTlUIi 1!ViHl! !ll!J !nU!1!! !iIE 1m 2W !!'lEnni!!! fi1l1 HVim Vi I Vi r 

*sum [*Defun] 

Returns the numeric sum of the values of a pvar. 

SYNTAX 

*sum numeric-pvar 

ARGUMENTS 

numeric-pvar Numeric pvar. Pvar for which numeric sum is detennmed. 

RETURNED VALUE 

sum-of-values Scalar value. Numeric sum of the values of numeric-pvar. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This returns a Lisp value that is the sum of the value of numeric-pvar in every selected 
processor. If there are no selected processors, *sum returns O. 

REFERENCES 

678 

See also the related global operators: 
*and 
*Ioglor 
*mln 

*Integer-length 
*Iogxor 
*or 

See also the related logical operators: 
and II notll orll 

*Iogand 
*max 
*xor 

xorll 

Version 6.1, October 1991 



*Lisp Dictionary 
iK i i:: 1: it::::!!!i2f iT 12: L@iIl HIP iIIilliei I n ?!II r I TI 

taken-asll 
; II 

taken-asll [Function] 

Returns a copy of the supplied pvar interpreted as a pvar of the specified type. 

SYNTAX 

taken-as II pvar pvar-type &optiona\ offset 

ARGUMENTS 

pvar 

pvar-type 

offset 

RETURNED VALUE 

taken-as-pvar 

SIDE EFFECTS 

Pvar expression. Pvar to be reinterpreted. 

*Lisp type specifier. Pvar type into which pvar is reinterpreted. 

Integer. Offset in bits at which reinterpretation of pvar begins. 
Default is 0, indicating no offset. 

Temporary pvar of type specified by pvar-type. In each active pro­
cessor, contains a copy of the value of pvar beginning at offset, 
considered as a value of type pvar-type. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function is unlike any in Common Lisp. It is somewhat similar to the C language 
cast function in that it allows a pvar of one type to be used as though it were of another 
type. The function taken-asll returns a temporary pvar containing the original bits of 
pvar interpreted as values in the data type pvar-type. No coercion or change in repre­
sentation occurs. For example, 

(taken-as!! (!! 1.0) '(pvar (unsigned-byte 32» 
=> (!! 1065353216) 

Version 6.1, October 1991 679 



taken-asll 
lII~mi mUI:1UlII1 nUl!!! 'I [in 1lilllliU!m In Hilmnl f If 

* Lisp Dictionary 
2 2 § mm f 

EXAMPLES 

A sample call to taken-asll is 

(taken-as!! (!! #C(1.0 1.0» '(pvar (array single-float 
(2) ) ) ) 

This demonstrates that a complex pvar can be taken as a one-dimensional array pvar 
containing 2 single-float numbers in each processor. 

(*proclaim '(type (pvar (unsigned-byte 8» unsigned8» 
(*defvar unsigned8) 
(fun-that-requires-unsigned-byte-8 unsigned8) 
(fun-that-requires-bit-vector-8 

(taken-as!! unsigned8 '(pvar (bit-vector 8»» 
(fun-that-requires-unsigned-byte-8 unsigned8) 

Here, unsigned8 is an unsigned-byte pvar of length 8. The call to taken-asll allows 
unsigned8 to be passed to a function that expects a bit-vector pvar of length 8. 

The offiet argument can be useful for selecting subportions ofpvars. Consider the pvar 
unslgned16 in this example: 

(*proclaim '(type (pvar (unsigned-byte 16» unsigned16» 
(*defvar unsigned16) 
(need-8 (taken-as!! unsigned16 '(pvar (unsigned-byte 8» 4» 

The pvar unslgned16 is a 16-bit pvar. The function need-8 requires an 8-bit pvar. Using 
taken-asll on unslgned16 with an offiet argument of 4 extracts the 4th through the 11th 
bits of unslgned16 in each processor to be treated as an (unsigned-byte 8) pvar. 

NOTES 

It is an error to specify a pvar-type and/or offset requiring more bits than are contained 
in pvar. It is legal, however, to specify a pvar-type that requires only a subset of the 
bits of pvar. This function relies on the internal representation of pvars in the Connec­
tion Machine system and therefore cannot work in the *Lisp simulator. 

REFERENCES 

See also the related *Lisp declaration operators: *Iocally *proclalm unproclalm 

See also the related type coercion function coercell. 

680 Version 6.1. October 1991 



*Lisp Dictionary tan!!. tanh!! 
II: liI ~ 1 ~ : I 1M I ]] ! mil! , ;; ~m : ;;ggmEi! mn ] 111 1 R m pm MI!lim 

tanll, tanhll [Function] 

Take the tangent and hyperbolic tangent of the supplied pvar. 

SYNTAX 

tan!! radians-pvar 
tanhll radians-pvar 

ARGUMENTS 

radians-pvar 

RETURNED VALUE 

result-pvar 

SIDE EFFECTS 

Numeric pvar. Angle, in radians, for which the tangent 
(hyperbolic tangent) is calculated. 

Temporary numeric pvar. In each active processor, contains the 
tangent (hyperbolic tangent) of radians-pvar. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The function tanll takes the tangent of its argument in each processor. 
The function tanh!! takes the hyperbolic tangent of its argument in each processor. 

Version 6.1, October 1991 681 



*trace 
r 1 Pl r rrPlmrrm ! T ImTlllmlftE II 

*trace 

Enables tracing for the specified user-defined *Lisp functions. 

SYNTAX 

*trace &rest *defun-function-names 

ARGUMENTS 

*defun-function-names 

r 2 11 
*Lisp Dictionary 

7!1!IPTIl" III 

[Macro] 

Symbols. Names of user-defmed *Lisp functions to be traced. 

RETURNED VALUE 

traced-functions List of symbols. Names of functions traced. 

SIDE EFFECTS 

Enables tracing on the named functions. Has no effect on functions that are already 
traced. 

DESCRIPTION 

682 

Enables tracing for the named parallel functions, which must have been defmed using 
*defun. 

. Version 6.1, October 1991 



·Lisp Dictionary 
n 1 l@W"",J: 1£ 

*trace 
II Hill ~. !!:i.Till.;"" y :n ~_!!:u ] : Wi" iiJ!!1J!i 

EXAMPLES 

Invoked at top level, (*trace foo) causes a message to be printed whenever the function 
foo is either called or exited. For example, 

(*defun self-random!! () 

(random!! (1+!! (self-address!!)))) 

(*trace self-random!!) => (*DEFUN-SELF-RANDOM! !) 

(self-random! ! ) => 
1 Enter *DEFUN-SELF-RANDOM!! 

1 Exit *DEFUN-SELF-RANDOM!! #<Structure PVAR A032B6> 

#<Structure PVAR A03276> 

A call (*untrace self-randomll) turns off this tracing mechanism. 

(*untrace self-random!!) => (*DEFUN-SELF-RANDOM! !) 

REFERENCES 

The macros *trace and *untrace are the parallel equivalents of the Common Lisp trace 

and untrace functions, defmed in Common Lisp: The Language. 

See also the following related operations: 
*apply 

un*defun 

Version 6.1, October 1991 

*defun *funcall 

683 



*Lisp Dictionary trace-stack 
*m~:OOI@lmmmm~~mm;M:OOl!@Hf_i.~~:@mMIfOO!mlf~~@,@fMJ'W!mmE:~LW1M:~IWgM:mmmm~~~mmmm;~mm@Jlmm~2twm~jJI 

trace-stack [Function] 

Enables and disables tracing of CM stack usage by *Lisp programs. 

SYNTAX 

trace-stack &optional trace-action verbose 

ARGUMENTS 

trace-action 

verbose 

Type of trace to perfonn. May be anyone of :trace, :break, :error, 

:warn, :call, :status, :Ievel, :max, :break-at-limit, :break-above­

limit, :init, :reset, :newmax, :off, or nil. Default value is :trace. 

Boolean. Determines whether trace-stack displays status 
messages. Default value is t. 

RETURNED VALUE 

current-stack-level Integer. Current level of the CM stack memory. 

maximum-stack-limit Integer. Maximum limit on stack usage. This is the current 
value of the *Lisp variable *maximum-stack-Ievel*. 

SIDE EFFECTS 

When tracing is enabled, this operator places an "advice" function around the internal 
Paris operator that allocates stack memory. 

DESCRIPTION 

684 

The trace-stack operator is a tool that is used to trace CM stack usage of a *Lisp 
program. This typically involves a two step process: 

• First, a stack trace is made of the program in which the maximum CM stack 
usage of the program is stored in the *Lisp variable *maximum-stack-Ievel*. 

Version 6.1, October 1991 



• Second, a trace is made of the execution of the program using the limit found by 
the first trace, such that whenever the program attempts to allocate stack 
memory at or beyond the traced limit, a break, error, or warning is signalled. 

The trace-stack operator is used to select both of these tracing steps and to control a 
number of other trace-related features. The type of trace performed is determined by 
the trace-action argument, which defaults to :trace. The legal tracing options are: 

:trace Turns on stack tracing, and sets *maximum-stack-Ievel* to the current CM 
stack level. Every time the current stack usage meets or exceeds the value 
of *maximum-stack-Ievel*, the variable is updated to the new stack level. 

:break Switches to break tracing. A continuable error is signalled whenever 
stack usage meets or exceeds the limit set by *maximum-stack-Ievel*. 

:error Switches to error tracing. Same as :break, but a fatal error is signalled. 

:wam Switches to warning tracing. Same as :break, but displays a warning. 

You can also supply a trace-action argument of :call. This selects "function call" 
tracing, in which every time new CM memory is allocated, a funcall is made to the 
user-defmed function specified by the *Lisp variable *maximum-stack-function*. This 
function is passed two arguments: the current stack level and the value of*maximum­
stack-Ievel*. This feature exists so that users can write their own stack-tracing 
operations. 

The following operations are conveniences for the most common types of tracing: 

:init Call (*warm-boot), then turn on :trace stack tracing. 

: reset Call (*warm-boot), then switch to :break stack tracing. 

:newmax Set *maximum-stack-Ievel* to the current stack level. 

A number of trace-action options simply display status information. These options 
are: 

:status Display the current stack level and the *maximum-stack-Ievel*. 

:Ievel Displays just the current stack level. 

:max Displays just the value of *maximum-stack-level*. 

Version 6.1, October 1991 685 



trace-stack *Lisp Dictionary 
mE; n i 1Jl! !! r g U! ! im I J I ii 1 1 r 

Two of the trace-actionoptions control the point at which a break/error is signalled: 

:break-at-lImlt Signal when stack level reaches the current limit (the default). 

:break-above-llmlt Signal only when stack level exceeds the current limit. 

Finally, you can disable all stack tracing options by using either of the following 
options: 

:off, nil Turn off stack tracing. (These two options are equivalent.) 

EXAMPLES 

686 

The trace-stack function is designed to help you track the eM stack usage of your 
*Lisp programs. You'll find this function useful both when you warit to determine the 
maximum amount of stack space that your program uses, and when you want to deter­
mine whether running your program with specific arguments causes it to exceed the 
"normal" amount of stack usage. 

As a specific example, let's take the following simple function: 

(defun test (a b c) 
(*!! a (+!! b c») 

We can run a simple stack trace of this function like this: 

(*warm-boot) ;; To clean out the stack 

(trace-stack) 
Stack tracing is now on in :TRACE mode. 
Current stack level is 1536. 
Maximum stack limit is 1536. 
1536 
1536 

(test 9 3 2) 
#<FIELD-Pvar 9-7 *DEFAULT-VP-SET* (128 64» 

The maximum stack limit is now set to the amount of stack memory we used by calling 
the test function. 

Version 6.1, October 1991 



*Lisp Dictionary 
Iml 1iIal!llEilfililmllllli I 11l1l! n! jj2IIffilii WI: ill Hili ml12 Ii"; I ;; 

Now let's switch to the :break mode, and clear the stack again: 

(trace-stack :break) 
Stack tracing is now on in :BREAK mode. 
Current stack level is 1554. 
Maximum stack limit is 1554. 
1554 
1554 

(*warm-boot) ;; Clean out stack again 

We can call trace-stack to see what the current settings are: 

(trace-stack :status) 
Stack tracing is now on in :BREAK mode. 
Current stack level is 1536. 
Maximum stack limit is 1554. 
1536 
1554 

Now lel's repeat the call to the test function: 

(test 9 3 2) 

trace-stack 
1~llfIIg rn: m : T :~ 

»Error: Stack has reached/exceeded traced maximum of 1554. 
Stack is now at 1554. 

*LISP-I::MAX-STACK-LEVEL-CHECK: 
Original code: (LUCID-COMMON-LISP:NAMED-LAMBDA ... ) 
:C 0: Continue until next stack increase. 
:A 1: Abort to Lisp Top Level 
-> 

Since we're tracing in :break mode, the call to test signalled a continuable error. The 
error message shows the traced stack limit, the amount of stack memory currently in 
use, and offers you the option of resuming execution until the next increase in stack 
memory. To continue, simply type: 

-> :c Continue until next stack increase. 
#<FIELD-Pvar 9-8 *DEFAULT-VP-SET* (128 64» 

The pattern of tracing shown above is common enough that trace-stackincludes the 
two shorthand options :lnlt and :reset to reduce the number of function calls involved. 

Version 6.1, October 1991 687 



trace-stack *Lisp Dictionary 
!HI[ flTT [ill In 111 t If III 1 1 In IT [1;1 J:I! I m Imllmji11 r:J mill I 

688 

Calling trace-stack with the :init option calls *warrn-boot and selects :trace mode: 

(trace-stack :init) 
Stack tracing is now on in :TRACE mode. 
Current stack level is 1536. 
Maximum stack limit is 1536. 
1536 
1536 

And once we've run the function that we want to trace, 

(test 9 3 2) 
#<FIELD-Pvar 9-7 *DEFAULT-VP-SET* (128 64» 

we can call trace-stack with the :reset option to call *warm-boot again and then select 
:break tracing. 

(trace-stack :reset) 
Stack tracing is now on in :BREAK mode. 
Current stack level is 1536. 
Maximum stack limit is 1554. 
1536 
1554 

(test 9 3 2) 
»Error: Stack has reached/exceeded traced maximum of 1554. 

Stack is now at 1554. 
*LISP-I::MAX-STACK-LEVEL-CHECK: 
Original code: (LUCID-COMMON-LISP:NAMED-LAMBDA ... ) 
:C 0: Continue until next stack increase. 
:A 1: Abort tb Lisp Top Level 
-> :a 
Abort to Lisp Top Level 

The output of the :error tracing mode is much the same as that of the :break tracing. The 
:wam mode's output, though, is a little different: 

(trace-stack :warn) 
Stack tracing is now on in :WARN mode. 
Current stack level is 1554. 
Maximum stack limit is 1554. 
1554 
1554 

Version 6.1, October 1991 



*Lisp Dictionary 
IWUJ iiii In ::. a :1 

trace-stack 
ill f :r: g i. 11: ] Hl IJI 111m J) ij "I HI!! 1ij 

(!! 9) 

'" Warning: 
'" Stack has reached/exceeded traced maximum of 1554. 
#<FIELD-Pvar 11-4 *DEFAULT-VP-SET* (128 64) 

If you want, you can use the :newmax option at any time to make the current stack level 
be the new maximum stack limit for future tracing: 

(trace-stack :newrnax) 
Stack tracing is now on in :WARN mode. 
Current stack level is 1558. 
Maximum stack limit is 1558. 
1558 
1558 

If you prefer a warning only when stack usage exceeds the current limit, you can use 
the :break-above-limit option to switch to this style of tracing. 

(trace-stack :break-above-limit) 
Tracing will now signal ABOVE stack limit. 
1558 
1558 

( !! 1) 

, , , Warning: 
; ; ; Stack has reached/exceeded traced maximum of 1558. 

And you can use the :break-at-limit option to switch back: 

(trace-stack :break-at-limit) 
Tracing will now signal AT stack limit. 
1559 
1558 

And when you're finished tracing, you'll want to turn the trace facility :off: 

(trace-stack :off) 
Stack tracing is now off. 
Current stack level is 1559. 
Maximum stack limit is 1558. 
1559 
1558 

Version 6.1. October 1991 689 



trace-stack *Lisp Dictionary 
11111111 

690 

IIII:mnn 111:! W r I jI II· i 111 1! ill i 1111:1 I II 112ll1lm; flll!!llJ!!iWlllmiiIW1MIII!nlllm: 

Notice that even though the trace facility is off, you can still use trace-stack to get a 
report of the current settings: 

(*warm-boot) 
(trace-stack :status) 
Stack tracing is now off. 
Current stack level is 1536. 
Maximum stack limit is 1558. 
1536 
1558 

You can also modify the value of the global variable *maximum-stack-level* to set the 
maximum stack limit "manually": 

> *maximum-stack-level* 
1558 

(setq *maximum-stack-level* 1600) 
(trace-stack :break) 
Stack tracing is now on in :BREAK mode. 
Current stack level is 1536. 
Maximum stack limit is 1600. 
1536 
1600 

This allows you to catch *Lisp programs that are "running away"-allocating large 
numbers of stack pvars and consequently running out of memory. For example: 

(dotimes (i 100) 
(+!! 2 3 9» 

»Error: Stack has reached/exceeded traced maximum of 1600. 
Stack is now at 1601. 

*LISP-I::MAX~STACK-LEVEL-CHECK: 

Original code: (LUCID-COMMON-LISP:NAMED-LAMBDA •.• ) 
:C 0: Continue until next stack increase. 
:A 1: Abort to Lisp Top Level 
-> :a 
Abort to Lisp Top Level 

Version 6.1, October 1991 

( 



*Lisp Dictionary 
'!![oc:n w:: ::' ;;; 1m;: H '12 Imll: r: :F:: U! !UE l1iu:::m:! 11 :::i!I: !: 'mwll r 

trace-stack 
Ii! '! J r""'ffl' 

If you wish, you can even write your own stack-tracing function, and use the :call op­
tion to select it: 

(defun trace-check (current max) 
(print (list current max») 

(setq *maximum-stack-function* 'trace-check) 

This function simply prints out the current and maximum stack levels whenever a stack 
pvar is allocated. For example: 

( *warm-boot) 
(trace-stack :call) 
Stack tracing is now on in :CALL mode. 
Current stack level is 1536. 
Maximum stack limit is 1600. 
1536 
1600 

Now, when you type 

( !! 9) 

the following is displayed: 

(1540 1600) 
#<FIELD-Pvar 1-4 *DEFAULT-VP-SET* (128 64» 

NOTES 

Usage Note: 

If you select :break, :error, or :wamlng tracing without having previously done a :trace 

stack trace of your program, the current stack level is used as the value of the 
*maximum-stack-Ievel* variable. 

Performance Note: 

Because the trace-stack operator works by wrapping an "advice" function around the 
Paris operator that allocates eM stack space, you will see a degradation of performance 
while stack tracing is active. When stack tracing is disabled, however, the "advice" 
function is removed, and performance returns to normal. 

Version 6.1, October 1991 691 



truncatel/ 
@J :: : I :UI :: '! :;;:1 :::; J ., l.! : Ii!:!j F ::r 

*Lisp Dictionary 
: : i!% [) tun: : ~'n J tIm: n liT nn mw HI. mMw.:a H : :imn 

truncatell [Function] 

Performs a parallel truncation on the supplied pvar(s). 

SYNTAX 

truncatel! numeric-pvar &optional divisor-numeric-pvar 

ARGUMENTS 

numeric-pvar Non-complex numeric pvar. Pvar to be truncated. 

divisor-numeric-pvar Non-complex numeric pvar. If supplied, numeric-pvar is 
divided by divisor-numeric-pvar before truncation is done. 

RETURNED VALUE 

truncate-pvar Temporary integer pvar. In each active processor, contains the trun­
cated value of numeric-pvar, divided by divisor-numeric-pvar if 
supplied. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This is the parallel equivalent of the Common Lisp function truncate, except that only 
one value (the truncated quotient) is computed and returned. 

REFERENCES 

See also these related rounding operations: 
ceilingll f100rll round" 

See also these related floating-point rounding operations: 
fceillngll ff100rll froundll ftruncatell 

692 Version 6.1. October 1991 

( 



*Lisp Dictionary typed-vectorll 
!!lOOW'~:!; -; ,; ! lit E !lih,w.;;w~.@:m.t..%WWEIt'%N%t.%&.m:mm1Wtr&f4Thl*lliml!W%%mMM~.lliml? " ".m~r$. 

typed-vectorll [Function] 

Creates and returns a vector pvar of the specified type. 

SYNTAX 

typed-vectorll component-type &rest component-pvars 

ARGUMENTS 

component-type *Lisp type specifier. Type of vector pvar to create. 

component-pvars Pvars containing values of type specified by component-type. 
Determine initial contents of returned vector. 

RETURNED VALUE 

typed-vector-pvar Temporary vector pvar, of type specified by component-type. In 
each active processor, contains a vector whose elements are the cor­
responding values of the component-pvar arguments. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The function typed-vectorll creates and returns a one-dimensional array pvar of type 
component-type. The contents of the returned typed-vector-pvar are copied from the 
supplied component-pvars. In each processor, the nth element of the vector in typed­
vector-pvar is a copy of the value of the nth component-pvar argument. 

Version 6.1, October 1991 693 



typed-vectorll *Lisp Dictionary 
~~rumi~::~; m:mQ~)~rwrm¥~~mr::IM!tiM:m;¥ml:~Wm!m:mmrM'1Wr~m$~~~~!~m?~:~rum~:m,rum~$~mmMI~~rum~rumw 

EXAMPLES 

A call to typed-vectorll is equivalent to a *Iet form that declares and then initializes a 
one-dimensional array pvar. 

(typed-vector! ! , (pvar single-float) 
(!! 1.0) (!! 2.0) (!! 3.0» 

<=> 

(*let (temp) 
(declare (type (pvar (array single-float (3») temp» 
(dotimes (j 3) 

(*setf (aref!! temp (!! j» (!! (float (1+ j»»» 

REFERENCES 

See also the pvar allocation and deallocation operations 
allocatell arrayll 

*deallocate *deallocate-*defvars *defvar 

front-endll *Iet *Iet* 

make-arrayll vector!! II 

694 Version 6.1, October 1991 

,/ 

\", .. , 



*Lisp Dictionary 
@Wl0~'%!i1_ . Q 

typepll 

typepll 
. : i PU:'%%.' !' : ~g* .1:::-' %WlWI!N%.! IT ! LA iL?t'ID% 

[Function] 

Tests the values of a pvar in parallel for a specified scalar data type. 

SYNTAX 

typepll pvar scalar-type 

ARGUMENTS 

pvar 

scalar-type 

RETURNED VALUE 

typep-pvar 

SIDE EFFECTS 

Pvar expression. Pvar for which values are tested. 

Type specifier. Data type for which values of pvar are tested. 

Temporary boolean pvar. Contains the value t in each active proces­
sor for which the value of pvar is of the data type specified by 
scalar-type. Contains nil in all other active processors. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function is the parallel version of the Common Lisp function typep. It tests 
whether the value of pvar in each processor is of type scalar-type. The returned 
typep-pvar pvar contains t in each processor where pvar is of type scalar-type and 
contains nil elsewhere. 

The argument pvar may be any pvar. The argument scalar-type must be one of the 
following type specifiers. 

array bignum bit bit-vector 

boolean character complex complex 

double-float flxnum float front-end 
Integer long-float mod nil 

Version 6.1, October 1991 695 



typepll *Lisp Dictionary 
WI III m! lliU: Ji! rm 1 H mil ! 1 n!M!ii 1 1 IT ! !! Ii if If 

null 
slngl .... float 

t 

number 

standard-char 

unsigned-byte 

short-float 
string 

vector 

signed-byte 
string-char 

In addition. a user-defmed structure type specifier may be used as the value of scalar­
type. 

Any of these valid type specifiers may be composed using or. and. not. and member in 
order to test pvar against more than one type. Note: This is not supported by the *Lisp 
simulator for array pvars. 

EXAMPLES 

(typep!! (!! t) 'boolean) => t!! 

These two invocations of type pi I both return t in processors 0 through 10 and nil else­
where. 

(typep!! (self-address!!) '(integer 0 10» 
(typep!! (float!! (self-address!!» '(float 0.0 10.0» 

NOTES 

No *Lisp equivalent of the Common Lisp satisfies type constructor is provided. 

REFERENCES 

See also these related pvar data type predicates: 

696 

booleanpll 

floatpll 

numberpll 

characterpll 

front-end-pll 

strlng-char-pll 

complexpll 

Integerpll 

structurepll 

Version 6.1, October 1991 

./ 

\.. 



*Lisp Dictionary *undefsetf 
n: g IIH!!!m<!m 12I1I1!Eilr g !!lWl!@fmm:m1l! I lim I III Ill! :nfmllm :: n . r I r :::n!:lT2::::!::1!Hllrr:m!!l!!llIJtmIITIIHmIWS !! :m:nrr 

·undefsetf [Function] 

Removes any update function bound to the specified parallel structure access function by 
*defsetf. 

SYNTAX 

*undefsetf accessor-function 

ARGUMENTS 

accessor-function Symbol. The name of an accessor function to a parallel structure, 
as created by *defstruct. 

RETURNED VALUE 

nil Evaluated for side effect only. 

SIDE EFFECTS 

Removes any update function bound to accessor-fonction by *defsetf. 

DESCRIPTION 

This function removes from the supplied accessor-function any update-function 
bindings created by *defsetf. 

REFERENCES 

See also these related operations: 
*defsetf *setf 

Version 6.1, October 1991 697 



un*defun *Lisp Dictionary 
m ! F IT pgg f Pi I fffr I! Elli!lim:m:mUilliU! pggm;P?W!I; In LWlWWWli !.'L':~: TWI~ 

un*defun [Function] 

Undefmes functions defined using *defun. 

SYNTAX 

un*defun &rest *defun-names 

ARGUMENTS 

*defun-names Symbols. Names of functions defmed with *defun to undefine. 

RETURNED VALUE 

nil Evaluated for side effect only. 

SIDE EFFECTS 

Removes all macros and functions bound to the supplied symbol names by *defun. 

DESCRIPTION 

Removes the macro binding from each specified *defun name and removes the function 
binding from all symbols derived from the *defun names. 

The &rest arguments must be the symbolic names of functions that have previously 
been defmed with *defun. Any number of names may be provided. 

When (*defun foo ... ) is called, both a macro named foo and a function with a name 
derived from foo are created. A call to (un*defun foo) undefmes both the macro and 
the associated function. 

REFERENCES 

See also the following related operations: 
*apply *defun *funcall 
*trace *untrace 

698 Version 6.1, October 1991 

/ 

( 
\" 



*Lisp Dictionary *unless 
.~i!j I ItmmnnE·::; nmntttl! ::]i~~]1 I:::]" .milimlttiil 1i:! I i.IiV~ 

*u n less [Macro] 

Evaluates *Lisp forms with the currently selected set bound according to the logical value 
of a pvar expression. 

SYNTAX 

·unless test-pvar &body body 

ARGUMENTS 

test-pvar 

body 

RETURNED VALUE 

body-value 

SIDE EFFECTS 

Pvar expression. Selects processors in which to evaluate body. 

*Lisp forms. Evaluated with the currently selected set restricted to 
those processors in which the value of test-pvar is nil. 

Scalar or pvar value. Value of fmal form in body. 

Temporarily restricts the currently selected set during the evaluation of the forms in 
body. 

DESCRIPTION 

The *unless macro evaluates the supplied body forms with the currently selected set 
bound so that only processors in which test-pvar is nil are selected. The ·unless macro 
subselects from the currently selected set of processors, so that any processor that is 
unselected when ·unless is called remains unselected during the evaluation of the body 
forms. All forms in the body are evaluated, even if no processors are selected. The 
value of the fmal expression in the body is returned whether it is a Lisp value or a pvar. 

Version 6.1, October 1991 699 



*unless *Lisp Dictionary 
It 'I 1!l1lm: W1!l1lm:~ lNiIII2R mimlilllililmllimim:;UllliimUim m limil Iii ill! n i In: Ii 

EXAMPLES 

The *unless form is similar to a call to the *when form with the test-pvar is negated. 
Thus: 

(*unless unworthy-pvar ... ) 
<=> 
(*when (not!! unworthy-pvar) ... ) 

This example increments the value of price-of-movle-pvar in all processors where 
age-pvar is greater than or equal to 12. 

(*un1ess «!! age-pvar (!! 12» 
(*incf price-of-movie-pvar (!! 3» 

NOTES 
Usage Note: 

Forms such as throw, return, return-from, and go may be used to exit an external block 
or looping construct from within a processor selection operator. However, doing so will 
leave the currently selected set in the state it was in at the time the non-local exit form 
is executed. To avoid this, use the *Lisp macro with-css-saved. For example, 

(block division 
(with-css-saved 

(*un1ess «=!! y (!! 0» 
(if (*or (=!! (!! 0) x» 

(return-from division nil) 
(/!! y x»») 

Here return-from is used to exit from the division block if the value ofx in any proces­
sor is zero. When the wlth-css-saved macro is entered, it saves the state of the 
currently selected set. When the code enclosed within the with-css-saved exits for any 
reason, either normally or via a call to an non-local exit operator like return-from, the 
currently selected set is restored to its original state. 

See the dictionary entry for with-css-saved for more information. 

REFERENCES 

700 

See also the related operators 
*all 

*ecase 

*case 

ecasell 

casell 

*if 

*cond 

if II 

condll 

*when with-css-saved 

Version 6.1, October 1991 



*Lisp Dictionary unproclaim 
!UWl'WR Ii i:II :: I ill I $:::::::1: ! r . ~ I I 11 I I I i IT 

unproclaim [Function] 

Removes a global declaration previously made with *proclalm. 

SYNTAX 

unproclaim declaration 

ARGUMENTS 

declaration *Lisp declaration form previously supplied as argument to 
*proclalm. Global declaration to be removed. 

RETURNED VALUE 

nil Evaluated for side effect only. 

SIDE EFFECTS 

Removes the global declaration specified by declaration. 

DESCRIPTION 

Removes the effects of a declaration made with *proclaim. 

REFERENCES 

See also the related *Lisp declaration operators: 
*Iocally *proclaim 

See also the related type translation function taken-asll. 

See also the related type coercion function coercell. 

Version 6.1, October 1991 701 



*untrace *Lisp Dictionary 
I ! iii ! lIl:m 111l: 11111 !:If It! n Min nlllllIl If! m !!I liRmii!i1! IIIII! ! m I IWII!!]I!ITIIII 11m 1 III!! mill II! lE! I!III!! : :: III m 

*untrace [Macro] 

Cancels tracing for the specified user-defmed *Lisp functions. 

SYNTAX 

*untrace &rest *defun-function-names 

ARGUMENTS 

*defun-function-names 
Symbols. Names of user-defined *Lisp functions for which 
tracing is to be cancelled. 

RETURNED VALUE 

traced-functions List of symbols. Names of functions untraced. 

SIDE EFFECTS 

Cancels tracing on the named functions. Has no effect on functions which are not 
currently traced. 

DESCRIPTION 

702 

Cancels tracing for the named parallel functions, which must have been defined using 
*defun. 

Version 6.1, October 1991 



*Lisp Dictionary *untrace 
~~WWWWffiffiJ@f@~@@@@@@JJ©jmm;m!jj[m']m!IJJ©JJ©:!@!I@.::@!.·@:.@@@@@@mnmr:@:::JJ©ml@fJJ©@@@@.wm@ 

EXAMPLES 

Invoked at top level, (*trace foo) causes a message to be printed whenever the function 
foo is either called or exited. For example, 

(*defun self-random!! () 
(random!! (1+!! (self-address!!»» 

(*trace self-random!!) => (*DEFUN-SELF-RANDOM!!) 

(self-random! !) => 
1 Enter *DEFUN-SELF-RANDOM!! 
1 Exit *DEFUN-SELF-RANDOM!! #<Structure PVAR A032B6> 
#<Structure PVAR A03276> 

A call (*untrace self-randomll) turns off this tracing mechanism. 

(*untrace self-random!!) => (*DEFUN-SELF-RANDOM!!) 

REFERENCES 

The macros *trace and *untrace are the parallel equivalents of the Common Lisp trace 

and untrace functions, defmed in Common Lisp: The Language. 

See also the following related operations: 
*apply 

un*defun 

Version 6.1. October 1991 

*defun *funcall 

703 



upper-case-pll *Lisp Dictionary 
11M lliil1lifii!!lil'tlil mwu n U H T I i flU f1 11 IT HR!!Ii If H1 i T lIOO 1 i j; : I '11~ 

upper-ease-pll [Function] 

Performs a parallel test for uppercase characters on the supplied pvar. 

SYNTAX 

upper-case-pll character-pvar 

ARGUMENTS 

character-pvar Character pvar. Tested in parallel for uppercase characters. 

RETURNED VALUE 

uppercasep-pvar Temporary boolean pvar. Contains the value t in each active pro­
cessor where the corresponding value of character-pvar is an 
uppercase alphabetic character. Contains nil in all other processors. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

704 

This predicate returns a pvar that has the value t in each processor where the supplied 
character-pvar contains an uppercase character, and the value nil in all other 
processors. 

Version 6.1, October 1991 

( 



*LispDictionary v{+,-,*,/}, 
] I 11 I 1 1:r II 1]]JWmi]!p ; II f 11 1 RlJlml Wm:lilii!lj]J[ iiMJl1:JmnWmlRfilIHliii21 I jj 1 1m .21 !~ J 2 !!J[ 1111112 I II I ji; lim 11 :m 

v+, V-, V*, vi [Function] 

Return. the vector sum, difference, product, or quotient of the supplied front-end vectors. 

SYNTAX 

v+, v-, v*, vi vector &rest vectors 

ARGUMENTS 

vector, vectors Front-end vectors. All vectors supplied must have the same 
element size. 

RETURNED VALUE 

result-vector Front-end vector. The combination of the supplied arguments. 

SIDE EFFECTS 

None. 

DESCRIPTION 

These operations are the serial (front end) equivalents of v+II, v-II, v*II, vIII. 

REFERENCES 

This function is one of a number of front-end vector operators, listed below: 
cross-product 
v+-constant 
vabs 

dot-product 
v-constant 
vabs-squared 

v+ v- v* vi 
v*-constant 
vceillng 

vfloor vround vscale 
vscale-to-unlt-vector vtruncate 

v/-constant 
vector-normal 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1, October 1991 705 



v{+,-.,*,/}If 
! 11 WR1! rnf r q q 1 Hi q 

*Lisp Dictionary 
a r mm uw t! ) HUg 2 j fi :wm 

v+lI, v-II, v*lI, vIII [Function] 

Calculate in parallel the vector sum, difference, product, or quotient of vector pvars. 

SYNTAX 

v+If, v-If, v*If, vIII vector-pvar &rest vector-pvars 

ARGUMENTS 

vector-pvar, vector-pvars 
Vector pvars. Pvars for which vector combination is calculated. 
All pvars supplied must have the same element size. 

RETURNED VALUE 

result-vector-pvar Temporary vectorpvar. In each active processor, contains the result 
of combining vector-pvar with the corresponding values of the 
vector-pvars. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The v+If, v-If, v*If, and vIII functions calculate in each processor the element-wise vec­
tor combination of the values of the supplied vector-pvars. If only a single argument 
is supplied, its values are simply copied into the returned result-pvar. 

EXAMPLES 

706 

The following equivalences hold: 

(v+!! vector-pvar-l vector-pvar-2 ... vector-pvar-n) 
<=> 

(amap!! '+!! vector-pvar-l vector-pvar-2 ... vector-pvar-n) 

Version 6.1, October 1991 

I 
\ 
',,-



*Lisp Dictionary 
mr m: t: ! niH 1 m? . I: b'mI iii C· 

v{+,-,*,J}II 
HiU l: r] 

(v-!! vector-pvar-l vector-pvar-2 ... vector-pvar-n) 
<=> 

(arnap!! '-!! vector-pvar-l vector-pvar-2 ... vector-pvar-n) 

(v*!! vector-pvar-l vector-pvar-2 ... vector-pvar-n) 
<=> 

(arnap!! '*!! vector-pvar-l vector-pvar-2 ... vector-pvar-n) 

(v/!! vector-pvar-l vector-pvar-2 ... vector-pvar-n) 
<=> 

(arnap!! '/!! vector-pvar-l vector-pvar-2 ..• vector-pvar-n) 

REFERENCES 

This function is one of a number of related vector pvar operators, listed below: 
cross-productll dot-productll v+1I v-II v*1I vIII 
v+scalarll 
vabsll 

v-scalarll 
vabs-squaredll 

vscale-to-unit-vectorll 

Version 6.1, October 1991 

v*scalarll 
vector-norrnalll 
*vset~omponents 

v/scalarll 
vscalell 

707 



v{+.-.* ,I)-constant *Lisp Dictionary 
!In iU IJIilI f II! 2m m 2W un !fRill g fin UTIIiTI I l! 1111:: mllilHi! II ::: Hi 11!: HE 

v{ + ,-, * ,/}-constant [Function] 

Combine a scalar value with each element of a vector. 

SYNTAX 

v+-constant v-constant v*-constant v/-constant vector scalar 

ARGUMENTS 

vector Front-end vector. Vector with which scalar is combined. 

scalar Scalar value. Combined with each vector element of vector. 

RETURNED VALUE 

result-vector Scalar vector. Result of combining scalar with elements of vector. 

SIDE EFFECTS 

None. 

DESCRIPTION 

These are the serial equivalents ofv+scalarll, v-scalarll, v*scalarll, and v/scalarll. 

REFERENCES 

708 

This function is one of a number of front-end vector operators, listed below: 
cross-product 
v+-constant 
vabs 

dot-product 
v-constant 
vabs-squared 

v+ v- v* vi 
v*-constant 
vcelling 

v/-constant 
vector-normal 

vfloor vround yscale vscale-to-unlt-vector vtruncate 
These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1, October 1991 



*Lisp Dictionary v{+,-,*./}scalarll 
~*mw} @W: :w·mr@lnM'···W':'lWWll~%im~MmMM:%w.illm@l:l*MW"~~V~ 

v+scalarll, v-scalarll, v*scalarll, v/scalarll 
[Function] 

Perform an elementwise arithmetic operation on a vector pvar. 

SYNTAX 

v+scalarll v-scalarll v*scalarll v/scalar!l vector-pvar scalar-pvar 

ARGUMENTS 

vector-pvar Vector pvar. Pvar on which elementwise operation is performed. 

scalar-pvar Non-aggregate pvar. Value by which each element ofvector-pvar 
is modified. 

RETURNED VALUE 

vector-pvar 

SIDE EFFECTS 

Temporary vector pvar. Copy of vector-pvar in which each 
element has been modified by the value of scalar-pvar. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

In each processor, these functions perform an elementwise arithmetic operation on the 
vector in vector-pvar, as follows: 

• v+scalar!! adds the value of scalar-pvar to each element of vector-pvar. 

• v-scalarll subtracts the value ofscalar-:pvar from each element ofvector-pvar. 

• v*scalarll multiplies each element of vector-pvar by the value of scalar-pvar. 

• v/scalarll divides each element of vector-pvar by the value of scalar-pvar. 

Version 6.1, October 1991 709 



v(+,-, *,/}scalarll *Lisp Dictionary 
; 111m I 11 lIiI!IM [In IIiI!iimlf Ii ! iii 1m 11 I . 2i m m : "linn 

EXAMPLES 

(v+scalar! ! ( ! ! #(1 2 3» ( ! ! 3» <=> ( ! ! #(4 5 6» 
(v-scalar! ! ( ! ! # (4 5 6» ( ! ! 3) ) <=> ( ! ! #(1 2 3) ) 

(v*scalar! ! ( ! ! #(1 2 3) ) ( ! ! 3) ) <=> ( ! ! #(3 6 9) ) 

(v/scalar! ! (! ! #(3 6 9) ) ( ! ! 3) ) <=> ( ! ! # (1.0 2.0 3.0) ) 

NOTES 

These functions are generalized versions of the now obsolete single-float vector pvar 
operations sf-v+-constantll, sf-v--constantll, sf-v*-constantll, and sf-v/-constantll. 

The term "scalar" is used rather than "constant" for accuracy, as the scalar-pvar argu­
ment to anyone of these operations is not constrained to contain a constant value in 
all processors. 

REFERENCES 

710 

This function is one of a number of related vector pvar operators, listed below: 
cross-productll dot-productll v+1I v-II v*1I vIII 
v+scalarll 
vabsll 

v-scalarll 
vabs-squaredll 

vscale-to-unit-vectorll 

v*scalarll 
vector-normalll 
*vset-components 

v/scalarll 
vscalell 

Version 6.1, October 1991 

,----

'",~ 

,~ 

( 



[ 

*Lisp Dictionary vabs 
~1liMW.%Wffi1M""~rwm1M111*,;~Wii' }::n:@,~;;" : w:nmm 1 j nlt!!21mm:mIT:lnm:!iIHI2: m,M:nll Uilii1n::::lilllli 

vabs [Function] 

Returns the vector magnitude of the supplied front-end vector. 

SYNTAX 

vabs vector 

ARGUMENTS 

vector Front-end vector. Vector for which magnitude is returned. 

RETURNED VALUE 

vector-length Numeric value. Magnitude of vector. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This is the serial (front end) equivalent of vabsll. This function is equivalent to 

(sqrt (vabs-squared vector» 

REFERENCES 

This function is one of a number of front-end vector operators, listed below: 
cross-product 
v+-constant 
vabs 

dot-product 
v-constant 
vabs-squared 

v+ v- v* vI 

v*-constant 
vceiling 

v/-constant 
vector-norrnal 

vfloor vround vscale vscale-to-unit-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1, October 1991 711 



·Lisp Dictionary vabsll 
lIUIUU1R III Hi II! nIUf!!IIIIU !IlUl!1I 1 In 1m I U l!n1l fllllUUlI 1m IT I H ill n f 

vabsll [Function] 

Calculates in parallel the vector magnitude of the supplied vector pvar. 

SYNTAX 

vabsll vector-pvar 

ARGUMENTS 

vector-pvar Vector pvar. Pvar for which vector magnitude is computed. 

RETURNED VALUE 

result-pvar Temporary vector pvar. In each active processor, contains the 
vector magnitude of the corresponding value of vector-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function is equivalent to 

(sqrt!! (vabs-squared!! vector-pvar)) 

This function returns a scalar pvar of type float if the element type of vector-pvar is 
non-complex. If the element type ofvector-pvar is complex, vabsll returns a complex 
pvar. 

NOTES 

Compiler Note: 

The "'Lisp compiler does not compile this operation. 

712 Version 6.1, October 1991 



·Lisp Dictionary vabs!l 
BiIHilIE Ell ! I U :mll nI :reD iII:mm;] i !~·I If· rmllll!m 

REFERENCES 

This function is one of a number of related vector pvar operators, listed below: 
eross-productll dot-productll v+II v-II v*1I vIII 

v+sealarll 

vabsll 

v-sealarll 

vabs-squaredll 

vseale-to-unit-vectorll 

Version 6.1, October 1991 

v*sealarll 

vector-nonnalll 

*vset-components 

v/scalarll 

vsealell 

713 



vabs-squared 
llil :UWIII iii :wm W II:: :: :: 1 II 

vabs-squared 
Returns the squared magnitude of the supplied front-end vector. 

SYNTAX 

vabs-squared vector 

ARGUMENTS 

*Lisp Dictionary 
In Hit : .. I T 

[Function] 

vector Front-end vector. Vector for which squared magnitude is returned. 

RETURNED VALUE 

vector-square Numeric value. Squared magnitude of vector. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This is the serial (front end) equivalent vabs-squaredll. This function is equivalent to 
the expression (dot-product vector vector). 

REFERENCES 

714 

This function is one of a number of front-end vector operators, listed below: 
cross-product dot-product v+ v- v* vI 

v+-constant v-constant v*-constant v/-constant 
vabs vabs-squared vceiling vector-normal 
vtloor vround vscale vscale-to-unit-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1, October 1991 

( 
\ 
"'-. 



'-

*Lisp Dictionary vabs-squaredll 
!lll!li~1WtlltllWTIW: tIItII:!llll:W;W: ~tIItII: W:!IiW~_~W: ;w:::w:: :!llltlltlllW@@mlw?~.,,'w;;g$!1illliii1'A>~tmm:mw%~«mMt~.4i@'Jmml} 

vabs-squaredll [Function] 

Calculates in parallel the squared magnitude of the supplied vector pvar. 

SYNTAX 

vabs-squaredll vector-pvar 

ARGUMENTS 

vector-pvar Vector pvar. Pvar for which squared magnitude is computed. 

RETURNED VALUE 

result-pvar Temporary vector pvar. In each active processor, contains the 
squared magnitude of the corresponding value of vector-pvar. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

The vabs-squaredll function calculates in parallel the squared magnitude of the 
supplied vector-pvar. The result-pvar is of the same type as the supplied vector-pvar, 
but may be of larger size if vector-pvar is an unsigned or signed integer pvar. 

Calling (vabs-squaredll vector-pvar) is equivalent to 

(dot-product!! vector-pvar vector-pvar) 

NOTES 

Compiler Note: 

The *Lisp compiler does not compile this operation. 

Version 6.1, October 1991 715 



vabs-squaredll *Lisp Dictionary 
H 111\- lin moo: --¥i""- i!i! j ]I mnmT!mmmmlirmJJlm ii-'nmmmnmi 91 iii! Nimi12WII lIi;I! i i 

REFERENCES 

This function is one of a number of related vector pvar operators. listed below: 

716 

cross-productll dot-productll v+1I v-II v*1I vIII 

v+scalarll 
vabsll 

v-scalarll 
vabs-squaredll 

vscale-to-unit-vectorll 

v*scalarll 
vector-normalll 

*vset-components 

v/scalarll 
vscalell 

Version 6.1. October 1991 



*Lisp Dictionary 
mmt: 1 :I m un iN !Iwr IIWlmmm jill[ I Min: II!! !Emt:I::: "'icn::] r: 

vceiling 

Takes the ceiling of the supplied front-end vector. 

SYNTAX 

vceiling vector 

ARGUMENTS 

vceillng 
H:: : m:m21liii."~ 

[Function] 

vector Front-end vector. Vector for which ceiling is taken. 

RETURNED VALUE 

vector-ceiling Vector. Elementwise ceiling of vector. 

SIDE EFFECTS 

None. 

DESCRIPTION 

Takes the ceiling of each element of vector. 

REFERENCES 

This function is one of a number of front-end vector operators, listed below: 
cross-product 

v+-constant 

vabs 

dot-product 

v--constant 

vabs-squared 

v+ v- v* vI 
v*-constant 

vceillng 

v/-constant 

vector-norrnal 

vtloor vround vscale vscale-to-unit-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1. October 1991 717 



vectorll 
RillmR l?mlllif!I!!l:!!1l!!mmm!!!111lII111111§ Ilill n 

*Lisp Dictionary 
greg IiITH II: : liP i HU Ii'! I: HII Tiii;: 71 

vectorll [Function] 

Creates and returns a vector pvar containing the values of the supplied pvars. 

SYNTAX 

vector!! &rest element-pvars 

ARGUMENTS 

element-pvars Pvars. Used to initialize the returned vector pvar. 

RETURNED VALUE 

vector-pvar Vector pvar. In each active processor, contains a vector whose ele­
ments are the corresponding values of the element-pvars. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

Creates and returns a vector pvar, initialized with the values of the supplied 
element-pvars. 

The standard rules of coercion are used to detennine the element type of the resulting 
vector pvar. For instance, a mixture of integer and floating point elements yields a 
floating-point result. A mixture of floating-point and complex elements yields a com­
plex result. An error is signaled if the data types present are not all compatible. (For 
instance, a string-char element and a floating-point element are not compatible.) 

EXAMPLES 

718 

(pref (vector!! (self-address!!) (self-address!!» 25) 
=> #(25 25). 

Version 6.1, October 1991 

./ 



*Lisp Dictionary vector!! 
~;\,,~"'Y;!!!~lI I j"Wm:m~*lt@!!!I&!wSlllSlilimJmmn m:mmmmmm, . tlf: t.iliW,.iliW r 'lilll1Wl'SlTIW 

REFERENCES 

The vector" function is similar to the typed-vector" function. However an element­
type argument is not required for vector!!. See the definition of typed-vector!! for more 
information. 

See also the pvar allocation and deallocation operations 
allocate II 

*deallocate 

front-endll 

make-array!! 

Version 6.1, October 1991 

arrayll 

*deallocate-*defvars 

*Iet 

II 

*defvar 

*Iet* 

719 



vector~ormal *Lisp Dictionary 
1m 11111 1 m l!lin 1111 ! f N EIII!IT 1M If I! JUIU! I U 11 A If 

vector-normal [Function] 

Returns the normalized cross product of two front-end vectors. 

SYNTAX 

vector~ormal vectorl vector2 

ARGUMENTS 

vectorl, vector2 Front-end vectors. Vectors for which normalized cross product is 
calculated. Vectors must be at least 3 elements in length. 

RETURNED VALUE 

normal-vector Front-end vector. Normalized cross product of vector 1 and vector2. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This is the serial (front end) equivalent of vector~ormalll. 

This function is equivalent to 

(vscale-to-unit-vector 
(cross-product vector-pvarl vector-pvar2» 

720 Version 6.1, October 1991 



*Lisp Dictionary 
! im !!iIllH! i!!IWU2fi II!! E! Ilml! :mnw JIT2 U lim mil I 

vector-normal 
m Iml I jjj nnm::rm:i::m:mmm IIIm:mUlTl ulI:::mmm m:: mm 

REFERENCES 

This function is one of a number of front-end vector operators, listed below: 
cross-product dot-product v+ v- v* vi 

v+-constant v--constant v*-constant v/-constant 
vabs vabs-squared vcelllng vector-normal 
vfIoor vround vscale vscale-to-unlt-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1. October 1991 721 



vector-normalll *Lisp Dictionary 
rulmlil[Iil::~IJi!@!H!@(lIil: Iili~m!@m !@i2H!@HiIil!I!!@f !@" !@Iil~IilIilIil" :!@iii!@i ImIIilHUMl: !@! !@!l!@"11m! ~!ml~'~. .i~::: r m: "WiWllH 

vector-normalll [Function] 

Calculates in parallel the normalized cross-product of the supplied vector pvars. 

SYNTAX 

vector-normaJ!/ vector-pvar-l vector-pvar-2 

ARGUMENTS 

vector-pvar-l, vector-pvar-2 
Vector pvars. Pvars for which normalized cross-product is 
calculated. 

RETURNED VALUE 

vector-normal-pvar 
Temporary vector pvar. In each active processor, contains the nor­
malized cross-product of the corresponding values of vector-pvar 1 
and vector-pvar2. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

722 

This function calculates in parallel the normalized cross-product of two single-float 
vector pvars, and is equivalent to 

(vscale-to-unit-vector!! 
(cross-product!! vector-pvarl vector-pvar2» 

Version 611, October 1991 



*Lisp Dictionary 
:n 121 !11m in !ij ; :::mJ mn!l!lfmm"1mm: ::r :::u:m 2m: Ti: : : m ,1 

vector-normal I I 
iIlIlif : 1: pm n n ::: ::;: ?W 1111:11 ;;:nIR:m:: Ii :: n 

EXAMPLES 

(vector-normal! ! 
(!! #(1 0 0» (!! #(0 1 0» <=> (!! #(0.0 0.0 1.0» 

(vector-normal! ! 
(!! #(0 1 0» (!! #(1 0 0» <=> (!! #(0.0 0.0 -1.0» 

NOTES 

Usage note: 

The orientation of the normalized cross#product produced in each processor 
depends on the order of the vector-pvar arguments. Specifically, 

(*set v1 (vector-normal!! vector-pvar1 vector-pvar2» 
(*set v2 (vector-normal!! vector-pvar2 vector-pvar1» 

v1 <=> (v*scalar!! v2 (!! -1» 

that is, vI is the vector negative of v2. 

REFERENCES 

This function is one of a number of related vector pvar operators, listed below: 
cross-productll dot-productll v+II v-II v*II vIII 
v+scalarll 
vabsll 

v-scalarll 
vabs-squaredll 

vscale-to-unlt-vectorll 

Version 6.1. October 1991 

v*scalarll 
vector-normalll 
*vset-components 

vlscalarll 
vscalell 

723 



vfloor 
m1 lIIi Iii 

*Lisp Dictionary 
Fl! i! m [lemHI!? mn II mm!!lmmr ! IT i 1 f ffii ill Iii II ! I 11 121 [IE Ifill!! 1m: i "I r! 1 uwm· I IT I: i II 

vfloor [Function] 

Takes the floor of the supplied front-end vector. 

SYNTAX 

vfloor vector 

ARGUMENTS 

vector Front-end vector. Vector for which floor is taken. 

RETURNED VALUE 

vector-floor Vector. Elementwise floor of vector. 

SIDE EFFECTS 

None. 

DESCRIPTION 

Takes the floor of each element of vector. 

REFERENCES 

This function is one of a number of front-end vector operators, listed below: 

724 

cross-product 

v+-constant 

vabs 

dot-product 

v--constant 

vabs-squared 

v+ v- v* vI 

v*-constant 

vcelling 

v/-constant 

vector-normal 

vfloor vround vscale vscale-to-unit-vector vtruncate 
These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1. October 1991 

/ 



*Lisp Dictionary vp-set-{property} 
$) mi m)mli !iiq2m:m: !iiHW: m:::!ii·i~i!®liIi!ii·rWi mm:w:: w::::rmJiW1@W1@!iiim:::m1ImWTiW:im.!lWmm: .. iWi w;;m·,",mi;m;;!w@ii1i'~~.mmtm'<i[@;mll'oow.$_':W!)jmoom"mm!W@ 

vp-set-deallocated-p, vp-set-dimensions 
vp-set-rank, vp-set-total-size, 
vp-set-vp-ratio [Function] 

Return information about the specified vp-set. 

SYNTAX 

vp-set-deallocated-p vp-set 
vp-set-dimenslons vp-set 
vp-set-rank vp-set 
vp-set-total-size vp-set 
vp-set-vp-ratio vp-set 

ARGUMENTS 

vp-set VP set object. 

RETURNED VALUE 

Each of these functions returns a single value. as described below: 

deallocated-p Boolean. The value t if vp-set is deallocated. and nil otherwise. 

dimensions-list 

rank 

total-size 

vp-ratio 

SIDE EFFECTS 

None. 

Version 6.1, October 1991 

List of integers. Dimensions of the supplied VP set. 

Integer. The rank. or number of dimensions. of the supplied VP set. 

Integer. Total number of processors in vp-set. 

Integer. The VP ratio (number of virtual processors per physical 
processor) of the VP set. 

725 



vp-set-{property} *Lisp Dictionary 
:mill;:; T:!Tl! :: ](1 lUI::! IMW Ii" D mif~1 II! %@!!1' w-;;:. ;~ 

DESCRIPTION 

Each of these functions returns information about the supplied vp-set argument, as de­
scribed in the Returned Value section above. 

NOTES 

The vp-set argument must be a *Lisp VP set, created by a call to a *Lisp operator such 
as def-vp-set or create-vp-set. 

REFERENCES 

726 

See also the following VP set information operations: 
dimension-size 

describe-vp-set 

dlmension-address-Iength 

Version 6.1, October 1991 

./ 

./ 



*Lisp Dictionary vround 
~~l~WW: : :;' ·;:f:m:~ ... ~~~..w~_t~Jtm;:;:M~~..m~.§im~(~%~2ill1:l*%~&'1~~WA-::W:l*D.®*~~Th:::'"1t'hl§.*~~ 

vround [Function] 

Rounds the supplied front-end vector. 

SYNTAX 

vround vector 

ARGUMENTS 

vector Non-complex numeric vector. Vector for which round is taken. 

RETURNED VALUE 

vector-round Numeric value. Rounded value of vector. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This function rounds each element of vector to the nearest integer. 

REFERENCES 

This function is one of a number of front-end vector operators, listed below: 
cross-product 

v+-constant 
vabs 

dot-product 

v--constant 
vabs-squared 

v+ v- v* vI 
v*-constant 
vceiling 

v/-constant 

vector-normal 
vfloor vround vscale vscale-to-unit-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1, October 1991 727 



vscale 
HIUtHl1 1 

vscale 

J mn f I 111 i j 1f m n 2 PU 

Scales a front-end vector by a scalar value. 

SYNTAX 

vscale vector scalar 

ARGUMENTS 

vector Front-end vector. Vector to be scaled. 

*Lisp Dictionary 
P i 

[Function] 

scalar Scalar value. Value by which to scale vector. 

RETURNED VALUE 

scaled-vector The result of multiplying each element of vector by scalar. 

DESCRIPTION 

This is the serial (front end) equivalent ofvscalell. 

REFERENCES 

728 

This function is one of a number of front-end vector operators, listed below: 
cross-product dot-product v+ v- v* vi 
v+-constant v-constant v*-constant v/-constant 
vabs vabs-squared vceillng vector-normal 
vfloor vround vscale vscale-to-unit-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1. October 1991 

( 



*Lisp Dictionary vscalell 
WillI r: : :i::: I::;;;: i! illillillillmn ;;. n!II it!Tl!!I1: E2 ;:m:1I in! iii am ! !IT !! a:!!!li iWIW . i DrAA!!!: : M~ 

vscalell [Function] 

Calculates in parallel the result of scaling the supplied vector pvar by a scalar pvar. 

SYNTAX 

vscalell vector-pvar scalar-pvar 

ARGUMENTS 

vector-pvar 

scalar-pvar 

RETURNED VALUE 

result-pvar 

SIDE EFFECTS 

Vector pvar. Vector pvar to be scaled. 

Scalar pvar. Value by which vector-pvar is scaled. 

Temporary vector pvar. In each active processor, contains the result 
of scaling each element of the vector in vector-pvar by the value in 
scalar-pvar. 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function returns a vector pvar of the proper type and size according to the *Lisp 
contagion and sizing rules. 

In each processor, each element of the input pvar, vector-pvar, is multiplied by the 
single element of scalar-pvar in that processor. 

Version 6.1, October 1991 729 



vscalell 
~::::lll n 11 : W ::!!!!IW : :; 

REFERENCES 

*Lisp Dictionary 
: q mmwwp ! ii! § iUWi!IWWm inn ::Hnu:mlf~~mm'$imlm 

This function is one of a number of related vector pvar operators, listed below: 

730 

cross-productll dot-product!! v+!I v-II v*1I vIII 

v+scalarll 
vabsll 

v-scalar!! 
vabs-squaredll 

vscale-to-unit-vectorll 

v*scalarll v/scalarll 
vector-normalll vscale!! 
*vset-components 

Version 6.1, October 1991 



*Lisp Dictionary 
ru!®!®!@'Qi*~imR'i@w.OOlitlillf&~_M&lW!lI§WMlffl~~*:. 

vscale-to-unlt-vector 
; I', i x: 1 Ii nmW[i!lll§:WiWMW% 

vscale-to-unit-vector [Function] 

Returns the result of scaling the supplied front-end vector to unit length. 

SYNTAX 

vscale-to-unit-vector vector 

ARGUMENTS 

vector Front-end vector. Vector to be scaled. 

RETURNED VALUE 

unit-vector Front-end vector. The result of scaling vector to a unit-length 
vector. 

SIDE EFFECTS 

None. 

DESCRIPTION 

This is the serial (front end) equivalent of vscale-to-unit-vectorll. 

This function is equivalent to 

(vscale vector (/ (vabs vector))) 

except that vector is evaluated once. 

NOTES 

It is an error if every element of vector is 0, or if (vabs vector) is O. 

Version 6.1, October 1991 731 



vscale-to-unlt-vector *Lisp Dictionary 
b@~:lm!::mlmrel!lmmremllrem:::al·aaaaaaaam?m. ~m:nmlm:liim!1W@~m:.alilw·w;aR·a:';a;mr:aj!w:w:ral!aL:M:I,K~~~M~.~~~ 

REFERENCES 

732 

This function is one of a number of front-end vector operators, listed below: 
cross-product 

v+-constant 

dot-product 

v--constant 

v+ v- v* vI 

v*-constant v/-constant 

vabs vabs-squared vceiling vector-normal 

vfIoor vround vscale vscale-to-unit-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1, October 1991 



*Lisp Dictionary vscale-to-unit-vector!! 
W.WmwA,.!t~~"1WI!%~~Wl&%l&MM'mi(Ml&r$tlWWi:r.~flff'TWi@W%.mw~:m;%-'%llW%&.!i$l'iWiI'&'W!WN&WM 

vscale-to-unit-vector! ! [Function] 

Calculates in parallel the result of scaling the supplied vector pvar to unit length. 

SYNTAX 

vscale-to-unit-vectorll vector-pvar 

ARGUMENTS 

vector-pvar Vector pvar. Vector pvar to be scaled. 

RETURNED VALUE 

result-pvar Temporary vector pvar. In each active processor, contains the result 
of scaling the value of vector-pvar to a unit-length vector. 

SIDE EFFECTS 

The returned pvar is allocated on the stack. 

DESCRIPTION 

This function is equivalent to 

(vscale!! vector-pvar (/!! (vabs!! vector-pvar») 

except that vector-pvar is evaluated once. 

EXAMPLES 

It is an error if vector-pvar contains a zero-length vector in any active processor. 

Version 6.1, October 1991 733 



vscale-to-unlt-vectorll *Lisp Dictionary 
_rnn_; ___ WllWlI !IWl!!!Mi!IIfi$m _rri!lll_i!IIIIU$llll!lllll!!2!@121!@1;nnrlll! If_I IWlil = ____ @lMllflMniCf? (" H '* 

NOTES 

Complier Note: 

The *Lisp compiler does not compile this operation. 

REFERENCES 

This function is one of a number of related vector pvar operators, listed below: 

734 

cross-productll dot-productll v+1I v-II v*1! vIII 

v+scalarll 

vabsll 

v-scalarll 

vabs-squaredll 

vscale-to-unit-vectorll 

v*scalarll 

vector-normalll 

*vset-components 

v/scalarll 

vscalell 

Version 6.1, October 1991 

/" 
( 

1,,-



*Lisp Dictionary *vset-components 
!!ii1m~%~~Jli%€Wi%€W%%$l~%%MllitOO~_*K2 ::: ~ :::::::!StAAl%w.'m!®m~"%%M%€f!i12mllit!!*t>,V!%ffiWW"Afil 

*vset-components [*Defun] 

Copies the supplied element pvars into the supplied vector pvar in parallel. 

SYNTAX 

*vset-components vector-pvar &rest element-pvars 

ARGUMENTS 

vector-pvar 

element-pvars 

RETURNED VALUE 

nil 

SIDE EFFECTS 

Vector pvar. Vector pvar into which elements are stored. 

Pvar(s) of same type as elements ofvector-pvar. Element(s) to be 
stored. Either a single pvar or as many pvars as there are elements 
in vector-pvar. 

Evaluated for side effect only. 

Destructively alters the value of vector-pvar in each active processor to contain the 
elements specified by the supplied element-pvars. 

DESCRIPTION 

This function copies the values of the supplied element-pvars into the supplied 
vector-pvar in parallel. 

If there is a single element-pvar argument, then every element of vector-pvar is *set 

to it. If there are as many element-pvar arguments as there are elements in vector-pvar, 
then the jth element of vector-pvar is *set to the jth element-pvar argument. An error 
will be signaled if the number of element-pvar arguments is not either 1 or the number 
of elements in the vector-pvar. 

version 6.1, October 1991 735 



*vset-components 
!!i!j![l11111 !:: 

REFERENCES 

11 ! IW!lF 
*Lisp Dictionary 

2 i 

This function is one of a number of related vector pvar operators, listed below: 

736 

cross-productll dot-productll v+1I v-II v*1I vIII 

v+scalarll 
vabsll 

v-scalarll 
vabs-squaredll 

vscale-to-unit-vectorll 

v*scalarll 
vector-normalll 

·vset-components 

v/scalarll 
vscalell 

Version 6.1, October 1991 



*Lisp Dictionary vtruncate 
. im: i lIP m iii If· 1 ! 11M mmr·lU!!I Pili n nil:: !! 1 !!Ilil IT ; if 

vtruncate [Function] 

Truncates the supplied front-end vector. 

SYNTAX 

vtruncate vector 

ARGUMENTS 

vector Front-end vector. Vector to be truncated. 

RETURNED VALUE 

vector-truncate Numeric value. Truncated value of vector. 

SIDE EFFECTS 

None. 

DESCRIPTION 

Truncates each element of vector. 

REFERENCES 

This function is one of a number of front-end vector operators, listed below: 
cross-product 

v+-constant 

vabs 

dot-product 

v--constant 

vabs-squared 

v+ v- v* vI 
v*-constant 

vceiling 

v/-constant 

vector-norrnal 

vfloor vround vscale vscale-to-unlt-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar operations. 
See Chapter 1, "*Lisp Overview," of this Dictionary for a list of these functions. 

Version 6.1. October 1991 737 



*warm-boot *Lisp Dictionary 
11liIllliW!]jlm 111111 iT j m Ii·" H !ll!!iIj j 'wetll til :r; 'I> nUl fjjxllj j j:t-'U ; =r" I!" I·" :;: -;$:mlll:#OO 

*warm-boot [Macro] 

Clears the *Lisp stack, deallocating local and temporary pvars, resets the currently selected 
set of all VP sets, and resets certain internal states of the eM. 

SYNTAX 

*warm-boot 

ARGUMENTS 

Takes no arguments. 

RETURNED VALUE 

nil Evaluated for side effects only. 

SIDE EFFECTS 

Clears the *Lisp stack, deallocating local and temporary pvars, resets the currently 
selected set of all VP sets, and resets certain internal states of the eM. 

DESCRIPTION 

738 

The *warm-boot macro resets *Lisp and the eM. It must be called whenever the eM 
has been placed in an inconsistent state, such as by a program error or by manually 
aborting a running function. 

The *warm-boot macro clears the *Lisp stack and restores both *Lisp and the eM to 
a consistent, usable state. The *Lisp heap is not cleared, so pvars allocated on the heap 
(permanent and global) remain allocated. 

Specifically, executing *warm-boot has the following effects: 

• All virtual processors in all VP sets are made active; no proces~ors remain 

unselected. 

• The *default-vp-set* is selected as the *current-vp-set* 

Version 6.1, October 1991 



r-

*Lisp Dictionary *warm-boot 
~n:nm:z.i' ;rnu:m:::::w:::::tC:::~lm~m1!Umlmm m~'m' :m,:mHmmmmmm::m,mmmmmmmlnmnmimmim::w: :m!l!lmmm! mmmm11wrw: WIW:W: :mm® 

• The Connection Machine stack is cleared and all pvars allocated on the stack 

(i.e., any not created by allocatell or *defvar) are deallocated. 

EXAMPLES 

A top-level call to *warm-boot resets the eM. 

(*warm-boot) 

The following example demonstrates why it is necessary to call *warm-boot after 
aborting execution in the middle of a *Lisp program. 

(*cold-boot :initial-dimensions ' (512)) 

(*let (x) 
(declare (type single-float-pvar x)) 
(*when (evenp!! (self-address!!)) (*set x (!! #'x)))) 

Error: In interpreted *SET. 
The source expression in a float-general *set contains something 
that is not a float. 
A pvar of type STRING-CHAR caused the error. 

-> (*sum (!! 1)) 
256 

The error occurs while the currently selected set has been restricted to the even proces­
sors. The following example shows that the currently selected set is not automatically 
restored by aborting back to top level. 

-> Abort 
Return to Lisp Top Level in Dynamic Lisp Listener 1 
Back to Lisp Top Level in Dynamic Lisp Listener 1. 

(*sum (!! 1)) => 256 

A call to *warm-boot resets the currently selected set so that all processors are active. 

(*warm-boot) 
(*sum (!! 1)) => 512 

Interrupting or aborting a program may leave the front-end/eM connection in an 
inconsistent state, preventing the front end from issuing instructions to the eM. A call 
to *warm-boot resets the connection, allowing the front end to communicate with the 
eM. 

Version 6.1, October 1991 739 



·warm-boot *Lisp Dictionary 
WIiI®mlil!illil!il~Iil!ilIil!ilIil!illil!il~Iil!ilIil!ilIlWlJ:®jiIiWI! wrnm;;g®TIfmIilW~R®rr~q~1Iil!il1il!il;; mill m! Iil!ilIil!ilW_W? WIlWlJl WJlmmk Ellilr:m l! W1®IIJIIlWlW il ; r -: ., ... ® 

NOTES 

The *warm-boot macro is intended to be called at top level. It should not in general be 
called from within user code, because it forcibly deallocates any existing local and 
temporary pvars. 

One exception to this rule is that ·warm-boot may be called as the first body form of 
a function intended to be called at top level, as in 

(defun top-level () 
(*warm-boot) 
(initialize-pvars) 
(main-function) 
(clean-up-and-print-results) 

) 

Here, *warm-boot is used to ensure that the Connection Machine is reset and ready for 
use before the initialization function and main functions of the user's program are 
called. 

REFERENCES 

See also the related Connection Machine initialization operator ·cold-boot. 

See also the initialization-list functions add-Initialization and delete-initialization. 

See also the character attribute initialization operator initialize-character. 

740 Version 6.1. October 1991 

( 



*Lisp Dictionary *when 
W"",?§,!::illl1W~ iif'i!1 iff Oi: . .;; . ::TWm$&~t~ .. · :::!!iT:W' ::,i.!W~ j mw '''::It:;;;: 

·when [Macro] 

Evaluates *Lisp forms with the currently selected set bound according to the logical value 
of a pvar expression. 

SYNTAX 

·when test-pvar &body body 

ARGUMENTS 

test-pvar 

body 

RETURNED VALUE 

body-value 

SIDE EFFECTS 

Pvar expression. Selects processors in which to evaluate body. 

*Lisp forms. Evaluated with the currently selected set restricted to 
those processors in which the value of test-pvar is t. 

Scalar or pvar value. Value of final form in body. 

Temporarily restricts the currently selected set during the evaluation of the forms in 
body. 

DESCRIPTION 

The ·when macro evaluates the supplied body forms with the currently selected set 
bound so that only processors in which test-pvar is non-nil are selected. The ·when 

macro subselects from the currently selected set of processors, so that any processor 
that is unselected when *when is called remains unselected during the evaluation of the 
body forms. All forms in the body are evaluated, even if no processors are selected. The 
value of the fmal expression in the body is returned, whether it is a Lisp value or a pvar. 

Version 6.1, October 1991 741 



*when 
r::r 111 ijl~1!!!11I!!!ii Ii 

"'Lisp Dictionary 
Ilml!!!] 1 11 1 

EXAMPLES 

This example increments the value of prlclH)f-movie-pvar in all processors where 
age-pvar is greater than or equal to 12. 

(*when (>=!! age-pvar (!! 12» 
(*inef priee-of-movie-pvar (!! 3» 

This example shows how *when may be nested to select processors in which a data pvar 
meets multiple criteria. The vaue of Intenslty-pvar is copied into real-edge-pvar only 
in those processors where part-of-edge-p is non-nil, and where Intenslty-pvar is greater 
than 9.0. 

(*when part-of-edge-p 
(*when (>!! intensity-pvar (!! 9.0» 

(*set real-edge-pvar intensity-pvar») 

NOTES 
Usage Note: 

Forms such as throw, return, return-from, and go may be used to exit an external block 
or looping construct from within a processor selection operator. However, doing so will 
leave the currently selected set in the state it was in at the time the non-local exit form 
is executed. To avoid this, use the *Lisp macro with-css-saved. For example, 

(block division 
(with-ess-saved 

(*when (>!! y (!! 0» 
(if (*or (=!! (!! 0) x» 

(return-from division nil) 
(/ !! y x»») 

Here return-from is used to exit from the division block if the value ofx in any proces­
sor is zero. When the with-css-saved macro is entered, it saves the state of the 
currently selected set. When the code enclosed within the with-css-saved exits for any 
reason, either normally or via a call to a non-local exit operator like return-from, the 
currently selected set is restored to its original state. 

See the dictionary entry for with-css-saved for more information. 

Implementation Note: 

742 

If the last body form is either a *all or a *when form, then the inner form does not savel 
restore the state of the current selected set. This is mainly an optimization feature-it 
does not change the semantics of your code. 

Version 6.1, October 1991 

I 
/ 

( 

~-



*Lisp Dictionary 
~~~"';;;J; :I:mw JU r Ulm:iliWi.,.~_Jmn:T;;:::';U:' .'.J LImI.*~ 

REFERENCES

See also the related operators
*all

*case

*cond

*ecase

*If

casell

condll

ecasell

if II

*unless wilh-css-saved

Version 6.1, October 1991

*when
· .. :F r :-:::r ~

743

with-css-saved *Lisp Dictionary"
:mrmSiETml1lr:::mWi iii :11 I ITl! I :r:m::::; In: m! 1 j In J 1 SllHIW

with-css-saved [Macro]

Records the state of the currently selected set and ensures that it is automatically restored
when evaluation of the supplied body forms terminates.

SYNTAX

wlth-css-saved &body body

ARGUMENTS

body *Lisp forms. Body forms to be evaluated.

RETURNED VALUE

body-value Scalar or pvar value. Value returned by final form in body.

SIDE EFFECTS

Records the state of the currently selected set before evaluating the forms in body and
ensures that the currently selected set is restored when evaluation of the body forms
terminates.

DESCRIPTION

744

The with-css-saved macro records the state of the currently selected set and ensures
that when evaluation of the supplied body forms terminates for any reason, the
recorded currently selected set of active processors is automatically restored to its orig­
inal state.

This form should be used wherever evaluation of the forms in body might cause control
flow to abnormally pass out of a *Lisp form that restricts the currently selected set (for
example, by a call to throw, return, return-from, or go within a *when form). The
wlth-css-saved macro uses an unwind-protect to trap such non-local exits and restore
the currently selected set.

Version 6.1. October 1991

,
',,-

EXAMPLES

The following function definitions demonstrate the use of with-css-saved. Both func­
tions return the result of dividing y by x in all processors where y > o. If any value of
x is zero, both functions return nil.

(de fun css-not-preserved (x y)
(block exit

(*when (>!! y (!! 0»
(if (*or (zerop!! x»

(return-from exit nil)
(/!! y x)
) »)

(de fun css-preserved (x y)
(block exit

(with-css-saved
(*when (>!! y (!! 0»

(if (*or (zerop!! x»
(return-from exit nil)
(/!! y x)
» »)

The difference between the functions lies in the way css-preserved uses the
with-css-saved macro around its conditional to restore the currently selected set. For
example, given the configuration defmed by

(*cold-boot :initial-dimensions ' (512»

the expression

(*all (progn

returns 511.

(css-not-preserved (!! 0) (self-address!!»
(*sum (!! 1»»

The pvar returned by (self-addressll) is 0 in processor zero, so css-not-preserved de­
selects processor o. When the call to return-from in css-not-preserved is executed
because x contains the value 0 in every processor, css-not-preserved does nothing to
restore the currently selected set, leaving processor 0 deselected.

The expression

(* all (progn

Version 6.1, October 1991

(css-preserved (!! 0) (self-address!!»
(*sum (!! 1»»

745

wi~s-saved *Lisp Dictionary
fi121I11! jn IT I I I 1mB 1ml 1 n H n mn 11m!! l a !1 l:m 11 m I!!mlm:nl I 1W j 1ml11l:1n

returns 512. By enclosing the *when conditional with the with-css-saved macro, the
css-preserved function ensures that the currently selected set is automatically restored
when the call to return-from is executed.

NOTES

For the purposes of forms that execute non-local exits, the wlth-css-saved macro is
functionally equivalent to a call to unwlnd-protect. When a non-local exit is performed,
an unwlnd-protect is executed to restore the currently selected set, and then the exit
continues normally. Evaluation does not continue with the form immediately following
the wlth-css-saved. For example, when

(catch 'exit
(with-css-saved

(yin data-pvar)
(when win-yin

(throw 'exit nil»)
(yang data-pvar»

is evaluated, if the variable win-yin has the value t, then (yin data-pvar) is evaluated,
but (yang data-pvar) is not.

REFERENCES

746

See also the processor selection operators
*all

*case

*cond

*ecase

*If

casell

condll

ecasell

if II
*unless *when

Version 6.1, October 1991

/
/

L

[

with-processors-allocated-for-vp-set *Lisp Dictionary
walM! 1.1 IWWWiW: WiWj! WI w:IM::.:rn· lWWi lmW:wmwiW' ~'%!:WW@il®MWitiWU .. :. 9%lW~~~M'; : ;:1·' "WW

with-processors-allocated-for-vp-set [Macro]

Temporarily instantiates (assigns a geometry to) a flexible VP set for the duration of a set
of body forms.

SYNTAX

with-processors-allocated-for-vp-set (vp-set &key :dimensions :geometry)

&body body

ARGUMENTS

vp-set

:dimensions

:geometry

body

RETURNED VALUE

body-value

SIDE EFFECTS

Flexible VP set. Virtual processor set defined with def-vp-set.

Integer list or nil. Size of dimensions with which to instantiate
vp-set. Must be nil if geometry argument is supplied.

Geometry object, obtained by calling the function
create-geometry. Defmes geometry of vp-set.

*Lisp forms. Body forms to be evaluated with vp-set instantiated.

Scalar or pvar value. Value of fmal form in body.

Temporarily defmes geometry of vp-set and allocates any associated pvars, for the
duration of the body forms, then deinstantiates vp-set and deallocates any associated
pvars.

DESCRIPTION

This macro expands into a form that instantiates vp-set by a call to allocate­

processors-for-vp-set, using the supplied dimensions or geometry as arguments. As
with the allocate-processors-for-vp-set function, one or the other of the :dimenslons

or :geometry arguments may be supplied, but not both. The form then executes the

Version 6.1, October 1991 747

with-processors-allocated-for-v~et *Lisp Dictionary
! r f fill: Ell ;; i Ii! liD Ilnmf:!~ii:iiii: I ilmttii

supplied body fonns and finally calls deallocate-processors-for-vp-set to deinstanti­
ate vp-set.

EXAMPLES

A sample call to wlth-processors-allocated-for-v~et is

(def-vp-set my-vp-set nil
:*defvars ' ((value-pvar (self-address! !»»

(with-processors-allocated-for-vp-set (my-vp-set
: dimensions ' (32 32 32»

(*with-vp-set my-vp-set
(*set value-pvar (*!! value-pvar (!! 2»)
(ppp value-pvar :end 8»)

o 2 4 6 8 10 12 14

The following example shows how a flexible VP set can be used repeatedly to process
a set of data files. In the example, a single flexible VP set is used, which is instantiated
and deinstatiated once for each file in such a way that it is just large enough to hold
each file's data.

(def-vp-set file-data-vp-set nil
:*defvars ' ((file-data-pvar»)

(dolist (file files-to-be-processed)
(let ((file-size (get-file-size file»)

(with-processors-allocated-for-vp-set file-data-vp-set
:dimensions (next-power-of-two->= file-size)

(*with-vp-set file-data-vp-set
(*set file-data-pvar (read-file-data!!»
(process-file-data file-data-pvar»»)

REFERENCES

748

See also the following flexible VP set operators:
allocate-vp-set-processors

deallocate-vp-set-processors

set-v~et-geometry

allocate-processors-for-v~et

deallocate-processors-for-~et

Version 6.1, October 1991

*Lisp Dictionary *with-vp-set
J EI1 : j,g : it :'. %m~~..;.wT::'f~~i$l%..'tt,.%Wi(§;%Mm'.J:a::'$.W~'!w.$,W!W!m,tml,"*li!!m:: =w.·~wm:m@i@i"'·"':'lm

*with-vp-set [Macro]

Dynamically binds the supplied VP set as the current VP set for the duration of the supplied
body forms.

SYNTAX

*with-vp-set vp-set &body body

ARGUMENTS

vp-set VP set object. VP set to be made current. Must be defmed and
instantiated.

body *Lisp forms. Body forms to be evaluated.

RETURNED VALUE

body-value Scalar or pvar value. Value of final form in body.

SIDE EFFECTS

Temporarily changes the current VP set to vp-set during the evaluation of the supplied
body forms.

DESCRIPTION

This macro is used to temporarily switch VP sets for the duration of a section of code.

The currently selected VP set is dynamically scoped. The *with-vp-set form tempo­
rarily binds the current VP set to vp-set. Thus, while a *with-vp-set form" is executing,
the global variables related to VP sets are dynamically bound according to the size,
shape, and properties of vp-set.

The following global variables are affected when the current VP set is changed:

current-cm-configuratlon

current-send-address-Iength

Version 6.1, October 1991

current-grld-address-lengths

current-vp-set

749

*wlth-vp-set *Lisp Dictionary
l!ii_:m:m~§:ml: ;:m,:mq:mn:m::m:: :ml :mIl! :mm :mg; w: WII IW§imi :im:imHiml lim!1ii:mnM"lM.: MMMliMiMflM: §MWMII :m'@Wl.nnnlnnrnngw. W,WT0··;nnI!I\'~nnnn:··r: I un *~~~

Iog-number-of-processors-llmit
number-of-processors-limit
ppp-default-start

number-of-dimensions
ppp-default-end
til nil II

EXAMPLES

750

Each VP set maintains its own currently selected set of processors. Nested calls to
*wlth-vp-set that switch between VP sets also switch between the currently selected
sets maintained by the VP sets. This is illustrated by the example shown below.

(def-vp-set fred' (1024 32))
(def-vp-set anne ' (512 512)

:*defvars «x (!! 1) nil (field-pvar 16))
(y (self-address! I))))

(*with-vp-set fred
(*when (evenp!! self-address!!))

(*with-vp-set anne
(*set x (-!! y x))

;32,768 VP's
;16,384 VP's

;262,144 VP's

(*with-vp-set fred ;16,384 VP's
(*when (not!! (zerop!! (self-address!!)))

(setq zero-off (*sum (!! 1))) ;16,383 VP's

(setq zero-on (*sum (!! 1))))))
(*sum (!! 1))) => 32768

zero-off => 16383
zero-on => 16384

;16,384 VP's

When a VP set is created, it is defmed to have all processors selected, so the initial call
to *with-vp-set fred selects the fred VP set with all virtual processors active. The fIrst
*when statement reduces the number of active processors in fred by half by selecting
only even-numbered processors, and the call to *with-vp-set anne selects the anne VP
set, which has 262,144 virtual processors.

The second invocation of*with-vp-set fred reselects the fred VP set with the same cur­
rently selected set as before: only processors of even-numbered addresses are active.
The second call to *when further restricts the selected set of fred by deactivating proc­
essor O. Inside this *when statement, a call to (*sum (" 1)) returns 16383, the number of
active processors in fred. The call to (*sum (II 1» immediately following the *when
returns 16384, the number of active processors in fred with processor 0 included.

Version 6.1, October 1991

*Lisp Dictionary *with-vp-set
_.WWBU&~· ;;: ::B:! &B.] f q.: :::~: T: mn::: II I I: :: :.m~. .: ;;[""""] Wi :m : iiI::

When execution passes back into the *with-vp-set form that originally selected the
fred VP set, all processors are again active and (*sum (111» returns 32768, the total num­
ber of virtual processors in frect.

If the body of a call to *with-vp-set must be evaluated with all processors selected,
rather than only those processors currently active in the selected VP set, it should be
surrounded by a call to *all, as in

(*with-vp-set fred
(*all

(*set x (-!! y x))))

REFERENCES

See also the related operation
set-vp-set

Version 6.1, October 1991 751

*Lisp Dictionary *xor
Hili ~ i H 11. 1";1· n:: !i!n: i::: ffi" B iii! at !1T!W m Ti::::: non n: U II 11m: "

*xor [*Defun]

Takes the logical XOR of all values in a pvar, returning a scalar value.

SYNTAX

*xor pvar-expression

ARGUMENTS

pvar-expression Pvar expression. Pvar to which global XOR is applied.

RETURNED VALUE

xor-scalar Scalar boolean value. The logical XOR of the values of
pvar-expression in all active processors, i.e., the value t if an odd
number of the values are non-nil, and the value nil otherwise.

SIDE EFFECTS

None.

DESCRIPTION

752

The *xor function is a global operator. It takes the logical XOR of all values in a pvar, re­
turning a scalar value. Effectively, *xor treats the value of pvar-expression in all active
processors as a set of boolean values. It returns the value t if an odd number of those
values are non-nil, and returns the value nil.

If there are no active processors, this function returns nil.

Version 6.1, October 1991

*Lisp Dictionary
~ II iii w::::nmg;;::mun r: 1[::: ::mMlWf1H~!111I1 1 lP Il: f 1: : m!2! 1 ~ . 1

EXAMPLES

(*xor t!!)
(*xor nil!!)

=>
=>

NIL
NIL

; ; ; t in all processors
t in no processors

;;; t in every other processor
(*xor (evenp!! (self-address!!») => NIL
(*xor (oddp!! (self-address!!») => NIL

;;; t in every third processor (an odd number)
(*xor (zerop!! (mod!! (self-address!!) (!! 3»» => T

;;; an example using non-boolean values
(*xor (if!! (zerop!! (self-address!!»

nil! !
(self-address!!») => T

REFERENCES

See also the related global operators:
*and

*Iogior

*mln

*Integer-length

*Iogxor

*or

See also the related logical operators:
andll notll

Version 6.1, October 1991

orll

All but one non-NIL

*Iogand

*max

*sum

xorll

*xor
.m:llmm

753

xorll
12i

xorll

fii g iN 1 1 H!Ii' n: f i WI! 1

Performs a parallel logical XOR operation in all active processors.

SYNTAX

xorll &rest pvar-exprs

ARGUMENTS

*Lisp Dictionary
F~flllWmw

[Function]

pvar-exprs Pvar expressions. Pvars to which parallel XOR is applied.

RETURNED VALUE

xor-pvar Temporary boolean pvar. Contains in each active processor the log­
ical XOR of the corresponding values of the pvar-exprs. If no
pvar-exprs are given then nllll is returned.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This perfQrms the XOR function on all the pvar-exprs. If no pvar-exprs are given then
nilll is returned. In each processor, xorll returns t if an odd number of the supplied pvar­
exprs have the value t in that processor, and otherwise returns nil.

EXAMPLES

(xor! ! (evenp!! (self-address! I))
(oddp!! (self-address!!))) <=> t!!

(ppp (xor!! (self-address! !)
(evenp!! (self-address!!)))

:end 8)
NIL T NIL T NIL T NIL T

754 Version 6.1, October 1991

REFERENCES

See also the related global operators:
*and

*Iogior

*min

*xor

*integer-length

*Iogxor

*or

See also the related logical operators:
and!! not!!

Version 6.1, October 1991

*Iogand

*max

*sum

or!!

755

zeropll
2

zeropll

IT 1 HJ. r r r IT

Performs a parallel test for zero values on the supplied pvar.

SYNTAX

zeropll numeric-pvar

ARGUMENTS

numeric-pvar Numeric pvar. Tested in parallel for zero values.

RETURNED VALUE

*Lisp Dictionary

[Function]

zerop-pvar Temporary boolean pvar. Contains the value t in each active proces­
sor where the corresponding value of numeric-pvar is zero.
Contains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function zerop.

EXAMPLES

756

(zerop!! (mod!! (self-address!!) (!! 2»)

<=>
(evenp!! (self-address!!»

Version 6.1, October 1991

,I

'~ ...

[

II [Function]

Returns a temporary pvar with the same value in each active processor.

SYNTAX

II scalar-expression

ARGUMENTS

scalar-expression Scalar expression. The value to be stored in each processor of the
returned pvar. The data type of scalar-expression must be either
a number, a character, an array, or a structure.

RETURNED VALUE

constant-pvar

SIDE EFFECTS

A temporary pvar with the value of scalar-expression in each
active processor.

Allocates the new temporary pvar on the stack.

DESCRIPTION

The *Lisp function II returns a temporary pvar containing the value of scalar-expres­
sion in each active processor. The scalar-expression must be a number, a character, an
array, or a structure.

Note: The original purpose of II was to allow you to provide constant pvar arguments
to *Lisp functions, as in the expression

(+!! (!! 2) (!! 3) (!! 4»

*Lisp functions now allow you to pass scalar constants directly (the call to !! to convert
them to pvars is made automatically by *Lisp itself). This means that you will rarely
ever have to use the II function yourself.

Version 6.1, October 1991 757

II *Lisp Dictionary
liP Ililm 1m!! i! [[J !!JIm !1I1!JJm!ll Him ! HEW J J fJM

If scaiar-expression evaluates to an array, a complete copy of the array is stored in
each active processor. If the array has a fill pointer, it is ignored; all elements of the
array are copied into the CM. Adjustable arrays are copied and stored as fixed-size
arrays. Displaced arrays are copied and stored as non-displaced arrays. The data type
of the returned pvar depends on the data types of the elements in the array. If the array
contains elements of various types, the *Lisp rules of type coercion apply.

If scaiar-expression evaluates to a scalar structure object (of a structure type defmed
by a call to *defstruct) an equalp copy of the object is stored in each active processor
of the returned pvar.

EXAMPLES

758

By distributing a single scalar value to all processors, the II function provides the same
functionality in *Lisp as scalar values provide in Common Lisp (see Figure 6).

A typical call to II is very simple.

(!! 5) ;;; Returns a pvar with 5 in each processor

(II 5)
I

Figure 6. The expression (II 5) distributes a scalar value (5) to all processors.

In *Lisp, II is most often used to pass a constant value to a function, as in

(random!! (!! 10»

The function random II expects a single pvar argument whose value in each processor
is the upper bound of the random number to be calculated in that processor. The above
example returns a temporary pvar containing a random value between 0 and 9 in each
processor. Note that this differs from

(random!! (1+!! (self-address!!»)

Version 6.1. October 1991

*Lisp Dictionary
2!!!: liT I liHIIIIT!!IIWP!!12 [j P li! !:!!1iI!lIliTCl! jj Iii: Em :i.iI! ji En

II
TV

which returns a pvar whose value in each processor is a random number between 0 and
the processor's send address. Here, the pvar argument has a different value in every
processor.

As the following example demonstrates, II is very useful in comparisons.

«!! (self-address!!) (!! 256»

This returns a pvar with t in each processor whose send address is less than 256, and
nil in all other activ~ processors.

The following is a call to II with an array argument:

(*defvar parallel-array (!! #(1 2 3»)

(ppp parallel-array)
(1 2 3) # (1 2 3) # (1 2 3) . . . # (1 2 3) # (1 2 3)

(setq *print-array* t)
(pref parallel-array 1) => #(1 2 3)

This creates a pvar with a copy of the array #(123) in each processor. Using pref, the
copy of the array in each processor is accessed. Individual elements of the parallel
arrays may be accessed using aref.

Nested arrays of arbitrary depth are legal arguments to II. For instance, an array of
arrays is a permissible argument to II. The expression

(!! #(#(2 4) #(612) #(716) #(520) #(256) »

creates a pvar with an array of arrays in each processor. Calling " with nested arrays
can be a very slow operation.

An example using structures is

(*defstruct elephant
(wrinkles 30000 :type (unsigned-byte 16»
(tusks t :type boolean»

(!! (make-elephant :wrinkles 0 :tusks nil»

This creates a pvar with a wrinkle-free, tuskless elephant in each processor.

Version 6.1, October 1991 759

II
I mgT IT 1Ii r IF r w % r mn iW fl I fl H! If I UITf .

*Lisp Dictionary
WE fl!l! m !In! IF

NOTES

It is an error to call II with an array containing elements that cannot~ according to the
*Lisp rules of type coercio~ be coerced into a single~ fixed-size type. For example~

(!! #(1 2 3 #\e #\r #\r #\0 #\r #\!)}

is in error because the array argument contains both integers and characters.

Implementation Note:

In Lucid and Sun Common Lisp versions of *Lisp~ front-end floating-point numbers
are always stored as double-precision numbers~ regardless of thier actual precision.
This means that the expression

(!! 3.14)

is ambiguous-there~s no way to tell whether you intended to create a single-precision
or a double-precision floating-point pvar~ even if you declare the returned type of the
II expression!

For this reason~ *Lisp has an internal variable~ *115p-1::*default-fioat-preci5ion*~ that
specifies the "default" precision of an ambiguous floating-point II expression. This
variable can be set to either :5lngle or :double~ and defaults to :5Ingle.

This only affects the *Lisp interpreter. The *Lisp compiler has more information about
the types of values in these expressions~ so compiled code doesn't have this problem.

REFERENCES

760

See also the pvar allocation and deallocation operations
allocate II arrayll

*deallocate

front-endll
make-arrayll

*deallocate-*defvars

*Iet
typed-vectorll

*defvar

Iet

vectorll

Version 6.1, October 1991

*Lisp Dictionary =11,1=11, <II, <=11, >11, >=11
mill PM! 1m m 1 T mlf Il$'i m 1m IT 1 in mmmlll1; 1111111 j[nlTI ilc;rliWliiiillfiillllll

=" 1=" <II <=" >" >=" .. , .. , .. , .. , .. , .. [Function]

Perform parallel numerical comparisons on the supplied pvar arguments.

SYNTAX

=11, 1=11, <II, <=11, >11, >=11 numeric-pvar &rest numeric-pvars

ARGUMENTS

numeric-pvar, numeric-pvars Pvars to be compared.

RETURNED VALUE

These functions each return a single temporary boolean pvar, as described below:

equal-pvar The value t in each active processor where the numeric-pvar argu­
ments are equal, and nil in all other active processors.

not-equal-pvar The value t in each active processor where the numeric-pvar argu­
ments are IEt~ and nil in all other active processors.

1Vf~
less-than-pvar The value t in each active processor where the numeric-pvar argu-

ments are~ and nil in all other active processors.
~

not-greater-pvar The value t in each active processor where the numeric-pvar argu-
ments are SEtllal, and nil in all other active processors.

<..\00-
greater-pvar The value t in each active processor where the numeric-pvar argu­

ments are-eqtiEll, and nil in all other active processors.
'>

not-less-pvar The value t in each active processor where the numeric-pvar argu­
ments are ~, and nil in all other active processors.

>::::

SIDE EFFECTS

The returned pvar is allocated on the stack.

Version 6.1, October 1991 761

=11, I-II, <II, <=11, >11, >-" "'Lisp Dictionary
fll. ImilfTIl m TI!lflf rnr H I TV 1 1 II 1111211 jf[! WlRlmlillliflr:lf ! 1:1

DESCRIPTION

These functions perform parallel comparisons; each function returns a temporary pvar
that contains t in each active processor where the argument pvars pass the correspond­
ing relational test (equality, less-than, greater-than, etc.), and nil in all other active
processors. These functions provide the same functionality for numeric pvars as the
Common Lisp operators =, 1=, <, <=, >, and >= provide for numeric scalars.

If only one argument pvar is given, the returned pvar is til.

EXAMPLES

These functions can be used to compare the values of a pvar with some constant value.
For example, if numeric-pvar contains the values 0, 5, 1, -4, 5, etc., then the pvar
returned by

(=!! numeric-pvar (!! 5»

contains the values nil, t, nil, nil, t, etc.

Similarly, one pvar can be compared with another. The expression

«!! numeric-pvar (self-address!!»

returns a pvar with the value t in each processor for which numeric-pvar is less than
the processor's send address.

These functions are especially useful in combination with the processor selection oper­
ators. For example,

(*when (>!! data-pvar (!! 10»
(*set data-pvar (*!! data-pvar (!! 2»»

multiplies data-pvar in processors where data-pvar is greater than 10. The macro
*when is used with >11 to select processors where data-pvar is greater than 10. The val­
ue of data-pvar in those processors is multiplied by 2 using *11 and stored back into
data-pvar by *set.

NOTES

762

An error is signalled if any of the numeric-pvar arguments contains a non-numeric
value in any active processor.

Version 6.1, October 1991

./

*Lisp Dictionary
1 : q J : ::rmmH:m c:::r Imp in· liTII :::mml§l :lIm IT Iilm

~II, --II, *11, III

+11, -II, *11.111
nm I I II' II mnn

[Function]

Perform parallel addition, subtraction, multiplication, or division on the supplied pvars.

SYNTAX

+11, *11
-II, III

&rest numeric-pvars
numeric-pvar &rest numeric-pvars

ARGUMENTS

numeric-pvar, numeric-pvars Numeric pvars to be combined arithmetically.

RETURNED VALUE

result-pvar Temporary numeric pvar. In each active processor, contains the re­
sult of the arithmetic operation on the numeric-pvars.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

These functions provide the same functionality for numeric pvars as the Common Lisp
arithmetic operations +, -, *, and I provide for numeric scalars. Each function performs
an arithmetic operation on the supplied numeric-pvars.

The +11 function performs parallel addition, returning (II 0) when no arguments are
supplied. The *11 function performs parallel multiplication, returning (II 1) when no
arguments are supplied.

The -II function performs parallel subtraction, or negation, if only one argument is
supplied. The III function performs a parallel division, or inversion, if only one argu­
ment is supplied.

Note: Both -II and III require at least one numeric-pvar argument. Also, since *Lisp
lacks "rational number pvars", III always returns a floating-point or complex pvar.

Version 6.1, October 1991 763

+11, -II, *11, /II
1

*Lisp Dictionary
1 RnMll 7 nr f r r] fli 11 1 7 II

EXAMPLES

The function +11 can be used to increment a pvar by some constant value. For example,

(+!! numeric-pvar (!! 5»

returns a pvar whose value in each processor is the value of numeric-pvar plus 5.

Similarly, -II can be used to fmd the difference of several pvars. The expression

(-!! particles-pvar protons-pvar neutrons-pvar)

returns a temporary pvar containing in each processor the result of subtracting
protons-pvar and neutrons-pvar from particles-pvar in that processor.

The *11 operator can be used together with the processor selection operators to modify
the values of a selected group of processors. For example,

(*when (>=!! baggage-weight-pvar (!! 150»
(*set passenger-charge-pvar

(*!! current-rate-pvar (!! 2»»

uses *11 to change the fare for passengers with excess baggage. The macro *when is
used with >=11 to select those processors in which baggage-welght-pvar is greater than
or equal to 150. In these processors, *11 is used with ·set to store twice the value of
current-rate-pvar in passenger-charge-pvar.

NOTES

764

For III, if there is only one numeric-pvar argument, it is an error if the pvar has the
value 0 in any active processor. If there is more than one argument, it is an error if any
numeric-pvar other than the first argument has the value 0 in any active processor.

An error is signalled if any of the numeric-pvar arguments contains a non-numeric
value in any active processor.

If the data types of the argument pvars differ, the *Lisp rules of type coercion apply.

Version 6.1, October 1991

---" "

·Lisp Dictionary 1+11,1-11
IIllIll i H lI!ITliIIP!f! mn MT m millE i ffll Ii 1 !1ir: gfflllllt:ffll :111 nmI!!lI : 111 n mil "m 1m limn!!? nlT1

1+11 [Function]

Performs parallel addition/subtraction of 1 to/from the supplied pvar.

SYNTAX

1+11 numeric-pvar
1-11 numeric-pvar

ARGUMENTS

numeric-pvar

RETURNED VALUE

Numeric pvar. Incremented or decremented in paralle1.

increment-pvar Temporary numeric pvar. In each active processor, contains a copy
of the value of numeric-pvar incremented or decremented by one.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The 1 +11 function performs a parallel increment, and the 1-11 function performs a paral­
lel decrement. Both functions return a copy of the numeric-pvar with values either
incremented or decremented by 1. These functions provide the same functionality for
numeric pvars as the Common Lisp functions 1+ and 1- provide for numeric scalars.

EXAMPLES

The 1+11 function is a contraction of the expression

(+!! numeric-pvar (!! 1»

and performs identically.

Version 6.1, October 1991 765

1+11,1-11 *Lisp Dictionary
111111 I mUN m Hi Ii mlHlmlfi! N!liU lHi!H 11 Il ITm !!l 1m! Uffill

The 1-11 function is a contraction of the expression

(-!! numeric-pvar (!! 1»

and performs identically.

NOTES

An error is signalled if the numeric-pvar argument contains a non-numeric value in
any active processor.

REFERENCES

766

The function *incf can be used to destructively increment its argument pvar. See the
dictionary entry on *Incf for more information.

The function *decf can be used to destructively decrement its argument pvar. See the
dictionary entry on *decf for more information.

Version 6.1, October 1991

I
I

\~

