
Nonstop™ Systems

System Procedure Calls
Reference· Manual

Operating System Library

82359

NOTICE

Effective with the BOO/E08 software release, Tandem introduced a more formal nomenclature for its softwam
and systems.

The term "Nonstop 1+™ system" refers to the combination of Nonstop 1+ processors with all software that
runs on them.

The term "Nonstop™ systems" refers to the combination of Nonstop II™ processors, Nonstop TXP™ processors,
or a mixture of the two, with all software that runs on them.

Some software manuals pertain to the Nonstop 1+ system only, others pertain to the Nonstop systems only,
and still others pertain both to the Non.Stop 1+ system and to the Nonstop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the·
manual pertain.

NonStopTM Systems

System Procedure Calls
Reference Manual

Abstract
This manual describes the syntax for all system procedure calls. This
manual is for system and application programmers who need to call system
procedures from their programs.

Product Version
GUARDIAN BOO

Operating System Version
GUARDIAN BOO (Nonstop Systems)

Part No. 82359 AOO _______________________________ "'_'_, ___ ,. __
March 1985

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

Edition

DOCUMENT HISTORY

Part
Number

Operating
System
Version Date

1st Edition 82359 AOO GUARDIAN BOO March 1985

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright © 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or service marks of Tandem
Incorporated:

AXCESS BINDER CROSS REF DDL
DYNAMITE EDIT ENABLE ENCOMPASS
ENFORM ENSCRIBE ENTRY ENTRY520
EXCHANGE EXPAND FOX GUARDIAN
Nonstop Nonstop l+ Nonstop II Nonstop TXP
PCFORMAT PERUSE SNAX Tandem
TGAL THL TIL TMF
T-TEXT XRAY XREF

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

Computers

DYNABUS
ENCORE
ENVOY
INSPECT
PATHWAY
TAL
TRANSFER

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

NEW AND CHANGED INFORMATION

This is a new publication for the Nonstop systems. The existing
two-volume GUARDIAN 0 eratin S stem Pro rammin Manual (Part
Nos. 82336 82337 are being replaced by two separate manuals for
the BOO release of the GUARDIAN operating system: the System
Procedure Calls Reference Manual (Part No. 82358 AOO) and the
GUARDIAN Operating System Programmer's Guide (Part No. 82356
AOO).

The GUARDIAN Operating System Programmer's Guide tells
programmers how to use GUARDIAN calls (to those procedures
previously described in the GUARDIAN Operating System Programming
Manual) to accomplish various tasks.

Note that the scope of the System Procedure Calls Reference
Manual has been enlarged beyond that of the existing GUARDIAN
Operating System Programming Manual to include other products (in
order to aid the quick reference user), but the scope of the
GUARDIAN Operating System Programmer's Guide has NOT been
enlarged. The latter manual explains only how to perform tasks
using those features now covered in the existing GUARDIAN
Operating System Programming Manual. "How-to" information on
procedure calls that are part of other products, such as the
spooler, ENFORM, and SORT/MERGE, continue to reside in the
manuals for those products.

·For the BOO release, the following new features were added to the
procedure call information presented in this manual:

"1' 82359 AOO 3/85 iii

• 23 new procedures were added:

ADDDSTTRANSITION
CANCELPROCESSTIMEOUT
COMPUTEJULIANDAYNO
COMPUTETIMESTAMP
CONVERTPROCESSTIME
CONVERTTIMESTAMP
CPUTIMES
CURRENTS PACE
DEBUG PROCESS
DEVICEINF02
GETCPCBINFO
INTERPRETJULIANDAYNO

INTERPRETTIMESTAMP
JULIANTIMESTAMP
MYPROCESSTIME
PROCESSFILESECURITY
PROCESSORSTATUS
PROCESSORTYPE
PROCESSTIME
REMOTETOSVERSION
SETSYSTEMCLOCK
SIGNALPROCESSTIMEOUT
SYSTEMENTRYPOINTLABEL

• The following 16 procedures were modified:

CANCELTIMEOUT
CONTROL
CREATE
FILEINFO
FILERECINFO
GETSYSTEMNAME
NEWPROCESS
NEWPROCESSNOWAIT

PRIORITY
PROCESS INFO
REFRESH
SETLOOPTIMER
SETMODE
SETMODENOWAIT
SIGNALTIMEOUT
STOP

• Four new CONTROL operations was added:

Operation = 1, 11, 12, 21

• Eighteen new functions for SETMODE and SETMODENOWAIT were
added.

<function> = 3, 5, 6, 22, 27-29, 37, 57, 67, 90-95, 111,
110, 113

• Three new subtypes were added:

iv

3 for the 3207 tape controller
6 for the 5530 letter quality printer
32 for the DTR printer

/182359 AOO 3/85

CONTENTS

PREFACE ,,
SYNTAX CONVENTIONS

SECTION 1. INTRODUCTION TO SYSTEM PROCEDURE CALLS
Types of Operating and System Procedure Calls
SIO Procedures •.••••.•••••••.•••.
Syntax of a System Procedure Call •••••

SECTION 2. SYSTEM PROCEDURE
ABEND
ABORTTRANSACTION
ACTIVATEPROCESS
ACTIVATERECEIVETRANSID
ADDDSTTRANSITION ••••••••
ALLOCATESEGMENT
ALTERPRIORITY
ARMTRAP

CALLS

AWAI TIO
BEGINTRANSACTION
BLINKASCREEN •••••

CANCEL •••••••••••••••
CANCELPROCESSTIMEOUT
CANCELREQ
CANCELTIMEOUT
CHANGELIST
CHECKCLOSE
CHECKMONITOR
CHECKOPEN

.
. . . CHECKPOINT

CHECKPOINTMANY •••••
CHECK A SCREEN
CHECKSWITCH
CLOSE •••••••
COMPUTEJULIANDAYNO
COMPUTETIMESTAMP

/1 82359 AOO 3/85

.
. . . .

.

.

......

.....

....

.

xi

xiii

1-1
1-2
1-4
1-5

2-1
2-2
2-3
2-5
2-7
2-8

2-10
2-13
2-15
2-21

2-29
2-32

2-34
2-35
2-36
2-38
2-39
2-42
2-44
2-46
2-49
2-53
2-58
2-61
2-63
2-65
2-67

v

Contents

CONTI ME
CONTROL
CONTROLBUF .•••.
CONVERTPROCESSNAME
CONVERTPROCESSTIME
CONVERTTIMESTAMP
CPUTIMES •...•••..
CREATE
CREATEPROCESSNAME
CREATEREMOTENAME
CREATORACCESSID
CURRENTS PACE

DEALLOCATESEGMENT
DEBUG ••.••.••.
DEBUGPROCESS.
DEFINELIST
DEFINEPOOL .••••
DELAY •••••
DEVICE INFO
DEVICEINF02

EDITREAD ••.•..
EDITREADINIT
ENDTRANSACTION .••••
ENFORMFINISH •.•••
ENFORMRECEIVE
ENFORMSTART
EXPAND"" SCREEN

FILEERROR
FILEINFO
FILERECINFO
FIXSTRING
FL""SCREEN
FNAMECOLLAPSE
FNAMECOMPARE
FNAMEEXPAND
FORMATCONVERT
FORMATDATA •••••

.

. . .

.

GE~TCPCBINFO

GETCRTPID
GE~TDEVNAME

GETPOOL •••••
GETPPDENTRY
GETREMOTECRTPID
GETSYNCINFO
GETSYSTEMNAME
GETTMPNAME
GETTRANSID

vi

2-69
2-71
2-75
2-79
2-80
2-82
2-85
2-88

2-101
2-104
2-106
2-107

2-109
2-111
2-113
2-115
2-118
2-121
2-122
2-124

2-126
2-129
2-131
2-133
2-134
2-136
2-141

2-143
2-145
2-157
2-162
2-166
2-167
2-170
2-173
2-177
2-181

2-186
2-188
2-190
2-193
2-195
2-198
2-200
2-202
2-204
2-206

-'f' 82359 AOO 3/85

,

HALT POLL
HEAPSORT

INITIALIZER ••.•.••••
INTERPRETJULIANDAYNO
INTERPRETTIMESTAMP

JULIANTIMESTAMP

KEYPOSITION

LASTADDR
LASTRECEIVE
LOCATESYSTEM
LOCKFILE
LOCKREC
LOOKUPPROCESSNAME

MOM
MONITORCPUS
MONITORNET
MONITORNEW
MYPID
MYPROCESSTIME
MYSYSTEMNUMBER
MY TERM
NEWPROCESS
NEWPROCESSNOWAIT
NEXTFILENAME
NUMIN
NUMOUT

.....
.

.
...

.
.

OPEN ...
POSITION •••••••
POSITIONASCREEN
PRINTCOMPLETE
PRINTINFO
PRINTINIT •••
PRINTREAD
PRINTREADCOMMAND
PRINTSTART
PRINTSTATUS
PRIORITY •••••
PROCESSACCESSID
PROCESSFILESECURITY
PROCESS INFO
PROCESSORSTATUS
PROCESSORTYPE
PROCESSTIME
PROGRAMFILENAME

.....
.

.
..... PURGE •••

PUT POOL
Af' 82359 AOO 3/85

Contents

2-208
2-209

2-211
2-215
2-217

2-219

2-221

2-228
2-229
2-232
2-234
2-238
2-243

2-245
2-247
2-249
2-251
2-252
2-253
2-254
2-256

2-258
2-265
2-271
2-273
2-275

2-277

2-292
2-296
2-298
2-300
2-302
2-304
2-307
2-312
2-314
2-319
2-321
2-322
2-324
2-331
2-333
2-335
2-337
2-338
2-340

vii

Contents

READ ••••••.•
READ LOCK
READ"' SCREEN
READUPDATE
READUPDATELOCK
RECEIVEINFO
REFRESH
REMOTEPROCESSORSTATUS
Rl~MOTETOSVERS I ON
RENAME •••••••••••••
REPLY .••••••••••
REPOSITION •••••••••
RESERVELCBS
RESETSYNC
RESUMETRANSACTION

SAVEPOSITION
Sl~TLOOPTI MER
Sl~TMODE ••••••
SETMODENOWAIT
SETMYTERM
SJc:TPARAM
SETS TOP

SETSYNCINFO
SETSYSTEMCLOCK
SHIFTSTRING
SIGNALPROCESSTIMEOUT ••••••
SIGNALTIMEOUT
SORTERROR
SORTERRORDETAIL
SORTMERGEFINISH
SORTMERGERECEIVE
SORTMERGESEND
SORTMERGESTART
SORTMERGESTATISTICS
SPOOLCONTROL
SPOOLCONTROLBUF ••••••

. ~
. ~

SPOOLEND •••••••••••
SPOOLERCOMMAND
SPOOLEREQUEST
SPOOLERSTATUS
SPOOLJOBNUM
SPOOLSETMODE •••••
SPOOLS TART
SPOOLWRITE
S'rEPMOM

.
STOP . SUSPENDPROCESS
SYSTEMENTRYPOINTLABEL
TIME ••••••
T:CMESTAMP
TOSVERSION

viii

.

...

2-342
2-348
2-351
2-353
2-359
2-362
2-366
2-368
2-370
2-372
2-375
2-378
2-380
2-382
2-384

2-387
2-389
2-393
2-397
2-400
2-401
2-405

2-407
2-409
2-411
2-413
2-416
2-418
2-419
2-421
2-423
2-425
2-428
2-444
2-446
2-449
2-452
2-455
2-461
2-463
2-466
2-468
2-471
2-475
2-478
2-481
2-483
2-485

2-486
2-487
2-488

Aft 82359 AOO 3/85

UNLOCKFILE .•••••
UNLOCKREC •••••••
USERIDTOUSERNAME
USERNAMETOUSERID
USESEGMENT •••••• . .. -•
VERIFYUSER ...
WR! TE .•••••••••.
WRITEREAD
WRITEUPDATE
WRITEUPDATEUNLOCK

SECTION 3. SEQUENTIAL
CHECK"'BREAK
CHECK"'FILE
CLOSE"'FILE
GIVE"'BREAK
NO"'ERROR
OPEN"'FILE •.••••••••
READ"'FILE
SET"'FILE
TAKE"'BREAK
WAIT"'FILE
WRITE"'FILE

I/O PROCEDURES

APPENDIX A. CONTROL OPERATIONS

APPENDIX B. DEVICE TYPES AND SUBTYPES

APPENDIX C. SETMODE FUNCTIONS

APPENDIX D. SYNTAX SUMMARY

APPENDIX E. ENFORM ERRORS

APPENDIX F. INTERPROCESS SYSTEM MESSAGES

APPENDIX G. SORT/MERGE ERRORS

APPENDIX H. RESERVED PROCESS NAMES

~ 82359 AOO 3/85

Contents

2-489
2-491
2-494
2-495
2-496

2-498

2-502
2-507
2-511
2-517

3-1
3-2
3-4

3-11
3-14
3-16
3-19
3-26
3-29
3-39
3-41
3-43

A-1

B-1

C-1

D-1

E-1

F-1

G-1

H-1

ix

Contents

FIGURES

1-1 Sample Procedure Call••.••.••.•.••••.••.•..••••••.• 1-5
2-1 AWAITIO Action •••......••••.••••...•.•••.••••...••••.• 2-26
2-2 AWAITIO Operation •••••••••••••••••o••••••••••••••••••• 2-27
2-3 File Security Checking ········••••o•••••••••••••••••• 2-285
2-4 Effect of STEPMOM • • • • . • • • • • • .. • • • • • • • • . • . . • • . • • • 2-4 7 9

TABLES

1-1 Procedure Call Types •••...•.•••••••••••••••••••••••.••• 1-3
2-1 CONTROLBUF Operations ••••••••••••••••••••••••••••••••• 2-76
2-2 FILEINFO <filenum> and <filename> Parameters ••.•.•••• 2-155
2-3 OPEN <flags> Parameter ...•..••••••.••••••••••.••••••• 2-281
2-4 Exclusion and Access Mode Checking .••••••.•.••.•••••• 2-287
2-5 PRINTSTATUS Message Type and Parameters •.••.•••.••••• 2-317
2-6 SORTMERGESTART <flags> Fields ••.••••••••.••.•.•••••.• 2-439
2-7 SPOOLCONTROLBUF Operations ••••..•••••••••••••••••••.• 2-450
2-8 SPOOLERCOMMAND--Command and Subcommand Parameters •••• 2-457
3-1 CHECKAFILE Operations •••••••••••••.•.•••••••••.•••••••• 3-6
3-2 SETAFILE Operations •.••••••••••••••••••••••••••••••••• 3-32

X -'1J 82359 AOO 3/85

PREFACE

This reference manual describes the syntax of all system procedure
calls for the Nonstop systems.

This manual is for system and application programmers who need
to call system procedures from their programs. Familiarity with the
Transaction Application Language (TAL) or some other programming
language is recommended. Before using this System Procedure Calls
Reference Manual you should read:

• GUARDIAN Operating System Programmer's Guide (Part No. 82356 AOO)
for information about how to write programs using the GUARDIAN
operating system procedure calls

• Transaction Application Language (TAL) Reference Manual (Part No.
, 82081 AOO)

References to "DPl" and "DP2" in this manual have the following
meanings:

• DPl indicates the standard or base disc process for Nonstop l+ and
Nonstop systems.

• DP2 indicates an optional disc process for Nonstop systems.

In this manual, Section 1 gives an overview of the categories of
procedure calls and describes the format of a procedure call.

Section 2 describes each procedure call, except the sequential I/O
(SIO) procedures, in alphabetic order.

Section 3 describes the SIO procedures in alphabetic order.

Appendix A describes the CONTROL operations you specify in order to
perform device-dependent I/O operations.

Appendix B lists the device types and subtypes (such as discs,
printers, terminals, and so forth) that are used on the Tandem system
and are referenced by system procedure calls.

Af' 82359 AOO 3/85 xi

Appendix C lists the SETMODE functions you specify for use with I/O
devices (such as setting disc file security, setting terminal
interrupt characters, setting or clearing vertical tabs on a line
printer, and so forth).

Appendix D contains a syntax summary of all system procedure calls.

Appendix :B describes the ENFORM errors and their meanings.

Appendix F lists the numbered interprocess system messages sent to
processes and their meanings.

Appendix G describes the SORT/MERGE errors and their meanings.

Appendix H lists the process names that are reserved for use by
Tandem.

xii -'182359 AOO 3/85

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the conventions used in the syntax
notation in this manual.

Notation

UPPERCASE
LETTERS

lowercase
letters

Brackets []

Braces {}

Meaning

Uppercase letters represent keywords and reserved words:
you must enter these items exactly as shown.

Lowercase letters represent variables that you must
supply.

Brackets enclose optional syntax items. A vertically
aligned group of items enclosed in brackets represents
a list of selections from which you may choose one
or none.

Braces enclose required syntax items. A vertically
aligned group of items enclosed in braces represents
a list of selections from which you must choose only
one.

Ellipsis ••• An ellipsis immediately following a pair of brackets or
braces indicates that you can repeat the syntax items
enclosed within the brackets or braces any number of
times.

Punctuation All punctuation marks and symbols not described above
must be entered precisely as shown. If a punctuation
mark or symbol appears enclosed in quotation marks, it
is not a syntax descriptor: it is a required character,
and you must enter it as shown.

~ 82359 AOO 3/85

NOTE

In procedure calls, input parameters (those that pass
data from the calling program to the called procedure)
are commented with an "i" (input) to the right of the
parameter. Output parameters (those that return data
from the called procedure to the calling program) are
commented with an "o" (output) to the right of the
parameter. When a parameter can be both input and
output, it is commented with an "i" and an "o."

xiii

SECTION 1

INTRODUCTION TO SYSTEM PROCEDURE CALLS

System services are tasks that the GUARDIAN operating system or a
subsystem performs on behalf of a program such as retrieving a record
from a disc, writing a file to a tape, sending messages to other
processes, or alerting your process to some kind of system
malfunction.

Your programs can make use of these services by including calls to
appropriate system procedures. For example, using the READ procedure
allows a program to read data from a file.

To help you understand how to use the procedure call descriptions in
this manual, Section 1 describes:

• The different types of system procedure calls

• A procedure call sample explaining the syntax

• The sequential I/O (SIO) procedures

This manual includes all the procedures that you can call from
Transaction Application Language (TAL) programs and shows the syntax
required to call these procedures from TAL. You can also call these
procedures from FORTRAN, BASIC, or call some from COBOL programs. It
is best, however, to be cautious when calling GUARDIAN operating
system procedures from languages other than TAL, since some of the
procedures can interfere with the underlying run-time environment
already established by the language. When an operation (such as
reading or writing) can be performed within the language itself, it is
better to do so.

For information on translating the TAL calls in this manual to COBQL,
refer to the COBOL Reference Manual. For information on translating
the calls in this manual to FORTRAN, refer to the FORTRAN 77 Reference
Manual. For information on translating the calls in this manual to
BASIC, refer to the EXTENDED BASIC Reference Manual •

.., 82359 AOO 3/85 1-1

Introduction

TYPES OF OPERATING SYSTEM PROCEDURE CALLS

Table 1-1 shows the types of system procedures that you can call in
TAL programs and the manuals where you can find programming
information about these different types of procedures.

1-2 ..,. 82359 AOO 3/85

Introduction

Table 1-1. Procedure Call Types

--
Procedure Type Action Manuals

Checkpointing write information to a backup GUARDIAN Operating
Facility process. System Programmer's

Guide

EN FORM communicate with the query EN FORM User's Guide
processor.

ENTRY/ provides a method for creating ENTRY Screen Formatter
ENTRY520 and displaying application-defined Operating and Programming

forms on page-mode terminals. Manual and the ENTRY520
Screen Formatter Operating
and Programming Manual

File System perform operations, such as input GUARDIAN Operating System
and output, on files (this set of Programmer's Guide and the
procedures includes ENSCRIBE ENSCRIBE Programming
procedures). Manual

Formatter format output data and convert GUARDIAN Operating System
input data. Programmer's Guide

Memory allocate and links to extended GUARDIAN Operating System
Management memory segments and pools; Programmer's Guide
(Advanced provides exclusive access to data.
Memory
Management)

--1

Process run, suspend, and stop programs. GUARDIAN Operating System
Control Programmer's Guide

--
Security control access to processes and GUARDIAN Operating System

disc files. Programmer's Guide

Sequential 1/0 perform sequential input and out- GUARDIAN Operating System
(SIO) put operations to files. Programmer's Guide

SORT/MERGE control and execute sorting SORT/MEr?GE User's Guide
operations.

Spooler control attributes and contents of Spooler Programmer's Guide
jobs transmitted to printing
devices.

Transaction define and control TMF transac- Transaction Monitoring Facility
Monitoring tions. (TMF) Reference Manual
Facility
(TMF)

Traps and Trap detect critical error conditions. GUARDIAN Operating System
Handling Programmer's Guide

Utility perform miscellaneous operations GUARDIAN Operating System
such as translating a number from Programmer's Guide
displayed (string) form to integer
form and vice versa and getting a
timestamp.

I

~ 82359 AOO 3/85 1-3

Introduction

The GUARDIAN Operating System Programmer's Guide describes how to use
many of these procedures according to their function and type (the
checkpointing facility, file system, formatter, memory management,
process control, security, SIO, TMF, traps and trap handling, and
uitility procedures). However, in the System Procedure Calls
Reference Manual, the procedure descriptions are in alphabetic
order for easy reference and are not arranged by type.

This manual provides the following information for each procedure:

• Syntax

• Parameter decriptions

• Condition codes

• Considerations

• E:xamples

• Manual references

SIO Procedures

The SIO procedures are a standardized set of procedures that handle
I/O operations for different file types. The SIO procedures are a
good tool for ensuring consistency in programs that access files
sequentially. If you need to write to EDIT-format files, the SIO
procedures provide the only programmatic method to do so.

Generally, you should not use these procedures and other GUARDIAN
operating system I/O procedures together on the same file. For this
reason, SIO procedures are described separately in Section 3.

1-4 -'182359 AOO 3/85

,

Introduction

SYNTAX OF A SYSTEM PROCEDURE CALL

An example of the syntax used in this manual is shown in Figure 1-1.

CD ®
{<length>
{CALL

:= } FNAMECOLLAPSE (<internal-name>
} ,<external-name>

<length> returned value

INT

returns the number of bytes in <external-name>.

®
<internal-name> input

®
INT:ref:12

0
is the name to be converted.

CD "<length> :="

0
! i
! 0

This indicates that the procedure is a function procedure; it returns a value of the indicated type
(in this case INT) when referenced in an expression. You can specify the variable as <retval),
<status), <error-code), or some other appropriate name in other function procedure calls.

"CALL"

This is a TAL CALL statement. Any procedure that does not return a value must be invoked
through the TAL CALL statement. In addition, you can use a CALL statement to invoke a
function procedure if you do not need the returned value. You cannot invoke procedures from
FORTRAN by using "CALL'.'.

® This is the name of the system procedure that is called. It must appear in the program exactly
as shown.

® You must enclose the list of parameters in parentheses. Use commas to separate parameters
when there is more than one.

If you omit optional parameters, the placeholder comma"," must be present, unless you omit
the parameters from the end of the I ist.

0 The exclamation point indicates that a comment follows. The comment is either an "i" or an "o"
(or both), which indicates that the parameter is either an input (i) or an output (o) parameter (or
both). for a detailed description of input and output parameters, refer to the "Syntax Conven­
tions" description at the beginning of this manual.

® This line indicates whether the parameter is an input or an output parameter (or both).

Figure 1-1. Sample Procedure Call

'1J 82359 AOO 3/85 1-5

Introduction

1-6

® This line indicates the parameter type:

INT
INT(32)
STRING
FIXED

integer (one word)
doubleword integer (two words)
character string (one byte or half a word)
quadword integer (four words)

The parameter type is followed by a colon. Additional information after the colon includes:

value means the actual value or contents of a parameter are passed.

ref:x means this is a reference parameter; that is, the address of the parameter is passed.
(The statements within the program body must access the actual parameter contents
indirectly through the parameter location.) "x" indicates how many elements the
parameter contains. In this example, "12" indicates that the (internal-name) parameter
c-0ntains 12 elements.

ref:* means this is a reference parameter; how many elements returned varies according to
how many elements requested.

EXT means the parameter is a reference parameter accessed by an extended pointer.

NOTE

If a parameter is defined as "STRING:ref", a word-addressed variable (that is, an
integer) can be passed for that parameter; the TAL compiler produces instructions to
convert the word address to a byte address. An invalid address results if the word
address is greater than 32767.

0 This describes the information that is passed or returned in the parameter.

Figure 1-1. Sample Procedure Call (Continued)

S5023-001

~ 82359 AOO 3/85

SECTION 2

SYSTEM PROCEDURE CALLS

This section contains detailed reference information for all
system procedure calls. The information includes:

• A description of the call

• The syntax form for each call

• Parameter meanings of each call

• Condition code explanations for each call when applicable

• Considerations when using the call (added information about the
' procedure)

• Any applicable system messages

• Examples

""' 82359 AOO 3/85 2-1

ABEND

ABEND PROCEDURE

The ABEND procedure is used to delete the calling process and to
notify the creator process (with an ABEND system messa~Je) that
an abnormal condition led to the deletion~

When ABEND executes, all open files associated with the deleted
process automatically close. If the process owns BREAK, the process
gives up BREAK ownership.

The syntax for ABEND is:

~LL ABEND;

Condition Code Settings

The condition code has no meaning followi·ng a call to }~BEND.

Message

• Process Abnormal Deletion

The creator of the aborted process receives a process abnormal
deletion (ABEND) system message (-6) indicating that the deletion
occurred. (Refer to Appendix F for a list of all system messages
sent to processes.)

Exam~

CALL ABEND;

Related Programming Manual

J

For programming information about the ABEND process control procedure,
refer to the GUARDIAN Operating System Pr9grammer's Guide.

2-2 4J 82359 AOO 3/85

ABORTTRANSACTION

ABORTTRANSACTION PROCEDURE

ABORTTRANSACTION aborts and backs out a transaction. When the process
that issued BEGINTRANSACTION (or its backup) calls this procedure,
Transaction Monitoring Facility (TMF) backs out the data base changes
made for the process's current-transaction identifier.

The syntax for ABORTTRANSACTION is:

<status> := ABORTTRANSACTION:

<status> returned value

INT

returns zero, if the call succeeds, or a file system error
number. (Refer to the System Messages Manual for a list of all
file system errors.)

Condition Code Settings

The condition code has no meaning following a call to
ABORTTRANSACTION.

Considerations

• Transaction's State After the Call to ABORTTRANSACTION

•

When ABORTTRANSACTION returns, the transaction has not been backed
out, but the transaction's state has changed from active to
aborting. Later, the backout process will back out the transaction
by restoring its before-images to all disc files that it changed.
When backout is complete, the process releases the locks held for
that transaction identifier.

If the transaction is restarted with a new transaction identifier,
it is not able to access any records locked by the aborted
transaction until the following occurs: (a) backout is completed
for the aborted transaction and (b) the locks held by the aborted
transaction are released.

Obtaining Main Memory for LCB

If the procedure fails to obtain a link control block (LCB), then
ABORTTRANSACTION fails with file system error 30.

~ 82359 AOO 3/85 2-3

ABORTTRANSACTION

• Requesting Process and Current-Transaction Identifier

If the requesting process has no current-transaction identifier,
then ABORTTRANSACTION fails with file system error 75.

• Invalid or Obsolete Transaction Identifier

If the process that issues BEGINTRANSACTION (or its backup) did not
begin the transaction, or if the transaction identifier is no
longer in the system, this call returns file system error 78.

• When the Transaction Is Aborted

Any disc process that receives a subsequent I/O request for the
aborting transaction identifier rejects the request, and the
call returns file system error 97.

STATUS := ABORTTRANSACTION:

Related Programming Manual

For information about the ABORTTRANSACTION procedure, refer to the
Transaction Monitoring Facility_j_!~F)_ Reference Manual.

2-4 ~ 82359 AOO 3/85

ACTIVATEPROCESS

ACTIVATEPROCESS PROCEDURE

The ACTIVATEPROCESS procedure is used to return a process or process
pair from the suspended state to the ready state. (A process is put
in the suspended state if it is the object of a call to the
SUSPENDPROCESS procedure, or if it is suspended as the result of a
SUSPEND command issued from the command interpreter.)

The syntax for ACTIVATEPROCESS is:

CALL ACTIVATEPROCESS <process-id>); i

<process-id> input

INT:ref :4

is an array containing the process ID (PID) of the process to
be activated. If <process-id>[0:2] references a process pair
and <process-id>[3] is specified as -1, then both members of
the process pair are activated.

Condition Code Settings

< (CCL) indicates that ACTIVATEPROCESS failed, or no process
designated as <process-id> exists.

= (CCE) indicates that the process is activated.

> (CCG) does not return from ACTIVATEPROCESS.

Considerations

• Process Accessor ID

The caller of ACTIVATEPROCESS must be the super ID, the group
manager of the process accessor ID, or a process with the same
process accessor ID as the process or process pair being activated.
Refer to the GUARDIAN Operating System Programmer's Guide for
information about process accessor ID.

-'1J 82359 AOO 3/85 2-5

ACTIVATEPROCESS

CALL ACTIVATEPROCESS (PROGAID); activate process.

Related Programming Manual

For programming information about the ACTIVATEPROCESS process control
procedure, refer to the GUARDIAN Operating System Proqrammer's Guide.

2-6 /f' 82359 AOO 3/85

ACTIVATERECEIVETRANSID

ACTIVATERECEIVETRANSID PROCEDURE

ACTIVATERECEIVETRANSID is used to code $RECEIVE-queuing servers--that
is, servers that can read requests from $RECEIVE before replying to
previously read $RECEIVE requests. When a server calls this procedure
with a message tag obtained by a call to the LASTRECEIVE or
RECEIVEINFO file system procedure, the transaction identifier of the
message associated with the tag becomes the current-transaction
identifier for the server process. This multithreaded function
provides a server process with the ability to concurrently serve more
than one requester.

The syntax for ACTIVATERECEIVETRANSID is:

CALL ACTIVATERECEIVETRANSID (<message-tag>); i

<message-tag> input

INT:value

identifies a message request from the group of requests that
are currently queued by the server; it is the same parameter
that is passed by the server to the REPLY procedure. The

1 message tag must be an integer between 0 and (receivedepth-1),
inclusive, that is currently associated with a queued message.

Condition Code Settings

< (CCL) indicates an error.

= (CCE) indicates that ACTIVATERECEIVETRANSID was successful.

> (CCG) does not return from ACTIVATERECEIVETRANSID.

ACTIVATERECEIVETRANSID returns a condition code only.

Example

CALL ACTIVATERECEIVETRANSID (MSGAID);

Related Programming Manual

For programming information about the ACTIVATERECEIVETRANSID
procedure, refer to the Transaction Monitoring Facility (TMF)
Reference Manual.

~ 82359 AOO 3/85 2-7

ADDDSTTRANSITION PROCEDURE

The ADDDSTTRANSITION procedure allows a user with a super group ID to
add an entry to the daylight savings time (DST) transition table.

NOTE

The DST transition table must be loaded in time sequence
and with no gaps (see "Considerations").

The syntax for ADDDSTTRANSITION is:

CALL ADDDSTTRANSITION (<low-gmt>
,<high-gmt>
,<offset>);

<low-gmt> input

FIXED

1

i
l

is the Greenwich mean time (GMT) when <offset> is first
applicable (this form is the same as the form used for
COMPUTETIMESTAMP). Except for the first call, the <low-gmt>
of each call must be the same as the <high-gmt> of the previous
call. This implies that many calls have an <offset> parameter
of 0.

<high-gmt> input

FIXED:value

is the GMT when <offset> is no longer applicable.

<off set> input

INT:value

is a value of <offset> in seconds:

local civil time (LCT) := local standard time (LST) + <offset>

2-8 4J 82359 AOO 3/85

Condition Code Settings

< (CCL) indicates that you either:

• do not have a super ID, user identification

• loaded the DST table inconsistently (that is, the DST
table contains gaps or an overlap of entries)

• were loading the DST table at the same time someone
else was loading the DST table.

= (CCE) indicates that the DST table was loaded successfully.

> (CCG) does not return from ADDDSTTRANSITION.

Considerations

• Loading the DST Transition Table With No Time Gaps

Except for the first call, the DST transition table must
be loaded in time sequence with no gaps, for example, if you
load the following:

First Entry

1980 April 1, 2:00,
1980 Oct 1, 2:00, 1:00

Second Entry

1980 Oct 1, 2:00,
1981 April 1, 2:00, 0:00

Next Entry (must be)

1981 April 1, 2:00,

Example

CALL ADDDSTTRANSITION (LOW , HIGH , OFFSET)~

Related Programming Manual

None

~ 82359 AOO 3/85 2-9

ALLOCATESEGMENT

ALLOCATESEGMENT PROCEDURE

The ALLOCATESEGMENT procedure allocates an extended data segment for
use by the calling process.

NOTE

The call to ALLOCATESEGMENT must be followed by a call to
USESEGMENT in order to make the extended memory accessible
to the program. (Although you can have multiple extended
segments, you can only access them one at a time.)

The syntax for ALLOCATESEGMENT is:

<status> := ALLOCATESEGMENT (<segment-id>
,[<segment-size>]
, [<filename·>]
,[<pin>]):

<status> returned value

INT

i
i
i
i

returns a status word having one of the following values:

2-10

0 = no error
1-999 = file system error related to the CREATE or the

OPEN of the swap file (see <filename> parameter)
-1 = illegal <segment-id>
-2 = illegal <segment-size>
-3 = bounds violation on <filename>
-4 = illegal combination of options
-5 = unable to allocate segment space
-6 = unable to allocate segment page table space
-7 = security violation on attempt to share segment
-8 = <pin> does not exist
-9 = <pin> does not have the segment allocated

-10 = trying to share segment with self

~ 82359 AOO 3/85

ALLOCATESEGMENT

<segment-id> input

INT:value

is the number by which the process chooses to refer to the
segment. Segment IDs are in the following ranges:

0-1023
Other IDs

can be specified by user processes.
are reserved for Tandem-supplied software.

No process can supply a segment ID greater than 2047.

<segment-size> input

INT(32):value

is the number of bytes that the segment must hold. This value
must be greater than 0 and less than %777777777D. If you do not
supply this parameter, then you must give the <pin> parameter.

<filename> input

INT:ref :12

if present, is the name of a "swap file" to be associated
with the segment. If the file exists, all data in the file
is used as initial data for the segment. If the file does not
exist, one is created. If the process terminates without
deallocating the segment, any data still in memory is written
back out to the file. ALLOCATESEGMENT must be able to allocate
a sufficient number of file extents to contain all memory in the
segment.

The parameter can be a volume name with a blank subvolume and
file; ALLOCATESEGMENT allocates a temporary swap file on the
indicated volume.

If you do not specify the parameter, ALLOCATESEGMENT uses the
volume of the data stack swap file to create a temporary swap
file for the new segment.

~ 82359 AOO 3/85 2-11

ALLOCATESEGMENT

<pin> input

INT: value

designates that the segment specified by <segment-id> is to be
shared with the process specified by <pin>. In order for this
to occur, one of the following must be true: 1) the processes
must execute in the same processor and must share the same
access ID, 2) this process's access ID must be the group manager
for the other's access ID, or 3) this process's access ID must
be the super ID.

Condition Code Settings

The condition code has no meaning following a call to
ALLOCATESEGMENT (see the <status> parameter definition).

Considerations

• Existing Temporary File Name

The <filename> parameter can specify an existing temporary file
name allowing the application program to control file attributes
(such as extent sizes or the clear-on-purge attribute): the file
is automatically purged when the segment is deallocated or the
application terminated.

• Preventing Automatic Temporary File Purge

l~LLOCATESEGMENT opens the swap file in a READ/WR! TE/protected
manner. A process can prevent the automatic file purge of
a temporary swap file by opening the file for READ-only/shared
access before the segment is deallocated9

Example

STATUS := ALLOCATESEGMENT (SEGMENTAID , SEGASIZE , SWAPAFILE):
! standard call to create a user segment:

"swapAf ile" parameter can be omitted.

Related Programming Manual

For programming information about the ALLOCATESEGMENT memory
management procedure, refer to the GUARDIAN Operating System
Programmer's Guide.

2-12 ..,. 82359 AOO 3/85

ALTERPRIORITY

ALTERPRIORITY PROCEDURE

The ALTERPRIORITY procedure is used to change the execution priority
of a process or process pair.

A process or process pair has two priority values: the initial
priority value and the current priority value. ALTERPRIORITY changes
both priority values to the specified value.

The syntax for ALTERPRIORITY is:

CALL ALTERPRIORITY { <process-id>
,<priority>)~

<process-id> input

INT:ref :4

i
i

is an array containing the process ID of the process whose
execution priority is to be changed. If <process-id>[0:2]
references a process pair and <process-id>[3] is specified
as -1, then the call applies to both members of the process
pair.

<priority> input

INT:value

is a new execution priority value in the range of {1:199} for
<process-id>.

Condition Code Settings

< {CCL) indicates that ALTERPRIORITY failed, or no process
designated as <process-id> exists.

= {CCE) indicates that the priority of the process is altered.

> {CCG) does not return from ALTERPRIORITY.

~ 82359 AOO 3/85 2-13

ALTERPRIORITY

Considerations

• Process Accessor ID

The caller of ALTERPRIORITY must be the super ID, be the
group manager of the process accessor ID, or a process with the
same process accessor ID as the process or process pair priority
being changed. Refer to the GUARDIAN Operating System Programmer's
Guide for further information about the process accE~ssor ID.

Exam~

CALL ALTERPRIORITY (PID , PR!);

Related Programming Manual

None

2-14 4J 82359· AOO 3/85

ARMTRAP

ARMTRAP PROCEDURE

The ARMTRAP procedure is used to specify a location within the
application program where execution begins if a trap occurs. The
program can use information passed to investigate the cause of the
error.

The syntax for ARMTRAP is:

CALL ARMTRAP (<traphandlr-addr>
,<trapstack-addr>);

<traphandlr-addr> input

INT:value

i
i

is a label (nonzero P register value) that identifies a
statement in the program where control transfers if a trap
occurs.

If 0 is specified for <traphandlr-addr>, this means to reset
the trap mechanism after a trap occurs, thus causing the process
to restart. The process's registers at the time of the restart

i are set to the values indicated by the following 'L' relative
locations:

'L' [-6] = unused
'L' [-5] = new value for space ID in stack marker ENV

format: LS = .<4>, cs = .<7>, index = .<11:15>
(see Considerations)

'L' [-4] = trap number
'L' [-3] = new value for s register
'L' [-2] = new value for p register
'L' [-1] = new value of hardware ENV register
'L' [0] = new value for L register
'L' [1] = new value for RO
'L' [2] = new value for Rl
'L' [3] = new value for R2
'L' [4] = new value for R3
'L' [5] = new value for R4
'L' [6] = new value for R5
'L' [7] = new value for R6
'L' [8] = new value for R7.

NOTE

'L'[-5] and 'L'[-1] are combined into new hardware ENV.

Af' 82359 AOO 3/85 2-15

ARMTRAP

<trapstack-addr> input

INT:value

is an address specifying the local data area for the
application process's trap handler. <trapstack-addr> also
indicates where the trap number and stack marker at the time of
the trap are passed to the application process. }~fter a trap
occurs, 'S' and 'L' are set to <trapstack-addr> plus six; the
six words starting at <trapstack-addr> plus one are (given
relative to the new 'L' setting):

'L'[-6] is unused
'L'[-5] is the stack marker ENV register with a

space ID at the time of the trap
'L' [-4] is the trap number: 0 = illegal address reference

1 = instruction failure
2 = arithmetic overflow
3 = stack overflow
4 = process loop timer timeout

11 = memory manager read error
12 = no memory available
13 = uncorrectable memory error

'L' [-3] is the value of 'S' at the time of the trap; it is
%177777 if the trap occurs while executing in
system code or system library

'L'[-2] is the value of 'P' at the time of the trap. The
'P' value associated with the space ID in 'L'[-5]
completely identifies the location of the trap.

'L'[-1] is the value of the hardware 'ENV' at the time of the
trap

'L' is the value of 'L' at the time of the trap.

If <trapstack-addr> is passed as a value < 0, then any trap
results in the process being stopped with an abnormal deletion
indication (that is, ABEND message).

'------------------------------~---~--·~---·-~-----------

Condition Code Settings

The condition code has no meaning following a call to ARMTRAP.

2-16 ~ 82359 AOO 3/85

ARMTRAP

Considerations

• Space ID, Stack Marker ENV and Hardware ENV Register

Space ID consists of a code
user space, a library space
space, and a 5-bit index to
possible you are referring.
Manual for more information

space bit that signifies system or
bit that signifies code or library
indicate which segment of the 32
Refer to the System Description

about space IDs.

On a procedure call, the space ID of the calling procedure is
placed into the stack marker ENV register 'L'[-1]. At the time of
a trap, the stack marker ENV register at 'L'[-1] contains the
space ID of the location of the trap. When exiting the
trap handler, execution resumes at the location identified by the
'P' register at 'L'[-2] and space ID in the stack at 'L'[-5]. To
change the location of where execution is to resume, you need to
change the 'P' register value as well as the space ID in the stack
at 'L'[-5] to reflect the new location within your program. Refer
to the following Consideration, "Calling ARMTRAP When Using Multi­
Segment Programs."

• Calling ARMTRAP When Using Multisegment Programs

The call to ARMTRAP that initially arms a trap handler must be in
the same segment as the trap handling procedure when using multi­
segment programs. Existing trap handlers in programs that become
multisegment programs might not have to be modified. The only
time a trap handler needs to be modified is when you want to access
the space ID or change the resume location of a multi-segment
process after a trap.

• Exiting an Application Process's Trap Handler Procedure

If the application process's trap handling procedure is entered
because of a trap, an exit from the procedure must be through a
call to ARMTRAP, with <traphandlr-addr> specified as "0." The
procedure must use ARMTRAP (it cannot use EXIT) to exit through the
stack marker at the current 'L' register location. (This would
result in an invalid 'S' register setting following the exit.)

• Trap Handler and a Call to a System Procedure

If the trap handler calls any operating system procedure, at
least 350 words must be available between the trap address value,
specified to ARMTRAP, and the last word in the application's data
area or 'G'[32767], whichever is less.

~ 82359 AOO 3/85 2-17

ARMT:RAP

• Trap Handler Data Area

Since the area below the stack pointer can be used internally by
the operating system before ARMTRAP is called, do not locate the
trap handler data area below the memory stack pointer.

• Base Address Equivalencing and Declaring Local Variables

Any local variables in the application program's trap handling
procedure must be declared relative to the L registE~r by using
base-address equivalencing. Base-address equivalencing relative
to the L register is of the form:

<type> { [•] <name> = 'L' [{ + I - } <word-offset>] } •• "

where

<type> is the data type of the variable <name>.

<word-offset> specifies a positive or negative offset from
the L register where the variable exists.

NOTE

Variables declared in this form cannot be initialized.

The trap handling procedure must contain a statement that
explicitly allocates storage for any locally declarE~d variables
(see Consideration, "Saving the Register Stack Registers").

• Saving the Register Stack Registers

The stack registers (that is, RO-R7) contains the values they had
at the time of the trap upon entry to the application process's
trap handler. To save these values, the first statement of the
trap handler must be:

CODE(PUSH %777)

This will save the register stack contents. Local storage can
then be allocated by adding the appropriate value to 'S' through a
statement of the form:

2-18

CODE (ADDS <num-locals>

<num-locals> is a LITERAL defining the number of words of
local storage needed.

4J 82359 AOO 3/85

• Value for the P Register

The value for the P register at the time of the trap depends
upon the trap condition:

trap p register

0 I
1 I
2 I + 1
3 ?
4 I

11 I
12 I
13 ?

where

ARMTRAP

I = the address of the instruction being executed at the time of
the trap.

? = undefined.

• Overflow Trap and the Process Continuing

If the trap handler is entered because of an overflow trap and the
application process intends to continue processing, then the
overflow bit in the ENV register value in 'L'[-1] of the trap

~ handler must be set to zero before the trap mechanism is rearmed.
Otherwise, another overflow trap immediately occurs.

• How to Avoid Writing Over the Application's Data Stack

If 'L'[-3] (value of 'S' at time of trap) is %177777, the trap
handler should not reset traps without first changing 'L'[-3] to
a more appropriate value. Otherwise, G[O] through G[lO] of the
application's data stack is overwritten.

~ 82359 AOO 3/85 2-19

ARMTRAP

PROC TRAPPROC:
BEGIN
CALL ARMTRAP (@TRAP, $LMIN (LASTADDR , %77777) - 500);

! setting the trap.
EXIT
TRAP;

END

PROC MAIN PROC;
BEGIN

CALL TRAPPROC;

END;

In the above example, @TRAP is the label at the beginning of the
Tandem Application Language trap handler procedure where control is
transferred if a trap occurs. The $LMIN expression is the address of
the local data area where the trap handler runs (its data area).
Refer to the GUARDIAN Operating System Programmer's Guide for a
detailed example using the ARMTRAP procedure.

Related Programming Manual

For programming information about the ARMTRAP trap handling procedure,
refer to the GUARDIAN Operating System Pr99rammer's Guide.

2-20 ~ 82359 AOO 3/85

AWAI TIO

AWAITIO PROCEDURE

The AWAITIO procedure is used to complete a previously initiated
I/O operation. Use AWAITIO to:

• Wait for the operation to complete on:

a. A particular file

Application process execution suspends until the completion
occurs. A timeout is considered to be a completion in this
case.

b. Any file or for a timeout to occur.

A timeout is not considered a completion in this case.

• Check for the operation to complete on:

a. A particular file

The call to AWAITIO immediately returns to the application
process, regardless of whether there is a completion or not.
(If there is no completion, an error indication returns.)

~ b. Any file

You can specify a time limit if AWAITIO is used to wait for a
completion to increase the time allotted to completing the waited-for
operation.

The syntax for AWAITIO is:

CALL AWAITIO (<f ilenum>

<f i lenum>

INT:ref :l

, [<buf fer-addr> l
, [<count-transferred> l
, [<tag> l
, [<t i me 1 i mi t > l) ;

input, output

i, 0

0
0

0
i

is the number of an open file. If a particular <filenum> is
passed, AWAITIO applies to that file.

~ 82359· AOO 3/85 2-21

AWAI TIO

If <filenum> is passed as -1, the call to AWAITIO applies
to the oldest incomplete operation pending on each file.
The specific action depends on the value of the <timelimit>
parameter (see the <timelimit> parameter below).

AWAITIO returns into <f ilenum> the file number associated with
the completed operation.

<buf fer-addr> output

INT:ref :l

returns the address of the <buffer> specified when the
operation was initiated.

NOTE

If the actual parameter is used as an address pointer
to the returned data and is declared in the form
INT .<buffer-addr>, then it should be returned to AWAITIO
in the form @<buffer-addr>.

<count-transferred> output

INT:ref :l

returns the count of the number of bytes transferred because of
the associated operation.

<tag> output

2-22

INT(32):ref:l

returns the application-defined tag that was stored by the
system when the I/O operation associated with this completion
was initiated.

/f' 82359 AOO 3/85

AWAI TIO

<timelimit> input

INT(32):value

indicates whether the process waits for completion instead
of checking for completion. If <timelimit> is passed as:

<> OD

= -lD

= OD

< -lD

omitted

a wait-for-completion is specified. <timelimit>
then specifies the maximum time (in .al-second
units) that the application process can wait
(that is, be suspended) for completion of a
waited-for operation.

an indefinite wait is indicated.

a check for completion is specified. AWAITIO
immediately returns to the caller, regardless of
whether or not an I/O completion occurs.

file system error 22 occurs.

no limit exists, and an indefinite wait is
indicated.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that an I/O operation completed.

> (CCG) indicates that a warning occurred (call FILEINFO).

Considerations

• Completing Nowait Calls

Each nowait operation initiated must be completed with a
corresponding call to AWAITIO.

--If AWAITIO is used to wait for completion (<timelimit> <> OD) and
a particular file is specified (<filenum> <> -1), then completing
AWAITIO for any reason is considered a completion.

--If AWAITIO is used to check for completion (<timelimit> = OD) or
used to wait on any file (<filenum> = - 1), completing AWAITIO
does not necessarily indicate a completion.

""'1 82359 AOO 3/85 2-23

AWAI TIO

If you perform an operation using one of the following procedure
calls with a file opened nowait, you must complete the operation
with a call to the AWAITIO procedure:

CONTROL
CONTROLBUF

LOCKFILE
LOCKREC

READ
READ LOCK
READUPDATE
READUPDATELOCK

SETMODENOWAIT

UNLOCKFILg
UNLOCKREC

WRITE
WRITEREAD
WRITEUPDATE
WRITEUPDATEUNLOCK

• Order of I/O Completion With SETMODE 30

Specifying SETMODE 30 allows nowait I/O operations t:o complete in
any order. However, I/O operations that complete at the same time
return in the order issued. An application process that uses this
option can use the <tag> parameter to keep track of multiple I/O
operations associated with a file OPEN.

• Order of I/O Completion Without SETMODE 30

If SETMODE 30 is not set, the oldest incomplete I/O operation
always completes first; therefore, AWAITIO completes I/O operations
associated with the particular open of a file in the~ same order as
initiated.

• Error Handling

If an error indication returns (that is, condition c:ode is CCL
or CCG), you can pass the file number returned by AWAITIO to the
FILEINFO procedure to determine the cause of the error. If
<f ilenum> = -1 (that is, any file) is passed to AWAITIO and an
error occurs on a particular file, AWAITIO returns, in <filenum>,
the actual file number associated with the error.

• Operation Timed Out

If an error indication returns and a subsequent call to FILEINFO
returns error 40, the operation is considered incomplete and
AWAITIO must be called again.

2-24 Af' 82359 AOO 3/85

•

•

AWAI TIO

WRITE Buffers

The contents of a buffer between a nowait initiation (for example,
a call to WRITE) and the corresponding nowait completion (that is,
a call to AWAITIO) should not be altered.

No Nowait Operation

You should not call AWAITIO unless you initiate a nowait operation
prior to the call; otherwise, an error indication returns (CCL). A
subsequent call to FILEINFO returns error 26.

• AWAITIO Completion Summary

How AWAITIO completes depends on whether the <f ilenum> parameter
specifies a particular file or any file and on what the value of
<timelimit> is when passed with the call. The action taken by
AWAITIO for each combination of <f ilenum> and <timelimit> is
summarized in Figure 2-1.

• AWAITIO Operation

The operation of the AWAITIO procedure is shown in Figure 2-2.

"1 82359 AOO 3/85 2-25

AWAI'rIO

(time limit) 0 (time limit) =I= 0
- -- - - - - - -.--------------------..--·---------------

Particular
File

<fn) = (file num)

CHECK for any <file num)
1/0 completion.

COMPLETION
File number is returned in (fn > .
Tag of completed call is returned
in (tag).

NO COMPLETION
CCL (error 40) i"s returned.
File number returned is in <fn).
No 1/0 operation is canceled.

WAIT for any <file num)
1/0 completion.

COMPLETION
File number is returned in (fn).
Tag of completed call is returned
in (tag).

NO COMPLETION
CCL (error 40) is returned.
File number is returned in <fn).
Oldest (file num) ~/O operation is
canceled.
Tag of canceled call is returned
in (tag).

--------1------------------r------------------

Any File

<fn) = -1

CHECK for any 1/0 completion on
any open file.

COMPLETION
File number of completed call is
returned in <fn).
Tag of completed call is returned in
(tag) -

NO COMPLETION
CCL (error 40) is returned.
The value -1 is returned in (fn).
No 1/0 operation is canceled.

WAIT for any 1/0 completion on any
open file.

COMPLETION
File number of completed call is
returned in (fn).
Tag of completed call is returned in
(tag>.

NO COMPLETION
CCL (error 40) is returned.
The value -1 is returned in <fn).
No 1/0 operation is canceled.

l Notes: (fn > = <flle number> I
SETMODE :30 Set

S5023-002

Figure 2-1. AWAITIO Action

2-26 "''f 82359 AOO 3/85

CCL
<error> = 40

Completion

Timeout

CCL
<error> = 40

._, 82359 AOO 3/85

> -1
Particular File

CallAWAITIO

< -1

Timeout

CCL <error> = 22

-1
Any File

Figure 2-2. AWAITIO Operation

AWAI TIO

Timeout

CCL
<error> = 40

85023-003

2-27

AWAI TIO

Example

CALL AWAITIO (TERMANUM , BUFFER , NUMAREAD , TAG , FIVEAMINUTES);

Related Programming Manual

For programming information about the AWAITIO file system procedure,
refer to the GUARDIAN Operating System Prpgrammer's Guide.

2-28 LJ 82359 AOO 3/85

BEGINTRANSACTION

BEGINTRANSACTION PROCEDURE

BEGINTRANSACTION starts a new transaction. When you call this
procedure, the Transaction Monitoring Facility (TMF) creates a new
transaction identifier that becomes the current-transaction identifier
for the process issuing BEGINTRANSACTION.

The syntax for BEGINTRANSACTION is:

<Status> := BEGINTRANSACTION (<trans-begin-tag> !o

<status> returned value

INT

returns a zero, if the call succeeds, or a file system error
number. (Refer to the System Messages Manual for a list of all
file system errors.)

<trans-begin-tag> output

INT(32):ref

returns a value that identifies the new transaction identifier
among other transaction identifiers that the calling process
pair has began. Nonstop process pairs and processes that have
multiple concurrent active transactions require this parameter.

Condition Code Settings

The condition code has no meaning following a call to
BEGINTRANSACTION.

Considerations

• Transaction Identifier

Each transaction is distinguished from other transactions by a
four-word transaction identifier, which is created when you

Af' 82359 AOO 3/85 2-29

BEGINTRANSACTION

call the BEGINTRANSACTION procedure. The form of the transaction
identifier is:

transid[0].<0:7> contains 1 plus the EXPAND system number of the
system in which you call BEGINTRANSACTION.
This is 0 for a system that is not part of a
network. The system number identifies the home
node of the transaction •

. <8:15> contains the number of the processor in which
BEGINTRANSACTION originated.

transid[l:2] contains a double-word sequence number to make
the transaction identification unique.

transid[3] contains a "crash count" indicating the number
of times the home node (of the transaction) has
a total system failure since the last time
the TMFCOM command I NI TI ALI ZE TMli' is issued on
the home node.

• Restoring a Transaction Identifier

The value returned to the <trans-begin-tag> can be passed to the
RESUME'rRANSACTION procedure to restore to currency a transaction
identifier previously begun by this process (or its backup). See
the explanation of RESUMETRANSACTION in the Transaction Monitoring
Facility (TMF) Reference Manual for more details on this operation.

• Sequence-Number Counter of the Processor

When BEGINTRANSACTION is executed, it increments the sequence­
number counter of the processor in which it executes. The value of
the sequence-number counter is placed in transaction identifier
<transid>[l:2]. See the Transaction Monitoring Fac:ilit:..Y, (TMF)
Reference Manual for a descr1pt1on of the sequence-number counter.

• Out-of-Bounds Parameter or Buffer Address

If you specify an out-of-bounds application paramet~~r or buffer
address parameter--that is, a pointer to the buffer has an address
that is greater than the MEM associated with the data area of the
process--then the call returns with file system error 22.

• Obtaining Main Memory Space For a Link Control Block (LCB)

If the procedure failed to obtain an LCB, then BEGINTRANSACTION
returns file system error 30.

• When BEGINTRANSACTION Fails

BEGINTRANSACTION fails if TMF is not running on the local system,
or the remote system that you try to access. In either case, the
call returns file system error 82.

2-30 -'1 82359 AOO 3/85

•

•

BEGINTRANSACTION

Too Many Transactions

If a process begins more concurrent transactions than it can handle
(that is, the OPENS against the transaction pseudofile (TFILE)
exceed that specified when TFILE was opened) or it attempts more
than one open against a TFILE that is not open, the call is
rejected with file system error 83. You can have no more than 100
OPENS against the TFILE.

If TMF Is Not Configured

If you attempt BEGINTRANSACTION on a system where TMF is not
configured, the call fails and error 84 returns.

Example

STATUS := BEGINTRANSACTION (TRANSABEGINATAG);

Related Programming Manual

For programming information about the BEGINTRANSACTION procedure,
refer to the Transaction Monitoring Facility (TMF) Reference Manual.

Af' 82359 AOO 3/85 2-31

BLINK""SCREEN

BLINK""SCREEN PROCEDURE

For users of the ENTRY or ENTRY520 screen formatter, BLINK""SCREEN
places control characters into the application program's I/O buffer,
which causes certain characters to blink when appearing on a terminal
screen, or which clears the blinking on a data-entry field. When
output, this control sequence leaves the cursor over the first
character of the field that is blinking or not blinking.

The syntax for BLINK""SCREEN is:

<contrl-chars> := BLINK""SCREEN @<screen-name>
,SCREEN
,<buffer>
,<field-name>
,<blink>) :

i
0

i
i
i

<contrl-chars> returned value

INT

returns the number of control characters that are placed into
the application program's I/O buffer.

<screen-name> input

INT:value

is the address of the read-only array that has the form
definition (refer to the ENTRY Screen Formatter Operating and
Programming Manual or the ENTRY520 Screen Formatter Operating
and Programming Manual for an explanation of "form definition").

SCREEN output

2-32

STRING:ref :*

is the required array named SCREEN where the entry data is
placed. All fields are null-terminated; so, you can access them
using the Transaction Application Language (TAL) SCAN statement.
Each field is without leading and trailing blanks: in other
words, each field is left-justified.

'1' 82359 AOO 3/85

BLINKA SCREEN

<buffer> input

STRING: ref:*

is the application program's I/O buffer where the control
sequence is placed. If you want an entire field to blink,
then the control sequence is 20 characters long. To stop
a field from blinking, you must specify 18 control-sequence
characters.

<field-name> input

STRING: ref:*

is the name of the entry field you want to blink or stop
blinking.

<blink> input

INT:value

is nonzero to cause an entry field to blink or zero to stop
the entry field from blinking.

Condition Code Settings

The condition code has no meaning following a call to BLINKASCREEN.

Example

NUMACHARS := BLINKASCREEN (@X , SCREEN , BUF , XANAME , 1):

Related Programming Manuals

For programming information about the BLINKASCREEN entry procedure,
refer to the ENTRY Screen Formatter Operating and Programming Manual
or the ENTRY520 Screen Formatter Operating and Programming Manual.

~ 82359 AOO 3/85 2-33

CANCEL

CANCEL PROCEDURE

The CANCEL procedure is used to cancel the oldest incomplete
operation on a file opened nowait.

NOTE

You can cancel a specific call, identified with a <tag>
parameter, using a call to CANCELREQ.

The syntax for CANCEL is:

CALL CANCEL (<filenum>); i

<f ilenum> input

INT:value

is the number of an open file whose oldest incomplete
operation you want to cancel.

Condition Code Settings

(CCL) indicates that an error occurred (call FILEINFO).

(CCE) indicates that the operation was canceled.

(CCG) does not return from CANCEL.

Example

CALL CANCEL (SOMEAFILE);

Related Programming Manual

None

2-34

the operation on this file is to be
canceled.

"1J 82359 AOO 3/85

CANCELPROCESSTIMEOUT

CANCELPROCESSTIMEOUT PROCEDURE

The CANCELPROCESSTIMEOUT procedure cancels a process-time timer
previously initiated by a call to the SIGNALPROCESSTIMEOUT procedure.

The syntax for CANCELPROCESSTIMEOUT is:

CALL CANCELPROCESSTIMEOUT (<tag>): i

<tag> input

INT:value

is the identifier associated with the timer to be canceled
or -1 if all timers set by calls to SIGNALPROCESSTIMEOUT by
that process are to be canceled.

Condition Code Settings

< (CCL) is not returned by CANCELPROCESSTIMEOUT.

= (CCE) indicates that CANCELPROCESSTIMEOUT was successful.

> (CCG) indicates that <tag> was invalid.

Considerations

• The CANCELPROCESSTIMEOUT procedure measures the time the process is
executing. This procedure includes only the time spent in process
code.

Example

CALL CANCELPROCESSTIMEOUT (TIMERTAG):

Related Programming Manual

For programming information about the CANCELPROCESSTIMEOUT procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 2-35

CANCELREQ

CANCELREQ PROCEDURE

The CANCELREQ procedure is used to cancel an incomplete operation,
identified by a file number and tag, on a nowait file.

The syntax for CANCELREQ is:

..---·-------------------,-

CALL CANCELREQ (<f ilenum> i
[, <tag>]) ; i

<f ilenum> input

INT:value

is the number of an open file, identifying the file whose
operation did not complete and is to be canceled.

<tag> input

INT(32):value

is for nowait only. <tag> is a value you define that uniquely
identifies the operation associated with this CANCgLREQ.

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation was canceled.

Condition Code Settings

< (CCL) does not return from CANCELREQ.

= (CCE) indicates that the operation was canceled.

> (CCG) indicates that an error occurred (call FILEINFO).

2-36 "182359 AOO 3/85

CANCELREQ

Considerations

• Using the <tag> Parameter

If you use the <tag> parameter, the system cancels the oldest
incomplete operation associated with that tag value. If you do not
provide a <tag>, the system cancels the oldest incomplete operation
for <f ilenum>.

• If you omit the <tag> parameter, CANCELREQ works exactly like
CANCEL.

Example

CALL CANCELREQ (SOMEAFILE , 14D);

Related Programming Manual

operation 14 of someAf ile
was canceled.

For programming information about the CANCELREQ procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

Lf' 82359 AOO 3/85 2-37

CANCELTIMEOUT

CANCELTIMEOUT PROCEDURE

The CANCELTIMEOUT procedure cancels an elapsed-time timer previously
initiated by a call to the SIGNALTIMEOUT procedure.

The syntax for CANCELTIMEOUT is:

CALL CANCELTIMEOUT (<tag>); i

<tag> input

INT:value

is the identifier associated with the timer to be canceled
or -1 if all timers set by calls to SIGNALTIMEOUT by that process
are to be canceled.

Condition Code Settings

< is not returned from CANCELTIMEOUT. (CCL)

(CCE)

(CCG)

indicates that CANCELTIMEOUT completed successfully.

> indicates that <tag> was invalid.

Considerations

• The CANCELTIMEOUT procedure measures the actual elapsed time (the
wall clock) that this process executes. This procedure includes
the time spent in process code, system code, and interrupt handler
code.

Example

CALL CANCELTIMEOUT (TIMERTAG);

Related Programming Manual

For programming information about the CANCELTIMEOUT process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-38 "f' 82359 AOO 3/85

CHANGELIST

CHANGELIST PROCEDURE

The CHANGELIST procedure is used only when the application program
acts as a supervisor or tributary station in a centralized multipoint
configuration.

Within a supervisor station, CHANGELIST performs one of the following
operations:

• Specifies continuous or noncontinuous polling

• Enables or disables polling of a particular station

• Resumes polling of partially disabled (that is, nonresponding)
stations

• Performs the activation or deactivation of a tributary station
by altering the setting of the poll state bit for a particular
entry.

NOTE

If polling is in progress when you make the call to
CHANGELIST, the specified changes do not take effect
until polling completes either on its own or as the result
of a call to HALTPOLL.

The syntax for CHANGELIST is:

CALL CHANGELIST (<f ilenum>
,<function>
,<parameter> >:

<f ilenum> input

INT:value

i
i
i

is the name of the one-word integer variable specified in the
OPEN call that opened the line.

'1J 82359 AOO 3/85 2-39

CHANGELIST

<function> input

INT: value

is an integer value specifying what change is to be made:

>= 0

-1

-2

changes the poll state bit. In this case, <function>
also specifies the relative address of the particular
station address within the address list (0 indicates
the first entry, 1 the second entry, and so forth).
The <parameter> value described under "Considerations"
specifies whether you want the bit to be set or cleared.

changes the polling type. The <parameter> value
described below specifies whether you want continuous
polling or you want the polling list to be traversed a
finite number of times.

restores all partially disabled stations.

<parameter> input

INT:value

is an integer value used in conjunction with the <function>
value to specify what change is to be made.

<function> >= 0 The <parameter> value specifies whether you
want the poll or select state bit set or
cleared as follows:

0 = cleared
1 = set

depending upon whether the station list is
that of a supervisor or a tributary station:

• Within a supervisor station, the poll state
bit enables (clears) or disables (sets) the
polling of the particular tributary
station.

• Within a tributary station, the poll state
bit activates (clears) or deactivates
(sets) the tributary station with regard to
its ability to respond to a poll or select
of the designated station address.

2-40 ~ 82359 AOO 3/85

CHANGELIST

<function> = -1

<function> = -2

The <parameter> value specifies the desired
type of polling as follows:

0 = continuous polling

>O = noncontinuous polling (traverse the
polling list the specified number of
times, and then cease polling).

The <parameter> value has no meaning. The
CHANGELIST procedure, however, expects to be
passed three values: you must therefore
supply a dummy <parameter> value.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the CHANGELIST procedure executed
successfully.

> (CCG) does not return from CHANGELIST.

Examples

CALL CHANGELIST (FNUM , -1 , 10):

In the above example, within a supervisor station, this call enables
limited polling in which the station list is traversed 10 times.
Polling does not begin, however, until a READ call is subsequently
issued. After the tenth pass through the polling list, polling
ceases.

Related Programming Manuals

For programming information about the CHANGELIST system procedure,
refer to the data-communication manuals.

/1 82359 AOO 3/85 2-41

CHECKCLOSE

CHECKCLOSE PROCEDURE

The CHECKCLOSE procedure is called by a primary process to close a
designated file in its backup process.

The backup process must be in the "monitor" state (that is, in a call
to CHECKMONITOR) for the CHECKCLOSE to be successful. The call to
CHECKCLOSE causes the CHECKMONITOR procedure in the backup process to
call the file system CLOSE procedure for the designated file.

The syntax for CHECKCLOSE is:

CALL CHECKCLOSE (<f ilenum>
,[<tape-disposition>]):

<f ilenum> input

INT:value

i
i

is the file number of an open file to be closed in the backup
process.

<tape-disposition> input

INT:value

if present, specifies mag tape disposition, as follows:

<tape-disposition>.<13:15>

0 = rewind and unload, don't wait for completion
1 = rewind, take offline, don't wait for completion
2 = rewind, leave online, don't wait for completion
3 = rewind, leave online, wait for completion
4 = don't rewind, leave online

If omitted, 0 is used.

Condition Code Settings

The following settings are obtained from the CLOSE procedure in the
backup process: CHECKCLOSE establishes these settings in the primary
process:

< (CCL) indicates that an invalid file number was supplied
or that the backup process does not exist.

2-42 -''f 82359 AOO 3/85

CHECKCLOSE

= (CCE) indicates that the CLOSE was successful.

> (CCG) does not return from CHECKCLOSE.

Considerations

• Interprocess Message and the Creator Process ID (PID)

A call to CHECKCLOSE causes an interprocess message to be sent to
the process indicated by the "creator PID" in the caller's
process control block.

The creator PID is automatically set to the PID of the backup
process at process creation if the Nonstop process pair is named.
If the process pair is not named, then the backup process must call
the STEPMOM procedure, specifying the primary process, before the
primary process makes a call to this procedure. (CHECKMONITOR
receives and processes the interprocess message in the backup
process.)

• The condition code returned from CHECKCLOSE indicates the outcome
of the CLOSE in the backup process.

• See "Considerations" for the CLOSE procedure.

1 Example

CALL CHECKCLOSE (TAPEAFILE , 1);

Related Programming Manual

For programming information about the CHECKCLOSE utility procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

Ajl 82359 AOO 3/85 2-43

CHECKMONITOR

CHECKMONITOR PROCEDURE

The CHECKMONITOR procedure is called by a backup process to monitor
the state of the primary process and to return control to the
appropriate point (in the backup process) in the event of a failure of
the primary process.

The syntax for CHECKMONITOR is:

{ <status>
{ CALL

:= } CHECKMONITOR:
}

<status> returned value

INT

returns a status word of the following form:

<0:7> = 2
<8:15> = 0

1
2
3

primary stopped
primary abnormally ended
primary's processor failed
primary called CHECKSWITCH

NOTE

The normal return from a call to CHECKMONITOR is to the
statement following a call to CHECKPOINT. The return
corresponds to the latest call to CHECKPOINT by the
primary process in which its stack was checkpointed.

The backup process executes the statement following the
call to CHECKMONITOR only if the primary process has not
checkpointed its stack through a call to CHECKPOINT.

Condition Code Settings

The condition code has no meaning following a call to CHECKMONITOR
(see the <status> parameter).

2-44 ~ 82359 AOO 3/85

CHECKMONITOR

Considerations

• Action if the Process Pair Is not Named

If the process pair is not named (that is, it is not in the
destination control table (DCT)), you must call the STEPMOM
procedure prior to the call to CHECKMONITOR and before the primary
process makes its first call to CHECKPOINT.

• Illegal Parameter Error

While CHECKMONITOR executes, its local data area consists of
approximately 500 words, starting at:

'G' [$LMIN (LASTADDR, 32767) - 500]

In other words, the local data area begins 500 words below the last
available location in the application process's data stack.
CHECKMONITOR uses this 500-word region to call other operating
system procedures. If the primary process attempts to checkpoint
its data area in this region, an "illegal parameter" error returns
to the primary process from CHECKPOINT.

If this failure occurs, the number of data pages to be allotted to
the process should be increased through the "?DATAPAGES" Tandem
Application Language (TAL) compiler command. (Use this method of
increasing data area size rather than increasing the data area at

t run time through the command interpreter MEM parameter; this helps
to avoid creating a backup process with a different data area size
than its primary.)

Example

CASE CHECKMONITOR OF
BEGIN

END;

Related Programming Manual

For programming information about the CHECKMONITOR checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide •

..,...., 82359 AOO 3/85 2-45

CHECKOPEN

CHECKOPEN PROCEDURE

The CHECKOPEN procedure is called by a primary process to open a
designated file for its backup process. The following two conditions
must apply before the call to CHECKOPEN:

• The primary process must first open the file.

• The backup process must be in the "monitor" state (that is, in a
call to CHECKMONITOR) for the CHECKOPEN to be successful.

The call to CHECKOPEN causes the CHECKMONITOR procedur,e in the backup
process to call the file system OPEN procedure for the designated
file.

The syntax for CHECKOPEN is:

CALL CHECKOPEN (<filename>
~<filenum>
,[<flags>]
,[<sync or receive-depth>]
,[<sequential-block-buffer>]
,[<buffer-length>]
,<backerror>)~

i
i, 0

i
i
i
i
0

The following parameters must be passed the same values as
those passed for the corresponding parameters in the call to
OPEN for a file. Otherwise, your program is incorrect.

CHECKOPEN parameter

<filename>, INT:ref :12

<filenum>, INT:value

<flags>, INT:value

<sync or receive-depth>
INT:value

<sequential-block-buffer>
INT: ref:*

<buffer-length>, INT:value

2-46

Corresponding OPEN parameter

<filename>

<f ilenum>

<flags>

<sync or receive-depth>

<sequential-block-buffer>

<buffer-length>

~ 82359 AOO 3/85

,,

CHECKOPEN

<backerror> output

INT:ref :l

returns one of the following values:

>= 0

-1

is the file system error number reflecting the call
to OPEN in the backup process.

indicates that the backup process is not running or
that the checkpoint facility could not communicate
with the backup process. (See "Messages.")

Condition Code Settings

The following settings are obtained from the OPEN procedure in the
backup process:

< (CCL) indicates that the OPEN failed. The file system error
number returns in <backerror>.

= (CCE) indicates that the file opened successfully.

> (CCG) indicates that the OPEN was successful, but an
exceptional condition was detected. The file system
error number returns in <backerror>.

Considerations

• Interprocess Message and the Creator Process ID (PID)

A call to CHECKOPEN causes an interprocess message to be sent to
the process indicated by the "creator PID" in the caller's
process control block.

The creator PID is automatically set to the PID of the backup
process at process creation if the Nonstop process pair is named.
If the process pair is not named, then the backup process must call
the STEPMOM procedure, specifying the primary process, before the
primary process makes a call to this procedure. (CHECKMONITOR
receives and processes the interprocess message in the backup
process.) Refer to the GUARDIAN Operating System Programmer's
Guide for information about nonnamed process pairs.

• The condition code returned from CHECKOPEN indicates the outcome of
the OPEN in the backup process.

~ 82359 AOO 3/85 2-47

CHECK OPEN

• If an Error or No Error Is Returned in <backerror>

If a process file is opened nowait (<flag>.<8> = 1), that file is
CHECKOPENed as nowait. CHECKOPEN returns in <backerror>, errors
detected in parameter specification and system data-space
allocation, and the operation is considered complete

If no error returns in <backerror>, the operation must be completed
by a call to AWAITIO in the primary process. If you specify the
<tag> parameter, the value returned by AWAITIO is ·-29D; the
returned count and buffer address are undefined. If the condition
code CCL is returned by AWAITIO, the file is automatically
checkclosed by the checkpointing facility. For a nonprocess file
or a process file that is opened with a wait, bit <8> of the <flag>
parameter is reset internally to zero and ignored. The user can
call AWAITIO to complete CHECKOPENs completed for the primary
open of the file.

• Primary Process Open

<backerror> = 17 returns if the file is not opened by the primary
process or the parameters supplied to CHECKOPEN do not match the
parameters supplied when the primary process opened the file.

• See "Considerations" for the OPEN procedure.

Message

• Unable to Communicate With Backup

If an "unable to communicate with backup" error occurs (that is,
<backerror> = -1), this normally indicates either that the backup
process does not exist, or that a system resource problem exists.
If a system resource problem exists the open request message to the
backup is unduly large.

Example

CALL CHECKOPEN (FNAMEl , FNUMl , FLAGSl , SYNC"DEPTHl
, , , ERROR) ;

Related Programming Manual

For programming information about the CHECKOPEN checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-48 ~ 82359 AOO 3/85

CHECKPOINT

CHECKPOINT PROCEDURE

The CHECKPOINT procedure is called by a primary process to send
information pertaining to its current executing state to its backup
process. The checkpoint information enables the backup process to
recover from a failure of the primary process in an orderly manner.
The backup process must be in the "monitor" state (that is, in a call
to CHECKMONITOR) for the CHECKPOINT to be successful.

The syntax for CHECKPOINT is:

{ <status> := } CHECKPOINT
{ CALL }

([<stack-base> [, [<buffer-1>]
[, [<buffer-2>]

.

[<count-1>]]
[<count-2>]]

I• . l ,
I• . l ,

i , i
i

[, [<buffer-13>] , [<count-1 >]]); !i, i

<status> returned value

(INT

'

returns a status word of the following form:

<0:7> = 0 no error

<0:7> = 1 no backup or unable to communicate with backup,
then

<8:15> = file system error number

<0:7> = 2 takeover from primary, then
<8:15> = 0 primary stopped

~ 82359 AOO 3/85

= 1 primary abnormally ended
= 2 primary's processor failed
= 3 primary called CHECKSWITCH

2-49

CHECKPOINT

<0:7> = 3 illegal parameter, then
<8:15> = number of parameter in error (leftmost position

= 1)

NOTE

If the message is too large (that is, the stack size
and the counts of all buffers and the size of all
file sync blocks are too big), the parameter number
is set to 13 in the error return.

<stack-base> input

INT: ref:*

checkpoints the process's data stack from <stack-base> through
the current top-of-stack location ('S'). A checkpoint of the
data stack defines a restart point for the backup process.

<buff er·-n> input

INT: ref:*

checkpoints a block of the process's data area (usually a file
buffer) from <buffer-n> for the number of words specified by
the corresponding <count-n> parameter~ If you omit <buffer-n>,
<count-n> is treated as a <filenum>, and that file's file
synchronization block is checkpointed~

<count-n> input

INT:value

The use of this parameter depends on the presence or absence
of the corresponding <buffer-n> parameter.

If <buffer-n> is present, then <count-n> specifies the number of
words to be checkpointed.

If <buffer-n> is absent, then <count-n> is the <filenum> of a
file whose synchronization block is to be checkpointed.

Condition Code Settings

The condition code has no meaning following a call to CHECKPOINT.

2-50 ~ 82359 AOO 3/85

,i

CHECKPOINT

Considerations

• Checkpointing the Process's Data Stack

The CHECKPOINT procedure provides for checkpointing the process's
data stack and any combination of up to 13 separate data blocks and
file synchronization blocks. A data block can be from any location
in the data area. (Data blocks are usually file buffers that are
not checkpointed as part of the stack, and they cannot be in an
extended data area.)

• Interprocess Message and the Creator Process ID (PID)

•

•

A call to CHECKPOINT causes an interprocess message to be sent to
the process indicated by the "creator PID" in the caller's process
control block.

The creator PID is automatically set to the PID of the backup
process at process creation if the Nonstop process pair is named.
If the process pair is not named, the backup process must call the
STEPMOM procedure, specifying the primary process, before the
primary process makes a call to this procedure. (CHECKMONITOR
receives and processes an interprocess message in the backup
process.)

Checkpointing a File's Synchronization (sync) Information

If a file's sync information is checkpointed, the call to
CHECKPOINT contains an implicit call to GETSYNCINFO for the file.
Therefore, checkpointing of a file's sync information should not be
performed between an I/O completion and a call to FILEINFO for that
file. If file sync information checkpointing is performed,
FILEINFO returns (in its <error> parameter) the status of the call
to GETSYNCINFO (usually, <error>= 0).

Unable to Communicate With Backup

If an "unable to communicate with backup" error (that is,
<status> = 1) occurs, this normally indicates either that the
backup process does not exist, or that a system resource problem
exists. If the latter, either the checkpoint message to the backup
is unduly large, or the SHORTPOOL size in the processor module
where the error occurs is too small.

• Illegal Parameter

If you attempt to checkpoint the data area in the region used by
CHECKMONITOR in the backup process, then CHECKPOINT returns an
"illegal parameter" error (that is, <status>= 3). See the
recovery procedure under "Considerations" for CHECKMONITOR.

~ 82359 AOO 3/85 2-51

CHECKPOINT

Exam~

CALL CHECKPOINT (STK , , FNUMA);

Related Programming Manual

For programming information about the CHECKPOINT checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-52 '1' 82359 AOO 3/85

,,.

CHECKPOINTMANY

CHECKPOINTMANY PROCEDURE

The CHECKPOINTMANY procedure (like the CHECKPOINT procedure) is called
by a primary process to send information pertaining to its current
executing state to its backup process.

The CHECKPOINTMANY procedure is used in place of CHECKPOINT when there
are more than 13 pieces of information to be sent.

The syntax for CHECKPOINTMANY is:

{ <status>
{ CALL

<status>

INT

:= } CHECKPOINTMANY ([<stack-base>]
} ,[<descriptors>]);

returned value

i
i

returns a status word, in the following form, and one of the
following values:

<0:7> = 0 no error

<0:7> = 1 no backup or unable to communicate with backup,
then

<8:15> = file system error number.

<0:7> = 2
<8:15> =

takeover from primary, then
0 primary stopped
1 primary abnormally ended
2 primary's processor failed
3 primary called CHECKSWITCH

<0:7> = 3 illegal parameter, then
<8:15> = 1 error in <stack-base> parameter

<stack-base>

INT:ref :*

= n, n > 1 error in <word>[n-2] (see
"Considerations").

input

checkpoints the process's data stack from <stack-base> through
the current top-of-stack location ('S'). A checkpoint of the
data stack defines a restart point for the backup process •

..,. 82359 AOO 3/85 2-53

CHECKPOINTMANY

<descriptors> input

INT: ref:*

is an array that describes the items (data blocks or file
synchronization blocks) to be checkpointed. The i:irst word of
the array, <descriptors>[O], is a count of the number of items
to be checkpointed. <descriptors>[O] is in the range {1:32767}.
The rest of the array consists of pairs of words, each pair
describing one of the items. (See "Considerations~">

Condition Code Settings

The condition code has no meaning following a call to CHECKPOINTMANY.

Considerations

• <descriptors> Array Form

Following word zero, <descriptors> consist of pairs of words.

<descriptors>[O]

[n]

[n+l]

count of number of items to be checkpointed

<descriptors> pairs

If the first word of the pair is -1, the pair describes a file
synchronization block item for the file whose file number is in
the second word of the pair.

<descriptors>[n] -1 = file synchronization block item for file

[n+l] file's <filenum>

<descriptors> pair[n] = -1
<descriptors> pair[n+l] = <filenum>

2-54 Af' 82359 AOO 3/85

CHECKPOINTMANY

Otherwise, the pair of words describes a data block to be
checkpointed: the first word is the word address of the data
block, and the second word is the length, in words, of the data
block:

<descriptors>[n] word address of the data block

[n+l] length in words of the data block

<descriptors> pair[n] = <buffer>
<descriptors> pair[n+l] = <count>

The size, in words, of the <descriptors> array must be at least:

1 + 2 * <descriptors>[O].

• <status>.<0:7> = 3, then <status>.<8:15> has the following meaning:

<status>.<8:15> = 1
.<8:15> = n, n > 1

error in <stack-base> parameter
error in <word>[n-2]

If the <descriptors> pair describes a file synchronization block
(first word of pair= -1, second word= file number), then
<descriptors>[n-2] is the second word of the pair in the event of
an error (such as GETSYNCINFO failed).

If the pair describes a buffer (first word = address, second
word= length), then:

--If the address, or the address plus the length, results in a
bounds violation, then <descriptors>[n-2] is the first word of
the pair.

--If the pair causes the system to run out of buffer space for
the checkpoint, then <descriptors>[n-2] is the second word of
the pair.

--If the total amount of data to be checkpointed (data + sync
blocks + stack) exceeds 32K bytes, n is set to 2 *
<descriptors>[O] + 2.

"1 82359 AOO 3/85 2-55

CHECKPOINTMANY

For example:

(status).(0:7) = 3 then (status).(8:15):

Error is in: Error is (for example):

[1] ~ck bas~ Invalid address

[2] Ccount ·~ Bounds of list in error

This (descriptor) pair is a file sync l
[3] Ell:n:m] Does not occur

block item.
[4] GETSYNCINFO failed or bad

file name

This (descriptor> pair is a data
[5] ~kaddre3 Bounds error

block. [6] ock length Ran out of buffer space

] This (descriptor) pair is the last in
[7] E the list. [8] Checkpoint 13xceeds 32K (this can

occur with either type of descriptor
pairs)

• Checkpointing the Process's Data Stack

The CHECKPOINTMANY procedure allows checkpointing of both the
process's data stack and any number of blocks.

2-56

NOTE

The number of separate data and file synchronization
blocks that can be specified is limited by system
limits on the size of the resulting message.

-'182359 AOO 3/85

•

CHECKPOINTMANY

Interprocess Message and the Creator Process ID (PID)

A call to CHECKPOINTMANY causes an interprocess message to be sent
to the process indicated by the "creator PID" in the caller's
process control block.

The creator PID is automatically set to the PID of the backup
process at process creation if the primary and backup process pair
is named. If the process pair is not named, then the backup
process must call the STEPMOM procedure, specifying the primary
process, before the primary process makes a call to this procedure.
(CHECKMONITOR receives and processes the interprocess message in
the backup process.)

• Illegal Parameter

If an attempt is made to checkpoint the data area used by
CHECKPOINTMANY for system-oriented stack maintenance, an "illegal
parameter" error (that is, <status> = 3) returns.

• See "Considerations" for the CHECKPOINT procedure.

Example

DESCRIPTORS[O] := 2; count of items.
DESCRIPTORS[!] := -1; sync item.

f DESCRIPTORS[2] := FNUMAA; file number.
DESCRIPTORS[3] := @BUFFER; data item: word address.
DESCRIPTORS[4] := 512; ! number of words.

STAT:= CHECKPOINTMANY{ STKABASE , DESCRIPTOR);
! this is equivalent to:

STAT :=CHECKPOINT(STKABASE , ' FNUMAA ' BUFFER ' 512);

Related Programming Manual

For programming information about the CHECKPOINTMANY checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

""1 82359 AOO 3/85 2-57

CHECK"'SCREEN

CHECK"'SCREEN PROCEDURE

For users of the ENTRY or ENTRY520 screen formatter, the CHECK"'SCREEN
procedure is called after the program inputs the entry--f ield data from
the terminal. The entry fields move out of the application program's
I/O buffer into the array SCREEN. Each field is checked, one at a
time, according to its data attribute; the checking procedure then
performs further checking.

The syntax for CHECK"'SCREEN is:

<error> := CHECK"'SCREEN @<screen-name>
,SCREEN

l

0
,<buffer>
,<check-procedure>

· , <count>) ;

1

l

0

<error> returned value

INT

returns the last value returned by your <check-procedure>.

1 = no errors detected
0 = there was at least one error.

<screen-name.> input

INT:value

is the address of the read-only array that has the form
definition (refer to the ENTRY Screen. Formatter Operating and
Programming Manual or the ENTRY520 Screen Formatter Operating
and Programming Manual for an explanation of "form definition").

SCREEN output

2-58

STRING: ref:*

is the required array named SCREEN where the entry data is
placed. All fields are null-terminated; so, you can access
them using the Tandem Application Language SCAN statement.
Each field is without leading and trailing blanks; in other
words, each field is left-justified.

~ 82359 AOO 3/85

CHECK A SCREEN

<buffer> input

STRING: ref:*

is the I/O buffer that holds the data entries as they are
when the terminal transmitted them to your program.

<check-procedure> input

INT PROC

is your data-checking procedure. It is called for each
field to do further checking.

If it detects an error, then this procedure can abort the
checking and provide an application-dependent diagnostic (for
the form of the <check-procedure>, see "Considerations").

<count> output

INT:value

is the valid character count in <buffer>. CHECKASCREEN only
' processes <count> characters. This value is normally the

"count read" parameter returned by the WRITEREAD call following
the call to READASCREEN.

Condition Code Settings

The condition code has no meaning following a call to CHECKASCREEN.

Considerations

• The <check-procedure> Form

Declare the procedure as follows:

INT PROC <check-procedure>

<f ieldnum>

INT:value

<f ieldnum> , <field> , <check>
, <error> >:

is the number of the field: fields are numbered starting
at 1.

Aft 82359 AOO 3/85 2-59

CHECK,,..SCREEN

<field>

STRING: ref:*

is a pointer to the entry field in SCREEN array.

<check>

INT:value

is a data attribute defined when the form is created.

<error>

INT:value

is one of the following values:

1 = CHECK,,..SCREEN detected an error in this field
0 = no error detected

Your <check-procedure> returns a 1 if the checking
is to continue or a 0 if it is not.

• The General Control Flow of CHECK,,..SCREEN

For each field from the screen:

--Move the field-entry data into the SCREEN array.
--Do type checking depending on a field's data attribute.
--Call your procedure; 0 returns if your procedure finds an

error.
-·-Return a 1.

In the case of a zero, the program can redisplay the bad field
with the blinking feature, which also places the cursor at the
first character of the bad data.

Example

ERROR := CHECK,,..SCREEN (@X , SCREEN , BUF , CHECKX);

Related Programming Manuals

For programming information about the CHECK,,..SCREEN entry procedure,
refer to the ENTRY Screen Formatter Operating and Programming Manual
or the ENTRY520 Screen Formatter Operating and Programming Manual.

2-60 ~ 82359 AOO 3/85

CHECKSWITCH

CHECKSWITCH PROCEDURE

The CHECKSWITCH procedure is called by a primary process to cause the
duties of the primary and backup processes to be interchanged.

The call to CHECKSWITCH contains an implicit call to CHECKMONITOR, so
that the caller becomes the backup and monitors the execution state of
the new primary. The backup process must be in the "monitor" state
(that is, in a call to CHECKMONITOR) for the CHECKSWITCH to be
successful.

The syntax for CHECKSWITCH is:

{ <status>
{ CALL

<status>

INT

:= } CHECKSWITCH;
}

returned value

returns a status word of the following form with one of the
following values:

<0:7> = 1 could not communicate with backup, then
<8:15> = file system error number.

<0:7> = 2 then
<8:15> = 0 primary stopped

= 1 primary abnormally ended
= 2 primary's processor failed
= 3 primary called CHECKSWITCH

NOTE

The normal return from a call to CHECKSWITCH is to the
statement following a call to CHECKPOINT. The return
corresponds to the latest call to CHECKPOINT by the
primary process in which its stack is checkpointed.

The backup process executes the statement following the
call to CHECKSWITCH only if the primary process has not
checkpointed its stack through a call to CHECKPOINT.

/1 82359 AOO 3/85 2-61

CHECKSWITCH

Condition Code Settings

The condition code has no meaning following a call to CHECKSWITCH.

Considerations

• When to Use CHECKSWITCH

Use CHECKSWITCH following the reload of a processor module. The
purpose is to switch the process pair's work back to the original
primary processor module. CHECKSWITCH causes the current backup to
become the primary process and to begin processing from the latest
call to CHECKPOINT.

• Interprocess Message and the Creator Process ID (PID)

A call to CHECKSWITCH causes an interprocess message to be sent to
the process indicated by the "creator PID" in the caller's process
control block.

The creator PID is automatically set to the PID of the backup
process at process creation if the primary and backup process pair
is named. If the process pair is not named, then the backup
process must call the STEPMOM procedure, specifying the primary
process, before the primary process makes a call to this procedure.
(CHECKMONITOR receives and processes the interprocess message
in the backup process.)

• F'or information about the action of CHECKSWITCH following the
takeover by the backup process, refer to the GUARDI.1\N Operating
§ystem Programmer's Guide.

Example

STAT := CHECKSWITCH:

Related Programming Manual

For programming information about the CHECKSWITCH checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-62 .,, 82359· AOO 3/85

CLOSE

CLOSE PROCEDURE

The CLOSE procedure is used to close an open file. Closing a file
terminates access to the file.

The syntax for CLOSE is:

CALL CLOSE (<f ilenum>
,[<tape-disposition>]);

<f ilenum> input

INT:value

i
i

is the number of an open file that is to be closed.

<tape-disposition> input

INT:value

is one of the following values, indicating what tape control
action to take:

<tape-disposition>.<13:15>

0 = rewind and unload, do not wait for completion
1 = rewind, take offline, do not wait for completion
2 = rewind, leave online, do not wait for completion
3 = rewind, leave online, wait for completion
4 = do not rewind, leave online

Condition Code Settings

< (CCL) indicates that the file was not open.

= (CCE) indicates that the CLOSE was successful.

> (CCG) does not return from CLOSE.

._, 82359 AOO 3/85 2-63

CLOSE

Considerations

• Returning Space Allocation After Closing a File

Closing a disc file causes the space that is used by the resident
file control block to be returned to the system main-memory pool if
the disc file is not open concurrently.

A temporary disc file is purged if the file was not open
concurrently. Any space that is allocated to that file is made
available for other files.

With any file closure, the space allocated to the access control
block (ACB) is returned to the system.

• Closing a Nowait File

If a CLOSE is issued for a nowait file that has pending operations,
any incomplete operations are canceled. There is no indication as
to whether the operation completed or not.

Messages

• Process CLOSE Message

A CLOSE of a file representing another process can cause a CLOSE
system message (that is, system message -31) to be sent to that
process.

A process receives this message when it is closed by another
process. You can obtain the <process-id> of the closer
in a subsequent call to LASTRECEIVE or RECEIVEINFO. (Refer to
Appendix F for detailed information of system messages sent to
processes.)

NO'l1E

This message is also received if the close is made by the
backup process of a process pair. Therefore, a process can
expect two of these messages when being closed by a process
pair.

Example

CALL CLOSE (TAPEAFNUM , REWAUNLOAD);

Related Programming Manuals

For programming information about the CLOSE file system procedure,
refer to the GUARDIAN Operating System Programmer's Guide and the
ENSCRIBE Programming Manual.

2-64 ~ 82359 AOO 3/85

COMPUTEJULIANDAYNO

COMPUTEJULIANDAYNO PROCEDURE

The COMPUTEJULIANDAYNO procedure converts a Gregorian calendar date
on or after January 1, 0001, to a Julian day number.

The Julian calendar is the integral number of days since January 1,
4713 B.C. The formal definition of the Julian day number states
that it starts at noon, Greenwich mean time (GMT). For simplicity, we
assume the Julian day number starts at midnight.

The Gregorian calendar is the common civil calendar that we use today.

The syntax for COMPUTEJULIANDAYNO is:

<julian-day-num> := COMPUTEJULIANDAYNO (<year> i
, <month> i
, <day> i
,[<error-mask>]): o

<julian-day-num> returned value

INT(32)

returns the Julian day number.

<year> input

INT:value

is the Gregorian year (for example, 1984, 1985, .••).
The range for <year> is restricted to 1-4000.

<month> input

INT:value

is the Gregorian month (1-12).

<day> input

INT: value

is the Gregorian day of the month (1-31).

"" 82359 AOO 3/85 2-65

COMPUTEJULIANDAYNO

<error-mask> output

INT:ref :l

is an array that corresponds (bit by bit) to what was supplied
in <year>, <month>, and <day>. If omitted, <year>, <month>, and
<day> are not checked.

<error-mask> bits are (starting from the leftmost bit <0>):

.<O> = year

.<l> = month

.<2> = day

If any one of these bits contains a 1, there is an error.

Condition Code Settings

The condition code has no meaning following a call to
COMPUTEJULIANDAYNO.

Example

JON := COMPUTEJULIANDAYNO (YR , MN , DAY , VALIDITY):

Related Programming Manual

For programming information about the COMPUTEJULIANDAYNO procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-66 ~ 82359 AOO 3/85

COMPUTETIMESTAMP

COMPUTETIMESTAMP PROCEDURE

The COMPUTETIMESTAMP procedure converts a Gregorian (common civil
calendar) date and time into a 64-bit timestamp.

The syntax for COMPUTETIMESTAMP is:

<ret-timestamp>

<ret-timestamp>

FIXED

:= COMPUTETIMESTAMP (<date-n-time>
,[<errormask>]

returned value

) :

returns a 64-bit timestamp, computed from <date-n-time>.

<date-n-time> input

INT:ref :8

is an array containing a date and the time of day.
This array has the following form:

i
0

<date-n-time>[O] = the Gregorian year (for example, 1984, 1985,
)

[l] = the Gregorian month (1-12)
[2] = the Gregorian day of the month (1-31)
[3] = the hour of the day (0-23)
[4] = the minute of the hour (0-59)
[5] = the second of the minute (0-59)
[6] = the millisecond of the second (0-999)
[7] = the microsecond of the millisecond (0-999)

The range of the year is restricted to 1-4000.

<errormask> output

INT:ref :l

is an array that corresponds to what was supplied in the
<date-n-time> parameter. <errormask> checks each element
of <date-n-time> for validity. If omitted, <date-n-time> is
not checked.

~ 82359 AOO 3/85 2-67

COMPUTETIMESTAMP

An error is indicated if any of the following bits contain a 1.

<error-mask> bits:

.<O> = year

.<l> = month

.<2> = day

.<3> = hour of day

.<4> = minute of hour

.<5> = second of minute

.<6> = millisecond of second

.<7> = microsecond of millisecond

Condition Code Settings

The condition code has no meaning following a call to
COMPUTETIMESTAMP.

Examill

RETURNED"'"TIMESTAMP : = COMPUTETIMESTAMP (DATE"'"N"'"TIME~
, VALIDITY"'"CHECK);

Related Programming Manual

For programming information about the COMPUTETIMESTAMP procedure,
refer to the GUARDIAN Operating System Pr~grammer's Guide.

2-68 -''j 82359 AOO 3/85

CONTI ME

CONTIME PROCEDURE

The CONTIME procedure converts a 48-bit timestamp to a date and time
in integer form.

The syntax for CONTIME is:

CALL CONTIME (<date-and-time>
,<tO>
'<tl>
,<t2>);

<date-and-time> output

INT:ref :7

0
i
i
i

is an array where CONTIME returns a date and time in the
following form:

<date-and-time>[O] = year (1975, 1976, . . .)
[l] = month (1-12)
[2] = day (1-31)
[3] = hour (0-23)
[4] = minute (0-59)
[5] = second (0-59)
[6] = .01 sec (0-99)

<tO, tl, t2> input

INT:value:3

is an array that must correspond to the 48 bits of a timestamp
for the results of CONTIME to have any meaning (<tO> is the
most significant word: <t2> is the least significant).

<tO> most significant word, interval clock

<tl> interval clock

<t2> least significant word, interval clock

Condition Code Settings

The condition code has no meaning following a call to CONTIME.

"1J 82359 AOO 3/85 2-69

CONTI ME

Example

CALL CONTIME(DATEATIME ' LASTAT ' LASTAT[l] ' LASTAT[2]) ;
!conversion to date and time

CONTIME is used to convert the three words in LASTAT to a date and
time. DATEATIME returns seven words of date and time.

Related Programming Manual

For programming information about the CONTIME utility procedure, refer
to the GUARDIAN Operating System Programmer's Guide.

2-70 Af' 82359 AOO 3/85

CONTROL

CONTROL PROCEDURE

The CONTROL procedure is used to perform device-dependent I/O
operations.

The syntax for CONTROL is:

CALL CONTROL (<f ilenum>
,<operation>
,<param>
, [<tag>]) ;

<f ilenum>

INT:value

input

i
i
i
i

is a number of an open file, identifying the file to which the
CONTROL procedure is to perform an I/O operation.

<operation> input

INT:value

is a value that defines a device and an operation with that
device (see Appendix A for a list of operation numbers).

<par am> input

INT:value

is a value (see Appendix A for a description of control
parameters).

<tag>

INT(32):value

input

applies to nowait I/O only. <tag> is a value you define
uniquely identifying the operation associated with this
CONTROL.

~ 82359 AOO 3/85 2-71

CONTROL

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed-

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the CONTROL was successful.

> (CCG) for magnetic tape, indicates that the end of file (EOF)
was encountered while spacing records: for a process file,
this setting indicates that the process is not accepting
CONTROL system messages. When device handlers do not
allow the <operation>, file system error 2 returns.

Considerations

• Nowait and CONTROL

If the CONTROL procedure is used on a file that is opened nowait,
it must be completed with a call to the AWAITIO procedure.

• Disc Files

--Writing EOF to an unstructured file

Writing EOF to an unstructured disc file sets the EOF pointer to
the relative byte address indicated by the settin~f of the
next-record pointer and writes the new EOF setting in the file
label on disc. Specifically, write:

end-of-file pointer := next-record pointer:

(File pointer action for CONTROL operation 2 (write EOF).)

--File is locked

2-72

If a CONTROL operation is attempted for a file loc:ked through a
<f ilenum> other than that specified in the call to CONTROL, the
call is rejected with a "file is locked" error 73.

~ 82359 AOO 3/85

CONTROL

--Invalid operation attempted on audited file or nonaudited disc
volume

Attempts to purge data (<operation> 20) from files audited by the
Transaction Monitoring Facility are rejected with file system
error 80.

• Magnetic Tapes

--When device is not ready

If mag tape rewind is performed concurrently with application
program execution (that is, rewind operation<> 6), any attempt
to perform a read, write, or control operation to the rewinding
tape unit while rewind is taking place results in an error
indication. A subsequent call to FILEINFO returns error 100.

--Wait for rewind to complete

If mag tape rewind operation = 6 (wait for completion) is
performed as a nowait operation, the application waits at the
call to AWAITIO for the rewind to complete.

• Interprocess Communication

--Nonstandard <operation> and <parameter> values

Any value can be specified for the <operation> and <parameter>
parameters. An application-defined protocol should be
established for interpreting nonstandard parameter values.

--Process not accepting system messages

If the object of the control operation is not accepting
CONTROL/CONTROLBUF/SETMODE/SETMODENOWAIT system messages, the
call to CONTROL completes with a condition code of CCG; a
subsequent call to FILEINFO returns error 7.

The process ID (PID) of the caller to CONTROL can be obtained in
a subsequent call to LASTRECEIVE or RECEIVEINFO.

--Process control (see "Messages")

~ 82359 AOO 3/85 2-73

CONTROL

• Process Control

This message is received when another process calls the CONTROL
procedure, referencing the receiver process file. You can obtain
the PID of the caller to CONTROL in a subsequent call to
LASTRECEIVE or RECEIVEINFO.

Example

CALL CONTROL (FILEANUM ' FORMSACONT , VFUACHANNEL);

Related Programming Manuals

For programming information about the CONTROL file system procedure,
refer to the GUARDIAN Operating System Pr9grammer's Guide, the
ENSCRIBE Programming Manual, and the data communication manuals.

2-74 Af' 82359 AOO 3/85

CONTROLBUF

CONTROLBUF PROCEDURE

The CONTROLBUF procedure is used to perform device-dependent I/O
operations requiring a data buffer.

The syntax for CONTROLBUF is:

CALL CONTROLBUF (<f ilenum>
,<operation>
,<buffer>
,<count>

<f ilenum>

INT:value

,[<count-transferred>]
,[<tag>]):

input

i
i
i
i
0
i

is the number of an open file. It identifies the file on which
the CONTROLBUF procedure performs an I/O operation.

<operation> input

INT:value

is a value defined by the device (see Appendix A).

<buffer> input

INT: ref:*

is an array that contains the information to be used for the
CONTROLBUF operation.

<count> input

INT:value

is the number of bytes contained in <buffer>.

~ 82359 AOO 3/85 2-75

CONTROLBUF

<count-transferred> output

INT:ref :l

returns a count of the number of bytes transferred from <buffer>
(for wait I/O only).

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
CONTROLBUF.

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed.

Table 2-1 shows the CONTROLBUF operations.

Table 2-1. CONTROLBUF Operations

<operation>

1 = load DAVFU (printer subtype 4)

<buffer> = VFU buffer to be loaded

<count> = number of bytes contained in <buffer>

Condition Code Settings

<'

>

2-76

(CCL) indicates that an error occurred (call FILEINFO).

(CCE) indicates that the CONTROLBUF was successful.

(CCG) for a process file, indicates that the process is
not accepting CONTROLBUF system messages.

'"'ff 82359 AOO 3/85

CONTROLBUF

Considerations

• Wait and <count-transferred>

If a "wait" CONTROLBUF is executed, the <count-transferred>
parameter indicates the number of bytes actually transferred.

• Nowait and <count-transferred>

If a nowait CONTROLBUF is executed, <count-transferred> has no
meaning and can be omitted. A count of the number of bytes
transferred is obtained by the <count-transferred> parameter of the
AWAITIO procedure when the I/O completes.

The CONTROLBUF procedure must complete with a call to the AWAITIO
procedure when used with a file opened nowait.

• When Object of CONTROLBUF Is Not Accepting Messages

If the object of the CONTROLBUF operation is not accepting CONTROL,
CONTROLBUF, or SETMODE system messages, the call to CONTROLBUF
completes with condition code CCG. A subsequent call to FILEINFO
returns error 7 (process not accepting CONTROL, CONTROLBUF, or
SETMODE messages).

You can specify the process ID of the caller to CONTROL or
CONTROLBUF in a subsequent call to LASTRECEIVE or RECEIVEINFO.

• Interprocess Communication

--Nonstandard <operation> and <buffer> parameters

You can specify any value for the <operation> parameter, and you
can include any data in <buffer>. An application-defined
protocol should be established for interpreting nonstandard
parameter values.

--Process not accepting system messages

If the object of the control operation is not accepting
CONTROL/CONTROLBUF/SETMODE/SETMODENWAIT system messages, the
call to CONTROLBUF completes with a condition code of CCG: a
subsequent call to FILEINFO returns error 7.

/1 82359 AOO 3/85 2-77

CONTROLBUF

Message

• Process CONTROLBUF Message

Issuing a CONTROLBUF to a file that represents another process
causes a CONTROLBUF system message (-35) to be sent to that
process.

Exam~

CALL CONTROLBUF (PRINTER , LOADAVFU , VFUABUFFER , 132
, COUNTAXFERRED);

Related Programming Manual

For programming information about the CONTROLBUF file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-78 ~ 82359 AOO 3/85

CONVERTPROCESSNAME

CONVERTPROCESSNAME PROCEDURE

The CONVERTPROCESSNAME procedure converts a process name from local to
network form.

The syntax for CONVERTPROCESSNAME is:

CALL CONVERTPROCESSNAME (<process-name>); i, 0

<process-name> input, output

INT:ref :3

is a process name beginning with "$" to be converted.

On return, <process-name> contains the internal network form
of the process name: "\" in the first byte and the calling
process's system number in the second byte, followed by the
process name.

If <process-name> does not begin with "$," it is left unchanged.

Condition Code Settings

The condition code has no meaning following a call to
CONVERTPROCESSNAME.

Considerations

• When using this call, any process name that is longer than four
characters plus the "$" is truncated.

Example

NAME':=' "$PROC";
CALL CONVERTPROCESSNAME (NAME);

Related Programming Manual

For programming information about the CONVERTPROCESSNAME process
control procedure, refer to the GUARDIAN Operating System Programmer's
Guide.

..., 82359 AOO 3/85 2-79

CONVERTPROCESSTIME

CONVERTPROCESSTIME PROCEDURE

The CONVERTPROCESSTIME procedure is used to convert the quad
microsecond process time returned by the PROCESSTIME, MYPROCESSTIME,
or PROCESSINFO procedure into hours, minutes, seconds, milliseconds,
and microseconds. The maximum time that this procedure can convert is
3.7 years (this is the amount of time that can be represented using
the output parameters).

The syntax for CONVERTPROCESSTIME is:

CALL CONVERTPROCESSTIME (<process-time>
,[<hours>]
,[<minutes>]
,[<seconds>]

<process-time>

FIXED

,[<milliseconds>
,[<microseconds>

input

specifies the time to be converted.

<hours> output

INT:ref:l

) ;

l

0

0

0

0
0

returns the hours portion of the <process-time> specified.

<minutes> output

INT:ref:l

is the minutes portion of the <process-time> specified.

<seconds> output

INT:ref:l

is the seconds portion of the <process-time> specified .

2-80 .., 82359 AOO 3/85

CONVERTPROCESSTIME

<milliseconds> output

INT:ref :l

is the milliseconds portion of the <process-time> specified.

<microseconds> output

INT:ref :l

is the microseconds portion of the <process-time> specified.

Condition Code Settings

< (CCL) returns if <process-time> represents a quantity greater
than 3.7 years.

= (CCE) indicates that CONVERTPROCESSTIME is successful.

> (CCG) returns if any of the supplied output parameters
fail the bounds check on the address.

Considerations

• If the output parameters are not specified the information that
would be returned is lost.

Example

CALL CONVERTPROCESSTIME (PROCATIME
, HOURS

, SECONDS

' MICROASEC >:

Related Programming Manual

None

..-, 82359 AOO 3/85

minutes.

milliseconds.

2-81

CONVERTTIMESTAMP

CONVERTTIMESTAMP PROCEDURE

The CONVERTTIMESTAMP procedure converts a Greenwich mean time (GMT)
timestamp to or from a local time based timestamp within any
accessible node in the network.

A local timestamp can be local standard time ((LST) does not include
daylight savings time (DST)), local civil time ((LCT) includes
DST).

DST is a system to extend the amount of daylight in the evenings by
changing (advancing) the time. Usually, but not always, this standard
is done in hour increments. In most states in the United States, DST
begins at 2:00 A.M. on the last Sunday in April and ends at 2:00 A.M.
LST (3:00 A.M. DST) on the last Sunday in October; the United States
advances the time by one hour.

The syntax for CONVERTTIMESTAMP is:

<ret-time> := CONVERTTIMESTAMP (<julian-timestamp>
,[<direction>]
,[<node>]
, [<error>]) ;

<ret-time> returned value

FIXED

returns a Julian timestamp with a different base.

<julian-timestamp> input

FIXED:value

is a four-word Julian timestamp.

<direction> input

INT:value

indicates what time form or timestamp to return. You can
specify one of the following values for <direction>.

i
i
i
0

2-82 ~ 82359 AOO 3/85

rl

CONVERTTIMESTAMP

0 = GMT to local civil time (LCT) (default)
1 = GMT to local standard time (LST)
2 = LCT to GMT
3 = LST to GMT

If <direction> is out of range, 0 is assumed.

<node> input

INT:value

is the system number at the node where you want the conversion.
The default is local. If the specified <node> does not exist,
the value of <ret-value> is not changed. (This parameter is
valid only for the BOO version of the operating system.)

<error> output

INT:ref :l

returns one of the following values:

-1 = ambiguous LCT
-2 = impossible LCT

0 = no errors, successful
1 = DST range error
2 = DST table not loaded

>2 = file system error (attempting to reach "NODE")

Condition Code Settings

The condition code has no meaning following a call to
CONVERTTIMESTAMP.

Considerations

• A local timestamp can be in either of two forms; LCT (with DST
correction), or LCT (without DST correction).

• Network and Local Timestamp

Local timestamp (with LCT and LST) should be used with caution if
any network use is anticipated. The reason is that another node
can be in another time zone or in an area with different DST rules
(LCT only).

~ 82359 AOO 3/85 2-83

CONVERTTIMESTAMP

• LCT Timestamps

LCT timestamps should be used with caution because of the negative
adjustment that DST systems dictate. Timestamp base conversion
(for example, LCT) is provided by the operating system.

Example

RETURN.TIME.BASE := CONVERTTIMESTAMP (JULIAN
,
, SYSTEM.NUM) ;

Related Programming Manual

None

2-84 .-, 82359 AOO 3/85

CPUTIMES

CPUTIMES PROCEDURE

The CPUTIMES procedure returns the length of time, in microseconds,
since cold load that a given CPU has spent in the following states:

• process busy

• interrupt busy

• idle

These times reflect the amount of time spent by the CPU (last cold
load or reload) in a process environment, an interrupt environment,
and the idle state.

The syntax for CPUTIMES is:

CALL CPUTIMES ([<cpu>]

<cpu>

INT:value

,[<sysid>]
,[<total-time>]
,[<cpu-process-busy>]
,[<cpu-interrupt>]
,[<cpu-idle>]):

input

i
i
0

0

0
0

specifies the CPU number of a CPU in the system. The default
is the local CPU.

<sys id> input

INT:value

specifies the system number. The default is the local system.

<total-time> output

FIXED:ref :l

returns the elapsed time, in microseconds, since the CPU was
cold loaded or reloaded.

"1J 82359 AOO 3/85 2-85

CPU'rIMES

<cpu-process-busy> output

FIXED:ref :l

returns the length of time, in microseconds, the CPU has been
busy executing processes since the last cold load or reload.

<cpu-interrupt> output

FIXED:ref :l

returns the length of time, in microseconds, the CPU has
been busy processing interrupts since the last cold load or
reload.

<c:pu-idle> output

FIXED:ref :l

returns the length of time, in microseconds, the CPU has been
idle since the last cold load or reload.

Condition Code Settings

< (CCL) indicates that the system is in one of the following
states:

>

2-86

• unavailable

• does not exist

• the procedure could not get resources to execute

• the system is running on an earlier operating system
version than BOO.

(CCE) indicates that CPUTIMES is successful.

(CCG) indicates the supplied parameters failed the bounds
check.

..., 82359 AOO 3/85

Example

CALL CPUTIMES (PROCESSOR , SYSANUM , COLDATIME , CPUABUSY
, CPUAINTERRUPT, CPUAIDLE);

Related Programming Manual

None

"" 82359 AOO 3/85

CPUTIMES

2-87

CREATE

CREATE PROCEDURE

The CREATE procedure is used to define a new structured or
unstructured disc file. The file can be temporary (and therefore
automatically deleted when closed) or permanent. When a temporary
file is created, CREATE returns its file name in a form suitable for
passing to the OPEN procedure.

The syntax for CREATE is:

CALL CREATE (<filename> i, 0

1 ,[<primary-extentsize>
,[<file-code>]
,[<secondary-extentsize>
,[<file-type>]
,[<recordlen>]
,[<data-blocklen>
,[<key-sequenced-params>
,[<alternate-key-params>
,[<partition-params>]
,[<maximum-extents>]
,[<unstructured-buffer-size>
,[<open-defaults~]);

i
i
1

1

1

1

1

i
i
1

1

<filename> input, output

2-88

INT:ref:12

is an array containing the name of the disc file to be created.
<filename> must be in one of the following forms (to create a
permanent or temporary disc file):

Permanent Disc File

<filename>[0:3] is $<volname><blank-fill>

<filename>[4:7] is
<filename>[8:11] is

or
\<sysnum><volname><blank-f ill>
<subvol-name><blank-f ill>
<disc-f ilename><blank-f ill>

4J 82359 AOO 3/85

CREATE

Temporary Disc File

<filename>[O:ll] is $<volname><blank-fill>
or

\<sysnum><volname><blank-f ill>

When CREATE completes, a temporary file name is returned
in <filename>[4:7]. The temporary file can then be opened
by passing <filename> to OPEN.

<primary-extentsize> input

INT:value

is the size of the primary extent in pages (one page is
2048-byte). The maximum <primary-extentsize> extent size is
65,535 (134,215,680 bytes). If omitted, a primary extent
size of 1 page is assigned.

<file-code> input

INT:value

~ is an application-defined file identification code (file codes
100-999 are reserved for use by Tandem.) If omitted, a file
code of 0 is assigned. Refer to the GUARDIAN Operating System
Utilities Reference Manual for a list of Tandem file codes.

<secondary-extentsize> input

INT:value

is the size of the secondary extents in pages (one page is
2048-byte). (A file can have up to 15 secondary extents
allocated.) The maximum <secondary-extentsize> is 65535
(134,215,680 bytes). If omitted, the size of the primary
extent is used for the secondary extent size.

<file-type> input

INT:value

specifies the type of file to be created.
unstructured file is created.

.-, 82359 AOO 3/85

If omitted, an

2-89

CREATE

2-90

<file-type>.<0:1> must be O •

• <2> in systems with the Transaction Monitoring
Facility (TMF), specifies this file is
audited: for systems without TMF, this bit
is O •

. <3:9> must be 0 .

• <10> specifies that the file label is written
to disc each time the end of file (EOF) is
advanced. The effect of setting this
parameter is the same as calling REFRESH
after every operation that advances the
EOF pointer •

• <11> specifies index compression for key-sequenced
files (see the ENSCRIBE Programmin_g_ Manual) •

• <12> specifies ODDUNSTR access to unstructured
files. With the default (<file-type>
.<12>=0), a relative byte address (RBA)
used for reading, writing, or positioning
in the file is rounded up to the next even
number (whole word boundary): thus, 3 rounds
up to 4, and so forth. ODDUNSTR prevents
this rounding, so that reading, writing, or
positioning occurs at the exact RBA
specified. (See "Considerations.")

.<12> specifies data compression for key-sequenced
files (Refer to the ENSCRIBE Programming
Manual for additional information) •

• <13:15> specifies the file structure:

0 = unstructured (default)
1 = relative
2 = entry-sequenced
3 = key-sequenced.

'1' 82359 AOO 3/85

CREATE

<recordlen> input

INT:value

is the maximum length of the logical record in bytes.

For DPl structured files, the maximum <recordlen> is determined
by the data-block size. With a data-block size of 4096; the
maximum record length for entry-sequenced and relative files
is 4072, and 2035 for a key-sequenced files.

For an unstructured file, the maximum record length is 4096.

If omitted, <recordlen> = 80.

The formulas for computing the maximum record size (MRS) based
on <blksize> are:

For relative and entry-sequenced files:

MRS = <data-block-size> - 24

For key-sequenced files:

MRS = 1/2 * (<data-block size> - 26)

For unstructured files:

MRS = <data-block-size>

<data-blocklen> input

INT:value

for structured files, is the length in bytes of each block of
records in the file. <data-blocklen> must be a multiple of 512
and cannot be greater than 4096. <data-blocklen> must be at
least <recordlen> + 24. For a key-sequenced file,
<data-blocklen> must be at least 2 * <recordlen> + 26.

If omitted, 1024 is used for the <data-blocklen> (for DPl disc
files). Regardless of the specified record length and
data-block size, the maximum number of records that can be
stored in a data block is 511.

..-, 82359 AOO 3/85 2-91

CREATE

For DP2 the data-block sizes are limited to power-of-two
multiples of the sector size; 512, 1024, 2048, and 4096. For
example, 3K byte blocks are not supported by DP2. (The default
is 4096.)

<key-sequenced-par ams> input

INT:ref:3

is a three-word array containing parameters that describe this
file. This parameter is required for key-sequenced files ,but
you can omit the parameter for other file types. See
"Considerations" for the format of this array.

<alternate-key-params> input

INT: ref:*

is an array containing parameters describing any alternate keys
for this file. This parameter is required if the file has
alternate keys; otherwise, you can omit this parameter. If
included, the first character must be 0 if you have! alternate
keys. See "Considerations" for the format of this array.

<partition-params> input

INT:ref :*

is an array containing parameters that describe this file.
It applies only if the file is a multivolume file. If the
file is to span multiple volumes, this parameter is required;
otherwise, you can omit it. If included, the first character
must be O. See "Considerations" for the format of this array.

<maximum-extents> input

2-92

INT:value

is the maximum number of extents to be allocated for the file.
The default is 16. This parameter is valid for a DP2 disc file
only.

~ 82359 AOO 3/85

f

<unstructured-buffer-size> input

INT:value

declares the internal buffer size to be used for an
unstructured file: valid for DP2 only and must be a

CREATE

valid DP2 blocksize. Valid DP2 blocksizes are 512, 1024, 2048,
and 4096. The default is 4096 bytes.

<open-defaults> input

INT:value

specifies the file label default values for various open
attributes. This parameter is valid for a DP2 disc file
only.

<open-defaults>.<O> = 0 verify WRITES off (default)
= 1 verify WRITE on

.<l> = 0 system automatically selects
or parallel WRITES

= 1 serial mirror WRITES only

serial

.<2> = 0 buffered WRITES enabled (default
for audited files)

= 1 WRITE-thru (default for
nonaudited files)

.<3> = 0 audit compression off (default)
= 1 audit compression on

~ 82359 AOO 3/85 2-93

CREATE

Condition Code Settings

>

(CCL) indicates that the CREATE failed (call FILEINFO).

(CCE) indicates that the file was created successfully.

(CCG) indicates that the device is not a disc.

Considerations

• <key-sequenced-params> Array Format

2-94

<key-len>

<key-offset>

Word[O]

Word[l]

Word[2] <index-block-len>

<key-len>
(INT:value)

<key-offset>
(INT:value)

<index-block-len>
(INT:value)

is the length, in bytes, of the record's
primary-key field. This length can be
no larger than 255 bytes.

is the number of bytes from the beginning
of the record to where the primary-key
field starts.

is the length, in bytes, of each index
block in the file. <index-block length>
must be a multiple of 512 and cannot be
greater than 4096. If 0 is specified,
then the value of <data-block length> is
used as the <index-block length>.

/1 82359· AOO 3/85

• <alternate-key-params> Array Format

Word[O]

Word[l]

[k * 4 + l]

0 8

<nf-alt-files>I <nk-alt-keys>

KEY DESCRIPTION FOR
ALTERNATE KEY 0

KEY DESCRIPTION FOR
ALTERNATE KEY nk - 1

FILE NAME OF KEY FILE 0

FILE NAME OF KEY FILE nf - 1

<nf-alt-files> a one-byte value, specifies the number of
alternate-key files for this primary file.

<nk-alt-keys> a one-byte value, specifies the number of
alternate-key fields in this primary file.

The key description for key k consists of four words, each of
the form:

0 8

<key-specifier>

<key-attributes>

[k * 4 + l]

[k * 4 + 2]

[k * 4 + 3]

[k * 4 + 4]

<null-value> I <key-len>

<key-specifier>
(INT:value)

<key-f ilenum>

is a two-byte value that uniquely
identifies this alternate-key field.

CREATE

This value is passed to the KEYPOSITION
procedure for references to this key field.

<key-attributes>
(INT:value)

describes the key:

.<O> = 1 means a null value is specified. See
"<null value>."

~ 82359 AOO 3/85 2-95

CREATE

.<l> = 1 means the key is unique. If an attempt is
made to insert a record that duplicates an
existing value in this field, the insertion
is rejected with a "duplicate record" error .

. <2> = 1 means ENSCRIBE cannot perform automatic

• <3>

.<4:15> =

updating of this key.

must be 0 •

<key-offset>. This specifies the number of
bytes from the beginning of the record where
this key field starts.

<null value> a one-byte value, is used to specify a null
value if <key-attributes>.<O> = 1.

During a WRITE operation, if a null value is specified for
an alternate-key field, and the null value is encountered
in all bytes of this key field, the file system does not
enter the reference to the record in the alternate-key file.
(If the file is read via this alternate-key field, records
containing a null value in this field will not be found.)

During a WRITEUPDATE operation (<write-count>= 0), if a
null value is specified, and the null value is encountered
in all bytes of this key field within <buffer>, the file
system deletes the record from the primary file but does not
delete the reference to the record in the alternate file.

<key-len>

<key-f ilenum>
(I NT: v a 1 ue)

a one-byte value, specifies the length, in
bytes, of this key field.

is the relative number in the
alternate-key parameter array of this
key's alternate-key file. The first
alternate-key file's <key-filenum> = O.

The file identifier for file f consists of 12 words, beginning at:

2-96

[nk * 4 + 1 + f * 12]

In this file identifier, the following is true:

<filename[0:3]> = $<volname><blank-f ill>

= <filename[4:7]>
<filename[B:ll]> =

or
\<sysnum><volname><blank-f ill>

<subvol-name><blank-f ill>
<disc-filename><blank-fill>

/1J 82359 AOO 3/85

• <partition-params> Array Format

Number of Words [l]

[4]

<num-of-extra-partitions>

$<volname> or
\<sysnum><volname>

for partition 1

$<volname> or
\<sysnum><volname>

for partition 2

$<volname> or
\<sysnum><volname>

for partition n

[l] <primary-extent-size> part 1

<primary-extent-size> part n

[l] <secondary-extent-size> part 1

<secondary-extent-size> part n

CREATE

This sequence must be included in the partition-parameters array
for key-sequenced files, but it can be omitted for other file
types:

[l] <partial-keylen>

<partial-keyvalue>
for partition 1

<partial-keyvalue>
for partition n

.., 82359 AOO 3/85 2-97

CREATE

<num-of-extra-partitions>
{INT:value)

is the number of extra volumes {other
than the one specified in the <filename>
parameter) on which the file resides~
The maximum value permitted is 15. Note
that every other parameter in the
partition array {except
<partial-keylen>) must be specified
<num-of-extra-partitions> times.

$<volname>
or

\<sysnum><volname>

<primary-extent-size>
{INT:value)

<secondary-extent-size>
{INT:value)

eight bytes blank-filled, is the name of the
disc volume {including the dollar sign {$)
or backslash (\)) where the particular
partition is resides.

is the size of the primary extent for the
particular partition.

is the size of the secondary extents
for the particular partition. Specifying
0 results in the <primary-extent-size>
value being used.

The rema1n1ng parameters are required for key-sequenced files
but can be omitted for all other file types:

<partial-keylen>
{INT:value)

is the number of bytes of the primary key
of a key-sequenced file that are used to
determine which partition of the J:ile contains a
particular record. The minimum value for
<partial-keylen> is 1.

<partial-key-value>
{INT: value)

for <partial-key length> bytes, specifies
the lowest key value that is allowed for a
particular partition.

Each <partial-key-value> in <partition-parameters> must begin on a
word boundary.

For an alternate-key-file, <partial-key-value> must begin with the
<key-specifier> for the alternate key. For example, if
<key-specifier> = AB, a partial-key value of 123 becomes a
<partial-key-value> of AB123.

• File Pointer Action

end-of-file pointer := OD;

• Disc Allocation With CREATE

Execution of the CREATE procedure does not allocate any disc area;
it only provides an entry into the volume's directory, indicating
that the file exists.

2-98 ~ 82359 AOO 3/85

•

•

CREATE

CREATE Failure

If the CREATE fails (that is, condition code other than CCE
returns), the reason for the failure can be determined by calling
the file system FILEINFO procedure and passing -1 as the <f ilenum>
parameter.

Altering File Security

The file is created with the caller's process file security that
can be examined and set with the PROCESSFILESECURITY procedure.
Once a file has been created its file security can be altered by
opening the file and issuing the appropriate SETMODE and
SETMODENOWAIT functions.

• Minimum Extent Size

If a file's index-block size is not the same as its data-block
size, then no extent size should be smaller than the larger of the
two block sizes. Otherwise, multiple extents are allocated
every time a block is acquired, and some operations (such as
the File Utility Program (FUP) LOAD command on a key-sequenced
file) returns file system error 21 (illegal <count> specified).

• Odd Unstructured Files

An odd unstructured file permits reading and writing of odd byte
~ counts and positioning to an odd byte address.

When creating unstructured files, the value passed for
<file-type>.<12> determines how all subsequent reading, writing,
and positioning operations t.o the file work.

If <file-type>.<12> is passed as 1 and <file-type>.<13:15> is all
zeros, an odd unstructured file is created.

If <file-type>.<12> is passed as 1, the values of
<record-specifier>, <read-count>, and <write-count> are all
interpreted exactly; for example, a <write-count> or <read-count>
of 7 transfers exactly 7 bytes.

• Even Unstructured Files

A file must be positioned to an even byte address; otherwise,
FILEINFO returns a file system error (bad address).

If <file-type>.<13:15> is passed to CREATE and is all zeros
(specifying an unstructured file), and <file-type>.<12> is 0, then
an even unstructured file is created.

Af' 82359 AOO 3/85 2-99

CREATE

If <file-type>.<12> is passed as a 0, the values of
<record-specifier>, <read-count>, and <write-count> are each
rounded up to an even number before the operation begins: for
example, a <write-count> or <read-count> of 7 is rounded up to 8,
and 8 bytes are transferred.

If you use the FUP CREATE or COMINT CREATE command to create the
file, it creates an even unstructured file.

Example

CALL CREATE (DISCAFNAME , PRIAEXT , FILEACODE , SECAEXT
, FILEATYPE , RECALEN , DATAABLKALEN , KEYAPARAMS >:

Related Programming Manual

For programming information about the CREATE file systE~m procedure,
refer to the ENSCRIBE Programming Manual and the GUARDIAN Operating
System Programmer's Guide.

2-100 .., 82359 AOO 3/85

CREATEPROCESSNAME

CREATEPROCESSNAME PROCEDURE

The CREATEPROCESSNAME procedure returns a unique process name suitable
for passing to the NEWPROCESS and NEWPROCESSNOWAIT procedures. This
type of naming (as opposed to a predefined process name) is used when
the name of a process pair does not need to be known to other
processes in the system (for example, in a program run as several
process pairs). This process name must be passed in the <name>
parameter, not the <filename> parameter, of the NEWPROCESS procedure.

The syntax for CREATEPROCESSNAME is:

CALL CREATEPROCESSNAME (<process-name>): ! 0

<process-name> output

INT:ref :3

is an array where a system-generated process name returns.
<process-name> is of the form:

$Zddd

where

"d" represents an ASCII numeric character.

NOTE

CREATEPROCESSNAME ensures that the next character
position after the last "d" is a blank.

Condition Code Settings

< (CCL) indicates that the address passed for <process-name>
is out of bounds, or the operating system could not
access the the destination control table (DCT).

= (CCE) indicates the CREATEPROCESSNAME was successful.

> (CCG) does not return from CREATEPROCESSNAME.

~ 82359 AOO 3/85 2-101

CREATEPROCESSNAME

Considerations

• Process Names and CREATEPROCESSNAME

You use names created by CREATEPROCESSNAME when the process must be
named, but the name of that process does not need to be predefined,
that is, known by any other process or process pair.

NOTE

Calling CREATEPROCESSNAME does not enter the process
name into the OCT.

• Creating Pseudo-Temporary Disc File Names

The CREATEPROCESSNAME procedure is also useful for creating
"pseudo-temporary" disc file names. You might use this type of
naming when two processes want to use the same file, but each opens
the file exclusively.

If a standard temporary file name is used, the file is purged when
the first process closes it because there are no other OPENS for
the file. The second process is then unable to access the file;
for example:

INT .TEMP""'FNAME[O:ll] := ["$VOL1 ", 9 * [" "]];~

CALL CREATEPROCESSNAME (TEMP FNAME[4]);
TEMP""'FNAME[4].<0:7> := "Z";
TEMP""'FNAME[S] ':=' TEMP""'FNAME[4] FOR 4;
CALL CREATE (TEMP""'FNAME);
IF < THEN ; ! error.

The name returned from the above input is:

$VOL1 ZZddd ZZddd

2-102

returns $zddd.
make zzddd subvol.
make file name ..

..,., 82359 AOO 3/85

CREATEPROCESSNAME

Example

See "Considerations."

Related Programming Manual

For programming information about the CREATEPROCESSNAME process
control procedure, refer to the GUARDIAN Operating System Programmer's
Guide.

~ 82359 AOO 3/85 2-103

CREATEREMOTENAME

CREATEREMOTENAME PROCEDURE

The CREATEREMOTENAME procedure supplies a process name that is unique
for the specified system in a network. (This process name goes into
the <name> parameter, not the <filename> parameter, of the NEWPROCESS
procedure.)

The syntax for CREATEREMOTENAME is:

CALL CREATEREMOTENAME (<name>
,<sysnum>);

<name> output

INT:ref :3

0
i

is an array where CREATEREMOTENAME returns a system-generated
process name (in local form) that is unique for the designated
system. <name> is of the form:

$Zddd

where

"d" represents an ASCII numeric character.

NOTE

CREATEREMOTENAME ensures that the next character
position after the last "d" is a blank.

<sysnum> input

INT:value

is a value that specifies the system number for which the
process name is to be created.

2-104 '1' 82359 AOO 3/85

CREATEREMOTENAME

Condition Code Settings

< (CCL) indicates that the remote the destination control table
(DCT) could not be accessed.

= (CCE) indicates that CREATEREMOTENAME was successful.

> (CCG) does not return from CREATEREMOTENAME.

Considerations

• Remote Process Name Characteristics

CREATEREMOTENAME creates a process name in local form. This name
can be passed directly to the NEWPROCESS procedure as the <name>
parameter in order to create a remote process having that name.
It is unnecessary to append a system name to the process name
since the physical location of the program file specified in the
NEWPROCESS <filename> includes the system number.

• Remote System DCT

The creation of a process name does not make an entry in the remote
system's DCT.

~ Example

CALL CREATEREMOTENAME (NAME , SYSANUM);

Related Programming Manual

None

~ 82359 AOO 3/85 2-105

CREATORACCESSID

CREATORACCESSID PROCEDURE

The CREATORACCESSID procedure is used to obtain the accessor ID of the
process that created the calling process.

The syntax for CREATORACCESSID is:

<accessor-id> := CREATORACCESSID;

<accessor-id> returned value

INT

returns the accessor ID of the caller's creator in the
following form:

<accessor-id>.<0:7> = group number
.<8:15> = user number

Condition Code Setti.!lSE.

The condition code has no meaning following a call to CREATORACCESSID.

Considerations

• Accessor ID Returned From CREATORACCESSID and MOM

The accessor ID returned from CREATORACCESSID is that of the
calling process's actual creator, which is not necessarily
the same as that returned from a call to the MOM pr<>cedure.

Example

CREATORAID := CREATORACCESSID;

Related Programming Manual

For programming information about the CREATORACCESSID security
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-106 ~ 82359 AOO 3/85

CURRENTS PACE

CURRENTSPACE PROCEDURE

The CURRENTSPACE procedure returns a stack-marker ENV register and a
string (in ASCII) containing the space ID of the caller.

The syntax for CURRENTSPACE is:

{ <stack-env>
{ CALL

:= } CURRENTSPACE [(<ascii-space-id>);]
}

! 0

<stack-env> returned value

INT

is the calling procedure's space ID in the stack marker ENV
register format.

ENV.<4>
ENV.<7>
ENV.<11:15>

library bit.
system code bit.
space ID bits.

For more information about space identifiers and the details
of these bits, refer to the System Description Manual.

<ascii-space-id> output

STRING:ref :5

is an ASCII string in the form:

<map>.<#>

where

<map> is one the following:

UC indicates user code.
UL indicates user library.
SC indicates system code.
SL indicates system library.

<#> is the octal space number number in ASCII; for example:

UC.01 or SL.33

~ 82359 AOO 3/85 2-107

CURRENTS PACE

Condition Code Settings

The condition code has no meaning following a call to CURRENTSPACE.

Exam..Qk

MYASPACE := CURRENTSPACE;

Related Programming Manual

For information about the CURRENTSPACE procedure, refer to the System
Description Manual.

2-108 ~ 82359 AOO 3/85

DEALLOCATESEGMENT

DEALLOCATESEGMENT PROCEDURE

The DEALLOCATESEGMENT procedure deallocates an extended data segment
when it is no longer needed by the calling process.

The syntax for DEALLOCATESEGMENT is:

CALL DEALLOCATESEGMENT (<segment-id>
, [<flags>]) :

<segment-id> input

INT:value

i
0

is the segment number of the segment, as specified in the call
to ALLOCATESEGMENT that created it.

<flags> input

INT:value

if present, has the form:

<0:14>
<15>

= must be O.
= 1 indicates that dirty pages in memory are not to

be copied to the swap file (see ALLOCATESEGMENT
procedure).

= 0 indicates that dirty pages in memory are to be
copied to the swap file.

If omitted, this parameter defaults to O.

Condition Code Settings

The condition code has no meaning following a call to
DEALLOCATESEGMENT.

Af' 82359 AOO 3/85 2-109

DEALLOCATE SEGMENT

Considerations

• <flags> Parameter

The <flags>.<15> = 1 option is used to improve performance when the
swap file is a permanent file or a temporary file that is opened
concurrently by an application. Following the DEALLOCATESEGMENT
call, the contents of the swap file are unpredictable. If the
DEALLOCATESEGMENT call causes a purge of a temporary file, the
GUARDIAN operating system does not write the dirty pages (that is,
pages that are being used) out to the file.

• Before deallocating a segment, this procedure removes all memory
access breakpoints set in that segment.

• Segment Deallocation

When a segment is deallocated, the swap file end of file (EOF) is
set to the larger of (1) the EOF when the file is opened by
ALLOCATESEGMENT or (2) the end of the highest numbered page that is
written to the swap file. All file extents beyond the EOF that did
not exist when the file was opened are deallocated.

Example

CALL DEALLOCATESEGMENT (SEGMENTAID);

SEGMENTAID refers to the segment number specified in the call to
ALLOCATESEGMENT.

Related Programming Manual

For programming information about the DEALLOCATESEGMENT memory
management procedure, refer to the GUARDIAN Operating System
Programmer's Guide.

2-110 ~ 82359· AOO 3/85

DEBUG PROCEDURE

The debug facility can be invoked directly by calling the DEBUG
procedure.

The syntax for DEBUG is:

CALL DEBUG:

NOTE

The GUARDIAN operating system provides a debugging facility

DEBUG

that responds to debug events by passing control to one of two
debugging utilities: DEBUG or INSPECT. DEBUG is a low-level
debugger. INSPECT is an interactive symbolic debugger that lets
you control program execution, display values, and modify values
in terms of source-language symbols.

DEBUG

While a process is in the debug state, you can interactively display
~, and modify the contents of the process's registers {the process's

data area and set other breakpoints. To debug a program, the user
must have EXECUTE access to run the program and READ access to the
program object file.

There are five ways to force a process into the debug state:

• Run a program through the command interpreter using the RUND {RUN
DEBUG) command. The process enters the debug state before the
first instruction of the MAIN procedure executes.

• Run a program through the NEWPROCESS procedure, and set
<priority>.<O>, the debug bit, to 1. The process enters the debug
state before the first instruction of the MAIN procedure executes.

• Run a program through the command interpreter. While the program
is executing, press the BREAK key. The command interpreter returns
to the command input mode. Find the <cpu,pin> of the process, and
type in DEBUG <cpu,pin>.

• In the source program, write an explicit call to the DEBUG
procedure.

• When a process is in the debug state, specify a breakpoint. When
that breakpoint is hit, the process enters the DEBUG state.

~ 82359 AOO 3/85 2-111

DEBUG

For a description of the debug facility and instructions for using
it, see the DEBUG Manual for your system.

INSPECT

You can use INSPECT by setting the INSPECT attribute associated with
a process. The value of a process's INSPECT attribute can be set
with:

• The ?INSPECT or ?SAVEABEND compiler directive

• The BINDER SET INSPECT or SET SAVEABEND commands during a binding
session

• The COMINT SET INSPECT command before the RUN command that starts
the process

• The INSPECT parameter of the RUN command that starts the process

• A new parameter in the NEWPROCESS procedure that allows you to
specify INSPECT as the default debugger

Processes inherit the INSPECT attribute from their ancestor processes.
For a description of the INSPECT facility and instructions for its
use, see the INSPECT Interactive Symboli~ Debugger User's Guide.

CALL DEBUG:

Related Programming Manual

For information about the DEBUG vacility, refer to the DEBUG Manual
For information about the INSPECT facility, refer to the INSPECT
Interactive Symbolic Debugger User's Guide.

2-112 -'f' 82359 AOO 3/85

DEBUGPROCESS

DEBUGPROCESS PROCEDURE

The DEBUGPROCESS procedure is used to invoke the debug facility on
a process.

The syntax for DEBUGPROCESS is:

CALL DEBUGPROCESS (<process-id>
,<error>
,[<term>]
, [<now>]) ;

<process-id> input

INT:ref:4

l

0

l

l

is the process ID of the process to be debugged. It can
be in a timestamp or named and in local or remote format.

<error> output

INT:ref:l

returns a file system error number indicating the outcome of
the process debug attempt.

<term> input

INT:ref:12

is the name of the debug home terminal. If omitted, the
caller's home terminal is used.

~ 82359 AOO 3/85 2-113

DEBUG PROCESS

<now> input

INT:value

The caller's process access ID must be super ID (255, 255) to
use this parameter.

If you supply 1, the process should be debugged now. If
omitted, the normal debug sequence is executed.

Condition Code Settings

The condition code has no meaning following a call to DEBUGPROCESS
(see the <error> parameter description).

Example

CALL DEBUGPROCESS (PROCAID ' ERRORANUM ' MYTERM ' ONE);

Related Programming Manual

None

2-114 AJ• 82359 AOO 3/85

DEFINELIST

DEFINELIST PROCEDURE

The DEFINELIST procedure is used only when the application process
is acting as a supervisor or tributary station in a centralized
multipoint configuration.

• Within a supervisor station, DEFINELIST specifies the station
addresses of each tributary station that the application
process wishes to communicate with.

• Within a tributary station, DEFINELIST specifies the station
addresses that the particular line responds to.

The addresses are in the form of a "station list" array whose name
passes to the DEFINELIST procedure by way of the DEFINELIST
calling sequence.

The syntax for DEFINELIST is:

CALL DEFINELIST { <f ilenum>
,<address-list>
,<address-size>
,<num-entries~
,<polling-count>
,<polling-type>):

<f ilenum> input

INT:value

i
i
i
i
i
i

is the name of the one-word integer variable specified in
the OPEN call that opened the line.

<address-list> input

INT: ref:*

is the name of an integer array containing either:

• Polling addresses and selection addresses (refer to the
ENVOY Byte-Oriented Protocols Reference Manual for a
description of this array)

• one or more station addresses (refer to the ENVOYACP
Bit-Oriented Protocols Reference Manual for a description
of this array)

Af' 82359 AOO 3/85 2-115

DEFINELIST

<address-size> input

INT:value

specifies the size, in words, of an entry in the <station-list>
array. Note that the entry size varies somewhat from one
protocol to another.

<num-entries> input

INT:value

specifies the total number of entries in the <station-list>
array.

<polling-count> input

INT:value

specifies the number of polling addresses in the <station-list>
array. This parameter has no meaning when used for ENVOYACP
bit-oriented protocols.

<polling-type> input

INT:value

For a supervisor station, specifies the number of times that
the tributary stations with polling addresses in the
<station-list> array are to be polled when the line is in the
control state, and the supervisor station issues a READ call:

0 = poll continuously
1-127 = number of polling cycles.

For tributary stations, this parameter has no functional effect:
a dummy argument must still be supplied, however, for each
station except ENVOY'S multipoint tributary. In this case, the
<polling-type> can be:

2-116

0 = RV! (reverse interrupt)
1 = WACK (wait for acknowledgment)
2 = NAK (negative acknowledge)

"'1J 82359 AOO 3/85

DEFINELIST

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the DEFINELIST procedure was executed
successfully.

> (CCG) does not return from DEFINELIST.

Considerations

• Call DEFINELIST after the call to OPEN but before the first call to
READ or WRITE.

Examples

CALL DEFINELIST (FNUM , ADDRALIST , ADDRASIZE , NUMAENTRIES
, POLLINGACOUNT , POLLINGATYPE >:

Related Programming Manuals

For programming information about the DEFINELIST system procedure,
refer to the data-communication manuals.

~ 82359 AOO 3/85 2-117

DEFINEPOOL

DEFINEPOOL PROCEDURE

The DEFINEPOOL procedure designates a portion of a user's stack or
an extended data segment for use as a pool.

The syntax for DEFINEPOOL is:

<status> := DEFINEPOOL (<pool-head>
,<pool>
,<pool-size>);

<status> returned value

INT

0
i
i

returns a status word having one of the following values:

0 = no error
1 = bounds error on <pool-head>
2 = bounds error on <pool>
3 = invalid <pool-size>
4 = <pool-head> and <pool> overlapo

<pool-head> output

INT .EXT:ref :19

is a 19-word array to be used as the pool header; GETPOOL and
PUTPOOL use this array to manage the pool.

<pool> input

INT .EXT:ref :*

is the first word of the memory space to be used as the pool.

<pool-size> input

INT(32):value

is the size of the pool in bytes. This number must be a
multiple of 4 bytes and cannot be less than 32 or greater
than %10000000D.

2-118 ""'f 82359 AOO 3/85

DEFINEPOOL

Condition Code Settings

The condition code setting has no meaning following a call to
DEFINEPOOL. (See the <status> parameter definition.)

Considerations

• Stack Addresses Converted to Extended Addresses

If <pool-head> or <pool> is in the user data stack, the Tandem
Application Language compiler automatically converts data stack
addresses to extended addresses.

• Dynamic Memory Allocation

Several GUARDIAN procedures support the creation of memory pools
and dynamic allocation of variable-sized blocks from the pool. The
calling program provides the memory area to be used as the pool and
then calls the DEFINEPOOL procedure to initialize a 19-word array,
the <pool-header>, that is used to manage the pool. The pool and
the pool header can reside in the user data stack or in extended
memory. The pool routines accept and return extended addresses
that apply to both the stack and extended memory.

Once the pool is defined, the process can reserve blocks of various
sizes from the pool by calling the GETPOOL procedure and can

~, release blocks by calling the PUTPOOL procedure. The program must
release one entire block using PUTPOOL: it may not return part of a
block or multiple blocks in one PUTPOOL call.

The programmer must be careful to use only the currently reserved
blocks of the pool, or the pool structure is corrupted and
unpredictable results occur. If multiple pools are defined, do not
return reserved blocks to the wrong pool. For debugging purposes,
a special call to GETPOOL checks for pool consistency.

• Pool Management Methods

The following information is supplied for use in evaluating the
appropriateness of using GUARDIAN's pool routines in user
application programs and determining the proper size of a pool.
Application programs should not depend on the pool data structures,
since they are subject to change. The program should use only the
procedural interfaces described on the following pages.

The requested block size is rounded up to a multiple of 4 bytes,
at a minimum of 28 bytes. This reduces pool fragmentation, but
when the program is allocating small blocks, it can waste memory
space.

~ 82359 AOO 3/85 2-119

DEFINEPOOL

One extra word is allocated for a boundary tag at the beginning and
end of each block; thus, the minimum pool block size is 32 bytes.
This tag serves three purposes:

1. It contains the size of each block so that the program does
not need to specify the length of the block when releasing it.

2. It serves as a check to ensure that the program does not
erroneously use more memory than the block contains (although
it does not stop the program from overwriting).

3. It provides for efficient coalescing of adjacent free blocks.

In GETPOOL, the free block list is searched for the first block
sufficiently large enough to satisfy the request. If the free
block is at least 32 bytes longer than the required size, it is
split into a reserved block and a new free block. Otherwise, the
entire free block is used for the request.

In summary, the pool space overhead on each block can be
substantial if very small blocks are allocated. An exact formula
is:

ALLOCATED := ($MAX (REQUEST+ 7, 32) /4) * 4

where REQUEST is the original request size in bytes; the allocated
blocks are also measured in bytes.

Although they can also be used to manage the allocation of a
collection of equal-sized blocks, these procedures are not
recommended for that purpose, because they can consume more
processor time and pool memory than user-written routines designed
for that specific task.

Exam~

STATUS := DEFINEPOOL (POOLAHEAD , POOL , 2048D);

Related Programming Manual

For programming information about the DEFINEPOOL memory management
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-120 "182359 AOO 3/85

DELAY

DELAY PROCEDURE

The DELAY procedure permits a process to have itself suspended for a
timed interval.

The syntax for DELAY is:

CALL DELAY (<time-period>); i

<time-period> input

INT(32):value

specifies the time period, in .01-second units, for which the
the caller of DELAY is to be suspended.

Condition Code Settings

The condition code has no meaning following a call to DELAY.

Considerations

• <time-period> Value of <> OD

A value of less than or equal to OD results in no delay as such
but changes this process's execution state from active to ready
in order to permit other processes of the same priority to run.

Example

CALL DELAY (lOOOD); suspend for 10 seconds.

Related Programming Manual

None

~ 82359 AOO 3/85 2-121

DEVICE INFO

DEVICEINFO PROCEDURE

The DEVICEINFO procedure is used to obtain the device type and the
physical record length of a file. The file can be opened or closed.

The syntax for DEVICElNFO is:

CALL DEVICEINFO (<filename>

<filename>

INT:ref :8

,<devtype>
,<physical-recordlen>);

input

i
! 0
! 0

is an array containing the name of the device whose
characteristics are to be returned. Any form of internal file
name is permitted. For disc files, only the first eight .
characters (that is, the volume name) are significant; however,
the remaining eight characters still must be in a ~ralid file
name format. lf a logical device number is specified, t..t>f: last
eight characters. mu.st be blanks. ·~?\

<devtype> output

INT:ref :l ',;-.

returns the device type of the associated file in this form:

.<O> = demourttable

.<l> = audited disc
.<4:9> = device type

.<10:15> = device subtype

Refer to Appendix B for a list of the device types~

<physical-recordlen> output

INT:ref :l

returns the physical record length associated with the file.
If the physical record length is for:

nondisc
devices

2-122

<physical-recordlen> is the configured
record length.

..., 82359 AOO 3/85

,,

DEVICEINFO

disc-tiles

proees,f:ies
and rCEIVI
file~

<physical~recordlen> is the ~ximum possible
transfer length. The transCv length is equal

J~-~o. the configured buffer siat, for the device
' "~either 2048 or 4096 bytes) •. ~Jfor an ENSCRIBE

disc file, th~ logi~Jl recot ~~l•fl9th can be
obtained through th• FILER · . · procedure.)

...
f length ol ,.&~2 is returned lh

: <physic~l-tt~r~len>. This
convention f~ interpr~ess

system

Condition Code Settings .. :,n: .. ·,
The condition code has no meanlrtg following a ca.a!'':to DEVICEINFO.

:.~~

El!mple '1-~
~,ff.. -

CALL DEVI Ct INFO { iii I LE , DJ.T\/TYPE , R!CLENGT1f . l :

Related Programming Manuals

For programming information about the DEVJCEINFO file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide
and the BNSCRIBE Programming Manual.

~ 82359 AOO 3/85 2-123

DEVICEINF02

DEVICEINF02 PROCEDURE

The DEVICEINF02 procedure is used to obtain the device type and the
physical record length of a file (the file can be opened or closed)
and to determine whether the volume is formatted for the DPl or the
DP2 disc process.

The syntax for DEVICEINF02 is:

CALL DEVICEINF02 (<filename> i
,<devtype> o
,<physical-recordlen> ! o
,<discprocess-version>): ! o

<filename> input

INT:ref :8

is an array containing the name of the device whose
characteristics are to be returned. Any form of internal file
name is permitted. For disc files, only the first eight
characters (that is, the volume name) are significant: however,
the remaining eight characters must still be in a valid file
name format. If a logical device number is specified, the last
eight characters must be blanks.

<devtype> output

INT:ref :l

returns the device type of the associated file in this form:

.<O> = demountable

.<l> = audited disc
.<4:9> = device type

.<10:15> = device subtype

Refer to Appendix B for a list of the device types.

<physical-recordlen> output

INT:ref :l

returns the physical record length associated with the file.

2-124 -'182359 AOO 3/85

DEVICEINF02

If the physical record length is for:

nondisc
devices

disc files

processes
and $RECEIVE
file

<physical-recordlen> is the configured
record length.

<physical-recordlen> is the maximum possible
transfer length. The transfer length is equal
to the configured buffer size for the device
(either 2048 or 4096 bytes). (For an ENSCRIBE
disc file, the logical record length can be
obtained through the FILERECINFO procedure.)

a length of 132 is returned in
<physical-recordlen>. This is the system
convention for interprocess files.

<discprocess-version> output

INT:ref :l

returns the disc process version for disc devices
(<device-type>.<4:9> = 3).

<discprocess-version> = 0 DPl disc process
= 1 DP2 disc process

Condition Code Settings

The condition code has no meaning following a call to DEVICEINF02.

Example

CALL DEVICEINF02 (INFILE , DEVTYPE , RECLENGTH , DAVERSION);

Related Programming Manual

None

._,, 82359 AOO 3/85 2-125

EDITREAD

EDITREAD PROCEDURE

The EDITREAD procedure reads text lines from an EDIT file (file type =
101).

Text lines are transferred, in ascending order, from the text file to
a buffer in the application program's data area. One line is
transferred by each call to EDITREAD. EDITREAD also returns the
sequence number associated with the text line and performs checks to
ensure that the text file is valid.

The EDIT file can be opened nowait. However, a call to EDITREAD
completes before returning to the application program; it is not
completed with a call to AWAITIO.

NOTE

Before- EDITREAD is called, a call to EDITREADINIT must
complete successfully.

The syntax for EDITREAD is:

<status> := EDITREAD <edit-controlblk>
,<buffer'>

<status>

INT

,<buf ferlen>
,<sequence-num>):

returned value

i
0
i
0

is a value indicating the outcome of EDITREAD. Values for
<status> are:

2-126

>= O indicates that the reading of the file was successful.
This is the actual number of characters in the text line.
However, no more than <bufferlen> bytes are
transferred into <buffer>.

< 0 indicates an unrecoverable error, where:

-1 = end of file encountered
-2 = error occurred while reading
-3 = text file format error

~ 82359 AOO 3/85

EDI TREAD

-4 = sequence error. The sequence number of the
line just read is less than its predecessor.

-5 = checksum error. EDITREADINIT was not called
or the user has altered the edit control block.
(This will not be returned if processing a
reposition.)

<edit-controlblk> input

INT: ref:*

is an uninitialized array that is declared globally.
The length in words, of the edit control block must
be at least 40 plus <bufferlen> divided by 2.

<buffer> output

STRING: ref:*

is an array where the text line is to be transferred.

<buf ferlen> input

INT:value

is the length, in bytes, of the <buffer> array. This specifies
the maximum number of characters in the text line that is
transferred into <buffer>.

<sequence-num> output

INT(32):ref:l

returns the sequence number multiplied by 1000, in double-word
integer form, of the text line just read.

Condition Code Settings

The condition code has no meaning following a call to EDITREAD.

4" 82359 AOO 3/85 2-127

EDI'rREAD

Example

COUNT := EDITREAD { CONTROLABLOCK , LINE , LENGTH , SEQANUM);

If reading the file is successful, a count of the number of bytes in
the text line returns in COUNT, the text line returns in the array
LINE, and the sequence number returns in SEQANUM.

Related Programming Manual

None

2-128 ~ 82359 AOO 3/85

EDITREADINIT

EDITREADINIT PROCEDURE

The EDITREADINIT procedure is called to prepare a buffer in the
application program's data area for subsequent calls to EDITREAD.

The application program designates an array to be used as an
edit control block. The edit control block is used by the EDITREAD
procedure for storing control information and as an internal buffer
area.

The EDIT file can be opened nowait. However, a subsequent call to
EDITREADINIT completes before returning to the application; it is not
completed with a call to AWAITIO.

The syntax for EDITREADINIT is:

<status> := EDITREADINIT (<edit-controlblk>
,<f ilenum>
,<bufferlen>);

<status> returned value

INT

i
i
i

is a value indicating the outcome of EDITREADINIT. Values
returned into <status> are:

0 = successful (OK to read)
-1 = end of file detected (empty file)
-2 = I/O error
-3 = format error (not EDIT file)
-4 = sequence number error

<edit-controlblk> input

INT:ref :*

is an uninitialized array that is declared globally. Forty
words of the edit control block are used for control
information. The remainder is used as an internal buffer by
EDITREAD. The length, in words, of the edit control block must
be at least 40 plus <bufferlen> divided by 2. This is the same
array as specified in the <edit controlblk> parameter to
EDI TREAD.

~ 82359 AOO 3/85 2-129

EDITREADINIT

<f ilenum> input

INT:value

is the number of an open file that identifies the text file to
be read.

<buf ferlen> input

INT:value

is the size, in bytes, of the internal buffer area used by
EDITREAD. This parameter determines the amount of data that
EDITREAD reads from the text file on disc (not the amount of
data transferred into the buffer specified as a parameter to
EDITREAD). The size of the internal buffer area must be a
power of two, from 64 to 2048 bytes (that is, 64, 128, 256,
••• , 2048).

Condition Code Settings

The condition code has no meaning following a call to EDITREADINIT.

Example

STAT := EDITREADINIT (CONT BLOCK , FNUM , BUF LEN);

Related Programming Manual

None

2-130 ~ 82359 AOO 3/85

ENDTRANSACTION

ENDTRANSACTION PROCEDURE

ENDTRANSACTION commits the data base changes associated with a
transaction identifier. When this procedure is called by the process
(or its backup) that issued BEGINTRANSACTION, the Transaction
Monitoring Facility (TMF) attempts to commit the transaction. If the
action completes successfully, the changes made by the transaction are
permanent, and the locks held for the transaction are released. (Locks
are held until ENDTRANSACTION returns.)

The syntax for ENDTRANSACTION is:

<status> := ENDTRANSACTION;

<status> returned value

INT

returns a 0, if the transaction ended successfully, or a file
system error number. (See the System Messages Manual for a
a list of all file system errors.)

Condition Code Settings

The condition code has no meaning following a call to ENDTRANSACTION.

Considerations

• Waited Operation

ENDTRANSACTION is, by default, a waited operation unless the
calling process has the transaction pseudof ile (TFILE) open at the
time of the ENDTRANSACTION call. ENDTRANSACTION waits until the
record is written to the audit file and TMF can ensure the
transaction will commit. However, it does not wait for locked
records to be unlocked.

• Obtaining a Link Control Block (LCB)

If the procedure fails to obtain main-memory space for an LCB, the
call fails and returns file system error 30.

• Requesting Process and Current,~Transaction Identifier

If the requesting process has no current-transaction identifier,
the call fails and returns file system error 75.

~ 82359 AOO 3/85 2-131

ENDTRANSACTION

• Invalid or Obsolete Transaction Identifier

If the transaction was not begun by the process that issued
ENDTRANSACTION (or its backup) or the transaction is no longer
in the system, this call returns file system error 78.

• Nowait Operation

If an outstanding (that is, incomplete) operation is pending
against a process file or disc for this transactioni, the call
fails and returns file system error 81.

• Transaction Aborts

If the parent process (BEGINTRANSACTION process) of this
transaction fails, the call fails and returns with J:ile system
error 90.

• Path in Network Node Is Down

If the path to a participating network node is down, the
transaction aborts, and the call returns file system error 92.

• Spanning Too Many Audit-Trail Files

If the transaction spans too many audit-trail files, the
transaction is aborted and the call returns file system error
93.

• Operator Command Response

If an operator aborts the transaction through the TMFCOM "ABORT
TRANSACTION" command, the system aborts the transaction, and the
call returns file system error 94.

• Calling ABORTTRANSACTION Before ENDTRANSACTION

If a previous call to ABORTTRANSACTION is made before the call to
ENDTRANSACTION, the call aborts and returns file system error 97.

Example

STATUS := ENDTRANSACTION;

Related Programming Manual

For information about the ENDTRANSACTION procedure, refer to the
Transaction Monitoring Facility (TMF) Ref~rence Manual..

2-132 ~ 82359 AOO 3/85

ENFORMFINISH

ENFORMFINISH PROCEDURE

ENFORMFINISH is called once to terminate the interface to ENFORM.

The syntax for ENFORMFINISH is:

CALL ENFORMFINISH (<ctlblock>); i

<ctlblock> input

INT:ref:18

is the same 18-word integer array control block supplied to
ENFORMSTART for global storage among all ENFORM procedure
calls. The host language program must not change the control
block between calls to ENFORM.

Condition Code Settings

The condition code has no meaning following a call to ENFORMFINISH.

Example

CALL ENFORMFINISH (CNTLABLOCK); !control block

Related Programming Manual

For programming information about the ENFORMFINISH procedure, refer to
the ENFORM User's Guide.

..-, 82359 AOO 3/85 2-133

ENFORMRECEIVE

ENFORMRECEIVE PROCEDURE

The ENFORMRECEIVE procedure provides records to the host application
program one at a time.

The syntax for ENFORMRECEIVE is:

{ <count>
{ CALL

<count>

INT

:= J ENFORMRECEIVE (<ctlblock>
J ,<buffer>);

returned value

i
i, 0

returns a byte count for the length of the record retrieved
(all FIND output records are the same length). A zero value
means that all records have been returned.

<ctlblock> input

INT:ref :18

is the same 18-word integer array control block supplied to
ENFORMSTART for global storage among all ENFORM procedure
calls. The host application program must not change the
control block between calls to ENFORM.

<buffer> input, output

INT: ref:*

is a pointer to the receiving buffer in the host application
program for an output record. It must be at least as long as
the value given for <buffer-length> in ENFORMSTAR1~. The
parameter <buffer> should be declared as a type of FORTRAN
record if you want to access character information in a FORTRAN
program.

2-1.34 ""1) 82359 AOO 3/85

ENFORMRECEIVE

Condition Code Settings

< (CCL) indicates a query processor error occurred; and
<error-number> (passed to ENFORMSTART) contains an error
number greater than 0 (see Appendix E).

= (CCE) indicates successful receipt of a target record.

> (CCG) indicates that no more target records exist.

Considerations

• Calls to ENFORMRECEIVE

ENFORMRECEIVE sends the records to the host language program one
at a time. Hence, ENFORMRECEIVE is repeatedly called until no
more records exist, ENFORMFINISH is called, or an error condition
occurs.

• Action When an ENFORM Error Occurs During Execution

If an error occurs during the execution of the ENFORMRECEIVE
procedure, the number of the error returns to the <error-number>
supplied to the ENFORMSTART procedure. Any error conditions
terminate the ENFORM program. If the query processor is dedicated,

' it is deleted. Refer to Appendix K for a list of possible ENFORM
errors returned for the ENFORMRECEIVE procedure.

Example

COUNT := ENFORMRECEIVE (CNTLABLK , ORDERAPROCESSAREC);

Related Programming Manual

For programming information about the ENFORMRECEIVE procedure, refer
to the ENFORM User's Guide.

~ 82359 AOO 3/85 2-135

ENFORMSTART

ENFORMSTART PROCEDURE

The ENFORMSTART procedure initiates the interface of a host program
with ENFORM.

The syntax for ENFORMSTART is:

CALL ENFORMSTART (<ctlblock> o
,<compiled-physical-filename> i
,<buffer-length> i
,<error-number> o
,[<restart-flag>] i
,[<param-list>] i
,[<assign-list>] i
,[<qp-name>] i
,[<cpu>] i
,[<priority>] i
,[<timeout>] i
,[<reserved-for-expansion>])~ i

<ctlblock> output

INT:ref :18

is an 18-word integer array control block that must be supplied
for global storage across the ENFORM procedure calls. This same
storage is used in ENFORMRECEIVE and ENFORMFINISH and any
subsequent calls to ENFORMSTART. The host application program
must not change this control block between calls to ENFORM.

<compiled-physical-filename> input

INT:ref :12

is a 12-word array that specifies the physical file~ containing
the compiled query. The file name must be specified as 24
characters in length with the:

$volume name
subvolume name
disc file name

= 8 characters (blank-filled if necessary)
= 8 characters (blank-filled if necessary)
= 8 characters (blank-filled if necessary)

Refer to the Guardian Operating Syste~ Programmer's Guide
for the exact form of an internal file name.

2-136 ~ 82359 AOO 3/85

ENFORMSTART

<buffer-length>

INT:value

input

is the length, in bytes, of the buffer that the process uses
to receive records through ENFORMRECEIVE. <Buffer-length> must
be at least 6. If information in addition to the error number
is desired, <buffer-length> must be at least 30. Refer to the
ENFORM User's Guide for more information.

<error-number> output

INT:ref :l

is assigned an error number if an error condition occurs in
ENFORMSTART or ENFORMRECEIVE. It is initialized to zero.
<Error-number> should be declared globally to the ENFORM
procedures so that it can be checked after the ENFORMSTART or
ENFORMRECEIVE procedures return. The error messages are
described in Appendix E.

<restart-flag> input

' INT:value

is used when there is more than one query to be run by the host
application program. A nonzero value causes the existing query
processor to begin the next query with a new parameter and
assign list, which is more economical than creating a new query
processor for each query run. When the existing query processor
is used to begin the next query, the parameter values for
<ctlblock>, <qp-name>, <cpu>, and <priority> for the ENFORMSTART
procedure must be identical to those for the initial call to the
ENFORMSTART procedure, or they must not be used.

A zero value for <restart-flag> causes a new query processor to
be created for each querry.

<param-list> input

INT:ref*

is a pointer to the parameter (name:value) list in a form
equivalent to the PARAM message generated by the command
interpreter. See the GUARDIAN Operating System Programming
Guide for the correct format.

...,,..1 82359 AOO 3/85 2-137

ENFORMSTART

<assign-list> input

INT:ref :*

is a pointer to a sequence of one or more ASSIGN messages,
each formatted as an ASSIGN message by the command interpreter.
See the GUARDIAN Operating System Ut~lities Reference Manual
for the correct format. These messages are preceded by a
one-word header that contains a number equal to the total
messages (31 or fewer) in the list.

<qp-name> input

INT:ref :4

is a four-word array that, if present, specifies the process
name of a server query processor to use. If a query processor
by that name does not exist, or if it cannot accept the query
because the query processor is busy or the query exceeded its
processing limits, an error results. If this parameter is
omitted, a dedicated query processor for the query is created
by ENFORMSTART and deleted by ENFORMFINISH. Refer to the
ENFORM Reference Manual for information about a server query
processor.

<cpu> input

INT:value

selects the CPU in which to run a dedicated query processor.
If omitted, the query processor runs in the same CPU as the
host application program. When <qp-name> is given, this
parameter is ignored.

<priority> input

INT:value

assigns a priority for a dedicated query processor. The default
is the priority assigned the host application program. When
<qp-name> is given, this parameter is ignored.

2-138 ~ 82359 AOO 3/85

ENFORMSTART

<timeout> input

INT(32):value

if present, indicates the maximum time (in .Cl-second units)
that the application process is willing to wait (that is, be
suspended) for the query processor to begin processing the
query.

If <timeout> is omitted, then the application process waits
indefinitely for the query processor to begin the query.

<reserved-for-expansion> input

is reserved for expansion.

Condition Code Settings

< (CCL) means there is a problem. An error number representing
the reason is found in <error-number>.

~ = (CCE) means the query processor successfully initialized.

rl'

> (CCG) is not used by ENFORMSTART.

Considerations

• <assign-list>--Overriding Names for Files to the Query

<assign-list> is used to override the physical file name or file
names for input files to the query. Any physical file name that is
not expanded in the ASSIGN message uses the default volume and
subvolume. If that ·is undesirable, the host language program must
fill in the correct volume or subvolume after receiving ASSIGN
messages from the command interpreter and before passing
<assign-list> to ENFORMSTART. When <assign-list> is not used, the
Tandem physical file name compiled into the query is used.

• <assign-list>--Generic File Names

<assign-list> can contain generic file names. Refer to the
ENFORM Reference Manual for information about generic files. If
the generic file QUERY-QPSTATUS-MESSAGE is specified from a host
language program, ENFORM uses the message text from
$SYSTEM.SYSTEM.ENFORMMK. There is no way to specify a new message
table from a host language program.

-'1 82359 AOO 3/85 2-139

ENFORMSTART

The physical file name and its exclusion specification (shared,
protected, or exclusive) can be overridden. When not overridden,
the query processor always opens the physical input files with
shared mode.

• When is <timeout> Most Meaningful

<timeout> is most meaningful to use in the case of a request to a
server query processor named with <process-name> that might be busy
processing another query at the time ENFORMSTART is called. If
ENFORMSTART returns error 22, indicating that timeout occurred, the
application process could revert to a dedicated query processor by
again calling ENFORMSTART without the <process-name> parameter.

• Action When an Error Occurs During Execution

If an error occurs during the execution of the ENFORMSTART
procedure, the number of the error returns to <error-number>. Any
error conditions terminate the query processor. If the query
processor is dedicated, it is deleted. Refer to Appendix E for a
list of possible ENFORM errors returned for ENFORMS'rART.

Example

CALL ENFORMSTART (CNT""BLK
, QUERY""FILENAME
, $LEN (ORDER""PROCESS""REC)
, ERROR

, PARAM""LIST);

Related Programming Manual

For programming information about the ENFORMSTART procedure, refer to
the ENFORM User's Guide.

2-140 Af' 82359 AOO 3/85

EXPAND"" SCREEN

EXPAND""SCREEN PROCEDURE

For users of the ENTRY or ENTRY520 screen formatter, the EXPAND""SCREEN
procedure places the control sequences and variable data you want to
display or default values, and optionally the entire form, into the
application program's I/O buffer. The system I/O procedures perform
the actual I/O.

The syntax for EXPAND""SCREEN is:

<num-bytes> := EXPAND""SCREEN (@<screen-name>
SCREEN

<num-bytes>

INT

<buffer>
<rewrite-form>):

returned value

i
0

0
i

returns the number of bytes that are placed in the program's
I/O buffer.

<screen-name> input

INT:value

is the address of the READ-only array that has the screen
definition (refer to the ENTRY Screen Formatter Operating and
Programming Manual or the ENTRY520 Screen Formatter Operating
and Pro9ramming Manual for an explanation of "screen
definition").

SCREEN output

STRING: ref:*

is the required array named SCREEN. If
the screen displays the default values.
parameter, the screen displays only the
the SCREEN array. Data entries shorter
should be null-terminated.

you omit this parameter,
If you give this

Af' 82359 AOO 3/85

data entries moved into
than a defined field

2-141

EXPAND"'SCREEN

<buffer> output

STRING: ref:*

is the program's I/O buffer. Form control and data characters
move here prior to terminal display.

<rewrite-form> input

INT:value

is nonzero if both the protected form and the data-entry fields
are written to the terminal. A zero means only to write the
entry fields. For multiple inputs or outputs usin~J the same
form, it is faster to just rewrite the data-entry fields
(<rewrite-form>= 0).

Condition Code Settings

The condition code has no meaning following a call to l~XPAND"'SCREEN.

Considerations

• Forms with no data-entry fields display at full brightness.
Normally, the form is protected and is displayed "half bright,"
while the entry fields display at full intensity.

Example

NUM"'BYTES := EXPAND"'SCREEN (@X , SCREEN , BUF , 1):

Related Programming Manuals

For programming information about the EXPAND"'SCREEN entry procedure,
refer to the ENTRY Screen Formatter Operating and Programming Manual
or the ENTRY520 Screen Formatter Operating and Programming Manual.

2-142 ~ 82359 AOO 3/85

FILEERROR

FILEERROR PROCEDURE

The FILEERROR procedure is used to determine if an I/O operation that
completed with an error should be retried.

The syntax for FILEERROR is:

<status> := FILEERROR (<filenum> >:

<status> returned value

INT

<status> returns two possible values:

0 = operation should not be retried.
1 = operation should be retried.

<f ilenum> input

INT:value

i

~ is the number of an open file that identifies the file having
the error.

Condition Code Settings

The condition code has no meaning following a call to FILEERROR.

Considerations

• Action of FILEERROR

The FILEERROR procedure is called after a CCL return from a file
system procedure. The FILEERROR procedure determines if an
operation should or should not be retried.

--If the error is caused by one of the following:

• A normal access request to a terminal currently in BREAK mode

• BREAK key typed on a terminal where BREAK is enabled

• Disc pack not up to speed

~ 82359 AOO 3/85 2-143

FILEERROR

FILEERROR delays the calling process for one second, then
returns a 1, indicating a retry should be performed.

--If the error is an ownership error (error 200) or a path down
error (error 201) and the alternate path is operable, FILEERROR
returns a 1, indicating that the operation should be retried. If
the alternate path is inoperable, a 0 is returned.

--If the error is caused by one of the following:

• A device not ready

• No WRITE ring on a tape unit

• Paper out on a line printer

An appropriate message is printed on the home terminal and is
followed by a READ from the terminal. If STOP is entered
after the READ (signaling that the condition cannot be
corrected), FILEERROR returns a 0 to indicate that the
operation should not be retried. If any other data is entered
(typically, carriage return), it signals that the condition
has been corrected, and FILEERROR returns a 1 to indicate that
the operation should be retried.

--Any other error results in the file name, followed by the file
system error number, being printed on the home terminal. A zero
is returned, indicating that the operation should not be retried.

If the file number has bit <O> set, no message will be printed
on the home terminal, unless <filenum> = -1.

To prevent a message from being printed on the home terminal
for <filenum> = -1, use <filenum> = %137777.

Example

IF FILEERROR FNUM) THEN retiry

Related Programming Manual

None

2-144 "'f* 82359 AOO 3/85

~

,l

FILEINFO

FILEINFO PROCEDURE

The FILEINFO procedure is used to obtain error and characteristic
information about a file. The file must be open if you refer to it
by its file number, but if you refer to it by its file name, it need
not be open.

The syntax for FILEINFO is:

CALL FILEINFO ([<f ilenum>] i
, [<error>] 0
, [<filename>] i , 0
, [<ldevnum>] 0
, [<devtype>] 0
, [<extent-size>] 0
, [<eof-location>] 0
I [<next-record-pointer>] 0

' [<last-modtime>] 0

' [<f ilecode>] 0

' [<secondary-extent-size>] 0

I [<current-record-pointer>] 0
, [<open-flags>] 0
, [<subdev>] 0
, [<owner>] 0

' [<security>] 0

' [<num-extents-allocated>] 0

' [<max-file-size>] 0

' [<partition-size>] 0

' [<num-partitions>] 0

' [<file-type>] 0

' [<maximum-extents> 0
, [<unstructured-buffer-size>] 0
, [<open-f lags2>] 0

' [<sync-depth>] 0
, [<next-open-fnum>]) ; 0

<f ilenum> input

INT:value

is the number of an open file that identifies the file whose
characteristics are to be returned. Either <filenum> or
<filename> must be specified; if both are passed, <filename>
is the file name associated with <filenum>.

~ 82359 AOO 3/85 2-145

FILEINFO

NOTE

When <f ilenum> is specified, the information returned is
from the access control block. When <filename> is specified,
the information returned is from the file label.

<error> output

INT:ref :l

returns the error number associated with the last operation on
the file. <filenum> or <filename> can be specified with this
parameter. Refer to the GUARDIAN Operating System Programmer's
Guide for error recovery information.

<filename> input, output

INT:ref :12

returns the file name of this file. Either <f ilenum> or
<filename> must be passed; if both are passed, <filename>
returns with the name of the file associated with <filenum>.
Refer to the GUARDIAN Operating Syst~m Programmer's Guide for
the file name format~

NOTE

The following parameters are returned with information
from the volume directory and not from any system control
structures. Subsequently, there is no check to see if the
file is actually opened when <filename> is specified:
<owner>, <security>, <numextents-allocated>, <maxfilesize>,
<partitionsize>, <num-partitions>, and <filetype>.

<ldevnum> output

INT:ref :16 or INT:ref :l

is the logical device number of the device where this file
resides. Invalid with <filename>; use <filenum>.

INT:ref :16 is used if the file is partitioned.

INT:ref :l is used if the file is not partitioned.

2-146 ~ 82359 AOO 3/85

FILEINFO

For partitioned files, an array of <ldevnum> is returned, one
entry for each of 16 possible partitions:

[O] = <ldevnum> of partition 0
[l] = <ldevnum> of partition 1

.
[15] = <ldevnum> of partition 15.

If -1 is returned for a partition, the partition is not open.

<devtype> output

INT:ref :l

returns the device type and subtype of the device associated
with this primary partition file. See Appendix B for a list
of device types and subtypes.

NOTE

If <devtype>.<O> = 1 this device is a demountable disc
volume.

<extent-size> output

INT:ref :l

for disc files returns the primary extent size in 2048-byte
units. For nondisc devices, it returns the configured physical
record length in bytes. For interprocess files, this
parameter has no meaning.

The following parameters apply to disc tiles only:

<eof-pointer> output

INT(32):ref:l

returns the relative byte address (RBA) of the end-of-file
location.

._, 82359 AOO 3/85 2-147

FILEINFO

<next-record-pointer> output

INT(32):ref:l

returns the next-record pointer setting:

relative files = a record number
entry-sequenced files = a record address
unstructured files = an RBA
key-sequenced files = parameter is ignored (whatever

passes returns unchanged).

This parameter is not valid with <filename>; use <f ilenum>.

<last-modtime> output

INT:ref :3

returns a three-word timestamp, indicating the last time the
file is modified. <last-modtime> is of the same form as
the <interval-clock> returned by TIMESTAMP and can be
converted into a date by CONTIME.

<f ilecode> output

INT:ref :l

returns the application-defined file code that is assigned
when the file is created. File codes 100-999 are reserved
for use by Tandem. Refer to the GUARDIAN Operating System
Utilities Reference Manual for a list of file codes.

<secondary-extent-size> output

INT:ref :l

returns the size of the secondary file extents (extents 1-15)
in 2048-byte units.

--+

.., 82359 AOO 3/85

FILEINFO

<current-record-pointer> output

INT(32):ref:l

returns the setting of the current-record pointer. This can
be an even or odd value. This parameter is invalid with
<filename>; use <f ilenum>.

relative files
entry-sequenced files
unstructured files
key-sequenced files

= a record number
= a record address
= an RBA
= parameter is ignored (whatever is

passed is returned unchanged).

The following parameter applies to any file:

<open-flags> output

INT:ref :l

returns the access granted when the file is opened. This
parameter is invalid when used with <filename>; use <filenum>.
In this parameter:

.<l> = 1 for the $RECEIVE file only means that the
process wants to receive OPEN, CLOSE, CONTROL,
SETMODE, RESETSYNC, and CONTROLBUF system
messages •

• <2> = 1 means unstructured access, regardless of the
actual file structure (see the OPEN
procedure).

.<3:5> is the access mode:

0 = READ/WRITE access
1 = READ-only access
2 = WRITE-only access

.<6> = 1 indicates that resident buffers are provided
by the application process for calls to file
system I/O routines. a 0 is always returned in
this bit (see the OPEN procedure) •

• <8> = 1 for process files means, the OPEN message is to
be sent nowait and must be completed by a call to
AWAI TIO.

~ 82359 AOO 3/85 2-149

FILEINFO

.<9:11> is the exclusion mode:

0 = shared access
1 = exclusive access
3 = protected access

.<12:15> is the maximum number of concurrent nowait I/O
operations that can be in progress on this file
at any given time. <open flags>.<12:15> = 0
implies wait I/O.

<subdevice> output

INT:ref :l

returns the subdevice number associated with this file. For
example, type 61 is an X.25 access method communication line,
and subdevice numbers in the range 0-62 can be defined for this
line. Note that these values are not used by the operating
system. This parameter is invalid with <filename>; use
<f ilenum>.

The following parameters are valid only when used with <filename>:

<owner> output

INT:ref :l

returns the identity of the file's owner in the form
<group-num><user-num>.

<security> output

STRING:ref :5

returns the security assigned to the file.

<security>[0].<4> = 1 applies to a program file if the file
has PROGID authority. When the
program file is called, PROGID sets a
caller's accessor ID to the owner ID
of the called program file.

2-150 Af' 82359 AOO 3/85

FILEINFO

<security> [0]. <5> .. 1 applies if the CLEARONPURGE opt ion is
on for this file. If on, this option
causes all data to be physically
deleted from the disc when the file is
purged. If this option is not on, the
disc space is only logically
deallocated when the file is purged,
and no data is actually destroyed.

<security>[l] returns the reading security of the
file.

<security>[2] returns the writing security of the
file.

<security>[3] returns the execution security of the
file.

<security>[4] returns the purging security of
file.

In <security>[l:4], the returned values are:

returned value: 0
security level: A

<num-extents-allocated>

INT:ref :1

1
G

2 3 4
0 n/a N

output

5
c

6 7
U super

the

returns the number of extents that are allocated for the
file.

<max-file-size> output

INT(32):ref:l

returns the maximum number of bytes configured for the file.
For example:

<extent-size> + 15 * <secondary-extent-size>

For structured files the value is rounded up to block size.

~ 82359 AOO 3/85 2-151

FILEINFO

<partition-size> output

INT:ref :l

returns the size of the area needed for each file partition.
This file partition information is retrieved from the
<partition-parameters> array in the FILERECEIVEINFO procedure.

<num-partitions> output

INT:ref :l

returns the number of partitions configured for the file.

<file-type> output

2-152

INT:ref :l

returns the file type and other information about the file.
All bits are 0, except as described below:

<f ile-type>.<2>

.<10>

.<11>

.<12>

= l for systems with the Transaction
Monitoring Facility, indicates
this file is audited.

= 1

= 1

= 1

= 1

indicates REFRESH is specified for
this file.

for key-sequenced files, indicates
index compression is specified.

for key-sequenced files, indicates
data compression is specii:ied.

for unstructured files, indicates
ODDUNSTR is specified.

.<13:15> specifies the file structure:

0 = unstructured
1 = relative
2 = entry-sequenced
3 = key-sequenced

.-, 82359 AOO 3/85

FILEINFO

<maximum-extents> output

INT:ref :l

returns the maximum number of extents that can be allocated.
This parameter meaningful for a DP2 disc file only.

<unstructured-buffer-size> output

INT:ref :l

returns the internal buffer size to be used for an unstructured
file. This parameter is meaningful for a DP2 disc file only.

<open-f lags2> output

INT:ref :l

returns various file attribute settings. Unless noted
otherwise, the following <open-flags2> bits are meaningful
for DP2 disc files only and are valid with both the
<filename> and <f ilenum> parameters:

<open-flags2>.<0> = 0 verify WRITES off
= 1 verify WRITES on (current file label

default)

.<l> = 0 system automatically selects serial
or parallel WRITEs

= 1 serial mirror WRITES only (current file
label default)

.<2> = 0 buffered WRITES enabled
= 1 WRITE-thru (current file label default)

CAUTION

If the BUFFERED option is specified for an nonaudited
file, a system failure or disc-process takeover (with
<sync-depth> = 0) could cause the loss of buffered updates
for the file that an application might not detect or
handle properly unless modified •

"" 82359 AOO 3/85

• <3> = 0 audit-checkpoint compression off
= 1 audit-checkpoint compression on

(current file label default)

2-153

FILEINFO

.<4> = 0 crash-open flag off

This
.<5>

.<6>

.<7>

= 1 crash-open flag on (This is meaningful
with the <filename> parameter only

is
= 0
= 1

= 0
= 1

= 0
= 1

and is valid for both DPl and DP2 disc
files.)

valid for DPl disc files
rollforward needed flag off
rollforward needed flag on

broken file flag off
broken file flag on

file closed
file opened (This is meaningful with
the <filename> parameter only and
is valid for both DPl and DP2 disc
files.)

.<8:15> = unused

<sync-depth> output

INT:ref :l

If this parameter is specified, the <filenum> parameter must be
specified and must contain the number of an open f i.le. FILEINFO
returns the sync depth (or receive depth for $RECEIVE) of the
file. A 0 is returned if the file is not a disc file, process,
or $RECEIVE.

<next-open-fnum> output

INT:ref :1

If this parameter is specified, the <filenum> parameter must be
specified and must contain the number of an open file or -1.

If an open file number is specified in <filenum>, FILEINFO
returns the largest number of an open file whose file number is
less than the file number specified in <filenum>. If there is
no such file, FILEINFO returns -1.

If -1 is specified in <filenum>, FILEINFO returns the file
number of the open file with the largest file number, or -1
if no files are currently open~

2-154 ~ 82359 AOO 3/85

f

Table 2-2 indicates which FILEINFO parameters are valid when
specifying the <filenum> or <filename> parameter.

FILEINFO

Table 2-2. FILEINFO <f ilenum> and <filename> Parameters

File File
Parameter Number Name

([(filenum)] x
, [(error)] x x
, [(filename)] x x
, [(ldevnum)] x x
, [(devtype)] x x
, [<extent-size)] x x
, [(eof-location)] x x
, [<next-record-pointer)] x
, [(last-modtime)] x x
, [< filecode >] x x
, [<secondary-extent-size>] x x
, [(current-record-pointer)] x
, [(open-flags2)] x
,[(subdev)] x
, [(owner)] x
, [(security)] x
, [(num-extents-allocated)] x
, [(max-file-size)] x
, [<partition-size)] x
, [(num-partitions)] x
, [(file-type)]) x
, [(maximum-extents)] x x
, [<unstructured-buffer-size)] x x
, [(open-flags2)] x x
, [<sync-depth>] x
, [< next-open-fnum)]) x

Condition Code Settings

< (CCL) indicates that an error occurred: the error number returns
in <error>.

= (CCE) indicates that FILEINFO executed successfully.

> (CCG) does not return from FILEINFO.

Considerations

• Waited OPEN That Failed

The error number of a preceding AWAITIO on any file or waited OPEN
that failed can be obtained by passing a -1 in the <f ilenum>
parameter. The error number returns in <error>.

"'1 82359 AOO 3/85 2-155

FILEINFO

• Calling FILEINFO Before Opening any Files

File system error 32 returns in <error> (if the <error> parameter
is present in the call) if a process has never opened any files,
and -1 is specified in the <filenum> parameter.

• Parameter Exceptions to FILEINFO

All parameters to FILEINFO are optional except for <f ilenum> and
<filename>, one of which must be given. Placeholder commas must
be included to indicate missing parameters, unless the parameters
are omitted from the end of the list.

CALL FILEINFO (devicenum, error,,, devicetype,, eof);

• Disc File Considerations

--Finding the error of a preceding CREATE or PURGE that failed

The error number of a preceding CREATE or PURGE that failed can
be obtained by passing a -1 in the <filenum> parameter. The
error number returns in <error>.

• Calling FILEINFO Subsequent to a CLOSE

File system error 16 (file not open) returns if FILEINFO is
called subsequent to a CLOSE.

CALL FILEINFO FILENUM , ERROR);

CALL FILEINFO (, , FILEANAME , , , ,

Related Programming Manuals

get error of read
operation.

, , , , , , , , OWNER);

For programming information about the FILEINFO file system procedure,
refer to the GUARDIAN Operating System Programmer's Guide and the
ENSCRIBE Programming Manual.

2-156 -'1 82359 AOO 3/85

FILERECINFO

FILERECINFO PROCEDURE

The FILERECINFO procedure obtains record characteristics of a disc
file.

The syntax for FILERECINFO is:

CALL FILERECINFO ([<f ilenum> 1 i
' [<current-keyspecif ier> 1 0

' [<current-keyvalue>] 0

' [<current-keylen > 1 0

' [<current-primary-keyvalue> 1 0

' [<current-primary-keylen> 1 0

' [<partition-in-error> 1 0

' [<specifier-of-key-in-error> 1 0
, [<file-type> 1 0
, [<logical-recordlen> 1 0
, [<blocklen> 1 0
, [<key-sequenced-parameters> 1 0

' [<alternate-key-parameters> 1 0
, [<partition-parameters>] 0
, [<filename>]) ; i

<f ilenum> input

INT:value

is the number of an open file that identifies the file whose
characteristics are to be returned. You must specify either
<f ilenum> or <filename>; specifying both causes a CCL
condition code.

<current-keyspecif ier> output

INT:ref :l

returns the current key field's key specifier. This is invalid
when you specify the <filename> parameter; use <filenum>.

'1' 82359 AOO 3/85 2-157

FILERECINFO

<current-keyvalue> output

STRING: ref:*

returns the value of the current key for <current-keylen>
bytes. This is invalid when you specify the <filename>
parameter; use <filenum>.

<current-keylen> output

INT:ref :l

returns the current key length in bytes. This is invalid when
the <filename> parameter is specified; use <filenum>.

<current-primary-keyvalue> output

STRING:ref :*

returns the value of the current primary key for
<current-primary-keylen> bytes. This is invalid when you
specify the <filename> parameter; use <filenum>.

<current-primary-keylen> output

INT:ref :l

returns the length, in bytes, of the current primary key.
This is invalid when you specify the <filename> parameter;
use <filenum>.

<partition-in-error> output

INT:ref :l

returns a number from 0 through 15 that indicates the partition
in which the latest error occurred for this file. This is
invalid when you specify the <filename> parameter; use
<f ilenum>.

2-158 ~ 82359 AOO 3/85

~

FILERECINFO

<specifier-of-key-in-error> output

INT:ref :l

returns the key tag associated with the latest error occurring
with this file. This is invalid when you specify the <filename>
parameter; use <filenum>.

The following parameters are the only parameters returned
when you specify <filename>:

<file-type> output

INT:ref :l

returns a number indicating the type of file being accessed.

<f ile-type>.<2>

• <10>

.<11>

.<12>

= 1 for systems with the Transaction
Monitoring Facility, indicates this file
is audited.

= 1

= 1

= 1

= 1

means REFRESH is specified for this file •

for key-sequenced files, means index
compression is specified.

for key-sequenced files, means data
compression is specified.

for unstructured files, means ODDUNSTR is
specified.

.<13:15> specifies the file structure:

<logical-recordlen>

INT:ref :l

0 = unstructured
1 = relative
2 = entry-sequenced
3 = key-sequenced

output

returns the maximum size of the logical record in bytes •

...,,,.1 82359 AOO 3/85 2-159

FILERECINFO

<blocklen> output

INT:ref :l

returns the length, in bytes, of a block of records for the
file.

<key-sequenced-parameters> output

INT: ref:*

is an array to which the parameters unique to a key-sequenced
file are returned. (Refer to the CREATE procedure.)

<alternate-key-parameters> output

INT: ref:*

is an array where the parameters describing the file's
alternate keys are returned. (Refer to the CREATE procedure.)

<partition-parameters> output

INT: ref:*

is an array where the parameters describing a multivolume file
are returned. (Refer to the CREATE procedure.)

<filename> output

INT:ref :12

identifies the file whose characteristics are returned. You
must specify either <filenum> or <filename>: specifying both
causes a CCL condition code.

When you specify <filename>, the only parameters rE~turned are
<filetype>, <logical-recordlen>, <blocklen>,
<key-sequenced-parameters>, <alternate-key-parametE~rs>, and
<partition-parameters>.

This information is acquired from the volume directory and not
from any system control structures, so there is no check to see
if the file is actually opened by this or any other process.

2-160 /182359 AOO 3/85

,,

FILERECINFO

Condition Codes

< (CCL) indicates that an error occurred. This can indicate that
the specified file was not found or that both <f ilenum>
and <filename> were specified in the same FILERECINFO
call.

= (CCE) indicates that FILERECINFO executed successfully.

> (CCG) indicates that the file is not a GUARDIAN disc file.

Example

CALL FILERECINFO (FILEANUMBER

Related Programming Manual

current key specifier.
current key value.
current key length.
current primary key value.
current primary key length.
partition in error.
key in error.

i For programming information about the FILE.RECINFO file system
procedure, refer to the ENSCRIBE Programming Manual.

~ 82359 AOO 3/85 2-161

FIXSTRING

FIXSTRING PROCEDURE

The FIXSTRING procedure is used to edit a string based on
subcommands provided in a template.

The syntax for FIXSTRING is:

CALL FIXSTRING (<template>
,<template-len>
,<data>
,<data-len>

<templat~>

STRING:ref :*

,[~maximum-data-len>]
,[<modification-status>] >:

input

i
i
i I' 0

i I' 0
i
0

is the character string to be used as a modification template.

There are three basic subcommands that you can use in
<template>: replacement, insertion, and deletion.

In addition, replacement can be either explicit (a subc-0mmand
beginning with "R") or implicit (a subcommand beginning with
any nonblank character other than "R," "I," or "D"). The form
of <template> is:

<template>= { <subcommand>// ••• }

<subcommand> =

{ R<replacement string> }
{ !<insertion string> }
{ D }
{ <replacement string> }

<template-len> input

INT:value

replace subcommand
insert subcommand
delete subcommand
implicit replacement

is the length, in bytes, of the template string.

2-162 ~ 82359 AOO 3/85

FIXSTRING

<data> input, output

STRING: ref:*

on input, is a string to be modified. The resulting string
returns in this parameter.

<data-len> input, output

INT:ref :l

on input, contains the length, in bytes, of the string input
in <data>. On return, it contains the length, in bytes, of
the modified data string in <data>.

<maximum-data-len> input

INT:value

contains the maximum length, in bytes, to which <data> can
expand during the call to FIXSTRING. If omitted, 132 is used
for this value.

<modification-status> output

INT:ref :l

returns an integer value as follows:

0 = no change was made to <data>.
1 = a replacement, insertion, or deletion was performed

on <data> (see "Considerations").

Condition Code Settings

< (CCL) indicates that one or more of the required parameters
is missing.

= (CCE) indicates that the operation completed successfully.

> (CCG) indicates that an insert or replace would have caused
the <data> string to exceed the <maximum-data-len>.

~ 82359 AOO 3/85 2-163

FIXSTRING

Considerations

• <template> Considerations

A character in <template> is recognized as the beginning of a
subcommand if it is the first nonblank character in <template>, the
first nonblank character following "//," or the first nonblank
character following a "D" subcommand. Otherwise, it is considered
part of a previous subcommand.

Note that a subcommand may immediately follow "D" without being
preceded by "//."

If a subcommand begins with "R," "I," or "D," it is recognized as
an explicit command. Otherwise, it is recognized as an implied
replacement.

The action of the subcommands is as follows:

R (or r) for "Replace"

This subcommand replaces characters in <data> with
<replacement-string> on a one-for-one basis. Replacement begins
with the character corresponding to R. The <replacement-string>
is terminated by the end of <template> or by a "//" sequence in
<template>. Trailing blanks are considered part of the
replacement string (that is, blanks are not ignored).

Implied Replacement

A subcommand that does not begin with "R," "I," or "D" is
recognized as a <replacement-string>. Characters in
<replacement-string> replace the corresponding characters in
<data> on a one-for-one basis.

D (or d) for "Delete"

This subcommand deletes the corresponding character in <data>.

I (or i) for "Insert"

This subcommand inserts a string from <template> into <data>
preceding the character corresponding to the "I". The
<insertion-string> is terminated by the end of <template> or by
a "//" sequence in <template>. Trailing blanks are considered
part of the insertion string (that is, they are not ignored).

• When <data> Is Truncated

~rhe <maximum-data-len> serves to protect data residing past the end
c>f the <data> string. Therefore, <data> is truncated whenever
<data-len> exceeds <maximum-data-len> during processing by
1'., I XS TRI NG.

2-164 '1J 82359 AOO 3/85

•

FIXSTRING

In particular, FIXSTRING truncates <data> if <data-len> temporarily
exceeds <maximum-data-len>, even if <template> contains delete
subcommands that result in a <data> string of the correct length.

When Insertion String Is Truncated

If an insertion causes the length of <data> to exceed
<maximum-data-len>, the FIXSTRING truncates <insertion-string>.

• <modification-status> is set to 1 if a replacement is performed
that leaves <data> unchanged.

Example

CALL FIXSTRING (SATEMPAARRAY , TEMPALEN , SCOMMAND , NUM);

Related Programming Manual

For programming information about the FIXSTRING utility procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

'1J 82359 AOO 3/85 2-165

FLA.SCREEN

FLA.SCREEN PROCEDURE

For users of the ENTRY or ENTRY520 screen formatter, the FLA.SCREEN
procedure is called to find the actual length of the data entered.

The syntax for FLA.SCREEN is:

<length> :=FLA.SCREEN (<field-name>); i

<length> returned value

INT

is the length of the input data actually typed into the entry
field.

<field-name>

STRING:ref :*

is the name of an entry field.

Condition Code Settings

The condition code has no meaning following a call to FLA.SCREEN.

Example

Be aware of the difference between the length of the entry field,
LENGTH, and the length of the data actually entered,
FLA.SCREEN (XANAME).

Related Programming Manuals

For programming information about the FLA.SCREEN entry procedure, refer
to the ENTRY Screen Formatter Operating and Programming Manual or the
ENTRY520 Screen Formatter Operating and Pr.ogramming Manual.

2-166 ~ 82359 AOO 3/85

FNAMECOLLAPSE

FNAMECOLLAPSE PROCEDURE

The FNAMECOLLAPSE procedure converts a file name from internal to
external form. The system number of a network file name is
converted to the corresponding system name.

The syntax for FNAMECOLLAPSE is:

{ <length>
{ CALL

:= } FNAMECOLLAPSE (<internal-name>
} ,<external-name>);

<length> returned value

INT

returns the number of bytes in <external-name>.

<internal-name> input

INT:ref :12

i
0

is the name to be converted. <internal-name> is an array of
~ 12 words. <internal-filename> cannot be the same array as

<external-filename>. The file name is one of the following:

Permanent Disc Files

Word [0:3] = $<volname><blank-fill>
[4:7] = <subvol-name><blank-fill>
[8:11] = <disc-file-name><blank-fill>

Temporary Disc Files

Word [0:3] = $<volname><blank-fill>
[4:11] = <temporary-filename> returned by CREATE (which

is blank-filled).

Nondisc Devices

Word [0:11] = $<devname><blank-fill>
$<ldevnum><blank-f ill>

~ 82359 AOO 3/85 2-167

FNAMECOLLAPSE

Network File Name

Word [0].<0:7> = \ (ASCII backslash)
.<8:15> = <sysnum>, in octal

[1:3] = <volname>, <devname>, or <process-id>
[4:11] = $<volname><blank-fill>

or
$<devname><blank-f ill>

$<volname> in words four through eleven cannot be any longer
than six characters.

<external-name> output

STRING:ref :26 or STRING:ref :34

returns the external form of <internal-name>. If
<internal-name> is a local file name, <external-name> contains
a maximum of 26 bytes: if a network name is converted,
<external-name> contains a maximum of 34 bytes. (See the
FNAMEEXPAND procedure.)

Condition Code Settings

The condition code has no meaning following a call to E'NAMECOLLAPSE.

Considerations

• Invalid File Names

It is the responsibility of the program calling FNAMECOLLAPSE to
pass a valid file name in <internal-name>. Invalid file names
cause unpredictable results such as retrieving information from
the wrong file.

• Passing a Bad <sysnum> Value

If <internal-name> is in network form, and the syste!m number in the
second byte does not correspond to any system in the network,
FNAMECOLLAPSE supplies "??" as the system name.

2-168 -''f 82359 AOO 3/85

FNAMECOLLAPSE

Example

LENGTH := FNAMECOLLAPSE (INTNAME , EXTNAME);

NOTE

If INTNAME is passed in local internal form for example,
"$SYSTEM SUBVOL MYFILE" it converts to external local form,
"$SYSTEM.SALES.MYFILE."

If INTNAME is passed in network form for example,
"\<sys-num>SYSTEMSUBVOL MYFILE," it converts to external
network form, "\<system-name>.$SYSTEM.SUBVOL.MYFILE."

Related Programming Manual

For programming information about the FNAMECOLLAPSE file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 2-169

FNAMECOMPARE

FNAMECOMPARE PROCEDURE

The FNAMECOMPARE procedure compares two file names within a local or
network environment to determine whether these file names refer to the
same file or device. For example, one name might be a logical system
name or a device number, while the other reference might be a symbolic
name. The file names compared must be in the standard 12-word
internal format that FNAMEEXPAND returns.

The syntax for FNAMECOMPARE is:

{ <status>
{ CALL

<status>

INT

:= } FNAMECOMPARE (<f ilenamel>
} ,<filename2>);

returned value

i
i

returns a value indicating the outcome of the comparison.
Values for <status> are:

-1 =
0 =
1 =

(CCL)
(CCE)
(CCG)

The file names do not refer to the same file.
The file names refer to the same file.
The file names refer to the same volume name,
device name, or process name on the same
system; however, words [4:11] are not the
same:

<f ilenamel>[4] <> <filename2>[4] FOR 8

A value less than -1 is the negative of a file system error
code. With this error condition, the comparison is not
attempted.

The value returned from the program function determines the
condition code setting.

<f ilenamel> input

INT:ref :12

is the first file name that is compared. Each <filename>
array can contain either a local file name or a network file
name (see the FNAMECOLLAPSE procedure). Refer to the GUARDIAN
Operating System Programmer's Guide for the definitions of file
names.

2-170 ~ 82359 AOO 3/85

FNAMECOMPARE

<f ilename2> input

INT:ref :12

is the second file name that is compared. (See the
FNAMECOLLAPSE procedure.)

Condition Code Settings

The value returned from the program function determines the condition
code setting. (See the definition of the <status> parameter.)

Considerations

• The arrays containing the file names for comparison are not
modified.

• Alphabetic Characters not Upshifted

Alphabetic characters within qualified process names are not
upshifted before comparison.

• Passing Logical Device Numbers for File Names

If a logical device number format (such as $0076) is used for one
file name but not for the second file name, the device table of the
referenced system is consulted to determine whether the names are
equivalent. This is the only case where the device table is used.
All other comparisons involve only the examination of the two file
names supplied.

• FNAMECOMPARE and Negative File Errors

Negative file system error codes indicate that a logical device
number format is passed for one file name and not for the second
and that the device is connected to a remote network node. Some of
the most common negative file system error codes returned
are:

-13 An illegal file name specification for either file name
is made.

-14 The device does not exist. Only one of the file names is
passed in logical device number format (requiring a check
of the device table), and the file name represents a
device connected to a remote node •

.,, 82359 AOO 3/85 2-171

FNAMgCbMPARE

-18 No such system is defined in this network. Only one of
the file names is passed in logical device number format
(requiring a check of the devi~e table), and the file
name represents a device connected to a remote node.

-22 A parameter or buffer is out of bounds.

-250 All paths to the system are down. Only one of the file
names is passed in logical device number format
(requiring a check of the device table), and the file
name represents a device connected to a remote node.

Examples

FNAMEl ' : =' ["$TERM1" , 9 * [" w•]] ;

FNAME2 ' : =' [%56006 , "TERMl " 8 * [" "]] ;
, "TERMl":

STATUS : = FNAMECOMPARE (FNAMEl , J~NAME2) ;

"\" ' 6

Execution of this example returns a 0 in status and the condition code
CCE.

In a nonnetwork system, execution of the example returns a status of
-1 and the condition code CCL.

Whether a system is a network node or not, execution of

FNAMEl ':=' ["$SERVR #START UPDATING"];
FNAME2 ':=' ["$SERVR #FINISH UPDATING"];
STATUS := FNAMECOMPARE (FNAMEl , FNAME2);

returns a status of +l and the condition code CCG.

In any system, execution of

FNAMEl ':=' ["$0013 ", 9 * [" "]];
FNAME2 ':=' ["$DATAX", 9 * [" "]];
STATUS := FNAMECOMPARE (FNAMEl , FNAME2);

returns a status of 0 and a condition code CCE if the device name
$DATAX is defined as logical device number 13 at SYSGEN time;
otherwise, it returns a status of -1 and the condition code CCL.

Related Programming Manual

None

2-172 '1J 82359· AOO 3/85

FNAMEEXPAND

FNAMEEXPAND PROCEDURE

The FNAMEEXPAND procedure is used to expand a partial file name from
the compacted external form to the standard 12-word internal form
usable by other file system procedures.

The syntax for FNAMEEXPAND is:

{ <length>
{ CALL

<length>

INT

:= } FNAMEEXPAND (<external-filename>
} ,<internal-filename>

,<default-names>):

returned value

i
0
i

returns the length, in bytes, of the file name in
<external-filename>. If an invalid file name is specified,
0 is returned.

<external-filename> input

STRING:ref :24 or STRING:ref :34

is the file name to be expanded. The file name must be in the
form:

[\<sysname>.]<filename>

where <filename> is in one of these forms:

[$<volname>.][<subvol-name>.]<disc-filename><delim>

$<processname>[.#<lst-qualif-name>[.<2nd-qualif-name>]]<delim>

$<devname><delim>

$<ldevnum><delim>

<delim>

is a delimiter. <delim> can be any character that is not
valid as part of an external file name, such as blank or
null.

~ 82359 AOO 3/85 2-173

FNAMEEXPAND

<internal-filename> output

INT:ref :12

is an array of 12 words where FNAMEEXPAND returns the expanded
file name. FNAMEEXPAND (unlike FNAMECOLLAPSE) can have the same
source and destination buffers (file names) since it uses a
temporary intermediate storage area for the conversion. (See
"Considerations" for the form of the returned
<internal-filename>.)

<default-names> input

INT:ref :8

is an array of eight words containing the default volume and
subvolume names to be used in file name expansiono
<default-names> is of the form:

<default-names>[0:3] = default <volname> (blank--filled
on right)

[4:7] = default <subvolname> (blank-filled
on right)

[0:7] = corresponds directly to <word>[l:8]
of the command interpreter startup
message. Refer to the GUARDIAN
Operating System Programmer's Guide
for the startup message format.

Condition Code Settings

The condition code has no meaning following a call to FNAMECOMPARE.

Considerations

• Expanding Network File Names

--FNAMEEXPAND converts local file names to local names and
network file names to network names.

--When network file names are involved, FNAMEEXPAND converts the
system name to the appropriate system number (see "Examples").
(If the system name is unknown, FNAMEEXPAND supplies 255 for the
system number.)

2-174 ~ 82359 AOO 3/85

• Results of File Name Expansion by FNAMEEXPAND

<disc-filename> returns as:

<filename>[0:3] = $<default-volname><blank-fill>
[4:7] = <default-subvolname><blank-fill>
[8:11] = <disc-filename><blank-fill>

<subvolname>.<disc-filename> returns as:

<filename>[0:3] = $<default-volname><blank-fill>
[4:7] = <subvolname><blank-fill>
[8:11] = <disc-filename><blank-fill>

$<volname>.<disc-f ilename> returns as:

<filename>[0:3] = $<volname><blank-fill>
[4:7] = <default-subvolname><blank-fill>
[8:11] = <disc-filename><blank-fill>

$<volname>.<subvolname>.<disc-filename> returns as:

<filename>[0:3] = $<volname><blank-fill>
[4:7] = <subvolname><blank-fill>
[8:11] = <disc-filename><blank-fill>

$<processname>.#<lst-qualif-name> returns as:

<filename>[0:3] = $<processname><blank-fill>
[4:7] = #<lst-qualif-name><blank-fill>
[8:11] = <blank-fill>

FNAMEEXPAND

$<processname>.#<lst-qualif-name>.<2nd-qualif-name> returns
as:

<filename>[0:3] = $<processname><blank-fill>
[4:7] = #<lst-qualif-name><blank-fill>
[8:11] = <2nd-qualif-name><blank-fill>

$<devname> returns as:

<filename>[O:ll] = $<devname><blank-fill>

$<ldevnum> returns as:

<filename>[O:ll] = $<ldevnum><blank-fill>

If any of the forms described above are preceded by "\<sysname>,"
the result is as given above, except that "\<sysnum>" replaces
"$" in the result.

Any other file name is invalid.

/'1 82359 AOO 3/85 2-175

FNAMEEXPAND

Example

IJENGTH : = FNAMEEXPAND (INNAME , OUTNAME , PSMG[1]) ;

Related Programming Manuals

For programming information about the FNAMEEXPAND file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide.
For network programming applications, refer to the EXPAND Reference
Manual. ----

2-176 '°1' 82359 AOO 3/85

,,

FORMATCONVERT

FORMATCONVERT PROCEDURE

The FORMATCONVERT procedure converts an external format to internal
form for presentation to the FORMATDATA procedure.

The syntax for FORMATCONVERT is:

{ <status> := } FORMATCONVERT (<iformat> i
{ CALL } ,<iformatlen> i

,<eformat> 0
,<eformatlen> 0
,<scales> 0
,<scale-count> o, i
,<conversion>) : i

<status> returned value

INT

is

>

=

<

a

0

0

0

value indicating the outcome of FORMATCONVERT:

indicates successful conversion. The value is the
number of bytes in the converted format (<iformat>).

indicates <iformatlen> was insufficient to hold the
entire converted format.

indicates an error in the format. The value is the
negated byte location in the input string at which the
error was detected. The first byte of <eformat> is
numbered 1.

<iformat> input

STRING: ref:*

is an array in which the converted format is stored. The
contents of this array must be passed to the FORMATDATA
procedure as an integer parameter, but FORMATCONVERT requires
it to be in byte-addressable G-relative storage. Thus <iformat>
must be aligned on a word boundary, or the contents of <iformat>
must be moved to a word-aligned area when it is passed to
FORMATDATA. (The area passed to FORMATDATA need not be in
byte-addressable storage.)

....,....., 82359 AOO 3/85 2-177

FORMATCONVERT

<iformatlen> input

INT:value

is the length, in bytes, of the <iformat> array. If the
converted format is longer than <iformatlen>, the conversion
terminates and a <status> value <= 0 returns.

<eformat> output

STRING: ref:*

is the format string in external (ASCII) form.

<eformatlen> output

INT:value

is the length, in bytes, of the <eformat> string.

<scales> output

INT: ref:*

is an integer array. FORMATCONVERT processes the :format from
left to right, placing the scale factor (the number of digits
that appear to the right of the decimal point) specified or
implied by each repeatable EDIT descriptor into the next
available element of <scales>. This is done until the last
repeatable edit descriptor is converted or the maximum
specified by <scale-count> is reached, whichever occurs first.

<scale-count> input, output

INT: ref:*

on call, is the number of occurrences of the <scales> array.

On return, <scale-count> contains the actual number of
repeatable EDIT descriptors converted.

2-178 .., 82359 AOO 3/85

FORMATCONVERT

If the number of repeatable EDIT descriptors present is greater
than the number entered here, FORMATCONVERT stops storing scale
factors when the <scale-count> maximum is reached, but it
continues to process the remaining EDIT descriptors and it
continues incrementing <scale-count>.

<conversion> input

INT:value

Specifies the type of conversion to be done:

0 = Check validity of format only. No data is stored into
<iformat>. The scale information is stored in the
<scale> array.

1 = Produce expanded form with modifiers and decorations.
This requires additional storage space, but the execution
time is half that of version 2 (below). The size
required is approximately 10 times <eformatlen>.

2 = Produce compact conversion, ignoring modifiers and
decorations. The resulting format requires little
storage space, but the execution time is twice as long as
version 1 (above).

NOTE

The <scales> parameter information is included to provide
information needed by the ENFORM product. It might not
interest most users of FORMATCONVERT. If so, supply a
variable initialized to 0 for <scales> and <scale-count>.

Condition Code Settings

The condition code has no meaning following a call to FORMATCONVERT
(see the <status> parameter).

-1' 82359 AOO 3/85 2-179

FORMATCONVERT

Example

CALL FORMATCONVERT (IN""FORMAT , IN""LEN , EXT""FORMAT , EXT""LEN
, SCALE , SCALE""CNT , CONVERSION);

Related Programming Manuals

For programming information about the FORMATCONVERT procedure, refer
to the GUARDIAN Operating System Programn:ier's Guide.

2-180 ..-, 82359 AOO 3/85

,,

FORMATDATA

FORMATDATA PROCEDURE

The FORMATDATA procedure performs conversion between internal and
external representations of data, as specified by a format or the
list-directed conversion rules.

The syntax for FORMATDATA is:

{ <error>
{ CALL

<error>

:= } FORMATDATA
}

(<buffer>
,<buf ferlen>
,<buffer-occurs>
,<length>
,<iformat>
,<variable-list>
,<variable-list-len>
,<flags>);

returned value

INT:value

indicates the outcome of the call.

0 = successful operation

Formatter errors:

267 = buffer overflow
268 = no buffer
270 = format loopback
271 = EDIT item mismatch
272 = illegal input character
273 = bad format
274 = numeric overflow

<buffer> input, output

STRING:ref :*

i, 0

i
0

0

0
0

0
i

is a buffer or a series of contiguous buffers where the
formatted output data is placed or where the input data
is found. The length, in bytes, of <buffer> must be at least
<bufferlen> * <buffer-occurs>.

"1J 82359 AOO 3/85 2-181

FORMATDATA

<buf ferlen> input

INT:value

is the length, in bytes, of each buffer in the <buffer> array.

<buffer-occurs> input

INT:value

is the number of buffers in <buffer>.

<length> output

INT:ref :*

is an array that must have at least as many elements as there
are buffers in the <buffer> array on output. FORMATDATA stores
the highest referenced character position in each buffer in the
corresponding <length> element. If a buffer is not accessed,
-1 is stored for that buffer and for all succeeding ones. If
a buffer is skipped (for example, due to consecutive buffer
advance descriptors in the format), 0 is stored.

There are no values stored in the <length> parameter during
input operation.

<iformat> output

INT:ref :*

is an integer array containing the internal format (as
constructed by FORMATCONVERT).

<variable-list> output

INT: ref:*

is a 4- or 5-word entry for each array or variable. Refer to
"Considerations" for the contents and form of this array.

2-18.2 ~ 82359 AOO 3/85

FORMATDATA

<variable-list-len> output

INT:value

is the number of <variable-list> entries passed in this call.

<flags> input

INT:value

Bit .<15> = Input

0 = FORMATDATA performs output operations.
1 = FORMATDATA performs input operations •

• <4> = Null value passed

0 = each <variablelist> item is a 4-word group.
1 = each <variablelist> item is a 5-word group •

• <3> = P-Relative (<iformat> array)

0 = the <iformat> array is G-relative.
1 = the <iformat> array is P-relative •

• <2> = List-directed (refer to the GUARDIAN O~erating
Sfstem Programmer's Guide for information about
list-directed operations)

0 = apply the format-directed operation.
1 = apply the list-directed operation.

Condition Code Settings

The condition code has no meaning following a call to FORMATDATA
(see the <error> parameter).

~ 82359 AOO 3/85 2-183

FORMATDATA

Considerations

• A passed P-relative array must be in the same space as the call.

• <variable-list> Array Form

The 4- or 5-word entry for each array or variable consists of the
following items:

2-184

Word Contents

[O]

[l]

[2]

[3]

[4]

<dataptr>

dataptr

data type

databytes

dataoccurs

nullptr (optional)

is the address of the array or variable (byte address for
types 0, 1, 12-15, and 17 and word address for other
types).

<data type>

is the type and scale factor of the element:

bits <8:15> 0 = string
1 = numeric string unsigned
2 = integer(l6) signed
3 = integer(l6) unsigned
4 = integer(32) signed
5 = integer(32) unsigned
6 = integer(64) signed

7 = not used
8 = real(32)
9 = complex(32*2)

10 = real(64)
11 = complex(64*2)
12 = numeric string, sign trailing, embedded
13 = numeric string, sign trailing, separate
14 = numeric string, sign leading, embedded
15 = numeric string, sign leading, separate

16 = not used
17 = logical * 1 (1 byte)

~ 82359 AOO 3/85

FORMATDATA

18 = not used
19 = logical * 2 (INT (16))

20 = not used
21 = logical * 4 (INT (32))

NOTE

Data types 7 through 11 require floating-point firmware.

bits <0:7> Scale factor moves the position of the implied
decimal point by adjusting the internal
representation of the expression. Scale factor
is the number of positions that the implied
decimal point is moved to the left (factor > 0)
or to the right (factor <= 0) of the least
significant digit. This value must be 0 for
data types 0, 17, 19, and 21.

<databytes>

is the size, in bytes, of the variable or array element
used to determine the size of strings and address spacing.

<dataoccurs>

is the number of elements in the array (supply 1 for
undimensioned variables).

<nullptr>

Example

If <> 0, it is the byte address of the null value.
If = 0, there is no null value for this variable.

ERROR := FORMATDATA (BUFFERS ' BUFALEN ' NUMABUFS ' BUFALENS
, WFORMAT , VLIST , 4 , 0);

Related Programming Manual

For programming information about the FORMATDATA procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

.-, 82359 AOO 3/85 2-185

GETCPCBINFO

GETCPCBINFO PROCEDURE

The GETCPCBINFO provides a process with information from its own
(the current) process control block (PCB).

The syntax for GETCPCBINFO is:

CALL GETCPCBINFO (<request-id>
,<cpcb-info>
,<in-length>
,<out-length>
,<error>);

<request-id> input

INT:value

i
0
i
0

! 0

specifies the information to be returned. The list of valid
request IDs are:

0 = remote creator flag; returns 1 in <cpcb-info> if
creator was remote.

1 = logged-on process state; returns 1 in <cpcb-info> if
the process has logged on.

<cpcb-info> output

INT: ref:*

is an array that returns with the information requE~sted from
the PCB.

<in-length>

INT:value

input

specifies the length, in bytes, of the <cpcb-info> array.
(This is used to prevent possible data overrun.)

2-186 '1J 82359 AOO 3/85

GETCPCBINFO

<out-length> output

INT:ref :l

specifies the number of bytes of information returned in
<cpcb-info>.

<error> output

INT:ref :l

returns a file system error number indicating the outcome of
the PCB information request.

Condition Code Settings

The condition code has no meaning following a call to GETCPCBINFO.

Example

i CALL GETCPCBINFO (REQUESTAID
, PCBAINFO
, INALENGTH
, OUTALENGTH
, ERRORAREQUEST);

Related Programming Manual

None

"'82359 AOO 3/85 2-187

GETCRTPID

GETCRTPID PROCEDURE

The GETCRTPID procedure is used to obtain the CRTPID (which is the
process name in words[0:2] or creation timestamp and two blanks or
CPU and pin in word[3]) associated with a process. (Refer to the
GUARDIAN Operating System Programmer's Guide for more information
about process IDs (PIDs} and CRTPIDs.}

The syntax for GETCRTPID is:

CALL GETCRTPID (<cpu,pin>
,<process-id>);

<cpu,pin> input

INT:value

i
0

is the processor and pin number of the process whose CRTPID is
returned.

<process-id> output

INT:ref :4

is an array of four words where GETCRTPID returns the CRTPID
of the specified processor and pin number. The PII> is in local
form. Refer to the GUARDIAN Operating System Programmer's Guide
for information about PIDs.

The PID is returned in local form (that is, $<procE~ss-name>
is in word[0:2], and word[3] contains the <cpu,pin>).

Condition Code Settings

< (CCL) indicates that GETCRTPID failed, or that no <pid> exists.

= (CCE) indicates that GETCRTPID completed successfully.

> (CCG) does not return from GETCRTPID.

2-188 -'182359· AOO 3/85

GETCRTPID

Considerations

• Passing the PID to OPEN

The PID returned from GETCRTPID is suitable for passing
directly to the file system OPEN procedure (if blank-filled on the
right).

• An Application Acquiring Its Own PID

An application can acquire its own PID by passing the results of
the MYPID procedure to the GETCRTPID procedure:

CALL GETCRTPID (MYPID , MYAPROCESSID);

Example

CALL GETCRTPID (PID , PROCESSAID);

Related Programming Manual

None

/f' 82359 AOO 3/85 2-189

GETDEVNAME

GETDEVNAME PROCEDURE

The GETDEVNAME procedure is used to obtain the name associated with a
logical device number. GETDEVNAME returns the name of a designated
logical device, if such a device exists, or the name of the next
higher (numerically) logical device if the designated logical device
does not exist. A status word is returned from GETDEVNAME that
indicates whether or not the designated device exists or if a higher
entry exists. By repeatedly calling GETDEVNAME and supplying
successively higher logical device numbers, you can obtain the names
of all system devices.

The syntax for GETDEVNAME is:

<status> := GETDEVNAME (<ldevnum>
,<devname>
, [< sys n um>]) ;

<status> returned value

INT

i, 0

0
i

indicates the outcome of the call. The values of <status> can
be:

0 = successful; the name of the designated logical device
is returned in <devname>.

1 = the designated logical device does not exist. The
logical device number of the next higher device is
returned in <ldevnum>; the name of that device is
returned in <devname>.

2 = there is no logical device with <ldevnum> equal to or
greater than <ldevnum>.

4 = the system specified could not be accessed.
99 = parameter error.

<ldevnum> input, output

INT:ref :l

is the logical device number of the designated logrical device
whose name is returned.

-~

2-190 ~ 82359 AOO 3/85

GETDEVNAME

On return, <ldevnum> receives the number of the logical device,
if one exists, or the number of the next higher {numerically)
logical device. The <ldevnum> remains unchanged if no higher
logical device exists.

<devname> output

INT:ref :4

returns the device name or volume name of the designated device,
if it exists, or the next higher {numerically) logical device if
the designated device does not exist. The <ldevname> remains
unchanged if no higher logical device exists.

<sysnum> input

INT:value

specifies the system {in a network) that is searched for
<ldevnum>. If omitted, the local system is assumed.

Condition Code Settings

The condition code has no meaning following a call to GETDEVNAME.

Considerations

• When Device Name Is Returned in Network Form

If the device specified by <ldevnum> is remote, its device name
is returned in network form. If the device specified by <ldevnum>
is local, the device name is returned in local form.

• <sysnum> and Device Names Containing Seven Characters

If the <sysnum> parameter is supplied, devices whose names
contain seven characters are not accessible using this procedure.

• A process name is returned as a device name if you specify a
logical device number that corresponds to a destination control
table {DCT) entry for a process.

"' 82359 AOO 3/85 2-191

GETDEVNAME

• When Zeros and Blanks Are Returned

Zeros and blanks are returned if the disc is demounted, or if the
controlling CPUs are not up.

Exam~

STATUS : = GETDEVNAME (LDEVNUM , DEVNAME , SYSNUM) ;;

Related Programming Manual

None

2-192 "11182359 AOO 3/85

GETPOOL

GETPOOL PROCEDURE

The GETPOOL procedure obtains a block of memory from a buffer pool.

The syntax for GETPOOL is:

<address> := GETPOOL (<pool-head>
,<block-size>);

<address> returned value

INT(32)

i' 0
i

returns the extended address of the memory block obtained if the
operation is successful or -lD if an error occurred or
<block-size> is O.

WARNING

<address> should be a simple INT(32) variable; otherwise,
the assignment can alter the condition code.

<pool-head> input, output

INT .EXT:ref :19

is the pool head previously defined by a call to DEFINEPOOL.

<block-size> input

INT(32):value

is the size, in bytes, of the memory obtained from the pool.
This number cannot be greater than %3777700. To check data
structures without getting any memory from the pool, set
<block-size> to zero.

Condition Code Settings

< (CCL) indicates that <block-size> is out of range, or that the
data structures are invalid; -lD is returned.

4' 82359 AOO 3/85 2-193

GETPOOL

= (CCE) indicates that the operation is successful: extended
address of block returns if <block-size> is greater than
zero, or -lD returns if <block-size> is equal to 0.

> (CCG) indicates that insufficient memory is available: -lD
returns.

Considerations

• A Bounds Violation Trap

GETPOOL and PUTPOOL do not check pool data structurE~s on each call.
A process that destroys data structures can get a bounds violation
trap on a call to GETPOOL or PUTPOOL.

Example

@PBLOCK := GETPOOL(POOLAHEAD , $UDBL($LEN(PBLOCK)):
! get pool block size of PBLOCK in bytes.

Related Programming Manual

For programming information about the GETPOOL memory management
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-194 ~ 82359 AOO 3/85

GETPPDENTRY

GETPPDENTRY PROCEDURE

The GETPPDENTRY procedure is used to obtain a description of a named
process pair by its index into the destination control table (DCT).
To obtain process pair descriptions by process name, use
LOOKUPPROCESSNAME procedure.

The syntax for GETPPDENTRY is:

CALL GETPPDENTRY (<index>
,<sysnum>
, <ppd>) ;

<index> input

INT:value

i
i
0

specifies which DCT entry returns. The first entry is 0, the
second is 1, etc.

<sysnum> input

.,. INT: value

specifies the system where the process pair exists.

<ppd> output

INT:ref:9

is an array where GETPPDENTRY returns the nine-word DCT
entry specified by the given <index> and <sysnum>. Its
format is:

<ppd>

-'f' 82359 AOO 3/85

[0:2] process name (in local form)

[3].<0:7> = <cpu> of primary process
.<8:15> = <pin> of primary process

2-195

GETPPDENTRY

[4].<0:7> = <cpu> of backup process if it is a
process pair. (This is 0 if
there is no backup.)

.<8:15> = <pin> of backup process, if it is a
process pair. (This is 0 if there
is no backup.)

[5:8] = <process-id> of ancestor.

Condition Code Settings

< (CCL) indicates that the DCT in the given system cannot
be accessed.

·- (CCE) indicates that the GETPPDENTRY completed successfully.

> (CCG) indicates that the <index> is greater than the last
entry in the DCT.

Considerations

• Checking the DCT Entry

If <index> is not currently being used, GETPPDENTRY returns CCE
and sets <ppd> to zeros. To check for all conditions, an
application could contain the following code:

CALL GETPPDENTRY(INDEXANUM ' SYSANUM ' PROCESSAPAIRADESCRIPT >:
IF< THEN ••• : ! no more entries or system unavailable.
IF= AND PROCESSAPAIRADESCRIPT THEN ••• ! found an entry.
ELSE

! unused entry, try the next INDEXANUM.

• Difference Between GETPPDENTRY and LOOKUPPROCESSNAME

The difference between the GETPPDENTRY procedure and the
LOOKUPPROCESSNAME procedure is:

GETPPDENTRY is primarily used to obtain a local or remote process
pair description by its index into a system table.

2-196 ~ 82359 AOO 3/85

GETPPDENTRY

LOOKUPPROCESSNAME is primarily used to obtain a local or remote
process pair description by its name.

Example

See "Considerations."

Related Programming Manual

None

.., 82359 AOO 3/85 2-197

GETREMOTECRTPID

GETREMOTECRTPID PROCEDURE

The GETREMOTECRTPID procedure returns the CRTPID (which is the
process name in words[0:2] or creation timestamp and two blanks or
CPU and pin in word[3]) of a remote process whose processor, pin, and
system number are known.

The f;yntax for GETREMOTECRTPID is:

CALL GETREMOTECRTPID (<cpu,pin>
,<process-id>
,<sysnum>);

<cpu,pin> input

INT:value

i
0

i

is the processor and pin number of the process whose CRTPID
is to be returned.

<process-id> output

INT:ref :4

is an array of four words where GETREMOTECRTPID returns the
CRTPID of the processor and pin.

If <sysnum> specifies a remote system, the process ID (PID) is
in network form; if <sysnum> specifies the local system, the
PID is in local form. Refer to the GUARDIAN Operating System
Programmer's Guide for information about PID.

<sysnum> input

INT: value

is a value specifying the system for which the CRTPID is
JEound.

2-198 -"182359 AOO 3/85

GETREMOTECRTPID

Condition Code Settings

< (CCL) indicates the GETREMOTECRTPID failed for one of the
following reasons:

• no such process exists

• the remote system could not be accessed

• the process has an inaccessible name, consisting of
more than four characters.

= (CCE) indicates that GETREMOTECRTPID was successful.

> (CCG) does not return from GETREMOTECRTPID.

Example

CALL GETREMOTECRTPID (PID , CRTAPID , SYSANUM);

Related Programming Manual

None

..-, 82359 AOO 3/85 2-199

GETSYNCINFO

GETSYNCINFO PROCEDURE

The GETSYNCINFO procedure is called by the primary process of a
primary or backup process pair before starting a series of WRITE
operations to a file open with paired access. GETSYNCINFO returns a
disc file's synchronization block so that it can be sent to the backup
process in a checkpoint message.

NOTE

Typically, GETSYNCINFO is not called directly by application
programs. Instead, it is called indirectly by CHECKPOINT.

The syntax for GETSYNCINFO is:

---------------·---

CALL GETSYNCINFO (<f ilenum>
,<sync-block>
,[<sync-block-size>]);

<f ilenum> input

INT:value

i
0

! 0

is the number of an open file that identifies the file whose
sync block is obtained.

<sync-block> output

INT: ref:*

returns the synchronization block for this file. The size, in
words, of <sync-block> is determined as follows:

• For unstructured disc files, size = 4 words.
• For ENSCRIBE structured files, size in words = 11 +

(longest alt key len + pri key len + 1) I 2.
• For the Transaction Monitoring Facility, the transaction

pseudof ile size = 9 words.
• For processes, size = 2 words.

<sync-block-size> output

INT:ref :l

returns the size, in words, of the sync block data.

2-200 Af' 82359 AOO 3/85

GETSYNCINFO

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that GETSYNCINFO was successful.

> (CCG) indicates that the file is not a disc file.

Considerations

• File Number Has Not Been Opened

If the GETSYNCINFO file number does not match the file number of
the open file that you are trying to access, then the call to
GETSYNCINFO returns with file system error 16.

• Buffer Address Out of Bounds

If an out-of-bounds application buffer address parameter is
specified in the GETSYNCINFO call (that is, a pointer to the
buffer has an address that is greater than the MEM associated with
the data area of the process) or if the buffer lies within the
data area that is used by GETSYNCINFO, then the call returns with
file system error 22.

~ Example

CALL GETSYNCINFO (FILEANUM' SYNCAID);

Related Programming Manual

For programming information about the GETSYNCINFO checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

..-, 82359 AOO 3/85 2-201

GETSYSTEMNAME

GETSYSTEMNAME PROCEDURE

The GETSYSTEMNAME procedure supplies the system name associated with a
system number.

The syntax for GETSYSTEMNAME is:

{ <ldev>
{ CALL

:= J GETSYSTEMNAME (<sysnum>
J ,<sysname>);

i
0

<ldev> returned value

INT

if positive, returns the logical device number of the network
line handler that controls the current path to the system
designated by <sysnum>. Other possible returns are:

0 =
-1 =
-2 =

<sysnum>

the <sysnum> is not defined.
all paths to the system are down.
system not on a network or the system is local
and unnamed (system name is blank).

input

INT:value

{0:254} is the number of the system whose name returns
into <sysname>.

<sysname> output

INT:ref :4

returns the name of the system corresponding to <sysnum>.

Condition Code Settings

The condition code has no meaning following a call to GETSYSTEMNAME •

2-202 ..,1J 82359 AOO 3/85

GETSYSTEMNAME

Considerations

• If the local system is not part of a network and is not named, then

CALL GETSYSTEMNAME (MYSYSTEMNUMBER ,NAME);

returns all blanks to "NAME."

Example

LDEV := GETSYSTEMNAME(SYSANUM ,SYSANAME);

Related Programming Manual

None

Af' 82359 AOO 3/85 2-203

GETTMPNAME

GETTMPNAME PROCEDURE

GETTMPNAME obtains the logical device name of the Transaction
Monitoring Process (TMP) that was used during system configuration.
Opening the transaction pseudof ile (TFILE) requires use of that
symbolic name, which normally is $TMP.

The syntax for GETTMPNAME is:

r--~·~~~·~------------~-~~----~~-----·--------------------·-----------.

<status> := GETTMPNAME (<devname> >: ! 0

<status> returned value

INT

returns a zero, if the call was successful, or a file system
error number. (Refer to the System M~ssages Manual~ for a list
of all file system errors).

<devname> output

INT:ref :12

is an array of 12 words to which GETTMPNAME returns the
dummy device name of the TMP. If the TMP is not ccinfigured,
the device name is all blanks.

Condition Code Settings

The condition code has no meaning following a call to GETTMPNAME.

Considerations

• A process can open the TFILE only onceo Attempting to open the
TFILE more than once causes a file system error 12. The OPEN TFILE
call must be done before the first call to BEGINTRANSACTION,
because BEGINTRANSACTION implicitly opens the TFILE, if the process
wishes to have concurrent active transactions.

• Out-of-Bounds Parameter or Buffer Address

If an out-of-bounds application parameter or buffer address
parameter is specif ied--that is, a pointer to the buffer has an
address that is greater than the MEM associated with the data
area of the process--then the call is rejected and returns file
system error 22.

2-204 ~ 82359 AOO 3/85

GETTMPNAME

Example

Related Programming Manual

For programming information about the GETTMPNAME procedure, refer to
the Transaction Monitoring Facility (TMF) Reference Manual.

~ 82359 AOO 3/85 2-205

GET'rRANSID

GET'rRANSID PROCEDURE

GETTRANSID returns the current transaction identifier of the calling
process.

The syntax for GETTRANSID is:

<status> := GETTRANSID (<transid> >: ! 0

<status> returned value

INT

returns a 0, if successful, or a file system error number.
(Refer to the System Messages Manual for a list of all file
system errors.)

<trans id> output

INT:ref :4

is an array of four words to which GETTRANSID returns the
current-transaction identifier. Its form is:

transid[0].<0:7> contains 1 plus the EXPAND system number
of the system in which BEGINTRANSACTION is
called. It is 1 in the nonnetwork case.
The system number identifies the home node
of the transaction.

transid[0].<8:15> contains the number of the processor in
which BEGINTRANSACTION is called.

transid[l-2) contains a double-word sequence number to
make the transaction identification unique.

transid[3] contains a crash count indicating the
number of times the home node has had a
total system failure since the last time
the TMFCOM command INITIALIZE TMF was
issued on the home node.

2-206 ""82359 AOO 3/85

GETTRANSID

Condition Code Settings

The condition code has no meaning following a call to GETTRANSID.

Considerations

• Out-of-Bounds Parameter or Buffer Address

If an out-of-bounds application parameter or buffer address
parameter is specified--that is, a pointer to the parameter or
buffer has an address that is greater than the MEM associated with
the data area of the process--the call is rejected and returns file
system error 22.

• Requesting Process and Current-Transaction Identifier

If the requesting process has no current-transaction identifier
the call is rejected and returns file system error 75.

• When GETTRANSID Fails

GETTRANSID fails if TMF is not running on the local system, or I/O
fails if TMF is not running on the remote system. In either case,
the call returns file system error 82.

Example

STATUS := GETTRANSID (TRANSAID);

Related Programming Manual

For programming information about the GETTRANSID procedure, refer to
the Transaction Monitoring Facility (TMF) Reference Manual.

/'fl 82359 AOO 3/85 2-207

HALTPOLL

HALTPOLL PROCEDURE

The HALTPOLL procedure is normally used to stop continuous polling.

The syntax for HALTPOLL is:

CALL HALTPOLL (<filenum> >: i

<f ilenum> input

INT:value

is the number of an open file which HALTPOLL stops, that
caused a particular communication line to open.

Condition Code Settings

(CCL) indicates that an error occurred (call FILEINFO).

(CCE) indicates that the HALTPOLL procedure executed
successfully.

(CCG) does not return from HALTPOLL.

Example

CALL HALTPOLL (FNUM) :

FNUM is the integer specified in the OPEN call that opens the
particular communication line. HALTPOLL forces the immediate
termination of an outstanding nowait READ operation within a
point-to-point station, or it stops any polling that is in progress
within a multipoint station.

Related Programming Manuals

For programming information about the HALTPOLL system procedure,
refer to the data-communication manuals.

2-208 '1' 82359 AOO 3/85

HEAP SORT

HEAPSORT PROCEDURE

The HEAPSORT procedure is used to sort an array of equal-sized
elements in place.

The syntax for HEAPSORT is:

CALL HEAPSORT (<array>
,<num-elements>
,<size-of-element>
,<compare-proc>);

<array> input, output

INT: ref:*

contains equal-sized elements to be sorted.

<num-elements> input

INT:value

(is the number of elements in <array>.

<size-of-element> input

INT:value

is the size, in words, of each element in <array>.

<compare-proc> input

INT PROC

i, 0
i
i
i

is an application-supplied function procedure that HEAPSORT
calls to determine the sorted order (ascending or descending)
of the elements in <array>. It must be of the form:

INT PROC <compare-proc> (<element-a> , <element-b>)
INT .<element-a>;
INT .<element-b>;

Af' 82359 AOO 3/85 2-209

HEAP SORT

The <compare-proc> must compare <element-a> with
<element-b> and return either of the following values:

0 (indicating false) if <element-b> should precede
<element-a>

1 (indicating true) if <element-a> should precede
<element-b>

<element-a> and <element-b> are INT:ref parameters.

Condition Code Settings

The condition code has no meaning following a call to HEAPSORT.

Example

CALL HEAPSORT (ARRAY , NUM""ELEMENTS , ELEMENT""SIZE , ASCENDING);

sorts the elements in "array" in ascending order!

Related Programming Manual

For programming information about the HEAPSORT utility procedure,
refer to the GUARDIAN Operating System P~ogrammer's Guide.

2-210 -'f' 82359 AOO 3/85

INITIALIZER

INITIALIZER PROCEDURE

The INITIALIZER procedure is used to read the startup message and,
optionally, to request assign and param messages sent by the GUARDIAN
Command Interpreter. The INITIALIZER procedure optionally prepares
tables of a predefined structure and properly initializes file control
blocks (FCBs) with the information read from the startup and assign
messages.

The syntax for INITIALIZER is:

{ <status> ·- } INITIALIZER ([<rucb>] i .-
{ CALL } , [<passthru>] 0

, [<startupproc>] i
, [<paramsproc>] i
, [<assignproc>] i
, [<flags>]) ; i

<status> returned value

INT

returns one of the following values:

0 =

-1 =

<rucb>

INT: ref:*

This is the primary process (of a potential process
pair).

If this is the backup process, and CHECKMONITOR
returned (indicating that the primary failed before
establishing a takeover point), and bit 12 of <flags>
is 1.

input

is a table containing pointers to the FCBs (see
"Considerations").

~ 82359 AOO 3/85 2-211

INirrIALI ZER

<passthru> output

INT: ref:*

is an array where the <startupproc>, <assignproc>, and
<paramsproc> procedures can return information to the caller of
the INITIALIZER.

<startupproc>,<paramsproc>,<assignproc> input

are application-supplied message-processing procedures that
the INITIALIZER calls when it receives a message of the
appropriate type.

These procedures must be of the form:

2-212

PROC <name> ([<rucb>]
, [<passthru>]

' [<message>]
, [<msglen>]

' [<match>])

VARIABLE

<rucb>

INT: ref:*

is the run-unit control block described in the
GUARDIAN Operating System Prog~ammer's Guide.

<passthru>

INT: ref:*

is an array where the procedure can save information
for the caller of the INITIALIZER.

<message>

INT: ref:*

is the startup, the param, or one of the assign
messages received. The maximum length of a message
is 1028 bytes (including the trailing null
characters).

Aft 82359 AOO 3/85

INITIALIZER

<msglen>

INT: value

is the length, in bytes, of the message.

<match>

INT: value

is the match count. For each ASSIGN message the
FCBs (if <rucb> is passed) are searched for a logical
file name matching the logical file name contained in
the ASSIGN message. If a match is found, the information
from the assign message is put into the files' (or file's)
FCBs, and the match count is incremented.

If this is not an assign message or if the <rucb>
parameter is not passed, the match count is always
o.

<flags> input

INT:value

~ contains several fields that determine actions to be taken
by the INITIALIZER, as follows:

<flags>.<0:10> =
.<11> =
.<12> =

• <13> =
• <14> =
• <15> =

Condition Code Settings

must be 0
request assign and param messages?
0 = yes, 1 = no
abnormally end if backup takeover occurs
before first primary stack checkpoint?
0 = yes, 1 = no
if 1, CALL MONITORNET (-1) •
if 1, CALL MONITORCPUS (-1) •
if 1, CALL ARMTRAP (-1,-1) •

The condition code has no meaning following a call to INITIALIZER.

~ 82359 AOO 3/85 2-213

INITIALIZER

Considerations

• $RECEIVE and the INITIALIZER Procedure

The INITIALIZER procedure provides a way of receiving startup,
assign, and param messages without concern for details of the
$RECEIVE protocol. (Refer to the GUARDIAN Operating System
Programmer's Guide for information about $RECEIVE.) The
INITIALIZER opens and obtains messages from $RECEIVE:; calls the
user-supplied procedure, passing the messages as a parameter to the
procedure; and closes $RECEIVE.

• Sequential I/O Procedures and FCBs

If the <rucb> parameter is supplied, the INITIALIZER stores FCBs
based on the information supplied by the startup and assigns
messages. These FCBs are in the form expected by the sequential
I/O (SIO) procedures and can be used with the SIO procedures
without change. If the application does not use the SIO procedures
to access the files, the information recovered from the assign
messages can be obtained from the FCBs by using the SETAFILE
procedure. Refer to the GUARDIAN Oper~ting System Programmer's
Guide for additional information about SIO procedure?S.

• Assign and Param Messages

When invoked by the primary of a potential process pair, the
INITIALIZER reads the startup message, then optionally requests
assign and param messages. For each assign message, the FCBs (if
<rucb> is passed) are searched for a logical file name matching the
logical file name contained in the assign message. If a match is
found, the information from the assign message is put into the
file's (or files') FCB(s), and the match count is incremented. For
proper matching of names, the "progname" and "filename" fields of
the assign message must be blank-filled.

• The INITIALIZER procedure is useful for the SIO procedures (see
Section 3).

Related Programming Manual

For programming information about the INITIALIZER utility procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-214 ~ 82359 AOO 3/85

INTERPRETJULIANDAYNO

INTERPRETJULIANDAYNO PROCEDURE

The INTERPRETJULIANDAYNO procedure converts a Julian day number to
the year, month, and day.

The Julian calendar is the integral number of days since January 1,
4713 B.C. The formal definition of the Julian day number states
that it starts at noon, Greenwich mean time (GMT). For simplicity, we
assume the Julian day number starts at midnight, local or Greenwich
time, depending on the base of the timestamp.

The syntax for INTERPRETJULIANDAYNO is:

CALL INTERPRETJULIANDAYNO (<julian-day-num>
,<year>
,<month>
,<day>) ~

<julian-day-num> input

INT(32):value

i
0

0
! 0

is the Julian day number to be converted. The <julian-day-num>
f must be greater than or equal to 1,721,426 (January 1, 0001)

or an arithmetic-overflow trap occurs.

<year> output

INT:ref :l

returns the Gregorian year (for example, 1984, 1985, and so
forth).

<month> output

INT:ref :l

returns the Gregorian month (1-12).

<day> output

INT:ref :l

returns the Gregorian day of the month (1-31).

4J 82359 AOO 3/85 2-215

INTERPRETJULIANDAYNO

Condition Code Settings

The condition code has no meaning following a call to
INTERPRETJULIANDAYNO.

Exam~

CALL INTERPRETJULIANDAYNO (JULIANDAYNO , YR , MN , DAY);

Related Programming Manual

For programming information about the INTERPRETJULIANDAYNO
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-216 ._, 82359 AOO 3/85

INTERPRETTIMESTAMP

INTERPRETTIMESTAMP PROCEDURE

The INTERPRETTIMESTAMP converts a 64-bit Julian timestamp into a
Gregorian (the common civil calendar) date and time of day.

The syntax of INTERPRETTIMESTAMP is:

<ret-date-time> := INTERPRETTIMESTAMP (<julian-timestamp> i
, <date-n-time>): o

<ret-date-time> returned value

INT(32)

returns the 32-bit Julian day number.

<julian-timestamp> input

FIXED:value

is a Julian four-word timestamp to be converted.

<date-and-time> output

INT:ref :8

returns an array containing a date and the time of day.
This array has the following form:

<date-n-time>[O] = the Gregorian year (1984, 1985,
[l] = the Gregorian month
[2] = the Gregorian day of month
[3] = the hour of the day
[4] = the minute of the hour
[5] = the second of the minute
[6] = the millisecond of the second
[7] = the microsecond of the millisecond

Condition Code Settings

The condition code has no meaning following a call to
INTERPRETTIMESTAMP.

(1-12)
(1-31)
(0-23)
(0-59)
(0-59)
(0-999)
(0-999)

)

-'1 82359 AOO 3/85 2-217

INTERPRETTIMESTAMP

Considerations

• No checking is performed for the range of the Julian timestamp.
The caller must check that the Julian timestamp corresponds to a
time in the range of 1 January 0001 00:00 to 31 December 4000
23:59:59.999999.

Example

RETURNADATEATIME := INTERPRETTIMESTAMP (JULIANATIME ' DATEATIME >:

Related Programming Manual

For programming information about the INTERPRETTIMESTAMP procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-218 ~ 82359 AOO 3/85

JULIANTIMESTAMP

JULIANTIMESTAMP PROCEDURE

The JULIANTIMESTAMP procedure returns a four-word, microsecond
resolution, JULIAN-date-based timestamp.

The Julian calendar is the integral number of days since January 1,
4713 B.C. The formal definition of the Julian day number states
that it starts at noon, Greenwich mean time (GMT). For simplicity, we
assume the Julian day number starts at midnight.

The caller can select Greenwich time.

The syntax for JULIANTIMESTAMP is:

<retval> := JULIANTIMESTAMP ([<type>]
,[<tuid>]):

<retval> returned value

FIXED

i
0

is a value representing the number in microseconds since B.C.
4713 January 1, 12:00 (JULIAN proleptic calender). To convert

~ the <retval> to a more usuable form, use the INTERPRETTIMESTAMP
procedure.

<type> input

INT:value

is one of the following values specifying the type of time
requested:

0 = current GMT
1 = system-load GMT
2 = SYSGEN GMT

If <type> is out of range (that is, not 0 or 1) then 0
is used. <type> 2 is not available for the BOO version
of the operating system.

'1' 82359 AOO 3/85 2-219

JULIANTIMESTAMP

<tu id> output

INT:ref :l

is a time-update ID. This is used when calling the
SETSYSTEMCLOCK procedure with relative GMT (see the
SETSYSTEMCLOCK procedure).

Condition Code Settings

The condition code has no meaning following a call to ~rULIANTIMESTAMP.

Considerations

• System message -10 allows processes to determine the~ magnitude of
and the reason for a time change. Refer to Appendix F for
descriptions of interprocess system messages sent to processes.

Exam~

CALL JULIANTIMESTAMP (TIMEASTAMP):

Related Programming Manual

For programming information about the JULIANTIMESTAMP procedure,
refer to the GUARDIAN Operating System Pr99rammer's Guide.

2-220 ~ 82359· AOO 3/85

KEYPOSITION

KEYPOSITION PROCEDURE

The KEYPOSITION procedure is used to position by primary key within
key-sequenced files and to position by alternate key within
key-sequenced, relative, and entry-sequenced files.

KEYPOSITION sets the current position, access path, and positioning
mode for the specified file. The current position, access path, and
positioning mode define a subset of the file for subsequent access.

The syntax for KEYPOSITION is:

CALL KEYPOSITION (<f ilenum>

<f ilenum>

INT:value

,<key-value>
,[<key-specifier>]
,[<length-word>]
,[<positioning-mode>]):

input

i
i
i
i
i

is the number of an open file where the positioning is to
~ take place.

<key-value> input

STRING: ref:*

is the value that defines the current position in the file.
The current position is found by a search of the access path
specified by <key-specifier>. The first record having an access
path key-field value that matches <key-value>, as defined by
<positioning-mode> and <compare-length>, becomes the current
position.

"182359 AOO 3/85 2-221

KEYPOSITION

...--------------·---·-----------

<key-specifier> input

INT:value

designates the key field to be used as the access path for
the file:

<key-specifier> = 0 or if omitted, means use the file's
primary key as the access path.

= predefined key specifier for an
alternate-key field means use that field
as the access path.

<length-word> input

INT:value

contains two values:

2-2:22

<length-word>.<0:7> = <compare-length> (left byte)
.<8:15> = <key-length> (right byte)

.<0:7> (<compare-length>) specifies, in bytes, the
difference between the length of <key-value>
and the specified key field in the file •

. <8:15> (<key-length> specifies how many bytes of the
<key-value> are to be searched for in the file
to find the initial position.

• If <length-word> is omitted, <compare-length> and
<key-length> are defined to be the length of the key
(<key-specifier>) defined when the file was created. That
is, if <key-specifier> is omitted or 0, <compare-length>
and <key-length> are the length of the primary key. If
<key-specifier> is the key specifier for an alternate key,
the length of the alternate-key field is used.

• If <length-word> is 0, <compare-length> and key-length>
are also 0. This results in positioning to the beginning
of the file. (Although <key-value> is still a required
parameter, its value and that of <positioning-mode> are
ignored when <length-word>= 0.)

• If <key-length> = 0 and <compare-length> <> 0,
file system error 21 is returned from KEYPOSITION.

/182359 AOO 3/85

KEYPOSITION

• If <key-length> <> 0 and <compare-length> = 0,
<compare-length> is defined to be the minimum of
<key-length> or the key length defined when
the file was created.

• If <key-length> <> 0 and <compare-length> <> 0,
0 is used for both values.

See "KEYPOSITION and File System Error 21" under
"Considerations".

<positioning-mode> input

INT:value

<positioning-mode>.<O> if 1, and a record with exactly the
key specified is found, the record
is skipped •

~ 82359 AOO 3/85

. <14:15> indicates the type of key search
to perform and the subset of
records obtained.

0 = approximate

Positioning occurs to the first record
whose key field, as designated by the
<key-specifier>, contains a value
equal to or greater than <key-value>
for <compare-length> bytes.

1 = generic

Positioning starts at the first record
whose key field, as designated by the
<key-specifier>, contains a value
equal to or greater than <key-value>
for <key-length> bytes. Records will
be accessed according to whose key
field contains a value equal to
<key-value> for <compare-length>
bytes.

2-223

KEYPOSITION

2 = exact

Positioning occurs to the first record
whose key field, as designated by the
<key-specifier>, contains a value
of exactly <compare-length> bytes and
is equal to <key-value>.

If <positioning-mode> is omitted, the approximate mode is used.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

(CCE) indicates that the KEYPOSITION was successful.

> (CCG) indicates there is no operation: this is not a structured
disc file.

Considerations

• The calling application process is not suspended because of a call
to KEYPOSITION.

• Error if Incomplete Nowait Operations Pending

A call to the KEYPOSITION procedure is rejected with an error
indication if there are any incomplete nowait operations pending
on the specified file.

• Positioning on Duplicate or Nonexistent Records

No searching of indexes is done by KEYPOSITION: therefore, a
nonexistent or duplicate record is not reported until a subsequent
READ, READUPDATE, WRITEUPDATE, LOCKREC, READLOCK, RgADUPDATELOCK,
or WRITEUPDATEUNLOCK is performed.

• KEYPOSITION and Disc Seeks

KEYPOSITION does not cause the disc heads to be repositioned: the
heads are repositioned when a subsequent I/O call (READ,
READUPDATE, WRITE, and so forth) transfers data.

2-224 Lf' 82359 AOO 3/85

•

•

KEYPOSITION

Positioning Exact

If an exact KEYPOSITION is performed, and a <compare-length> is
specified which is less than that specified when the file was
created, <compare-length> must match the variable key length
specified when the record is entered into the file. Otherwise, a
subsequent call to READ, READUPDATE, WRITEUPDATE, LOCKREC,
READLOCK, READUPDATELOCK, or WRITEUPDATEUNLOCK is rejected.

Current-State Indicators After a KEYPOSITION

Current-state indicators following a successful KEYPOSITION are:

current position

positioning mode

compare length

is that of the record indicated by the
<key-value>, <key-specifier>,
<positioning-mode>, and <compare-length>
or the subsequent record if
<positioning-mode>.<O> is set to 1.

is <positioning-mode> if the parameter is
supplied; otherwise, it is an approximate
value.

is <compare-length> if the <length-word>
parameter is supplied; otherwise, it is
the defined length of the specified key
field.

The compare length for generic searches is determined as follows:

IF <length-word>.<0:7> <> 0
THEN <length-word>.<0:7>

ELSE
IF <length-word>.<8:15> > length of <key-specifier>

THEN length of <key-specifier>
ELSE <length-word><8:15>

! current primary key is <key-value> if <key-specifier> is
! primary, otherwise unchanged.

• Saving Current Position for Later Access

When processing by alternate key, saving the concatenated
alternate-key value and primary key values in a temporary buffer
permits you to return to that position in a key-sequenced file;
for example:

<temporary-buffer> ':=' (2 bytes for the altkey tag,
record.altkey field for $LEN (record.altkey field), and
record.primary key for $LEN (record.primary key);

...,, 82359 AOO 3/85 2-225

KEYPOSITION

Use the following to reposition to the same record:

KEYPOSITION (<f ilenum> , <temporary-buffer>
, <key-specifier> , <compare-length for generic
searches '<<' 8 + length of alternate key + length
of primary key>, <positioning-mode>):

Use the following to reposition to the next record:

KEYPOSITION (<f ilenum> , <temporary-buffer>
, <key-specifier> , <compare-length for generic
searches '<<' 8 + length of alternate key +
length of primary key> , <%100000 +
positioning-mode>):

The <key-specifier> specifies the alternate key.

• Positioning to the Start of a File

To position to the first record of a file, you can use the
following call to specify a zero <length-word>:

INT ZERO := O:
CALL KEYPOSITION (FILENUM, ZERO,, ZERO):

• Maximum Size of a Relative File

KEYPOSITION cannot be used on a relative file with more than
B,388,608 blocks (this is the approximate number that can be passed
and stored in the 32-bit integer <record-specifier> parameter).
Attempting to do so returns file system error 23 (illegal disc
address).

• Positioning to the Middle of a Duplicate Alternate Key

The normal case of positioning to the middle of a duplicate
alternate key is to specify a value, in bits <8:15>, indicating
the position within the file. You always get the first entry
that matches the key for the supplied length. If you want to
reposition by an alternate key, you must supply the
<compare-length> in bits <0:7> and the length of the alternate key
plus the primary key in bits <8:15>.

The supplied <key-length> might not be valid, but this way the file
system detects that the user wants to position by an alternate key
behind the first entry which matches the supplied alternate key for
<compare-length>.

2-226 Lj 82359 AOO 3/85

,..,

•

KEYPOSITION

KEYPOSITION and File System Error 21

If any of the following conditions are true, error 21 is returned
by KEYPOSITION:

• If the primary file is a key-sequenced file and one of the
following is true:

--<key-specifier> is omitted or 0 and <key-length> is greater
than the key length defined for the primary file.

--<compare-length> is greater than <key-length>.

• If the <key-specifier> is not zero and one of the following is
true:

--<key-length> is greater than the sum of length of the
alternate-key field and the length of the primary key of the
file.

--<key-length> is less than or equal to the length of the
alternate-key field, and <compare-length> is greater than
<key-length>.

--<key-length> is greater than the length of the alternate-key
field and the primary file is not key-sequenced, and the
difference of <key-length> and <compare-length> is less than
4.

--<key-length> is greater than the length of the alternate-key
field and the primary file is not key-sequenced, and the
<key-length> is less than the sum of the length of the
alternate-key field and the length of the primary key of the
file.

Example

KEY ':=' "BROWN":
COMPAREALEN := 5:

CALL KEYPOSITION INFILE , KEY , , COMPAREALEN):

Related Programming Manual

For programming information about the KEYPOSITION file system
procedure, refer to the ENSCRIBE Programming Manual.

~ 82359 AOO 3/85 2-227

LAS 1TADDR

LASTADDR PROCEDURE

The LASTADDR (last address) function procedure returns the 'G'[O]
relative address of the last word in the application process's data
area.

The syntax for LASTADDR is:

<last-addr> := LASTADDR;

<last-addr> returned value

INT

returns the 'G'[O] relative word address of the last word in
the application process's data area.

Condition Code Settings

The condition code has no meaning following a call to LASTADDR.

Example

NUMAPAGES := LASTADDR.<0:5> + l;

The above function is used to determine the number of memory pages
allocated to a running application program. A bit extraction is
performed on the six high-order address bits returned from LASTADDR
which is the page number. (One is added because pages are numbered
from O/n -1, but the number of pages is n.)

Related Programming Manual

For information about the LASTADDR utility procedure, refer to the
GUARDIAN Operating System Programmer's G~ide.

2-228 -'182359 AOO 3/85

LASTRECEIVE

LASTRECEIVE PROCEDURE

The LASTRECEIVE procedure is used to obtain the process ID (PID) and
the message tag associated with the last message read from the
$RECEIVE file. This information is contained in the file's
main-memory resident access control block (ACB). An application
process is not suspended because of a call to LASTRECEIVE.

NOTE

To avoid receiving invalid information stored in the
$RECEIVE part of the ACB, call the LASTRECEIVE procedure
immediately following the call to READUPDATE for $RECEIVE
(or the AWAITIO that completes the READUPDATE). Do not
perform another READUPDATE of $RECEIVE before calling
LASTRECEIVE. However, you can check the condition code or
call FILEINFO without changing the information in the ACB.

The syntax for LASTRECEIVE is:

CALL LASTRECEIVE ([<process-id>]
,[<message-tag>]);

<process-id> output

INT:ref:4

! 0
! 0

returns the ID of the process that sent the last message read
through the $RECEIVE file. If the process is in the
destination control table (DCT), the information returned
consists of:

<process-id>[0:2] = $<process-name>
[3] = <cpu,pin>

If the process is not in the DCT, the information returned
consists of:

<process-id>[0:2] = <creation-time-stamp>
[3] = <cpu,pin>

"1t 82359 AOO 3/85 2-229

LASTRECEIVE

<message-tag> output

INT:ref :l

is used when the application process performs message queuing.
<message-tag> returns a value that identifies the request
message just read among other requests currently queued. To
associate a reply with a given request, <message-tag> is passed
in a parameter to the REPLY procedure_

'rhe value of <message-tag> is the lowest integer between
0 and <receive-depth> minus 1, inclusive, that is not currently
being used as a message tag. When a reply is made, its
associated message tag value is made available for use as a
message tag for a subsequent request message •

..___-·---·---------·-----------

Condition Code Settings

< (CCL) indicates that $RECEIVE is not open.

= (CCE) indicates that LASTRECEIVE was successful.

> (CCG) does not return from LASTRECEIVE.

Considerations

• The PID That Is Returned by LASTRECEIVE

The PID returned by LASTRECEIVE following receipt of a preceding
OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, or CONTROLBUF system
message identifies the process associated with the operation.

• High-Order Three Words of the <process id>

The high-order three words of the PID will be 0 following the
receipt of system messages other than OPEN, CLOSE, CONTROL,
Sl~TMODE, RESETSYNC, and CONTROLBUF.

2-230 ~ 82359 AOO 3/85

LASTRECEIVE

Example

CALL LASTRECEIVE (PROGlAID);

The LASTRECEIVE procedure returns the identification of the
process that sent the last message.

Related Programming Manual

For programming information about the LASTRECEIVE file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

"1 82359 AOO 3/85 2-231

LOCA~rESYSTEM

LOCATESYSTEM PROCEDURE

The LOCATESYSTEM procedure provides the system number corresponding to
a system name and returns the logical device number of the line
handler controlling the path to a given system.

The syntax for LOCATESYSTEM is:

{ <ldev>
{ CALL

<ldev>

:= } LOCATESYSTEM (<sysnum>
} , [<sysname>]) ;

returned value

INT:value

returns one of the following values:

all paths to the specified system are down.
the system is undefined.

i' 0
i

-1 =
0 =

>O = is the logical device number of the line handler in
the specified system.

<sysnum> input, output

INT:ref :l

is the number of the system to be located unless you specify
<sysname>. If you specify <sysname>, then the system number
that corresponds to <sysname> returns into <sysnum>.

<sysname> input

INT:ref :4

if present, specifies the system to be located and causes the
corresponding system number to be returned into <sysnum>.

Condition Code Settings

The condition code has no meaning following a call to LOCATESYSTEM.

2-232 ~ 82359 AOO 3/85

LOCATESYSTEM

Considerations

• If the caller provides <sysname>, <sysnum> is returned the
corresponding number, but if the caller omits <sysname>,
the caller must supply <sysnum>.

• If the <sysname> specified does not exist, <sysnum> is set to 255.

Example

LDEV := LOCATESYSTEM (SYSANUM ' SYSANAME);

Related Programming Manual

None

-'1 82359 AOO 3/85 2-233

LOCKFILE

LOCKFILE PROCEDURE

The LOCKFlLE procedure is used to exclude other processes from
accessing a file (and any records within that file).

If the file is currently unlocked or is locked by the caller when
LOCKFILE is called, the file (and all its records) becomes locked, and
the caller continues executing.

There are two "locking" modes available if the file is already locked:

• Default--Process requesting lock is suspended (see
"Considerations").

• Alternate--Lock request is rejected (see "Considerations").

NOTE

Process suspension due to a queued lock occurs when the file
is locked in the alternate locking mode and AWAITIO is
called. AWAITIO returns the error that the "file is locked."

The syntax for LOCKFILE is:

CALL LOCKFILE (<f ilenum>
, [<tag>]) ;

<f ilenum> input

INT:value

i
0

is the number of an open file that identifies the file to be
locked.

<tag> output

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this LOCKFILE.

2-234 "'f 82359 AOO 3/85

LOCKFILE

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the LOCKFILE was successful.

> (CCG) indicates that the file is not a disc file.

Considerations

• Nowait and LOCKFILE

If the LOCKFILE procedure is used to initiate an operation with a
file-opened nowait, it must complete with a corresponding call to

~ the AWAITIO procedure.

• Locking Modes

--Default Mode

If the file is already locked when the call to LOCKFILE is made,
the process requesting the lock is suspended and queued in a
"locking" queue behind other processes trying to access the file.
When the file becomes unlocked, the process at the head of the
locking queue is granted access to the file. If the process at
the head of the locking queue is requesting a lock, it is granted
the lock and resumes execution. If the process at the head of
the locking queue is requesting a READ, the READ operation
continues to completion.

--Alternate Mode

If the file is already locked when the call to LOCKFILE is made,
the lock request is rejected, and the call to LOCKFILE completes
immediately with error 73 ("file is locked"). The alternate
locking mode is specified by calling the SETMODE procedure
and specifying function 4 •

.,,, 82359 AOO 3/85 2-235

LOCKFILE

• Locks and Open Files

Locks are granted on an open file (that is, file number) basis.
Therefore, if a process has multiple OPENs of the same file, a lock
of one file number excludes access to the file through other
file numbers.

• Attempting to READ a Locked File in Default Locking Mode

If the default locking mode is in effect when a call to READ or
READUPDATE is made to a locked file but the <f ilenum> of the locked
file and the <filenum> supplied in the call differ, the caller of
READ or READUPDATE is suspended and queued in the "locking" queue
behind other processes attempting to access the file.

NOTE

A deadlock condition--a permanent suspension of your
application-- occurs if READ or READUPDATE is called by the

process which has a record locked by a <f ilenum> other than
that supplied in READ or READUPDATE~ In this case, the
processes wait to resolve the deadlock until someone stops
one of the processes. (Refer to the OPEN procedure for an
explanation of multiple OPENs by the same process.)

• Accessing a Locked File

If the <filenum> of the locked file and the <filenum> in the call
differ, the call is rejected with file system error 73 (nfile is
locked") when:

--READ or READUPDATE is called, and the alternate locking mode is
in effect.

--WRITE, WRITEUPDATE, or CONTROL is called.

• The locking mode is specified by the SETMODE procedure,
function 4.

2-236 _,,1' 82359· AOO 3/85

• Locks Are not Nested

For example:

CALL LOCKFILE FILE""A, •••):

CALL LOCKFILE FI LE"" A, ••.) :

CALL UNLOCKFILE

CALL UNLOCKFILE

Example

CALL LOCKFILE (FILE""NUM):

Related Programming Manual

LOCKFILE

FILE""A becomes locked.

is a null operation, because
the file is already locked.
A condition code of CCE
returns.

FILE""A becomes unlocked.

is a null operation, because
the file is already unlocked.
A condition code of CCE
returns.

~ For programming information about the LOCKFILE file system procedure,
refer to the ENSCRIBE Programming Manual and the GUARDIAN Operating
System Programmer's Guide.

'1J 82359 AOO 3/85 2-237

LOCK REC

LOCKREC PROCEDURE

The LOCKREC procedure excludes other processes from accessing a record
at the current position. For key-sequenced, relative, and
entry-sequenced files, the current position is the record with a key
value that matches exactly the current key value. For unstructured
files, the current position is the relative byte address (RBA)
identified by the current-record pointer.

If the record is unlocked when LOCKREC is called, the record becomes
locked, and the caller continues executing.

There are two locking modes available if the record is already locked:

• Default--Process requesting lock is suspended (see
"Considerations").

• Alternate--Lock request is rejected (see "Considerations").

NOTE

A call to LOCKREC is not equivalent to locking all records
in a file: that is, locking all records still allows
insertion of new records, but file locking does not. File
locks and record locks are queued in the order they are issued~

The syntax for LOCKREC is:

CALL LOCKREC (<f ilenum> i
,[<tag>]): i

<f ilenum> input

INT: value

is the number of an open file that identifies the file
containing the record to be locked.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this LOCKREC.

2-238 ~ 82359 AOO 3/85

LOCKREC

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the LOCKREC was successful.

> (CCG) indicates that the file is not a disc file.

General Considerations

• Nowait and LOCKREC

If the LOCKREC procedure is used to initiate an operation with a
file-opened nowait, it must complete with a corresponding call to

,/ the AWAI TIO procedure.

Process suspension due to a queued lock occurs when the file
is locked in the alternate locking mode and AWAITIO is called.
AWAITIO returns error "file is locked."

• Default Locking Mode

If the record is already locked when LOCKREC is called, the process
requesting the lock is suspended and queued in a "locking" queue
behind other processes also requesting to lock or read the record.

When the record becomes unlocked, the process at the head of the
locking queue is granted access to the record. If the process at
the head of the locking queue is requesting a lock, it is granted
the lock and resumes execution. If the process at the head of the
locking queue is requesting a READ operation, the READ operation
continues to completion.

• Alternate Locking Mode

If the record is already locked when LOCKREC is called, the lock
request is rejected, and the call to LOCKREC completes immediately
with file system error 73 ("record is locked"). The alternate
locking mode is specified by calling the SETMODE procedure and
specifying function 4.

'1J 82359 AOO 3/85 2-239

LOCKREC

• Accessing a Locked File

If the <filenum> of the locked file and the <filenum> in the call
differ, the call is rejected with file system error 73 ("file is
locked") when:

·--READ or READUPDATE is called, and the alternate locking mode is
in effect.

--WRITE, WRITEUPDATE, or CONTROL is called.

• Attempting to Read a Locked Record in Default Locking Mode

If the default locking mode is in effect when a READ or READUPDATE
is called for a record that is locked, and the <f ilenum> of the
file containing the record differs from the <filenum> in the call,
the caller to READ or READUPDATE is suspended and queued in the
"locking" queue behind other processes attempting to lock or read
the record.

NOTE

A deadlock condition--a permanent suspension of your
application-- occurs if READ or READUPDATE is called by the
process which has a record locked by a <f ilenum> other than
that supplied to READ or READUPDATE. In this case, the
processes wait to resolve the deadlock until someone stops
one of the processes. (Refer to the OPEN procedure for an
explanation of multiple OPENs by the same process.)

• Selecting the Locking Mode With SETMODE

The locking mode is specified by the SETMODE procedure with
<function> = 4.

• Locks Cannot Be Nested

Locks are not nested; for example:

CALL LOCKREC (fileAa, •••);

CALL LOCKREC (fileAa, •••);

CALL UNLOCKREC (fileAa, •••);

CALL UNLOCKREC (fileAa, •••);

2-240

locks the current record in
"fileAa."

has no effect since the
current record is already
locked.

unlocks the current record
in "fileAa."

has no effect since the
current record is not locked.

~ 82359 AOO 3/85

LOCKREC

Disc File Considerations

• Structured Files

--Calling LOCKREC after positioning on a nonunique key

If the call to LOCKREC immediately follows a call to KEYPOSITION
where a nonunique alternate key is specified, the LOCKREC fails.
A subsequent call to FILEINFO returns file system error 46
(invalid key). However, if an intermediate call to READ is
performed, the call to LOCKREC is permitted because a unique
record is identified.

--Current-state indicators after LOCKREC

After a successful LOCKREC, current-state indicators are
unchanged.

• Unstructured Files

--Locking the RBA in an unstructured file

Record positions in an unstructured file are represented by an
RBA, and the RBA can be locked with LOCKREC. To lock a position
in an unstructured file, first call POSITION with the desired
RBA, and then call LOCKREC. This locks the RBA; any other
process attempting to access the file with exactly the same RBA
encounters a "record is locked condition." You can access
that RBA by positioning to RBA-2. Depending on the process's
locking mode, the call either fails with file system error 73
("record is locked") or is placed in the locking queue.

--Record pointers after LOCKREC

After a call to LOCKREC, the current-record, next-record, and
end-of-file pointers remain unchanged.

• Deadlock

--Ways to avoid deadlocks

One way to avoid deadlock is to use the alternate locking mode,
established by <function> 4 of the SETMODE procedure. Another
common method of avoiding deadlock situations is to lock and
unlock records in some predetermined order.

-'1 82359 AOO 3/85 2-241

LOCKREC

Examlli

CALL LOCKREC (FILEANUM ' LOCKATAG);

Related Programming Manual

For programming information about the LOCKREC file system procedure,
refer to the ENSCRIBE Programming Manual.

2-242 ~ 82359 AOO 3/85

LOOKUPPROCESSNAME

LOOKUPPROCESSNAME PROCEDURE

The LOOKUPPROCESSNAME procedure is used to obtain a description of a
named process pair by its name or by its index into the local
destination control table (DCT). To obtain remote process pair
descriptions by index, use the GETPPDENTRY procedure.

The syntax for LOOKUPPROCESSNAME is:

CALL LOOKUPPROCESSNAME (<ppd>)~

<ppd> input, output

INT:ref :9

on input, is either:

--the process name
--the entry number in the DCT ({O:n})

for the entry to be returned.

On return, <ppd> is of the form:

<ppd>[0:2] = process name of entry

[3].<0:7> = <cpu> for primary process
.<8:15> = <pin> for primary process

[4].<0:7> = <cpu> of backup process, else
.<8:15> = <pin> of backup process, else

[5:8] = <process-id> of ancestor

If the process name is not in the DCT, <ppd> is
unchanged.

Condition Code Settings

i' 0

0
0

< (CCL) indicates that the specified process name is not in the
directory, or that the remote system could not be
accessed.

= (CCE) indicates that the specified name was found.

> (CCG) indicates that the specified entry number exceeds the last
table entry.

...,, 82359 AOO 3/85 2-243

LOOKUPPROCESSNAME

Considerations

• Network Use

Remote DCT entries can be obtained by passing the process
name (in network form) of the process desired. On return, the
process name remains in network form.

~rhis is an example of using LOOKUPROCESSNAME to get the DCT entry
for the name process "$PROC" running on the system "\DETROIT":

EXTERNALANAME ':=' 17 * [" "]: ! blanks.
EXTERNALANAME ':=' "\DETROIT.$PROC":
CALL FNAMEEXPAND (EXTERNALANAME , INTERNALANAME , DEFAULTS):

! converts \DETROIT to its system number.
CALL LOOKUPPROCESSNAME (INTERNALANAME):

! returns the desired DCT entry.

To obtain DCT entries using an <entry-num>, use the GETPPDENTRY
procedure.

• Scanning the Entire DCT

If the <ppd-entry> you specify is not currently being used,
LOOKUPPROCESSNAME returns CCE and sets <ppd-entry> to zeros.
By using repeated entry numbers, the entire DCT can be scanned.

~rhe LOOKUPROCESSNAME always returns CCE until the <ppd-entry>
is greater than the number of entries in the DCT.

Example

CALL LOOKUPPROCESSNAME (ENTRY):

Related Programming Manual

For programming information about the LOOKUPPROCESSNAME process
control procedure, refer to the GUARDIAN Operating System Programmer's
Guide.

2-244 ..., 82359 AOO 3/85

,,.

MOM

MOM PROCEDURE

The MOM procedure provides a process with the process ID (PID) of its
creator.

The syntax for MOM is:

CALL MOM (<process-id>); ! 0

<process-id> output

INT:ref :4

is an array of four words where MOM returns the PID of the
caller's creator. For an nonnamed process, <process-id> is:

<process-id>[0].<0:1> = 2
.<2:15> = word 0 (creation timestamp)

where:

.<2:7> = unused

.<8:15> = system number (if the system

[1:2]

[3].<0:3>
.<4:7>

.<8:15>

is part of a network)
= 0 otherwise

= words 1 and 2 (creation timestamp)

= unused
= <cpu> number where the process is

executing
= <pin> assigned by the operating system

to identify the process in the CPU

For a named local process, <process-id> is:

<process-id>[0:2] = $<process-name>

[3] = two blanks
or

[3].<0:7> = <cpu> number
.<8:15> = <pin>

Condition Code Settings

The condition code has no meaning following a call to MOM.

11 82359 AOO 3/85 2-245

MOM

Considerations

• Calling MOM From a Process Pair

If the caller of MOM is the primary process of a named process
pair and no backup process has been created, zeros are returned in
<process-id>.

• When the PID of the Backup or the Primary Is Returned

If the caller of MOM is the primary process of a named process
pair and there is a backup process, the PID of the backup is
returned.

If the caller of MOM is the backup process of a named process pair,
the PID of the primary is returned.

• Passing the PID to the System Procedures

The PID returned from MOM is suitable for passing directly to any
file system procedure. (If you pad the PID with blanks before
or after the call to MOM, you can pass the PID as a file name
to any system procedure.)

• How Calling the STEPMOM Procedure Affects the PID

If another process has made itself the creator of the caller of MOM
(through a call to STEPMOM), then the PID of that process is
returned.

• Network Consideration

If a process's creator is in a remote system, its PID is returned
by MOM in network form. A process can use this fact to determine
whether or not it is created locally.

Example

CALL MOM (MYACREATOR);

Related Programming Manua!

For programming information about the MOM process control procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-246 .., 82359 AOO 3/85

MONITORCPUS

MONITORCPUS PROCEDURE

The MONITORCPUS procedure instructs the GUARDIAN operating system to
notify the application process if a designated processor module
either:

• Fails (indicated by the absence of an operating system "I'm alive"
message)

• Returns from a failed to an operable state (that is, reloaded by
means of a command interpreter RELOAD command)

The calling application process is notified by means of a system
message read through the $RECEIVE file.

The syntax for MONITORCPUS is:

CALL MONITORCPUS (<cpu-mask>): i

<cpu-mask> input

INT:value

is a bit that is set to "l," corresponding to each processor
module to be monitored:

<cpu mask>.<O> = 1
.<l> = 1

<cpu mask>.<14> = 1
<cpu mask>.<15> = 1

processor module 0 to be monitored
processor module 1 to be monitored

processor module 14 to be monitored
processor module 15 to be monitored

<cpu mask> = 0 means no notification occurs.

Condition Code Settings

The condition code has no meaning following a call to MONITORCPUS.

4J 82359 AOO 3/85 2-247

MONITORCPUS

Messages

• CPU Down

The CPU down message (-2) is received if failure occurs with a
processor module that is being monitored (refer to Appendix F
for the description and form of system messages).

• CPU Up

This message is received if a reload occurs with a processor module
that is being monitored (system message -3).

Refer to Appendix F for a list of system messages sent to processes.

Example

CALL MONITORCPUS(%100000 '>>' BACKUPACPU)~

Related Programming Manual

monitor the
backup CPU.

For programming information about the MONITORCPUS checkpointing
procedure, refer to the GUARDIAN Operatin . .9.._Eystem Programmer's Guide.

2-248 '1J 82359 AOO 3/85

MONITORNET

MONITORNET PROCEDURE

The MONITORNET procedure enables or disables receipt of system
messages concerning the status of processors in remote systems.

The syntax for MONITORNET is:

CALL MONITORNET (<enable>);

<enable> input

INT:value

contains one of the following values:

0 = disable receipt of messages
1 = enable receipt of messages

Condition Code Settings

i

~ The condition code has no meaning following a call to MONITORNET.

Considerations

• To Receive Status Changes for Local Processors

MONITORNET only provides notification of status changes for remote
processors. To receive notification of status changes for local
processors, an application process must still call MONITORCPUS.

~ 82359 AOO 3/85 2-249

MONITORNET

• Change in Status of Network Processors

A process that has enabled MONITORNET receives a system message
(-8) through $RECEIVE whenever a change in the status of a remote
processor occurs. The processor status bit masks have a 1 in bit
<cpu number> to indicate that the processor is up and a 0 to
indicate that the processor is down. (See Appendix F for a list
of system messages sent to processes.)

Exam~

CALL MONITORNET (1);

Related Programming Manual

None

2-250 ~ 82359 AOO 3/85

MONITORNEW

MONITORNEW PROCEDURE

The MONITORNEW procedure enables or disables receipt of new system
messages, including the SETTIME and Power On messages.

The syntax for MONITORNEW is:

CALL MONITORNEW (<enable>);

<enable> input

INT:value

contains one of the following values:

0 = disable receipt of messages
1 = enable receipt of messages

Condition Code Settings

i

~ The condition code has no meaning following a call to MONITORNEW.

Considerations

• When to Enable or Disable Receipt of Messages

The SETTIME and Power On messages are not received unless the
process makes a call to MONITORNEW with <enable> set to 1. To
disable receipt of these messages, the process must make another
call, setting <enable> to O.

Example

CALL MONITORNEW (1);

Related Programming Manual

For programming information about the MONITORNEW file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

..,. 82359 AOO 3/85 2-251

MYPID

MYPID PROCEDURE

The MYPID procedure provides a process with its own CPU and pin
number.

The syntax for MYPID is:

<cpu,pin> := MYPID;

<cpu,pin> returned value

INT:value

is the caller's processor (bits <0:7>) and pin number (bits
<8:15>).

Condition Code Settings

The condition code has no meaning following a call to MYPID.

Example

ME := MYPID;

Related Programming Manual

For programming information about the MYPID process control procedure,
refer to the GUARDIAN Operating System P;ogrammer's Guide •

2-252 .., 82359 AOO 3/85

,..

MYPROCESSTIME

MYPROCESSTIME PROCEDURE

The MYPROCESSTIME procedure returns the process execution time of the
calling process (in microseconds).

The syntax for MYPROCESSTIME is:

<process-time> := MYPROCESSTIME;

<process-time> returned value

FIXED

is a value representing the clock of the current process in
microseconds.

Condition Code Settings

The condition code has no meaning following a call to MYPROCESSTIME.

Example

RETACLOCK := MYPROCESSTIME;

Related Programming Manual

None

"""""'1 82359 AOO 3/85 2-253

MYSYSTEMNUMBER

MYSYSTEMNUMBER PROCEDURE

The MYSYSTEMNUMBER procedure provides a process with its own system
number.

The syntax for MYSYSTEMNUMBER is:

<sysnum> := MYSYSTEMNUMBER;

<sysnum> returned value

INT

is the caller's system number.

Condition Code Settings

The condition code has no meaning following a call to MYSYSTEMNUMBER.

Considerations

• Part of Network or Local System

The following IF (skeleton) statement determines if you are running
on a network system.

2-254

IF NOT (SYSANUM := MYSYSTEMNUMBER) THEN
! not on network system

-'182359 AOO 3/85

MYSYSTEMNUMBER

If the caller is running in a local nonnamed system, MYSYSTEMNUMBER
returns O. Since 0 is a legal system number, a process wishing to
determine the name of the system on which it is running can use
the following call.

CALL GETSYSTEMNAME(MYSYSTEMNUMBER, NAME);

A return of all blanks in a name indicates that the system is not
part of a network, or that it is a local system which is not named.

Example

See "Considerations" above.

Related Programming Manual

None

"1J 82359 AOO 3/85 2-255

MY TERM

MYTERM PROCEDURE

The MYTERM procedure provides a process with the file name of its
home terminal. The file name returned from MYTERM is suitable for
passing directly to any file system procedure that accepts a file name
in internal form.

The syntax for MYTERM is:

CALL MYTERM (<filename>); ! o

<filename> output

INT:ref :12

is an array of 12 words where MYTERM returns the device name
and the subdevice name, if any, of the home terminal in one of
the following two forms:

$<devname>[#<subdev-name>]
$<process name>[#<subname>]

Condition Code Setti..!29.§.

The condition code has no meaning following a call to MYTERM.

Considerations

• File Name Form

The file name returned from MYTERM is the same form as that used
by the file system procedures.

• How the Home Terminal Is Determined

The home terminal is always the same as the home terminal of a
process's true creator (not STEPMOM), unless the home terminal
is altered by SETMYTERM or the <hometerm> parameter is supplied
in the NEWPROCESS procedure.

If the process calling MYTERM is a descendant of a command
interpreter, then the home terminal is the same as that of the
command interpreter or that of an explicit TERM specifier on the
RUN command.

2-256 4J 82359 AOO 3/85

Example

CALL MYTERM (HOMEATERM);

Related Programming Manual

returns the name of the home
terminal.

MYTERM

For programming information about the MYTERM process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

"' 82359 AOO 3/85 2-257

NEWPROCESS

NEWPROCESS PROCEDURE

The NEWPROCESS procedure is used to create and, optionally, to assign
a symbolic process name to a new process. Additionally, you can
specify the execution priority of the new process, the number of
memory pages allotted the process, and the processor where the process
is to execute. You can also specify a user library and a swap file.
When a new process is created, its process ID (PID) is returned to the
caller.

The syntax for NEWPROCESS is:

CALL NEWPROCESS (<filenames> i
i
i
i
0
0

i
i
i

< 1'. i le names>

,[<priority">]
,[<memory-pages>]
,[<processor>]
,[<process-id>]
,[<error>]
,[<name>]
,[<hometerm>]
,[<inspect-flag>]

input

) :

INT:ref:l2 or INT:ref :36

is an array that contains the 12-word file name of the
program to be run and, optionally, two additional fields.
Refer to the GUARDIAN Operating System Programmer's Guide for
information about file names.

The additional fields which are used only if bit 1 of the
<priority> parameter is set to 1, are as follows:

<filename>.[12:23] =<library-file>

2-258

is the 12-word file name of a user library
to be used by the program. (The user
library must be on the same node as the
process that was created.)

~ 82359 AOO 3/85

NEWPROCESS

<filename>.[24:35] =<swap-file>

is the 12-word file name of a file to be
used as a swap file for the data stack.
(The swap file must be on the same node as
the process that was created.)

See "Considerations" for more information.

<priority> input

INT:value

is a value consisting of three parts:

<priority>.<O> is the DEBUG bit. If <priority>.<O> = 1, then a
code breakpoint is set on the first executable
instruction of the program's MAIN procedure •

• <l> indicates the interpretation of the additional
fields of the <filenames> parameter. If
<priority>.<l> = 1, the additional fields in
<filenames> are used. If <priority>.<l> = 0,
these extra fields are ignored •

• <2:7> should be 0 •

• <8:15> is the execution priority to be assigned to the
new process {1:199}. If <priority>.<8:15> = 0,
then the priority of the caller of NEWPROCESS is
used. If a value greater than 199 is specified,
then 199 is used.

If <priority> is omitted, the caller's priority is used.

<memory-pages> input

INT:value

specifies the number of 1024-word memory pages allotted to the
new process. If <memory-pages> is omitted or is less than the
value assigned when the program is compiled (or created with
BINDER), then the compilation value is used. In any case, the
maximum number of pages permitted is 64.

~ 82359 AOO 3/85 2-259

NEWPROCESS

<processor> input

INT:value

specifies the processor where the new process runs. If
omitted, the new process runs in the same processor as the
caller.

<process-id> output

INT:ref :4

is a four-word array where NEWPROCESS returns the PID of
the new process. If the new process was created in:

--The local system, the local form of the PID is returned.
--The remote system, the network form of the PID is returned.

(A new process is created on a remote system on the same node
where its program file resides.)

If no process was created, zero is returned into <process id>.

<error> output

INT:ref :l

returns a number indicating the outcome of the process creation
attempt, where:

<error>.<0:7>

2-260

0 = no error, process created
1 = warning that the process had undefined externals, but was

started
2 = no process control block available
3 = file system error occurred on program file, then

<error>.<8:15> = file system error number
4 = unable to allocate map
5 = file error on swap file , then

<error>.<8:15> = file system error number
6 = illegal file format, then

<error>.<8:15> = 0, program file is in error
= 1, library file is in error

7 = unlicensed privileged program
8 = process name error, then

<error>.<8:15> = file system error number
9 = library conflict

-'182359 AOO 3/85

~

NEWPROCESS

10 = unable to communicate with system monitor process
11 = file system error occurred on library file, then

<error>.<8:15> = file system error number
12 = program file and library file specified are same file
13 = extended data segment initialization error, then

<8:15> = file system error number
14 = extended segment swap file error, then <8:15> =

file system error number
15 = illegal home terminal, then

<error>.<8:15> = file system error number

Refer to the System Messages Manual for a list of all file
system errors.

<name> input

INT:ref :3

if present, is a name to be given to the new process. It is
entered into the destination control table. <name> is of the
form:

<name>[0:2] = $<process-name>

<process-name> must be preceded by a dollar sign ("$") and
consists of a maximum of five alphanumeric characters;
the first character must be alphabetic. (If the process
is created in a remote system and it is necessary to be
able to access the process, its name should consist of, at
most, four characters and the "$.")

<hometerm> input

INT:ref :12

is the home terminal for the new process. The default is the
home terminal of the caller.

"'f' 82359 AOO 3/85 2-261

NEWPROCESS

<inspect-flag> input

INT:value

sets the debugging attributes for the new process:

<flags>.<14> = 1
= 0

<flags>.<15> = 1
= 0

saveabend file creation
no saveabend file creation

INSPECT
DEBUG

When <flags> is specified, the bits <14> and <15> are
ORed with the corresponding flags in the object code file.
If <flags>.<14> is set but <flag>.<15> is not, then
<flags>.<15> is also set.

If these <flags> are omitted then the defaults are set from
the flags in the object code file (set by compiler
directives at compile time, after the object flags are ORed
with the callers debugging attributes) •

.__ _____ , ______________ , ___ _

Condition Code Setti~

The condition code has no meaning following a call to NEWPROCESS.

Considerations

• When BIT 1 of <priority> Is Set to 1

To specify only one of the two extra fields, the calling process
must set <priority>.<l> to 1 and fill the <filename> not specified
with blanks.

If <library-file>:

a. is specified, unresolved external references are
resolved first from the specified <library-file>,
then from the system library.

b. is specified and <library-file>.[O] is 0 (binary),
then the library file used by the process when it was
last run is removed, and the process runs with no
library file. (The references that were previously
resolved on the user library are resolved on the
system library.)

2-262 Af' 82359 AOO 3/85

NEWPROCESS

10 = unable to communicate with system monitor process
11 = file system error occurred on library file, then

<error>.<8:15> = file system error number
12 = program file and library file specified are same file
13 = extended data segment initialization error, then

<8:15> = file system error number
14 = extended segment swap file error, then <8:15> =

file system error number
15 = illegal home terminal, then

<error>.<8:15> = file system error number

Refer to the System Messages Manual for a list of all file
system errors.

<name> input

INT:ref :3

if present, is a name to be given to the new process. It is
entered into the destination control table. <name> is of the
form:

<name>[0:2] = $<process-name>

<process-name> must be preceded by a dollar sign ("$") and
consists of a maximum of five alphanumeric characters;
the first character must be alphabetic. (If the process
is created in a remote system and it is necessary to be
able to access the process, its name should consist of, at
most, four characters and the "$.")

<hometerm> input

INT:ref :12

is the home terminal for the new process. The default is the
home terminal of the caller.

~ 82359 AOO 3/85 2-261

NEWPROCESS

<inspect-flag> input

INT:value

sets the debugging attributes for the new process:

<flags>.<14> = 1
= 0

<flags>.<15> = 1
= 0

saveabend file creation
no saveabend file creation

INSPECT
DEBUG

When <flags> is specified, the bits <14> and <15> are
ORed with the corresponding flags in the object code file.
If <flags>.<14> is set but <flag>.<15> is not, then
<flags>.<15> is also set.

If these <flags> are omitted then the defaults are set from
the flags in the object code file (set by compiler
directives at compile time, after the object flags are ORed
with the callers debugging attributes).

~ondition Code Settings

The condition code has no meaning following a call to NEWPROCESS.

Considerations

• When BIT 1 of <priority> Is Set to 1

To specify only one of the two extra fields, the calling process
must set <priority>.<l> to 1 and fill the <filename> not specified
with blanks.

If <library-file>:

a. is specified, unresolved external references are
resolved first from the specified <library-file>,
then from the system library.

b. is specified and <library-file>.[O] is 0 (binary),
then the library file used by the process when it was
last run is removed, and the process runs with no
library file. (The references that were previously
resolved on the user library are resolved on the
system library.)

2-262 Af' 82359 AOO 3/85

NEWPROCESS

c. is not specified, the program runs with the same
library file as the last time it was run (or no file if
that was how it was run) or with the library file
currently executing. Refer to the BINDER Manual for
more information about user libraries.

If <swap-file>:

a. is specified and a file of that name exists, that file
is used for memory swaps of the user data stack during
execution of the process; if no file of that name
exists, a file of that name and of the necessary size
is created and used for swaps.

b. is not specified, a temporary file is created on the
disc where the program file resides.

c. specifies only the disc device name (filling the rest of
the file name with blanks), a temporary file is created
on the specified disc device.

• Creation of the Backup of a Named Process Pair

If the backup of a named process pair is created, the backup
process becomes the "creator" of the primary (that is, the caller
to NEWPROCESS).

f • PID and the OPEN Procedure

The PID returned from NEWPROCESS is suitable for passing directly
to any of the file system procedures that accept file names (if
blank-filled on the right).

• Limitations to the <filenames> Parameter

In a network containing both Nonstop l+ systems and Nonstop
systems, a calling process on a Nonstop l+ system cannot use the
extra fields in <filenames>, even to create a process on a Nonstop
system. If specified, the extra fields are ignored.

• Program File and User Libtary File Differences

A "user library" is an object file containing one or more
procedures. The difference between a program file and a library
file is that the library file cannot contain a main procedure.
Undefined externals from a library are resolved only from the
system library. A program file must contain a main procedure.
Refer to the Binder User's Manual for additional information about
user libraries.

~ 82359 AOO 3/85 2-263

NEWPROCESS

• Library Conf lict--NEWPROCESS Error

The library file for a process can be shared by any number of
processes. However, when a program file is shared by two or more
processes, all processes must have the same user library
configuration; that is, all processes sharing the program either
have the same user library, or they have no user library. An error
9 ("library conflict") occurs when a copy of the running program
runs with a different library configuration than was specified in
the call to NEWPROCESS.

Example

CALL NEWPROCESS (PFILEANAME , , , , PID , ERROR);

Related Programming Manual

For programming information about the NEWPROCESS process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-264 ~ 82359 AOO 3/85

NEWPROCESSNOWAIT

NEWPROCESSNOWAIT PROCEDURE

The NEWPROCESSNOWAIT procedure is used to create a new process in a
nowait manner and, optionally, to assign a symbolic process name to
it. Additionally, you can specify the execution priority of the new
process, the number of memory pages allotted the process, and the
processor where the process is to execute. You can also specify a
user library and a swap file. When a new process is created, its
process ID (PID) returns to the caller by a system message on the
caller's $RECEIVE file.

The syntax for NEWPROCESSNOWAIT is:

CALL NEWPROCESSNOWAIT (<filenames> i
,[<priority>] i

i ,[<memory-pages>]
,[<processor>]
,[<process-id>]
,[<error>]

i
unused

,[<name>]
,[<hometerm>]
,[<inspect-flags>]):

<filenames> input

INT:ref :12 or INT:ref :38

is an array that contains the 12-word file name of the

0
i
i
i

program to be run and three additional fields: <library-file>,
<swap-file>, and <tag>. Refer to the GUARDIAN Operating System
Programmer's Guide for information about file names.

The additional fields, which are used only if bit 1 of the
<priority> parameter is set to 1, are as follows:

<filenames>[l2:23] = <library-file>

is the 12-word file name of a user
library to be used by the program.

<filenames>[24:35] = <swap-file>

~' 82359 AOO 3/85

is the 12-word file name of a file to be
used as a swap file.

2-265

NEWPROCESSNOWAIT

<tag> is a 2-word value used to identify the
completion message from the call to
NEWPROCESSNOWAIT.

See "Considerations" for more information.

<priority> input

INT:value

is a value passed out of <priority> that consists of three
parts:

<priority>.<O> is the DEBUG bit. If <priority>.<O> = 1, then a
code breakpoint is set on the first executable
instruction of the program's MAIN procedure •

. <l> indicates the interpretation of the additional
fields of the <filenames> parameter. If
<priority>.<l> = 1, the additional fields in
<filenames> are used. If <priority>.<l> = 0,
these extra fields are ignored •

. <8:15> is the execution priority assigned to the new
process {1:199}. If <priority>.<8:15> = 0,
then the priority of the caller of
NEWPROCESSNOWAIT is used. If a value greater
than 199 is specified, then 199 is used.

If <priority> is omitted, the caller's priority is used.

<memory-pages> input

INT:value

specifies the number of 1024-word memory pages to be allotted
the new process. If <memory-pages> is omitted or is less than
the value assigned when the program is compiled {or created
with BINDER), then the compilation value is used. In any case,
the maximum number of pages permitted is 64.

2-266 -'1J 82359· AOO 3/85

NEWPROCESSNOWAIT

<processor> input

INT:value

is a value specifying the CPU where the new process runs.
If omitted, the new process runs in the same processor as the
caller.

<process-id> unused

INT:ref :4

is not used by NEWPROCESSNOWAIT.

<error> output

INT:ref :l

returns a number indicating the initial outcome of the process
creation attempt. Only errors that prevented initiation of
process creation are reported in this parameter: if process
creation was initiated, any subsequent errors are reported in
the completion message on $RECEIVE. The error numbers in the

~ <error> parameter are:

<error>.<0:7>

0 =
3 =

5 =

8 =

10 =
11 =

15 =

no error, process creation initiated
file system error occurred on program file
<error>.<8:15> = file system error number
file error
<error>.<8:15> = file system error number
process name error
<error>.<8:15> = file system error number
unable to communicate with system monitor process
file system error occurred on library file
<error>.<8:15> = file system error number
illegal home terminal, then
<error>.<8:15> = file system error number

Refer to the System Messages manual for a list of all
NEWPROCESS errors.

"''f' 82359 AOO 3/85 2-267

NEWPROCESSNOWAIT

<name> input

INT:ref :3

if present, is a name to be given to the new process. It is
entered into the the destination control table. <name>
is of the form:

<name>[0:2] = $<process-name>

<process-name> must be preceded by a dollar sign ("$") and
consists of a maximum of five alphanumeric characters;
the first character must be alphabetic. (If the process
is created in a remote system and it is necessary to be
able to access the process, its name should consist of, at
most, four characters and the "$.")

<home term> input

INT:ref :12

is the home terminal for the new process. The default is the
home terminal of the caller.

<i:nspect-f lags> input

INT:value

sets the debugging attributes for the new process:

2-268

<flags>.<14> = 1
= 0

<flags>.<15> = 1
= 0

saveabend file creation
no saveabend file creation

INSPECT
DEBUG

When <flags> is specified, the bits <14> and <15> are
ORed with the corresponding flags in the object code file.
If <flags>.<14> is set but <flags>.<15> is not, then
<flags>.<15> is also set.

If <flags> is omitted, then the defaults are set from
the flags in the object code file (set by compiler
directives at compile time).

-'1' 82359 AOO 3/85

NEWPROCESSNOWAIT

Condition Code Settings

The condition code has no meaning following a call to
NEWPROCESSNOWAIT.

Considerations

• When Bit 1 of <priority> Is Set to 1

•

The value in the <tag> parameter appears in the message
returned upon completion of NEWPROCESSNOWAIT. To specify only
one or two of the three extra fields, the calling process must
set <priority>.<l> to 1 and fill the field(s) not
to be specified with blanks.

If <library-file>:

a. is specified, unresolved external references are resolved
first from the specified <library-file>, then from the
system library.

b. is specified and <library-file>.[O] is 0, then the library
file used by the process when it was last run is removed,
and the process runs with no library file. (The
references that were previously resolved on the user
library are resolved on the system library.)

c. is not specified, the program runs with same library file
as the last time it was run (or no file if that was how it
was run) or with the library file currently executing.

If <swap-file>:

a. is specified and a file of that name exists, that file is
used for memory swaps of the user data stack during
execution of the process; if no file of that name exists,
a file of that name and of the necessary size is created
and used for swaps.

b. is not specified, a temporary file is created on the disc
where the program file resides.

c. specifies only the device name (filling the rest of the
file name with blanks), a temporary file is created on
the specified device.

When a Nonzero Value Is Returned in <error>

If NEWPROCESSNOWAIT cannot initiate process creation (for instance,
if an invalid processor number is specified), no message appears on
$RECEIVE. The <error> parameter is returned a nonzero value
indicating the error.

-'1 82359 AOO 3/85 2-269

NEWPROCESSNOWAIT

• Using NEWPROCESSNOWAIT Remotely On the Correct System

Do not attempt to remotely start a process on a Nonstop l+ system.
using the NEWPROCESSNOWAIT procedure. The Nonstop l+ system does
not support the NEWPROCESSNOWAIT procedure and will not send a new
process completion message (-12) to the caller's $RECEIVE file.
Use the NEWPROCESS procedure instead.

• See "Considerations" under the NEWPROCESS procedure.

Message

• NEWPROCESSNOWAIT Completion Message

If NEWPROCESSNOWAIT succeeds in initiating process creation or
an error occurs during process creation a system message -12
appears on $RECEIVE upon completion. (Refer to Appendix F for a
complete description of system messages.)

Example

CALL NEWPROCESSNOWAIT (PFILEANAME

, ERROR
' NEWANAME);

Related Programming Manual

priority.
memory pages.
processor.
PID.

For programming information about the NEWPROCESSNOWAIT process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-270 Af' 82359 AOO 3/85

NEXTFILENAME

NEXTFILENAME PROCEDURE

The NEXTFILENAME procedure is used to obtain the name of the next disc
file on a designated volume. NEXTFILENAME returns the next file name
in alphabetic sequence after the file name supplied as the parameter.
The alphabetic sequence includes digits 0-9; if the volume contains
temporary files, the first temporary file is returned when <filename>
is $<volname><blank-fill>.

The intended use of NEXTFILENAME is in an iterative loop, where the
rile name returned in one call to NEXTFILENAME specifies the starting
point for the alphabetic search in the subsequent call to
NEXTFILENAME. In this manner, a volume's file names are returned to
the application process in alphabetic order through successive calls
to NEXTFILENAME.

The syntax for NEXTFILENAME is:

<error> := NEXTFILENAME (<filename>); i' 0

<error> returned value

INT

is a file system error number indicating the outcome of the
call. Common errors returned are:

0 = no error; next file name in alphabetic sequence is
returned in <filename>.

1 = end-of-file, there is no file in alphabetic sequence
following the file name supplied in <filename>.

13 = illegal file name specification.

Refer to the System Messages Manual for a list of all file
system errors.

<filename> input, output

INT:ref :12

on the call, is the file name from which the search for the
next file name begins. <filename> on the initial call can be
one of the following forms.

...-, 82359 AOO 3/85 2-271

NEXTFILENAME

To obtain the name of the first file on $<volname>:

<f ilename>[O:ll] = $<volname><blank-fill>
or

\<sysnum><volname><blank-f ill>

To obtain the name of the first file in <subvol-name> on
$<volume>:

<filename>[0:3] - $<volname><blank-fill>
or

\<sysnum><volname><blank-f ill>

<filename>[4:11] = <subvol-name><blank-fill>

To return the name of the next file in alphabetic sequence:

<filename>[0:3] = $<volname><blank-fill>
or

\<sysnum><volname><blank-f ill>

<filename>[4:7] - <subvol-name><blank-fill>
<f ilename>[B:ll] = <disc-filename><blank-f ill>

When <filename> returns, it contains the next file name,
if any, in alphabetic sequence.

Condition Code Settings

The condition code has no meaning following a call to NEXTFILENAME~

Example

FN AME ' : = ' [" $SYSTEM " , 8 * [" "]] :
WHILE NOT (ERROR := NEXTFILENAME (FNAME)) DO

BEGIN

END:

Related Programming Manual

For programming information about the NEXTFILENAME file system
procedure, refer to the ENSCRIBE Programming Manual.

2-272 .., 82359 AOO 3/85

NUMIN

NUMIN PROCEDURE

The NUMIN procedure converts the ASCII characters used to represent a
number into the signed integer value for that number.

The syntax for the NUMIN function is:

{ <next-addr> :=
{ CALL

<next-addr>

INT

} NUMIN (<ascii-num>
} ,<signed-result>

,<,base>
,<status>);

returned value

i
0
i
0

returns the 'G'[O] relative string address of the first
character in <ascii-num> not used in the conversion.

<ascii-num> input

STRING: ref:*

is an array containing the number to be converted to signed
integer form. <ascii-num> is of the form:

[+] [%] <number> <nonnumeric>
[-]

where "%" means treat the number as an octal value regardless
of the specified <base>.

<signed-result> output

INT:ref :l

returns the result of the conversion.

<base> input

INT:value

specifies the number base of <ascii-num>. Legitimate values
are 2 through 10.

~ 82359 AOO 3/85 2-273

NUMIN

<status> output

INT:ref :l

returns a number that indicates the outcome of the conversion.
The values for <status> are:

1 = nonexistent number (string does not start with "+,"
"-," "%," or numeric)

0 = valid conversion
-1 = illegal integer (number cannot be represented in 15

bits) or illegal syntax.

Condition Code Settings

The condition code has no meaning following a call to NUMIN.

Considerations

• When Number Conversion Stops

Number conversion stops on the first ASCII numeric character
representing a value greater than <base> -1 or nonnumeric ASCII
character.

• Base-10 Numeric Value Range

Base-10 numeric values must be in the range of {-32768:32767}.
Numeric values in other number bases are accepted if they can be
represented in 16 bits. Note that the magnitude is computed first,
then the value can possibly be negated (for example, %177777 =
-%1).

Example

CALL NUMIN (NUMBER , RESULT , BASE , STATUS);

Related Programming Manual

For programming information about the NUMIN utility procedure, refer
to the GUARDIAN Operating System Programmer's Guide.

2-274 Aft 82359 AOO 3/85

NUMOUT

NUMOUT PROCEDURE

The NUMOUT procedure converts unsigned integer values to their ASCII
equivalents. The result is returned right-justified in an array. Any
preceeding blanks are zero filled.

The syntax for NUMOUT is:

CALL NUMOUT (<ascii-result>
,<unsigned-integer>
,<base>
,<width>);

<ascii-result> output

STRING: ref:*

! 0
i
i
i

is an array where the converted value returns. The ASCII
representation is returned right-justified in
<ascii-result>[<width> - l]. Any preceeding blanks are zero
filled.

<unsigned-integer> input

INT:value

is the value to be converted.

<base> input

INT:value

is the number base for the resulting conversion. Any number in
the range 2 to 10 is valid.

<width> input

INT:value

is the maximum number of characters permitted in <ascii-result>.
Characters might be truncated on the left side.

Condition Code Settings

The condition code has no meaning following a call to NUMOUT.

...-, 82359 AOO 3/85 2-275

NUMOU'r

Considerations

• If <width> is too small to contain the number, the most significant
digits are lost.

Example

CALL NUMOUT (ARRAY , VARIABLE , BASE , WIDTH);

Related Programming Manual

For programming information about the NUMOUT utility procedure, refer
to the GUARDIAN Operating System Programmer's Guide.

2-276 .,, 82359 AOO 3/85

OPEN

OPEN PROCEDURE

The OPEN procedure establishes a communication path between an
application process and a file. When OPEN completes, a file number
returns to the application process. The file number identifies this
access to the file in subsequent file system calls.

The syntax for OPEN is:

CALL OPEN (<filename>
,<f ilenum>
,[<flags>]
,[<sync-or-receive-depth>
,[<primary-filenum>]
,[<primary-process-id>]
,[<seq-block-buffer>]
, [<buff er- length>]) ;

<filename> input

INT:ref:12

l

0
l

l

0

0

i unused
i

is an array containing the name (must be in internal format) of
the file to be opened. Refer to the Guardian Operating System
Programmer's Guide for additional information about file names.

<filenum> output

INT:ref:l

returns a number used to identify the file in subsequent system
calls. A -1 is returned if OPEN fails.

<flags>

INT:value

input

specifies certain attributes of the file. If omitted, all fields
are set to O. The bit fields in the <flags> parameter are
defined in Table 2-3.

~ 82359 AOO 3/85 2-277

OPEN

<sync-or-receive-depth> input

INT:value

The purpose of this parameter depends on the type of device
being opened:

Disc file

$RECEIVE file

WRITE to a
process pair

specifies the number of nonretryable (that is,
write) requests whose completion the file
system must remember. A value of one or
greater must be specified to recover from a
path failure occurring during a WRITE operation.
This value also implies the number of WRITE
operations the primary process in a primary and
backup process pair can perform to this file
without intervening checkpoints to its backup
process.

If omitted, or if 0 is specified, internal
checkpointing does not occur. Disc path
failures are not automatically retried by the
file system.

specifies the maximum number of incoming
messages read by READUPDATE that the
application process is allowed to queue before
corresponding REPLYs must be performed.

If omitted, READUPDATE and REPLY to $RECEIVE
are not permitted.

indicates whether or not a WRITE is
automatically redirected to the backup
process if the primary process or its
processor module fails.

If this parameter >= 1, then a WRITE is
automatically redirected in a manner invisible
to the originator of a message.

If this parameter = 0, a WRITE cannot occur
to the primary process of a process pair: an
error indication returns to the message's
originatoro On a subsequent retry, the file
system redirects the WRITE to the backup
process.

For other device types, this parameter is ignored.

2-278 ~ 82359 AOO 3/85

NOTE

The next two parameters are supplied only if the OPEN is
by the backup process of a process pair, the file is
currently open by the primary process, and the
checkpointing facility is not used. Both parameters
must be supplied. ~-

<primary-f ilenum> input

INT:value

is the file number returned to the primary process when it
opened this file. <primary-f ilenum> must be passed as
-<f ilenum>.

OPEN

A negative file number indicates that the same file number
should be returned in the backup as was returned in the
primary. If a negative file number is specified and the file
number is already open by the backup process, OPEN returns
file system error 12. In this situation, a Nonstop process
pair would indicate externally that error 12 ("file in use")
exists when, in fact, the file is not in use by the normal
definition (open by another process in exclusive mode).

<primary-process-id> input

INT:ref :4

is an array that contains the <process-id> of the
corresponding primary process. The primary process must
already have the file open.

NOTE

The next two parameters are included if the block buffer for
the file is to reside in the process file segment : otherwise,
they are omitted.

If sequential block buffering is used, the file should
usually be opened with protected or exclusive access.
Shared access can be used, although it can cause some
problems. Refer to the "Sequential Buffer Option" in the
ENSCRIBE Programming Manual for your system.

.-, 82359 AOO 3/85 2-279

OPEN

<buffer-length> input

INT:value

is the length (in bytes) of the <sequential-block-buffer>. If
the <buffer-length> is less than the <data-block-length>
specified in the creation of this file or any associated
alternate-key file(s), or if the file is opened with shared
access, OPEN succeeds but returns a CCG indication (a
subsequent call to FILEINFO returns <error> =5). The normal
system buffering is then used instead of the application
process's sequential buffer.

If this parameter is omitted or specified as 0, sequential
buffering is not attempted.

2-280 4J 82359 AOO 3/85

OPEN

Table 2-3. OPEN <flags> Parameter

Flag Flag in Octal Meaning
----~

.<0> %100000 must be O (unused). This is referred to as the high-order bit, being the
leftmost. --

.<1> %40000 For the $RECEIVE file only, specifies whether or not the opener wishes
to receive OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and
CONTROLBUF messages.

O = no, 1 = yes (must be 0 for all other files).
I--

.<2> %20000 specifies unstructures access to an ENSCRIBE file structure, regard-
less of the actual file structure. Setting this bit to 0 provides normal
structured access to the file.

O = no, 1 = yes (must be O for all other files).
1-- --

.<3> %10000 (reserved) must be 0 for non-privileged users.

.<4:5> %6000 access mode
(If both bits 0 = READ/WRITE

set) 1 = READ-only
2 = WRITE-only
3 = reserved.

----- ---- - --- ------ -----

.<6> %1000 must be 0 (unused).
-

.<7> %400 must be 0 (unused).
--

.<8> %200 for process files, indicates that the OPEN message is sent nowait and
must be completed with a call to AWAITIO.

O = no, 1 = yes (must be 0 for all other files).
---- ------- - ------

. <9> %100 must be 0 (unused) .
__ , ·= --- ------------ ------

.<10:11> %60 exclusion mode
(If both bits O = shared

set) 1 = exclusive
3 = protected.

.<12:15> %17 >0 implies nowait 1/0 and the maximum number of concurrent
(If all three nowait 1/0.

bits set) operations that can be in progress on this file at any given time.

0 implies wait 1/0.
- --·-·~ --~ ·--~-- ·-~ ----

~ 82359 AOO 3/85 2-281

OPEN

Condition Code Settings

< (CCL) indicates that the OPEN failed (call FILEINFO).
If OPEN fails a -1 will be returned in <filenum>.

= (CCE) indicates that the file opened successfully.

> (CCG) indicates the file opened successfully but an
exceptional condition was detected (call FILEINFO).

Considerations

• File Numbers

Within a process, the file numbers are unique. The lowest
numeric file number is 0 and is reserved for $RECEIVE.
Remaining file numbers start at 1. The lowest available file
number is always assigned. Once a file is closed, its file number
becomes available, and a subsequent file OPEN can reuse that file
number.

• Maximum Number of Open Files

The maximum number of files in the system that can be open at any
given time depends on the space available for control blocks:
access control blocks (ACBs), file control blocks (FCBs), and
open control blocks (OCBs). The amount of space available for
control blocks is limited primarily by the physical memory size of
the system. Each process can have up to 64K bytes of space for
ACBs.

• Multiple Openings by the Same Process

If a given file is opened more than once by the same process, a new
ACB is created for each OPEN. This provides logically separate
accesses to the same file because a unique file number returns
to the process for each OPEN. Whenever you reference a file in a
procedure, the file number is supplied by you in the <filenum>
parameter of the procedure.

2-282 -"1 82359 AOO 3/85

Multiple OPENS on a given file can create a deadlock. The
following shows how a deadlock situation occurs:

OPEN($TERM , <filenuma> •••);
! first OPEN on process $TERM •

.
OPEN($TERM, <filenumb> •••);
! second OPEN on process $TERM •

.
OPEN($TERM , <f ilenumc> •••) ;
! third OPEN on process $TERM.

OPEN

d
e
a
d
1
0

c
k

LOCKFit.E <filenumb>, •••); the file is locked using the
file number associated with
the second OPEN.

READUPDATE (<filenumc>, •••); update the file associated
with the third OPEN.

Locks are granted on an open file ··(that is, file number) basis.
Therefore, if a process has multiple OPENs of the same file,
a lock of one file number excludes access to the file through
other file numbers. The process is suspended forever if the
default locking mode is in effect.

You now have a deadlock. The file number referenced in the
LOCKFILE call differs from the file number in the READUPDATE
call.

• Limit of Times File Can Be Open

There is a limit to the total number of times a given file can be
open at one time. This determination includes OPENS by all
processes. The specific limit for a file is dependent on the
file's device type:

Disc Files = cannot exceed 4095 OPENS per disc
Process = defined by process
Operator = cannot exceed 4095 OPENs
$0SP = 127 concurrent OPENs permitted
$RECEIVE = one OPEN per process permitted
Other = 127 concurrent OPENs permitted.

1' 82359 AOO 3/85 2-283

OPEN

• File OPENs--Errors

•

•

If a process file is opened in a nowait manner (<flags>.<8> = 1),
that file is opened as nowait and checkopened in a nowait manner.
Errors detected in parameter specification and system data space
allocation are returned by the call to OPEN, and the operation is
considered unsuccessful. If there is an error, no message to the
process being opened is sent, and no call to AWAITIO is needed to
complete the OPEN.

If there are no parameter or data space allocation errors, the
<filenum> parameter is valid when OPEN returns. However, no I/O
operation on the file can be initiated until the OPEN is completed,
and other errors are reported by a call to AWAITIO.

If the <tag> parameter is specified in the call to AWAITIO, a --30D
returns. The values returned in the buffer and count parameters to
AWAITIO are undefined. If an error returns from .AWAITIO, it is the
user's responsibility to close the file.

For a nonprocess or waited (nowait depth = 0) file, <flags>.<8> is
internally reset to 0 and ignored. A call to FILEINFO after the
call to OPEN can return the value of the internal flags; if
bit <8> = 1, then a call to AWAITIO must be performed to complete
the open.

Refer to the ENSCRIBE Programming Manual and the GUARDIAN Operat~ng
System Programmer's Guide for considerations when using nowait I o.

Partitioned Files

A separate pair of FCBs exist for each partition of a partitioned
file. There is one ACB per accessor (as for single-volume files),
but this ACB requires more main memory since it contains the
information necessary to access all of the partitions, including
the location, alternate keys, and partial-key value for each
partition.

• Disc File OPEN--Security Check

When a disc file OPEN is attempted, a file security check takes
place. The accessor's (that is, calling process) security level is
checked against the file's security level for the requested access
mode. (File security is set by the SETMODE procedure or the File
Utility Program SECURE command.) If the calling process's security
level is equal to or higher than the file's security level for the
requested access mode, then the calling process passes the security
check. If the calling process fails the security check, the OPEN
fails, and a subsequent call to FILEINFO returns error 48. File
security checking is shown in Figure 2-3.

2-284 ~ 82359 AOO 3/85

Super ID
Owner
Group Mem

Other

Accessor's Security
Level

7,

= 2,

= 1,
OR
0

Requested
access mode

7,
2,
1,
OR
0

File Security
Level

7, 7,
2, 2,
1, 1,
OR OR
0 0

7,
2,
1,
OR
0

READ WRITE EXC PURGE

READ/WRITE ----------+----1
READ-Only

WRITE-Only

* EXECUTE

* PURGE

* Cannot be specified via OPEN

= Super ID
= Owner
= Group

Member
Any

If the accessor's security level is equal to or higher than the file's security level for the requested
access mode, then the accessor passes the security check.

S5023-004

Figure 2-3. File Security Checking

~ 82359 AOO 3/85

OPEN

2-285

OPEN

• File OPEN--Exclusion and Access Mode Checking

When a file OPEN is attempted, the requested access and exclusion
modes are compared with those of any OPENs already granted for the
file. If the attempted OPEN is in conflict with other OPENs, then
the OPEN fails. A subsequent call to FILEINFO returns error 12.
Table 2-4 lists all possible current modes and requested modes,
indicating whether an OPEN succeeds or fails.

2-286

NOTE

Protected exclusion mode has meaning only for disc files.
For other files, specifying protected exclusion mode is
equivalent to specifying shared exclusion mode.

-'1J 82359 AOO 3/85

OPEN

Table 2-4. Exclusion and Access Mode Checking

OPEN F
Attempted I File Currently OPEN With
With L

E
Exclusion s s s E E E p p p

Mode c
L
0 R R w R R w R R w

Access s I I I
Mode E w w w

D

s R/W y y y y

s R y y y y y y y

s w y y y y

E R/W y

E R y Always Fails

E w y

p R/W y y

p R y y y

p w y y

Exclusion Mode: Access Mode:
s =Shared R/W = READ/WRITE
E = Exclusive R = READonly
p = Protected w =WRITE only

y =Yes, OPEN successful
Blank= No, OPEN fails.

NOTE

When a program file is running it is opened with the equivalent to R, P.

'1J 82359 AOO 3/85 2-287

OPEN

Disc File Considerations

• Maximum Number of Concurrent Nowait Operations

The maximum number of concurrent nowait operations permitted for an
OPEN of a disc file is one. Attempting to open a disc file and
specify a value greater than 1 returns an error indication. A
subsequent call to FILEINFO returns error 28.

• Disc Accesses and the REFRESH Option

When a disc file that has the REFRESH option set (at CREATE time)
is opened, file labels are refreshed automatically when the
end-of-file (EOF) pointer is advanced. (For a description of the
REFRESH option, see the section on unstructured disc files in the
ENSCRIBE Programming Manual.) Depending on the particular
application, there can be a significant decrease in processing
throughput due to the increased number of disc WRITEs if REFRESH
is set.

• Unstructured Files

--File pointers after OPEN

After a disc file :is opened, the current-record and next-record
pointers begin at a relative byte address (RBA) of zero, and the
first data transfer (unless an intervening POSITION is performed)
is from that location. After a successful OPEN, the pointers
are:

current-record pointer := OD;
next-record pointer := OD;

--Sharing the same EOF pointer

2-288

If a given disc file is opened more than once by the same
process, separate current-record and next-record pointers are
provided for each OPEN, but all OPENs share the same EOF
pointer.

.., 82359 AOO 3/85

•

OPEN

Structured Files

--Accessing structured files as unstructured files

The unstructured access option (<flags>.<2>) permits a file to
be accessed as an unstructured file. For OPEN, with this option
specified, a data transfer occurs to the position in the file
specified by an RBA (instead of to the position indicated by a
key address field or record number); the number of bytes
transferred is that specified in the file system procedure call
(instead of the number of bytes indicated by the record format).
If a partitioned, structured file is opened as an unstructured
file, only the first partition is opened. The remaining
partitions must be opened individually with separate calls to
OPEN (each OPEN specifying unstructured access).

Accessing audited structured files as unstructured files is
not allowed.

CAUTION

Programmers using this option are cautioned that the
block format used by ENSCRIBE must be maintained if the
file is to be accessed again in its structured form.
(Tandem reserves the right to change this block format at
any time.) Refer to the ENSCRIBE Programming Manual for
information about ENSCRIBE block formats.

• Current-State Indicators After OPEN

After successful completion of OPEN, the current-state indicators
have these values:

--The current position is that of the first record in the
file by primary key.

--The positioning mode is approximate.

--The comparison length is 0.

If READ is called immediately after OPEN for any structured
file, it reads the first record in the file; in a
key-sequenced file, this is the first record by primary key.
Subsequent READs, without intervening positioning, read the
file sequentially (in a relative or entry-sequenced file) or
by primary key (in a key-sequenced file) through the last
record in the file.

When a key-sequenced file is opened, KEYPOSITION usually is
called before any subsequent I/O call (such as READ, READUPDATE,
WRITE) to establish a position in the file.

..-, 82359 AOO 3/85 2-289

OPEN

Terminal Consideration

• Opening the Terminal Used as the Operator Console

The terminal being used as the operator console should not be
opened with exclusive access. If it is, console messages are not
logged.

Interprocess Communication Considerations

• Maximum Concurrent Nowait Operations for an Open of $RECEIVE

The maximum number of concurrent nowait operations permitted for an
open of $RECEIVE is one; Attempting to open $RECEIVE and to
specify a value greater than 1 returns an error indication. A
subsequent call to FILEINFO returns error 28.

• When an OPEN Completes

For an OPEN of another process (requesting system messages) the
call to OPEN completes when the process specified to open performs
a subsequent READ of its $RECEIVE file. Otherwise, the OPEN
completes immediately.

Messa~

• Process OPEN Message

This system message (-30) is received by a process when it is
opened by another process. The process ID of the opener can be
obtained in a subsequent call to LASTRECEIVE or RECEIVEINFO.
Refer to Appendix F for a description and the form of this
message and all system messages.

2-290

NOTE

This message is also received if the backup process of a
process pair performs the OPEN. Therefore, a process can
expect two of these messages when being opened by a process
pair.

.., 82359 AOO 3/85

OPEN

Example

CALL OPEN (FILEANAME , FILEANUM);

The file in this call has the following defaults; wait I/O, exclusion
mode (shared), access mode (READ/WRITE), sync depth (0).

Related Programming Manuals

For programming information about the OPEN file system procedure,
refer to the GUARDIAN Operating System Programmer's Guide and the
ENSCRIBE Programming Manual.

~ 82359 AOO 3/85 2-291

POSITION

POSITION PROCEDURE

The POSITION procedure positions by primary key within relative and
entry-sequenced files. For unstructured files, the POSITION procedure
specifies a new current position.

For relative and unstructured files, POSITION sets the current
position, access path, and positioning mode for the specified file~
The current position, access path, and positioning mode define a
subset of the file for subsequent access.

The POSITION procedure is not used with key-sequenced files;
KEYPOSITION is used instead.

The caller is not suspended because of a call to POSITION.

A call to the POSITION procedure is rejected with an error indication
if there are incomplete nowait operations pending on the specified
file.

The syntax for POSITION is:

CALL POSITION (<f ilenum>
,<record-specifier>);

<f ilenum> input

INT: value

i
i

is the number of an open file that identifies the file where
the positioning is to take place.

<record-specifier> input

INT(32):value

is a relative bye address (RBA) that specifies the new
setting for the current-record and next-record pointers.

Relative Files: <record-specifier> is a four-byte
<record-num>.

2-292

-2D specifies that the next WRITE should occur
at an unused record position.

·~~----- --~--~------~~~---~----~-------------

-'182359 AOO 3/85

POSITION

-lD specifies that subsequent WRITEs should be
appended to the end-of-file location.

Unstructured Files: <record-specifier> is a four-byte
<relative-byte-addr>.

-lD or -2D specifies that subsequent WRITEs
should be appended to the EOF location.

(For relative and unstructured files, the -lD and -2D remain
in effect until a new <record-specifier> is supplied.)

Entry-Sequenced Files: <record-specifier> is a four-byte
<record-addr> (the primary key).
Refer to the ENSCRIBE Programming
Manual for information about
<record-addr>.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

~· = (CCE) indicates that the POSITION was successful.

> (CCG) indicates no operation: <f ilenum> does not designate
a disc file.

Considerations

• POSITION does not cause the disc heads to be repositioned (at least
until a subsequent data transfer is initiated).

• Unstructured Files

--File pointers after POSITION

After a successful call to POSITION for an unstructured file,
the file pointers are:

current-record pointer := next-record pointer:
IF rba = -lD THEN end-of-file pointer

ELSE RBA:

"" 82359 AOO 3/85 2-293

POSITION

--Value of <record-specifier> for unstructured files

Unless the unstructured file is created with the ODDUNSTR
parameter set, the RBA passed in <record-specifier> must be an
even number. If the ODDUNSTR parameter is set when the file
is created, the RBA passed in <record-specifier> can be either
an odd or an even value. (The ODDUNSTR parameter is set when
the file is created, either with <filetype>.<12> of the CREATE
procedure or with the Peripheral Utilities Program SET and
CREATE commands.)

For even unstructured files, the <record-specifier> must be an
even byte address (see CREATE procedure), or the operation fails
with file system error 2.

• Relative and Entry-Sequenced Files

--writing to entry-sequenced files

Inserts to entry-sequenced files always occur at the end of the
file.

--Maximum size of relative file

POSITION cannot be used on a relative file with more than
8,388,608 blocks (this is the approximate number that can
be passed and stored in the 32-bit integer <record-specifier>
parameter). Attempting to do so results in file system error 23
(illegal disc address).

--Current-state indicators for structured files

2-294

After a successful POSITION to a relative or entry-sequenced
file, the current-state indicators are:

Current position is that of the record indicated by the
<record-specifier>.

Positioning mode is approximate.

Comparison length is 4.

Current primary-key value is set to the value of the
<record-specifier>.

~ 82359 AOO 3/85

POSITION

Example

CALL POSITION (FILEANUM ' 4096D);

Related Programming Manuals

For programming information about the POSITION file system procedure,
refer to the ENSCRIBE Programming Manual.

~ 82359 AOO 3/85 2-295

POSITION"'SCREEN

POSITION"'SCREEN PROCEDURE

POSITION"'SCREEN places control characters into the application
program's I/O buffer so that the cursor positions over the first
character of a data-entry field.

The syntax of POSITION"'SCREEN is:

<num-chars> := POSITION"'SCREEN (@<screen-name>

<num-chars>

INT

, SCREEN
<buffer>
<field-name>);

returned value

l

0

! 0
i

returns the number of control characters placed into the
application program's I/O buffer.

<screen-name> input

INT:value

is the address of the READ-only array that has the form
definition (refer to the ENTRY Screen Formatter Operating and
Programming Manual or the ENTRY520 Screen Formatter Operating
and Programming Manual for an explanation of "form definition").

SCREEN output

STRING: ref:*

is the required array named SCREEN where the entry data is
placed. You can access all fields using the Tandem Application
Language (TAL) SCAN statement because all fields are
null-terminated. Each field has no leading and trailing blanks:
in other words, each field is left-justified.

2-296 Af" 82359 AOO 3/85

POSITION SCREEN

<buffer> output

STRING: ref:*

is the program's I/O buffer where the control sequence is
placed. The sequence is six characters long.

<field-name> input

STRING: ref:*

is the name of the field where you want the cursor positioned.

Condition Code Settings

The condition code has no meaning following a call to POSITION SCREEN.

Example

NUM CHARS := POSITION SCREEN (@X , SCREEN , BUF , X NAME)~

Related Programming Manuals

For programming information about the POSITION SCREEN entry procedure,
refer to the ENTRY Screen Formatter Operating and Programming Manual
and the ENTRY520 Screen Formatter Operating and Programming Manual.

~ 82359 AOO 3/85 2-297

PRINTCOMPLETE

PRINTCOMPLETE PROCEDURE

The PRINTCOMPLETE procedure is used by a print process to communicate
with the spooler supervisor.

The PRINTCOMPLETE procedure obtains a message from the supervisor.

The syntax for PRINTCOMPLETE is:

<error-code> := PRINTCOMPLETE (<f ilenum-to-supervisor> i
,<print-control-buffer>); o

<error-code> returned value

INT

returns the following spooler error code:

%3000
- %3377 = supervisor file error (<8:15> contains a file

error). This error indicates a communication
problem with the supervisor. A print process
receiving this error can call ABEND, retry the
operation a number of times, or continue reading
and printing jobs without any further communication
with the supervisor.

%14015 = process is not a spooler supervisor.

<f ilenum-to-supervisor> input

INT:val-ue

is the number of an open supervisor file (which is obtained in
a previous call to OPEN).

<print-control-buffer> output

INT:ref :64

on return, contains a message from the supervisor.

2-298 -1' 82359· AOO 3/85

""

PRINTCOMPLETE

Condition Code Settings

The condition code has no meaning following a call to PRINTCOMPLETE
(see the <error-code> parameter).

Considerations

• PRINTCOMPLETE should not be used by a perusal process. The print
process operates inconjuction with, and under the control of,
the supervisor, while a perusal process operates on its own.

• The message returned by PRINTCOMPLETE is interpreted through a call
to PRINTREADCOMMAND.

• PRINTCOMPLETE must be called immediately following a completion of
the call on the file to the supervisor.

• Calling AWAITIO

In addition to obtaining the supervisor message, PRINTCOMPLETE also
initiates a nowait operation to the supervisor file. Thus, a call
to AWAITIO must be issued to the supervisor file at some time
subsequent to a call to PRINTCOMPLETE.

Example

PRINTAERROR := PRINTCOMPLETE (FILENUMASUP , PRINTABUFF >:

Related Programming Manuals

For more information about the PRINTCOMPLETE Spooler procedure, refer
to the Spooler Programmer's Guide.

Af' 82359 AOO 3/85 2-299

PRINTINFO

PRINTINFO PROCEDURE

The PRINTINFO procedure is used in print processes to communicate with
the spooler supervisor~

The PRINTINFO procedure returns information to the supervisor
regarding a job in response to a "send status" request.

The syntax for PRINTINFO is:

<error-code> := PRINTINFO (<job-buffer>
,[<copies-remaining>]
,[<current-page>]

i
0

0
,[<current-line>]
,[<lines-printed>]);

! 0
! 0

<error-code> returned value

INT

·returns the following spooler error code:

%10001 = parameter present, but its content is wrong.

<job-buffer> input

INT:ref :560

contains control information for the job started.
PRINTINFO interprets the contents of <job-buffer>.

<copies-remaining> output

INT:ref :1

returns the number of copies of the job that are left to
print, including the current copy.

<current-page> output

INT:ref :1

returns the number of the current page.

2-300 4182359 AOO 3/85

PRINTINFO

<current-line> output

INT:ref :l

returns the current line of the current page being printed.

<lines-printed> output

INT:ref :l

returns the total number of lines printed for this copy of
the job.

Condition Code Settings

The condition code has no meaning following a call to PRINTINFO (see
the <error-code> parameter).

Considerations

, • PRINTINFO should not be used by a perusal process. A print
process operates inconjuction with, and under the control of,
the supervisor, while a perusal process operates on its own.

• PRINTINFO is used by a print process (PRINTSTART or PRINTREAD
procedure) to respond to a status request from the supervisor.

• <line-printed> Parameter

The <lines-printed> parameter is not always an indication of
how many lines remain to be printed on a job because it includes
lines that are printed more than once as a result of a page skip
action.

Example

INFOAERROR := PRINTINFO (JOBABUFF , COPIES);

Related Programming Manual

For more information about the PRINTINFO spooler procedure, refer to
the Spooler System Management Guide.

"'1 82359 AOO 3/85 2-301

PRINTINIT

PRINTINIT PROCEDURE

The PRINTINIT procedure is used in print processes to initialize
communication with the spooler supervisor.

The PRINTINIT procedure initializes the print process's print control
buffer that is used in calls to other print procedures.

The syntax for PRINTINIT is:

<error-code> := PRINTINIT (<f ilenum-to-supervisor>
,<print-control-buffer>);

i
i, 0

<error-code> returned value

INT:value

returns one of the following spooler error codes:

%2000
- %2377 = file error on data file (bits <8:15> contain a

GUARDIAN file system error number).

%3000
- %3377 = supervisor file error (<8:15> contains a file

error). This error indicates a communication
problem with the supervisor. A print process
receiving this error can call ABEND, retry the
operation a number of times, or continue reading
and printing jobs without any further communication
with the supervisor.

%4000
- %4377 = device error sent to the supervisor by the print

process (bits <8:15> contain a file system error
number).

%10000 = missing parameter
%10001 = parameter present, but its content is wrong.

<f ilenum-to-Supervisor> input

INT:value:l

is the number of an open supervisor file (that is obtained by a
previous call to OPEN). This file must be opened nowait.

2-302 ~ 82359 AOO 3/85

PRINTINIT

<print-control-buffer> input, output

INT:ref :64

is formatted by PRINTINIT and should be passed unaltered to
other print procedures.

Condition Code Settings

The condition code has no meaning following a call to PRINTINIT (see
the <error-code> parameter).

Considerations

• PRINTINIT should not be used by a perusal process. A print process
operates inconjuction with, and under the control of, the
supervisor, while a perusal process operates on its own.

• Before calling PRINTINIT, a print process must have a file open to
the supervisor with nowait I/O and a sync depth of, at most, one.

~ • PRINTINIT must be followed at some point with a call to AWAITIO.

• <print-control-buffer> and the Supervisor

The <print-control-buffer> returned by PRINTINIT is used by the
supervisor to send messages to the print process. The print
process should never alter this buffer except with calls to the
print procedures.

• Usually, PRINTINIT is called only once by a print process.

Example

INITAERROR := PRINTINIT (FILENUMASUP , PRINTABUFFER);

Related Programming Manual

For more information about the PRINTINIT spooler procedure, refer to
the Spooler Programmer's Guide.

-"1 82359 AOO 3/85 2-303

PRINTREAD

PRINTREAD PROCEDURE

The PRINTREAD procedure can be used in print and perusal processes to
access spooled data and to allow print processes to communicate with
the spooler supervisor.

The PRINTREAD procedure returns one line of spooled data.

The syntax for PRINTREAD is:

<error-code> := PRINTREAD (<job-buffer>
,<data-line>
,<read-count>
,[<count-read>]
,[<pagenum>]) ;

<error-code> returned value

INT

i' 0
0
i
0
i

returns a spooler error code. Certain nonzero <error-code>s
from PRINTREAD have special significance:

%12000 = end of file. All lines in the job have been
transferred (send an "end job" message to the
supervisor by PRINTSTATUS; only for print processes
not for perusal processes)

%12001 = end of copy
%12002 = invalid data file
%12003 = CONTROL found
%12004 = SETMODE found
%12005 = CONTROLBUF found

Refer to the System Messages Manual for a list of spooler
errors and their meanings.

<job-buffer> input, output

INT:ref :560

is the job buffer for the job being read.

--~

2-304 .., 82359 AOO 3/85

...

PRINTREAD

<data-line> output

INT:ref :450 (or less)

returns a line of spooled data.

<read-count> input

INT:value

specifies the maximum number of bytes to be read.

<count-read> output

INT:ref :l

is the number of bytes actually read.

<pa gen um> input

INT:value

returns one of the following:

> 0 PRINTREAD returns the first line on the page specified
by this parameter.

< 0 PRINTREAD repeats the last line returned.

= 0 or absent, PRINTREAD returns the next sequential line.

Condition Code Settings

The condition code has no meaning following a call to PRINTREAD (see
the <error-code> parameter).

Considerations

• Size of <data-line>

The size of <data-line> never exceeds 450 words; however, in
most cases, it is smaller •

-11 82359 AOO 3/85 2-305

PRINTREAD

• Critical Errors Returned From PRINTREAD

Errors returned from PRINTREAD other than %12000-%12001 and
%12003-%12005 are critical. In the case of a print process (not
for perusal processes), the error should be sent to the supervisor
using PRINTSTATUS.

Example_

READAERROR := PRINTREAD (JOBABUFF , LINE , COUNT , COUNTAREAD);

Related Programming Manuals

For programming information about the PRINTREAD spooler procedure,
refer to the Spooler Programmer's Guide.

2-306 .., 82359 AOO 3/85

PRINTREADCOMMAND

PRINTREADCOMMAND PROCEDURE

The PRINTREADCOMMAND procedure can be used in print and perusal
processes to access spooled data and to allow print processes to
communicate with the spooler supervisor.

The PRINTREADCOMMAND procedure interprets the information contained
in the print control buffer returned from a call to PRINTCOMPLETE (in
a print process) or SPOOLEREQUEST (in a perusal processs).

The syntax for PRINTREADCOMMAND is:

<error-code> := PRINTREADCOMMAND (<print-control-buffer>
,[<controlnum>]
,[<device>]
,[<devflags>]
,[<devparam>]
,[<devwidth>]
,[<skipnum>]
,[<data-file>]
,[<jobnum>]
,[<location>]
,[<form-name>]
,[<report-name>]
,[<pagesize>]);

<error-code> returned value

INT

returns one of the following spooler error codes:

%10000 = missing parameter
%10001 = parameter is present, but its content is wrong.

<print-control-buffer> input

INT:ref :64

is passed exactly as it is returned from PRINTCOMPLETE or
SPOOLEREQUEST.

~ 82359 AOO 3/85

i
0
0
0

0
0

0
0
0

0
0
0
0

2-307

PRINTREADCOMMAND

<controlnum> output

INT:value

specifies the action requested by the supervisor:

0 = open device
1 = close device
2 = start job on device
3 = stop job on device
4 = resume job on device
5 = suspend job on device
6 = print form alignment template on device
7 = skip to page
8 = skip over pages
9 = send status of job printing on device

<device> output

INT:ref :12

specifies the particular device referenced by the control
number.

<devf lags> output

INT:ref :l

indicates the state of the device's truncation and header
flags:

flags.<9> = batch header: 1 = on, 0 = off
flags.<10> = truncation flag: 1 = on, 0 = off
flags.<13> = header flag: 1 = on, 0 = off

All other bits are reserved for use by the spooler.

<devparam> output

INT:ref :l

is the parameter specified in the "DEV, PARM" SPOOLCOM
command.

2-308 -'182359 AOO 3/85

PRINTREADCOMMAND

<devwidth> output

INT:ref :l

is the device width specified in the "DEV, WIDTH" SPOOLCOM
command.

<skipnum> output

INT:ref :l

returns the number of pages to skip. The meaning of this
number depends on the control number:

<controlnum> = 7 (skip to page). <skipnum> specifies the
page that should be skipped to.

<controlnum> = 8 (skip over pages). <skipnum> specifies
the number of pages relative to the current
page that should be skipped.

<controlnum> is neither 7 nor 8. The <skipnum> parameter has
no meaning.

<data-file> output

INT:ref :12

is the data file in which the job is stored if the control
number is 2 (start job): otherwise, this parameter has no
meaning.

<jobnum> output

INT:ref :l

is the number of the job referenced if the control number is 2
(start job): otherwise, this parameter has no meaning.

<location> output

INT:ref :8

is the location of the job started if the control number is 2
(start job): otherwise, this parameter has no meaning.

-'1 82359 AOO 3/85 2-309

PRINTREADCOMMAND

<form-name> output

INT:ref :8

is the form name of the job being referenced if the control
number is 2 (start job); otherwise, this parameter has no
meaning.

<report-name> output

INT:ref :8

is the report name of the job referenced if the control number
is 2 (start job); otherwise, this parameter has no meaning.

<page size> output

INT:ref :l

is the page size of the job referenced if the control number
is 2 (start job); otherwise, this parameter has no meaning.

Condition Code Settings

The condition code has no meaning following a call to PRINTREADCOMMAND
(see the <error-code> parameter)~

Considerations

• Calling PRINTREADCOMMAND Twice

If desired, PRINTREADCOMMAND can be called once to get the
<controlnum> and then a second time to get whatever particular
information is needed.

• Printing a Header Message

The print process can use the <location>, <form-name>,
<report-name>, and <flags> to print out a header message.

• Passing <skipnum> Directly to PRINTREADCOMMAND

If the control number is 7, the <skipnum> parameter can pass
directly to PRINTREAD.

2-310 /182359 AOO 3/85

•

•

PRINTREADCOMMAND

Control Number 8 and PRINTREADCOMMAND

If the control number is 8, PRINTINFO must be called to get the
<current-page>. <skipnum> must then be added to the <current-page>
to find the page number to pass to PRINTREAD.

A print process may ignore the header and truncation flags and the
<devwidth> parameter.

Example

READAERROR := PRINTREADCOMMAND (PRINTABUFFER
CNTRLANUM

' DATAAFILE);

Related Programming Manual

print buffer.
control number.
device.
device flags.
device parameter.
device width
pages to skip.
data file.

For programming information about the PRINTREADCOMMAND spooler
procedure, refer to the Spooler Programmer's Guide.

~ 82359 AOO 3/85 2-311

PRINTSTART

PRINTSTART PROCEDURE

The PRINTSTART procedure formats the job buffer for a spooler job
being started. The buffer is used in subsequent calls to PRINTREAD.

The syntax for PRINTSTART is:

<error-code> := PRINTSTART (<job-buffer>
,<print-control-buffer>
,<data-filenum>);

! 0
i
i

<error-code> returned value

INT

returns one of the following spooler error codes:

0 = successful operation

%2000
-%2377

%3000

= file error on data file (bits <8:15> contain a
GUARDIAN file system error number).

- %3377 =supervisor file error (<8:15> contains a file error).

%4000

This error indicates a communication
problem with the supervisor. A print process
receiving this error can call ABEND, retry the
operation a number of times, or continue reading and
printing jobs without any further communication with
the supervisor.

- %4377 = device error sent to the supervisor by the print
process (bits <8:15> contain a file system error
number).

%10001 = parameter present, but its content is wrong.

<job-buffer> output

INT:ref :560

contains control information for the job being started in a
form suitable for passing to other print procedures.

2-312 ~ 82359 AOO 3/85

PRINTSTART

<print-control-buffer> input

INT:ref :64

is the buffer obtained from PRINTCOMPLETE or SPOOLEREQUEST.

<data-f ilenum> input

INT:value

is the file number of the data file containing the started job.

Condition Code Settings

The condition code has no meaning following a call to PRINTSTART (see
the <error-code> parameter).

Considerations

~ • <job-buffer> Also Stores Data

In addition to containing control information for the job, the
the PRINTREAD procedure uses <job-buffer> to store a block of
spooled data.

• PRINTSTART is called once for each job started on a device.

• The job buffer should not be altered by the print or perusal
process.

Example

STARTAERROR := PRINTSTART (JOBABUFF ' PRINTABUFF ' FILENUM)~

Related Programming Manuals

For programming information about the PRINTSTART spooler procedure,
refer to the Spooler Programmer's Guide.

..,., 82359 AOO 3/85 2-313

PRINTSTATUS

PRINTSTATUS PROCEDURE

The PRINTSTATUS procedure can be used in print processes to
communicate with the supervisor and to send an unsolicited status
message to the spooler supervisor.

The syntax for PRINTSTATUS is:

<error-code> := PRINTSTATUS (<f ilenum-to-supervisor> i
,<print-control-buffer> i
,<msg-type> i
,<device> i
,[<error>] i
,[<num-copies>] i
,[<page>] i
,[<line>] i
,[<lines-printed>]); i

<error-code> returned value

INT:value

returns one of the following spooler error codes:

%2000
- %2377 = file error on data file (bits <8:15> contain a

GUARDIAN file system error number).

%3000
- %3377 = supervisor file error (<8:15> contains a file

error). This error indicates a communication
problem with the supervisor. A print process
receiving this error can call ABEND, retry the
operation a number of times, or continue reading
and printing jobs without any further communication
with the supervisor.

%4000
- %4377 = device error sent to the supervisor by the print

process (bits <8:15> contain a file system error
number).

2-314 /182359 AOO 3/85

PRINTSTATUS

<f ilenum-to-supervisor> input

INT:value

is a number of an open supervisor file obtained in a previous
call to OPEN.

<print-control-buffer> input

INT:ref :64

is the buffer obtained from the PRINTCOMPLETE procedure.

<msg-type>

INT:value

input

specifies the type of message being sent, as follows:

0 = sending status of job
1 = error occurred on print device; previous operation

unsuccessful
2 = end of job
3 = unable to open device
4 = invalid operation in this state
5 = error occurred on print device; previous operation

successful

<device> input

INT:ref :12

is the name of the device on which an error occurs.

<error> input

INT:value

is the error that caused this call to PRINTSTATUS. It is
sent to the supervisor.

was

was

%4000
%4377

= device error sent to the supervisor by the print
process (bits <8:15> contain a GUARDIAN file system
error number).

"182359 AOO 3/85 2-315

PRINTSTATUS

%13000
%13001
%13002
%13003

=
=
=
=

no such device
device already open
No job on device
Job is running

%13004 = "table is full." It is sent by a print process
to the supervisor when the print process is already
handling as many jobs as it can, and the supervisor
instructs it to start another job.

Refer to the System Messages Manual for a complete list and
description of spooler errors.

<num-copies> input

INT: value

is the number of copies of the job remaining to be printed.

<page> input

INT:value:l

is the current page.

<line> input

INT:value

if present, is the current line (from PRINTINFO).

<lines-printed> input

INT: value

is the number of lines printed.

Condition Code Setting~

The condition code has no meaning following a call to PRINTSTATUS (see
the <error-code> parameter).

2-316 "'82359 AOO 3/85

PRINTSTATUS

Considerations

• PRINTSTATUS should not be used by a perusal process. A print
process operates in conjunction with, and under the control of, the
supervisor, while a perusal process operates on its own.

• Message Type and Parameters of PRINTSTATUS

The file number to supervisor, print control buffer, message type,
and device are required parameters and must always be present in a
call to PRINTSTATUS. The remaining parameters are optional:
PRINTSTATUS might need these parameters, however, depending on the
message type.

Table 2-5 shows which parameters are needed for each message type:

Table 2-5. PRINTSTATUS Message Type and Parameters

0
1
2
3
4
5

Error

x

x
x

Copies

x

Page

x

Lines
Printed

x

• PRINTSTATUS is a nowait operation and must be completed with a
call to AWAITIO.

• Message types 1 and 5 inform the supervisor of an error occurring
on a print device.

Message type 5 is sent if the previous operation on the device is
successful. When it receives the message, the supervisor can
instruct the print process to retry the operation. If the
operation fails again, the print process sends message type 1,
which indicates to the supervisor that a retry of an operation
failed.

Message type 5 causes the supervisor to reset its retry count for
that device.

AJ' 82359 AOO 3/85 2-317

PRINTSTATUS

Example

STATUSAERROR := PRINTSTATUS { FILENUMASUP
, PRINT"'"BUFF
, MSG
, DEVICE

, PAGE

' NUMALINES >:

Related Programming Manual

error.
number of copies.

line.

For programming information about the PRINTSTATUS spooler procedure,
refer to the Spooler Programmer's Guide.

2-318 Af' 82359 AOO 3/85

PRIORITY

PRIORITY PROCEDURE

The PRIORITY procedure enables a process to examine or change its
initial priority and current priority.

The syntax for PRIORITY is:

{ <old-priority>
{ CALL

<old-priority>

INT

:= } PRIORITY ([<new-priority>]
} ,[<init-priority>])~

returned value

returns a value that is either:

• The current priority of the process if <new-priority> is
not specified

• The previous value of the current priority when
<new-priority> is specified

i
0

• A 0, indicating that the <new-priority> value specified as a
value is out of range and that the priority was not changed

<priority> input

INT:value

specifies a new execution priority value in the range of {1:199}
for this process. If omitted, the current priority remains
unchanged (the range for a privileged caller is {1:255}).

· <init-priority>

INT:ref :l output

returns the initial run priority of the process when it was
started.

Condition Code Settings

The condition code has no meaning following a call to
PRIORITY.

1'f 82359 AOO 3/85 2-319

PRIORITY

Considerations

• Privileged Calls to PRIORITY

A caller of PRIORITY who is executing in privileged mode can set
its priority to a value greater than 199. However, if such a
process has a priority greater than that of the memory manager
process and gets a memory page fault, the process is aborted
with a "no memory available," trap number 12.

• Why Current Rather Than Assigned Priority Returned

The current priority rather than the initial priority is returned.
Due to the sliding priority feature on the Nonstop system, the
current priority may be lower than the initial priority if the
process is CPU-bound (that is, the process does not perform any I/O
requests while running.)

Example

LASTAPRI :=PRIORITY (100);

Related Programming Manuals

changes the current priority to
100.

For programming information about the PRIORITY process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-320 AJ' 82359 AOO 3/85

PROCESSACCESSID

PROCESSACCESSID PROCEDURE

The PROCESSACCESSID procedure is used to obtain the accessor ID of
the calling process.

The syntax for PROCESSACCESSID is:

<accessor-id> := PROCESSACCESSID:

<accessor-id> returned value

INT

returns the accessor ID of the caller in the following form:

<accessor-id>.<0:7> = group number
.<8:15> = user number

Condition Code Settings

The condition code has no meaning following a call to PROCESSACCESSID.

Considerations

• When Accessor IDs Differ

For a given process, the accessor ID returned from the
PROCESSACCESSID procedure is normally the same as that returned
from the CREATORACCESSID procedure. The accessor IDs differ only
when a program file is run with "set accessor ID to program file's
owner ID" specified (usually with the File Utility Program (FUP)
SECURE command and PROGID option). In that case, the accessor ID
returned by PROCESSACCESSID is the same as that of the
program file's owner. Refer to the GUARDIAN Operating System
Utilities Reference Manual for information about FUP SECURE.

Example

MYAACCESSORAID := PROCESSACCESSID:

Related Programming Manual

None

~ 82359 AOO 3/85 2-321

PROCESSFILESECURITY

PROCESSFILESECURITY PROCEDURE

The PROCESSFILESECURITY procedure is used to examine or set the file
security for the current process. This is the security used for any
file creation attempts following a call to PROCESSFILESECURITY.

The syntax for PROCESSFILESECURITY is:

<old-security> := PROCESSFILESECURITY (<security>);

<old-security> returned value

INT

is the old file security.

<security> input

INT:value

is the new file security. The security bits are:

<security>.<0:3> = 0
.<4:6> = ID allowed
.<7:9> = ID allowed
.<10:12> = ID allowed
.<13:15> = ID allowed

ID can be one of the following:

0 = any user {local)

for
for
for
for

1 = member of owner's group {local)
2 = owner {local)
4 = any user {local or remote)

READ
WRITE
EXECUTE
PURGE

5 =member of owner's community {local or remote)
6 = owner {local or remote)
7 = super ID only {local)

i

Refer to the GUARDIAN Operating System Utilities Reference Manual
for more information about security.

Condition Code Setting~

The condition code has no meaning following a call to
PROCESSFILESECURITY.

2-322 ~ 82359 AOO 3/85

,.

PROCESSFILESECURITY

Example

OLDASECURITY := PROCESSFILESECURITY (SECURITY);

Related Programming Manual

None

~ 82359 AOO 3/85 2-323

PROCESS INFO

PROCESSINFO PROCEDURE

The PROCESSINFO procedure is used to obtain process status
information.

The syntax for PROCESSINFO is:

{ <error>
{ CALL

<error>

INT

:= } PROCESSINFO (
}

<cpu,pin>
,[<process-id>]
,[<creator-accessor-id>]
,[<process-accessor-id>]
,[<priority>]
,[<program-filename>]
,[<home-terminal>]
,[<sysnum>]
,[<search-mode>]
,[<priv-only>]
,[<processtime>]
,[<waitstate>]
,[<process-state>]
,[<library-filename>]
,[<swap-filename>]);

returned value

returns a value indicating the outcome of the call.

0 = status for process <cpu,pin> returns.

1 = process <cpu,pin> does not exist or does not match
specified criteria (see <search-mode>). Status for

i
i, 0
i, 0

i' 0

i' 0

i' 0
i, 0

i
i
0
0

0

0

0

0

next higher <cpu,pin> in the specified processor is
returned. The process ID (PID) of the process for which
status is being returned returns, in the <process-id>
parameter (if present).

2-324

2 = process <cpu,pin> does not exist, and no higher
<cpu,pin> in the specified processor that matches
the specified criteria exists (see <search-mode>).

3 = unable to communicate with <cpu>.

4 = <cpu> does not exist.

'1J 82359 AOO 3/85

PROCESS INFO

5 = the system specified by <sysnum> could not be accessed.

99 = parameter error.

<cpu,pin> input

INT:value

is the processor and pin number of the process whose status
is being requested.

<process-id> input, output

INT:ref :4

is an array where PROCESSINFO returns the PID of the process
whose status is actually being returned. This can be different
from the process whose status is requested through <cpu,pin>
(see the <error> parameter).

On input, the <process-id> contents can be used as a search
criterion (see the <search-mode> parameter).

<creator-accessor-id> input, output

INT:ref :l

returns the creator accessor ID of <process-id>. The creator
accessor ID identifies the user who initiates the creation of
the process. Refer to the GUARDIAN Operating System
Programmer's Guide for information about creator accessor ID.

On input, the <creator-accessor-id> contents can be used as
a search criterion (see the <search-mode> parameter).

<process-accessor-id> input, output

INT:ref :l

returns the process accessor ID of <process-id>. Refer to
the GUARDIAN Operating System Programmer's Guide for
additional information about process accessor ID.

On input, the <process-accessor-id> contents can be used
as a search criterion (see the <search-mode> parameter).

-''1 82359 AOO 3/85 2-325

PROCESS INFO

<priority> input, output

INT:ref :l

returns the current execution priority of this process.

On input, the <priority> contents can be used as a search
criterion (see the <search-mode> parameter).

<program-filename> input, output

INT:ref :12

is an array where PROCESSINFO returns the name of the
<process-id>'s program file.

On input, the <program-filename> contents can be used as
a search criterion (see the <search-mode> parameter).

<home-terminal> input, output

INT:ref :12

is an array where PROCESSINFO returns the device name of
<process-id>'s home terminal~

On input, the <home-terminal> contents can be used as a
search criterion (see the <search-mode> parameter).

<sysnum> input

INT:value

specifies the system (in a network) where the process for which
information is to be returned is running. If this parameter is
omitted, the local system is assumed.

<search-mode> input

INT:value

is a bit mask that specifies one or more "search" conditions.

2-326 ~ 82359 AOO 3/85

,

PROCESS INFO

On the call, the parameters to PROCESSINFO contain the values
for the search conditions; that is, the information supplied in
the output parameters is what the <search-mode> parameter uses
in order to obtain a process's status. The bit fields in
<search-mode> specify the conditions being searched for:

If <search-mode>.<O> = 1 must match <process-id> for 3 words
= 0 no search

.<l> = 1 must match <creator-accessor-id>
= 0 no search

.<2> = 1 must match <process-accessor-id>
= 0 no search

.<3> = 1 must be <= <priority>
= 0 no search

.<4> = 1 must match <program-filename>
= 0 no search

.<5> = 1 must match <home-terminal>
= 0 no search

If multiple search conditions are specified, then all must
be met.

If <search-mode> is omitted, a 0 is used.

<pr iv-only> output

INT: ref:*

This parameter can only be used by a privileged caller.

<process-time> output

FIXED:ref :l

returns the process time, in microseconds, for which the
process has executed.

~ 82359 AOO 3/85 2-327

PROCESS INFO

If you are using the PROCESSINFO procedure to obtain process
time of a process that .is running on a Nonstop l+ system,
then <process-time> returns OF.

<wait-state> output

INT:ref :l

returns the wait field indicating what, if anything, the
process is waiting on. It is obtained from the wait field
of the awake/wait word in the process's process control block.
The following bits are defined:

<wait-state>.<8>
.<9>
.<10>
.<11>
.<12>
.<13>
.<14>
.<15>

wait
wait
wait
wait
wait
wait
wait
wait

on PON (CPU power on)
on IOPON (I/O power on)
on INTR (interrupt)
on LINSP (INSPECT event)
on LCAN (message system, cancel)
on LDONE (message system, done)
LTMF (TMF request)
on LREQ (message system, request)

The bits in the wait field are numbered from left to right;
thus, if octal 3 (%003) appears, this means that bits 14
and 15 are set.

<process-state> output

INT:ref :l

returns the state of the process specified by <cpu,pin>. The
bits are defined as follows:

2-328

.<O>

.<l>

.<2>

.<3>

.<4:5>

.<6>

.<7>

.<8>

.<9>

.<10>

privileged process
page fault occured
process is on the ready list
system process
reserved
MAB in system code
process not accepting any messages
temporary system process
process has logged on (called VERIFYUSER)
in a pending process state

~ 82359 AOO 3/85

PROCESS INFO

.<11:15> the process state, where:

0 = unallocated
1 = starting
2 = runnable
3 = suspended
4 = DEBUG mab
5 = DEBUG breakpoint
6 = DEBUG trap
7 = DEBUG request
8 = INSPECT mab
9 = INSPECT breakpoint

10 = INSPECT trap
11 = INSPECT request
12 = SAVEABEND
13 = terminating

If you are using PROCESSINFO to obtain process status on a
process that is running on a Nonstop l+ system, then
<process-state> returns O.

<library-filename> output

INT:ref :12

returns the name of the library file used by the process. If
the process does not have an associated library file, then
<library-filename> is blank-filled.

If you are using PROCESSINFO to obtain process status on a
process that is running on a Nonstop l+ system, then
<library-filename> returns blanks.

<swap-filename> output

INT:ref :12

returns the name of the swap file for the process's code
segment. Normally, this is the name of a temporary file
unless a specific swap file is supplied at run time.

If you are using PROCESSINFO to obtain process status on a
process that is running on a Nonstop l+ system, then
<swap-filename> returns blanks.

1" 82359 AOO 3/85 2-329

PROCESS INFO

Condition Code Setting~

The condition code has no meaning following a call to
PROCESS INFO.

Considerations

• Remote or Local Form of <process-id>

If <sysnum> specifies a remote system, <process-id> returns in
network form; otherwise, <process-id> returns in local form.

• Remote System <sysnum>--File Name Local Form

If <sysnum> specifies a remote system, file names (such as home
terminal) return in local form (starting with"$")~

• CPU PID Field

Although there are 8 bits in the CPUPID field, the call to
PROCESSINFO only looks at bits <3:7>. You should not use bits
<0:2>, because the operating system assumes that these bits are
unused (that is, 0).

Example

CALL PROCESSINFO (PIN , PID , CAID , PAID , PR! , PROG
, HOMETERM , , MODE);

Related Programming Manual

None

2-330 ~ 82359 AOO 3/85

PROCESSORSTATUS

PROCESSORSTATUS PROCEDURE

The PROCESSORSTATUS procedure is used to obtain a count of the number
of processor modules in a system and their operational states.

The syntax for PROCESSORSTATUS is:

<processor-status> := PROCESSORSTATUS;

<processor-status> returned value

INT(32)

returns two words indicating the count and state of processor
modules (CPUs).

The most significant word is the maximum configured count of
processor modules plus one.

The least significant word is a bit mask indicating the
operational state of each processor module:

Word [O] most significant word, count of CPUs

For

1 =

0 =

[l] least significant word, bit mask 1 or 0

<ls word>.<O>
<ls word>.<l>

<ls word>.<14>
<ls word>.<15>

each bit:

up indicates

= processor module 0
= processor module 1

= processor module 14
= processor module 15

that the corresponding
up (operational).

down indicates that the corresponding
down or does not exist.

processor

processor

~ 82359 AOO 3/85

module

module

is

is

2-331

PROCESSORSTATUS

Condition Code Settings

The condition code has no meaning following a call to PROCESSORSTATUS.

Example

PROCESSORASTAT := PROCESSORSTATUS;

Related Programming Manual

None

2-332 -'f' 82359 AOO 3/85

PROCESSORTYPE

PROCESSORTYPE PROCEDURE

The PROCESSORTYPE procedure returns the processor type of a specified
system and CPU.

The syntax for PROCESSORTYPE is:

<type> := PROCESSORTYPE ([<cpu>]
,[<sysid>) ;

<type> returned value

INT

returns one of the following values:

i
l

-2
-1

=
=

feature not supported for the system named in <sysid>
unable to communicate with CPU (either it does not exist
or the network is down)

0 = Nonstop l+ processor
1 = Nonstop processor
2 = TXP processor

If <cpu> is greater than 16 or less than 0, then -1 is
returned. If <sysid> is invalid or the system is unavailable
across the network, then -1 is returned.

<cpu> input

INT:value

is the CPU number of the processor of which the type is
returned.

If no value is specified for <cpu>, the CPU from which the
call is made is used and the <sysid> parameter is ignored.

<sys id> input

INT:value

is the system number, identifying the system of the processor
of which the type is returned. If no value is specified for
<sysid> the system from which the call is made is used.

"' 82359 AOO 3/85 2-333

PROCESSORTYPE

Condition Code Settings

The condition code has no meaning following a call to PROCESSORTYPE.

Example

TYPEACPU := PROCESSORTYPE (PROCESSOR ' SYSTEMANUM)~

Related Programming Manual

None

2-334 -''f 82359 AOO 3/85

PROCESSTIME

PROCESSTIME PROCEDURE

The PROCESSTIME procedure returns the process execution time of any
process in the network.

The syntax for PROCESSTIME is:

<process-time> := PROCESSTIME ([<cpu,pin>]
,[<sysid>]);

<process-time> returned value

FIXED

i
i

is the process execution time of the specified process in the
network.

-lF = indicates that the process does not exist.

-2F = indicates that the system is unavailable or does not
exist. The procedure cannot get resources (link
control blocks) to execute, or the system is running on
an earlier operating system version than BOO.

>= OF value indicates that PROCESSTIME was successful.

<cpu,pin> input

INT:value

is the processor and pin of the process whose execution time
is to be returned. If <cpu,pin> is omitted, the <cpu,pin>
of the current process (calling process) is used, even if <sysid>
is different than the current system.

<sys id> input

INT:value

is the system number. <sysid> defaults to the current system.

~ 82359 AOO 3/85 2-335

PROCESSTIME

Condition Code Settings

The condition code has no meaning following a call to PROCESSTIME
(see the <process-time> parameter).

Example

IF (PROCESSATIME := PROCESSTIME (PID , SYSANUM)) >=OF
THEN successful.
ELSE PROCESSTIME not available.

Related Programming Manual

None

2-336 "1J 82359 AOO 3/85

PROGRAMFILENAME

PROGRAMFILENAME PROCEDURE

The PROGRAMFILENAME procedure is used to obtain the name of the
calling process's program file.

The main use of this procedure is to allow a primary process to create
its backup process without having to hard code the program file name
into the source program.

The syntax for PROGRAMFILENAME is:

CALL PROGRAMFILENAME (<program-file>); ! 0

<program-file> output

INT:ref :12

is an array where PROGRAMFILENAME returns the name of the
process's program file.

Condition Code Settings

The condition code has no meaning following a call to PROGRAMFILENAME.

Example

CALL PROGRAMFILENAME (MYPROG);

Related Programming Manual

None

~ 82359 AOO 3/85 2-337

PURGE

PURGE PROCEDURE

The PURGE procedure is used to delete a disc file that is not open.
When PURGE is executed, the disc file name is deleted from the
volume's directory, and any disc space previously allocated to that
file is made available to other files.

The syntax for PURGE is:

CALL PURGE (<filename>): i

<filename> input

INT:ref :12

is an array containing the name of the disc file to be purged.
To purge either a permanent or temporary disc file, <filename>
must be of the form:

Permanent Disc File

<filename>[0:3] = $<volname><blank-fill>

[4:7] =
[8:11] =

Temporary Disc File

or
\<sysnum><volname><blank-f ill>
<subvol-name><blank-f ill>
<disc-f ilename><blank-f ill>

<filename>[0:3] = $<volname><blank-fill>
or

\<sysnum><volname><blank-f ill>
[4:11] = #<temporary-filename>

Condition Code Settings

< (CCL) indicates that the PURGE failed (call FILEINFO). Note,
however, that in the case of a disc free-space error (such
as file system errors 52, 54, 58), the file is purged, and
an error returns.

= (CCE) indicates that the file purged successfully.

> (CCG) indicates that the device is not a disc.

2-338 /182359 AOO 3/85

PURGE

Considerations

• Purge Failure

If PURGE fails, the reason for the failure can be determined by
calling FILEINFO, passing -1 as the <filenum> parameter.

• Purging a File Audited by the Transaction Monitoring Facility (TMF)

If the file is a file audited by TMF and there are pending
transaction-mode record locks or file locks, any attempt to purge
that file fails with file error 12, whether or not openers of the
file still exist.

When an audited file is purged, all corresponding dump records are
deleted from the TMF catalog. If TMF is not active, attempts to
purge an audited file fail with file system error 82.

• Security Consideration

File purging normally is performed in a logical fashion: the data
is not necessarily overwritten or erased, but rather pointers are
changed to show the data to be absent. For security reasons, you
might want to set the CLEARONPURGE flag for a file, using either
function 1 of the SETMODE procedure or the File Utility Program
SECURE command. Either way, this option causes all data to be
physically erased (overwritten with zeros) when the file is purged.
Refer to the ENSCRIBE Programming Manual for a description of
purging data.

Example

Related Programming Manual

For programming information about the PURGE file system procedure,
refer to the ENSCRIBE Programming Manual and the GUARDIAN Operating
System Programmer's Guide.

~ 82359 AOO 3/85 2-339

PUT POOL

PUTPOOL PROCEDURE

The PUTPOOL procedure returns a block of memory to a buffer pool.

The syntax for PUTPOOL is:

CALL PUTPOOL (<pool-head>
, <pool-block>) ;

<pool-head> input, output

INT .EXT:ref :19

it 0
i

is the address of the pool head of the pool from which the
block of memory was obtained using GETPOOL.

<pool-block> input

INT .EXT:ref :*

is the address of the block to be returned to the pool.

Condition Code Settings

< (CCL) indicates that the data structures are invalid or that
<pool-block> is not a block in the buffer pool.

(CCE) indicates that the operation is successful.

> (CCG) does not return from PUTPOOL.

Considerations

• A Bounds Violation Trap

GETPOOL and PUTPOOL do not check pool data structures on each call.
A process that destroys data structures can get a bounds violation
trap on a call to GETPOOL or PUTPOOL.

2-340 "'182359 AOO 3/85

PUT POOL

Example

CALL PUTPOOL (POOLAHEAD , PBLOCK);

POOlAHEAD is the pool head of the pool from which the block of memory
was obtained, and PBLOCK is the block to be returned to the pool.

Related Programming Manual

For programming information about the PUTPOOL memory management
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

"1" 82359 AOO 3/85 2-341

READ

READ PROCEDURE

The READ procedure is used to return data from an open file to the
application process's data area.

The READ procedure performs sequential reading of a disc file. For
key-sequenced, relative, and entry-sequenced files, the READ
procedure reads a subset of records in the file. (A subset of records
is defined by an access path, positioning mode, and comparison
length.)

The syntax for READ is:

CALL READ (<f ilenum>
,<buffer>
,<read-count>

<f ilenum>

INT:value

,[<count-read>]
,[<tag>]);

input

i
0

i
0

i

is the number of an open file that identifies the file to be
read.

<buffer> output

INT: ref:*

is an array in the application process where the information
read from the file returns.

<read-count> input

INT:value

is the number of bytes to be read:

2-342

{0:4096}
{0:32767}
{0:32000}

for disc files (see "Considerations")
for nondisc files
for $RECEIVE

~ 82359 AOO 3/85

<count-read> output

INT:ref :l

is for wait I/O only. It returns a count of the number of
bytes returned from the file into <buffer>.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this READ.

NOTE

The system stores the <tag> value until the I/O
operation completes. The system then returns the
<tag> information to the program in the <tag> parameter
of the call to AWAITIO, thus indicating that the operation
completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the READ is successful.

> (CCG) for disc and nondisc devices, indicates that the

READ

end of file (EOF) is encountered (no more records in this
subset): for the $RECEIVE file, a system message is
received (call FILEINFO).

Considerations

• Waited READ

If a waited READ is executed, the <count-read> parameter indicates
the number of bytes actually read.

• Nowait READ

If a nowait READ is executed, <count-read> has no meaning and can
be omitted. The count of the number of bytes read is obtained
through the <count-transferred> parameter of the AWAITIO procedure
when the I/0 operation completes.

"'1 82359 AOO 3/85 2-343

READ

The READ procedure must complete with a call to the AWAITIO
when it is used with a file that is opened nowait.

• READ From Nondisc Device

If the READ is from a nondisc device, the right half of the last
word of an odd count transfer is unwanted or incorrect information.

• READ Call When Default Locking Mode Is in Effect

If the default locking mode is in effect when a call to READ is
made to a locked file, but the <filenum> of the locked file differs
from the <filenum> in the call, the caller of READ is suspended and
queued in the "locking" queue behind other processes attempting to
lock or read the file or record.

NOTE

A deadlock condition occurs if a call to READ is made
by the process that opened and locked the file, but the
<f ilenum> of the locked file differs from the <f ilenum>
supplied to READ or READUPDATE. Refer to the OPEN procedure
for an explanation of multiple OPENS of files and file
numbers.

• Read Call When Alternate Locking Mode Is in Effect

If the alternate locking mode is in effect when READ is called,
and the file or record is locked through a file number other than
that supplied in the call, the call is rejected with file system
error 73 ("file is locked").

• Locking Mode for Read

The locking mode is specified by the SETMODE procedure, function 4.
If you encounter error 73 ("file is locked"), you do not need
to call SETMODE for every READ. SETMODE stays in effect
indefinitely (for example, until another SETMODE is performed or
the file is closed), and there is no additional overhead involved.

Disc File Considerations

• Bad I/O Count

For DPl disc files:

If the <read-count> parameter attempts to transfer more than nine
sectors of data, the call is rejected with file system error 21.
No single disc transfer can span more than two extents.

2-344 ~ 82359 AOO 3/85

READ

For DP2 disc files:

There is no restriction on the beginning file position. The
BUFFERSIZE attribute value (which is set by specifying SETMODE
function 93) does not constrain the allowable <read-count> in any
way, however, there is a performance penalty if the READ does not
start on a BUFFERSIZE boundary and have a <read-count> of <=
BUFFERSIZE. DP2 disc process executes your requested I/O in
(possibly multiple) units of BUFFERSIZE blocks starting on a block
boundary.

• Structured Files

--Selecting a subset of records for sequential READs

The subset of records read by a series of calls to READ is
specified through the POSITION or KEYPOSITION procedures.

--Sequential reading of an approximate subset of records

If an approximate subset is being read, the first record returned
is the one whose key field, as indicated by the current key
specifier, contains a value equal to or greater than the current
key. Subsequent reading of the subset returns successive records
until the last record in the file is read (an EOF indication is
then returned).

--Sequential reading of a generic subset of records

If a generic subset is being read, the first record returned is
the one whose key field, as designated by the current-key
specifier, contains a value equal to the current key for
<comparison-length> bytes. Subsequent reading of the file
returns successive records whose key matches the current key
(for <comparison-length> bytes). When the current key no longer
matches, an EOF indication returns.

For relative and entry-sequenced files, a generic subset of the
primary key is equivalent to an exact subset.

--Sequential reading of an exact subset of records

If an exact subset is being read, the only records returned are
those whose key field, as designated by the current-key
specifier, contains a value of exactly the comparison length
bytes (see the KEYPOSITION procedure) and is equal to the key.
When the current key no longer matches, an EOF indication
returns. The exact subset for a key field having a unique value
is at most one record.

~ 82359 AOO 3/85 2-345

READ

--Current-state indicators after READ

After a successful READ, the current-state indicators have these
values:

Current position
Positioning mode
Comparison length
Current primary-key value

= record just read
= unchanged
= unchanged
= set to the value of the

primary-key field in the record

• Unstructured Files

--unstructured READs

Data transfer begins from an unstructured disc file at the
position indicated by the next-record pointer.

The READ procedure reads records sequentially on the basis of a
beginning relative byte address (RBA) and the length of the
records read.

--Number of bytes read using ODDUNSTR

If the unstructured file is created with the ODDUNSTR (odd
unstructured file) parameter set, the number of bytes read is
exactly the number of bytes specified with <read-count>. If the
ODDUNSTR parameter is not set when the file is created, the
value of <read-count> is rounded up to an even number before the
READ is executed.

The ODDUNSTR parameter is set when the file is created, either
with <f iletype>.<12> of the CREATE procedure or with the
Peripheral Utilities Program SET and CREATE commands.

--Maximum READ count

2-346

For DPl disc files:

The maximum READ count for unstructured files depends on the
current file position. To read unstructured files with a
<read-count> of up to 4096 bytes, the file must be positioned on
a sector boundary. Whenever the file's current position RBA is
not a multiple of 512 and the count exceeds 3584 (seven sectors),
error 21 (bad I/O count) returns. To calculate the maximum READ
count possible, use the following formula:

maxcount := 4096 - (next-record pointer \ 512)

1' 82359 AOO 3/85

READ

For DP2 disc files:

Unstructured files are transparently blocked. The BUFFERSIZE
file attribute value, if not. set by the user, defaults to 4096
bytes. This BUFFERSIZE attribute determines the size of the
READ count possible. The file must be positioned on a 2048-byte
boundary.

--Determination of <count-read> for unstructured READS

After a successful call to READ for an unstructured file, the
value returned in <count-read> is determined by:

<count-read> := $MIN(<read-count> &
eof-pointer - next-record pointer)

--File pointers after READ

After a successful READ to an unstructured file, the file
pointers are:

CCG = 1 if the next-record pointer = EOF pointer: otherwise,
CCG = 0

current-record pointer = old next-record pointer

next-record pointer = old next-record pointer + <count-read>

Example

CALL READ (FILEANUM ' INABUFFER ' 72 ' NUMAXFERRED >:

The READ permits up to 72 bytes to be read into INABUFFER, and the
count actually read returns into NUMAXFERRED.

Related Programming Manuals

For programming information about the READ file system procedure,
refer to the GUARDIAN Operating System Programmer's Guide, the
ENSCRIBE Programming Manual, and the data communication manuals.

~ 82359 AOO 3/85 2-347

READ LOCK

READLOCK PROCEDURE

The READLOCK procedure performs sequential locking and reading of
records in a disc file, exactly like the combination of LOCKREC and
READ.

The syntax for READLOCK is:

CALL READLOCK (<f ilenum>
,<buffer>
,<read-count>
,[<count-read>]
, [<tag>]) ~

<f ilenum> input

INT:value

:i
0

:i
i
i

is the number of an open file that identifies the file to be
read.

<buffer> output

INT: ref:*

is an array in the application process where the information
read from the file returns.

<read-count> input

INT:value

is the number of bytes read: {0:4096}.

<count-read> output

INT:ref :l

is for wait I/O only. <count-read> returns a count of the
number of bytes returned from the file into <buffer>.

2-348 Af' 82359 AOO 3/85

READ LOCK

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this READLOCK.

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the READLOCK is successful.

> (CCG) indicates end of file (EOF). There are no more records in
this subset.

Considerations

• Nowait and READLOCK

If the READLOCK procedure is used to initiate an operation with a
file-opened nowait, it must complete with a corresponding call to
the AWAITIO procedure.

• READLOCK for Key-Sequenced, Relative, and Entry-Sequenced Files

For key-sequenced, relative, and entry-sequenced files, a subset of
the file (defined by the current access path, positioning mode, and
comparison length) is locked and read with successive calls to
READLOCK.

For key-sequenced, relative, and entry-sequenced files, the first
call to READLOCK after a positioning (or OPEN) locks and then
returns the first record of the subset. Subsequent calls to
READLOCK without intermediate positioning locks, returns
successive records in the subset. After each of the subset's
records are read, the position of the record just read becomes the
file's current position. An attempt to read a record following the
last record in a subset returns an EOF indication •

..,.1 82359 AOO 3/85 2-349

READ LOCK

• Locking Records in an Unstructured File

READLOCK can be used to lock record positions, represented by a
relative byte address (RBA), in an unstructured file. When
sequentially reading an unstructured file with READLOCK, each call
to READLOCK first locks the RBA stored in the current next-record
pointer and then returns record data beginning at that pointer for
<read-count> bytes. After a successful READLOCK, the
current-record pointer is set to the previous next-record pointer,
and the next-record pointer is set to the previous next-record
pointer plus <read-count>. This process repeats for each
subsequent call to READLOCK.

• See "Considerations" for the READ procedure.

Example

CALL READLOCK (FILEANUM ' INABUFFER ' 72 ' NUMAREAD);

Related Programming Manual

For programming information about the READLOCK file system procedure,
refer to the ENSCRIBE Programming Manual.

2-350 "1' 82359 AOO 3/85

READASCREEN

READASCREEN PROCEDURE

For users of the ENTRY or ENTRY520 screen formatter, the READASCREEN
is used to place the control sequence required to read the screen from
the terminal into the application program's I/O buffer. Normally,
READASCREEN is used to input data entries when you have signaled with
a function key that the screen data is ready for input.

The syntax for READASCREEN is:

<num-chars> := READASCREEN (@<screen-name>
, <buffer>);

<num-chars> returned value

INT

returns the number of control characters entered in the
application program's I/O buffer.

<screen-name> input

, INT:value

i
0

is the address of the READ-only array that has the form
definition (refer to the ENTRY Screen Formatter Operating and
Programming Manual or the ENTRY520 Screen Formatter Operating
and Programming Manual for an explanation of "form definition").

<buffer>

STRING: ref:*

is the program's I/O buffer where the control sequence is
placed. The READ control sequence is 2 characters long.

Condition Code Settings

The condition code has no meaning following a call to READASCREEN.

~ 82359 AOO 3/85 2-351

READASCREEN

Example

NUMACHARS := READASCREEN (@X , BUF , XAIOBUF , CNT);

Related Programming Manuals

For programming information about the READASCREEN entry procedure,
refer to the ENTRY Screen Formatter Operating and Programming Manual
or the ENTRY520 Screen Formatter Operating and Programming Manual.

2-352 "182359 AOO 3/85

READUPDATE

READUPDATE PROCEDURE

The READUPDATE procedure is used to read data from a disc or
interprocess file in anticipation of a subsequent WRITE to the file.

• Disc Files

READUPDATE is used for random processing. Data is read from the
file at the position of the current-record pointer. A call to this
procedure typically follows a corresponding call to POSITION or
KEYPOSITION. The values of the current- and next-record pointers
do not change with the call to READUPDATE.

• Interprocess Communication

READUPDATE is used to read a message from the $RECEIVE file that
is answered in a later call to REPLY. Each message read by
READUPDATE must be replied to in a corresponding call to REPLY.

The syntax for READUPDATE is:

CALL READUPDATE (<f ilenum>
,<buffer>
,<read-count>

<f ilenum>

INT:value

,[<count-read>]
,[<tag>]);

input

i
0
i
0

i

is the number of an open file that identifies the file to be
read.

<buffer> output

INT:ref :*

is an array where the information read from the file returns.

~ 82359 AOO 3/85 2-353

READUPDATE

<read-count> input

INT:value

is the number of bytes to be read.

disc files
$RECEIVE

= {0:4096}
= {0:32000}

<count-read> output

INT:ref :l

is for wait I/O only. <count-read> returns a count of the
number of bytes returned from the file into <buffer>.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
READUPDATE.

NOTE

The system stores the <tag> value until the I/O
operation completes. The system then returns the <tag>
information to the program in the <tag> parameter of
the call to AWAITIO, thus indicating that the operation
completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the READUPDATE is successful.

> (CCG) indicates that a system message is received through
$RECEIVE. (CCG does not return from READUPDATE for disc
files.)

2-354 ~ 82359 AOO 3/85

READUPDATE

Considerations

• Random Processing and Positioning

A call to READUPDATE returns the record from the current position
in the file. Because READUPDATE is designed for random processing,
it cannot be used for successive positioning through a subset of
records like the READ procedure. Rather, READUPDATE is used to
read a record after a call to POSITION or KEYPOSITION, possibly in
anticipation of a subsequent update through a call to the
WRITEUPDATE procedure.

• Calling READUPDATE After READ

A call to READUPDATE after a call to READ, without intermediate
positioning, returns the same record as the call to READ.

• Waited READUPDATE

If a waited READUPDATE is executed, the <count-read> parameter
indicates the number of bytes actually read.

• Nowait READUPDATE

If a nowait READUPDATE is executed, <count-read> has no meaning and
can be omitted. The count of the number of bytes read is obtained
when the I/O operation completes through the <count-transferred>

,, parameter of the AWAITIO procedure.

The READUPDATE procedure must complete with a corresponding call to
the AWAITIO procedure when used with a file that is OPENed nowait.

• Default Locking Mode Action

If the default locking mode is in effect when a call to READUPDATE
is made to a locked file or record, but the <f ilenum> of the locked
file differs from the <filenum> in the call, the caller of
READUPDATE is suspended and queued in the "locking" queue behind
other processes attempting to access the file or record.

NOTE

A deadlock condition occurs if a call to READUPDATE is
made by the process having multiple openings on the same
file, and the <filenum> used to lock the file differs
from the <f ilenum> supplied to READUPDATE.

• Alternate Locking Mode Action

If the alternate locking mode is in effect when READUPDATE is
called and the file is locked but not through the file number
supplied in the call, the call is rejected with error 73 ("file is
locked").

Af' 82359 AOO 3/85 2-355

READUPDATE

• Lock Mode by SETMODE

The locking mode is specified by the SETMODE procedure, function 4.

• Value of the Current Key and Current-Key Specifier

For key-sequenced, relative, and entry-sequenced files, random
processing implies that a designated record must exist. Therefore,
positioning for READUPDATE is always to the record described by the
exact value of the current key and current-key specifier. If such
a record does not exist, the call to READUPDATE is rejected with a
file system error 11 ("record does not exist"). This is unlike
sequential processing through READ where positioning can be by
approximate, generic, or exact key value.

Disc File Considerations

• Record Does Not Exist

If the position specified for the READUPDATE operation does not
exist, the call is rejected with error 11. (The positioning is
specified by the exact value of the current key and current-key
specifier).

• Structured Files

--Calling READUPDATE without selecting a specific record

If the call to READUPDATE immediately follows a call to
KEYPOSITION where a nonunique alternate key is specified, the
READUPDATE fails. A subsequent call to FILEINFO returns a file
system error 46 ("invalid key"). However, if an intermediate
call to READ or READLOCK is made, the call to READUPDATE is
permitted because a unique record is identified.

--Current-state indicators after READUPDATE

After a successful READUPDATE, the current-state indicators are
unchanged.

• Unstructured Disc Files

--Reading unstructured files

For a READ from an unstructured disc file, data transfer begins
at the position indicated by the current-record pointer. A call
to READUPDATE typically follows a call to POSITION that sets the
current-record pointer to the desired relative byte address.

--File pointer action for unstructured files is unaffected.

2-356 ..,. 82359 AOO 3/85

READUPDATE

--Determination of <count-read> for unstructured files

After a successful call to READUPDATE to an unstructured file,
the value returned in <count-read> is determined by:

<count-read> := $MIN(<read-count>,EOF - next-record pointer)

--The number of bytes read

If the unstructured file is created with the ODDUNSTR (odd
unstructured file) parameter set, the number of bytes read is
exactly that number specified with <read-count>. If the ODDUNSTR
parameter is not set when the file is created, the value of
<read-count> is rounded up to an even value before the READUPDATE
is executed.

The ODDUNSTR parameter is set when the file is created, either
with <filetype>.<12> of the CREATE procedure or with the
Peripheral Utilities Program SET and CREATE commands.

• Even Unstructured Disc File

If the READUPDATE is from an even unstructured disc file, the
<read-count> is rounded up to an even number (see CREATE
procedure).

Interprocess Communication Considerations

• Replying to Messages

Each message read in a call to READUPDATE, including system
messages, must be replied to in a corresponding call to the REPLY
procedure.

• Queuing Several Messages Before Replying

Several interprocess messages can be read and queued by the
application process before a reply must be made. The maximum
number of messages that the application process expects to read
before a corresponding reply is made must be specified in the
<receive-depth> parameter to the OPEN procedure.

If $RECEIVE is opened with <receive-depth> = 0, only READs can
be performed, and READUPDATE and REPLY fail with error 2
("operation not allowed on this type of file").

"" 82359 AOO 3/85 2-357

READUPDATE

• Message Tags When Replying to Queued Messages

If more than one message is to be queued by the application process
(that is, <receive-depth>> 1), a message tag that is associated
with each incoming message must be obtained in a call to the
LASTRECEIVE procedure following each call to READUPDATE. To direct
a reply back to the originator of the message, the message tag
associated with the incoming message is passed to the system in a
parameter to the REPLY procedure. If messages are not to be
queued, it is not necessary to call LASTRECEIVE.

Exam12le

CALL READUPDATE (RECVAFNUM, RECABUF , 512);

Related Programming Manuals

For programming information about the READUPDATE file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide
and the ENSCRIBE Programming Manual.

2-358 ~ 82359 AOO 3/85

READUPDATELOCK

READUPDATELOCK PROCEDURE

The READUPDATELOCK procedure is used for random processing of records
in a disc file. READUPDATELOCK locks, then reads the record from
the current position in the file in the same manner as the
combination of LOCKREC and READUPDATE. READUPDATELOCK is intended for
reading a record after calling POSITION or KEYPOSITION, possibly in
anticipation of a subsequent call to the WRITEUPDATE or
WRITEUPDATEUNLOCK procedure.

A call to READUPDATELOCK is functionally equivalent to a call to
LOCKREC followed by a call to READUPDATE. However, less system
processing is incurred when one call is made to READUPDATELOCK rather
than two separate calls to LOCKREC and READUPDATE.

The syntax for READUPDATELOCK is:

CALL READUPDATELOCK (<f ilenum>
,<buffer>
,<read-count>

<f ilenum>

INT:value

,[<count-read>]
,[<tag>] >:

input

i
0

i
0
i

is the number of an open file that identifies the file to be
read.

<buffer> output

INT: ref:*

is an array where the information read from the file returns.

<read-count> input

INT:value

is the number of bytes to be read {0:4096}.

"' 82359 AOO 3/85 2-359

READUPDATELOCK

<count-read> output

INT:ref :l

is for wait I/O only. <count-read> returns a count of the
number of bytes returned from the file into <buffer>.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
READUPDATELOCK.

NOTE

The system stores the <tag> value until the I/O
operation completes. The system then returns the <tag>
information to the program in the <tag> parameter of
the call to AWAITIO, thus indicating that the operation
completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the READUPDATELOCK is successful.

> (CCG) does not return from READUPDATELOCK for disc files.

Considerations

• Nowait and READUPDATELOCK

The READUPDATELOCK procedure must complete with a corresponding
call to the AWAITIO procedure when used with a file that is OPENed
nowait.

• If READUPDATELOCK is performed on nondisc files, an error is
returned.

2-360 .., 82359 AOO 3/85

•

•

READUPDATELOCK

Random Processing

For key-sequenced, relative, and entry-sequenced files, random
processing implies that a designated record must exist. Therefore,
positioning for READUPDATELOCK is always to the record described by
the exact value of the current key and current-key specifier. If
such a record does not exist, the call to READUPDATELOCK is
rejected with file system error 11.

See "Disc File Considerations" for the READUPDATE procedure •

Example

CALL READUPDATELOCK (INAFILE , INBUFFER , 72 , NUMAREAD);

Related Programming Manuals

For programming information about the READUPDATELOCK file system
procedure, refer to the ENSCRIBE Programming Manual •

..-, 82359 AOO 3/85 2-361

RECEIVEINFO

RECEIVEINFO PROCEDURE

The RECEIVEINFO procedure is used to obtain the process ID (PID),
message tag, error recovery (sync ID), and request-related (file
number and READ count) information associated with the last message
read from the $RECEIVE file. This information is contained in the
file's main-memory resident access control block (ACB); therefore, the
application process is not suspended because of a call to RECEIVEINFO.

Note that the first two parameters to RECEIVEINFO (<process-id> and
<message-tag>) duplicate the parameters to the LASTRECEIVE
procedure.

NOTE

To avoid receiving invalid information from the $RECEIVE
part of the ACB, call the RECEIVEINFO procedure immediately
following the call to READUPDATE for $RECEIVE (or the AWAITIO
that completes the READUPDATE). Do not perform another
READUPDATE of $RECEIVE before calling RECEIVEINFO. However,
you can check the condition code or call FILEINFO without
changing the information in the ACB.

The syntax for RECEIVEINFO is:

CALL RECEIVEINFO ([<process-id>]
,[<message-tag>]
,[<sync-id>]

<process-id>

INT:ref :4

,[<filenum>]
,[<read-count>]);

output

0

0
! 0
! 0
! 0

returns the PID of the process that sent the last message read
through the $RECEIVE file. If the process is in the
destination control table (DCT), the information returned
consists of:

2-362

<process-id>[0:2] = $<process-name>
[3] = <cpu,pin>

~ 82359· AOO 3/85

RECEIVEINFO

If the process is not in the DCT, the information returned
consists of:

<process-id>[0:2] = <creation-time-stamp>
[3] = <cpu,pin>

<message-tag> output

INT:ref :l

is used when the application process performs message queuing.
<message-tag> returns a value that identifies the request
message just read among other requests currently queued. To
associate a reply with a given request, <message-tag> is passed
in a parameter to the REPLY procedure. The returned value of
<message-tag> is the lowest integer between zero and <receive
depth> -1, inclusive, that is not currently used as a message
tag. When a reply is made, its associated message tag value is
made available for use as a message tag for a subsequent request
message.

<sync-id> output

INT(32):ref:l

returns the sync ID associated with this message.

<f ilenum> output

INT:ref :l

returns the file number of the file in the requesting process
associated with this message.

<read-count> output

INT:ref :l

returns the number of bytes requested in reply to the message.
If the message is the result of a request made in a call to
WRITE, <read-count> will be O. If the message is the result of
a request made in a call to WRITEREAD, <read-count> is the
same as the read count value passed by the requester to
WRITEREAD.

.,,,, 82359 AOO 3/85 2-363

RECEIVEINFO

Condition Code Settings

< (CCL) indicates that $RECEIVE is not open.

= (CCE) indicates that RECEIVEINFO is successful.

> (CCG) does not return from RECEIVEINFO.

Considerations

• PID and RECEIVEINFO

The PID returned by RECEIVEINFO following receipt of an OPEN,
CLOSE, CONTROL, SETMODE, RESETSYNC, or CONTROLBUF system message
identifies the process associated with the operation.

• High-Order Three Words of PID Are Zero

The high-order th~ee words of the PID are zero following the
receipt of system messages other than OPEN, CLOSE, CONTROL,
SETMODE, RESETSYNC, and CONTROLBUF.

• Sync ID Definition

A sync ID is a doubleword, unsigned integer. Each process file
that is open has its own sync ID. Sync IDs are not part of the
message data; rather, the sync ID value associated with a
particular message is obtained by the receiver of a message by
calling the RECEIVEINFO procedure. A file's sync ID is set to zero
at file open and when the RESETSYNC procedure is called for that
file (RESETSYNC can be called directly or indirectly through the
CHECKMONITOR procedure). Refer to the GUARDIAN Operating System
Programmer's Guide for information about checkpointing.

When a request is sent to a process (that is, CONTROL, CONTROLBUF,
CLOSE, OPEN, SETMODE, WRITE, or WRITEREAD to a process file), the
requestor's sync ID is incremented by one just prior to the request
being sent. (Therefore, a process's first sync ID subsequent to an
open will have a value of 0.)

• Duplicate Requests

The <sync-id> parameter allows the server process (that is, the
process reading $RECEIVE) to detect duplicate requests from
requester processes. Such duplicate requests are caused by a
backup requester process reexecuting the latest request of a failed
primary requester process.

2-364 4J 82359 AOO 3/85

RECEIVEINFO

NOTE

Neither a CANCELREQ or AWAITIO timeout completion have
any affect on the sync ID (that is, it will be an ever­
increasing value).

Also, the sync ID is independent of the <sync-depth>
parameter to OPEN.

• Server Process Identifying Separate Opens by the Same Requester

The <f ilenum> parameter allows the server process to identify
separate OPENS by the same requester process. The value returned
in <f ilenum> is the same as the file number used by the requester
to make this request.

• Type of Request Being Made by the Requester

The <read-count> parameter allows the server process to identify
the type of request being made by the requester:

<read-count> = 0

<read-count> <> = 0

a WRITE request or WRITEREAD request with a
<read-count> of zero is made.
or if <read-count> is greater, then the
requester perform a WRITEREAD request of
<read-count> bytes.

' This information can be used to determine if the requester sends
data (for example, if <read-count> = 0, then requester is
"listing") or also expects a reply (for example, if
<read-count>> 0, then requester is "prompting").

Example

CALL RECEIVEINFO (REQASYNCID , , , REQAFNUM , REQAREADCOUNT);

Related Programming Manual

For programming information about the RECEIVEINFO file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 2-365

REFRESH

REFRESH PROCEDURE

The REFRESH procedure is used to write control information that passes
to their associated physical disc volumes. REFRESH always writes out
the control information contained in file control blocks (FCBs), such
as end-of-file and free-list pointers. Optionally, the REFRESH
procedure with the <all> parameter can be used to write out audit
buffers and cache data buffers as well. Only the data and control
information that is not already on disc are written out.

The REFRESH procedure should be used only when a volume is brought
down (for example, immediately prior to a system cold load or PUP
DOWN !) .

For further information, see the section on unstructured disc files
in the ENSCRIBE Programming Manual.

The syntax for REFRESH is:

{ <error>
{ CALL

<error>

INT

:= } REFRESH
}

[<volname>]
,[<all>]);

returned value

i
i

returns a file system error number indicating the outcome of the
call. (Refer to the System Messages Manual for a list of all
file system errors.)

<vol name> input

INT:ref :4

specifies a volume whose associated FCBs should be written to
disc. $<volname> can be specified as a full 12-word
<filename>; <filename>[4:11] is ignored. <volname> can be
either:

$<volname>
or

\<sysnum><volname>

If omitted, all FCBs for all volumes are written to their
respective discs.

--·
2-366 ~ 82359 AOO 3/85

REFRESH

<all> input

INT:value

is one of the following values:

0 = WRITE out only dirty (used) FCBs.
<> 0 = WRITE out dirty FCBs and dirty cached data blocks.

0 is the default if <all> is omitted.

Condition Code Settings

The condition code has no meaning following a call to REFRESH.

Consideration

• When <volname> Is Omitted

When REFRESH is called without a <volname>, the error return is
always O.

Example

ERROR := REFRESH: refresh FCBs for all volumes.

Related Programming Manuals

For programming information about the REFRESH file system procedure,
refer to the ENSCRIBE Programming Manual.

..-, 82359 AOO 3/85 2-367

REMOTEPROCESSORSTATUS

REMOTEPROCESSORSTATUS PROCEDURE

The REMOTEPROCESSORSTATUS procedure supplies the status of processor
modules in a particular system in a network.

The syntax for REMOTEPROCESSORSTATUS is:

<status> := REMOTEPROCESSORSTATUS (<sysnum>); i

<status> returned value

INT(32)

returns two words indicating the processor status.

The most significant word (MSW) is the number of processors in
the remote system. The least significant word (LSW) is a bit
mask for processor availability.

Word [O]

Word [l]

MSW, the remote system is nonexistent or
unavailable

LSW, bit mask:
1 = the processor is up
0 = the processor is down or nonexistent

<sysnum> input

INT:value

is the number of a particular system in a network whose
processor modules' status is returned.

Condition Code Setting~

The condition code has no meaning following a call to
REMOTEPROCESSORSTATUS.

2-368 /'f 82359 AOO 3/85

REMOTEPROCESSORSTATUS

Considerations

• Where to Find the System Number

The system number for a particular system whose name is known can
be obtained from the LOCATESYSTEM procedure.

• Equivalencing the Two Words of <status>

The two words of <status> can be separated by the usual technique
of equivalencing INT variables to the high- and low-order words.
For example, a Tandem Application Language procedure that calls
REMOTEPROCESSORSTATUS might contain the following declarations:

INT(32) STATUS;
INT NUMAPROCESSORS = STATUS;
INT BITAMASK = NUMAPROCESSORS + l;

high-order word.
low-order word.

See the Transaction Application Language (TAL) Reference Manual.
for an explanation of equivalenced variables

• Low-Order Word of <status>

The bits in the low-order word are ordered from 0 to 15, from left
to right (the CPU number corresponds to the bit number):

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low-order word Word[l]

• Using <status> for Local Processors

REMOTEPROCESSORSTATUS can also be used to obtain the status of
local processors:

INT(32) MYAPROCESSORASTATUS;
MYAPROCESSORASTATUS := REMOTEPROCESSORSTATUS(MYSYSTEMNUMBER);

Example

STAT := REMOTEPROCESSORSTATUS (SYSANUM);

Related Programming Manual

None

~ 82359 AOO 3/85 2-369

REMOTETOSVERSION

REMOTETOSVERSION PROCEDURE

The REMOTETOSVERSION procedure provides an identifying letter and
number indicating which version of the GUARDIAN operating system is
running on a remote system.

The syntax for REMOTETOSVERSION is:

<tos-version> := REMOTETOSVERSION [(<sysid>)]; i

<tos-version> returned value

INT

returns a value of the form:

<0:7> uppercase ASCII letter indicating system level:
A = TOS
B = GUARDIAN
c = GUARDIAN I 1.1
D = GUARDIAN I EXPAND
E = GUARDIAN I EXPAND I Transaction Monitoring

Facility
K,L = GUARDIAN, Nonstop system

<8:15> revision number of system in binary

Zero is returned if the system <sysid> does not exist or is
inaccessible.

<sys id>

INT:value

input

is the system number that identifies the system for which
the operating system version is returned. If <sysid> is
omitted, it defaults to the local system.

2-370 Af' 82359 AOO 3/85

Condition Code Settings

The condition code has no meaning following a call to
REMOTETOSVERSION.

Example

REMOTEAVERSION := REMOTETOSVERSION (SYSTEMANUM);

Related Programming Manual

REMOTETOSVERSION

For programming information about the REMOTETOSVERSION system
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 2-371

RENAME

RENAME PROCEDURE

The RENAME procedure is used to change the name of a disc file that is
open. If the file is temporary, assigning a name causes the file to
be made permanent.

A call to the RENAME procedure is rejected with an error indication if
there are incomplete nowait operations pending on the specified file.

The syntax for RENAME is:

CALL RENAME (<f ilenum> i
,<new-name>); i

<f ilenum> input

INT:value

is the number of an open file that identifies the file to be
renamed.

<new-name> input

INT:ref :12

is an array containing the file name to be assigned to the disc
file, as follows:

<filename>[0:3] - $<volname><blank-fill>

[4:7]
[8:11] ·-

Condition Code Settings

or
\<sysnum><volname><blank-f ill>
<subvolname><blank-f ill>
<disc f ilename><blank-f ill>

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the RENAME is successful.

> (CCG) indicates that the file is not a disc file.

2-372 ~ 82359 AOO 3/85

RENAME

Considerations

• Purge Access for RENAME

The caller must have purge access to the file for the RENAME to be
successful. Otherwise, the RENAME is rejected with file system
error 48, "security violation."

• Volume Specification for <new-name>

The volume specified in <new-name> must be the same as the volume
specified when opening the file. Neither the volume name nor the
system name can be changed by RENAME.

• <sysnum> Specification for <new-name>

If <sysnum> is specified as part of <new-name>, it must be the
same as the system number used when the file was initially opened.

• Partitioned Files

When the primary partition of a partitioned file is renamed, the
file system automatically renames all other partitions located
anywhere in the network.

• Renaming a File Audited by the Transaction Monitoring Facility
(TMF)

The file to be renamed cannot be a file audited by TMF. An attempt
to rename such a file fails with file system error 80 ("invalid
operation attempted on audited file or nonaudited disc volume
(device type 3)").

• Structured Files With Alternate Keys

If the primary-key file is renamed, it is linked with the
alternate-key file. If you rename the alternate-key file and then
try to access the primary-key file, file system error 4 occurs,
because the primary-key file is still linked with the old name for
the alternate-key file. You can use the FUP ALTER command to
correct this problem.

"''1 82359 AOO 3/85 2-373

RENAME

Example

CALL RENAME (TEMPAFILENUM , NEWANAME);

Related Programming Manual

For programming information about the RENAME file system procedure,
refer to the ENSCRIBE Programming Manual.

2-374 ..-, 82359 AOO 3/85

REPLY

REPLY PROCEDURE

The REPLY procedure is used to send a reply message to a message
received earlier in a corresponding call to READUPDATE on the $RECEIVE
file.

The REPLY procedure can be called even if there are incomplete nowait
I/O operations pending on $RECEIVE.

The syntax for REPLY is:

CALL REPLY ([<buffer>]

<buffer>

INT: ref:*

,[<write-count>]
,[<count-written>]
,[<message-tag>]
,[<error-return>]):

input

is an array containing the reply message.

<write-count> input

INT:value

i
i
0
1

i

is the number of bytes to be written ({0:32000}). If omitted,
no data is transferred.

<count-written> output

INT:ref :l

returns a count of the number of bytes written to the file.

~ 82359 AOO 3/85 2-375

REPLY

<message-tag> input

INT:value

is the <message-tag> returned from LASTRECEIVE that associates
this reply with a message previously received. This parameter
can be omitted if message queuing is not performed by the
application process (that is, OPEN procedure
<receive-depth>= 1).

<error-return> input

INT:value

is an error indication that is returned, when the originator's
I/O operation completes, to the originator associated with this
reply. This indication appears to the originator as though
it is a normal file system error return. The originator's
condition code is set according to the relative value of
<error-return>:

<error-return>
<error-return>
<error-return>

File System
Error

10-511
0
1-9

NOTE

Condition Code
Setting

CCL (error)
CCE (no error)
CCG (warning)

Error numbers 300-511 are reserved for user applications;
errors numbers 10-255 are Tandem errors.

The <error-return> value returns in the <error> parameter of
FILEINFO when the originator calls FILEINFO for the associated
completion.

If <error-return> is omitted, a no-error indication (that is, 0)
returns to the message originator •

.. _____________________ ___,

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates the REPLY is successful.

> (CCG) does not return from REPLY.

2-376 Af' 82359 AOO 3/85

REPLY

Considerations

• Replying to Queued Messages

Several interprocess messages can be read and queued by the
application process before a reply must be made. The maximum
number of messages that the application process expects to read
before a corresponding reply must be specified in the
<receive-depth> parameter to the OPEN procedure.

If $RECEIVE is opened with <receive-depth> = 0, only READs can be
performed; READUPDATE and REPLY fail with error 2 ("operation not
allowed on this type of file").

• Using the <message-tag>

If more than one message is queued by the application process (that
is, <receive-depth>> 1), a message tag associated with each
incoming message must be obtained in a call to the LASTRECEIVE
procedure immediately following each call to READUPDATE. To direct
a reply back to the originator of the message, the message tag
associated with the incoming message returns to the system in the
<message-tag> parameter to the REPLY procedure. If messages are
not queued (that is, <receive-depth>= 1), the message tag is not
needed.

• Error Handling

The <error-return> parameter can be used to return an error
indication to the requester in response to the OPEN, CONTROL,
SETMODE, and CONTROLBUF system messages. The error returns to
the requester when the associated I/O procedure completes.

Example

CALL REPLY (OUTABUFFER , 512);

Related Programming Manual

For programming information about the REPLY file system procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 2-377

REPOSITION

REPOSITION PROCEDURE

The REPOSITION procedure is used to position a disc file to a saved
position (the positioning information having been saved by a call to
the SAVEPOSITION procedure).

Following a call to REPOSITION, the disc file is positioned to the
point where it was when SAVEPOSITION was called. That is, the READ
that took place prior to calling SAVEPOSITION resulted in an update of
the next-record pointer; this pointer is used in the next READ after
calling REPOSITION.

A call to the REPOSITION procedure is rejected with an error
indication if any incomplete nowait operations are pending on the
specified file.

The syntax for REPOSITION is:

CALL REPOSITION (<f ilenum>
,<positioning-block>);

<f ilenum> input

INT:value

i
i

is the number of an open file that identifies the file to be
positioned to a saved position.

<positioning-block> input

INT: ref:*

indicates a saved position to be repositioned to.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that REPOSITION is successful.

> (CCG) indicates that the file is not a disc file.

2-378 ~ 82359 AOO 3/85

Example

CALL REPOSITION (FILEANUM , POSITIONABLOCK);

Related Programming Manual

For programming information about the REPOSITION file system
procedure, refer to the ENSCRIBE Programming Manual.

-1' 82359 AOO 3/85

REPOSITION

2-379

RESERVELCBS

RESERVELCBS PROCEDURE

The RESERVELCBS procedure allows you to reserve link control blocks
(LCBs). You can specify the number of LCBs to be reserved for
receiving messages (that is, receive LCBs) and the number of LCBs
to be reserved for sending messages (that is, send LCBs).

The syntax for RESERVELCBS is:

CALL RESERVELCBS (<no-receive-lcbs>
,<no-send-lcbs>);

<no-receive-lcbs> input

INT:value

l

i

is the number of receive LCBs to be reserved for this process:
{0:255}.

<no-send-lcbs> input

INT:value

is the number of send LCBs to be reserved for this process:
{0:255}.

Condition Code Setting~

> (CCL) indicates that not enough unreserved LCBs are available
to reserve the LCBs specified in this call, or the
amount requested by either parameter is not in the range
of {0:255}. The number of reserved LCBs allocated to
this process is unchanged.

= (CCE) indicates that the requested LCBs are reserved for this
process.

< (CCG) is not returned by RESERVELCBS.

Considerations

• A process can call RESERVELCBS multiple times; the latest call is
the one that is used.

2-380 AJ' 82359 AOO 3/85

'

RESERVELCBS

• The worst-case values for <no-receive-lcbs> and <no-send-lcbs>
can be calculated as follows:

<no-receive-lcbs> = 1 for each terminal where BREAK is being
monitored

+l for each CPU being monitored (that is,
by MONITORCPUS)

+l for each process of which this process is
the creator or ancestor

+l for each possible interprocess message
from application processes.

NOTE

You should try to reduce the above worst-case value of
<no-receive-lcbs>. This value can be safely reduced by
assuming that only some of the indicated messages will be
queued at any one time. For example, normally only one
CPU DOWN message will be pending at any given time.

<no-send-lcbs> = 1 for each nowait operation that can be in
progress at any given moment

+l for a wait I/O operation or call to a
process control procedure.

• If a process runs out of its reserved LCBs, the system will attempt
to secure the needed LCBs from the LCB pool.

• If a process has reserved "send" and "receive" LCBs, console
message 52 (RECEIVE QUEUE FOR .•. HAS MORE THAN 10 REQUESTS) will
not be displayed, even if it has more than 10 requests queued on
its $RECEIVE file. (If LCBs are not reserved, message 52 is
displayed only when the count of allocated receive LCBs goes from
10 to 11.)

Example

CALL RESERVELCBS (1 , 4);

Related Programming Manual

For programming information concerning the RESERVELCBS procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 2-381

RESETSYNC

RESETSYNC PROCEDURE

The RESETSYNC procedure is used by the backup process of a process
pair after a failure of the primary process. With this procedure, a
different series of operations are performed from those performed by
the primary before its failure. The RESETSYNC procedure does the
following:

• Clears a process pair's file synchronization block so that the
operations performed by the backup are not erroneously related to
the operations just completed by the primary process

• Resynchronizes any open files whose file sychronization blocks are
not checkpointed after the most recent stack checkpoint.

NOTE

Typically, RESETSYNC is not called directly by application
programs. Instead, it is called indirectly by CHECKMONITOR.

The syntax for RESETSYNC is:

CALL RESETSYNC (<filenum>); i

<f ilenum> input

INT: value

is the number of an open file that identifies the file whose
synchronization block is to be cleared.

Condition Code S~ttings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that RESETSYNC is successful.

> (CCG) indicates that the file is not a disc file.

2-382 ~ 82359 AOO 3/85

,

RESETSYNC

Considerations

• File Number Has Not Been Opened

If the RESETSYNC file number does not match the file number of the
open file that you are trying to access, the call to RESETSYNC is
rejected with file system error 16.

• Not Receiving Messages

If the $RECEIVE file is not opened with <flags>.<l> set to one to
enable receipt of RESETSYNC messages, the procedure fails with file
system error 7.

Example

CALL RESETSYNC(FILEANUMBER);

Related Programming Manual

For programming information about the RESETSYNC checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

/1 82359 AOO 3/85 2-383

RESUMETRANSACTION

RESUMETRANSACTION PROCEDURE

RESUMETRANSACTION restores to currency a TMF transaction identifier
created by a previous call to BEGINTRANSACTION.

RESUMETRANSACTION permits requesters to be multithreaded, that is, to
concurrently process two or more transactions. At any instant, the
requester can only work on one transaction, but the requester can
switch to any transaction that it previously began by calling
RESUMETRANSACTION.

This procedure is called with the transaction tag returned by the call
to BEGINTRANSACTION. The transaction identifier associated with the
tag becomes the current-transaction identifier for the process calling
RESUMETRANSACTION.

The syntax for RESUMETRANSACTION is:

<status> := RESUMETRANSACTION (<trans-begin-tag>); i

<status> returned value

INT

returns a 0, if successful or a file system error number.
(Refer to the System Messages Manual for a list of all file
system errors.)

<trans-begin-tag> input

INT(32):value

is the value returned by the optional <trans-begin-tag>
parameter of BEGINTRANSACTION. If the value of this parameter
is OD, the current-transaction identifier of the calling
process is reset to 0, indicating no transaction identifier.

Condition Code Settings

The condition code has no meaning following a call to
RESUMETRANSACTION.

2-384 -1' 82359 AOO 3/85

RESUMETRANSACTION

Considerations

• The Current-Transaction Identifier

If the transaction identifier identified by <trans-begin-tag>
is begun by the calling process or its backup, it becomes the
current-transaction identifier for the calling process even if
an error returns.

• RESUMETRANSACTION does not change the current-transaction
identifier for the backup of the calling process.

• Invalid or Obsolete Transaction Identifier

If the transaction is not begun by the process that issued
BEGINTRANSACTION (or its backup), or the transaction is no longer
in the system, this call returns file system error 78.

• Transaction Aborts

•

•

If the parent process (BEGINTRANSACTION process) of this
transaction fails, this call is rejected and returns file
system error 90.

Path in Network Node Is Down

If the path to a participating network node is down, the
transaction aborts, and the call returns file system error 92.

Spanning Too Many Audit-Trail Files

If the transaction tried to span too many audit-trail files the
transaction is aborted, and a subsequent call to RESUMETRANSACTION
returns file system error 93.

• Operator Command Response

If an operator aborts the transaction through the TMFCOM "ABORT
TRANSACTION" command, the system aborts the transaction, and the
call returns file system error 94.

• Calling ABORTTRANSACTION Before ENDTRANSACTION

If a previous call to ABORTTRANSACTION is made before the call to
RESUMETRANSACTION, the call aborts, and returns file system error
97.

Af' 82359 AOO 3/85 2-385

RESUMETRANSACTION

Example

STATUS := RESUMETRANSACTION (TRANSABEGINAID);

Related Programming Manual

For programming information about the RESUMETRANSACTION procedure,
refer to the Transaction Monitoring Facility (TMF) Reference Manual.

2-386 ~ 82359 AOO 3/85

SAVEPOSITION

SAVEPOSITION PROCEDURE

The SAVEPOSITION procedure is used to save a disc file's current file
positioning information in anticipation of a need to return to that
position. The positioning information is returned to the file system
in a call to the REPOSITION procedure when you want to return to the
saved position.

The syntax for SAVEPOSITION is:

CALL SAVEPOSITION (<f ilenum>
,<positioning-block>
,[<positioning-blksize>]);

<f ilenum> input

INT:value

i
! 0
! 0

is a number of an open file, identifying the file whose
positioning block is to be obtained.

<positioning-block> output

INT: ref:*

returns the positioning block for this file's current position.

<positioning-blksize> output

INT:ref :l

returns the number of words in the positioning block.

For key-sequenced files where positioning is performed by:

• Primary key, the count is calculated by

7 + (<primary-key> + 1) I 2

• An alternate key, the count is calculated by

7 + (<max-alternate-keylen> + <primary-keylen> + 1) I 2

For unstructured files and for entry-sequenced and relative
files where no alternate keys exist, the count is 4.

,,1 82359 AOO 3/85 2-387

SAVEPOSITION

For entry-sequenced and relative files where positioning is
performed by:

• Primary key, the count is 7

• An alternate key, the count is calculated by

7 + (<max-alternate-keylen> + 4 + 1) I 2

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that SAVEPOSITION is successful.

> (CCG) indicates that the file is not a disc file.

Example

CALL SAVEPOSITION (FILEANUM ' POSITIONABLOCK);

Related Programming Manual

For programming information about the SAVEPOSITION file system
procedure, refer to the ENSCRIBE Programming Manual.

2-388 "1f 82359 AOO 3/85

SETLOOPTIMER

SETLOOPTIMER PROCEDURE

The SETLOOPTIMER procedure has two uses:

1. To abort the caller if the caller begins looping
(malfunctioning)

2. To permit the caller to calculate the amount of
processor time it has used

A call to the SETLOOPTIMER procedure is used to set the caller's
"process loop-timer" value. A positive loop-timer value enables
process loop timing by the operating system and specifies a limit
on the total amount of processor time the calling process is allowed.
If loop timing is enabled, the operating system decrements the
loop-timer value as the process executes (that is, is in the active
state). If the loop timer is decremented to 0 (indicating that the
time limit is reached), a "process loop-timer timeout" trap occurs
(trap number 4). Loop timing is disabled by specifying a loop-timer
value of O.

The syntax for SETLOOPTIMER is:

CALL SETLOOPTIMER (<new-time-limit>
,[<old-time-limit>]):

<new-time-limit> input

INT:value

i
0

specifies the new time-limit value, in .01-second units, to be
set into the process's loop timer. <new-time-limit> must be a
positive value.

If 0 is passed as the <new-time-limit> value, process
loop timing is disabled.

<old-time-limit> output

INT:ref :l

returns the current setting of the process's loop timer (in
.01-second units).

AJ'' 82359 AOO 3/85 2-389

SETLOOPTIMER

Condition Code Settings

< (CCL) indicates that the <new-time-limit> parameter is omitted
or is specified as a negative value. The state of
process loop timing and the setting of the process's loop
timer are unchanged.

= (CCE) indicates that the <new-time-limit> value is set into the
process's loop timer and that loop timing is enabled.

> (CCG) does not return from SETLOOPTIMER.

Considerations

• SETLOOPTIMER is not practical for generating timed asynchronous
interrupts for most users.

• Process Loop Timeout in System Code

In operating system versions prior to the BOO version, if any trap
occurs in the system code, control is given immediately to the user
trap handler if one is defined, or otherwise to DEBUG or INSPECT.
The process then abends. The stack markers are cut back to the
first marker in user code (user library) segments. To the trap
handler (or DEBUG) it appears as if the trap occurred in the
environment of this marker (refer to the System Description Manual
for more details).

In the BOO version, this situation changes for the process
loop-timeout trap. If a process loop-timeout trap occurs in system
code, the trap is taken the next time control enters user code: the
trap is delayed until then.

• Detection of Process Looping

To detect itself looping, a process calls SETLOOPTIMER (resetting
the time limit) at a given point each time through its main
execution loop. If the process fails to execute through its main
loop, SETLOOPTIMER is not called and the time limit is not reset.
Consequently, the time limit is reached, and a trap occurs. (When
the trap handler completes execution, the process resumes its
normal instruction path.)

2-390 Af' 82359 AOO 3/85

SETLOOPTIMER

For example, a process's main execution loop can be written as
follows:

-->

I
start:

CALL SETLOOPTIMER (1000);
IF< THEN •••

. ! enable loop timing. Time-limit value is 10 seconds.

CALL WRITEREAD (termfnum , ..•);

• ! process executes when terminal input is made •
• ! Loop-timer value is not decremented while process is
• ! suspended waiting for I/O.

terminal input is processed.

• Process Timing

SETLOOPTIMER can be used to measure the CPU time to execute a
set of instructions. For example,

CALL SETLOOPTIMER (OLDVAL); start timing.

! do the computation •

.
CALL SETLOOPTIMER (0, NEWVAL); ! disable timing.
TIMEAFORACOMPUTATION := OLDVAL-NEWVAL);

The following considerations apply:

--OLDVAL should be larger than the time estimated for the
computation or else a loop-timeout trap will occur in the middle
of the computation that is being measured.

--There is computational overhead associated with a call to the
SETLOOPTIMER procedure and TIMEAFORACOMPUTATION can be inf lated
by up to lOms because of this overhead. Therefore it is
recommended that this use of the SETLOOPTIMER procedure be made
for large computations only.

"' 82359 AOO 3/85 2-391

SETLOOPTIMER

Exa1!!£le

CALL SETLOOPTIMER (NEWATIME);

Related Programming Manual

For programming information about the SETLOOPTIMER process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-392 Af' 82359 AOO 3/85

SETMODE

SETMODE PROCEDURE

The SETMODE procedure is used to set device-dependent functions.

A call to the SETMODE procedure is rejected with an error indication
if incomplete nowait operations are pending on the specified
file.

The syntax for SETMODE is:

CALL SETMODE (<f ilenum>
,<function>
,[<paraml>]
, [<param2>]
,[<last-params>]

<f ilenum> input

INT:value

) ;

i
i
i
i
0

is a number of an open file that identifies the file to
receive the SETMODE <function>.

<function> input

INT:value

is one of the device-dependent functions listed in the SETMODE
functions table (see Appendix C).

<paraml> input

INT:value

is one of the parameters listed in the SETMODE functions table
(see Appendix C). If omitted, for a disc file the present
value is retained. For SETMODEs on other devices, this value
depends on the device and the value supplied in the <function>
parameter.

Af' 82359 AOO 3/85 2-393

SETMODE

<param2> input

INT:value

is one of the parameters listed in the SETMODE functions table
(see Appendix C). If omitted, for a disc file the present
value is retained. For SETMODEs on other devices this value
depends on the device and the value supplied in the <function>
parameter.

<last-params> output

INT:ref :2

returns the previous settings of <paraml> and <param2>
associated with the current <function>. The format is:

<last-params>[O] = old <paraml>
<last-params>[l] = old <param2> (if applicable)

Condition Code Setting~

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the SETMODE is successful.

> {CCG) indicates that the SETMODE function is not allowed
for this device type.

Considerations

• Default SETMODE Settings

The SETMODE settings designated as "default" are the values that
apply when a file is opened {not if a particular <function> is
omitted when SETMODE is called).

• Waited SETMODE

The SETMODE procedure is used on a file as a waited operation even
if <filenum> has been opened for nowait. Use the SETMODENOWAIT
procedure for nowait operations.

2-394 '1' 82359 AOO 3/85

SETMODE

Disc File Consideration

• Ownership and Security of File

"Set disc file security" and "set disc file owner" are rejected
unless the requester is the owner of the file or the super ID.

Interprocess Communication Considerations

• Nonstandard Parameter Values

Any value can be specified for the <function>, <paraml>, and
<param2> parameters. An application-defined protocol should be
established for interpreting nonstandard parameter values.

• Omitting <last-params>

The <last-params> parameter must be omitted for interprocess files.

Messages

• Process SETMODE

The issuance of a SETMODE to a file representing another process
can cause a SETMODE system message (-33) to be sent to that
process.

The process ID of the caller to SETMODE can be obtained in a
subsequent call to LASTRECEIVE or RECEIVEINFO. (Refer to
Appendix F for a list of all system messages sent to processes.)

Examples

1. LITERAL SECURITY = %0222;

CALL SETMODE (FNUM , 1 , SECURITY);

The LITERAL above sets the file's security to:

read
write
execute
purge

~ 82359 AOO 3/85

=
=
=
=

any local user
owner only
owner only
owner only

2-395

SETMODE

2. LITERAL PROGASEC = %102202;

CALL SETMODE (PFNUM , 1 , PROGASEC);

The second LITERAL specifies that the file's owner ID should be
used as the process's accessor ID when the program file is run.
This is done by setting the file's security to:

set accessor ID to owner's ID when file is run
read = owner only
write = owner only
execute = any local user
purge = owner only

Related Programming Manuals

For programming information about the SETMODE file system procedure,
refer to the GUARDIAN Operating System Programmer's Guide, the
ENSCRIBE Programming Manual, and the data-communication manuals.

2-396 Af' 82359 AOO 3/85

SETMODENOWAIT

SETMODENOWAIT PROCEDURE

The SETMODENOWAIT procedure is used to set device-dependent functions
in a nowait manner on nowait files.

Whereas the SETMODE procedure is a waited operation and suspends the
caller while waiting for a request to complete, the SETMODENOWAIT
procedure returns to the caller after initiating a request. A call to
SETMODENOWAIT completes in a call to AWAITIO. The <count-transferred>
parameter to AWAITIO has no meaning for SETMODENOWAIT completions.
The <buf fer-addr> parameter is set to the address of <last-params>
parameter of SETMODENOWAIT.

The syntax for SETMODENOWAIT is:

CALL SETMODENOWAIT (<f ilenum>
,<function>
,[<paraml>]
,[<param2>]

<f ilenum>

INT:value

,[<last-params>]
,[<tag>]);

input

i
i
i
i
0
i

is a number of an open file, identifying the file to receive
the SETMODENOWAIT <function>.

<function> input

INT:value

is one of the device-dependent functions listed in the SETMODE
functions table (see Appendix C).

<paraml> input

INT:value

is one of the <paraml> values listed in the SETMODE functions
table (see Appendix C). If omitted, for a disc file the
present value is retained. For SETMODEs on other devices, this
value depends on the device and the value supplied in the
<function> parameter.

'1' 82359 AOO 3/85 2-397

SETMODENOWAIT

<param2> input

INT:value

is one of the <param2> values listed in the SETMODE functions
table (see Appendix C). If omitted, for a disc file the
present value is retained. For SETMODEs on other devices this
value depends on the device and the value supplied in the
<function> parameter.

<last-params> output

INT:ref :2

returns the previous settings of <paraml> and <param2>
associated with the current <function>. The format is:

<last-params>[O] - old <paraml>
<last-params>[l] - old <param2> (if applicable)

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
sgTMODENOWAIT.

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed.

Condition Code Settings

<

=

>

2-398

(CCL) indicates that an error occurred (call FILEINFO).

(CCE) indicates that the SETMODENOWAIT is successful.

(CCG) indicates that the SETMODENOWAIT function is not allowed
for this device type.

"'82359 AOO 3/85

SETMODENOWAIT

Considerations

• File Opened With Wait Depth > 0

AWAITIO must be called to complete the call when <f ilenum> is
opened with a wait depth greater than O. For files with wait depth
equal to 0, a call to SETMODENOWAIT is a waited operation and
performs in the same way as a call to SETMODE.

• <last-params> and AWAITIO

The <buffer> parameter of AWAITIO is set to @<last params>, and the
count is undefined.

Example

LITERAL SETASPACE = 6,
NOASPACE = 0,
SPACE = l;

CALL SETMODENOWAIT (FILEANUM ' SETASPACE , SPACE);
! turns off single spacing for a line printer.

Related Programming Manuals

For programming information about the SETMODENOWAIT file system
procedure, refer to the GUARDIAN Operating System Programmer's Guide,
the ENSCRIBE Programming Manual, and the data communication manuals.

~ 82359 AOO 3/85 2-399

SETMYTERM

SETMYTERM PROCEDURE

The SETMYTERM procedure permits a process to change the terminal that
is used as its home terminal (the default home terminal is the home
terminal of a process's creator).

The syntax for SETMYTERM is:

CALL SETMYTERM (<terminal-name>); i

<terminal-name> input

INT:ref :12

contains the file name of the terminal or the process that is to
function as the caller's home terminal.

Condition Code Settings

< (CCL) indicates that the terminal cannot be reassigned,
<terminal-name> is invalid, or <terminal-name> is not a
terminal or a named process.

= (CCE) indicates that the SETMYTERM is successful.

> (CCG) does not return from SETMYTERM.

Considerations

• New Processes Started After SETMYTERM Is Called

If the caller to SETMYTERM creates any processes after the call
to SETMYTERM, the new home terminal is the home terminal for
those processes. SETMYTERM has no effect on any existing process
created by the caller.

Example

CALL SETMYTERM (TERM);

Related Programming Manual

For programming information about the SETMYTERM process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-400 ..,, 82359 AOO 3/85

SETPARAM PROCEDURE

The SETPARAM procedure is used to set and fetch various values
such as the station characteristics of network addresses.

The syntax for SETPARAM is:

CALL SETPARAM (<f ilenum>
,<function>

<f ilenum>

INT:value

,[<param-array>]
,[<param-count>]
,[<last-param-array>]
,[<last-param-count>]);

input

i
i
i
i
0
0

SETPARAM

is the number of an open file for which special information is
sent.

<function> input

INT:value

is one of the following SETPARAM function codes:

1 = set or fetch a remote data terminal equipment address
(use with X.25 Access Method (X25AM) only)

2 = set or fetch the clear cause or diagnostic bytes (use
X25AM only)

3 = set or fetch parameters for BREAK handling

4 = set or fetch the reset cause or diagnostic bytes (use
X25AM only)

5 = fetch the restart cause or diagnostic bytes (use with
only)

with

with

X25AM

6 = set or fetch the 6520 and 6530 block mode terminal error
counters (use with interactive terminal interface (ITI)
protocol in X25AM only)

~ 82359 AOO 3/85 2-401

SETPARAM

7 = set or override the closed user's group (CUG) number to be
used in next call request packet

8 = set or fetch the protocol ID field in the outgoing call
request packet (use with process-to-process protocol
in X25AM only)

9 = fetch the reason why circuit disconnected and learn the
current link status (use with X25AM only)

20 = reset and retrieve the called data terminal equipment (DTE)
address buffer

21 = provide a count of the number of 64-byte segments that
can be sent and received by a subdevice

22 = access the Level 4 ITI protocol block mode timer

For a detailed description of function 3, refer to the
Device-Specific Access Methods--(AM3270 TR3271) and the
Device-Specific Access Method-- AM6520 manuals. For a detailed
description of functions 1, 2, 4, 5, 6, 8, and 9, refer to the
X.25 Access Method--(X25AM) manual.

<param-array> input

INT: ref:*

is a list Dr string as required by <function>.

<param-count> input

INT:value

is the number of bytes contained in <param-array>.

<last-param-array> output

INT: ref:*

returns previous parameter settings associated with <function>.

2-402 ""182359 AOO 3/85

t

SETPARAM

<last-pa ram-count> output

INT:ref :l

returns the length of <last-param-array> in bytes (maximum of
256 bytes).

Condition Code Settings

The condition code has no meaning following a call to SETPARAM.

Considerations

<param-array> and <last-param-array>

These are integer arrays containing:

word

where:

[0] = equivalent to parameter 1 of SETMODE 11
[1] = equivalent to parameter 2 of SETMODE 11
[2] = most significant word of the break tag
[3] = least significant word of the break tag

[O] = 0, disable BREAK (default setting)
= <cpu,pin>, enable BREAK

[l] (Terminal access mode after BREAK is typed.)
= 0, normal mode (any file-type access is permitted)
= 1, break mode (only break-type file access

permitted) .

[2:3] = are the two words of the 32-bit tag. This is saved
by the I/O process handling the 3270 terminal.
Whenever AM3270 detects the input of a PAl key

"1 82359 AOO 3/85

(simulated BREAK) from a 3270 terminal configured
for ITI protocol, a BREAK message line control
block (LCB) is sent to the owner of the BREAK for
that terminal. (The owner of BREAK is specified by
the parameter in <buf>[O].) The six parameter
words of the BREAK message are:

Pl =
P2 =
P3 =
P4 =
P5 =
P6 =

-20 (identifies this as a BREAK message)
logical device number of the I/O process
system number of the I/O process
most significant word of the BREAK tag
least significant word of the BREAK tag
0

2-403

SETPARAM

To file system users, the BREAK message LCB parameters Pl through
P6 appear in a buffer READ from $RECEIVE as buffer[0:5].

The break tag is checkpointed to its backup by the I/O process
(to satisfy Nonstop requirements).

Example

CALL SETPARAM (F ' 8 ' ' ' OLDAPARAMS ' OLDASIZE);

The above example fetches the protocol ID field in the outgoing call
request packet. Four bytes of data return.

Related Programming Manuals

For programming information about the SETPARAM procedure, ref~r to
the data-communication manuals.

2-404 Ajl 82359 AOO 3/85

SETSTOP

SETSTOP PROCEDURE

The SETSTOP procedure permits a process to protect itself from being
deleted by any process other than itself or its creator.

The syntax for SETSTOP is:

{ <last-stop-mode>
{ CALL

<last-stop-mode>

INT

:= } SETSTOP (<stop-mode>);
}

returned value

returns a value that is either the preceding value of
<stop-mode> or -1 if an illegal mode was specified.

<stop-mode> input

INT:value

is a value specifying a new stop mode. The modes are:

0 = stoppable by any process
1 = stoppable only by:

a. the super ID

i

b. a process whose process accessor ID= this process's
creator ID

c. a process whose process accessor ID= this process's
accessor ID (this includes the caller to STEPMOM)

2 = unstoppable; this mode available to privileged users
only

Refer to the GUARDIAN Operating System Programmer's Guide for
additional information about super ID or process accessor ID.

Condition Code Settings

The condition code has no meaning following a call to SETSTOP.

~ 82359 AOO 3/85 2-405

SETS TOP

Considerations

• The default stop mode is 1 when a process is created.

• Setting a Process's Stop Mode to 1 and Then Issuing a Stop

If a process's stop mode is 1 and a STOP is issued to it by a
process without the authority to stop it, the process does not
stop; the process is deleted, however, if and when the stop mode is
changed to O.

• Setting a Process's Stop Mode to 2 and Then Issuing a Stop

If a process's stop mode is 2, and a STOP is issued to it by
another process, stop is queued until the process is in a
stoppable mode.

Example

LASTAMODE := SETSTOP (NEWAMODE);

Related Programming Manual

For programming information about the SETSTOP process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-406 ~ 82359 AOO 3/85

,

SETSYNCINFO

SETSYNCINFO PROCEDURE

The SETSYNCINFO procedure is used by the backup process of a process
pair after a failure of the primary process.

The SETSYNCINFO procedure passes a process pair's latest
synchronization block (received in a checkpoint message from the
primary) to the file system. Following a call to the SETSYNCINFO
procedure, the backup process can retry the same series of WRITE
operations started by the primary before its failure. The use of the
sync block ensures that operations which might have been completed by
the primary before its failure are not duplicated by the backup.

NOTE

Typically, SETSYNCINFO is not called directly by application
programs. Instead, it is called indirectly by CHECKMONITOR.

The syntax for SETSYNCINFO is:

CALL SETSYNCINFO (<f ilenum>
,<sync-block>);

<f ilenum> input

INT: value

i
0

is the number of an open file that identifies the file whose
synchronization block is being passed.

<sync-block>

INT:ref :*

output

is the latest synchronization block received from the
primary process.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that SETSYNCINFO is successful.

> (CCG) indicates that the file is not a disc file.

""1' 82359 AOO 3/85 2-407

SETSYNCINFO

Considerations

• File Number Has Not Been Opened

If the SETSYNCINFO file number does not match the file number of
the open file, then the call to SETSYNCINFO is rejected with file
system error 16.

• Application Parameter or Buffer Address Out of Bounds

If an out-of-bounds application buffer address parameter is
specified in the SETSYNCINFO call (that is, a pointer to the
buffer has an address that is greater than the MEM associated with
the data area of the process), then the call is rejected with file
system error 22.

• Checksum Error on File Sync Block

If an attempt is made to modify the file system sync buffer area,
the SETSYNCINFO call is rejected with file system error 41.

Example

CALL SETSYNCINFO (Fl , SYNC);

Related Programming Manual

For programming information about the SETSYNCINFO checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-408 ~ 82359 AOO 3/85

,/

bnf y

SETSYSTEMCLOCK PROCEDURE

The SETSYSTEMCLOCK procedure allows you to change the system clock
if you are executing as a super group ID.

The syntax for SETSYSTEMCLOCK is:

CALL SETSYSTEMCLOCK (<julian-gmt>
, <mode>
' [< tu id>]) ;

<julian-gmt> input

FIXED

is the Julian timestamp.

<mode> input

INT:value

specifies the mode and source as follows:

Mode Source

0 = absolute Greenwich operator input
mean time (GMT)

1 = absolute GMT hardware clock
2 = relative GMT operator input
3 = relative GMT hardware clock

1

1

1

The relative mode implies that the <julian-gmt> parameter
contains a microsecond-based error correction factor, not an
actual timestamp. This is used for precise time synchronization
to a hardware clock or for a moderately precise method of
operator time adjustment.

<tu id> input

INT:value

is a time update ID obtained from the JULIANTIMESTAMP procedure.
It should be used with <mode> 2 and 3 to avoid conflicting
changes.

~ 82359 AOO 3/85 2-409

Condition Code Settings

< (CCL) indicates insufficient capability.

= (CCE) indicates the SETSYSTEMCLOCK was successful.

> (CCG) indicates that there is a mismatch with <tuid>; retry
after redetermining the relative error.

Exam~

CALL SETSYSTEMCLOCK (JULIANAGMT , MODE , TUID);

Related Programming Manual

None

2-410 Af' 82359 AOO 3/85

SHIFTSTRING

SHIFTSTRING PROCEDURE

The SHIFTSTRING procedure upshifts or downshifts all alphabetic
characters in a string. Nonalphabetic characters remain unchanged.

The syntax for SHIFTSTRING is:

CALL SHIFTSTRING (<string>
,<count>
,<casebit>):

<string> input, output

STRING:ref :*

is the character string to be shifted.

<count> input

INT:value

is the length of the string in bytes.

<casebit> input

INT:value

i' 0
i
i

specifies a value indicating whether to upshift or downshift
the string:

.<15> = 0 the procedure upshifts the string indicated,
making all alphabetic characters uppercase •

• <15> = 1 the procedure downshifts the string indicated,
making all alphabetic characters lowercase.

Condition Code Settings

The condition code has no meaning following a call to SHIFTSTRING.

"" 82359 AOO 3/85 2-411

SHIFTSTRING

Example

CALL SHIFTSTRING (COMMAND , COMMAND,...LEN , CASE,...BIT); upshift

Related Programming Manual

For programming information about the SHIFTSTRING utility procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-412 ~ 82359 AOO 3/85

SIGNALPROCESSTIMEOUT

SIGNALPROCESSTIMEOUT PROCEDURE

The SIGNALPROCESSTIMEOUT procedure sets a timer based on process
execution time. When the time expires, the calling process receives
an indication in the form of a system message on $RECEIVE.

The syntax for SIGNALPROCESSTIMEOUT is:

CALL SIGNALPROCESSTIMEOUT (<timeout-value>
,[<paraml>]
,[<param2>]
, [<tag>]) ;

<time-out-value> input

INT(32):value

i
i
i
0

specifies the time period, in .01-second units, after which
a timeout message should be queued on $RECEIVE. This value
must be greater than OD.

<paraml> input

INT:value

identifies the timeout message read from $RECEIVE.

<param2> input

INT(32):value

identifies the timeout message read from $RECEIVE (same purpose
as <paraml>).

<tag> output

INT(32):ref:l

returns an identifier associated with the timer. This <tag>
should not be used other than to call CANCELPROCESSTIMEOUT.

~ 82359 AOO 3/85 2-413

SIGNALPROCESSTIMEOUT

Condition Code Settings

< (CCL) indicates that SIGNALPROCESSTIMEOUT is unable to allocate
a timer list element (TLE).

= (CCE) indicates that SIGNALPROCESSTIMEOUT is successful.

> (CCG) indicates that the given timeout value is illegal or that
there is a bounds error on <tag>.

Considerations

• SIGNALPROCESSTIMEOUT and CANCELPROCESSTIMEOUT

SIGNALPROCESSTIMEOUT can be used with CANCELPROCESSTIMEOUT using a
multithreaded I/O process to verify that an I/O operation completes
within a certain process execution time. The process calls
SIGNALPROCESSTIMEOUT before initiating the I/O operation, then
calls CANCELPROCESSTIMEOUT after completion if the process has not
been signaled on $RECEIVE.

• The SIGNALPROCESSTIMEOUT procedure measures the time the process is
executing. This procedure excludes the time spent by the CPU
processing interrupts (and most micro-interrupts) while the process
was running.

• Deadlock Possibility

Consider the following:

CALL SIGNALPROCESSTIMEOUT (lOOOOD,,,TLE);
CALL READ (REC~NUM, BUFFER, 4);

! open number of $RECEIVE.

The READ causes the process to stop and wait for the system message
to be generated by timeout (assume no other messages are expected).
Timeout does not occur unless the process executes for 100
seconds, causing a deadlock.

2-414

NOTE

This does not happen with SIGNALTIMEOUT, which operates on
a real-time basis as opposed to process time.

-'182359 AOO 3/85

,,.

SIGNALPROCESSTIMEOUT

Message

• Time Signal Message

When a TLE set by a call to SIGNALPROCESSTIMEOUT times out, a
system message (-26) is placed on the $RECEIVE queue to be read by
the caller. (This message is identical to the message generated
by SIGNALTIMEOUT except that the message number is different.)

Example

CALL SIGNALPROCESSTIMEOUT(VALUE , MSG, , TIMERTAG):

Related Programming Manual

None

4J 82359 AOO 3/85 2-415

SIGNALTIMEOUT

SIGNALTIMEOUT PROCEDURE

The SIGNALTIMEOUT procedure sets a timer to a given number of units
of elapsed time. When the time expires, the calling process receives
an indication in the form of a system message on $RECEIVE.

The syntax for SIGNALTIMEOUT is:

CALL SIGNALTIMEOUT (<timeout-value>
,[<paraml>]
,[<param2>]
, [<tag>]) ;

<timeout-value> input

INT(32):value

i
i
i
0

specifies the time period, in .01-second units after which a
timeout message should be queued on $RECEIVE. This value must
be greater than 0.

<paraml> input

INT:value

identifies the timeout message read from $RECEIVE.

<param2> input

I NT (3 2) : v a l u e

identifies the timeout message read from $RECEIVE (same purpose
as <paraml>).

<tag> output

INT:ref:l

returns an identifier associated with the timer. This <tag>
should not be used other than to call CANCELTIMEOUT.

2-416 "182359 AOO 3/85

SIGNALTIMEOUT

Condition Code Settings

< (CCL) indicates that SIGNALTIMEOUT is unable to allocate
a time list element (TLE).

= (CCE) indicates that SIGNALTIMEOUT completed successfully.

> (CCG) indicates that the given timeout value is illegal.

Considerations

• SIGNALTIMEOUT and CANCELTIMEOUT

SIGNALTIMEOUT can be used with CANCELTIMEOUT using a multithreaded
I/O process to verify that an I/O operation completes within a
certain time. The process calls SIGNALTIMEOUT before initiating
the I/O operation, then calls CANCELTIMEOUT after completion if
the process has not been signaled on $RECEIVE.

• The SIGNALTIMEOUT procedure measures actual elapsed time
(the wall clock) that this process executes. This includes the
time spent by the CPU in process code, system code, and processing
interrupts that occurred while the process was running.

Message

• Time Signal Message

When a timer times out, a system message (-22) is placed on the
$RECEIVE queue to be read by the caller.

Example

CALL SIGNALTIMEOUT(lOOOD , , , TIMERTAG); 10 seconds.

Related Programming Manual

None

~ 82359 AOO 3/85 2-417

SORTERROR

SORTERROR PROCEDURE

SORTERROR provides the message text corresponding to the last
SORT/MERGE error code returned. An error condition can be received
from any of the SORT/MERGE interface procedures.

The syntax for SORTERROR is:

{ <status>
{ CALL

<status>

INT

:= } SORTERROR (<ctlblock>
} ,<buffer>);

returned value

i
i

returns the number of characters in the error message.

<ctlblock> input

INT:ref :200

is a 200-word global integer storage array named in
SORTMERGESTART.

<buffer> input

INT: ref:*

is an integer array of 32 words minimum for the error message
text.

Condition Code Settings

The condition code has no meaning following a call to SORTERROR.

Example

TEXTLEN := SORTERROR (SORTBLOCK , OUTBUF);

Related Programming Manual

For programming information about the SORTERROR procedure, refer to
the SORT/MERGE Users Guide.

2-418 Afj 82359 AOO 3/85

SORTERRORDETAIL

SORTERRORDETAIL PROCEDURE

SORTERRORDETAIL provides the index in the <in-filename> array
(parameter to SORTMERGESTART) of the input file being accessed
when the latest error occurred.

The syntax for SORTERRORDETAIL is:

{ <status>
{ CALL

<status>

INT(32)

:= } SORTERRORDETAIL (<ctlblock>);
}

returned value

i

returns an INT(32) error code. ~he high-order word contains
the file system error or a NEWPROCESS error. The low-order
word contains the SORT error in the low-order byte and the
index (in the <in-filename> parameter to SORTMERGESTART) of
the input file that caused the error in the high-order byte.

If the error was not caused by an input file, or if the there is
no outstanding error, the low-order word bits <0:7> contain
0. The format for the INT(32) is shown below:

Bit 0 7 8 15
+------------------------+---------------+

high-order word file system error or NEWPROCESS error
------------------------+---------------

low-order word index of <in-filename> I SORT error
+------------------------+---------------+

(Refer to Appendix G for SORT/MERGE errors and the System Messages
Manual for NEWPROCESS and file system errors.)

<ctlblock> input

INT:ref :200

is the global storage array named in SORTMERGESTART.

Condition Code Settings

The condition code has no meaning following a call to SORTERRORDETAIL.

..,, 82359 AOO 3/85 2-419

SORTERRORDETAIL

Exam_Qle

DETAIL~STATUS := SORTERRORDETAIL (CONTROLBLOCK);

You only need to call this procedure if there is an error that the
SORTERROR procedure recognizes.

Related Programming Manual

For programming information about the SORTERRORDETAIL procedure,
refer to the SORT/MERGE Users Guide.

2-420 ~ 82359 AOO 3/85

SORTMERGEFINISH

SORTMERGEFINISH PROCEDURE

SORTMERGEFINISH terminates the SORTPROG process after the sort
completes. Any sorting or merging error stops the SORTPROG process at
the time the error occurs. If SORTMERGEFINISH is called with "stop
immediately" specified, the calling process receives a "process normal
deletion (stop)" message in its $RECEIVE file when SORTPROG is
deleted.

The syntax for SORTMERGEFINISH is:

{ <status> :=
{ CALL

} SORTMERGEFINISH (<ctlblock> I •
. 1' 0
I .
• 1 } ,[<abort>]

,[<sparel>]
, [<spare2>]) :

error if used.
error if used.

<status> returned value

INT

returns a SORT integer error code to indicate an error
occurred; otherwise, a 0 returns (see Appendix G for SORT/MERGE
errors).

<ctlblock> input

INT:ref :200

is the global storage array named in SORTMERGESTART.

<abort> input

INT:value

specifies when termination of SORTPROG occurs.

0 = specifies terminate SORTPROG after completion of the
current sort. This is the default value.

1 = specifies stop SORTPROG immediately. The calling
process receives a "process normal deletion (stop)"
message in its $RECEIVE file.

Af' 82359 AOO 3/85 2-421

SORTMERGEFINISH

<sparel> and <spare2>

If these parameters are used, an error is generated.

Condition Code Settings

The condition code has no meaning following a call to SORTMERGEFINISH.

Considerations

• If SORTPROG terminates due to an error, the user's program receives
an error code when the next procedure is called.

Example

ERROR := SORTMERGEFINISH (SORTBLOCK);

Related Programming Manual

For programming information about the SORTMERGEFINISH procedure, refer
to the SORT/MERGE Users Guide.

2-422 .., 82359 AOO 3/85

SORTMERGERECEIVE

SORTMERGERECEIVE PROCEDURE

SORTMERGERECEIVE returns the output records from the SORTPROG process
directly to the user's program.

The syntax for SORTMERGERECEIVE is:

{ <status> := } SORTMERGERECEIVE (<ctlblock> l

{ CALL } ,<buffer> 0

,<length> ! 0
, [<sparel>] error if
, [<spare2>]) ; error if

<status> returned value

INT

returns a SORT integer error code to indicate an error
occurred; otherwise, a 0 returns (see Appendix G for a list
of SORT/MERGE errors).

<ctlblock> input

INT:ref :200

is the global storage array named in SORTMERGESTART.

<buffer> output

INT: ref:*

used.
used.

is an integer array for the output records. The maximum record
size from SORTMERGESTART determines the maximum length of this
buffer.

<length> output

INT:ref :l

returns the length, in bytes, of the record retrieved. A -1,
indicates all records returned.

~ 82359 AOO 3/85 2-423

SORTMERGERECEIVE

<sparel> and <spare2>

If these parameters are used, an error is generated.

Condition Code Settings

The condition code has no meaning following a call to
SORTMERGERECEIVE.

Considerations

• When the <out-filename> Parameter Is Omitted

If the <out-filename> parameter is omitted or it consists of 24
spaces in the call to SORTMERGESTART, SORTMERGERECEIVE must be
called to retrieve the records, one per call, into the user's
program. The format of the returned record is determined by the
<format> specified in the call to SORTMERGESTART. The formats
SORTPROG provides are:

--The entire record

--The sequence number as a 32-bit (4-byte) integer

--The key-field values strung together

--The sequence number followed by the ~ey field values

Example

CALL SORTMERGERECEIVE (SORTBLOCK , RECBUF , LENGTH);

RECBUF receives the output record, and LENGTH is the number of bytes
of the record retrieved.

Related Programming Manual

For programming information about the SORTMERGERECEIVE procedure,
refer to the SORT/MERGE Users Guide.

2-424 Af' 82359· AOO 3/85

SORTMERGESEND

SORTMERGESEND PROCEDURE

SORTMERGESEND provides input records from the user's program
directly to the SORTPROG process.

The syntax for SORTMERGESEND is:

{ <status> := } SORTMERGESEND (<ctlblock> 1
{ CALL } ,<buffer> 1

,<length> l

, [<stream-id> l

' [<sparel>] error
' [<spare2>]) ; error

<status> returned value

INT

if
if

returns a SORT integer error code to indicate an error
occurred; otherwise, a 0 returns (see Appendix G for a list
of SORT/MERGE errors).

<ctlblock> input

INT:ref:200

is the global storage array named in SORTMERGESTART.

<buff er> input

INT: ref:*

is an integer array containing one input record.

<length> input

INT:value

used.
used.

is the length, in bytes, of the input record. This can vary
among input records. It can be no smaller than the offset from
the start of a record to the first character of the rightmost
key, and it can be no larger than the longest input record
length specified in the <in-f ilelen> parameter of
SORTMERGESTART.

"'1' 82359 AOO 3/85 2-425

SORTMERGESEND

If sorting and <length> equals -1, there are no more input
records.

If merging and <length> equals -1, there are no more records in
the requested stream.

<stream-id> input

INT:ref :l

identifies the input stream where the next input record for
SORTMERGESEND should come from. When all streams reply
"no more records," a -1 returns to <stream-id> to indicate
all input is entered and the process should continue to the next
step. This parameter is required if any input file names for
merging are left blank.

<spare-1> and <spare-2>

If these parameters are used, an error is generated.

Condition Code Settings

The condition code has no meaning following a call to SORTMERGESEND.

Considerations

• <in-filename> Parameter of SORTMERGESTART

If the <in-filename> parameter is omitted or consists of all
spaces in the call to SORTMERGESTART, the records for sorting must
be provided through SORTMERGESEND, one call for each input record.

• Records cannot be supplied from both SORTMERGESEND and disc files
for the same SORT run.

• Different SORT Runs for Sorting and Merging

SORTMERGESEND can supply input records for sorting or for merging
but cannot supply records for both operations in the same SORT run.
If SORTMERGESEND is used to supply records to SORTPROG,
SORTMERGESTART cannot specify input files for the same run.

2-426 /182359 AOO 3/85

SORTMERGESEND

Example

CALL SORTMERGESEND (SORTBLOCK , INBUF , INLEN):

INBUF contains one input record, and INLEN is the number of bytes of
the input record.

Related Programming Manual

For programming information about the SORTMERGESEND procedure, refer
to the SORT/MERGE User's Guide.

AJ'' 82359 AOO 3/85 2-427

SORTMERGESTART

SORTMERGESTART PROCEDURE

SORTMERGESTART initiates the SORTPROG process and passes parameter
information. SORTMERGESTART is necessary in initiating all
programmatic SORT or MERGE operations.

The syntax for SORTMERGESTART is:

{ <status>
{ CALL

:= } SORTMERGESTART
}

(<ctlblock>
,<key-block>
,[<num-merge-files>]
,[<num-sort-files>]
,[<in-filename>]
,[<in-file-exclusion-mode>]
,[<in-file-count>]
,[<in-file-length>]
,[<format>]
,[<out-filename>]
,[<out-file-exclusion-mode>
,[<out-file-type>]
,[<flags>]
,[<errnum>]
,[<errproc>]
,[<scratch-filename>]
,[<scratch-block>]
,[<process-start>]
,[<max-record-length>]
,[<collate-sequence-table>]
, [<spa re 1 >] ! e r r or i f
,[<spare2>] error if
,[<spare3>] error if
,[<spare4>] error if
,[<spare5>]); error if

<status> returned value

INT

returns a SORT integer error code to indicate an error
occurred; otherwise, a 0 returns (see Appendix G for a list
of SORT/MERGE errors).

i
i
i
i
i
i
i
i
i
i

] i
i
i
0
i
i
i
i
i
i

used
used
used
used
used

2-428 Af' 82359 AOO 3/85

SORTMERGESTART

<ctlblock> input

INT:ref :200

is a 200-word global integer array supplied for storage of
information about the SORT procedures. Values in <ctlblock>
must not be altered between the call to SORTMERGESTART and
the call to SORTMERGEFINISH: if they are, the user's program
receives an error code.

<key-block>

INT:ref :4

input

is an integer array defining the key fields. The first
word is the total number of keys and the number of
keys * 3 words. For a detailed discussion, see "Considerations,"
"<key-block> Key Fields."

<num-merge-f iles> input

INT:value

' is the number of input files for merging. The maximum number of
records SORTPROG accepts is limited by the amount of space
available for the scratch file. The total number of files for
both sorting and merging cannot exceed 32.

<num-sort-f iles> input

INT:value

is the number of input files for sorting. The maximum number of
records SORTPROG accepts is limited by the amount of space
available for the scratch file. The total number of files for
both sorting and merging cannot exceed 32.

<in-file-name> input

INT: ref:*

is an array of 12-word entries, each naming a file of input
records. An <in-file-name> is required for each input file.
SORTPROG accepts a set of input files in the order
presented, with the merge files first.

~ 82359 AOO 3/85 2-429

SORTMERGESTART

When working with more than one input file, SORTPROG uses the
same key-field specifications for all input records.

If the source of the input records is not SORTMERGESEND, both
sorted and unsorted records can be presented to SORTPROG.

If <in-file-name> is omitted or equals all spaces,
SORTMERGESEND supplies the records from the user's program.
See the SORTMERGESEND procedure.

If an <in-file-name> entry is for merging, it cannot be
specified as the <out-file-name>.

<in-file-exclusion-mode> input

INT: ref:*

is an array of 16-bit entries. Each entry contains the
exclusion mode used when SORTPROG opens the corresponding
input file. If the exclusion mode for one <in-file-name> is
specified, it must be provided for every <in-file-name>.
The exclusion codes are:

-1 = use default
0 = shared access
1 = exclusive access
3 = protected access

When an exclusion mode is not specified, the following
defaults apply. If <in-file-name> is a:

nontemporary disc file
nondisc file
temporary disc file
terminal

<in-file-count>

INT(32):ref:*

= protected
= exclusive
= shared
= shared

input

is an array of 32-bit entries. Each entry contains the
maximum number of records in the corresponding <in-file-name>.
If <in-file-count> is omitted or equals -1,. SORTPROG uses
the default number of records. If <in-filename> is:

2-430 Af' 82359 AOO 3/85

SORTMERGESTART

• A structured disc file, the default is the number of records
in <in-filename>.

• An unstructured, non-EDIT disc file, the default number of
records is determined by dividing the end-of-file (EOF)
length by the record length.

• An unstructured, EDIT disc file, the default number of
records is determined by multiplying the EOF length by 2
and dividing by the record length.

• An unstructured disc file, the default record length is 132
bytes.

For nondisc files and records supplied by SORTMERGESEND, the
default number of records is decimal 50,000.

<in-f ilelen> input

INT: ref:*

is an array of 16-bit entries. Each entry contains the
largest record size in the corresponding <in-filename>. The
largest record length allowed is 4080 bytes. If <in-filelen>
is omitted or equals -1, SORTPROG uses the default record
length.

This parameter can be omitted when <in-filename> is a
structured disc file.

For unstructured files, nondisc files, and records
supplied by SORTMERGESEND, the default for the largest
record length is 132 bytes.

<format> input

INT:value

selects the output record format, where value:

0 = the output records are in the same format as the input.
If <format> is omitted, this default is used.

1 = the output records are 32-bit integers describing the
order of the sorted records. For example, if the
twentieth input record is first in order after sorting,
20 is the value of the first output record.

"1 82359 AOO 3/85 2-431

SORTMERGESTART

2 = each output record is the characters in the key fields
strung together in the order defined. Alphanumeric
STRING key values are padded with blanks if they extend
beyond the record length.

3 = each output record begins with the 32-bit (4-byte) record
number concatenated with the key fields.

<out-filename> input

INT:ref :12

is a 12-word array that names the file for the output records.
If <out-filename> is omitted or equals 24 spaces,
SORTMERGERECEIVE returns the records, one at a time, to the
user's program.

If <out-filename> is present and is a different file type
than that requested, it is purged and a new file is created.

<out-file-exclusion-mode> input

INT:value

is the exclusion mode used when SORTPROG creates the output
file. The exclusion mode codes are:

-1 = use default
0 = shared access
1 = exclusive access
3 = protected access

When the exclusion mode is not specified, the following defaults
apply if <out-filename> is a:

2-432

disc or magnetic tape file
temporary disc file
terminal

= exclusive
= shared
= shared

~ 82359 AOO 3/85

SORTMERGESTART

<out-file-type> input

INT:value

specifies the type of file SORTPROG creates for the output
records. This parameter can be omitted if <out-filename>
is omitted or equals 24 spaces, and SORTMERGERECEIVE is used
to return the sorted records to the user's program. See
the SORTMERGERECEIVE procedure.

The default for <out-file-type> is the same file type as the
first input file. The <out-file-type> codes are:

-1 = null value {treat as if parameter is omitted)
0 = unstructured file
1 = relative file
2 = entry-sequenced file

SORTPROG does not send output to EDIT or key-sequenced files.
For systems other than ENSCRIBE systems, the <out-file-type> is
always unstructured.

<flags> input

INT:value

indicates to SORTPROG to perform a specific set of operations.
The meanings of the flag fields are described in Table 2-6.

If SORTPROG exists and the current <process-start> parameters
are changed, these changes are ignored, except for "priority."

<errnum> output

INT{32):ref:l

returns a completion code of 0, if no error occurs, or an
error status, if an error occurs. The high-order word contains
the file system error number or a NEWPROCESS error number. The

~ 82359 AOO 3/85 2-433

SORTMERGESTART

low-order byte of the low-order word contains the SORT error
code. The format for <errnum> is shown below:

Bit 0 7 8 16
+-------------------+-----------------------+

high-order word file system error or NEWPROCESS error

low-order word SORT error
+-------------------+-----------------------+

Both the error code and the error procedure can be supplied.
See the SORTERRORDETAIL procedure to obtain the index of
the input file in the <in-filename> set. See the SORTERROR
procedure to obtain the error message text corresponding to the
error code. See Appendix G for SORT/MERGE errors and the
System Messages Manual for NEWPROCESS and file system errors
that are returned in <errnum>.

<errproc> input

PROCEDURE

is a procedure called by the SORT procedures when an error
occurs. See "User Error Procedure," for a description
of this procedure.

<scratch-filename> input

INT:ref :12

is a 12-word file name for the SORTPROG work file. The first 8
bytes can name the volume where SORTPROG creates the scratch
file, and the remaining 16 bytes are left blank. If the scratch
file exists or <scratch-filename> is supplied, it must be an
unstructured file.

If this parameter is omitted or all blanks, SORTPROG creates a
scratch file on volume $SYSTEM. See Table 2-6 (specifically,
<flags>.<12:13>) for details on <scratch-filename> disposition.

2-434 -'182359 AOO 3/85

SORTMERGESTART

< scratch-block.> input

INT:value

is the length, in bytes, of the scratch file block. The length
specified must be 512, 1024, 2048, or 4096 bytes. The scratch
file block size must be large enough to accept the largest input
record, rounded up to the nearest even byte, plus 14 bytes of
overhead. The maximum block size allowed is 4096 bytes.

The default block size is the minimum of the largest block
transfer allowed by the device containing the output and scratch
files. The <scratch block> size cannot be larger than this
default.

If <scratch-block> is omitted or equals a -1 value, the
default block size is used.

<process-start> input

INT:ref :4

is a four-word array that supplies the information to start the
SORTPROG process.

<word>[O] = priority, assigns the priority of the SORTPROG
process. The default is the same priority as the
calling process.

[l] = memory, specifies the maximum number of data pages
allowed for the SORTPROG process. The default value
is the larger of four pages or the amount of memory
allocated to the user's program.

[2] = processor, selects the processor where SORTPROG
runs. If omitted, SORTPROG runs in the same
processor as the calling program.

[3] = system number, specifies in which system SORTPROG
runs. The default is the current system (See the
LOCATESYSTEM procedure).

The default is -1 = not passing parameters to NEWPROCESS.

.., 82359 AOO 3/85 2-435

SORTMERGESTART

<max-record-length> input

INT: ref:*

is the size, in bytes, of the largest output record for
<out-filename> or for SORTMERGERECEIVE. The maximum record
length returnable is 4080 bytes.

<collate-sequence-table> input

STRING:ref :256

is a 256-byte array defining the collating sequence used in the
SORT run. This parameter applies to alphanumeric STRING items
only. Each alphanumeric character is used as an index into the
collating table to obtain the value used for comparison.

This parameter is ignored unless the "collating sequence
table," flag <10>, is set to 1.

<sparel> and <spare5>

INT:value

If these parameters are used, an error is generated.

Condition Code Settings

The condition code has no meaning following a call to SORTMERGESTART.

2-436 Af' 82359 AOO 3/85

,,

~·

SORTMERGESTART

Considerations

• <key-block> Key Fields

The first word of the <key-block> array is the total number of
keys, then the number of keys * 3 words. Every three words
describes one key as follows:

word [O]

word [1]
word [2]
word [3]

word [4]
word [5]
word [6]

Number of keys

Description of first key
(three words)

Description of second key
(three words)

Each three-word key descriptor has the form:

1 1 1 1 1 1
Bit 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

--+-+-+-+-+-+-+-+----------------
Word [O] IOIUIRIRIRIRIRIRI Type

Word [l]

Word [2]

Word Bits

[O] <O>

<l>

Value

O:

U:

Length

Offset

0 - ascending
1 - descending

0 - do not upshift

<2:7> R:
1 - upshift (Alphanumeric string only)
0 - reserved (must be 0)

<8:15> Type:

~ 82359 AOO 3/85

1 - ALPHANUMERIC STRING
2 - UNSIGNED NUMERIC STRING
3 - NUMERIC STRING SIGN TRAILING EMBEDDED
4 - NUMERIC STRING SIGN TRAILING SEPARATE
5 - NUMERIC STRING SIGN LEADING EMBEDDED
6 - NUMERIC STRING SIGN LEADING SEPARATE
9 - BINARY SIGNED

10 - BINARY UNSIGNED
11 - FLOAT

2-437

SORTMERGESTART

[l] <0:15> Length: key length in number of bytes. For key
type 11, length must be 4 or 8 bytes.
For key types 3 through 6, length must be
32 bytes or less.

[2] <0:15> Offset: number of bytes from beginning of record
to key (record begins at 0). For key
type 11, offset must be an even number.

• <flags> Fields

Table 2-6 shows the flag bits for the <flags> fields.

2-438 '1182359 AOO 3/85

Table 2-6.

Operation <flags)
Bit

Scratch File Size
Check .(9)

Collating Sequence
Table .(10)

Remove Duplicates . (11 >

Save Scratch File .(12)

Scratch Must Be New . (13)

Out File Must Be
New .(14)

Restart .(15)

SORTMERGESTART

SORTMERGESTART <flags> Fields

------~--·- ----

Value

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Descriptio n

The named scratch file is che eked to see if it is
ata. This is the large enough to contain the d

default value.

The named scratch file is not checked before it is
used.

·-

The collating sequence para meter is ignored;
default value. compare normally. This is the

Use the alternate collating se quence table. If this
llating table is pro-flag is set and no alternate co

vided, an error occurs.
--

Keep records with keys that a re duplicates. This is
the default value.

Do not keep records with keys that are duplicates.
t; any following The first record is in the outpu

duplicate records are remove d.

Purge the scratch file after th e SORT ends. This is
the default value.

Keep the scratch file after the
only if the scratch file is name

SORT ends. Al lowed
d .

If the scratch file exists, it is u sed after a
PURGEDATA operation. This i
the scratch file required is eq

s true if the size of
ual to or smaller than

the existing scratch file. If the existing scratch file
s the default value. is not used, it is purged. This i

If the scratch file exists, purge it and create a new
le if the scratch tile
the user's program.

scratch file. This is not possib
is a temporary file created by

If (out-file-name) exists, use i
operation. The existing (out-ti
in (out-file-type) and (max-re
must be large enough to acce

t after a PURGEDATA
lename> must agree
cord-length> and
pt the sum of all the
. This is the default records from all the input files

value.

If (out-filename) exists, purg
(out-filename). This is illegal

e it and create a new
for temporary files.

Create a new SORTPROG pro cess. This is the
default value.

Do not create a new SORTPR OG process; use the
existing one.

- --

If SORTPROG terminates and the "restart" flag is set to 1, upon restarting, the c urrent <process-start>
parameters are used.

If SORTPROG exists and the current (process-start) parameters are changed, t hese changes are
ignored, except for "priority."

~ 82 3 59 AOO 3/85 2-439

SORTMERGESTART

• To reuse <out-filename> when it is a disc file that exists:

--The current <out-filename> type must agree with the new
<out-file-type>.

--The current <out-filename> size must be equal to or greater than
the sum of the sizes of all the input files.

--The current <max-recordlen> must be equal to or greater than the
maximum record length returned from SORTMERGESTART.

--The "<out-filename> must be new" flag (<flag>.<14>) must be
set to 0.

• Caution Using <ctlblock>

Data in the control block can change without warning. The user
must not use the information stored here.

• Input File

--SORTPROG accepts all file types except processes.

--The maximum number of input files SORTPROG accepts is 32. The
files may contain fixed- or variable-length records.

·--The sum of the <number-merge-files> and <number-sort-files>
parameters must be at least 1. Therefore, one of the two
parameters must be specified, but neither one is specifically
required.

--SORTPROG does not work on blocked tape files. Before
presenting these files to SORTPROG, use the File Utility
Program (FUP) to deblock the records. Refer to the
GUARDIAN Operating System Utilities Reference Manual for
information about FUP.

• Output File Types (<out-filename>)

If the output file is a disc file, SORTPROG creates it according to
the following:

1. SORTPROG uses the file type specified in the <out-file-type>
parameter.

2. SORTPROG uses the existing <out-filename> file type, unless it
is an EDIT or key-sequenced file.

3. SORTPROG uses the first <in-filename> file type, unless it is
an EDIT, key-sequenced, or nondisc file.

4. If none of the above conditions exist, an entry-sequenced file
is created.

2-440 "1' 82359 AOO 3/85

SORTMERGESTART

For systems other ENSCRIBE systems, the default output file type is
always unstructured.

SORTPROG does not send output to EDIT or key-sequenced files.

If <out-filename> is a magnetic tape, records are written one per
block.

• Record Count

The <in-file-count> need not be the exact number of records in the
file, but when rounding off the value, round up and not down.

• Memory Size

Choosing the correct amount of memory is important for good
performance; which also, it depends on the quantity of data and the
current activity in the selected processor. SORTPROG performance
continues to improve with increasing memory allocation, until no
more physical memory is available and page faulting increases
sharply. The memory allocation for SORTPROG can be decreased if
SORT operations tend to degrade the performance of other
processes.

When allocating memory for SORT operations, the programmer should
consider the following: the size of the scratch file block, the
input record size, the amount of physical memory available, and the

~ priorities of other processes relative to SORTPROG.

• Restart Option

This option allows successive SORT runs without creating a new
SORTPROG process.

A call to SORTMERGESTART returns immediately after SORTPROG reads
the input parameters. Before calling SORTMERGESTART to restart,
SORTMERGESTATISTICS must be called or SORTPROG must have terminated
with an error message. SORTPROG accepts parameters for restart in
the following way:

--If SORTPROG terminates abnormally and the "restart" flag is set
to 1 ("do not create a new SORTPROG process, use the existing
one"), upon restarting, the most current parameters specified
are used.

--If SORTPROG exists and the current <process-start> parameters
are changed, these changes are ignored, except for "priority."

• Alternate Collating Sequence Table

An alternate collating sequence table can be obtained by reading
the file produced by the COLLATEOUT command in the conversational
mode SORT program.

'1' 82359 AOO 3/85 2-441

SORTMERGESTART

User Error Procedure

This is a user-written procedure that the SORT/MERGE interface
procedures can call when an error condition is detected by SORTPROG.

The syntax for this error procedure is:

2-442

PROC <errproc> (<code>):

<errproc>

is the procedure named in the <errproc> parameter
parameter of SORTMERGESTART.

<code>

INT(32):value

describes the error and is identical to the value
in the <errnum> parameter of SORTMERGESTART. Refer
to the SORT/MERGE User's Guide for more information
about SORT errors and messages.

Afj 82359 AOO 3/85

SORTMERGESTART

The following is an example of the user error procedure:

PROC sorterrproc (errcode);
INT(32) errcode;
BEGIN

Tandem Application Language
statements of your error routine.

END;

CALL SORTMERGESTART (

Example

See "Considerations."

Related Programming Manual

SORTBLOCK
'

,NUMSORT
, INFILE

' ,OUTFILE

KEYS
number of files to
merge.

in file exclusion mode.
in file count.
in file length.
format.

out file exclusion mode.
out file type.

! flags for operation.
! error number.

, SORTERRPROC);

For programming information about the SORTMERGESTART procedure, refer
to the SORT/MERGE Users Guide.

'1J 82359 AOO 3/85 2-443

SORTMERGESTATISTICS

SORTMERGESTATISTICS PROCEDURE

SORTMERGESTATISTICS is called at the conclusion of a successful SORT
run to obtain information about that run.

The syntax for SORTMERGESTATISTICS is:

{ <status> := } SORTMERGESTATISTICS (<ctlblock> 1

{ CALL } ,<length>
1 '

,<statistics> 0

' [<spa rel>] do not
' [<spare2>]) ; do not

<status> returned value

INT

returns a SORT integer error code to indicate an error
occurred; otherwise, a 0 returns (see Appendix G for a list
of SORT/MERGE errors).

<ctlblock> input

INT:ref :200

is the same global storage array named in SORTMERGESTART.

<length> input, output

INT: ref:*

indicates the length, in words, of the statistics returned

0

use
use

from the SORTPROG process after run completion. When statistics
return, <length> is set to the number of words actually
returned. The default is a 0 value for <length>, which means
no statistics returns.

<statistics> output

INT:ref:21

is a 21-word array into which the SORTPROG statistics
return (see "Considerations" for a description of this
array).

2-444 Af' 82359 AOO 3/85

SORTMERGESTATISTICS

Condition Code Settings

The condition code has no meaning following a call to
SORTMERGESTATISTICS (see the <status> parameter).

Considerations

• 21-Word Array--<statistics>

INT <word>[O] = RECORD SIZE, maximum record size in bytes
[l] = BUFFER PAGES, number of 1024-word pages of

memory actually used by SORTPROG as a SORT
area

INT(32) [2:3] = RECORDS, number of records
[4:5] = ELAPSED TIME, in .01-seconds, time spent

sorting
[6:7] = COMPARES, number of times two records

were compared
[8:9] = SCRATCH SEEKS, number of READs and WRITES

on the scratch file
[10:11] = I/O WAIT TIME, time spent, in .01-seconds,

in calls to READ, WRITE, and AWAITIO in SORTPROG
[12:13] = SCRATCH DISC, number of bytes in the

scratch file
[14:15] = INITIAL RUNS, number of runs generated

by the first pass

INT [16] = FIRST MERGE ORDER, number of runs merged in
the first intermediate pass

[17] = MERGE ORDER, maximum number of runs that
can be merged

[18] = INTERMEDIATE PASSES, number of MERGE cycles
between initial run formation and final MERGE

INT(32) [19:20] = NUMBER OF DUPLICATES, number of duplicate
records removed.

Example

CALL SORTMERGESTATISTICS (SORTBLOCK , LENGTH , STATISTICS);

Related Programming Manual

For programming information about the SORTMERGESTATISTICS procedure,
refer to the SORT/MERGE Users Guide.

~ 82359 AOO 3/85 2-445

SPOOLCONTROL

SPOOLCONTROL PROCEDURE

The SPOOLCONTROL procedure is used to perform device-dependent I/O
operations when the application process is spooling at level 3.

If a level 3 buffer is specified in a call to SPOOLSTART, the
SPOOLCONTROL procedure must be used in place of the CONTROL procedure.

The syntax for SPOOLCONTROL is:

<error-code> := SPOOLCONTROL (<level-3-buff>
,<operation>
,<param>
,[<bytes-written-to-buff>

<error-code> returned value

INT

returns one of the following spooler error codes:

0 = successful operation

i, 0

1

! 1

) ; ! 0

%1000-%1377 = error on file to collector (<8:15> contains a
file system error code number; see
"Considerations")

10000 = missing parameter
10001 = parameter is present, but its content is wrong
11000 = checkpoint exit
11001 = attempted to write to the collector without

first opening the file

<level-3-buf f> input, output

INT:ref:512

is the <level-3-buffer> specified in the SPOOLSTART procedure.

<operation> input

INT:value

is a CONTROL operation value (see the CONTROL procedure and
Appendix A about control operations).

--:~

2-446 ..., 82359 AOO 3/85

SPOOLCONTROL

<par am> input

INT:value

is a <parameter> for the specified CONTROL operation (see
Appendix A).

<bytes-written-to-buff> output

INT:ref :l

returns the number of bytes to be checkpointed from the
<level-3-buff>. This is a Nonstop consider~tion.

Condition Code Settings

The condition code has no meaning following a call to SPOOLCONTROL
(see the <error-code> parameter).

Considerations

• When SPOOLCONTROL Should Be Recalled

If flags.<11> of SPOOLSTART is set to 1, a return of %11000 from
SPOOLCONTROL indicates that the <level-3-buf f> is about to be
written to the collector. The buffer should be checkpointed, and
SPOOLCONTROL should be recalled.

• SPOOLCONTROL--Bits <8:15>--Error on File to Collector

Some file system errors have special significance to a process
sending data to a collector: these errors can be found in
the System Messages Manual.

A program using level 1 or level 2 spooling gets these errors from
the WRITE or OPEN procedures, while a program spooling at level 3
obtains these errors in bits <8:15> of a spooler error code in the
%1000 range.

..-, 82359 AOO 3/85 2-447

SPOOLCONTROL

Example

ERROR := SPOOLCONTROL (COLL.BUFF , 5);

Related Programming Manual

For programming information about the SPOOLCONTROL procedure, refer
to the Spooler Programmer's Guide.

2-448 Af' 82359 AOO 3/85

SPOOLCONTROLBUF

SPOOLCONTROLBUF PROCEDURE

The SPOOLCONTROLBUF procedure is used to perform device-dependent I/O
operations requiring a data buffer when the application process is
spooling at level 3.

This procedure must be used in place of CONTROLBUF if a level 3 buffer
is specified in a call to SPOOLSTART.

The syntax for SPOOLCONTROLBUF is:

<error-code> := SPOOLCONTROLBUF (<level-3-buff> i, o
,<operation> i

,<buffer> i

,<count> i

,[<bytes-written-to-buff>]); ! o

<error-code> returned value

INT

returns one of the following spooler error codes:

0 = successful operation
%1000-%1377 = error on file to collector (<8:15> contains a

file system error code number; see
"Considerations")

%10000 = missing parameter
%10001 = parameter is present, but its content is wrong
%11000 = checkpoint exit
%11001 = attempted to write to the collector without

first opening the file

<level-3-buff> input, output

INT:ref :512

is the <level-3-buff> specified in the SPOOLSTART procedure.

<operation> input

INT:value

is a CONTROLBUF operation (see Table 2-7 under
"Considerations").

~ 82359 AOO 3/85 2-449

SPOOLCONTROLBUF

<buffer> input

INT: ref:*

is an array containing the control information to be sent to
the print device.

<count> input

INT:value

is the number of bytes of information contained in the buffer.

<bytes-written-to-buff> output

INT:ref :l

returns the number of bytes to be checkpointed from the
<level-3-buff>. This is a Nonstop consideration.

Condition Code Settings

The condition code has no meaning following a call to SPOOLCONTROLBUF
(see the <error-code> parameter).

Considerations

• Table 2-7 shows the value of SPOOLCONTROLBUF operations value.

<operation>

1

Table 2-7. SPOOLCONTROLBUF Operations

Definition

load DAVFU (printer subtype 4)

<buffer> = VFU buffer to be loaded
<count> = number of bytes contained in <buffer>

2-450 ~ 82359 AOO 3/85

SPOOLCONTROLBUF

• When SPOOLCONTROLBUF Should Be Recalled

If flags.<11> of SPOOLSTART is set to 1, a return of %11000 from
SPOOLCONTROLBUF indicates that the <level-3-buf f> is about to
be written to the collector. The buffer should be checkpointed,
and SPOOLCONTROLBUF should be recalled.

• SPOOLCONTROLBUF--Bits <8:15>--Error on File to Collector

Some file system errors have special significance to a process
sending data to a collector; these errors can be found in
the System Messages Manual.

A program using level 1 or level 2 spooling gets these errors from
the WRITE or OPEN procedures, while a program spooling at level 3
obtains these errors in bits <8:15> of a spooler error code in the
%1000 range.

Example

ERROR := SPOOLCONTROLBUF (COLLABUFF , 1 , CONABUFF , COUNT);

Related Programming Manual

For programming information about the SPOOLCONTROLBUF procedure,
refer to the Spooler Programmer's Guide.

/1 82359 AOO 3/85 2-451

SPOOLEND

SPOOLEND PROCEDURE

The SPOOLEND procedure can be used to complete a job being spooled
at level 3.

The SPOOLEND procedure writes any rema1n1ng data in the collection
process buffer to the collector, sends the collection process a
termination message, and optionally modifies the job's attributes.

The syntax for SPOOLEND is:

<error-code> := SPOOLEND (<level-3-buff>
,[<flags>]):

i
i

<error-code> returned value

INT

returns one of the following spooler error codes:

0
%1000-%1377

%10000
%10001
%11000
%11001

<level-3-buf f>

INT:ref :512

=
=

=
=
=
=

successful operation
error on file to collector (<8:15> contains
a file system error code number: see
"Considerations")
missing parameter
parameter is present, but its content is wrong
checkpoint exit
attempted to write to the collector without
first opening the file

input

is the <level-3-buffer> specified in the call to SPOOLSTART.

2-452 "4f' 82359 AOO 3/85

,,

SPOOLEND

<flags> input

INT:value

overrides the flags specified in SPOOLSTART. If bit <8> is
set, the job is canceled rather than printed.

flags.<0:7> = reserved for use by the collector
.<8> = cancel job flag: 0 = off

1 = on
.<9> = HOLD flag: 0 = off

1 = on
.<10> = HOLDAFTER flag: 0 = off

1 = on
.<11:12> = reserved; must be 0
.<13:15> = job priority

If this parameter is omitted, the attributes established by the
call to SPOOLSTART are not changed.

Condition Code Settings

The condition code has no meaning following a call to SPOOLEND (see
the <error-code> parameter).

Considerations

• A call to SPOOLEND causes any existing data in the collection
process buffer to be written to the collector.

• Following a call to SPOOLEND, a new job can be started without
reopening a file to the collector.

• SPOOLEND must be called to terminate the spooling of any job being
spooled at level 3 (using the spooler interface procedures).

• Calling SPOOLEND with the <flags> cancel bit set to 1 has the same
effect as never having started the job.

• Including <flags> causes all bit fields to override the values
specified in the <flags> parameter of SPOOLSTART.

..-, 82359 AOO 3/85 2-453

SPOOLEND

• SPOOLEND--Bits <8:15>--Error on File to Collector

Some file system errors have special significance to a process
sending data to a collector; these errors can be found in
the System Messages Manual.

A program using level 1 or level 2 spooling gets these errors from
the WRITE or OPEN procedures, while a program spooling at level 3
obtains these errors in bits <8:15> of a spooler error code in the
%1000 range.

Example

SPERRNUM := SPOOLEND (BUFFER , %B0000000001000100);
put job on HOLD and set priority 4.

Related Programming Manual

For programming information about the SPOOLEND procedure, refer to
the Spooler Programmer's Guide.

2-454 /'f' 82359 AOO 3/85

SPOOLERCOMMAND

SPOOLERCOMMAND PROCEDURE

The SPOOLERCOMMAND procedure is used to perform SPOOLCOM and PERUSE
operations from within programs.

The SPOOLERCOMMAND procedure allows a process to send a SPOOLCOM
command to the spooler supervisor.

The syntax for SPOOLERCOMMAND is:

<error-code> := SPOOLERCOMMAND (<f ilenum-to-supervisor> i
,<command-code> i
, [<command-param>] i
,<subcommand-code> i
,[<subcommand-param> J); i

<error-code> returned value

INT

returns one of the following spooler error codes:

0 =
%3000-%3377 =

%10000 =
%10001 =
%14000 =
%14001 =
%14002 =
%14003 =
%14004 =
%14005 =
%14010 =
%14011 =
%14012 =

%14013 =
%14014 =
%14015 =

..-, 82359 AOO 3/85

successful operation
error on file to supervisor (file system error
in bits <8:15>), refer to the System Messages
Manual.
parameter missing
parameter in error
invalid command
command parameter missing
command parameter in error
invalid subcommand
subcommand missing
subcommand parameter in error
cannot add entry to tables
cannot find entry requested
entry not in proper state for requested
operation
entry in use; cannot be deleted
security violation
process not a spooler supervisor

2-455

SPOOLERCOMMAND

<f ilenum-to-supervisor> input

INT:value

is the number of an open supervisor file used by the caller.
The file number is returned from a previous call to OPEN.

<command-code> input

INT:value

is the number of the command to be executed (see Table 2-8}.

<command-pa ram> input

INT: ref:*

is a buffer containing the parameter to the command being
executed. The size and content for each command are shown
in Table 2-6.

<subcommand-code> input

INT:value

is the number of the subcommand to be executed (the
<subcommand-codes> are listed in Table 2-8}.

<subcommand-pa ram> input

INT: ref:*

is a buffer containing the parameter to the subcommand being
executed. Table 2-8 shows the size and content for each
subcommand.

Table 2-8 shows the SPOOLERCOMMAND parameters: <command-code>,
<command-param>,<subcommand-code>, and <subcommand-param>.

2-456 "'1 82359· AOO 3/85

~
OJ
rv
w
Ul
~

~
0
0

w

' OJ
Ul

"' I
.c:::.
(J1

-....J

,_

SPOOLCOM
~

Command

DEV

I I
I

JOB
I
I
I

Table 2-8.

SPOOLCOM
~
Subcommand

blank

SPEED
PROCESS

EXCLUSIVE

FIFO

RETRY
TIMEOUT
FORM

SKIP

SKI PTO

HEADER

SUSPEND

CLEAR

ALIGN
DRAIN
START
DELETE
JOB

TRUNC

WIDTH
RESTART
PARM

FORM

START

'
SPOOLERCOMMAND--Command and Subcommand Parameters
(Continued)

SPOOLERCOMMAND Parameters
.A ,

(cmd-code) < cmd-param > (subcmd-code) < subcmd-param >

1 <device-name> 100 none
INT:16

101 (lpm) (INT: 1)
102 (process-name> (STRING: 8)

103 O=off}
1 = on (INT: 1)
2 =off

104 0 = off) (INl: 1)
1 = on

105 (interval) (INT:1)
106 (num retries) (INT:1)
107 [(form name)] (STRING:8)

108 + <num-pages>) (INl: 1)
- (num-pages)

I
109 (page-num) (INT:1)

110 O =off }
1 = on (INT: 1)
2 = batch

111 none

112 1 =DEL)
0 = no DEL (INT: 1)

113 none
114 none
115 none
116 none
117 (job-code) (INT:1)

I
118

I 0 = off) (INl: 1)

I I
1 = on

119 (device-width) (INT:1)
120 none
148 (device-param) (INT:1)

2 job number 107 [(form-name)](STRING:8)
INT:1-word

j 115 none

'

I

I

Ul
"'O
0
0
t'1
t:EJ
::0
(')
0

~
::a>' z
t1

~
I
~
U1
CX>

~
(X)

IV
w
Ul
\.D

::r::-
0
0

w
'-...
OJ
Ul

Table 2-8. SPOOLERCOMMAND--Command and Subcommand Parameters

I SPOOLCOM SPOOLCOM SPOOLERCOMMAND Parameters ·-·i

I~~ --..
Command Subcommand <cmd-code> <cmd-oaram> <s

LOC

COLLECT

PRINT

DELETE

HOLDAFTER

HOLD
COPIES
REPORT
LOC

SELPRI

OWNER

blank

DELETE

DEV

BROADCAST

blank

DRAIN
START
DELETE
FILE
CPU
BACKUP
PRI
DATA
UNIT

blank

3

4

5

< group.dest >
INT:16

(group).[(dest)]
INT:16

[(group)].(dest)
INT:16

(group)
INT:16

<collection-process>
INT:3

116

121

122
123
124
125

126

127

100

116

131

132

100

114
115
116
141
142
143
144
145
146

100 1

none

O =off l
1 = on (INT: 1)

none
(num-copies) (INT:1)
[<report-name)] (STRING:8)
[<location-name>] (I NT:8)

(selection) J
(priority) (INT: 1)

(group) = (0:7) l
<user> = (8:15> (INT: 1)

none

none

[(device-name)] (INT:16)

0 = off l (INT: 1)
1 = on

none

none
none
none
(program-fiiename) (STRING:12)
(cpu) (INT:1)
(backup-cpu) (INT:1)
(process-priority) (I NT: 1)
(data-filename) (STRING:12)
(unit-size) (INT:1)

none

START I ' ' 115 I none
I DELETE I I 116 j none I

<print-process>
INT:3

en
'1::1
0
0
t'1
t:rl
~
(")

0

~ z
t:J

~
CP
I\.)

w
U1
l.D

~
0
0

w
........
CP
U1

f\.)

I
lf::ii.
Ul
l..O

'· '·
Table 2-8. SPOOLERCOMMAND--Command and Subcommand Parameters

(Continued)

SPOOLCOM ...---....
Command

SPOOLER

SPOOLCOM ...---....
Subcommand

FILE

CPU
BACKUP
PRI

DEBUG

PARM

DRAIN
START
ERR LOG

(cmd-code)

6

SPOOLERCOMMAND Parameters

< cmd-param >

none

< subcmd-code >

141

142
143
144

147

148

114
115
151

< subcmd-param)

(program-filename>
(STRING:12)
(cpu) (INT:1)
(backup-cpu) (INT:1)
(process-priority) (I NT: 1)

0 = off) (INT: 1)
1 = on

(print-process-param) (INT:1)

none
none
(filename) (STRING:12)

• Device name reflects the internal format of the device file. There are two forms of the device name, depending on whether you are dealing with a logical
device or a process.

Logical device:

device[0:3] = \(sysname) blank-filled
(4:7] = $(devname) blank-filled
(8:11] = #(subdev) blank-filled
(12:15] = blank-filled.

Process:

name[0:3] = \(sysname) blank-filled
(4:7] = $(process-name) blank-filled
(8:11) =#(1st-qualifier) blank-filled
(12:15] = (2nd-qualifier) blank-filled.

• The blanks parameter can be used to create a device, a location, a collector, or a print process with all default attributes.

• Parameters requiring an on or off parameter use a word containing 0 for off and 1 for on.

• Location name parameter is in internal format:

location[0:3] = #(group-name) blank-filled
(4:7] = <destination-name> blank-filled.

If you want to leave out either the group name or destination name, just fill that field with blanks.

• Filename is in the internal format:

filename[0:3] = $(disc-name) blank-filled
(4:7] = (volname) blank-filled
[8:11) = (filename) blank-filled

• For a detailed description of the command and subcommand codes that are sent to the supervisor through the SPOOLERCOMMAND procedure, refer to
the GUARDIAN Operating System Utilities Reference Manual.

~

Ul
ttJ
0
0
L1
tl:J
:;tj
(')
0

~
)>'
z
t:J

SPOOLERCOMMAND

Condition Code Settings

The condition code has no meaning following a call to SPOOLERCOMMAND
(see the <error-code> parameter).

Considerations

• Note that <subcommand-code> is a required parameter on every call
to SPOOLERCOMMAND.

• Commands With No Subcommands

Commands not accompanied by subcommands should have code 100 as
their <subcommand-code> (for example, creating a component with
all default parameters).

Example

COMAERROR := SPOOLERCOMMAND (FILENUM
' COMACODE

command parameter.
, SUB""CODE);

Related Programming Manual

For more information about the SPOOLERCOMMAND utility procedure, refer
to the Spooler Programmer's Guide.

2-460 ..., 82359 AOO 3/85

SPOOLEREQUEST

SPOOLEREQUEST PROCEDURE

The SPOOLEREQUEST procedure allows a perusal process to access
a spooled job outside the control of the spooler supervisor.

The syntax for SPOOLEREQUEST is:

<error-code> := SPOOLEREQUEST (<supervisor-filenum> i
,<job-num> i
,<print-control-buffer>); o

<error-code> returned value

INT

returns one of the following spooler error codes:

0 = successful operation
%3000-%3377 = error on file to supervisor (file system error

in bits <8:15>, refer to the System Messages
Manual)

%10000 = parameter missing
%10001 = parameter in error
%14001 = command parameter missing
%14002 = command parameter in error
%14011 = cannot find entry requested
%14014 = security violation
%14015 = process not a spooler supervisor

<supervisor-f ilenum> input

INT: value

is the number of an open Supervisor file used by the caller.
The file number is returned by a previous OPEN.

<job-num> input

INT:value

is the number of the job to be accessed.

~ 82359 AOO 3/85 2-461

SPOOLEREQUEST

<print-control-buffer> output

INT:ref :64

returns a "start job" message suitable for passing to the
PRINTREADCOMMAND procedure.

Condition Code Settings

The condition code has no meaning following a call to SPOOLEREQUEST
(see <error-code> parameter).

Considerations

• The PRINTCOMPLETE, PRINTINFO, PRINTINIT, and PRINTSTATUS
spooler print procedures cannot be used by a perusal process.

• SPOOLEREQUEST must be used in conjunction with the spooler print
procedures (PRINTREADCOMMAND, PRINTREAD, and PRINTSTART) described
in this manual.

• Attempting to Read Data That Does not Exist

Since the supervisor does not know that the data file is being
accessed, it allows the job to be deleted. If this occurs,
PRINTREAD returns an "invalid data file" error (%12002) when
attempting to read a line of data that is no longer there.

• Accessor ID and Caller of SPOOLEREQUEST

SPOOLEREQUEST only returns job information if the accessor ID of
the process calling SPOOLEREQUEST (for example, the user executing
SPOOLEREQUEST) matches the job's owner.

Example

REQUESTAERROR := SPOOLEREQUEST (FILENUM , JOB , PRINTABUFFER):

Related Programming Manual

For more information about the SPOOLEREQUEST utility procedure, refer
to the Spooler Programmer's Guide.

2-462 .., 82359 AOO 3/85

SPOOLERSTATUS

SPOOLERSTATUS PROCEDURE

The SPOOLERSTATUS procedure is used to perform SPOOLCOM and PERUSE
operations from within programs.

The SPOOLERSTATUS procedure allows a process to obtain the status of
spooler components.

The syntax for SPOOLERSTATUS is:

i
i
i

<error-code> := SPOOLERSTATUS (<supervisor-f ilenum>
,<command-code>
,<scan-type>
,<status-buffer>); i' 0

<error-code> returned value

INT

returns one of the following spooler error codes:

0 = successful operation
%3000-%3377 = error on file to supervisor (file system error

in bits <8:15>; refer to the System Messages
Manual)

%10000
%10001
%14006
%14007
%14015
%14016

=
=
=
=
=
=

parameter missing
parameter in error
end of SPOOLERSTATUS entries
entry not found by SPOOLERSTATUS
process not a spooler supervisor
SPOOLERSTATUS request in progress

<supervisor-f ilenum> input

INT:value

is the number of an open supervisor file used by the caller.
The file number is returned by a previous call to OPEN.

~ 82359 AOO 3/85 2-463

SPOOLERSTATUS

<command-code> input

INT:value

specifies the spooler component whose status is being sought.
The range of values and their meanings are:

1 device
2 job
3 location
4 collector
5 print process
6 spooler
7 jobs on a particular device queue
8 occurrences of a particular job
9 jobs with a particular location

10 cross-reference by location
11 cross-reference by device
12 cross-reference by print process

<scan-type> input

INT:value

specifies the type of scan desired:

0 = status of the item specified in the <status-buffer>
1 = status of the item that follows the item specified in

the <status-buffer>

<status-buffer> input, output

INT:ref :64

is a 64-word buffer where the status returns. The format
of the status buffer depends on the particular command code
(refer to the Spooler Programmer's Guide).

Condition Code Settings

The condition code has no meaning following a call to SPOOLERSTATUS
(see the <error-code> parameter).

2-464 Af' 82359 AOO 3/85

SPOOLERSTATUS

Considerations

• The combination of <command-code>, <scan-type>, and data
in the <status-buffer> determines the status information returned.
Refer to the Spooler Programmer's Guide for more information about
status.

• If %14016 returns, call SPOOLERSTATUS again.

• Locations and New Groups

If you request the status of a set of locations in the spooler
system, and a new group is encountered (that is, the group number
changes), you need to call SPOOLERSTATUS twice:

1. The first call to SPOOLERSTATUS returns the group number with
the destination blank.

2. The second call to SPOOLERSTATUS returns the destination
information about the group's location.

Example

STATUSAERROR := SPOOLERSTATUS (FILENUM, COMACODE , TYPE , BUFF):

' Related Programming Manual

For more information about the SPOOLERSTATUS utility procedure, refer
to the Spooler Programmer's Guide.

'1J 82359 AOO 3/85 2-465

SPOOLJOBNUM

SPOOLJOBNUM PROCEDURE

The SPOOLJOBNUM procedure returns the job number of the job currently
being spooled to the collector. This procedure can be used when
spooling at levels 1, 2, or 3.

The syntax for SPOOLJOBNUM is:

<error-code> := SPOOLJOBNUM (<f ilenum-to-collector>
,<job-num>);

<error-code> returned value

INT

returns one of the following spooler error codes:

0
%1000-%1377

%10000
%11001

= successful operation
= error on file to collector (<8:15> contains

a file system error code number; see
"Considerations")

= missing parameter
= attempted to write to the collector without

opening the file first

<f ilenum-to-collector> input

INT:value

is the file number of the collector obtained through a call
to the GUARDIAN file system OPEN procedure.

<job-num> output

INT:ref :l

is the job number of the job currently being spooled to the
collector through the specified file number.

Condition Code Settings

i
0

The condition code has no meaning following a call to SPOOLJOBNUM (see
the <error-code> parameter).

2-466 Afj 82359 AOO 3/85

SPOOLJOBNUM

Considerations

• A call to SPOOLJOBNUM can be issued by an application spooling at
any level.

• When spooling at level 1, a job is not created until after a WRITE,
SETMODE, or CONTROL procedure is called once.

• When spooling at levels 2 and 3, a job is not created until after
the SPOOLSTART procedure is called.

• SPOOLJOBNUM--Bits <8:15>--Error on File to Collector

Some file system errors have special significance to a process
sending data to a collector; these errors are listed in the
System Messages Manual.

A program using level 1 or level 2 spooling gets these errors from
the WRITE or OPEN procedures, while a program spooling at level 3
obtains these errors in bits <8:15> of a spooler error code in the
%1000 range.

Example

ERROR := SPOOLJOBNUM (FILENUMACOLL , JOBANUM);

Related Programming Manual

For programming information about the SPOOLJOBNUM procedure, refer to
the Spooler Programmer's Guide.

"f 82359 AOO 3/85 2-467

SPOOLSETMODE

SPOOLSETMODE PROCEDURE

The SPOOLSETMODE procedure is used to set device-dependent functions
when an application process is using the spooler interface procedures.

This procedure must be used in place of the SETMODE procedure if a
level 3 buffer is specified in a call to SPOOLSTART.

The syntax for SPOOLSETMODE is:

<error-code> := SPOOLSETMODE <level-3-buf f>
,<function>

i, 0

i
i ,[<paraml>]

,[<param2>] I ' • 1

,[<bytes-written-to-buff>]) ; ! 0

<error-code> returned value

INT

returns one of the following spooler error codes:

0
%1000-%1377

%11000
%11001

<level-3-buf f>

INT:ref :512

= successful operation
= error on file to collector (<8:15> contains

a file system error code number; see
"Considerations")

= checkpoint exit
= attempted to write to the collector without

first opening the file

input, output

is the <level-3-buff> specified in the call to SPOOLSTART.

<function> input

INT: value

is a SETMODE <function>. Setmode functions are listed in
Appendix C.

2-468 .., 82359 AOO 3/85

SPOOLSETMODE

<paraml> and <param2> input

INT:value

are the parameters for the specified SETMODE function
(see Appendix C).

<bytes-written-to-buff> output

INT:ref :l

returns the number of bytes to be checkpointed from the
<level-3-buff>. This is a Nonstop consideration.

Condition Code Settings

The condition code has no meaning following a call to SPOOLSETMODE
(see the <error-code> parameter).

Considerations

• When SPOOLSETMODE Should Be Recalled

If flags.<11> of SPOOLSTART is set to 1, a return of %11000 from
SPOOLSETMODE indicates that the <level-3-buf f> is about to be
written to the collector. The buffer should be checkpointed, and
SPOOLSETMODE should be recalled.

• SPOOLSETMODE--Bits <8:15>--Error on File to Collector

Some file system errors have special significance to a process
sending data to a collector: these errors are listed in the
System Messages Manual.

A program using level 1 or level 2 spooling gets these errors from
the WRITE or OPEN procedures, while a program spooling at level 3
obtains these errors in bits <8:15> of a spooler error code in the
%1000 range.

~ 82359 AOO 3/85 2-469

SPOOLSETMODE

Example

ERROR := SPOOLSETMODE (COLLABUFF , 68 , 2);

Related Programming Manual

select expanded
print.

For programming information about the SPOOLSTART procedure, refer to
the Spooler Programmer's Guide.

2-470 ·1J 82359 AOO 3/85

SPOOLS TART

SPOOLSTART PROCEDURE

The SPOOLSTART procedure formats a spooler buffer suitable for passing
to other spooler interface procedures. It can specify job attributes,
or establish level 3 spooling, or both. This procedure establishes a
level 2 or level 3 spooling session.

The syntax for SPOOLSTART is:

<error-code> := SPOOLSTART (<f ilenum-to-collector>
,[<level-3-buff>]
,[<location>]
,[<form-name>]
,[<report-name>]

<error-code>

INT

,[<num-of-copies>]
,[<page-size>]
,[<flags>]
,[<owner>]);

returned value

returns one of the following spooler error codes:

0 = successful operation

i
0

i
i
i
i
i
i
i

%1000-%1377 = error on file to collector (<8:15> contains
a file system error code number; see
"Considerations")

%10001
%11000

=
=

parameter is present, but its content is wrong
checkpoint exit

%11001 = attempted to write to the collector without
first opening the file

<f ilenum-to-collector.> input

INT:value

is the file number of the collector obtained through a call
to the system OPEN procedure. The collector must be opened
for waited I/O •

..,., 82359 AOO 3/85 2-471

SPOOLS TART

<level-3-buf f> output

INT:ref :512

indicates that the spooler interface procedures are used
to send data to the collector. The address of this buffer
must be passed to the other interface procedures. This
buffer is initialized as a result of this call.

<location> input

INT:ref :8

specifies a location for this job and overrides the
location specified in the call to OPEN. This parameter
must use the internal format for location specification:

<location>[0:3] := # group name blank-filled
[4:7] := destination name blank-filled

The default location for the job is the location specified
when the collector opened.

<form-name> input

INT:ref :8

specifies a form name for the job. The form name can be in
letters, digits, or blanks. The default <form-name> is all
blanks.

<report-name> input

INT:ref :8

specifies a report name for the job. The report name can be in
letters, digits, or blanks.

The default <report-name> is the user name of the person
executing the application program.

2-472 '1" 82359· AOO 3/85

SPOOLSTART

<num-of-copies> input

INT:value

specifies the number of copies to print. The default
<num-of-copies> is 1.

<page-size> input

INT:value

specifies the page size used by PERUSE when a PAGE or LIST
command is given. The default <page-size> is 60.

<flags> input

INT:value

specifies certain attributes of the job.

The bit fields are as follows:

<flags>.<0:8> = reserved for use by the collector
.<9> = HOLD flag: 0 = off

1. = on
.<10> = HOLDAFTER flag: 0 = off

1 = on
.<11> = SPOOLWRITE, SPOOLCONTROL, SPOOLCONTROLBUF,

and SPOOLSETMODE exit before writing the
level 3 buffer to the collector process, so
that user can checkpoint: 0 = no

1 = yes
.<12> = reserved for use by the collector
.<13:15> = job priority

The default is 4; job priority is 4; all other bits are set
to O.

'1' 82359 AOO 3/85 2-473

SPOOLSTART

<owner> input

INT:value

allows the caller to assign JOB ownership. The owner name is
group number:user number.

The default <owner> of a job is the user who opened the file
to the collector.

Condition Code Settings

The condition code has no meaning following a call to SPOOLSTART (see
the <error-code> parameter).

Considerations

• SPOOLSTART--Bits <8:15>--Error on File to Collector

Some file system errors have special significance to a process
sending data to a collector; these errors are listed in the
System Messages Manual.

A program using level 1 or level 2 spooling gets these errors from
the WRITE or OPEN procedures, while a program spooling at level 3
obtains these errors in bits <8:15> of a spooler error code in the
%1000 range.

Example

CALL SPOOLSTART (COLLANUM , COLLABUFFER); start level 3.

Related Programming Manual

For programming information about the SPOOLSTART procedure, refer to
the Spooler Programmer's Guide.

2-474 -'182359 AOO 3/85

I

SPOOLWRITE

SPOOLWRITE PROCEDURE

The SPOOLWRITE procedure is used to write to a collector when the
application process is spooling at level 3.

The SPOOLWRITE procedure compresses and blocks data into the level 3
buffer and, when the buffer is full, writes the buffer to the
collector. This procedure must be used in place of the WRITE
procedure, if a level 3 buffer is specified in a call to SPOOLSTART.

The syntax for SPOOLWRITE is:

<error-code> := SPOOLWRITE (<level-3-buff>

<error-code>

INT

,<print-line>
,<write-count>
,[<bytes-written-to-buff>]);

returned value

returns one of the following spooler error codes:

0 =
%1000-%1377 =

%10000 =

successful operation
error on file to collector (<8:15> contains
a file system error code number; see
"Considerations")
missing parameter

i, 0
1

i
0

%10001
%11000

=
=

parameter is present, but its content is wrong
checkpoint exit

%11001

<level-3-buf f>

INT:ref :512

= attempted to write to the collector without
first opening the file

input, output

is the <level-3-buff> specified in the call to SPOOLSTART.

<print-line> input

INT: ref:*

is an array containing the line of data to be sent to the
collector. The size of <print-line> must not exceed 900 bytes.

11 82359 AOO 3/85 2-475

SPOOLWRITE

<write-count> input

INT:value

is the number of bytes of <print-line> to be written. This
must not exceed 900 bytes.

<bytes-written-to-buff> output

INT: ref:*

returns the number of bytes in the <level-3-buf f> to be
checkpointed.

Condition Code Settings

The condition code has no meaning following a call to SPOOLSTART
(see the <error-code> parameter).

Considerations

• When <level-3-buf f> Overflows

Each call to SPOOLWRITE causes <print-line> to be written to the
<level-3-buff>. When a call to SPOOLWRITE causes the
<level-3-buff> to overflow, the buffer is written to the collector.

The blocking and compression of data into the <level-3-buf f> are
invisible to the application process.

• SPOOLSTART and <flags>.<11>

If bit 11 of the <flags> parameter of SPOOLSTART is set to
1, SPOOLWRITE exits with a spooler error code of %11000 prior
to writing the <level-3-buff> to the collector. Applications
running as a Nonstop process pair can then perform a checkpoint,
before the buffer is written to the collector. SPOOLWRITE should
be recalled after checkpointing.

2-476 Aft 82359 AOO 3/85

SPOOLWRITE

• SPOOLWRITE--Bits <8:15>--Error on File to Collector

Some file system errors have special significance to a process
sending data to a collector; these errors are listed in the
System Messages Manual.

A program using level 1 or level 2 spooling gets these errors from
the WRITE or OPEN procedures, while a program spooling at level 3
obtains these errors in bits <8:15> of a spooler error code in the
%1000 range.

Example

SPERRNUM :=CALL SPOOLWRITE (COLLABUFFER , PRINTALINE , LENGTH };

Related Programming Manual

For programming information about the SPOOLWRITE procedure, refer to
the Spooler Programmer's Guide.

-'1J 82359 AOO 3/85 2-477

STEPMOM

STEPMOM PROCEDURE

The STEPMOM procedure is called by a process when it wants to receive
process STOP or ABEND messages for a process it did not create. Note
that the caller of STEPMOM becomes the new "MOM" of the designated
process. (That is, STEPMOM replaces the MOM field in the designated
process's process control block with the process ID of its caller.)
Therefore, only the caller receives the process deletion notification.

STEPMOM is typically used by the backup process of an nonnamed process
pair to monitor its primary process. (This monitoring is automatic
between members of named process pairs.)

The syntax for STEPMOM is:

CALL STEPMOM (<process-id>); i

<:process-id> input

INT:ref :4

is an array containing the PID of an already executing process,
for which the calling process wants to receive the process
deletion message.

Condition Code Settings

< (CCL) indicates that STEPMOM failed, or that no process
designated <process-id> exists.

= (CC:~) indicates that the caller is now the creator (MOM) of
<process-id>.

> (CCG) does not return from STEPMOM.

Considerations

• Process Accessor ID and the Caller of STEPMOM

The caller of STEPMOM must have the same process accessor ID as
the process it is attempting to adopt, be the group manager of
the process accessor ID, or super ID. Refer to the GUARDIAN
Operating System Programmer's Guide for a description of
"process accessor ID."

2-478 -'182359 AOO 3/85

•

STEPMOM

Why STEPMOM Should Not Be Called for a Nonstop Process Pair

A process should not call STEPMOM for either member of a process
pair. Adoption of a process pair by a third process causes errors
and interferes with operation, since the operation depends upon
each member of the process pair being the "MOM" of the other.

Figure 2-4 illustrates the effect of STEPMOM.

(A) Creates (B) :

(A) (B)

MOM:::: (A)

(B) Creates (C) :

(A) (B) (C)

MOM= (A) MOM:::: (B)

(C) Calls STEPMOM and passes B's process ID:

(A)

~ 82359 AOO 3/85

(B) (C)

MOM= (C) MOM= (B)

(B) receives a STOP OR ABEND message
if (C) is deleted.

Likewise,
(C) receives a STOP OR ABEND message

if (B) is deleted.

55023-005

Figure 2-4. Effect of STEPMOM

2-479

STEPMOM

Messages

• Process Normal Deletion Message

The caller of STEPMOM receives system message (-5) if the
<process-id> is being deleted normally because of a call to STOP.

• Process Abnormal Deletion Message

The caller of STEPMOM receives system message (-6) if the
<process-id> is being deleted abnormally because of a call to
ABEND, or because the deleted process encountered a trap condition
and was aborted by the operating system.

Example

CALL STEPMOM (STEPASON);

Related Programming Manual

For programming information about the STEPMOM process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-480 .., 82359 AOO 3/85

STOP

STOP PROCEDURE

The STOP procedure is used to delete a process or a process pair and
to signal that the deletion was caused by a normal condition (that is,
a STOP system message is sent to the deleted process's creator). STOP
can be used by a process:

• To delete itself

• To delete its own backup

The caller of STOP must have the same process accessor ID as the
process it is attempting to stop, be the group manager of the
process accessor ID, or super ID. Refer to the GUARDIAN Operating
System Programmer's Guide for a description of "process accessor ID."

When STOP executes, all open files associated with the deleted
process(es) are automatically closed. If the process had BREAK
enabled, BREAK is disabled.

The syntax for STOP is:

CALL STOP [(<process-id>
,L <stop-backup>]);

<process-id> input

INT:ref :4

i
i

is the process that is to be stopped, at this point, there are
two choices:

• It can be omitted (or zero), meaning "stop myself."

• It is the process ID (PID) of the process to be stopped. If
<process-id>[0:2] references a process pair and
<process-id>[3] is specified as -1, then both members of the
process pair are stopped.

<stop-backup>

INT:value

input

if specified as 1, the current process's backup is stopped;
otherwise, this parameter is ignored.

-'1 82359 AOO 3/85 2-481

STOP

Condition Code Settings

< (CCL) indicates that the <process-id> parameter is invalid, or
there was an error while stopping the process.

= (CCE) indicates that the STOP was successful.

> (CCG) does not return from STOP.

Considerations

• Differences Between STOP and ABEND Procedure

Note that when used to stop the calling process, the STOP and ABEND
procedures are identical in operation, with the exception of the
particular system message sent to the deleted process's creator.

• Creator of the Process and the Caller of STOP

If the caller of STOP is also the creator of the process being
deleted, the caller receives the deletion message.

Message

• Process Normal Deletion Message

The creator of the stopped process is sent a process normal
deletion (STOP) system message (system message -5), indicating that
the deletion occurred.

Examples

CALL STOP; stop me.

CALL STOP (PID); stop the process with this PID.

Related Programming Manual

For programming information about the STOP process control procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-482 -'182359 AOO 3/85

SUSPENDPROCESS

SUSPENDPROCESS PROCEDURE

The SUSPENDPROCESS procedure puts a process or process pair into the
suspended state, preventing that process from being active (that is,
executing instructions). (A process is removed from the suspended
state and put back into the ready state if it is the object of a call
to the ACTIVATEPROCESS procedure.)

The syntax for SUSPENDPROCESS is:

CALL SUSPENDPROCESS <process-id>)~ i

<process-id> input

INT:ref :4

is an array containing the process ID (PID) of the process to be
suspended. If <process-id>[0:2] references a process pair
and <process-id>[3] is specified as -1, then both members of
the process pair are suspended.

Condition Code Settings

< (CCL) indicates that SUSPENDPROCESS failed, or no process
designated <process-id> exists.

= (CCE) indicates that <process-id> is suspended.

> (CCG) does not return from SUSPENDPROCESS.

Considerations

• Caller of SUSPENDPROCESS and Process Accessor ID

The caller of SUSPENDPROCESS must have the same process accessor
ID as the process or process pair it is attempting to suspend, or
have a super ID, or be the group manager of the process accessor
ID. Refer to the GUARDIAN Operating System Programmer's Guide for
information about system security, specifically process accessor ID
and super ID.

~ 82359 AOO 3/85 2-483

SUSPENDPROCESS

Example

CALL SUSPENDPROCESS (PROGAID };

Related Programming Manual

None

2-484

suspend process.

~ 82359 AOO 3/85

SYSTEMENTRYPOINTLABEL

SYSTEMENTRYPOINTLABEL PROCEDURE

The SYSTEMENTRYPOINTLABEL procedure returns either the procedure label
of the named entry point or, if not found, a zero.

The syntax for SYSTEMENTRYPOINTLABEL is:

<label> := SYSTEMENTRYPOINTLABEL (<name>
,<len>);

<label> returned value

INT

is the procedure label.

<name> input

STRING: ref:*

is the entry point name and must be specified in
upper-case letters.

<len> input

INT:value

is the length, in bytes, of <name>.

Condition Code Settings

The condition code has no meaning following a call to
SYSTEMENTRYPOINTLABEL.

Example

EPNAME ':=' "FILEINFO";
EPLABEL := SYSTEMENTRYPOINTLABEL (EPNAME , LEN);

Related Programming Manual

None

~ 82359 AOO 3/85

i
i

2-485

TIME

TIME PROCEDURE

The TIME procedure provides the current date and time in integer form.

The syntax for TIME is:

CALL TIME (<date-and-time>); ! 0

<date-and-time> output

INT:ref :7

returns an array with the current date and time in
the following form:

<date-and-time>[O] = year (1983, 1984, ...
[1] = month (1-12)
[2] = day (1-31)
[3] = hour (0-23)
[4] = minute (0-59)
[5] = second (0-59)
[6] = • 01 sec (0-99)

Condition Code Settings

The condition code has no meaning following a call to TIME.

Example

CALL TIME (TIMEAARRAY);

Related Programming Manual

TIMEAARRAY contains the
integer form of current
date and time.

For programming information about the TIME utility procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

2-486 4°t 82359 AOO 3/85

TIMESTAMP

TIMESTAMP PROCEDURE

The TIMESTAMP procedure provides the internal form of the CPU interval
clock where the application is running.

The syntax for TIMESTAMP is:

CALL TIMESTAMP (<interval-clock>); ! 0

<interval-clock> output

INT:ref :3

returns the current value of the interval clock in a three-word
array. A processor's interval clock is incremented every .01
second. <interval-clock> returns in the following form:

[O] most significant word

[l] interval clock

[2] least significant word
f ----------------------------------

Condition Code Settings

The condition code has no meaning following a call to TIMESTAMP.

Considerations

• A timestamp is normally a 48-bit quantity equal to a number of
of 10 millisecond units since 00:00, 0 January 1975.

Example

CALL TIMESTAMP TIMESTAMP""BUF);

Related Programming Manual

For programming information about the TIMESTAMP utility procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

"'1 82359 AOO 3/85 2-487

TOSVERSION

TOSVERSION PROCEDURE

The TOSVERSION procedure provides an identifying letter and number
indicating which version of the GUARDIAN operating system is running.

The syntax for TOSVERSION is:

<version> := TOSVERSION;

<version> returned value

INT

returns a value of the form:

<0:7> uppercase ASCII letter indicating system level:

A = T.O.S.
B = GUARDIAN
c = GUARDIAN I 1.1
D = GUARDIAN I EXPAND
E = GUARDIAN I EXPAND I Transaction Monitoring

Facility
K, L = GUARDIAN, Nonstop system

<8:15> revision number of system in binary

~ondition Code Settings

The condition code has no meaning following a call to TOSVERSION.

Example

VERSION := TOSVERSION;

Related Programming Manual

.~or programming information about the TOSVERSION utility procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-488 "1' 82359· AOO 3/85

UNLOCKFILE

UNLOCKFILE PROCEDURE

The UNLOCKFILE procedure unlocks a disc file and any records in that
file currently locked by the caller. Unlocking a file allows
other processes to access the file. It has no effect on audited
files.

The syntax for UNLOCKFILE is:

CALL UNLOCKFILE (<f ilenum>
,[<tag>]

<f ilenum>

INT:value

) :

input

i
i

is a number of an open file that identifies the file to be
unlocked.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
UNLOCKFILE.

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the UNLOCKFILE was successful.

> (CCG) indicates that the file is not a disc file.

"'182359 AOO 3/85 2-489

UNLOCKFILE

Considerations

• Nowait and UNLOCKFILE

The UNLOCKFILE procedure must complete with a corresponding call to
the AWAITIO procedure when used with a file that is opened nowait.

• Locking Queue

If any processes are queued in the locking queue for the file, the
process at the head of the locking queue is granted access and is
removed from the queue (the next READ or lock request moves to the
head of the queue).

If the next process in the locking queue is waiting to:

--Lock the file or lock a record in the file, it is granted the
lock (which excludes other processes from accessing the file) and
resumes processing

--To read the file, its READ is processed

• Transaction Monitoring Facility (TMF) and UNLOCKFILE

Locks on files audited by TMF are released only when the
transaction is ended or aborted by TMF; therefore, a locked
file audited by TMF will be unlocked during an ENDTRANSACTION or
ABORTTRANSACTION processing for that file. (Refer to the
PATHWAY Programming Manual for information about TMF and locking
files.)

Example

CALL UNLOCKFILE (SAVEAFILENUM);

Related Programming Manual

For programming information about the UNLOCKFILE file system
procedure, refer to the ENSCRIBE Programming Manual and the GUARDIAN
Operating System Programmer's Guide.

2-490 -'1" 82359 AOO 3/8~

UNLOCKREC

UNLOCKREC PROCEDURE

The UNLOCKREC procedure unlocks a record currently locked by the
caller. UNLOCKREC unlocks the record at the current position,
allowing other processes to access that record. UNLOCKREC has no
effect on audited files.

The syntax for UNLOCKREC is:

CALL UNLOCKREC (<f ilenum>
,[<tag>])~

<f ilenum> input

INT: value

i
i

is the number of an open file that identifies the file
containing the record to be unlocked.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
UNLOCKREC.

NOTE

The system stores this <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the UNLOCKREC is successful.

> (CCG) indicates that the file is not a disc file.

~ 82359 AOO 3/85 2-491

UNLOCKREC

Considerations

• File-Opened Nowait and UNLOCKREC

The UNLOCKREC procedure must complete with a corresponding call to
the AWAITIO procedure when used with a file that is opened nowait.

• Queuing Processes and UNLOCKREC

If any processes are queued in the locking queue for the record,
the process at the head of the locking queue is granted access and
is removed from the queue (the next READ or lock request moves to
the head of the queue).

If the process granted access is waiting to lock the record, it is
granted the lock (which excludes other process from accessing the
record) and resumes processing.

If the process granted access is waiting to read the record, its
READ is processed.

• Calling UNLOCKREC After KEYPOSITION

If the call to UNLOCKREC immediately follows a call to KEYPOSITION
where a nonunique alternate key is specified, the UNLOCKREC fails.
A subsequent call to FILEINFO returns file system error 46 (invalid
key). However, if an intermediate call to READ or READLOCK is
performed, the call to UNLOCKREC is permitted.

• Unlocking Several Records

If several records need to be unlocked, the UNLOCKFILE procedure
can be called to unlock all records currently locked by the caller
(rather than unlocking the records through individual calls to
UNLOCKREC) •

• Current-State Indicators After UNLOCKREC

For key-sequenced, relative, and entry-sequenced files, the
current-state indicators after an UNLOCKREC remain unchanged.

• File Pointers After UNLOCKREC

For unstructured files, the current-record pointer and the
next-record pointer remain unchanged.

2-492 .., 82359 AOO 3/85

UNLOCK REC

• Transaction Monitoring Facility (TMF) and UNLOCKREC

A record that is locked in a file audited by TMF is unlocked when
an ABORTTRANSACTION or ENDTRANSACTION procedure is called for that
file. Locks on files audited by TMF are released only when the
transaction is ended or aborted by TMF. (Refer to the PATHWAY
Programming Manual for additional information about record locking
and TMF.)

Example

CALL UNLOCKREC

Related Programming Manual

For programming information about the UNLOCKREC file system procedure,
refer to the ENSCRIBE Programming Manual.

~ 82359 AOO 3/85 2-493

USERIDTOUSERNAME

USERIDTOUSERNAME PROCEDURE

The USERIDTOUSERNAME procedure returns the user name, from the file
$SYSTEM.SYSTEM.USERID, that is associated with a designated user ID.

The syntax for USERIDTOUSERNAME is:

CALL USERIDTOUSERNAME <id-name>)~ i, 0

<id-name> input, output

INT:ref :8

on input, contains the user ID to be converted to a user
name. The user ID is passed in the form:

<id-name>.<0:7>
.<8:15>

= group ID {0:255}
= user ID {0:255}

on the return, contains the user name associated with the
specified user ID in the form:

<id-name> FOR 4 = group name, blank-filled
<id-name>[4] FOR 4 = user name, blank-filled

~ondition Code Settings

< (CCL) indicates that <id-name> is out of bounds or that an I/O
error occurred with the $SYSTEM.SYSTEM.USERID file.

= (CCE) indicates that the designated user name returned.

> (CCG) indicates that the specified user ID is undefined.

Example

CALL USERIDTOUSERNAME (IDANAME);

Related Programming Manual

For programming information about the USERIDTOUSERNAME security
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-494 '1' 82359 AOO 3/85

USERNAMETOUSERID

USERNAMETOUSERID PROCEDURE

The USERNAMETOUSERID procedure returns the user ID, from the file
$SYSTEM.SYSTEM.USERID, that is associated with a designated user name.

The syntax for USERNAMETOUSERID is:

CALL USERNAMETOUSERID (<name-id>); i, 0

<name-id> input, output

INT:ref :8

on input, contains the user name to be converted to a
user ID. The user name is passed in the form:

<name-id> FOR 4 = group name, blank-filled
<name-id>[4] FOR 4 = user name, blank-filled

on the return, contains the user ID associated with the
specified user name in the form:

<name-id>.<0:7>
<name-id>.<8:15>

Condition Code Settings

= group ID {0:255}
= user ID {0:255}

< (CCL) indicates that <name-id> is out of bounds or that an I/O
error occurred with the $SYSTEM.SYSTEM.USERID file.

= (CCE) indicates that the designated user ID returned.

> (CCG) indicates that the specified user name is undefined.

Example

CALL USERNAMETOUSERID (NAMEAID);

Related Programming Manual

For programming information about the USERNAMETOUSERID security
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 2-495

USE SEGMENT

USESEGMENT PROCEDURE

The USESEGMENT procedure selects a particular extended data segment
to be currently addressable by the calling process.

The syntax for USESEGMENT is:

<old-segment-id> := USESEGMENT (<segment-id>); i

<old-segment-id> returned value

INT

returns the segment ID of the previously used segment if any;
otherwise, it is -1.

WARNING

<old-segment-id> should be a simple INT(32) variable;
otherwise, the assignment can alter the condition code.

<segment-id> input

INT:value

if present, is the segment ID of the segment used or -1
if no segment is used. If this parameter is not
supplied, the current segment remains unchanged.

Condition Code Settings

< (CCL) indicates that <segment-id> is not allocated, or that the
segment cannot be used by a nonprivileged caller.

= (CCE) indicates that the operation is successful.

> (CCG) does not return from USESEGMENT.

Considerations

• Because segment relocation is done, the first byte of any extended
segment has the address %2000000D.

2-496 ~ 82359 AOO 3/85

USE SEGMENT

• Only one extended data segment can be in use at any given time.

Example

OLDASEGAID := USESEGMENT (NEWASEGAID):

Related Programming Manual

None

"'1 82359 AOO 3/85

change segments.

2-497

VERIFYUSER

VERIFYUSER PROCEDURE

VERIFYUSER allows a process to assume a user's identity by using the
given user ID (see "Condition Code Settings").

The syntax for VERIFYUSER is:

CALL VERIFYUSER (<user-name-or-id> i
,[<logon>] i
, [<default> , <default-len>]) ; o, i

<user-name-or-id> input

INT:ref :12

is an array containing the name or user ID of the user to be
verified or logged on, as follows:

or

<user-name-or-id>[0:3] = group name, blank-filled
<user-name-or-id>[4:7] = user name, blank-filled

<user-name-or-id>[0].<0:7> = group ID
<user-name-or-id>[0].<8:15> = user ID
<user-name-or-id>[l:7] = zeros (ASCII nulls)

In either case:

<user-name-or-id>[8:11] = password (if supplied)
blank-filled

<logon> input

INT:value

if present, has the following meaning:

0 : verify user but do not log on
<> 0 : verify user and log on

if omitted, is assumed to have a value of O.

2-498 ..., 82359 AOO 3/85

f'

VERIFYUSER

<default> output

INT:ref :18

if present, returns information regarding the user specified
in <user-name-or-id>:

<default>[0:3]
[4:7]
[8].<0:7>

<default-len>

INT: value

.<8:15>
[9:12]
[13:16]

[17].<0:15>

= group name, blank-filled
= user name, blank-filled
= group ID
= user ID
= default volume, blank-filled
= default subvolume, blank-filled

= default file security, as follows:
.<0:3> = unused
.<4:6> = read
.<7:9> = write
.<10:12> = execute
.<13:15> = purge

where 0 = A
1 = G
2 = 0
4 = N
5 = c
6 = u
7 = -

input

is the length, in bytes, of the <default> array. <default-len>
is required if <default> is specified. This number should
always be specified as 36: in the future, new fields can be
added to <default>, requiring <default-len> to become larger.

Condition Code Settings

< (CCL) indicates that a buffer is out of bounds, or that
an I/O error occurred on the user ID file
($SYSTEM.SYSTEM.USERID).

~ 82359 AOO 3/85 2-499

VERIFYUSER

= (CCE) indicates a successful verification and/or logon.

NOTE

Condition code CCE returns under the following conditions:

• Specifying 0 for the <logon> parameter verifies that there is
a user with that name on the system, but you cannot assume
that user's identity and you cannot log on.

• If the <logon> parameter is a value other than 0, you can
assume that user's ID if:

--You are super.super ID (255,255).
--You are the group manager (*,255)~
--You know the user's password.

If you assume one of the above IDs, then your process access
ID and creator access ID changes, you become a 10cal user,
and your default file security changes to what is established
in the local USERID file.

> (CCG) indicates that there is no such user or that the password
is invalid.

Considerations

• Successful Logon With This Procedure

Following a successful logon with this procedure, the calling
process is considered local with respect to the system on which
it is running.

• A process that passes an invalid password to VERIFYUSER for the
third time is suspended for 60 seconds.

• System Users

System users are defined through the COMINT ADDUSER command. All
COMINT commands are described in the GUARDIAN Operating System
Utilities Reference Manual.

2-500 '1' 82359 AOO 3/85

,,.

Example

USER := 3 '<<' 8 + 17;
USER[l] ':=' 0 & USER[l] FOR 6;
USER[8] ':=' password FOR 8;
LOGON : = 1;

user ID 3, 17.
all zeros.

log this user on.

VERIFYUSER

CALL VERIFYUSER (USER , LOGON , DEFAULT , DEFAULTALEN);

IF < THEN
ELSE IF > THEN

ELSE

buffer or I/O error,
no such user, or bad
password.
successful.

The array "USER" is prepared with the user and group ID and then
passed to VERIFYUSER. VERIFYUSER logs on the process with the user ID
17 and group ID 3.

Related Programming Manual

For programming information about the VERIFYUSER security procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 2-501

WRITE

WRITE PROCEDURE

The WRITE procedure is used to output data :Erom an array in the
application program to an open file (see "Considerations").

The syntax for WRITE is:

CALL WRITE (<f ilenum>

<f ilenum>

INT:value

, <buff er>
,<write-count>
,[<count-written>]
,[<tag>]);

input

i
i
i
0

i

is the number of an open file that identifies the file to be
written.

<buffer> input

INT:r.ef :*

is an carray containing the information to be written to the
file.

<wr i te-·coun t > input

INT:value

is the number of bytes to be written:

{0:4096} for disc files
{0:32767} for nondisc files
{0:32000} for interprocess files
{0:102} for the operator console

For key-sequenced and relative files, 0 is illegal. For
entry-sequenced files, 0 indicates an empty record.

2-502 Af' 82359 AOO 3/85

<count-written> output

INT:ref :l

is for wait I/O only. <count-written> returns a count of the
number of bytes written to the file.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this WRITE.

NOTE

The system stores this <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to
AWAITIO, thus indicating that the operation completed.

i Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the WRITE is successful.

> (CCG) does not return from WRITE.

Considerations

• Waited WRITE

If a waited WRITE is executed, the <count-written> parameter
indicates the number of bytes actually written.

• Nowait WRITE

WRITE

If a nowait WRITE is executed, <count-written> has no meaning and
can be omitted. The count of the number of bytes written is
obtained when the I/O operation completes through the
<count-transferred> parameter of the AWAITIO procedure.

The WRITE procedure must complete with a corresponding call to the
AWAITIO procedure when used with a file that is opened nowait.

~ 82359 AOO 3/85 2-503

WRITE

Disc File Considerations

• File Is Locked

If a call to WRITE is made and the file is locked through a file
number other than that supplied in the call, the call is rejected
with file system error 73 ("file is locked").

• Inserting a New Record Into a File

The WRITE procedure inserts a new record into a file in the
position designated by the file's primary key:

Key-Sequenced
Files

Relative Files

Entry-Sequenced
Files

The record is inserted in the position indicated
by the value in its primary-key field.

After an OPEN or an explicit positioning by its
primary key, the record is inserted in the
designated position. Subsequent WRITEs without
intermediate positioning insert records in
successive record positions.

If -2D is specified in a preceding positioning,
the record is inserted in an available record
position in the file.

If -lD is specified in a preceding positioning,
the record is inserted following the last position
used in the file. There does not have to be an
existing record in that position at the time of
the WRITE.

The record is inserted following the last record
currently existing in the file.

NOTE

If the insert is to be made to a key-sequenced or relative
file and the record already exists, the WRITE fails, and a
subsequent call to FILEINFO returns file system error 10.

Unstructured
Files

The record is inserted at the position indicated
by the current value of the next-record pointer.

• Structured Files

--Inserting records into relative and entry-sequenced files

2-504

If the insertion is to a relative or entry-sequenced file, the
file must be positioned currently through its primary key.
Otherwise, the WRITE fails, and a subsequent call to FILEINFO
returns file system error 46 ("invalid key specified").

-1' 82359· AOO 3/85

--Current-state indicators after WRITE

After a successful WRITE, the current-state indicators for
positioning mode and comparison length remain unchanged.

WRITE

For key-sequenced files, the current position and the current
primary-key value remain unchanged.

For relative and entry-sequenced files, the current position is
that of the record just inserted and the current primary-key
value is set to the value of the record's primary key.

• Unstructured Files

--Unstructured WRITEs

If the WRITE is to an unstructured disc file, data is
transferred to the record location specified by the next-record
pointer. The next-record pointer is updated to point to the
record following the record written.

--The number of bytes written

If an unstructured file is created with the ODDUNSTR (odd
unstructured file) parameter set, the number of bytes written is
exactly the number of bytes specified with <write-count>. If
the ODDUNSTR parameter is not set when the file is created,

1 the value of <write-count> is rounded up to an even number
before the WRITE is executed.

The ODDUNSTR parameter is set when the file is created, either
with <f iletype>.<12> of the CREATE procedure or with the
Peripheral Utilities Program SET and CREATE commands.

--File pointers after WRITE

After a successful WRITE to an unstructured file, the file
pointers have these values:

current-record pointer := next-record pointer:
next-record pointer := next-record pointer + <count written>:
end-of-file (EOF) pointer := max (EOF pointer, next-record

pointer):

--WRITE to an even unstructured disc file

If the WRITE is to an even unstructured disc file, the value of
<write-count> is rounded up to an even number (see CREATE
procedure).

--Block size

No block can span more than two extents.

~ 82359 AOO 3/85 2-505

WRITE

Interprocess Communication Consideration

• Indication That the Destination Process Is Running

If the WRITE is to another process, successful completion of the
WRITE (or AWAITIO if nowait) indicates that the destination
process is running.

Example

CALL WRITE (OUTAFILE I OUTABUFFER I 72);

Related Programming Manuals

For programming information about the WRITE file system procedure,
refer to the GUARDIAN Operating System Programmer's Guide, the
ENSCRIBE Programming Manual, and the data communication manuals.

2-506 -'f 82359 AOO 3/85

i

WRITEREAD

WRITEREAD PROCEDURE

The WRITEREAD procedure writes data to a file from an array in the
application process, then waits for data to be transferred back from
the file. The data returns in the same array used for the WRITE.

Terminals A special hardware feature is incorporated in the
asynchronous multiplexer controller, which ensures that
the system is ready to read from the terminal as soon
as the WRITE is completed.

Interprocess The WRITEREAD procedure is used to originate a message
Communication to another process which was previously opened, then

waits for a reply from that process.

The syntax for WRITEREAD is:

CALL WRITEREAD (<f ilenum>
,<buffer>
,<write-count>
,<read-count>

<f ilenum>

INT:value

,[<count-read>]
,[<tag>]);

input

i
i,o
i
i
0
i

is the number of an open file that identifies the file where the
WRITE/READ is to occur.

<buffer> input, output

INT: ref:*

is an array containing information to be written to the file.

On return, <buffer> contains the information read from the file.

~ 82359 AOO 3/85 2-507

WRITEREAD

<write-count> input

INT: value

is the number of bytes to be written:

{0:32767} for terminals
{0:32000} for interprocess files

NOTE

When using terminals in block mode, an error 21 occurs
if <write-count> exceeds 256 bytes.

<read-count> output

INT:value

returns the number of bytes to be read:

{0:32767} for terminals
{0:32000} for interprocess files

NOTE

When using terminals in block mode, an error 21 occurs
if <read-count> exceeds 256 bytes.

<count-read> output

INT:ref :l

is for wait I/O only. It returns a count of the number of bytes
returned from the file into <buffer>.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
WRITEREAD .

.___ ____ , ____ , _________ , ______ _

2-508 4J 82359 AOO 3/85

NOTE

The system stores this <tag> value until the I/O
operation completes. The system then returns the <tag>
information to the program in the <tag> parameter of
the call to AWAITIO, thus indicating that the operation
completed.

Condition Code Settings

< (CCL) indicates that an error occurred (Call FILEINFO).

= (CCE) indicates the the WRITEREAD is successful.

WRITEREAD

> (CCG) indicates that CNTRL-Y is pressed on the terminal.

Considerations

• Waited READ

If a waited READ is executed, the <count-read> parameter indicates
~ the number of bytes actually read.

• Nowait READ

If a nowait READ is executed, <count-read> has no meaning and can
be omitted. The count of the number of bytes read is obtained when
the I/O operation completes through the <count-transferred>
parameter of the AWAITIO procedure.

The WRITEREAD procedure must complete with a corresponding call to
the AWAITIO procedure when used with a file that is opened nowait.

• Carriage Return/Line Feed Sequence After WRITE

There is no carriage return/line feed sequence sent to the terminal
after the WRITE part of the operation.

~ 82359 AOO 3/85 2-509

WRITEREAD

Example

CALL WRITEREAD (FILEANUM ' INOUTABUFFER ' 1 ' 72 ' NUMAREAD);

The INOUT~'BUFFER contains the information to be written, and after the
WRITE it contains information that was read. In this case, 1 byte is
to be written, and 72 bytes are to be read. NUMAREAD indicates how
many bytes are read into the INOUTABUFFER.

Related Programming Manuals

For programming information about the WRITEREAD file system procedure,
refer to the GUARDIAN Operating System Pro..sE.._ammer's Guide, the
ENSCRIBE Programming Manual, and the data communication manuals.

2-510 "1J 82359 AOO 3/85

WRITEUPDATE

WRITEUPDATE PROCEDURE

The WRITEUPDATE procedure transfers data from an array in the
application program to a file.

• For disc files, WRITEUPDATE has two functions:

1. To alter the contents of the record at the current position

2. To delete the record at the current position in a key-sequenced
or relative file.

WRITEUPDATE is used for processing data at random. Data from the
application process's array is written in the position indicated by
the setting of the current-record pointer. A call to this procedure
typically follows a corresponding call to the READ or READUPDATE
procedure. The current-record and next-record pointers are not
affected by the WRITEUPDATE procedure.

• For magnetic tapes, WRITEUPDATE is used to replace a record in the
middle of an already written tape. The tape is backspaced one
record; the data from the application process's array is written in
that area.

The syntax for WRITEUPDATE is:

CALL WRITEUPDATE (<f ilenum>
,<buffer>
,<write-count>

<f ilenum>

INT: value

,[<count-written>]
, [<tag>]) ;

input

i
i
i
0

i

is a number of an open file that identifies the file to be
written.

<buffer> input

INT: ref:*

is an array containing the information to be written to the
file.

"'1 82359 AOO 3/85 2-511

WRITEUPDATE

<write-count> input

INT: value

is the number of bytes to be written to the file:

{0:4096} for disc files
{0:32767} for magnetic tapes

Key-sequenced and relative files = 0
Entry-sequenced files = 0

<count-written> output

INT:ref :l

means delete the record.
anything<> the record's
length is illegal.

is for wait I/O only. It returns a count of the number of bytes
written to the file.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
WRITEUPDATE.

NOTE

The system stores this <tag> value until the I/O
operation completes. The system returns the <tag>
information back to the program in the <tag> parameter
of the call to AWAITIO, thus indicating that the operation
completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates the the WRITEUPDATE was successful.

> (CCG) does not return from WRITEUPDATE.

2-512 "f' 82359 AOO 3/85

WRITEUPDATE

Considerations

• Bad I/O Count

For DPl files:

If the <write-count> parameter attempts to transfer too much data,
the call is rejected with file system error 21. No single disc
transfer can span more than two extents.

For DP2 files:

There is no restriction on the beginning file position. The
BUFFERSIZE attribute value (which is set by specifying SETMODE
function 93) does not constrain the allowable <write-count> in any
way: however, there is a performance penalty if the WRITE does not
start on a BUFFERSIZE boundary and have a <write-count> of <=
BUFFERSIZE. DP2 executes your requested I/O in units (possibly
multiple) of BUFFERSIZE blocks, starting on a block boundary.

• Deleting Locked Records

Deletion of a locked record implicitly unlocks that record.

• Waited WRITEUPDATE

If a waited WRITEUPDATE is executed, the <count-written> parameter
' indicates the number of bytes actually written.

• Nowait WRITEUPDATE and Transaction Monitoring Facility {TMF)

If a nowait WRITEUPDATE is executed, <count-written> has no meaning
and can be omitted. The count of the number of bytes written is
obtained through the <count-transferred> parameter of the AWAITIO
procedure when the I/O completes.

The WRITEUPDATE procedure must complete with a corresponding call
to the AWAITIO procedure when used with a file that is opened
nowait. For files audited by TMF, the AWAITIO procedure must be
called before the ENDTRANSACTION or ABORTTRANSACTION procedure is
called.

Disc File Considerations

• Random Processing and WRITEUPDATE

For key-sequenced, relative, and entry-sequenced files, random
processing implies that a designated record must exist. This means
that positioning for WRITEUPDATE is always to the record described
by the exact value of the current key and current-key specifier.
If such a record does not exist, the call to WRITEUPDATE is
rejected with file system error 11 {"record does not exist").

"1 82359 AOO 3/85 2-513

WRITEUPDATE

• Record Does Not Exist

The positioning for WRITEUPDATE is always to the record described
by the exact value of the current key and current-key specifier.
Therefore, if such a record does not exist, the call to WRITEUPDATE
is rejected with file system error 11.

• File Is Locked

If a call to WRITEUPDATE is made and the file is locked through a
file number other than that supplied in the call, the call is
rejected with file system error 73 ("file is locked").

• When the Just Read Record Is Updated

A call to WRITEUPDATE following a call to READ, without
intermediate positioning, updates the record just read.

• A WRITE to an Even Unstructured Disc File

If the WRITE is to an even unstructured disc file, the value of
<write-count> is rounded up to an even number (see CREATE
procedure).

• Unstructured Files

--Unstructured disc file: transferring data

If the WRITE is to an unstructured disc file, data is
transferred to the record location specified by the
current-record pointer.

--File pointers after a successful WRITEUPDATE

After a successful WRITEUPDATE to an unstructured file, the
current-record and next-record pointers are unchanged.

--The number of bytes written

2-514

If the unstructured file is created with the ODDUNSTR (odd
unstructured file) parameter set, the number of bytes written is
exactly the number of bytes specified with <write-count>. If
the ODDUNSTR parameter is not set when the file is created,
the value of <write-count> is rounded up to an even number
before the WRITEUPDATE is executed.

The ODDUNSTR parameter is set when the file is created, either
with <f iletype>.<12> of the CREATE procedure or with the
Peripheral Utilities Program SET and CREATE commands.

~ 82359 AOO 3/85

WRITEUPDATE

• Structured Files

--Calling WRITEUPDATE after KEYPOSITION

If the call to WRITEUPDATE immediately follows a call to
KEYPOSITION where a nonunique alternate key is specified as the
access path, the WRITEUPDATE fails. A subsequent call to
FILEINFO returns file system error 46 ("invalid key"). However,
if an intermediate call to READ or READLOCK is performed, the
call to WRITEUPDATE is permitted because a unique record is
identified.

--Specifying <write-count> for entry-sequenced files

For entry-sequenced files, the value of <write-count> must
match exactly the <write-count> value specified when the record
was originally inserted into the file.

--Changing the <primary-key> of a key-sequenced record

An update to a record in a key-sequenced file cannot alter the
value of the <primary-key> field. Changing the <primary-key>
field must be done by deleting the old record (WRITEUPDATE with
<write-count> = 0) and inserting a new record with the key field
changed (WRITE).

--Current-state indicators after WRITEUPDATE

After a successful WRITEUPDATE, the current-state indicators
remain unchanged.

Magnetic Tape Considerations

• WRITEUPDATE is not permitted on the 5106 Tri-Density Tape Drive.

• Specifying the Correct Number of Bytes Written

When WRITEUPDATE is used with magnetic tape the number of bytes to
be written must fit exactly; otherwise, information on the tape can
be lost. However, no error indication is given.

• Limitation of WRITEUPDATE to the Same Record

Five is the maximum number of times a WRITEUPDATE can be executed
to the same record on tape.

~ 82359 AOO 3/85 2-515

WRITEUPDATE

Example

The application makes the necessary changes to the record in TAPEABUF,
then edits the tape by calling WRITEUPDATE. The tape is backspaced
over the record just read, then updated by writing the new record in
its place. NUMAREAD indicates the number of bytes to be written
(ensuring that the same number of bytes just read are also written).

Related Programming Manuals

For programming information about the WRITEUPDATE file system
procedure, refer to the ENSCRIBE Programming Manual.

2-516 ~ 82359 AOO 3/85

WRITEUPDATEUNLOCK

WRITEUPDATEUNLOCK PROCEDURE

The WRITEUPDATEUNLOCK procedure performs random processing of records
in a disc file. WRITEUPDATEUNLOCK has two functions:

1. To alter, then unlock, the record's contents at the current
position

2. To delete the record at the current position in a key-sequenced or
relative file.

A call to WRITEUPDATEUNLOCK is equivalent to a call to WRITEUPDATE
followed by a call to UNLOCKREC. However, the WRITEUPDATEUNLOCK
procedure requires less system processing than do the separate calls
to WRITEUPDATE and UNLOCKREC.

The syntax for WRITEUPDATEUNLOCK is:

CALL WRITEUPDATEUNLOCK (<filenum>
,<buffer>
,<write-count>

<f ilenum>

INT:value

,[<count-written>]
,[<tag>])~

input

i
i
i
0

i

is a number of an open file that identifies the file to be
written.

<buffer> input

INT: ref:*

is an array containing the data to be written to the file.

<write-count> input

INT:value

is the number of bytes to be written to the file: {0:4096}.

Key-sequenced and relative files = 0
Entry-sequenced files = 0

.., 82359 AOO 3/85

delete the record
is illegal (error 21)

2-517

WRITEUPDATEUNLOCK

<count-written> output

INT:ref :l

is for wait I/O only. It returns an integer indicating the
number of bytes written to the file.

<tag> input

INT(32):value

is for nowait I/O only. <tag> is a value you define that
uniquely identifies the operation associated with this
WRITEUPDATEUNLOCK.

NOTE

The system stores this <tag> value until the I/O
operation completes. The system then returns the <tag>
information to the program in the <tag> parameter of
the call to AWAITIO, thus indicating that the operation
completed.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that the WRITEUPDATEUNLOCK was successful.

> (CCG) does not return from WRITEUPDATEUNLOCK.

Considerations

• Nowait and WRITEUPDATEUNLOCK

The WRITEUPDATEUNLOCK procedure must complete with a corresponding
call to the AWAITIO procedure when used with a file that is opened
nowait. For files audited by the Transaction Monitoring Facility,
the AWAITIO procedure must be called to compiete the
WRITEUPDATELOCK operation before ENDTRANSACTION or ABORTTRANSACTION
is called.

2-518 ~ 82359 AOO 3/85

WRITEUPDATEUNLOCK

• Random Processing and WRITEUPDATEUNLOCK

For key-sequenced, relative, and entry-sequenced files, random
processing implies that a designated record must exist. This means
positioning for WRITEUPDATEUNLOCK is always to the record described
by the exact value of the current key and current-key specifier.
If such a record does not exist, the call to WRITEUPDATEUNLOCK is
rejected with file system error 11 ("record does not exist").

• Unstructured Files--Pointers Unchanged

For unstructured files, data is written in the position indicated
by the current-record pointer. A call to WRITEUPDATEUNLOCK for an
unstructured file typically follows a call to POSITION or
READUPDATE. The current-record and next-record pointers are not
changed by a call to WRITEUPDATEUNLOCK.

• How WRITEUPDATEUNLOCK Works

The record unlocking performed by WRITEUPDATEUNLOCK functions
in the same manner as UNLOCKREC.

• Record Does Not Exist

Positioning for WRITEUPDATEUNLOCK is always to the record described
by the exact value of the current key and current-key specifier.
Therefore, if such a record does not exist, the call to

, WRITEUPDATEUNLOCK is rejected with file system error 11.

• See the "Considerations" for WRITEUPDATE.

Example

CALL WRITEUPDATEUNLOCK (OUTAFILE , OUTABUFFER , 72 &
' NUMAWRITTEN);

Related Programming Manuals

For programming information about the WRITEUPDATEUNLOCK file system
procedure, refer to the ENSCRIBE Programming Manual .

..., 82359 AOO 3/85 2-519

SECTION 3

SEQUENTIAL I/O PROCEDURES

The sequential I/O (SIO) procedures provide Tandem Application
Language (TAL) programmers with a small, standardized set of
procedures for performing sequential input and output operations to
files.

The SIO procedures are recommended for someone who writes programs
that are similiar to Tandem subsystems requiring sequential access
to files. If you need a special file capability use the file system
procedure calls instead.

Generally, you should not use these procedures and other GUARDIAN
operating system I/O procedures together on the same file.

The source file named $SYSTEM.SYSTEM.GPLDEFS is used with the SIO
procedures. It provides the TAL definitions for allocating control
block space, for assigning open characteristics to the file, and for
altering and checking the file transfer characteristics. TAL literals
for the SIO procedures' error numbers are also included. This file
must be referenced in the program's global area before any internal or
external procedure declarations or within a procedure before any
subprocedure declarations.

This section describes each SIO procedure in detail. The SIO
procedures are listed alphabetically for easier reference.

'1J 82359 AOO 3/85 3-1

CHECK A BREAK

CHECKABREAK PROCEDURE

The CHECKABREAK procedure tests whether the BREAK key has been typed
since the last CHECKABREAK.

The syntax for CHECKABREAK is:

<state> := CHECKABREAK ([<cornmon-fcb> });
[<f ile-fcb> }

<state> returned value

INT

l

l

returns a value indicating whether or not the BREAK key has been
typed. Values are:

1 = BREAK key typed; the process owns BREAK.
0 = BREAK key not typed; or this process does not own BREAK.

<common-- f cb> input

INT:ref :*

identifies the file to be checked for BREAK. <cornmon-FCB>
is allowed for convenience.

<f ile-fcb> input

INT: ref:*

identifies the file to be checked for BREAK.

Condition Code Settings

The condition code has no meaning following a call to CHECK'~BREAK.

Considerations

• Default Action

3-2

If a carriage return/line feed (CR/LF) on BREAK is enabled (that
is, BREAK ownership is taken by the process), the CR/LF default
case sequence is executed on the terminal where BREAK is typed.

"f' 82359 AOO 3/85

• For information about terminals, refer to the GUARDIAN Operating
System Programmer's Guide.

Example

BREAK := CHECKABREAK (OUTAFILE):

Related Programming Manual

For programming information about the CHECKABREAK procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

~ 82359 AOO 3/85 3-3

CHECKAFILE PROCEDURE

The CHECKAFILE procedure checks the file characteristics.

The syntax for CHECKAFILE is:

<retval> := CHECKAFILE ({ <common-fcb> }
{ <file-fcb> }

,<ope rat ion>) :

< retval> returned value

INT

i
1

1

returns a value for the requested operation (see Table 3-1 for
these values).

<common-fcb> or <file-fcb> input

INT: ref:*

identifies which file is checked. The common file control block
(FCB) can be used for certain types of checks; the common FCB
must be used for the checks FILEABREAKHIT, FILEAERRORFILE, and
FILEA1~RACEBACK. Specifying an improper FCB causes an error
indication.

<operation> input

INT:value

specifies which file characteristic is checked. The
<operation>s and their associated <retval>s are listed in
Table 3-1.

Condition Code Setti!!.9.§.

The condition code has no meaning following a call to CHECKAFILE.

Considerations

•

3-4

During the execution of this procedure, the detection of any error
causes the display of an error message, and the process is aborted.

"1J 82359 AOO 3/85

CHECK AF ILE

• In Table 3-1, the column labeled "State of the File" is flagged
with the following:

Open The file must be open to obtain certain characteristics
of the specified file.

Blank This indicates that the file can be either open or
closed.

~ 82359 AOO 3/85 3-5

w
I

O'\

~
CXl
rv
w
Ul
\.0

>'
0
0

w
'-...
OJ
Ul

(operation)

Fl LE/\.ABORT /\.XFERERR

FILE/\.ASSIGNMASK1

I
FILE/\.ASSIGNMASK2

I

I
FILE/\.BLOCKBUFLEN

l

r FILE/\.BWDLINKFCB

I
I

Fl LE/\.CHECKSUM

I FILE/\.CREATED

I
FILE/\.COUNTXFERRED

FILE/\.CRLF/\.BREAK

Table 3-1. CHECKAFILE Operations

State
of File (retval)

I Open 0 if the process is not to abort upon detection of a fatal error in the file.
I 1 if the process is to abort.

<high-order word of ASSIGN field mask)

returns the high-order word of the ASSIGN message field mask in the FCB. This value generally has meaning
only after being set by the INITIALIZER procedure.

(low-order word of ASSIGN fieldmask)

l
returns the low-order word of the ASSIGN message field mask in the FCB. This value generally has meaning
only after being set by the INITIALIZER procedure.

I I (block buffer length)

l l returns a count of the number of bytes used for blocking.

ual to O in the FCB.
q ual to 1 in the FCB.

The break hit bit is an internal indicator normally used only by the SIO procedures.

i

NOTE

When using the break handling procedures, do not use FILE/\.BREAKHIT to determine if the BREAK key
has been typed. Instead, the CHECK/\. BREAK procedure must be called.

I (backward link pointer)

returns the address of the FCB pointed to by the backward link pointer within the FCB.
This indicates the linked-to FCBs that need to be checkpointed after an OPEN/\.FILE or
CLOSE/\. FILE.

<checksum word)

returns the value of the checksum word in the FCB.

Open <state of the created bit)

0 if a file was not created by OPEN/\. FILE.
1 if a file was created by OPEN/\.FILE.

Open (count transferred)

returns a count of the number of bytes transferred in the latest physical 1/0 operation.

I Open (state of CR/LF break bit)

I
I

I

I J! I 0 if no CR/LF sequence is to be issued to the terminal upon break detection. II

I ___ _J _____ _J 1 if this sequence is to be issued.

n
::r:
t:tJ n
~

>
t'%j
H

t1
t:tJ

~
OJ
!'.)

w
(J1

\.0

~
0
0

w
.........
OJ
(J1

w
I

-.....)

(operation>

FILE/\DUPFILE

FILE/\ ERROR

FILE/\ERRORFILE

FILE/\ERROR/\ADDR

FILE/\FCB/\ADDR

Fl LE/\ Fl LEIN FO

Fl LE/I.Fl LENAM E/\ADDR

FILE/\FNUM

FILE/\FNUM/\ADDR

FILE/\FWDLINKFCB

FILE/\LOGICALFILENAME/\ADDR

Table 3-1.

State
of File

Open

Open

Open

I

Open

I

I

I

l
I
I

I I

I I

1

CHECKAFILE Operations (Continued)

(retval)

@(dupfile fcb)

returns the word address of the duplicate file FCB. AO is returned if there is no duplicate file.

(error)

returns the error number of the latest error that occurred within the file.

@<error file fcb >

returns the word address within the FCB of the reporting error file. AO is returned if there is none.

@(error)

returns the word address within the FCB where the error code is stored.

returns the address of the file control block.

(file info)

(file info).(0:3) =file type:
0 = unstructured
1 = relative
2 = entry-sequenced
3 = key-sequenced
4 =edit
8 = odd unstructured

.(4:9) = device type

.(10:15) = device subtype

The device type and subtype are described in Appendix B. File types 0-3 are described in the ENSCRIBE
Programming Manual.

(filename)

returns the word address within the FCB of the physical file name.

(filenum)

returns the file number. If the file is not open, the file number is -1.

(filenum)

returns the word address within the FCB of the file number.

(forward-link-pointer)

returns the address of the FCB pointed to by the forward link pointer within the FCB. This value indicates
the linked-to FCBs that need to be checkpointed after an OPEN/\ FILE or CLOSE/\ FILE.

@(logical file name)

returns the word address within the FCB of the logical file name. The logical file name is encoded as
follows:

byte numbers

[O] [1] [8]
(len)(logical file name)

<len) is the length of the logical file name in bytes {0:7}.

,J,

()

::r:
t:E.J
()

~
>

'"%J
H

t1
t:E.J

w
I

OJ

~
CXl
N
w
(.J1

\,!)

>
0
0

w

' CXl
(.J1

(operation}

FILEALOGIOOUT

Fl LEAOPENACCESS

FILEAOPENEXCLUSION

FILEAPHYSIOOUT

FILEAPRIEXT

Fl LEA PR I NT AERRAMSG

Fl LEA PROMPT

FILEARCVEOF

Fl LEARCVOPENCNT

FILEARCVUSEROPENREPLY

FILEAREADATRIM

FILEARECORDLEN

Table 3-1.

State I
of File l
Open

I

Open

Open

l
Open I

I

I
Open

Open

Open

Open

Open

CHECKAFILE Operations (Continued)

(retval)

<state of the logioout bit}

0 to indicate there is no iogicai i/O outstanding.
1 if a logical READ is outstanding.
2 if a logical WRITE is outstanding.

<open access}

returns the open access for the file. See SET AFILE for the format.

(exclusion}

returns the open exclusion for the file. See SET AFILE for the format.

<state of the physioout bit>

0 to indicate there is no outstanding physical 1/0 operation.
1 if a physical 1/0 operation is outstanding.

(primary extent size}

returns the file's primary extent size in pages.

(state of print errmsg bit)

0 if no error message is to be printed upon detection of a fatal error in the file.
1 if an error message is to be printed.

<interactive prompt character>

returns the interactive prompt character tor the tile in (9:15}.

<state of rcveof bit>

0 it the user does not get an end-of-tile (EOF) indication when the process [pair] having this
process open closes it.

1 if the user does get an EOF indication when this process closes.

($RECEIVE opener count}

returns a count of current openers tor this process {0:2}. At any given moment, openers are limited to a
single process [pair].

(state of the rev-user-open-reply bit}

0 if the SIO procedures are to reply to the OPEN messages ($RECEIVE file).
1 if the user is to reply to the OPEN messages.

<state of the read trim bit)

0 if the trailing blanks are not trimmed off the data read from this file.
1 if the trailing blanks are trimmed.

<record length>

returns the logical record length.

I

(")
::r:
[;El
(")

~
>

"%j
H

L1
t:r:l

~
CXl
[\..)

w
Ul
l.O

:;i:..
0
0

w
.........
CXl
Ul

w
I

\.0

(operation)

FILE.l\SECEXT

FILEASEQNUMAADDR

FILEASYSTEMM ESSAGES

FILEASYSTEMMESSAGESMANY

FILE/\ TRACEBACK

FILEAUSERFLAG

FILEAUSERFLAGAADDR

FILEAWRITEAFOLD

FILEAWRITEAPAD

FILEAWRITEATRIM

Table 3-1.

State
of File

Open

Open

I
I
I

l
1
I

Open

I

Open

I
I

I
T

Open 1
I I I

l 1

CHECKAFILE Operations (Continued)

(retval)

(secondary extent size)

returns the file's secondary extent size in pages.

@(sequence number>

returns the word address within the FCB of an INT (32) sequence number. This is the line number of the last
record of an edit file. For a nonedit file, this is the sequence number of the last record multiplied by 1000.

(system message mask)

returns a mask word indicating which system messages the user handles directly. See SET /\FILE for the
format. AO indicates that the sequential 1/0 procedures handle all system messages. Note that this oper-
ation cannot check some of the newer system messages; for these, use FILEASYSTEMMESSAGESMANY.

@<system message mask words>

returns a four-word mask indicating which system messages the user handles directly. See SETAFILE for
the format. A return of all zeros indicates that the SIO procedures handle all system messages.

(state of traceback bit)

0 if the P-relative address should not be appended to all SIO error messages.
1 if the P-relative address should be appended to all SIO error messages.

(user flag)

returns the user flag word. (See SET A FLAG procedure, SET i\USERFLAG operation.)

@<user flag>

returns the word address within the FCB of the user flag word.

(state of the write-fold bit>

0 if records longer than the logical record length are truncated.
1 if long records are folded.

(state of write-pad bit>

0 if a record shorter than the logical record length is not padded with trailing blanks before
it is written to the file.
1 if a short record is padded with trailing blanks.

{state of the write-trim bit)

0 if trailing blanks are not trimmed from data written to the file.
1 if trailing blanks are trimmed.

(')

:i::
t:rJ
(')
~

>
t"J:j
H

t"1
t:rJ

CHECK"FILg

Example

@INFILg"NAME := CHECK"FILE (IN"FILE , FILE"FILENAME"ADDR);

Related Programming Manual

For programming information about the CHECK"FILE procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

3-10 ..-, 82359 AOO 3/85

CLOSE AF ILE

CLOSEAFILE PROCEDURE

The CLOSEAFILE procedure is used to close a file.

The syntax for CLOSEAFILE is:

{ <error> := J CLOSEAFILE ({ <common-fcb> J
{ CALL J { <f ile-fcb> J

,[<tape-disposition>]);

<error> returned value

INT

i
i

i

returns either a file system or a sequential I/O (SIO)
procedure error number indicating the outcome of the close.
In any case, the file is closed.

If the abort-on-error mode (the default) is in effect, the only
possible value for <error> is O.

<common-fcb> input

INT:ref :*

identifies the file to be closed (if the file control block
(FCB) is passed) or indicates that all open files are closed
(if the common FCB is passed). If BREAK is owned for any file
being closed, it is returned to its previous owner.

<f ile-fcb> input

INT: ref:*

identifies the file to be closed if the file control block
(FCB) is passed. If BREAK is owned for any file being closed,
it is returned to its previous owner.

..-, 82359 AOO 3/85 3-11

CLOSE AF ILE

<tape-disposition> input

INT:value

specifies mag tape disposition.

<tape-disposition>.<13:15> denotes:

0 = rewind, unload, don't wait for completion.
1 = rewind, take offline, don't wait for completion.
2 = rewind, leave online, don't wait for completion.
3 = rewind, leave online, wait for completion.
4 = do not rewind, leave online.

Condition Code Settings

The condition code has no meaning following a call to CLOSEAFILE.

Considerations

• When to Use CLOSEAFILE

Data can be lost if a WRITEAFILE with a count of -1 is not
specified or a CLOSEAFILE is not performed against EDIT files or
files that are opened with WRITE access and blocking capability
before the process is deleted.

• If BREAK is taken, CLOSEAFILE gives BREAK (if owned) to its
previous owner.

• For tapes with WRITE access, SIO writes two end-of-file marks,
(control 2).

• CLOSEAFILE completes all outstanding nowait I/O operations on files
that are to be closed.

• $RECEIVE and CLOSEAFILE

If the file is $RECEIVE and the user is not handling close
messages, SIO waits for a message from each opener. It then
replies with either error 45, if READ-only access, or error 1, if
READ/WRITE access, until there are no more openers (each opener has
closed the process by calling CLOSEAFILE).

3-12 ~ 82359 AOO 3/85

Example

closes all files.

Related Programming Manual

For programming information about the CLOSEAFILE procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

"' 82359 AOO 3/85 3-13

GIVE"'BREAK

GIVE"'BREAK PROCEDURE

The GIVE"'BREAK procedure returns BREAK to the previous owner (the
process that owned BREAK before the last call to TAKE"'BREAK).

The syntax for GIVE"'BREAK is:

{ <error> :=
{ CALL

<error>

INT

} GIVE"'BREAK ({ <common-fcb> });
} { <f ile-fcb> }

returned value

i
i

returns a file system or sequential I/0 procedure error
indicating the outcome of the operation.

<common--f cb> input

INT: ref:*

identifies the file returning BREAK to the previous owner.
<common-fcb> is allowed for convenience. If BREAK is not
owned, this call is ignored.

<f ile-fcb> input

INT: ref:*

identifies the file returning BREAK to the previous owner.
If BREAK is not owned, this call is ignored.

Condition Code Settings

The condition code has no meaning following a call to GIVE"'BREAK.

3-14 "f' 82359 AOO 3/85

Example

return BREAK to previous owner.

Related Programming Manual

For programming information about the GIVEABREAK procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

"'182359 AOO 3/85 3-15

NOA ERROR

NOAERROR PROCEDURE

NOAERROR is called internally by sequential I/O (SIO) procedures.
Error handling and retries are implemented withi~ the SIO procedure
environment by the NOAERROR procedure.

If the file is opened by OPENAFILE, then the NOAERROR procedure can be
called directly for the file system procedures.

The syntax for NOAERROR is:

.--------------------·------·

{ <no-retry>
{ CALL

<state>
,<f ile-fcb>
,<good-error-list>
,<retryable>):,

i
i
i
i

<no-retry> returned value

INT

indicates whether or not the I/O operation should be retried.
Values of <no-retry> are:

0 = operation should be retried.
<>O = operation should not be retried.

If <no-retry> is not 0, one of the following is indicated:

• <state> is not 0.
• No error occurred~ error is O.

• error is a good error number on the list.

• Fatal error occurred, and abort-on-error mode is off.

• Error is a BREAK error, and BREAK is enabled for <file-fcb>.

<state> input

3-16

INT: value

if nonzero, indicates the operation is considered successful.
The file error and retry count variables in the file control
block (FCB) are set to zero, with <no-retry> returned as
nonzero. Typically, either of two values is passed in this
position:

"'82359 AOO 3/85

= (CCE) immediately follows a file system call. If equal
is true, the operation is successful. This
eliminates a call to FILEINFO by NOAERROR.

0 forces NOAERROR to first check the error value in
the FCB. If the FCB error is 0, NOAERROR calls
FILEINFO for the file.

<f ile-fcb> input

INT:ref :*

identifies the file to be checked.

<good-error-list> input

INT:ref :*

is a list of error numbers~ if one of the numbers matches the
current error, <no-retry> is returned as nonzero (no retry).
The format of <good-error-list>, in words, is:

word [0] = number of error numbers in list {O:n}
word [1] = good error number

word [n] = good error number.

<retryable> input

INT:value

is used to determine whether certain path errors should be
retried. If <retryable> is not zero, errors in the range of
{120, 190, 202:231} cause retry according to the device type as
follows:

Device

Operator
Process
$RECEIVE
Disc

/1 82359 AOO 3/85

Retry Indication

Yes
NA
NA
(opened with sync depth of 1, so not
applicable)

3-17

Terminal Yes
Printer Yes
Mag Tape No
Card Reader No

If the path error is either of {200:201}, a retry indication is
given in all cases following the first attempt.

Condition Code Settings

The condition code has no meaning following a call to NOAERROR.

Example

INT GOODAERROR [0:1] := [1, 11 l: nonexistent record .

.
NOAERROR (= , OUTAFILE , GOODAERROR , FALSE >:

Related Programming Manual

For programming information about the NOAERROR procedure, refer to the
GUARDIAN Operating System Programmer's Guide.

3-18 "f' 82359 AOO 3/85

OPENAFILE PROCEDURE

The OPENAFILE procedure permits access to a file when using sequential
I/O (SIO) procedures.

The syntax for OPENAFILE is:

{ <error>
{ CALL

<error>

INT

:= } OPENAFILE (<common-fcb>
}

<f ile-fcb>
,[<block-buffer>]
,[<block-bufferlen>]
,[<flags>]
,[<flags-mask>]
,[<max-recordlen>]
,[<prompt-char>]
,[<error-file-fcb>]):

returned value

l

i
i
l

i
l

i
l

l

returns a file system or SIO procedure error number indicating
the outcome of the operation.

If the abort-on-open-error mode (the default) is in effect, the
only possible value of <error> is 0.

<common-fcb> input

INT: ref:*

is an array of FCBSIZE words for use by the SIO procedures.
Only one common file control block (FCB) is used per process.
This means the same data block is passed to all OPENAFILE
calls. The first word of the common FCB must be initialized
to 0 before the first OPENAFILE call following a process
startup.

-'1J 82359 AOO 3/85 3-19

OPEW'FILE

<f ile-fcb> input

INT:ref :*

is an array of FCBSIZE words for use by the SIO procedures.
The file FCB uniquely identifies this file to other SIO
procedures. The file FCB must be initialized with the name
of the file to be opened before the OPENAFILE call is made.

Refer to the GUARDIAN Operating System Programmer's Guide for
information about the FCB structure.

<block-buffer> input

3-20

INT: ref:*

is an array used for one of three different purposes:

1. When reading a structured file, the buffer (if large
enough) is used by GUARDIAN for ENSCRIBE sequential
block buffering.

2. When reading or writing an EDIT file, the buffer is used
by SIO to contain part of the EDIT file directory and
EDIT file pages being assembled or disassembled. The
buffer must be supplied for an EDIT file.

3. If the <block-buffer> is not being used for either 1 or
2, then the array is used for SIO record blocking and
deblocking. No blocking is performed if any of the
following occurs:

• <block-buffer> or <block-bufferlen> is omitted.

• The <block-bufferlen> is insufficient according to the
record length for the file.

• READ/WRITE access is indicated.

Blocking occurs when this parameter is supplied, the block
buffer is of sufficient length (as indicated by the
<block-bufferlen> parameter), and blocking is appropriate
for the device.

The block buffer must be located within 'G'[0:32767] of
the data area.

.., 82359 AOO 3/85

OPEN"FILE

<block-buf ferlen> input

INT:value

indicates the length, in bytes, of the block buffer. This
length must be able to contain at least one logical record.
For an EDIT file, the minimum length on READ is 144 bytes: on
WRITE, the minimum length is 1024 bytes.

<flags>

INT(32):value

input

if present, is used in conjunction with the <flags-mask>
parameter to set file transfer characteristics. If omitted,
all positions are treated as zeros. The following literals can
be combined using signed addition since bit 0 is not used:

ABORT"OPENERR
ABORT"XFERERR
AUTO"CREATE
AUTO"TOF
BLOCKED

CRLF"BREAK
MUSTBENEW
NOWAIT
PRINT"ERR"MSG
PURGE"DATA

READ"TRIM
VAR"FORMAT
WRITE"'"FOLD
WRITE"'"PAD
WRITE"TRIM

(See "Considerations" for the meanings of literals used with
<flags>.)

<flags-mask> input

INT(32):value

specifies which bits of the flag field are used to alter the
file transfer characteristics. The characteristic to be
altered is indicated by entering a 1 in the bit position
corresponding to the <flags> parameter. A 0 indicates the
default setting is used. When omitted, all positions are
treated as zeros.

<max-recordlen> input

INT:value

specifies the maximum record length for records within this
file. If omitted, the maximum record length is 132.

-'1 82359 AOO 3/85 3-21

OPEN'' FILE

The open is aborted with an SIOERRAINVALIDRECLENGTH, error 520,
if the file's record length exceeds the maximum record length,
and <max-recordlen> is not 0. If <max-recordlen> is 0,
then any record length is permitted.

<prompt-char> input

INT:value

is used to set the interactive prompt character for reading
from terminals or processes. When not supplied, the prompt
defaults to "?". The prompt character is limited to seven
bits, <9:15>.

<error-· f i le-f cb> input

INT: ref:*

if present, specifies a file where error messages are displayed
for all files. Only one error reporting file is allowed per
process. The file specified in the latest OPENAFILE is the one
used. Omitting this parameter does not alter the setting of the
current error reporting file.

The default error reporting file is the home terminal.

If the error reporting file is not open when needed, it is
opened only for the duration of the message printing, then
closed. Remember that the error file FCB must be initialized.
Refer to the GUARDIAN Operatin__g_System Programmer's Gu~de for
information about the file FCB.

-·--·-··-···----------------·---------'

Condition Code Settings

The condition code has no meaning following a call to OPENAFILE.

Considerations

• Specifics of AUTOATOF

If AUTOATOF is on, a top-of-form control operation is performed
to the file when (1) the file being opened is a process or a line
printer and (2) WRITE or READ/WRITE access is specified.

3-22 "'82359 AOO 3/85

•

•

When READ/WRITE Access Is not Permitted

If the file is an EDIT file or if blocking is specified, either
READ or WRITE access must be specified for the OPEN to succeed.
READ/WRITE access is not permitted.

Accessing a Temporary Disc File

When using OPENAFILE to access a temporary disc file, AUTOACREATE
must be disabled; otherwise, the OPENAFILE call results in a file
system error 13.

• Sync Depth of Open Files

All files opened with the OPENAFILE procedure are opened with a
sync depth of one. One is the only possible sync depth; no other
can be set.

• Error Reporting File

The error reporting file is used, when possible, for reporting
errors. If this file cannot be used or the error is with the error
reporting file, the default error reporting file is used.

• SIO procedures append data to the file if access is WRITE only, and
PURGEADATA is off (default).

• List of Literals Used With <flags> and <flags-mask>

~ 82359 AOO 3/85

abort on open error, defaults to on. If on, and a
fatal error occurs during the OPENAFILE, all files
are closed, and the process abnormally ends. If
off, the file system or SIO procedure error number
returns to the caller.

abort on data transfer error, defaults to on. If
on, and a fatal error occurs during a data transfer
operation (such as a call to any SIO procedure
except OPENAFILE), all files are closed and the
process abnormally ends. If off, the file system
or the SIO procedure error number returns to
the caller.

auto create, defaults to on. If on, and open
access is WRITE, a file is created, if one is not
already there. If WRITE access is not given and
the file does not exist, error 11 is returned. If
no file code has been assigned, or if the file code
is 101, and a block buffer of at least 1024 bytes
is provided, an EDIT file is created. If there is
not a buffer of sufficient size and no new file
code is specified, then a file code of 0 is used.

3-23

OPEN FILE

AUTOATOF

BLOCKED

CRLF"BREAK

MUSTBENEW

NOWAIT

PRINT,..ERR MSG

PURGE,..DATA

READ,.. TH.IM

VAR,..FORMAT

WRITE,..FOLD

3-24

The default extent sizes are 4 pages for the
primary extent and 16 pages for the secondary
extent.

auto top of form, defaults to on. If on, and the
file is open with WRITE access and is a line
printer or process, a page eject is issued to the
file within the OPEN FILE procedure.

nondisc blocking, defaults to off. A block buffer
of sufficient length must also be specified.

carriage return/line feed (CR/LF) on BREAK,
defaults to on. If on and BREAK is enabled, a
CR/LF is written to the terminal when BREAK is
typed.

file must be new, defaults to off.
only if AUTO,..CREATE is specified.
already exists, error 10 returns.

This applies
If the file

nowait I/O, defaults to off (wait I/O). If on,
nowait I/O is in effect. If NOWAIT is specified in
the open flags of OPEN,..FILE, then the nowait depth
is 1. It is not possible to use a nowait depth of
greater than 1 using SIO procedures.

print error message, defaults to on. If on, and a
fatal error occurs, an error message is displayed
on the error file. This is the home terminal
unless otherwise specified.

purge data, defaults to off. If on, and open
access is WRITE, the data is purged from the file
after the OPEN. If off, the data is appended to
the existing data.

read trailing blank trim, defaults to on. If on,
the <count-read> parameter does not account for
trailing blanks.

variable-length records, defaults to off for
fixed-length records. If on, the maximum record
length for variable-length records is 254 bytes.

write fold, defaults to on. If on, WRITES that
exceed the record length cause multiple logical
records to be written. If off, WRITES that exceed
the record length are truncated to record-length
bytes: no error message or warning is given.

"'f' 82359 AOO 3/85

Example

write blank pad, defaults to on for disc
fixed-length records and off for all other files.
If on, WRITES of less than record-length bytes,
including the last record if WRITEAFOLD is in
effect, are padded with trailing blanks to fill out
the logical record.

write trailing blank trim, defaults to on. If on,
trailing blanks are trimmed from the output record
before being written to the file.

ERROR := OPENAFILE (COMMONAFCB ' INAFILE BUFFER ' BUFFERASIZE
' FLAGS ' FLAGSAMASK ' PROMPT);

Related Programming Manual

For programming information about the OPENAFILE procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

""'f' 82359 AOO 3/85 3-25

READ"" FILE

READ""FILE PROCEDURE

The READ""FILE procedure is used to read a file sequentially.

The file must be able to be opened with READ or READ/WRITE access
with file system procedure calls, which is equivalent to READ or WRITE
access under the sequential I/O (SIO) procedures.

The syntax for READ""FILE is:

{ <error> ·-.- } READ"'FILE (<f ile-fcb> i
{ CALL } ,<buffer> 0

' [<count-read>] 0

' [<prompt-count>] i
' [<max-read-count>] i
' [<no-wait>]) ; i

<error> returned value

INT

returns a file system or SIO procedure error indicating the
outcome of the READ.

If abort-on-error mode is in effect, the only possible values
for <error> are:

0
1
6

111

==
·-
·-

·-

no error
end of file
system message (only if user requested system messages
through SET""SYSTEMMESSAGES or SET""SYSTEMMESSAGESMANY)
operation aborted because of BREAK (if BREAK is enabled)

If <no wait> is not zero, and if abort-on-error is in effect,
the only possible value for <error> is O.

<f ile-fcb> input

INT: ref:*

identifies the file to be read.

3-26 "'f' 82359 AOO 3/85

READ"" FILE

<buffer> output

INT: ref:*

is where the data is returned. The buffer must be located
within 'G'[0:32767] process data area.

<count-read> output

INT:ref :l

returns the number of bytes returned to <buffer>. If
<no-wait> is not zero, then this parameter has no meaning and
can be omitted. The count is then obtained in the call to
WAIT""FILE.

<prompt-count> input

INT: value

is a count of the number of bytes in <buffer>, starting with
element zero, to be used as an interactive prompt for terminals
or interprocess files. If omitted, the interactive prompt
character defined in OPEN""FILE is used.

<max-read-count> input

INT: value

specifies the maximum number of bytes to be returned to
<buffer>. If omitted or if it exceeds the file's logical
record length, the logical record length is used for this file.

<no-wait> input

INT: value

indicates whether or not to wait for the I/O operation to
complete in this call. If omitted or zero, then "wait" is
indicated. If not zero, the I/O operation must be completed
in a call to WAIT""FILE.

Condition Code Settings

The condition code has no meaning following a call to READ""FILE.

~ 82359 AOO 3/85 3-27

READ""FILE

Considerations

• Terminal or Process File

If the file is a terminal or process, a WRITEREAD operation is
performed using the interactive prompt character or <prompt-count>
character from <buffer>. For $RECEIVE, READ""FILE does a READUPDATE
instead of a READ.

Example

ERROR := READ""FILE (IN""FILE , BUFFER , COUNT)~

Related Programming Manual

For programming information about the READ""FILE procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

3-28 Af' 82359 AOO 3/85

SET"" FILE

SET""FILE PROCEDURE

The SET""FILE procedure alters file characteristics and checks the
old value of those characteristics being altered.

The syntax for SET""FILE is:

{ <error>
{ CALL

:= } SET""FILE ({ <common-fcb> }
} { <f ile-fcb> }

<operation>
[<new-value>
[<old-value>

<error>

INT

) ;

returned value

i
i

i
i
0

returns a file system or sequential I/O (SIO) procedure error
number indicating the outcome of the SET""FILE.

If abort-on-error mode is in effect, the only possible value
for <error> is 0.

<common-fcb> input

INT: ref:*

identifies those files whose characteristics are to be altered.

The SET""FILE operations that make sense only for the
<common-fcb> are the SET""BREAKHIT, SET""ERRORFILE, and
SET""TRACEBACK.

When using INIT""FILEFCB, FILE""FWDLINKFCB, FILE""BWDLINKFCB,
and SET""TRACEBACK the FCB can be specified as the <common-fcb>
or the <f ile-fcb>.

If an improper FCB is specified or the FCB is not initialized,
an error is indicated •

..-, 82359 AOO 3/85 3-29

<f ile-fcb> input

INT:ref :*

identifies the file whose characteristics are to be altered.
In most cases, the FCB must be associated with a file or
$RECEIVE (in this case you would specify the <file-fcb>).

When using INITAFILEFCB, FILEAFWDLINKFCB, FILEABWDLINKFCB,
and SETATRACEBACK the FCB can be specified as the <common-fcb>
or the <f ile-fcb>.

If an improper FCB is specified or the FCB is not initialized,
an error is indicated.

<operation> input

INT:value

specifies the file characteristic to be altered. (See
Table 3-2.)

<new-value> input

INT:value

specifies a new value for the specified <operation>. This
is optional, depending on the operation desired.

<old-value> output

INT:ref :*

is a variable in which the current value for the specified
<operation> returns. This can vary from 1 to 12 words
and is useful in saving this value for reset later. If
<old-value> is omitted, the current value is not returned.

Condition Code Settings

The condition code has no meaning following a CQll to SETAFILE.

3-30 ~ 82359 AOO 3/85

SETA FILE

Considerations

In Table 3-2, the column labeled "State of File" is flagged with
the following:

open = the file must be opened to alter the file's
characteristics.

closed= the file must be closed to alter the file's
characteristics.

blank = the column is left blank, indicating the file can be
either open or closed.

~ 82359 AOO 3/85 3-31

w
I

w
N

~
OJ
I'\.)

w
Ul
l..O

::t>'
0
0

w
........
OJ
Ul

I

(operation) Parameter
(Required)

ASSIGN/\BLOCKBUFLEN
(or ASSIGN/\BLOCKLENGTH)

ASSIGN/\FILECODE

ASSIGN/\FILENAME

ASSIGN/\LOGICALFILENAME

ASSIGN/\OPENACCESS

ASSIGN/\OPENEXCLUSION

ASSIGN/\PRIEXT
(or ASSIGN/\PRIMARYEXTENTSIZE)

ASSIGN/\RECORDLEN
(or ASSIGN/\RECORDLENGTH)

ASSIGN/\SECEXT
(or ASSIGN/\SECONDARYEXTENTSIZE)

_l
l

Table 3-2. SETAFILE Operations

Description of Operation Requested

Specifies the block length, in bytes, for the file.

Specifies the file code for the file.

Specifies the physical name of the file to be opened. This
operation is not used when the INITIALIZER procedure is
called to initialize the FCBs.

For example:

CALL SET /\Fl LE (inAfile ,ASSIGN/\FILENAME
,@inAfilename);

Specifies the logical name of the file to be opened. The
<logical-filename) must be encoded as follows:

byte numbers

[O] [1] [8]
(len) (logical-filename)

(len> is the length of the logical filename (0:7).

Specifies the open access for the file. The following literals
are provided for (open-access):

READWRITE/\ACCESS (0)
READ/\ACCESS (1)
WRITE/\ ACCESS (2)

Even if READ/\ACCESS is specified, SIO actually opens the

Specifies the open exclusion for the file. The following literals
are provided for (open-exclusion):

SHARED (0)
EXCLUSIVE (1)
PROTECTED (3)

Specifies the primary extent size (in units of 2048-byte blocks)
for the file.

Specifies the logical record length (in bytes) for the file.
ASSIGN/\RECORDLENGTH gives the default READ or WRITE
count. For defaults, refer to the GUARDIAN Operating System
Programmer's Guide.

Specifies the secondary extent size (in units of 2048-byte
blocks) for the file.

I
l
I
l

-

I

l
:

I

:

(new-value) Parameter
Entered (Optional)

< new-blocklen)

<new-file-code)

@(filename)

@<logical-filename)

<new-open-access>

<new-open-exclusion>

<new-pre-ext-size)

< new-recordlen)

<new-sec-ext-size>

I

I
!

i

j

1

(old-value> Parameter

1
1

Entered (Optional)

(blocklen)

(file-code>

(filename)
FOR 12-words

@<logical-filename)
FOR 4-words

<open-access>

<open-exclusion>

(pri-ext-size)

<record len)

<sec-ext-size>

I

l

-r

I
l
i
I

I

State
of File

Closed

Closed

Closed

Closed

Closed

Closed

Closed

Closed

Closed

I

I

Cll
t:r:j
8

>
t'%j
H

L1
t:r:j

~
CD
N
w
U1
l..D

,,..
0
0

w
........
CD
U1

w
I

w
w

(operation) Parameter

(Required)

INITAFILEFCB

SETAABORTAXFERERR

SET I\ BREAKH IT

SET /\CHECKSUM

SETACOUNTXFERRED
I

SET ACRLF/\BREAK

I

l
l

SETADUPFILE
I

i
I

I

.J.

SET /\EDITREADAREPOSITION

.l

SETAERROR

Table 3-2. SETAFILE Operations (Continued)

Description of Operation Requested

Specifies that the file FCB be initialized. This operation is not
used when the INITIALIZER procedure is called to initialize
the FCBs. For example:

CALL SET /\FILE (common/\fcb ,INIT AFILEFCB);
CALL SETAFILE (in/\file ,INIT/\FILEFCB);

Sets or clears abort-on-transfer error for the file. If on, and a
fatal error occurs during a data transfer operation (such as a
call to any SIO procedure except OPENAFILE), all files are
closed and the process abnormally ends. If off, the file system
or SIO procedure error number returns to the caller.

Sets or clears break hit for the file. This is used only if the user
is handling BREAK independently of the SIO procedures, or if
the user has requested BREAK system messages through
SET /\SYSTEM MESSAGES or SET ASYSTEMMESSAGESMANY.

Sets or clears the checksum word in the FCB. This is useful
after modifying an FCB directly (that is, without using the SIO
procedures).

Sets the physical 1/0 count, in bytes, transferred for the file.
This is used only if nowait 1/0 is in effect, and the user is
making the call to AWAITIO for the file. This is the
(count-transferred) parameter value returned from AWAITIO.

Sets or clears carriage return/line feed (CR/LF) on BREAK for
the file. If on, a CR/LF is executed on the terminal when the
BREAK key is typed.

Specifies a duplicate file for the file. This is a file where data
read from (file-fcb) is printed. The default is no duplicate file.
For example:

CALL SET/\FILE (in/\ file, SETADUPFILE, @out/\file);

Specifies that the following READAFILE is to begin at the
position set in the sequential block buffer (second through
fourth words). For example:

CALL SET /\FILE (EDIT AFCB, SET AEDITREADAREPOSITION);

Sets file system error code value for the file. This is used only
if nowait 1/0 is in effect, and the user makes the call to
AWAITIO for the file. This is the (error) parameter value
returned from FILEINFO.

(new-value) Parameter

Entered (Optional)

must be omitted

<new-state>

I

<new-state>

i
I

I

<new-checksum-word>
I

I
i

(new-count)

I

I <new-state>
!

I
@(new-dup-file-fcb)

must be omitted

...l

<new-error>

(old-value) Parameter

Entered (Optional)

must be omitted

(state)

<state)

<checksum-word-in-
fcb)

(count)

(state)

I

l
I @(dup-file-fcb)
I
I
i

l
must be omitted

J

<error)

State

of File

Closed

Open

Open

Open

i

l
I

Open I
I

Open

J

Open

I

CJl
tJ:J
t-3

>
t"%j
H

t"1
tJ:J

w
I

w
~

~
co
I\.)

w
U1
\J)

:>
0
0

w
'-...
OJ
U1

(operation) Parameter
(Required)

SET /\ERRORFILE

SET /\OPENERSPID

SET /\PHYSIOOUT

l
I

SET/\PRINT/\ERR/\MSG

Table 3-2. SETAFILE Operations (Continued)

Description of Operation Requested

Sets error reporting file for all files. Defaults to home terminal.
If the error reporting file is not open when needed by the SIO
procedures, it is opened for the duration of the message
printing, then closed.

Sets the allowable openers (process-id) for $RECEIVE file.
This is used to restrict the openers of this process to a speci-
tied process. A typical example is using the SIO procedures to
read the startup message.

NOTE

If open message = 1 is specified
to SET /\SYSTEM MESSAGES or
SET /\SYSTEMMESSAGESMANY,
the setting of SET/\OPENERSPID
has no meaning.

Sets or clears physical 110 outstanding for the file specified by
(file-fcb). This is used only if nowait 110 is in effect, and the
user makes the call to AWAITIO for the file.

Sets or clears print error message for the ti le. If on, and a fatal
error occurs, an error message is displayed on the error file.
This is the home terminal unless otherwise specified.

(new-value) Parameter
Entered (Optional)

I
@(new-error-file-fcb)

@(openers-pid)

I

<new-state>

I
I

<new-state>

(old-value) Parameter State l
Entered (Optional) of File

@<error-ti le-fcb >

j
< openers-pid > T Open

I
I

FOR4-words I

I

(state) Open I
I
!

: I
I !

(state) Open

SET/I.PROMPT I Sets interactive prompt for the file. See the OPEN/I.FILE (new-prompt-char) I (prompt-car) I Open

1 1

procedure. . I I I

I SET/\RCVEOF I Sets return end of file (EOF) on process ciose tor $RECEiVE <new-state} I {state> I Open I
file. This causes an EOF indication to be returned from I

I

READ/\ FILE when the receive open count goes from 1 to O;
!

the last close message is received.

The setting for return EOF has no meaning if the user is
monitoring OPEN and CLOSE messages.

If the file is opened with READ-only access, the setting
I I

defaults to on for return EOF. l
SET /\RCVOPENCNT Sets receive open count for the $RECEIVE file. This operation <new-receive-open- <receive-open-count)

I
Open

is intended to clear the count of openers when an OPEN count)

I
already accepted by the SIO procedures is subsequently

:

rejected by the user. See SET/\RCVUSEROPENREPLY.

SET/\RCVUSEROPENREPLY Sets user-will-reply for the $RECEIVE file. This is used if the (new-state) (state)

I

Open
SIO procedures are to maintain the opener's directory, thereby

l
limiting OPENs to a single process or a process pair but
keeping the option to reject OPENs. l

en
t:i:J
r-3

>
t'%j
H

t-t
t:i:J

~
OJ
i'..l
w
Ul
l..O

>
0
0

w
'-...
OJ
Ul

w
I

w
U1

(operation> Parameter
(Required)

SET /\READ/\ TRIM

SET /\SYSTEMM ESSAGES

I

"""'···-

Table 3-2. SETAFILE Operations (Continued)

I

I

Description of Operation Requested

If <state} is 1, an (error> of 6 returns from a call to READ/\ FILE
when an OPEN message is received and is the only current
OPEN by a process or a process pair. If an OPEN is attempted
by a process, and an OPEN is currently in effect, the OPEN
attempt is rejected by the SIO procedures; no return is made
from READ/\ FILE because of the rejected OPEN attempt.

If (state> is 0, a return from READ/\ FILE is made only when
data is received.

NOTE

If open message = 1 is specified
to SET/\SYSTEMMESSAGES or
SET /\SYSTEM M ESSAGESMANY, the
setting of SET/\RCVUSEROPENREPLY
has no meaning.

An (error} of 6 returns from READ/\FILE if an open message
is accepted by the SIO procedures.

Sets or clears read-trailing-blank-trim for the file. If on, the
<count-read> parameter does not account for trailing blanks.

Sets system message reception for the $RECEIVE file. Setting
a bit in the (sys-msg-mask} indicates that the corresponding
message is to pass back to the user. Default action is for the
SIO procedures to handle all system messages.

< sys-msg-mask >[OJ

.(0) = BREAK message

.(1 > = unused

.(2) = CPU Down message

.(3) = CPU Up message

.(4) = unused

.(5) = STOP message

.(6) = ABEND message

.(7) = unused

.(8) = MONITORNET message

.(9) = unused
.(10) = OPEN message
. < 11 > = CLOSE message
.(12> = CONTROL message
.(13) = SETMODE message
.(14) = RESETSYNC message
.(15) = unused

The user replies to the system messages designated by
this operation by using WRITE/\ FILE. If no WRITE/\ FILE is
encountered before the next READ/\FILE, a< reply-error-code}
= O is made automatically. Note that this operation cannot
set some of the newer system messages; for these, use
SET /\SYSTEMMESSAGESMANY.

<new-value> Parameter
Entered (Optional)

(new-state)

< new-sys-msg-mask}

(old-value} Parameter
Entered (Optional)

(state}

(sys-sys-mask>

I I

State
of File

Open

Open

'

I

en
t:i:J
1-3

>
t'lj
H

L1
t:i:J

w
I

w
°'

~
CXl
I'-)

w
(.J1

"°
>
0
0

w

' CXl
(.J1

(operation> Parameter
(Required)

SET t1SYSTEMM ESSAGESMANY

Table 3-2. SETAFILE Operations (Continued)

I

Description of Operation Requested

.(4} = BREAK message

.(5} = unused

.(6} = Time Signal message
(Nonstop II systems only)

.(7} = Memory Lock Completion message
(Nonstop II systems only)

.(8} = Memory Lock Failure message
(Nonstop II systems only)

.(9:13} = unused
.(14) =OPEN message
.(15> =CLOSE message

< sys-msg-mask)[2]

.(0) =CONTROL message

.{ 1 > = SETMODE message

.(2) = RESETSYNC message

.(3) = CONTROLBUF message
.(4:15) = unused

< sys-msg-mask >[3]

<new-value} Parameter
Entered (Optional)

@ < new-sys-msg-mask-
words)

(old-value} Parameter
Entered (Optional)

< sys-msg-mask-
WOidS}

I
I

I
I
I
I

I

I I I I I

I I .(0:15} = all bits unused I j I

State
of File

Open

Ul
trJ
t-3

>
l"%j
H

t1
trJ

~
co
I'..)

w
(.Jl

l.D

~
0
0

w
.........
OJ
(.Jl

w
I

w
.....J

<operation> Parameter
(Required)

SET/\ TRACEBACK

SET/\USERFLAG

SET /\WRITE/\ FOLD

SET /\WRITE/\ PAD

SET/\WRITE/\TRIM

Table 3-2. SETAFILE Operations (Continued)

(new-value) Parameter
Description of Operation Requested Entered (Optional)

Sets or clears the traceback feature. When traceback is active, (new-state>
the SIO facility appends the caller's P-relative address to all
error messages.

Sets user flag for the file. The user flag is a one-word value in <new-user-flag>
the FCB that the user can manipulate to maintain information
about the file.

Sets or clears write-fold for the file. If on, WRITEs exceeding <new-state>
the record length cause multiple logical records to be written.
If off, WRITES exceeding the record length are truncated to
record-length bytes; no error message or warning is given.

Sets or clears write-blank-pad for the file. If on, WRITEs of <new-state>
less than record-length bytes, including the last record if
WRITE/\FOLD is in effect, are padded with trailing blanks to
fill out the logical record.

Sets or clears write-trailing-blank-trim for the file. If on, trailing I (new-state>
blanks are trimmed from the output record before being

I written to the file. I
j

(old-value> Parameter
Entered (Optional)

<old-state>

< user-flag-in-fcb >

(state>

(state>

l
(state)

State
of File

Open

Open

Open

en
t:z:J
i-3

>
t'%j
H

L1
t:z:J

SET"'FILE

Example

CALL SET"'FILE (IN"'FILE , ASSIGN"'FILENAME , @IN"'FILENAME);

Related Programming Manual

For programming information about the SET"'FILE procedure, refer to the
GUARDIAN Operating System Programmer's Guide.

3-38 '1J 82359 AOO 3/85

TAKEABREAK PROCEDURE

The TAKEABREAK procedure enables BREAK monitoring for a file.

The syntax for TAKEABREAK is:

{ <error>
{ CALL

<error>

INT

:= } TAKEABREAK (<file-fcb>);
}

output

i

is a file system or sequential I/O (SIO) procedure error
indicating the outcome of the operation.

<f ile-fcb> input

INT: ref:*

identifies the file for which BREAK is enabled. If the
file is not a terminal, or if BREAK is already owned for
this file, the call is ignored.

Condition Code Settings

The condition code has no meaning following a call to TAKEABREAK.

Considerations

• Break Ownership and One Terminal

Although the GUARDIAN operating system allows a process to own
BREAK on an arbitrary number of terminals, SIO supports BREAK
ownership for only one terminal at a time.

• SIO does not support "break access"; SIO always issues SETMODE 11
with parameter 2 = O.

• Taking BREAK Ownership Back

If a process launches an offspring process that takes BREAK
ownership, and the parent process then calls CHECKABREAK, SIO
takes BREAK ownership back. This can affect anticipated handling
of BREAK.

..,, 82359 AOO 3/85 3-39

TAKE.,..BREAK

Example

Related Programming Manual

For programming information about the TAKE.,..BREAK procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

3-40 ~ 82359 AOO 3/85

WAIT FILE

WAIT FILE PROCEDURE

The WAIT FILE procedure is used to wait or check for the completion
of an outstanding I/O operation.

The syntax for WAIT FILE is:

<error> := WAIT FILE (<f ile-fcb> i
0

i
,[<count-read>]
,[<time-limit>]):

<error> returned value

INT

If abort-on-error mode is in effect, the only possible values
for <error> are:

0
1
6

40

=
=
=

=

no error
end of file
system message (only if user requested system messages
through SET SYSTEMMESSAGES or SET SYSTEMMESSAGESMANY)
operation timed out (only if <time limit> value is
supplied and is not -lD)

111
532

=
=

operation aborted because of BREAK (if BREAK is enabled)
operation restarted

<file-fcb> input

INT: ref:*

identifies the file for which there is an outstanding I/O
operation.

<count-read> output

INT:ref*

if present, is the count of the number of bytes returned due
to the requested READ operation. The value returned to the
parameter has no meaning when waiting for a WRITE operation
to complete.

~ 82359 AOO 3/85 3-41

WAIT"'"FILE

<time-limit> input

INT(32):value

if present, indicates whether the caller waits for completion
or checks for completion. If omitted, the time limit is set
to -lD.

<time-limit> <> OD

= OD

= OD
(and <error> = 40)

= -lD

Condition Code Settings

indicates a wait for completion. The
time limit then specifies the maximum
time, in .01-second units, the caller
waits for a completion.

indicates a check for completion.
WAITAFILE immediately returns to the
caller regardless of whether there is a
completion. If no completion occurs, the
I/O operation is still outstanding; an
<error> 40 and an "operation timed out"
message are returned.

There is no completion. Therefore,
READAFILE or WRITEAFILE cannot be called
for the file until the operation
completes by WAITAFILE. One method of
determining if the operation completes is
by the CHECKAFILE operation
"FILEALOGIOOUT."

indicates a willingness to wait forever.

The condition code has no meaning following a call to WAITAFILE.

Example

ERROR := WAITAFILE (INAFILE , COUNT);

Related Programming Manual

For programming information about the WAITAFILE procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

3-42 "'82359 AOO 3/85

WRITE""FILE

WRITEAFILE PROCEDURE

The WRITE""FILE procedure writes a file sequentially. The file must
be open with WRITE or READ/WRITE access.

The syntax for WRITE""FILE is:

{ <error>
{ CALL

<error>

INT

:= } WRITEAFILE
}

(<f ile-fcb>
,<buffer>
,<write-count>
,[<reply-error-code>]
,[<forms-control-code>]
,[<nowait>]):

returned value

i
i
i
i
1

i

is a file system or sequential I/O (SIO) error indicating the
outcome of the WRITE.

If abort-on-error mode, the default case, is in effect, the
only possible values for <error> are:

0 = no error
111 = operation aborted because of BREAK (if BREAK is

enabled)

If <nowait> is not 0, the only possible value for <error>
is 0, when abort-on-error mode is in effect.

<f ile-fcb> input

INT:ref :*

identifies the file to which data is written.

<buffer> input

INT: ref:*

is the data to be written. <buffer> must be located within
'G'[0:32767], the process data area.

AJf 82359 AOO 3/85 3-43

WRITE"'FILE

<write-count> input

INT:value

is the count of the number of bytes of <buffer> to be written.
A <write-count> value of -1 causes SIO to flush the block
buffer associated with the <file-fcb> passed. For EDIT files,
flushing the buffer also updates the EDIT directory on disc.

<reply-error-code> input

INT:value

(for $RECEIVE file only) if present, is a file system error to
return to the requesting process by REPLY. If omitted,
0 is returned.

<forms-control-code> input

INT:value

(optional) indicates a forms control operation to be performed
prior to executing the actual WRITE when the file is a process
or a line printer. <forms-control> corresponds to <parameter>
of the file system CONTROL procedure for <operation> equal to
1. No forms control is performed if <forms-control> is
omitted, if it is -1, or if the file is not a process or a
line printer.

<no-wait> input

INT:value

if present, indicates whether to wait in this call for the I/O
to complete. If omitted or zero, then wait is indicated.
If <no-wait> is not zero, the I/O must be completed in a call
to WAIT"'FILE.

Condition Code Settings

The condition code has no meaning following a call to WRITE"'FILE.

3-44 '1J 82359 AOO 3/85

Example

CALL WRITEAFILE (OUTAFILE ,BUFFER ,COUNT)~

Related Programming Manual

For programming information about the WRITEAFILE procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

"'1 82359 AOO 3/85 3-45

~ 82359 AOO 3/85

APPENDIX A

CONTROL OPERATIONS

This table gives a list of CONTROL operations, that is, those
operations used with the I/O devices discussed in this manual for
Nonstop systems.

CONTROL Operations Table

·-
<operation> Description Subtype < param > Description

1 Terminal or Line Printer 0,2,or3 0 = form feed (send %014)
Forms Control 1-15 = vertical tab (send %013)

16-79 = skip< param > -16 lines

Line Printer 6 or32 0 = form feed (send %014)
1-15 = single space (send %6412)

16-79 = skip< param > -16 lines

Line Printer 1or5 0 = skip to VFU channel 0 (top of form)
1 = skip to VFU channel 1 (bottom of

form)

2 = skip to VFU channel 2 (single
space, top-of-form eject)

3 = skip to VFU channel 3 (next odd-
numbered line)

4 = skip to VFU channel 4 (next third
line: 1, 4, 7, 10, and so forth)

5 = skip to VFU channel 5 (next one-
half page)

6 = skip to VFU channel 6 (next one-
fourth page)

7 = skip to VFU channel 7 (next one-
sixth page)

8 = skip to VFU channel 8 (user-
defined)

9 = skip to VFU channel 9 (user-
defined)

10 = skip to VFU channel 10 (user-
defined)

11 = skip to VFU channel 11 (user-
defined)

16-31 = skip < param > - 16 lines

"1J 82359 AOO 3/85 A-1

Appendix A

CONTROL Operations Table (Continued)
·----·----,---·-----

<operation> Description Subtype < param > Description
- --1------

Line Printer 4 0 = skip to VFU channel 0 (top of form/
(default DAVFU) line 1)

1 = skip to VFU channel 1 (bottom
of form/Ii ne 60)

2 = skip to VFU channel 2 (single
space/lines 1-60, top-of-form eject)

3 = skip to VFU channel 3 (next odd-
numbered line)

4 = skip to VFU channel 4 (next third
line: 1, 4, 7, 10, and so forth)

5 = skip to VFU channel 5 (next one-
half page)

6 = skip to VFU channel 6 (next one-
fourth page)

7 = skip to VFU channel 7 (next one-
sixth page)

8 = skip to VFU channel 8 (line 1)
9 = skip to VFU channel 9 (line 1)

10 = skip to VFU channel 10 (line 1)
11 = skip to VFU channel 11 (bottom of

paper/line 63)
16-31 = skip < param > - 16 lines

~- !----·-·------------------!------·--·· -··-----

2 WRITE end of file on - None
unstructured disc or
magnetic tape (if disc,
WRITE access is
required).

-- 1------------

3 Magnetic tape, rewind - None
and unload, do not wait
for completion.

-------· 1----------

4 Magnetic tape, take off - None
line, do not wait for
completion (treated as
<operation> 3 for 5106
Tri-Density Tape Drive).

f--- -

5 Magnetic tape, rewind, - None
leave on line, do not
wait for completion.

----+- f----·------·--

6 Magnetic tape, rewind, - None
leave on line, wait for
completion.

7 Magnetic tape, space - number of files {0:255}
forward files.

f----

8 Magnetic tape, space - number of files {0:255}
backward files.

-·-------

9 Magnetic tape, space - number of files {0:255}
forward records.

A-2 "''f 82359 AOO 3/85

i

Appendix A

CONTROL Operations Table (Continued)

------~

<operation> Description Subtype < param > Description

10 Magnetic tape, space - number of files {0:255}
backward records.

11 Terminal or line printer, 3, 4, 6, None
wait for modem or32
connect.

12 Terminal or line printer, 3, 4, 6, None
disconnect the modem or32
(that is, hang up).

20 Disc, purge data (WRITE - None
access is required).

21 Disc, al locate or deallo- - <param> = O
cate extents (WRITE deal locate al I extents pa
access is required). extent

st the end-of-file

1: <maximum-extents> = number of extents to allocate for a nonp artitioned file
(for DP2 disc files only)

1 :16 * number of partitions = number of extents to allocate for a pa rtitioned file
--·--

NOTE

A WRITE end of file (EOF) to an unstructured disc file sets
the EOF pointer to the relative byte address indicated by
the setting of the next-record pointer and WRITES the new
EOF setting in the file label on disc.

"1 82359 AOO 3/85 A-3

APPENDIX B

DEVICE TYPES AND SUBTYPES

The following table contains a complete list of the device types and
subtypes of the Nonstop systems.

Device Types and Subtypes Table

Device Type
<device-type>.< 4:9 >

O = Process

1 = Operator Console ---2 =$RECEIVE

3 = Disc
(Note: For discs, <device type>.< O > = 1
denotes a removable disc volume;
<device type>.< 1 > = 1 denotes a
volume audited by the Transaction
Monitoring Facility (TM F).

4 = Magnetic Tape

5 = Line Printer

6 = Terminal (conversational or page mode)

..,"f' 82359 AOO 3/85

Device Subty
<device-type>.<

pe
10:15>

0

0

0

3 = 240 MB capacity (P/N 410

4 = 64 MB capacity (P/N 4105

5 = 64 MB capacity, movable-
(P/N 4109)

6 = 540 MB capacity (P/N 411

4)
'4106)
head portion

6)

7 = 1.45 MB capacity, f ixed-h ead portion
(P/N 4109)

8 = 128 MB capacity (P/N 411

9 = 264 MB capacity (P/N 411

0 = Nine-Track
1 = Seven-Track (P/N 5105)

0,4111)

4,4115)

2 = Tri-Density Tape Drive (P/ N 5106)
'5104) 3 = 3207 Controller (PIN 5103

1 = Drum or Band
3 = Matrix Serial (P/N 5508)
4 = Matrix Serial (P/N 5520)
5 = Band, extended char. se t
6 = Letter-quality printer (P/ N 5530)

32 = DTR printer
-

O = Conversational Mode
1 = Page Mode (P/N 6511, 65
2 = Page Mode (P/N 6520, 65

12)
24)
) 3 = Page Mode (Remote 6520

4 = Page Mode (PIN 6530)
5 = Page Mode (Remote 653 0)

B-1

Appendix B

Device Types and Subtypes Table (Continued)
~------------------------ ···-··--··--·-·-·-··-·-···---·-----·------------·------.

Device Type Device Subtype
<device-type>. <4:9> <device-type>.< 10:15>

--------~ ···--·--····---·-·---···--. ----------!
6 = Terminal (conversational or page mode)

(Continued)

(SNAX ITI protocol)

6-1 O = Conversational Mode
6 = 3277 (12x40)
7 = 3277 (24x80)
8 = 3277 (32x80)
9 = 3277 (43x80)

10 = 3277 (12x80)
32 = Hard-Copy Console

20 = 3277 & 3278 model 1 (screen size 12x40)
21 = 3277 & 3278 model 2 (screen size 24x80)
22 = 3278 model 3 (screen size 32x80)
23 = 3278 model 4 (screen size 43x80)
24 = 3278 model 5 (screen size 27x132)

1------------------------·---i --------···---······-----·--·----·-----------------·--·---'

7 = ENVOY Data Communication Line 0 = BISYNC, point-to-point, nonswitched
1 = BISYNC, point-to-point, switched
2 = BISYNC, multipoint, tributary
3 = BISYNC, multipoint, supervisor
8 = ADM-2, multipoint, supervisor
9 = TINET, multipoint, supervisor

10 = Burroughs, multipoint, supervisor
13 = Burroughs, point-to-point, contention
30 = Full-duplex, out line
31 = Full-duplex, in line
40 = Asynchronous line supervisor
50 = Isochronous line
56 = Auto-call unit

·---------------------------+-----------··--·---·-----------------------

8 = Card Reader 0
1--------------------···----··-·---·---t ·-- -····-·--······-·--··---------------·------·--------·----·---·--

9 = Process-to-Process Interface O = X25AM Process

10 = 3277 CRT Mode Interface 1-5 = Block Mode
1 = 3277 (12x40)
2 = 3277 (24x80)
3 = 3277 (32x80)
4 = 3277 (43x80)
5 = 3277 (12x80)

6 = 328x Printers

(SNAX CRT protocol) 20 = 3277 & 3278 model 1 (screen size 12x40)
21 = 3277 & 3278 model 2 (screen size 24x80)
22 = 3278 model 3 (screen size 32x80)
23 = 3278 model 4 (screen size 43x80)
24 = 3278 model 5 (screen size 27x132)
30 = 328x printer (using CRT protocol)

1---------·····-------------···--·---·-··-··-·---·---·-·--·-··---·--i --··-· ·---·-··--··----··---·-·----·--------·--·-----·--·------·-·--··------·-·--·---·

11 = ENVOYACP Data Communication Line 40 = Synchronous Data Link Control (SDLC)
41 = High-Level Data Link Control (HDLC)
42 = Advanced Data Communication Control

Protocol (ADCCP)
1---------------·-······---····-···---·-·--·--·-----i ·---·-··--·-····-------·-·-------·---·-·--·---··----·--------~

12 = TIL (Tandem to IBM Link) 0
1---------·--------------i-·----------·---·---·---------------------1

13 = SNAX 5 = Service Manager
~--------------------------_J-~---------·------·--------------------·

B-2 .., 82359 AOO 3/85

Appendix B

Device Types and Subtypes Tables (Continued)

Device Type Device Subtype
<device-type>.< 4:9 > <device-type>.< 10:15>

20/23 = TMF 0

26 = THL (Tandem Hyperlink) 0

27 = IPB Monitor (FOX) 0

50 = CSM (Communication Subsystem 0
Manager) for 6100 subsystem

51 = CP6100 1 = BISYNC
2 = ADCCP
3 = TINET

52 = INFOSAT 0 = Earth station control line
1 = Satellite connect

53 = CSM (ATP6100) 0 = Terminals attached to 6100 subsystem
(CLIP1)

1 = CLIP4

58 = SNAX 0 = SDLC line

59 = AM6520 O = Line to controller
10 = Line to 6100 subsystem

60 = AM3270 0 = Line to controller
10 = Line to 6100 subsystem

TR3271 1 = Line to controller

61 = X.25 Data Communication Line 0-62 = Line to controller (any subtype is
accepted)

63 = Line to 6100 subsystem

62 = EXPAND Network Control Process (NCP) 0

63 = EXPAND Line Handler 0 = Single line handler for:
-Direct-connect synchronous line
-Satellite-connect synchronous line

1 = Multiline path handler for path
2 = Multiline path handler for:

-Direct-connect synchronous line
-Satellite-connect synchronous line

3 = FOX line handler
5 = Single line handler for direct-connect 6100

subsystem
6 = Multiline path handler for direct-connect

6100 subsystem line

~ 82359 AOO 3/85 B-3

APPENDIX C

SETMODE FUNCTIONS

The following table is a list of SETMODE functions, that are used with
the I/O devices discussed in this manual for the Nonstop systems.

SETMODE Functions Table

<function>
------ ---·- ·-·- ------·- ··--··-

1 Disc: Set file security

<param1 >

.<0>

.<1 >

.<4:6>

.<7:9>

= 1 for program files only, sets accessor's ID to program file's ID when
program file is run (PROGID option).

= 1 sets CLEARONPURGE option on. This means all data in the file is
physically erased from the disc (set to zeros) when the file is
purged. If this option is not on, the disc space is only logically
deallocated on a purge; the data is not destroyed, and another
user might be able to examine the "purged" data when the space
is reallocated to another file.

= ID allowed for reading

= ID allowed for writing

.<10:12> =ID allowed for execution

.<13:15> =ID allowed for purging

For each of the fields from. <4:6> through.< 13.15>, the value can be any one of
the following:

O = any local ID
1 = member of owner's group (local)
2 = owner (local)
4 = any network user (local or remote)
5 = member of owner's community
6 = local or remote user having same ID as owner
7 = local super ID only

Refer to the GUARDIAN Operating System Programmer's Guide or the
GUARDIAN Operating System Utilities Reference Manual for an explanation of
local and remote users, communities, and so forth.

< param2 > is not used with function 1.

2 Disc: Set file owner ID

< param1>.<0:7 > = group ID
.<8:15> = user ID

< param2 > is not used with function 2.
[__ _____________________________________ -- -------- -------

~ 82359 AOO 3/85 C-1

Appendix C

SETMODE Functions Table (Continued)

~----------------------------··--····--···-·--------------------------~

<function>
1-------------------------·----------------·----------------------<

3 Disc: Set WRITE verification

< param1>.<15> = 0 verified WRITEs off (default).
= 1 verified WRITEs on.

< param2> is used with DP2 disc files only.

<param2> = 0 change the open option setting of the verify WRITEs option
(default).

= 1 change the file label default value of the verify WRITEs option.
1------------------------··---<

4 Disc: Set lock mode

< param1>.<15 > = O default mode, suspends the process when lock or READ is
attempted.

= 1 alternate mode, rejects a lock or READ attempt with file
system error 73 (file or record is locked).

< param2> is not used with function 4.
1--

5 Line Printer: Set system automatic perforation skip mode (assumes standard VFU
function in channel 2)

< param1>.<15 > = O off, 66 lines per page
= 1 on, 60 lines per page (default)

For the 5530 line printer

< param1 > = 0 disable automatic perforation skip.
= 1 enable automatic perforation skip (default).

<param2> is not used with function 5.
f--·-

6 Line Printer or Terminal: Set system spacing control

< param1>.<15> = O no space
= 1 single space (default setting)

< param2 > is not used with function 6.

7 Terminal: Set system auto line feed after receipt of carriage return line termination
(default mode is configured):

< param1>.<15> = O LFTERM line feed from terminal or network (default)
= 1 LFSYS system provides line feed after line termination by

carriage return.

<param2> is not used with function 7.
1---------------------------------------·------------------------I

8 Terminal: Set system transfer mode (default mode is configured)

<param1 >.<15> = O conversational mode
= 1 page mode

< param2 > sets the number of retries of 1/0 operations.

NOTE

<param2> is used with 6530 terminals only.
>------------------------------------·----·--------------------------!

C-2 ~ 82359 AOO 3/85

Appendix C

SETMODE Functions Table (Continued)

<function>

9 Terminal: Set interrupt characters

< param 1 >. < 0:7 > = character 1
.<8:15> = character2

< param2 >. < 0:7 > = character 3
.<8:15> = character4

(Default for conversational mode is backspace, line cancel, end of file, and line
termination. Default for page mode is page termination.)

10 Terminal: Set parity checking by system (default is configured)

<param1>.<15> = 0 nochecking
= 1 checking

< param2 > is not used with function 10.

11 Terminal: Set break ownership

< param1 > = 0 means BREAK disabled (default setting).
= < cpu,pin > means enable BREAK.

Terminal access mode after BREAK is typed

< param2 > = 0 normal mode (any type file access is permitted)
= 1 BREAK mode (only BREAK-type file access is permitted)

12 Terminal: Set terminal access mode

< param1>.<15> = 0 normal mode (any type file access is permitted)
= 1 BREAK mode (only BREAK-type file access is permitted)

Fi le access type

< param2>. < 15> = 0 normal access to terminal
= 1 BREAK access to terminal

13 Terminal: Set system read termination on ETX character (default is configured)

< param1 > = 0 no termination on ETX
= 1 termination on first character after ETX
= 3 termination on second character after ETX

< param2 > is not used with function 13.
f------------------------------------- -·-

14 Terminal: Set system read termination on interrupt characters (default is configured)

< param1>.<15> = 0 no termination on interrupt characters (that is, transparency
mode)

= 1 termination on any interrupt character

< param2 > is not used with function 14.
f--

20 Terminal: Set system echo mode (default is configured)

21

~ 82359 AOO 3/85

< param1>.<15 > = 0 system does not echo characters as read.
= 1 system echoes characters as read.

< param2 > is not used with function 20.

Card reader: Set system read mode

< param1 > = 0 set ASCII read mode (default).
1 set column-binary read mode.
2 set packed-bi nary read mode.

< param2 > is not used with function 21.

C-3

Appendix C

SETMODE Functions Table (Continued)

~-------------------------------·------------------

<function>
~------------------------.. -------·---------------------!

C-4

22 Line printer (subtype 3, 4, 6, and 32) or terminal: Set baud rate

< param1 > = 0 baud rate = 50
1 baud rate = 75
2 baud rate = 110
3 baud rate = 134.5
4 baud rate = 150
5 baud rate = 300
6 baud rate = 600
7 baud rate = 1200
8 baud rate = 1800
9 baud rate = 2000

10 baud rate = 2400
11 baud rate = 3600
12 baud rate = 4800
13 baud rate = 7200
14 baud rate = 9600
15 baud rate = 19200
16 baud rate = 200

NOTE

The 5520 line printer supports only the 110, 150, 300, 600, 1200, 2400, 4800,
and 9600 baud rates.

The 5530 line printer supports only the 75, 150, 300, 600, 1200, 2400, 4800,
and 9600 baud rates.

l'f no baud rate is specified in SYSGEN, then 9600 baud is used. The default
is what was specified at SYSGEN.

The asynchronous controller supports only the 150, 300, 600, 1200, and 1800
baud rates.

< param2 > is not used with function 22.

23 Terminal: Set character size

< param1 > = 0 character size = 5 bits
1 character size = 6 bits
2 character size = 7 bits
3 character size = 8 bits

< param2 > is not used with function 23.

24 Terminal: Set parity generation by system

<pa ram 1 > = 0 parity = odd
1 parity = even
2 parity = none

< param2> is not used with function 24.
----·---··----··--------------------l

25 Line printer (subtype 3): Set form length

< param1 > = length of form in lines

< param2 > is not used with function 25.

26 Line printer (subtype 3): Set or clear vertical tabs

< param1 > > = 0 is (line#- 1) of where tab is to be set.
= - 1 clear all tabs (except line 1).

NOTE

A vertical tab stop always exists at line 1 (top of form).

< param2 > is not used with function 26.

"f' 82359 AOO 3/85

Appendix C

SETMODE Functions Table (Continued)

<function>

27 Line printer or terminal: Set system spacing mode

< param1>.<15 > = 0 postspace (default setting)
= 1 prespace

< param2 > is not used with function 27.

28 Line printer or terminal: Reset to configured values

<param1> = 0

< param2 > is not used with function 28.

For the 5530 line printer, SETMODE 28 resets all the SETMODE parameters back to their
SYSGEN values and also reinitializes the printer.

NOTE

SETMODE 29 (set auto answer or control answer mode) is the only SETMODE
not affected by a SETMODE 28.

29 Line printer (subtype 3, 4, 6, or 32): Set automatic answer mode or control answer mode.

<param1 >.<15> = 0 CTRLANSWER
1 AUTOANSWER (default)

The default is what was specified at SYSGEN. If no mode is specified at SYSGEN, then
AUTOANSWER is used.

< param2 > is not used with function 29.

NOTE

SETMODE option 29 remains in effect even after the file is closed. SETMODE
29 is the only SETMODE not affected by a SETMODE 28.

SETMODE 29 is not reset at the beginning of each new job. Therefore, you
should always issue a SETMODE 29 at the beginning of your job to assure
that you are in the desired mode (whether than in the mode left by the pre­
vious job).

30 Allow nowait 1/0 operations to complete in any order

<param1>.<15> = 0 no(default)
= 1 yes

NOTE

If <pa ram 1 >. < 15 > is set to 1, nowait operations do not necessarily
complete in the order the 1/0 process returns them. (Operations that
complete in time for AWAITIO to collect their output return in the order
issued.)

< param2 > is not used with function 30.

31 Set packet mode

<param1 >.<0> = 0 ignore <param2>
= 1 < param2 > specifies leading packet size.

< param2 > = 0 use default packet size for transmission (default).
>0 is size of first outgoing packet in each WRITE OR WRITEREAD

request. It must be smaller than configured packet size.

"'82359 AOO 3/85 C-5

Appendix C

SETMODE Functions Table (Continued)

~----------------·------·--·---···-·····-·-----------

<function>

3 2 Set X.25 call setup parameters

< param1>.<0 > = O do not accept charge.
= 1 accept charge .

. < 1 > = 0 do not request charge.
= 1 request charge .

. <2> = O is normal outgoing call.
= 1 is priority outgoing call.

.<8:15> = portnumber(0-99)

To determine the actual value for port number, refer to specifications on your own
network.

1-----------------------·--------·--·-----·-·-------------------------1

33 Seven-track tape drive: Set conversion mode

< param1 > = 0 ASCII BCD (even parity) (default)
= 1 Bl NARY3T04 (odd parity)
= 2 Bl NARY2T03 (odd parity)
= 3 Bl NARY1T01 (odd parity)

36 Allow requests to be queued on $RECEIVE based on process priority

< param1>.<15> = 0 use first-in-first-out (FIFO) ordering (default).
= 1 use process priority ordering.

< param2 > is not used with function 36.
1---·-------l

3 7 Line printer (subtype 1, 4, 5, or 6): Get device status

< param1 > is not used with function 37.

< param2 > is not used with function 37.

< last-params > = status of device. Status values are:

< last-params > for printer (subtype 1 or 5)
(only < last-params > [O] is used)

. < 5 > = DOV, Data overrun 0 = no overrun
1 = overrun occurred

.<7> =CLO, Connector loop open 0 = not open
1 = open (device

unplugged)

. < 8 > = Cl D, Cable ident 0 = old cable
1 = new cable

. < 10 > = PMO, Paper motion O = not moving
* * RESERVED FOR LATER USE * * 1 = paper moving

. < 11 > = BOF, Bottom of form O = not at BOF
1 = at bottom

.<12> = TOF,Topofform 0 = notattop
1 = at top

. < 13 > = DPE, Device parity error 0 = parity OK
1 = parity error

. < 14> = NOL, Not on line 0 = on line
1 = not on line

.<15> = NRY, Not ready 0 =ready
1 = not ready

All other bits are undefined.
'--------------------------------·---

C-6 ..-,, 82359 AOO 3/85

<function>

~ 82359 AOO 3/85

Appendix C

SETMODE Functions Table (Continued)

NOTE

Note that Ownership, Interrupt Pending, Controller Busy, and Channel Parity
errors are not returned in < last-params >;your application program "sees"
them as normal file errors. Also, CID must be checked when PMO, BOF, and
TOF are tested, since the old cable version does not return any of these
states.

< last-params > for printer (subtype 4)
< last-params > [O] = primary status returned from printer:

. < 9:11 > = full status 0 = partial status
field 1 = full status

.<12> = bufferfull

. < 13> = paper out

2 = full status I VFU fault
3 = reserved for future use
4 = full status I data parity error
5 = full status I buffer overflow
6 = full status I bail open
7 = full status I auxiliary status available

0 = not full
1 = full

0 =OK
1 = paper out

. < 14 > = device power on 0 =OK
1 = POWER ON error

. < 15 > = device not ready O = ready
1 = not ready

All other bits are undefined.

< last-params > [1] = auxiliary status word if < last-params > [O]. < 9:11 > = 7; auxiliary
status word is as follows:

. <9:13> = auxiliary
status

.<14:15>

All other bits are undefined.

O = no errors this field
1 = no shuttle motion
2 = character generator absent
3 = VFU channel error

4-31 = reserved for future use

always 3

< last-params > for printer (subtype 6)

< last-params > [O] contains the primary status.
[1] contains the auxiliary status.

C-7

Appendix C

<function>

SETMODE Functions Table (Continued)

Primary status bits are:

[0].<0:8> = 0 undefined
. <9> = 1 reserved

.<10:12> = 0 nofaults
= 1 printer idle
=2 paper out
=3 end of ribbon
=4 data parity error
=5 buffer overflow
=6 cover open
= 7 auxiliary status available

.<13> =0 buffer not full
= 1 buffer full

.<14> =0 OK
= 1 device power on error

.<15> =0 OK
= 1 device not ready

If primary status < last-params > [O]. < 10:12 > = 7; auxiliary status
word is:

[1].<0:7> =undefined
. < 8:11 > = fault display status (most significant HEX digit)
. < 12:15> = fault display status (least significant HEX digit)

Fault Display Status Summary

Operator Aux Status Aux Status Problem
Display .<8:11> .<12:15> Description

None 0 0 No faults
E01 0 1 Paper out
E03 0 3 Cover open
E06 0 6 End of ribbon
E07 0 7 Break
E11 1 1 Parity error
E12 1 2 Unprintable character
E22 2 2 Carrier loss
E23 2 3 Buffer overflow
E30 3 0 Printwheel motor fault
E31 3 1 Carriage fault
E32 3 2 Software fault
E34 3 4 Hardware fault

38 Terminal: Set special line termination mode and character

C-8

< param1 > = 0 sets special line termination mode. < param2 > is the new line termi­
nation character. The line termination character is not counted in the
length of a READ. No carriage return or line feed is issued (the cursor
is not moved) at the end of a READ.

= 1 sets special line termination mode.< param2> is the new line termi­
nation interrupt character. The line termination character is counted
in the length of a READ. No carriage return or line feed is issued (the
cursor is not moved) at the end of a READ.

= 2 resets special line termination mode. The line termination interrupt
character is restored to its configured value. < param2 > must be
present but is not used.

""182359 AOO 3/85

Appendix C

<function>

SETMODE Functions Table (Continued)

< param2 > = the new line termination interrupt character if < param1 > = 0 or 1.

< last-params > if present, returns the current mode in < last-params > [O] and the
current line termination interrupt character in < last-params > [1].

50 Enable/disable 3270 COPY

< param1 > = 0 suppress COPY
= 1 allow COPY

51 Get/set 3270 status

< param1 > status flags mask to set

< param2 > is not used with function 51.

Refer to the Device Specific Access Methods-AM3270/TR3271 Manual for the flags
mask information.

52 Tape drive: Set short WRITE mode

< param1 > = 0 allow WRITEs shorter than 24 bytes (default)
= 1 disallow WRITEs shorter than 24 bytes

< param2 > is not used with function 52.

NOTE

When short WRITEs are disallowed, an attempt to WRITE or WRITEUPDATE
a record that is shorter than 24 bytes causes error 21 (bad count) to be
issued.

53 Enable/disable receipt of status

< param1 > = O disable status receive
= 1 enable status receive

< param2 > = the response ID

54 Return control unit and device assigned to subdevice

< param1 > is not used with function 54.
< param2 > is not used with function 54.

<last-params>[0].<0:7> = 0
. <8:15> = subdevice number known by AM3270

[1]. < 0:7 > = standard 3270 control-unit address
. <8:15> = standard 3270 device address

59 Return count of bytes read

< param1 > = count of actual bytes read
<param2> = O

57 Disc: Set serial WRITEs option (overrides SYSGEN setting for this file).

"1' 82359 AOO 3/85

< param1 > = 0 system automatically selects serial or parallel WRITEs (default).
= 1 allow only serial WRITEs to mirrored volumes.

< param2 > is used with DP2 disc files only.

< param2 > = 0 change the open option setting of the serial WRITEs option (default).
= 1 change the file label default value of the serial WRITEs option.

C-9

Appendix C

SETMODE Functions Table (Continued)

~--.

<function>

66 Tape drive (subtype 2): Set density

<param1 > = 0 800 bpi (NRZI)
= 1 1600 bpi (PE)
= 2 6250 bpi (GCR)
= 3 as indicated by switches on tape drive

< param2 > is not used with function 66.
r---1

67 AUTODCONNECT for full-duplex modems: Monitor carrier detect or data set ready

< param1 > = O disable AUTODCONNECT (default setting).
1 enable AUTODCONNECT.

< param2 > is not used with function 67.
1------------------------------·-~------------------l

68 Line printer (subtype 4): Set horizontal pitch

< param1 > = 0 normal print (default)
= 1 condensed print
= 2 expanded print

< param2 > is not used with function 68.
~--------------------·~-----------------------------1

70 Permit nowait 1/0 operations to reference or modify user buffer

<param1 >.<15> = 0 reference to user buffer permitted
= 1 reference to user buffer not permitted between file system

calls

< param2 > is not used with ·function 70.

90 Disc: Set buffered option defaults are same as CREATE

< param1 > = 0 buffered
= 1 WRITE-thru

< param2 > is used with DP2 disc files only.

< param2 > = 0 change the open option setting of the buffered option (defau It).
= 1 change the file label default value of the buffered option.

91 Disc: Set ACCESSTYPE open option (<function> 91 is not applicable for alternate-key
files on DP2 disc files.)

< param1 > = 0 system managed (default)
= 1 direct 1/0, bypass disc cache
= 2 random access, LRU-chain buffer
= 3 sequential access, reuse buffer

< param2 > is not used with function 91.
r----------------------------·~-------------------1

C-10

92 Disc: Set maximum number of extents for a nonpartitioned file. (<function> 92 is not
applicable for alternate-key files on DP2 disc files.)

< param1 > = new maximum number of extents value, defaults to 16 extents

< param2 > is not used with function 92.

93 Disc: Set buffer length for an unstructured file

< param1 > = new BUFFERSIZE value, must be valid DP2 blocksize. Valid DP2 block­
sizes are 512, 1024, 2048, 4096 bytes (the default is 4096 bytes).

< param2 > is not used with function 93.

"'f 82359 AOO 3/85

Appendix C

<function>

94

95

SETMODE Functions Table (Continued)

Disc: Set audit-checkpoint compression option for an audited file.

< param1 > = 0 no audit-checkpoint compression (default)
= 1 audit-checkpoint compression enabled

< param2 > = 0 change the open option setting of the audit-checkpoint compression
option (default).

= 1 change the file label default value of the audit-checkpoint compres­
sion option.

Disc: Flush dirty cache buffers (WRITE access required)

< param1 > is not used with function 95.

< param2 > is not used with function 95.

< last-params > if specified, SETMODE returns:

O = broken file flag off after all dirty cache blocks were written to disc
1 = broken file flag on, indicating some part of file is bad, possibly due to failed

WRITE of a dirty cache block

110 Set Shift In/Shift Out (SISO) code extension technique for an individual subdevice

NOTE

SETMODE 110 is supported in AM6520 for CRT protocol when used for 6530
terminals, ITI protocol for 6530 terminals, and PTR protocol for 5520 printers.

< param1 > = 0 disable SISO (default setting)
= 1 enable SISO

< param2 > is not used with function 110.

113 Set screen size

~ 82359 AOO 3/85

< param1 > = 1 the screen width (40, 66, 80, or 132)

< param2 > = the screen length (25, 28)

< last-params > is an integer reference parameter containing two elements:

< last-params > [O] = old < param1 >
[1] =old <param2>

c-11

SECTION D

SYSTEM PROCEDURE CALLS SYNTAX

This appendix contians a syntax summary of all the system procedure
calls that are described in this manual.

CALL ABEND;

<status> := ABORTTRANSACTION;

CALL ACTIVATEPROCESS (<process-id>);

CALL ACTIVATERECEIVETRANSID (<message-tag>);

CALL ADDDSTTRANSITION (<low-gmt>
,<high-gmt>
,<offset>);

<status> := ALLOCATESEGMENT (<segment-id>
,[<segment-size>]
,[<filename>]
, [<pin>]) ;

CALL ALTERPRIORITY (<process-id>
,<priority>);

CALL ARMTRAP (<traphandlr-addr>
,<trapstack-addr>);

CALL AWAITIO (<f ilenum>

..., 82359 AOO 3/85

,[<buffer-addr>]
,[<count-transferred>]
,[<tag>]
,[<timelimit>]);

i

i

i
i
i

i
i
i
i

i
i

i
i

i' 0
0

! 0
! 0

i

D-1

Appendix D
Syntax Summary

<status> := BEGINTRANSACTION (<trans-begin-tag>

<contrl-chars> := BLINKASCREEN (@<screen-name>
,SCREEN
,<buffer>
,<field-name>
,<blink>) :

CALL CANCEL (<filenum>);

CALL CANCELPROCESSTIMEOUT (<tag>);

CALL CANCELREQ (<f ilenum>
, [<tag>]) :

CALL CANCELTIMEOUT (<tag>);

CALL CHANGELIST (<f ilenum>
,<function>
,<parameter>);

CALL CHECKCLOSE (<f ilenum>
,[<tape-disposition>]);

{ <status>
{ CALL

:= } CHECKMONITOR;
}

CALL CHECKOPEN (<filename>
,<f ilenum>
,[<flags>]
,[<sync or receive-depth>]
,[<sequential-block-buffer>]
,[<buffer-length>]
,<backerror>);

{ <status> := } CHECKPOINT
{ CALL }

([<stack-base> [, [<buffer-I>]
[, [<buffer-2>]

[<count-1>]]
[<count-2>]]

. .

!o

i
0
i
i
i

i

i

i
i

i

i
i
i

i
i

i
i' 0
i
i
i
i
0

i ' i ' i
i' i

[, [<buf fer-13>] , [<count-13>]]) : ! i, i

D-2 ~ 82359 AOO 3/85

Appendix D
Syntax Summary

{ <status>
{ CALL

:= } CHECKPOINTMANY ([<stack-base>]
} ,[<descriptors>

<error> := CHECKASCREEN (@<screen-name>
,SCREEN

{ <status>
{ CALL

, <buff er>
,<check-procedure>
, <count>) ;

:= } CHECKSWITCH;
}

CALL CLOSE (<f ilenum>
,[<tape-disposition>) ;

) ;
1

l

1

0

l

0

0

l

1

<jul-day-num> := COMPUTEJULIANDAYNO (<year> 1

, <month> i

, <day> i

,[<error-mask>]); o

<ret-timestamp> := COMPUTETIMESTAMP (<date-n-time>
,[<errormask>

CALL CONTIME (<date-and-time>
,<tO>
,<tl>
,<t2>);

CALL CONTROL (<f ilenum>
,<operation>
,<param>
,[<tag>]);

CALL CONTROLBUF (<f ilenum>
,<operation>
,<buffer>
,<count>
,[<count-transferred>
,[<tag>]);

) ; 0

! 0

1

1

1

1

1

l

1

1

1

1

l

0

1

1

CALL CONVERTPROCESSNAME (<process-name>); 1 '

~ 82359 AOO 3/85

0

D-3

Appendix D
Syntax Summary

CALL CONVERTPROCESSTIME <process-time>
,[<hours>]
,[<minutes>]
,[<seconds>]
,[<milliseconds>
,[<microseconds>) ;

<ret-time> := CONVERTTIMESTAMP (<julian-timestarnp>
,[<direction>]
,[<node>]
,[<error>]);

CALL CPUTIMES ([<cpu>]
,[<sysid>]
,[<total-time>
,[<cpu-process-busy>
,[<cpu-interrupt>]
,[<cpu-idle>]);

CALL CREATE (<filename>
,[<primary-extentsize>
,[<file-code>]
,[<secondary-extentsize>
,[<file-type>]
,[<recordlen>]
,[<data-blocklen>
,[<key-sequenced-pararns>
,[<alternate-key-pararns>
,[<partition-pararns>]
,[<maximum-extents>]
,[<unstructured-buffer-size>
,[<open-defaults>]);

CALL CREATEPROCESSNAME (<process-name>);

CALL CREATEREMOTENAME (<name>
,<sysnurn>);

<accessor-id> .- CREATORACCESSID;

<stack-env>
CALL

.- } CURRENTSPACE [(<ascii-space-id>);
}

CALL DEALLOCATESEGMENT (<segment-id>
I [< f 1 ag S >]) ;

D-4

l

0

0

0

0
0

l

1

l

0

1

1

0

0

0

! 0

i I 0

1

1

l

l

1

I i
1

1

1

l

1

1

! 0

! 0
l

! 0

l

0

.., 82359 AOO 3/85

CALL DEBUG;

CALL DEBUGPROCESS (<process-id>
,<error>
,[<term>]
, [<now>]) ;

CALL DEFINELIST (<f ilenum>
,<address-list>
,<address-size>
,<num-entries>
,<polling-count>
,<polling-type> };

<status> := DEFINEPOOL (<pool-head>
,<pool>
,<pool-size>);

CALL DELAY (<time-period>);

CALL DEVICEINFO (<filename>
,<devtype>
,<physical-recordlen>);

CALL DEVICEINF02 (<filename>
,<devtype>
,<physical-recordlen>
,<discprocess-version>);

<status> := EDITREAD (<edit-controlblk>
,<buffer>
,<bufferlen>
,<sequence-num>);

<status> := EDITREADINIT (<edit-controlblk>
,<f ilenum>
,<bufferlen>);

<status> := ENDTRANSACTION;

CALL ENFORMFINISH (<ctlblock>);

"'1 82359 AOO 3/85

Appendix D
Syntax Summary

1

0

i' 0
1, 0

1

1

1

1

1

1

1, 0

1

1

1

1

0

! 0

1

0

0

! 0

1

0

1

0

1

1

1

i

D-5

Appendix D
Syntax Summary

{ <count> :=
{ CALL

} ENFORMRECEIVE (<ctlblock>
} ,<buffer>);

CALL ENFORMSTART (<ctlblock>
,<compiled-physical-filename>
,<buffer-length>
,<error-number>
,[<restart-flag>]
,[<param-list>]
,[<assign-list>]
,[<qp-name>]
,[<cpu>]
,[<priority>]
,[<timeout>]
,[<reserved-for-expansion>]);

<num-bytes> := EXPANDASCREEN (@<screen-name>
SCREEN
<buffer>
<rewrite-form>);

<status> := FILEERROR (<filenum>);

CALL FILEINFO ([<f ilenum>]
,[<error>]

D-6

,[<filename>]
,[<ldevnum>]
,[<devtype>]
,[<extent-size>]
,[<eof-location>]
,[<next-record-pointer>]
,[<last-modtime>]
,[<filecode>]
,[<secondary-extent-size>]
,[<current-record-pointer>]
,[<open-flags>]
,[<subdev>]
,[<owner>]
,[<security>]
,[<num-extents-allocated>]
,[<max-file-size>]
,[<partition-size>]
,[<num-partitions>]
,[<file-type>]
,[<maximum-extents>]
,[<unstructured-buffer-size>]
,[<open-flags2>]
,[<sync-depth>]
,[<next-open-fnum>]):

i
i, 0

0
i
i
0
i
i
1

i
i
i
i
i

i
0
0
i

i

i
0
i, 0

0

0
0
0
0
0
0

0
0

0

0

0

0
0
0
0

0

0
0

0

0

0

0

4P 82359 AOO 3/85

CALL FILERECINFO ([<f ilenum>]
,[<current-keyspecifier>]
,[<current-keyvalue>]
,[<current-keylen>]
,[<current-primary-keyvalue>]
,[<current-primary-keylen>]
,[<partition-in-error>]
,[<specifier-of-key-in-error>]
,[<file-type>]
,[<logical-recordlen>]
,[<blocklen>]
,[<key-sequenced-parameters>]
,[<alternate-key-parameters>]
,[<partition-parameters>]
,[<filename>]):

CALL FIXSTRING (<template>
,<template-len>
,<data>
,<data-len>

<length> ·-.-

{ <length>
{ CALL

{ <status>
{ CALL

,[<maximum-data-len>]
,[<modification-status>]):

FL"SCREEN (<field-name>) :

:= } FNAMECOLLAPSE (<internal-name>
} ,<external-name>

. - } FNAMECOMPARE (<f ilenamel> .-
} ,<f ilename2>) :

) :

{ <length> :=
{ CALL

} FNAMEEXPAND (<external-filename>
} ,<internal-filename>

,<default-names>):

{ <status>
{ CALL

..-, 82359 AOO 3/85

:= } FORMATCONVERT
}

(<iformat>
,<iformatlen>
,<eformat>
,<eformatlen>
,<scales>
,<scale-count>
,<conversion>):

Appendix D
Syntax Summary

i
0

0

0

0

0
0

0
0

0
0

0
0

0

1

i
i
i' 0
i' 0
i
0

i

i
0

1

i

i
0
1

1

1

0
0
0
o, i
i

D-7

Appendix D
Syntax Summary

{ <error>
{ CALL

. - } . -
}

FORMATDATA (<buffer>
,<bufferlen>
,<buffer-occurs>
,<length>
,<iformat>
,<variable-list>
,<variable-list-len>
,<flags>);

CALL GETCPCBINFO (<request-id>
,<cpcb-info>
,<in-length>
,<out-length>
, <error>) ;

CALL GETCRTPID <cpu,pin>
,<process-id>);

<status> := GETDEVNAME (<ldevnum>
,<devname>
,[<sysnum>);

<address> := GETPOOL (<ppd-head>
,<block-size>);

CALL GETPPDENTRY (<index>
,<sysnum>
,<ppd>);

CALL GETREMOTECRTPID (<pid>
,<process-id>
,<sysnum>);

CALL GETSYNCINFO (<f ilenum>
,<sync-block>

{ <ldev>
{ CALL

<status>

<status>

D-8

,[<sync-block-size>]);

:= } GETSYSTEMNAME (<sysnurn>
} ,<sysname>);

:= GETTMPNAME (<devname>);

:= GETTRANSID (<transid>);

i I 0
1

0

0

! 0
! 0
! 0

i

i
0

1

0

! 0

1

0

i' 0
0

1

i, 0

l

l

l

0

l

0

l

1

! 0
! 0

i' 0
0

! 0

l

'1' 82359 AOO 3/85

CALL HALTPOLL <filenum>);

CALL HEAPSORT <array>
,<num-elements>
,<size-of-element>
,<compare-proc>);

{ <status>
{ CALL

. - } .-
}

INITIALIZER ([<rucb>]
,[<passthru>]
,[<startupproc>]
,[<paramsproc>]
,[<assignproc>]
, [<flags>]) ;

CALL INTERPRETJULIANDAYNO (<julian-day-num>
,<year>
,<month>
,<day->) ;

Appendix D
Syntax Summary

I • . l

i ' 0
i
i
i

i
0
i
i
i
i

i
0
0
0

<ret-date-time> := INTERPRETTIMESTAMP <julian-timestamp>
<date-n-time>);

i
0

<retval> := JULIANTIMESTAMP ([<type>]
,[<tuid>]);

CALL KEYPOSITION (<f ilenum>
,<key-value>
,[<key-specifier>]
,[<length-word>]
,[<positioning-mode>]);

<last-addr> := LASTADDR;

CALL LASTRECEIVE ([<process-id>]
,[<message-tag>]);

{ <ldev>
{ CALL

:= } LOCATESYSTEM (<sysnum>
} ,[<sysname>]);

CALL LOCKFILE (<f ilenum>
,[<tag>]);

"' 82359 AOO 3/85

i
0

i
i
i
i
i

! 0
! 0

i' 0
i

i
0

D-9

Appendix D
Syntax Summary

CALL LOCKREC (<f ilenum>
,[<tag>]);

CALL LOOKUPPROCESSNAME (<ppd>);

CALL MOM (<process-id>);

CALL MONITORCPUS (<cpu-mask>);

CALL MONITORNET <enable>);

CALL MONITORNEW (<enable>);

<cpu,pin> := MYPID;

<process-time> := MYPROCESSTIME;

<sysnum> := MYSYSTEMNUMBER;

CALL MYTERM (<filename>);

CALL NEWPROCESS (<filenames>
,[<priority>]
,[<memory-pages>]
,[<processor>]
,[<process-id>]
,[<error>)
,[<name>]
,[<hometerm>]
,[<inspect-flag>]) ;

CALL NEWPROCESSNOWAIT (<filenames>
,[<priority>]
,[<memory-pages>]
,[<processor>]
,[<process-id>]
,[<error>]
,[<name>]
,[<hometerm>]
,[<inspect-flags>]);

<error> := NEXTFILENAME (<filename>);

D-10

i
i

i' 0

! 0

i

i

i

! 0

i
i
i
i
0

0

i
i
i

i
i
i
i
unused
0

i
i
i

i, 0

~ 82359 AOO 3/85

{ <next-addr> :=
{ CALL

} NUMIN (<ascii-num>
} ,<signed-result>

,<base>
,<status>);

CALL NUMOUT (<ascii-result>
,<unsigned-integer>
,<base>
,<width>):

CALL OPEN (<filename>
,<filenum>
,[<flags>]
,[<sync-or-receive-depth>
,[<primary-filenum>]
,[<primary-process-id>]
,[<seq-block-buffer>]
,[<buffer-length>]);

CALL POSITION (<f ilenum>
,<record-specifier>);

<num-chars> := POSITIONASCREEN (@<screen-name>
SCREEN
<buff er>
<field-name>);

Appendix D
Syntax Summary

!

!

l

0

i
0

0

l

l

l

i
0

l

l

0

0

l

l

l

l

l

0

0

l

unused

<error-code> := PRINTCOMPLETE (<filenum-to-supervisor> i

,<print-control-buffer>); o

<error-code> . - PRINT INFO (<job-buffer> l . -
' [<copies-remaining> ! 0
, [<current-page>] ! 0
, [<current-line>] ! 0
, [<lines-printed>]) : ! 0

<error-code> . - PRINTINIT (<f ilenum-to-supervisor> l . -
,<print-control-buffer>) : i , 0

<error-code> : = PRINTREAD (<job-buff er> i ' 0

,<data-line> 0

,<read-count> i
, [<count-read>] 0

, [<pagenum>]) l

Af' 82359 AOO 3/85 D-11

Appendix D
Syntax Summary

<error-code> := PRINTREADCOMMAND (<print-control-buffer> i
,[<controlnum>] o
,[<device>] o
,[<devflags>] o
,[<devparam>] o
,[<devwidth>] o
,[<skipnum>] o
,[<data-file>] o
,[<jobnum>] o
,[<location>] o
,[<form-name>] o
,[<report-name>] o
,[<pagesize>]); o

<error-code> := PRINTSTART (<job-buffer>
,<print-control-buffer>
,<data-filenum>);

! 0
i
i

<error·-code> := PRINTSTATUS (<filenum-to-supervisor>
,<print-control-buffer>
,<msg-type>

{ <old·-pr i or i ty>
{ CALL

,<device>
,[<error>]
,[<num-copies>]
,[<page>]
,[<line>]
,[<lines-printed>]);

.- } PRIORITY ([<new-priority>]
} ,[<init-priority>]);

<accessor-id> := PROCESSACCESSID;

<old-security> := PROCESSFILESECURITY (<security>);

D-12

i
i
i
i
i
i
i
i
i

i
0

i

-"182359 AOO 3/85

,.
{ <error> :=
{ CALL

} PROCESSINFO (
}

<cpu,pin>
,[<process-id>]
,[<creator-accessor-id>
,[<process-accessor-id>
,[<priority>]
,[<program-filename>]
,[<home-terminal>]
,[<sysnum>]
,[<search-mode>]
,[<priv-only>]
,[<processtime>]
,[<waitstate>]
,[<process-state>]
,[<library-filename>]
, [<swap-filename>]) ;

<processor-status> := PROCESSORSTATUS;

<type> := PROCESSORTYPE ([<cpu>]
,[<sysid>]);

<process-time> := PROCESSTIME ([<cpu,pin>]
,[<sysid>]);

CALL PROGRAMFILENAME (<program-file>);

CALL PURGE (<filename>);

CALL PUTPOOL (<pool-head>
,<pool-block>);

CALL READ (<f ilenum>
,<buffer:>
,<read-count>
,[<count-read>]
,[<tag>]);

CALL READLOCK (<f ilenum>
,<buffer>
,<read-count>
,[<count-read>]
,[<tag>]);

<num-chars> := READASCREEN (@<screen-name>
, <buffer>);

~ 82359 AOO 3/85

Appendix D
Syntax Summary

]
]

i
i ,
i ,
i ,
i ,
i ,
i ,
i
i
i
0
0

0

0

0

i
i

i
i

! 0

i

0

0

0

0

0

0

i, 0

i

i
0
i
0
i

i
0
i
i
i

i
0

D-13

Appendix D
Syntax Summary

CALL READUPDATE (<f ilenum>
,<buffer>
,<read-count>
,[<count-read>]
,[<tag>]);

CALL READUPDATELOCK (<f ilenum>
,<buffer>
,<read-count>
,[<count-read>]
, [<tag>]) ;

tALL RECEIVEINFO { [<process-id>]
,[<message-tag>]
,[<sync-id>]
,[<filenum>]
,[<read-count>]);

{ <error>
{ CALL

:= } REFRESH
}

[<volname>]
, [<a 11 >]) ;

<status> := REMOTEPROCESSORSTATUS <sysnum>);

<tos-version> := REMOTETOSVERSION ([<sysid>]);

CALL RENAME (<f ilenum>
,<new-name>);

CALL REPLY ([<buffer>]
,[<write-count>]
,[<count-written>]
,[<message-tag>]
,[<error-return>]);

CALL REPOSITION { <f ilenum>
,<positioning-block>);

CALL RESERVELCBS (<no-receive-lcbs>
,<no-send-lcbs>);

CALL RESETSYNC (<filenum>);

<status> := RESUMETRANSACTION { <trans-begin-tag>);

D-14

i
0
i
0
i

i
0

i
0
i

! 0
0

0

! 0
! 0

i
i

i

i

i
i

i
i
0
i
i

i
i

i
i

i

i

Af' 82359 AOO 3/85

CALL SAVEPOSITION (<f ilenum>
,<positioning-block>
,[<positioning-blksize>]);

CALL SETLOOPTIMER (<new-time-limit>
,[<old-time-limit>]);

CALL SETMODE (<f ilenum>
,<function>
,[<paraml>]
,[<param2>]
,[<last-params>]);

CALL SETMODENOWAIT (<f ilenum>
,<function>
,[<paraml>]
,[<param2>]
,[<last-params>]
,[<tag>]);

CALL SETMYTERM (<terminal-name>);

CALL SETPARAM (<f ilenum>
,.<function>
,[<param-array>]
,[<param-count>]
,[<last-param-array>]
,[<last-param-count>]);

{ <last-stop-mode>
{ CALL

:= } SETSTOP (<stop-mode>);
}

CALL SETSYNCINFO (<f ilenum>
,<sync-block>);

CALL SETSYSTEMCLOCK (<julian-gmt>
, <mode>
,[<tuid>]);

CALL SHIFTSTRING (<string>
,<count>
,<casebit>);

~ 82359 AOO 3/85

Appendix D
Syntax Summary

i
0

0

i
0

i
i
i
i
0

i
i
i
i
0

i

i

i
i
i
i
0
0

i

i
0

i
i
i

i, 0
i
i

D-15

Appendix D
Syntax Summary

CALL SIGNALPROCESSTIMEOUT <timeout-value>
,[<paraml>]
,[<param2>]
,[<tag>]);

CALL SIGNALTIMEOUT (<timeout-value>
,[<paraml>]

{ <status> :=
{ CALL

,[<param2>]
, [<tag>]) ;

SORTERROR (<ctlblock>
, <buffer>) ;

{ <status>
{ CALL

:= } SORTERRORDETAIL (<ctlblock>);
}

{ <status> : = } SORTMERGEFINISH (<ctlblock>
{ CALL } , [<abort>]

, [<sparel>]
, [<spare2>]

{ <status> : = } SORTMERGERECEIVE (<ctlblock>
{ CALL } ,<buffer>

,<length>
' [<sparel>
, [<spare2>

{ <status> . - SORTMERGESEND (<ctlblock> . -
{ CALL ,<buffer>

,<length>
' [<stream-id>
, [<spar el>]
, [<spare2.> J) ;

D-16

) ;

) ;

error
error

error
error

error
error

i
1

i
0

i
1

1

0

1

1

1

1 '
1

if
if

1

1

0

if
if

i
1

1

1

if
if

0

used.
used.

used.
used.

used.
used.

~ 82359 AOO 3/85

{ <status> .­
{ CALL

{ <status> .­
{ CALL

} SORTMERGESTART
}

Appendix D
Syntax Summary

(<ctlblock>
,<key-block>
,[<num-merge-files>]
,[<num-sort-files>]
,[<in-filename>]
,[<in-file-exclusion-mode>
,[<in-file-count> J
,[<in-file-length>]
,[<format>]
,[<out-filename>]
,[<out-file-exclusion-mode>
,[<out-file-type>]
,[<flags>]
,[<errnum>]
,[<errproc>]
,[<scratch-filename>
,[<scratch-block>]
,[<process-start>]
,[<max-record-length>
,[<collate-sequence-table>
,[<sparel>]
,[<spare2>]

1

1

I 1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

,[<spare3>]
,[<spare4>]
,[<spare5>]) ;

error
error

1

if used
if used

SORTMERGESTATISTICS (<ctlblock>
,<length>
,<statistics>
,[<sparel>]

i
i' 0
0

do not use
do not use , [<spare2>]) ;

<error-code> .- SPOOLCONTROL (<level-3-buff> 1' 0
,<operation> i

,<param> i

, [<bytes-written-to-buff>]) ; ! o

<error-code> .- SPOOLCONTROLBUF (<level-3-buff> 1' 0
,<operation> i

,<buffer> i

,<count> i

, [<bytes-written-to-buff>]) ; ! o

<error-code> := SPOOLEND (<level-3-buff>
, [< f 1 ag s >]) ;

/f' 82359 AOO 3/85

1

1

D-17

Appendix D
Syntax Summary

<error-·code> : =

<error-·code> . -.-

<error-·code> . -.-

<error-·code> . -.-

SPOOLERCOMMAND

SPOOLEREQUEST

SPOOLERSTATUS

SPOOLJOBNUM (

(<f ilenum-to-supervisor>
,<command-code>
,[<command-param>]
,<subcommand-code>
,[<subcommand-param>]

<supervisor-f ilenum>
,<job-num>
.<print-control-buffer>) ;

(<supervisor-f ilenum>
,<command-code>
,<scan-type>
,<status-buffer>) ;

<f ilenum-to-collector>
,<job-num>) ;

i
i
i

I .
• 1

) ; ! i

i
i
0

i
i
i
i ,

i
0

0

<error-code> := SPOOLSETMODE (<level-3-buff> i, o
,<function> i
,[<paraml>] i
,[<param2>] ! i
,[<bytes-written-to-buff>]); ! o

<error-code> := SPOOLSTART (<filenum-to-collector>
,[<level-3-buff>]

i
0

i
i
i
i
i
i
i

,[<location>]
,[<form-name>]
,[<report-name>]
,[<num-of-copies>]
,[<page-size>]
,[<flags>]
, [<owner>]) ;

<error-code> := SPOOLWRITE (<level-3-buff> i, o
,<print-line> i
,<write-count> ! i
,[<bytes-written-to-buff>]); ! o

CALL STEPMOM (<process-id>);

CALL STOP [(<process-id>
,[<stop-backup>]);

CALL SUSPENDPROCESS (<process-id>);

D-18

i

i
i

i

~ 82359 AOO 3/85

<label> := SYSTEMENTRYPOINTLABEL l <name>
,<len>):

CALL TIME (<date-and-time>):

CALL TIMESTAMP (<interval-clock>):

<version> := TOSVERSION:

CALL UNLOCKFILE (<f ilenum>
, [<tag>]) ;

CALL UNLOCKREC (<f ilenum>
,[<tag>]);

CALL USERIDTOUSERNAME <id-name>);

CALL USERNAMETOUSERID (<name-id>);

<old-segment-id> := USESEGMENT (<segment-id>);

CALL VERIFYUSER (<user-name-or-id>
,[<logon>]
,[<default> , <default-len>]);

CALL WRITE (<f ilenum>
,<buffer>
,<write-count>
,[<count-written>]
, [<tag>]) ;

CALL WRITEREAD (<f ilenum>
,<buffer>
,<write-count>
,<read-count>
,[<count-read>]
, [<tag>]) ;

Appendix D
Syntax Summary

1

i

! 0

! 0

i
i

i
i

i '

i '

i

i
i
o,

i
i
i
0
i

i
i '0
i
i
0
i

0

0

i

Af' 82359 AOO 3/85 D-19

Appendix D
SIO Syntax Summary

CALL WRITEUPDATE (<f ilenum>
,<buffer>
,<write-count>
,[<count-written>
,[<tag>]);

CALL WRITEUPDATEUNLOCK (<f ilenum>
,<buffer>
,<write-count>

SIO Procedures Syntax

<state> := CHECKABREAK

,[<count-written>
, [<tag>]) ;

{ <common-fcb>
{ <f ile-fcb>

}) ;
}

<retval> := CHECKAFILE ({ <common-fcb> }
{ <file-fcb> }

,<operation>);

{<error>:=} CLOSEAFILE ({ <conunon-fcb>}
{ CALL } { <f ile-fcb> }

[, <tape-disposition>) ;

{ <error>
{ CALL

:= } GIVEABREAK ({ <common-fcb>});
} { <f ile-fcb> }

{ <no-retry>
{ CALL

:= } NQAERROR (<state>
} ,<file-fcb>

{ <error>
{ CALL

D-20

:= } OPENAFILE (
}

,<good-error-list>
, <retryable>) ;

<common-f cb>
,<file-fcb>
,[<block-buffer>]
,[<block-bufferlen>]
,[<flags>]
,[<flags-mask>]
,[<max-recordlen>
,[<prompt-char>]
,[<error-file-fcb>]) ;

i
i

l

l

l

i
i

l

i
l

l

i
i
l

i
l

l

i
i
l

l

l

l

i
i
i
0
i

l

l

i
0

l

~ 82359 AOO 3/85

Appendix D
SIO Syntax Summary

{ <error> . - } READ''' FI LE (<f ile-fcb> i .-
{ CALL } ,<buffer> 0

' [<count-read>] 0

' [<prompt-count>] i
' [<max-read-count>] i
l [<nowait>]) ; i

{ <error> := } TAKE,,..BREAK (<f ile-fcb>) ; i
{ CALL }

{ <error> . - } WAIT,,..FILE (<f ile-fcb> i .-
' [<count-read>] 0

' [<time-limit>]) ; i

{ <error> . - } WRITE,,..FILE (<f ile-fcb> i . -
{ CALL } ,<buffer> i

,<write-count> i
' [<reply-error-code>] i
' [<forms-control-code>] i
' [<nowait>]) ; i

Af' 82359 AOO 3/85 D-21

APPENDIX E

ENFORM ERRORS

This appendix contains a list of the ENFORMRECEIVE and ENFORMSTART
error codes and their meanings.

ENFORMRECEIVE

ENFORMSTART

~ 82359 AOO 3/85

If an error occurs during the execution of the
ENFORMRECEIVE procedure, the number of the error
returns in <error-number>. Any of these error
conditions terminates the ENFORM program. If the
query processor is dedicated, it is deleted.

Some ENFORMRECEIVE errors have additional information
written to the receiving buffer specified by the
<buffer> parameter. The <buffer-length> parameter for
ENFORMSTART specifies the number of bytes of error
information written to <buffer>. The additional error
message has a maximum length of 30 bytes. If
<buffer-length> is less than 30 bytes, the error
information is truncated to whatever length was
specified in <buffer-length>.

If an error occurs during the execution of the
ENFORMSTART procedure, the number of the error returns
to <error-number>. Any of these error conditions
terminates the query processor. If the query
processor is dedicated, it is deleted.

E-1

Appendix E
ENFORM Errors

EN FORM
Error

Number EN FORM RECEIVE

1 A query processor received a message
out of sequence.

3 An error occurred during a system
READ.

Contents of the <buffer> parameter
are:
• File System Number

High-order byte of second word is in
binary format.

• File Name (internal format)

Next 12 words contain the name, in
internal format, of the physical file
associated with the error.

4 An error occurred during file system
WRITE.

Contents of the <buffer> parameter
are:

• File System Number

High-order byte of second word is in
binary format.

• File Name (internal format)

Next 12 words contain the name, in
internal format, of the physical file
associated with the error.

5 An error occurred during file system
POSITION or KEYPOSITION.

Contents of the <buffer> parameter
are:

• File System Number

High-order byte of second word is in
binary format.

E-2

EN FORM START

Not applicable

An error occurred in trying to READ the
<compiled-physical-filename>.

Not applicable

-

Af' 82359 AOO 3/85

EN FORM
Error

Number EN FORM RECEIVE

• File Name (internal format)

Next 12 words contain the name, in
internal format, of the physical file
associated with the error.

6 An error occurred during file system
CONTROL.
Contents of the <buffer> parameter
are:
• File System Number

High-order byte of second word is in
binary format.

• File Name (internal format)

Next 12 words contain the name, in
internal format, of the physical file
associated with the error.

7 An error occurred during SORT. Not
applicable
Contents of the <buffer> parameter
are:
• File System Number

High-order byte of second word is in
binary format.

• File Name (internal format)
Next 12 words contain the name, in
internal format, of the physical file
associated with the error.

• File Error Code
Next word is in binary format.

8 An error occurred during file system
OPEN.

Contents of the <buffer> parameter
are:

• File System Number

High-order byte of second word is in
binary format.

• File Name (internal format)

Next 12 words contain the name, in
internal format, of the physical file
associated with the error.

9 An error occurred during file CREATE.

10 Strategy exceeded the value of the
@COST-TOLERANCE option variable.

Actual EN FORM strategy cost for the
query (number 1-8) is:

High-order byte of second word is in
binary format.

-'1J 82359 AOO 3/85

Appendix E
ENFORM Errors

EN FORM START
--·--·- ··-·- ----- ----;

Not applicable

Not applicable

- ----·-~-- ----------

Not applicable

··---

An error occurred during file system OPEN.
The error occurred while trying to open the
<compiled-physical-filename>.

_ __,

Not applicable
------- ------ ---~ --

Not applicable

-··-- ---·- ~--- ---------

E-3

Appendix E
ENFORM Errors

EN FORM
Error

Number
r--------

11
r---

12

f----·--·---

14

15

16

ENF ORM RECEIVE
r----

An at tempt was made to divide by 0.

Aqu ery contains an illegal combination
ks. of lin

• Err or Type

Hi gh-order byte of second word is in
ary format. bin

0

1

2

= EN FORM error 92. At least one
record has no LINK or WHERE
clause relating it to any other
record. Query is not processed
because a cross-product results.

= EN FORM error 178. The record on
the right side of a link optional is
linked back to the record on the
left side.

= EN FORM error 179. A record
appears on the right side of more
than one link optional.

Re fer to the EN FORM Reference
Ma nual for a complete explanation of

or types 2 and 3. Refer to the
FORM User's Guide for more infor­
tion about EN FORM errors.

err
EN
ma

----··---··-------

The r ead limit exceeds the value of the
ADS option variable. @RE

Not a pplicable

Not a pplicable

EN FORM START

Not applicable

Not applicable

Not applicable

A required ENFORMSTART parameter is
missing.

-- --- ----·· -----·---------·-·-------·-- ---1

Some failure occurred in creation or in
communicating with a query processor.

f---- ·-----·-···--·· --·· . --·--···-------------···--···-------------------·---· ------·--·---··----1

17 Not a

~------·----··--t------

18 Not a

f---------

19 Not a

.____ ________
1------

pplicable

pplicable

pplicable

Either the < param-list >or< assign-list>
is not in the correct format.

The value specified for <buffer-length> is
less than 6.

-· ···-- -----··------·······----·-·---·--··------·----·-·---··---- .. -··- --·-·---~

A restart (restart flag not equal to zero) call
made to EN FORM START was done under
the following invalid conditions:

• There was no previous successful call to
ENFORMSTART.

• ENFORMFINISH called before this
ENFORMSTART.

• Last EN FORM RECEIVE did not end in
end-of-file or error status .

E-4 A~ 82359 AOO 3/85

EN FORM
Error

Number EN FORM RECEIVE

20 Not applicable

21 Not applicable

22 Not applicable

23 <Ctlblock> was modified by the host
application program since the last call
to the EN FORM procedures.

24 Not applicable

25 There was a failure relating to the use of
an EN FORM server (process file).

0 = Error returned from server. Server
error name and server error num-
ber contain a file name and an
error number supplied by the
server.

1-5 = Error returned from query proces-
sor. Server error name contains
the file name of the server that
caused the error. Server error
number is not set.

1 = illegal dictionary description
(ENFORM error 112)

2 = illegal use of KEY item
(EN FORM error 58)

3 = illegal LINK field (EN FORM
error 68)

4 = insufficient memory for
buffer (EN FORM error 50)

5 = incorrect reply length
(EN FORM error 114).

• Server error name

Next 12 words contain a file
name, in internal format, asso-
ciated with the server.

• Server error number

Next word is in binary format.

Lj 82359 AOO 3/85

Appendix E
ENFORM Errors

--------·-

ENFORMSTART

The file named by <com pi led-physical­
filename> cannot
physical file has an

be executed. Either the
invalid file code for a
he compiled query
tement rather than a

compiled query, or t
contains a LIST sta
FIND statement.

-·-·------ ·-- ------- -
The file named by
filename> has an

<com pi led-physical­
outdated version number.

The amount of time specified by the timeout
with no response from parameter elapsed

the query processo r.

<Ctlblock> was m odified by the host
application progra m since the last call to

du re. the EN FORM proce

The amount of stac
the message being
sor is not available.

Not applicable

k space needed to build
sent to the query proces-

E-5

APPENDIX F

INTERPROCESS SYSTEM MESSAGES

This appendix lists all system messages that are sent to processes.
The GUARDIAN operating system sends the following messages to other
processes through the $RECEIVE file. These messages do not appear on
the terminal but are sent and received by processes alone. For each
system message, its name, internal form, and meaning are described.

For further information about system messages that are sent to
processes, refer to the GUARDIAN Operating System Programmer's
Guide.

The completion of a read associated with a system message returns
a condition code of greater than (CCG) and error 6 from FILEINFO.

NOTE

Like all interprocess messages, system messages read (by
calling the READUPDATE procedure) must be replied to in a
corresponding call to REPLY. If the application process
is performing message queueing, LASTRECEIVE or RECEIVEINFO
must also be called immediately following completion of
the READUPDATE, and the message tag must be passed back to
the REPLY procedure.

The first word of a system message is a number between -2 and
-35. Following are the system messages and their formats in word
elements.

..., 82359 AOO 3/85 F-1

Appendix F
INTERPROCESS SYSTEM MESSAGES

c~--2 ______ cP_U __ D_O_WN ____________ ~-----------------------------~
cause:

system
action:

GUARDIAN has failed to receive an "I'm alive" message
from the specified processor.

There are two forms of the CPU DOWN message. GUARDIAN
sends the following form to a process if a processor
module it is monitoring with the MONITORCPUS procedure
fails:

<sysmsg>
<sysmsg>[l]

= -2
= CPU

GUARDIAN sends the second form to an ancestor process
when it deletes the indicated process name from the
process-pair directory because of a processor module
failure:

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= -2
= $<process-name>
= -1

This means that the named process (pair) no longer
exists.

recovery: Corrective action, if any, is application dependent.

C_-3 -CPU UP ____ ==:J
cause:

system
action:

A processor module being monitored with the
MONITORCPUS procedure was reloaded.

GUARDIAN sends a message of the following form:

<sysmsg>
<sysmsg>[l]

= -3
= CPU

recovery: Corrective action, if any, is application dependent.

F-2 4} 82359 AOO 3/85

cause:

system
action:

Appendix F
INTERPROCESS SYSTEM MESSAGES

-5 PROCESS NORMAL DELETION (STOP)

Process deletion was due to a call to the process
control STOP procedure.

There are two forms of the STOP message. GUARDIAN
sends the following form to the deleted process's
creator if the deleted process was not named or to
one member of a process pair when it deletes the
other:

<sysmsg>
<sysmsg>[l] FOR 4

= -5
= process ID of deleted process

GUARDIAN sends the second form to a process pair's
ancestor when it deletes the process name from the
process-pair directory. This indicates that neither
member of the process pair exists:

<sysmsg>
<sysmsg>[l] FOR 3

<sysmsg>[4]

= -5
= $<process-name> of deleted

process (pair)
= -1

recovery: Corrective action, if any, is application dependent.

~ 82359 AOO 3/85 F-3

Appendix F
INTERPROCESS SYSTEM MESSAGES

~·---6 ______ P_R_o_c_E_s_s_A_BNORMAL DELETION (_A_B_E_N_D_)---~-·-------J
cause:

system
action:

Process deletion was due to a call to the process
control ABEND procedure, or because the deleted
process encountered a trap condition and was aborted
by GUARDIAN.

There are two forms of the ABEND message. GUARDIAN
sends the first form to a deleted process's creator if
the deleted process was not named or to one member of
a process pair when the other member is deleted:

<sysmsg>
<sysmsg>[l] FOR 4

= -6
= process ID of deleted process

GUARDIAN sends the second form to a process pair's
ancestor when it deletes the process name from the
process-pair directory. This indicates that neither
member of the process pair exists:

<sysmsg>
<sysmsg>[l] FOR 3

<sysmsg>[4]

= -6
= $<process name> of deleted

process (pair)
= -1

recovery: Corrective action, if any, is application dependent.

cause:

system
action:

recovery:

F-4

CH-A-NG_E_I_N_._ST-A ;:_·-o_;:_N_E-~w_o_R:_N_o_D_E_s _____ ,, ____ J

The process was running on a system that is part of a
network and has enabled receipt of remote status
change messages by passing "1" as a parameter to the
MONITORNET procedure.

GUARDIAN sends the process the following message:

<sysmsg>
<sysmsg>[l].<0:7>
<sysmsg>[l].<8:15>
<sysmsg>[2]

<sysmsg>[3]

= -8
= system number
= number of CPUs
= current processor-status

bit mask
= previous processor-status

bit mask

Corrective action, if any, is application dependent.

4'i182359 AOO 3/85

Appendix F
INTERPROCESS SYSTEM MESSAGES

cause:

system
action:

-10 SETTIME

The system manager or operator reset the internal
clock of the indicated CPU.

GUARDIAN sends the process the following message,
provided the process has enabled receipt of new
messages by a call to MONITORNEW:

<sysmsg>
<sysmsg>[l]

= -10
= CPU

recovery: Corrective action, if any, is application dependent.

cause:

system
action:

-11 POWER ON

The indicated processor had a POWER OFF, then a POWER
ON condition.

GUARDIAN sends the process the following message,
provided the process has enabled receipt of new
messages by a call to MONITORNEW:

<sysmsg>
<sysmsg>[l]

= -11
= CPU

recovery: Corrective action, if any, is application dependent.

-12 NEWPROCESSNOWAIT COMPLETION

cause: A call to the NEWPROCESSNOWAIT procedure completed.

system GUARDIAN sends the process the following message:
action:

<sysmsg> = -12
<sysmsg>[l] = error
<sysmsg>[2] FOR 2 = tag
<sysmsg>[4] FOR 4 = process ID

recovery: Corrective action, if any, is application dependent.

~ 82359 AOO 3/85 F-5

Appendix F
INTERPROCESS SYSTEM MESSAGES

~·~---2_0--~~B-R_E_A_K __ R_E_c_E_IV~ED~F-R_o_M __ T_E~INAL
cause:

system
action:

The BREAK key was pressed on a terminal being
monitored.

GUARDIAN sends the process the following message,
provided the process has specified break monitoring
through a call to SETMODE or SETMODENOWAIT:

<sysmsg>
<sysmsg>[l]

<sysmsg>[2]

= - 20
= logical device number, in

binary, of device where
BREAK was pressed

= system number, in binary, of
logical device number

recovery: Corrective action, if any, is application dependent.

~~---2_1 __ ~_3_2_1_o_D_E_v_I_CE STATUS RECEIVED _______________________ __.

cause:

system
action:

A call to SETMODE 53 was made by the application to
monitor subdevice status, pass the information to
TR3271 by way of a call to SETMODE 51, and issue this
status message.

GUARDIAN sends the process the following message:

<sysmsg>

<sysmsg>[l]

<sysmsg>[2]

<sysmsg>[3]

= -21

= the response ID

= the actual 3271 status bytes, in
which the sense byte = <0:7> and
the status byte = <8:15>

= a translation of the device status
to status bits. The application
may pass this word directly to
TR3271 by way of SETMODE 51 to post
the status on a TR3271 subdevice.

recovery: Corrective action, if any, is application dependent.

F-6 "182359 AOO 3/85

Appendix F
INTERPROCESS SYSTEM MESSAGES

cause:

system
action:

-22 TIME SIGNAL

A timer set by a call to SIGNALTIMEOUT timed out.

GUARDIAN sends the process the following message:

<sysmsg>
<sysmsg>[l]

<sysmsg>[2] FOR 2

= -22
= <parameterl> supplied to

SIGNALTIMEOUT (0 if none)
= <parameter2> supplied to

SIGNALTIMEOUT (OD if none)

recovery: Corrective action, if any, is application dependent.

cause:

system
action:

-23 MEMORY LOCK COMPLETION

A call to LOCKMEMORY waited for memory but completed
successfully before the specified time limit was
reached.

GUARDIAN sends the process the following message:

<sysmsg>
<sysmsg>[l]

<sysmsg>[2] FOR 2

= -23
= <parameterl> supplied to

LOCKMEMORY (if none supplied,
0)

= <parameter2> supplied to
LOCKMEMORY (if none
supplied, OD)

recovery: Corrective action, if any, is application dependent.

"'82359 AOO 3/85 F-7

Appendix F
INTERPROCESS SYSTEM MESSAGES

C. __ -_24 ___ M._E_M_o_R_Y_L_o __ c_K_F_A_r. Lu~_E _. _______________ J
cause:

system
action:

A call to LOCKMEMORY waited for memory and timed out
without completing the lock.

GUARDIAN sends the process the following message:

<sysmsg>
<sysmsg>[l]

<sysmsg>[2] FOR 2

= -24
= <parameterl> supplied to

LOCKMEMORY (if none supplied,
0)

= <parameter2> supplied to
LOCKMEMORY (if none supplied,
OD)

recovery: Corrective action, if any, is application dependent.

-26 TIME SIGNAL J
'---------·--·-·
cause:

system
action:

A timer set by a call to SIGNALPROCESSTIMEOUT timed
out.

GUARDIAN sends the process the following message:

<sysmsg>
<sysmsg>[l]

<sysmsg>[2] FOR 2

= -26
= <parameterl> supplied to

SIGNALPROCESSTIMEOUT (0 if
none)

= <parameter2> supplied to
SIGNALPROCESSTIMEOUT (OD if
none)

recovery: Corrective action, if any, is application dependent.

F-8 ~ 82359 AOO 3/85

Appendix F
INTERPROCESS SYSTEM MESSAGES

cause:

system
action:

-30 PROCESS OPEN

A process was opened by another process. This message
is also received if the OPEN was by the backup process
of a process pair. A process can therefore expect two
of these messages when opened by a process pair.

GUARDIAN sends the process the following message,
provided the process has opened its $RECEIVE file with
<flags>.<!> = 1:

<sysmsg>
<sysmsg>[l]

<sysmsg>[2]

<sysmsg>[3] FOR 4

<sysmsg>[7]

<sysmsg>[B]
<sysmsg>[9] FOR 4

<sysmsg>[l3] FOR 4

=
=

=

=

=

=
=

=

-30
<flags> parameter to caller's
OPEN
<sync-or-receive-depth>
parameter to caller's OPEN
0 if normal OPEN, process ID
of primary process if an open
by a backup process
0 if normal OPEN, negative of
the file number of file if an
open by a backup process
process accessor ID of opener
optional first qualified name
of named process or blanks
optional second qualified
name of named process or
blanks

recovery: Obtain the process ID of the opener by a subsequent
call to LASTRECEIVE or RECEIVEINFO. Corrective
action, if any, is application dependent.

-'1 82359 AOO 3/85 F-9

Appendix F
INTERPROCESS SYSTEM MESSAGES

C __ -_31 ____ P_R_o_cE_s_s_c_L_o_s_E __ __ ._]
cause:

system
action:

Another process closed the receiver process. The
closing process can also be the backup process of a
process pair. Therefore, a process can expect two of
these messages when being closed by a process pair.

GUARDIAN sends the process the following message,
provided the process has opened its $RECEIVE file with
<flags>.<l> = 1:

<sysmsg> = -31

recovery: Obtain the process ID of the closer by a subsequent
call to LASTRECEIVE or RECEIVEINFO. Corrective
action, if any, is application dependent.

C.~---3_2 _____ P_R_o_c_E_s_s __ c_o_N_T_R_o_L __ ~--~~------------~--------__.
cause: Another process called the CONTROL procedure,

referencing the receiver process file.

system GUARDIAN sends the process the following message,
action: provided the process has opened its $RECEIVE file with

<flags>.<l> = 1:

<sysmsg> = -32
<sysmsg>[l] = <operation> parameter to

caller's CONTROL
<sysmsg>[2] = <parameter> parameter to

caller's CONTROL

recovery: Obtain the process ID of the caller to CONTROL by a
subsequent call to LASTRECEIVE or RECEIVEINFO.
Corrective action, if any, is application dependent.

F-10 4182359 AOO 3/85

Appendix F
INTERPROCESS SYSTEM MESSAGES

-33 PROCESS SETMODE

cause: Another process called the SETMODE or SETMODENOWAIT
procedure, referencing the receiver process file.

system GUARDIAN sends the process the following message,
action: provided the process has opened its $RECEIVE file with

<flags>.<l> = 1:

<sysmsg> = -33
<sysmsg>[l] = <function> parameter to

caller's SETMODE or
SETMODENOWAIT

<sysmsg>[2] = <parameter l> parameter to
caller's SETMODE or
SETMODENOWAIT

<sysmsg>[3] = <parameter 2> parameter to
caller's SETMODE or
SETMODENOWAIT

recovery: Obtain the process ID of the caller to SETMODE or
SETMODENOWAIT by a subsequent call to LASTRECEIVE or
RECEIVEINFO. Corrective action, if any, is
application dependent.

cause:

system
action:

-34 PROCESS RESETSYNC

Another process called the RESETSYNC procedure,
referencing the receiver process file. A call to the
CHECKPOINT procedure might contain an implicit call to
RESETSYNC.

GUARDIAN resets the sync ID value for that file to
0 and sends the process the following message,
provided the process has opened its $RECEIVE file with
<flags>.<l> = 1:

<sysmsg> = -34

recovery: Obtain the process ID of the caller to RESETSYNC by a
subsequent call to LASTRECEIVE or RECEIVEINFO. A
server process using the ~ync ID mechanism should
clear its local copy of the sync ID value. Corrective
action, if any, is application dependent.

/1J 82359 AOO 3/85 F-11

Appendix F
INTERPROCESS SYSTEM MESSAGES

cause:

system
action:

-35 PROCESS CONTROLBUF --·~
Another process called the CONTROLBUF procedure,
referencing the receiver process file.

GUARDIAN sends the process the following message,
provided the process has opened its $RECEIVE file with
<flags>.<l> = 1:

<sysmsg>
<sysmsg>[l]

<sysmsg>[2]

<sysmsg>[3] FOR n

= -35
= <operation> parameter to

caller's CONTROLBUF
= <count> parameter to

caller's CONTROLBUF
= <buffer> data from caller's

CONTROLBUF, where n is
number of words in <buffer>

recovery: Obtain the process ID of the caller to CONTROLBUF by a
subsequent call to LASTRECEIVE or RECEIVEINFO.
Corrective action, if any, is application dependent.

F-12 "1J 82359 AOO 3/85

APPENDIX G

SORT/MERGE ERRORS

This appendix lists the SORT/MERGE error codes.

Error Code
<errnum>

1

2

3

4

5

6

7

8

9

10

11

12

20

Af' 82359 AOO 3/85

SORT/MERGE Error Messages

The 'CTLBLOCK' parameter to SORTMERGESTART is
required.

The 'KEYS' parameter to SORTMERGESTART is required.

The number of key fields must be 1 to 63 inclusive.

An error has prevented creation of the SORT process.

Communications with the SORT process have failed.

The SORT process has stopped unexpectedly.

SORTMERGESEND was called unexpectedly.

SORTMERGERECEIVE was called unexpectedly.

Record length to SORTMERGESEND is too small or large.

SORTMERGEFINISH was called unexpectedly.

The free list file cannot be opened.

Invalid flag or combination of flags.

Communications with SORTPROG have broken down.

G-1

Appendix G
SORT/MERGE Errors

Error Code
<errnum>

G-2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

SORT/MERGE Error Messages

Communications with SORTPROG were garbled.

The memory space for sorting is insufficient.

The from file could not be opened.

A temporary 'TO FILE' is too small.

One of the key fields is of an undefined type.

A key-field location exceeds the record size.

The 'TO FILE' already exists and cannot be purged.

A scratch file cannot be opened.

A WRITE to the 'TO FILE' has failed.

A WRITE to a scratch file has failed.

A READ from the 'FROM FILE' has failed

A READ from a scratch file has failed.

A CONTROL operation has failed.

An EDITREAD has failed from the 'FROM FILE.'

Creation of a scratch file has failed.

A POSITION has failed in a scratch file.

Creation of the 'TO FILE' has failed.

The 'TO FILE' could not be opened.

An input record exceeded the record size.

Configuration problem: no I/O buffer space.

Configuration problem: no SHORTPOOL.

The MEM size must be in the range 1 to 64.

~' 82359 AOO 3/85

Error Code
<errnum>

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

61

62

63

~ 82359 AOO 3/85

Appendix G
SORT/MERGE Errors

SORT/MERGE Error Messages

The PRIORITY must be in the range 1 to 200.

Invalid control block: procedure call rejected.

Invalid scratch file block size.

Real number keys must be word-aligned.

SORTMERGESTATISTICS was called unexpectedly.

A signed ASCII numeric key is larger than 32 bytes.

Invalid exclusion mode specified.

EDIT files cannot be 'TO FILES.'

Invalid file type specified for 'TO FILE.'

Only one file can be sorted by SORTMERGESEND.

A 'TO FILE' cannot be a file to be merged.

Invalid scratch file name.

Too many from files specified.

Invalid number of files to be sorted or merged.

Collating sequence table must be present.

SORTMERGESTART was called unexpectedly.

An input record is too small.

Spare parameters cannot be present.

Key length must be greater than zero.

Reserved flags cannot be set.

G-3

APPENDIX H

RESERVED PROCESS NAMES

This appendix contains the names that should be avoided when choosing
process names. The names listed here are reserved for Tandem use:

$AOPR
$CMON
$CMP
$C9341
$DM<nn>
$!MON
$!PB
$MLOK
$NCP
$NULL
$0SP
$PM
$S
$SPLS
$SSCP
$T
$TICS
$TMP
$X<nam>
$Y<nam>
$Z<nam>

<nn> is any two digits (00 through 99).
<nam> is any combination of 1 through 3 letters or digits

(A through Z, 0 through 9).

The following names are not reserved, but should be used with
caution because they are commonly used for a specific purpose:

$DISC
$LP
$SPLP
$TAPE

..,1 82359 AOO 3/85 H-1

64-bit timestamp
from a Gregorian date and time 2-67

A

ABEND procedure
example 2-2
functions 2-2
syntax 2-2

Abnormal deletion of a process 2-2
Aborting

a process 2-2
a transaction 2-3

Aborting a looping process 2-389
ABORTTRANSACTION procedure

considerations 2-3/4
example 2-4
functions 2-3
syntax 2-3
transaction state, after 2-3

Access control block 2-229
Access mode checking, on open 2-286/287
Access path, in key sequenced, entry

sequenced, and relative files 2-221
Accessing spooled data 2-304
Accessor ID

of the calling process 2-321
of the calling process's creator 2-106

Accessor security level 2-286, 2-287
ACTIV ATEPROCESS procedure 2-5

examples
functions
syntax

ACTIV ATERECEIVETRANSID procedure 2-7
functions
syntax

Af' 82359 AOO 3/85

INDEX

ADDDSTTRANSITION procedure
examples 2-9
functions 2-8
syntax 2-8

Address equivalencing
concerning trap handling 2-18

Addressing
an extended data segment 2-496
tributary stations 2-115

ALLOCATESEGMENT proc~dure
considerations 2-12
examples 2-12
functions 2-10
syntax 2-10/12

Allocating extended segments 2-10
Altering file characteristics 3-29
Alternate key parameters 2-160
Alternate locking mode 2-234, 2-235, 2-239
Alternate-key parameters, specifying

in CREATE procedure 2-92
ALTERPRIORITY procedure

considerations 2-14
functions 2-13
syntax 2-13

Application data stack, overwriting 2-19
ARMTRAP procedure

considerations 2-17/19
examples 2-20
functions 2-15
syntax .2-15/16
when using multisegment programs 2-17

ASCII characters
conversion to signed integer values 2-273
converting from unsigned integer values 2-27 5

ASCII string
the space ID within 2-107

Index-1

Index

Assign-list in ENFORMST ART
procedure 2-138/139

Asynchronous timed interrupts
generating 2-390

Attribute, INSPECT 2-112
Attributes, screen

character
blink 2-32

data entry fields
blink 2-32

Audit compression off
or on 2-93

Audited disc, device type returned 2-122
Audited files, releasing locks 2-490, 2-493
Avoiding deadlock 2-241
AW AITIO procedure

considerations 2-23/27
examples 2-28
functions 2-21
summary of actions 2-26
summary of operations 2-27
syntax 2-21123

B

Backup process
creating 2-337
deleting or stopping 2-481
in monitoring state 2-42, 2-46, 2-61
recovering from primary failure 2-49
unable to communicate with 2-48

Base address equivalencing 2-18
BEGINTRANSACTION procedure

considerations 2-29/31
error, without TMF configured 2-31
examples 2-31
functions 2-29
syntax 2-29

Blinking
characters 2-32
data entry fields 2-32

BLINK" SCREEN procedure
examples 2-33
functions 2-32
syntax 2-32/33

Block length
return for a specific file 2-160
specify for a specific file 2-91

Block mode terminal error counters 2-401
Block of memory

returning to a buffer pool 2-340
Bounds violation trap 2-340

Index-2

BREAK
monitoring for a file 3-39
returning to owner 3-14

BREAK handling parameters, setting or
fetching 2-401

BREAK key 3-2
Breakpoints, specifying 2-111
Buffer length, internal buffer

used by EDITREAD 2-129
Buffer pool,

returning a block of memory to 2-340
Buffered WRITEs, enabling

for audited files 2-93
Byte, first

of extended segment address 2-496

c
Calendars

dates, converting to 2-65
day numbers, converting to year, month,

day 2-215
definition 2-65
timestamp

range checking 2-218
returned 2-219
using to change system clock 2-409

CANCEL procedure
example 2-34
functions 2-34
syntax 2-34

Canceling
a process-time timer 2-35
an elapsed-time timer 2-38
nowait operations

a specific operation 2-36
the oldest incomplete operation 2-34

CANCELPROCESSTIMEOUT procedure 2-35
considerations
examples
functions
syntax

CANCELREQ procedure
considerations 2-37
example 2-37
functions 2-36
syntax 2-36

CANCELTIMEOUT procedure 2-38
considerations
examples
functions
syntax

~ 82359 AOO 3/85

CHANGELIST procedure
examples 2-41
functions 2-39
syntax 2-39/41

Changing disc file names 2-372
Changing priority 2-319
Changing the home terminal 2-400
CHECKCLOSE procedure

considerations 2-43
examples 2-43
functions 2-42
syntax 2-42

Checking entry field data 2-58
CHECKMONITOR procedure

considerations 2-45
examples 2-45
functions 2-44
syntax 2-44

CHECKOPEN procedure
considerations 2-47/48
functions 2-46
syntax 2-46/4 7

CHECKPOINT procedure
considerations 2-51
examples 2-52
functions 2-49
syntax 2-49/50

Check pointing
a process's data stack 2-51, 2-56
file synchronization information 2-51
more than 13 pieces of information 2-53
to the backup process 2-49
using CHECKPOINTMANY instead of

CHECKPOINT 2-53
Checkpointing procedures

CHECKCLOSE 2-42
CHECKMONITOR 2-44
CHECKOPEN 2-46
CHECKPOINT 2-49
CHECKPOINTMANY 2-53
CHECKSWITCH 2-61
GETSYNCINFO 2-200
MONITORCPUS 2-24 7
PROCESSORST A TUS 2-331
RESETSYNC 2-382
SETSYNCINFO 2-407

CHECKPOINTMANY procedure
considerations 2-54/57
examples 2-57
functions 2-53
syntax 2-53/54

CHECKSWITCH procedure
considerations 2-62
examples 2-62
functions 2-61
syntax 2-61

~ 82359 AOO 3/85

CHECK " BREAK procedure
considerations 3-2/3
examples 3-3
functions 3-2
syntax 3-2

CHECK" FILE procedure
considerations 3-4/5
example 3-10
functions 3-4
operations table 3-5/9
syntax 3-4

CHECK " SCREEN procedure
considerations 2-59/60
examples 2-60
functions 2-58
syntax 2-58/59

Clearing poll state bit 2-40
Clock, changing system 2-409
CLOSE procedure

considerations 2-64
examples 2-64
functions 2-63
syntax 2-63

CLOSE " FILE procedure
considerations 3-12
example 3-12
functions 3-11
syntax 3-11112

Closing
a nowait file 2-64
an open file 2-63, 3-11
files in a backup process 2-42
files using SIO procedure 3-11

Cold load of a CPU
time spent 2-85

Collector
error on file to 2-4 7 4
errors and sending data to 2-44 7
job number of job being

spooled to 2-466
level 3 buffer written to 2-451
writing data in collection

process buffer to 2-452
Commas in parameters 1-5
Committing a transaction's changes 2-131
Common civil calendar 2-67
Comparing file names 2-170
Completing 110 operations 2-21, 2-24
COMPUTEJULIANDA YNO procedure

examples 2-66
functions 2-65
syntax 2-65/66

COMPUTETIMEST AMP procedure
examples 2-68
functions 2-67
syntax 2-67/68

Index

Index-3

Index

Concurrent requests, processing 2-7
CONTIME procedure

examples 2-70
functions 2-69
syntax 2-69

Continuous polling, stopping 2-208
Control blocks

EDIT 2-129
global storage, ENFORM 2-133/134

Control information for files 2-366
CONTROL operations A-1
CONTROL procedure

considerations 2-72/73
examples 2-74
functions 2-71
syntax 2-71/72

Control sequence, for reading screen
data 2-351

Control transfer, during trap handling 2-15
CONTROLBUF procedure

considerations 2-77
examples 2-78
functions 2-7 5
operations 2-76
syntax 2-75/76

Converting
data

between external and internal formats 2-181
from external to internal format 2-146

file names
from external form to internal form 2-173
from internal form to external form 2-167

Greenwich mean time to or from
local time within a network 2-82

Gregorian date and time
into a 64-bit timestamp 2-67

Julian timestamp into
Gregorian date and time 2-217

the quad microsecond process time 2-80
CONVERTPROCESSNAME procedure

considerations 2-79
examples 2-79
functions 2-79
syntax 2-79

CONVERTPROCESSTIME procedure
considerations 2-81
examples 2-81
functions 2-80
syntax 2-80/81

CONVERTTIMEST AMP procedure
considerations 2-83/84
examples 2-84
functions 2-82
syntax 2-82/83

Index-4

CPU and pin
in GETCRTPID procedure 2-188
in GETREMOTECRTPID procedure 2-198
in MYPID procedure 2-252
in PROCESSINFO procedure 2-325

CPU interval clock, obtaining internal
form 2-487

CPU spent in
process busy, interrupt busy,

or idle 2-85
CPUs, monitoring 2-24 7
CPUTIMES procedure

examples 2-87
functions 2-85
syntax 2-85/86

Crash count 2-206
CREATE procedure

considerations 2-94/100
examples 2-100
failures 2-99
functions 2-88
syntax 2-88/93

CREATEPROCESSNAME procedure
considerations 2-102
examples 2-103
functions 2-101
syntax 2-101

CREATEREMOTENAME procedure
considerations 2-105
examples 2-105
functions 2-104
syntax 2-104

Creating
files

structured 2-88
unstructured 2-88

new process nowait 2-265
temporary swap file for

a new segment 2-11
Creation timestamp 2-188
Creator process

notified of a deletion 2-2
Creator process ID

interprocess message with
CHECKCLOSE 2-43
CHECK OPEN 2-4 7
CHECKPOINT 2-51
CHECKPOINTMANY 2-57
CHECKSWITCH 2-62

provided by MOM procedure 2-245
CREATORACCESSID procedure 2-106

considerations
examples
functions
syntax

4J 82359· AOO 3/85

CRTPID
of a local process, obtaining 2-188
of a remote process, obtaining 2-198

CUG number 2-402
Current

position
in structured files 2-221
saving 2-225

primary key value 2-158
priority

values and changing 2-319
process control block, information from 2-186
record pointer 2-149
state indicators, after open 2-289

Current key
length 2-158
specifier 2-157
value 2-158

Current-transaction identifier
in ABORTTRANSACTION procedure 2-4
in BEGINTRANSACTION procedure 2-29
in ENDTRANSACTION procedure 2-131
obtaining, using GETTRANSID 2-206
restoring,

using RESUMETRANSACTION 2-384
CURRENTSP ACE procedure

examples 2-108
functions 2-10 7
syntax 2-107

Cursor positioning 2-296

D

Data area size,
suggested method of increasing 2-45

Data buffer, for level 3 spooling 2-449
Data conversion 2-177, 2-181
Data entry fields, cursor positioning 2-296
Data length, determining 2-165
Data pages, increasing when

error from CHECKPOINT 2-45
Data segment,

allocating extended 2-10
deallocating extended 2-109

Data-communication procedures
CHANGELIST 2-39
DEFINELIST 2-115
HALTPOOL 2-208
SETP ARAM 2-401

Date and time array, form of 2-21 7
Date, obtaining in integer form 2-486
Dates, converting from

Gregorian to Julian 2-65
Julian day number to year, day, month 2-215

~ 82359 AOO 3/85

Daylight savings time (DST)
adding an entry to DST table 2-8
definition 2-82

DCT
See Destination control table

Deadlock condition
of multiple OPENs 2-283

Index

using SIGNALPROCESSTIMEOUT 2-414
with locked files 2-236
with locked records 2-240/241

DEALLOCATESEGMENT procedure
considerations 2-110
examples 2-110
functions 2-109
syntax 2-109

Deallocating extended data segments 2-110
Debug facility invoked

using the DEBUGPROCESS
procedure 2-113

DEBUG procedure
considerations 2-1111112
examples 2-112
functions 2-111
syntax 2-111

Debug state, for a process 2-111
Debugging

symbolic debugger (INSPECT) 2-111
Debugging attributes, setting

for a new process 2-268
DEBUGPROCESS procedure

examples 2-114
functions 2-113
syntax 2-113

Default locking mode 2-234, 2-235, 2-239
DEFINELIST procedure

considerations 2-117
exam pl es 2-11 7
functions 2-115
syntax 2-115/116

DEFINEPOOL procedure
considerations 2-119/120
examples 2-120
functions 2-118
syntax 2-118

Defining files
structured 2-88
unstructured 2-88

DELAY procedure
considerations 2-121
examples 2-121
functions 2-121
syntax 2-121

Deleting a process 2-2, 2-481
Deleting disc files 2-338
Deletion,

process abnormal 2-2

Index-5

Index

Demountable device type 2-122
Destination control table 2-243

activated 2-S
changing execution priority 2-13
scanning the directory 2-244
See GETPPDENTRY procedure

Detecting a loop 2-389
Device

name 2-122
type 2-147
type of a file, obtaining 2-122
type, obtaining 2-124
types and subtypes B-1

Device-dependent I/O operations
interprocess communication 2-73
nowait operations 2-72
on locked files 2-72
on magnetic tapes 2-73
requiring a data buffer

using the CONTROLBUF procedure 2-75
spooling 2-449, 2-468
spooling at level 3 2-446
using the CONTROL procedure 2-71/73

Device-depending functions, setting 2-393, 2-397
DEVICEINFO procedure

examples 2-123
functions 2-122
syntax 2-122/123

DEVICEINF02 procedure
example 2-125
functions 2-124
syntax 2-12'11125

Diagnostic bytes for X25AM 2-401
Dirty pages in memory

copied and not copied to the
swap file 2-109

Disabling receipt of new
system messages 2-251

Disc files
Also see File characteristics
altering and unlocking a record 2-51 7
altering the contents of a record in 2-511
and SETMODEs 2-393
application-defined code when

created 2-148
bad I/O count when reading for DPl

or DP2 2-344
block sizes for DP2 2-93
changing the name of 2-372
closing 2-64
creating 2-88/100
current-record pointer setting 2-149
deleting a record at the

current position 2-511, 2-517
disc process version

DPl or DP2 2-125

Index-6

expanded form of 2-175
inserting a new record into 2-504
internal name form

temporary and permanent 2-167
last time modified 2-148
locking structured and unstructured

records 2-241
maximum current nowait operations 2-288
maximum read count for DPl

or DP2 2-346
next-record pointer setting 2-148
nowait operation and ending

a transaction (TMF) 2-132
number of bytes written to 2-502
obtaining next file name on a volume 2-271
obtaining record characteristics of 2-157
open defaults for DP2 2-93
opening 2-278
permanent 2-88
physical record length

maximum 2-123
positioning a disc file to a

saved position 2-378
pseudo-temporary 2-102
random processing and WRITEUPDATE 2-513
random read processing 2-353
reading a record after calling

POSITION or KEYPOSITION 2-359
record length for DPl 2-91
refreshing 2-288
repositioning disc heads 2-224
returning the primary extent size 2-14 7
saving a disc file's current

file position 2~387
security check 2-284/285
sequential locking and reading

of records 2-348
sequential reading 2-342
size of secondary-extent 2-148
temporary 2-89
first eight characters of

file-name 2-124
RBA location 2-147
unlocking 2-489
unlocking records of 2-491
when reading and record does not

exist 2-356
writing EOF to an unstructured

file 2-72
writing out EOF, free-list pointers,

audit and cache data buffers 2-366
Disc files, DPl

broken file flag on or off 2-154
rollforward needed flag on or off 2-154

..,182359 AOO 3/85

i Disc files, DP2
audit-checkpoint compression

on or off 2-153
buffered WRITEs 2-153
crash-open flag on or off 2-154
maximum number of extents that

can be allocated 2-153
selecting serial or parallel WRITEs 2-153
unstructured buffer size 2-153
WRITEs on or off 2-153

Disc process
determining if volume is formatted

for DPl or DP2 2-124
referring to N onStop 1 + systems

See DPl
referring to N onStop systems

See DP2
Displaying screen data, using ENTRY

or ENTRY520 2-141
Downshifting alphabetic characters 2-411
DPl explanation

see Preface (page xi)
DP2 explanation

see Preface (page xi)
DST

See Daylight savings time
DTE address buffer 2-402
Duplicate requests, from requester

processes 2-364

E

EDIT control block 2-129
EDIT files, reading text from 2-126
EDITREAD procedure

examples 2-128
functions 2-126
syntax 2-126/127

EDITREADINIT procedure
examples 2-130
functions 2-129
syntax 2-129
use with EDITREAD procedure 2-129

Elapsed time
and a timeout message 2-416
since a CPU was cold loaded

or reloaded 2-85
End-of-file pointer 2-14 7

and segment deallocation 2-110
Ending a transaction 2-131
ENDTRANSACTION procedure

considerations 2-1311132
example 2-132
functions 2-131
syntax 2-131

"'1 82359 AOO 3/85

ENFORM
providing records to a host

application by using 2-134

Index

terminating a programmatic interface to 2-133
ENFORM procedures

ENFORMFINISH 2-133
ENFORMRECEIVE 2-134
ENFORMSTART 2-136

ENFORMFINISH procedure
examples 2-133
functions 2-133
syntax 2-133

ENFORMRECEIVE procedure
considerations 2-135
errors E-1
examples 2-135
functions 2-134
syntax 2-134

ENFORMST ART procedure
considerations 2-139/140
errors E-1
examples 2-140
functions 2-136
syntax 2-136/139

Entry point names, associated with a
procedure label 2-485

ENTRY screen formatter using
BLINK " SCREEN procedure 2-32
CHECK" SCREEN procedure 2-58
EXPAND" SCREEN procedure 2-141
FL" SCREEN procedure 2-166
READ" SCREEN procedure 2-351

ENTRY520 screen formatter
see ENTRY screen formatter

ENV register bits for space ID 2-107
EOF

see End-of-file pointer
Error handling and retries

within SIO procedures 3-16
Errors

during ENFORM execution 2-135
retrying file I/O operations 2-143
the initial outcome of a

process creation 2-267
Even unstructured files 2-99/100
Exclusion mode checking, on open 2-286/287
Exclusive file opens

using pseudo-temporary names 2-102
Execution priority

changing 2-13
Execution priority,

of a new process 2-258

Index-7

Index

Execution time
of a calling process returned 2-253
of a process measured 2-35
of any process in the network 2-335
setting a timer based on execution 2-413

Expanding file names
from external form to internal form 2-173
network names 2-173

EXP AND " SCREEN procedure
considerations 2-142
examples 2-142
functions 2-141
syntax 2-141/142

Extended addresses from
stack addresses 2-119

Extended data segment
address of first byte 2-496
designating a portion for

use as a pool 2-118
Extended memory

made accessible to a program 2-10
Extended segments

allocating 2-10
deallocating 2-109/ 110

Extended segments,
size 2-11

Extent size
minimum 2-99

F

primary for disc files 2-147
to create primary and

secondary 2-89

FCBs
See File control blocks

File characteristics, checking
using CHECK " FILE 3-6/9

File characteristics, obtaining
alternate key parameters 2-160
block length .2-160
current key length 2-158
current key specifier 2-157
current key value 2-158
current primary key length 2-158
current primary key value 2-158
current record pointer 2-149
device type 2-14 7
EOF pointer 2-147
extent size 2-14 7
file code 2-148
file name 2-146
file type 2-159
key-sequenced parameters 2-160

Index-8

last modified time 2-148
logical device number 2-146
logical record length 2-159
next-open-filenumber 2-154
number of extents allocated 2-151
open flags 2-149
owner 2-150
partition size 2-152
partition-in-error 2-158
secondary extent size 2-148
security 2-150/151
subdevice number 2-150
sync depth 2-154

File closing 2-63
File code 2-148
File control blocks

initializing 2-211
use with SIO procedures 2-214
writing control information 2-366

File identifier, specifying in CREATE
procedure 2-96

File locking, see LOCKFILE procedure
File names

comparing 2-170
converting

from external form to internal form 2-173
from internal form to external form 2-167

existing temporary,
when using ALLOCATESEGMENT 2-12

expanding 2-173
obtaining, in alphabetic order 2-271

File opening 2-277
File position,

by primary key 2-292
saving 2-387

File purging 2-338
File reading 2-342, 2-353
File security

checking 2-284/287
examining 2-322
level 2-284/285
setting for the current process 2-322

File space reallocation, after CLOSE 2-64
File synchronization

information
in CHECKPOINT procedure 2-51
in CHECKPOINTMANY procedure 2-55/56

File synchronization block
resetting 2-382

File system procedures
AWAITIO 2-21
CANCEL 2-34
CANCELREQ 2-36
CLOSE 2-63
CONTROL 2-71
CONTROLBUF 2-75

'1J 82359 AOO 3/85

CREATE 2-88
DEVICEINFO 2-122
EDITREAD 2-126
EDITREADINIT 2-129
FILEERROR 2-143
FILEINFO 2-145
FILERECINFO 2-157
FNAMECOLLAPSE 2-167
FNAMECOMP ARE 2-170
FNAMEEXP AND 2-173
GETDEVNAME 2-190
GETSYSTEMNAME 2-202
KEYPOSITION 2-221
LASTRECEIVE 2-229
LOCATESYSTEM 2-232
LOCKFILE 2-234
MONITORNET 2-249
NEXTFILENAME 2-271
OPEN 2-277
POSITION 2-292
PURGE 2-338
READ 2-342
READLOCK 2-348
READUPDATE 2-353
READUPDATELOCK 2-359
RECEIVEINFO 2-362
REFRESH 2-366
REMOTEPROCESSORST ATUS 2-368
RENAME 2-372
REPLY 2-375
REPOSITION 2-378
SA VEPOSITION 2-387
SETMODE 2-393
SETMODENOW AIT 2-397
UNLOCKFILE 2-489
UNLOCKREC 2-491
WRITE 2-502
WRITEREAD 2-507
WRITEUPDATE 2-511
WRITEUPDATEUNLOCK 2-517

File types 2-89/90
File unlocking

See UNLOCKFILE procedure
File, program

and user library file differences 2-263
File, writing data to 2-502, 2-511
FILEERROR procedure

considerations 2-143/144
examples 2-144
functions 2-143
syntax 2-143

~ 82359 AOO 3/85

FILEINFO procedure
considerations 2-155/156
examples 2-156
functions 2-145
syntax 2-145/154
which file-num and file-name

parameters are valid 2-155
Filenum parameter in

AW AITIO procedure 2-21/22
CANCEL procedure 2-34
CANCELREQ procedure 2-36
CHANGELIST procedure 2-39
CHECKCLOSE procedure 2-42
CHECKOPEN procedure 2-46
DEFINELIST procedure 2-115
FILEERROR procedure 2-143
FILEINF'O procedure 2-145
FILERECINFO procedure 2-157
GETSYNCINFO procedure 2-200
HALTPOLL procedure 2-208
LOCKFILE procedure 2-234
LOCKREC procedure 2-238
OPEN procedure 2-277
POSITION procedure 2-292
READ procedure 2-342
READLOCK procedure 2-348
READUPDATE procedure 2-353
READUPDATELOCK procedure 2-359
RENAME procedure 2-372
REPOSITION procedure 2-378
RESETSYNC procedure 2-382
SAVEPOSITION procedure 2-387
SETMODE procedure 2-393
SETMODENOW AIT procedure 2-397
SETP ARAM procedure 2-401
SETSYNCINFO procedure 2-407
UNLOCKFILE procedure 2-489
UNLOCKREC procedure 2-491
WRITE procedure 2-502

Index

WRITEREAD procedure 2-507
WRITEUPDA TE procedure 2-511
WRITEUPDA TEUNLOCK procedure 2-51 7

Files opened nowait 2-24
FILRECINFO procedure

examples 2-161
functions 2-157
syntax 2-157/160

FIXSTRING procedure
considerations 2-164/ 165
examples 2-165
functions 2-162
syntax 2-162/163

Flag fields, for SORTMERGESTART 2-439
Flags, parameters for OPEN procedure

2-277' 2-281

Index-9

Index

FL" SCREEN procedure 2-166
examples
functions
syntax

FNAMECOLLAPSE procedure
considerations 2-168
examples 2-169
functions 2-167
syntax 2-167/168

FNAMECOMPARE procedure
considerations 2-1711172
examples 2-172
functions 2-170
syntax 2-170/171

FNAMEEXPAND procedure
considerations 2-174/175
examples 2-176
functions 2-173
syntax 2-173/174

FORMATCONVERT procedure
examples 2-180
functions 2-177
syntax 2-177/179

FORMATDATA
considerations 2-184/185
examples 2-185
functions 2-181
syntax 2-181/183

Formatter procedures
FORMATCONVERT 2-177
FORMATDATA 2-181

Functions, SETMODE C-1

G

GETCPCBINFO procedure
examples 2-187
functions 2-186
syntax 2-186/187

GETCRTPID procedure
considerations 2-189
examples 2-189
functions 2-188
syntax 2-188

GETDEVNAME procedure
considerations 2-1911192
examples 2-192
functions 2-190
syntax 2-190/191

GETPOOL procedure
considerations 2-194
examples 2-194
functions 2-193
syntax 2-193

Index-10

GETPPDENTRY procedure
considerations 2-196/197
examples 2-196
functions 2-195
syntax 2-195/196

GETREMOTECRTPID procedure
examples 2-199
functions 2-198
syntax 2-198

GETSYNCINFO procedure
considerations 2-201
examples 2-201
functions 2-200
syntax 2-200

GETSYSTEMNAME procedure
considerations 2-203
examples 2-203
functions 2-202
syntax 2-202

GETTMPN AME procedure
considerations 2-204
examples 2-205
functions 2-204
syntax 2-204

GETTRANSID procedure
considerations 2-207
examples 2-207
functions 2-206
syntax 2-206

GIVE" BREAK procedure 3-14
example
functions
syntax

Greenwich mean time 2-215
Gregorian date

and time array form 2-67
and time conversion to 64-bit timestamp 2-67
converting to Julian 2-65
definition of 2-65

H

HALTPOOL procedure 2-208
examples
functions
syntax

Header messages, printing 2-310
HEAPSORT procedure

examples 2-210
functions 2-209
syntax 2-209/210

Home terminal
changing default home terminal 2-400
obtaining file name 2-256

4" 82359 AOO 3/85

I

1/0 completion 2-24
1/0 data buffer, for device-dependent

operations 2-75
1/0 file operations

completing 2-21
errors

nonretryable operations 2-144
retryable operations 2-143/144

sequential 3-1
waiting 2-21

Initial priority, changing 2-319
INITIALIZER procedure

considerations 2-214
functions 2-211
syntax 2-211/213

Initializing
communication with spooler

supervisor 2-302
file control blocks 2-211

INSPECT 2-111/112
Interchanging primary and backup

process, after processor module reload 2-61
Internal form, CPU interval clock 2-487
INTERPRET JULIANDA YNO procedure

examples 2-216
functions 2-215
syntax 2-215

INTERPRETTIMEST AMP procedure
considerations 2-218
examples 2-218
functions 2-21 7
syntax 2-217

Interprocess communication, using the
WRITEREAD procedure 2-507

Interrupts, asynchronous timed 2-390
Interval-clock parameter 2-487

J

Job buffer, formatting for a spooler job 2-312
Job numbers, for spooled jobs 2-466
Julian

See Calendars
JULIANTIMEST AMP procedure

considerations 2-220
examples 2-220
functions 2-219
syntax 2-219/220

~ 82359 AOO 3/85

K

Key description, specifying in CREA TE
procedure 2-95

Key positioning
by alternate key 2-221
by primary key 2-221

Key specifier 2-222
Key-sequenced parameters

for a file 2-160
Key-sequenced parameters,

specifying in CREA TE procedure 2-92
KEYPOSITION procedure

L

and file system error 21 2-227
considerations 2-224/227
examples 2-227
functions 2-221
syntax 2-2211224

Labels, for corresponding
named entry points 2-485

LAST ADDR procedure 2-228
examples
functions
syntax

LASTRECEIVE procedure
considerations 2-230
example 2-231
functions 2-229

Index

syntax 2-229/230
LCBs

in ABORTTRANSACTION 2-3
in ENDTRANSACTION failure 2-131
reserving 2-380

LCT
See Local civil time

Level 1 and 2 spooling 2-44 7
Level 2 spooling session, establishing 2-4 71
Level 3 buffer 2-446, 2-449, 2-468
Level 3 spooling session, establishing 2-4 71
Level 4 ITI protocol block mode timer 2-402
Library conflict 2-264
Library file

user and program file differences 2-263
when used with NEWPROCESS 2-259

Link control block
in BEGINTRANSACTION 2-30
in ENDTRANSACTION failure 2-131
reserving 2-380

Loading the DST table 2-8
Local civil time 2-82

Index-11

Index

Local form, process names 2-79
Local standard time 2-82
Local timestamp for a conversion

of a Greenwich mean time 2-82
LOCA TESYS'rEM procedure

considerations 2-233
examples 2-233
functions 2··232
syntax 2-232

Lock release, for files audited by TMF 2-490
Locked files

accessing 2-236
reading 2-236

LOCKFILE procedure
considerations 2-235/237
examples 2-237
functions 2°234
syntax 2-234/235

Locking a file
See LOCKFILE procedure

Locking a record
See LOCKREC, READLOCK,

READUPDA TELOCK procedures
Locking modes

alternate
for a file .2-234
for a record 2-239

default
for a file 2-234
for a record 2-239

read
for a file .2-355

selecting
for a record 2-240

Locking queue 2-490
Locking unstructured files 2-241
LOCKREC procedure

considerations 2-239/241
examples 2-242
functions 2°238
syntax 2-238/239

Logical device number
obtaining associated name 2-190
obtaining, using FILEINFO procedure 2-146

Logical record length 2-159
LOOKUPPROCESSNAME procedure

considerations 2-244
examples 2··244
functions 2··243
syntax 2-243

Loop timing 2-389
LST

See Local standard time

Index-12

M

Magnetic tape
control action when closing 2-63

Managing memory pools 2-119/120
Maximum number of open files 2-283
Maximum record size

formulas 2-91
Measuring,

actual elapsed time that
a process executes 2-38, 2-41 7

the time the process is
executing 2-414

Memory pages
allotted for a new process 2-259
for a process opened nowait 2-266

Memory pools,
managing 2-119/120

Memory, block of
obtaining from a buffer pool 2-193
returning to a buffer pool 2-340

Merge functions
See Sort functions

Message-tag
in ACTIV ATERECEIVETRANSID

procedure 2-7
Messages, system F-1
MOM procedure

considerations 2-246
examples 2-246
functions 2-245
syntax 2-245

MONITORCPUS procedure
examples 2-248
functions 2-24 7
syntax 2-24 7

Monitoring, the primary process
state 2-44, 2~4 78

MONITORNET procedure 2-249
considerations
examples
functions
syntax

MONITORNEW procedure 2-251
considerations
examples
functions
syntax

Multiple extended segments 2-10
Multiple open, by same process 2-283
Multisegment programs,

ARMTRAP when using 2-1 7

AJI 82359 AOO 3/85

Multithreaded 110 process,
using SIGNALPROCESSTIMEOUT

and CANCELPROCESSTIMEOUT 2-414
Multithreaded requesters, coding 2-384
MYPID procedure 2-252

examples
functions
syntax

MYPROCESSTIME procedure 2-253
considerations
functions
syntax

MYSYSTEMNUMBER procedure 2-254
considerations
example
functions
syntax

MYTERM procedure
considerations 2-256
examples 2-257
functions 2-256
syntax 2-256

N

Names, reserved process H-1
Negative file errors 2-171
Network device names, associated with a

logical device number 2-191
Network file names, expanding 2-174
Network, a process in a

execution time returned 2-335
New processes

backup, creating 2-264
creating 2-258
execution priority 2-258
memory pages 2-259
processor location 2-260

NEWPROCESS procedure
considerations 2-262/264
examples 2-264
functions 2-258
syntax 2-258/262

NEWPROCESSNOW AIT procedure
considerations 2-269/270
examples 2-270
functions 2-265
syntax 2-265/268

Next record pointer 2-148
NEXTFILENAME procedure

functions 2-271
syntax 2-271/272

Nonexistent records, positioning 2-224

~ 82359 AOO 3/85

Nowait calls
canceling

oldest incomplete 2-34
specific calls 2-36

completing 2-23

Index

maximum number of concurrent opens 2-288
record locking 2-239
setting device-dependent functions 2-397

Nowait, a process created 2-265
NO " ERROR procedure

example 3-18
functions 3-16
syntax 3-16/18

Null value
for an alternate-key field 2-96

NUMIN procedure
considerations 2-27 4
examples 2-274
functions 2-273
syntax 2-273/274

NUMOUT procedure
considerations 2-276
examples 2-276
functions 2-275
syntax 2-27 5

0

Odd unstructured files 2-99
Open files

closing 2-63
maximum 2-282

Open flags 2-149/150
OPEN flags, parameters 2-277, 2-281
OPEN procedure

considerations 2-282/283
examples 2-291
functions 2-277
syntax 2-277 /280

Opening a file 2-277
for a backup process 2-46
using same parameters for

CHECKOPEN as OPEN 2-46
OPEN " FILE procedure

considerations 3-22/25
example 3-25
functions 3-19
syntax 3-19/22

Operational state, of a processor 2-331
Operations

for CHECK" FILE, SIO procedures 3-6/9
for CONTROL procedure A-1
for SET" FILE, SIO procedures 3-32/37

Overflow trap 2-19
Owner of a file 3-29

Index-13

Index

p

P register values 2-19
Parallel WRITEs, selecting 2-93
Partition parameters

describing a multivolume file 2-160
specifying in CREATE procedure 2-97

Partition-in-error 2-158
Partitions, renaming 2-373
Path, to a system 2-232
Permanent disc file name form,

to create 2-88
Perusal process

accessing a spooled job 2-461
reading spooled data 2-307

PERUSE operations, in a program 2-455
Physical record length of a file

obtaining 2-122, 2-124
PID

see Process ID
Poll state bit 2-40
Polling

addresses 2·· 116
types 2-116

Polling, multipoint stations 2-39
Pool size, range 2-118
Pools

dynamic memory allocation 2-119
management methods 2~119

obtaining a block of memory from a
buffer 2-193

returning a block of memory to a buffer 2-340
size of memory obtained from buffer 2-193
using a portion of a user's stack as 2-118

POSITION procedure
considerations 2-293/294
examples 2-295
functions 2-292
syntax 2-292/293

Position, current
in structured files 2-221
saving 2-22fi

Positioning
by primary key, in key-sequenced files 2-221
by primary key, in relative and entry

sequenced files 2-292
in unstructured files 2-292
saving a current position 2-387
to a saved position 2-378
to the start of a file 2-226

Positioning block 2-378, 2-387
Positioning mode, in key sequenced,

entry sequenced, and relative files 2-221

Index-14

POSITION " SCREEN procedure
examples 2-297
functions 2-296
syntax 2-296/297

Power On messages,
enabling or disabling

receipt of 2-251
PPD

See Process pair directory
Primary extent size

creation of 2-89
Primary key value 2-158
Primary process

closing a file in a backup process 2-42
opening a file for its backup process 2-45/46
state, monitoring 2-44

Print job status 2-300
Print process

communication with spooler supervisor
2-298, 2-300

initializing communication with spooler
supervisor 2-302

reading spooled data 2-304, 2-307
sending status messages to the spooler 2-314

Print status messages 2-31 7
PRINTCOMPLETE procedure

considerations 2-299
examples 2-299
functions 2-298
syntax 2-298

PRINTINFO procedure
considerations 2-301
examples 2-301
functions 2-300
syntax 2-300/301

PRINTINIT procedure
considerations 2-303
examples 2-303
functions 2-302
syntax 2-302/303

PRINTREAD procedure
considerations 2-305/306
examples 2-306
functions 2-304
syntax 2-304/305

PRINTREADCOMMAND procedure
considerations 2-310/311
examples 2-311
functions 2-307
syntax 2-307/310

PRINTST ART procedure
considerations 2-313
examples 2-313
functions 2-312
syntax 2-312/313

~ 82359 AOO 3/85

PRINTST A TVS procedure
considerations 2-31 7
examples 2-318
functions 2-314
parameters 2-31 7
syntax 2-314/316

Priority
changing 2-319
in ALTERPRIORITY procedure 2-13

PRIORITY procedure
considerations 2-320
examples 2-320
functions 2-319
syntax 2-319

Procedure
call types 1-3
how to read syntax of a 1-5/6
types and their actions 1-3

Procedure labels
associated with an entry point 2-485

Procedures, type
checkpointing. See Checkpointing

procedures
data communication.

See Data-communication procedures
ENFORM.

See ENFORM procedures
file system. See

File system procedures
formatter. See

Formatter procedures
memory management. See Memory

management procedures
process control. See Process

control procedures
security system. See Security

system procedures
sequential I/0. See

Sequential I/O procedures
SORT/MERGE. See SORT/MERGE procedures
spooler. See Spooler

procedures
TMF. See TMF procedures
trap handling. See Trap

handling procedures
utilities. See Utility

procedures
Process

checkpointing block of data area 2-50
creation of in nowait manner 2-265
deletion 2-481

notification of 2-4 78, 2-480
protecting against 2-405

getting information about
its own PCB 2-186

~ 82359 AOO 3/85

owns BREAK 3-2
pair activated 2-5
pair changing execution priority 2-13
pair deletion 2-481
pair nonnamed 2-45, 2-4 7

Index

pair obtaining descriptions by index 2-243
pair suspension 2-483
pair when both members are activated 2-5
setting current file security 2-322
setting debugging attributes 2-268
status information, obtaining 2-324
suspension 2-483
suspension, for a timed interval 2-121
time and real-time 2-414
timing 2-391
trap handler procedure exiting 2-17

Process accessor ID
in ACTIV ATEPROCESS procedure 2-5
in ALTERPRIORITY procedure 2-14

Process control block,
a process getting information

about its current 2-186
Process control procedures

ABEND 2-2
ACTIV ATEPROCESS 2-5
ALTERPRIORITY 2-13
CREATEPROCESSNAME 2-101
CREATEREMOTENAME 2-104
DELAY 2-121
GETCRTPID 2-188
GETPPDENTRY 2-195
GETREMOTECRTPID 2-198
LOOKUPPROCESSNAME 2-243
MOM 2-245
MYPID 2-252
MYSYSTEMNUMBER 2-254
MYTERM 2-256
NEWPROCESS 2-258
PRIORITY 2-319
PROCESSINFO 2-324
PROGRAMFILENAME 2-337
SETLOOPTIMER 2-389
SETMYTERM 2-400
SETSTOP 2-405
STEPMOM 2-4 78
STOP 2-481
SUSPENDPROCESS 2-483

Process creation,
errors indicating outcome 2-267

Process data stack, checkpointing 2-51, 2-56
Process looping,

detection of 2-390
Process names,

converting from local to network form 2-79
creating 2-101

Index-15

Index

reserved H-1
unique network-wide 2-105

Process pair
activated 2-5
changing execution priority 2-13
deletion 2-481
nonnamed 2-45, 2-47
obtaining descriptions by index 2-243
suspension 2-483
when both members are activated 2-5

Process pair directory
obtaining from the destination

control table 2-243
see Destination control table

Process's data area,
checkpoints a block of the 2-50

Process's trap handler
procedure, exiting an 2-17

Process,
setting file security for

current 2-:322
Process, creation of

in nowait manner 2-265
Process, new

setting debugging attributes 2-268
Process-id,

when a process pair
is activated 2-5

Process-id, in
ACTIV A TEPROCESS procedure 2-5
ALTERPRIORITY procedure 2-13
GETCRTPID procedure 2-188
GETREMOTECRTPID procedure 2-198
LASTRECEIVE procedure 2-229
NEWPROCESS procedure 2-258, 2-260
PROCESSINFO procedure 2-325
STEPMOM procedure 2-4 78
STOP procedure 2-481
SUSPENDPROCESS procedure 2-483

Process-time timer, canceling 2-35
PROCESSFILESECURITY procedure

examples 2-323
functions 2-322
syntax 2-322

PROCESSINFO procedure
considerations 2-330
examples 2-330
functions 2-324
syntax 2-324/329

Processor
failures 2-24'7
status,

count and operational state 2-331
enabling or disabling receipt of 2-249
obtaining in network 2-368

Index-16

time to execute a set of instructions 2-391
time, calculating 2-389
type, obtaining 2-333

PROCESSORST A TUS procedure
examples 2-332
functions 2-331
syntax 2-331

PROCESSORTYPE procedure
examples 2-334
functions 2-333
syntax 2-333

PROCESSTIME procedure
examples 2-336
functions 2-335
syntax 2-335

Program file and
user library file differences 2-263

PROGRAMFILENAME procedure 2-337
examples
functions
syntax

Protecting against process deletion 2-405
Pseudo-temporary disc file names,

creating 2-102
PURGE procedure

considerations 2-339
example 2-339
functions 2-338
syntax 2-338

Purging disc files 2-338
PUTPOOL procedure

considerations 2-340
examples 2-341
functions 2-340
syntax 2-340

Q

Queued messages, replying to 2-377

R

RO-R7 stack registers
concerning trap handlers 2-18

Random
positioning 2-355
reads from disc files 2-353, 2-355
record reads from disc files 2-361
writes to an open file 2-511, 2-519

Ranges
for segment IDs 2-11

"'182359 AOO 3/85

RBA. See Relative
byte address

READ procedure
considerations 2-343/34 7
examples 2-34 7
functions 2-342
syntax 2-342/343

Reading
a screen 2-351
nondisc files 2-344
open files 2-342, 2-353
open records 2-348
random records of

an open file 2-359
records 2-348
text from EDIT files 2-126

READLOCK procedure
considerations 2-349/350
examples 2-350
functions 2-348
syntax 2-348/349

READUPDATE procedure
considerations 2-355/358
examples 2-358
functions 2-353
syntax 2-353/354

READUPDATELOCK procedure
considerations 2-360/361
examples 2-361
functions 2-359
syntax 2-359/360

Ready state, returning a process to 2-5
READ " FILE procedure

considerations 3-28
example 3-28
functions 3-26
syntax 3-26/27

READ " SCREEN procedure 2-351
examples
functions
syntax

Reallocating file space after CLOSE 2-64
Receive-depth in OPEN procedure 2-278
RECEIVEINFO procedure

considerations 2-364/365
examples 2-365
functions 2-362
syntax 2-362/363

Record locking. See LOCKREC
procedure

Record pointer 2-149
state indicators, after open 2-289

Record size, formula 2-91

Af' 82359 AOO 3/85

Index

Record unlocking. See UNLOCKFILE,
UNLOCKREC, and WRITEUPDA TEUNLOCK

procedures
REFRESH procedure

considerations 2-367
examples 2-367
functions 2-366
syntax 2-366/367

Register,
returning the stack-marker

ENV 2-107
Registers,

'L' and 'S' 2-15/18
Relative byte address

locking 2-241
Reload of a CPU

time spent 2-85
Reloading a processor module 2-62
Remote CPU failures 2-368
Remote CPU status changes 2-249
Remote data terminal equipment address 2-401
Remote DCT entries,

entering 2-105
obtaining 2-244

Remote process CRTPID 2-198
Remote process names, creating 2-104, 2-105
REMOTEPROCESSORSTATUS procedure

considerations 2-369
examples 2-369
functions 2-368
syntax 2-368

REMOTETOSVERSION procedure
examples 2-371

REMOTEVERSION procedure
functions 2-3 7 0
syntax 2-370

RENAME procedure
considerations 2-373
examples 2-37 4
functions 2-372
syntax 2-372

Renaming disc files
audited by TMF 2-373

REPLY procedure
considerations 2-377
examples 2-377
functions 2-375
syntax 2-375/376

REPOSITION procedure 2-378
examples
functions
syntax

Requesters~ indentifying duplicate
requests 2-364

Reserved process names H-1

Index-17

Index

RESERVELCBS procedure
considerations 2-380/381
examples 2-381
functions 2-380
syntax 2-380

RESETSYNC procedure
considerations 2-383
examples 2-383
functions 2-382
syntax 2-382

Restarting a transaction
after ABORTTRANSACTION 2-3

Restoring a transaction identifier 2-30
RESUMETRANSACTION procedure

considerations 2-385
examples 2-386
functions 2-384
syntax 2-384

Resuming an aborted transaction 2-384
Resynchronizing open files, by backup

process 2-382
Retrieving sorted records 2-423
Retrying file 110 operations 2-143/144

s
Sample procedure call 1-5/6
SA VEPOSITION procedure

examples 2-388
functions 2-387
syntax 2-387/388

Scale factor 2-178
Screen data

checking 2-fi8
reading 2-351

Secondary extent size
creation of 2-89
returning 2··148

Security check on disc file opens 2-284
Security system procedures

CREATORACCESSID 2-106
PROCESSACCESSID 2-321
USERIDTOUSERN AME 2-494
USERNAMETOUSERID 2-495
VERIFYUSER 2-498

Segment
deallocating extended data 2-109
extended data to be currently

addressable 2-496
ID ranges 2-11

Separate opens by same requester 2-365
Sequence-number counter, incrementing 2-30

Index-18

Sequential 110 procedures
CHECK " BREAK 3-2
CHECK " FILE 3-4
CLOSE" FILE 3-11
general description 1-4
GIVE" BREAK 3-14
NO" ERROR 3-16
OPEN" FILE 3-19
READ " FILE 3-26
SET " FILE 3-29
TAKE " BREAK 3-39
WAIT " FILE 3-41
WRITE " FILE 3-43

Serial mirror WRITEs only 2-93
Serial WRITEs, selecting 2-93
Sessions, spooling 2-4 71
SETLOOPTIMER procedure

Considerations 2-390/391
examples 2-392
functions 2-389
syntax 2-389

SETMODE procedure
considerations 2-394/395
default setting .2-394
examples 2-395/396
function table C-1
functions 2-393
syntax 2-393/394

SETMODENOW AIT procedure
considerations 2-399
examples 2-399
function table C-1
functions 2-397
syntax 2-397 /398

SETMYTERM procedure 2-400
considerations
examples
functions
syntax

SETP ARAM procedure
considerations 2-403/404
examples 2-404
functions 2-401
syntax 2-401/403

SETSTOP procedure
considerations 2-406
examples 2-406
functions 2-405
syntax 2-405

SETSYNCINFO procedure
considerations 2-408
examples 2-408
functions 2-407
syntax 2-407

/'f 82359 AOO 3/85

SETSYSTEMCLOCK procedure
examples 2-410
functions 2-409
syntax 2-409

SETTIME messages,
enabling or disabling

receipt of 2-251
Setting

device-dependent functions 2-393, 2-397
file security for the current process 2-322
the poll state bit 2-40

SET" FILE operations 3-31137
SET " FILE procedure

considerations 3-31
example 3-38
functions 3-29
operations table 3-31/37
syntax 3-29/30

SHIFTSTRING procedure 2-411
examples
functions
syntax

SIGN ALPROCESSTIMEOUT procedure
considerations 2-414/415
examples 2-415
functions 2-413
syntax 2-413
using with

CANCELPROCESSTIMEOUT 2-414
SIGNALTIMEOUT procedure

considerations 2-417
examples 2-417
functions 2-416
syntax 2-416

Signed integer values, converting to 2-273
SIO procedures.

See Sequential 110
Sort functions

arrays of equal-sized elements 2-209
collecting statistics 2-444
initiating SORTPROG 2-428
providing input records to SORTPROG 2-425
retrieving error message text 2-418, 2-419
retrieving output records from

SORTPROG 2-423
terminating SORTPROG process 2-421
use of key fields 2-429

SORT/MERGE procedures
errors G-1
SORTERROR 2-418
SORTERRORDET AIL 2-419
SORTMERGEFINISH 2-421
SORTMERGERECEIVE 2-423
SORTMERGESEND 2-425
SORTMERGEST ART 2-428
SORTMERGEST ATISTICS 2-444

~ 82359 AOO 3/85

SORTERROR procedure 2-418
examples
functions
syntax

SORTERRORDET AIL procedure
examples 2-420
functions 2-419
syntax 2-419

Sorting. See Sort
functions

SORTMERGEFINISH procedure
considerations 2-422
examples 2-422
functions 2-421
syntax 2-421/422

SORTMERGERECEIVE procedure
considerations 2-424
examples 2-424
functions 2-423
syntax 2-423/424

SORTMERGESEND procedure
considerations 2-426
examples 2-426
functions 2-425
syntax 2-425/426

SORTMERGEST ART procedure
considerations 2-437/443
examples 2-443
functions 2-428
syntax 2-428/436

SORTMERGESTATISTICS procedure
considerations 2-445
examples 2-445
functions 2-444
syntax 2-444

SORTPROG process 2-440/442
See also Sort functions

Space ID
and the stack marker ENV

register 'L'(-1] 2-17
bits in the ENV register 2-107
definition 2-17

Specifier-of-key-in-error 2-159
SPOOLCOM commands

parameters 2-457/459
using 2-455

Index

SPOOLCOM operations in a program 2-455
SPOOLCONTROL procedure

considerations 2-44 7
examples 2-448
functions 2-446
syntax 2-446/44 7

Index-19

Index

SPOOLCONTROLBUF procedure
considerations 2-450/451
examples 2-451
functions 2-449
syntax 2-449/450

Spooled data, accessing 2-304
SPOOLEND procedure

considerations 2-453/454
examples 2-454
functions 2-452
syntax 2-452/453

Spooler functions
accessing a spooled job 2-461
establishing a spooling session 2-4 71
obtaining number of spooled job 2-466
obtaining status of a spooler

component 2-463
performing device-dependent I/O 2-446, 2-468
writing to the collector 2-4 7 5

Spooler procedures
SPOOLCONTROL 2-446
SPOOLCONTROLBUF 2-449
SPOOLEND .2-452
SPOOLERCOMMAND 2-455
SPOOLEREQUEST 2-461
SPOOLERSTATUS 2-463
SPOOLJOBNUM 2-466
SPOOLSETMODE 2-468
SPOOLST ART 2-4 71
SPOOLWRITE 2-475

SPOOLERCOMMAND procedure
command parameters 2-457/459
considerations 2-460
examples 2-460
functions 2-455
subcommand parameters 2-457/459
syntax 2-455/456

SPOOLEREQUEST procedure
considerations 2-462
examples 2-462
functions 2-461
syntax 2-461/462

SPOOLERST ATUS procedure
considerations 2-465
examples 2-465
functions 2-463
syntax 2-463/464

Spooling functions
communicating with a print process 2-298
completing a job 2-452
obtaining status of spooler components 2-463
performing

device-dependent I/O 2-446
PERUSE operations 2-455
SPOOLCOM operations 2-455

performing device-dependent I/O 2-449

Index-20

Spooling session, establishing 2-4 71
SPOOLJOBNUM procedure

considerations 2-467
examples 2-467
functions 2-466
syntax 2-466

SPOOLSETMODE procedure
considerations 2-469
examples 2-4 70
functions 2-468
syntax 2-468/469

SPOOLST ART procedure
considerations 2-4 7 4
examples 2-4 7 4
functions 2-4 71
syntax 2-471/474

SPOOL WRITE procedure
considerations 2-4 76/4 77
examples 2-4 77
functions 2-4 7 4
syntax 2-475/476

Stack addresses converted
to extended addresses 2-119

Stack base for checkpointing 2-50
Stack marker ENV register

and the space ID 2-1 7
and the space ID,

a procedure that returns 2-107
Stack registers

RO-R7 concerning trap
handlers 2-18

Stack, user's
designate a portion to use

as a pool 2-118
Start of a file, positioning 2-226
Startup message, reading 2-211
Station list arrays, for addressing

tributary stations 2-116
Statistics for SORTPROG 2-444
Status of primary process 2-44
STEPMOM procedure

effects 2-4 79
examples 2-480
functions 2-4 78
syntax 2-4 78

Stop mode for a process 2-405, 2-406
STOP procedure

considerations 2-482
examples 2-482
functions 2-481
syntax 2-481

Stopping
a process 2-481
a process pair 2-481

Stopping the SORT process 2-421
String editing 2-162

~ 82359 AOO 3/85

Strings, u pshifting and downshifting 2-411
Structured files

creating 2-88
reading 2-345
reading for a subsequent

WRITE 2-356
writing data to 2-504

Subtypes and device types B-1
Suspended state

to ready state
of a process or process pair 2-5

Suspending
a process 2-121
execution of a process 2-21, 2-23

SUSPENDPROCESS procedure
considerations 2-483
examples 2-484
functions 2-483
syntax 2-483

Swap file
improving performance 2-110
securing as not to purge

automatically 2-12
when using ALLOCATESEGMENT 2-11
when using NEWPROCESS 2-259

Switching primary and backup processes 2-61
Symbolic debugger 2-111
Sync-depth, in OPEN procedure 2-278
Sync-ID

definition 2-364
obtaining from RECEIVEINFO

procedure 2-362
Synchronization block

for a disc file 2-200
of a process pair, obtaining 2-407

Syntax of procedure calls
conventions xiii
general example 1-5/6
summary D-1

System clock, changing 2-409
System code

process loop timeout in 2-390
System device names 2-190
System messages,

enabling or disabling
receipt of new 2-251

System names, associated with a system
number 2-202

System number
locating 2-232, 2-369
obtaining 2-232, 2-254

System services, definition 1-1
System version

obtaining 2-370
System-generated process names 2-104

-'1 82359 AOO 3/85

Index

SYSTEMENTRYPOINTLABEL procedure 2-485
examples
functions
syntax

T

TAKE" BREAK procedure
considerations 3-39
example 3-40
functions 3-39
syntax 3-39

Template for string editing 2-162, 2-164
Temporary disc file name form,

creating 2-89
Temporary file name,

existing when using
ALLOCATESEGMENT 2-12

Temporary file,
deleted when closed 2-88
preventing automatic purge of 2-12

Terminals
considerations for opening 2-290
writing data to and waiting for reply 2-507

Text buffer, for EDITREAD procedure
preparing 2-129
using 2-126

Text lines transferred 2-127
TFILE

maximum number of concurrent opens 2-31
opening, using the TMP name 2-204

Time
execution

of a calling process returned 2-253
of any process in the network 2-335

obtaining in integer form 2-486
returns the length in microseconds

since cold load 2-85
Time and day array form 2-21 7
Time measured

actual time (wall clock)
process executes 2-38

while the process is executing 2-35, 2-414
TIME procedure 2-486

examples
functions
syntax

Timelimit
in AW AITIO procedure 2-23

Timeout
during AWAITIO

before completion 2-21
error indication 2-24
summary of actions 2-26

during ENFORMSTART 2-140

Index-21

Index

Timer
based on process

execution time, 2-413
canceling

a process-time 2-35
an elapsed~time 2-38

set to a given number
of units of elapsed time 2-416

Time stamp
conversion from 48 bit to integer 2-69
conversion of Julian timestamp

into Gregorian date and time 2-217
from a Gregorian date and time 2-67
returned in Julian-date-based

form 2-219
TIMESTAMP procedure 2-487

considerations
examples
functions
syntax

Timestamp, Julian
range checking 2-218
using to change system clock 2-409

TMF procedures
ABORTTRANSACTION 2-3
ACTIV ATERECEIVETRANSID 2-7
BEGINTRANSACTION 2-29
ENDTRANSACTION 2-131
GETTMPNAME 2-204
GETTRANSID 2-206
RESUMETRANSACTION 2-384

TMP, obtaining logical device name 2-204
TOSVERSION procedure 2-488

examples
functions
syntax

Trans-begin-tag
in BEGINTRANSACTION procedure 2-29
in RESUMETRANSACTION procedure 2-384

Transaction
active, ending 2-131
changing from active to aborting 2-3/4
commit 2-131
new, starting a 2-29
resuming after backout 2-384

Transaction identifier
commiting associated changes 2-131
in BEGINTRANSACTION procedure 2-29
in GETTRANSID procedure 2-206
invalid 2-132
obsolete 2-132
restoring with RESUMETRANSACTION 2-30

Tran sf er length of a disc file 2-123
Transferring text from an EDIT file 2-126
Trap handling

address 2-1 fi

lndex-22

calling system procedures 2-17
data area for 2-18
overflow trap 2-19
overwriting application data stack 2-19
P register value 2-19
procedure, ARMTRAP 2-15
saving stack registers during 2-18
using the ARMTRAP procedure 2-15

Trap, bounds violation 2-340
Tributary stations

affect of poll bit 2-40
specifying station addresses

for communication 2-116
for line response 2-116

u
Unique network-wide process names.

See CREATEREMOTENAME procedure
UNLOCKFILE procedure

considerations 2-490
examples 2-490
functions 2-489
syntax 2-489

Unlocking disc files 2-489
Unlocking records 2-489, 2-517
UNLOCKREC procedure

considerations 2-492/493
examples 2-493
functions 2-491
syntax 2-491

Unsigned integer values, converting to
ASCII 2-275

Unstructured files
creating 2-88
file pointers after open 2-288
locking records during read operations 2-350
reading 2-346
reading for a subsequent

WRITE 2-356/357
writing data to 2-504, 2-514
writing EOF to 2-72

Updating a file record
writing data to 2-511
writing data to and unlocking 2-517

Upshifting alphabetic characters 2-411
User ID

associated with a user name 2-495
assuming 2-498

User library and
program file differences 2-263

User name associated with a user ID 2-494

;f' 82359 AOO 3/85

USERIDTOUSERNAME procedure 2-494
examples
functions
syntax

USERNAMETOUSERID procedure 2-495
examples
functions
syntax

USESEGMENT procedure
considerations 2-496
examples 2-497
functions 2-496
syntax 2-496

Utility procedures
CONTIME 2-69
DEBUG 2-111
FIXSTRING 2-162
HEAPSORT 2-209
INITIALIZER 2-211
LAST ADDR 2-228
NUMIN 2-273
NUMOUT 2-27 5
SHIFTSTRING 2-411
TIME 2-486
TIMESTAMP 2-487
TOSVERSION 2-488

v
VERIFYUSER procedure

considerations 2-500
examples 2-501
functions 2-498
syntax 2-498/499

Version number of a system
obtaining 2-370, 2-488

Volume formatted for the
DPl or DP2 disc process 3-124

w
Waited operations

calling ENDTRANSACTION procedure 2-131
WAIT " FILE procedure

example 3-42
functions 3-41
syntax 3-41142

WRITE procedure
considerations 2-503/506
examples 2-505
functions 2-502
syntax 2-502/503

~ 82359 AOO 3/85

WRITERE.AD procedure
considerations 2-509
examples 2-510
functions 2-507
syntax 2-507/509

WRITEs, verify
on or off 2-93

WRITEUPDA TE procedure
considerations 2-513/515
examples 2-516
functions 2-511
syntax 2-511/512

WRITEUPDATEUNLOCK procedure
considerations 2-518/519
examples 2-519
functions 2-51 7
syntax 2-517/518

WRITE " FILE procedure
example 3-44
functions 3-43
syntax 3-43/44

Writing
data to a file 2-502, 2-507, 2-511

Index

data to a file and waiting for reply 2-507
data to a terminal 2-507
file control information 2-366

$

$RECEIVE
and CLOSE" FILE, SIO procedure 3-12
file

obtaining the message tag 2-229, 2-362
obtaining the PID 2-229, 2-362
obtaining the sync ID 2-362
reading messages 2-353
replying to a message 2-3 7 5
replying to queued messages 2-377

protocol, using INITIALIZER 2-214
queuing servers, coding 2-7

$Z, process name 2-104

'G'[O] relative address, obtaining 2-228
'L' relative location

concerning traps 2-15
'S' relative location

concerning traps 2-15

Index-23

)

)

READER COMMENT CARD

Tandem welcomes your comments on the quality and usefulness of its
software documentation. Does this manual serve your needs? If not, how
could we improve it? Your comments will be forwarded to the writer for review
and action, as appropriate.

If your answer to any of the questions below is "no," please supply detailed
information, including page numbers, under Comments. Use additional
sheetsif necessar~

.... Is this manual technically accurate?

.... Is information missing?

.... Are the organization and content clear?

.... Are the format and packaging convenient?

Comments

Name

Company

Address

City/State

System Procedure Calls
Reference Manual
Nonstop™ Systems

82359 AOO

Yes [] No 0

Yes [] No 0

Yes [] No 0

Yes 0 No 0

----·---·- -- ---

Date

Zip

Ill I
BUSINESS R E P LY MA IL
FIRST CLASS PERMIT NO. 482 CUPERTINO, CA, U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

Tandem Computers Incorporated
Attn: Manager-Software Publications
Location 01, Department 6350
19333 Val lco Parkway
Cupertino CA 95014-9990

TAPE

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

TAPE

'

'

