NonStop™ Systems

@

System Procedure Calls
Reference Manual

Operating System Library

82359

NOTICE

Effective with the BOO/E08 software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term “NonStop 1+™ system” refers to the combination of NonStop 1+ processors with all software that
runs on them.

The term “NonStop™ systems” refers to the combination of NonStop ™ processors, NonStop TXP™ processors,
or a mixture of the two, with all software that runs on them.

Some software manuals pertain to the NonStop 1+ system only, others pertain to the NonStop systems only,
and still others pertain both to the NonStop 1+ system and to the NonStop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the
manual pertain.

NonStop™ Systems

System Procedure Calls
Reference Manual

Abstract

This manual describes the syntax for all system procedure calls. This
manual is for system and application programmers who need to call system
procedures from their programs.

Product Version
GUARDIAN B0OO

Operating System Version
GUARDIAN B0OO (NonStop Systems)

Part No. 82359 A0OO

¥

March 1985

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

DOCUMENT HISTORY

Operating
Part System
Edition Number Version Date
1st Edition 82359 A00 GUARDIAN BO0O March 1985

New editions incorporate all updates issued since the previous
edition, Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright © 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or service marks of Tandem Computers
Incorporated:

AXCESS BINDER CROSSREF DDL DYNABUS
DYNAMITE EDIT ENABLE ENCOMPASS ENCORE
ENFORM ENSCRIBE ENTRY ENTRY520 ENVOY
EXCHANGE EXPAND FOX GUARDIAX INSPECT
NonStop NonStop 1+ NonStop II NonStop TXP PATHWAY
PCFORMAT PERUSE SNAX Tandem TAL

TGAL THL TIL TMF TRANSFER
T-TEXT XRAY XREF

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

NEW AND CHANGED INFORMATION

This is a new publication for the NonStop systems. The existing
two-volume GUARDIAN Operating System Programming Manual (Part
Nos. 82336/82337) are being replaced by two separate manuals for
the BO0 release of the GUARDIAN operating system: the System
Procedure Calls Reference Manual (Part No. 82358 A00) and the
GUA?DIAN Operating System Programmer's Guide (Part No. 82356
AQ00).

The GUARDIAN Operating System Programmer's Guide tells
programmers how to use GUARDIAN calls (to those procedures
previously described in the GUARDIAN Operating System Programming
Manual) to accomplish various tasks.

Note that the scope of the System Procedure Calls Reference
Manual has been enlarged beyond that of the existing GUARDIAN
Operating System Programming Manual to include other products (in
order to aid the quick reference user), but the scope of the
GUARDIAN Operating System Programmer's Guide has NOT been
enlarged. The latter manual explains only how to perform tasks
using those features now covered in the existing GUARDIAN
Operating System Programming Manual. "How-to" information on
procedure calls that are part of other products, such as the
spooler, ENFORM, and SORT/MERGE, continue to reside in the
manuals for those products.

-For the B00 release, the following new features were added to the
procedure call information presented in this manual:

4 82359 A00 3/85 iii

iv

ADDDSTTRANSITION
CANCELPROCESSTIMEOUT
COMPUTEJULIANDAYNO
COMPUTETIMESTAMP
CONVERTPROCESSTIME
CONVERTTIMESTAMP
CPUTIMES
CURRENTSPACE
DEBUGPROCESS
DEVICEINFO2
GETCPCBINFO
INTERPRETJULIANDAYNO

CANCELTIMEOUT
CONTROL

CREATE

FILEINFO
FILERECINFO
GETSYSTEMNAME
NEWPROCESS
NEWPROCESSNOWAIT

Operation = 1, 11, 12,

added.
<function> = 3, 5, 6,
110, 113

23 new procedures were added:

PRIORITY

INTERPRETTIMESTAMP
JULIANTIMESTAMP
MYPROCESSTIME
PROCESSFILESECURITY
PROCESSORSTATUS
PROCESSORTYPE
PROCESSTIME
REMOTETOSVERSION
SETSYSTEMCLOCK
SIGNALPROCESSTIMEOUT
SYSTEMENTRYPOINTLABEL

The following 16 procedures were modified:

PROCESSINFO

REFRESH

SETLOOPTIMER

SETMODE

SETMODENOWAIT
SIGNALTIMEOUT

STOP

21

22,

Three new subtypes were added:

3 for the 3207 tape controller
6 for the 5530 letter qQuality printer

32 for the DTR printer

27-29,

Four new CONTROL operations was added:

37, 57, 67, 90-95,

Eighteen new functions for SETMODE and SETMODENOWAIT were

111,

/1| 82359 A00 3/85

CONTENTS

PREFACE L I O A R R A A N A A L Y I I B Y A I SR R K I I I I I I B A B I B I B I I O L B I I) xi
SYNTAXCONVENTIONS ® 6 8 0 0 00 060 005 0 00 00T 0 S0 00 0SS LS L0000 xiii

SECTION 1. INTRODUCTION TO SYSTEM PROCEDURE CALLS ...:.eoecese
Types of Operating and System Procedure Callseceveesss
SIO ProCeAUIrES .eseeeseossssssssssossosssssssssssossssssssssss
Syntax of a System Procedure Callcceeeecessssccsnccss

e
]

SECTION 2, SYSTEM PROCEDURE CALLS .cvecescsvososcosssnsscscsascsece
ABEND .. .icieieeceecessosscossessosnosscsosssesosssssssossssnsnsasss
ABORTTRANSACTION .¢cceeeecnecsssssssocscoscsscsnsososssssscssssssns
ACTIVATEPROCESS ot eeceeccoscsostosscosssssosssssonsssnsnsns
ACTIVATERECEIVETRANSID ..ccececsescccccoccsossscnsssscssssssnse
ADDDSTTRANSITION ¢ieoeeeccceocscsscsososossossonsssscsssscsnss
ALLOCATESEGMENT . .icecceeeeeosssscsosssssonsesssocossssnssscsns
ALTERPRIORITY .ceecceceooccccosossccssssssscssossonssssssssns
ARMTRAP it cvevsoocssesssosssosssscscsssncsossscsssoscnssnsss 2-15
AWAITIO .ieveeeseecccesssnssscssnsassssnssassnnssnssnnccses 2721

TN
[
WOOJOUOITWN AN

g

BEGINTRANSACTION ® 6 2 9 0. 0 0 0606 060 0 00 0608 005 SO OO OL L0000 2_29
BLINK‘SCREEN ® © 06 % 6 0 8 0 0 00 0000 068 90 08000 S 0L C LSO E LB 0NN 2—32

CANCEL ..vseecsssoosossssscssssssssssssesssssssssssssssccsss 2734
CANCELPROCESSTIMEOUT .cscececesssoscsssscccssssosssssssssasssss 2-35
CANCELREQ tuscoesovsscsssosssesssssssssossssssssssssseassnsse 2-36
CANCELTIMEOUT .eveessossscsnsesssssesssassosssnssnssnsscsee 2-38
CHANGELIST © 0 0600606006060 006060600600606000000800000000000000000c000COCT 2-39
CHECKCLOSE +teeossccecsssnosesossssossssscssssossosssscnssscese 2-42
CHECKMONITOR s csoocccossscoossssocssssaseanssssccssscnncssncsse 2-44
CHECKOPEN . ocecocoocscesoessosnsssssnssocscososnsscsnsssscssssss 2-46
CHECKPOINT ..ccssecsscosssessossssssenssosssosssssssssnssnsse 2-49
CHECKPOINTMANY . cvceecesnsseccsssecssssososssssosnssssessscccs 2-53
CHECK™SCREEN .ttt ececcssoscassosssscassssnsssssssssasssssese 2-58
CHECKSWITCH 4eeceoosossceosessssssscoassssossssnosssssssssss 261
CLOSE st eveeososcocosscososscscscssossassssosossssssoscnossnssssnsocse 2-63
COMPUTEJULIANDAYNO .:eececosssseesssccscssssccssssasssssssss 265
COMPUTETIMESTAMP ... ceeeecsccssossossssssssssssscssasscnsae 2-67

“4) 82359 AQ0 3/85

Contents

CONTIME .4 ieveenosoosssonnsensssssesessssosossssnssssssnssses 2769
CONTROL s evevesossasnssosssosnssssosssacsssnsssaansnssnssnsee 271
CONTROLBUF 4t ieeecssosessnsessssasossosssssssssssnsassssssnss 2775
CONVERTPROCESSNAME . .ivvtesessssssennscosssassssnsncsssnses 2-79
CONVERTPROCESSTIME . .vvetososssossosssccsssscsosnssscseasnses 2-80
CONVERTTIMESTAMP . ..cvseseseesssesasssnssssssssesossssossnss 2782
CPUTIMES .t eesesossssosnsossscnssssscasssssnsnsassssnsass 285
CREATE 4t vsesonsosossssosnssoesassssesosessssssssnsnsssesssse 288
CREATEPROCESSNAME .. .ceoeeeevsonssssossnsesssssesssnsssssess 2-101
CREATEREMOTENAME ...t vvevevensososessososnssossacscscsnsess 2-104
CREATORACCESSID .vvseeescesesasanasssossssssnsssssssasssssss 2-106
CURRENTSPACE . .ivisscvocescssssssncsssssososssssnsssnssnses 2-107

DEALLOCATESEGMENT ..t evseecssosnsosesossssssssssnsesssssss 2109
DEBUG +4.ovvesoessosscssnssosssssssssnssssonsnsssnssossosses 2111
DEBUGPROCESS . ¢t s veesessosseossssensonsscsensossanssnssssss 2-113
DEFINELIST +itveeesesosecsosossssnsososcsonsssossnsnsessosssss 2115
DEFINEPOOL 4t eeosesssssosecssassassessosnssssassnsanssnsses 2-118
DELAY i iteeceeeosseasocencscossnssossosssosssnsosssesssosnsnsess 2121
DEVICEINFO .iieeecenceeoscossnssncsosssscssnsensonsssssnsees 27122
DEVICEINFOZ iieeeereoecccccssesscssosssossnssncsnsensensees 2124

EDITREAD ..vieeeeceeesosscncssssonsessssssnsnssscssnssnssess 2-126
EDITREADINIT .t eeeeecooeosesossnsssnscssosnsnsasasssanses 2-129
ENDTRANSACTION . .cveveoceccsosscosnnsovssnsensenseassosssess 2-131
ENFORMFINISH ..iicoeeecesncecssacoosesnsocssoanssssnscssssasss 2-133
ENFORMRECEIVE ..t eceececncescnsosssossossssnsosscssascnecnses 2-134
ENFORMSTART e veceeccocsnossscscosssossosssoscssssnsossccsees 2-136
EXPAND"SCREEN ..o ecceesososossssossosssssososssssssnssseassss 2-141

FILEERROR ..t eeeceecsoossoasssoscossossossossossonsasssocees 2143
FILEINFO t.iveeveeeceseccssosososssssessssnoscssessssnssssossssses 2-145
FILERECINFO ...iecesecoonsccsessossacsssssssasssnsasasassss 2-157
FIXSTRING «.ceeeeesecenssoossnsssssessscssnssnssnssnssnsses 2162
FLSCREEN ..t vveesessssesosnsesosssssaassscsnssssassasscsess 2-166
FNAMECOLLAPSE ¢ .vceecessossososccocsssososssscscsossssassscsss 2-167
FNAMECOMPARE ...t teeecccoscessccsoscsscsesscassnssnssosanss 2-170
FNAMEEXPAND ..cvececccoocscosossossossonosssansssnsnsssesses 2-173
FORMATCONVERT ..icveecereosoconssnsscssossnssnsansssssnssese 2-177
FORMATDATA ..o vececcscososossnssnssnssnsssssnsensssssnsses 2181

GETCPCBINFO tievietecsecencsseassonssesscsssecssnsecnsacnsscssss 27186
GETCRTPID ..ivteecesssnccsoccsssnansossssssosscsnssssnsnsssss 2-188
GETDEVNAME ...cticeoeesesesocsosososscssnsssssssansosesssss 2-190
GETPOOL +vtceeceecccecsososcsososonssnssnssosssonssossssssnsensses 2193
GETPPDENTRY . .cuivvececocoscsensosccsossoscscscscssssssesosss 2195
GETREMOTECRTPID ..cieeeeesccscsoossonossssocassosecsssassases 2198
GETSYNCINFO .icveeeooosososcsassesosssnssnssosesssssssscscsesss 2-200
GETSYSTEMNAME .. .cveveeesesonsssossosesscssssssssseseasssse 2-202
GETTMPNAME . ..ccievececcesocsososossossossosssssossssnsesesses 2204
GETTRANSID ..vecieccceccsossososossosssososesascsassssnsssss 2-206

vi 49 82359 A00 3/85

Contents

HALTPOLL LI I I IR A I R R I I B A A S R B B I I I I I I B K R I I I R I B I I I N) 2—208
HEAPSORT ® 8 ® ¢ 5 0 & 4 0 0 0L O L OO S L 0L OSSO E G000 e o 2—209

INITIALIZER ® 6 8 8 0 0 0 5 5 0 0 00 0 0 00 0T PN OGS OGSO LTS E 0L s 2-211
INTERPRETJULIANDAYNO ® 9 0 5 0 0 0 5. 0 0 05 % 0 6 0 00 S Le0 0L e 00008 s 2_215
INTERPRETTI MESTAMP ® ® 5 0 0 0 5 6 05 0 6 05 0 0 0 0 8 0SS S0 0B S E s SO0 2—217

JULIANTIMESTAMP ® © 0 0 0 0 0 2 0 0 0 6 0 0 2 P G 02 LN O EL N LGS E G000 2—219
KEYPOSITION € 0 6.0 0060005 9. 5 00 08 000 P PP OSSN LB 0L O LN 0Nsb e e 2—221

LASTADDR i eeeveceesoosssoscsesonsssassssssssssscnscnsssnses 2-228
LASTRECEIVE .t .tvesecoesosoasesosssoansossssssnsosssnsassess 2229
LOCATESYSTEM .t ceteeseeescocesoncsssecssnssossonsssnssonsacsss 27232
LOCKFILE titeeeecenccenssossesssnsccossosacsssnsscnsscssocnss 2-234
LOCKREC .t veeeesencncecascsnssnsscoscsonessosssnssnsansses 2-238
LOOKUPPROCESSNAMEciveeeseceococscscnsonssosccnsassses 2243

MOM ® © 8 0 0 0 0 0 0 0 00 0 G 0L O N S O LSS S GO T L N0 P00 00 s L0000s0seo 2_245

MONITORCPUS .t eeeesoocccesosessscscssoscscssssoncnsaassnsns 2-247
MONITORNET .. ieeeeeensosececsososoersaoassscssnssososancesecnses 2249
MONITORNEW ..cieeeeeceecceoccassncccnsscsssnsssssosnsanssees 2-251
MYPID ..iiteceeooaaccososesasonsesonssscnsnsnsssscssssnses 2252
MYPROCESSTIME ... cceeeeececsccsscscanssnsssssnssnsssossoss 2253
MYSYSTEMNUMBER .4t eeveeecesocossotsassscscssssssssscssnses 2-254
MYTERM .. cvceccensccccsesecscnnsossnssscnssssssssnssnssees 2256

NEWPROCESS .ot eeeeceesecesesecsossesssscnsssssssassnncssss 2-258
NEWPROCESSNOWAIT ..ieeeeeeceocosososssscssssnscnsscscsssss 27265
NEXTFILENAMEcieeeeceecacscsocsnnsensccsasssnnssnssess 2-271
NUMIN ..t eseececoocosossocnscncsssssoscssssssssssscsssscsass 2-273
NUMOUT +eveeeeeesosaoscnsessssssossnsassassssoncssasscsassnss 2-275

OPEN ® 9 9 5 06 0 0 0 0 00 0 0 0 00 00 000 000 O 0SSP G LOL L0000 2—277

POSITION +uvsesssossocscososscessassssossnsssssnsscssscssss 2-292
POSITION"SCREEN +.vuseeesscscosscsosasssessssoasssescsosnses 27296
PRINTCOMPLETE +vveseessecsesssosssocsasssassessssssccssacses 2-298
PRINTINFO .tccessessocssccscscccsscosasosssssssscnssecssscsss 2-300
PRINTINIT .veeeecesasscasscsosonsossossssssscnnscssnssssnss 2302
PRINTREAD ..veesseosscsscssossosssosssscssssssssnsccssscsse 2-304
PRINTREADCOMMAND . :cvoseveescsosonssssnsesasscscnansassnses 2307
PRINTSTART +eveeesoccosoccssssnsosssessossnssasosesasesssnses 2-312
PRINTSTATUS ¢¢eecsocccssccsoscososossssssocssossssssscsscssse 2-314
PRIORITY tuceceecsosassossosososssssssssesssssssssssnsnsssss 2319
PROCESSACCESSID tevessencsososassosssesesasassssessnsesssss 2321
PROCESSFILESECURITY +t.veeceoscossocsssccsossassscsccscasnsosss 2-322
PROCESSINFO +eveeessccsoosscssossscssscscsssssssscsscscssss 2324
PROCESSORSTATUS +ueeeeacossossosssossssssassssscsssnsssssse 2-331
PROCESSORTYPE s¢ctveeosocscscsosocssssossossnsessssnsessnsess 2333
PROCESSTIME +vceeesesssossosssssscsssssssasssssnsscscsssssss 2-335
PROGRAMFILENAME ..cvoceeescscscascscosesosscsossnsncessssss 2337
PURGE +:svesessessososssossssssesosssesssasscsscssssossesses 2338
PUTPOOL © 8 0 0 85 5 6000600000000 00000000000000c00N000BGIOGGILIOLBLIIOIOT 2—340

4 82359 A00 3/85 vii

Contents

READ i vtetvveesesesossnsssossososseasoassssssosnssccssossess 2-342
READLOCK it eeeenssosonnssososssssssssssssssnsnsscscsnsnss 2-348
READ"SCREEN . ..cuisesesenseanssssosesnsssssssossnssssessesesss 27351
READUPDATE ..vevesveoncasossossssosssscscsnssosessnsessecssess 2353
READUPDATELOCK +ieteeeoesosossssssosesesacsnseassssesesssss 2359
RECEIVEINFO .ievecececsossonsssesscsssossossssossesscssonssses 2362
REFRESH ..t iciteteeeeseeeensosesecssossasscssssssessssnsssssss 2366
REMOTEPROCESSORSTATUS .. vttt esocnssostsssnosscacsssnsnsss 2368
REMOTETOSVERSION ..icieeececososncnncecsococsossoassssnsnssnss 2370
RENAME ...ccctveeeecencosasososscsonsnsssensnsnsesscssnseases 2372
REPLY ...ieteeeenscecsoascocsnssnssossssssesssssssscessssses 2-375
REPOSITION ..ieveeeceososocosossoscosssssssnsssnssscssnsesss 2378
RESERVELCBS +evveveeeesococessossessssssssnsossssasesosssss 2380
RESETSYNC ..ccttuieeeeoseeossnssssasseasoasssonesseassssnsasssss 2382
RESUMETRANSACTION ..ttt eesoenssscsoscccasnsosessnsssecsssss 2384

SAVEPOSITION ...t ececocsocosesosssssnsscsoonossnsossessnsesss 2387
SETLOOPTIMER «vvesesessesossssossssssasssnsnsosssssssesssssnss 2-389
SETMODE ... ceerecncesosososssssesanssscssnssssssnsnsensnsss 2-393
SETMODENOWAIT ..cceveeecscosscsesnsasossossosssssccnssssnses 27397
SETMYTERM ... ceevnseseseccosnsososssssscssssassscsesnsoses 2-400
SETPARAM ... ciceesecosssossonsnsosessssnseanessnscsnssssnses 2-401
SETSTOP ..vieeecesesesscnssossescscssossssoassssnsnsessnsnses 2-405

SETSYNCINFO .vceeessccosssosssscsssssesscsnssssnssscssssse 2-407
SETSYSTEMCLOCK . .vcecsecsessosssessossessscssossssscnssassss 2409
SHIFTSTRING ...veececscensoecssoocssssscassssosnssososssscsssss 2-411
SIGNALPROCESSTIMEOQOUT ..cceceessesscoscccocsssssscscsssosses 2413
SIGNALTIMEOUT ...cceeececncsssscsscsscccsssssascscssccnssscs 2-416
SORTERROR 4t eoeseosssoesssosssassosssssosssssosossssessssenssce 2-418
SORTERRORDETAIL ..iceeeccescossccscosanscsassssssssonssossss 2418
SORTMERGEFINISH ...cceeeceecsososcccssocsssosnssscsscsccasss 2-421
SORTMERGERECEIVE ..cicceeeecoscccscsocccssosssososscscssssee 2-423
SORTMERGESEND . ..ccecceeesoscconcosscsssosssscccsssssssesses 2-425
SORTMERGESTART .. cvceeossoosssoscssssnsesssossssscsssscsssceas 2-428
SORTMERGESTATISTICS .iceeevcessesssssossossscncsscnssesses 2-444
SPOOLCONTROL ¢ ¢ceeeeecoscccsssccssscsssssossssossssssccsssnse 2-446
SPOOLCONTROLBUF . eveeeesssccssecsssscssssossssocssssnnsssses 2-449
SPOOLEND .t eeveeeccssessessnssesssnsssssssssssssssssssses 2452
SPOOLERCOMMAND ., ..vceeocsoocssesssssnsssossssonssscssssses 2-455
SPOOLEREQUEST .+ vucesoesssosssssossssossasecssssosssssessssses 2-461
SPOOLERSTATUS +iveeeeooosssssscoconocsssssssssssssssscassss 2-463
SPOOLJOBNUM ... ceseeossssoscssesssssssnscosssssssnsosssssecse 2-466
SPOOLSETMODE .. veveecscoseocosscsssssccssosssssssssnsssssss 2468
SPOOLSTART ¢ cveseooocsocssssssosocsscsssssssssccnssssssnsss 2-471
SPOOLWRITE «eceevceecesoscoscossonssosssscsasssssssssnnsosses 2475
STEPMOM ..cveecocsoessessossnssssnsossossssnssssanssssnssss 2478
STOP seeeeesocsvencscsoscccscsssassssscssnssnssnssnssessses 2-481
SUSPENDPROCESS . ecveececscescossessossocsossssssssosssnsses 2483
SYSTEMENTRYPOINTLABEL © 00 0000000500000 CIOILOIOLEOILIOIOGIOLOLEEEOETEOIOTE 2—485

TIME L I B B I I I I B I I B B I 2 I I Y I I I B O O K I IR I ST I Y Y Y B R I S I I Y] 2—486

TIMESTAMP LI N R I I I I I B B I B N I I B I I I L I I B O I I I I Y B I B Y O) 2—487
T()SVERSION ® © 0 0 9 0 S O OO O OO OO OO PO DT O LGSO E OO DO S SO e 0PSO LS DCOE 2—488

viii 4 82359 A00 3/85

Contents

UNLOCKFILE ..ieceececceosocoscncssossssosssnssssssnssasssnsass 2-489
UNLOCKREC ¢ iitcveeeeesocsoosonosossscossssenssnnssnssnssss 2-491
USERIDTOUSERNAME ... cieveerececesansoncssscnssssnsecsnses 274904
USERNAMETOUSERID ...t veerecsensecocsccsccsscsscssanssessss 2-495
USESEGMENT ¢ ieceteeercessoscssosscscsosssensssssnsscnssssass 2496

VERIFYUSER LB R RN BN XL RN I NN I RN B Y I B A SR BN N Y I I Y 2 R I I ST I I I IR A AN} 2—498

WRITE .oveeeeocesoseosoossossssocososncsosssncsossssnsssnsssssses 2502
WRITEREAD ..iccvececceocsocssnsscossnssnsssssanssccsassses 2-507
WRITEUPDATE ..ccevecececccscoccccscnoncsssnosssnsassssscssaes 2511
WRITEUPDATEUNLOCK ... eeeeveocesccsosssssossssssosssssonses 2517

SECTION 3, SEQUENTIAL I/0 PROCEDURES ..:ivevvevesesocosossees 3-1
CHECK™BREAK +.vveveeeesosossocsssnssnssnssssssssssssanssasnss 372
CHECK FILE +.iveeeeecoeessensscasosssssossssssnsssssssssssnse 34
CLOSE"FILE +vvveesosocosonosscssosasassssssssassasnssssssssnss 3-11
GIVE BREAK 44t vieeeeeeseesoncsnsssssnssnssssssssnsscssasss 3-14
NOERROR +4vevressonessoossosesnsesssssssssassssssssssssssss 3716
OPEN FILE .uveeveseeeesseasosesnseasssssssssssssscasssasasss 3719
READ FILE teveeeeeencensaoesacasesasnsssansssssssessssssssss 3-26
SET FILE iveeesooosssessscssesssssssssssssssssssssssassses 3-29
TAKE™BREAK +tcvvevsovesosossesssssssssssssesssossssssssssssss 3-39
WAIT FILE o4 eeevosoeooosnososssnsssssssasssssesssssssssassss 3-41
WRITE“FILE 4sceevecsceossocesosssossasssssssssssssssssasssssss 3-43

APPENDIX A. CONTROL OPERATIONS ...c.cceececcscoscsccccsssnssss A-l
APPENDIX B. DEVICE TYPES AND SUBTYPES ...ccccoceeecocecccssssss B-1l
APPENDIX C. SETMODE FUNCTIONS ...ccceveccsncocncsnsccnsssnssss C-1
APPENDIX D. SYNTAX SUMMARYceceescevsscossscsccossssssess D-1
APPENDIX E. ENFORM ERRORS ...cccoceccncnssosscsnsssccnessnssss E-1
APPENDIX F. INTERPROCESS SYSTEM MESSAGES ..¢ceoeecccesscsesss F-1
APPENDIX G. SORT/MERGE ERRORS ..:ceccseccccecsscssscssansssss G-1

APPENDIX H. RESERVED PROCESS NAMESccccoesscocoscssnssss H-1

44 82359 A00 3/85 ix

Contents

FIGURES

1-1 Sample Procedure Callceeveecensosssssssssscccscnsss 1-5
2-1 AWAITIO ACLION 4tuieeeeessasoassscossossosssensssancsssne 2-26
2-2 AWAITIO OperatiOn t.ceeeescescescosossssoscssscsanscese 2-27
2-3 File Security Checking ..eveceeerveecesescesascenasasss 2-285
2-4 Effect Of STEPMOM ...c.ctessecscococosssssssassssacsess 2-479

TABLES

Procedure Call TYyDPES teiescecessseesssseosssncsssscnssses 1-3
CONTROLBUF OperationsS .ieeeesceescsosccsscsosscoassssseassess 276
FILEINFO <filenum> and <filename> Parameters 2-155
OPEN <flags> Parameter ...ecsoeeessccossscsassssnsssces 2-281
Exclusion and Access Mode Checking ...ceceveeeececenees 2287
PRINTSTATUS Message Type and Parameters ...cceeeeecesss 2-317
SORTMERGESTART <flags> FieldS ...ieeeeceosecccscccoses 2-439
SPOOLCONTROLBUF OperationsS ..eeeeeecssccesscccocsaseaesas 2-450
SPOOLERCOMMAND--Command and Subcommand Parameters 2-457
CHECK "FILE OperatiOns ..eeeeeeeesescesssssoscescncssones 3—6
SET"FILE OperationsS ...eceeeeecsccsssssssscascsssssesss 3-32

WWHNNNNDNDNDNDN -
|
OOV WNNHEF

X //'i 82359 A00 3/85

PREFACE

This reference manual describes the syntax of all system procedure
calls for the NonStop systems.

This manual is for system and application programmers who need

to call system procedures from their programs. Familiarity with the
Transaction Application Language (TAL) or some other programming
language is recommended. Before using this System Procedure Calls
Reference Manual you should read:

e GUARDIAN Operating System Programmer's Guide (Part No. 82356 A00)
for information about how to write programs using the GUARDIAN
operating system procedure calls

e Transaction Application Language (TAL) Reference Manual (Part No.
82081 A00)

References to "DP1" and "DP2" in this manual have the following
meanings:

e DPl indicates the standard or base disc process for NonStop 1+ and
NonStop systems.

e DP2 indicates an optional disc process for NonStop systems.

In this manual, Section 1 gives an overview of the categories of
procedure calls and describes the format of a procedure call.

Section 2 describes each procedure call, except the sequential I/0
(SI0) procedures, in alphabetic order.

Section 3 describes the SIO procedures in alphabetic order.

Appendix A describes the CONTROL operations you specify in order to
perform device-dependent I/0 operations.

Appendix B lists the device types and subtypes (such as discs,

printers, terminals, and so forth) that are used on the Tandem system
and are referenced by system procedure calls.

//'|82359- A0O 3/85 xi

Appendix C lists the SETMODE functions you specify for use with I/0O
devices (such as setting disc file security, setting terminal
interrupt characters, setting or clearing vertical tabs on a line
printer, and so forth).

Appendix D contains a syntax summary of all system procedure calls.
Appendix E describes the ENFORM errors and their meanings.

Appendix F lists the numbered interprocess system messages sent to
processes and their meanings.

Appendix G describes the SORT/MERGE errors and their meanings.

Appendix H lists the process names that are reserved for use by
Tandem.

xii 4 82359 A00 3/85

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the conventions used in the syntax
notation in this manual.

Notation

UPPERCASE
LETTERS

lowercase
letters

Brackets []

Braces {}

Ellipsis ...

Punctuation

//’| 82359 A00 3/85

Meaning

Uppercase letters represent keywords and reserved words;
you must enter these items exactly as shown.

Lowercase letters represent variables that you must
supply.

Brackets enclose optional syntax items. A vertically
aligned group of items enclosed in brackets represents
a list of selections from which you may choose one

or none.

Braces enclose required syntax items. A vertically
aligned group of items enclosed in braces represents
a list of selections from which you must choose only
one,

An ellipsis immediately following a pair of brackets or
braces indicates that you can repeat the syntax items
enclosed within the brackets or braces any number of
times.

All punctuation marks and symbols not described above
must be entered precisely as shown. If a punctuation
mark or symbol appears enclosed in quotation marks, it
is not a syntax descriptor; it is a required character,
and you must enter it as shown.

NOTE

In procedure calls, input parameters (those that pass
data from the calling program to the called procedure)
are commented with an "i" (input) to the right of the
parameter. Output parameters (those that return data
from the called procedure to the calling program) are
commented with an "o" (output) to the right of the
parameter. When a parameter can be both input and
output, it is commented with an "i" and an "o."

xiii

SECTION 1

INTRODUCTION TO SYSTEM PROCEDURE CALLS

System services are tasks that the GUARDIAN operating system or a
subsystem performs on behalf of a program such as retrieving a record
from a disc, writing a file to a tape, sending messages to other
processes, or alerting your process to some kind of system
malfunction.

Your programs can make use of these services by including calls to
appropriate system procedures. For example, using the READ procedure
allows a program to read data from a file.

To help you understand how to use the procedure call descriptions in
this manual, Section 1 describes:

e The different types of system procedure calls
e A procedure call sample explaining the syntax
e The sequential I/0 (SIO) procedures

This manual includes all the procedures that you can call from
Transaction Application Language (TAL) programs and shows the syntax
required to call these procedures from TAL. You can also call these
procedures from FORTRAN, BASIC, or call some from COBOL programs. It
is best, however, to be cautious when calling GUARDIAN operating
system procedures from languages other than TAL, since some of the
procedures can interfere with the underlying run-time environment
already established by the language. When an operation (such as
reading or writing) can be performed within the language itself, it is
better to do so.

For information on translating the TAL calls in this manual to COBOL,
refer to the COBOL Reference Manual. For information on translating
the calls in this manual to FORTRAN, refer to the FORTRAN 77 Reference
Manual. For information on translating the calls in this manual to
BASIC, refer to the EXTENDED BASIC Reference Manual.

482359 00 3/85 1-1

Introduction

TYPES OF OPERATING SYSTEM PROCEDURE CALLS

Table 1-1 shows the types of system procedures that you can call in
TAL programs and the manuals where you can find programming
information about these different types of procedures.

1-2) 82359 A00 3/85

Introduction

Table 1-1. Procedure Call Types

Procedure Type Action Manuals
Checkpointing write information to a backup GUARDIAN Operating
Facility process. System Programmer’s
Guide
ENFORM communicate with the query ENFORM User’s Guide
processor.
ENTRY/ provides a method for creating ENTRY Screen Formatter
ENTRY520 and displaying application-defined Operating and Programming
forms on page-mode terminals. Manual and the ENTRY520
Screen Formatter Operating
and Programming Manual
File System perform operations, such as input GUARDIAN Operating System
and output, on files (this set of Programmer’s Guide and the
procedures includes ENSCRIBE ENSCRIBE Programming
procedures). Manual
Formatter format output data and convert GUARDIAN Operating System
input data. Programmer’s Guide
Memory allocate and links to extended GUARDIAN Operating System
Management memory segments and pools; Programmer’s Guide
(Advanced provides exclusive access to data.
Memory
Management)
Process run, suspend, and stop programs. GUARDIAN Operating System
Control Programmer’s Guide
Security control access to processes and GUARDIAN Operating System

disc files.

Programmer’s Guide

Sequential IO
(S10)

perform sequential input and out-
put operations to files.

GUARDIAN Operating System
Programmer’s Guide

SORT/MERGE control and execute sorting SORT/MERGE User’s Guide
operations.
Spooler control attributes and contents of Spooler Programmer’s Guide

jobs transmitted to printing
devices.

Transaction

define and control TMF transac-

Transaction Monitoring Facility

Monitoring tions. (TMF) Reference Manual
Facility

(TMF)

Traps and Trap detect critical error conditions. GUARDIAN Operating System
Handling Programmer’s Guide

Utility perform miscellaneous operations GUARDIAN Operating System

such as translating a number from
displayed (string) form to integer
form and vice versa and getting a
timestamp.

Programmer’s Guide

Y 82359 A00 3/85

Introduction

The GUARDIAN Operating System Programmer's Guide describes how to use
many of these procedures according to their function and type (the
checkpointing facility, file system, formatter, memory management,
process control, security, SIO, TMF, traps and trap handling, and
uitility procedures). However, in the System Procedure Calls
Reference Manual, the procedure descriptions are in alphabetic

order for easy reference and are not arranged by type.

This manual provides the following information for each procedure:
® Syntax

® Parameter decriptions

e Condition codes

e C(Considerations

e Examples

® Manual references

SI0 Procedures

The SIO procedures are a standardized set of procedures that handle
I1/0 operations for different file types. The SIO procedures are a
good tool for ensuring consistency in programs that access files
sequentially. If you need to write to EDIT-format files, the SIO
procedures provide the only programmatic method to do so.

Generally, you should not use these procedures and other GUARDIAN

operating system I/0 procedures together on the same file. For this
reason, SIO procedures are described separately in Section 3.

1-4 “4 82359 A00 3/85

Introduction

SYNTAX OF A SYSTEM PROCEDURE CALL

An example of the syntax used in this manual is shown in Figure 1-1.

®

® ® ®

{<tength> := } FNAMECOLLAPSE (<internal-name> [
{CALL > ,<external-name>) I o
<length> returned value

INT

returns the number of bytes in <external-name>.

®

<internal-name> input
INT:ref:12
is the name to be converted. .ee

® "<length> :="

This indicates that the procedure is a function procedure; it returns a value of the indicated type
(in this case INT) when referenced in an expression. You can specify the variable as (retval),
(status), ¢(error-code), or some other appropriate name in other function procedure calls.

IICALLII

This is a TAL CALL statement. Any procedure that does not return a value must be invoked
through the TAL CALL statement. In addition, you can use a CALL statement to invoke a
function procedure if you do not need the returned value. You cannot invoke procedures from
FORTRAN by using “CALL".

This is the name of the system procedure that is calied. It must appear in the program exactly
as shown.

You must enclose the list of parameters in parentheses. Use commas to separate parameters
when there is more than one.

If you omit optional parameters, the placeholder comma “,” must be present, unless you omit
the parameters from the end of the list.

@ The exclamation point indicates that a comment follows. The comment is either an “i” or an “o0”
(or both), which indicates that the parameter is either an input (i) or an output (o) parameter (or
both). For a detailed description of input and output parameters, refer to the “Syntax Conven-
tions” description at the beginning of this manual.

@ This line indicates whether the parameter is an input or an output parameter (or both).

Figure 1-1. Sample Procedure Call

/{| 82359 A00 3/85

Introduction

®

®

This line indicates the parameter type:

INT integer (one word)

INT(32) doubleword integer (two words)

STRING character string (one byte or haif a word)
FIXED quadword integer (four words)

The parameter type is followed by a colon. Additional information after the colon includes:

value means the actual value or contents of a parameter are passed.

ref:x means this is a reference parameter; that is, the address of the parameter is passed.
(The statements within the program body must access the actual parameter contents
indirectly through the parameter location.) “x” indicates how many elements the
parameter contains. In this example, “12” indicates that the (internal-narne) parameter
contains 12 elements.

ref:* means this is a reference parameter; how many elements returned varies according to
how many elements requested.

EXT means the parameter is a reference parameter accessed by an extended pointer.
NOTE
If a parameter is defined as “STRING:ref”, a word-addressed variable (that is, an
integer) can be passed for that parameter; the TAL compiler produces instructions to
convert the word address to a byte address. An invalid address results if the word

address is greater than 32767.

This describes the information that is passed or returned in the parameter.

$5023-001

Figure 1-1. Sample Procedure Call (Continued)

/"i 82359 A00 3/85

SECTION 2

SYSTEM PROCEDURE CALLS

This section contains detailed reference information for all
system procedure calls. The information includes:

A description of the call

The syntax form for each call

Parameter meanings of each call

Condition code explanations for each call when applicable

Considerations when using the call (added information about the
procedure)

Any applicable system messages

Examples

//'4 82359 A00 3/85

ABEND

ABEND PROCEDURE

The ABEND procedure is used to delete the calling process and to
notify the creator process (with an ABEND system message) that
an abnormal condition led to the deletion,

When ABEND executes, all open files associated with the deleted
process automatically close. If the process owns BREAK, the process
gives up BREAK ownership.

The syntax for ABEND is:

CALL ABEND;

Condition Code Settings

The condition code has no meaning following a call to ABEND.

Message

® Process Abnormal Deletion
The creator of the aborted process receives a process abnormal
deletion (ABEND) system message (-6) indicating that the deletion

occurred. (Refer to Appendix F for a list of all system messages
sent to processes.)

Example
CALL ABEND;

Related Programming Manual

For programming information about the ABEND process control procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-2 4 82359 A00 3/85

ABORTTRANSACTION

ABORTTRANSACTION PROCEDURE

ABORTTRANSACTION aborts and backs out a transaction. When the process
that issued BEGINTRANSACTION (or its backup) calls this procedure,
Transaction Monitoring Facility (TMF) backs out the data base changes
made for the process's current-transaction identifier.

The syntax for ABORTTRANSACTION is:

<status> := ABORTTRANSACTION;

<status> returned value

INT

returns zero, if the call succeeds, or a file system error
number. (Refer to the System Messages Manual for a list of all
file system errors.)

Condition Code Settings

The condition code has no meaning following a call to
ABORTTRANSACTION,

Considerations

e Transaction's State After the Call to ABORTTRANSACTION

When ABORTTRANSACTION returns, the transaction has not been backed
out, but the transaction's state has changed from active to
aborting. Later, the backout process will back out the transaction
by restoring its before-images to all disc files that it changed.
When backout is complete, the process releases the locks held for
that transaction identifier.

If the transaction is restarted with a new transaction identifier,
it is not able to access any records locked by the aborted
transaction until the following occurs: (a) backout is completed
for the aborted transaction and (b) the locks held by the aborted
transaction are released.

e Obtaining Main Memory for LCB

If the procedure fails to obtain a link control block (LCB), then
ABORTTRANSACTION fails with file system error 30.

4 82359 A0O 3/85 2-3

ABO

RTTRANSACTION

Requesting Process and Current-Transaction Identifier

If the requesting process has no current-transaction identifier,
then ABORTTRANSACTION fails with file system error 75.

Invalid or Obsolete Transaction Identifier
If the process that issues BEGINTRANSACTION (or its backup) did not

begin the transaction, or if the transaction identifier is no
longer in the system, this call returns file system error 78.

When the Transaction Is Aborted
Any disc process that receives a subsequent I/0 request for the

aborting transaction identifier rejects the request, and the
call returns file system error 97.

Example

Rel

STATUS := ABORTTRANSACTION;

ated Programming Manual

For
Tra

information about the ABORTTRANSACTION procedure, refer to the
nsaction Monitoring Facility (TMF) Reference Manual.

2-4

47‘ 82359 AQ00 3/85

ACTIVATEPROCESS

ACTIVATEPROCESS PROCEDURE

The ACTIVATEPROCESS procedure is used to return a process Or process
pair from the suspended state to the ready state. (A process is put
in the suspended state if it is the object of a call to the
SUSPENDPROCESS procedure, or if it is suspended as the result of a
SUSPEND command issued from the command interpreter.)

The syntax for ACTIVATEPROCESS is:

CALL ACTIVATEPROCESS (<process-id>); Vi

<process-id> input
INT:ref:4

is an array containing the process ID (PID) of the process to
be activated. If <process-id>[0:2] references a process pair
and <process-id>[3] is specified as -1, then both members of
the process pair are activated.

Condition Code Settings

< (CCL) 1indicates that ACTIVATEPROCESS failed, or no process
designated as <process-id> exists.

= (CCE) indicates that the process is activated.

> (CCG) does not return from ACTIVATEPROCESS.

Considerations

® Process Accessor ID

The caller of ACTIVATEPROCESS must be the super ID, the group
manager of the process accessor ID, or a process with the same
process accessor ID as the process or process pair being activated.
Refer to the GUARDIAN Operating System Programmer's Guide for
information about process accessor ID.

4 82359 A00 3/85 2-5

ACTIVATEPROCESS

Example
CALL ACTIVATEPROCESS (PROG™ID); ! activate process.

Related Programming Manual

For programming information about the ACTIVATEPROCESS process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-6 @82359 AQ00 3/85

ACTIVATERECEIVETRANSID

ACTIVATERECEIVETRANSID PROCEDURE

ACTIVATERECEIVETRANSID is used to code SRECEIVE-queuing servers--that
is, servers that can read requests from $RECEIVE before replying to
previously read SRECEIVE requests. When a server calls this procedure
with a message tag obtained by a call to the LASTRECEIVE or
RECEIVEINFO file system procedure, the transaction identifier of the
message associated with the tag becomes the current-transaction
identifier for the server process. This multithreaded function
provides a server process with the ability to concurrently serve more
than one requester.

The syntax for ACTIVATERECEIVETRANSID is:

CALL ACTIVATERECEIVETRANSID (<message-tag>); !i
<message-tag> input
INT:value

identifies a message request from the group of reqguests that
are currently queued by the server; it is the same parameter
that is passed by the server to the REPLY procedure. The
message tag must be an integer between 0 and (receivedepth-1),
inclusive, that is currently associated with a gueued message.

Condition Code Settings

< (CCL) 1indicates an error.
= (CCE) 1indicates that ACTIVATERECEIVETRANSID was successful.
> (CCG) does not return from ACTIVATERECEIVETRANSID.

ACTIVATERECEIVETRANSID returns a condition code only.

Example
CALL ACTIVATERECEIVETRANSID (MSG"ID);

Related Programming Manual

For programming information about the ACTIVATERECEIVETRANSID
procedure, refer to the Transaction Monitoring Facility (TMF)
Reference Manual.

4 82359 A00 3/85 2-7

ADDDSTTRANSITION PROCEDURE

The ADDDSTTRANSITION procedure allows a user with a super group ID to
add an entry to the daylight savings time (DST) transition table.

NOTE

The DST transition table must be loaded in time sequence
and with no gaps (see "Considerations").

The syntax for ADDDSTTRANSITION is:

CALL ADDDSTTRANSITION (<low-gmt> Vi
,<high-gmt> i
,<offset>); (1
<low-gmt> input
FIXED

is the Greenwich mean time (GMT) when <offset> is first
applicable (this form is the same as the form used for
COMPUTETIMESTAMP). Except for the first call, the <low-gmt>

of each call must be the same as the <high-gmt> of the previous
call. This implies that many calls have an <offset> parameter

of 0.
<high-gmt> input
FIXED:value

is the GMT when <offset> is no longer applicable.

<offset> input
INT:value
is a value of <offset> in seconds:

local civil time (LCT) := local standard time (LST) + <offset>

2-8 Aﬂ82359 A00 3/85

Condition Code Settings

< (CCL) 1indicates that you either:
e do not have a super ID, user identification

e loaded the DST table inconsistently (that is, the DST
table contains gaps or an overlap of entries)

e were loading the DST table at the same time someone
else was loading the DST table.

= (CCE) 1indicates that the DST table was loaded successfully.

> (CCG) does not return from ADDDSTTRANSITION.

Considerations

e Loading the DST Transition Table With No Time Gaps
Except for the first call, the DST transition table must
be loaded in time sequence with no gaps, for example, if you
load the following:

First Entry

1980 April 1, 2:00,
1980 Oct 1, 2:00, 1:00

Second Entry

1980 Oct 1, 2:00,
1981 April 1, 2:00, 0:00

Next Entry (must be)

1981 April 1, 2:00,

Example
CALL ADDDSTTRANSITION (LOW , HIGH , OFFSET);

Related Programming Manual

None

“4) 82359 A00 3/85 2-9

ALLOCATESEGMENT

ALLOCATESEGMENT PROCEDURE

The ALLOCATESEGMENT procedure allocates an extended data segment for

use by the calling process.

NOTE

The call to ALLOCATESEGMENT must be followed by a call to
USESEGMENT in order to make the extended memory accessible

to the program.

(Although you can have multiple extended

segments, you can only access them one at a time.)

The syntax for ALLOCATESEGMENT is:

<status~>

<status>

INT

returns

4]

[T T | | Y O Y I

ALLOCATESEGMENT (<segment-id>
,[<segment-size>]
,[<filename>]
[<pin> 1);

e s o 4w
e e e e

returned value

status word having one of the following values:

no error
file system error related to the CREATE or the
OPEN of the swap file (see <filename> parameter)
illegal <segment-id>

illegal <segment-size>

bounds violation on <filename>

illegal combination of options

unable to allocate segment space

unable to allocate segment page table space
security violation on attempt to share segment
<pin> does not exist

<pin> does not have the segment allocated
trying to share segment with self

2-10

“4) 82359 A00 3/85

ALLOCATESEGMENT

<segment-id> input
INT:value

is the number by which the process chooses to refer to the
segment., Segment IDs are in the following ranges:

0-1023 can be specified by user processes.
Other 1IDs are reserved for Tandem-supplied software.

No process can supply a segment ID greater than 2047.

<segment-size> input
INT(32):value

is the number of bytes that the segment must hold. This value
must be greater than 0 and less than %777777777D. 1f you do not
supply this parameter, then you must give the <pin> parameter.

<filename> input
INT:ref:12

if present, is the name of a "swap file" to be associated

with the segment, If the file exists, all data in the file

is used as initial data for the segment. If the file does not
exist, one is created., If the process terminates without
deallocating the segment, any data still in memory is written
back out to the file. ALLOCATESEGMENT must be able to allocate
a sufficient number of file extents to contain all memory in the
segment.

The parameter can be a volume name with a blank subvolume and
file; ALLOCATESEGMENT allocates a temporary swap file on the
indicated volume.

If you do not specify the parameter, ALLOCATESEGMENT uses the
volume of the data stack swap file to create a temporary swap
file for the new segment.

4 82359 A00 3/85 2-11

ALLOCATESEGMENT

<pin> input
INT:value

designates that the segment specified by <segment-id> is to be
shared with the process specified by <pin>. 1In order for this
to occur, one of the following must be true: 1) the processes
must execute in the same processor and must share the same
access ID, 2) this process's access ID must be the group manager
for the other's access ID, or 3) this process's access ID must
be the super ID.

Condition Code Settings

The condition code has no meaning following a call to
ALLOCATESEGMENT (see the <status> parameter definition).

Considerations

e Existing Temporary File Name

The <filename> parameter can specify an existing temporary file
name allowing the application program to control file attributes
(such as extent sizes or the clear-on-purge attribute): the file
is automatically purged when the segment is deallocated or the
application terminated.

e Preventing Automatic Temporary File Purge

ALLOCATESEGMENT opens the swap file in a READ/WRITE/protected
manner. A process can prevent the automatic file purge of

a temporary swap file by opening the file for READ-only/shared
access before the segment is deallocated.

Example

STATUS := ALLOCATESEGMENT (SEGMENT"ID , SEG"SIZE , SWAP"FILE):;
! standard call to create a user segment;
! "swap“file" parameter can be omitted.

Related Programming Manual

For programming information about the ALLOCATESEGMENT memory
management procedure, refer to the GUARDIAN Operating System
Programmer's Guide.

2-12 44 82359 A00 3/85

ALTERPRIORITY

ALTERPRIORITY PROCEDURE

The ALTERPRIORITY procedure is used to change the execution priority
of a process or process pair.

A process or process pair has two priority values: the initial
priority value and the current priority value. ALTERPRIORITY changes

both priority values to the specified value.

The syntax for ALTERPRIORITY is:

CALL ALTERPRIORITY (<process-id> 1 i
,<priority>); i
<process-id> input

INT:ref:4

is an array containing the process ID of the process whose
execution priority is to be changed. 1If <process-id>[0:2]
references a process pair and <process-id>[3] is specified
as -1, then the call applies to both members of the process

pair.
<priority> input
INT:value

is a new execution priority value in the range of {1:199} for
<process-id>,

Condition Code Settings

< (CCL) 1indicates that ALTERPRIORITY failed, or no process
designated as <process-id> exists.

= (CCE) 1indicates that the priority of the process is altered.

> (CCG) does not return from ALTERPRIORITY.

4 82359 A00 3/85 2-13

ALTERPRIORITY

Considerations

® Process Accessor ID

The caller of ALTERPRIORITY must be the super ID, be the

group manager of the process accessor ID, or a process with the
same process accessor ID as the process or process pair priority
being changed. Refer to the GUARDIAN Operating System Programmer's
Guide for further information about the process accessor ID.

Example
CALL ALTERPRIORITY (PID , PRI)

Related Programming Manual

None

2-14 “4) 82359 A00 3/85

ARMTRAP

ARMTRAP PROCEDURE

The ARMTRAP procedure is used to specify a location within the
application program where execution begins if a trap occurs. The
program can use information passed to investigate the cause of the
error.

The syntax for ARMTRAP is:

CALL ARMTRAP (<traphandlr-addr> !
,<trapstack-addr>); !i
<traphandlr-addr> input
INT:value

is a label (nonzero P register value) that identifies a
statement in the program where control transfers if a trap
occurs.

If 0 is specified for <traphandlr-addr>, this means to reset
to restart. The process's registers at the time of the restar

are set to the values indicated by the following 'L' relative
locations:

'L'[-6] = unused

'L'[-5] = new value for space ID in stack marker ENV
format: LS = .,<4>, CS = .<7>, index = .<11:15>
(see Considerations)

'L'[-4] = trap number

'L'[-3] = new value for S register

'L'[-2] = new value for P register

'L'[-1] = new value of hardware ENV register

'L'[0] = new value for L register

'L'[1] = new value for RO

'L'[2] = new value for Rl

'L'[3] = new value for R2

'L'[4] = new value for R3

'L'[5] = new value for R4

'L'[6] = new value for R5

'L'[7] = new value for R6

'L'[8] = new value for R7.

NOTE

'L'[-5] and 'L'[-1] are combined into new hardware ENV.

the trap mechanism after a trap occurs, thus causing the process

t

“4 82359 A00 3/85

2-15

ARMTRAP

<trapstack-addr> input

INT:value

is an address specifying the local data area for the
application process's trap handler. <trapstack-addr> also
indicates where the trap number and stack marker at the time of
the trap are passed to the application process. After a trap
occurs, 'S' and 'L' are set to <trapstack-addr> plus six; the
six words starting at <trapstack-addr> plus one are (given
relative to the new 'L' setting):

'"L'[-6] is unused
'L'[-5] is the stack marker ENV register with a
space ID at the time of the trap
'L'[-4] is the trap number: 0 illegal address reference

1 = instruction failure

2 = arithmetic overflow

3 = stack overflow

4 = process loop timer timeout
11 = memory manager read error
12 = no memory available

13 = uncorrectable memory error

'L'[-3] is the value of 'S' at the time of the trap; it is
%177777 if the trap occurs while executing in
system code or system library

'L'[-2] is the value of 'P' at the time of the trap. The
'P' value associated with the space ID in 'L'[-5]
completely identifies the location of the trap.

'L'[-1] is the value of the hardware 'ENV' at the time of the
trap

'L' is the value of 'L' at the time of the trap.

If <trapstack-addr> is passed as a value < 0, then any trap
results in the process being stopped with an abnormal deletion
indication (that is, ABEND message).

Condition Code Settings

The condition code has no meaning following a call to ARMTRAP.

2-16 “4) 82359 A00 3/85

v

ARMTRAP

Considerations

Space ID, Stack Marker ENV and Hardware ENV Register

Space ID consists of a code space bit that signifies system or
user space, a library space bit that signifies code or library
space, and a 5-bit index to indicate which segment of the 32
possible you are referring. Refer to the System Description
Manual for more information about space IDs.

On a procedure call, the space ID of the calling procedure is
placed into the stack marker ENV register 'L'[-1]. At the time of
a trap, the stack marker ENV register at 'L'[-1] contains the
space ID of the location of the trap. When exiting the

trap handler, execution resumes at the location identified by the
'P' register at 'L'[-2] and space ID in the stack at 'L'[-5]. To
change the location of where execution is to resume, you need to
change the 'P' register value as well as the space ID in the stack
at 'L'[-5] to reflect the new location within your program. Refer
to the following Consideration, "Calling ARMTRAP When Using Multi-
Segment Programs."

Calling ARMTRAP When Using Multisegment Programs

The call to ARMTRAP that initially arms a trap handler must be in
the same segment as the trap handling procedure when using multi-
segment programs. Existing trap handlers in programs that become
multisegment programs might not have to be modified. The only

time a trap handler needs to be modified is when you want to access
the space ID or change the resume location of a multi-segment
process after a trap.

Exiting an Application Process's Trap Handler Procedure

If the application process's trap handling procedure is entered
because of a trap, an exit from the procedure must be through a
call to ARMTRAP, with <traphandlr-addr> specified as "0." The
procedure must use ARMTRAP (it cannot use EXIT) to exit through the
stack marker at the current 'L' register location. (This would
result in an invalid 'S' register setting following the exit.)

Trap Handler and a Call to a System Procedure

If the trap handler calls any operating system procedure, at
least 350 words must be available between the trap address value,
specified to ARMTRAP, and the last word in the application's data
area or 'G'[32767], whichever is less.

/I’|82359 AQO0 3/85 2-17

ARMTRAP

Trap Handler Data Area
Since the area below the stack pointer can be used internally by
the operating system before ARMTRAP is called, do not locate the
trap handler data area below the memory stack pointer.
Base Address Equivalencing and Declaring Local Variables
Any local variables in the application program's trap handling
procedure must be declared relative to the L register by using
base-address equivalencing. Base-address equivalencing relative
to the L register is of the form:
<type> { [.] <name> = 'L' [{ + | - } <word-offset>] } ...
where
<type> is the data type of the variable <name>,
<word-offset> specifies a positive or negative offset from
the L register where the variable exists.
NOTE
Variables declared in this form cannot be initialized.
The trap handling procedure must contain a statement that
explicitly allocates storage for any locally declared variables
(see Consideration, "Saving the Register Stack Registers").
Saving the Register Stack Registers
The stack registers (that is, RO-R7) contains the values they had
at the time of the trap upon entry to the application process's
trap handler. To save these values, the first statement of the
trap handler must be:
CODE(PUSH %777)
This will save the register stack contents. Local storage can
then be allocated by adding the appropriate value to 'S' through a
statement of the form:
CODE (ADDS <num-locals>)

<num-locals> is a LITERAL defining the number of words of
local storage needed.

2-18 4182359 A00 3/85

ARMTRAP

Value for the P Register

The value for the P register at the time of the trap depends
upon the trap condition:

trap P register

1

3
4
11
12
13

o o en) b

where

I the address of the instruction being executed at the time of
the trap.

? undefined.

e Overflow Trap and the Process Continuing

If the trap handler is entered because of an overflow trap and the
application process intends to continue processing, then the
overflow bit in the ENV register value in 'L'[-1] of the trap
handler must be set to zero before the trap mechanism is rearmed.
Otherwise, another overflow trap immediately occurs.

e How to Avoid Writing Over the Application's Data Stack
If 'L'[-3] (value of 'S' at time of trap) is %177777, the trap
handler should not reset traps without first changing 'L'[-3] to

a more appropriate value. Otherwise, G[0] through G[10] of the
application's data stack is overwritten.

“ 82359 A00 3/85 2-19

ARMTRAP

Example

PROC TRAPPROC:
BEGIN
CALL ARMTRAP (@TRAP, SLMIN (LASTADDR , %77777) - 500);
! setting the trap.
EXIT
TRAP;

END

PROC MAIN PROC;
BEGIN
CALL TRAPPROC;

END;

In the above example, @TRAP is the label at the beginning of the
Tandem Application Language trap handler procedure where control is
transferred if a trap occurs. The SLMIN expression is the address of
the local data area where the trap handler runs (its data area).
Refer to the GUARDIAN Operating System Programmer's Guide for a
detailed example using the ARMTRAP procedure.

Related Programming Manual

For programming information about the ARMTRAP trap hancdling procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-20 49 82359 A00 3/85

AWAITIO
AWAITIO PROCEDURE
The AWAITIO procedure is used to complete a previously initiated
I1/0 operation. Use AWAITIO to:
e Wait for the operation to complete on:
a. A particular file
Application process execution suspends until the completion
occurs. A timeout is considered to be a completion in this
case.
b. Any file or for a timeout to occur.

A timeout is not considered a completion in this case.

e Check for the operation to complete on:
a. A particular file
The call to AWAITIO immediately returns to the application

process, regardless of whether there is a completion or not.
(If there is no completion, an error indication returns.)

b. Any file
You can specify a time limit if AWAITIO is used to wait for a
completion to increase the time allotted to completing the waited-for
operation.

The syntax for AWAITIO is:

CALL AWAITIO (<filenum>
,[<buffer-addr> 1
,[<count-transferred> 1]
, [<tag>
, [<timelimit> 1);

H-0 O O -

<filenum> input, output
INT:ref:l

is the number of an open file. If a particular <filenum> is
passed, AWAITIO applies to that file.

“) 82359 A00 3/85 2-21

AWAITIO

If <filenum> is passed as -1, the call to AWAITIO applies
to the oldest incomplete operation pending on each file.
The specific action depends on the value of the <timelimit>
parameter (see the <timelimit> parameter below).

AWAITIO returns into <filenum> the file number associated with
the completed operation.

<buffer-addr> output
INT:ref:1

returns the address of the <buffer> specified when the
operation was initiated.

NOTE
If the actual parameter is used as an address pointer

to the returned data and is declared in the form
INT .<buffer-addr>, then it should be returned to AWAITIO

in the form @<buffer-addr>.

<count-transferred> output

INT:ref:1

returns the count of the number of bytes transferred because of
the associated operation.

<tag> output

INT(32):ref:l

returns the application-defined tag that was stored by the
system when the I/0 operation associated with this completion
was initiated.

2-22 4"]82359 AQ00 3/85

AWAITIO

<timelimit> input
INT(32):value

indicates whether the process waits for completion instead
of checking for completion. If <timelimit> is passed as:

<> 0D a wait-for-completion is specified. <timelimit>
then specifies the maximum time (in ,0l-second
units) that the application process can wait
(that is, be suspended) for completion of a
waited-for operation.

= -1D an indefinite wait is indicated.

= 0D a check for completion is specified. AWAITIO
immediately returns to the caller, regardless of
whether or not an I/0 completion occurs.

< -1D file system error 22 occurs.

omitted no limit exists, and an indefinite wait is
indicated.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates that an I/0 operation completed.

> (CCG) indicates that a warning occurred (call FILEINFO).
Considerations

® Completing Nowait Calls

Each nowait operation initiated must be completed with a
corresponding call to AWAITIO.

--If AWAITIO is used to wait for completion (<timelimit> <> 0D) and
a particular file is specified (<filenum> <> -1), then completing
AWAITIO for any reason is considered a completion.

--I1f AWAITIO is used to check for completion (<timelimit> = 0D) or

used to wait on any file (<filenum> = - 1), completing AWAITIO
does not necessarily indicate a completion.

“4 82359 A00 3/85 2-23

AWAITIO

If you perform an operation using one of the following procedure
calls with a file opened nowait, you must complete the operation
with a call to the AWAITIO procedure:

CONTROL SETMODENOWAIT
CONTROLBUF

UNLOCKFILE
LOCKFILE UNLOCKREC
LOCKREC

WRITE
READ WRITEREAD
READLOCK WRITEUPDATE
READUPDATE WRITEUPDATEUNLOCK
READUPDATELOCK

e Order of 1/0 Completion With SETMODE 30

Specifying SETMODE 30 allows nowait I/0 operations to complete in
any order. However, 1/0 operations that complete at the same time
return in the order issued. An application process that uses this
option can use the <tag> parameter to keep track of multiple I/0
operations associated with a file OPEN,

e Order of I/0 Completion Without SETMODE 30

If SETMODE 30 is not set, the oldest incomplete I/0 operation
always completes first; therefore, AWAITIO completes I/0 operations
associated with the particular open of a file in the same order as
initiated.

e Error Handling

If an error indication returns (that is, condition code is CCL
or CCG), you can pass the file number returned by AWAITIO to the
FILEINFO procedure to determine the cause of the error. 1If
<filenum> = -1 (that is, any file) is passed to AWAITIO and an
error occurs on a particular file, AWAITIO returns, in <filenum>,
the actual file number associated with the error.

e Operation Timed Out
If an error indication returns and a subsequent call to FILEINFO

returns error 40, the operation is considered incomplete and
AWAITIO must be called again.

2-24 “§ 82359 A0O0 3/85

AWAITIO

® WRITE Buffers
The contents of a buffer between a nowait initiation (for example,
a call to WRITE) and the corresponding nowait completion (that is,
a call to AWAITIO) should not be altered.

e No Nowait Operation
You should not call AWAITIO unless you initiate a nowait operation
prior to the call; otherwise, an error indication returns (CCL). A
subsequent call to FILEINFO returns error 26.

e AWAITIO Completion Summary
How AWAITIO completes depends on whether the <filenum> parameter
specifies a particular file or any file and on what the value of
<timelimit> is when passed with the call. The action taken by
AWAITIO for each combination of <filenum> and <timelimit> is
summarized in Figure 2-1.

e AWAITIO Operation

The operation of the AWAITIO procedure is shown in Figure 2-2.

“4 82359 A0O 3/85 2-25

AWAITIO

Particular
File

(fn)y = (file num)

(time limity) = 0

(timelimit) + 0

CHECK for any <file num)
110 completion.

COMPLETION
File number is returned in (fn).
Tag of compieted call is returned
in (tag) .

NO COMPLETION
CCL (error 40) is returned.
File number returned is in (fn).
No /O operation is canceled.

WAIT for any (file num)
/O completion.

COMPLETION
File number is returned in (fn) .
Tag of completed call is returned
in (tag) .

NO COMPLETION
CCL (error 40) is returned.
File number is returned in (fn) .
Oldest (file num) I/O operation is
canceled.
Tag of canceled call is returned
in (tag) .

CHECK for any I/O completion on
any open file.

WAIT for any I/O completion on any
open file.

Any File COMPLETION COMPLETION
File number of completed call is File number of completed call is
(fn) = -1 returned in (fn) . returnedin (fn) .
Tag of completed call is returned in Tag of completed call is returned in
(tag) . (tag) .
NO COMPLETION NO COMPLETION
CCL (error 40) is returned. CCL (error 40) is returned.
The value —1isreturnedin (fn). The value - 1isreturnedin (fn).
No 1/O operation is canceled. No 1/0 operation is canceled.
Notes: (fn) = (file number)
SETMODE 30 Set
$5023-002
Figure 2-1. AWAITIO Action
2-26

/1I 82359 A00 3/85

AWAITIO

Call AWAITIO

> -1

-1
Particular File Any File

< file number >

Any
Come’letion

Completion
?

Timeout
CCL <error> = 22

oD . oD
< timeout> < timeout >
Check
CCL (Check) (o) ceL

<error> = 40 <error> = 40

Wait Wait

Completion <tin}grout> <tfim<la\out> Completion
or Any
Completion Completion

Timeout Timeout

CCL CCL

<error> = 40 <error> = 40
§5023-003

Figure 2-2, AWAITIO Operation

N
I

//’l 82359 A00 3/85 27

AWAITIO

Example
CALL AWAITIO (TERM"NUM , BUFFER , NUM"READ , TAG , FIVE"MINUTES);

Related Programming Manual

For programming information about the AWAITIO file system procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

2-28 44 82359 A0O 3/85

BEGINTRANSACTION

BEGINTRANSACTION PROCEDURE

BEGINTRANSACTION starts a new transaction. When you call this
procedure, the Transaction Monitoring Facility (TMF) creates a new
transaction identifier that becomes the current-transaction identifier
for the process issuing BEGINTRANSACTION,

The syntax for BEGINTRANSACTION is:

<status> := BEGINTRANSACTION (<trans-begin-tag>) ; lo
<status> returned value
INT

returns a zero, if the call succeeds, or a file system error
number. (Refer to the System Messages Manual for a list of all
file system errors.)

<trans-begin-tag> output
INT(32):ref

returns a value that identifies the new transaction identifier
among other transaction identifiers that the calling process

pair has began. NonStop process pairs and processes that have
multiple concurrent active transactions require this parameter.

Condition Code Settings

The condition code has no meaning following a call to
BEGINTRANSACTION,

Considerations

e Transaction Identifier

Each transaction is distinguished from other transactions by a
four-word transaction identifier, which is created when you

) 82359 A00 3/85 2-29

BEGINTRANSACTION

call the BEGINTRANSACTION procedure. The form of the transaction
identifier is:

transid[0].<0:7> contains 1 plus the EXPAND system number of the
system in which you call BEGINTRANSACTION.
This is 0 for a system that is not part of a
network. The system number identifies the home
node of the transaction.

.<8:15> contains the number of the processor in which
BEGINTRANSACTION originated.

transid[1:2] contains a double-word sequence number to make
the transaction identification unique.

transid[3] contains a "crash count" indicating the number
of times the home node (of the transaction) has
a total system failure since the last time
the TMFCOM command INITIALIZE TMF is issued on
the home node.

e Restoring a Transaction Identifier

The value returned to the <trans-begin-tag> can be passed to the
RESUMETRANSACTION procedure to restore to currency a transaction
identifier previously begun by this process (or its backup). See
the explanation of RESUMETRANSACTION in the Transaction Monitoring
Facility (TMF) Reference Manual for more details on this operation.

e Sequence-Number Counter of the Processor

When BEGINTRANSACTION is executed, it increments the sequence-
number counter of the processor in which it executes. The value of
the seguence-number counter is placed in transaction identifier
<transid>[1:2]. See the Transaction Monitoring Facility (TMF)
Reference Manual for a description of the sequence-number counter.

e Out-of-Bounds Parameter or Buffer Address
If you specify an out-of-bounds application parameter or buffer
address parameter--that is, a pointer to the buffer has an address
that is greater than the MEM associated with the data area of the
process-—-then the call returns with file system error 22,

e Obtaining Main Memory Space For a Link Control Block (LCB)

If the procedure failed to obtain an LCB, then BEGINTRANSACTION
returns file system error 30.

e When BEGINTRANSACTION Fails
BEGINTRANSACTION fails if TMF is not running on the local system,

cr the remote system that you try to access. In either case, the
call returns file system error 82.

2-30 “ 82359 A00 3/85

BEGINTRANSACTION

e Too Many Transactions

1f a process begins more concurrent transactions than it can handle
(that is, the OPENs against the transaction pseudofile (TFILE)
exceed that specified when TFILE was opened) or it attempts more
than one open against a TFILE that is not open, the call is
rejected with file system error 83. You can have no more than 100
OPENs against the TFILE.

e If TMF Is Not Configured
If you attempt BEGINTRANSACTION on a system where TMF is not

configured, the call fails and error 84 returns.

Example
STATUS := BEGINTRANSACTION (TRANS“BEGIN"TAG):

Related Programming Manual

For programming information about the BEGINTRANSACTION procedure,
refer to the Transaction Monitoring Facility (TMF) Reference Manual.

“4) 82359 A00 3/85 2-31

BLINK”SCREEN
BLINK"SCREEN PROCEDURE

For users of the ENTRY or ENTRY520 screen formatter, BLINK"SCREEN
places control characters into the application program's I/0 buffer,
which causes certain characters to blink when appearing on a terminal
screen, or which clears the blinking on a data-entry field. When
output, this control sequence leaves the cursor over the first
character of the field that is blinking or not blinking.

The syntax for BLINK"SCREEN is:

<contrl-chars> := BLINK"SCREEN (@<screen—-name>
, SCREEN
,<buffer>
,<field-name>
,<blink>);

e e '-"O =1y

<contrl-chars> returned value
INT
returns the number of control characters that are placed into
the application program's I/0 buffer.

<screen-name> input
INT:value
is the address of the read-only array that has the form
definition (refer to the ENTRY Screen Formatter Operating and

Programming Manual or the ENTRY520 Screen Formatter Operating
and Programming Manual for an explanation of "form definition").

SCREEN output
STRING:ref:*

is the required array named SCREEN where the entry data is
placed. All fields are null-terminated; so, you can access them
using the Transaction Application Language (TAL) SCAN statement.
Each field is without leading and trailing blanks: in other
words, each field is left-justified.

2-32 4§ 82359 A0 3/85

BLINK"SCREEN

<buffer> input
STRING:ref:*
is the application program's I/0 buffer where the control
sequence is placed. If you want an entire field to blink,
then the control sequence is 20 characters long. To stop
a field from blinking, you must specify 18 control-sequence
characters.

<field-name> input
STRING:ref:*
is the name of the entry field you want to blink or stop
blinking.

<blink> input

INT:value

is nonzero to cause an entry field to blink or zero to stop
the entry field from blinking.

Condition Code Settings

The condition code has no meaning following a call to BLINK"SCREEN,

Example
NUM"CHARS := BLINK"SCREEN (@X , SCREEN , BUF , X"NAME , 1);

Related Programming Manuals

For programming information about the BLINK"SCREEN entry procedure,
refer to the ENTRY Screen Formatter Operating and Programming Manual
or the ENTRY520 Screen Formatter Operating and Programming Manual.

44 82359 A00 3/85 2-33

CANCEL

CANCEL PROCEDURE

The CANCEL procedure is used to cancel the oldest incomplete
operation on a file opened nowait.

NOTE

You can cancel a specific call, identified with a <tag>
parameter, using a call to CANCELREQ.

The syntax for CANCEL is:

CALL CANCEL (<filenum>); ! i

<filenum> input
INT:value

is the number of an open file whose oldest incomplete
operation you want to cancel.

Condition Code Settings

(CCL) indicates that an error occurred (call FILEINFO).

A

(CCE) indicates that the operation was canceled.

\

(CCG) does not return from CANCEL.

Example

CALL CANCEL (SOME"FILE); ! the operation on this file is to be
! canceled.

Related Programming Manual

None

2—-34) 82359 A00 3/85

CANCELPROCESSTIMEOUT
CANCELPROCESSTIMEOUT PROCEDURE
The CANCELPROCESSTIMEOUT procedure cancels a process—-time timer

previously initiated by a call to the SIGNALPROCESSTIMEOUT procedure.

The syntax for CANCELPROCESSTIMEOUT is:

CALL CANCELPROCESSTIMEOUT (<tag>); P i
<tag> input
INT:value

is the identifier associated with the timer to be canceled
or -1 if all timers set by calls to SIGNALPROCESSTIMEOUT by
that process are to be canceled.

Condition Code Settings

< (CCL) 1is not returned by CANCELPROCESSTIMEOUT.

(CCE) 1indicates that CANCELPROCESSTIMEOUT was successful.

v

(CCG) indicates that <tag> was invalid.

Considerations

e The CANCELPROCESSTIMEOUT procedure measures the time the process is
executing. This procedure includes only the time spent in process
code.

Example
CALL CANCELPROCESSTIMEOUT (TIMERTAG):

Related Programming Manual

For programming information about the CANCELPROCESSTIMEOUT procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

4 82359 A00 3/85 2-35

CANCELREQ
CANCELREQ PROCEDURE
The CANCELREQ procedure is used to cancel an incomplete operation,

identified by a file number and tag, on a nowait file.

The syntax for CANCELREQ is:

CALL CANCELREQ (<filenum> Vi
[,<tag>]); 1 i
<filenum> input
INT:value

is the number of an open file, identifying the file whose
operation did not complete and is to be canceled.

<tag> input
INT(32):value

is for nowait only. <tag> is a value you define that uniquely
identifies the operation associated with this CANCELREQ.

NOTE

The system stores the <tag> value until the I/O operation
completes. The system then returns the <tag> information
to the program in the <tag> parameter of the call to

AWAITIO, thus indicating that the operation was canceled.

Condition Code Settings

< (CCL) does not return from CANCELREQ.
= (CCE) indicates that the operation was canceled.
> (CCG) indicates that an error occurred (call FILEINFO).

2-36 4982359 A0

3/85

CANCELREQ

Considerations

e Using the <tag> Parameter

If you use the <tag> parameter, the system cancels the oldest
incomplete operation associated with that tag value. If you do not
provide a <tag>, the system cancels the oldest incomplete operation
for <filenum>,

e If you omit the <tag> parameter, CANCELREQ works exactly like
CANCEL.

Example

CALL CANCELREQ (SOME"FILE , 14D); ! operation 14 of some“file
! was canceled.

Related Programming Manual

For programming information about the CANCELREQ procedure, refer to
the GUARDIAN Operating System Programmer's Guide.

“4) 82359 A00 3/8S 2-37

CANCELTIMEOUT
CANCELTIMEQOUT PROCEDURE
The CANCELTIMEOUT procedure cancels an elapsed-time timer previously

initiated by a call to the SIGNALTIMEOUT procedure.

The syntax for CANCELTIMEOUT is:

CALL CANCELTIMEOUT (<tag>); ! i

<tag> input
INT:value
is the identifier associated with the timer to be canceled

or -1 if all timers set by calls to SIGNALTIMEOUT by that process
are to be canceled.

Condition Code Settings

< (cCL) 1is not returned from CANCELTIMEOUT.
= (CCE) 1indicates that CANCELTIMEOUT completed successfully.

> (CCG) 1indicates that <tag> was invalid.

Considerations

e The CANCELTIMEOUT procedure measures the actual elapsed time (the
wall clock) that this process executes. This procedure includes
the time spent in process code, system code, and interrupt handler
code.

Example
CALL CANCELTIMEOUT (TIMERTAG):

Related Programming Manual

For programming information about the CANCELTIMEOUT process control
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2-38 “4) 82359 A00 3/85

CHANGELIST
CHANGELIST PROCEDURE

The CHANGELIST procedure is used only when the application program
acts as a supervisor or tributary station in a centralized multipoint
configuration,

Within a supervisor station, CHANGELIST performs one of the following
operations:

e Specifies continuous or noncontinuous polling
® Enables or disables polling of a particular station

e Resumes polling of partially disabled (that is, nonresponding)
stations

e Performs the activation or deactivation of a tributary station
by altering the setting of the poll state bit for a particular
entry.

NOTE
If polling is in progress when you make the call to
CHANGELIST, the specified changes do not take effect
until polling completes either on its own or as the result
of a call to HALTPOLL.

The syntax for CHANGELIST is:

CALL CHANGELIST (<filenum> !
,<function> !
,<parameter>); !

pdo pde e

<filenum> input
INT:value

is the name of the one-word integer variable specified in the
OPEN call that opened the line.

“4) 82359 A0O 3/85 2-39

CHANGELIST

<function> input
INT:value
is an integer value specifying what change is to be made:

>= 0 changes the poll state bit. 1In this case, <function>
also specifies the relative address of the particular
station address within the address list (0 indicates
the first entry, 1 the second entry, and so forth).
The <parameter> value described under "Considerations"
specifies whether you want the bit to be set or cleared.

-1 changes the polling type. The <parameter> value
described below specifies whether you want continuous
polling or you want the polling list to be traversed a
finite number of times.

-2 restores all partially disabled stations.
<parameter> input
INT:value

is an integer value used in conjunction with the <function>
value to specify what change is to be made.

<function> >= 0 The <parameter> value specifies whether you
want the poll or select state bit set or
cleared as follows:

0
1

cleared
set

depending upon whether the station list is
that of a supervisor or a tributary station:

e Within a supervisor station, the poll state
bit enables (clears) or disables (sets) the
polling of the particular tributary
station.

e Within a tributary station, the poll state
bit activates (clears) or deactivates
(sets) the tributary station with regard to
its ability to respond to a poll or select
of the designated station address.

2-40 “#) 82359 A00 3/85

CHANGELIST

n
!
=

<function> The <parameter> value specifies the desired

type of polling as follows:
0 = continuous polling

>0

noncontinuous polling (traverse the
polling list the specified number of
times, and then cease polling).

]
!
[\V]

<function> The <parameter> value has no meaning. The
CHANGELIST procedure, however, expects to be
passed three values; you must therefore

supply a dummy <parameter> value.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILEINFO).

(CCE) 1indicates that the CHANGELIST procedure executed
successfully.

\%

(CCG) does not return from CHANGELIST.

Examples
CALL CHANGELIST (FNUM , -1 , 10);

In the above example, within a supervisor station, this call enables
limited polling in which the station list is traversed 10 times.
Polling does not begin, however, until a READ call is subsequently
issued. After the tenth pass through the polling list, polling
ceases.

Related Programming Manuals

For programming information about the CHANGELIST system procedure,
refer to the data-communication manuals.

“4 82359 A00 3/8S5 2-41

CHECKCLOSE

CHECKCLOSE PROCEDURE

The CHECKCLOSE procedure is called by a primary process to close a
designated file in its backup process.

The backup process must be in the "monitor" state (that is, in a call
to CHECKMONITOR) for the CHECKCLOSE to be successful. The call to
CHECKCLOSE causes the CHECKMONITOR procedure in the backup process to
call the file system CLOSE procedure for the designated file.

The syntax for CHECKCLOSE is:

CALL CHECKCLOSE (<filenum> ' P
,[<tape-disposition>]); ! i
<filenum> input
INT:value
is the file number of an open file to be closed in the backup
process.
<tape-disposition> input
INT:value

if present, specifies mag tape disposition, as follows:
<tape—-disposition>.<13:15>

rewind and unload, don't wait for completion
rewind, take offline, don't wait for completion
rewind, leave online, don't wait for completion
rewind, leave online, wait for completion

don't rewind, leave online

WO
nuwnnhn

If omitted, 0 is used.

Condition Code Settings

The following settings are obtained from the CLOSE procedure in the
backup process; CHECKCLOSE establishes these settings in the primary
process:

< (CCL) indicates that an invalid file number was supplied
or that the backup process does not exist.

2-42 4 82359 A00 3/85

CHECKRCLOSE

= (CCE) indicates that the CLOSE was successful.

> (CCG) does not return from CHECKCLOSE.

Considerations

Interprocess Message and the Creator Process ID (PID)

A call to CHECKCLOSE causes an interprocess message to be sent to
the process indicated by the "creator PID" in the caller's
process control block.

The creator PID is automatically set to the PID of the backup
process at process creation if the NonStop process pair is named.
If the process pair is not named, then the backup process must call
the STEPMOM procedure, specifying the primary process, before the
primary process makes a call to this procedure. (CHECKMONITOR
receives and processes the interprocess message in the backup
process.)

The condition code returned from CHECKCLOSE indicates the outcome
of the CLOSE in the backup process.

See "Considerations" for the CLOSE procedure.

Example

CALL CHECKCLOSE (TAPE“FILE , 1);

Related Programming Manual

For programming information about the CHECKCLOSE utility procedure,
refer to the GUARDIAN Operating System Programmer's Guide.

) 82359 A00 3/85 2-43

CHECKMONITOR

CHECKMONITOR PROCEDURE

The CHECKMONITOR procedure is called by a backup process to monitor
the state of the primary process and to return control to the
appropriate point (in the backup process) in the event of a failure of
the primary process.

The syntax for CHECKMONITOR is:

{ <status> := } CHECKMONITOR;

{ CALL }

<status> returned value
INT
returns a status word of the following form:

<0:7>
<8:15>

primary stopped

primary abnormally ended
primary's processor failed
primary called CHECKSWITCH

WMNhHEON

NOTE

The normal return from a call to CHECKMONITOR is to the
statement following a call to CHECKPOINT. The return
corresponds to the latest call to CHECKPOINT by the
primary process in which its stack was checkpointed.

The backup process executes the statement following the

call to CHECKMONITOR only if the primary process has not
checkpointed its stack through a call to CHECKPOINT.

Condition Code Settings

The condition code has no meaning following a call to CHECKMONITOR
(see the <status> parameter).

2-44 ﬁ82359 AQO0 3/85

v

CHECKMONITOR

Considerations

e Action if the Process Pair Is not Named

If the process pair is not named (that is, it is not in the
destination control table (DCT)), you must call the STEPMOM
procedure prior to the call to CHECKMONITOR and before the primary
process makes its first call to CHECKPOINT,

e Illegal Parameter Error

While CHECKMONITOR executes, its local data area consists of
approximately 500 words, starting at:

'G' [SLMIN (LASTADDR, 32767) - 500]

In other words, the local data area begins 500 words below the last
available location in the application process's data stack.
CHECKMONITOR uses this 500-word region to call other operating
system procedures. If the primary process attempts to checkpoint
its data area in this region, an "illegal parameter" error returns
to the primary process from CHECKPOINT.

If this failure occurs, the number of data pages to be allotted to
the process should be increased through the "?DATAPAGES" Tandem
Application Language (TAL) compiler command. (Use this method of
increasing data area size rather than increasing the data area at
run time through the command interpreter MEM parameter; this helps
to avoid creating a backup process with a different data area size
than its primary.)

Example

CASE CHECKMONITOR OF
BEGIN

END;

Related Programming Manual

For programming information about the CHECKMONITOR checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

/f 82359 A00 3/85 2-45

CHECKOPEN

CHECKOPEN PROCEDURE

The CHECKOPEN procedure is called by a primary process to open a
designated file for its backup process. The following two conditions
must apply before the call to CHECKOPEN:

e The primary process must first open the file,

e The backup process must be in the "monitor" state (that is, in a
call to CHECKMONITOR) for the CHECKOPEN to be successful.

The call to CHECKOPEN causes the CHECKMONITOR procedure in the backup
process to call the file system OPEN procedure for the designated
file.

The syntax for CHECKOPEN is:

CALL CHECKOPEN (<filename> !
, <filenum> !
,[<flags>] !
,[<sync or receive-depth>] !
,[<sequential-block-buffer>] !
,[<buffer-length>] !
,<backerror>); !

Q H e e e He e

The following parameters must be passed the same values as
those passed for the corresponding parameters in the call to
OPEN for a file. Otherwise, your program is incorrect.

CHECKOPEN parameter Corresponding OPEN parameter
<filename>, INT:ref:l2 <filename>

<filenum>, INT:value <filenum>

<flags>, INT:value <flags>

<sync or receive-depth> <sync or receive-depth>
INT:value

<sequential-block-buffer> <sequential-block-buffer>

INT:ref:*

<buffer-length>, INT:value <buffer-length>

2-46 /1" 82359 A00 3/85

CHECKOPEN

<backerror> output
INT:ref:1
returns one of the following values:

>= 0 is the file system error number reflecting the call
to OPEN in the backup process.

-1 indicates that the backup process is not running or
that the checkpoint facility could not communicate
with the backup process. (See "Messages.")

Condition Code Settings

The following settings are obtained from the OPEN procedure in the
backup process:

< (CCL) indicates that the OPEN failed. The file system error
number returns in <backerror>,

= (CCE) indicates that the file opened successfully.
> (CCG) indicates that the OPEN was successful, but an

exceptional condition was detected. The file system
error number returns in <backerror>,

Considerations

Interprocess Message and the Creator Process ID (PID)

A call to CHECKOPEN causes an interprocess message to be sent to
the process indicated by the "creator PID" in the caller's
process control block.

The creator PID is automatically set to the PID of the backup
process at process creation if the NonStop process pair is named.
If the process pair is not named, then the backup process must call
the STEPMOM procedure, specifying the primary process, before the
primary process makes a call to this procedure. (CHECKMONITOR
receives and processes the interprocess message in the backup
process.) Refer to the GUARDIAN Operating System Programmer's
Guide for information about nonnamed process pairs.

The condition code returned from CHECKOPEN indicates the outcome of
the OPEN in the backup process.

“) 82359 A00 3/85 2-47

CHECKOPEN

e If an Error or No Error Is Returned in <backerror>

If a process file is opened nowait (<flag>.<8> = 1), that file is
CHECKOPENed as nowait. CHECKOPEN returns in <backerror>, errors
detected in parameter specification and system data-space
allocation, and the operation is considered complete

If no error returns in <backerror>, the operation must be completed
by a call to AWAITIO in the primary process. If you specify the
<tag> parameter, the value returned by AWAITIO is -29D; the
returned count and buffer address are undefined. 1If the condition
code CCL is returned by AWAITIO, the file is automatically
checkclosed by the checkpointing facility. For a nonprocess file
or a process file that is opened with a wait, bit <8> of the <flag>
parameter is reset internally to zero and ignored. The user can
call AWAITIO to complete CHECKOPENs completed for the primary

open of the file.

® Primary Process Open

<backerror> = 17 returns if the file is not opened by the primary
process or the parameters supplied to CHECKOPEN do not match the
parameters supplied when the primary process opened the file.

® See "Considerations" for the OPEN procedure.

Message

e Unable to Communicate With Backup

If an "unable to communicate with backup" error occurs (that is,
<backerror> = -1), this normally indicates either that the backup
process does not exist, or that a system resource problem exists.
If a system resource problem exists the open request message to the
backup is unduly large.

Example

CALL CHECKOPEN (FNAMEl , FNUMl , FLAGS1 , SYNC DEPTH1
, » » ERROR);

Related Programming Manual

For programming information about the CHECKOPEN checkpointing
procedure, refer to the GUARDIAN Operating System Programmer's Guide.

2—-48 “4) 82359 A0 3/85

CHECKPOINT

CHECKPOINT PROCEDURE

The CHECKPOINT procedure is called by a primary process to send
information pertaining to its current executing state to its backup
process. The checkpoint information enables the backup process to
recover from a failure of the primary process in an orderly manner.
The backup process must be in the "monitor" state (that is, in a call
to CHECKMONITOR) for the CHECKPOINT to be successful.

The syntax for CHECKPOINT is:

{ <status> := } CHECKPOINT

{ CALL }
([<stack-base> [, [<buffer-1>] , [<count-1>]] i, i, i
[, [<buffer-2> 1, [<count-2>]] 1i, i
[, [<buffer-13>] , [<count-1 >]]); !'i, i
<status> returned value
INT

returns a status word of the following form:

<0:7> = 0 no error
<0:7> = 1 no backup or unable to communicate with backup,
then
<8:15> = file system error number

<0:7> = 2 takeover from primary, then
<8:15> 0 primary stopped

1 primary abnormally ended

2 primary's processor failed

3 primary called CHECKSWITCH

//ﬂ82359 AQO0 3/85 2-49

CHECKPOINT

<0:7> = 3 1illegal parameter, then
<8:15> = number of parameter in error (leftmost position
= 1)

NOTE
If the message is too large (that is, the stack size
and the counts of all buffers and the size of all

file sync blocks are too big), the parameter number
is set to 13 in the error return.

<stack-base> input
INT:ref:*
checkpoints the process's data stack from <stack-base> through

the current top-of-stack location ('S'). A checkpoint of the
data stack defines a restart point for the backup process.

<buffer-n> input
INT:ref:*
checkpoints a block of the process's data area (usually a file
buffer) from <buffer-n> for the number of words specified by
the corresponding <count-n> parameter., If you omit <buffer-n>,

<count-n> is treated as a <filenum>, and that file's file
synchronization block is checkpointed.

<count-n> input
INT:value

The use of this parameter depends on the presence or absence
of the corresponding <buffer-n> parameter.

If <buffer-n> is present, then <count—n> specifies the number of
words to be checkpointed.

If <buffer-n> is absent, then <count-n> is the <filenum> of a
file whose synchronization block is to be checkpointed.

Condition Code Settings

The condition code has no meaning following a call to CHECKPOINT.

2-50 4 82359 A00 3/85

CHECKPOINT

Considerations

e Checkpointing the Process's Data Stack

The CHECKPOINT procedure provides for checkpointing the process's
data stack and any combination of up to 13 separate data blocks and
file synchronization blocks. A data block can be from any location
in the data area. (Data blocks are usually file buffers that are
not checkpointed as part of the stack, and they cannot be in an
extended data area.)

e Interprocess Message and the Creator Process ID (PID)

A call to CHECKPOINT causes an interprocess message to be sent to
the process indicated by the "creator PID" in the caller's process
control block.

The creator PID is automatically set to the PID of the backup
process at process creation if the NonStop process pair is named.
If the process pair is not named, the backup process must call the
STEPMOM procedure, specifying the primary process, before the
primary process makes a call to this procedure. (CHECKMONITOR
receives and processes an interprocess message in the backup
process.)

e Checkpointing a File's Synchronization (sync) Information

If a file's sync information is checkpointed, the call to
CHECKPOINT contains an implicit call to GETSYNCINFO for the file.
Therefore, checkpointing of a file's sync information should not be
performed between an I/0 completion an