symbolics™

Volume 3B
Lisp Language

Volume 3B. Lisp Language

#996032

Copyright © 1984, Symbolics, Inc. of Cambridge, Massachusetts. All rights reserved.
Printed in USA. This document may not be reproduced in whole or in part without the
prior written consent of Symbolics, Inc.

Design: Schafer/LaCasse

Cover and title page typography: Litho Composition Co.

Text typography: Century Schoolbook and Helvetica produced on a Symbolics 3600
Lisp Machine from Bitstream, Inc., outlines; text master printed on Symbolics

LGP-1 Laser Graphics Printer.

The first Lisp Machine system was a product of the efforts of many
people at the M.L.T. Artificial Intelligence Laboratory, and of the unique
environment there. Portions of earliest versions of many of the documents
in this documentation set were written at the Al Lab.

symbolics™

Contents

Lisp
Language

FUNC

Functions

MAC

Macros

DEFS

Defstruct

FLAV

Objects,

Message Passing,
and Flavors

COND

Conditions

PKG

Packages

symbolics™

FUNC Functions

Cambridge, Massachusetts

Functioris
990073

February 1984

This documem eomsponds to lielom 5.0.
This document was prepared by the Documentation Group of Symbolics. Inc.

-No representation or affirmation of fact contained in this documem should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responslbility for any errors that might appear in this
document.

Symbolics software described in this document is fumished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
impliés the granting of a license to make, use, or sell any Symbolics equipment or
‘software. :

Symbolics is a trademark of Symboalics, Inc., Cambridge, Massachusetts.

Copyright © 1981, 1979, 1978 Massachusetts Instltute of Technology.
~ All rights reserved.

Enhancements copyright o 1984, 1983, 1982 Symbolics, Inc. of Cambﬂdge,
Massachusetts.

All rights reserved. Printed in USA.

This document may not be reproduced in whole or in part without the prior written
consent-of Symbolics, inc.

Printing year and number: 87 86 8584 9876543 21

FUNC Functions:

Symbolics, Inc. February 1984

- Table of Contents

1. Functions

11
1.2
13
14
15

16
1.7
18
19

What is a Function?
Function Specs
Simple Function Definitions
Operations the User Can Perform on Functions
Kinds of Functions

15.1 Interpreted Functions

1.5.2 Compiled Functions

1.5.3 Other Kinds of Functions
Function-defining Special Forms
Lambda-list Keywords
How Programs Manipulate Definitions
How Programs Examine Functions

110 Encapsulations

110.1 Rename-thhm Encapsulatlons

2. Closures

2.1 What a Closure is

2.2 Examples of the Use of Closures
23 Closure—mampulatmg Functions
2.4 Entities

lndexv

i

EﬁquqA;—aw -

FUNC Functions 1
Symbolics, Inc. February 1984

1. Functions

Functions are the basic building blocks of Lisp programs. This chapter describes the
functions in Zetalisp that are used to manipulate functions. It also explains how to
manipulate special forms and macros.

This chapter contains internal details intended for those writing programs to
manipulate programs as well as material suitable for the beginner.

1.1 What is a Function?

There are many different kinds of functions in Zetalisp. Here are the printed
representations of examples of some of them:

foo

~ (lambda (x) (car (last x)))
(named-lambda foo (x) (car (last (x))))
(subst (x) (car (last x)))
#<dtp-fef-pointer append 1424771>
#<dtp-u-entry last 270>
#<dtp-closure 1477464>

We will examine these and other types of functions in detail later. They all have
one thing in common: a function is a Lisp object that can be applied to arguments.
All of the above objects can be applied to some arguments and will return a value.
Functions are Lisp objects and so can be manipulated in all the usual ways: you can
pass them as arguments, return them as values, and make other Lisp objects refer
to them. ‘

1.2 Function Specs

The name of a function does not have to be a symbol. Various kinds of lists
describe other places where a function can be found. A Lisp object that describes a
place to find a function is called a function spec. ("Spec" is short for "specification”.)
Here are the printed representations of some typical function specs:

foo ;

(:property foo bar)

(:method tv:graphics-mixin :draw-line)
(:internal foo 1)

(:within foo bar)

(:location #<dtp-locative 7435216>)

Function specs have two purposes: they specify a place to remember a function, and

2 o . ; , : " FUNC Functions
i ; " ' Symbolics, Inc. . February 1984

they serve to name functions. The most common kind of function spec is a symbol,
that specifies that the function cell of the symbol is the place to remember the
function. We will see all the kinds of function specs, and what they mean, shortly.
Function specs are not the same thing as functions. You cannot, in general, apply a
function spec to arguments. The time to use a functlon spec is when you want to
do something to the function, such as define it, look at its definition, or compile it.

Some kinds of functions remeémber their own names, and some do not. The ™name"
remembered by a function can be any kind of function spec, although it is usually a
symbol. (See the section "What is a Function?.) In that section, the example
starting with the symbol named-lambda, the one whose printed representation
included dtp-fef-pointer, and the dtp-u-entry remembered names (the function
specs foo, append, and last respectively). The others did not remember their
names.

To define a function spec means to make that function spec remember a given

. function. This is done with the fdefine function; you give fdefine a function spec
and a function, and fdefine remembers the function in the place specified by the
function spec. The function associated with a function spec is called the definition
of the function spec. A single function can be the definition of more than one
function spec at the same time, or of no function specs.

To define a function means to create a new function, and define a given function
spec as that new function. This is what the defun special form does. Several other
special forms such as defmethod and defselect do this too.

‘These special forms that define functions usually take a function spec, create a
function whose name is that function spec, and then define that function spec to be
the newly created function. Most function definitions are done this way, and so
usually if you go to a function spec and see what function is there, the function’s
name will be the same as the function spec. However, if you define a function
named foo with defun, and then define the symbol bar to be this same function,
the name of the function is unaffected; both foo and bar are defined to be the
same function, and the name of that function is foo, not bar.

A function spec’s definition in general consists of a basic definition surrounded by
‘encapsulations. Both the basic definition and the encapsulations are functions, but
of recognizably different kinds. What defun creates is a basic definition, and usually
that is all there is. Encapsulations are made by function-altering functions such as
trace and advise. When the function is called, the entire definition, which includes
the tracing and advice, is used. If the function is "redefined" with defun, only the
basic definition is changed; the encapsulations are left in place. See the section
"Encapsulations”.

A function spec‘ is a Lisp object of one of the following types:

a symbol
The function is remembered in the function cell of the symbol. See the

FUNC Functions . e 3
~ Symbolics, Inc. . February 1984 : - v

section "The Function Cell*. Function cells and the primitive functions to
manipulate them are explained in that section.

(:property symbol property)
The function is remembered on the property list of the symbol; domg
(get symbol property) would return the function. Storing functions on v
property lists is a frequently used technique for dispatching (that is, deciding
at run-time which function to call, on the basis of input data).

(:method flavor-name message)

(:method flavor-name method-type message)
The function is remembered inside internal data structures of the flavor
system. See the document Objects, Message Passmg, and Flavors.

:select-method function-spec message) ‘
If the definition of function-spec is a select-method, thls refers to the function
to which the select method dispatches upon receiving message. It is an error
if function-spec does not contain a select method or if the select method does
not support message. defselect now defines its component functions using
this function spec instead of creating a special symbol for each function.

(:handler flavor-name message) .

This is a name for the function actually called when a message message is
sent to an instance of the flavor flavor-name. The difference between
shandler and :method is that the handler may be a method inherited from

- some other flavor or a combined method automatically written by the flavor

- system. Methods are what you define in source files; handlers are not. Note
that redefining or encapsulating a handler affects only the named flavor, not
any other flavors built out of it. Thus .handler function specs are often
used with trace and advise.

(:location pointer)
The function is stored in the cdr of pointer, whxch may be a locative or a list.
This is for pointing at an arbitrary place which there is no other way to
describe. This form of function spec is not useful in defun (and related
special forms) because the reader has no printed representation for locative
pointers and always creates new lists; these function specs are intended for
programs that manipulate functions. See the section "How Programs
Manipulate Definitions”.

(within within-function ﬁtnctzon-to—a/fect)
This refers to the meaning of the symbol function-to-affect, but only where it
occurs in the text of the definition of within-function. If you define this
function spec as anything but the symbol function-to-affect itself, then that
symbol is replaced throughout the definition of within-function by a new
symbol which is then defined as you specify. See the section
"Encapsulations”.

(:internal function-spec number)

4 ~ o FUNC Functions
' . ' Symbolics, Inc. . February 1984 .

Some Lisp functions contain internal functions, created by ’
(function (lambda ...)) forms. These internal functions need names when
compiled, but they do not have symbols as names; instead they are named by
:zinternal function-specs. function-spec is the containing function. number is
a sequence number; the first internal function the compiler comes across in a
given function will be numbered 0, the next 1, and so on. Internal functions
are remembered mslde the FEF of their containing function.

Here is an example of the use of a function spec that is not a symbol

(defun (:property foo bar-maker) (thing &optlonal kind)
(set-the ’bar thing (make-bar *foo thing kmd)))

This puts a function on foo’s bar-maker property. Now you can say:
(funcall (get ’foo ’bar-maker) ’baz)

Unlike the other kinds of function spec, a symbol can be used as a function. If you
apply a symbol to arguments, the symbol’s function definition is ‘used instead. If the
definition of the first symbol is another symbol, the definition of the second symbol
is used, and so on, any number of times. But this is an exception; in general, you
cannot apply function specs to: arguments.

A keyword symbol that identifies function specs (may appear in the car of a hst that
is a function spec) is identified by a sys:function-spec-handler property whose
value is a function which implements the various manipulations on function specs of
that type. The interface to thls functlon is internal and not documented in this
manual.

For compatibility with Maclisp, the function-deﬁning special forms defun, macro,
and defselect (and other defining forms built out of them, such as defunp and
defmacro) will also accept a list:

(symbol property)
as a function name. This is translated into:
(:property symbol property)

symbol must not be one of the keyword symbols which 1dent1ﬁes a function spec,
since that would be ambiguous.

13 Si'rhple Function Definitions

defun - o ‘ Special Form |
defun is the usual way of deﬁmng a functxon that is part of a program. A
defun form looks like:

(defun name lambda-list -
body...)

FUNC Functions , 5
Symbolics, Inc. February 1984 ' '

name is the function spec you wish to define as a function. The lambda-list
is a list of the names to give to the arguments of the function. Actually, it
is a little more general than that; it can contain lambda-list keywords such

as &optional and &rest. (Keywords are explained in other sections. See

the section "Functions: Evaluation”. See the section "Lambda-list
Keywords".) Additional syntactic features of defun are explained in another
~section. See the section "Function-defining Special Forms".

~ defun creates a list which looks likeil o
(named-1ambda name lambda-list body...)

and puts it in the function cell of name. name is now defined as a function
and can be called by other forms.

~ Examples:

(defun addone (x)
(1+ x))

(defun foo (a &optional (b 5) c &rest e &aux j)
(setq j (+ (addone a) b))
(cond ((not (null ¢))
(cons j e))
(t) _
addone is a function that expects a number as an argument, and returns a
number one larger. foo is a complicated function that takes one required
argument, two optional arguments, and any number of additional arguments
that are ngen to the function as a list named e. : '

A declaration (a list starting with declare) can appear as the first element of
the body. It is equivalent to a local-declare surrounding the entire defun
form. For example:

(defun foo (x)
(declare (special x)) ‘
(bar)) _ ;bar uses x free.

is equivalent to and preferable to:

(local- declare ((5pec1al x))
(defun foo (x) .
(bar)))

(It is preferable because the editor expects the open parenthesns of a top-level
function definition to be the first character on a line, which isn’t possible in
the second form without incorrect indentation.)

A documentation string can also appear as the first element of the body

(following the declaration, if there is one). (It shouldn’t be the only thing in
the body; otherwise it is the value returned by the function and so is not
interpreted as documentation. A string as an element of a body other than

6 : o , | . _FUNC Functions
| "t symbolics, Inc. - February 1984

the last element is only evaluated for sidel effect, and since evaluation of
strings has no side effects, they are not useful-in this position to do any :
computation, so they are interpreted as d entation.) | This documentation
string becomes part of the function’s debqgglng info and can be obtained ‘
with the function documentation. The first line of the string should be a
complete sentence that makes sense read by itself, since there are two editor
commands to get at the documentatlon one of whlch is "brief" and prints.
only the first line. Example: - .

(defun my-append (&rest llsts)
"Like append but copies all the lists.
This is Tike the Lisp: function append except that
append copies all lists except the last, whereas
“this function copies all of its arguments -
lnclud1ng the last one.”
ees)

defunp ' ' Macro
_ Usually when a function uses prog, the prog form is the entire body of the
function; the definition of such a function looks like :
(defun name arglist (prog varlist ...)). Although the use of prog is
generally discouraged, prog fans may want to_use this special form. For
convenience, the defunp macro can be used to produce such definitions. A
defunp form such as:

(defunp fctn (args)
form1
form2

oram
expands into:
(defun fctn (args)
(prog ()

" forml
formZ

(return formn)))

~ You can think of defunp as being like defun except that you can return
_out of the mxddle of the function’s body

See the section Functnon-deﬁmng Speclal Forms" Infor,métion on deﬁning
functions, and other ways of doing so, are discussed in that section.

_FUNC Fynclions : : 7
Symbolics, Inc. . February 1984 ‘ ‘ ‘

14 Operations the User Can Perform on Functions

Here is a list of the various things a user (as opposed to a program) is likely to want -
to.do to a function. In all cases, you specify a function spec to say where to find
the function

To print out. the’ definition of the function spec with indentation to make it legible,
use grindef. This works only for interpreted functions. If the definition is a
compiled function, it cannot be printed out as Lxsp code, but its complled code can be
printed by the disassemble function.

To find out about how to call the function, you can ask to see its documentation, or
its argument names. (The argument names are usually chosen to have mnemonic
significance for the caller). Use arglist to see the argument names and
documentation to see the documentation string. There are also editor commands
for doing these things: the c-sh~-D and m-sh~-D commands are for looking at a
function’s documentation, and c-sh-R is for looking at an argument list. c-sh-A
does not ask for the function name; it acts on the function that is called by the
innermost expression that the cursor is inside. Usually this is the function that will
be called by the form you are in the process of writing.

You can see the function’s debugging info alist by means of the function
debugging-info.

When you are debugging, you can use trace to obtain a printout or a break loop
whenever the function is called. You can customize the definition of the function,
either temporarily or permanently, using advise.

1.5 Kinds of Functions

There are many kinds of functions in Zetalisp. This section briefly describes each
kind of function. Note that a function is also a piece of data and can be passed as
an argument, returned, put in a list, and 80 forth.

Before we start classifying the functions, we will first discuss something about how
the evaluator works. When the evaluator is given a list whose first element is a
symbol, the form may be a function form, a special form; or a macro form. If the
definition of the symbol is a function, then the function is just applied to the result
of evaluating the rest of the subforms. If the definition is a cons whose car is
macro, then it is & macro form. See the document Macros. What about special
forms?

~ Conceptually, the evaluator knows specially about all special forms (hence their
name). However, the Zetalisp implementation actually uses the definition of symbols
that name special forms as places to hold pieces of the evaluator. The definitions of
such symbols as prog, do, and, and or actually hold Lisp objects, which we will call

8 : o FUNC Functions
. Symbolics, Inc. February 1984

special functions. Each of these functions is the part of the Lisp interpreter that
knows how to deal with that special form. Normally you do not have to know about
this; it is just part of how the evaluator works. However, if you try to add
encapsulations to and or something like that, knowing this will help you understand
the behavior you will get.

Special functions are written like regular functions except that the keywords "e
" and &eval are used to make some of the arguments be "quoted” arguments. See
the section "Lambda-list Keywords". The evaluator looks at the pattern in which
arguments to the special function are "quoted" or not, and it calls the special
function in a special way: for each regular argument, it passes the result of :
evaluating the corresponding subform, but for each "quoted" argument, it passes the
subform itself without evaluating it first. For example, cond works by having a
special function that takes a "quoted" &rest argument; when thls function is called
it is passed a list of cond clauses as its argument.

If you apply or funcall a special function yourself, you have to understand what
the special form is going to do with its arguments; it is likely to call eval on parts of
them. This is different from applying a regular function, which is passed argument

* values rather than Lisp expressions.

_ Defining your own special form, by using "e yourself, can be done; it is a way
to extend the Lisp language. Macros are another way of extending the Lisp
language. It is preferable to implement language extensions as macros rather than
special forms, because macros directly define a Lisp-to-Lisp translation and therefore
can be understood by both the interpreter and the compiler. Special forms, on the
other hand, only extend the interpreter. The compiler has to be modified to
understand each new special form so that code using it can be compiled. Since all
real programs are eventually compiled, writing your own special functions is strongly
discouraged.

(In fact, many of the special forms in Zetalisp are actually implemented as macros,
rather than as special functions. They are implemented this way because it is easier
to write a macro than to write both a new special function and a new ad hoc
module in the compiler. However, they are sometimes documented in this set as
special forms, rather than macros, because you should not in any way depend on the
way they are implemented; they might get changed in the future to be special
functions, if there was some reason to do so.)

There are four kinds of functions, classified by how they work.

First, there are interpreted functions: you define them with defmi, they are-
represented as list structure, and they are interpreted by the Lisp evaluator.

Secondly, there are compiled functions: they are defined by compile or by loading a
bin file, they are represented by a special Lisp data type, and they are executed
directly by the microcode. Similar to compiled functions are microcode functions,
which are written in microcode (either by hand or by the micro-compiler) and
executed directly by the hardware. '

FUNC Functions 9
Symbolics, Inc. February 1984

Thirdly, there are various types of Lisp object which can be applied to arguments,
but when they are applied they dig up another function somewhere and apply it
instead. These include dtp-select-method, closures, instances, and entities.

Finally, there are various types of Lisp object which, when used as functions, do
something special related to the specific data type. These include arrays and stack

groups.

1.5.1 Interpreted Functions

An interpreted function is a piece of list structure that represents a program
according to the rules of the Lisp interpreter. Unlike other kinds of functions, an
interpreted function can be printed out and read back in (it has a printed
representation that the reader understands), and it can be pretty-printed. See the
section "Formatting Lisp Code". It can also be opened up and examined with the
usual functions for list-structure manipulation.

There are four kinds of interpreted functions: lambdas, named-lambdas, substs,
and named-substs. A lambda function is the simplest kind. It is a list that looks
like this:

(1ambda lambda-list forml form2...)

The symbol lambda identifies this list as a lambda function. lambda-list is a
description of what arguments the function takes. See the section "Functions:
Evaluation". The forms make up the body of the function. When the function is
called, the argument variables are bound to the values of the arguments as described
by lambda-list, and then the forms in the body are evaluated, one by one. The
value of the function is the value of its last form.

A named-lambda is like a lambda but contains an extra element in which the
system remembers the function’s name, documentation, and other information.
Having the function’s name there allows the Debugger and other tools to give the”
user more information. This is the kind of function that defun creates. A
named-lambda function looks like this:

(named-lambda name lambda-list body forms...)

If the name slot contains a symbol, it is the function’s name. Otherwise it is a list
whose car is the name and whose cdr is the function’s debugging information alist.
See debugging-info. Note that the name need not be a symbol; it can be any
function spec. For example:

(defun (foo bar) (x)
(car (reverse Xx)))

will give foo a bar property whose value is:
(named-lambda ((:property foo bar)) (x) (car (reverse x)))

A subst is just like a lambda as far as the interpreter is concerned. It is a list
that looks like this:

10 FUNC' Functions
Symbolics, Inc. February 1984

(subst lambda-list forml form2...)

The difference between a subst and a lambda is the way they are handled by the
compiler. A call to a normal function is compiled as a closed subroutine; the compiler
generates code to compute the values of the arguments and then apply the function
to those values. A call to a subst is compiled as an open subroutine; the compiler
incorporates the body forms of the subst into the function being compiled,
substituting the argument forms for references to the variables in the subst’s
lambda-list. This is a simple but useful facility for open or in-line coded functions.
It is simple because the argument forms can be evaluated multiple times or out of
order, and so the semantics of a subst may not be the same in the interpreter and
the compiler. substs are described more fully in the section that explains defsubst.
See the section "Substitutable Functions".

A named-subst is the same as a subst except that it has a name just as a
named-lambda does. It looks like:

(named-subst name lambda-list forml form2 ...)
where name is interpreted the same way as in a named-lambda.

1.5.2 Compiled Functions

There are two kinds of compiled functions: macrocoded functions and microcoded
functions. The Lisp compiler converts lambda and named-lambda functions into
macrocoded functions. A macrocoded function’s printed representation looks like:

#<dtp-fef-pointer append 1424771>

This type of Lisp object is also called a "Function Entry Frame", or "FEF" for short.
Like "car" and "cdr", the name is historical in origin and does not really mean
anything. The object contains Lisp Machine machine code that does the
computation expressed by the function; it also contains a description of the
arguments accepted, any constants required, the name, documentation, and other
things. Unlike Maclisp "subr-objects”, macrocoded functions are full-fledged objects
and can be passed as arguments, stored in data structure, and applied to arguments.

The printed representation of a microcoded function looks like:
#<dtp-u-entry last 270>

Most microcompiled functions are basic Lisp primitives or subprimitives written in
Lisp Machine microcode. You can also convert your own macrocode functions into
microcode functions in some circumstances, using the microcompiler.

The compiler now records, as part of its debugging-info property, which top-level
macros were expanded in the process of compiling it. This information is used by
who-calls and similar functions. Thus you can now use who-calls for macros.
who-calls can also find callers of open-coded functions, such as substitutable
functions. Functions compiled in earlier versions of the system have not recorded
this information; hence who-calls will not be able to find them until those sources
have been recompiled.

FUNC Functions n
Symboalics, Inc. February 1984

1.5.3 Other Kinds of Functions

A closure is a kind of function that contains another function and a set of special
variable bindings. When the closure is applied, it puts the bindings into effect and
then applies the other function. When that returns, the closure bindings are
removed. Closures are made with the function closure. See the section "Closures".
Entities are slightly different from closures. See the section "Entities: Closures".

A select-method (dtp-select-method) is an alist of symbols and functions. When
one is called the first argument is looked up in the alist to find the particular
function to be called. This function is applied to the rest of the arguments. The
alist may have a list of symbols in place of a symbol, in which case the associated
function is called if the first argument is any of the symbols on the list. If cdr of
last of the alist is not nil, it is a default handler function, which gets called if the
message key is not found in the alist. Select-methods can be created with the
defselect special form.

An instance is a message-receiving object which has some state and a table of
message-handling functions (called methods). See the document Objects, Message
Passing, and Flavors.

An array can be used as a function. The arguments to the array are the indices
and the value is the contents of the element of the array. This works this way for
Maclisp compatibility and is not recommended usage. Use aref instead.

A stack group can be called as a function. This is one way to pass control to
another stack group. See the section "Stack Groups: Internals".

1.6 Function-defining Special Forms

defun is a special form that is put in a program to define a function. defsubst and
macro are others. This section explains how these special forms work, how they
relate to the different kinds of functions, and how they connect to the rest of the
function-manipulation system.

Function-defining special forms typically take as arguments a function spec and a
description of the function to be made, usually in the form of a list of argument
names and some forms which constitute the body of the function. They construct a
function, give it the function spec as its name, and define the function spec to be
the new function. Different special forms make different kinds of functions. defun
makes a named-lambda function, and defsubst makes a named-subst function.
macro makes a macro; though the macro definition is not really a function, it is like
a function as far as definition handling is concerned.

These special forms are used in writing programs because the function names and
bodies are constants. Programs that define functions usually want to compute the
functions and their names, so they use fdefine.

12 FUNGC Functions
Symbolics, Inc. February 1984

All of these function-defining special forms alter only the basic definition of the
function spec. Encapsulations are preserved. See the section "Encapsulations”.

The special forms only create interpreted functions. There is no special way of
defining a compiled function. Compiled functions are made by compiling interpreted
ones. The same special form which defines the interpreted function, when processed
by the compiler, yields the compiled function. See the document The Compiler.

Note that the editor understands these and other "defining" special forms (for
example, defmethod, defvar, defmacro, and defstruct) to some extent, so that
when you ask for the definition of something, the editor can find it in its source file
and show it to you. The general convention is that anything which is used at top
level (not inside a function) and starts with def should be a special form for defining
things and should be understood by the editor. defprop is an exception.

The defun special form (and the defunp macro that expands into a defun) are
used for creating ordinary interpreted functions. See the section "Simple Function
Definitions".

For Maclisp compatibility, a ¢ype symbol may be inserted between name and
lambda-list in the defun form. The following types are understood:

expr The same as no type.
fexpr "e and &rest are prefixed to the lambda list.
macro A macro is defined instead of a normal function.

If lambda-list is a non-nil symbol instead of a list, the function is recognized as a
Maclisp lexpr and it is converted in such a way that the arg, setarg, and listify
functions can be used to access its arguments.

The defsubst special form is used to create substitutable functions. It is used just
like defun but produces a list starting with named-subst instead of one starting
with named-lambda. The named-subst function acts just like the corresponding
named-lambda function when applied, but it can also be open-coded (incorporated
into its callers) by the compiler. See the section "Substitutable Functions".

The macro special form is the primitive means of creating a macro. It gives a
function spec a definition which is a macro definition rather than a actual function.
A macro is not a function because it cannot be applied, but it can appear as the car
of a form to be evaluated. Most macros are created with the more powerful
defmacro special form. See the document Macros.

The defselect special form defines a select-method function.

Unlike the above special forms, the next two (deff and def) do not create new
functions. They simply serve as hints to the editor that a function is being stored
into a function spec here, and therefore if someone asks for the source code of the
definition of that function spec, this is the place to look for it.

FUNC Functions 13

Symbolics, Inc. February 1984

def

Specic! Form
If a function is created in some strange way, wrapping a def special form
around the code that creates it informs the editor of the connection. The
form:
(def function-spec
forml form2...)
simply evaluates the forms forml, form2, and so on. It is assumed that these
forms will create or obtain a function somehow, and make it the definition of
function-spec.

Alternatively, you could put (def function-spec) in front of or anywhere near
the forms which define the function. The editor only uses it to tell which
line to put the cursor on.

deff function-spec definition-creator Special Form

deff is a simplified version of def. It evaluates the form definition-creator,
which should produce a function, and makes that function the definition of
function-spec, which is not evaluated. deff is used for giving a function spec
a definition that is not obtainable with the specific defining forms such as
defun and macro. For example:

(deff foo ’bar)

will make foo equivalent to bar, with an indirection so that if bar changes,
foo will likewise change;

(deff foo (function bar))

copies the definition of bar into foo with no indirection, so that further
changes to bar will have no effect on foo.

@define Macro

This macro turns into nil, doing nothing. It exists for the sake of the
@ listing generation program, which uses it to declare names of special forms
which define objects (such as functions) that @ should cross-reference.

defselect Special Form

defselect defines a function that is a select-method. This function contains
a table of subfunctions; when it is called, the first argument, a symbol on the
keyword package called the message name, is looked up in the table to
determine which subfunction to call. Each subfunction can take a different
number of arguments, and have a different pattern of &optional and &rest
arguments. defselect is useful for a variety of "dispatching” jobs. By

~ analogy with the more general message passing facilities described in the
Objects, Message Passing, and Flavors document, the subfunctions are

- sometimes called methods and the first argument is sometimes called a

| message.

14

FUNC Functions

Symbolics, inc. February 1984

The special form looks like:

(defselect (function-spec default-handler no-which-operations)
(message-name (args...)
body...)
(message-name (args...)
body...)
ees)

function-spec is the name of the function to be defined. default-handler is
optional; it must be a symbol and is a function that gets called if the select-
method is called with an unknown message. If default-handler is unsupplied
or nil, then an error occurs if an unknown message is sent. If
no-which-operations is non-nil, the :which-operations method that would
normally be supplied automatically is suppressed. The :which-operations
method takes no arguments and returns a list of all the message names in
the defselect.

The :operation-handled-p and :send-if-handles methods are automatically
supplied. See the message :operation-handled-p. See the message
:send-if-handles.

If function-spec is a symbol, and default-handler and no-which-operations are
not supplied, then the first subform of the defselect may be just
function-spec by itself, not enclosed in a list.

The remaining subforms in a defselect define methods. message-name is
the message name, or a list of several message names if several messages are
to be handled by the same subfunction. args is a lambda-list; it should not
include the first argument, which is the message name. body is the body of
the function.

A method subform can instead look like:
{message-name . symbol)

In this case, symbol is the name of a function that is to be called when the
message-name message is received. It will be called with the same arguments
as the select-method, including the message symbol itself.

1.7 Lambda-list Keywords

This section documents all the keywords that may appear in the lambda-list
(argument list) of a function, a macro, or a special form. See the section "Functions:
Evaluation". Some of them are allowed everywhere, while others are only allowed in
one of these contexts; those are so indicated.

FUNC Functions

15

Symbolics, Inc. February 1984

lambda-list-keywords

Variable

The value of this variable is a list of all of the allowed "&" keywords. Some
of these are obsolete and do not do anything; the remaining ones are listed

below.

&optional

&rest

&Kkey

Separates the required arguments of a function from the
optional arguments. See the section "Functions:
Evaluation”.

Separates the required and optional arguments of a

~ function from the rest argument. There may be only one

rest argument. See the section "Functions: Evaluation".
That section contains full information about rest
arguments.

Separates the positional arguments and rest argument of a
function from the keyword arguments. See the section
"Functions: Evaluation".

&allow-other-keys

&aux

&special
&local

&functional

"e

In a function that accepts keyword arguments, says that
keywords that are not recognized are allowed. They and
the corresponding values are ignored, as far as keyword
arguments are concerned, but they do become part of the
rest argument, if there is one.

Separates the arguments of a function from the auxiliary
variables. Following &aux you can put entries of the
form:

(variable initial-value-form)

or just variable if you want it initialized to nil or do not
care what the initial value is.

Declares the following arguments and/or auxiliary variables
to be special within the scope of this function.

Turns off a preceding &special for the variables that
follow.

Preceding an argument, tells the compiler that the value of
this argument will be a function. When a caller of this
function is compiled, if it passes a quoted constant
argument that looks like a function (a list beginning with
the symbol lambda) the compiler will know that it is
intended to be a function rather than a list that happens
to start with that symbol, and will compile it.

Declares that the following arguments are not to be
evaluated. This is how you create a special function. The
caveats about special forms are in another section. See the
section "Kinds of Functions".

16

FUNC Functions

Symbolics, Inc. February 1984

&eval Turns off a preceding "e for the arguments which
follow.
&list-of This is for macros defined by defmacro only. See the

section "Advanced Features of defmacro"”.

&body This is for macros defined by defmacro only. It is similar
to &rest, but declares to grindef and the code-formatting
module of the editor that the body forms of a special form
follow and should be indented accordingly. See the section
"Advanced Features of defmacro”.

1.8 How Programs Manipulate Definitions

fdefine function-spec definition &optional (carefully nil) (no-query Function

nil)
This is the primitive that defun and everything else in the system use to
change the definition of a function spec. If carefully is non-nil, which it
usually should be, then only the basic definition is changed, the previous basic
definition is saved if possible (see undefun), and any encapsulations of the
function such as tracing and advice are carried over from the old definition to
the new definition. carefully also causes the user to be queried if the
function spec is being redefined by a file different from the one that defined
it originally. However, this warnings is suppressed if either the argument
no-query is non-nil, or if the global variable inhibit-fdefine-warnings is t.

If fdefine is called while a file is being loaded, it records what file the
function definition came from so that the editor can find the source code.

If function-spec was already defined as a function, and carefully is non-nil,
the function-spec’s :previous-definition property is used to save the
previous definition. If the previous definition is an interpreted function, it is
also saved on the :previous-expr-definition property. These properties are
used by the undefun function, which restores the previous definition, and
the uncompile function, which restores the previous interpreted definition.
The properties for different kinds of function specs are stored in different
places; when a function spec is a symbol its properties are stored on the
symbol’s property list.

defun and the other function-defining special forms all supply t for carefully
and nil or nothing for no-query. Operations that construct encapsulations,
such as trace, are the only ones that use nil for carefully.

inhibit-fdefine-warnings Variable

This variable is normally nil. Setting it to t prevents fdefine from warning
you and asking about questionable function definitions such as a function

FUNC Functions 17
Symbolics, Inc. February 1984

being redefined by a different file than defined it originally, or a symbol that
belongs to one package being defined by a file that belongs to a different
package. Setting it to :just-warn allows the warnings to be printed out, but
prevents the queries from happening; it assumes that your answer is "yes",
that is, that it is all right to redefine the function.

record-source-file-name function-spec &optional (type ’defun) Function
no-query
record-source-file-name associates the definition of a function with its
source files, so that tools such as Edit Definition (m-.) can find the source file
of a function. It also detects when two different files both try to define the
same function, and warns the user.

record-source-file-name is called automatically by defun, defmacro,
defstruct, defflavor, and other such defining special forms. Normally you
do not invoke it explicitly. If you have your own defining macro, however,
that does not expand into one of the above, then you can make its expansion
include a record-source-file-name form.

function-spec The function spec for the entity being defined.

type The type of entity being defined, with defun as the
default. type can be any symbol, typically the name of the
corresponding special form for defining the entity. Some
standard examples:

defun
defvar
defflavor
defstruct

Both macros and substs are subsumed under the type
defun, because you cannot have a function named x in one
file and a macro named x in another file.

no-query Controls queries about redefinitions. t means to suppress
queries about redefining. The default value of no-query
depends on the value of inhibit-fdefine-warnings. When
inhibit-fdefine-warnings is t, no-query is t; otherwise it
is nil. Regardless of the value for no-query, queries are
suppressed when the definition is happening in a patch
file.

You cannot specify the source file name with this function. The function is
always associated with the pathname for the file being loaded
(fdefine-file-pathname).

When redefining functions, some users try to avoid redefinition warnings and
queries by using the form (remprop symbol ’:source-file-name). The

18

FUNC Functions

Symbolics, inc. February 1984

preferred way to do this is to use the form

(record-source-file-name function-spec *defun t). The former method
causes the system to forget both the original definition and other definitions
for the same symbol (as a variable, flavor, structure, and so forth).
record-source-file-name lets the system know that the function is defined
in two places, and it avoids redefinition warnings and queries.

Of course, if you are redefining something other than a function, use the
appropriate definition type symbol instead of defun as the second argument
to record-source-file-name. For example, if you are redefining a flavor, use
defflavor as the second argument.

sys:fdefine-file-pathname Variable

While loading a file, this is the generic-pathname for the file. The rest of
the time it is nil. fdefine uses this to remember what file defines each
function.

sys:function-parent function-spec Function

When a symbol’s definition is produced as the result of macro expansion of a
source definition, so that the symbol’s definition does not appear textually in
the source, the editor cannot find it. The accessor, constructor, and alterant
macros produced by a defstruct are an example of this. The
sys:function-parent declaration can be inserted in the source definition to
record the name of the outer definition of which it is a part.

The declaration consists of the following:
(sys:function-parent name type)

name is the name of the outer definition. Zype is its type, which defaults to
defun. (This is the same type as in record-source-file-name; it is usually
the name of the defining special form.)

You can define the type of an entity being defined:

(defprop feature "Feature" si:definition-type-name)
(defprop defun "Function” si:definition-type-name)

sys:function-parent is a function related to the declaration. It takes a
function spec and returns nil or another function spec. The first function
spec’s definition is contained inside the second function spec’s definition. The
second value is the type of definition.

Two examples:

FUNC Functions 19
Symbolics, Inc. February 1984

(defsubst foo (x y)
(declare (sys:function-parent bar))

o)

(defmacro defxxx (name ...)
‘(local-declare ((sys:function-parent ,name defxxx))
(defmacro ...)
(defmacro ...)
))

Using the sys:function-parent declaration

A definition is a Lisp expression that appears in a source program file and has a
name by which a user would like to refer to it. Definitions come in a variety of
types. The main point of definition types is that two definitions with the same
name and different types can exist simultaneously, but two definitions with the same
name and the same type redefine each other when evaluated. Some examples of
definition type symbols and special forms that define such definitions are:

Type symbol Type name in English Special form names

defun function defun, defmacro, defmethod
defvar variable defvar, defconst, defconstant
defflavor flavor defflavor

defstruct structure defstruct

Things to note: More than one special form can define a given kind of definition.
The name of the most representative special form is typically chosen as the type
symbol. This symbol typically has a si:definition-type-name property of a string
that acts as a prettier form of the name for people to read.
record-source-file-name and related functions take a name and a type symbol as
arguments. The editor understands certain definition-making special forms, and
knows how to parse them to get out the name and the type. This mechanism has
not yet been made user-extensible. Currently the editor assumes that any top-level
form it does not know about that starts with "(def" must be defining a function (a
definition of type defun) and assumes that the cadr of that form is the name of the
function. Heuristics appropriate for defun are applied to this name if it is a list. In
general, a definition whose name is not a symbol and whose type is not defun does
not work properly. This will be fixed in a future release.

The declaration sys:function-parent is of interest to users. The function with the
same name is probably not of interest to users; it is part of the mechanism by which
the Zmacs command Edit Definition (m-.) figures out what file to look in.

Example:

We have functions called "frobulators” that are stored on the property list of symbols
and require some special bindings wrapped around their bodies. Frobulator
definitions are not considered function definitions, because the name of the

20 FUNC Functions
Symbolics, Inc. February 1984

frobulator does not become defined as a Lisp function. Indeed, we could have a
frobulator named list and Lisp’s list function would continue to work. Instead we
make a new definition type.

(defmacro define-frobulator (name arg-list &body body)
*(progn ’compile

(add-to-list-of-known-frobulators ’,name)

(record-source-file-name ’,name ’define-frobulator)

(defun (:property ,name frobulator) (self ,earg-list)
(declare (sys:function-parent ,name define-frobulator))
(let (,(make-frobulator-bindings name arg-list))

»@body))))

(defprop define-frobulator “Frobulator” si:definition-type-name)

Here we would tell the editor how to parse define-frobulator if its parser were
user-extensible. Because it is not, we rely on its heuristics to make m-. work
adequately for frobulators.

Next we define a frobulator. This is not an interesting definition, for we do not
actually know what the word "frobulate"” means. We could always recast this
example as a symbolic differentiator: We would define the + frobulator to return a
list of + and the frobulations of the arguments, the * frobulator to return sums of
products of factors and derivatives of factors, and so forth.

(define-frobulator list ()
(frobulate-any-number-of-args self))

In define-frobulator, we call record-source-file-name so that when a file
containing frobulator definitions is loaded, we will know what file those definitions
came from. Inside the function that is generated, we include a function-parent
declaration because no definition of that function is apparent in any source file. The
system will take care of doing

(record-source-file-name ’(:property list frobulator) ’defun), as it always does
when a function definition is loaded. Suppose an error occurs in a frobulator
function — in the list example above, we might try to call
frobulate-any-number-of-args, which is not defined — and we use the Debugger
c-E command to edit the source. This will be trying to edit

(:property list frobulator), the function in which we were executing. The
definition that defines this function does not have that name; rather, it is named
list and has type define-frobulator. The sys:function-parent declaration enables
the editor to know that fact.

If your definition-making special form and your definition type symbol do not have
the same name, you should define the special form’s zwei:definition-function-spec
property to be the definition type symbol. This helps the editor parse such special
forms.

For another example, more complicated but real, use mexp or the Zmacs command
Macro Expand Expression (e-sh-M) to look at the macro expansion of:

FUNC Functions bil
Symbolics, Inc. February 1984

(defstruct (foc :conc-name) one two)

The macro sys:defsubst-with-parent that it calls is just defsubst with a
sys:function-parent declaration inside. It exists only because of a bug in an old
implementation of defsubst that made doing it the straightforward way not work.

fset-carefully symbol definition &optional force-flag Function
This function is obsolete. It is equivalent to:

(fdefine symbol definition t force-flag)

fdefinedp function-spec Function
This returns t if function-spec has a definition, or nil if it does not.

fdefinition function-spec Function
This returns function-spec’s definition. If it has none, an error occurs.

sys:fdefinition-location function-spec Function
This returns a locative pointing at the cell that contains function-spec’s
definition. For some kinds of function specs, though not for symbols, this
can cause data structure to be created to hold a definition. For example, if
function-spec is of the :property kind, then an entry may have to be added
to the property list if it isn’t already there. In practice, you should write
(locf (fdefinition function-spec)) instead of calling this function explicitly.

fundefine function-spec Function
Removes the definition of function-spec. For symbols this is equivalent to
fmakunbound. If the function is encapsulated, fundefine removes both
the basic definition and the encapsulations. Some types of function specs
(:location for example) do not implement fundefine. fundefine on a
:within function spec removes the replacement of function-to-affect, putting
the definition of within-function back to its normal state. fundefine on a
:method function spec removes the method completely, so that future
messages will be handled by some other method. See the document Objects,
Message Passing, and Flavors.

si:function-spec-get function-spec indicator Function
Returns the value of the indicator property of function-spec, or nil if it
doesn’t have such a property. '

si:function-spec-putprop function-spec value indicator Function
Gives function-spec an indicator property whose value is value.

undefun function-spec ' Function
If function-spec has a saved previous basic definition, this interchanges the
current and previous basic definitions, leaving the encapsulations alone. This
undoes the effect of a defun, compile, and so on. (See the function
uncompile.)

22 FUNC Functions
Symbolics, Inc. February 1984

1.9 How Programs Examine Functions

These functions take a function as argument and return information about that
function. Some also accept a function spec and operate on its definition. The others
do not accept function specs in general but do accept a symbol as standing for its
definition. (Note that a symbol is a function as well as a function spec).

documentation function Function
Given a function or a function spec, this finds its documentation string,
which is stored in various different places depending on the kind of function.
If there is no documentation, mnil is returned.

debugging-info function Function
This returns the debugging info alist of function, or nil if it has none.

arglist function &optional real-flag Function
arglist is given a function or a function spec, and returns its best guess at
the nature of the function’s lambda-list. It can also return a second value
which is a list of descriptive names for the values returned by the function.

If function is a symbol, arglist of its function definition is used.

If the function is an actual lambda-expression, its cadr, the lambda-list, is
returned. But if function is compiled, arglist attempts to reconstruct the
lambda-list of the original definition, using whatever debugging information
was saved by the compiler. Sometimes the actual names of the bound
variables are not available, and arglist uses the symbol si:*unknown®* for
these. Also, sometimes the initialization of an optional parameter is too
complicated for arglist to reconstruct; for these it returns the symbol
si:*hairy*.

Some functions’ real argument lists are not what would be most descriptive
to a user. A function may take a &rest argument for technical reasons even
though there are standard meanings for the first element of that argument.
For such cases, the definition of the function can specify, with a local
declaration, a value to be returned when the user asks about the argument
list. Example:

(defun foo (&rest rest-arg)
(declare (arglist x y &rest z))

real-flag allows the caller of arglist to say that the real argument list should
be used even if a declared argument list exists. Note that while normally
declares are only for the compiler’s benefit, this kind of declare affects all
functions, including interpreted functions.

arglist cannot be relied upon to return the exactly correct answer, since

FUNC Functions 23
Symbolics, Inc. February 1984

some of the information may have been lost. Programs interested in how -
many and what kind of arguments there are should use args-info instead.
In general arglist is to be used for documentation purposes, not for
reconstructing the original source code of the function.

When a function returns multiple values, it is useful to give the values names
so that the caller can be reminded which value is which. By means of a
return-list declaration in the function’s definition, entirely analogous to the
arglist declaration above, you can specify a list of mnemonic names for-the
returned values. This list will be returned by arglist as the second value.
(arglist ’arglist)
=> (function &optional real-flag) and (arglist return-list)

args-info function Function
args-info returns a fixnum called the "numeric argument descriptor” of the
function, which describes the way the function takes arguments. This
descriptor is used internally by the microcode, the evaluator, and the
compiler. function can be a function or a function spec.

The information is stored in various bits and byte fields in the fixnum, which
are referenced by the symbolic names shown below. By the usual Lisp
Machine convention, those starting with a single "%" are bit-masks (meant to
be loganded or bit-tested with the number), and those starting with "%%"
are byte descriptors (meant to be used with ldb or 1db-test).

Here are the fields:

%%arg-desc-min-args
This is the minimum number of arguments that may be passed to
this function, that is, the number of "required" parameters.

%%arg-desc-max-args
This is the maximum number of arguments that may be passed to
this function, that is, the sum of the number of "required"
parameters and the number of "optional" parameters. If there is a
rest argument, this is not really the maximum number of arguments
that may be passed; an arbitrarily large number of arguments is
permitted, subject to limitations on the maximum size of a stack
frame (about 200 words).

%arg-desc-evaled-rest
If this bit is set, the function has a "rest" argument, and it is not
"quoted".

%arg-desc-quoted-rest
If this bit is set, the function has a "rest" argument, and it is
"quoted". Most special forms have this bit.

%arg-desc-fef-quote-hair

24 FUNC Functions
Symbolics, inc. February 1984

If this bit is set, there are some quoted arguments other than the
"rest" argument (if any), and the pattern of quoting is too complicated
to describe here. The ADL (Argument Description List) in the FEF
should be consulted. This is only for special forms.

%arg-desc-interpreted
This function is not a compiled-code object, and a numeric argument
descriptor cannot be computed. Usually args-info will not return this
bit, although %args-info will.

%arg-desc-fef-bind-hair
There is argument initialization, or something else too complicated to
describe here. The ADL (Argument Description List) in the FEF
should be consulted.

Note that %arg-desc-quoted-rest and %arg-desc-evaled-rest cannot both
be set.

%args-info function Function
This is an internal function; it is like args-info but does not work for
interpreted functions. Also, function must be a function, not a function spec.
It exists because it has to be in the microcode anyway, for apply and the
basic function-calling mechanism.

1.10 Encapsulations

The definition of a function spec actually has two parts: the basic definition, and
encapsulations. The basic definition is what functions like defun create, and
encapsulations are additions made by trace or advise to the basic definition. The
purpose of making the encapsulation a separate object is to keep track of what was
made by defun and what was made by trace. If defun is done a second time, it
replaces the old basic definition with a new one while leaving the encapsulations
alone. :

Only advanced users should ever need to use encapsulations directly via the
primitives explained in this section. The most common things to do with
encapsulations are provided as higher-level, easier-to-use features: trace and advise.

The way the basic definition and the encapsulations are defined is that the actual
definition of the function spec is the outermost encapsulation; this contains the next
encapsulation, and so on. The innermost encapsulation contains the basic definition.
The way this containing is done is as follows. An encapsulation is actually a
function whose debugging info alist contains an element of the form:

(si:encapsulated-definition uninterned-symbol encapsulation-type)
The presence of such an element in the debugging info alist is how you recognize a

FUNC Functions 25
Symbolics, Inc. February 1984

function to be an encapsulation. An encapsulation is usually an interpreted function
(a list starting with named-lambda) but it can be a compiled function also, if the
application that created it wants to compile it.

uninterned-symbol’s function definition is the thing that the encapsulation contains,
usually the basic definition of the function spec. Or it can be another encapsulation,
which has in it another debugging info item containing another uninterned symbol.
Eventually you get to a function that is not an encapsulation; it does not have the
sort of debugging info item that encapsulations all have. That function is the basic
definition of the function spec.

Literally speaking, the definition of the function spec is the outermost encapsulation,
period. The basic definition is not the definition. If you are asking for the
definition of the function spec because you want to apply it, the outermost
encapsulation is exactly what you want. But the basic definition can be found
mechanically from the definition, by following the debugging info alists. So it makes
sense to think of it as a part of the definition. In regard to the function-defining
special forms such as defun, it is convenient to think of the encapsulations as
connecting between the function spec and its basic definition.

An encapsulation is created with the macro si:encapsulate.

si:encapsulate - Macro
A call to si:encapsulate looks like:

(si:encapsulate function-spec outer-function type
body-form
extra-debugging-info)
All the subforms of this macro are evaluated. In fact, the macro could
almost be replaced with an ordinary function, except for the way body-form is
handled.

function-spec evaluates to the function spec whose definition the new
encapsulation should become. outer-function is another function spec, which
should often be the same one. Its only purpose is to be used in any error
messages from si:encapsulate.

type evaluates to a symbol that identifies the purpose of the encapsulation; it
says what the application is. For example, it could be advise or trace. The
list of possible types is defined by the system because encapsulations are
supposed to be kept in an order according to their type. See the variable
si:encapsulation-standard-order. type should have an
sizencapsulation-grind-function property that tells grindef what to do
with an encapsulation of this type.

body-form is a form that evaluates to the body of the encapsulation-definition,
the code to be executed when it is called. Backquote is typically used for this
expression. See the section "Backquote". si:encapsulate is a macro

26

FUNC Functions

Symbolics, Inc. February 1984

because, while body is being evaluated, the variable
sicencapsulated-function is bound to a list of the form

(function uninterned-symbol), referring to the uninterned symbol used to
hold the prior definition of function-spec. If si:encapsulate were a function,
body-form would just get evaluated normally by the evaluator before
si:encapsulate ever got invoked, and so there would be no opportunity to
bind si:encapsulated-function. The form body-form should contain
(apply si:encapsulated-function arglist) somewhere if the encapsulation
is to live up to its name and truly serve to encapsulate the original definition.
(The variable arglist is bound by some of the code that the si:encapsulate
macro produces automatically. When the body of the encapsulation is run,
arglist’s value will be the list of the arguments that the encapsulation
received.)

extra-debugging-info evaluates to a list of extra items to put into the
debugging info alist of the encapsulation function (besides the one starting
with si:encapsulated-definition that every encapsulation must have).
Some applications find this useful for recording information about the
encapsulation for their own later use.

When a special function is encapsulated, the encapsulation is itself a special
function with the same argument quoting pattern. (Not all quoting patterns
can be handled; if a particular special form’s quoting pattern cannot be
handled, si:encapsulate signals an error.) Therefore, when the outermost
encapsulation is started, each argument has been evaluated or not as
appropriate. Because each encapsulation calls the prior definition with apply,
no further evaluation takes place, and the basic definition of the special form
also finds the arguments evaluated or not as appropriate. The basic
definition may call eval on some of these arguments or parts of them; the
encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the
definition of function-spec is a macro, then si:encapsulate automatically
encapsulates the expander function instead. In this case, the definition of
the uninterned symbol is the original macro definition, not just the original
expander function. It would not work for the encapsulation to apply the
macro definition. So during the evaluation of body-form,
si:encapsulated-function is bound to the form

(cdr (function uninterned-symbol)), which extracts the expander function
from the prior definition of the macro.

Because only the expander function is actually encapsulated, the
encapsulation does not see the evaluation or compilation of the expansion
itself. The value returned by the encapsulation is the expansion of the
macro call, not the value computed by the expansion.

It is possible for one function to have multiple encapsulations, created by different

FUNC Functions 27
Symbolics, Inc. February 1984

subsystems. In this case, the order of encapsulations is independent of the order in
which they were made. It depends instead on their types. All possible
encapsulation types have a total order and a new encapsulation is put in the right
place among the existing encapsulations according to its type and their types.

si:encapsulation-standard-order Variable
The value of this variable is a list of the allowed encapsulation types, in the
order that the encapsulations are supposed to be kept in (innermost
encapsulations first). If you want to add new kinds of encapsulations, you
should add another symbol to this list. Initially its value is:

(advise trace si:rename-within)

advise encapsulations are used to hold advice. trace encapsulations are used
for implementing tracing. si:rename-within encapsulations are used to
record the fact that function specs of the form

(:within within-function altered-function) have been defined. The
encapsulation goes on within-function. See the section "Rename-within
Encapsulations”.

Every symbol used as an encapsulation type must be on the list
si:encapsulation-standard-order. In addition, it should have an
si:encapsulation-grind-function property whose value is a function that grindef
will call to process encapsulations of that type. This function need not take care of
printing the encapsulated function, because grindef will do that itself. But it
should print any information about the encapsulation itself that the user ought to
see. Refer to the code for the grind function for advise to see how to write one.
See the special form advise.

To find the right place in the ordering to insert a new encapsulation, it is necessary
to parse existing ones. This is done with the function
si;unencapsulate-function-spec.

si:unencapsulate-function-spec function-spec &optional Function
encapsulation-types
This takes one function spec and returns another. If the original function
spec is undefined, or has only a basic definition (that is, its definition is not
an encapsulation), then the original function spec is returned unchanged.

If the definition of function-spec is an encapsulation, then its debugging info
is examined to find the uninterned symbol that holds the encapsulated
definition, and also the encapsulation type. If the encapsulation is of a type
that is to be skipped over, the uninterned symbol replaces the original
function spec and the process repeats.

The value returned is the uninterned symbol from inside the last
encapsulation skipped. This uninterned symbol is the first one that does not
have a definition that is an encapsulation that should be skipped. Or the

28

FUNC Functions

Symbolics, Inc. February 1984

value can be function-spec if function-spec’s definition is not an encapsulatxon
that should be skipped.

The types of encapsulations to be skipped over are specified by
encapsulation-types. This can be a list of the types to be skipped, or nil,
meaning skip all encapsulations (this is the default). Skipping all
encapsulations means returning the uninterned symbol that holds the basic
definition of function-spec. That is, the definition of the function spec
returned is the basic definition of the function spec supplied. Thus:

(fdefinition (si:unencapsuliate-function-spec ’foo))
returns the basic definition of foo, and
(fdefine (si:unencapsulate-function-spec ’foo) ’bar)

sets the basic definition (just like using fdefine with carefully supplied as t).

encapsulation-types can also be a symbol, which should be an encapsulation
type; then we skip all types that are supposed to come outside of the
specified type. For example, if encapsulation-types is trace, then we skip all
types of encapsulations that come outside of trace encapsulations, but we do
not skip trace encapsulations themselves. The result is a function spec that
is where the trace encapstilation ought to be, if there is one. Either the
definition of this function spec is a trace encapsulation, or there is no trace
encapsulation anywhere in the definition of function-spec, and this function
spec is where it would belong if there were one. For example:

(let ((tem (si:unencapsulate-function-spec spec ’trace)))
(and (eq tem (si:unencapsulate-function-spec tem ’(trace)))
(si:encapsulate tem spec ’trace *(...body...))))

finds the place where a trace encapsulation ought to go, and makes one
unless there is already one there.

(let ((tem (si:unencapsulate-function-spec spec trace)))
(fdefine tem (fdefinition (si:unencapsulate-function-spec
tem *(trace)))))

eliminates any trace encapsulation by replacing it by whatever it

‘encapsulates. (If there is no trace encapsulation, this code changes nothing.)

These examples show how a subsystem can insert its own type of
encapsulation in the proper sequence without knowing the names of any
other types of encapsulations. Only the si:encapsulation-standard-order
variable, which is used by si:unencapsulate-function-spec, knows the
order.

FUNC Functions 29
Symbolics, Inc. February 1984

1.101 Rename-within Encapsulations

One special kind of encapsulation is the type si:rename-within. This encapsulation
goes around a definition in which renamings of functions have been done.

How is this used?

If you define, advise, or trace (:within foo bar), then bar gets renamed to
altered-bar-within-foo wherever it is called from foo, and foo gets a
si:rename-within encapsulation to record the fact. The purpose of the
encapsulation is to enable various parts of the system to do what seems natural to
the user. For example, grindef notices the encapsulation, and so knows to print
bar instead of altered-bar-within-foo, when grinding the definition of foo.

Also, if you redefine foo, or trace or advise it, the new definition gets the same
renaming done (bar replaced by altered-bar-within-foo). To make this work,
everyone who alters part of a function definition should pass the new part of the
definition through the function si:rename-within-new-definition-maybe.

si:rename-within-new-definition-maybe function-spec Function
new-structure
Given new-structure that is going to become a part of the definition of
function-spec, perform on it the replacements described by the
si:rename-within encapsulation in the definition of function-spec, if there is
one. The altered (copied) list structure is returned.

It is not necessary to call this function yourself when you replace the basic
definition because fdefine with carefully supplied as t does it for you.
si:encapsulate does this to the body of the new encapsulation. So you only
need to call si:rename-within-new-definition-maybe yourself if you are
rplac’ing part of the definition. 7

For proper results, function-spec must be the outer-level function spec. That
is, the value returned by si:unencapsulate-function-spec is not the right

~ thing to use. It will have had one or more encapsulations stripped off,
including th