
Editing and Mail

Zmacs

Introduction

Zmacs, the Genera editor, is built on a large and powerful system of text-

manipulation functions and data structures, called Zwei.

Zwei is not an editor itself, but rather a system on which other text editors are

implemented. For example, in addition to Zmacs, the Zmail mail reading system

also uses Zwei functions to allow editing of a mail message as it is being com-

posed or after it has been received. The subsystems that are established upon Zwei

are:

• Zmacs, the editor that manipulates text in files

• Dired, the editor that manipulates directories represented as text in files

• Zmail, the editor that manipulates text in mailboxes

• Converse, the editor that manipulates text in messages�

Since these parts of the system are all based on Zwei, many of the commands

available as Zmacs commands are available in other editing contexts as well. (In

addition, many of the same editing commands are available in the Input Editor,

which you use when typing commands or forms to other programs, such as the

Lisp Listener. The Input Editor is not based on Zwei, however.)

Zmacs is used not only to create text for documents and programs, but also to

compile programs, check them for correct structure, inspect parts of programs (in-

cluding system programs), create commands, alphabetize lists, check spelling, and

perform many other functions.

Scope

Zmacs is intended as a reference for all users of Zmacs in Genera. It contains

both conceptual overview and reference material that together describe the Zmacs

editor. We assume that you have already read the Genera User’s Guide.

Organization

The first three chapters contain introductory material for users who are unfamiliar

with Zmacs concepts. Experienced users can skim the remaining chapters, which

are organized according to editing function, and use them as reference material.

"Introduction to the Zmacs Manual" gives an overview of Zmacs and describes

Zmacs documentation conventions in this manual.

"Getting Started in Zmacs" introduces basic Zmacs concepts and commands.

Page 2190

"Getting Help in Zmacs" describes ways to get out of trouble and how to get

Zmacs information during editing.

"Moving the Cursor in Zmacs" includes descriptions of both mouse and keyboard

motion commands.

"Basic Text Editing in Zmacs" explains how to edit text (for example, how to in-

sert and delete, how to search and replace, and how to use character styles). This

section also explains how to use word abbreviations for Zmacs editing commands.

"Formatting Text in Zmacs" explains how to format text using Zmacs commands

and environments.

"Working with Regions in Zmacs" tells how to manipulate blocks of text.

"Manipulating Buffers and Files in Zmacs" gives more information on manipulating

blocks of text, inserting files, keeping track of everything, and editing your direc-

tory.

"Zwei Undo Facility" explains how to selectively undo any or all of the changes

you have made in an editor buffer.

"Zmacs Speller" describes Zmacs spelling tools.

"Editing Lisp Programs in Zmacs" describes the ways in which Zmacs is tailored

for use in writing and editing programs in Lisp.

"Customizing the Zmacs Environment" describes how to fine tune your Zmacs envi-

ronment using major and minor modes to set it up, keyboard macros to perform

special editing tasks, binding keys to the commands of your choice, setting Zmacs

variables to alter your standard system defaults, and saving the customized envi-

ronment.

Zmacs Manual Notation Conventions

The word current, when describing a word, line, paragraph, page, or any Zmacs-

recognizable piece of text, refers to the text that currently contains (or immediate-

ly follows) the cursor.

The invocation of a command shows exactly what keys you must press to invoke,

or call, a command. We use the following format to describe Zmacs commands:

invocation Name

alternate invocation

alternate invocation

Formal description of command

Since each extended (m-X) command contains its name as part of its invocation, we

do not repeat the name again on that line.�

Page 2191

� Example 1 of Zmacs Notation Conventions

m-> Goto End

Moves point to the end of the buffer.

With a numeric argument n between 0 and 10, moves point to a place n/10 of the

way from the end of the buffer to the beginning.

(The m-> command goes to the end of the buffer  its name is Goto End.)

Example 2 of Zmacs Notation Conventions

Dired (m-X)

Prompts for the name of a directory to edit with Dired.

(The Dired (m-X) command is an extended command that enters the directory

editor.)

Example 3 of Zmacs Notation Conventions

m-M Back To Indentation

c-m-M

m-RETURN

c-m-RETURN

Positions point before the first nonblank character on the current line.

(Back to Indentation has several possible invocations that all move back to the

first nonblank character on the line.)

Getting Started

Organization of the Screen

Zmacs divides its window into several areas: the editor window, the echo area, and

the mode line, each of which contains its own type of information.

Zmacs Editor Window

The biggest area, the editor window, shows the text you are editing. You can edit

several different items at once with Zmacs; each item is edited in a separate edit-

ing environment called a buffer.�

Editor Window’s Buffer

Zmacs gives every buffer a name. At any time you are editing only one of them,

the selected buffer. When we speak of what some command does to "the buffer", we

are talking about the currently selected buffer. Multiple buffers in Zmacs make it

Page 2192

Figure 86. The initial Zmacs window

�

�

easy to switch among several files; the mode line tells you which one you are

editing.

Editor Window’s Cursor and Point

The small blinking rectangle, the cursor, usually appears somewhere within the

buffer, showing the position of point, the location at which editing takes place.

Although the cursor covers a single character, we consider point to be at the left

edge of the cursor, between the character the cursor is blinking on and the previ-

ous character.

Editor Window’s Typeout

When you request some other information from Zmacs (for example, if you ask for

help or a listing of a file directory), Zmacs needs room to display this type of

information. It prints this typeout in a typeout window (at the top of the editor

window), which temporarily overlays the text in the editor window, using as much

room as it needs.

Page 2193

Since the typeout is not part of the file you are editing, Zmacs delineates it from

the editor buffer by drawing a line across the window between them (if both are

present). The typeout window goes away if you type any command; if you want to

make it go away immediately but not do anything else, you can press SPACE. The

cursor, which appears at the end of the typeout, then moves back to its original

location in the buffer.

Zmacs Echo Area

A few lines at the bottom of the screen make up what is called the echo area.

Echoing means displaying the commands that you type. Zmacs commands are usu-

ally not echoed at all, but if you pause in the middle of a multicharacter command,

all the characters (including numeric arguments and prefixes) typed so far are

echoed. This is intended to prompt you for the rest of the command. The rest of

the command is echoed, too, as you type it. This behavior is designed to give

confident users optimum response, while giving hesitant users maximum feedback.�

Echo Area’s Minibuffer

Many Zmacs commands prompt you for additional information. This prompting

happens in a small window within the echo area called the minibuffer.

When Zmacs prompts you, the cursor in the main editing window stops blinking

and a blinking cursor appears in the minibuffer. Over the minibuffer, in the Zmacs

mode line, some prompting text appears, indicating what information Zmacs is

prompting you for.

When you type a response to the prompt, that response is inserted in the

minibuffer. You can edit text in the minibuffer using the same Zmacs commands

used in the main Zmacs window.

When you are done typing (and possibly editing) a response to the prompt, the

RETURN key finishes your response.

Zmacs Mode Line

The line above the echo area is known as the mode line. It is the line that usually

starts with ZMACS (Fundamental). Its purpose is to display information about the

current buffer.

The mode line consists of:

• The name of the major mode

• The name of the minor mode(s), if any

• The name of the buffer

Page 2194

• The version number of the file

• The status of the buffer

• A message telling whether the buffer contents extend above and/or below the

screen�

The mode line has this format:

ZMACS (major-mode minor-mode(s)) buffer (version) buffer-status [position-flag]�

Mode Line’s Major-mode

major-mode is always the name of the major mode you are in. At any time, Zmacs

is in one and only one of its possible major modes. The major modes available

include:

• Fundamental mode (which Zmacs starts out in)

• Text mode

• Lisp mode

• MACSYMA mode�

For full details about all the major modes, how they differ, and how to select one,

see the section "Zmacs Major Modes".

Mode Line’s Minor-mode

minor-mode is a list of the minor modes that are turned on at the moment. For

example:

Fill Auto Fill Mode

Electric Shift-lock Electric Shift Lock Mode

Abbrev Word Abbrev Mode

Overwrite Overwrite Mode�

For more information, see the section "Built-in Customization Using Zmacs Minor

Modes".

Mode Line’s Buffer

buffer is the name of the workspace that holds the text you are editing. A buffer

can be named in one of two ways:

Page 2195

• By Zmacs, with a name that corresponds to the existing file that it contains or

with its standard name for an empty buffer

• By you, with any name you like�

When a buffer contains a file, the buffer name is the pathname of that file,

rearranged with the file name first and the host and directory at the end. For a

description of pathname components, see the section "Pathnames". When a buffer

does not contain a file, the buffer name is a string.

Buffers that do not contain files are empty, newly created, or temporary buffers.

When Zmacs creates and names a buffer, that name begins and ends with an as-

terisk. When you create and name a buffer, on the other hand, its name is of your

choosing.

When you first start up and enter Zmacs, your buffer is either:

• An empty buffer called *Buffer-1*, which is the only one that exists when

Zmacs starts up

• A buffer containing an existing file, which Zmacs appropriately calls by its name�

For information on multiple buffers, see the section "Manipulating Buffers and

Files in Zmacs".

Mode Line’s Version

(version) is the version number most recently visited or saved. The mode line does

not display any version number if the file is on a file system that does not support

version numbers, such as UNIX.

Mode Line’s Buffer-status

If the mode line displays *, changes have been made in the buffer that have not

been saved in the file. If the buffer has not been changed since it was read in or

saved, the mode line does not display a asterisk.

Mode Line’s Position-flag

When the mode line displays the message [More above], your screen shows the end

of your buffer contents; when the mode line shows [More below], your screen

shows the beginning of your buffer contents. When it says [More above and below],

the buffer contents extend above and below the part that the screen displays.

When the display shows the entire buffer contents, this message does not appear

at all.

Mode Line Example

ZMACS (Text) text.text /dess/doc/books/ VAX: * [More above and below]

Page 2196

In this sample mode line, we are in Zmacs Text Mode, editing a file named

text.text, which resides in the directory /dess/doc/books on the host named VAX.

The file has been changed since we last saved it (indicated by the *), and the file

contents extend above and below the portion that Zmacs displays on the screen.

Using Zmacs Help

Zmacs has many features that provide information about Zmacs commands, exist-

ing code, buffers, and files. Two features are generally useful: the HELP key and

completion. See the section "Getting Help in Zmacs" and see the section "Using

Zmacs Commands".

Pressing the HELP key in a Zmacs editing window gives information about Zmacs

commands and variables. For descriptions of Zmacs variables, see the section "How

to Specify Zmacs Variable Settings". The kind of information it displays depends

on the key you press after HELP.

HELP ? Displays a summary of HELP options.

HELP A Displays names, key bindings, and brief descriptions of com-

mands if their names or the first lines of their help documen-

tation contain a string you specify. The A refers to m-X Apro-

pos, the command equivalent. If you enter the command with a

numeric argument, only the names of the commands are

searched for the string, and not the help documentation.

HELP C Displays the name and description of a command bound to a

key you specify.

HELP D Displays documentation for a command whose name you speci-

fy.

HELP L Displays a listing of the last 60 keys you pressed.

HELP U Offers to undo the last major Zmacs operation, such as sorting

or filling, when possible.

HELP V Displays the names and values of Zmacs variables whose names

contain a string you specify. For descriptions of Zmacs vari-

ables, see the section "How to Specify Zmacs Variable

Settings".

HELP W Displays the key binding for a command you specify. (The W

refers to where.)

HELP SPACE Repeats the last HELP command.

Entering Zmacs

You can enter, or invoke, the editor in several ways

Page 2197

• Press SELECT E.

• Select [Editor] from the System menu using the mouse.

• Use the Edit File CP command to enter Zmacs, specifying a particular file.

• Use the Select Activity command, specifying either Zmacs or Editor as its argu-

ment.

You can also enter Zmacs from a Lisp listener using the Lisp functions ed or

zwei:edit-functions.

To run multiple copies of Zmacs. Press SELECT c-E to create a new editor process.

Cycle from one editor process to the next by repeatedly pressing SELECT E. �

� Entering Zmacs with SELECT E

You can invoke the editor by pressing the SELECT key and then the letter E.

• If you have already been in the editor since booting the machine, Zmacs returns

you to the same place in the same buffer that you last used.

• If this is the first time you are entering Zmacs since booting the machine,

Zmacs puts you in an empty buffer named *Buffer-1*.�

SELECT E enters or returns you to the editor from anyplace in the system, not just

when you are talking to Lisp.

You can create multiple copies of Zmacs by pressing SELECT c-E. SELECT E returns

you to the last copy of the Zmacs process you used. Repeatedly pressing SELECT E

cycles through all the copies of Zmacs.

For information on other methods of invoking Zmacs, see the section "Entering

Zmacs".

Entering Zmacs with the System Menu

You can invoke the editor using the System menu.

Summon a System menu by clicking sh-Right. Then click Left on the [Editor]

option, which puts you into a Zmacs buffer. If you are returning to the editor

Zmacs puts you back at the same place in the same buffer, and if you are entering

Zmacs for the first time it puts you in an empty buffer.

Entering Zmacs with ed

The Lisp function ed enters Zmacs from a Lisp Listener. See the function ed.

When reentering Zmacs within a login session, ed enters the editor, preserving its

state as it was when you left. When entering Zmacs for the first time during a

login session, ed initializes Zmacs and creates an empty buffer.

Page 2198

You can enter ed with arguments with these values:

t The ed function enters the editor, creates an empty buffer, and

selects it.

Pathname or string The ed function enters the editor and finds or creates a buffer

with the specified file in it.

Defined symbol The editor tries to find the source definition of that symbol for

you to edit. A defined symbol can be, for example, a function,

macro, variable, flavor, or system.

The symbol zwei:reload

The system reinitializes the editor. This destroys all existing

buffers, so use this only if you have to.�

Entering Zmacs with zwei:edit-functions

The Lisp function zwei:edit-functions also enters Zmacs from a Lisp Listener.

zwei:edit-functions functions Function

zwei:edit-functions is like ed in that inside the editor process it throws you back

into the editor, whereas from another process it just sends a message to the editor

and selects the editor’s window. zwei:edit-functions gives functions to the editor

in the same way that Edit Callers and similar editor commands would. See the

section "The Zmacs Edit Callers Commands".

This command is useful when you have collected the names of things that you

need to change, for example, using some program to generate the list. spec-list is a

list of definitions; these are either function specs (if the definitions are functions)

or symbols.

Zmacs sorts the list into an appropriate order, putting definitions from the same

file together, and creates a support buffer called *Function-Specs-to-Edit-n*. It

selects the editor buffer containing the first definition in the list.

Using Zmacs Commands

Commands

Zmacs commands are implemented by Lisp functions that perform the editing

work. Every Zmacs command has a name, and many commands are bound to keys.

There are, in effect, three kinds of Zmacs commands, based roughly on how com-

monly used they are and how "serious" they are in their effects.

The first kind of Zmacs commands are the keyboard accelerators. Commonly used

commands, such as Forward Word and Delete Forward, are bound to keys. Forward

Page 2199

Word is on m-F and Delete Forward is on c-D. It would be tiresome to have to

type a command each time you wanted to move forward a word or delete the next

character. These commands also take numeric arguments. If you want to move

forward three words, press m-3 m-F and if you want to delete the next fourteen

characters, press c-14 c-D.

The second kind of Zmacs commands are the c-X commands. These commands take

two keystrokes to invoke them, such a c-X c-S to save a file buffer, or c-X I to

insert a file into the buffer, or c-X RUBOUT to kill the previous sentence. These

commands also take numeric arguments where appropriate. You can see the entire

list of c-X commands by pressing HELP C and then c-X followed by *. (There is

also an interesting set of c-Q commands. You can see that list by pressing HELP C

and then c-Q.)

Finally, there are the extended commands, commonly called the m-X (meta-x) com-

mands. These commands are invoked by pressing m-X and then typing the com-

mand name and entering it. In general, these commands are more rarely used or

have more long-lasting effects and are therefore slightly less easy to enter. Exam-

ples of these commands include Show Character Styles or Add Patch. In general,

numeric arguments to these commands cause some unusual behavior, such as

sending command output to a printer.

Command tables assign keystrokes and names to commands. Each time you press a

key, Zmacs looks up the function associated with that key. For ordinary characters,

the function com-standard, in the standard command table, inserts the character

once.

Zmacs Command Completion

Some Zmacs operations require you to provide names  for example, names of

extended commands, Lisp objects, buffers, or files. Often you do not have to type

all the characters of a name; Zmacs offers completion over some names. When

completion is available, the word Completion appears in parentheses above the

right side of the minibuffer.

You can request completion when you have typed enough characters to specify a

unique word or name. For extended commands and most other names, completion

works on initial substrings of each word. For example, m-X c SPACE b is sufficient

to specify the extended command Compile Buffer. SPACE, COMPLETE, RETURN, and

END complete names in different ways. Press HELP or click Right on the editor win-

dow or minibuffer to display a mouse-sensitive list of possible completions for the

characters you have typed.

In addition, c-/ displays a mouse-sensitive list of every command that contains the

substring and c-? displays a mouse-sensitive list of every command that starts

with that string.

SPACE Completes words up to the current word.

HELP or c-? Displays possible completions in the typeout area.

Click Right Pops up a menu of possible completions.

Page 2200

c-/ Displays a mouse-sensitive list of all commands containing the

string you have typed so far.

c-? Displays a mouse-sensitive list of all commands starting with

the string you have typed so far.

COMPLETE Completes as much as possible. This could be the full name.

RETURN or END Confirms the name if possible, whether or not you have seen

the full name.

Keystrokes

In general, commands that begin with a CONTROL (c-) key modifier operate on

single characters, commands that begin with a META (m-) key modifier operate on

words, sentences, paragraphs, and regions, and commands that begin with a CON-

TROL META (c-m-) modifier operate on Lisp code.

Prefix character commands consist of more than one keystroke per command. For

example, to invoke the command c-X F, you first type the prefix character c-X and

then the primary key F. Prefix character commands are not case-sensitive  that

is, Zmacs converts a lowercase character following a prefix character command

(like c-X) to uppercase. For example, c-X f is equivalent to c-X F.

Zmacs commands are self-delimiting. Unless otherwise specified, you do not need

to type a carriage return or other terminating character to finish typing a com-

mand.

Extended Commands

Extended commands extend the range of commands past the one-or-two-keystroke

limitation. You invoke Zmacs extended commands by name using the m-X com-

mand:

m-X Extended Command

Prompts for the name of a Zmacs command and executes that command.

Command completion is provided. See the section "Completion for Extended Com-

mands (m-X Commands)".

Command Tables

There is always a currently active command table (comtab). When you invoke a

command, Zmacs looks it up in the associated command table, checks to see if it is

valid in the current context, and performs the function. Zmacs uses many comtabs,

including the standard comtab, a comtab for commands that begin with the c-X

prefix, and a comtab for reading pathnames in the minibuffer.

Many commands have no meaning outside their own limited context. Sometimes

you might get a message or see online documentation about a command that says

Not available in current context. Those commands that are not accessible via a

Page 2201

keystroke and not accessible via m-X are likely to be commands that do not work

in the current context. For example, a command that is part of Dired is available

on a key only when you are in Dired.

You can invoke a command that is not available in the current comtab with the

c-m-X command. c-m-X works like m-X: you press the keys and then type the com-

mand name in the minibuffer. This is primarily intended for debugging new editor

commands that have not yet been installed on any key. Using c-m-X to invoke a

command that is not in the current comtab because it works only in some other

context is a sure way to get into trouble.

c-m-X Any Extended Command

Prompts for the name of a Zmacs command and executes that command.

Command completion is provided.

� Numeric Arguments

Many Zmacs commands take numeric arguments, which you type before the main

command keystroke. Specify a numeric argument by pressing any combination of

any of the modifier keys (c-, m-, s-, or h-) with the number. This way, you can

type sequences of commands more easily without frequently alternating keys.

Numeric arguments to commands appear in the echo area when you do not type

the command immediately. With no delay, the argument does not appear.

In general, use negative arguments to tell a command to move or act backwards.

You can specify a negative argument by pressing any modifier key with the minus

sign followed by the number. Most commands treat a numeric argument consisting

of just a minus sign the same as -1.

For more details, see the section "Numeric Arguments and the Motion Commands".

Example of Numeric Arguments

c-F is the command to move the cursor forward one character. c-3 c-5 c-F moves

point forward 35 characters; c-- c-3 c-5 c-F moves point backward 35 charac-

ters.

Throughout this manual, instead of writing out c-4 c-5 c-F or m-4 m-5 m-B, we

usually abbreviate to c-45F or m-45B.

Defaults to Numeric Arguments

Many commands have default numeric arguments. This means that in the absence

of a numeric argument, the command behaves as if the default argument were

given. Most commands have a default argument of 1. This includes all the com-

mands that interpret numeric arguments as repeat counts. Some commands have a

different default and still others have no default: their behavior in the absence of

a numeric argument is different from their behavior with a numeric argument.�

Page 2202

c-U Quadruple Numeric Arg

This special command prefixes other commands, usually representing a numeric

argument of 4. You can repeat c-U; it multiplies the numeric argument by 4 each

time. For example, c-U c-U c-F moves point forward 16 characters. Sometimes

instead of representing a numeric argument of 4, c-U alters the action of a com-

mand slightly; for example, when used with the command Set Pop Mark, c-U takes

different actions with the mark. (For a description of the Set Pop Mark command,

see the section "Working with Regions in Zmacs".)

Executing CP Commands From Zmacs

If you wish to execute a CP command while editing, you can press SUSPEND and is-

sue the command in the typeout window, you can press SELECT L and issue the

command to a Lisp Listener, or you can issue the m-X Execute CP Command com-

mand.

m-X Execute CP Command Reads a Command Processor command line from the

minibuffer and executes that command. All output

from the command appears in the Zmacs typeout win-

dow.

Leaving Zmacs

Use a system-wide command to switch programs, such as SELECT, FUNCTION S, the

System menu, or, if you have multiple windows on the screen, position the mouse

on another window and click.

Leaving Zmacs with the SELECT Key

A set of windows is always available by pressing the SELECT key and then one of

the following keys:

Key Program

C Converse, for messages to other users

D Document Examiner, for reading online documentation

F File system editor for access to files and directories

I Inspector, for inspecting and modifying data structures

L Lisp

M Mail reading and sending system

N Notifications, for rereading system notifications

P Peek, a system status display

T Telnet, a virtual terminal utility for logging in to other hosts

X Flavor Examiner, for examining the structure of flavors that are de-

fined in the Lisp environment

Page 2203

Leaving Zmacs via the System Menu

The System menu is a momentary menu that lists several choices for acting upon

windows and calling programs (for example, a Lisp Listener, Zmacs, or the In-

spector). You can always call the System menu by holding down the SHIFT key and

clicking Right once). Use the System menu to do many things, among them:

• Create new windows.

• Select old windows.

• Change the size and placement of windows on the screen.

• Hardcopy a file.�

Leaving Zmacs with c-Z

The Zmacs command c-Z returns you to the window in which the ed function was

most recently called, usually the Lisp Listener.

Getting Help

Getting Out of Trouble

Sometimes you type the wrong command. Mostly it is obvious what you have done

wrong, and it is a simple matter to undo it. There are, however, some kinds of

trouble you can get into that require special remedies. For example, you might

accidentally delete large chunks of text you need or you might begin to type a

command and then change your mind.

This section tells you how to recover from these situations.

� Undoing

The Zwei Undo facility remembers all the changes that you have made in an edi-

tor buffer and allows you to selectively undo any or all of the changes you have

made. The Undo facility is available from Zmacs, Converse, the Zmail draft editor,

and other editor buffers based on the Zwei substrate. (It is not available from the

Input Editor or in the minibuffer.)

The simplest operation of the Undo facility is to undo the most recent change to

the editor buffer. Go to a buffer, type something in, delete it, and then press

c-sh-U. The deletion is undone. Region marking shows what was undone. Now

press c-sh-R. You’re back where you started. It is always safe to undo, because

you can always redo, and vice versa.

The Undo (m-X) and Redo (m-X) commands are similar to c-sh-U and c-sh-R with

the added feature that a display in the minibuffer shows you what will be undone

or redone before any action is taken. HELP U also displays the change before undo-

ing it.

Page 2204

Keep pressing c-sh-U. Previous changes to the buffer are undone. You can keep

doing this until the buffer is returned to its original state. When you reach this

point, if the buffer contains a file, it’s no longer marked as needing to be saved.

And, if you undo all the changes to a section since it was compiled, it is no longer

marked as needing to be compiled.

Repeated pressing of c-sh-R will successively restore the buffer until all the undo

commands have been cancelled out.

If you read in a file with no intention of changing it and accidentally type some

characters into it, use c-sh-U rather than RUBOUT to get rid of them. That way,

the buffer is no longer considered to be modified.

Undo commands operate only on the current buffer. Each buffer has an undo his-

tory, and a separate redo history. The undo history can be displayed with c-0

c-sh-U. Likewise, the redo history can be displayed with c-0 c-sh-R. Items in the

history are mouse-sensitive. You can undo or redo all changes up through a given

change or you can undo or redo any single change in the history. By default, both

histories are discarded when you save the buffer. See the section "Discard Change

History".

Of course, subsequent changes may depend on the single change that you are un-

doing or redoing, so no guarantee can be made that undoing change number 13 in

a 29-change history will have no effect on changes 14 through 29. (On the other

hand, you can always back out of any undo or redo.)

This sounds more complicated in writing than it is when you are doing it. A few

minutes experimentation in an editor buffer will make you a competent and confi-

dent user of the most important and common undoing and redoing operations.

After an undo or redo, the text that was modified is highlighted the same as if

you had marked a region, but in this case there is no region, and the highlighting

disappears when you type the next command. The history also shows you what con-

stitutes each change. See the section "What is a Change to the Undo Facility?".

� Large Deletions

Do not delete large pieces of text by repeatedly pressing RUBOUT and c-D. Apart

from being slow, text deleted character-by-character is gone for good.

Instead, use delete and kill commands that save deleted regions in the kill history.

c-K, m-K, and the commands that deal with regions easily wipe out and save larger

chunks. Also, RUBOUT or c-D with a numeric argument erases that many characters

all at once and saves them in the kill history. For full descriptions of these delete

and kill commands, see the section "Deleting and Transposing Text in Zmacs".�

Getting Text Back

The system has different histories for different contexts. One of these is always

the current history. The two histories that you need to use for yanking in Zmacs

are the kill history and the command history. The kill history remembers pieces of

Page 2205

text that you killed or copied into it. In the context of Zmacs, the command history

remembers all the editor commands that use the minibuffer in any way.

Additions to the histories are placed at the top of the list, so that history elements

are stored in reverse chronological order  the newer elements at the top of the

history, the older elements toward the bottom. A history remembers everything

that has been typed to it since the last cold boot  it has no size limit.

Yanking commands pull in the elements of the history. Top-level commands start a

yanking sequence; for example, c-Y yanks back the last text killed from the kill

history, and c-m-Y yanks back the last command performed in the minibuffer. m-Y

performs all subsequent yanks in the same sequence; for example, pressing m-Y

while the kill history is the current history yanks the next item from that history.

A yanking sequence ends when you type new text, execute a form or command, or

start another yanking sequence.

For complete descriptions of killing and yanking, see the section "Working with

Regions in Zmacs".

Finding Out About Zmacs Commands

Sometimes you want to know if a Zmacs command exists that performs a certain

function. Or, you might think that you know what a certain keystroke does, but

you still want to make sure, or refresh your memory about its exact usage. This

manual is one resource you might use in these circumstances. Zmacs itself has a

number of built-in self-documentation facilities. This section describes some ways

to get at this documentation.

Finding Out About Zmacs Commands with HELP

The HELP key is a prefix to a useful group of commands giving various kinds of

online help. If you forget what a command does, which keystrokes perform an

action, or have no idea how to accomplish something, press HELP.

Whenever you have a question of any kind, press HELP. Zmacs prompts you in the

minibuffer for details on what kind of help. If you don’t know, press HELP again

and it tells you, in the typeout window, how to find what you’re looking for. The

typeout window displays right over the editor window. The actual contents of the

buffer are not affected, and the next command you type restores the buffer display.

Pressing the HELP key in a Zmacs editing window gives information about Zmacs

commands and variables. For descriptions of Zmacs variables, see the section "How

to Specify Zmacs Variable Settings". The kind of information it displays depends

on the key you press after HELP.

HELP ? Displays a summary of HELP options.

HELP A Displays names, key bindings, and brief descriptions of com-

mands if their names or the first lines of their help documen-

tation contain a string you specify. The A refers to m-X Apro-

Page 2206

pos, the command equivalent. If you enter the command with a

numeric argument, only the names of the commands are

searched for the string, and not the help documentation.

HELP C Displays the name and description of a command bound to a

key you specify.

HELP D Displays documentation for a command whose name you speci-

fy.

HELP L Displays a listing of the last 60 keys you pressed.

HELP U Offers to undo the last major Zmacs operation, such as sorting

or filling, when possible.

HELP V Displays the names and values of Zmacs variables whose names

contain a string you specify. For descriptions of Zmacs vari-

ables, see the section "How to Specify Zmacs Variable

Settings".

HELP W Displays the key binding for a command you specify. (The W

refers to where.)

HELP SPACE Repeats the last HELP command.

� Finding Out What a Zmacs Command Does

HELP C

The command HELP C displays "Document Command:" below the mode line and

waits for you to type a command. When you do, Zmacs displays the internal

documentation for that command.�

If you press HELP C followed by c-F, the response is:

c-F is Forward, implemented by ZWEI:COM-FORWARD:

Moves forward one character.

With a numeric argument (n), it moves forward n characters.�

The first line above tells you the name of the command (in this case Forward),

and the name of the internal Lisp function that actually does the work (in this

case zwei:com-forward). (You don’t need to know these internal names for basic

editing.) The COM-xxx name displayed by HELP C is mouse-sensitive: clicking Left

on it edits the COM-xxx function, and clicking Right displays a menu with choices

that include Arglist, Edit Definition, Disassemble, and Show Documentation.

The next line is a very short description of what the command does; it usually

tells you what the command does without a numeric argument and how a numeric

argument modifies that behavior.

Finding Out What a Prefix Command Does

Page 2207

When you ask (with HELP C) for documentation on a prefix command like c-X,

Zmacs prompts you, in the typeout window, to complete the command. Zmacs

displays the documentation for the prefix command in the typeout window.

Finding Out What an Extended Command Does

HELP D

When you want to find out what an extended command does, you can display the

documentation for the command by pressing HELP D, which prompts in the

minibuffer "Describe command:", to which you type the command’s name.

� Searching for Appropriate Zmacs Commands

HELP A

m-X Apropos

When you can only guess at part of the name or function of a command by the

action it performs, there is a command, HELP A, to help you scan information

about all the available Zmacs commands to find the one you want. All you have to

do is type in a string, such as "buffer", and all command names plus the first line

of all help documentation are scanned for the string you specify.

Each Zmacs command has a name. The name is almost always exactly what you

would expect; that is, the name describes the function of the command in reason-

ably plain English. If not, the word you’re looking for is almost surely in the first

line of the help documentation.

With a numeric argument, HELP A searches only the command names.

The A stands for apropos. The m-X Apropos command works the same way.

� Example of a Search String for HELP A

The command you perform when you use m-Q is called "Fill Paragraph", so you

might expect a command that counts the number of paragraphs in the buffer to be

called something like "Count Paragraphs" or "Paragraphs Count". No matter what,

the word paragraph is going to be in the name or the first line of the help docu-

mentation.

Type HELP A and then paragraph. You’ll see a list of help entries about para-

graphs. Type c-U HELP A and then paragraph and you’ll see a shorter list of help

entries about commands that have "paragraph" as part of their names.�

� Finding Out What You Have Typed

HELP L

As you are editing you might find yourself in a confused state and not know how

to recover.

Page 2208

If this happens, it is often useful to press HELP L to list the last 60 keystrokes you

typed. By examining your own recent activity, it is often possible to find out where

you went wrong and how to save work.

You should also consider the Undo Facility in these circumstances. See the section

"Undoing".

More HELP Commands for Finding Out About Zmacs Commands

HELP U

Offers to undo the last "major" operation (such as fill or sort).

HELP V

Displays all the Zmacs variables whose names contain a certain substring. For

descriptions of Zmacs variables. See the section "How to Specify Zmacs Variable

Settings".

HELP W

Finds out whether an extended command is bound to a key.

Zmacs Help Command Summary List

This section lists the names of the available help commands grouped according to

the context in which they are available. The purpose of this section is to summa-

rize the capabilities and to help you determine both the overall contexts for which

you can find help and a particular function that might be what you are looking

for.

Zmacs Commands for Finding Out About the State of Buffers

Edit Changed Definitions (m-X)

Edit Changed Definitions Of Buffer (m-X)

List Buffers (c-X c-B)

List Changed Definitions (m-X)

List Changed Definitions Of Buffer (m-X)

List Definitions (m-X)

List Matching Lines (m-X)

Print Modifications (m-X)�

Zmacs Commands for Finding Out About the State of Zmacs

Apropos (m-X)

Describe Variable (m-X)

Edit Zmacs Command (m-X)

HELP L

Page 2209

List Commands (m-X)

List Registers (m-X)

List Some Word Abbrevs (m-X)

List Tag Tables (m-X)

List Variables (m-X)

List Word Abbrevs (m-X)

Show Keyboard Macro (m-X)�

Zmacs Commands for Finding Out About Lisp

Describe Variable At Point (c-sh-V)

Edit Callers (m-X)

Edit Callers In Package (m-X)

Edit Callers In System (m-X)

Edit CP Command (m-X)

Edit Definition (m-.)

Edit File Warnings (m-X)

Function Apropos (m-X)

List Callers (m-X)

List Matching Symbols (m-X)

Long Documentation (c-sh-D)

Multiple Edit Callers (m-X)

Multiple List Callers (m-X)

Quick Arglist (c-sh-A)

Show Documentation (m-sh-D)

Show Documentation Function (m-sh-A)

Show Documentation Variable (m-sh-V)

Where Is Symbol (m-X)�

Zmacs Commands for Finding Out About Flavors

Edit Combined Methods (m-X)

Edit Methods (m-X)

List Combined Methods (m-X)

List Methods (m-X)

Show Documentation Flavor (m-sh-F)

Show Flavor Initializations (c-sh-F)�

Zmacs Commands for Interacting with Lisp

Break (SUSPEND)

Compile And Exit (m-Z)

Compile Buffer (m-X)

Compile Changed Definitions (m-X)

Page 2210

Compile Changed Definitions Of Buffer (m-X), m-sh-C

Compile File (m-X)

Compile Region (m-X), c-sh-C

Compiler Warnings (m-X)

Edit Compiler Warnings (m-X)

Evaluate And Exit (c-m-Z)

Evaluate And Replace Into Buffer (m-X)

Evaluate Buffer (m-X)

Evaluate Changed Definitions (m-X)

Evaluate Changed Definitions Of Buffer (m-X), m-sh-E

Evaluate Into Buffer (m-X)

Evaluate Minibuffer (ESCAPE)

Evaluate Region (m-X), c-sh-E

Evaluate Region Hack (m-X)

Evaluate Region Verbose (c-m-sh-E)

Load Compiler Warnings (m-X)

Macro Expand Expression (m-X), c-sh-M

Quit (c-Z)

Trace (m-X)�

General Information-giving Zmacs Commands

The following commands display:

• Information about the location of point

• Documentation about a specified Lisp function

• Argument list for the specified Lisp function

• Information about the current Lisp variable

• The number of lines in the region or page

• Possible parenthesis mismatches

• Trace information about the specified Lisp function�

The word current, when describing a Lisp function or a Lisp variable, refers to

(approximately) the function or variable whose name is nearest to the cursor.�

c-X = Where Am I

Displays information about the location of point. It displays the X and Y positions,

the octal code for the following character, the current line number and its percent-

age of the total file size. If there is a region, it displays the number of lines in it.

Fast Where Am I (c-=) displays a subset of this information more quickly.

Page 2211

c-= Fast Where Am I

Quickly displays information about where point is. It displays the X and Y posi-

tions and the octal code for the following character. If there is a region, it displays

the number of lines in it. Where Am I displays the same things and more.

m-sh-D Show Documentation

Show Documentation (m-X)

Displays the documentation for the given topic. It prompts for a topic name offer-

ing completion only on topics in the documentation database.

With a numeric argument, Show Documentation hardcopies the documentation on a

printer of your choice.

This command is also available in Document Examiner. When you read documenta-

tion in the editor, a bookmark for that topic is inserted in the Background viewer

in Document Examiner. See the section "Show Documentation Document Examiner

Command".

See the section "Document Examiner".

� Show Candidates Zmacs Command

Show Candidates (m-X)

Show Candidates prompts for a word or words to search for. By default it performs

a heuristic or "smart" search for matching candidates.

With a numeric argument, Show Candidates prompts for a word or word to search

for and then asks you to specify the style of matching. Your choices are:

• Heuristic matching, which is the default. This uses the words you have supplied

as stems, so that searching for "local" also finds "locative" and "location", for ex-

ample.

• Exact string matching, which means that "local" finds only "local".

• Initial exact string matching, which means that "local" finds "local" only in the

initial position.

• Substring exact string matching, which means that "local" anywhere in the

string is matched.

With a numeric argument, you are also asked if you want adjacent-word-order

matching or any-word-order matching if you type more than one word. Any order

matching is the default.

The difference between "adjacent" and "any" in the above is that a adjacent-word-

order search on "input editor" will find "Using the Input Editor" and "The Input

Editor Program Interface", but not "Editor Input". With any-word-order, it will find

all three.

Page 2212

This command is also available in Document Examiner. See the section "Show Can-

didates Command". See the section "Document Examiner".

� c-sh-D Long Documentation

Displays the documentation string for the specified function. It prompts for a func-

tion name, which you can either type in or select with the mouse. The default is

the current function. The documentation string is part of the function definition.

There may also be documentation of the function in the documentation database.

When this command does not find a documentation string, it suggests you use

Show Documentation (m-X) (or m-sh-D) or Document Examiner to see the func-

tion’s online documentation. Show Candidates (m-X) searches the online documen-

tation.

c-sh-A Quick Arglist

Displays the argument list for the current function. With a numeric argument, it

reads the function name from the minibuffer.

Arglist (m-X)

Displays the argument list of the specified function. It reads the name of the

function (from the minibuffer) and displays the argument list in the echo area.

c-sh-V Describe Variable At Point

Displays information in the echo area about the current Lisp variable. The infor-

mation displayed shows whether it is declared special, whether it has a value, and

whether it has documentation put on by defvar. When nothing is available, it

checks for lookalike symbols in other packages.

m-= Count Lines Region

Displays the number of lines in the region.

c-X L Count Lines Page

Displays the number of lines on the current page (or the buffer, if there are no

page delimiters). In parentheses, it displays the number of lines up to the line

containing point and the number of lines after the line containing point.

Find Unbalanced Parentheses (m-X)

Finds any parenthesis mismatch error in the buffer. It reads through the entire

current buffer and tries to find places in which the parentheses do not balance. It

positions point to possible trouble spots, printing out a message that says what the

trouble appears to be. This command finds only one such error; if you suspect

more errors, run it again.

Trace (m-X)

Traces or untraces a function. It reads the name of the function from the

minibuffer and then it pops up a menu of trace options. With an argument, it

omits the menu step.

See the special form trace.

Page 2213

See the section "Options to trace".

Using the Editor Menu

Click Right in Zmacs to display the Editor menu, a momentary menu containing

editor commands, each of which is a possible choice. Position the mouse cursor

over an item and then click the appropriate button to make the

The Editor menu commands are:

Command Description

Arglist Prints the argument list of the specified function. See

the section "General Information-giving Zmacs Com-

mands".

Edit Definition Prepares to edit the definition of a specified function.

See the section "Editing Lisp Programs in Zmacs".

List Callers Lists all functions that call the specified function See

the section "Editing Lisp Programs in Zmacs".

List Definitions Displays the definitions in a specified buffer. See the

section "Editing Lisp Programs in Zmacs".

List Buffers Prints a list of all the buffers and their associated

files See the section "Manipulating Buffers and Files

in Zmacs".

Kill Or Save Buffers Offers a menu of modified files with choices to kill,

save, or remove the modification flag from the file.

See the section "Manipulating Buffers and Files in

Zmacs".

Split Screen Makes several windows split among the buffers as

specified. See the section "Manipulating Buffers and

Files in Zmacs".

Compile Region Compiles the region, or if no region is defined, the

current definition. See the section "Editing Lisp Pro-

grams in Zmacs".

Indent Region Indents each line in the region. See the section

"Changing Case and Indentation in Zmacs".

Change Typein Style Sets the default character style for typein. See the

section "Working with Regions in Zmacs".

Change Style Region Changes the character style for the region. See the

section "Working with Regions in Zmacs".

Page 2214

Uppercase Region Changes any lowercase characters in the region to

uppercase. See the section "Working with Regions in

Zmacs".

Lowercase Region Changes any uppercase characters in the region to

lowercase. See the section "Working with Regions in

Zmacs".

Indent Rigidly Shifts text in the region sideways as a unit. See the

section "Changing Case and Indentation in Zmacs".

Indent Under Fixes indentation to align under either a character

that you click on with the mouse cursor or a string

read from the minibuffer. See the section "Aligning

Indentation in Zmacs".

Using the Minibuffer

Minibuffer Response Format

Most commands expect only one line of response. In these cases, the END key has

the same meaning as the RETURN key, terminating the response.

However, for commands that expect one or more lines of response, RETURN has its

usual significance, inserting a newline in the minibuffer, and END marks the end of

the response.

Minibuffer Response Help

While responding to a prompt, you can press HELP to get documentation describing

the current situation. Zmacs tells you exactly what input it expects and what the

possible responses are.

More Ways to Enter Minibuffer Responses

Yanking and clicking with the mouse provide quick and simple ways to enter

minibuffer responses without having to type them out. Both of these methods are

context-sensitive. Yanking works only when you have previously entered a

minibuffer response. Clicking works when you click on a name that makes sense in

the context of the minibuffer prompt.�

Yanking in the Minibuffer

c-m-Y Repeat Last Minibuffer Command

Repeats a recent minibuffer command. It yanks the displayed default if there is

Page 2215

one; otherwise, it yanks the last thing typed in this context. A numeric argument

n yanks the nth previous one. An argument of 0 lists the history of elements typed

in the minibuffer.

For a similar command with string-matching, see the section "Repeat Last Match-

ing MiniBuffer Command (m-X) Zmail Command".

After c-m-Y, m-Y replaces what was yanked with a previous element of the same

history, in this case, another minibuffer command. For more details, see the sec-

tion "Retrieving History Elements".�

m-Y Yank Pop

Corrects a yank to use a different element of its history. The most recent com-

mand must be a yanking command (c-Y, m-Y, c-sh-Y, m-sh-Y or c-m-Y). The

retrieved item (text or command) that was yanked by that command is replaced by

the previous element of the corresponding history. The history is rotated (that is,

the elements remain in the same order, but the pointer to the current element

moves with each successive m-Y) to bring this element to the top.

A numeric argument of zero displays the history. A positive numeric argument of

n moves n elements back in the history. A negative numeric argument moves to a

newer history element; this only makes sense after you rotate the history.

Getting Information About Buffers and Regions

A good deal of information is available about each Zmacs buffer or region. You can

get a count of characters, words, lines, paragraphs, or pages, as well as a count of

substrings or Lisp objects. �

Count Chars

m-X Count Chars

Counts the characters in the region or in the buffer if there is no region.

Count Words

m-X Count Words

Counts the words in the region or in the buffer if there is no region.

Count Lines

m-X Count Lines

Counts the lines in the region or in the buffer if there is no region.

Page 2216

Count Paragraphs

m-X Count Paragraphs

Counts the paragraphs in the region or in the buffer if there is no region.

Count Pages

m-X Count Pages

Counts the pages in the region, or in the buffer if there is no region.

Count Occurrences

m-X Count Occurrences

Counts how many times a certain substring occurs in the region or in the buffer

following point if there is no region.

See the section "How Many".�

How Many

m-X How Many

Counts how many times a certain substring occurs in the buffer following point.

You are prompted for the substring.

See the section "Count Occurrences".

Moving the Cursor

To make changes at a particular place in a Zmacs buffer, you must move the

cursor to that place, since most commands that modify the buffer do so immediate-

ly around the cursor.

The cursor movement or motion commands:

• View the contents of the buffer

• Redisplay the editor window

• Move the cursor around the buffer using mouse commands

• Move the cursor around the buffer using keystroke commands�

For more details, see the section "Motion Commands".

The Editor Window and the Buffer

Page 2217

The editor window displays either a portion of your buffer or the whole buffer,

depending on the size of the buffer and your current location in it.

When the current buffer is smaller than the exact size of the editor window,

Zmacs displays the contents of the buffer at the top of the window and leaves the

bottom of the window blank. You cannot tell whether the buffer actually comes to

an end where the text stops, since there could be white space and newline charac-

ters after the last visible piece of text.

When the buffer is too large to fit on the screen, the editor window shows only a

section of the buffer. The part that shows always contains the cursor, so it never

vanishes off the top or bottom of the editor window. Zmacs changes the position of

the editor window inside the buffer as seldom as possible  usually only when you

try to move the cursor off the top or bottom of the screen.

Wraparound Lines in the Editor Window

Lines that are too long to fit across the editor window are displayed on as many

physical lines as are necessary. An exclamation point (!) in the (normally blank)

last column means that the next physical line is part of the same logical line.

Redisplaying the Window

Whenever you modify the buffer’s contents or move point or the mark, Zmacs

updates the display to reflect the change. (For a discussion of the mark, see the

section "Working with Regions in Zmacs".) This updating can be as simple as

moving the cursor or as involved as figuring out the whole display from scratch.

These operations are called redisplay and Zmacs performs them automatically.

For example, when you move the cursor off the top or bottom of the editor

window, a complete redisplay is required. The window has to shift to show a dif-

ferent part of the buffer in order to keep the cursor visible.

You can explicitly tell Zmacs to do a redisplay with the Recenter Window com-

mand, invoked by c-L. You might want to do this if the cursor gets too close to

the top or the bottom of the editor window, and you want to redisplay with the

cursor closer to the center so that you can see more context in one direction or

the other.

It is important to remember that redisplay operations change only the display, not

the actual contents of the buffer.

Recentering the Window

c-L Recenter Window

Completely redisplays the screen, leaving the cursor near the middle of the editor

window.

With a numeric argument of n, it leaves the cursor n lines from the top of the

window. With a negative numeric argument of -n, it leaves the cursor n lines from

the bottom of the window.

Page 2218

Displaying the Next Screen

c-V, SCROLL Next Screen

Moves the cursor to the beginning of the last visible line in the editor window and

redisplays the screen with that line at the top of the window.

With a numeric argument of n, it moves the text up n lines. With a negative

numeric argument -n, it moves the text down n lines. The cursor does not move

(with respect to the text) unless the numeric argument is large enough to slide it

off the screen. In that case the cursor remains at the top.

Displaying the Previous Screen

m-V, m-SCROLL Previous Screen

Moves the cursor to the beginning of the first visible line in the editor window

and redisplays the screen with that line at the bottom of the window.

With a numeric argument of n, it moves the text down n lines. With a negative

numeric argument -n, it moves the text up n lines. The cursor does not move

(with respect to the text) unless the numeric argument is large enough to slide it

off the screen. In that case the cursor remains at the bottom.

Positioning the Window Around a Definition

c-m-R Reposition Window

Redisplays, trying to get all of the current function definition in the window. It

puts the beginning of the current definition at the top of the window with the cur-

rent position of the cursor still visible. Doing c-m-R twice pushes comments off the

top of the window, making more of the code of a large function visible.

Moving to a Specified Line

m-R Move To Screen Edge

Moves to the beginning of a specified line on the screen. With no argument, it

moves to the beginning of a line near the middle of the screen. The exact line is

controlled by the Zmacs variable Center Fraction. A numeric argument specifies a

particular line to move to. Negative arguments count up from the bottom of the

window. (For descriptions of Zmacs variables, see the section "How to Specify

Zmacs Variable Settings".)

Moving the Cursor with the Mouse

The easiest way to get the cursor where you want it is with the mouse. See the

section "The Mouse".

Mouse Documentation Line in Zmacs

Page 2219

The mouse documentation line at the bottom of the screen tells you what will

happen when you click the mouse. The small arrow cursor tells you where the

mouse is and what it is over. What you can do with the mouse depends on what

the mouse is over.

There are several sets of possible mouse actions, corresponding to the things the

mouse can be over in a Zmacs buffer:

Text or blank space

Scroll bar�

The mouse documentation line is two lines high. The top line tells you what you

can do with the three mouse buttons. The bottom line tells you what keys you can

press to change the action of the mouse buttons. When you press one of these

keys, the top mouse documentation line tells you what you can do with the three

mouse buttons while that key is held down.

The three mouse buttons are called L for left, M for middle and R for right.

The keyboard keys are called c for CONTROL, sh for SHIFT, s for SUPER and m-sh

for META-SHIFT.

CONTROL and SHIFT affect editing operations. Their actions are described in this

section.

META-SHIFT with the right mouse button gives you access to the Window Operation

menu, which allows you to move, reshape, expand, bury, kill, or hardcopy the win-

dow or pane.

SUPER with the right mouse button gives you access to the Presentation Debugging

menu.

Mouse Over Text or Blank Space

Here is a description of what you can do with the mouse when it is over text or

blank space in a Zmacs buffer.

Notation Description

L:Move point Performs two separate actions, depending on whether you

click Left or hold Left down.

• Relocates the cursor: position the mouse cursor to the de-

sired location and click Left. If the cursor is over blank

space, point is moved to the end of the line.

• Marks a region: position mouse cursor to desired location,

hold left button down, move mouse cursor to end point of

desired region and release the button.

sh-L:Move to point Relocates the mouse arrow cursor to point (where the blink-

ing cursor appears).

Page 2220

M:Mark thing Marks (makes into a region) the object on which you click.

Clicking after the end of a line or before the first nonblank

character of a line marks the whole line. Clicking on a word

marks that word.

In Lisp mode, however, if that word is part of what could be

a symbol’s printname, it marks that whole symbol name.

Clicking on an open or close parenthesis marks all the text

between that parenthesis and its matching parenthesis, in-

cluding the parentheses. Clicking on an open or close quota-

tion mark (") marks the whole quoted string. Clicking be-

tween words marks all text up to the end of the next word or

possible symbol printname, depending on mode. For a com-

plete description of marking regions, see the section "Work-

ing with Regions in Zmacs".

c-M:Copy Mouse Inserts the object on which you click, as though you had

typed it. This allows you to build a program or document by

selecting things already appearing on your screen, in the

manner of a menu. Hold down the CONTROL key and click

Middle on the object you want to copy: it is inserted as

though you had just typed it. If you change your mind, and

want to remove what you have just inserted, press c-W, and

it is removed.

The object copied can be a word, a printed representation of

a Lisp symbol, a parenthesized or quoted group of words, a

printed representation of a lisp list or string, or a line. What

object is picked up by clicking c-(M) on it is determined by

the same rules as clicking Middle on Mark Thing in Lisp

Mode. That is,

• Clicking after the end of a line or before the first non-

blank character of a line copies the whole line. Clicking on

a word picks up that whole word, or possible Lisp symbol

printname of which that word could be part.

• Clicking on an open or close parenthesis copies the text be-

tween that parenthesis and its matching parenthesis, in-

cluding the parentheses. Clicking on an open or close quo-

tation mark (") copies the whole quoted string. Clicking

between words copies all text up to the end of the next

word (or possible symbol printname).

Appropriate spaces are placed before the inserted object.

sh-M:Save/Kill/Yank Performs one of four related actions:

• If there is a region, it saves the region in the kill history

while leaving it in the buffer (like m-W).

Page 2221

• If the last command saved the region, it removes it from

the buffer (like c-W, except it does not save).

• If the above two conditions do not apply, it yanks the first

element from the kill history (like c-Y).

• If the last command was a yank command, it yanks the

next item from the kill history (like m-Y).

For a complete description of saving, killing, and yanking

regions, see the section "Working with Regions in Zmacs".

R:Editor menu Displays a Zmacs menu offering mouse-sensitive Zmacs com-

mands.

sh-R:System menu Displays a System menu.

Mouse Over Scroll Bar

The scroll bar consists of a pair of dotted lines with a shaded section between

them. The shaded section, or elevator, represents the portion of the buffer visible

on the screen and the dotted lines, or shaft, represent the entire buffer. In

general, you see only the shaft, but not the elevator. Move the mouse cursor over

the shaft and the elevator appears. The elevator remains visible until the buffer

changes in size, whereupon it disappears until you move the mouse cursor over the

shaft again.

Motion Commands

Zmacs word, sentence, and paragraph motion commands all have strict definitions

for where words, sentences, and paragraphs begin and end. You can modify all

these definitions.

Summary of Cursor Motion Commands

These are the Zmacs commands that you can use to move the cursor:

c-A Beginning of Line

Moves to the beginning of the line.

c-E End of Line

Moves to the end of the line.

c-F Forward

Moves forward one character.

c-B Backward

Moves backward one character.

m-F Forward Word

Moves forward one word.

Page 2222

m-B Backward Word

Moves backward one word.

m-E Forward Sentence

Moves to the end of the sentence in text mode.

m-A Backward Sentence

Moves to the beginning of the sentence in text mode.

c-N Down Real Line

Moves down one line.

c-P Up Real Line

Moves up one line.

m-] Forward Paragraph

Moves to the start of the next paragraph.

m-[Backward Paragraph

Moves to the start of the current (or last) paragraph.

c-X] Next Page

Moves to the next page.

c-X [Previous Page

Moves to the previous page.

c-V, SCROLL Next Screen

Moves down to display the next screenful of text.

m-V, m-SCROLL Previous Screen

Moves up to display the previous screenful of text.

m-< Goto Beginning

Moves to the beginning of the buffer.

m-> Goto End

Moves to the end of the buffer.

Numeric Arguments and the Motion Commands

All the motion commands allow numeric arguments. For the most part, these

numeric arguments are interpreted as repeat counts.�

Example of Numeric Arguments with Motion Commands

m-F moves the cursor forward one word; m-13F moves the cursor forward 13 words.

Negative Numeric Arguments and Motion Commands

Most of the motion commands come in pairs, with one command for forward

motion over a particular unit and one command for backward motion. Both kinds

of commands often interpret negative numeric arguments by reversing the direc-

tion of motion.

Page 2223

These conventions  that Zmacs interprets numeric arguments as repeat counts,

and that negative numeric arguments reverse the direction of motion  together

make up the motion convention.

Example of Negative Numeric Arguments with Motion Commands

m- -13F moves point backward 13 words. m-13B has exactly the same effect.

Motion by Character

A Zmacs character can be any letter, number, or punctuation character.�

Forward Character

c-F Forward

Moves the cursor forward over one character. c-F interprets numeric arguments as

repeat counts.

Negative numeric arguments reverse the direction of motion. For example, c-3B

and c- -3F both move the cursor backwards three characters.

Backward Character

c-B Backward

Moves the cursor backward over one character. c-B interprets numeric arguments

as repeat counts.

Negative numeric arguments reverse the direction of motion. For example, c-3

c-B and c-- c-3 c-F both move the cursor backwards three characters.

Motion by Word

Zmacs generally considers a word to consist of a sequential string of alphanumeric

characters, that is, any combination of the characters a-z, A-Z, and 0-9. Different

major modes define their own delimiter characters. For example, in Text Mode an

apostrophe (’) is part of a word, but in other modes it is a delimiter. (For mode

description, see the section "Zmacs Major Modes".)�

Forward Word

m-F Forward Word

Moves the cursor forward one word. Numeric arguments are interpreted as repeat

counts; negative numeric arguments reverse the direction of motion.

m-F always places the cursor at the end of a word. If the cursor is in the middle

of a word, m-F moves the cursor to the end of that word.

Page 2224

Backward Word

m-B Backward Word

Moves the cursor backward one word. Numeric arguments are interpreted as re-

peat counts; negative numeric arguments reverse the direction of motion.

m-B always places the cursor at the beginning of a word. If the cursor is in the

middle of a word, m-B moves the cursor to the beginning of that word.

Motion by Sentence

Description of Zmacs Sentence Delimiters

According to Zmacs, sentences can end with question marks, periods, and exclama-

tion points. Furthermore, these punctuation marks only end a sentence when fol-

lowed by:

• A newline

• A space followed by either a newline or another space

However, Zmacs allows any number of closing characters, which are ", ’,), and],

between the sentence-ending punctuation and the white space that follows it. A

sentence also starts after a blank line.

This corresponds closely to standard typing conventions. Zmacs does not recognize

a period followed by one space as the end of a sentence, for example, as in "e.g. "

or "Dr. ".

Forward Sentence

m-E Forward Sentence

Moves the cursor forward one sentence.

Numeric arguments are interpreted as repeat counts; negative numeric arguments

reverse the direction of motion.

m-E always places the cursor at the end of a sentence. If the cursor is in the

middle of a sentence, m-E moves the cursor to the end of that sentence.

Backward Sentence

m-A Backward Sentence

Moves the cursor backward one sentence.

Numeric arguments are interpreted as repeat counts; negative numeric arguments

reverse the direction of motion.

Page 2225

m-A always places the cursor at the beginning of a sentence. If the cursor is in the

middle of a sentence, m-A moves the cursor to the beginning of that sentence.

Motion by Line

Lines are delimited by special characters called newlines.�

Down Line

c-N Down Real Line

Moves the cursor straight down to the corresponding column of the next line. If

the cursor is positioned in the middle of the line, c-N moves it to the middle of

the next one.

With a numeric argument n, it moves the cursor down n lines. Moving down a

negative number of lines is the same as moving up.

Up Line

c-P Up Real Line

Moves the cursor straight up to the corresponding column of the previous line. If

the cursor is positioned in the middle of the line, c-P moves it to the middle of

the previous one.

With a numeric argument of n, it moves the cursor up n lines. Moving up a

negative number of lines is the same as moving down.

Beginning of Line

c-A Beginning of Line

Moves the cursor to the beginning of the current line.

With a numeric argument of n, it moves the cursor to the beginning of the nth

line after the current one, where the current line is numbered 1, the preceding

line is numbered 0, and so on.

End of Line

c-E End Of Line

Moves the cursor to the end of the current line.

With a numeric argument of n, it moves the cursor to the end of the nth line

after the current one, where the current line is numbered 1, the preceding line is

numbered 0, and so on.

Goal Column and the Motion Commands

Page 2226

Set Goal Column

c-X c-N Set Goal Column

Sets the default column position (goal column). The goal column sets point position

for c-N and c-P. It disables the default action of matching the goal column to

point’s current column and sets the goal column to zero instead. With a numeric

argument n, sets the goal column to n. c-U turns it off (sets it back to the default

state of keeping cursor in same horizontal position for c-N and c-P).

Motion by Lisp Expression

Motion by Lisp expression repositions the cursor according to Lisp code delimiters:

lists and expressions. A list is something enclosed in balanced parentheses. A Lisp

expression is any readable printed representation of a Lisp object.

Forward List

c-m-N Forward List

Moves forward over one list. It accepts a numeric argument for repetition count.

Backward List

c-m-P Backward List

Moves backward over one list. It accepts a numeric argument for repetition count.

Motion Along One Nesting Level

Point always sits either between two expressions or in the middle of a Lisp object

(excluding a list or nil).�

c-m-F Forward Sexp

Moves point to the end of a surrounding Lisp object (excluding a list or nil) if

there is one, or past the Lisp expression immediately to the right if not.

If parentheses are unbalanced to such an extent that it doesn’t make sense to talk

about "the expression on the right", this command gives an error message and

does not move point at all.

c-m-F observes the motion convention for numeric arguments.

c-m-B Backward Sexp

Moves point to the beginning of a surrounding Lisp object (excluding a list or nil)

if there is one, or to the beginning of the Lisp expression immediately to the left

if not.

If parentheses are unbalanced to such an extent that it doesn’t make sense to talk

about "the expression on the left", this command gives an error message and does

not move point at all.

Page 2227

c-m-B observes the motion convention for numeric arguments.

Motion Up and Down Nesting Levels

c-m-D Down List

Moves point forward past any intervening Lisp object (excluding a list or nil) to

the level of list structure and leaves point just to the right of the open parenthesis

of that expression.

With a numeric argument of n, it moves down n nesting levels.

c-m-U Backward Up List

c-m-(

Backs up out of nesting levels. It moves backward one level of list structure. It

searches for an open parenthesis and leaves point to the left of that open paren-

thesis. Also, if called inside of a string, it moves back up out of that string, leav-

ing point to the left of its starting quote. It accepts numeric arguments for repeti-

tion count.

With a numeric argument of n, it moves up n nesting levels.

c-m-) Forward Up List

Moves forward out of nesting levels. It moves forward one level of list structure. It

searches for a close parenthesis and leaves point to the right of that close paren-

thesis. Also, if called inside of a string, it moves up out of that string, leaving

point to the right of its ending quote. It accepts numeric arguments for repetition

count.

With a numeric argument of n, it moves up n nesting levels.

Motion Among Top-Level Expressions

A Lisp file contains a sequence of expressions that we call top-level expressions, to

distinguish them from their own subexpressions. Zmacs assumes that top-level ex-

pressions begin with an open parenthesis against the left margin. It does not parse

top-level expressions by balancing parentheses, since parentheses do not always

balance while programs are being written. The indentation represents the pro-

grammer’s conception of program structure, and provides a better guide. So by top-

level expression, we mean a section of text delimited by open parentheses at the

beginning of two lines.

In code that includes a string containing a carriage return followed by an open

parenthesis, show you that the open parenthesis does not start a top-level expres-

sion by putting a slash in front of it.�

c-m-A Beginning Of Definition

c-m-[

Moves point to the beginning of the current top-level expression.

Page 2228

With a positive numeric argument n, it moves back n top-level expressions. With a

negative numeric argument -n, it moves forward n top-level expressions.

c-m-E End Of Definition

c-m-]

Moves point to the end of the current top-level expression.

With a positive numeric argument n, it moves forward n top-level expressions.

With a negative numeric argument -n, it moves back n top-level expressions.

m-) Move Over)

Moves past the next close parenthesis, then does Indent New Line. It removes any

whitespace between point and the close parenthesis before moving over it. With a

positive argument n, after finding the next close parenthesis and deleting whites-

pace before it, it moves past n-1 additional close parentheses before doing Indent

New Line. It ignores numeric arguments that are less than 1.

Motion by Paragraph

A paragraph is delimited by:

• A newline followed by blanks (spaces or tabs)

• A blank line

• A Page character alone on a line

• Various other mode-dependent factors (for example, a line that does not begin

with the fill-prefix). See the section "Filling a Region".

Forward Paragraph

m-] Forward Paragraph

Moves the cursor forward one paragraph.

Numeric arguments are interpreted as repeat counts; negative numeric arguments

reverse the direction of motion.

m-] always places the cursor at the end of a paragraph. If the cursor is in the

middle of a paragraph, m-] moves the cursor to the end of that paragraph.

Backward Paragraph

m-[Backward Paragraph

Moves the cursor one paragraph backward.

Numeric arguments are interpreted as repeat counts; negative numeric arguments

reverse the direction of motion.

Page 2229

m-[always places the cursor at the beginning of a paragraph. If the cursor is in

the middle of a paragraph, m-[moves the cursor to the beginning of that para-

graph.

Motion by Page

Pages are delimited by Page characters. You can insert a Page character by

pressing the PAGE key. The Page delimiter belongs to the page that precedes it

and is therefore the last character on that page.

Forward Page

c-X] Next Page

Moves the cursor to the beginning of the next page; that is, puts the cursor

immediately after the nearest following Page delimiter. If the buffer does not con-

tain a Page delimiter, it goes to the end of the buffer.

With a positive numeric argument n, it repeats this operation n times to move

forward n pages. A negative numeric argument -n moves the cursor backward in-

stead.

c-X [always places the cursor immediately to the right of the next Page delim-

iter. If the cursor is immediately to the left of the Page delimiter, c-X] goes to

the beginning of the page after next rather than just moving forward one charac-

ter.

Backward Page

c-X [Previous Page

Moves the cursor to the beginning of the previous page; that is, puts the cursor

immediately after the nearest preceding Page delimiter. If the buffer does not con-

tain a Page delimiter, it goes to the beginning of the buffer.

With a positive numeric argument n, it repeats this operation n times to move

backward n pages. A negative numeric argument -n moves the cursor forward in-

stead.

c-X [always places the cursor at the beginning of a page. If the cursor is already

at the beginning of the page, c-X [moves it to the beginning of the previous

page.

Motion with Respect to the Whole Buffer

Use the following commands to go to the Beginning/End of the buffer.

Goto Beginning

Page 2230

m-< Goto Beginning

Moves the cursor to the beginning of the buffer.

With a numeric argument n between 0 and 10, it moves the cursor to a place n/10

of the way (counted in lines) from the beginning of the buffer towards the end.

Goto End

m-> Goto End

Moves the cursor to the end of the buffer. You can use m-> if you are in doubt as

to the exact place on the screen where the buffer stops.

With a numeric argument n between 0 and 10, it moves the cursor to a place n/10

of the way (counted in lines) from the end of the buffer towards the beginning.

Basic Text Editing

This section describes how to edit text in Zmacs. It shows how to insert and

delete, and search and replace character strings, as well as how to change case

and indentation, use word abbreviations for Zmacs commands, and how to use

character styles.

Inserting Text in Zmacs

Zmacs is always ready to accept an insertion. To insert new text anywhere in the

buffer, position the cursor at the place you want the new text to go and type the

new text. Zmacs always inserts characters at the cursor. The text to the right of

the cursor is pushed along ahead of the text being inserted.

Inserting Characters

When you type in new text, you are actually issuing Zmacs commands. Ordinary

printing characters are called self-inserting because when you type one, it inserts

itself into the text in your buffer.

You can give numeric arguments to the keystrokes that insert printing characters

into the buffer; Zmacs interprets these arguments as repeat counts. See the sec-

tion "Numeric Arguments".

Example: c-80 * inserts a line of 80 asterisks at the cursor.

Starting a New Line

Newline characters delimit lines of text. They have no visible printed form, but are

present at each line break. You can break one line into two lines by inserting a

newline (pressing RETURN) where desired. Similarly, you can merge two lines into

one by deleting the intervening newline.

Page 2231

Correcting Typos

To correct text you have just inserted, use the RUBOUT key. RUBOUT deletes the

character before the cursor (not the one over which the cursor is positioned; that

is the character after the cursor). The cursor and the rest of that line move to the

left.

When given a numeric argument, RUBOUT saves the succession of deleted charac-

ters.

Example: c-20 RUBOUT kills the previous 20 characters and saves them together.

See the section "Deleting vs. Killing Text".

When the cursor is positioned on the first character on a line and you press

RUBOUT, the preceding newline character is deleted and Zmacs appends the text on

that line to the end of the previous line.

Wrapping Lines

When you add too many characters to one line without breaking it with a RETURN,

the line grows to occupy two (or more) lines on the screen, with an exclamation

point at the extreme right margin of all but the last of them. The ! means that

the following screen line is not really a distinct line in the file, but just the

continuation of a line too long to fit the screen.

Inserting Formatting Characters

You can insert most characters directly into the buffer by simply typing them, but

other characters act as editing commands and do not insert themselves. If you

need to insert a character that is normally a command (for example, TAB or

RUBOUT), use the c-Q (Quoted Insert) command first to tell Zmacs to insert the

following character into the buffer literally. c-Q prompts in the echo area for the

character to be inserted and inserts it into the text.

Deleting and Transposing Text in Zmacs

Deleting vs. Killing Text

Deleting text merely gets rid of it, but Zmacs deletion commands not only kill text

but also get it back. These commands save killed text in a history stack. Other

commands, called yanking commands, retrieve elements from the history.

Deletion commands that operate on single characters do not save what they delete.

However, by giving them a numeric argument, thus telling them to delete several

characters, they too save the deleted text.

The commands that delete only white space do not save it.

Page 2232

Deleting Text

Most commands that erase text from the buffer save it so that you can get it back

if you change your mind, or move or copy it to other parts of the buffer. These

commands are known as kill commands. The rest of the commands that erase text

do not save it; they are known as delete commands. The delete commands include

c-D and RUBOUT, which delete only one character at a time, and those commands

that delete only spaces or line separators. (However, when given a numeric argu-

ment, c-D and RUBOUT do save that sequence of deleted characters on the kill

ring.) Commands that can destroy significant amounts of information generally

kill. The commands’ names and individual descriptions use the words "kill" and

"delete" to say which they do.

If you issue a kill command by mistake, you can retrieve the text with c-Y, the

Yank command. For details on killing and retrieving text, see the section "Working

with Regions in Zmacs".�

Zmacs Commands for Deleting Text

This section summarizes Zmacs commands for deleting text.

c-D Delete Forward

Deletes the character after point.

RUBOUT Rubout

Deletes the character before point.

m-D Kill Word

Kills forward one word.

m-RUBOUT Backward Kill Word

Kills backward one word.

m-K Kill Sentence

Kills forward one sentence.

c-X RUBOUT Backward Kill Sentence

Kills backward one sentence.

c-K Kill Line

Kills to the end of the line or kills an end of line.

c-W Kill Region

Kills region (from point to mark).

c-m-K Kill Sexp

Kills forward over exactly one Lisp expression.

c-m-RUBOUT Backward Kill Sexp

Kills backward over exactly one Lisp expression.

m-\ Delete Horizontal Space

Deletes any spaces or tabs around point.

c-X c-O Delete Blank Lines

Deletes any blank lines following the end of the current line.

Page 2233

m-^ Delete Indentation

Deletes RETURN and any indentation at front of line.

Deleting and Transposing Characters

Deleting the Last Character

RUBOUT Rubout

Deletes the character immediately to the left of the cursor.

If the cursor is at the beginning of a line, RUBOUT deletes the newline character at

the end of the previous line, thus appending the current line to the previous one.

With a positive numeric argument of n, RUBOUT deletes the n characters immedi-

ately to the left of the cursor. With a negative numeric argument of -n, it deletes

the n characters immediately to the right of the cursor. With any numeric argu-

ment, it saves the deleted characters on the kill history.

Deleting the Current Character

c-D Delete Forward

Deletes the character at the cursor.

If the cursor is at the end of a line, c-D deletes the newline character at the end

of the line, thus appending the next line to the current one.

With a positive numeric argument of n, c-D deletes the n characters immediately

to the right of cursor. With a negative numeric argument of -n, it deletes the n

characters immediately to the left of cursor. With any numeric argument, it saves

the deleted characters on the kill history.

Transposing Characters

c-T Exchange Characters

Transposes two characters (the ones on each side of the cursor).

If the cursor is not at the end of a line, c-T transposes the character at the cursor

and the character to the left of the cursor and advances the cursor one character.

The result is that the character to the left of the cursor has been "dragged" one

character position to the right. Repeated use of c-T continues to pull that charac-

ter forward. This is useful when you are typing and enter two characters in the

wrong order (for example, teh for the).

If the cursor is at the end of a line, c-T transposes the two preceding characters.

With a nonzero numeric argument of n, c-T deletes the character to the left of

the cursor, moves forward n characters, and reinserts the deleted character. When

n is negative, the cursor moves backwards.

Page 2234

c-T can only be given a numeric argument of zero when the mark is active. In

this case, it exchanges the characters at point and mark.

Deleting and Transposing Words

Introduction

For a complete description of how words are delimited, see the section "Motion by

Word".

Deleting the Current Word

m-D Kill Word

Kills the word after the cursor and saves it on the kill history. If the cursor is in

the middle of a word, m-D kills from the cursor to the end of that word.

With a numeric argument n, it kills n words forward from the cursor. If n is

negative, it kills backward.

Deleting the Previous Word

m-RUBOUT Backward Kill Word

Kills the word before the cursor and saves it on the kill history. If the cursor is in

the middle of a word, m-RUBOUT kills from the cursor to the beginning of that

word.

With a numeric argument n, it kills n words backward from the cursor. If n is

negative, it kills forward.

Transposing Words

m-T Exchange Words

Transposes the current word and the previous one. If the cursor is at the end of a

line, m-T transposes the last word on that line and the first one on the next, re-

gardless of the amount or type of white space between them.

With a nonzero numeric argument n, m-T goes to the beginning of the current

word, deletes the previous word, goes forward n words, and reinserts the deleted

word. Moving forward a negative amount is equivalent to moving backward. An

argument of zero transposes the words at point and mark.

Deleting and Transposing Lisp Expressions

Motion by Lisp expression repositions the cursor according to Lisp code delimiters:

lists and expressions. A list is something enclosed in balanced parentheses. A Lisp

expression is any readable printed representation of a Lisp object.

Page 2235

Deleting the Current Lisp Expression

c-m-K Kill Sexp

Kills the Lisp expression immediately to the right of point and saves it on the kill

history.

With a numeric argument of n, it kills the n succeeding expressions. It is an error

to kill off the end of a containing expression. When the numeric argument is neg-

ative, it kills backwards from point the same way.

Deleting the Previous Lisp Expression

c-m-RUBOUT Backward Kill Sexp

Kills the Lisp expression immediately to the left of point and saves it on the kill

history.

With a numeric argument of n, it kills the n preceding expressions. It is an error

to kill off the beginning of a containing expression. When the numeric argument is

negative, it kills forward from point the same way.

Deleting the List Containing the Current Lisp Expression

Kill Backward Up List (c-m-X)

Deletes the list that contains the Lisp expression after point, but leaves that ex-

pression itself.

Transposing Lisp Expressions

c-m-T Exchange Sexps

Point must be between two expressions to use this command.

Exchanges the two expressions on either side of point, preserving current indenta-

tion.

With a numeric argument of n, it deletes the expression to the left of point, moves

forward n expressions, and reinserts the deleted expression. With a negative nu-

meric argument, it exchanges expressions in the opposite direction. An argument

of zero transposes the expressions at point and mark.

Deleting and Transposing Lines

Lines are delimited by special characters called newlines.�

Down Line

c-N Down Real Line

Page 2236

Moves the cursor straight down to the corresponding column of the next line. If

the cursor is positioned in the middle of the line, c-N moves it to the middle of

the next one.

With a numeric argument n, it moves the cursor down n lines. Moving down a

negative number of lines is the same as moving up.

Up Line

c-P Up Real Line

Moves the cursor straight up to the corresponding column of the previous line. If

the cursor is positioned in the middle of the line, c-P moves it to the middle of

the previous one.

With a numeric argument of n, it moves the cursor up n lines. Moving up a

negative number of lines is the same as moving down.

Beginning of Line

c-A Beginning of Line

Moves the cursor to the beginning of the current line.

With a numeric argument of n, it moves the cursor to the beginning of the nth

line after the current one, where the current line is numbered 1, the preceding

line is numbered 0, and so on.

End of Line

c-E End Of Line

Moves the cursor to the end of the current line.

With a numeric argument of n, it moves the cursor to the end of the nth line

after the current one, where the current line is numbered 1, the preceding line is

numbered 0, and so on.

Deleting the Current Line

c-K Kill Line

Kills a line at a time and saves it on the kill history.

If the cursor is at the end of a line, c-K kills the newline, merging the current

line with the next one. If the cursor is elsewhere on the line, c-K kills the text

between the cursor and the end of the current line.

With a numeric argument n, c-K kills up to the nth newline following the cursor.

When n is negative or zero, c-K kills back to the 1-nth newline before the cursor.

c-0 c-K kills from the cursor back to the beginning of the line that it is on.

Page 2237

Deleting Backward on the Line

CLEAR INPUT Clear

Kills backward to the start of the current line and saves it on the kill history. If

point is already at the beginning of the line, it kills the previous line. With a

numeric argument n, it kills between point and the start of the nth line above the

current line. Use CLEAR INPUT when entering a new line of text, to delete the

whole line.

Transposing Lines of Text

c-X c-T Exchange Lines

Exchanges the current line with the previous one and leaves the cursor at the

beginning of the next line.

With a nonzero numeric argument n, c-X c-T deletes the previous line (including

the following newline), moves down n lines, and reinserts the deleted line.

With a numeric argument of zero, c-X c-T exchanges the lines at point and mark,

advancing both point and mark to the beginning of the next line.

Deleting Sentences

According to Zmacs, sentences can end with question marks, periods, and exclama-

tion points. Furthermore, these punctuation marks only end a sentence when fol-

lowed by:

• A newline

• A space followed by either a newline or another space

However, Zmacs allows any number of closing characters, which are ", ’,), and],

between the sentence-ending punctuation and the white space that follows it. A

sentence also starts after a blank line.

This corresponds closely to standard typing conventions. Zmacs does not recognize

a period followed by one space as the end of a sentence, for example, as in "e.g. "

or "Dr. ".

Deleting the Current Sentence

m-K Kill Sentence

Kills the text between the cursor and the end of the current sentence, and saves it

on the kill history.

With a numeric argument of n, m-K kills the text between the cursor and the end

of the nth sentence after the cursor, counting the current sentence. If the argu-

ment is negative, m-K kills -n sentences before the cursor, counting the current

sentence.

Page 2238

Deleting the Previous Sentence

c-X RUBOUT Backward Kill Sentence

Kills backward one sentence and saves it on the kill history.

With a negative argument, c-X RUBOUT kills forward one sentence in a similar

manner.

Killing and Yanking Text

The kill history contains deleted text and is the history that saves the results of

the commands described in this chapter. It allows you to move text from one

editor window to another, for example, from the editor to a Lisp Listener. The

yanking commands described below retrieve elements from the kill history.

Yanking is getting back previously killed text or previously typed minibuffer com-

mands. Using a few keystrokes, you can retrieve editing commands you have previ-

ously typed or restore any piece of text you have previously killed. Popping is

moving through the history of previous commands or killed text.

To get back the last piece of text killed, press c-Y. To work your way back

through the kill history, press m-Y repeatedly.

To get back the last command typed, press c-m-Y. To work your way back through

the command history, press m-Y repeatedly. This technique works only on editor

commands that use the minibuffer in some way. Commands such as c-N or c-P are

not kept in the history.

You can also select items from the entire kill history or command history, or

search a part of these histories using string-matching.

Here are the commands for yanking in the kill history:

c-Y Yanks the first element in the kill history.

m-Y After c-Y, m-Y yanks the previous element in the kill history.

Subsequent m-Ys move down the kill history.

c-0 c-Y Displays the elements of the kill history. You can click left on

any item in the history to insert it in your buffer. Only the

first 25 elements of the history are shown. Click left on (N

more elements in history.) to display the rest of the history.

c-sh-Y Yanks the first element in the kill history that matches a

string you supply.

m-sh-Y After c-sh-Y, m-sh-Y yanks a previous element in the kill

history that matches the string you supplied. Subsequent

m-sh-Ys move down the kill history matching the same string.

If pressed after a c-Y, m-sh-Y prompts for a string to match.

c-0 c-sh-Y Displays the elements of the kill history that match a string

you supply. You can click left on any item in the history to

insert it in your buffer. Only the first 25 matching elements of

Page 2239

the history are shown. Click left on (N more elements in

history.) to display the rest of the matching history.

What Histories Save

Zmacs uses several histories:

Type Description

Kill History of text deleted or saved. The kill history is shared with

the input editor, thus allowing you to move text between files

and the Lisp Listener.

Replace History of arguments to Query Replace (m-X) and related com-

mands. See the section "Searching, Replacing, and Sorting in

Zmacs".

Buffer History of editor buffers visited in this window. See the section

"Manipulating Buffers and Files in Zmacs".

Pathname History of file names that have been typed.

Command History of editor commands that use the minibuffer, and their

arguments. Commands that do not use the minibuffer, for ex-

ample, m-RUBOUT, are not recorded in the history.

Definition History of names of definitions that have been typed.

There is no limit to the length of a history, but the typeout window displays only

the first 25 elements of the history. When the history contains more than 25

elements, the screen displays a mouse-sensitive line: n more elements in history.

Clicking Left displays the rest of the history.

Viewing the Kill History

You can view and retrieve either the complete kill history or a history of all text

including a string you specify.

c-0 c-Y

Displays the elements of the kill history:

Kill history:

 1: last piece of killed text

 2: next-to-last piece of killed text

 3: this one is a very long piece of killed text...

 .

 .

 .

(End of history.)

�

Point with the mouse to any element of the history and click Left to insert it into

the current buffer. Only the first 25 elements of the history are shown. Click Left

on (N more elements in history.) to display the rest of the history.

Page 2240

c-0 c-sh-Y

Displays the elements of the kill history that match a string you supply. For ex-

ample, if you supply the string "shift", you might see the following:

Kill history:

 3: first piece of killed text to click on and shift to someplace else

 5: Yon Cassius has a lean and shifty look

 9: Using the shift key with yank commands adds string searching

 .

 .

 .

(End of history.)

�

Point with the mouse to any element of the history and click Left to insert it into

the current buffer. Only the first 25 elements of the matching history are shown.

Click Left on (N more elements in history.) to display the rest of the matching

history.

Viewing the Editor Command History

You can view and retrieve either the complete command history or a history of all

commands including a string you specify.

c-0 c-m-Y

Displays the elements of the editor command history:

Command history:

 1: Control-X Control-F last-file-read-in

 2: Help A

 3: Control-X Control-F other-file-read-in

 .

 .

 .

(End of history.)

�

This command is context-sensitive. When typed at a Lisp Listener, it lists the

recent commands typed there. When typed at the minibuffer, it lists the history

appropriate to what is being read in the minibuffer, for example, a pathname or

the name of a definition.

The editor history contains only commands that use the minibuffer. Commands

such as c-N and c-P are not in the history.

c-0 c-m-sh-Y

Displays the elements of the editor command history that match a string you

supply. For example, if you supply the string "sh", you might see the following:

Page 2241

Command history:

 3: 0 Control-Meta-Shift-Y oregano

 5: Show Mail

 7: Show Spell Dictionaries

112: Meta-X Finish Patch

 .

 .

(End of history.)

�

This command is context-sensitive. When typed at a Lisp Listener, it lists the

matching commands typed there. When typed at the minibuffer, it lists the match-

ing history appropriate to what is being read in the minibuffer, for example, a

pathname or the name of a definition.

The editor history contains only commands that use the minibuffer. Commands

such as c-N and c-P are not in the history.

Using the Mouse on History Elements

History elements are mouse-sensitive. Click on an element of the kill history to

yank it to point. Click on an element of the command history to reexecute the

command.

Retrieving History Elements

c-Y Yank

Yanks back and inserts the last text killed or saved. If you have moved point since

you killed the text, put point where you want the killed text to go before pressing

c-Y. Point ends up after the text, and mark before the text. An argument of c-U

puts point before the text instead. A numeric argument of 0 displays the kill

history and does not yank anything. A nonzero numeric argument selects an ele-

ment of the kill history.

Note that when you yank text, Concordia automatically places a blank space before

the text you are yanking. You can disable this feature by setting the si:*ie-fixup-

whitespace* variable to nil.

c-sh-Y Yank Matching

Yanks back and inserts the last text killed or saved that matches a string you

supply. If you have moved point since you killed the text, put point where you

want the killed text to go before pressing c-Y. Point ends up after the text, and

mark before the text. An argument of c-U puts point before the text instead. A

numeric argument of 0 displays the kill history and does not yank anything. A

nonzero numeric argument selects an element of the kill history.

c-m-Y Repeat Last Minibuffer Command

Page 2242

Repeats a recent minibuffer command. It yanks the displayed default if there is

one; otherwise, it yanks the last thing typed in this context. A numeric argument

n yanks the nth previous one. An argument of 0 lists the history of elements typed

in the minibuffer.

For a similar command with string-matching, see the section "Repeat Last Match-

ing MiniBuffer Command (m-X) Zmail Command".

c-m-sh-Y Repeat Last Matching Minibuffer Command

Yanks back and repeats the last minibuffer command that includes a string you

specify. m-sh-Y yanks back previous commands that contain the same string.

m-Y Yank Pop

Corrects a yank to use a different element of its history. The most recent com-

mand must be a yanking command (c-Y, m-Y, c-sh-Y, m-sh-Y or c-m-Y). The

retrieved item (text or command) that was yanked by that command is replaced by

the previous element of the corresponding history. The history is rotated (that is,

the elements remain in the same order, but the pointer to the current element

moves with each successive m-Y) to bring this element to the top.

A numeric argument of zero displays the history. A positive numeric argument of

n moves n elements back in the history. A negative numeric argument moves to a

newer history element; this only makes sense after you rotate the history.

m-sh-Y Yank Pop Matching

Corrects a yank to use a different element of its history. The most recent com-

mand must be a yanking command (c-Y, m-Y, c-sh-Y, m-sh-Y or c-m-Y). If you

supplied a matching string in the previous command, that string is used. Other-

wise, m-sh-Y prompts for a string. The retrieved item (text or command) that was

yanked by that command is replaced by the previous element of the corresponding

history. The history is rotated (that is, the elements remain in the same order, but

the pointer to the current element moves with each successive m-sh-Y) to bring

this element to the top.

A numeric argument of 0 displays the history. A positive numeric argument of n

moves n elements back in the history. A negative numeric argument moves to a

newer history element; this only makes sense after you rotate the history.

Kill Merging

Normally, each kill command pushes a new block onto the kill history. However,

two or more kill commands in a row combine their text into a single element on

the history, so that a single c-Y command gets it all back as it was before it was

killed. This means that you do not have to kill all the text in one command; you

can keep killing line after line, or word after word, until you have killed it all, and

you can still get it all back at once.

Page 2243

Commands that kill forward from point add onto the end of the previous killed

text. Commands that kill backward from point add onto the beginning. This way,

any sequence of mixed forward and backward kill commands puts all the killed

text into one element without rearrangement.

If a kill command is separated from the last kill command by other commands, it

starts a new element on the kill history, unless you tell it not to by saying c-m-W

(Append Next Kill) in front of it. The c-m-W tells the following command, if it is a

kill command, to append the text it kills to the last killed text, instead of starting

a new element. With c-m-W, you can kill several discrete pieces of text and accu-

mulate them to be yanked back in one place.�

c-m-W Append Next Kill

Makes the next kill command append text to the newest element of the kill histo-

ry.

Searching, Replacing, and Sorting in Zmacs

Searching in Zmacs

Like other editors, Zmacs has commands for searching for an occurrence of a

string. Zmacs search commands are incremental; that is, they begin to search as

soon as you type the first character.

This section describes how to search incrementally forward and backward in the

buffer, as well as a method for specifying a complete search string first and then

specifying a direction in which to search.

Incremental Search

The command to search is c-S (Incremental Search). c-S reads in characters and

positions the cursor at the first occurrence of the characters that you have typed.

If you type c-S and then t, the cursor moves right after the first t. Type an r,

and see the cursor move to after the first tr. Add a y and the cursor moves to the

first try after the place where you started the search. At the same time, the try

has echoed at the bottom of the screen. Stop typing when you have typed enough

characters to identify the place you want.

You can rub out any character you type. After the try, pressing RUBOUT makes the

y disappear from the bottom of the screen, leaving only tr. The cursor moves back

to the tr. Rubbing out the r and t moves the cursor back to where you started the

search. To exit from the search, press END or ESCAPE. You can also use ABORT to

exit from the search. To abort out of the search and return to the original starting

point in the buffer, use c-G.

If you want to search for something else, press CLEAR INPUT to erase the current

search string. You are still in the search loop, so type another search string.

Page 2244

If the string cannot be found with c-S, type c-R to search backward for the de-

fault string. Zmacs remembers the default search string  you can reinvoke the

search at any time using c-S c-S, to search forward for it, or c-R c-R to search

backward.�

c-S Incremental Search

Searches for a character string while you type it, searching forward to the end of

the buffer. It prompts for a string in the echo area with I-Search:. As you type

characters in, c-S displays the accumulating string in the echo area and searches

for it at the same time. If no string is found, it displays Failing I-Search:. When

it locates the string, it puts the cursor after it so that repeated c-Ss locate

subsequent occurrences of the default string in the buffer.

RUBOUT Removes a character and backs up the search to the last match.

ESCAPE When typed before any search characters, switches to String

Search. See the section "Zmacs String Search".

END or ESCAPE Exits the search.

c-G Exits the search and returns to original starting point in the

buffer.

c-Q Quotes the next character, to prevent it from terminating the

search.

c-S Repeats the search.

c-R Reverses the search to search backwards.

If c-S or c-R is the first character typed, the previous search string is used again

as the default. Entering any other command character terminates the search (and

then executes that command).

Reverse Incremental Search

c-R, Reverse Incremental Search, works exactly the same way as c-S, Incremental

Search, except that it searches backward towards the top of the buffer from point,

instead of forward.�

c-R Reverse Incremental Search

Searches for a character string while you type it, searching backward to the begin-

ning of the buffer. It prompts for a string in the echo area with Reverse

I-Search:. As you type characters in, c-R displays the accumulating string in the

echo area and searches for it at the same time. If no string is found, it displays

Failing Reverse I-Search:. When it locates the string, it puts the cursor in front

of it so that repeated c-Rs locate previous occurrences of the default string in the

buffer.

RUBOUT Removes a character and backs up the search to the last match.

Page 2245

ESCAPE When typed before any search characters, switches to Reverse

String Search. See the section "Zmacs String Search".

END or ESCAPE Exits the search.

c-G Exits the search and returns to original starting point in the

buffer.

c-Q Quotes the next character, to prevent it from terminating the

search.

c-S Reverses the search to search forward.

c-R Repeats the search.

If c-S or c-R is the first character typed, the previous search string is used again

as the default. Entering any other command character terminates the search (and

then executes that command).

String Search

The string search command, invoked by c-S ESCAPE, lets you type in the entire

string and specify the direction in which to search before starting the search.�

c-S ESCAPE String Search

Searches for a specified string, according to the arguments given with the special

characters below. Another c-S always begins the search. It prompts in the echo

area String Search:. It saves previous string search commands on a ring, retriev-

able with c-D.

The ring contains three elements by default and can be rotated with repeated

c-Ds. The number of elements is controlled by the value of the Zwei variable

Search Ring Max (zwei:*search-ring-max*). You can change it via the m-X Set

Variable command or as follows:

 (zwei:set-zwei-variable "Search Ring Max" n)�

While you are entering the search string, the following characters have special

meanings:

c-B Searches forward from the beginning of the buffer.

c-E Searches backwards from the end of the buffer.

c-F Leaves point at the top of the window, if the window must be

recentered.

c-G Aborts the search.

c-D Gets a string to search for from the ring of previous search

strings.

c-L Redisplays the typein line.

c-M Appends any marked text in the buffer to the search string.

Page 2246

c-Q Quotes the next character.

c-R Reverses the direction of the search.

c-S Does the search, then comes back to the search command

loop.

c-U or CLEAR INPUT Erases all characters typed so far.

c-V Delimited Search: Searches for occurrences of the string sur-

rounded by delimiters.

c-W Word Search: Searches for words in this sequence regardless

of intervening punctuation, white space, newlines, and other

delimiters.

c-Y Appends the string on top of the search ring to the search

string.

RUBOUT Rubs out the previous character typed.

END or ESCAPE Does the search and exits.

c-Middle Searches for what the mouse is pointing at.

If you search for an empty string, it uses the default. Otherwise, the string you

type becomes the default, and the default is saved unless it is a single character.

Locating and Replacing Strings Automatically

c-%, Replace String, searches forward for a string and replaces that string with

another. c-% prompts for the string to be replaced, reads the string from the

minibuffer, and then reads the replacement string. After it goes through the

buffer trying to make the replacements, it tells you how many replacements it

made (1. replacements.), or that it made none (Point pushed. Query replace done)�

.

You can also substitute one string for another selectively throughout the buffer,

with m-%, Query Replace. m-% prompts first for the string to be replaced (Query-

replace some occurrences of:), and then for the string to replace it with (Query-

replace some occurrences of "string" with:). Terminate each string you specify

with RETURN. m-% locates each occurrence and lets you decide what to do about

each one.

Making Global Replacements in Zmacs

c-% Replace String

Replace String (m-X)

Replaces all occurrences of a given string with another, where the string can be

characters, words, or phrases. It prompts first for the string to remove and second

for the string to replace it with. A numeric argument n means to make n replace-

Page 2247

ments. If you do not specify a region, it begins at point and replaces all occur-

rences of the first string that occur after point in the buffer. Usually it attempts

to match the case of the replacements with the case of the string being replaced.

This behavior is controlled by the Zmacs variable Case Replace P (default t). When

it is null, case matching does not take place. (For descriptions of Zmacs variables,

see the section "How to Specify Zmacs Variable Settings".)

Querying While Making Global Replacements in Zmacs

m-% Query Replace

Query Replace (m-X)

If you do not specify a region, this command starts at point and replaces a string

through the rest of the buffer, asking about each occurrence, where the string can

be characters, words, or phrases. It prompts for each string. You first give it

STRING1, then STRING2, and it finds the first STRING1, displaying it in context. You

respond with one of the following characters:

SPACE Replaces this STRING1 with STRING2 and shows next STRING1.

RUBOUT Leaves this STRING1, but shows next STRING1.

, Replaces this STRING1 and shows result, waiting for a SPACE,

c-R, or ESCAPE.

Period Replaces this STRING1 and ends query replace.

c-G Leaves this occurrence of STRING1 unchanged and terminates

the query replace.

ESCAPE Same as c-G.

^ Returns to site of previous STRING1.

c-W Kills this STRING1 and enters recursive edit.

c-R Enters recursive editing mode immediately. Press END to re-

turn to Query Replace.

c-L Redisplays screen.

! Replaces all remaining STRING1s without asking.�

Entering any other character terminates the command. Usually the command at-

tempts to match the case of the replacements with the case of the string being

replaced. This behavior is controlled by the Zmacs variable zwei:*case-replace-p*

(default t). When it is null, case matching does not take place. (For descriptions of

Zmacs variables, see the section "How to Specify Zmacs Variable Settings".)

If you give a numeric argument, it does not consider STRING1s that are not bound-

ed on both sides by delimiter characters.

Querying While Making Multiple Global Replacements

Page 2248

You can specify single or multiple global replacements. While doing multiple query

replacements, you can specify the replacement strings either from the minibuffer

or from another buffer altogether.�

Multiple Query Replace (m-X)

Performs query replace using many pairs of strings at the same time, where the

strings can be characters, words, or phrases. (See the section "Querying While

Making Global Replacements in Zmacs".) Strings are read in alternate minibuffers;

when you finish entering all strings, press RETURN twice. An argument means that

the strings must be surrounded by delimiter characters. A negative argument

means that the strings must be delimited Lisp objects (not lists), rather than

words.

Multiple Query Replace From Buffer (m-X)

Performs query replace using many pairs of strings supplied from the specified

buffer. (See the section "Querying While Making Global Replacements in Zmacs".)

The current buffer should contain a STRING1, a space, and a STRING2. Put quotation

marks around any string that contains a space, tab, backspace, semicolon, or new-

line character. Lines in the buffer that begin with a semicolon or are blank are

ignored. In other words, each string in the buffer is a Lisp string, but quotation

marks can be omitted if the string contains no special characters.

Other Types of Replacement Operations in Zmacs

Besides making string replacements in text, Zmacs commands replace:

• Tabs with spaces, and vice versa

• A region into the kill history

• Evaluated code into the buffer

• The value of LET into its variable

• A string for delimited Lisp objects (not lists or nil)�

Tabify

Tabify (m-X)

Replace as many space characters in the buffer as possible with equivalent tabs. If

a region is marked, this command tabifies the region.�

Untabify

Untabify (m-X)

Page 2249

Replace all tab characters in the buffer as possible with equivalent space charac-

ters. If a region is marked, this command untabifies the region.�

Query Replace Last Kill

Query Replace Last Kill (m-X)

Replaces the first item in the kill history with the region.�

Evaluate And Replace Into Buffer

Evaluate And Replace Into Buffer (m-X)

Evaluates the Lisp object following point in the buffer and replaces it with its

result.

Query Replace LET Binding

Query Replace Let Binding (m-X)

Replaces variable of LET with its value. Point must be after or within the binding

to be modified.�

Atom Query Replace

Atom Query Replace (m-X)

Performs query replace for delimited Lisp objects (except for lists or nil). (See the

section "Querying While Making Global Replacements in Zmacs".)

Tag Tables and Search Domains

Tag tables, a means of global searching and replacing, allow you to make sweeping

changes to groups of files without having to explicitly locate each file. A tag table

is a temporary Zmacs support buffer that contains the names of sets of buffers

and files, which you specify. You can edit these specified buffers and files as a

unit, once you have specified them as items in a tag table. Tag tables remain

active for the duration of the Zmacs session; you cannot permanently save tag

tables.

You can use tag tables, for example, to:

• Search for all references to a certain variable and alter them consistently

• Search for all occurrences of an obsolete term and update it

• Search for all functions that give a certain error message

Page 2250

How Tag Tables Work

First, you specify the buffers or files that will make up the tag table. See the

section "Specifying and Listing Tag Tables". Then you can perform an operation.

See the section "Performing Operations with Tag Tables". Zmacs performs the

operation on the files within the tag table that you have specified.�

Example

Suppose you want to perform a tag query replace in several files. Use Tags Query

Replace (m-X) to begin, see the section "Performing Operations with Tag Tables".

The minibuffer prompts as in Query Replace (m-X) for the string to be replaced

and the replacement string. The operation begins and Zmacs displays Control-. is

now Continue query replacement of "string-old" with "string-new"; as it displays

each occurrence, you deal with each one using the appropriate response characters.

Tags Query Replace goes through all the files specified in the tag table, listing

their names in the minibuffer and stopping at each occurrence of "string-old".

When it finishes searching all the files, it displays No more files.

Specifying and Listing Tag Tables

Select All Buffers As Tag Table (m-X)

Selects all existing file buffers. With a numeric argument, prompts for a string

and only buffers whose name contains that string are considered. It creates a

support buffer called *Tag-Table-N*, which contains a list of the names of all the

buffers. See the section "Support Buffers".

Select Some Buffers As Tag Table (m-X)

Selects some existing file buffers, querying about each one. With a numeric argu-

ment, prompts for a string and only buffers whose name contains that string are

considered.

Select Some Files As Tag Table (m-X)

Creates a support buffer with the names of the selected files.

Select Tag Table (m-X)

Makes a tag table current for commands like tag search. It prompts in the

minibuffer for the name of the tag table to use.

Select System As Tag Table (m-X)

Creates a tag table for all files in a system (and its subsystems) defined by the

system definition. It prompts in the minibuffer for the name of a system  press

HELP to see a display of system names. It selects the system but does not read the

files in (use Find Files in Tag Table (m-X) to read them in).

Giving a numeric argument (c-U) to Select System As Tag Table includes all

component systems of the system in the tag table.

List Tag Tables (m-X)

Page 2251

Lists in the typeout window the names of all the tag tables, and for each one

shows the files it contains.

Performing Operations with Tag Tables

Tags Search (m-X)

Searches for the specified string within files of the tag table. It prompts in the

minibuffer for the search string. If there is no current tag table, it prompts for

one.

Zmacs displays in the echo area the name of each of the files in the tag table as it

searches each file for the specified string. As Zmacs begins the operation and finds

the first occurrence, it displays Point pushed. in the minibuffer and moves the

cursor to the occurrence. After you deal with that occurrence, use c-., the Next

Possibility command, to locate the next occurrence. (See the section "Displaying

the Next Possibility".) Go through the specified files using c-. to the end.

Tags Query Replace (m-X)

You can also specify a region for these to operate on, asking about each occur-

rence. It prompts first for the string to remove and second for the string to

replace it with. You first give it STRING1, then STRING2, and it finds the first

STRING1, displaying it in context. You respond with one of the following characters:

SPACE Replaces this STRING1 with STRING2 and shows next STRING1.

RUBOUT Does not replace this occurrence, but shows next STRING1.

, Replaces this STRING1 and shows result, waiting for a SPACE,

c-R, or ESCAPE.

Period Replaces this STRING1 and terminates the query replace.

c-G Leaves this occurrence of STRING1 unchanged and terminates

the query replace.

ESCAPE Same as c-G.

^ Returns to site of previous STRING1 (actually, pops the point-

pdl).

c-W Kills this STRING1 and enters recursive edit.

c-R Enters recursive editing mode immediately. Press END to re-

turn to Query Replace.

c-L Redisplays screen.

! Replaces all remaining STRING1s without asking.�

Entering any other command character terminates the command. Usually the com-

mand attempts to match the case of the replacements with the case of the string

being replaced. This behavior is controlled by the Zmacs variable Case Replace P

(default t). When it is null, case matching does not take place. (For descriptions of

Zmacs variables, see the section "How to Specify Zmacs Variable Settings".)

Page 2252

If you give a numeric argument, it does not consider STRING1s that are not bound-

ed on both sides by delimiter characters.

Tags Multiple Query Replace (m-X)

Performs tags query replace using many pairs of strings at the same time, where

the strings can be characters, words, or phrases. Strings are read in alternate

minibuffers; when you finish entering all strings, press RETURN twice. An argument

means that the strings must be surrounded by delimiter characters. A negative

argument means that the strings must be delimited Lisp objects (excluding lists

and nil), rather than words.

Tags Multiple Query Replace From Buffer (m-X)

Replaces occurrences of any number of strings with other strings within the tag

table files, asking about each change. The current buffer should contain a STRING1,

a space, and a STRING2. Put quotation marks around any string that contains a

space, tab, backspace, semicolon, or newline character. Lines in the buffer that

begin with a semicolon or are blank are ignored. In other words, each string in

the buffer is a Lisp string, but quotation marks can be omitted if the string

contains no special characters.

A positive numeric argument means to consider only the cases where the strings

to replace occur as a word (rather than within a word). A negative numeric argu-

ment means to consider only delimited Lisp objects (excluding lists and nil), rather

than words.

This command has the same options as Tags Query Replace.

Find Files in Tag Table (m-X)

Reads every file in the selected tag table into the editor. If there is no current tag

table, it prompts for the name of one, which you can specify as a file (F), all editor

buffers (B), or a system (S).

Visit Tag Table (m-X)

Creates a tag table by reading in a PDP-10 EMACS tag file. Tag files provide a

list of the names of files that belong together as part of a system and a list of

names and locations of definitions within the files. The file names are made into a

tag table; the definition names are added to the completion table.

First, it reads in the specified tag file. It prompts for a file name from the

minibuffer. Next, it goes through the tag file and marks the name of each tag as

being a possible section of its file. The Edit Definition command (m-.) uses these

marks to figure out which file to use.

It uses a support buffer to hold the elements of the tag table and another support

buffer to hold the state of a pending operation involving all the files in the tag

table. See the section "Support Buffers". Each contains the names of the files.

Support Buffers

Page 2253

Zmacs creates support buffers to save lists that it creates as part of the execution

of some commands:

• Tag table commands.

• Edit Buffers (m-X).

• Source Comare (m-X).

• Lists for Edit Definition (m-.), when more than one definition exists.

• Buffers for Dired (m-X).

• Everything that edits a sequence of definitions, as in List Callers (m-X) or List

Methods (m-X).

This means that you can examine the buffers containing the lists even after you

have done some editing.

c-X c-B, the List Buffers command, displays these support buffers in the listing of

buffers. Their names are, for example, *Definitions-1*, *Tags-Search-1*, and

Tags-Query-Replace-1.

To avoid proliferation of editor buffers, Zmacs reuses support buffers in most

cases, so that it usually saves no more than two of each type of support buffer at

a time.

Possibility Buffers

Each time you use a command that generates a set of possibilities (for example,

Tags Search (m-X) and Tags Query Replace (m-X)), it creates a possibility buffer

for that set and pushes the set of possibilities onto a stack. c-., Next Possibility,

extracts the next item from the set at the top of the stack. The set is popped from

the stack when no more items remain in it. Several informational messages are

associated with this facility. When the whole possibilities stack is empty and you

have nothing more pending it displays:

No more sets of possibilities.�

Displaying the Next Possibility

c-. Next Possibility

Selects the next possibility for the current set of possibilities. With a negative

argument, pops off a set of possibilities. An argument of c-U or any positive num-

ber displays the remaining possibilities in the current set. With an argument of 0,

selects the current buffer of possibilities.

Page 2254

For a description of the Edit Definition and Edit Callers commands, see the sec-

tion "Editing Lisp Programs in Zmacs".

Example

Suppose you had been using c-. to move through the set provided by Tags Search

and you then used Tags Query Replace to push a new set of possibilities onto the

stack. When you finished the set provided by Tags Query Replace, you would see a

message like the following to notify you that the empty set had been popped off

the stack and the set of possibilities for Tags Search had been reinstated:

c-. is now Search for next occurrence of "string"

The position of point in the support buffer indicates the next item for Next

Possibility (c-.). You can select the support buffer and move point manually in

order to skip or redo possibilities.

Typing c-. while in a support buffer that is not at the top of the possibilities

stack moves it to the top, prints an appropriate message, then takes the next pos-

sibility from that support buffer.

Sorting

The Zmacs sorting commands alphabetically sort a region by line, paragraph, or

whatever sort key you specify.

Zmacs Sorting Commands

Sort Lines (m-X)

Sorts the region alphabetically by lines.

Sort Paragraphs (m-X)

Sorts the region alphabetically by paragraphs.

Sort Via Keyboard Macros (m-X)

Sorts the region, prompting for actions to define the records (the units of the

region to be rearranged) and the sort keys (the fields in the records that are com-

pared alphabetically to determine the new order of records). It prompts you to

define the records and sort keys by performing positioning commands. It prompts

for three actions:

1. Move to the beginning of the sort key (that is, move the cursor to the

beginning of the field upon which to sort).

2. Move to the end of the sort key (that is, move to the end of the sort field).

Page 2255

3. Move to the end of the sort record (that is, move to the end of the record

containing that field).�

For each, it records the keystrokes that you use (as keyboard macros) and plays

those back to find and sort the records in the region.

Changing Case and Indentation in Zmacs

Changing Case

Zmacs offers extended commands that convert the case of the code for words,

regions, and buffers.

Changing Case of Words

m-C Uppercase Initial

Puts next word in lowercase, but capitalizes initial character. With an argument, it

capitalizes that many words.

m-L Lowercase Word

Puts next word in lowercase. With an argument, it puts that many words in

lowercase.

m-U Uppercase Word

Puts next word in uppercase. With an argument, it puts that many words in

uppercase.

Changing Case of Regions

c-X c-U Uppercase Region

Uppercases the region.

c-X c-L Lowercase Region

Lowercases the region.

Uppercase Code in Region (m-X)

Converts all code (not comments, strings, or quoted characters) to uppercase. This

gives the same effect as retyping that text while in Electric Shift Lock Mode. It

operates on the region if there is one, otherwise it operates on the current defini-

tion.

Lowercase Code in Region (m-X)

Converts all code (not comments, strings, or quoted characters) to lowercase. It

operates on the region if there is one, otherwise it operates on the current defini-

tion.

Page 2256

Changing Case of Buffers

Uppercase Code in Buffer (m-X)

Converts all code (not comments, strings, or quoted characters) to uppercase. This

gives the same effect as retyping that text while in Electric Shift Lock Mode. It

queries for a buffer name (the default is the current buffer) and operates on that

buffer.

Lowercase Code in Buffer (m-X)

Converts all code (not comments, strings, or quoted characters) to lowercase. It

queries for a buffer name (the default is the current buffer) and operates on that

buffer.

Indentation

Indentation makes Lisp programs readable. Proper indentation reflects the struc-

ture of a program. Expressions should be indented so that their subforms are easi-

ly identifiable, and so that a function can be related to its arguments by eye,

without counting parentheses.

The indentation commands work in any Zmacs major mode. However, the TAB key

indents differently depending on the mode.

You can control the way Zmacs indents language forms. This is useful when you

write macros, which parse their arguments differently from functions. See the

section "Controlling Indentation of Lisp Forms in Zmacs".

� Indenting Current Line

TAB

In Lisp mode, the TAB key indents the current line of Lisp code correctly with

respect to the line above it. (In most other modes, TAB inserts a Tab character.)

Point remains fixed with respect to the code.

With a numeric argument n, it indents the next n lines including the current one,

and leaves point at the n+1st line.

c-TAB Indent Differently

Tries to indent this line differently. If called repeatedly, it makes multiple at-

tempts.

m-TAB Insert Tab

Inserts a Tab character, even in Lisp Mode, in the buffer at point.

c-m-TAB Indent For Lisp

Indents this line to make indented Lisp code, even in a mode other than Lisp

Mode. A numeric argument specifies the number of lines to indent.

Page 2257

� Indenting New Line

The keystroke combination RETURN TAB gets you into the right position to start

typing the next line of code. LINE is the abbreviation for that combination.�

LINE Indent New Line

If the next two lines are blank, goes to the next line; otherwise, it creates a new

blank line following the current one. In any case, it does a TAB on that blank line.

� Reindenting Expression

c-m-Q Indent Sexp

Corrects the indentation of the expression following point by adjusting the amount

of space before each line in the expression. Position point in front of the incorrect-

ly indented expression and press c-m-Q. This does not affect the indentation of the

current line, but only fixes the indentation of following lines with respect to the

current line. Use after modifying an expression.

With a numeric argument of n, it fixes the indentation of the next n expressions.

� Indenting Region

c-m-\ Indent Region

Indents each line in the region. With no argument, it calls the current Tab

command to indent. With an argument of n, it indents each line n spaces in the

current font.

� Indenting Region Uniformly

c-X TAB Indent Rigidly

c-X c-I

Shifts text in the region sideways as a unit. The default is to shift text one space

(in the current character style) to the right. A numeric argument (positive or

negative) shifts the region that many spaces to the right or left, respectively.

� Aligning Indentation

Indent Under (c-m-X)

Aligns indentation under string. You specify string by clicking on it or typing it in

the minibuffer.

When you use the mouse to specify the alignment string, begin by putting the

cursor on the line you want to indent, then click right, click on Indent Under,

then either point the cursor (a down-arrow pointing at a box) at a character that

you want to line up with and click left, or type in a string for which it searches.

Page 2258

When you type the alignment string in the minibuffer, it searches back, line by

line, forward in each line, for a string that matches the one read and that is far-

ther to the right than the cursor already is. It indents to align with the string

found, removing any previous indentation first.

� Going Back to First Indented Character

m-M Back To Indentation

c-m-M

m-RETURN

c-m-RETURN

Positions point before the first nonblank character on the current line.

� Deleting Indentation

m-^ Delete Indentation

c-m-^

Deletes the newline character and any indentation at the beginning of the current

line. It tacks the current line onto the end of the previous line, leaving one space

between them when appropriate, for example, at the beginning of a sentence.

With any numeric argument, it moves down a line first, killing the whitespace at

the end of the current line.

� New Line with This Indentation

m-O This Indentation

Makes a new line after the current one, deducing the new line’s indentation from

point’s position on the current line. If point is to the left of the first nonblank

character on the current line, it indents the new line exactly like the current one.

But if point is to the right of the first nonblank character, it indents the new line

to the current position of point. Regardless, it leaves point at the end of the newly

created line.

With a numeric argument, the new line is always indented like the current one, no

matter where point is. With an argument of zero, it indents current line to point.

� Moving Rest of Line Down

c-m-O Split Line

Moves rest of current line down one line. It inserts a carriage return and indents

new line directly beneath point. With a numeric argument n, it moves down n

lines.

Page 2259

� Inserting Blank Line

c-O Make Room

Inserts a blank line after point. With a numeric argument n, it inserts n blank

lines.

� Deleting Blank Line

c-X c-O Delete Blank Lines

Deletes any blank lines around the end of the current line.

� Centering the Current Line

m-S Center Line

Centers the text of the current line within the line. With an argument n, it

centers n lines and moves past them. Do not use this command for indenting Lisp

code.

� Controlling Indentation of Lisp Forms

This section shows you how to control the way that Zmacs indents Lisp forms

when you use LINE, TAB, c-m-\, c-m-Q and so forth. This information is most

useful when you are creating your own macros, which parse their arguments dif-

ferently from functions.

This information applies to Zmacs in Lisp Mode only.

In indenting forms, Zmacs makes no distinction between functions, macros, or just

data. Indentation is controlled by a property of the first symbol of the form. For

convenience, this discussion refers to these symbols as functions if the technique

applies to symbols of any type and as macros when the technique applies to

macros only.

There are four methods of controlling indentation:

1. Start the name of your function with def...

2. Use &body in your macro’s argument list

3. Use the zwei:indentation declaration

4. Use the zwei:defindentation special form

All four methods can be used to control the indentation of macros. The def...

method and the zwei:defindentation method can be used to control the indenta-

tion of other forms as well. If you use none of these methods, forms beginning

with your symbol will indent like ordinary functions.

Page 2260

It should be noted that Zmacs will not know that you have used zwei:indentation

or &body until you compile your defmacro or evaluate the zwei:defindentation.

This discussion of indentation uses some special terminology.

For instance, indentation n means that Zmacs indents the first character of that

argument n characters to the right of the first character of the function name.

Thus, if Zmacs indents a form like this

 (elbow-macro

 charm

 "grace"

 (beauty))

then the argument charm is getting indentation 0, the argument "grace" is getting

indentation 1, and the argument (beauty) is getting indentation 2.

Standard indentation refers to the indentation behavior of elements of normal lists.

The first form on a line indents to the same column as the first argument on the

previous line which belongs to the same function. When the first argument of a

function is not on the same line as the function name, it gets indentation 1. Here

are some examples of standard indentation:

(list 0

 1

 2)

�

(list

 0

 1

 2)

�

(list 0 1

 2 3 4)

�

� Controlling Indentation by Naming Your Function def...

If the name of your function begins with def..., argument 2 (the "third" argument)

is given indentation 1, and all other arguments get standard indentation, like

defun.

For example:

(defmacro define-thing (name args thing-maker thing-destroyer)

 ‘(progn (defun (:property ,name maker) ,args ,thing-maker)

 (defun (:property ,name destroyer) ,args ,thing-destroyer)))

�

(define-thing sylon

 (x y z)

 (...)

 (...))

Page 2261

This indentation behavior is overridden by use of &body, zwei:indentation, or

zwei:defindentation.

� Controlling Indentation Using &body

When you use &body in the argument list of a macro, the first &body argument

gets an indentation of 1. All other arguments get standard indentation.

For example:

(defmacro macro-with-body-arg (a b &body body)

 ‘(list ,a ,b ,@body))

�

(macro-with-body-arg 0

 1

 2

 3)

This indentation behavior is overridden by use of zwei:indentation or

zwei:defindentation.

&rest and &optional have no effect on indentation.

� Controlling Indentation Using zwei:indentation

zwei:indentation Declaration

zwei:indentation subform-index indentation subform-index indentation... declaration

zwei:indentation . indentor-function declaration

The zwei:indentation declaration (and the zwei:defindentation special form) give

you the most control over the way Zmacs indents calls to your macros.

zwei:indentation is placed in the declaration part of the defmacro which defines

your macro. When using the first syntax of zwei:indentation, the declaration

should be given an even number of arguments. Each pair of arguments assigns a

specific indentation to a particular argument. Note that, for the purposes of this

declaration, the arguments of your macro are numbered from 0.

Here is an example using zwei:indentation:

 (defmacro strangely-indented-macro (arg0 arg1 arg2 arg3 &rest rest)

 (declare (zwei:indentation 2 3 5 0 6 2))

 ‘(list ,arg0 ,arg1 ,arg2 ,arg3 ,@rest))

This causes argument 2 to get indentation 3, and argument 5 to get indentation 0.

All other arguments get standard indentation, which causes argument 1 to follow

argument 0, argument 3 to follow argument 2, etc.

Here is how this example macro is indented:

Page 2262

;0123456 <- indentation

(strangely-indented-macro 0

 1

 2

 3

 4

 5

 6

 7

 8

 9)

zwei:indentation has a second syntax. When the cdr of the declaration is a func-

tion or a symbol with a function definition, that function is called to do the in-

denting.

For example,

(declare (zwei:indentation . zwei:indent-prog))

would cause the macro to indent like prog.

In addition to zwei:indent-prog, you could also use zwei:indent-prog-or-tagbody,

zwei:indent-tagbody, or zwei:indent-loop. There is no further documentation on

these function definitions.

� Controlling Indentation Using zwei:defindentation

zwei:defindentation Special Form

zwei:defindentation (name subform-index indentation subform-index indentation...)

zwei:defindentation (name . indentor-function)

zwei:defindentation is similar to zwei:indentation in that it allows you to control

the indentation of certain forms. The subform-index, indentation and indentor-

function arguments work in the same way as for zwei:indentation.

zwei:defindentation differs from zwei:indentation in two ways:

• zwei:defindentation can be used to control the indentation of forms beginning

with any symbol, not just macros. The name argument specifies the symbol

whose indentation you wish to control.

• zwei:defindentation is a special form which must be compiled or evaluated af-

ter the definition of your macro, function, or other symbol.

When defining a macro, you will probably find zwei:indentation more convenient

than zwei:defindentation , because there will be one less definition in your source

file, and because recompiling your macro will undo any previous indentation speci-

fications for that macro.

Page 2263

This example shows how to use zwei:defindentation to control the indentation of

a function:

(defun funny-function (&rest rest)

 (length rest))

�

(zwei:defindentation (funny-function 3 5))

�

(funny-function 0

1

2

 3

 4)

�

Using Word Abbreviations in Zmacs

In Word Abbrev Mode, you can use word abbreviations, typing short abbreviations

in an editing buffer to be expanded into text blocks of any length. Thus, you can

substitute short, easily typed made-up words and have commonly used words,

phrases, paragraphs, or program elements appear in their place.

Word Abbrev Mode is a Zmacs minor mode. Turn it on with the m-X Word Abbrev

Mode command. Turn it off with another m-X Word Abbrev Mode command. When

Word Abbrev Mode is on, you see the word Abbrev in the mode line.

Here is an example of using Word Abbrev Mode. Go to an editing buffer. For this

example, make it a text buffer. Enter the m-X Word Abbrev Mode command. Type

a word into the buffer, such as "Tex". Press c-X c-A. You are prompted in the

minibuffer, Text mode abbrev for "Tex":. Type "t1" in the minibuffer. Now type

"t1" and press the space bar. The word "Tex" appears in the buffer. From now on

in this session, any time you type "t1", "Tex" will appear. If you want to have "t1"

appear in the buffer instead of "Tex", type c-X U to Undo the last word abbrevia-

tion.

The expansion is triggered by a space, RETURN, or any punctuation mark, including

asterisks, ampersands, and other symbols on the top row of the keyboard. The

trigger is also inserted into the buffer.

If you want to have an abbreviation expand to more than one word, you can either

select a region before typing c-X c-A or use a numerical argument with c-X for

the number of words you want to include in the abbreviation.

c-X c-A makes word abbreviations only for the current Zmacs major mode. Using

c-X c-A in a Lisp buffer makes abbreviations that work in all Lisp Mode Buffers.

c-X c-A in a Text Mode buffer makes abbreviations that work in all Text Mode

buffers, and so forth. These are called mode word abbrevs. You can make global

word abbrevs with c-X +. Global word abbrevs work in any buffer except those

where a mode word abbrev is defined using the same abbreviation. That is, you

could have "t1" with a global definition of "(FUNCALL STREAM :STRING-OUT

STRING)" and still have "t1" expand to "Tex" in text buffers.

Page 2264

If you want to see a list of word abbreviations, use the m-X List Word Abbrevs

command.

If you want to save a file of word abbreviations, use the m-X Write Word Abbrev

File command. To use the word abbreviations in a file, use the m-X Read Word

Abbrev File command.

You can edit the current word abbreviations with the m-X Edit Word Abbrevs

command. You can put all your word abbreviations in a buffer with the m-X Insert

Word Abbrevs command and then write out the buffer so you can have all your

word abbreviations in a readable form. Word abbreviation files are written in a

special format with the "qwabl" file type and are not readable.

To stop using word abbreviations, you can either turn the mode off with the m-X

Word Abbrev Mode command, or use the m-X Kill All Word Abbrevs command,

which eliminates all defined word abbreviations.

You have some control over capitalization in Word Abbrev Mode. For instance,

with "wabv" as an abbreviation for "word abbreviation", "Wabv" expands to "Word

abbreviation" and "WABV" expands to "WORD ABBREVIATION". Capitalization is

also controlled by how you enter the word abbreviation in the first place.

Word abbreviations work in the minibuffer, so you can even abbreviate commands.

If you always type "otehr" when you mean "other", then make "otehr" the abbrevia-

tion for "other". You can also use word abbreviation in programming, for writing

reports, or in many other editing contexts.

For an alternate method of storing and inserting blocks of text, see the section

"Saving and Inserting Regions in Registers".

Word Abbreviation Commands

The word abbreviation commands in this section are listed in alphabetical order.�

Add Global Word Abbrev

c-X + Add Global Word Abbrev

Prompts for a global word abbreviation. The default is to make a global abbrevia-

tion for the word preceding point. With a numerical argument, the command

makes a global abbreviation for that many words before the point. If a region is

defined, the command makes a global abbreviation for the region.

Global abbreviations work in all buffers unless a mode word abbreviation is de-

fined for the current buffer mode. See the section "Add Mode Word Abbrev".

Add Mode Word Abbrev

c-X c-A Add Mode Word Abbrev

Page 2265

Adds a mode word abbreviation. The default is to make a mode abbreviation for

the word preceding point. With a numerical argument, the command makes a

mode abbreviation for that many words before the point. If a region is defined, the

command makes a mode abbreviation for the region.

Mode abbreviations work in all buffers of the same mode as they were created in.

Lisp mode abbreviations work in all Lisp Mode buffers. Text mode abbreviations

work in all Text Mode buffers, and so forth. Mode word abbreviations override

global word abbreviations for buffers of the same mode. That is, you can have a

global abbreviation that works in all buffers except Text Mode, and have the same

abbreviation expand differently in Text Mode buffers. See the section "Add Global

Word Abbrev".

For a prompting form of this command, see the section "Make Word Abbrev".

Edit Word Abbrevs

Edit Word Abbrevs (m-X)

Allows you to edit word abbreviations. Displays word abbreviations in a Word-

Abbrev buffer that you can edit in the usual fashion.�

Insert Word Abbrevs

Insert Word Abbrevs (m-X)

Inserts a list of word abbreviations and their expansions into the buffer. You can

make a file of this buffer so you will have a readable list of the word abbrevia-

tions you are using. Regular word abbreviation files (.qwabl type) are not readable.

Kill All Word Abbrevs

Kill All Word Abbrevs (m-X)

Eliminates all word abbreviations, whether read in from a file or created interac-

tively with c-X commands.�

List Some Word Abbrevs

List Some Word Abbrevs (m-X)

Lists word abbreviations or expansions that contain a given string. Prompts for

the string. If you have "t1" as an abbreviation for "Tex", either "1" or "ex" will list

the abbreviation.

The command m-X List Word Abbrevs, lists all abbreviations and expansions. See

the section "List Word Abbrevs".

Page 2266

List Word Abbrevs

List Word Abbrevs (m-X)

Lists all word abbreviations and expansions.�

Make Word Abbrev

Make Word Abbrev (m-X)

Prompts for and creates a new mode word abbreviation. Note that this command

has the same effect as Add Mode Word Abbrev (c-X c-A), but prompts instead of

picking up the word or phrase from text. It does not make a global abbreviation.

See the section "Add Mode Word Abbrev".

See the section "Add Global Word Abbrev".

Read Word Abbrev File

Read Word Abbrev File (m-X)

Reads in a word abbreviation file created with Write Word Abbrev File (m-X).

Abbreviations in the file override previously abbreviations, but you can add new

abbreviations interactively.

Word abbreviation files are not in a readable form. They have the file type .qwabl.

Unexpand Last Word

c-X U Unexpand Last Word

Undoes the last expansion of a word abbreviation, leaving the unexpanded abbrevi-

ation in the buffer. Thus, if you have "t1" as an abbreviation for "Tex", but should,

for some reason, want to have "t1" in your text, you could type "t1", resulting in

"Tex", and then type c-X U, to get rid of "Tex" and leave "t1" behind.�

Word Abbrev Mode

Word Abbrev Mode (m-X)

Turns on Word Abbrev Mode. If Word Abbrev Mode is already on, this command

turns it off. Word Abbrev Mode allows you to define word abbreviations that ex-

pand as you type them. This command displays Abbrev in the mode line.

Write Word Abbrev File

Write Word Abbrev File (m-X)

Writes all the current word abbreviations to a word abbreviation file. Word abbre-

viation files are not in a readable form. They have the file type .qwabl.

Page 2267

Use the m-X Read Word Abbrev File command to read in a previously created file

of abbreviations.

See the section "Read Word Abbrev File".

Using Character Styles in Zmacs

A number of Zmacs commands allow you to use different character styles. Using

character styles, you can indicate program structure with different character

styles, or you can do certain kinds of text formatting.

For another kind of text formatting, see the section "Formatting Text in Zmacs".

The information in this chapter deals with these commands only. For more infor-

mation on character styles, see the section "Character Styles". For more informa-

tion on using character styles in programs, see the section "Character Environ-

ment Facilities".

A number of choices of character styles are available on the Genera system. Here

are a few examples:

Zmacs commands allow you to specify the character style for a character, word,

region, or buffer. (Not all character styles work equally well on all printers.)

Character styles are identified by three characteristics that affect how the charac-

ter appears. These are family, face, and size. The names of character styles incor-

porate these three characteristics. Thus, as in the example, you see the family

Eurex, the face Italic, and the size Huge; this is expressed in commands as

EUREX.ITALIC.HUGE. This is a fully specified character style.

Where you see a character style named as NIL.NIL.NIL (with nils in its name),

this indicates that the character style is being merged against a default style. For

instance, the default character style for Zmacs buffers is FIX.ROMAN.NORMAL.

Thus, if you wish a character in a Zmacs buffer to be bold, it can be entered as

NIL.BOLD.NIL. This means that in the Zmacs buffer, its style is merged against

FIX.ROMAN.NORMAL to produce FIX.BOLD.NORMAL. In some other context,

NIL.BOLD.NIL might be interpreted as SWISS.BOLD.NORMAL because it was

merged against SWISS.ROMAN.NORMAL. A character style specification in the

form NIL.BOLD.NIL is called a character face specification (in contrast to the fully

qualified specification).

Here is an example of using character styles. In a Zmacs buffer, type a word.

Move the cursor back to the beginning of the word. Press m-J. You are prompted

Page 2268

Change character style of word to [default NIL.NIL.NIL]:�

Type in NIL.BOLD.NIL and press RETURN. The word you have selected appears in

bold.

Now move to the beginning of another word. Press m-J. You see the same prompt.

This time move the mouse over the word you just made bold. You’ll see Mouse-L:

NIL.BOLD.NIL in the mouse documentation line. Click Left. The word you selected

appears in bold.

Now move to the beginning of another word. Press m-J. You see the same prompt.

The arrow cursor points straight up and you’ll see Mouse-R: Character style menu

in the mouse documentation line. (If you don’t see it, move the mouse a bit until

it appears.) Click Right, and a menu appears.

Move the mouse over the first word bold and click any button. The word you

selected appears in bold.

The menu allows you many choices of character styles. If you click on the item

Other style by Family/Face/Size ...

�

you get a series of menus that allows you to select the family, faces within that

family, and styles available for that combination of family and face. Not all fami-

lies have all faces and sizes available. Sizes are relative, for example, SMALL or

SMALLER, not absolute.

These are the three ways of selecting a character style. All commands for chang-

ing character styles allow you to use these three methods of specifying the charac-

ter style you want.

A common desire is to include a word or phrase in the same family, but bold or

italic face. If you are typing in a normal Zmacs buffer (FIX.ROMAN.NORMAL)

you can make a word bold by pressing m-J and then simply entering "bold" or just

"b" in response to the prompt. This is specifying a character face.

Page 2269

There are six commands for changing character styles.

• c-J (Change Style Character) changes the style of a character, or several

characters if you use a numeric argument.

• m-J (Change Style Word) changes the style of a word, or several words if you

use a numeric argument.

• c-X c-J (Change Style Region) changes the style of a region.

• m-X Change One Style Region changes one style in a region, but not any other.

Thus, if you had a region with both bold and italic in it, you could change the

italic characters without affecting the bold ones.

• m-X Set Default Character Style sets the default character style for the whole

buffer. The command also prompts to ask if you want to set the default charac-

ter style in the attribute list as well.

• c-m-J (Change Typein Style) changes the character style for newly inserted

characters.�

There are two commands for getting information about character styles in a

buffer.

• m-X Show Character Styles displays all character styles in the buffer or in the

region, if there is one. The display includes the character style, that is, what

you type in to select a character style; the Lisp name of the character style; the

font equivalent; and samples of the character style. When samples are displayed,

you can click on the samples to select that character style for any of the com-

mands for changing character styles.

• m-X Find Character in Style searches forward for the next character in a given

style. You supply the name of the character style as in the commands for

changing or specifying character styles.�

Character Style Commands in Zmacs

The character style commands in this section are listed in alphabetical order.�

Change One Style Region

Change One Style Region (m-X)

Allows you to change one character style in a region without affecting other char-

acter styles in the region. This command prompts you for the style you want to

change and the style to which you want it changed. You can identify the old and

new styles by typing in the name, by clicking with the mouse on the style you

wish, or by clicking through the character styles menu.

Page 2270

To change all the characters in a region to a single style, see the section "Change

Style Region".

c-J Change Style Character

c-J Change Style Character

Changes the character style of a single character, or, with a numeric argument,

more than one character. You can identify the style you want by typing in the

name, by clicking with the mouse on the style you wish, or by clicking through the

character styles menu. �

Change Style Region

c-X c-J Change Style Region

Allows you to change the character style of a region to a single character style.

That is, if there are two character styles in the region, both will be changed to

the character style you choose with this command. You can identify the style you

want by typing in the name, by clicking with the mouse on the style you wish, or

by clicking through the character styles menu.

To change only one character style in a region, see the section "Change One Style

Region".

m-J Change Style Word

m-J Change Style Word

Changes the character style of a single word, or, with a numeric argument, more

than one word. You can identify the style you want by typing in the name, by

clicking with the mouse on the style you wish, or by clicking through the charac-

ter styles menu.

c-m-J Change Typein Style

c-m-J Change Typein Style

Sets the character style for newly inserted characters. It does not affect the de-

fault style for the buffer. You can identify the style you want by typing in the

name, by clicking with the mouse on the style you wish, or by clicking through the

character styles menu.

Find Character in Style

Find Character in Style (m-X)

Searches forward for the next character in a given style. You can identify the style

you want by typing in the name, by clicking with the mouse on the style you wish,

or by clicking through the character styles menu.

Page 2271

Set Default Character Style

Set Default Character Style (m-X)

Sets or changes the character style associated with

the buffer. You can identify the style you want by typ-

ing in the name, by clicking with the mouse on the

style you wish, or by clicking through the character

styles menu.

Show Character Styles

Show Character Styles (m-X)

This command displays all the character styles in a buffer. The display includes

the character style, that is, what you type in to select a character style; the Lisp

name of the character style; the font equivalent; and samples of the character

style. When samples are displayed, you can click on the samples to select that

character style for any of the commands for changing character styles.

Improved User Interface for Changing Character Styles in Zmacs

Genera now includes a new, optional user-interface mechanism for specifying a

new character style, for all the Zwei commands that change the character style of

text, such as c-J, m-J, c-m-J, and c-X c-J.

The new mechanism is an option that is selected according to the value of a new

Zwei variable, zwei:*change-style-mode*, or Change Style Mode. The variable has

two possible values, Quick and Prompt For Name. Prompt For Name is the de-

fault, and selects the existing interface for specifying character styles in the

minibuffer. You do not activate the new behavior until you specify Quick mode.

Previously, you had to type a line of keyboard input to the minibuffer to specify a

character style. The new alternative (Quick) mode allows you to define your own

one-character abbreviations for commonly used styles, which can then be specified

by typing just one character at the prompt. It comes with an initial set of abbrevi-

ations (I for italic, B for bold, and so on). It provides both an escape mechanism to

be prompted for a full character style and a mechanism for redefining existing ab-

breviations and defining new ones on the fly.

You set the variable by a Zmacs command: m-X Set Variable / Change Style Mode /

Quick. If you want to establish this setting routinely in your init file, use this

form:

(ZWEI:SET-ZWEI-VARIABLE "Change Style Mode" :QUICK)�

You can also make your own standard abbreviations in your init file. For example,

the following establishes T as an abbreviation for NIL.NIL.TINY:

(ZWEI:SET-CHARACTER-STYLE-DISPATCH #\T ’(NIL NIL :TINY))�

Typing any of the style-changing commands prompts for one character. Possibili-

ties are:

Page 2272

Character Description

c-G, ABORT, RUBOUT Aborts

ESCAPE Prompts for a style (like the old Zwei behavior)

RETURN or SPACE Accept the default (from most recent change)

char First time, asks for a definition and uses it;

 after that, uses the existing definition

m-char (Re)Defines the action of char

You use zwei:set-character-style-dispatch to set the abbreviation defaults. The

following definitions are predefined:

Abbrev. Style

B NIL.BOLD.NIL

I NIL.ITALIC.NIL

P NIL.BOLD-ITALIC.NIL

N NIL.NIL.NIL

S NIL.NIL.SMALLER

L NIL.NIL.LARGER

The major incompatibility between Prompt for Name and Quick is that pressing

m-J RETURN in Quick mode does not produce NIL.NIL.NIL; you must press m-J N

to do that.

Another difference is that Quick mode makes it possible to use style-change com-

mands in the minibuffer. This is not possible in Prompt for Name mode, because

entering the minibuffer recursively is not allowed. Note that you do not see the

prompt if the minibuffer is exposed.

Formatting Text

Producing formatted text requires two steps:

1. Entering the text and text formatting instructions. See the section "How to

Use Text Formatting Commands".

2. Formatting that text with one of the Zmacs formatting commands. See the

section "Using Zmacs Format Commands".

First you use the Zmacs editor to enter the text and embed formatting instruc-

tions. These instructions format the text by, for example, specifying fonts, creating

bulleted lists, inserting headings, and describing formatting environments.

For example, to specify that you want to italicize a group of words, such as the

title of a book, use the italicize environment. To emphasize a word, you might use

the boldface environment.

This text:

Page 2273

@i(Gone With the Wind), by Margaret Mitchell, is a @b(great) book.�

produces this, when formatted:

Gone With the Wind, by Margaret Mitchell, is a great book.

Formatting instructions all begin with an @. The "i" tells the formatter that you

want the italicize environment, and the parentheses (delimiters) enclose the text

within that environment. Other valid delimiters can be (), [], <>, {}, "", ’’, or ‘’.

The extended commands Format Region (m-X), Format Buffer (m-X), and Format

File (m-X) display text in a formatted style using formatting instructions that you

embed in the text. You can send the formatted text to a supported printer by giv-

ing the Format command a numeric argument. This prompts for an output device.

Page numbers are included by default on hardcopy output. You can turn off page-

numbering with a numeric argument of 0.

Zmacs also supports a number of commands for using character styles, which allow

text formatting of a somewhat different sort. See the section "Using Character

Styles in Zmacs".�

How to Use Text Formatting Commands

Formatting commands control the format of the text (such as blank spaces be-

tween lines, tab settings, line breaks) and whether the formatter centers the text

or aligns it against one of the margins. You can also use formatting commands to

specify particular formatting characteristics or environments.

For example:

@i(Gone With the Wind),@* by Margaret Mitchell @# is a @b(great) book.�

produces:

Gone With the Wind,

by Margaret Mitchell is a great book.

The @* command forces a line break and the @# command leaves a blank em-

space for a special character to be drawn in.

Some commands, such as the @* in the example, are complete by themselves.

Others accept arguments, which must be enclosed in delimiters. There is no such

thing as a long form for a command; you cannot say @begin(blankspace), for

example.

Example of Using Tabs to Format Text

This example shows how to use tab stops to:

• Divide text into four columns

Page 2274

• Center text

• Position text Flush right

• Reset tabs

@begin(format)

@tabdivide(4)

1.@*@*@*

2.@=a@\@=b@\@=c@\@=d

3.@=e@=f@=g@=h

4.Left@=Center@>right

5.Left@=Center@>right@\

@tabclear()

6.Left@=Center@>right

@end(format)�

produces:

1. * * *

2. a b c d

3. e f g h

4.Left Center right

5.Left Center right

6.Left Center right�

How to Create an Environment

You can create a Zmacs formatting environment in two ways. You can use use a

short-form such as:

@i(italicize this)�

or you can use a long-form environment (where the commands @begin(i) and

@end(i) act as delimiters for the text that they enclose). The long form is particu-

larly useful for specifying the format for an entire text passage.

For example,

@begin(i)

Environments can be either short form or long form. The long

form uses the commands @@begin and @@end to act as delimiters

for the text that they enclose.

@end(i)�

produces this:

Environments can be either short form or long form. The long form uses the com-

mands @begin and @end to act as delimiters for the text that they enclose.

Page 2275

(The @s inside the environment must be doubled so the formatter does not inter-

pret them as format commands.)

The following environment enumerates, that is, numbers sequentially each separate

line of text within it:

@begin(enumerate)

Paragraph 1

�

Paragraph 2

�

Paragraph 3

@end(enumerate)�

produces the following output:

1. Paragraph 1

2. Paragraph 2

3. Paragraph 3�

Note that environments can be either filled or unfilled:

Filled Fills each output line to capacity within the limits of the dis-

play.

Unfilled Keeps output lines exactly as you entered them, as in an ex-

ample.�

Basic Text Formatting Commands and Environments

@+

Creates superscript displays of numbers or letters.

No documentation available for section + Environment Display.

@-

Creates subscript displays of numbers or letters.

No documentation available for section - Environment Display.

@B

Formats its contents using Facecode B, bold.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

Page 2276

This text is in B facecode.

@BI

Formats its contents using Facecode BI, bold italic.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

This text is in BI (bold italic) facecode.

@Blankspace

The Blankspace command leaves vertical blank space in the

displayed record.

No documentation available for section Valid Vertical

Distances.

@Box

Draws a box around the specified text. You can modify the

LeftMargin and/or RightMargin attributes (respectively) to use

relative document margins (a signed attribute value), or to use

global margin settings (an unsigned attribute value).

No documentation available for section Box Environment Display.

@C

Formats its contents using SMALLCAPS.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

THIS TEXT IS IN C (SMALLCAPS) FACECODE.

@Caption

Specifies the caption for a figure or table. The "Tag Command"

must follow this command to generate appropriate crossrefer-

ence labels.

Figure ! shows a bug.

Page 2277

Figure 87. A Bug�

@Center

An "unfilled environment" that causes each line within it to be

centered in the displayed record.

@Checklist

A filled environment which produces a list marked by pointer icons on the screen.

There are no markers when this environment is hardcopied.

Checklist is similar to the Itemize environment and Enumerate environment.

Using the default attributes, the Checklist environment generates a simple list.

No documentation available for section Checklist Environment Display.

@Commentary

Creates an environment for comments. The contents of this en-

vironment are not printed or displayed as part of the docu-

ment.

@Description

Description is a "filled environment" that has a wider left mar-

gin after the first line. Because it resembles a two-column ta-

ble, Description is often used to format lists of definitions. It is

also useful for displaying paragraphs of text with headers.

You must insert a tab character to separate the header from the body of the para-

graph. Press s-TAB or use the Tab-to-tab-stop command.

No documentation available for section Description Environment Display.

@Display

Display is an "unfilled environment" where each line in the Concordia file produces

one line in the processed text. Both the left and the right mar-

gins are widened.

It is often used to show lists without tick-marks or numbers.

Page 2278

This text is in a Display environment.

This is a new line.�

@Enumerate

Enumerate is a "filled environment" that produces a numbered list. It is very simi-

lar to the "Itemize Environment" and the "Checklist Environ-

ment".

Using the default attributes, the Enumerate environment generates a simple num-

bered list.

Nested Enumerate environments produce lists that are lettered and numbered, and

so are commonly used to make outlines.

No documentation available for section Enumerate Environment Display.

@Equation

The Equation environment is used as a simple mathematical

environment to produce numbered equations.

@Example

Example is an "unfilled environment" that creates a region with a wider margin

and that uses a fixed-width font. It is designed to show exam-

ples of computer interaction.

Often, examples of actual programs contain lines that are too long to be printed

on one line in the Example environment. Refer to the section

"Longlines Attribute" for more information.

No documentation available for section Example Environment Display.

@F

Formats its contents using a facecode defined with the Special-

Font command.

@Figure

Allows you to specify a caption and a tag for a Figure. Figures

are numbered. The caption appears in the List of Figures, gen-

erated automatically by the formatter, and the tag can be used

with the "Ref Command" for crossreference purposes.

Figure ! shows a bug.

@Fileexample

Page 2279

Figure 88. A Bug�

An unfilled environment that has a wider margin and uses a fixed-width font.

Fileexample, Inputexample, and Outputexample are Markups

that are identical to Programexample.

No documentation available for section Fileexample Environ-

ment Display.

@Flushleft

Flushleft environment is an "unfilled environment" that causes

each line within it to be aligned with the displayed record’s

left "global margin". The distance to the margin can be

changed by altering the "Leftmargin Attribute".

No documentation available for section Flushleft Environment Display.

@Flushright

Flushright environment is an "unfilled environment" that caus-

es each line within it to be aligned with the displayed record’s

right "global margin". The distance to the margin can be

changed by altering the "Rightmargin Attribute".

No documentation available for section Flushright Environment Display.

@Foot

Inserts a numbered parenthetical note at the bottom of the for-

matted page. It does not create bottom-of-the-page footnotes or

numbering online.

@Format

Format is an "unfilled environment" that produces text exactly

as you type it using the current font, without moving margins

or justifying text. It is used to show unusual formatting.

No documentation available for section Format Environment Display.

@FullPageFigure

Causes a figure to appear at the top of the next new page.

Note that the formatter continues to fill the current page be-

fore placing the figure. Captions for FullPageFigures appear

wherever you place the Caption command.

@FullPageTable

Causes a table to appear at the top of the next new page. Note

that the formatter continues to fill the current page before

placing the table. Captions for FullPageTables appear wherever

you place the Caption command.

Page 2280

@G

Formats its contents using Facecode G, usually a Greek character set.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

Τηισ τεξτ ισ ιν Γ (Γρεεκ) φαχεχοδε.

@Group

Causes the text within the environment to be grouped together

and to appear all on one page. If the grouping is too large to

fit on the current page, a new page will be started, leaving

white space at the bottom of the previous page. The Group en-

vironment should be used only when absolutely necessary. If

the grouped text is more than a few lines, it is a good idea to

identify one or more points where a page break would be ac-

ceptable and insert a Hinge command.

@Heading

Formats its contents in the same style as a first level heading

(chapter) as defined in the book design. This heading is un-

numbered.

This is in a Heading environment.�

@Hinge

Indicates the places in a grouped environment where a new

page can begin.

@I

Formats its contents using Facecode I, italic.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

This text is in I (Italics) facecode.

Page 2281

@Index

Makes the text given as the argument to this command an in-

dex entry.

@IndexPrimary

Makes the text given as the argument a primary index entry.

@IndexSecondary

Makes the text given as the argument a secondary index entry.

@InputExample

An unfilled environment that has a wider margin and uses a

fixed-width font. Inputexample, Fileexample, and Outputexam-

ple are markups that are identical to Programexample.

No documentation available for section Inputexample Environment Display.

@Itemize

Itemize is a "filled environment" that produces a bulleted list. The items in the

list are marked by bullets, or tick-marks. Separate each item

by one blank line.

The Enumerate and Checklist environments are similar to Itemize.

No documentation available for section Itemize Environment Display.

@K

Formats its contents using Facecode K, a character set that looks like computer

keyboard input.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

This text is in K (Keyboard) facecode.

@Label

Defines a crossreference label.

@Level

An environment for writing outlines. Level is similar to Enu-

merate, except that it uses the standard conventions for num-

bering outlines.

No documentation available for section Level Environment Display.

@LS

Page 2282

Formats its contents using Facecode LS, the same style as Lisp Objects.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

This text is in LS (Lisp object) facecode.

@M

Formats its contents using Facecode M, usually mathematics symbols.

This text is in M (Mathematical) facecode

@MajorHeading

Formats its contents in the same style as a Majorpart as de-

fined by the book design. This command is retained for conver-

sion compatibility. In general each section should be a record

to provide good modularity for Document Examiner lookup.

This is in a MajorHeading environment.�

@Multiple

Used inside Itemize, Enumerate, and Description environments

to indicate that a series of paragraphs are all part of one item

for purposes of formatting.

@NewPage

Begins a new page immediately. Its argument is an integer

that controls the number of blank pages to leave (the default

is 0).

@Note

Places the text given as an argument in a numbered footnote

or endnote and leaves a numbered reference in the text.

@Outputexample

An unfilled environment that has a wider margin and uses a

fixed-width font. Outputexample, Fileexample, and Inputexam-

ple are markups that are identical to Programexample.

Page 2283

This text is in an OutputExample environment. Note the

wider margins.�

@P

Formats its contents using Facecode P, bold italic.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

This text is in P (bold italic) facecode.

@PageFooting

Selects the text and format for the running text at the foot of

a page or pages.

@PageHeading

Selects the text and format for the running text at the top of a

page or pages.

@PageRef

Use with the Tag command for inserting page references.

@ProgramExample

ProgramExample is an unfilled environment which creates a

region with a wider margin and which uses a fixed-width font.

It is similar to the environments "Example Environment" and

"Display Environment". It is designed to show examples of

computer programs.

No documentation available for section Programexample Environment Display.

@Quotation

Formats its contents in a filled environment with left and

right margins increased by one centimeter.

No documentation available for section Quotation Environment Display.

@R

Formats its contents using Facecode R, roman.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

Page 2284

This text is in R (Roman) facecode.

@Ref

Retrieves and prints the value associated with a counter used

to count page numbers, figures, tables, chapters, sections, and

appendixes.

@S

Formats its contents using Facecode S, usually a symbol character set.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

ηισ τεξτ ισ ιν Σ 〈Σψβ•λ〉 φαχεχ•δε°

@Set

Sets a counter to a value. You specify the counter as a key-

word and then specify the value.

@SimpleTable

Formats its contents as a simple table. Enter the contents of

the table with columns separated by tabs. Concordia calculates

the tabstops for you based on the length of the entries. See the

section "Creating Simple Tables".

@SimpleTableSpecs

Specifies horizontal and vertical rules for a simple table. See

the section "Creating Simple Tables".

@String

Defines a text string to be used with the Value command.

You can use this command to set the specified Case selector variable to an ambi-

ent value. For more information, see the section "Setting Docu-

ment Formatting Options in Symbolics Concordia".

@SubHeading

Formats its contents as a subheading, that is in the same style

as a third level heading (subsection) is formatted as defined in

the book design. This command is retained for conversion com-

patibility. In general each section should be a record to provide

good modularity for Document Examiner lookup.

Page 2285

This is in a SubHeading environment.�

@SubSection

Starts a new subsection in the document. This command is re-

tained for conversion compatibility.

@SubSubHeading

Formats its contents as a subsubheading, that is in the same

style as a fourth level heading (subsubsection) is formatted as

defined by the book design. This command is retained for con-

version compatibility. In general each section should be a

record to provide good modularity for Document Examiner

lookup.

This is in a SubSubHeading environment.�

@SubSubSection

Starts a new subsubsection in the document. This command is

retained for conversion compatibility.

@T

Formats its contents using Facecode T, a fixed width (typewriter) character set.

Note that creating this environment without a marked region

changes the typein character style. (You can also use c-m-J to

change the typein character style.)

This text is in T (Typewriter) facecode.

�

@TabClear

Eliminates any tabs that were previously set in a file. Usually

used before any type of tab setting command, like "TabDivide

Command" or "TabSet Command".

@TabDivide

Divides the formatting region into columns. Columns are of equal widths and sizes

to fill the region horizontally. Text items are separated for for-

matting by using the "s-TAB Command" or by pressing s-TAB.

Page 2286

This command takes an integer as an argument.

Although it is not necessary to clear tabstops within an environment, doing so

guarantees that the TabDivide command will work as you ex-

pect it to. It is a good work habit to put a TabClear command

before each TabDivide command you use.

When equally sized columns are not desired, use the "TabSet Command".

Wrap tabbed text in a Format Environment to override any formatting defaults.

@Table

Allows you to specify a caption and a tag for a Table. Tables

are numbered. The caption appears in the List of Tables, gen-

erated automatically by the formatter, and the tag can be used

with the "Ref Command" for crossreference purposes.

@TabSet

Creates tabs within the text at distances you specify.

• Use a horizontal distance: number of characters, inches, or

centimeters.

• Use the "s-TAB Command" or s-TAB to separate text items.

• Insert "TabClear Command" to clear previously set tabs.

It is a good work habit to put a TabClear command at the end of any environment

where tabs are explicitly set. Clearing tabs that are no longer

necessary, guarantees that the TabSet command will work as

you expect it to.

Wrap tabbed text in a Format Environment to override any formatting defaults in

the active environment.

@Tag

Specifies a Codeword (a string) as a crossreference label showing the position and

number of an equation, theorem, figure, or table.

Used with the "Caption Command" to mark figures and tables.

Referenced by the "Ref Command".

@Text

It may seem strange to have a special environment called Text, because after all

everything we type that is not in a special environment is pro-

cessed just like stuff written in the text environment.

No documentation available for section Text Environment Display.

@Transparent

An environment that has no effect. It exists to permit you to

adjust an attribute for a small part of a document without al-

tering the design of the document as a whole. For example,

you can scale a picture that is just inserted into text (not in a

Page 2287

figure or example environment) by adding the PictureScale at-

tribute to a Transparent environment that you have wrapped

around the picture.

@Unnumbered

Modifies environments that have the Numbered attribute so

that paragraphs are unnumbered.

@Use

Takes an environment name as its argument. This definition

the environment is included as part of the current environ-

ment.

@Value

Retrieves and prints the value of its argument, which should

be a counter or a string defined by the String command.

You can also use the Value command to retrieve the value of "Sage System Vari-

ables".

@Verbatim

Verbatim produces everything you type exactly as you type it, without moving mar-

gins or justifying text. It is used to show unusual formatting.

Verbatim is an "unfilled environment" like "Format Environment" except that Ver-

batim uses a fixed-width font unlike regular text.

No documentation available for section Verbatim Environment Display.

@Verse

An filled environment for printing verse. Each line is treated

as a paragraph, that is each line of verse is terminated by RE-

TURN and if a line is too long for the linelength, it wraps with

appropriate indentation on the continuation line.

No documentation available for section Verse Environment Display.

@W

Indicates that its contents are to be treated as a single word

and should not be hyphenated.

�

These punctuation-character commands consist of an @ followed by one punctua-

tion character. They take no arguments.

@# Leaves a blank space (quad space or em-space) for a special

character.

@* Forces a line break.

@. Generates a period and forces a single significant space after

it (used for abbreviations).

Page 2288

@= Sets a tab at the left side of text to be centered. Do not use in

a filled environment. Works with the tab commands (@\, @>,

or @=).

@> Sets a tab at the left side of text to be flushed right. Do not

use in a filled environment. Works with the tab command (@\,

@>, or @=).

@\ Moves the cursor to the next tab stop or marks the end of text

being centered or flushed right. Do not use in a filled environ-

ment.

@^ Sets a tab at the current cursor position. Do not use in a filled

environment.

@@ Inserts an @ in the text.

@~ Ignores all the white space between it and the next text in the

source.

Using Zmacs Format Commands

The second (and final) step in formatting is to issue one of the formatting

commands, which interprets the text and formatting instructions into the format-

ted text.

You can use the commands to format the text on your screen or on a printer.

Check first on the screen before sending output to a printer.

Use a numeric argument to send the output to a supported printer. Page numbers

are included by default on hardcopy output. You can turn off page-numbering with

a numeric argument of 0.

Format Region

Format Region (m-X)

Displays the contents of the region formatted as a text environment. With a

numeric argument, the command prompts for an output device. Page numbers are

included by default on hardcopy output. You can turn off page-numbering with a

numeric argument of 0.

Format Buffer

Format Buffer (m-X)

Displays the contents of the buffer, formatted as a text environment. With a

numeric argument, the command prompts for an output device. Page numbers are

included by default on hardcopy output. You can turn off page-numbering with a

numeric argument of 0.

Page 2289

Format File

Format File (m-X)

Displays the contents of the file, formatted as a text environment. With a numeric

argument, the command prompts for an output device. Page numbers are included

by default on hardcopy output. You can turn off page-numbering with a numeric

argument of 0.

Working with Regions

What is a Zmacs Region?

Many Zmacs commands deal with the region. A region consists of a block of

information within the buffer that you want to manipulate as a single entity. You

define the area of the region, which can be any size, from characters or chunks of

code to pages or the entire buffer.

Zmacs keeps track of one or more locations in a buffer using buffer pointers. This

section describes:

• The two buffer pointers named point and mark

• How Zmacs uses them to define the boundaries of a region

• The point-pdl, a ring of pointers to saved locations

• Registers, pointers to locations that you name and save

• The region-manipulating commands�

Point and the Region

Point (shown by the cursor) is the most important buffer pointer. Most editor

commands depend on the position of point. Many editor commands, invoked by

either the mouse or the keyboard, can be used to position point to the desired loca-

tion in the buffer. Point points to one end of the region.

Mark and the Region

Mark points to the other end of the region. To mark a piece of text means to

position point and mark on either side of the text, making it the region. The

simplest way to mark some text is to position point (using either the mouse or

keystrokes) to one boundary (either the beginning or the end) of the text, set the

mark there (using the Set Pop Mark command), and then reposition point at the

other boundary. See the section "Setting/Popping the Mark".

Page 2290

Unlike point, the mark can be active or inactive. When mark is active, the region

is shown on the screen by underlining. When mark is inactive, you cannot see it

on the screen unless you reactivate it with c-X c-X. Although normally you cannot

see an inactive mark, Zmacs keeps track of mark when it is inactive and some-

times uses mark in its inactive state. For example, c-Y leaves point and mark

surrounding what it yanks, but does not activate mark. c-W immediately following

c-Y kills the region even though it is not active. c-X c-X after c-Y activates mark,

making the region visible. However, most commands will not use mark or the re-

gion unless it is active. You can set the mark three ways: when you create a

region using the mouse, explicitly with the command Set Pop Mark (c-SPACE), or

with one of the commands to mark regions. See the section "Commands to Mark

Regions". When you set the mark, you activate it and make the region appear.

Creating a Region

You can create a region using either the mouse or keystrokes.�

Creating a Region with the Mouse

The most common way to create a region is with the mouse. Hold down the left

mouse button and drag the cursor. Release the button to mark the end of the re-

gion.

Holding down the middle mouse button creates a region, too. It marks the "thing"

you point the mouse at, "thing" being mode-dependent (a word or Lisp expression

if you point with the mouse at text, or a line if you point with the mouse at white

space before or after all the text on the line).

Creating a Region With Keystrokes

You can also create a region using keystrokes. After setting the mark, you can

move point either forward or backward to define a region in either direction; as

you do so, Zmacs highlights the region with underlining.

Typing a self-inserting character or c-G deactivates the mark and removes the

underlining that highlights the region. The mark does not have an associated cur-

sor like point. When inactive, the mark is invisible, but you can go to it with c-X

c-X, Swap Point And Mark.

The Point-pdl

Zmacs maintains a special stack of buffer pointers called the point-pdl, where pdl

stands for push-down list, another name for a stack.

Zmacs automatically saves point on the point-pdl as it executes some commands

(for example, m-<) that move point great distances. Whenever Zmacs pushes point

onto the point-pdl, it displays "Point pushed" in the echo area, moves point to its

new location, and pushes the previous point down onto the point-pdl.

Page 2291

By popping the point-pdl, that is, resetting point to its last location as recorded on

the point-pdl, Zmacs returns point to where it was when the pdl was last pushed.

Setting/Popping the Mark

c-SPACE Set Pop Mark

With no argument, c-SPACE does three things:

1. Puts mark where point is

2. Makes mark active

3. Pushes point onto the point-pdl

Other commands can do each of these operations separately. Creating a region

with the mouse sets a mark and makes it active but does not push point.

This command does other things depending on how many c-Us are typed in front

of it:

Argument Action Taken

one c-U Pops the location on the top of the point-pdl into point (typically

puts point where it set the last mark).

two c-Us Pops the location on the top of the point-pdl and throws it away.

Moving to Previous Points

c-m-SPACE Move to Previous Point

Exchanges point and top of point-pdl. With a numeric argument n, it rotates a

ring consisting of point and the top n-1 elements of point-pdl; thus the default

argument is 2. With a numeric argument of 1, it rotates the entire point-pdl. A

negative numeric argument rotates the ring in the other direction.

c-X c-m-SPACE Move to Default Previous Point

Rotates the point-pdl, the same as c-m-SPACE except that c-X c-m-SPACE has a

default of 3. A numeric argument specifies the number of entries to rotate and

sets the new default before rotating the point-pdl.

Showing the Mark

c-X c-X Swap Point And Mark

Exchanges point and mark. It works even when no region is active. It highlights

the text between point and mark.

Page 2292

With an argument, it does not exchange point and mark, but instead it highlights

the text between point and mark.

Registers in Zmacs

Saving and Moving to Locations in Registers

You can assign one-character "names" to locations in the buffer, which can be

helpful for setting up a series of places in your text to which you want to return

for some reason  to double-check several items without interrupting your text

entry or editing, if you are considering a format change that will affect several

parallel points, or simply to return quickly and easily to rough spots that require

further work.�

c-X S Save Position

Saves the current location in a register. It prompts for a one-character register

name.

c-X J Jump to Saved Position

Moves point to a position that was saved in a register. It prompts for a register

name and switches buffers to move to the saved position, if necessary.

Saving and Inserting Regions in Registers

c-X X Put Register

Copies the text of the region into a register. It prompts for a register name. With

a numeric argument, it deletes the region from the buffer after copying it.

c-X G Open Get Register

Inserts text from a specified register into the buffer. It prompts for the name of

the register. It overwrites blank lines in the buffer the way RETURN does (using the

command Insert Crs). It leaves the mark before the inserted text and point after

it. With a numeric argument, it puts point before the text and the mark after.

List Registers (m-X)

Displays names and contents of all defined registers. It shows the name of the

register and whether it contains a position or text. If the register contains a posi-

tion, it tells which character on the line the position is at, and shows the first 50

characters on that line. If the register contains text, it shows the first 50 charac-

ters on the first line of that text.

Page 2293

�

List of all registers:

D (text) This text was marked as a region and saved here

1 (position) Char 0. in "another line containing a position"

Done.

�

Show Register (m-X)

Displays the contents of a register in the typeout window. It prompts for a register

name and then tells whether the register contains a position or text:

�

Register A contains a position: Character 0 in this line:

this is the line

or

Register A contains text:

�

Kill Register (m-X)

Kills a register.

Commands to Mark Regions

To mark a piece of text means activating mark and then positioning point and

mark on either side of the text, making it the region. The simplest way to mark

some text is to go to one end of the text, set the mark there (using the Set Pop

Mark command), and go to the other end of the text. See the section "Set-

ting/Popping the Mark". However, several convenient commands mark different

specific amounts of text:

m-@ Marks a word.

c-m-@ Marks an expression.

c-m-H Marks a definition.

m-H Marks a paragraph.

c-X c-P Marks a page.

c-X H Marks the whole buffer.

c-> Marks to the end of the buffer.

c-< Marks to the beginning of the buffer.�

Marking Words

m-@ Mark Word

Puts the mark at the end of the current word. With a numeric argument of n, m-@

puts the mark n words forward from point.

Page 2294

Marking Lisp Expressions

c-m-@ Mark Sexp

Marks the current expression by putting mark at the end.

With a numeric argument n, it moves forward n expressions and puts the mark

there. For a more detailed description of how to move forward n expressions, see

the section "Motion by Lisp Expression".

c-m-H Mark Definition

Puts point and mark around the current definition.

Marking Paragraphs

m-H Mark Paragraph

Puts the mark at the end of the current paragraph and moves point to the begin-

ning, so that the current paragraph becomes the region. With a numeric argument

n, m-H puts point at the beginning of the current paragraph and marks n para-

graphs forward from there.�

Example

m-3H marks the current paragraph and the following two; m- -1H marks the pre-

ceding paragraph. When marking preceding paragraphs, point is left at the end of

the region, and when marking current and succeeding paragraphs, point is left at

the beginning of the region.

Marking Pages

c-X c-P Mark Page

Puts the mark at the end of the current page and moves point to the beginning,

so that the current page becomes the region.

With a numeric argument of n, c-X c-P marks the nth page after the current one.

If n is zero, this is the current page; if n is negative, this page comes before the

current page.

Marking Buffers

c-X H Mark Whole

Marks the whole buffer by putting point at the beginning and the mark at the

end.

With any numeric argument, c-X H puts the mark at the beginning and point at

the end.

Page 2295

Marking to End of Buffer

c-> Mark End

Marks from the cursor to the end of the buffer by putting the mark at the end of

the buffer.

Marking to Beginning of Buffer

c-< Mark Beginning

Marks from the cursor to the beginning of the buffer by putting the mark at the

beginning of the buffer.

Region-Manipulating Commands

Saving a Region

m-W Save Region

Puts region on kill history list without deleting it. For information on kill merging

and the Append Next Kill command, c-m-W, see the section "Kill Merging".

Deleting a Region

c-W Kill Region

Deletes the region. If there is no region, c-W produces an error.

This command ignores numeric arguments and places the deleted text on the kill

history list. For information on retrieving history elements and the Yank command,

c-Y, see the section "Retrieving History Elements".

Compiling a Region

c-sh-C Compile Region

Compile Region (m-X)

Compiles the region, or if no region is defined, the current definition.

Transposing Regions

c-X T Exchange Regions

Exchanges two regions delimited by point and last three marks.

After transposing regions, you can undo the effect of this command by invoking it

again.

Page 2296

Hardcopying a Region

Hardcopy Region (m-X)

Sends a region’s contents to the local hardcopy device for printing.

For full information on Genera hardcopying, see the section "How to Get Output

to a Printer".

Filling a Region

When Zmacs fills text it breaks it up so that it does not extend past the fill

column. The fill column determines the right margin, and is the first column in

which text is not to be placed by m-Q, m-G, or Auto Fill Mode formatting. In

addition, the fill prefix, if set, is inserted:

• At the beginning of each new line typed in while in Auto Fill Mode

• At the beginning of each line in a paragraph for m-Q and each line in a region

for m-G

The fill prefix determines the left margin, and is empty unless set to contain some

combination of spaces and characters. If you do not set the fill prefix, the left

margin is the left edge of your Zmacs window. For example, to insert five spaces

at the beginning of every line, insert them at the beginning of the current line,

and with point at column six, use c-X .. To turn this fill prefix off, put point at

the beginning of a line, and use c-X . again.

Adjusting or justifying text inserts extra spaces between the words to make the

right margin come out exactly even.�

� m-Q Fill Paragraph

Fills the current (or next) paragraph. A positive argument means to adjust rather

than fill.

m-G Fill Region

Fills the current region. A positive argument means to adjust rather than fill.

c-X . Set Fill Prefix

Defines Fill Prefix from the current line. All of the current line up to point be-

comes the Fill Prefix. Fill Region starts each nonblank line with the prefix (which

is ignored for filling purposes). To stop using a Fill Prefix, do a Set Fill Prefix at

the beginning of a line.

m-sh-Q

Fill Differently

This command can be used successively, with no other commands intervening, to

fill text to successively wider fill-widths. If the fill-width is 48, the first m-sh-Q

will fill the text to 48 characters width. The sequence of commands m-sh-Q

m-sh-Q m-sh-Q m-sh-Q and so on would fill to a width of 48, then 49, 50, 51 and

so on.

Page 2297

You can also give a argument to this command to specify the increment. So

m-sh-Q c-5 m-sh-Q would fill to 48, then to 53.

Other Region-related Commands

For descriptions of the following commands:

Name and Invocation

Uppercase Region c-X c-U

Lowercase Region c-X c-L

Uppercase Code in Region (m-X)

Lowercase Code in Region (m-X)�

See the section "Changing Case of Regions in Zmacs".�

Manipulating Buffers and Files

Working with Buffers and Files

Files are semipermanent collections of information stored safely outside the Zmacs

environment. Buffers, on the other hand, are more dynamic, temporary collections

of information, used by Zmacs for manipulating text. Buffers live in the active

Zmacs environment. Each buffer has its own point and mark as well as other

associated information.

We say we use Zmacs to "edit files", but what we really do is copy a file into a

buffer created for the purpose, edit the buffer, and then write out a new version of

the file from the edited buffer. The old version of the file is retained, to be delet-

ed explicitly when appropriate. Successive versions of files are distinguished by

version number, a component of the file name that is incremented with each new

revised copy (except on file server hosts such as UNIX that do not have version

numbers).

Zmacs allows multiple buffers, so that you can edit many files simultaneously.

Usually only one buffer is visible on the screen at a time. You can, however, divide

the screen into multiple windows so that you can view the contents of several

buffers at once.

Zmacs keeps track of the association between files and buffers. If you are editing a

file’s contents in a buffer, Zmacs gives that buffer the same name as that of the

file being edited.

Buffer and File Names

Page 2298

Both buffers and files have long names that indicate the host directory as well as

the file name (and version, where supported). Hence completion is a necessary aid

and is always provided for entering buffer and file names.

Buffer Flags for Existing Files

Each buffer has a modification flag that tells whether the buffer has been changed

to be different from the associated file. You can see the modification flag by click-

ing on either the List Buffers command or the Kill or Save Buffers command in

the editor menu (editor menu is click Right once), or by pressing c-X c-B for List

Buffers.

The modification flag is cleared when:

• The file is read into the buffer from the file system.

• The buffer is saved, that is, whenever its contents are written out to the associ-

ated file. As soon as its contents are modified thereafter, the modification flag is

set and Zmacs displays an asterisk (*): (1) in the mode line to the right of the

buffer name, and (2) whenever it displays output from the List Buffers com-

mand.

Buffer Flags for New Files

The List Buffers (c-X c-B) command uses the plus sign (+) to mark new files that

have not been saved. In addition, it uses + to mark new buffers, not associated

with files, that have text in them. This helps when you put text into a new buffer

and later want to be reminded to write that buffer to a file.

Creating and Saving Buffers and Files

You do all your text editing in Zmacs buffers, which are temporary workspaces that

can hold text. To keep any text permanently you must put it in a file. Files store

data for any length of time.

To edit the contents of a file using Zmacs, you create a buffer and copy the file

contents into it. To add text to the end of the buffer, move point to the end of the

buffer and type the new text. Editing proceeds in the buffer, not in the file. The

file remains unchanged until you explicitly write the modified buffer contents to

the file.

If you create multiple buffers, Zmacs keeps track of which files you are editing in

which buffers. This association allows you to use completion to switch among

buffers while you are editing them; you do not have to type the file name more

than once. Zmacs always displays the name of the file you are currently editing.

The information in this section allows you to find or create and save a file. For

complete information on buffers and files, see the section "Manipulating Buffers

and Files in Zmacs".

Page 2299

These are the commands you can use to create and save Zmacs buffers and files:

c-X c-F Find File

Reads the specified file into a buffer.

c-X c-S Save File

Saves out the changes to the current file.

c-X B Select Buffer

Selects the specified buffer.

c-X c-W Write File

Writes out the buffer to the specified file.

Creating a Buffer

Zmacs creates your initial buffer when you first enter the editor. To create other

buffers, use c-X c-F (Find File) to create either an empty buffer or a buffer con-

taining a file. c-X c-F prompts for the name of a file, terminated by RETURN.

When you type c-X c-F for the first time in a Zmacs session, Zmacs offers you, as

a default file name, an empty file (with the Lisp suffix native to your host com-

puter) in your home directory on your host computer. For example:

System Empty Buffer Name

Genera bork.lisp

UNIX bork.lisp

VAX/VMS bork.lsp�

For more information about c-X c-F, see the section "Editing Existing Files".

� Base and Syntax Default Settings for Lisp

When you read a file that has a Lisp file type into the buffer, if that file does not

begin with an attribute line containing Base and Syntax attributes, Zmacs warns

that the file "has neither a Base nor a Syntax attribute" and announces that it will

use the defaults, Base 10 and Common-Lisp. See the section "Buffer and File At-

tributes in Zmacs".

Buffer Contents with c-X c-F

The first time you use c-X c-F, you can create an empty buffer using the Zmacs

default file name, create an empty buffer using a name that you specify, or create

a buffer containing an existing file.

• To create an empty buffer with the initial default file name as the one Zmacs

associates with your buffer, press RETURN.

Page 2300

• To create a new empty buffer, respond with any name. Zmacs creates an empty

buffer, gives the buffer the new name, and displays (New File) in the

minibuffer.

• To create a new buffer containing an existing file, respond to the prompt with

the name of that file. Zmacs switches to an empty buffer, reads that file in, and

names the buffer appropriately.�

Saving a File

Once you have the file in your buffer, you can make changes and then save the

file with c-X c-S, the Save File command. This makes the changes permanent and

actually changes the file. Until then, the changes are only inside your Zmacs buf-

fer and the file itself is not really changed.

Creating a File

The first time you save or write the buffer, Zmacs creates the new file. You can

create a new file with c-X c-S.

You can also write the buffer out with c-X c-W, Write File, if you want to change

the name of the file from whatever you specified originally. Zmacs prompts in the

minibuffer for the name of the place you want to write the buffer’s contents. c-X

c-W also offers a default pathname, in this case, the name you supplied with c-X

c-F.

Editing Existing Files

To tell Zmacs to edit text in a file, use c-X c-F, the Find File command, and give

Zmacs a file name. You can enter the pathname of any file on any host that is

reachable by network connections from your Symbolics Machine. If the file already

exists, Zmacs locates the file and reads it into your buffer.

Selecting, Listing, and Examining Buffers

Current Buffer

At all times when using Zmacs, you have one selected buffer, which is the buffer

that you are actively editing. This is the buffer in which all current activity takes

place until you switch buffers.

Buffer History

With a single Zmacs window on the screen, the editor keeps one buffer history,

the global history list, which remembers the previous-buffer history (stack history)

Page 2301

of that window. The top buffer in the stack is the currently selected one. Usually,

when a buffer is selected, it is pulled out of the stack and put on top. The buffers

near the top are usually the most recently used. Each time you change buffers

Zmacs offers the name of the most recently used buffer as the default buffer

name.

When we refer to the nth buffer, we mean the nth buffer in Zmacs’s stack of

buffers.

Every additional window maintains its own buffer history, but the global history

list continues to display an entry for every buffer in every window.

When you create a new window, Zmacs initially takes the history list for the new

window from the global history list. From then on, as you switch from buffer to

buffer within that window, the list for that window reflects the history of those

changes in chronological order. This affects particularly c-m-L (Select Previous

Buffer) and the default for c-X B (Select Buffer).

The global history list still exists and is used for name completion and c-X c-B

(List Buffers).

Buffer Commands

Changing Buffers

c-X B Select Buffer

Prompts for the name of a buffer and selects that buffer, displaying its contents

on the screen. If you press END or RETURN instead of a name, it reselects the sec-

ond most recently selected buffer.

Using completion, it takes the string you enter and tries to complete it to an

existing buffer name:

• When completion is successful, it selects that buffer.

• When completion is unsuccessful, (there is no buffer with the name given), it

either waits for you to type more characters (if there are multiple possible com-

pletions) or it beeps to give you a chance to correct a typing error (if there is

no possible completion). A subsequent response of c-RETURN creates a new buf-

fer with the specified name and selects it.

If you precede the c-X B command with a numeric argument, Zmacs prompts for

the name of the buffer and then creates and selects it.

c-m-L Select Previous Buffer

Selects a previously selected buffer. With a numeric argument n, it selects the nth

previous buffer. The default argument is 2. When the argument is 1, it rotates the

entire buffer history. A negative argument means to rotate the other way. An

argument of zero displays the buffer history, which is mouse sensitive.

Page 2302

c-X c-m-L Select Default Previous Buffer

With a numeric argument n, this is exactly the same as c-m-L. Without a numeric

argument, this command remembers the last numeric argument it received and uses

that as its argument this time.

This is useful if you happen to be working with the top few buffers on the buffer

stack and want to cycle among them without having to remember how many there

are.

Listing Buffers

c-X c-B List Buffers

Lists all the currently existing buffers in the typeout window, along with the

editor mode of the buffer and the name of the associated file, if any. For buffers

with associated files, it displays the version number of the file, if any. If there is

no associated file, c-X c-B gives the size of the buffer in lines instead. For Dired

buffers, it displays the pathname used for creating the buffer. It lists modified

buffers with an asterisk.

With an argument of c-U, it prompts for a substring and then lists only buffers

whose names contain that substring.

The buffer names are mouse sensitive. Click right on the name of the buffer for a

menu of operations (Kill, Not Modified, Save, Select) for that buffer. You can

select one of the buffers by clicking left on its name.

The first line of a buffer listing resulting from List Buffers, which says "Buffers

in Zmacs", is mouse sensitive. You can click on this line to execute Edit Buffers on

the same set of buffers. This is especially useful when you have done c-U c-X c-B

and then realize you wanted to do c-U c-X c-sh-B instead.

List Buffers lists the buffers sorted in stack order. You can inhibit this sorting by

setting the global variable zwei:*sort-zmacs-buffer-list* to nil (default is t).

Example

Buffers in Zmacs:

 Buffer name: File Version: Major mode:

�

+ file1 /dess/zmacs VIXEN: (Fundamental)

= *Dired-1* VIXEN: /dess/zmacs/* (Dired)

* doc.mss /dess/zmacs VIXEN: (Text)

 Buffer-1 [1 line] (Fundamental)

�

+ means new file or non-empty non-file buffer. * means modified file.

= means read-only.

�

Page 2303

Editing Buffers

c-m-X Edit Buffers is not part of the standard comtab. It is similar to List Buffers

(c-X c-B), except that the buffer listing that Edit Buffers produces is a buffer in

its own right. (For an example showing how to make c-X c-B call Edit Buffers

instead of List Buffers, see the section "Setting Editor Variables in Init Files".) It

contains one line for each of the buffers in the editor.�

(c-X c-sh-B) Edit Buffers

Displays a list of all buffers, allowing you to save or delete buffers and to select a

new buffer. A set of single character subcommands lets you specify various opera-

tions for the buffers. For example, you can mark buffers to be deleted, saved, or

not modified. The buffer is read-only; like the Directory editor (Dired) buffer, you

can move around in it by searching and with commands like c-N and c-P.

The lines in the list are not mouse sensitive. With the cursor on the line for a

buffer, the following single character commands apply to that buffer:

With an argument of c-U, it prompts for a substring and then lists only buffers

whose names contain that substring.

RUBOUT Undeletes buffer above the cursor.

SPACE Selects the buffer on the current line, performing any marked ac-

tions.

D Marks the buffer for deletion (K, c-D, c-K are synonyms).

E Immediately selects the buffer at the point for editing, without per-

forming any marked actions. (You can use c-m-L to return to Edit

Buffers.)

U Undeletes either the buffer on the current line or the buffer on the

line above.

S Marks the buffer for saving.

= Compares the buffer to its corresponding file.

~ Marks the buffer for setting not modified.

X Executes an extended command (same as m-X).

Showing a Buffer

Use Show Buffer to just look at a buffer without editing it. �

c-X V Show Buffer

Show Buffer (m-X)

Prompts for the name of a buffer and prints out the buffer contents for viewing

only in the typeout window. If there is more than one screenful, it pauses between

screensful, displaying a --MORE-- message at the bottom.

Page 2304

SPACE, c-V, SCROLL Displays the next screenful.

BACKSPACE, m-V Displays the previous screenful.

RUBOUT Exits.

Anything else exits and is executed as a command.

Inserting Command Output into the Buffer

You might want to save some output produced by a command into the buffer,

rather than seeing it displayed on the typeout window and then erased.

Execute Command Into Buffer

Execute Command Into Buffer (m-X)

Sends output from a command into the buffer. It prompts you for a command,

either a key or an extended command. It inserts any typeout produced by the

command into the buffer at point, rather than displaying it on the typeout window.

Macro Expand Expression All (m-X) is a good example of a command whose output

can be usefully saved in this manner.

Hardcopying the Buffer

Hardcopy Buffer (m-X)

Prompts for the name of a buffer and then prints the specified buffer on the local

hardcopy device.

For full information on Genera hardcopying, see the section "How to Get Output

to a Printer".

Renaming the Buffer

Rename Buffer (m-X)

Prompts for a new name for the current buffer and changes the name to the

specified string. Note that, if you want a buffer’s name to be a file name, rather

than just a string, use m-X "Set Visited File Name" instead. This operation re-

moves any file association that the buffer had.

Saving Buffers

Save File Buffers (m-X)

Offers to write out each buffer that is associated with a file. It prompts in the

typeout window with the name of each buffer:

Page 2305

Save file cheatin-heart.lisp >hwilliams> L: ? (Y or N) Yes.

Save word abbrevs on file L:>hwilliams>jambalaya.qwabl? (Y or N) Yes.

Save file rooty-tooty.text >hwilliams L: ? (Y or N) �

Encrypting and Decrypting the Buffer

Encrypt Buffer (m-X)

Encrypts the contents of the buffer. It prompts for a key and does not echo it as

you type it. It prompts for the same key again, just in case you mistyped it

because of the lack of echoing, and makes sure you typed it the same both times.

This key can consist of plain alphanumeric text only. Punctuation or other funny

characters are ignored. Upper and Lower case are equivalent. The encryption

algorithm is the same one used by the Hermes mail-reading system.

Decrypt Buffer (m-X)

Decrypts the contents of an encrypted buffer. It prompts for a key and does not

echo it as you type it. The encryption key given for decrypting must match the one

used for encrypting. The encryption algorithm is the same one used by the Hermes

mail-reading system.

Reading a File Into a New Buffer

Edit File (m-X)

c-X c-F Find File

Prompts for the name of a file and looks for a buffer currently associated with

that file. If one is found, it selects it. Otherwise, it creates a new buffer and reads

that file into it.�

When you read a file that has a Lisp file type into the buffer, if that file does not

begin with an attribute line containing Base and Syntax attributes, Zmacs warns

that the file "has neither a Base nor a Syntax attribute" and announces that it will

use the defaults, Base 10 and Common-Lisp. See the section "Buffer and File At-

tributes in Zmacs".

Reading a File Into an Existing Buffer

The c-X c-V command, Visit File, is primarily useful when you type in a mistaken

file name after c-X c-F and Zmacs responds (New File). You can simultaneously

read in the correct file and get rid of the unwanted buffer with Visit File. Note

that this is not the same as c-X I or "Insert File" m-X.�

c-X c-V Visit File

Prompts for the name of a file and reads that file into the current buffer. This

action associates the current buffer with the specified file.

Page 2306

This command can be used only if the current buffer is not already associated

with an existing file.

Writing the Buffer Contents to a File

c-X c-W Write File

Prompts for the name of a file and writes out the contents of the current buffer to

the specified file. This changes the current buffer’s name and associates it with

the specified file. Subsequent saves using c-X c-S save to the newly specified file.

This operation clears the modification flag.

Saving the Buffer Contents to the File

c-X c-S Save File

Writes the contents of the current buffer out to the associated file and clears the

modification flag. It does not write the file if the buffer is unchanged from when

the file was last visited or saved. It reads a file name from the minibuffer if the

current buffer does not have an associated file.

Re-reading a File Into the Buffer

Revert Buffer (m-X)

Re-reads information into the buffer that it is associated with. For example, you

can revert a Dired buffer to see the most current listing of that directory. You can

also read in the most up-to-date version of a file. The command prompts for a

buffer name, defaulting to the current buffer. The prompt serves as a confirma-

tion, since Revert Buffer (m-X) throws away any modifications made to the buffer

since you last saved or read the file or other information. This command is useful

if you have damaged the buffer and want to start over or if the associated file is

more current than the buffer. This operation clears the modification flag.

Refind File (m-X)

Re-reads a specified file into its associated buffer only if that file has changed on

disk. The command prompts for a buffer name, defaulting to the current buffer. If

the associated file on disk has changed, it re-reads the file into the buffer. If the

associated file on disk has not changed, it tells you that it is not necessary to

refind that file. This command is useful when more than one person works on the

same program.

Refind All Files (m-X)

Re-reads only those files that have changed on disk into their associated buffers,

asking about each one. If the associated file on disk has not changed, the com-

mand tells you that it is not necessary to refind that file. This command is useful

when more than one person works on the same program.

Page 2307

With a numeric argument, Zmacs asks you for a string, which it matches with any

part of the buffer names and operates only over buffers whose names contain that

string.

The behavior of these three commands can be controlled with the variable

zwei:*revert-unedited-buffers-for-new-versions*. See the section "Zmacs Cus-

tomization in Init Files".

Creating a Fundamental Mode Buffer

Find File In Fundamental Mode (m-X)

Creates a fundamental mode buffer containing the file. This is useful because

Zmacs does not parse the file while reading it in, thus the names of the functions

in the file do not conflict with those already known to completion in m-. and

similar commands. This command is necessary if the normal parsing of a Lisp

Mode file signals an error, preventing it from being read into the editor to correct

the cause of the error.

Associating a File with a Buffer

Set Visited File Name (m-X)

Prompts for the name of a file and associates the current buffer with that file.

(Use "Rename Buffer" to change the name of a buffer to a string). This command

does not read the specified file into the buffer. Effectively, the current contents of

the buffer are declared to be the new intended contents of the specified file.

This command should be used with caution to avoid unintentionally destroying the

old contents of the specified file.

Destroying Buffers

c-X K Kill Buffer

Prompts for the name of a buffer and destroys that buffer. If you press END or

RETURN instead of a name, c-K destroys the current buffer and prompts for the

name of a buffer to select instead.

Kill Some Buffers (m-X)

For each existing buffer, tells you something about the status of the buffer and

asks whether or not to delete it. If you elect to delete a buffer that has been modi-

fied since it was last saved, the command offers to save it first.

Kill Or Save Buffers (m-X)

Displays a menu listing all existing buffers. Modified buffers are initially marked

for saving. Choices are: Save, Kill, Unmodify, and Hardcopy. Specify these options

next to the buffer names in the menu. This command is bound to c-X c-m-B and

appears on the editor menu. Specifying a numerical argument to c-X c-m-B in-

hibits the initial marking of the menu.

Page 2308

Appending, Prepending, and Inserting Text

Appending a Region to a Buffer

c-X A Append To Buffer

Prompts for the name of a buffer and appends the contents of the region onto the

end of the specified buffer.

Appending a Region to a File

Append To File (m-X)

Prompts for the name of a file (Append region to end of file:) and appends the

contents of the region onto the end of the specified file, writing a new version of

that file.

Prepending a Region to a File

Prepend To File (m-X)

Prompts for the name of a file and prepends the contents of the region onto the

beginning of the specified file.

Inserting a Buffer Into Another Buffer

Insert Buffer (m-X)

Prompts for the name of a buffer and inserts the entire contents of that buffer

into the current buffer at the cursor.

Inserting a File Into a Buffer

Insert File (m-X)

Prompts for the name of a file and inserts the contents of that file into the

current buffer at the cursor. Note that this is not the same as c-X c-V or "Visit

File" m-X.

Comparing Files and Buffers

Source Compare

Source Compare (m-X)

Compares two quantities of text. Prompts to determine the type of each quantity to

be compared. You may be further prompted as appropriate to the quantity type you

select. A single keystroke is all that is required to identify the quantity type.

Page 2309

Possible quantity types, and their associated keys are:

Key Quantity Notes

B Buffer Prompts for a buffer name.

D Definition Uses the definition at the cursor.

F File Prompts for a file name.

K or c-Y Last Kill Does not prompt. Uses most recently killed

quantity (what c-Y would yank).

P or m-Y Previous Kill Does not prompt. Uses second most recently

killed quantity (what c-Y m-Y would yank).

R Region If a region has been established, that region

is used without prompting; otherwise, the

user is permitted to interactively establish

a region to use.�

The results are displayed in the typeout window.

You can modify the behavior of the command with numeric arguments:

• 2 means ignore case and style in making the comparison

• 4 means ignore leading whitespace

• 6 means ignore case, style, and whitespace

Source Compare saves the output in a support buffer named *Source-Compare-*.

You can read the comparison while checking the file, for example, by going into

two window mode with the comparison in one window and the file in the other.�

Example

This example shows a comparison between the file bottomley.lisp, as it was read

into the buffer, and the buffer horatio.lisp, which contains the contents of the

file new plus changes that have been made:

Source compare made by cheapjack on 1/17/90 14:59:20 -*-Fundamental-*-

of File S:>cheapjack>bottomley.lisp.1

with Buffer horatio.lisp >cheapjack S:

**** File S:>cheapjack>bottomley.lisp.newest, Line #4

�

 (setq TV:*wholine-clock-delimiters* nil) ; Kill the "[]" around the clock

**** Buffer horatio.lisp >cheapjack S:, Line #4

 (setq tv:*mouse-exit-target-global-enable* nil) ; Scroll blobs must die

 (setq TV:*wholine-clock-delimiters* nil) ; Kill the "[]" around the clock

Page 2310

�

Done.�

When entered with a numeric argument of 6, Source Compare ignores both leading

whitespace and case and style.

�

Source compare made by robin-hood on 1/17/90 15:45:09 -*-Fundamental-*-

of Buffer bud-abbott

with Buffer lou-costello

No differences encountered.

Source compare made by robin-hood on 1/17/90 15:51:34 -*-Fundamental-*-

of Buffer lou-costello

with Buffer bud-abbott

No differences encountered.

When entered with a numeric argument of 4, Source Compare ignores only leading

whitespace.

Source compare made by robin-hood on 1/17/90 15:54:20 -*-Fundamental-*-

of Buffer bud-abbott

with Buffer lou-costello

**** Buffer bud-abbott, Line #11

 (si:cp-on si:*cp-dispatch-mode* ’si:arrow-prompt)

**** Buffer lou-costello, Line #11

 (SI:CP-ON SI:*CP-DISPATCH-MODE* ’SI:ARROW-PROMPT)

�

Done.�

When entered with a numeric argument of 2, Source Compare ignores only case

and style.

Source compare made by robin-hood on 1/17/90 15:53:38 -*-Fundamental-*-

of Buffer bud-abbott

with Buffer lou-costello

**** Buffer bud-abbott, Line #5

 (setf si:*kbd-auto-repeat-enabled-p* t)

�

**** Buffer lou-costello, Line #5

 (setf si:*kbd-auto-repeat-enabled-p* t)

�

�

Done.

Source Compare Merge

Source Compare Merge (m-X)

Compares two text quantities, prompting for type and name, and produces a new

version that reconciles the differences between the two. When comparing the text

Page 2311

quantities, you see both versions and can choose which version which version (if

any) to accept. You can also manually edit one or both versions at any point.

Possible quantity types, and their associated keys are:

Key Quantity Notes

B Buffer Prompts for a buffer name.

D Definition Uses the definition at the cursor.

F File Prompts for a file name.

K or c-Y Last Kill Does not prompt. Uses most recently killed

quantity (what c-Y would yank).

P or m-Y Previous Kill Does not prompt. Uses second most recently

killed quantity (what c-Y m-Y would yank).

R Region If a region has been established, that region

is used without prompting; otherwise, the

user is permitted to interactively establish

a region to use.�

At each place where the sources differ, the command prompts you twice. The first

time you specify what to do to resolve the difference (prompts: Specify which ver-

sion to keep:). (For example, you can keep one or the other version, both of them,

or neither.) Respond to the prompt using these subcommands:

Option Action

1 Leaves the first alternative in the text, redisplays the contents, and

asks for confirmation of change.

2 Leaves the second alternative in the text, redisplays the contents,

and asks for confirmation of change.

* Leaves both alternatives in the text, redisplays the contents, and

asks for confirmation of change.

I Leaves both alternatives in the text, along with the message lines

from the source compare (*** MERGE LOSSAGE ***), but does not ask

for confirmation.

SPACE Leaves both alternatives in the text, but does not redisplay the con-

tents or ask for confirmation.

! Disposes of this and all remaining differences the same way, without

confirmation. It asks: What to do with remaining differences (1, 2,

*, I, or RUBOUT?) It uses whichever option you choose for the rest

of the differences.

c-R Exits from the prompt and allows you to edit. Press END to return to

this question.

Page 2312

RUBOUT Leaves nothing in the new buffer and does not redisplay the con-

tents or ask for confirmation.

The second time you confirm or reject the change that was made. The screen now

shows the change that was made as a result of your choice and prompts: Please

confirm the change that has been made: (SPACE, RUBOUT, or c-R). Confirming it

keeps that change and moves on to the next difference. Rejecting it returns to the

prior appearance so that you can make a different choice:

Option Action

SPACE Yes, that’s right.

RUBOUT No, take that back.

c-R Exits from the prompt and allows you to edit. Press END to return to

this question.

When you finish confirming your decisions, Zmacs incorporates all changes into

the new version in the specified buffer and the minibuffer displays: Done. Resec-

tionizing the buffer.

Source Compare Merge also has a mouse interface. You can answer the first

question by clicking Left on the text you want to keep or on the dividing line

between them to keep both. You can answer the second question by clicking Left

for "yes" (changes confirmed) or Middle for "no" (changes rejected).

Compare/Merge Commands for Definitions

The compare/merge commands operate on definitions by comparing, or comparing

and merging, the current version with the newest version, newest version on disk,

or installed version.�

Comparing/Merging Current/Newest Versions

Source Compare Newest Definition (m-X)

Compares the current definition with the newest version in the normal source file

for this definition, regardless of patch files. This command never looks in patch

files; it only looks in original source files. If the definition was added by a patch

(so that no original source file was recorded), the command cannot find the name

of the source file. However, if you read the source file into the editor, it finds the

definition in the editor buffer. You can use this command for comparing patch files

and source files.

Source Compare Merge Newest Definition (m-X)

Compares and merges the current definition with the newest version in the normal

source file. This command never looks in patch files; it only looks in original

source files. If the definition was added by a patch (so that no original source file

was recorded), the command cannot find the name of the source file. However, if

Page 2313

you read the source file into the editor, it finds the definition in the editor buffer.

You can use this command for comparing patch files and source files.

Comparing/Merging Current/Saved Versions

Source Compare Saved Definition (m-X)

Compares the current definition with the source for the newest version on disk.

Source Compare Merge Saved Definition (m-X)

Compares and merges the current definition with the source for the newest ver-

sion on disk.

Comparing/Merging Current/Installed Versions

Source Compare Installed Definition (m-X)

Compares the current definition with the source for the installed version.

Source Compare Merge Installed Definition (m-X)

Compares the current definition with the source for the installed version, merging

the results.

Window Commands

Using Two Windows, Select Bottom

c-X 2 Two Windows

Shows two windows, selecting the bottom one. It splits the frame into two editor

windows, selects the bottom one, and displays the next buffer from the global his-

tory in it. With a numeric argument, it displays that same buffer in the second

window.

Using Two Windows, Select Top

c-X 3 View Two Windows

Shows two windows, selecting the top one. It splits the frame into two editor

windows, selects the top one, and displays the next buffer from the global history

in it. With a numeric argument, it displays that same buffer in the second

window.

Creating Two Windows, Specifying Other Contents

c-X 4 Modified Two Windows

Page 2314

Selects a buffer, file, or definition in the other window. c-X 4 combines the func-

tions of splitting the frame and selecting contents for the second window. It

prompts for the type of contents you want for the second window: Select what in

other window? (B, F, D, or J), for buffer, file, definition, or jump to register.

Then it reads the name of the file, buffer, definition, or register that you want to

select for that window.

Creating Two Windows with the Region in Top

c-X 8 Two Windows Showing Region

Makes two windows on the same buffer, with the top one displaying the current

region.

Changing Window Size

c-X ^ Grow Window

Changes the size of the current window by some number of lines. With a positive

numeric argument, it expands the window; with a negative numeric argument, it

shrinks the window.

Choosing The Other Window

c-X O Other Window

Moves the cursor to the other window.

Returning to One Window

c-X 1 One Window

Returns the editor frame to displaying only one window. It expands the current

window to use the whole frame. With a numeric argument, it expands the other

window to use the whole frame.

Scrolling The Other Window

c-m-V Scroll Other Window

Scrolls the other window up several lines. By default, it scrolls the same way as

c-V. With no argument, it scrolls a full screen. With just a minus sign as an argu-

ment (c-m- -V), it scrolls a full screen backward. A numeric argument tells it how

many lines to scroll  a positive number scrolls forward, a negative number

scrolls backward.

Splitting The Screen

Page 2315

Split Screen (m-X)

Pops up a menu that offers to create a new buffer or find a file; makes several

windows split among the buffers as specified.

File Manipulation Commands

The commands described in this section are unlike most other Zmacs commands.

Their main business is not manipulating buffers and their contents, but rather

files out in a file system. First we discuss some commands for dealing with files,

then we describe buffer and file attributes, and finally we explain Dired Mode, a

special Zmacs mode for directory editing.

Creating a Directory

Create Directory (m-X)

Creates a new directory. It prompts for a directory name, using the standard

conventions for defaults. For consistency between hierarchical and nonhierarchical

file systems, you specify the directory to be created as the directory component of

a pathname. That is, you must end the directory name with whatever delimiter or

separator is appropriate for the host.�

Example

Host Directory string Result

TOPS-20 <A.B.C> Creates directory C

Multics >udd>Sun>Luna>z> Creates directory z

Genera >sun>luna>b> Creates directory b

UNIX /usr/jek/new/ Creates directory new�

Currently, the file servers for VAX/VMS and TOPS-20 can fail to create directo-

ries, due to missing options.

Listing Files in a Directory

List Files (m-X)

Prompts for the name of a directory and displays the names of all the files in that

directory.

The file names are mouse sensitive. Pointing at a file name and clicking left is

the same as doing a c-X c-F (Find File) on that file. Clicking right pops up a

menu with three items:

Load Loads the file into the Lisp world. The file must be either a Lisp

source file or a compiled Lisp (bin or ibin) file.

Find Reads the file into an editor buffer.

Page 2316

Compare Compares the file with its most recent version and prints the differ-

ences.

Displaying the Contents of a Directory

c-X c-D Display Directory

Displays the directory of the file in the current Zmacs buffer. c-X c-D does not

ask for a directory but lists files with the same host, device, directory, and name

as the file in the current buffer. It lists files with any type and version. With a

numeric argument, it prompts for a directory to list and lists that directory.

The heading of the directory listing is mouse sensitive; clicking left on it selects a

Dired buffer containing that directory listing.

c-U c-X c-D does the same thing as List Files, except that it gives more details

about each file.

Show Directory

Show Directory (m-X)

Prompts for the name of a directory and and displays the directory contents for

viewing only in the typeout window. If there is more than one screenful, it pauses

between screensful displaying a --MORE-- message at the bottom.

SPACE Displays the next screenful.

BACKSPACE Displays the previous screenful.

RUBOUT Exits.

Anything else exits and is executed as a command.

Show Login Directory

Show Login Directory (m-X)

Displays the directory contents of the user’s home directory for viewing only in the

typeout window. If there is more than one screenful, it pauses between screensful

displaying a --MORE-- message at the bottom.

SPACE Displays the next screenful.

BACKSPACE Displays the previous screenful.

RUBOUT Exits.

Anything else exits and is executed as a command.

Page 2317

Showing a File

Use Show File to look at a file without editing it.�

Show File (m-X)

Prompts for the name of a file and displays the file contents for viewing only in

the typeout window. If there is more than one screenful, it pauses between

screensful, displaying a --MORE-- message at the bottom.

SPACE, c-V, SCROLL Displays the next screenful.

BACKSPACE, m-V Displays the previous screenful.

RUBOUT Exits.

Anything else exits and is executed as a command.

Showing the Properties of a File

Show File Properties (m-X)

Prompts for the name of a file and displays all the properties of the file that are

maintained by the file system on which it resides. These are the properties such

as creation date and time, author, time of last access, and length. For files on a

Lisp Machine file system, it displays user-defined properties as well.

It prompts for a file specification, which it merges with the current default to

form the pathname. Wildcards are not accepted; this must correspond to a unique

file or directory name.

Setting the Properties of a File

Set File Properties (m-X)

Sets the properties of a file. This is a synonym for Change File Properties (m-X).

Properties are the qualities of the file that are maintained by the file system on

which it resides, such as creation date and time, author, time of last access, and

length. For files on a Symbolics File System, this means user-defined properties as

well. It prompts for the name of a file and pops up a choose-variable-values win-

dow, allowing you to alter various properties of the file. The exact properties that

can be altered depend on the file system, but they might include:

• Generation (version) retention count

• Author

• Creation, modification, and reference dates

• Protection flags

Page 2318

• Other file-associated information

Hardcopying a File

Hardcopy File (m-X)

Enables you to specify the name of a file for printing on a local hardcopy device.

For full information on Genera hardcopying, see the section "How to Get Output

to a Printer".

Renaming a File

Rename File (m-X)

Renames one or more files. It prompts for the name of a file and then asks for a

new name for that file. It renames the specified file with that new name.

If the source file specification is wild, the target file specification must also be

wild.

Copying a File Into Another

(m-X) Copy File

Copies any type of file to another specified file.

Prompts from the minibuffer for the names of two files and copies the contents of

the first into the second. In file systems supporting multiple versions, this creates

a new version of the second file whose contents are identical to those of the first.

Copy File determines whether the source file is a character file or a binary file

and copies the file appropriately. Different file systems sometimes use different

character sets, and if the file is a character file, character translations have to be

done (for example, on some hosts Return characters have to be converted into a

carriage return and a line feed).

The numeric argument controls copying of attributes and properties. With no

numeric argument, it copies creation date and author and determines the mode

(binary or character) of copy by the file being copied. To force mode, or suppress

author or creation date copying, supply a numeric argument created by adding the

values corresponding to the descriptions below:

1 Force copy in 16-bit binary mode.

2 Force copy in character (text) mode.

4 Suppress copy of author.

8 Suppress copy of creation date.

Page 2319

Examples

For example, to suppress author and creation date for copying:

c-12 (m-X) Copy File �

Use wildcard pathnames to specify groups of files for copying. For example, to

copy all files in the subdirectory mine:

F:>program>mine>*.*�

If the source file specification is wild, the target file specification must also be

wild.

you type:

m-X Copy File

Zmacs:

Copy File from:

you type:

scrc:<lmfs>*.l*sp;0

(Copies all the newest .LISP and .LSPs)

Zmacs:

to:

you type:

ff:>sys-hold>scrc-sources>old-*.*.*

Zmacs:

SCRC:<LMFS>TEST.LSP.3 is copied into

ff:>sys-hold>scrc-sources>old-test.lisp.3

�

SCRC:<LMFS>FILES.LISP.147 is copied into

ff:>sys-hold>scrc-sources>old-files.lisp.147�

Note that .LSP gets mapped into .lisp because Copy File uses canonical types when

the type of the target pattern is :wild.

This command can copy file authors and creation dates, when the target operating

system supports setting these attributes. This action is not the default.�

Creating Links to Files

Create Link (m-X)

Creates a link to a file. It prompts in the minibuffer for the names of two files as

arguments; first the name of the link, then the name of the target pointed to by

the link.

Deleting Files

Page 2320

Delete File (m-X)

Deletes a file. It prompts in the minibuffer for a file name, which can be wild.

With a wild name as an argument, deletes multiple files. It lists the files that

would be deleted and requires that you confirm the list. It deletes the files,

showing any errors that occur but continuing rather than halting. Displays a

message in the minibuffer if the specified file does not exist.

Deleting Multiple Versions

Clean Directory (m-X)

Deletes excess versions or temporary file types in the specified directory. The

default for excess versions is more than two. It prompts for confirmation of files

being deleted. With a numeric argument n, it deletes excess versions greater than

n.

Excess is defined by the value of the Zmacs variable File Versions Kept or by the

numeric argument. The temporary file types are defined by the Zmacs variable

Temp File Type List. It accepts wildcards in the file name specification. (For

descriptions of Zmacs variables, see the section "How to Specify Zmacs Variable

Settings".)

Clean File (m-X)

This command works in file systems supporting multiple versions. It prompts for

the name of a file (not including version number) and deletes excess or temporary

versions of the specified file, keeping the most recent n files. Any numeric argu-

ment specifies the number of versions to keep. With no numeric argument, the

default keeps two versions and deletes any excess. It prompts for confirmation of

files being deleted.

Note:

• To specify file types to be automatically marked for deletion, change the value

of the variable zwei:*temp-file-type-list*, which contains a list of these files.

This variable also accepts the value :anything, which can be any file type.

• To alter the default number (2) of versions to be kept, change the value of the

variable zwei:*file-versions-kept* to any :fixnum.�

Buffer and File Attributes

Attributes

Each buffer and generic pathname has attributes, such as Package and Base, which

can also be displayed in the text of the buffer or file as an attribute list. An

attribute list must be the first nonblank line of a file, and it must set off the

Page 2321

listing of attributes on each side with the characters -*-. If this line appears in a

file, the attributes it specifies are bound to the values in the attribute list when

you read or load the file.�

How Attributes Work

Suppose you want your new program to be part of a package named graphics that

contains graphics programs. In this case, you want to set the Package attribute to

graphics in three places: the generic pathname’s property list; the buffer data

structure; and the buffer text. Here are two ways to make the change:

• If the package already exists in your Lisp environment, use Set Package (m-X) to

set the package for the buffer. The command asks you whether or not to set the

package for the file and attribute list as well. You can use this command to

create a new package.

• Use Update Attribute List (m-X) to transfer the current buffer attributes to the

file and create a text attribute list. Edit the attribute list, changing the pack-

age. Use Reparse Attribute List (m-X) to transfer the attributes in the attribute

list to the file and the buffer data structure. If the package you specify by edit-

ing the attribute list does not exist in your Lisp environment, Reparse Attribute

List asks you whether or not to create it with default characteristics.

Attribute-Manipulating Commands

Update Attribute List (m-X)

Updates the attribute list (-*- line) of the buffer. It creates or updates the at-

tribute list of the file, using the current set of parameters. A new attribute list

inherits the default base (10) and the default syntax (Common-Lisp) plus the Pack-

age, Mode, Backspace, and Fonts attributes of the current buffer. It includes the

Backspace and Fonts attributes in the line only if they have values other than the

defaults. It does not change other attributes in an existing mode line.

Reparse Attribute List (m-X)

Reparses the attribute list (-*- line) of the buffer. It finds the attribute list for the

buffer and processes it to set up the environment that the line specifies. It

changes the major mode, package, base, and so on, as necessary. When you edit

the attribute list, you should then use this command to make the changes take

effect in Zmacs. The changes take effect both for the editor buffer and for the file

that the buffer is editing.

Example

Suppose the package for the current buffer is user and the base is 8. You want to

create a package called graphics for the buffer and associated file. You also want

to set the base to 10. If no attribute list exists, use Update Attribute List (m-X) to

Page 2322

create one using the attributes of the current buffer. An attribute list appears as

the first line of the buffer:

;;; -*- Mode: LISP; Package: USER; Base: 8 -*-�

Now edit the buffer attribute list to change the package name from USER to GRAPH-

ICS and to change the base from 8 to 10. Use Reparse Attribute List (m-X). The

command queries:

The file belongs in package GRAPHICS, which does not exist.

Create it with default characteristics,

 Try again, or Use another package? (C, T, or U)�

Answer C to create the new package. The package becomes graphics and the base

10 for the buffer and the file.

File Attribute Checking

Zmacs notes errors in file attribute lists and warns you when it finds an unknown

attribute. It goes ahead and ignores the unknown attribute in the list. The purpose

of the warning is simply to help you detect misspellings.

Setting the Package

Set Package (m-X)

Changes the package associated with the buffer. It prompts for a package name.

Forms that are read from the buffer are read in that package. (The default value

for this attribute is user.)

Note that package names in an attribute list are always taken relative to the

current syntax. Thus, user means something different in Zetalisp and Common-

Lisp syntaxes.

The Set Package (m-X) command expects the name of a package as its argument.

The package is expected to already exist. If the package does not exist, you are

queried as to whether you wish to create it with default characteristics. In many

cases, you should find the package definition or define the package explicitly in-

stead of creating it with default characteristics. See below for more information

about this.

Information about the package attribute exists in four places. Set Package offers to

set the package for the generic pathname attribute list and updates the attribute

line in the buffer when you answer Yes to:

Set it for the file and attribute list too?

Your answer affects the various versions of the package attribute as follows:

Location "Y" "N"

Generic pathname changes same

Buffer property changes changes

Buffer text changes same

Page 2323

Current package changes changes

�

The system is informed that the file belongs to the specified package. If you are

not sure what to answer, say Yes. The global variable zwei:*set-attribute-updates-

list* controls this query. Its default value is :ask. Setting the variable to t means

Yes; nil means No.

Although the default value for the package attribute is user, you can have any

package as the default package by specifying it as the value of the Zmacs variable

Default Package. (For descriptions of Zmacs variables, see the section "How to

Specify Zmacs Variable Settings".) You can set the variable in your init file by

using the internal form of its name. (See the section "Creating an Init File".)

For example, in your init file:

(login-forms

(setf zwei:*default-package* (pkg-find-package "tv")))

If you set the variable to nil, it sets the default to the package from the previous

buffer.

You can edit a file attribute line to specify characteristics of the package. The

package can appear in any of the following formats, which affects what happens if

the file is read into a buffer and the package does not exist:

package-name This package is expected to exist, and if it does not, the user

is queried as to whether the package should be created with

default characteristics. In many cases, it is not the right thing

to create the package with default characteristics; instead, the

user should find and evaluate the package definition before

reading in the file.

(package-name) If the package does not exist, it is automatically created with

default characteristics. This differs from the above case in the

sense that the developer of the program has anticipated that

the package might not be defined in the user’s environment,

and has made an explicit decision that the package should be

created automatically if it does not exist.

(package-name key1 val1 key2 val2 ...)

If the package does not exist, it is created with the character-

istics given in the keyword/value pairs, which are package-

creation options. This way of creating a package is usually only

appropriate for quick and informal uses; normally, it is appro-

priate to define the package explicitly.

Base and Syntax Defaults

The mode line of Lisp source files (the line marked by -*-) contains the Base and

Syntax attributes. The base can be either 8 or 10 (default). The syntax of a pro-

Page 2324

gram can be either Zetalisp or Common-Lisp. The defaults for these attributes are

as follows:

• If there is a Base attribute, but no Syntax attribute, the syntax defaults to

Common-Lisp.

• If there is a Syntax attribute of Common-Lisp, and no Base attribute, the base

is assumed to be 10.

• If there is neither a Base nor a Syntax attribute, Base is assumed to be the

default base (10) and the syntax is assumed to be Common-Lisp. Furthermore, a

warning is issued to the effect that there is neither a Syntax nor a Base at-

tribute. You should edit your program accordingly. With most programs, the

Zmacs command Update Attribute List (m-X) will add the appropriate attributes

to the mode line, following the above defaults. �

Setting Lisp Syntax

The default syntax for Lisp buffers is Common-Lisp. If you are using Zetalisp, you

must explicitly set the syntax in the file attribute line. For more information about

Symbolics Common Lisp and Zetalisp, see the section "Lisp Dialects Available in

Genera".�

The file attribute line of a Common Lisp file should be used to tell the editor, the

compiler, and other programs that the file contains a Common Lisp program. The

following file attributes are relevant:

Syntax The value of this attribute can be Common-Lisp or Zetalisp. It

controls the binding of the Zetalisp variable readtable, which

is known as *readtable* in Common Lisp. The default syntax

is Common-Lisp.

Package user is the package most commonly used for Common Lisp

programs. You can also create your own package. Note that the

Package file attribute accepts relative package names, which

means that you can specify user rather than cl-user.

The following example shows the attributes that should be in an SCL file’s at-

tribute line:

;;; -*- Mode:Lisp; Syntax:Common-Lisp; Package:USER -*-�

Set Lisp Syntax (m-X)

Set Lisp Syntax (m-X)

Changes the buffer into Common-Lisp syntax or Zetalisp syntax. It asks whether to

update the attribute list (-*- line) of the buffer. If you answer yes, it creates or

updates the attribute list of the file, using the current set of parameters, if any. It

does not change other attributes in an existing mode line.

Page 2325

Other Set commands for File and Buffer Attributes

Each of the file attributes has a Set command associated with it. You have two

choices when you want to change an attribute for a file:

• Edit the text of the buffer and then use Reparse Attribute List.

• Use the relevant Set command and answer Y to its query. The meanings for Y

and N are the same as for the Set Package command (except that only the Set

Package command affects the current package).�

Update Attribute List Query

The Set commands use the value of the global variable zwei:*set-attribute-

updates-list* to determine whether to query you about updating the file attribute

list. The default value for the variable is :ask; set to nil to suppress the query.

Value Meaning

:ask Always asks whether to update the attribute list.

nil Never updates the attribute list.

t Always updates the attribute list.

�

� Set attribute (m-X)

where attribute is one of the following: Backspace, Base, Fonts, Key, Lowercase,

Nofill, Package, Patch File, Syntax, Tab Width, Variable, or Vsp. It sets attribute

for the current buffer. It queries whether or not to set attribute for the file and in

the text attribute list.

Attribute Descriptions

The following table describes some of the attributes, their associated Set com-

mands, and the default value for the attribute.�

Backspace The Set Backspace command (default value nil) controls

whether a backspace character in a file displays as the word

"back-space" with a lozenge around it or performs the

backspace. The default is the lozenge form.

Page 2326

Base The Set Base command (default value 10) specifies the value of

zl:ibase that the Lisp reader uses when reading forms from

the file. Thus, Base controls the zl:ibase used when you evalu-

ate or compile parts of the buffer, and controls the value of

zl:base for printing during evaluating all or part of the buffer.

This value does not affect the values of either zl:base or

zl:ibase in the Lisp Listener you get by using SUSPEND.

Fonts The Set Fonts command (default value nil) changes the set of

fonts to use. It reads a sequence of font names separated by

spaces, commas, or both from the minibuffer.

Lowercase The Set Lowercase command (default value nil) means that the

file being edited is intended to contain lowercase code or text.

When the Lowercase attribute is nil (that is, not present),

whatever case handling you specify prevails. To automatically

uppercase code, use the following in your init file:

((login-forms

 (setf zwei:lisp-mode-hook

 ’zwei:electric-shift-lock-if-appropriate))

(See the section "Creating an Init File".) When the Lowercase

attribute is anything but nil (you answer Y to its query), the

Electric Shift Lock Mode is never turned on automatically.

Nofill The Set Nofill command has a default value of nil, which

means that whatever autofilling behavior you specify prevails.

When Nofill is anything else (you answer Y to its query), it

means that autofilling is not appropriate for people who specify

the mode of "autofilling if appropriate".

Use Nofill sparingly. Setting it means that everyone who edits

the file has to be satisfied with Auto Fill Mode being off by

default. In most cases, it is more reasonable to let an individu-

al user’s preferences prevail. It is useful for files that are not

plain text, such as mailing lists, where you need to avoid spu-

rious line breaks.

To have autofilling turned on by default, use the following in

your init file (see the section "Creating an Init File"):

(login-forms

 (setf zwei:text-mode-hook

 ’zwei:auto-fill-if-appropriate))

People who do not want it never get it by default.

Page 2327

Patch-File The Set Patch File command has a default value of nil, which

means that the file does not contain patches. When a file is

classified as containing patches (you answer Y to its query),

fdefine does not warn about functions being redefined during

loading. Classifying something as a patch file also affects Edit

Definition (which prefers files that are not patches) and defvar

(which becomes zl:setf).

Tab-Width The Set Tab Width command (default 8 characters) specifies

how many spaces the editor uses between "tab stops".

Vsp The Set Vsp command (default 2 pixels) specifies the vertical

spacing (in pixels) between the text lines of an editor window.

It specifies the distance between the descenders of one line

and the ascenders of the next.

Dired Mode

There is a special Zmacs mode, called Dired, just for doing housekeeping in a

directory. In this mode, you see the names of all the files in a directory at once,

and can manipulate these files in various ways.

Entering Dired

The following commands specify a directory to manipulate and enter Dired mode.�

Dired (m-X)

Edit Directory (m-X)

Prompts for a wildcard file specification for files contained in the specified direc-

tory. The default edits all files in the current directory by specifying wild name,

type, and version. You must type the pathname in the form acceptable to your host

system.

c-X D Dired

Edits the files in the directory that contains the current file.

With a numeric argument of 1, shows files with the same host, device, directory,

and name as the file in the current buffer. It lists files with any type and version.

With a c-U argument, it prompts for a wildcard file specification showing the

name of a directory to edit.

The Dired Display

When you go into Dired mode, Zmacs creates a special buffer that contains the

names of the files that are under consideration, as well as some auxiliary informa-

tion pertaining to those files. In a typical Dired buffer, each line describes a single

file and lists the following information, from left to right:

Page 2328

• An indicator (D) that shows if the file has been marked for deletion or is

already deleted

• The physical volume of the file (on some hosts)

• The name of the file

• The length of the file in blocks (where the length of a block is system-

dependent)

• The length of the file in bytes, followed by the byte length in bits, enclosed in

parentheses

• ! if the file has not been backed up to tape

• $ if the file has been marked against reaping

• @ if the file has been marked against deletion

• The file’s creation date

• The file’s creation time

• The date the file was last referenced, enclosed in parentheses

• The author of the file

• Optionally, the name of the last user to read the file

If there are too many files to be displayed in one screenful, the Zmacs window

looks only at one section of the directory at a time (although the buffer does

contain the names of all the files).

The files are arranged in alphabetical order by name.�

Updating the Display

Use the Revert Buffer (m-X) command to update a Dired display. (See the section

"Re-reading a File Into the Buffer".) After using Dired commands (or native host

commands) to perform operations on files in your directory, invoke Revert Buffer,

which reexecutes Dired with the default directory name and re-reads the updated

directory into the buffer.

Dired Commands

Dired mode has its own command table (comtab) for manipulating the files whose

names are displayed. These commands are described in this section. All invocations

Page 2329

given in this section are with respect to the Dired comtab and do not apply to

regular Zmacs.

You use Dired by moving the cursor around to various lines and then specifying

operations to be performed on the file listed on that line (the current file, while in

Dired Mode).

Most Dired commands schedule some action for the future rather than performing

it instantly. For example, when you want to delete a file using Dired, you move

the cursor to the line describing that file and type D. Rather than deleting the file

immediately, Dired marks the file for deletion. The deletion actually happens when

you leave Dired mode and confirm your request. (See the section "Getting Out of

Dired".)

Some of the commands in Dired mode take numeric arguments. You type numeric

arguments in exactly the same way as you do in Zmacs proper, except that you do

not have to hold a modifier key down while typing the argument  just typing the

number suffices.�

Command Summary

The following table summarizes the Dired commands:

Character Action

RUBOUT Undeletes file above the cursor.

SPACE Moves to the next file.

! Moves to the next file that is not backed up.

$ Complements the Don’t Reap ($) flag.

, Describes the attribute list of this file. In text files, this is the -*-

line of the file. In compiled Lisp files, it includes information about

the compilation as well.

. Changes properties of current file.

@ Complements the Don’t Delete (@) flag.

= Compares this file with the newest version (Source Compare).

A Queues this file for function application.

C Copies this file to someplace else.

D Marks the file for deletion (K, c-D, c-K are synonyms).

E Edits the file in a buffer, or runs Dired if the line is a subdirectory

name.

F Marks the file for formatting and printing on the standard hardcopy

device.

G Sets and enforces the generation retention count.

Page 2330

nH Marks excess versions of the file for deletion (argument means

whole directory).

I Displays a table explaining the Dired commands.

L Loads the file into Lisp.

nN Moves to the next file with more than n versions (see the Zmacs

variable File Versions Kept). (For descriptions of Zmacs variables:

See the section "How to Specify Zmacs Variable Settings".)

P Prints the file on the standard hardcopy device.

Q Exits. It shows the files marked for deletion and prompts for confir-

mation. The exit display marks files that have special status, using

the following marks:

 : a link

 > most recent version

 $ file marked for not reaping

 ! file not backed up�

R Renames this file to something else.

U Undeletes either the file on the current line or the file on the line

above.

V Views the file without creating a buffer (using View File conven-

tions).

X Executes an extended command (same as m-X).�

Default Pathnames in Dired

When the current buffer is a Dired buffer, and you execute an editor command

that accepts a file name as an argument, the default file name is the file name

that appears on the line of the Dired buffer that point is on.

This makes it easier to do things to the file that you are currently operating on in

Dired. For example, you can move point to some line, do Compile File (m-X), and

the command defaults to that file name.

Getting Out of Dired

Q Dired Exit

END

Leaves Dired mode. It prints the names of files marked for various actions and

gets your final confirmation that these actions are really to be performed.

At this point the available options are:

Y Delete but do not expunge, also doing any other marked actions.

Page 2331

N Go back to Dired.

Q or X Abort out of Dired.

E Delete files and expunge directory. This is meaningful for file systems

in which there is undeletion, such as TOPS-20, TENEX, and the Lisp

Machine file system. This command is useful if you use Dired to free

up disk space, since the disk space is not deallocated until the directory

is expunged.

I Displays a table explaining the Dired commands.�

Dired Exit performs those actions and returns to the previous buffer.

ABORT Dired Abort

Leaves Dired mode at once, without performing any actions on marked files. You

can also just switch to another buffer.

Online Documentation for Dired

If you do not have a manual and cannot remember what the commands do, just

press HELP.�

? Dired Help

HELP

Displays a short table explaining the Dired commands.

Dired Menu

Click Right in Dired to display the Dired menu, which offers to perform the

following actions on the listing:

�

 Sort by reference date (up)

 Sort by reference date (down)

 Sort by creation date (up)

 Sort by creation date (down)

 Sort by file name (up)

 Sort by file name (down)

 Sort by file size (up)

 Sort by file size (down)

 Dired Automatic

 Dired Automatic All

 Dired Change File Properties

 Dired Describe Attribute List�

See the section "Deleting Multiple File Versions in Dired". See the section "Chang-

ing File Properties in Dired". See the section "Viewing File Attributes in Dired".

Page 2332

Loading a File in Dired

L Load File

Loads the current file. It displays a message Loading the file... in a typeout

window and finishes with the message Loading done.

Moving Around in Dired

SPACE Down Real Line

c-N

Moves point to the next line (same as in regular Zmacs). With a numeric argu-

ment of n, it moves point forward n lines.

c-P Up Real Line

Moves point to the previous line (same as in regular Zmacs). With a numeric

argument of n, it moves point backward n lines.

Viewing File Attributes in Dired

, Dired Describe Attribute List

This command is also available on the pop-up menu that you get when you click

right in Dired. It prints out the contents of the attribute list of the current file

(the one where point is). It works for character files and compiled files.

Changing File Properties in Dired

. Dired Change File Properties

This command is also available on the pop-up menu that you get when you click

right in Dired. It edits the properties of the current file. These properties are the

qualities of the file that are maintained by the file system on which it resides,

such as creation date and time, author, time of last access, and length. For files

on a Lisp Machine file system, this means user-defined properties as well. It pops

up a choose-variable-values window, allowing you to alter various properties of the

file. The exact properties that can be varied depend on the file system, but they

might include:

• Generation (version) retention count

• Author

• Creation, modification, and reference dates

• Protection flags

Page 2333

• Other file-associated information

Viewing and Editing File Contents in Dired

You might want to look at the contents of a file before deciding what to do with

it. You might also want to read the file into a buffer and edit it.�

V Dired Show File

Displays the contents of the current file on the typeout window.

Use this command when you just want to skim the contents of the file, not edit it.

You can move forward while viewing with SPACE, c-V, or SCROLL and move back-

ward with BACKSPACE or m-V.

E Dired Edit File

Reads the current file into a Zmacs buffer and selects that buffer. You are then

back in normal Zmacs and can edit the file normally. When you want to return to

Dired mode, just use the c-m-L command to reselect the Dired buffer.

Comparing Recent Versions of Files in Dired

Often before deciding whether or not to delete a file, you want to find out exactly

how extensive the differences are between the file and its most current version.�

= Dired Srccom

Compares the current file with its most recent version and displays the differences

on the typeout window. With an argument of c-U, it asks what version to compare

it to.

Copying and Renaming Files

C Dired Copy File

Copies the current file. It prompts for the new pathname, displaying the default

pathname.

R Dired Rename File

Renames the current file. It prompts for the new pathname, displaying the default

pathname.

Marking Files for Deletion

D Dired Delete

K

c-D

c-K

Page 2334

Marks the current file for deletion. Dired puts a D in the first column to show

that the file has been so marked.

With a numeric argument of n, it marks the next n files for deletion.

Sometimes you mark a file for deletion by mistake. Here is how you recover from

this error:

U Dired Undelete

U takes one of two actions:

1. If the current file is marked for deletion, printing, or a function application

(with a D, P, or A), reprieves it.

2. In file systems with soft deletion, U marks a deleted file for undeletion.

In either case, U removes the D, P, or A next to the file. If the current file is not

marked with D, P, or A, U reprieves the file on the immediately preceding line,

positioning point on that line.

With a numeric argument of n, it reprieves the files on the next n lines including

the current line.

RUBOUT Dired Reverse Undelete

Reprieves the file on the preceding line.

With a numeric argument of n, it reprieves the files on the previous n lines

including the current line.

Deleting Multiple Versions

If you are using Dired for housekeeping purposes, the following commands are

useful:�

N Dired Next Hog

Moves point to the next file with superfluous versions. Superfluous is defined by

the value of the Zmacs variable File Versions Kept (whose default is 2) or by a

numeric argument. (For descriptions of Zmacs variables, see the section "How to

Specify Zmacs Variable Settings".)

H Dired Automatic

This command is also available on the pop-up menu that you get when you click

right in Dired. It marks all the superfluous versions of the current file for dele-

tion. With an argument of c-U, it marks superfluous versions of all files in the

Dired buffer.

Setting Generation Retention Count

G Dired Set Generation Retention Count

Page 2335

Sets and enforces the generation retention count on this group of files, which

specifies how many versions to save (that is, deletes multiple versions).

With a numeric argument n, sets it to n versions. With no numeric argument,

prompts for a number in the minibuffer. An argument of zero means save all ver-

sions. Enforce means mark for deletion or undeletion.

Protecting Files From Being Reaped

In addition to keeping other users aware of protected files, protection features can

also inform the system itself. Some file systems have automatic reaping facilities

that go into action when storage becomes scarce. Most such systems have a don’t

reap bit associated with each file; use it to protect only your most vital files.�

$ Dired Complement No Reap Flag

Complements the Don’t Reap flag associated with the current file; Dired displays

the flag as $ between the length and date on that line. With a numeric argument

of n, it complements the flag on the next n files, including the current one.

Protecting Files From Being Deleted

@ Dired Complement Dont Delete Flag

Complements the Don’t Delete flag associated with the current file; Dired displays

the flag as @ between the length and date on that line.

With a numeric argument of n, it complements the flag on the next n files,

including the current one.

Finding Files That Have Not Been Backed Up

Many file systems have tape backup facilities so that files can be copied onto tape

against the possibility of a file system disaster. These systems almost always

associate a bit with each file that is set when the file is created or modified and

cleared when it is backed up to tape.�

! Dired Next Undumped

Moves point forward to the next file that has not yet been backed up; Dired

displays the flag as ! between the length and date on that line.

Marking Files to be Hardcopied

You might want to obtain a hardcopy of a group of related files. Dired allows you

to mark files to be hardcopied as well as to be deleted.�

P Dired Hardcopy File

Marks the current file for printing. Dired puts a P in the first column to show

that the file is marked.

Page 2336

You can specify a numeric argument n, marking the next n files for printing.

Applying Arbitrary Functions to Files

Very occasionally, you want to perform some operation on selected files in your

directory for which there is no Dired command provided. When this occurs, you

can write up the operation that you want to perform as a Lisp function, whose

single argument is the pathname of the file. The following command is relevant:�

A Dired Apply Function

Marks the current file for having an arbitrary function applied to it. Dired puts a

A in the first column to show that the file has been so marked. With a numeric

argument of n, it marks the next n files, including the current one.

Zwei Undo Facility

The Zwei Undo facility remembers all the changes that you have made in an edi-

tor buffer and allows you to selectively undo any or all of the changes you have

made. The Undo facility is available from Zmacs, Converse, the Zmail draft editor,

and other editor buffers based on the Zwei substrate. (It is not available from the

Input Editor or in the minibuffer.)

The simplest operation of the Undo facility is to undo the most recent change to

the editor buffer. Go to a buffer, type something in, delete it, and then press

c-sh-U. The deletion is undone. Region marking shows what was undone. Now

press c-sh-R. You’re back where you started. It is always safe to undo, because

you can always redo, and vice versa.

The Undo (m-X) and Redo (m-X) commands are similar to c-sh-U and c-sh-R with

the added feature that a display in the minibuffer shows you what will be undone

or redone before any action is taken. HELP U also displays the change before undo-

ing it.

Keep pressing c-sh-U. Previous changes to the buffer are undone. You can keep

doing this until the buffer is returned to its original state. When you reach this

point, if the buffer contains a file, it’s no longer marked as needing to be saved.

And, if you undo all the changes to a section since it was compiled, it is no longer

marked as needing to be compiled.

Repeated pressing of c-sh-R will successively restore the buffer until all the undo

commands have been cancelled out.

If you read in a file with no intention of changing it and accidentally type some

characters into it, use c-sh-U rather than RUBOUT to get rid of them. That way,

the buffer is no longer considered to be modified.

Undo commands operate only on the current buffer. Each buffer has an undo his-

tory, and a separate redo history. The undo history can be displayed with c-0

c-sh-U. Likewise, the redo history can be displayed with c-0 c-sh-R. Items in the

history are mouse-sensitive. You can undo or redo all changes up through a given

Page 2337

change or you can undo or redo any single change in the history. By default, both

histories are discarded when you save the buffer. See the section "Discard Change

History".

Of course, subsequent changes may depend on the single change that you are un-

doing or redoing, so no guarantee can be made that undoing change number 13 in

a 29-change history will have no effect on changes 14 through 29. (On the other

hand, you can always back out of any undo or redo.)

This sounds more complicated in writing than it is when you are doing it. A few

minutes experimentation in an editor buffer will make you a competent and confi-

dent user of the most important and common undoing and redoing operations.

After an undo or redo, the text that was modified is highlighted the same as if

you had marked a region, but in this case there is no region, and the highlighting

disappears when you type the next command. The history also shows you what con-

stitutes each change. See the section "What is a Change to the Undo Facility?".

� What is a Change to the Undo Facility?

To the Undo facility, a change is a recorded change to the textual contents of an

individual buffer. Each buffer has its own undo and redo histories of recorded

changes.

Most common changes are recorded. You can undo:

• Insertions into a buffer, including Execute Into Buffer and Evaluate [and Re-

place] Into Buffer (m-X).

• Deletions from a buffer, including those made by RUBOUT, m-RUBOUT, c-D, m-D

and c-W.

• Text modifications, such as done by m-Q (fill paragraph) or c-TAB (indent dif-

ferently).

In general, the way changes are recorded is to record the previous contents of the

part of the buffer that was changed. Longer changes are compressed to minimize

the amount of storage space.

Certain changes are not recorded by the Undo facility. You cannot undo:

• Renaming a file.

• Compiling a function.

• Reading a file into a buffer.

• Moving around in the buffer.

Page 2338

• Patch system insertions into patch buffers (and other changes to buffers made

by the system).

• Revert Buffer (m-X).

• Anything in support buffers such as *Callers-17* or *Definitions-1*.

• Source Compare Merge (m-X) family of commands.

The Undo (m-X) and Redo (m-X) commands and HELP U all display the change be-

fore making it. You can also see information about changes in the undo and redo

histories displayed by c-0 c-sh-U and c-0 c-sh-R.

You can get a good idea of what a change is by looking at the region marking that

you see after an undo. Not all undos result in a clearly marked region  an undo

of an insertion does not, for instance  but a line in the minibuffer reports the

nature of each undo or redo.

The Undo facility uses simple rules to define changes. Changes are separated by

blank lines, paragraphs, if you will. When you type or delete a single character in

a new paragraph, that single character is a change. If you then type another char-

acter, the two characters together are a change, and so on until you reach the end

of the paragraph or expression, that is, another blank line.

Likewise, successive deletions are merged, as are multiple simple commands oper-

ating on a single area of text.

There are variables to precisely define all aspects of a change. See the section

"Customizing the Undo Facility".

� Undo and Redo Commands

The undo and redo commands come in three styles:

• Undo and Redo (m-X) commands. These commands display the change that will

be made before making it.

• Quick Undo and Redo commands. These are bound to c-sh-U and c-sh-R, re-

spectively.

• Quick Undo and Redo in Region commands. These are bound to m-sh-U and

m-Sh-R, respectively.

Each of these commands takes numeric arguments that allow selective undoing

and redoing and also display the undo and redo histories. Use the undo and redo

histories to make wholesale changes.

In addition, you can undo with the the HELP U key.

Page 2339

Undo Zwei Command

Undo (m-X)

Undoes a change to the buffer. The change is displayed first.

The first time you issue the command, it undoes the last change to the buffer.

The next time you issue it, it undoes the previous change to the buffer. You can

continue this until all changes to the buffer are undone and the buffer is consid-

ered unmodified. And, if you undo all the changes to a section since it was com-

piled, it is no longer marked as needing compiling.

For an otherwise equivalent accelerated version of this command, see the section

"Quick Undo Command".

If you undo something you didn’t intend to, Redo (m-X) redoes any undo. See the

section "Redo Zwei Command".

With no numeric argument, Undo undoes the most recent change that has not al-

ready been undone. With a positive numeric argument, Undo undoes the n most

recent changes. An argument of 1 is the same as no argument and an argument of

n is the same as issuing the command n times.

With a negative argument, Undo undoes only the nth most recent change that has

not already been undone. This allows undoing changes out of order, but can some-

times surprise you when the undone change overlaps with a later change that was

not undone. Use at your own risk.

With an argument of 0, Undo displays the undo history. Each change is numbered

and described in abbreviated form. The undo history is mouse-sensitive. Clicking

Left undoes back to the previous change, just as in using a positive numeric argu-

ment. Clicking Middle undoes only the highlighted change, just as in using a nega-

tive numeric argument. Clicking m-Left shows you the context of a change by high-

lighting the section of the buffer affected by the change.

� Quick Undo Command

c-sh-U Quick Undo

Undoes a change to the buffer. The first time you press it, it undoes the last

change to the buffer. The next time you press it, it undoes the previous change to

the buffer. You can continue this until all changes to the buffer are undone and

the buffer is considered unmodified. And, if you undo all the changes to a section

since it was compiled, it is no longer marked as needing compiling.

For an otherwise equivalent prompting version of this command, see the section

"Undo Zwei Command".

c-sh-R redoes any undo. See the section "Quick Redo Command".

With no numeric argument, c-sh-U undoes the most recent change that has not

already been undone. With a positive numeric argument, c-Sh-U undoes the n�

most recent changes. An argument of 1 is the same as no argument and an

argument of n is the same as pressing the key n times.

Page 2340

With a negative argument, c-sh-U undoes only the nth most recent change that

has not already been undone. This allows undoing changes out of order, but can

sometimes surprise you when the undone change overlaps with a later change that

was not undone. Use at your own risk.

With an argument of 0, c-sh-U displays the undo history. Each change is num-

bered and described in abbreviated form. The undo history is mouse-sensitive.

Clicking Left undoes back to the previous change, just as in using a positive nu-

meric argument. Clicking Middle undoes just the highlighted change, just as in

using a negative numeric argument. Clicking m-Left shows you the context of a

change by highlighting the section of the buffer affected by the change.

� Quick Undo in Region

m-sh-U Quick Undo in Region

m-sh-U works just like c-sh-U except that it is limited to changes in the current

region rather than in the current buffer. You are warned if an undo extends past

the region. See the section "Quick Undo Command". There is no prompting (m-X)

version of this command.

With no numeric argument, m-sh-U undoes the most recent change that has not

already been undone. With a positive numeric argument, m-sh-U undoes the n�

most recent changes. An argument of 1 is the same as no argument and an argu-

ment of n is the same as pressing the key n times.

With a negative argument, m-sh-U undoes only the nth most recent change that

has not already been undone. This allows undoing changes out of order, but can

sometimes surprise you when the undone change overlaps with a later change that

was not undone. Use at your own risk.

With an argument of 0, m-sh-U displays the undo history of the region. Each

change is numbered and described in abbreviated form. The undo history is mouse-

sensitive. Clicking Left undoes back to the previous change, just as in using a posi-

tive numeric argument. Clicking Middle undoes just the highlighted change, just

as in using a negative numeric argument. Clicking m-Left shows you the context of

a change by highlighting the section of the region affected by the change.

� Redo Zwei Command

Redo (m-X)

Redoes a change to the buffer. The change is displayed first.

The first time you issue the command, it redoes the last undo in the buffer. The

next time you issue it, it redoes the previous undo in the buffer. You can continue

this until all changes to the buffer are redone and the buffer is back where you

started from before you did the first undo.

For an otherwise equivalent accelerated version of this command, see the section

"Quick Redo Command".

Page 2341

If you redo something you didn’t intend to, Undo (m-X) undoes any redo. See the

section "Undo Zwei Command".

With no numeric argument, Redo redoes the most recent change that has not al-

ready been redone. With a positive numeric argument, Redo redoes the n most re-

cent changes. An argument of 1 is the same as no argument and an argument of n�

is the same as issuing the command n times.

With a negative argument, Redo redoes only the nth most recent change that has

not already been redone. This allows redoing changes out of order, but can some-

times surprise you when the redone change overlaps with a later change that was

not redone. Use at your own risk.

With an argument of 0, Redo displays the redo history. Each change is numbered

and described in abbreviated form. The redo history is mouse-sensitive. Clicking

Left redoes back to the previous change, just as in using a positive numeric argu-

ment. Clicking Middle redoes only the highlighted change, just as in using a nega-

tive numeric argument. Clicking m-Left shows you the context of a change by high-

lighting the section of the buffer affected by the change.

� Quick Redo Command

c-sh-R Quick Redo

Redoes a change to the buffer. The first time you press it, it redoes the last undo

in the buffer. The next time you press it, it redoes the previous undo in the buf-

fer. You can continue this until all changes to the buffer are redone and the buf-

fer is back where you started from before you did the first undo.

For an otherwise equivalent prompting version of this command, see the section

"Redo Zwei Command".

c-sh-U undoes any redo. See the section "Quick Undo Command".

With no numeric argument, c-sh-R redoes the most recent change that has not

already been redone. With a positive numeric argument, c-sh-R redoes the n most

recent changes. An argument of 1 is the same as no argument and an argument of

n is the same as pressing the key n times.

With a negative argument, c-sh-R redoes only the nth most recent change that

has not already been redone. This allows redoing changes out of order, but can

sometimes surprise you when the redone change overlaps with a later change that

was not redone. Use at your own risk.

With an argument of 0, c-sh-R displays the redo history. Each change is num-

bered and described in abbreviated form. The redo history is mouse-sensitive.

Clicking Left redoes back to the previous change, just as in using a positive nu-

meric argument. Clicking Middle redoes just the highlighted change, just as in

using a negative numeric argument. Clicking m-Left shows you the context of a

change by highlighting the section of the buffer affected by the change.

� Quick Redo in Region

Page 2342

m-sh-R Quick Redo in Region

m-sh-R works just like c-sh-R except that it is limited to changes in the current

region rather than in the current buffer. You are warned if a redo extends past

the region. See the section "Quick Redo Command". There is no prompting (m-X)

version of this command.

With no numeric argument, m-sh-R redoes the most recent change that has not al-

ready been redone. With a positive numeric argument, m-sh-R redoes the n most

recent changes. An argument of 1 is the same as no argument and an argument of

n is the same as pressing the key n times.

With a negative argument, m-sh-R redoes only the nth most recent change that

has not already been redone. This allows redoing changes out of order, but can

sometimes surprise you when the redone change overlaps with a later change that

was not redone. Use at your own risk.

With an argument of 0, m-sh-R displays the redo history of the region. Each

change is numbered and described in abbreviated form. The redo history is mouse-

sensitive. Clicking Left redoes back to the previous change, just as in using a posi-

tive numeric argument. Clicking Middle redoes just the highlighted change, just as

in using a negative numeric argument. Clicking m-Left shows you the context of a

change by highlighting the section of the region affected by the change.

� The Undo and Redo Histories

The Undo facility keeps an undo history and a redo history for each Zwei buffer.

By default, the history is discarded when you save the buffer, but you can set the

variable zwei:*discard-change-record-after-saving* to nil if you wish to override

that behavior. There is also a Discard Change History (m-X) command.

You can display the Undo history by giving an argument of 0 to the Undo (m-X)

command or the c-sh-U commands. A 0 argument to m-sh-U displays the undo his-

tory of the current region.

An argument of 0 to the Redo (m-X) or c-sh-R displays the redo history of the

buffer. A 0 argument to m-sh-R displays the redo history of the current region.

Histories are mouse-sensitive. Clicking Left on a history entry undoes or redoes

back to the previous change. Clicking Middle undoes or redoes only the highlighted

change. Clicking m-Left shows you the context of a change by highlighting the sec-

tion of the buffer affected by the change.

Discard Change History

Discard Change History (m-X)

Throws away both the Undo and Redo histories of the current buffer. The buffer

is still considered modified after this command is executed, but the histories are

gone.

See the variable zwei:*discard-change-record-after-saving*.

Page 2343

� Customizing the Undo Facility

You can customize the Undo facility by setting one or more variables. Most of

these variables affect the way the Undo facility records which changes it can undo

or redo, but there are also variables for turning the Undo facility off, for turning

off the region marking, and for changing the way the Undo facility handles yank-

ing and multiple replaces.

You can set any of these variables in Lisp programs, including your lispm-init

file. You must use setf, not setq, to set these variables.

A number of these variables are also defined as Zwei variables and can be set

from inside an editor using the Set Variable (m-X) command. Using the Set Vari-

able command, you can set each variable per buffer, per mode, or globally.

zwei:*enable-change-recording* Variable

Set to nil to turn off the Undo facility. The default is t.

� zwei:*undo-sets-region* Variable

If t, undo and redo operations use region marking to highlight where the change

was done. The marking disappears with the next keystroke. If nil, there is no

marking.

The Zwei variable is called Undo Sets Region. Using the Set Variable (m-X) com-

mand, you can set it per buffer, per mode, or globally.

� zwei:*yank-is-separately-undoable* Variable

If t, a yank is separately undoable from any edits before or after it. If :multi-line,

which is the default, this is true only when the yanked text is more than one line.

If nil, a yank can be merged with edits before or after it, approximately the same

as if the yanked text had been typed in one character at a time.

The Zwei variable is called Yank is Separately Undoable. Using the Set Variable

(m-X) command, you can set it per buffer, per mode, or globally.

� zwei:*discard-change-record-after-saving* Variable

Set to nil to cause the Undo facility to keep the change histories when a buffer is

saved. The nil setting conses a lot of garbage and may cause results contrary to

user expectations. The default is t, meaning that change histories are cleared

when a buffer is saved.

The Zwei variable is called Discard Change Record After Saving. Using the Set

Variable (m-X) command, you can set it per buffer, per mode, or globally.

� zwei:*simple-change-contiguity-range* Variable

Page 2344

Default = 3. This sets the maximum numbers of unchanged characters between

sections of a simple change within a line. If more unchanged characters than this

intervene between two changes, they will be considered two undoable changes.

Fewer, and it’s all one change.

� zwei:*simple-change-size* Variable

Default = 50. This is the maximum number of characters in a change. Once a

change is this number of characters, a new change is begun. Changes can be

smaller than this number of characters. Edits at the end of such a change are con-

sidered part of the same change, but edits in the middle start a new change.

The Zwei variable is called Simple Change Size. Using the Set Variable (m-X)

command, you can set it per buffer, per mode, or globally.

� zwei:*insertion-amendment-size* Variable

Default = 10. This many or fewer characters are considered an amendment to the

previous insertion and not a new change, and therefore are cannot be undone sep-

arately.

The Zwei variable is called Insertion Amendment Size. Using the Set Variable

(m-X) command, you can set it per buffer, per mode, or globally.

� zwei:*insertion-breakup-lines* Variable

Default = 4. Two insertions of at least this many lines with a blank line between

them are considered two undoable changes. In other words, this is the size of an

undoable paragraph insertion.

The Zwei variable is called Insertion Breakup Lines. Using the Set Variable (m-X)

command, you can set it per buffer, per mode, or globally.

� zwei:*undo-each-replace-separately* Variable

If nil, which is the default, all the changes made by a Replace String (c-%) or�

Query Replace (m-%) or other member of the Query Replace (m-X) family are un-

done as a unit. If t, the changes can be undone separately. Setting this variable is

a matter of taste and style.

The Zwei variable is called Undo Each Replace Separately. Using the Set Variable

(m-X) command, you can set it per buffer, per mode, or globally.

� zwei:*record-small-changes* Variable

Set to nil to cause the Undo facility to record only major changes, but to ignore

small changes, such as RUBOUT. The default is t, and is strongly recommended.

Page 2345

The Zwei variable is called Record Small Changes. Using the Set Variable (m-X)

command, you can set it per buffer, per mode, or globally.

Zmacs Speller

The Zmacs Speller is a small, simple set of tools to help you spell words right.

The Speller can examine a single word, a Zmacs region or buffer, a file, or a

group of files, for spelling errors. When it encounters a word not listed in one of

its dictionary files, it alerts you with a message and a menu of possible responses.

A large dictionary of common words is included as part of the Zmacs editor. You

can add other dictionaries of special spellings, as used by individuals or groups of

users on your system, to the list.

The quickest way to see what the Speller can do is to go to a Zmacs text buffer,

type an incorrectly spelled or nonexistent word, and then press m-$. Say you type

"gorax". When you press m-$, you see in the minibuffer at the bottom of the

screen:

"gorax" is unknown and possibly misspelled.�

A menu appears offering you a choice of Prompt and Accept and the word "bo-

rax", which is the only word in the basic dictionary close to the spelling of

"gorax". The menu might also contain the names of one or more dictionaries.

If you meant to type "borax", click on the word on the menu and the spelling is

changed.

If you want to accept the spelling "gorax", click on Accept or move the mouse

cursor off the menu.

If you want some entirely different word, click on Prompt and you are prompted

to type another word. If that word is spelled correctly, the message

Correcting "gorax" to "monkey".�

appears in the minibuffer. If the word is spelled incorrectly, the change is made

anyway, and the following messages

Warning: "shimbax" is not in the dictionary.

Correcting "gorax" to "shimbax".

"shimbax" is unknown and possibly misspelled.

appear in the minibuffer. Then the menu appears again to give you a chance to

change "shimbax" to something else again.

If you click on a dictionary name, the spelling is added to that dictionary in

memory for the rest of the session. You can also add the new words permanently

to a dictionary by saving the dictionary to a file. See the section "Save Spell

Dictionary".

See the section "Save All Spell Dictionaries".

Once you’ve tested the m-$ command, read a file into the buffer. Enter the com-

mand m-X Spell Buffer and watch what happens. Chances are there is a misspelled

Page 2346

word in the buffer, or at least a word that is not in the dictionary. The menu

produced by this command has an additional entry, Accept once. Click on Accept

once if you want the Speller to flag the word the next time it appears. Click on

Accept if you want the Speller to ignore the word for the duration of the spelling

check.

NOTE

To the Speller, any word not in the dictionaries is misspelled by defini-

tion. Not all words or alternate spellings are in the basic dictionary.

Also, for purposes of the Speller, a word in running text is defined to be

a sequence of characters, each of which must be a letter or an apostro-

phe. The apostrophe is allowed so that contractions and possessives are

recognized as words. This definition of a "word" is not exactly the same

as that used by the Zwei "word" commands (m-F and so forth).�

The Zmacs Speller Menu

When the Speller encounters a word not in a current dictionary in the course of a

m-$, Spell Buffer, Spell Region, or Spell Word command, a warning appears in the

minibuffer

"rugnue" is unknown and possibly misspelled.�

and a menu gives you a series of actions to choose from.

Prompt Prompts in the minibuffer for a replacement word.

The misspelled word is replaced by the new word. The

replacement word is also checked against the dictio-

naries and you are warned if it isn’t found. Any up-

percase letters you type are included when the word is

replaced. If the questioned word had an initial capital

letter, so will the replacement. Any other capital let-

ters in the original word are ignored.

While the menu is showing, pressing c-P is the same

as clicking on Prompt.

Accept once Accepts this spelling just this once. That is, the

Speller ignores the spelling this time, but if the same

misspelling is encountered again, it challenges the

spelling again. Moving the mouse cursor off the menu

is the same as clicking on Accept once.

While the menu is showing, pressing c-O is the same

as clicking on Accept once.

Accept Accepts this spelling and considers it a correct

spelling for the duration of the command. There is no

way to save words permanently using Accept. To save

Page 2347

words permanently, you must accept them by clicking

on a dictionary name.

While the menu is showing, pressing c-A is the same

as clicking on Accept.

DICTIONARY-NAME Accepts the spelling and adds it to the dictionary for

the remainder of the boot session. You can also add

the spelling to the dictionary file permanently, see the

section "Save Spell Dictionary", and see the section

"Save All Spell Dictionaries". To add a dictionary to

the list, see the section "Read Spell Dictionary".

suggestion Whenever possible, the Speller suggests words that

are close in spelling to the questioned word. One or

more suggestions may appear on the menu. If one of

the suggestions is what you intended, click on it and

the spelling in the text is changed to the suggested

spelling.

Speller Commands for Spelling

The Zmacs Speller allows you to check spelling by word, region, buffer, file, or

groups of files (including tag tables).

Spell This Word

m-$ Spell This Word

Checks the spelling of the current word. If point is just to the right of a word,

that word is checked. This means you can type a word and then press m-$ to

check the spelling. If point is on a word, that word is checked.

Use this command to check the spelling of individual words in your current buffer.

If a region exists, m-$ checks the spelling of the region, just like Spell Region

(m-X).

When checking the spelling of a single word, m-$ informs you if the spelling of the

word has been checked against a site-specific or user-specific dictionary. If a word

has been checked against the basic Speller dictionary, the following message ap-

pears in the minibuffer:

"tatterdemalion" is spelled correctly.

If a word has been checked against a site-specific or user-specific dictionary, the

following message appears in the minibuffer:

"Wollongong" is spelled correctly (according to TRADEMARKS).

For more information about speller dictionaries: See the section "Speller Dictionar-

ies".

Use Spell Word (m-X) to check the spelling of a word before typing it into a

buffer. See the section "Spell Word".

Page 2348

Spell Word

Spell Word (m-X)

Prompts for a word and runs a spelling check on it. If the word is spelled

according to the dictionaries, you are informed in the minibuffer. If the word is

not spelled according to the dictionaries, you are informed. If the dictionaries

contain any words similar to your misspelling, they are listed also.

Use this command to check the spelling of words before you type them in your

buffer.

Use m-$ (Spell This Word) to check the spelling of a word already typed into the

buffer. See the section "Spell This Word".

Spell Region

Spell Region (m-X)

Runs a spelling check on the current region.

Use this command to check spelling in a region you have marked.

Spell Buffer

Spell Buffer (m-X)

Runs a spelling check on the entire current buffer. It does not matter where point

is when you issue the command. The entire buffer is checked.

Spell File

Spell File (m-X)

Runs a batch-mode spelling check over a file. With wildcards, you can also specify

a group of files.

This command prompts for a pathname and also for the name of a buffer where

the words not in the dictionaries are to be written. The questioned words are

written to a buffer in alphabetical order, but without identification as to the file

they came from. You can save this buffer if you wish.

See the section "Tags Spell".

Tags Spell

Tags Spell (m-X)

Runs a batch-mode spelling check on all the buffers of the current tags table and

finds all of the words that aren’t in any of the dictionaries and writes them (in

alphabetical order) into a buffer you specify. You can save this buffer if you wish.

See the section "Spell File".

Page 2349

See the section "Tag Tables and Search Domains in Zmacs".

Speller Dictionaries

The Speller considers a word to be spelled correctly if it is in a current dictionary

and to be misspelled if it is not in a current dictionary. The Speller always checks

against the basic dictionary provided as part of Zmacs. In addition, the Speller

checks against one or more optional site-specific dictionaries and one or more user-

specific dictionaries.

When used to check the spelling of an individual word, m-$ informs you in the

minibuffer if the spelling has been checked against a site-specific or user-specific

dictionary.

Here are some basic definitions of dictionary terms:

• A dictionary or current dictionary is an object in the Lisp environment contain-

ing a set of words. It has an associated pathname, and a modified-p flag. The

pathname refers to a dictionary file. The modified-p flag indicates whether

words have been added to the dictionary since it was read in. If the modified-p

flag is on, the Save Spell Dictionary and Save All Spell Dictionaries commands

saves the dictionary. When a dictionary is saved, the modified-p flag is turned

off.

Most Speller commands operate only on the current dictionaries that are present

in memory. You must save any changes to these dictionaries if you want the

changes to be permanent.

See the section "Save Spell Dictionary".

See the section "Save All Spell Dictionaries".

• A dictionary file is a file that holds a set of words. It can be a binary (compiled)

dictionary or a character (text) dictionary. These files are read into memory.

° A binary dictionary is compiled and has the canonical file type "dict" ("dc" on

UNIX, "dct" on VMS). The binary dictionary is fast to load or dump.

° A character dictionary can be any file with text in it. There is no naming

restriction, but it is clearer to use the file type "text". The words in the file

are the words of the dictionary set, minus duplicates. This format can be

easily created, examined and modified by editing.

• The Speller commands operate on a list of dictionaries currently being used.

Order in the list doesn’t matter. Some dictionaries on the list appear in the

correction menu, and some do not. Whether or not to appear on the menu is a

property of a dictionary.

Page 2350

To make changes in a dictionary permanent, the dictionary must be saved.

See the section "Save Spell Dictionary".

See the section "Save All Spell Dictionaries".�

For an introduction to creating your own Speller dictionaries: See the section

"Quick and Dirty Guide to Adding and Maintaining a Spell Dictionary".

� Quick and Dirty Guide to Adding and Maintaining a Spell Dictionary

Here’s how to add your own spell dictionary and keep it up to date:

1. Go into Zmacs and use c-X c-F to create a new file called spell.dict in your

top-level directory.

2. Type in any words you know you want to have in your dictionary, or none at

all, if you prefer.

3. Write the file out using c-X c-S.

4. If the file is quite long, use Compile Spell Dictionary (m-X) to make a binary

dictionary, which loads faster.

5. Use Read Spell Dictionary (m-X) to read the new dictionary in this time.

Henceforth, it will be read in when you log in.

6. As you use the Speller, you can add words to your dictionary from the Speller

Menu by clicking on the dictionary name, or with Add Word to Spell Dictio-

nary (m-X).

7. To save those new words, use Save Spell Dictionary (m-X).

If you begin to suspect that you have misspelled words in your spell dictionary,

here’s what to do:

1. Issue the Zmacs command Execute Command Into Buffer (m-X) in an empty

Zmacs buffer.

2. Issue Show Contents of Spell Dictionary (m-X). The dictionary is written out

into the buffer.

3. Find the misspelled words.

4. Issue Delete Word From Spell Dictionary (m-X) for each misspelled word.

Page 2351

5. Issue Save Spell Dictionary (m-X) to save the corrected dictionary.

This is deliberately simplified information on adding a dictionary and keeping it up

to date. For complete information on speller dictionaries, see the section "Speller

Dictionaries".

� Speller Dictionary Management

Every system includes a basic dictionary, which is in the file SYS:SPELL;BASIC.DICT.

This is a dictionary of about 30,000 common English words. Not all words or

alternate spellings are in the basic dictionary. The dictionary does not include the

names of Lisp language forms.

You can add dictionaries for yourself as an individual user, or for your site. Any

text file can be used as a dictionary. Dictionaries can be in either binary (com-

piled) format, or character (text) format.

Adding User-specific Speller Dictionaries

The Zmacs Speller checks by default for a Speller dictionary in your home directo-

ry. This is a standard dictionary and is always included on the list of dictionaries

if it exists.

The user-specific dictionary is sought in your directory, on your file server, under

your name, with the file name "spell" and the file type "dict" or "text".

If you wish to add words to a dictionary as you go along, using the Speller, you

must read the dictionary in ahead of time. Then, any time you click on the dictio-

nary name, the word is added to the dictionary in memory. If you wish to add the

words to the dictionary file on disk, you can save the dictionary.

See the section "Read Spell Dictionary".

See the section "Save Spell Dictionary".

See the section "Save All Spell Dictionaries".

A dictionary file is just a file of text. Put all the words you want in your

dictionary into a file in your top-level directory and you have a user-specific

dictionary.

To speed loading, you can compile the file. It is good practice to use the "text" file

type for character (text) dictionary files and the "dict" file type for binary (com-

piled) dictionary files. When loading standard dictionaries, the Speller looks first in

your directory for the file named spell.dict. If that file is not found, the Speller

looks for spell.text. See the section "Compile Spell Dictionary".

If you wish to use other dictionaries besides the basic dictionary, you can add

them to the dictionary list interactively with the m-X Read Spell Dictionary com-

mand. See the section "Read Spell Dictionary". You can also include other dictio-

naries on your dictionary list using zwei:read-spell-dictionary. Speller dictionary

functions are most effectively used in a lispm-init file to do automatic dictionary

operations when you log in. See the function zwei:read-spell-dictionary.

Page 2352

For example, evaluating the following form:

(zwei:read-spell-dictionary "f:>skimpy>my-old-list.text")�

reads that file into memory as a dictionary and adds MY-OLD-LIST to the dictio-

naries named on the menu. In most cases, the menu lists just the name of the file

and not the rest of the pathname, but if two dictionary files have the same name,

then the menu lists the pathname for both (name-first, like Zmacs buffer names).

Conversely, evaluating this form:

(zwei:read-spell-dictionary "f:>skimpy>my-old-list.text" nil)�

reads the file into memory as a dictionary, but does not add it to the dictionaries

named on the menu. See the function zwei:read-spell-dictionary.

Note: If you use zwei:read-spell-dictionary in your lispm-init file, you must also

use zwei:read-standard-spell-dictionaries if you want to use the standard dictio-

naries. zwei:read-spell-dictionary overrides the auto-loading of the standard dic-

tionaries.

See the section "Adding Site-specific Speller Dictionaries".

Adding Site-specific Speller Dictionaries

The Zmacs Speller loads the basic dictionary in SYS:DATA;BASIC.DICT when you first

use the speller. It is not loaded until you request it or need it.

You can also have other dictionaries designated as site-specific. Site-specific dictio-

naries are always included on the dictionary list for each user except for those

users who override the auto-loading of standard dictionaries by evaluating

zwei:read-spell-dictionary without also evaluating zwei:read-standard-spell-

dictionaries. See the section "Adding User-specific Speller Dictionaries".

You can make a dictionary site-specific by adding a User-Property attribute to the

Site object in the namespace with the global-name Spell-Dictionary and a value

that will be parsed as a pathname. For more information, see the section "At-

tributes for Objects in the Namespace Database". Also see the section "Using the

Namespace Editor".

There is a command processor command for creating a Speller dictionary including

all the user names for your site.�

Create Spell Dictionary From Namespace command

Create Spell Dictionary From Namespace namespace pathname�

Creates a Speller dictionary with all the user-names, first names, and last names

from the list of User objects in the namespace. (For speed, the command works by

accessing the files that hold the namespace database rather than by accessing the

actual namespace servers.)

namespace The namespace you wish the dictionary to represent.

Page 2353

pathname The pathname of the binary dictionary file to be created.�

Once you have created the file, use the namespace editor to make it a site-specific

dictionary. See the section "Adding Site-specific Speller Dictionaries".

� Speller Dictionary Commands

Here are the commands for manipulating Speller Dictionaries.

Compile Spell Dictionary

Compile Spell Dictionary (m-X)

Compiles a text (character) dictionary into binary format for quicker loading. The

command prompts for two pathnames. The first is the name of the character dic-

tionary, which can be any text file. The second is the pathname of the binary

dictionary. Binary dictionary files usually have a file type of "dict".

Read Spell Dictionary

Read Spell Dictionary (m-X)

Reads a dictionary from a file. By default, the dictionary is added to the menu.

When a dictionary is on the menu you can add words to it as they are checked.

With a numeric argument, the dictionary is not added to the menu. You are

prompted for the pathname of the dictionary, which can be either character (text)

or binary (compiled).

Show Spell Dictionaries

Show Spell Dictionaries (m-X)

Displays the list of dictionaries currently being used by the Speller.

Save Spell Dictionary

Save Spell Dictionary (m-X)

Writes an an updated version of a dictionary file to include all words added in the

current session. You can save any dictionary from the list of dictionaries, but it is

only meaningful to save a dictionary from the displayed list, since those are the

only dictionaries being modified. Pathnames are unchanged. Saving an unmodified

dictionary does nothing.

For the command to display the list of dictionaries, see the section "Show Spell

Dictionaries".

See the section "Save All Spell Dictionaries".

Page 2354

Save All Spell Dictionaries

Save All Spell Dictionaries (m-X)

Saves updated copies of all modified dictionaries on the list of dictionaries. Dictio-

nary pathnames are unchanged. Writes an an updated version of each dictionary

file to include all words to that file added in the current session. The command

saves only dictionaries from the displayed list, since those are the only dictionaries

being modified. Pathnames are unchanged. Saving an unmodified dictionary does

nothing.

For the command to display the list of dictionaries, see the section "Show Spell

Dictionaries".

See the section "Save All Spell Dictionaries".

Kill Spell Dictionary

Kill Spell Dictionary (m-X)

Removes a dictionary from the list of dictionaries used by the Speller. This com-

mand has no effect on the dictionary file. Type in the pathname of the dictionary

in name-first order (like Zmacs buffer names). Completion of dictionary names is

available.

Add Word to Spell Dictionary

Add Word To Spell Dictionary (m-X)

Adds a word to a dictionary. The command prompts for both the word and the

name of the dictionary. The word remains in the dictionary as long as the dictio-

nary is read in.

You can also add a word at the time the Speller challenges it, by clicking on the

dictionary name.

You must save the Spell dictionary to add the word to the dictionary file. See the

section "Save Spell Dictionary", and

see the section "Save All Spell Dictionaries".

To add a word to a spell dictionary under program control, see the function

zwei:add-words-to-spell-dictionary.

Delete Word From Spell Dictionary

Delete Word From Spell Dictionary (m-X)

Deletes a word from the on-line dictionary. This command prompts for both the

word and the dictionary. If you wish to have the word permanently removed from

the dictionary file, you must save the dictionary after executing this command.

Otherwise, it will reappear the next time the dictionary is loaded. See the section

"Save Spell Dictionary".

Page 2355

To delete a word from a dictionary under program control,

see the function zwei:delete-words-from-spell-dictionary.

Show Contents of Spell Dictionary

Show Contents Of Spell Dictionary (m-X)

Shows all the words in a dictionary. Completion of dictionary names is available.

With a numeric argument, the command prompts for a pathname and writes the

words to that file. In this way, you can get a text file of a binary dictionary. You

can also do this with the Execute Command Into Buffer (m-X) command, followed

by Show Contents of Spell Dictionary.

To see the list of speller dictionaries, see the section "Show Spell Dictionaries",

and see the section "Execute Command Into Buffer".

Speller Dictionary Functions

zwei:read-spell-dictionary pathname &optional (menu-p t) Function

Intended primarily for use in lispm-init files. It reads a dictionary from a file into

virtual memory and adds it to the list of dictionaries used by the Zmacs Speller.

If the optional menu-p argument is nil, the dictionary is not added to the dictio-

naries shown on the menu. The default is to show the dictionary on the menu.

zwei:read-spell-dictionary overrides the auto-loading of standard dictionaries. If

you use this function in your lispm-init file, you must also use zwei:read-

standard-spell-dictionaries if you want the standard dictionaries loaded. See the

function zwei:read-standard-spell-dictionaries.

See the section "Speller Dictionary Management".

zwei:read-standard-spell-dictionaries &key for-general-use Function

Reads the basic dictionary, any site-specific dictionaries, and, optionally, a user-

specific dictionary into memory and makes them a part of the list of dictionaries

used by the Zmacs Speller.

If the optional keyword argument for-general-use is nil, only the basic dictionary

and any site-specific dictionaries are read in. The default is to read in those dictio-

naries plus the user’s own user-specific dictionary. Only the user-specific dictionary

appears on the menu.

You do not need to evaluate this function in your lispm-init file unless you are

using zwei:read-spell-dictionary, which overrides the auto-loading of standard dic-

tionaries, or unless you wish to set for-general-use to nil.

See the function zwei:read-spell-dictionary.

Page 2356

See the section "Speller Dictionary Management".

zwei:add-words-to-spell-dictionary pathname list-of-words &optional ok-if-

dictionary-not-found Function

Adds words to a dictionary in virtual memory. Use it to patch a dictionary in a

world load that already has the dictionary loaded. If the optional argument okay-if-

dictionary-not-found is t and no dictionary is found, nothing happens. If the argu-

ment is nil, which is the default, the function signals an error.

For example,

(zwei:add-words-to-spell-dictionary "shoebox:>fred>arfnarf.dict"

’("roadhog" "birdbrain") t)�

This function is also available from a command, see the section "Add Word to

Spell Dictionary".

See the function zwei:delete-words-from-spell-dictionary.

The dictionary file on disk is not affected. To add a word to a dictionary file, you

must save the dictionary.

See the section "Save Spell Dictionary".

See the section "Save All Spell Dictionaries".

zwei:delete-words-from-spell-dictionary pathname list-of-words &optional ok-if-

dictionary-not-found Function

Deletes words from a dictionary in virtual memory. Use it to patch a dictionary in

a world that already has the dictionary loaded. If the optional argument okay-if-

dictionary-not-found is t and no dictionary is found, nothing happens. If the argu-

ment is nil, which is the default, the function signals an error.

For example,

(zwei:delete-words-from-spell-dictionary "bogue:>lorna>snage.dict"

’("wonderissimo" "megastupidity") t)�

This function is also available from a command, see the section "Delete Word

From Spell Dictionary".

See the function zwei:add-words-to-spell-dictionary.

The dictionary file on disk is not affected. To delete a word from a dictionary file,

you must save the dictionary.

See the section "Save Spell Dictionary".

See the section "Save All Spell Dictionaries".

Editing Lisp Programs

Page 2357

Genera programmers develop programs in repeated cycles, each a sequence of

editing, compiling, testing, and debugging. These cycles are often nested. Zmacs

allows you to edit and test large programs dynamically, without frequent file sys-

tem operations.

As a programmer using Genera you typically read a file containing Lisp code into

an editor buffer, make modifications, test the results, make more changes, and so

on, until satisfied with the behavior of the program. Only then do you need to

write the buffer back out to the file system. The debugging loop is much tighter

and more responsive than in traditional programming environments. You can even

evaluate Lisp forms directly from inside the editor, without returning to a Lisp

Listener. Alternatively, you can divide the screen into a Lisp Listener window and

a Zmacs window, so that you can direct your attention to either without changing

the display.

Zmacs provides extensive features for locating source code of specified functions. If

an error occurs, the Debugger can cause Zmacs to read in the source of the func-

tion that got the error. You can then debug and recompile the function.

When you edit a file with a Lisp type, Zmacs puts that buffer into Lisp mode. A

command exists for explicitly placing a buffer in Lisp mode:

Lisp Mode (m-X) Lisp Mode

Places the current buffer into Lisp mode.�

Base and Syntax Default Settings for Lisp

When you read a file that has a Lisp file type into the buffer, if that file does not

begin with an attribute line containing Base and Syntax attributes, Zmacs warns

that the file "has neither a Base nor a Syntax attribute" and announces that it will

use the defaults, Base 10 and Common-Lisp. See the section "Buffer and File At-

tributes in Zmacs".

Commenting Lisp Code

Zmacs differentiates between the different comment indicators for different major

modes. Comments in Lisp begin with a semicolon. The Lisp reader ignores every-

thing between a (significant) semicolon and the next newline. By convention, there

are three kinds of comments, beginning with one, two, and three semicolons:

• Comments beginning with a single semicolon are placed to the right of a line of

code, start in a preset column (the comment column), and describe what is going

on in that line.

• A comment with two semicolons is a long comment about code within a Lisp

expression and has the same indentation as the code to which it refers. It

describes the function of a group of lines.

Page 2358

• A comment headed by three semicolons is normally placed against the left mar-

gin, and describes a large piece of code, such as a function or group of func-

tions.

This section outlines Lisp commenting conventions and explains Zmacs commands

for manipulating comments.

Indenting for Comment

c-; Indent For Comment

m-;

If the current line has no comment, moves point out to the comment column

(inserting spaces to get there, if necessary) and starts a comment by inserting a

semicolon there. If the current line already has a comment, it indents it correctly

and leaves point at the beginning of it. Zmacs positions the various kinds of

comments appropriately. If a comment begins at the left margin, it leaves it there.

With a numeric argument n, it realigns any comments on the next n lines, includ-

ing the current line, but does not create any new comments.

If a comment cannot be positioned at the comment column because the associated

line of code is too long, comments are moved to the right until they are clearly

separated from the code.

Killing a Comment

c-m-; Kill Comment

Kills any comments in the region. If no region exists, kills comments on the

current line if no region exists. This command can be reversed with Undo if no

other undoable command has intervened.

Moving Down to Comment on Next Line

m-N Down Comment Line

Moves point to the beginning of the comment on the next line. If there is no

comment on the next line, it creates one. If the comment on the current line is

empty, it deletes it before going to the next line.

With a numeric argument n, it moves point to the beginning of the comment on

the nth line after the current one.

Moving Up to Comment on Previous Line

m-P Up Comment Line

Moves point to the beginning of the comment on the previous line. If there is no

comment on the previous line, it creates one. If the comment on the current line

is empty, it deletes it before going on to the previous line.

Page 2359

With a numeric argument n, it moves point to the beginning of the comment on

the nth line before the current one.

Setting the Comment Column

c-X ; Set Comment Column

Sets the comment column to be the current horizontal position of the cursor.

With a numeric argument, it finds the nearest comment above the current line,

sets the comment column to line up with that comment, and actually puts a

comment on the current line at that column.

Creating a New Indented Comment Line

m-LINE Indent New Comment Line

Makes a new blank line after the current line and starts a new comment there,

indented properly. If there was already a comment on the current line, the com-

ment on the new line is of the same kind. (That is, it has the same number of

semicolons and is indented the same.) If there was no comment on the starting

line, m-LINE starts a new line, indenting the new line as appropriate for the major

mode.

Inserting and Removing Lisp Comments from Regions

c-X c-; Comment Out Region

Comments out each line in the region. When the region ends at the beginning of a

line, it does not comment out that line. If any part of the line is part of the

region, then it does comment out that line.

With a numeric argument (c-U c-X c-;) the command restores lines in the region

that have been commented out. When any part of the line is part of the region,

comments are removed from around that line.

The removal works the same as the commenting out. That is, a single semi-colon

(;) in column 1 is removed. Removal of comments stops at a line without a semi-

colon in column 1, even if more lines that have been commented out remain in the

region. The rest of the region does remain in this case, so that you can resume.

Evaluating and Compiling Lisp Programs

The commands in this section form a link between the Zmacs editor and the Lisp

language. They allow the evaluation and compilation of code from Zmacs buffers.

These commands are an important part of the debugging loop.

When a Lisp form is being compiled or evaluated, the editor displays a message

that classifies what is being compiled.

Page 2360

It classifies macros as functions (because these go in the function cell of a sym-

bol). For example:

Compiling Function SUN

Evaluating Variable MARS

Compiling Flavor STAR�

Evaluating Lisp Programs

m-ESCAPE Evaluate Minibuffer

Evaluates expressions from the minibuffer. You enter Lisp expressions in the

minibuffer, which are evaluated when you press END. The value of the expression

itself appears in the echo area. If the expression displays any output, that appears

as a typeout window.

Evaluate Into Buffer (m-X)

Evaluates an expression read from the minibuffer and inserts the result into the

buffer. You enter a Lisp expression in the minibuffer, which is evaluated when you

press END. The result of evaluating the expression appears in the buffer before

point. With a numeric argument, it also inserts any typeout that occurs during the

evaluation into the buffer.

Evaluate Buffer (m-X)

Evaluates the entire buffer. The result of evaluating the buffer appears in the

minibuffer. With a numeric argument, it evaluates from point to the end of the

buffer.

Evaluate Region (m-X)

c-sh-E

Evaluates the region. When no region has been defined, it evaluates the current

definition. It shows the results in the echo area.

c-m-sh-E Evaluate Region Verbose

Evaluates the region. When no region has been defined, it evaluates the current

definition. It shows the results in a typeout window.

Evaluate Region Hack (m-X)

Evaluates the region, ensuring that any Lisp variables appearing in a defvar have

their values set. When no region has been defined, it evaluates the current defini-

tion. It shows the results in the echo area.

Evaluate Changed Definitions (m-X)

Evaluates any definitions that have changed in any of the current buffers. With a

numeric argument, it prompts individually about whether to evaluate particular

changed definitions (the default evaluates all changed definitions).

Evaluate Changed Definitions of Buffer (m-X)

m-sh-E

Page 2361

Evaluates any definitions that have changed in the current buffer. With a numeric

argument, it prompts individually about whether to evaluate particular changed

definitions (the default evaluates all changed definitions).

Evaluate And Replace Into Buffer (m-X)

Evaluates the Lisp object following point in the buffer and replaces it with its

result.

c-m-Z Evaluate And Exit

Evaluates the buffer and exits Zmacs. It selects the window from which the last

ed function or the last Debugger c-E command was executed.

Compiling Lisp Programs

Compile Buffer (m-X)

Compiles the entire buffer. With a numeric argument, it compiles from point to

the end of the buffer. (This is useful for resuming compilation after a prior Com-

pile Buffer has failed.)

Compile Changed Definitions (m-X)

Compiles any definitions that have changed in any of the current buffers. With a

numeric argument, it prompts individually about whether to compile particular

changed definitions (the default compiles all changed definitions).

Compile Changed Definitions of Buffer (m-X)

m-sh-C

Compiles any definitions that have changed in the current buffer. With a numeric

argument, it prompts individually about whether to compile particular changed

definitions. The default is to compile all changed definitions.

Compile Changed Definitions of Tag Table

Compile Changed Definitions of Tag Table (m-X)

Compiles any definitions that have changed in any of the buffers in the current

tag table. With a numeric argument, the command prompts individually about

whether to compile particular changed definitions. The default is to compile all

changed definitions.

Compile File (m-X)

Compiles a file, offering to save it first (if it has an associated buffer that has

been modified). It prompts for a file name in the minibuffer, using the file associ-

ated with the current buffer as the default. It does not load the file.

Load File (m-X)

Loads a file, possibly saving and compiling it first. It prompts for a file name,

taking the default from the current buffer. It checks to see if the file you are com-

piling corresponds to a buffer and offers to save that buffer if it is modified. If the

Page 2362

.bin file is older than the .lisp file, it offers to compile the file first. If the typeout

window displays any compiler warnings, Load File asks if you really want to load

the file despite the compiler warnings.

m-Z Compile And Exit

Compiles the buffer and exits Zmacs. It selects the window from which the last ed

function or the last debugger c-E command was executed.

Lisp Compiler Warnings

Compiler warnings are kept in an internal database that you can inspect and

manipulate in various ways with several editor commands.�

Compiler Warnings (m-X)

Creates the compiler warnings buffer (called *Compiler-Warnings-1*) if it does not

exist, puts all outstanding compiler warnings in that buffer, and switches to that

buffer. You can view the compiler warnings by scrolling around and doing text

searches through them using Edit Compiler Warnings (m-X).

Edit Compiler Warnings (m-X)

Prompts you with the name of each file mentioned in the database, allowing you to

edit the warnings for that file. It then splits the Zmacs frame into two windows:

the upper window displays a warning message and the lower one displays the

source code whose compilation caused the warning. After you have finished editing

each function, c-. gets you to the next warning: the top window scrolls to show

the next warning and the bottom window displays the function associated with this

warning. Successive uses of c-. take you through all of the warning messages for

all of the files you specified. When you are done, the last c-. puts the frame back

into its previous configuration.

Edit File Warnings (m-X)

Asks you for the name of the file whose warnings you want to edit. You can give

either the source file or the compiled file. Only warnings for this file are edited. If

the database does not have any entries for the file you specify, the command

prompts you for the name of a file that contains the warnings, in case you know

that the warnings are stored in another file.

Load Compiler Warnings (m-X)

Loads a file containing compiler warning messages into the warnings database. It

prompts for the name of a file that contains the printed representation of compiler

warnings. It always replaces any warnings already in the database.

Parenthesizing Lisp Expressions

m-(Make ()

Inserts matching parentheses, leaving point between them. With a numeric argu-

ment n, it encloses the next n Lisp expressions in parentheses. When the number

Page 2363

of expressions requested cannot be satisfied, it beeps and does nothing. With point

on the open parenthesis of a defun, an argument of 1 encloses the whole defun

within a new set of parentheses. Any argument larger than 1 would have no effect.

In Text Mode, a word or a phrase within parentheses is treated as a Lisp form.

See also the description of the command m-) (see the section "Motion Among Top-

Level Expressions".) Matching parentheses in Zmacs Lisp buffers flash in both di-

rections.

The matching open parenthesis flashes when the cursor is sitting just past a close

parenthesis and the matching close parenthesis flashes when the cursor is sitting

on an open parenthesis.

Expanding Lisp Expressions

Two editor commands allow you to expand macros: Macro Expand Expression and

Macro Expand Expression All.�

c-sh-M Macro Expand Expression

Reads the Lisp expression following point and expands the form itself but not any

of the subforms within it. It displays the result in the typeout window. With a

numeric argument, it pretty-prints the result back into the buffer immediately af-

ter the expression.

m-sh-M Macro Expand Expression All

Reads the Lisp expression following point, and expands all macros within it at all

levels. It displays the result in the typeout window. With a numeric argument, it

pretty-prints the result back into the buffer immediately after the expression. It

assumes that every list in the expression is a form, so if car of a list is a symbol

with a macro definition, the purported macro invocation is expanded.

Locating Source Code to Edit

The functions that make up a program or system can depend on each other in

complicated ways. When you are editing one function, you sometimes have to go

off and look at another function, and possibly modify that one too.

This section describes the Edit Definition command and other commands that list

and/or edit various sets of definitions. In addition, two pairs of List and Edit com-

mands help identify changed code by finding or editing changed definitions in

buffers. By default, the changed commands find changes made since the file was

read; use numeric arguments to find definitions that have changed since they were

last compiled or saved.

The Zmacs Edit Definition Commands

Edit Definition (m-.) is a powerful command to find and edit function definitions,

macro definitions, global variable definitions, and flavor definitions. In general,

Page 2364

Zmacs treats as a definition any top-level expression having in functional position

a symbol whose name begins def.

It is particularly valuable for finding source code, including system code, that is

stored in a file other than that associated with the current buffer. It finds multi-

ple definitions when, for example, a symbol is defined as a function, a variable,

and another type of object. It maintains a list of these definitions in a support

buffer.�

Zmacs Command: m-.

This command is one of the most valuable tools of the system. When you are

developing or debugging programs, you can use m-. to find the definition of an

ordinary function, generic function, flavor, method, variable, package, or other type

of definition. Completion is supported on the definition, if it is already in an editor

buffer.

m-. prompts for a definition to find. You can enter a large variety of representa-

tions, and m-. figures out what definition you are seeking. For example, you can

enter symbols with or without package prefixes.

You can provide any of the following responses to the m-. prompt:

symbol Finds the definition of symbol, which can be an ordinary func-

tion or generic function. For generic functions, the defgeneric

form is found if one exists; all existing methods are also found.

symbol can also be one of: variable, package, defstruct struc-

ture, flavor, or other types of definitions.

(generic-function flavor)

Finds the definitions of one method that implements generic-

function on instances of flavor and asks if you mean that

method. If not, it proceeds to find other methods, including

special-purpose methods such as :before, :after, :default, and

so on.

(symbol property) Finds the function named by function spec (:property symbol

property). This is a handy abbreviation.

function-spec Finds the definitions of function-spec. For example, you could

enter (flavor:method change-status cell) to find the method

of that function spec. Often it is more convenient to enter the

list (change-status cell) instead.

When the requested Lisp object has multiple definitions, one of them is displayed.

You can then use c-U m-. to cycle through the other definitions. Also, a list of all

definitions and the files they are located in is stored in a buffer called *Defini-

tions-n*. The position of the cursor in that buffer controls where c-U m-. will go

next.

You can also point at forms with the mouse, in a buffer or in other windows, and

click m-Left to edit the definition.

Page 2365

Example of the m-. Command

Suppose you are modifying a function called sun, which was written by someone

else. sun calls the unfamiliar luna, and you need to find out what luna does

before proceeding. Use m-. to peek at the definition of luna.

When you type m-., Zmacs prompts you for the name of a definition. If point is in

the expression where luna is called, the default name is luna, and you need only

press END. If point is somewhere else and the default is wrong, you can point at

the word luna with the mouse or you can type it in. To let you know that you can

define a name with the mouse, the mouse cursor changes to an arrow pointing

straight up. All the symbols that are names of definitions you could specify become

mouse sensitive.

Edit Installed Definition (m-X)

Edits the installed version of the file that contains the definition of a specified

Lisp object. It prompts for the name of the definition; if one of your buffers al-

ready contains the installed version of that definition, it selects that buffer.

Otherwise, it reads in the source file that contains the definition. It always posi-

tions the cursor in front of the definition. When the object has more than one

definition, use a numeric argument to edit another definition of the same object.

You can repeat this until there are no more definitions of that object.

Edit Changed Definitions (m-X)

Determines which definitions in any Lisp Mode buffer have changed and selects

the first one. It makes an internal list of all the definitions that have changed

since the buffer was last saved and selects the first one on the list. Use c-. (Next

Possibility) to move to subsequent definitions. See the section "Displaying the Next

Possibility".

Edit Changed Definitions accepts a numeric argument to control the time point for

determining what has changed:

Value Meaning

1 For each buffer, since the file was last saved (the default).

2 For each buffer, since the buffer was last read.

3 For each definition in each buffer, since the definition was last compiled.

Edit Changed Definitions of Buffer (m-X)

Determines which definitions in the current buffer have changed and selects the

first one. It makes an internal list of all the definitions that have changed since

the buffer was last saved and selects the first one on the list. Use c-. (Next

Possibility) to move to subsequent definitions. See the section "Displaying the Next

Possibility".

Edit Changed Definitions of Buffer accepts a numeric argument to control the

time point for determining what has changed:

Value Meaning

Page 2366

1 Since the file was last saved (the default).

2 Since the buffer was last read.

3 Since the definition was last compiled.

Edit Cp Command

Edit CP Command (m-X)

Reads the source of a CP command into an editor buffer. With a numeric argu-

ment, prompts for a comtab. Otherwise it looks for the command in the global

comtab.

Edit System Files

Edit System Files (m-X)

Reads all of the files of a system into buffers. With a numeric argument, the files

of the component system are also read into buffers.

The List Definition Commands

List Definitions (m-X)

Displays the definitions in a specified buffer. It reads the buffer name from the

minibuffer, using the current buffer as the default. It displays the list as a typeout

window. The individual definition names are mouse sensitive.

List Duplicate Definitions (m-X)

Displays the duplicate definitions in the current buffer, if any. This is especially

useful for checking patch files or files made by merging several programs togeth-

er. c-. (Next Possibility) moves point to duplicate definitions that occur earlier in

the file, beginning with the earliest duplicate and not including the latest dupli-

cate. See the section "Displaying the Next Possibility".�

List Changed Definitions (m-X)

Displays a list of any definitions that have been edited in any buffer. Use c-.

(Next Possibility) to start editing the definitions in the list. See the section

"Displaying the Next Possibility".

List Changed Definitions accepts a numeric argument to control the time point for

determining what has changed:

Value Meaning

1 For each buffer, since the file was last read (the default).

2 For each buffer, since the buffer was last saved.

3 For each definition in each buffer, since the definition was last compiled.

Page 2367

List Changed Definitions of Buffer (m-X)

Displays the names of definitions in the buffer that have changed. It makes an

internal list of the definitions changed since the buffer was read in and offers to

let you edit them. Use c-. (Next Possibility) to move to subsequent definitions.

See the section "Displaying the Next Possibility".

List Changed Definitions of Buffer accepts a numeric argument to control the time

point for determining what has changed:

Value Meaning

1 Since the file was last read (the default).

2 Since the buffer was last saved.

3 Since the definition was last compiled.

The Edit Callers Commands

When you are modifying a large system, you often have to make sure that chang-

ing a function does not render unusable other functions that call the modified one.

Zmacs provides facilities for editing the sources of all the functions defined in the

current world that call a given one. This removes some of the unpleasantness of

making incompatible changes to large programs and is a good example of how

Zmacs interacts with the Lisp environment to make programming easier.�

Edit Callers (m-X)

Prepares for editing all functions that call the specified one. The prompt is the

same kind that Edit Definition gives you. It reads a function name via the mouse

or from the minibuffer with completion.

It selects the first caller; use c-. (Next Possibility) to move to a subsequent defi-

nition. See the section "Displaying the Next Possibility".

Multiple Edit Callers (m-X)

Prompts for the names of a group of functions and edits those functions in the

current package that call any of the specified ones. It reads a function name from

the minibuffer, with completion, initially offering a default function name. It

continues prompting for more function names until you end the list with RETURN.

Use m-X Multiple Edit Callers Intersection when you want to edit those functions

that call all of the specified functions. See the section "Multiple Edit Callers Inter-

section".

Multiple Edit Callers Intersection

Multiple Edit Callers Intersection (m-X)

Prepares for editing all the functions that call all of the specified functions. It

reads a function name from the minibuffer, with completion. It continues prompt-

ing for a function name until you end it with just a carriage return.

Page 2368

Use m-X Multiple Edit Callers if you want to edit all the functions that call any of

the specified functions. See the section "Multiple Edit Callers ".

List Callers (m-X)

Prompts for the name of a function exactly the way Edit Callers does, but instead

of editing the callers in the current package of the specified function, it simply

displays their names. The names are mouse-sensitive. If you point at one and click

left, you can edit the source of that caller. If you click right, a menu pops up that

offers to give the argument list of the selected caller, to disassemble it, to edit it,

or to see its documentation string. In addition, c-. ("Next Possibility") works in

this context, offering the first caller to be edited, and queuing up the other callers

to be edited in sequence.

Multiple List Callers (m-X)

Lists all the functions that call any of the specified functions. It reads a function

name from the minibuffer, with completion. It continues prompting for more func-

tion names until you end the list with RETURN.

The list of function names is mouse-sensitive: see List Callers (m-X). c-. (Next

Possibility) edits the callers. See the section "Displaying the Next Possibility".

Use m-X Multiple List Callers Intersection when you want only callers that call all

the specified functions. See the section "Multiple List Callers Intersection".

Multiple List Callers Intersection

Multiple List Callers Intersection (m-X)

Lists all the functions that call all of the specified functions. It reads a function

name from the minibuffer, with completion. It continues prompting for a function

name until you end it with just a carriage return.

Use m-X Multiple List Callers if you want to list functions that call any of the the

specified functions. See the section "The Zmacs Edit Callers Commands".

Patching

For complete information about patching, see the section "Patch Facility".

During a typical maintenance session you might make several changes to existing

definitions or write new ones. Rather than recompiling the entire system every

time you change a source file, you can copy only the new or revised code into a

patch file and write the file ("finish" the patch). Whenever you finish a patch, the

patch facility automatically compiles the file and records the event in a "patch

registry" for the system, noting the number of the patch, the system being patch,

and a brief user-supplied description. As soon as a user loads the patch file (after

the system is loaded), the state of the given system in the user’s machine is pre-

sumably the same as in the developer’s machine when the patch was finished.

The patch facility allows you to have several patches in progress at once. Thus you

can patch several different systems or several different minor versions of the same

Page 2369

system during one work session. The patch facility manages this potentially dan-

gerous situation in the following way. Every time you start a patch, a number and

a place in the patch registry is reserved for the patch in production. The patch is

marked in-progress. When the patch is finished, the entry is completed and the in-

progress mark removed. If you decide to abort the patch, the registry entry is

automatically deleted.

The ability to have more than one patch in-progress to more than one system

makes it imperative that you keep track of the state of your various patches. If a

patch is left unfinished (unwritten), the load-patches function will load neither

the in-progress patch nor any subsequent finished patches.

The patch facility considers patches to be active or inactive and in one of the

following states: initial, in-progress, aborted, or finished. Show Patches (m-X) dis-

plays the state of all patches started in this work session. If more than one patch

is in progress, one of them is known as the current patch. The commands that add

patches, like Add Patch (m-X), add only to the patch considered by the patch facili-

ty to be the current patch. The command Select Patch (m-X) displays a menu of

active patches and allows you to make another patch the current one.

In general you should adhere to the following steps in making a patch. It is

assumed that your system is patchable; that is, the :patchable option appears in

the system declaration.

1. You must load (via load-system) the major version of the system that you

want to patch.

2. Read in the source files you want to edit into a Zmacs buffer. Make all

changes and test them thoroughly. Write the source file.

3. Use the appropriate Zmacs commands to make your patch. Begin the patch,

using Start Patch (m-X).

4. Add the changed code to the patch buffer by using Add Patch (m-X), Add

Patch Changed Definitions of Buffer (m-X), or Add Patch Changed Definitions

(m-X).

5. Finish the patch, using Finish Patch (m-X), or abort the patch, using Abort

Patch (m-X).�

Commands provided for initiating a patch are Start Patch (m-X), Start Private

Patch (m-X), and Add Patch (m-X).�

� Start Patch (m-X)

Starts a new patch, prompting you for the name of the system to be patched; it

must be a system currently loaded. It assigns a new minor version number for

that particular system by writing a new version of the patch directory file with an

entry for that minor version number. The patch is marked as in-progress. It starts

constructing the patch file in an editor buffer, but does not select the buffer.

Page 2370

While you are making your patch file, the minor version number that has been

allocated for you is reserved so that nobody else can use it. Thus, if two people are

patching the same system at the same time, they cannot be assigned the same

minor version number.

The command does not actually move any definitions into the patch file. You must

explicitly do so with Add Patch Changed Definitions of Buffer (m-X), Add Patch

Changed Definitions (m-X), or Add Patch (m-X).

The patch facility permits you to start another patch before finishing the current

one. However, if your new patch is to the same system, the patch facility warns

you that you already have a patch in progress and allows you to take one of four

actions:

• Abort the in-progress patch and start a new patch.

• Finish the in-progress patch and start a new patch.

• Proceed with the second patch (initial patch) for this system and leave the in-

progress patch intact.

• Use the existing buffer and do not start a new patch.�

Start Private Patch (m-X)

Although similar to Start Patch (m-X), Start Private Patch (m-X) does not have any

relationship to systems, major and minor version numbers, and official patch di-

rectories. Rather it allows you to make a private patch file that you can load, test,

and share with other users before you install a numbered patch that is automati-

cally available to all users.

Instead of prompting for a system name, the command prompts for a file name. It

also prompts for a patch note to be saved with the patch. The default for this

private patch note is the same as the name component of the private patch path-

name, except that spaces are converted to hyphens. This patch note is also offered

as the subject line of a mail message if you select yes for Send mail about this

patch in the Finish Patch menu.

Start Private Patch does not actually move any definitions into the patch file. Use

Add Patch Changed Definitions of Buffer (m-X), Add Patch Changed Definitions

(m-X), or Add Patch (m-X) to insert the code. Finishing the patch (using Finish

Patch (m-X)) writes it out to the specified file.

Note: Use the Load File command or Load File (m-X) to load a private patch; the

Load Patches command and the load-patches function do not load private patches.�

Add Patch (m-X)

Starts a new patch if none is underway, prompts you for a system name, and

inserts the region or current definition into the patch buffer. If a patch was in

progress, Add Patch (m-X) just adds the region or current definition to the current

patch file.

Page 2371

Warns you if your editor buffer conflicts with the system being patched. If you

mistakenly use Add Patch on code that does not work, select the buffer containing

the patch file and delete it. Then later you can use Add Patch (m-X) on the

corrected version. For each patch you add, it queries for a patch comment, which

it then inserts in the patch file. Just pressing END means "no comment".�

Add Patch (m-X), Add Patch Changed Definitions (m-X), or Add Patch Changed

Definitions of Buffer (m-X) insert code into the patch file. If the patch is being

made to the system the current buffer’s file came from, the commands proceed.

If there is a current patch, and it is not appropriate for the system that the

buffer’s file came from, you see a menu showing all of the current patches, plus

an option to create a new patch appropriate for the buffer, plus an option to abort.

�

� Add Patch Changed Definitions of Buffer (m-X)

Add Patch Changed Definitions of Buffer (m-X) selects each definition that was

changed in the buffer and asks you whether or not you want the definition

patched.

For each definition, you can respond as follows:

Response Action

Y Patches the definition.

N Skips the definition.

P Patches the definition and any additional modified definitions in the

same buffer without asking any more questions.�

A definition needs to be patched if it has been changed since it was last patched

or if it has not been patched since the file was read into the buffer.

For each patch you add, it queries for a patch comment, which it then inserts in

the patch file. Just pressing END means "no comment".�

Add Patch Changed Definitions (m-X)

Add Patch Changed Definitions (m-X) selects a buffer in which definitions were

changed and asks whether or not you want to patch the changed definitions.

Answering N skips the buffer and proceeds to the next buffer of the same mode, if

any. Answering Y selects each definition that has changed in that buffer and asks

you whether or not you want the definition patched. For each definition, you can

respond as follows:

Response Action

Y Patches the definition.

N Skips the definition.

Page 2372

P Patches the definition and any additional modified definitions in the

same buffer without asking any more questions; when done, it pro-

ceeds to the next buffer.�

If there are more buffers containing definitions to be patched, it asks questions

again when it gets to the next buffer.

A definition needs to be patched if it has been changed since it was last patched

and if it has not been patched since the file was read into the buffer.

For each patch you add, it queries for a patch comment, which it then inserts in

the patch file. Just pressing END means "no comment".

Add Patch Changed Definitions selects buffers based on the mode of the buffer

from which the command is issued. Thus if you are in a Lisp mode buffer, any

Lisp mode buffers with definitions to be patched are offered, and if you are in

another mode buffer, only buffers of that mode are offered.�

When making multiple patches during one work session use the Select Patch and

Show Patches commands to keep track of patches.�

� Select Patch (m-X)

When you are making more than one patch during a work session, Select Patch

(m-X) allows you to choose a different patch as the current patch from a menu of

active patches. The patching commands (like Add Patch and Add Patch Changed

Definitions of Buffer) insert definitions into the patch file that you have selected

as the current patch. To insert patch definitions into another buffer, use Select

Patch to choose that buffer as the current patch.�

Show Patches (m-X)

Show Patches (m-X) displays the state of all patches started in this session.

Patches are either active or inactive and can be in one of the following states:

initial, in-progress, aborted, or finished. Inactive patches are in an aborted or fin-

ished state. Active patches are in an initial or in-progress state. Initial means that

the patch buffer has been initialized but as yet no definitions have been added to

the buffer. In-progress means that the patch buffer has been initialized and defini-

tions have been added to the buffer.

Show Patches groups the active and inactive patches and identifies the current

patch.�

After making and testing all of your patches, use the Finish Patch command to

install the patch in the system.�

� Finish Patch (m-X)

Page 2373

Finish Patch (m-X) installs the patch file so that other users can load it. This

command saves and compiles the patch file (patches are always compiled). If the

compilation produces compiler warnings, the command asks whether or not you

want to finish the patch anyway. If you do, or if no warnings are produced, a new

version of the patch directory file is written. The in-progress mark is removed

from the entry in the patch registry.

The command allows you to edit the patch comments, which are written to the

patch directory file. (load-patches and zl:print-system-modifications print these

comments.) It then asks you whether you want to send mail about the patch. If

you say "yes", it opens a mail buffer and inserts initial contents, including the

name of the patch file and your patch comment.

Note: By default the Finish Patch command queries you about sending mail. You

can alter this behavior by changing the value of the variable zwei:*send-mail-

about-patch*. Its valid values are :ask, the default value, which queries the user;

t, which opens a Zmacs mail buffer without querying; and nil, which takes no

action regarding the sending of patch mail.

The Finish Patch menu lists the modified source files for the patch and offers to

save them as part of the Finish Patch process. If you do not save your files as

part of the Finish Patch process, Finish Patch displays a reminder to save your

files when it finishes writing the patch directory. You can set the variable

zwei:*finish-patch-save-sources-default* (default nil) to t in your init file to have

Finish Patch save your files automatically.

Sometimes you start making a patch file and for a variety of reasons do not finish

it  for example, you decide to abort the patch, you need to end your work session

at this machine, or your machine crashes. In each of these situations it is of the

utmost importance that you leave the patch directory file in a clean state; that is,

either go back and finish the patch (as soon as possible!) or deallocate the patch

number reserved to you. Failure to do so has unfortunate consequences: users at

your site will not be able to load patches.

If your machine has crashed, use Resume Patch (m-X) to reclaim access to the

patch number previously assigned to you. You can continue with the patch (assum-

ing you saved the source files just prior to the crash) or use Abort Patch (m-X) to

deallocate the patch number. Begin the patch again if you wish. If you simply

decide to abandon the patch file, then just use Abort Patch. If you must boot your

machine before finishing the patch, then save the patch buffer and as soon as

possible use Resume Patch to read in the relevant patch file; finish the patch or

abort it, as you wish.�

� Abort Patch (m-X)

Abort Patch (m-X) deallocates the minor version number that was assigned by the

Start Patch or Add Patch commands. It tells Zmacs that you are no longer inter-

ested in making the current patch and offers to kill the patch buffer. The next

time you do Add Patch (m-X), Zmacs starts a new patch instead of appending to

the one in progress.�

Page 2374

Resume Patch (m-X)

Resume Patch (m-X) allows you to return to a patch that you were not able to

finish in the same boot session in which you started it; for example, your machine

might have crashed or you had to boot your machine suddenly. It reads in the

relevant patch file if it was previously saved; otherwise it just reclaims your access

to the minor version number allocated to you when you started the patch. Abort or

finish the patch.�

Under certain circumstances you might find it necessary to recompile and reload a

patch file. �

� Recompile Patch (m-X)

Recompile Patch (m-X) recompiles an existing patch file. This command is useful

when, for example, an existing patch needs to be edited or a compiled patch file

becomes damaged in some way. Never recompile a patch manually or in any way

other than using the Recompile Patch command. This command ensures that

source and object files are stored where the patch system can find them.

Use Recompile Patch with caution! Recompiling a patch that has already been

loaded by other users can cause divergent world loads.�

Reload Patch (m-X)

Reload Patch (m-X) reloads an existing patch file. This command makes it easy to

reload a patch file without having to know its pathname.�

You might want to have your herald announce private patches that you make.

note-private-patch adds a private patch to the database in your world and in-

cludes the name of the patch in the herald.�

� note-private-patch string Function

Adds a private patch to the database in your world. note-private-patch takes a

string argument. For example, the following adds the private patch called

patch.lisp:

(note-private-patch "s:>maria>patch.lisp")�

Subsequent displays of your herald show the inclusion of that patch in your world.

You create private patches using the Start Private Patch (m-X) command and then

the standard patch commands for adding to and finishing the patch. Use the Load

File command or Load File (m-X) to load a private patch; the Load Patches com-

mand and the load-patches function do not load private patches.�

Page 2375

sct:require-patch-level-for-patch &rest system-major-minor-specs Function

Enforces a patch’s dependency on some particular patch level in another system or

systems. It is used at the head of any patch file that requires a certain patch level

in some other system to load or operate correctly. For example:

(sct:require-patch-level-for-patch ’(system 357. 510.) ’(tape 69. 10.))

If the patch level requirements are not all met, loading the patch (and subsequent

patches for that system) is skipped. After patches are loaded for all systems, Load

Patches is called again to see if the patch levels of the other systems are now

high enough to permit loading of additional patches. You can specify the patch lev-

el requirements from the Finish Patch menu.

zwei:*send-mail-about-patch* Variable

Controls whether the Finish Patch menu question "Send mail about this patch?"

comes up set to yes. The possible values are t, nil, or :ask. The default is :ask. If

the value is t, the question always appears with yes set.

zwei:*finish-patch-save-sources-default* Variable

Controls whether the Finish Patch menu question "Save sources for this patch?"

comes up set to yes or no. The possible values are t or nil. The default is nil. If

the value is t, the question always appears with yes set.

Customizing the Zmacs Environment

Now that you are familiar with the basic Zmacs concepts and techniques, you can

set up a large set of minor modes, Zmacs and Lisp variables, and parameters to

change the way the editor works. Zmacs’s flexibility allows you to change which

keys are connected to which commands, write your own commands, and install

them in lieu of the standard system commands. A few users make extremely radi-

cal changes to the point where almost every key has a new meaning.

This section describes:

• Zmacs minor and major modes, and how they provide a degree of customization

• Creating new commands with keyboard macros

• Saving keyboard macros

• Setting key bindings

• Specifying Zmacs variable settings

• Sample init file forms for automatically reloading your customized environment

Page 2376

Built-in Customization Using Zmacs Minor Modes

Definition of Zmacs Minor Modes�

A minor mode:

• Is an option.

• Is independent of other minor modes and of the selected major mode.

Zmacs has an extended command for each minor mode (m-X) that turns the mode

on or off. With no argument, the command turns the mode on if it was off and off

if it was on. This is known as toggling. A positive argument always turns the mode

on, and a zero argument or a negative argument always turns it off.

All the minor mode commands are suitable for connecting to single- or double-

character commands if you want to enter and exit a minor mode frequently. See

the section "Zmacs Key Bindings".

For information about setting minor modes permanently, see the section "Setting

Mode Hooks in Init Files".

Example

Auto Fill Mode (m-X)

Turns on Auto Fill Mode, a minor mode that inserts Return characters automati-

cally to break lines as you type. You can turn Auto Fill Mode on regardless of your

major mode. If the mode line displays Fill, Auto Fill Mode is on. If Auto Fill

Mode is already turned on, this command turns it off.

This mode is useful when you are typing large amounts of text. It makes it

unnecessary to look at the screen or to worry about line length: you just type in

the text without newlines and Zmacs inserts them whenever they are needed.

Auto Fill Mode works by establishing a hook that runs after you press one of the

activation characters (SPACE, RETURN, ., ?, !, or]) that activate filling in this

mode. When you press one of these characters in Auto Fill Mode, Zmacs does more

than simply insert it. First it checks to see whether the line exceeds the maximum

allowable line length or fill column (see Set Fill Column below). If the line is too

long, Zmacs finds the last word on the current line that fits inside the fill column.

Zmacs then inserts a newline right after that word. Extra spaces (if any) are delet-

ed from the beginning of the newly formed line.

Because of the way Auto Fill Mode works, you will often find yourself typing a

word out beyond the fill column. The word will be moved to the next line as soon

as you press one of the activation characters.

The fill column is used by Auto Fill Mode (and by the paragraph adjusting com-

mands) to decide where to break lines. It is measured in pixels, not in characters,

so that Auto Fill Mode works even if characters of different widths appear in a

buffer. (A pixel is a tiny rectangular area on the screen that is either all white or

Page 2377

all black. Pixels are the smallest addressable region of the display. If you look

closely, you can see the separate rectangular pixels that make up everything on

the display.)�

You can change the fill column with the following command:

c-X F Set Fill Column

Changes the fill column to match up with the current position of the cursor. That

means that if point is at the end of a line, filled lines will not be longer than the

current one from now on. You are given a choice of whether to set the fill column

for the buffer, the major Zmacs mode, or globally.

With a positive numeric argument n less than 200, the fill column is set to be n

character-widths, and if n is 200 or greater, the fill column is set to be n pixels.

In effect, this command sets the right margin. Auto Fill mode and the m-Q use the

fill column setting.

Summary of Minor Modes

Atom Word Mode (m-X)

Makes word commands, such as m-D and m-F, work on Lisp objects, not words,

when in Lisp mode. For example, in Atom Word Mode, m-F would move all the

way across :show-machine-name-in-wholine, while with Atom Word Mode off (the

default), m-F would move only from show to machine. Atom Word Mode ignores

lists and nil.

This command does not display anything in the mode line. Turn off Atom Word

Mode by issuing the command again.

Auto Fill Lisp Comments Mode (c-m-X)

Turns on auto filling of comments, but not code. This command displays Fill-

Comments in the mode line.

Auto Fill Mode (m-X)

Turns on auto filling. Auto Fill mode allows you to type text endlessly without

worrying about the width of your screen. Return characters are inserted where

needed to prevent lines from becoming too long. This command displays Fill in

the mode line.

Electric Character Style Lock Mode (m-X)

Puts comments in the character style that is the value of zwei:*comments-

character-style-index*, which is set to the value of (si:style-index (si:parse-

character-style ’(nil :italic nil))), 4, corresponding to NIL.ITALIC.NIL. This

command displaysElectric Character-Style-lock in the mode line.

Electric Shift Lock Mode (m-X)

Facilitates typing in programs that are in uppercase. Whenever you type a charac-

ter that is part of a Lisp symbol, such as the name of a function, variable, or

special form, Zmacs inserts it in uppercase, but when you type a character that is

Page 2378

part of a character string or a comment or after a slash, Zmacs inserts it normal-

ly. This command displays Electric Shift-lock in the mode line.

EMACS Mode (m-X)

Provides commands for EMACS users. It puts bit-prefix commands on ESCAPE, c-^,

and c-C, and Universal argument on c-U. It also makes c-I a synonym for TAB,

c-H a synonym for BACKSPACE, and c-] a synonym for ABORT. This command

displays EMACS in the mode line.

Overwrite Mode (m-X)

Turns on overwrite mode. In overwrite mode, ordinary printing characters replace

existing text, instead of inserting themselves next to it. It is good for editing pic-

tures. This command displays Overwrite in the mode line.

Word Abbrev Mode (m-X)

Turns on Word Abbrev Mode. If Word Abbrev Mode is already on, this command

turns it off. Word Abbrev Mode allows you to define word abbreviations that ex-

pand as you type them. This command displays Abbrev in the mode line.

Major Modes

Whenever you are editing some text, some set of modes is in effect. The buffer is

always associated with one major mode that tells the editor what kind of document

is being edited. A major mode has the following characteristics:

• It has its own distinct set of key bindings.

• It affects groups of related language-specific items, such as delimiter characters

and indentation rules.

The major modes are listed below. You can establish the mode:

• By turning it on using the prefix m-X followed by the name of the mode. For

example, to invoke Lisp Mode, type: m-X Lisp Mode.

• By setting it in the attribute list. See the section "Buffer and File Attributes in

Zmacs".

• By having Zmacs do it for you when you specify a file with c-X c-F or the Edit

File command. It recognizes the type component of the pathname of the file (for

example, folon.lisp) and puts the buffer in the corresponding mode.

Fundamental Mode

Fundamental Mode enters Zwei’s fundamental mode (the default mode).

Lisp Mode

Page 2379

Lisp Mode sets things up for editing Lisp code. It puts Indent-For-Lisp on TAB.�

When you read a file that has a Lisp file type into the buffer, if that file does not

begin with an attribute line containing Base and Syntax attributes, Zmacs warns

that the file "has neither a Base nor a Syntax attribute" and announces that it will

use the defaults, Base 10 and Common-Lisp. See the section "Buffer and File At-

tributes in Zmacs".

Text Mode

Sets things up for editing English text. It puts Tab-To-Tab-Stop on TAB.

Zmacs FEP-Command Mode

Sets up the buffer for editing FEP command files. This mode is automatically en-

tered when you read in a FEP .boot file. Use c-m-X FEP Command Mode to enter

this mode manually. Comment delimiters are "(" and ")". TAB is Indent Relative.

All tabbing is done by inserting spaces, not tabs.

Note

Zmacs supports Fortran Mode as a part of FORTRAN 77, the separately priced

software product. For more information, see the User’s Guide to Symbolics For-

tran.

Macsyma Mode

Macsyma Mode enters a mode for editing MACSYMA code. It modifies the delim-

iter dispatch tables appropriately for MACSYMA syntax, makes comment delimiters

/* and */. It puts Indent-Relative on TAB.

Midas Mode

Midas Mode sets things up for editing PDP-10 assembly language code.

Bolio Mode

Bolio Mode sets things up for editing Bolio source files. It is like Text Mode, but

also makes c-m-N, c-m-:, and c-m-* insert font characters, and makes word-

abbrevs for znil and zt.

Teco Mode

Teco Mode sets things up for editing TECO. It makes comment delimiters be !*

and *!. It puts Indent-Nested on TAB, Forward-Teco-Conditional on m-’, and Back-

ward-Teco-Conditional on m-].

Page 2380

User-Defined Major Modes

In Zmacs, you can define your own major modes (see zwei:defmajor in the code).

File Types and Major Modes

You can control the default major mode associated with a particular file type. For

example, Zmacs sets the major mode to Lisp for files with type lisp. The repository

for this information is a list called fs:*file-type-mode-alist*.

For example, suppose you wanted to associate the file type tex with text mode:

(push ’("tex" . :text) fs:*file-type-mode-alist*)

The car of an element should be either a canonical type symbol or a string when

the type is not one of the known canonical types.

In addition, suppose you have files that would require Scribe mode, if Zmacs had

such a thing. You can define a correspondence between two major modes, using a

global variable called zwei:*major-mode-translations*. It is an alist of major mode

names, expressed as keyword symbols.

Example:

(push ’(:scribe . :text) zwei:*major-mode-translations*)�

Creating New Commands with Keyboard Macros

A keyboard macro is a command that you define to abbreviate a sequence of other

commands. If you discover that you are about to type c-N c-D 40 times, you can

define a keyboard macro to do c-N c-D and call it with a repeat count of 40.

The keyboard macros described here are temporary keyboard macros; that is,

macros that you use for the duration of your Zmacs session. For information on

writing permanent keyboard macros that you can save and initialize in your init

file, see the section "Writing and Saving Keyboard Macros".

You define a keyboard macro by telling Zmacs that you are about to write a macro

and then typing the commands that are the definition. That is, as you are defining

a keyboard macro, the definition is being executed for the first time. When you are

finished, the keyboard macro is defined and also has been, in effect, executed once.

You can then do the whole thing over again by invoking the macro.

Procedure

1. To start defining a keyboard macro, type c-X ((Start Kbd Macro). From then

on, your commands continue to be executed, but also become part of the defi-

nition of the macro. Macro-level: 1 appears in the mode line.

2. If you want to perform an operation on each line, do one of the following:

Page 2381

• Start by positioning point on the line above the first one to be processed

and then begin the macro definition with a c-N

• Start on the proper line and end with a c-N.�

Either way, repeating the macro operates on successive lines.

3. After defining the body of the macro, you can terminate it in several ways.

• c-X) (End Kbd Macro) terminates the definition.

• An argument of zero to c-X) automatically repeats the macro (upon

termination of the definition) until it gets an error or reaches the end of

the buffer.

• c-X) can be given a repeat count as a numeric argument, in which case it

repeats the macro that many times right after defining it, but defining the

macro counts as the first repetition (since it is executed as you define it).

(Subsequent invocations ignore the numeric argument contained in the

macro.)

Inserting an argument of 5 before ending the macro (...c-5 c-X)) executes the

macro immediately four additional times.

Starting a Keyboard Macro

c-X (Start Kbd Macro

Begins defining a keyboard macro. A numeric argument means append to the pre-

vious keyboard macro.

Ending a Keyboard Macro

c-X) End Kbd Macro

Terminates the definition of a keyboard macro.

Showing a Keyboard Macro

To see the keyboard macro, use Show Keyboard Macro (m-X), which prints the

macro at the top of your screen. �

Show Keyboard Macro (m-X)

Displays the specified keyboard macro. The name of the macro is read from the

minibuffer; just RETURN means the last one defined, which can also be temporary.

Page 2382

Calling the Last Keyboard Macro

The macro thus defined can be invoked again with c-X E (Call Last Kbd Macro),

which can be given a repeat count as a numeric argument to execute the macro

many times.�

c-X E Call Last Kbd Macro

Repeats the last keyboard macro.�

Example

The example below defines a keyboard macro that goes to the beginning of a line,

inserts a semicolon, and goes to the next line. It also executes the macro four

times, including once as it is being defined.

c-X (

c-A

;

c-N

c-4 c-X)�

For information about setting key bindings permanently, see the section "Zmacs

Key Bindings".�

Writing and Saving Keyboard Macros

Writing and saving keyboard macros entails:

• Defining the macro with zwei:define-keyboard-macro.

• Installing the macro on a keystroke with zwei:make-macro-command.

• Storing the macro into a comtab with zwei:command-store.

zwei:define-keyboard-macro takes as its arguments the name of the macro and

the keystrokes specifying what you want it to do.

Optionally, you can install the macro on a keystroke with zwei:make-macro-

command, giving the name of the macro, which returns a Lisp function.

zwei:command-store takes that Lisp function and stores it into a comtab, similar

to what zwei:set-comtab does. zwei:command-store, given the key you want to in-

stall the macro on and the comtab in which to put it, stores the command in the

slot of the comtab that you specify. The combination of zwei:make-macro-

Page 2383

command and zwei:command-store does the same thing as the Install Macro

(m-X) command.

Using variations of the following forms you can save the macros on disk and, if

you wish, edit them.�

Example 1

Suppose you want to have a command that exchanges the first two words on a

line. Put this form in your init file:

(ZWEI:DEFINE-KEYBOARD-MACRO EXCH-FIRST-TWO-WORDS (NIL)

 #\C-A #\M-F #\M-T)�

The macro cannot be more than 255 keystrokes long. If your macro gets this long

you should be writing in Lisp, since keyboard macros are not intended to be a pro-

gramming language. If necessary, you can get around this restriction by breaking

your macro into parts and having them call each other.

Suppose you want to install the EXCH-FIRST-TWO-WORDS macro on the

keystroke s-Q. Put this form in your init file:

(ZWEI:COMMAND-STORE (ZWEI:MAKE-MACRO-COMMAND ’:EXCH-FIRST-TWO-WORDS)

 #\S-Q ZWEI:*ZMACS-COMTAB*)�

Example 2

The following form defines a keyboard macro called replace-test, which replaces

the string dog with the string river:

(ZWEI:DEFINE-KEYBOARD-MACRO REPLACE-TEST (NIL)

 #\C-S "dog" #\ESCAPE #\M-RUBOUT "river")

�

To save the keyboard macro replace-test on the keystroke h-S:

�

(ZWEI:COMMAND-STORE (ZWEI:MAKE-MACRO-COMMAND ’:REPLACE-TEST)

 #\H-S ZWEI:*ZMACS-COMTAB*)�

The h-S command takes a numeric argument as a repeat count.

Defining an Interactive Keyboard Macro

Within the keyboard macro definition, you can specify steps at which you want the

macro to query. To define an interactive keyboard macro, use the Kbd Macro

Query command after beginning the macro definition (with Start Kbd Macro).

Invoke Kbd Macro Query at each spot in the macro where you want the macro to

query. Then close the definition with End Kbd Macro.�

c-X Q Kbd Macro Query

Page 2384

Allows user interaction on each iteration of macro, similar to Query Replace (m-X).

While defining a keyboard macro, press c-X Q at each step where you want a

pause to occur. Upon execution of the macro, it stops and waits at each of those

steps for one of the following characters:

SPACE Continues execution of the macro.

RUBOUT Skips rest of keyboard macro (use nested c-X (and c-X) for

grouping to control range of skip).

? or HELP Displays HELP information.

. Continues but does not iterate anymore.

! Continues, iterates, but does not ask anymore.

c-R Enters editing mode; c-m-FUNCTION R resumes the keyboard

macro.

Naming a Keyboard Macro

Having defined a keyboard macro, you can name it with Name Last Kbd Macro

(m-X). A prompt (Name for macro:) appears in the minibuffer.�

Name Last Kbd Macro (m-X)

Assigns a name to the most recent temporary keyboard macro, making it perma-

nent. The new name for the macro is read from the minibuffer.

Using Keyboard Macros to Sort

You can use a keyboard macro to set up a sorting mechanism and run it on any

region of text.

For information about how to sort using keyboard macros, see the description of

Sort Via Keyboard Macros (m-X), see the section "Sorting in Zmacs".

Installing a Macro on a Key

To bind the macro to the key of your choice, use Install Macro (m-X). You are

asked to identify the macro and specify the key(s) to which you want it bound.�

Install Macro (m-X)

Installs a specified user macro on a specified key. The name of the macro is read

from the minibuffer, and the keystroke on which to install it is read in the echo

area. If the key is currently holding a command prefix (such as c-X), it asks you

for another character, so that you can redefine c-X commands. However, with a

numeric argument, it assumes you want to redefine c-X itself, and does not ask

for another character.

Page 2385

Installing a Mouse Macro

You can bind the macro to a mouse click instead of a key using Install Mouse

Macro (m-X). This command works similarly to Install Macro.�

Install Mouse Macro (m-X)

Installs a specified user macro on a specified mouse click. The name of the macro

is read from the minibuffer, and the mouse click on which to install it is read in

the echo area. When the mouse is clicked to invoke this macro, the macro is in-

voked from the current location of the mouse cursor.

Deinstalling a Macro

To remove the macro from that key, use Deinstall Macro (m-X). The key is rebound

to the standard system usage, if any.�

Deinstall Macro (m-X)

Deinstalls a keyboard macro.�

Example

This example shows how to install a macro and deinstall the same macro:

you type:

m-X Install Macro

minibuffer:

Name of macro to install (CR for last macro defined):

you type:

macro-name or CR

minibuffer:

Key to get it:

you type:

h-T

�

A menu appears and asks you in which comtab to install the macro:

• Just this editor

• Zmacs

• Zwei�

Page 2386

�
Click on your choice.

minibuffer:

Command #<DTP-CLOSURE 34465726> installed on Hyper-T.

�

you type:

m-X Deinstall Macro

minibuffer:

Key to deinstall:

you type:

h-T

�

The menu appears and asks you to specify in which of the three

comtabs to deinstall the macro. Click on your choice.

�

minibuffer:

Command NIL installed on Hyper-T.

�

For information about saving keyboard macros permanently, see the section "Zmacs

Key Bindings".

Making Tables Using Keyboard Macros

The keyboard macro facility implemented with the c-m-FUNCTION key provides

more features, such as an easy way to make tables.�

c-m-FUNCTION

Reads a keyboard macro command, consisting of an optional numeric argument

made up of any number of digits (0-9) followed by a non-numeric character, usual-

ly a letter. Each keyboard macro command must be preceded by the c-m-FUNCTION

prefix. After typing the prefix, you can press HELP for a list of available keyboard

macro commands.

Keyboard Macro Commands for c-m-FUNCTION

0-9 Optional numeric argument.

C Calls a macro by name. Prompts in the minibuffer for the name of the

macro.

P Begins a macro definition (same as c-X  see the section "Starting a

Keyboard Macro".)

R Ends a macro definition (same as c-X  see the section "Ending a Key-

board Macro".)

M Defines a named macro. Prompts for the name of the macro to define and

then enters macro definition mode.

S Stops (aborts) macro definition (also c-G).

Page 2387

D Defines a named macro but does not execute it while reading its charac-

ters.

SPACE Inserts pauses for user interaction in the macro (same as c-X Q  see the

section "Defining an Interactive Keyboard Macro".)

A Steps though characters on successive iterations (for example, letters and

numbers). Asks for starting character, amount to increase (or decrease if

negative) on each iteration.

U Allows typein terminated by c-m-FUNCTION R. This allows you to stop while

in the middle of defining the macro, do other things in the editor, and then

go back and finish defining the macro.

T Allows typein every iteration.

The difference between c-m-FUNCTION U and c-m-FUNCTION T is that c-m-FUNCTION

U allows typein while defining a macro. This typein does not get stored in the

macro, and therefore does not get executed on subsequent iteration, nor when the

macro is called again.

c-m-FUNCTION T allows typein on every iteration. As with c-m-FUNCTION U, the

typein while defining the macro does not get stored in the macro. But on each

subsequent iteration, new typein will be requested.�

Example 1

The following example shows how to create a macro that constructs a table using

c-m-FUNCTION A.

you type: c-X (

Minibuffer: Macro-level: 1 *

you type: c-m-FUNCTION A

Minibuffer: Initial character (type a one-character string):

you type: a RETURN

Minibuffer: Amount by which to increase it (type a decimal number):

you type: 1 RETURN

(Zmacs inserts the a into the buffer.)

you type: c-2 c-6 c-X)

As you close the macro, Zmacs inserts into the buffer:

a b c d e f g h i j k l m n o p q r s t u v w x y z

by executing the macro 26 times, increasing the letter once each time.

Example 2

Page 2388

The following example shows how to create a macro that constructs a table using

c-m-FUNCTION A, and this time, c-m-FUNCTION T, which allows typein during every

iteration of the macro:

you type: c-X (

Minibuffer: Macro-level: 1 *

you type: Item SPACE

you type: c-m-FUNCTION A

Minibuffer: Initial character (type a one-character string):

you type: 1

Minibuffer: Amount by which to increase it (type a decimal number):

you type: 1

you type: TAB

you type: c-m-FUNCTION T

Minibuffer: Macro-level: 2 *

you type: Rosemary

you type: c-m-FUNCTION R

Minibuffer: Macro-level: 1 *

you type: RETURN

you type: c-5 c-X)

you type: Sage

you type: c-m-FUNCTION R

you type: Thyme

you type: c-m-FUNCTION R

you type: Parsley

you type: c-m-FUNCTION R

you type: Pepper

you type: c-m-FUNCTION R

The table looks like this:

�

Item 1 Rosemary

Item 2 Sage

Item 3 Thyme

Item 4 Parsley

Item 5 Pepper

�

Page 2389

Key Bindings

A key binding is the set of specific keystrokes that invoke a specific command.

How Key Bindings Work: The Comtab

A command table, or comtab, assigns a command to each possible keystroke. While

Zmacs is running, there is always a unique selected comtab, in which Zmacs finds

the command that corresponds to each user keystroke.

When you type a keystroke, Zmacs looks up the keystroke in the currently selected

comtab, finds the appropriate command, and runs it. Usually the command’s side

effects all occur within the buffer: Point might be moved and text might be delet-

ed, inserted, or rearranged. Sometimes a command has more extensive side effects.

A command can alter or replace the selected comtab itself, in which case Zmacs

looks up the next keystroke in the new command table.

Zmacs’s basic state consists of the standard editor key bindings, which reside in

one special command table, the standard comtab (Zwei comtab). The standard

comtab interacts with the Zmacs comtab and the various mode-dependent comtabs.

The typical selected comtab when in Zmacs is "unnamed" for mode-specific key

bindings, which indirects to "Zmacs", which indirects to "Zwei". Although the stan-

dard comtab can be temporarily replaced, it is always reselected eventually, often

after only one "nonstandard" keystroke.

A keystroke that functions as a prefix actually runs a command that replaces the

standard comtab for one keystroke. This is the mechanism by which multikeystroke

commands are implemented. For example, there are many two-stroke commands

whose first keystroke is c-X. This keystroke runs a command that brings in its

own comtab before interpreting the next stroke.

Setting the Key

If you want to put a command on the keystroke of your choice, use Set Key. This

command works for any of the already defined commands.�

Set Key (m-X)

Installs a specified command on a specified key. If the key is currently holding a

command prefix (such as c-X), it asks you for another character so that you can

redefine c-X commands. However, with a numeric argument, it assumes you want

to redefine c-X itself and does not ask for another character.

It assigns key bindings in the editor that are active in all buffers, and takes two

arguments: the name of a command, and a keystroke to invoke it. It reads the

name of the command in the minibuffer, completing any command name in any

comtab.

Install Command

Page 2390

If you want to put a function on the keystroke of your choice, use Install Com-

mand. It takes a function, regards it as a command, and puts it on a key.

Install Command (m-X)

Installs a specified function as a command in the comtab, on a specified key. It

takes two arguments: the name of the function (the current definition, that is, top-

level expression), and a keystroke to invoke it. (Zmacs treats as a definition any

top-level expression having in functional position a symbol whose name begins

"def".) If the key is currently holding a command prefix (such as c-X), it asks you

for another character so that you can redefine c-X commands. However, with a

numeric argument, it assumes you want to redefine c-X itself and does not ask for

another character.

How to Specify Zmacs Variable Settings

A variable is a name that is associated with a value, for example, a number or a

string. Zmacs has editor variables that you can set for customization. (Variables

can also be set automatically by major modes.)

You can distinguish the names of Zmacs variables from other Lisp variables by

their names  the first letters are capitalized and the names contain spaces

rather than hyphens.

Finding Out About Zmacs Variables

To examine the value of a single Zmacs variable, use Describe Variable (m-X). To

print a complete list of all variables, use List Variables (m-X).

Some commands refer to variables that do not exist in the initial environment.

Such commands always use a default value if the variable does not exist. In these

cases you must create the variable yourself if you wish to use it to alter the

behavior of the command.

Describing Zmacs Variables

Describe Variable (m-X)

Displays the documentation and current value for a single Zmacs variable. It reads

the variable name from the minibuffer, using completion.

Listing Zmacs Variables

List Variables (m-X)

Lists all Zmacs variables and their values. With a numeric argument, this com-

mand also displays the documentation line for the variable.

Listing Variables by Matching a String

Page 2391

HELP V Variable Apropos

c-HELP V

c-m-? V

Displays the names of all possible Zmacs variables containing a specific substring.

With a numeric argument, this command also displays the documentation lines for

the variables.

Example

One example of such a Zmacs variable is the Fill Column variable, which specifies

the width, in pixels, used in filling text.

For example, c-1 HELP V prompts in the minibuffer Variable Apropos (substring):

and you type fill col. It does pattern matching on the variable name and thus

matches Fill column, which displays: Fill column: 576. Width in pixels used in

filling text.

Setting Variables

Settable Zmacs Variables

You can view all settable Zmacs variables with the List Variables (m-X) command.

The following are some examples of variables that can be set with Set Variable

(m-X). In addition, they can be set in init files by using the internal form of their

names. For example, Region Marking Mode is zwei:*region-marking-mode* inter-

nally.

Region Marking Mode

Value: :reverse-video for setting the region to reverse video. The

default is :underline.

Region Right Margin Mode

Value: t. Causes whatever marks the region (reverse video or un-

derlining) to extend across unfilled space to the right margin. The

default is nil.

Page 2392

One Window Default

Controls which window remains selected after a One Window (c-X

1) command when you were using more than one window. Possible

values:

:current

:other

:top

:bottom�

This feature operates best when the current layout has no more

than two windows. The value :current is the only one that is always

well defined with more than two windows on the screen.

Check Unbalanced Parentheses When Saving

Controls whether Zmacs checks a file for unbalanced parentheses

when you are saving the file. The check is on (t) by default. When

it checks a file that you are saving and finds unbalanced parenthe-

ses, it queries you about whether to go ahead and save anyway. This

applies to all major modes based on Lisp; it is ignored for text

modes.

Set Variable

Set Variable (m-X)

Sets any existing Zmacs variable. This command reads the name of a variable

(with completion), displays its current value and documentation, and prompts in

the minibuffer for a new value. It does some checking to see that the new value

has the right type.

Although either uppercase or lowercase works, you are encouraged to capitalize

each word of the name for aesthetic reasons, since Zmacs stores the name as you

give it.

Customizing Zmacs in Init Files

As you gain sophistication with the more advanced features, you will find the

settings of parameters that most please you and put these into a command file

(init file) that the system executes every time you log in.

Creating an Init File

Create a file named lispm-init.lisp (or with the correct Lisp file type suffix for

your host operating system) in your home directory on your host system and put

your Zmacs customizations there.

This section contains examples of forms that you can place inside a login-forms in

your init file to customize the editor.

Page 2393

login-forms is a special form for wrapping around a set of forms in your init file.

It evaluates the forms and arranges for them to be undone when you log out.

Setting Editor Variables

The forms described show how to set Zmacs variables (the kind that Set Variable

(m-X) sets).

To set these variables, which are symbol macros, you must use the setf macro. For

a description of symbol macros: See the section "Symbol Macros". For a description

of the setf macro: See the macro setf.�

Ordering Buffer Lists

(SETF ZWEI:*SORT-ZMACS-BUFFER-LIST* NIL)

This displays the list of buffers in the order the buffers were created rather than

in the order they were most recently visited.

Putting Buffers Into Current Package

(SETF ZWEI:*DEFAULT-PACKAGE* NIL)

This puts buffers created with c-X B (Select Buffer) into whatever package is

current; the default is to put them in the user package.

Setting Default Major Mode

(SETF ZWEI:*DEFAULT-MAJOR-MODE* :TEXT)

This sets the default major mode to Text Mode for buffers with no Mode attribute

and no major mode deducible from the file type; the default is Fundamental Mode.

Setting Find File Not To Create New Files

(SETF ZWEI:*FIND-FILE-NOT-FOUND-IS-AN-ERROR* T)

This beeps and prints an error message when you give c-X c-F (Find File) the

name of a nonexistent file. The default prints (New File) and creates an empty

buffer, which when saved by c-X c-S (Save File) creates the file that was nonex-

istent.

Init File Form: Setting Refind File to Not Query for Newer Version of File

(SETF ZWEI:*REVERT-UNEDITED-BUFFERS-FOR-NEW-VERSION* :ALWAYS)�

� Controls the prompting behavior of Refind File, Refind All Files, and Revert Buffer

if a newer version of the buffer file exists on disk. Its default is :query, which

means ask you if you would prefer the newer version. It may be set to :always,

Page 2394

meaning pick up the newer version without bothering to ask, or :never, meaning

do not pick up the newer version.

Setting Goal Column for Real Line Commands

(SETF ZWEI:*PERMANENT-REAL-LINE-GOAL-XPOS* 0)

This moves subsequent c-N and c-P (Down Real Line and Up Real Line) com-

mands to the left margin, like doing c-0 c-X c-N (Set Goal Column to zero).

Fixing White Space For Kill/Yank Commands

(SETF ZWEI:*KILL-INTERVAL-SMARTS* T)

This tells the killing and yanking commands to optimize white space surrounding

the killed or yanked text.

Setting Mode Hooks

Each major mode has a mode hook, a variable which, if bound, is a function that

is called with no arguments when that major mode is turned on.�

Electric Shift Lock in Lisp Mode

(SETF ZWEI:LISP-MODE-HOOK ’ZWEI:ELECTRIC-SHIFT-LOCK-IF-APPROPRIATE)

This tells Lisp major mode to turn on Electric Shift Lock minor mode unless the

buffer has a Lowercase attribute. The effect is that by default Lisp code is written

in uppercase.

Auto Fill in Text Mode

(SETF ZWEI:TEXT-MODE-HOOK ’ZWEI:AUTO-FILL-IF-APPROPRIATE)

This tells Text major mode to turn on Auto Fill minor mode unless the buffer has

a Nofill attribute. The effect is that by default lines of text are automatically

broken by carriage returns when they get too wide.

Key Bindings

To bind keys, you first define the comtab in which to put the binding. For

example, *standard-comtab* and *standard-control-x-comtab* define features of

all Zwei-based editors; *zmacs-comtab* and *zmacs-control-x-comtab* define fea-

tures that are Zmacs-specific.�

White Space In Lisp Code

Page 2395

ZWEI:(SET-COMTAB *STANDARD-CONTROL-X-COMTAB*

 ’(#\SP COM-CANONICALIZE-WHITESPACE))

This defines c-X SPACE as a command that makes the horizontal and vertical

white space around point (or around mark if given a numeric argument or immedi-

ately after a yank command) conform to standard style for Lisp code.

c-m-L on the SQUARE Key

ZWEI:(SET-COMTAB *ZMACS-COMTAB*

 ’(#\SQUARE COM-SELECT-PREVIOUS-BUFFER))

This defines the SQUARE key to do the same thing as c-m-L. This key binding is

placed in *zmacs-comtab* rather than *standard-comtab* since buffers are a fea-

ture of Zmacs, not of all Zwei-based editors.

Edit Buffers on c-X c-B

ZWEI:(SET-COMTAB *ZMACS-CONTROL-X-COMTAB*

 ’(#\c-B COM-EDIT-BUFFERS))

This makes c-X c-B invoke Edit Buffers rather than List Buffers. This key bind-

ing is placed in *zmacs-control-x-comtab* rather than *standard-control-x-

comtab* since buffers are a feature of Zmacs, not of all Zwei-based editors.

Edit Buffers on m-X

ZWEI:(SET-COMTAB *ZMACS-COMTAB*

 ()

 (MAKE-COMMAND-ALIST ’(COM-EDIT-BUFFERS)))

This makes Edit Buffers available on m-X in Zmacs (by default it is only available

on c-m-X).

m-. on m-Left

ZWEI:(SET-COMTAB *ZMACS-COMTAB*

 ’(#\m-MOUSE-L COM-EDIT-DEFINITION))

This makes clicking the left mouse button while holding down the META key do

what m-. does. Invoking this command from the mouse is convenient when you

specify the name of the definition to be edited by pointing at it rather than typing

it.

Font Editor

Font Basic Concepts

Page 2396

In Genera, characters can be typed out in any of a number of different typefaces.

Some text is printed in characters that are small or large, boldface or italic, or in

different styles altogether. Each such typeface is called a font. A font is conceptu-

ally an array, indexed by character code, of pictures showing how each character

should be drawn on the screen. The Font Editor (FED) is a program that allows

you to create, modify, and extend fonts.

A font is represented internally as a Lisp object. Each font has a name. The name

of a font is a symbol, usually in the fonts package, and the symbol is bound to the

font. A typical font name is tr8. In the initial Lisp environment, the symbol

fonts:tr8 is bound to a font object whose printed representation is something like:

#�

The initial Lisp environment includes many fonts. Usually there are more fonts

stored in BFD files in file computers. New fonts can be created, saved in BFD

files, and loaded into the Lisp environment; they can also simply be created inside

the environment.

If you are loading a font contained in a font file in one of the font directories, the

system loads that font the first time you reference it. However, if you are loading

a font contained in a file somewhere else in the file system, load that font using

the function fed:read-font-from-bfd-file pathname, where pathname is the path-

name of the font file.

The tv package contains the window system, which includes fonts for screen dis-

play (as opposed to fonts for hardcopying).

Attributes of TV Fonts

Fonts, and characters in fonts, have several interesting attributes.

Character Height Font Attribute

One attribute of each font is its character height. This is a nonnegative integer

used to figure out how tall to make the lines in a window. Each window has a cer-

tain line height. The line height is computed by examining each font in the font

map, and finding the one with the largest character height. This largest character

height is added to the vertical spacing (in pixels) between the text lines (vsp) spec-

ified for the window, and the sum is the line height of the window. The line

height, therefore, is recomputed every time the font map is changed or the vsp is

set. This ensures that any line has enough room to display the largest character of

the largest font and still leave the specified vertical spacing between lines. One ef-

fect of this is that if you have a window that has two fonts, one large and one

small, and you do output in only the small font, the lines are still spaced far

enough apart to accommodate characters from the large font. This is because the

window system cannot predict when you might, in the middle of a line, suddenly

switch to the large font.

Baseline Font Attribute

Page 2397

Another attribute of a font is its baseline. The baseline is a nonnegative integer

that is the number of raster lines between the top of each character and the base

of the character. (The base is usually the lowest point in the character, except for

letters that descend below the baseline, such as lowercase p and g.) This number

is stored so that when you are using several different fonts side-by-side, they are

aligned at their bases rather than at their tops or bottoms. So when you output a

character at a certain cursor position, the window system first examines the base-

line of the current font, then draws the character in a position adjusted vertically

to make the bases of the characters all line up.

Character Width Font Attribute

The character width can be an attribute either of the font as a whole, or of each

character separately. If there is a character width for the whole font, it is as if

each character had that character width separately. The character width is the

amount by which the cursor position should be moved to the right when a charac-

ter is output on the window. This can be different for different characters if the

font is a variable-width font, in which a W might be much wider than an i. Note

that the character width does not necessarily have anything to do with the actual

width of the bits of the character (although it usually does); it is merely defined to

be the amount by which the cursor should be moved.

Left Kern Font Attribute

The left kern is an attribute of each character separately . Usually it is zero, but it

can also be a positive or negative integer. When the window system draws a char-

acter at a given cursor position, and the left kern is nonzero, the character is

drawn to the left of the cursor position by the amount of the left kern, instead of

being drawn exactly at the cursor position. In other words, the cursor position is

adjusted to the left by the amount of the left kern of a character when that char-

acter is drawn, but only temporarily; the left kern only affects where the single

character is drawn and does not have any cumulative effect on the cursor position.

Fixed-width Font Attribute

A font that does not have separate character widths for each character and does

not have any nonzero left kerns is called a fixed-width font. The characters are all

the same width and so they line up in columns, as in typewritten text. Other fonts

are called variable-width because different characters have different widths and

things do not line up in columns. Fixed-width fonts are typically used for pro-

grams, where columnar indentation is used, while variable-width fonts are typically

used for English text, because they tend to be easier to read and to take less space

on the screen.

Blinker Width and Blinker Height Font Attributes

Page 2398

The blinker width and blinker height are two nonnegative integers that tell the

window system an attractive width and height to make a rectangular blinker for

characters in this font. These attributes are completely independent of all other at-

tributes and are only used for making blinkers. Using a fixed width blinker for a

variable-width font causes problems; the editor actually readjusts its blinker width

as a function of what character it is on top of, making a wide blinker for wide

characters and a narrow blinker for narrow characters. The easiest thing to do is

to use the blinker width as the width of the blinker. This works well with a fixed-

width font.

Chars-exist-table Font Attribute

The chars-exist-table is nil if all characters exist in a font, or an sys:art-boolean

array. This table is not used by the character-drawing software; it is for informa-

tional purposes. Characters that do not exist have pictures with no bits "on" in

them, just like the Space character. Most fonts implement most of the printing

characters in the character set, but some are missing some characters.

Standard TV Fonts

You can use Show Font HELP in the Lisp Listener or the List Fonts (m-X) command

in Zmacs to get a list of all the fonts that are currently loaded into the Lisp envi-

ronment. The fonts package contains the names of all fonts. Here is a list of some

of the useful fonts:

fonts:cptfont This is the default font, used for almost everything.

fonts:jess14 This is the default font in menus. It is a variable-

width rounded font, slightly larger and more attractive

than medfnt.

fonts:cptfonti This is a fixed-width italic font of the same width and

shape as fonts:cptfont, the default screen font. It is

most useful for italicizing running text along with

fonts:cptfont.

fonts:cptfontcb This is a fixed-width bold font of the same width and

shape as fonts:cptfont, the default screen font.

fonts:medfnt This is a fixed-width font with characters somewhat

larger than those of cptfont.

fonts:medfnb This is a bold version of medfnt. When you use Split

Screen, for example, the [Do It] and [Abort] items are

in this font.

fonts:hl12i This is a variable-width italic font. It is useful for

italic items in menus; Zmail uses it for this in several

menus.

Page 2399

fonts:tr10i This is a very small italic font. It is the one used by

the Inspector to say "More above" and "More below".

fonts:hl10 This is a very small font used for nonselected items in

Choose Variable Values windows.

fonts:hl10b This is a bold version of hl10, used for selected items

in Choose Variable Values windows.

Entering and Leaving Font Editor

You can enter Font Editor:

• By selecting [Font Editor] in the System menu.

• By typing the Edit Font command at any Lisp Listener.

• By typing Select Activity Font Editor at any Lisp Listener.

• By pressing SELECT {.

The first time you invoke Font Editor in a session, it takes about 15 seconds to

start up; after that, entering Font Editor is very quick. When the startup is com-

plete, you see a Font Editor Frame, the window configuration used by Font Editor.

You are not editing any particular font: you can experiment with character draw-

ing in this state, but it is best to select a font first.

If you know which font you wish to edit before entering Font Editor, you can save

time and steps by typing the font-name as an argument to Edit Font:

Edit Font font-name�

font-name can be a string, a BFD object, or any atomic symbol (on any package)

whose print name is the name of the font you wish to edit.

You can exit Font Editor either by selecting some other activity (via the System

menu, mouse, the SELECT key, or FUNCTION S), or by using [EXIT] in Font Editor’s

menu. Whenever you reinvoke Font Editor in the same session, you return to the

editing that you were doing when you left Font Editor. Thus, only one Font Editor

exists per session, and you do not lose your work by leaving it.

Should Font Editor become unusable because of an error, you can create a second

one by pressing SELECT c-{. This creates a completely new Font Editor (although

not destroying the old one).

Font Editor Basic Concepts

Font Editor, the Subsystem

Page 2400

Figure 89. Initial Font Editor Display

�

�

Font Editor accepts both menu commands and character (keyboard) commands.

When you enter Font Editor, you see a complex frame of many panes. The follow-

ing are descriptions of the panes in the Font Editor frame:

Drawing Pane The largest pane is the drawing pane, which contains a grid of

dots forming an array of squares, and a box drawn in the mid-

dle. When you edit a character, Font Editor draws the charac-

ter in this pane, magnified 12 to 1. (You can choose other mag-

nifications with the [Configure] and [Grid Size] Font Editor

menu commands.) Each box, delineated by four dots, represents

one pixel (bit-raster dot) of the character being edited.

The basic technique of editing characters is to draw lines,

points, and curves on this pane, using the mouse as a graphic

input device, and thus modify the bit-raster definition of the

character being edited. Mouse clicks on the drawing pane draw

Page 2401

and clear points. For information on mouse use on the drawing

pane: See the section "Drawing in Font Editor".

Character Box The box drawn in the center of the drawing pane is called the

character box. It shows the font baseline and character height,

as well as the width and kerning of the character being edited.

The box itself shows the right and left margins of the charac-

ter, and the top and baseline of the font. The line under the

character box shows the character height of the font, which is

the height that the window system uses to compute line spac-

ing for windows with the current font in their font map. It

represents, in essence, the maximum height of any character

in the font, although it is a font parameter, not one computed

by inspecting all characters in a font.

You can alter the positioning of the character box, as well the

character width it represents. See the section "Viewing and Al-

tering a Character in the Font Editor Character Box".

Sample Pane The topmost pane of the Font Editor frame is called the sam-

ple pane. It shows what the character being edited looks like in

normal size. That display appears in the leftmost part of the

sample pane. About an inch to the right of that, the sample

pane shows a life-size sample string in the font being edited.

(You can set this sample string with the [Set Sample] Font Ed-

itor menu command.) The sample string allows you to see what

a given word or phrase, drawn in the font being edited, looks

like. This allows you to see your changes to a given character

in context. Note that the sample pane changes size as you se-

lect fonts of differing character height.

Prompt Pane Between the sample pane and the drawing pane is the prompt

pane. This is used whenever keyboard typein is required. Occa-

sionally, messages and instructions to you (such as how to use

the mouse for curve and line drawing) appear there too.

Menus To the right of the drawing pane is a set of menus and miscel-

laneous panes.

Draw Mode Menu

The topmost menu is called the draw mode menu; it tells the

default interpretation of mouse clicks on the drawing pane.

One element of the draw mode menu is always highlighted,

and specifies the current interpretation of the mouse on the

drawing pane. Selecting (by mouse click) any item on the draw

mode pane makes the selected mode be the new default, and

highlights that mode. Other ways of changing the draw mode

also update the highlighting in this pane. See the section

"Drawing in Font Editor".

Page 2402

Under the draw mode menu appear three command menus that

display a repertoire of commands that you can issue at any

time by clicking on their items with the mouse. Many of the

items interpret the different mouse buttons differently. See the

section "Font Editor Command List". The mouse documentation

line at the bottom of the screen displays the interpretation of

the mouse buttons when the mouse is positioned over a poten-

tial choice.

The three command menus are grouped by related function:

Drawing Pane Menu

The topmost command menu (drawing pane menu) presents a

group of commands allowing you to control how you are look-

ing at what you see, and commands to perform automatic

transformation and drawing on the character being edited.

Gray Plane Menu

The second command menu contains commands apropos the

gray plane, which is, in effect, a second pane behind the draw-

ing pane, whose display is shown in gray instead of black. You

can use the gray plane to see two characters at once, to see

one character as a model while editing another, and so on. The

gray plane can be moved around and manipulated in several

ways. See the section "The Font Editor Gray Plane".

Outside Font Editor Command Menu

The third command menu contains commands dealing with the

world outside Font Editor: reading and writing files, getting

help, leaving Font Editor, and selecting and saving characters

and fonts.

Status Pane Under the command menus is the status pane, which tells you

what font and what character is being edited. The character is

displayed in the default Lisp Machine font: this is to be consid-

ered an identification of the character you are editing. For ex-

ample, if you display the greek9 with [Show Font], you see

that the omega character in greek9 occupies the position that

corresponds to W in the default Genera font. So the status

pane identifies that character as W, but the "real" character

(omega) is displayed in the sample pane. The status pane also

shows you the width of the character being edited. The width

is changed by manipulating the vertical edges of the character

box; this action updates the status pane’s display.

Page 2403

Character Select Menu

Under the status pane is the Character Select menu, which is

used to select a character to edit. Simply clicking on an item

in this menu (once a font has been selected) draws that char-

acter in magnification in the drawing pane, so you can begin

editing it. You can also use the Character Select menu to an-

swer any prompt for a character, such as those issued by the

Rename Character and Gray Character commands. When a

prompt is issued that can be answered by clicking on this

menu, it says so in its text.

Font Parameters Menu

Under the Character Select menu is the Font Parameters

menu. It displays the font-wide parameters, such as blinker

height and width, and baseline and character height. This is a

Choose Variable Values menu; by clicking on any of the num-

bers in it, the menu "opens up" and allows you to type in a

new value. When you change a font parameter in this way, the

change takes effect immediately. The Font Editor frame can

even change shape to accommodate the new parameters. All

values in this menu are displayed and accepted in decimal, re-

gardless of the setting of zl:base and zl:ibase.

Register Pane The final pane of the Font Editor frame is the register pane,

which is labelled Registers. It is divided into as many little box-

es (registers) as fit; the size of the boxes is computed from the

parameters of the current font. Registers can be used to store

characters and pieces of characters being edited, and retrieve

them, without storing them into any font. See the section "Sav-

ing Characters and Pieces of Characters in Font Editor Regis-

ters".

Font Editor has an alternative configuration, or pane layout, that gives a wide as-

pect ratio (screen-wide) to the drawing pane, as opposed to the normal tall aspect

ratio. The [Configure] menu item in the top command menu can be used to switch

configurations. When you click Right on it, it pops up a menu of the two possible

configurations, wide-aspect and tall-aspect. Tall-aspect is the default, shown in Fig-

ure 89 . Figure ! shows the wide-aspect configuration.

Many Font Editor commands produce typeout, text and/or drawings that are "writ-

ten over" the whole Font Editor frame display. [Show Font] and [List Fonts] are

typical of such commands. When a command produces typeout, the typeout remains

until the next command is typed. Pressing SPACE is a command that does nothing;

use it to erase typeout and do nothing more.

Selecting a Font

Font Editor edits one font at a time, and one character in that font at a time. You

can make new fonts, and add new characters to fonts. Using Font Editor consists

Page 2404

Figure 90. Wide Configuration

�

�

of selecting a font, then selecting, successively, several characters in that font,

editing each one in turn, and "storing" it back into the font. When this editing is

finished, the font in the Lisp environment reflects all of these changes. At that

time, you usually want to write the font out to a BFD file, to save your work. See

the section "Reading and Writing Font Editor Files".

Font Editor provides several ways to select a font.

• You can name the font to be edited in the command that invoked Font Editor.

See the section "Entering and Leaving Font Editor".

• You can select the [Edit Font] menu item, which prompts for the font name in

the prompt pane. Use [Edit Font (sh-Left)] to copy an existing font as the first

step of making a new font.

• You can list all loaded fonts with the [List Fonts] menu item. The display pro-

duced by [List Fonts] is mouse sensitive: moving the mouse over the name of

Page 2405

any font highlights it, and clicking on it begins editing of that font. Using [List

Fonts (sh-Left)] lists all fonts on the file computer as well as loaded ones. This

usually takes a long time to produce. The keyboard command F can also be used

to prompt for the name of a font to edit.�

Creating a New Font

If you attempt to edit a font that is not known to the system, Font Editor asks you

whether you wish to create that font. This is the way you create new fonts. When

you create a new font, the first thing you usually want to do is alter the font pa-

rameters (in the font parameters menu) and define the Space character, from

which many facilities in the system (including some in Font Editor) determine the

"usual width" of characters in this font. As a matter of fact, you might want to re-

configure the Font Editor frame after setting the width of Space, to correctly re-

calculate the width of registers in the register pane.

Displaying Characters in the Font

When you start editing a font, you are not editing any character. The drawing

pane displays a typical character box, and no points. The specifications for the

character box reflect the Space character in the font. You must then select a char-

acter to edit. Font Editor then displays all of the characters in the font, using the

display normally obtainable by [Show Font]. You can erase this display by pressing

SPACE or by selecting a character to edit. See the section "Selecting a Character in

Font Editor".

Selecting a Character

Once a font has been selected, Font Editor edits one character at a time. You mod-

ify the definition of the character by drawing and clearing points on the drawing

plane. When you are done editing a character, you store it back in the font by us-

ing the [Save Char] menu item. Your changes to the character are not saved until

you do this. Furthermore, none of your changes to a font being edited become per-

manent until you write the font out to a file.

From the Character Select Menu

The usual way to select the character being edited is by using the mouse to select

a character in the Character Select menu. When you select a character, it is

drawn in magnification in the drawing pane, and the status pane is updated to tell

you what character you are editing.

By Creating a New Character

If you attempt to edit a character that is not in the font being edited, Font Editor

creates a new character. This is the way new characters are created. The new

Page 2406

character is not actually saved in the font until the [Save Char] command is is-

sued.

From the [Show Font] Display

You can also select a character by displaying all of the characters of the font be-

ing edited, via the [Show Font] menu item. The display produced by this command

is mouse sensitive: when you move the mouse over the image of a character, it is

highlighted, and if you click on it, editing of that character begins. This display is

produced automatically when you select a font to be edited.

With the C Command

The keyboard C command can also be used to select a character. Pressing C

prompts for a character, which can be supplied from the keyboard or the Character

Select menu.

By Renaming Characters

Another way to edit a character is to rename the character being edited to some

other character. This is one way to move characters around in a font, and make

characters into other characters. Selecting the [Rename Char] menu item prompts

for a character to call the character being edited. You can answer this prompt ei-

ther by typing a character from the keyboard, or from the Character Select menu.

This changes Font Editor’s idea of what character you are editing, and the status

pane and sample string (if any) are updated to reflect this fact. Renaming a char-

acter does not store it back in the font; you must do that by yourself, as usual,

with the [Save Char] command when you are done editing it.

Drawing

The most common technique for creating and editing characters is to draw and

clear points on the drawing pane using the mouse.

Drawing Characters with the Mouse

Drawing on the drawing pane is in one of three modes at any time, [Set Points],

[Clear Points], or [Flip Points]. The highlighted item in the draw mode menu tells

which is in effect. When you click left on a box in the drawing pane, that box is

made black (set), or white (clear), or complemented (flip), according to the current

draw mode. If you hold the left button down (that is, you do not release it after

clicking left on a box) and move it around, you set (or clear or complement) all

squares over which you pass. In this way, you can draw curves or pictures, fill in

areas, clear old mistakes, and so forth. This is the most common operation in Font

Editor, and is called drawing with the mouse.

Page 2407

You can change the drawing mode either by selecting another draw mode by click-

ing on an item in the draw mode menu, or by clicking middle on the drawing

pane. Clicking middle rotates through the possible draw modes.

When you draw with the mouse, the sample pane is not updated until you release

the left button. (You might want to do this every now and then while drawing

with the mouse, just to observe what you have in life-size, and then press the left

button again, to continue drawing.)

Often, you might want to "temporarily" change the draw mode, either because the

draw mode menu is too distant, or the mouse is not in top shape, or because you

really want to change the draw mode for just one or two squares. You can do this

while drawing by manipulating the CONTROL and META keys on the keyboard. If you

hold down CONTROL alone while drawing, the temporary draw mode becomes [Clear

Points] for as long as it is held down. Similarly, META alone sets up [Set Points]

mode for as long as it is held down. CONTROL and META together temporarily put

the mouse in pass-over mode, in which it makes no change to any squares it passes

over.

Flip mode is useful for final touch-ups, a click at a time, rather than drawing with

the mouse button down. Since it changes any square you click on, it is most useful

when you fix up single squares in the final stages of editing a character.

Viewing and Altering a Character in the Character Box

The character box is the mechanism by which you can view and alter the bound-

aries of a character being edited. The following is a description of its edges, and

instructions for changing them.

What the Lines Mean

Font Editor displays a character box in the drawing pane, to indicate the "bound-

aries" of the character being edited. These boundaries are not absolute limits out-

side which the character cannot extend; rather, they are the positions that are to

be considered the start and end of this character when it is drawn in use. Charac-

ters in italic fonts and foreign scripts often extend into the "territory" of the pre-

vious or next character. Such "incursion" is accomplished by a character’s contain-

ing points outside its limits.

Left and right edges

The left edge of the character box represents the cursor posi-

tion at the time the character is drawn in real use. Any points

to the left of this are in the "territory" of the previous charac-

ter. The right edge represents the start of the next character.

The distance between the left edge and the right edge is called

the character width, and specifies the distance by which the

window system increments its horizontal cursor position after

drawing this character. Points to the right of the right edge of

the character box are an incursion into the territory of the

next character to the right.

Page 2408

Bottom edge The bottom edge of the character box (not the line under it)

represents the baseline of the font. The baselines of all charac-

ters drawn on a line, in any font, form a continuous line, the

normal "bottom" of most characters. Points below the baseline

are "descenders".

Top edge The top edge of the character box represents the top of the

character. You cannot put points above the top, but Font Edi-

tor lets you draw such points, for you might move them and/or

the character box before you save the character. Font Editor

warns and asks you what to do if you attempt to save a char-

acter that has points above its top edge; this is an error. The

distance between the top edge and the baseline is fixed for any

given font (although you can use Font Editor to change the

value of that number). If you are making a new font, you

should carefully consider this parameter (the font’s baseline)

before generating any characters.

Character height The line below the bottom of the box represents the character

height of the font, which is the distance between the top edge

and this line. This distance, too, is a fixed parameter for any

font, although you can use Font Editor to alter it for the whole

font. You cannot put points below this line; if you do, they ap-

pear in the territory of the next line when drawn, and are

cleared or overwritten inconsistently. The maximum of the

character heights of all fonts in the font map of a window is

used to compute the line spacing of a window.

Altering the Character Box

You can move the edges of the character box on the drawing pane by clicking on

them (within one-half box on either side) with the right mouse button. Hold the

button down and move the line to where you want it to be, and then release the

button.

Moving the character box redefines the orientation of the character, as drawn,

with respect to the other characters in the same font.

If you attempt to move the bottom edge, top edge, or character height line, you

move them all, and thus move the whole character box vertically. You cannot move

them individually because the distances between them are fixed parameters for the

font. If you alter these parameters by selecting them in the Font Parameters

menu, the character box is altered and redrawn appropriately.

Sometimes, you want to move the whole character box without changing its shape.

The easiest way to do this is to move the data being displayed with the [Move

Black] menu item. See the section "Transformations on Characters in Font Editor".

The Gray Plane

Page 2409

The gray plane is a "shadow" "behind" the drawing pane that allows you to look at

another character in addition to the one you are editing. The character (or piece of

a character) in the gray plane shows up in light gray in the drawing pane. Where

bits are on in both the gray plane and the character being edited (the black plane),

a dark gray square is shown.

Frequently, the gray plane is used to hold a character that resembles, or has

pieces of, the character being edited, to serve as a guide for drawing the new

character. At other times, the gray plane is used to hold a piece of a character, to

be merged later into the black plane.

The second of the three command menus is a special menu for commands dealing

with the gray plane. It is also possible to fetch previously created patterns into the

gray plane from the register pane. See the section "Saving Characters and Pieces

of Characters in Font Editor Registers".

Getting Things into Gray

The most common ways of putting drawings into the gray plane are to move the

black plane into it and to fetch characters into it. The [Swap Gray] and

[Gray Char] menu items do this.

With [Swap Gray]

[Swap Gray] exchanges the black and gray planes; what had been black becomes

gray, and what had been gray becomes black. After you use [Swap Gray], you are

editing in the black plane what had been in the gray plane, and what you had

been editing in the black plane (where all editing is done) is now visible in the

gray plane. You can clear the black plane with [Erase All]; [Clear Gray] (in the

gray plane menu) clears the gray plane.

You can swap the gray and black plane to bring the gray plane up for editing, to

move something you have edited into the gray plane, or to do both at once.

With [Gray Char]

You can bring characters directly into the gray plane. Using [Gray Char] prompts

you for a character in the current font to be brought into the gray plane. You can

then type the character, or select it in the Character Select menu. The keyboard

command G does this, too. The character is placed at the character box. It does not

really matter where the character is placed, though, because before merging it or

using it, you can move it to any place in the gray plane by using [Move Gray]. See

the section "Merging Characters with the Font Editor Gray Plane".

You can bring characters from other fonts into the gray plane by using

[Gray Char (R)]. A Choose Variable Values menu is presented, offering choices not

only of character and font, but of scaling as well. Click on values you wish to

change; keep in mind that the [Character] item expects a single character when

you use it. Scaling allows you to grow or shrink the character being fetched before

Page 2410

bringing it into the gray plane. The numerator and denominator of the scale frac-

tion are displayed and interpreted as decimal numbers. When you are done choos-

ing values for [Gray Char], use [Do It] to bring in the character.

Merging Characters with the Gray Plane

The gray plane is the mechanism for adding pieces of characters into characters

being built. You do this in two steps:

1. Put a character or a piece of a character into the gray plane and position it.

You use the [Move Gray] command to reposition a drawing in the gray plane.

It leaves the black plane and the character box unaffected; it moves bits with-

in the gray plane only. When you use it, you are asked in the prompt pane

for two points, which you indicate by clicking left on them in the drawing

pane. These points indicate where from and where to move the data in the

gray plane. Font Editor temporarily grays (in a distinguishable gray) the

points you select so that you can see them, and then moves all the data in

the gray plane so that the first point is moved to the second. Usually, rather

than clicking random points, you should click a specific point in the gray

drawing and the point in the black drawing with which you wish the gray

point to coincide. You might also think of these points as a point in the gray

plane and a point in the black plane to which the point in the gray plane is

to be made to coincide.

2. Merge it into the black plane. The [Add in Gray] command merges the gray

plane into the black plane. Normally, you use [Add in Gray]. This turns on

(makes black) each point in the black plane that is "over" a turned-on (gray)

point in the gray plane, and leaves the gray plane as it was. Thus, the points

that were gray now all appear in dark gray, indicating they are on in both

planes. Using [Add in Gray (M)] is similar, but clears the gray plane after-

wards.

You can also merge the gray plane into the black plane by other logical operations

than the default Inclusive Or: using [Add in Gray (R)] pops up a menu of logical

combination operators. ANDCA (turn off all black points corresponding to "on"

points in the black plane, that is, punch a hole in the black plane as indicated by

the gray plane) and XOR (flip all points in the black plane that are on in the gray

plane) are offered, as well as the default value, IOR.

Saving Characters and Pieces of Characters in Registers

Font Editor’s gray plane allows you to edit one character or piece of a character.

You can also save characters and pieces in registers. The register pane shows the

contents of registers that can hold characters and pieces of characters for reuse.

Saving a Drawing into a Register

Page 2411

You save a drawing (in the black plane, after editing) by clicking left on one of

the empty registers (little boxes) in the register pane. Do not use the first (upper

left-hand) one. Clicking left on an empty register (one that looks blank) saves the

current black drawing in that register. Registers are mouse-sensitive, and grow a

thick border when you move the mouse over them. Click on an empty register, and

the drawing in the black plane appears in that register, in the register pane, and

remains there. Font Editor makes every effort to show you a visible piece of that

character, so that you know it is there.

Retrieving the Contents of a Register

To retrieve a register, click left on it, and the contents of the register are trans-

ferred into the black plane. If you click on a register that has a drawing in it, that

drawing goes into the black plane. If it does not have a drawing in it, the black

plane goes into it. Thus, clicking left on registers is usually the only dealing you

have with them.

Retrieving the Black Plane While Manipulating Registers

You might click on a different register than the one you intended. Or perhaps a

register is not really empty, but has a peculiar drawing in it that has a gigantic

empty middle. In either of these cases, you might lose the very work in the black

plane that you were trying to save. Thus, Font Editor always copies the current

black plane into the upper left-hand register when fetching the contents of a reg-

ister, in case you made a mistake. You can then click on the upper left-hand regis-

ter to retrieve its contents.

Drawings saved in registers are saved as bits; the orientation and size of the char-

acter box are not saved.

It is possible to save the gray plane into a register, or fetch a register into the

gray plane. It is also possible to store into a nonempty register from either plane.

If you want to do any of these operations, click right on a register, and a menu of

possible operations pops up.

Transformations

Although drawing with the mouse is the most common way to create characters

and pieces of characters, Font Editor can provide a good deal of automatic drawing

help, such as drawing lines and curves and performing transformations on the

character being edited. As is true of drawing with the mouse, all of these opera-

tions are applicable only to the black plane. If you want to perform them on the

gray plane, swap planes, perform them, and swap back.

Clearing the Drawing

The simplest operation on a drawing is getting rid of it; [Erase All] clears the en-

tire (black) drawing. The gray drawing, if any, is left intact. You are queried to

Page 2412

make sure you really want to clear the entire drawing. This function is also acces-

sible via the keyboard command E.

Rotating Drawings

Font Editor can rotate characters any number of degrees. Rotations are performed

about the center of the square whose top, right, and left edges are the top, right

and left edges of the character box, and thus, whose bottom must be, and is, a dis-

tance below the top of the character box equal to the character width.

Rotation Mouse command

90 degrees counter clockwise

[Rotate (L)]

Help [Rotate (M)]

Choose number of degrees

[Rotate (R)]

Figure 91. [Rotate (L)]

�

�

Page 2413

Reflecting Drawings

Font Editor can reflect drawings about any of four lines. Using [Reflect (R)] pops

up a menu of the four lines about which to rotate the drawing. Those lines all

pass through the "center" of the character box, the point halfway between the left

and right edges and halfway between the top and the bottom line, not the baseline.

These lines are the horizontal (-), vertical (|), and 45-degree diagonal (/ and \)

lines through the center point of the character box.

Reflection is subtle; it is very different than rotation. Imagine the drawing as

made of sheet metal, lying on the plane. Rotation moves the character around in

the plane, turning it, but never lifting it off the plane. Reflection picks it up, and

puts it back, face down on the plane. The effects of diagonal reflections are subtle.

The best way to understand these commands is to edit an asymmetrical but simple

character (the one of choice is F) in a straightforward font (for example, HL12B),

and try these various reflections upon it, as well as the rotations.

Figure 92. [Reflect-R]

�

�

Page 2414

Figure 93. The Horizontal Axis (-)

�

�

Moving the Drawing

You can move the drawing around with [Move Black]. [Move Black] moves the

drawing with respect to the character box, the drawing pane itself, and the gray

plane. [Move Black] prompts for two points, a point in the black plane and a point

to which to move it. The whole black drawing moves along with it as well.

Drawing Lines and Curves

Font Editor can draw approximate lines and curves in the drawing. Rather than

drawing actual lines and curves on the drawing, Font Editor manipulates squares

along the line or curve desired. Thus, if you ask to draw a line that is not straight

up, down, or across, Font Editor approximates as well as it can.

To draw a line, use [Draw Line], and select two points between which to draw a

line. As with all commands in which Font Editor prompts for points, the points are

temporarily grayed when you click on them, to verify your choices. The line is

Page 2415

Figure 94. The 45-degree Diagonal (/)

�

�

drawn in the current draw mode, which means it clears a line if appropriate, or

even flips all the points along one (which is hardly ever appropriate).

To draw a curve, use [Draw Spline]. Then click left on all the points through

which the curve is to pass. When you are done, use [Draw Spline (R)]. The spline-

drawing package is called to compute the points of an unconstrained cubic spline

through these points, and the approximate curve is drawn in the current draw

mode. See the section "Drawing Splines on Windows".

Stretching and Contracting

Font Editor can stretch or contract drawings. This is not the same as growing or

shrinking them. Stretching means inserting duplicate rows or columns at a given

point of the drawing, and contracting means removing rows or columns. Growing

and shrinking, in general, mean scaling the whole drawing up or down. The latter

is done with the options to [Gray Char]. See the section "Getting Things into the

Font Editor Gray Plane".

Page 2416

Figure 95. Moving the Drawing with [Move Black]

�

�

The relative orientation of the first and second points clicked on specifies whether

you want to stretch or to contract.

Stretching a Drawing Horizontally

Stretching a drawing horizontally means making some number of copies of a col-

umn of squares to the right of that column. To stretch a character horizontally,

use [Stretch], and then click left on any square in the column to be "stretched".

Then click left on any square in the column to the right of that to which that col-

umn is to be stretched (that is, the last column to be a duplicate of the column

being stretched). The entire drawing is stretched, with the required number of

copies of the duplicated column inserted.

Contracting a Drawing Horizontally

Page 2417

X

Figure 96. Stretching Horizontally

�

�

Contracting a drawing horizontally means eliminating some number of columns of

squares. To shrink a character horizontally, use [Stretch]. Then click left on any

square in the rightmost column not to be eliminated, at the right edge of the

columns to go, and then on the leftmost column to be eliminated. You should think

of this as clicking on a column to move, and where to move it to.

Stretching a Drawing Vertically

Stretching a drawing vertically means making some number of copies of a row of

squares below that row. To stretch a character vertically, use [Stretch (R)] and se-

lect Stretch Row. Then click left on any square in the row to be "stretched". Then

click left on any square in the row below that to which that row is to be stretched

(that is, the last row to be a duplicate of the row being stretched). The entire

drawing is stretched, with the required number of copies of the duplicated row in-

serted.

Contracting a Drawing Vertically

Page 2418

X

Figure 97. Contracting Horizontally

�

�

Contracting a drawing vertically means eliminating some number of rows of

squares. To shrink a character vertically, use [Stretch (R)] and choose Stretch

Row. Then click left on any square in the topmost row not to be eliminated, at the

top edge of the rows to go, and then on the topmost row to be eliminated. You

should think of this as clicking on a row to move, and where to move it to.

The Sample String

When you edit a font, it is usually convenient to maintain a sample string, dis-

played in the font, so that you can see how the character you are editing looks in

the context of other characters next to which it might appear.

Font Editor allows you to set a sample string. The straightforward method of set-

ting it is to select the [Set Sample] menu item: doing so prompts you for the

string, which should be short enough to fit in the sample pane (it is clear if it

does not, as you only see the end of it). End the string by pressing RETURN. The

string is then displayed in the sample pane.

Page 2419

If the sample string contains the character being edited, occurrences of that char-

acter are updated whenever any change is made to the drawing. Thus, the occur-

rences of the character being edited in the sample string reflect the state of the

current drawing, not the state of that character stored in the font.

Two other ways to ask Font Editor to prompt you for the sample string are click-

ing any button on the sample pane itself, and issuing the V command from the

keyboard. This last is often the most convenient, because you are then going to

type the string itself.

Adjusting the Display

The commands and facilities described here deal with positioning the drawing dis-

play and modifying its visible characteristics. They do not actually change the data

in the drawing, but rather, the way it is viewed.

Positioning the Drawing

Both the black and gray drawings can be thought of as being drawn on an infinite

plane. The character box is in the center of that plane. Although [Move Black] and

[Move Gray] exist to move the drawings, and the character box can be moved by

clicking on it, sometimes you might want to reposition the entire drawing, charac-

ter box, black drawing, gray drawing, and all. This can also be viewed as reposi-

tioning the view of the drawing offered by the drawing pane. Font Editor provides

several techniques for repositioning the entire drawing.

[Move View] The simplest is [Move View]. [Move View] works just like

[Move Gray] and[Move Black]. When you use [Move View], it

prompts you for two points, which you indicate by clicking left

on squares on the drawing pane. The first point is a point on

the drawing; the second is a point in the pane to which to

move it. The whole drawing is moved, perhaps simultaneously

vertically and horizontally, so that the first point is where the

second point had been.

[Center View] Another common need is to recenter the drawing, that is, put

the character box back in the middle. This is the way the

drawing pane starts out when you begin editing a character.

The [Center View] menu item performs this task. Use [Center

View] to recenter the drawing. The keyboard H (for Home)

command does this too.

Scrolling Another way to reposition the display is to scroll it up or down

or left or right. In order to scroll the display vertically, a

scroll bar is provided at the left of the drawing pane. When

you move the cursor to the extreme left edge of the drawing

pane and bounce the cursor at that edge, the cursor changes to

a double-pointed arrow and the left margin of the drawing

pane displays a graph of the vertical portion of the drawing

Page 2420

you are looking at. The status line documentation reflects the

possible options at this point.

To scroll the drawing horizontally, a scroll bar is provided at

the bottom of the drawing pane. When you move the cursor to

the extreme bottom edge of the drawing pane and bounce the

cursor at that edge, the cursor changes to a double-pointed ar-

row and the bottom edge of the drawing pane displays a full-

grid length graph of what horizontal portion of the drawing

you are looking at. The status line documentation reflects the

possible options at this point.

Setting the Box Size in the Drawing Pane

You can set the size of boxes in the drawing pane. Normally, it is 12, meaning

each box, corresponding to one pixel of the actual character, is represented by a

box 12 pixels wide and high. To set the size of boxes, use [Grid Size]. Font Editor

prompts you for the size of a box, in decimal. This size can not be bigger than 64

pixels. If you type a carriage return without typing any number, the default size of

12 pixels is reestablished.

Setting the Height and Width of the Drawing Pane

You can tell the Font Editor frame to show either a wide drawing pane, as wide as

the screen, or a tall drawing pane, almost as tall as the screen. These two configu-

rations of the frame are chosen from a pop-up menu that is obtained by using

[Configure]. This command can also be used to have Font Editor recompute its

configuration, for example, to reshape its registers after you have edited the Space

character of a font.

Reading and Writing Files

Font Editor can read and write files containing fonts in any of a variety of for-

mats. The most common format is BFD, the standard font format of Genera. If you

are making fonts for use by the Genera display and window system or the LGP-3,

this is the only format you should ever have to deal with.

Most of the other formats are for compatibility with other systems and earlier re-

leases of Genera software. Notable among these formats is PXL format, which is a

standard font format with the TEX system on UNIX. BFD format is the default for

all file reading and writing operations.

Reading Files

Use [Read File] and type in the file name to read in a font file. The file type de-

faults from the (canonical) type of the pathname presented as the default. For ex-

ample, if you type fix9.bfd, or just fix9, you read a BFD file, whereas if you type

Page 2421

fix9.bin, you read a BIN file. Similarly, fix9.ibin reads an IBIN file. Font Editor

complains if you supply a file type that is not a valid font file type for the ma-

chine you are using. Pressing R is equivalent to using [Read File].

When you read in a font via [Read File], it is actually loaded. It becomes part of

the Lisp environment, and appears in listings of loaded fonts produced by [List

Fonts] as well as by the Show Font command and by Zmacs. After Font Editor

loads the file and looks for the font you specified, you are editing that font.

It is sometimes necessary to read in font files of exotic types, whose file types (as

expressed in the name of the file) are not indicative of the format of the font. For

instance, you might have renamed a BFD or other file to myfont.temp, and now you

want to read it in. Since Font Editor cannot determine the font format from this

file type, you must specify the font format explicitly. This is done by using [Read

File (R)]: Font Editor offers a menu specifying file types. Click on the file type in-

volved: Font Editor then prompts for a pathname and reads the file. Font Editor

interprets the file, however, according to the format specified by the menu, not by

the file type.

Writing Files

Font Editor can also write out font files. Files are written from the description of

a font residing in the Lisp environment, not from any temporary Font Editor

image of the font. Since Font Editor maintains no temporary image of the font,

but actually stores edited characters back in the font when you use [Save Char],

this is not a problem unless you forget to save your characters.

Use [Write File] to write the font file out. The file type defaults from the (canon-

ical) type of the pathname presented as the default. For example, if you type

newfnt.bfd, you write a BFD file, whereas if you type newfnt.bin, you write a BIN

file. Font Editor complains if you supply a file type that is not a valid font file

type for the machine you are using. Using [Write File] writes out a BFD file by

default from a font description in the Symbolics Machine’s virtual memory. The

default directory is the system screen fonts directory; the default file name is

font.bfd, where font is the current font being edited. Pressing W is equivalent to

using [Write File].

It is sometimes necessary to write out font files of exotic types, whose file types

(as expressed in the name of the file) are not indicative of the format of the font.

For instance, you might already have a sfnt.bfd, and want to write your file to

sfnt.temp. Since Font Editor cannot determine the font format from this file type,

you must specify the font format explicitly. This is done by using [Write File (R)]:

Font Editor offers a menu specifying file types. Click on the file type involved:

Font Editor then prompts for a pathname and writes the file. Font Editor writes

the file, however, according to the format specified by the menu, not by the file

type.

Command List

Page 2422

The following is a listing of all Font Editor commands. The first part of this list-

ing describes the commands available via the command menus and the keyboard.

When a keyboard character exists duplicating a menu command, it is given in ad-

dition after the command name. The second part of this section describes the ef-

fect of clicking on various panes and mouse-sensitive areas of the Font Editor

frame.

Many of the keyboard commands take numeric arguments to specify some number

or character. Numeric arguments are entered by typing a decimal number before

the command character. The numeric argument is echoed in the prompt window as

you enter it.

Menu and Keyboard Commands

Configuration and Drawing Transformation

[Configure] Pop up a menu of frame configurations. Two configurations are

offered, giving a tall and wide aspect ratio to the drawing

pane.

[Grid Size] @ Set the size of boxes in the draw pane. If a numeric argument

is given, it is used as the size. @ sets grid size to the default if

given no numeric argument, but [Grid Size] prompts.

[Center View] H Reposition the display in the drawing pane so that the charac-

ter box is centered in it.

[Move View] Reposition the display in the drawing pane by prompting for

two mouse-specified points: which point to move and to which

point to move it.

[Draw Line] Draw a line in squares in the drawing pane, in the current

drawing mode. Prompt for two endpoints, to be specified with

the mouse.

[Draw Spline] Draw a cubic spline in squares in the drawing pane, in the

current drawing mode. Prompt for curve points, to be specified

by using [Draw Spline]. Using [Draw Spline (R)] ends the

curve.

[Erase All] E Clear all points (black points) in the current drawing.

[Stretch] K Stretch or contract a character, horizontally or vertically.

[Stretch] is horizontally, [Stretch (R)] is vertically. Font Editor

prompts for two points, specifying a row or column to move

and to where to move it. From the keyboard, K means horizon-

tal, c-K means vertical. See the section "Stretching and Con-

tracting Drawings in Font Editor".

[Rotate] ⊕ Rotate the drawing in the black plane. [Rotate] is 90 degrees

to the left, [Rotate (R)] 90 degrees to the right, and [Rotate

(M)] 180 degrees.

Page 2423

[Reflect] ⇔ Reflect the drawing in the black plane about a coordinate axis

or diagonal line through the center of the character box. A

menu pops up, asking which.

[Move Black] Move the drawing in the black plane. You are prompted for the

target and destination points, which you specify by clicking left

on the drawing pane.

Gray Plane Menu Items

[Gray Char] G, also M

Place a character into the gray plane. The keyboard commands

accept numeric arguments to specify which character. If none

is given, or if you use [Gray Char], you are prompted for a

character, which you can supply from the keyboard or the

Character Select menu. If you use [Gray Char (R)], you are of-

fered a Choose Variable Values choice window to select the

character, font, and scaling. For the keyboard commands, CON-

TROL causes Font Editor to prompt for a font name, and META

causes it to prompt for scale factors.

[Clear Gray] Clear the entire gray plane.

[Swap Gray] Exchange the drawings in the gray and black planes.

[Move Gray] Move the drawing in the gray plane. You are prompted for two

points, to be specified via the mouse, a point to move and a

point to which to move it.

[Add in Gray] Combine the drawing in the gray plane into the black plane.

Using [Add in Gray] inclusive-or’s the gray drawing into the

black drawing. Using [Add in Gray (M)] inclusive-or’s the gray

drawing into the black drawing, and clears the gray drawing.

[Add in Gray (R)] pops up a menu of other combination modes.

Outside World Interface Menu Items

[Edit Font] F Pick a font to edit. You are prompted for the font name. Use

[Edit Font (M)] to copy an existing font as the first step of

making a new font.

[List Fonts] [List Fonts] lists all of the loaded fonts. [List Fonts (R)] lists

all of the loaded fonts and fonts on the file computer. The dis-

play is mouse-sensitive; clicking left on any item begins editing

that font.

[Save Char] S Store the character being edited back into the font in the Lisp

environment. It is stored as the character that the status pane

indicates it to be.

Page 2424

[Rename Char] c-C Rename the current character; make it seem as though you are

now editing a different character, but retain the drawing. You

are prompted for the character, which you can supply from ei-

ther the keyboard or the Character Select menu. The keyboard

command accepts a numeric argument to specify the character.

[Show Font] D Display all characters in the font being edited. The display is

mouse-sensitive, and clicking left on a character begins editing

that character.

[Set Sample] V Prompt for the sample string to be displayed in the font being

edited in the sample pane, and set it.

[Read File] R Read in a file of font definitions. Prompts for a pathname.

[Read File] computes the font file type from the file type of

the pathname given. The default is always BFD. [Read File

(R)] pops up a menu that offers the file types: BFD, KST, BIN,

AC, AL, PXL, or Any. The file specified by the pathname given

will be interpreted according to that format, regardless of file

type.

[Write File] W Writes a file of font definitions. Prompts for a pathname.

[Write File] computes the font file type from the file type of

the pathname given. The default is always BFD. [Write File

(R)] pops up a menu that offers the file types: BFD, KST, BIN,

AC, AL, PXL, or Any. The file specified by the pathname given

will be written in that format, regardless of file type.

[EXIT] Q Bury the Font Editor, and return to whatever you were doing

when you last invoked Font Editor.

[HELP] HELP or ? Display a long message giving documentation of Font Editor.

Evaluating Forms from Font Editor

Font Editor uses the ESCAPE key to evaluate a Lisp form.

Keyboard-only Commands

The following commands are accessible only from the keyboard. They are mainly

concerned with the nonmouse cursor, or general interaction with the subsystem.

\ Turn the nonmouse cursor on, and move it one position up the

screen. A numeric argument tells to move it other than one

position. c-\ and m-\ mean 2 and 4 positions, respectively, and

c-m-\ means 8.

/ Same as \, but moves the nonmouse cursor down.

[Same as \, but moves the nonmouse cursor left.

] Same as \, but moves the nonmouse cursor right.

Page 2425

. When the nonmouse cursor is on, complement the black square

under it.

REFRESH Redraw the drawing pane. Useful in case of perceived prob-

lems.

c-REFRESH Clear the screen and refresh all panes in the Font Editor

frame.

ABORT Abort any command while it is prompting, waiting for either

mouse or keyboard input.

C Begin editing a character: prompt for the character, and begin

editing it. Normally, you simply select a character from the

Character Select menu or the [Show Font] display. C accepts a

character specification as a numeric argument.

Mouse Sensitivities

This section describes the result of clicking the mouse on various portions of the

FED frame other than the command menus.

The Drawing Pane

Click left Draw a black square in the current draw mode, which is

shown by the Draw Mode menu. It continues drawing as the

mouse is moved as long as the left button is held down. Press-

ing CONTROL while drawing means temporarily go into [Clear

Points] mode (META means [Set Points] mode); neither changes

any points.

Click middle Change the draw mode, cycling through the three possible

draw modes.

Click right Only meaningful when the mouse is over a boundary of the

character box. "Pick it up" and begin moving it as the mouse

is moved, as the right button is held down.�

The drawing pane has a scroll bar at its left edge.

The Draw Mode Menu

Clicking any button on one of the draw modes selects that draw mode until it is

next changed by clicking on this menu, or clicking middle on the drawing pane.

The Sample Pane

Clicking any button on the sample pane prompts for a new sample string.

Page 2426

The Character Select Pane

Clicking left on any character in the character select pane begins editing it. The

character select pane can also be used to answer any command that is prompting

for a character.

The Font Parameters Menu

Clicking left on any item in the Font Parameters menu opens it for editing. You

are expected to type a new decimal number. As soon as you press RETURN, the al-

tered parameter is stored in the font in the Lisp environment.

The Register Pane

Click left On an empty register, store the current black plane drawing in

that register. On a nonempty register, retrieve the drawing in

it into the black plane, and store the current black plane draw-

ing into the upper-leftmost register.

Click right Pop up a menu allowing the register you clicked on to be load-

ed from either plane (regardless of whether or not it is empty)

or retrieved to either plane.

The List Fonts and Show Font Displays

These displays are mouse-sensitive. Clicking left on a font in the [List Fonts] dis-

play begins editing it; clicking left on a character in the [Show Font] display be-

gins editing that character.

Zmail

Overview of Zmail

Zmail is a display-oriented mail system for Genera. Using Zmail, you can send and

receive mail, archive your mail in disk files, and operate on groups of messages se-

lected according to very flexible criteria. Note that Zmail is not a facility for ex-

changing immediate, interactive messages with another user; that facility is called

Converse. See the section "Converse".

Zmail provides the Zmacs editing commands for composing and editing messages.

See the section "Zmacs".

Issuing Zmail Commands

There are three types of Zmail commands:

1. Menu commands, issued by clicking the mouse on a menu.

Page 2427

2. Keyboard commands, issued by pressing one or more characters on the key-

board.

3. Extended commands, issued by pressing m-X and then typing the command in

the mini buffer.

While you are typing in the minibuffer, you can use several special charac-

ters:

• RUBOUT

Deletes last character typed.

• ABORT

Aborts the m-X command. The minibuffer disappears and Zmail is ready for

a new command.

• COMPLETE

Completes as much of the command as possible. (For example, typing "mov�

COMPLETE" would complete to "Move", because there are several commands

beginning with "move". If you then type " to d COMPLETE", this completes to

"Move to Default Previous Point" because no other commands begin with

"Move to d".)

• RETURN

Performs completion (like COMPLETE) and then executes the command (if it

is able to do completion).

• c-?

Shows the possible completions for the partial command being entered.

• c-/

Shows the command names containing the string typed.

• HELP

Gives information on the special characters and show possible completions.�

c-m-Y (Repeat Last Mini Buffer Command) and c-m-sh-Y (Repeat Last Match-

ing Mini Buffer Command) work in Zmail just as they do in Zmacs. See the

section "Repeat Last MiniBuffer Command (m-X) Zmail Command". See the

section "Repeat Last Matching MiniBuffer Command (m-X) Zmail Command".

There are other special characters and commands available in the minibuffer.

See the section "Zmacs".

m-X is not the only command that uses the minibuffer; most commands that

prompt for keyboard input (for example, for entry of filenames) use the

minibuffer. Such commands often specify a default for the data they prompt

for; if so, you can get the default by just pressing RETURN to the minibuffer.

Page 2428

You can also press c-m-Y to yank the default into the minibuffer for editing.

Commands or subcommands that use the minibuffer can always be aborted by

pressing ABORT when the minibuffer appears.�

One point to keep in mind is that many of the commands have options and de-

faults that you can customize for yourself; see the section "Setting and Saving

Zmail Options".

Format Conventions for Zmail Commands

Zmail command descriptions are formatted as follows:

Command (How) This represents the description of the command Command.

How tells how to invoke the command.�

Here are the different kinds of Zmail commands:

Menu The command is an item to be clicked on in the top-level com-

mand menu. See the section "Top-Level Interface to Zmail".

Editor Menu (Mail-mode commands only.) The command is an item to be

clicked on in the editor menu that you get by clicking right in

mail mode. See the section "Mail Mode in Zmail".

Kbd The command is a character or key to press at the keyboard,

such as c-m-SPACE or ABORT.

m-X The command is an extended command. Type m-X (or just X)

followed by the command, exactly as written. See below for an

example description that includes more information on m-X.

Summary Window The command is a click to be made on the summary window,

such as click Left on Summary Line.�

For example, the description of a Zmail menu item looks like this:

[Next] Zmail Menu Item

[Next] This would describe the left click on [Next].

[Next (M)] This would describe the middle click on [Next]. Frequently the

behavior of the middle click can be set in your Zmail Profile,

see the section "Zmail Profile Options".

[Next (R)] And this would describe the right click on [Next].�

The descriptions of command typed from the keyboard look like this:

n J (Kbd) This is what the description for the J command looks like. The

"n" means that J can take an optional numeric argument. To

give the argument, type an integer (positive, negative, or zero)

before pressing J. (The number is echoed in the mode-line

window. If you mistyped the number you were entering, press

c-G (before typing J) and start over.)

Page 2429

n Move to Default Previous Point (m-X)

This is the description for a m-X command that takes a numer-

ic argument. To give an argument, type an integer, then X or

m-X, then the words Move to Default Previous Point, then

press RETURN. After you press the X, the mode line changes to

a Zwei minibuffer into which you type the m-X command. (If

you have typed an argument, 53, for example, a note appears

saying "Arg = 53".)�

Online Help for Zmail

Some online documentation is available. This comes in five forms:

• Explanations displayed automatically: Often, useful information about what

Zmail is doing is automatically displayed on the screen. This information is usu-

ally displayed in the mode line.

• Mouse documentation line: Tells what clicking the mouse buttons would do with

the mouse in its current position. You can read short documentation for many

commands by watching the mouse documentation line as you move the mouse

around the screen.

• Describe Command (m-X): Prompts for the name of a m-X command and displays

its help documentation.

• Apropos (m-X): Prompts for a character string and displays a list of the m-X

commands containing that string in their names.

• HELP key: While at top level, documentation on any top-level command is avail-

able by pressing HELP and then typing a character or key, or clicking on a com-

mand from the command menu. For example, to get information on the N com-

mand, press HELP N. (See Figure 98.)

For information on the Next command, press HELP and then click (any button)

on [Next]. (See Figure 99.)

To learn about the Move to Default Previous Point (m-X) command, press HELP

X and then type Move to Default Previous Point and press RETURN. (See Figure

100, which shows the screen just before RETURN was pressed.)

Some of the documentation states that some command normally does such-and-

such, but "is controlled by *...-...-...*". What this means is that the exact action

performed by the command is an option that you can set in your profile. See the

section "Customizing Zmail".

Page 2430

If you press HELP *, you get a list of Zmail commands and short explanations.

The command names you are given are the m-X names; the list also tells if the

command is available from the keyboard or command menu.

While in mail or edit mode, you can get documentation on the keyboard versions

of mail or edit mode commands by pressing HELP C for Keyboard commands, or

HELP D for m-X commands, followed by the command itself.

Figure 98. Help for a Keyboard Command�

Figure 99. Help for a Menu Command�

Figure 100. Help for a m-X Command�

Page 2431

Zmail Architecture

Zmail runs in two processes. The foreground process is the main process; the back-

ground process performs file operations. Only one main Zmail window exists; by

contrast, many editor windows or Lisp Listener windows can coexist. Input into

text buffers is processed by Zwei, the text-handling subsystem used by the editor.

Zmail submits mail to and receives mail from a mailer program running on a mail

server. See the section "Symbolics Store-and-Forward Mailer".

Conceptual Architecture

The objects Zmail manipulates are of the following types:

messages Composed of a text field and a number of header fields. The

text field is the body of the message, while the headers supply

routing information such as sender, recipient(s), date, and so

forth. Messages have a variety of properties (for example, An-

swered, meaning that you have replied to the message) and can

have any number of keywords, which are simply user-defined

tags. The message you are examining at any particular time is

called the current message.�

mail buffers Named groups of messages. Each mail buffer is associated with

a disk file from which it was read, or to which it will be

saved, or both. It bears the same name as its associated file.

Each mail buffer stores various attributes specifying its format

and other properties. You can set or alter these by using [File

Options] in Profile Mode. See the section "Zmail Profile Op-

tions".

mail collections Named groups of messages drawn from one or more mail

buffers. (A single message exists in exactly one buffer and any

number of collections.) The name of the collection indicates

how it was created. Mail collections allow you to group related

messages from one or more mail buffers. Collections cannot be

saved on disk. However, you can copy the collection to a buffer

and save the buffer. See the section "Saving, Expunging,

Killing, and Renaming Zmail Messages".

mail sequences Buffers and collections. The last mail sequence selected is

called the current mail sequence.

mail files Mail buffers saved on disk. When mail buffers are invoked,

their associated files are automatically read in if they are not

present already; you never actually manipulate the file itself

with Zmail. Mail buffers and mail files are analogous to editor

buffers and text files.�

Page 2432

inbox files (or inboxes)

The files in which new mail appears. When you ask for your

new mail, the contents of your inbox are appended to your de-

fault mail file and displayed. (Thus, unless you delete or move

them, messages are saved in your default mail file. Zmail does

not use a single file as both default mail file and inbox, as

some mail systems do.)�

Figure ! shows the relationships among objects of the above types.

Mail

Buffers

Mail Collection

Mail

Files

Inbox

Login Machine

Another Machine

Zmail (Mail Sequences)

Figure 101. Messages, buffers, files, and collections.�

�

� Zmail Inboxes

Page 2433

The relationship of Zmail inboxes to other Zmail objects is a dynamic one, defined

by the operation of the [Get inbox] command, which works like this:

1. Zmail starts reading your default mail file into a mail buffer (if it has not

been read in already), and that buffer is selected as the current buffer.

2. Zmail checks to see if your inbox exists. If not, you have no new mail and

Zmail displays a message to that effect. If your inbox does exist, it is re-

named according to the limitations of the file system, and in such a way that

it is evident that it is Zmail’s temporary file, and its contents are read in by

the background process and appended to the mail buffer.

3. While you read your mail, the background process saves the new version of

the buffer onto the disk and deletes the renamed inbox. When this is done

can be controlled in your profile. See the variable zwei:*inhibit-background-

saves*.

When Zmail checks to see if your inbox exists, it checks first for the existence of a

renamed inbox. Thus the renaming ensures that no mail is lost due to a system

crash. The next use of [Get inbox] after a crash results in the old renamed inbox

being included first, and after that is processed, the inbox containing newer mail

is renamed and read.

Top-Level Interface to Zmail

Zmail accepts input from the keyboard and the mouse. Output is displayed on, and

mouse input is accepted from, the display shown in Figure !. This display has four

regions:

Summary window

The Summary Window displays a line for each message in the current sequence,

with an arrow indicating the current message (see Figure !).

Figure 103. Zmail Summary Window

The information provided in the summary line is:

No. The message number. Whenever Zmail displays a list of mes-

sages, it numbers them for easy reference. The numbers refer

only to the position of the message in the list, so when you list

subsets of the mail file, the messages show up with different

numbers. And when you delete or rearrange messages, the

numbers change accordingly.

Page 2434

status letter The status letter is the letter or symbol following the message

number. Possible status letters are:

- The message has not yet been displayed.

: The message has been or is being displayed.

A The message has been answered.

D The message has been deleted.�

(The above list is in reverse order of precedence; that is, a

deleted message is marked D whether or not it has been an-

swered.)

Lines The message length in lines.

Date The date the message was sent.

From→To The sender (From field) and as much of the recipients (To field)

of the message as will fit, summarized on either side of the →.

A missing name before or after the arrow means the message

was from or to you. For example, →PJF,,MJH represents a mes-

sage from you to PJF, yourself, and MJH. Only the To: recipi-

ents are listed, not the Cc: or Bcc: recipients. See the section

"Sending Your Mail". See the section "Commands for Sending

Mail".

Keywords The keywords attached to the message are enclosed in braces.

Subject or Text The Subject: field of the message, or in the absence of a Sub-

ject: field, the first non-blank line of text in the message.

Command Menu

The Command Menu provides a mouse-sensitive menu of the most useful top-level

commands (see Figure !). In Zmail documentation, when we refer to "[Get inbox]",

for example, we mean the Get inbox command in this menu. Some of these com-

mands (for example, [Delete]) apply only to the current message.

Figure 104. Zmail Command Menu

Message window

The Message Window displays the current message (see Figure !). The message

window is an editor buffer.

Page 2435

Figure 105. Zmail Message Window

� Initially, there is no current message; instead, there is a short note explaining how

to read and send mail. When you read your mail, the first new message becomes

the current message; if there is no new mail, the first old message is the current

message. As you move around the mail file to inspect other messages, they are se-

lected as the current message and displayed.

Zmail Minibuffer

The minibuffer contains the mode line. It is also where some short notifications

get displayed.

Zmail mode line

The Mode Line gives status information about Zmail and about the current mes-

sage, including its properties and keywords.

The various information in the mode line is:

Program status The mode the program is in. Possibilities are:�

Zmail Zmail is at top level.

Zmail Mail Zmail is in mail mode, in which mail is sent. Following the

word Mail is the mode in which the message to be sent is be-

ing edited, for example (text). The editor mode is followed by

either Message, Headers, or Mail, indicating which window the

cursor is in. (For a description of these windows, see the expla-

nation of the c-X 0, c-X 1, and c-X 2 commands. See the sec-

tion "Configuring and Selecting Zmail Windows". See the sec-

tion "Sending Your Mail". See the section "Replying to Mail".)

Zmail Profile Zmail is in Profile mode, in which you can customize Zmail.

See the section "Customizing Zmail". Following the word Pro-

file is the name of your Zmail init file, in which the cus-

tomizations are stored.

Zmail Marking Zmail is in Marking mode, executing the Mark Survey com-

mand.

Page 2436

Zmail Editing Message

Zmail is in Editing Message mode, in which you can edit your

copy of a previously received message. �

Current mail file The name of the current mail file, or "No current mail file" if

there is none.

Current message number/total number of messages

Message properties Properties describing the current message, in parentheses. Pos-

sible properties are:�

unseen Message is now being displayed for the first time

deleted Message has been marked for deletion

recent Message was new mail in the current session

last Message is the last in the file

filed Message has been copied to another file

answered Message has been answered

forwarded Message has been forwarded

redistributed Message has been redistributed

badheader Message has a bad header�

Keywords Any keywords that have been saved on this message, in braces.

--More ...-- Indicates that there is more of the message off the screen.�

--More Below-- There is more text following this screen. Use SCROLL to see it.

--More Above-- There is more text before this screen. Use m-SCROLL to see it.

--More Above and Below--

You are in the middle of the message.

Second mode line

The second mode line gives useful information on what the program is doing at

various times. For example, when Zmail detects new mail in your inbox, a message

telling you that you have new mail appears. Other messages that appear in the

second mode line tell you what file the program is reading or writing, what error

just occurred (Zmail flashes the screen also), or what certain keys do (for example,

END and ABORT). It is a good idea to check the mode lines if you are unsure where

you are in the program or how to get elsewhere.

The Summary and Message Windows can both be scrolled using the scroll bar. See

the section "Scrolling". The Summary Window can also be scrolled forward by

pressing c-m-V and backward by pressing c-m-sh-V. The Message Window can be

scrolled forward with the SCROLL key, or by pressing SPACE, and backward by

m-SCROLL or m-V.

Basic Zmail

Page 2437

Figure 102. Main Zmail window.�

Entering Zmail

Zmail can be started in several ways:

• By pressing SELECT M (the most common way)

• By giving the command Select Activity Mail

• By typing (zl:zmail) to a Lisp Listener

• By clicking on [Mail] in the System menu�

When started via (zmail), Zmail begins reading in your primary mail file and in-

box (if any), see the section "Commands for Reading Mail".

When invoked using the SELECT key, the command processor, or System menu,

Zmail displays an explanatory message and allows commands that do not require a

mail file. Click on [Get inbox] in the Zmail menu or press G to read in your mail

file; click on [Mail] or press M to send mail.

Page 2438

You can start up Zmail from your init file by using the function zwei:preload-

zmail.

Exiting Zmail

The usual way to exit Zmail is to save your mail file by clicking on [Save] and

then selecting another program using the SELECT key or the System menu. Click-

ing right on [Save] pops up a menu listing the loaded mail files, see the section

"[Save] Zmail Menu Item". Pressing S does the same thing as clicking left on

[Save], except that Zmail asks you to confirm the operation in case you pressed S

by mistake. You can turn off this query in your Profile, see the variable zwei:*ask-

before-executing-dangerous-zmail-commands*.

Figure 106. [Save (R)]�

Another way to exit is to click on [Quit], or press Q. This saves your mail files

just as [Save] does, and then returns you to the window from which you selected

Zmail. Clicking Right on [Quit] pops up a menu. See the section "[Quit] Zmail

Menu Item".

Figure 107. [Quit (R)]�

Commands for Sending Mail

This section describes how to send and reply to mail. Included are brief descrip-

tions of the Mail and Reply commands, which are used for sending various types of

mail. For complete descriptions of these commands:

See the section "Zmail Mail Commands".

See the section "Zmail Reply Command".�

For a complete description of the commands available in mail mode, in which you

actually write your mail: See the section "Mail Mode in Zmail".

Page 2439

To send a message, click on [Mail], which is displayed in the command menu.

[Mail] or M (Kbd) Starts up a window for composing a mail message.

[Mail (M)] Starts up a window for composing a bug report. You can con-

trol the behavior of clicking Middle in your profile. See the

variable zwei:*mail-middle-mode*.

[Mail (R)] Calls up a menu of mail sending operations.

To reply to the current message, click on [Reply].

[Reply] or R (Kbd) Starts up a window to reply to the current message. You can

customize the window configuration. See the variable

zwei:*reply-window-mode*.

[Reply (M)] Starts up a window to reply to the current message with the

message being replied to included. You can control the behav-

ior of click middle in your profile. See the variable

zwei:*middle-reply-mode*.

[Reply (R)] Calls up a menu of reply options.

Either [Mail] or [Reply] place you in mail mode. This is an editor buffer and most

Zmacs editing commands are available. See the section "Mail Mode in Zmail". See

the section "Zmail Reply Command".

Commands for Reading Mail

There are two types of commands for reading mail:

• Commands that read your inbox file and either load the contents into Zmail or

display the contents on the screen.

• Commands that you use as you read your mail.�

This section describes both types of mail reading commands, first the [Get Inbox]

command and the other commands that read your inbox and then the commands

that you might use as you read your mail.

Commands to Read Your Inbox

The commands to read your inbox are:

[Get Inbox] Reads in the inbox associated with the current sequence. See

the section "[Get Inbox] Zmail Menu Item".

Check for New Mail (m-X)

Checks the inbox for the current sequence for new mail.

Page 2440

Show Mail (m-X) Displays the contents of the inbox for the current sequence.

See the section "Show Mail (m-X) Zmail Command".

In reading your mail, there are two files involved: your mail file, which contains

messages you have already seen, and your inbox, which contains messages you

have not seen yet. If you have never run Zmail before, Get Inbox offers to create a

mail file for you. Zmail renames your inbox file to indicate that the messages have

been read into Zmail, and starts loading them. When you save your mail file, any

renamed inboxes are deleted. If your machine should crash after you have loaded

your new mail but before you have saved it, the renamed inbox is still there and

the messages are read in again when you do Get Inbox after you log in again.

The loading is done in a background process, so the display of the first new mes-

sage can happen rapidly. The background process continues to read in the mail file

and inbox (and write out the updated mail file, if necessary). You can read and re-

ply to your new mail while this is going on, but operations over the entire collec-

tion of new messages or your whole mail file do not work until the entire loading

process is complete. If you try to use a command that operates over the entire col-

lection of messages, for example, Select Conversation by References, the back-

ground process forces the processing of the inbox and mail file into the foreground

where it completes (while you wait) and then the command is executed.

New messages have the (unseen) and (recent) properties and the "-" status letter.

(unseen) A message is unseen until it is displayed for the first time. un-

seen messages are marked by a "-". When a message has been

displayed, it is marked by a ":".

(recent) Applies to any message that was read in as new mail since the

last expunge, whether it has been seen or not.�

Commands to Read Your Mail

Commands to Use While Reading Mail

[Delete] or D (Kbd) Deletes the current message and move to the next.

[Next] or N (Kbd) Moves to the next message.

[Previous] or P (Kbd) Returns to the previous message.�

For more details on moving from message to message or selecting groups of mes-

sages: See the section "Zmail Message Movement Commands". See the section

"Zmail Mail Collections".

[Reply] or R (Kbd) Replies to the current message. See the section "Replying to

Zmail Messages".

Page 2441

Click right on summary line

Pops up a menu of operations on a message. See the section

"Zmail Message Summary Line".

Undigestify (m-X) Separates a digest into its messages. See the section "Undiges-

tify (m-X) Zmail Command".�

For more suggestions about ways to handle your mail: See the section "Managing

Your Mail".

Zmail Message Summary Line

You can perform a large number of mail handling operations by clicking on the

summary line of a message.

Mouse-L Selects the message as current.

Mouse-M By default, deletes or undeletes the message (toggles the delete

flag). You can select the action for the middle click in your

profile. See the variable zwei:*summary-mouse-middle-mode*.

Mouse-R Pops up a menu of commands to operate on the message.

Where appropriate, clicking left, middle, or right on the item

in the menu has the same effect as clicking on the Zmail

menu item of the same name. The choices are:�

Keywords Adds keywords to this message. See the section "[Keywords]

Zmail Menu Item".

Delete or Undelete

Deletes or undeletes this message.

Reply Starts a reply to this message. See the section "[Reply] Zmail

Menu Item".

Move Moves this message. See the section "[Move] Zmail Menu

Item".

Concatenate Prompts for the number of a message to concatenate with this

message.

Filter Lists the predefined filters that characterize this message and

then starts a collection based on the one you select.

Forward Forwards this message.

Redistribute Redistributes this message.

Survey Conversation

Displays the summary lines of all the other messages in this

conversation.

Select Conversation

Starts a collection of all the messages in this conversation.�

Page 2442

Mail Commands

The Mail command and its variants are used for most mail sending operations:

sending normal mail, sending bug reports, forwarding and redistributing mail you

have received, and sending local mail. The most common mail operation not han-

dled by the Mail command is replying to a message you have received; this is done

using the Reply command. See the section "Zmail Reply Command".

Summary of Mail Commands

[Mail] Starts a new mail message. (M) and (R) offer options. See the

section "[Mail] Zmail Menu Item".

M (Kbd) Starts a new mail message. See the section "M (Kbd) Zmail

Command".

Bug (m-X) Starts a bug report. This inserts information about your ma-

chine’s software versions for bug-tracking purposes. See the

section "Bug (m-X) Zmail Command".

Forward (m-X) Forwards the current message. See the section "Forward (m-X)

Zmail Command".

F (Kbd) Forwards the current message. See the section "F (Kbd) Zmail

Command".

Redistribute Message (m-X)

Sends this message to some new recipients. See the section

"Redistribute Message (m-X) Zmail Command".

Redirect Message (m-X)

Sends the current message to some new recipients, removing

some others. See the section "Redirect Message (m-X) Zmail

Command".�

These commands all put you into mail mode.

Mail Mode in Zmail

When you compose a message, either a new message or a reply to a message you

have received, you are in mail mode. The configuration of your screen varies de-

pending on whether you are sending a new message or operating on a message you

have received. If you are starting a message you are placed in one-window mode,

that is, just a header window and a single message window. If you are replying to

a message the configuration depends on how you have set up your profile. The de-

fault is two-window mode, that is, one window containing the message to which

you are replying and the other for your reply. You can yank the message being

replied to into your reply (See the section "c-X c-Y (Kbd) Yank Replied Messages

Zmail Command".) or you can set an option in your profile to automatically do the

yank when you reply. See the variable zwei:*reply-window-mode*.

Page 2443

This section lists the commands available in mail mode. In addition, since the win-

dows in mail mode are editor windows, most Zwei commands are available.

Many commands are available via the editor menu (click right on any of the editor

windows in mail mode). These commands are marked "(Editor Menu)".

Except as noted, all these commands can be used regardless of which window

(Headers, Mail, or Message) is selected.

This section also includes a description of the Continue command, a top-level com-

mand whose use is closely related to mail mode.

Altering Header Fields

The commands in this section provide a convenient way to add or alter various

header fields. Click right while composing a mail message to get a menu of these

items. Of course, since the headers window is just an editor window, the usual edi-

tor commands can be used instead of the commands listed here. Note also that the

word Subject: can be typed in as S:, a convenience if you choose not to use the

Add Subject Field (m-X) command. See the section "Zmail Header Formats".

Add To Field

Add Cc Field

Add Fcc Field

Add From Field

Add In-reply-to Field

Add Subject Field

Add File-References Field

Change Subject Pronouns�

Configuring and Selecting Zmail Windows

(Note: The Add xxx Field commands are also window selection commands, in that

they select the headers window. See the section "Altering Zmail Header Fields". In

addition, you can select a window by clicking left on it.)

The explicit window configuration and selection commands are:

Add More Text (Editor Menu)

Selects the mail window.

c-X O (Kbd) Selects another exposed window. See the section "c-X O (Kbd)

Zmail Command".

END (Kbd) Adds more text or sends the message. See the section "END

(Kbd) Zmail Command".

c-X 0 (Kbd) Selects zero-window mode. See the section "c-X 0 (Kbd) Zmail

Command".

c-X 1 (Kbd) Selects one-window mode. See the section "c-X 1 (Kbd) Zmail

Command".

Page 2444

c-X 2 (Kbd) Selects two-window mode. See the section "c-X 2 (Kbd) Zmail

Command".

Saving and Restoring Message Drafts

If you are composing a long, complicated message, you might wish to save inter-

mediate drafts of it. Or perhaps you want to be able to interrupt your work and

come back later. The draft message and draft file facilities provide a convenient

way to do this.

Zmail Draft File Facility

Using the commands listed below, draft files allow you to save messages you are

composing into disk files. Draft files are written out to disk immediately, making

them useful as protection against a crash. (Note: only one message can be stored

per disk file; reusing the file name writes a higher-numbered version.)

[Save Draft File] (Editor Menu)

c-X c-S (Kbd) Saves the message being composed in a disk file. The first

time it is used, it prompts for entry of a filename; subsequent-

ly, it uses the same filename.�

[Write Draft File] (Editor Menu)

c-X c-W (Kbd) Saves the message being composed in a disk file. Prompts for

entry of a filename.�

[Restore Draft File] (Editor Menu)

c-X c-R (Kbd) Restores a previously saved draft. The current contents of the

Headers and Mail windows are lost.�

[Continue (R)] Pops up a menu of messages you have composed. Click right

on [All Drafts].�

� [Restore Draft File]

Prompts for a filename of a saved draft and enters mail mode

with the Headers and Message windows restored from the file.

Zmail Draft Message Facility

The draft message facility allows you to save message drafts in mail files using

the commands listed below. Since mail files are not written out until explicitly re-

quested, draft messages are unsuitable for protection against crashes. See the sec-

tion "Exiting Zmail". But since they sit visibly at or near the end of your mail file,

draft messages are good when you wish to interrupt your work and return later. A

draft message is harder to forget than a draft file would be.

Page 2445

[Save Draft As Message] (Editor Menu)

Save Draft As Message (m-X)

c-X c-m-S (Kbd) Saves the text of the message being composed as a message.

To specify a specific buffer, specify a numeric argument of 2.

If the message has already been saved, Zmail does not resave

it unless you specify a numeric argument of 4 (or c-U). The

arguments actually are actually dealt with bit-wise, so an argu-

ment of 6 has the combined effect of an argument of 2 and an

argument of 4.

Save Draft As Message (m-X) prefers the current sequence over

the default sequence if the current sequence happens to be a

buffer.

[Continue (R)] Pops up a menu of messages you have composed. Click right

on [All Drafts].�

� [Restore Draft Message]

Enters mail mode with the Headers and Mail windows restored

from the current message, if it is a draft message. If it is not,

flashes the screen and ignores the Continue command.

[Restore Draft Message (R)]

Waits for you to click on a draft message in the summary win-

dow or type a message number in the mini-buffer, then enters

mail mode with the Headers and Mail windows restored from

that message. (If the selected message is not a draft message,

Zmail flashes the screen and ignores the Continue command.)�

Reply (Menu) n R (Kbd)

If the current message is a draft message, any form of the Re-

ply command enters mail mode with the Headers and Mail

window restored from the draft message. (If the current mes-

sage is not a draft message, the Reply commands operate as

described. See the section "Zmail Reply Command".)�

Click Right on Summary Line

Note: Once mail mode has been reentered, it is just as if you had used the Mail

command and retyped the message. All the mail mode commands operate as ex-

pected; in particular, END from the Mail window mails the message and ABORT re-

turns you to Zmail top level without sending the message.

Leaving Mail Mode in Zmail

You can leave mail mode in two ways: by sending the message, or by aborting.

If you send the message, Zmail normally responds "Message sent" and returns you

to top level. If there is a problem, Zmail tells you about it and remains in mail

Page 2446

mode to allow you to fix things up. Typical problems are omitting the To: field,

trying to send mail to a nonexistent user, or mistyping a user name.

After you have sent the message, you can use Show Draft Dispositions (m-X) to

find out which mail server sent your message, to whom, at what time.See the sec-

tion "Show Draft Dispositions (m-X) Zmail Command".

After a message has been sent, you can edit and resend it, perhaps to different

recipients, by using the Continue command. See the section "Continuing Completed

or Aborted Zmail Messages".

If you abort, Zmail says Aborting, use the "Continue" command to continue. and

returns to top level. You can continue using the Continue command.

END (Kbd) Sends the message or add more text. If pressed while in the

Mail window (or the Message window in zero-window mode),

sends the message. Otherwise, selects the Mail window to al-

low you to add more text.

c-END (Kbd) Always sends the message, whether pressed in the headers

window or the mail window.

The behavior of the END key can be controlled in your Profile.

See the variable zwei:*draft-editor-end-key-treatment*.

[Send Message] (Editor Menu) c-ESCAPE (Kbd)

Sends the message.

ABORT (Kbd) [Abort Send] (Editor Menu) c-] (Kbd)

Aborts mail mode.

Continuing Completed or Aborted Zmail Messages

The commands in this section allow you to reenter mail mode to continue editing

messages already written. Already written messages are of four types:

• Messages that were sent successfully.

• Messages that were aborted. See the section "Leaving Mail Mode in Zmail".

• Draft messages saved in draft files.

• Draft messages saved as messages.

This section describes how to continue sent and aborted messages. All the mes-

sages you have composed during your current Zmail session, whether you sent

them or not, are saved by Zmail and you can return to them and edit them and

transmit or retransmit them. To save messages you are composing from one Zmail

session to another, you must save them as drafts. Draft messages are continued in

other ways. See the section "Saving and Restoring Zmail Message Drafts".

Page 2447

There are three ways to return to the last message you edited:

• clicking left on [Continue]

• pressing the RESUME key

• pressing C�

To return to other messages, you use [Continue]: Clicking middle on [Continue] se-

lects the last unsent (aborted) message you edited. Clicking right on [Continue]

pops up a menu of Unsent Drafts, Sent Drafts, and All Drafts. When you click on

one of these, a list of the header lines of that type of message pops up, allowing

you to select individual messages. See the section "[Continue] Zmail Menu Item".

Note: Once mail mode has been reentered, it is just as if you had used the Mail or

Reply command and retyped the message. All the mail mode commands operate as

expected; in particular, END from the Mail window mails the message and ABORT

aborts the send.

Commands for Including Files and Prepared Text in Messages

n c-X c-Y (Kbd) Yanks the message(s) being replied to into the buffer. (Used

most often when replying to the current message.) If in two-

window mode, go into one-window mode. Indent the yanked

message unless an argument n is given. The arguments to c-X

c-Y control the indentation and the pruning of headers, as fol-

lows:

Argument Options

none Indentation, pruning per the Prune headers

of yanked messages profile option.

1 No indentation, pruning per Prune headers

of yanked messages.

2 Indentation, pruning per reverse of Prune

headers of yanked messages.

3 No indentation, pruning per reverse of

Prune headers of yanked messages.

c-X Y (Kbd)

[Prune Yanked Headers] (Editor Menu)

Deletes the less essential headers of a message that was

yanked in via c-X c-Y. Leaves only the Date: and From: head-

ers; these are sufficient to identify the message. The profile

option Prune headers of yanked messages controls the automatic

pruning of message headers yanked into a reply. See the vari-

able zwei:*prune-headers-after-yanking*. The default is to

not prune headers.�

Page 2448

Insert File (m-X) Prompts for a pathname and inserts the contents of the file in

the mail buffer.

Zmail Reply Command

The Reply command and its variants are used for replying to mail you have re-

ceived. The Reply command is like the Mail command, except that it displays the

original message, and it sets up the headers automatically, based on the headers of

the original message.

The various forms of Reply differ in two ways: who the reply is sent to (this is

called the reply mode), and what display format is used (the reply window mode).

The reply mode affects the contents of the To: and CC: fields written by the Reply

command. The default is to reply to everybody in the headers field, with headers

like this:

To: old From

To: old To

Cc: old Cc�

You can control reply mode in your Profile. See the variable zwei:*reply-mode*.

The possible reply window modes are:

Two-windows Displays the original message and the reply being composed.

(It uses three windows: Message, Headers, and Text. It is

called Two-windows because the little Headers window does not

count.)

One-window Displays only the reply. (Uses two windows, Headers and Text.)

Yank Displays only the reply, but first yanks the text of the original

message, indented, into the text of the reply.�

You can specify the reply window mode you prefer in your profile. See the variable

zwei:*reply-window-mode*.

The reply commands are described below. The descriptions are simply an indica-

tion of the reply mode and reply window mode used by each command.

[Reply] Two-windows/All.

[Reply (M)] Two-windows/Sender.

[Reply (R)] Pops up a menu of reply modes and reply window modes. (See

Figure !.)

n R (Kbd) n=1, Two-windows/Sender. n omitted, Two-windows/All.

Click Right on Summary Line (Summary Window)

Pop up a menu, one entry of which is Reply. Left, Middle, and

Right clicks on this entry have the same effect as correspond-

ing clicks on the word [Reply] in the command menu. In addi-

Page 2449

tion, the message replied to is selected as current, if it is not

already.�

A few notes concerning Reply:

• It is possible to add an In-reply-to field to the reply to identify the original

message. See the section "Zmail Header Formats". See the section "Altering

Zmail Header Fields".

• Replying to a message gives it the (answered) property and the A status letter.

• Replying to a draft message simply continues it. See the section "Saving and

Restoring Zmail Message Drafts". Replying to a COMSAT or XMAILR (mail

server) message retries the failed message, rather than replying to anything. If

the problem is a nonexistent address at another host, you are prompted to sup-

ply a corrected address.

Figure 108. [Reply (R)]�

Message Movement and Deletion

This section describes how to move around in your mail sequence, how to locate

specific messages, and how to delete and undelete messages.

Message Movement Commands

Simple Message Movement Commands

The simple commands to move around in a mail sequence, selecting messages ei-

ther by position (next, previous, or by number) or by other characteristics, are:

[Next] or N (Kbd) Selects the next undeleted message. See the section "[Next]

Zmail Menu Item".�

� n c-N (Kbd) Selects the nth next message in the sequence, whether or not

it is marked for deletion. If n is omitted, selects the next mes-

sage, whether or not it is deleted.

Page 2450

[Previous] or P (Kbd)

Move to previous undeleted message. See the section "[Previ-

ous] Zmail Menu Item".�

� n c-P (Kbd) Selects the nth previous message in the sequence, whether or

not it is marked for deletion. If n is omitted, selects the previ-

ous message, whether or not it is deleted.

Click Left on Summary Line

Selects the message whose summary line was clicked on. See

the section "Zmail Message Summary Line".�

� n J (Kbd) Jumps to message number n, even if it is marked for deletion.

If n is omitted, jumps to the first message in the sequence. Z J

jumps to the last message in the sequence.

[Jump] Jumps to an arbitrary message using filters or the message

stack. See the section "[Jump] Zmail Menu Item".

Find String (m-X) or c-F (Kbd)

Prompts for a string and selects the next message containing

that string. See the section "Find String (m-X) Zmail

Command".

Occur (m-X) Prompts for a string and displays lines of text containing that

string. You can select the message containing the string by

clicking on the line of text. See the section "Occur (m-X) Zmail

Command".�

Moving Among Zmail Messages Using the Message Stack

Sometimes when you have been jumping around the mail file a lot, perhaps using

commands like J or Click Left on Summary Line, you find that you would like to

go back to the last message you read. If the mail file is large and you have moved

great distances, you might no longer remember where you were. Rather than force

you to make scribbled notes, Zmail keeps an eight deep stack of messages from

which you have jumped, called the message stack. The commands are similar to

the commands for the point-pdl (stack) in the editor. See the section "What is a

Zmacs Region?".

For example, suppose you are reading message 45 and then select message 22

from the summary line. The message stack looks like this:

45

.

.

.�

Page 2451

Zmail has noted the fact that you were reading message 45 by pushing this infor-

mation on the message stack. Now you use [Next] and you are reading message

23. (The message stack does not change, because it is easy for you to undo the ef-

fect of using [Next]; the idea of the message stack is to help when you have been

moving around in a more arbitrary way.) You then type 58J and message 58 be-

comes the current message. The stack now looks like this:

23

45

.

.

.�

If you now want to return to where you were  message 23  but do not remem-

ber the message number, you can press c-U c-SPACE. Message 23 becomes the

current message and the message stack is:

45

.

.

.

23�

This is called popping the message stack, because the top element is popped off

and used as the current message. As you can see, it also gets tucked under the

bottom of the stack. To get back to message 45, press c-U c-SPACE again. The

message stack is now:

.

.

.

23

45�

If you had wanted to get from message 58 directly to 45 without looking at 23,

you could have pressed c-U c-U c-SPACE c-U c-SPACE. The c-U c-U c-SPACE com-

mand pops the 23 from the top of the message stack, but instead of becoming the

current message, the 23 is simply discarded (not the message itself, just the stack

entry.)

Stack entries are actually internal pointers, not message numbers. This means that

if a message number changes  because other messages were expunged or the file

was sorted  the message stack still points to the correct message, even though

its number changed. And if a message is expunged, all stack references to it dis-

appear.

Note that the stack entries keep track not just of the message itself, but also of

what mail file it is in. This is helpful if you are using multiple mail files.

The following are the commands for using the message stack:

Page 2452

c-SPACE Push the current message onto the stack. See the section

"c-SPACE (Kbd) Zmail Command".

c-U c-SPACE Pop the top message from the message stack and make it the

current message.

c-U c-U c-SPACE Pop the top message from the message stack and discard it.

[Jump (M)] Selects an arbitrary message from the message stack. See the

section "[Jump] Zmail Menu Item".

n Move to Point (m-X)

Exchanges the current message and the top of the message

stack. See the section "Move to Point (m-X) Zmail Command".�

� n Move to Default Previous Point (m-X)

With an argument n, performs the same rotation as n

c-m-SPACE and makes n the new default argument. Without an

argument, uses the default. (The initial default is 3.)�

Message Deletion Commands

Messages can be deleted when they are no longer wanted. Deletion does not actu-

ally mean the removal of a message; rather it means flagging a message for later

removal. Messages flagged for deletion bear the status letter D and have the

deleted property; these messages are passed over by the Next and Previous com-

mands. The actual removal of deleted messages is called "expunging" and is done

by the Save and Quit commands. See the section "Exiting Zmail".

The deletion and undeletion commands are:

[Delete] Deletes the current message. (L), (M), and (R) offer options.

See the section "[Delete] Zmail Menu Item".

D (Kbd) Deletes the current message. Takes numeric argument. See the

section "D (Kbd) Zmail Command".

c-D (Kbd) Deletes current message and moves to previous message.

Delete Duplicate Messages (m-X)

Deletes duplicate messages in the current sequence. See the

section "Delete Duplicate Messages (m-X) Zmail Command".

[Undelete] Removes the delete flag from a message. See the section "[Un-

delete] Zmail Menu Item".

U (Kbd) Removes the delete flag from a message. See the section "U

(Kbd) Zmail Command".

Click Middle on Summary Line

Toggles Delete flag. See the section "Zmail Message Summary

Line".

Page 2453

Other Zmail Commands

Commands for Editing the Recipient List of a Message

If you are editing a message with a long list of recipients, it is occasionally useful

to be able to manipulate the addresses.

h-F (Kbd) Move forward over an address.�

h-B (Kbd) Move backward over an address.�

h-T (Kbd) Transpose the two surrounding addresses.�

h-K (Kbd) Kill the next address.�

h-Rubout (Kbd) Kill the previous address.�

Entering Mail Mode Recursively

c-X M (Kbd) Enters mail mode recursively; the window configuration re-

mains the same, but the Headers and Mail windows are reini-

tialized as if the Mail command had just been executed (Head-

ers window contains the word "To:" followed by a blinking cur-

sor; Mail window is empty.) Exiting recursive mail (either by

sending the message or by aborting) returns to the higher lev-

el mail.�

Adding Bug Lists to Zmail

You can add a new bug-mail recipient to the list of bug recipients. Two mecha-

nisms are available.

1. Use the :bug-reports option to defsystem.

(:bug-reports (:name system

 :mailing-list mailing-list

 :documentation documentation-string))

name appears on the Zmail menu. mailing-list is the name of the mailing list

to use. documentation-string is the mouse-line documentation for the menu

item. For example,

Page 2454

(defsystem print

 (:pretty-name "In-House Printers"

 :default-pathname "sys: print;"

 :maintaining-sites :acme

 :default-module-type :lisp

 :bug-reports (:name "Print"

 :mailing-list "bug-printer"

 :documentation "Report a bug in the hardcopy facility.")

 ...)�

2. Use the function zwei:add-bug-recipient.�

� zwei:add-bug-recipient name &optional documentation menu-name addressee-name

Function

zwei:add-bug-recipient adds a new recipient to the menu available from [Mail

(M)]. All arguments are strings. name is the name of the mailing list or recipient

of the bug note; documentation appears in the mouse documentation line; menu-

name is the name as it should appear on the menu. addressee-name is an explicit

mail address. If addressee-name is not specified, it defaults to Bug-system-name.

zwei:add-bug-recipient uses the site option host-for-bug-reports to determine the

rest of the address.

The :bug-reports option in defsystem interacts with zwei:add-bug-recipient so

you can specify the appropriate bug reporting mechanism for your applications

system. See the section ":bug-reports option for defsystem".

Encrypting Messages

Zmail supports encryption. Commands are available both when you are composing

mail and when you are reading mail. Encrypted messages contain a new header

field to indicate that they contain encrypted text.

Encrypt Text (m-X) Encrypts a message. Use it after you have completed the mes-

sage draft but before you send it. Zmail prompts for an encryp-

tion key that the recipient must provide in order to decrypt the

message. This key can consist of plain alphanumeric text only.

Punctuation or other funny characters are ignored. Upper and

Lower case are equivalent. It converts the draft to a form that

you cannot read. Decrypt Text is also available for message

drafts. Both of these commands appear on the draft editor

menu.�

Decrypt Message (m-X)

Prompts for the encryption key and then displays an encrypted

message as plain text. By this operation, you are only viewing

the plain text form; use a numeric argument to store the plain

text version in the mail file.

Page 2455

Text yanked by Forward and Reply prompts for a decryption key rather than yank-

ing unreadable text.

The only encryption algorithm currently supported is the NBS algorithm, used by

Hermes.

Getting Out of Trouble in Zmail

This chapter describes what to do if Zmail seems to be stuck and how to undo a

command.

Recovering From Stuck States in Zmail

Zmail is a complex program and sometimes becomes stuck. This section lists a few

common problems and what to do about them.

• Everything looks correct, but Zmail does not respond to commands.  Select an-

other window and reselect Zmail. The most convenient way to do this is to press

SELECT L SELECT M. Pressing c-m-ABORT might also work; this throws you back

to top level, aborting any other command (for example, Mail, Profile). Before

pressing c-m-ABORT, you might first try pressing ABORT.�

• Zmail does not respond to commands, and the process state is Wait Forever. 

Press SELECT L SELECT M or c-m-ABORT.�

• Zmail does not respond to commands, and the process state is Output Hold. 

Press FUNCTION ESCAPE. The window that appears might be in the Debugger;

follow the instructions below the line "An error has occurred, and Zmail has en-

tered the Debugger". After exiting the Debugger, a background window might

remain on the screen overlaying part of the normal Zmail window; to deexpose

it, press FUNCTION c-T.�

• Zmail does not respond to commands, and the process state is Arrest.  Press

FUNCTION - A (that is three keystrokes).�

• An error has occurred, and Zmail has entered the Debugger. 

Press ABORT to get out of the Debugger; this exits from one command level. For

example, if you are in mail mode and an error occurs, ABORT gets you out of the

Debugger and leaves you in Mail mode. You are not forced back to top level.

Before you press ABORT, you might wish to send a bug report. Do this by press-

ing c-M. This puts you in a mail window with appropriate information about the

system and machine you are using included in the message. Finish the message

with an explanation of the circumstances that led up to the error. Send the bug

report by pressing END.�

Page 2456

• A window pops up telling you that an error occurred in the background process. 

Press FUNCTION-0-S and see what the error is. A window should pop up with

the Debugger in it. Typically it is a file system error or a host-down error for

the file server containing your mail, but it could also be a program bug. Follow

the instructions as for An error has occurred ...; pressing ABORT restarts the

background process and puts you back into Zmail.�

• Another window is partially overlaying the main Zmail window. 

Click left on the main Zmail window. If this does not work, try pressing FUNC-

TION c-T, which gets rid of "temporary" windows such as pop-up menus.�

• Zmail obeys commands, but typeout remains on the screen following an error. 

Press REFRESH or FUNCTION REFRESH. It might also help to select another win-

dow and reselect Zmail (for example, press SELECT L SELECT M). If you are at

Zmail top level, you might also try using [Configure] (to display only the mes-

sage), and then [Configure] again (to display both message and summary).�

• After an error, Zmail does not obey commands, and the process state is Nil. 

Press FUNCTION 1 W. If the process state is still Nil, press SELECT L SELECT M.�

• SELECT M flashes the screen and refuses to select Zmail. 

Use the System menu: shift click right to get the menu, then use [Mail].�

• Zmail is irreparably stuck.  Enter a Lisp Listener (SELECT L) and type Initial-

ize Mail. See the section "Initialize Mail Command". Caution: any mail se-

quences currently in memory are lost. This operation reloads Zmail without dis-

turbing the rest of the system.�

• The mouse is broken.  Almost all Zmail mouse commands have keyboard or

m-X equivalents. If the mouse is broken, you can use the keyboard and m-X com-

mands.�

Undoing Commands in Zmail

If you are in the middle of a command you did not mean to use, you can abort it.

If you have executed a command that prompts for keyboard input or wants you to

select messages from the summary window, press ABORT. If the command is asking

you to choose something from a menu, click on Abort if that is a choice, or move

the mouse outside the menu and see if it goes away. If you are inside mail mode,

press ABORT. If you are in edit mode, press END. If you are choosing a filter or

defining a filter or universe, use [Abort]. If you are choosing a universe, move the

mouse outside the menu. If you are in profile mode, use [Exit]. If all else fails,

pressing c-m-ABORT works, but might be a bit drastic.

If you execute a command or send a message and then change your mind, there

are several options to try to undo the action:

Page 2457

Undo (m-X) Undoes the last command; see the section "Undo (m-X) Zmail

Command".

Redo (m-X) Undoes the effect of the last Undo (m-X).

Revoke Message (m-X)

Tries to "get back" a message that has been sent; see the sec-

tion "Revoke Message (m-X) Zmail Command".

[Continue (R)] Allows you to resend a message you have already sent, giving

it a supersedes header; see the section "[Continue] Zmail Menu

Item".

Managing Your Mail

When you start getting more than a few messages a day, it becomes difficult to

keep things in order. Messages requiring future action begin to pile up and just

sorting through old messages leaves no time for new. For situations like this,

Zmail provides the following management capabilities:

• Classifying messages by adding keywords to them

• Sorting messages based on their subject or other characteristics (filters)

• Working with groups of related messages (mail collections)

• Storing groups of related messages into separate mail files�

Manipulating Messages

This chapter summarizes useful techniques for manipulating messages within a

mail sequence.

Replying and Remailing

Replying

To reply to a message, click on [Reply] or press R. Zmail initializes the headers of

the reply for you: the Subject is copied from the original message; the To and Cc

fields include the original sender and recipients of the message. (The exact set-up

depends on the mouse button you click and the options in your profile.) You can

see the original message while you write your reply.

People frequently include some or all of the original message, indented four

spaces, in their reply. You can yank (copy) the message into your reply by pressing

c-X c-Y after starting your reply. To prune some of the less useful headers from a

yanked message, press c-X Y. c-X c-Y takes numeric arguments which control in-

Page 2458

dentation and header pruning. See the section "Commands for Including Files and

Prepared Text in Messages".

To reply to several messages at once use the following procedure:

1. Select a conversation using Select Conversation (m-X).

2. Click on [Map Over / Reply] in the main Zmail menu.

3. Yank all the messages in the conversation into the reply using c-X c-Y.�

By setting profile options, you can make the [Reply] command do most of this au-

tomatically. See the section "Zmail Options for Replying to Mail ".

Forwarding, Redistributing, and Redirecting

To forward or redistribute a message, clicking right on [Mail]. [Forward] lets you

edit the message or add to it. You can also invoke Forward by pressing F. [Redis-

tribute] simply prompts for addressees and sends the message with the Redistribut-

ed-by, To, and Date fields added.

You can redirect a message using Redirect Message (m-X). Redirecting allows you

to remove some or all of the original recipients and send the message to new re-

cipients. See the section "Redirect Message (m-X) Zmail Command".

Moving a Message to a File

You can move a message to a file by clicking on [Move] or by pressing O. Pressing

O prompts for filename to which to move the current message The message is first

moved to a sequence and then to the file when you save out your files. Using

[Move] moves the message to the default move-destination file. The initial setting

for the default move-destination file can be defined using the profile editor (see

the variable zwei:*default-move-mail-file-name*). After you use [Move] the default

move-destination is the last file to which a message was moved. Clicking right on

[Move] pops up a menu offering a list of your mail files and several options for

moving the message. See the section "Saving a List of Mail Files".

Hardcopy Message Command

Hardcopy Message (m-X)

Hardcopies the current message. Note that you can also click

Right on [Other] in the Zmail menu and select Hardcopy Mes-

sage. Additionally, you can click Right on the message summa-

ry line, and then click Right on [Move] and select Hardcopy.

Editing

Page 2459

It is sometimes handy to edit a message saved in your mail file. To do so, select it

as current and press c-R or click left on the message window. Press END when you

finish editing.

Clicking m-Left on a file reference in the Zmail header window edits the file in an

available Zmacs buffer.

Reordering

You can rearrange a mail sequence in two ways: by sorting the messages or by ap-

pending messages to one another.

If you click right on [Sort] a menu of sort keys and directions pops up. (See the

section "[Sort] Zmail Menu Item".)

You can click right on the summary line of a message you wish to concatenate to

another; then click on [Concatenate]. Clicking right on [Concatenate] allows you to

choose to which message it gets appended. (See the section "Zmail Message Sum-

mary Line".)

You can place the messages you want to combine in a collection. (See the section

"Creating a Mail Collection".) Then you can click on [Map over / Concatenate] to

combine them. (See the section "[Map Over] Zmail Menu Item".) The messages

that get appended are deleted.

Operating on Zmail Messages Referred to by the Current Message

Often, when you receive a reply to a message, you want to delete the original one

or refer back to it. If your mail files are more than 30 or 40 messages long it

might be difficult to find the original message. Zmail can help by searching for

messages referenced by the current one.

The current message references a message x if it includes:

• a citation to x in an In-reply-to or References header

• the yanked-in headers of message x

Usually, this means that the current message is a reply to message x.

The following referenced message commands are available:

Select Referenced Message (m-X)

Selects the referenced message as current.

Delete Referenced Messages (m-X)

Deletes the referenced messages.

Append To Referenced Message (m-X)

Appends this message to the referenced message.�

Page 2460

Move In Place Of Referenced Message (m-X)

Moves this message to where the referenced message is, and

deletes the referenced message.�

Select References (m-X)

Creates a mail collection of all messages referenced by the cur-

rent message.�

� Select Conversation by References (m-X)

Defines a conversation and selects it as a collection. This com-

mand is very similar to Select References. �

Delete Conversation By References (m-X)

Deletes all the messages in a conversation.�

Select All Conversations by References (m-X)

Selects messages to which any message in the sequence refers,

or that refer to any message in the sequence, recursively. See

the section "Select All Conversations By References (m-X) Zmail

Command".�

� Append Conversation by References (m-X)

Append messages to which this message refers, or which refer

to this message, recursively.�

The commands with the word "reference" in their names use hash tables rather

than searching. With a numeric argument, the Reference commands offer a menu

of universes for searching.

If the current message has references to several messages, Select Referenced Mes-

sage, Append To Referenced Message, and Move In Place Of Referenced Message

ask which message to choose. Delete Referenced Messages and Select References

choose all referenced messages.

To find the referenced message(s), Zmail looks in the current sequence. If the

message is not there, Zmail tells you about the references not satisfied. If given a

numeric argument, Zmail pops up a menu of other sequences to search first.

Often, though, you know in advance where referenced messages can be found. For

example, you might store all your messages about hardware in a particular file. If

you get a message about hardware, the messages it refers to are probably also

about hardware, and thus they are probably in that file. You can give Zmail this

type of knowledge by setting the filter-universe alist in profile mode. See the sec-

tion "Filter-Universe Alist".

See the section "Testing Zmail Message Characteristics". See the section "Defining

Zmail Message Search Spaces".

Classifying Messages

Page 2461

Zmail allows you to classify and categorize messages by adding keywords to them.

Keywords are useful in many ways, among them:

Topic Indicators Indicate the major topic of the message. If your work involves

designing natural language interfaces, for example, you might

use keywords such as dictionary, parser, and syntax-checker.

The topic indicators you need depend on the sort of messages

you get.

Classifiers Indicate the type of message. For example, you might use key-

words such as bug, feature-request, documentation-bug, and is-

sue to categorize messages as bug reports, requests for fea-

tures, reports of documentation bugs, and issues under discus-

sion.

Status Flags Indicate the status or priority of the message. For example,

you might use a keyword such as to-do to flag messages that

require you to do something and a keyword such as timing-out

to flag messages on which you are awaiting action from other

people. You could use P1, P2, and P3 to indicate the priority of

a message requiring further action.

Setting Zmail Keywords

[Keywords] Adds the last used keyword(s) to the current message.

[Keywords (M)] Adds keywords according to which filters the message satisfies.

See the section "Zmail Filters".

[Keywords (R)] or LAllows you to select or specify keywords for the current mes-

sage.

You can use keywords in association with filters (see the section "Zmail Filters").

to semi-automatically tag messages. For example, you can associate filters and key-

words as follows:

Filter Keyword(s)

Grammar Syntax-Checker

Dictionary Dictionary

Parser Syntax-Checker, Parser�

With this scheme, a message about the grammar constructions the parser under-

stands would get the keywords Syntax-checker and Parser. if you use [Keywords

(M)].

You can save such filter-keyword associations in your Zmail Profile. To set the fil-

ter-keyword alist, click middle on [Filters] or [Keywords] in profile mode. Using

[Filters (M)] allows you to alter the associations of a given filter; using [Keywords

(M)] allows you to alter the associations of a given keyword. You will probably

want to save the alist (and the filter definitions) in your profile, see the section

"Zmail Profile Options".

Page 2462

For more information, see the section "[Keywords] Zmail Menu Item".

Saving Keywords

You can store keywords, so that they appear on the keyword menu before you have

ever used them. This is useful if you anticipate needing particular keywords in the

future. To do so, click left on [Keywords] in profile mode. A small editing buffer

pops up containing the names of the mail files loaded into your Zmail. If there are

any keywords already used in those files, they are listed on the line with the ap-

propriate file. You can add or delete keywords from the those listed as well as add

file-keyword lists to this buffer. The format looks like this:

acme>kjones>babyl.text::bugs,documentation-bugs,grammar,parser�

The keywords are actually stored in the individual mail files. The list of keywords

stored in a particular mail file includes all keywords associated with any message

ever in the file, plus any you add using [Keywords]. The keywords list displayed in

the menu is the union of the lists in all mail buffers.

Zmail Filters

Filters are sets of criteria to use in testing messages (see the section "Testing

Zmail Message Characteristics"). You can use filters in association with keywords

to sort messages or to move messages of a particular type to a separate mail buf-

fer or collection. There are two types of filters:

1. Predefined filters

2. User defined filters�

You can use predefined filters by clicking right on [Survey] or by clicking on Fil-

ters in the menu produced by clicking right on the message summary line.

You can define your own filters using New Filter in the menu produced by [Survey

(R)], see the section "Creating Zmail Filters".

Mail Buffers

Listing Zmail Buffers, Mail Files and Collections

Your current Zmail session consists of mail buffers (with associated mail files) and

collections. Collectively these are referred to as sequences. You can list all the se-

quences in your current Zmail session as well as any mail files (known to your

profile) that have not yet been read in. You do this with List Sequences (m-X).

The items on the list are mouse sensitive.

Selecting Mail Buffers and Files

Page 2463

To select another mail buffer or file, use [Select (R)] (see the section "[Select]

Zmail Menu Item"). Click on the name of the desired buffer or file (if it appears)

or use [Read/Create file] to specify the name of a file. Specify the name of the file

to be read into a buffer. The buffer then takes the name of the file. The following

are all possibilities:

• The buffer exists: it is selected.

• The buffer doesn’t exist, but a file of the same name does: the file is read into a

buffer and selected.

• Neither exist: a new buffer is created. Saving the buffer creates a new file.

Using [Select (L)] returns you to the previously selected sequence. Subsequent left

clicks alternate between the two sequences.

c-m-L is like [Select (L)]. With an argument of 0 it works like [Select (R)]. With

an argument of 1 or greater, it works as in Zmacs and selects from the stack of

previously selected sequences (see the section "Changing Buffers").

Copying a Message to Another Buffer

[Move (R)] Pops up a menu of mail files from which you select an existing

file or collection or create a new one to which to move the

current message. See the section "[Move] Zmail Menu Item".

[Move] Copy current message to same buffer as the last move.

[Move (M)] Move the message to the file(s) corresponding to any filters

you have defined.�

A filter-mail file alist associates a single mail file with each filter in the list. Us-

ing [Move (M)] moves the message to the files corresponding to the filters in the

list satisfied by the message.

For example, if you associated your Hardware filter with the file HARD-

WARE.XMAIL and a Software filter with SOFTWARE.XMAIL, you could use [Move

(M)] to move your messages to the appropriate mail buffer. With two or three mail

files and filters, this is a very powerful tool.

To move a group of related messages to another mail buffer, you have to use mail

collections (see the section "Zmail Mail Collections").

As with [Select], if the buffer doesn’t exist, it is read in or created.

Saving a List of Mail Files

Your can store a list of mail files in your Zmail profile, so that their names appear

in the various mail file menus. Use [Mail files] in profile mode. Zmail does not

load the files on this list automatically (see the function zwei:preload-zmail), it

Page 2464

just makes the names easily accessible by placing them in the menu offered by

[Select (R)]. As you request Zmail to load files into your Zmail, their names appear

in bold at the top of the menu.

Mail Collections

To work with a group of related messages, you first put them all in a mail collec-

tion.

Creating a Mail Collection

There are three ways to create a mail collection:

1. Starting with a single message

2. By using filters

3. By marking individual messages�

� Creating a Mail Collection Starting with a Single Message

To start a new mail collection with the current message, click right on [Move]

(see the section "[Move] Zmail Menu Item"). The items in the [Move] menu that

relate to creating mail collections are [New Collection] and [Recycled Collection]

If you want to give the collection a name, click on [New Collection]. Zmail prompts

you for a name for the new collection. This name shows up in the menu of mail

sequences for subsequent [Move] and [Select] commands.

If you do not care about naming the collection, click on [Recycled Collection].

Zmail will create a temporary collection. The first such collection is named Temp,

the second Temp-1, and so on. If you kill one of these collections, its name is re-

used (recycled) for the next temporary collection.

Creating a Mail Collection by Using Filters

You can use filters to create a collection in two ways:

1. Using predefined filters associated with the message. Click right on the sum-

mary line of a message and then click on Filters. A list of filters based on

the header fields of the message pops up. You select one of these filters and

Zmail searches through the current sequence for any messages that satisfy

that filter and selects them along with the current message as a collection.

2. Choosing a filter from Filter Selection Display. Click right on [Select] and

then click on Filters. Select one of the filters from the display. The messages

in the current sequence that satisfy that filter are selected as a collection.�

Page 2465

To include messages from more than one sequence, select or define a universe by

clicking left on Universes in the Filter Selection Display. See the section "Select-

ing Zmail Universes". See the section "Defining Zmail Message Search Spaces".

Messages from the sequences in the universe are then filtered to select a new col-

lection.

Creating a Mail Collection by Marking Individual Messages

The menu produced by clicking right on [Select] offers the item [Mark Survey].

See the section "[Select] Zmail Menu Item". Clicking on this permits you to mark

the summary lines of messages in the current sequence to be selected as a collec-

tion. You mark messages using the mouse or the keyboard. Clicking right or press-

ing END terminates marking and selects the marked collection. The mouse clicks

and keyboard commands are:

Mouse Keyboard Meaning

click command

Left SPACE Toggle marking of message for inclusion in the

 collection.

c-M Marks all messages for inclusion in the collection.

c-sh-M Unmarks all messages.

c-N Move summary cursor forward.

c-sh-N Toggles the marked state of the current message

and then moves the summary cursor forward to

the next message. (Equivalent to Space followed

by c-N but fewer keystrokes.)

c-P Move summary cursor backward.

c-sh-P Toggles the marked state of the current message

and then moves the summary cursor backward

to the previous message.

c-V,

 c-m-V Scroll summary window forward.

m-V,

 c-m-sh-V Scroll summary window backward.

HELP Print this help text.

Middle ABORT Abort the mark survey operation.

Page 2466

Right END Finish marking and select the marked collection.

�

Operating on a Mail Collection

Once you have a collection there are a number of things you can do with it:

Rename it Rename Sequence (m-X) prompts you for a new name for the

collection.

Select any collection as current sequence

Click right on [Select]. See the section "[Select] Zmail Menu

Item".

Add message to collection

Click right on [Move]. Message is not deleted if it is just

moved to a collection.

Click right on its summary line, then click on [Move].

Remove message from a collection

Click right on its summary line, then click on [Remove]. ([Re-

move] exists as a menu choice only when the current sequence

is a collection). The message disappears from the collection but

is not deleted from the buffer the collection is drawn from.�

To do something to every message in a mail collection (or mail buffer) use [Map

over (R)]. See the section "[Map Over] Zmail Menu Item".

Three particularly useful commands are:

[Map over / Move (M)]

Like using [Move (M)] for each individual message; that is,

each message is moved to the appropriate file, based on the fil-

ter-mail file alist. See the section "Testing Zmail Message

Characteristics".

[Map over / Move / By Individual Filters]

A synonym for [Map over / Move (M)].

[Map over / Keywords (M)]

Like using [Keywords (M)] for each individual message; that is,

each message is given the appropriate keywords, based on the

filter-keyword alist. See the section "Setting Zmail Keywords".

Operating on a Message in a Mail Collection

Remember that mail collections are sequences of messages drawn from mail

buffers. The message exists in its original mail buffer. Therefore, any change you

Page 2467

make to the message appearing in the mail collection (for example, adding keywords

to it) is reflected in the mail buffer, and vice versa.

A single message can exist in several mail collections (some of which could have

been created by filtering or marking on another mail collection). Changes made to

any image of the message are reflected in the buffer and all collections in which it

appears.

Action Effect

Deleting a message All images of message marked as deleted.

Expunging buffer Deleted message disappears from buffer containing actual mes-

sage and all collections in which it appears.

Expunging collection

Deleted message disappears from that collection only. (The ac-

tual message and all remaining images are still marked as

deleted.)�

Operating on a Group of Messages

To do something to a group of messages, create a temporary collection containing

just those messages)see the section "Creating a Mail Collection by Marking Indi-

vidual Messages"). Then you can use [Map Over] to operate on the collection. See

the section "Operating on a Mail Collection".

Saving, Expunging, Killing, and Renaming

To expunge and save your mail sequences

[Save] or S Expunges any buffers or collections with deleted messages and

saves all buffers. See the section "[Save] Zmail Menu Item".

Start Background Save (m-X)

Suppresses background mail checks and starts a save in the

background. This allows you to compose and send mail mes-

sages while the save is being done.

[Quit] or Q Expunges any buffers or collections with deleted messages,

saves all buffers, and returns to the window from which Zmail

was called. See the section "[Quit] Zmail Menu Item".

[Save (M)] or E Expunge current sequence.

[Save (R)] Pops up a menu of all your mail sequences. From the menu

you can determine what [Save] or S would do and either modi-

fy it or make it happen. The menu also allows you to use [Kill]

on a buffer or collection, that is, simply get rid of Zmail’s

image of it. Files on disk are not affected.

Page 2468

To rename a mail file, perhaps because the host it usually is stored on is down,

use the Rename Sequence (m-X) command. Zmail prompts you for a new filename

for the buffer and you can then save the file to a different location.

To turn collections into mail files use [Map over / Move] (see the section "[Map

Over] Zmail Menu Item"). to change the collection into a real buffer.

Hints for Using Keywords, Mail Collections, and Mail Files

Using the mechanisms described in this chapter is an art. Here are some sugges-

tions.

Familiarize yourself with the range of options in profile mode (see the section

"Zmail Profile Options"). Try out different settings.

Decide on some useful topic, classifier, and status keywords and store them in your

default mail file. Start using them; new ones added later will be stored automati-

cally. After you’ve gained some experience with them, define some filters and cre-

ate a filter-keyword alist so you can add keywords with click middle.

When your mail file starts getting big - 100 messages is certainly big for a default

mail file, 200 for others - split it into two files by following these steps:

1. Filter on some message attribute to make a mail collection. If you’ve chosen

your keywords well, you can just use a keyword filter. (To simply split the file

into old and new messages, use [Before] on the Filter Creation Display.)

2. If you used a keyword filter in step 1, use [Map over / Unkeywords] to remove

the keyword you filtered on, since everything in the new collection has that

keyword.

3. Use [Map over / Move / Find file] to move the collection to another file.

4. Use [Save] to save your buffers and dispose of the collection.

When you have two or more mail files, create a filter-mail file alist so that you

can use [Move (M)]. Create a filter-universe alist so that you can use the refer-

enced message commands more effectively.

With files, keywords, and alists set up, your response to a new message might be

among the following:

• Delete it.

• Reply to it.

• Put some keywords on it.

• Move it to another file.

Page 2469

• Look at the message it refers to.

• Delete the message it refers to.

If you have a lot of new mail, you might not want to read it in the order in which

it arrived.

1. Use [Unseen] on the Filter Selection Display to put the new mail in a mail

collection.

2. Use [Map over / Move (M)].

3. Read the new mail in each of the files to which it was moved.

(You must have a Filter-Mail File alist set up in order to use this procedure.)

Reference Information

Fundamental Techniques

Customizing Zmail

The Profile command allows you to customize Zmail by setting various display and

command options to your personal taste.

You can also customize the Zmail user interface by using the (m-X) Set Key com-

mand to temporarily bind a Zmail command to a keystroke. For example, you can

use Set Key to temporarily bind the Append Conversation by References command

to s-S.

You can set an option temporarily or permanently, the latter by saving the option

in your Zmail Profile.

Classes of options you can set in your Zmail Profile include the following:

• Format used for hardcopies of messages

• Mail-file attributes

• Lists of mail files and other objects that Zmail knows about at startup

• Associations between certain objects

• Clicking Middle for many top-level commands

• Screen configurations

Page 2470

• Default actions taken when reading, sending, replying to, or forwarding mail

• Command Tables

Customizing is done in profile mode, entered by clicking on [Profile] in the com-

mand menu at top level. The profile mode display (Figure !) shows the text of your

profile and the current settings of various options.

Setting and Saving Zmail Options

Option settings are stored in seven distinct places:

1. The Zmail environment: the way the options are actually set at the moment.

2. The defaults: the way the options are actually set before you alter them.

3. The editor buffer: the in-memory buffer of your profile.

4. The source version of your profile: on disk.

5. The compiled version of your profile: also on disk.

6. Mail buffers: options associated and stored with the individual mail buffers.

7. Mail files: options associated with a mail buffer saved as a file.�

Enter profile mode by clicking on [Profile] in the Zmail menu. The top portion of

the window looks like Figure !. The User Options pane works like an Accept Vari-

able Values menu. You click on the various values to change options. The boxed

items above and below the User Options pane are menu items that bring up addi-

tional menus for general operations on your mail files or on your profile.

Figure 109. Profile Mode Menu and Interaction Pane�

The lower half of the window is an editor buffer into which Lisp forms are insert-

ed automatically when you select options in the User Options pane. This is what is

Page 2471

saved as your zmail-init.lisp file. You do not have to edit this file yourself; Zmail

takes care of that for you.

The simplest way to use profile mode is:

1. Make the changes you want using the menu items or user options window.

For a list of the various options and what they mean: See the section "Zmail

Profile Options".

2. Click on [Exit] to leave profile mode. Check to see that you like your changes.

3. To save your changes, reenter profile mode and click Left on [Save]. Answer

yes to any questions about inserting changes or recompiling your file. At this

point Lisp code corresponding to your option settings is stored in your profile.

Options changed using [File options] or [Keywords] are stored in the individu-

al mail buffers and are saved when you save the particular mail file.

What [Save] actually does is move option settings from the environment (where

you altered them in the first step) to the editor buffer, then from the editor buffer

to the source copy of your init file, and finally from the source file to the compiled

file (by recompiling).

You can undo all the settings you have made by clicking on [Defaults], which re-

turns all the variables to their system defaults. You can reset all the variables to

the values in your init file by clicking on [Reset], which loads your init file again.

Testing Zmail Message Characteristics

Filters are logical predicates that apply to messages. They take a message as input

and return a True or False answer based on its characteristics. For example, a fil-

ter might test whether the message was sent to a particular person or on a partic-

ular date. If the answer is True, the message is said to satisfy the filter.

Zmail commands use filters in one of two ways:

1. The [Survey], [Jump], and [Select] commands form subsets of all messages

that satisfy a particular filter. ([Select] forms a mail collection; the other two

form the subset implicitly.)

2. The [Keywords] and [Move] commands act upon a single message in a partic-

ular way depending upon which filters the message satisfies.

Selecting Filters

Filters are of two types:

1. Predefined filters are simple, and come in four varieties:

• [All] is a filter satisfied by any message.

Page 2472

• Keyword filters test whether the message has a particular keyword or any

keywords.

• Property filters test whether the message has a particular property, such as

Answered.

• Header filters test whether the message headers meet specified characteris-

tics, such as a Subject field that includes the word "Lisp".

2. User-defined filters are arbitrarily complex logical expressions whose operands

are predefined filters and other user-defined filters.

When you invoke a Zmail command that uses a single filter (a command that

forms a subset of messages) you select the filter you want from the menu shown

in Figure !. By first using [Not], you can negate the action of the filter you

choose, that is, select those messages that fail to satisfy the filter.

Creating Filters

Filters are Lisp functions, constructed using the menu-based programming tool

shown in Figure !. This display can be obtained in two ways:

• By using [New filter] in Figure !: use this when none of the existing (pre- or

user-defined) filters is suitable.

• By using [Filters] in profile mode (Figure 109) before using [New filter]: use

this to define a filter whose utility you anticipate before you actually need to

use it. The filter will be saved in your profile. See the section "Saving Zmail

Filters".

Page 2473

The Filter Creation Display is divided into three main sections:

• The summary window. You can click left on a message’s summary line to select

predefined filters based on its characteristics.

• The menu items are the primary tool for defining the filter. The menu items

are divided into four rows:

° A row of programming items, [Not], [And], [Or], and [Close]. The first three

are logical functions; the last closes a level of parentheses in the expression

being constructed.

° A documentation item, [Documentation], which adds documentation to a filter.

This documentation appears as the mouse documentation line when you are

pointing with the mouse to that filter in the filter selection menu.

° A row of processing items, [Sample], [Done], and [Abort]:

[Sample] Displays the summary lines of messages that satisfy the filter you

have defined so far.

[Done] Exits definition mode and executes the command that called for the

filter.

[Abort] Aborts the command.

° Two rows of filter menus, similar to the Filter Selection Display. These allow

one filter to call another.

• The editor buffer displays the filter as it is being created.

So, how do you actually define a filter? Let’s walk though an example. Suppose we

want a filter that selects messages dealing with hardware. The first thing to do

when defining a filter is to use the menu item above the editor buffer: right for a

menu of existing filters to edit, or click left and give a name to create a new fil-

ter. Let’s call this filter "Parser".

The next step is to determine the explicitly definable characteristics of the mes-

sages we’re looking for. In this case, we might decide that messages about the

parser are either from PJF (but only if dated after 2/5/86), or contain the word

"parser" in the Subject field. Expressed in Lisp, the filter looks like:

Page 2474

Figure 110. Filter Selection Display.�

Figure 111. Filter Creation Display.�

Page 2475

�

(DEFINE-FILTER |Parser| (MSG)

 "Messages relating to the Parser"

 (OR (AND (MSG-HEADER-RECIPIENT-SEARCH ’:FROM #"PJF")

 (MSG-DATE-GREATERP "5-Feb-86"))

 (MSG-HEADER-SEARCH ’:SUBJECT #"Parser")

))

�

To create it, we follow these steps, clicking on the items in the menu:

• [Or]

• [And]

• [From], type PJF, and press RETURN

• [After], type 2/5/86, and press RETURN

• [Close]

• [Subject], type parser, and press RETURN

• [Documentation] type in a mouse documentation string followed by RETURN

• [Done]

Notice the [Close] command. It closes the [And]. The optional mouse documentation

string, added in the next to last step, is very useful; it shows up as the mouse doc-

umentation line for the filter whenever you are asked to select a filter from a

menu.

Note that If you click on a message in the summary window after clicking on

[Author], [Author/Recipient], or [Recipient] in the filter selection menu, and there

is only one possible address, a small confirming menu appears.

Saving Zmail Filters

Any filters you have defined during the current login session show up in the filter

menus, but they are gone when you cold boot the next time. To save a filter per-

manently, you must save it in your profile.

1. Enter Profile mode (See the section "Setting and Saving Zmail Options".)

2. Click left on [Filters]. A menu pops up listing the filters you have saved in

your profile plus any you have defined in your current Zmail session. The fil-

ters that are already saved in your profile are highlighted.

3. Click on the filter(s) you want to save. They appear highlighted.

Page 2476

4. Click on [Do It].

5. After the menu disappears, click on [Save] to save your profile.�

The filters you have selected are then saved.

Defining Message Search Spaces

Universes are programs that define sets of messages. For example, the universe

"Hardware" could be the set of messages in two mail files, PRINTER-

HARDWARE.BABYL and 3640-HARDWARE.BABYL. Universes are dynamic objects;

if the contents of one of the files were to change, the contents of "Hardware"

would change. Like filters, universes come in both predefined and user-defined va-

rieties. Universes are implemented using flavors. You can define arbitrary univers-

es; see sys: zmail; universe.lisp for information.

Zmail commands use universes in one of two ways; in both cases, the universe acts

as a search space:

• The [Survey], [Jump], and [Select] commands use universes to define the set of

messages from which a filter extracts its subset.

• The referenced message commands use universes to find messages related to

one you are looking at. See the section "Operating on Zmail Messages Referred

to by the Current Message".

Selecting Universes

When you use a universe in conjunction with a filter ([Survey], [Jump], or [Select]

command), you do so by using the universe menu item in Figure 110 prior to se-

lecting a filter. This menu item displays the universe to be used with the filter

you select; the usual default is the rest of the current mail file. Using the uni-

verse menu item causes a menu to pop up similar to the one in Figure !.

Using this menu, you can choose one of the following predefined universes:

• The messages in a particular mail file, buffer, or collection.

• The union of messages in all files, buffers, and collections listed in the menu.

• The union of messages in all buffers and collections.

• The messages in the current buffer or collection following the current message.

• The messages in the current buffer or collection preceding the current message.

Page 2477

Figure 112. Universe Selection Display.�

Creating Universes

New universes are defined using a menu tool similar to the Filter Creation Menu.

You can obtain this display in two ways:

• By using [New universe] in Figure 112: use this when none of the existing (pre-

defined or user-defined) universes is suitable.

• By using [Universes] in profile mode (Figure 109) before using [New universe]:

use this to define a universe whose utility you anticipate before you actually

need to use it. The universe will be saved in your profile. See the section "Sav-

ing Zmail Universes".

The Universe Creation Display is quite similar to the Filter Creation Display. By

clicking on menu items, you construct a universe as unions, intersections, and

complements of mail files, buffers, collections, and universes. These include the

special universe [Current] (the current sequence), and the special universe [Load-

ed] (all loaded buffers). The precise definitions of the set operations are as follows:

Union A message is in the union of n universes if it is in any of the uni-

verses in the union.

Intersection A message is in the intersection of n universes if all contain the

same message (not a copy from another buffer).

Complement A message is in the complement of a universe if it is not in that

universe, but is in [Loaded].�

One caveat about the use of mail collections in universes: be sure that the collec-

tion you name actually exists when you use the universe. A universe used several

times or stored in your profile might refer to a collection that no longer exists. If

so, Zmail attempts to find a mail file with the same name as the collection. This

results in an error.

Saving Universes

Page 2478

To save a universe in your profile, use [Universes] in profile mode. When you save

your profile, the universes you select are saved. Those universes, plus any you

have defined during the current login session, show up in the universe menus.

Filter-Universe Alist

The filter-universe alist is an association list of filters and universes. It tells Zmail

where to look for the referenced message: if the current message satisfies a filter

on the list, the corresponding universe is searched. If other than one undeleted

message is found in the search by Select Referenced Message, Append To Refer-

enced Message, or Move In Place Of Referenced Message, Zmail pops up a menu

of the messages.

As an example, suppose you kept your hardware-related messages in the files

PRINTER-HARDWARE.BABYL and 3640-HARDWARE.BABYL. The union of these

files is the universe "Hardware". See the section "Defining Zmail Message Search

Spaces". On the alist, we pair the filter "Hardware" with the universe "Hardware".

See the section "Creating Zmail Filters". Henceforth, if the current message con-

cerns hardware, Zmail looks for references to the message in the two files/buffers

that make up the universe.

To set the filter-universe alist, use [Filters (M)] or [Universes (M)] in profile

mode. While in profile mode, you should also use the User Options Window to set

your options so that replies you send automatically include either an In-reply-to

field or the yanked-in message itself. That way, people receiving your replies can

use the referenced message commands.

Zmail Profile Options

The profile menu allows you to customize Zmail. Here are the various options in

the order in which they appear in the menu. Many of them are self-explanatory.

Zmail Option for Controlling Queries for Destructive Commands

zwei:*ask-before-executing-dangerous-zmail-commands* Variable

Profile Option: Ask permission before executing time consuming and/or destructive

commands.

Controls whether Zmail asks for confirmation before starting a time consuming or

potentially dangerous operation.

The choices are:

All The default. All dangerous commands should ask for permis-

sion.

Selective Only the dangerous commands listed in the "Commands which

will ask permission" profile option ask for permission.

Page 2479

None No dangerous commands ever ask for permission. This includes

Map Over and means that the setting of "Maximum number of

messages which may be mapped over without asking permis-

sion" is ignored. See the variable zwei:*too-many-msgs-query-

threshold*.

� zwei:*selected-dangerous-zmail-commands* Variable

Profile Option: Commands which will ask permission.

Controls the list of commands considered dangerous when typed from the keyboard.

This option depends on the setting of "Ask permission before executing time con-

suming and/or destructive commands" (zwei:*ask-before-executing-dangerous-

zmail-commands*). If "Ask permission ..." is selective, you can select the com-

mands that you want to have query you before execution from this list. If "Ask

permission ..." is all or none, this option does nothing.

The commands in the list are:

zwei:com-zmail-save-mail-file

c-X c-S

zwei:com-zmail-kill-sequence

c-X K.

zwei:com-zmail-quit

Q from the keyboard.

zwei:com-zmail-save-all-mail-files

S from the keyboard.

zwei:com-zmail-expunge-sequence

Expunge from anywhere.

zwei:com-zmail-map-over

Map Over from anywhere.

zwei:*too-many-msgs-query-threshold* Variable

Profile Option: Maximum number of messages which may be mapped over without

asking permission.

Controls how large a collection of messages you can operate on automatically with-

out confirming the command. The default is 20.

Zmail Options for Window Configuration

zwei:*default-initial-window-configuration* Variable

Page 2480

Profile Option: Default startup window setup

Controls the configuration of your Zmail windows when you invoke Zmail for the

first time. The choices are: Summary only, Both (the default), Message only, and

Filtering Commands.

zwei:*default-summary-template* Variable

Profile Option: Default summary window format

Specifies the format for message summary lines. The possible values are:

Format Headings for Summary Window

Standard No. Lines Date From→To Subject or Text

No Date No. Lines From→To Subject or Text

Reminder No. Date Time Subject or Text�

zwei:*summary-window-fraction* Variable

Profile Option: Fraction of the frame occupied by the summary

Controls the percentage of the screen occupied by the summary window in the de-

fault window configuration. The default is 45 percent, which means that the com-

mand window divides the screen in half, with approximately equal sized summary

and message windows above and below respectively.

zwei:*summary-subject-trim-spaces* Variable

Profile Option: Spaces are trimmed from the left of the subject in summary

zwei:*summary-scroll-fraction* Variable

Profile Option: Amount by which to glitch summary window

zwei:*filter-summary-window-fraction* Variable

Profile Option: Fraction of the frame occupied by the summary in filter mode

Zmail Options for Reading Mail

zwei:*zmail-startup-file-name* Variable

Profile Option: File read in at startup

Your mailbox file.

Page 2481

zwei:*new-mail-file-append-p* Variable

Profile Option: Appending of inboxes to new mail files

Controls the order in which messages appear in a new mail file you create. The

choices are:

Append New mail files append messages.

Prepend New mail files prepend messages.

Sticky (The default.) New mail files inherit whether they append mes-

sages from the current buffer.

Ask You are queried when creating a new mail file as to whether it

appends messages.�

zwei:*complete-get-inbox-in-background* Variable

Profile Option: Read in inbox in the background

� zwei:*autosave-if-inbox-requires-save* Variable

Profile Option: Automatically save the mail file if needed to read new mail.

Controls the whether or not your mail file is written out when you do Get Inbox

on systems that do not support multiple renamed inboxes (UNIX and ITS).

The choices are:

Yes Automatically write out the file when a Get Inbox is done.

No Do not write out the mail file automatically. Get Inbox tells

you that you cannot read new mail until you have saved your

mail buffer.

Ask Tells you that your mail file must be saved before getting new

mail and asks your permission to save it.

zwei:*inhibit-background-mail-checks* Variable

Profile Option: Periodically check for new mail in the background

Controls the checking of your inbox for new mail. If you leave it yes (nil, the de-

fault), Zmail will check periodically and notify you if there is new mail. If you

change it to no (t), this action will be inhibited.

zwei:*always-jump-after-get-new-mail-from-inbox* Variable

Profile Option: Move to first message even when no new mail in inbox

Page 2482

zwei:*always-select-saved-current-msg* Variable

Profile Option: Reselect previous current message even if current message in se-

quence

When set to t (the yes response to the profile question), saves your place in a se-

quence when you select another sequence. For example: you come across an inter-

esting message (say, #200) in your babyl file and do Select Conversation by Refer-

ences. Messages #200, #225, #250, and #300 are selected. You look at the messages

and reselect your babyl file. If (zwei:*always-select-saved-current-msg*) is t, you

are returned to message #200 in your babyl file. If (zwei:*always-select-saved-

current-msg*) is nil (the default), you are returned to message #300 in your babyl

file.

zwei:*run-gmsgs-p* Variable

Profile Option: Run GMSGS before getting new mail

If you keep your mail on an ITS host at M.I.T. and use the GMSGS facility, this

option allows you to use it from Zmail.

zwei:*gmsgs-other-switches* Variable

Profile Option: Other switches to supply to GMSGS server

Allows you to specify arguments to the GMSGS command if you keep your mail on

an ITS host at M.I.T.

Zmail Options for Saving Mail

zwei:*query-before-expunge* Variable

Profile Option: Show headers and ask before expunging deleted messages

Controls whether you are asked for confirmation when messages are being ex-

punged from the mail file. If you leave it no (nil, the default), you are not asked.

If you change it to yes (t), the headers of the messages to be expunged are dis-

played and you are asked to confirm the expunge.

zwei:*inhibit-background-saves* Variable

Profile Option: Automatically save buffer after reading inbox

Controls the automatic saving of your mail buffer. If you leave it yes (nil, the de-

fault), your buffer is automatically written out when your inbox has been read. If

you change it to no (t), the buffer is not saved until you save it explicitly.

To control the query on the S (Save from Keyboard) Command: See the variable

zwei:*ask-before-executing-dangerous-zmail-commands*.

Page 2483

Zmail Options for Sending Mail

zwei:*mail-middle-mode* Variable

Profile Option: Middle button on Mail command

Controls the action of [Mail (M)]. The choices are: Bug (send a bug message, the

default), Mail, Forward, Redistribute, and Local.

� zwei:*default-mail-window-configuration* Variable

Profile Option: Default window configuration when mailing

Allows you to specify how the window is configured in mail mode.. The choices

are:

Both The message is composed in the the lower (message) window,

the command pane and the summary window remain as usual.

Experimental The message is composed in the lower (message) window. The

command pane is divided into three sections providing a vari-

ety of operations.

Send (The default.) The screen is divided into two windows, the

header window and the message window.

Message only The screen consists of one window with the headers at the top.

zwei:*draft-editor-end-key-treatment* Variable

Profile Option: Effect of END key in Headers window.

Controls what END does when you press it in the headers window when you are

composing a message. The choices are:

Send Pressing END sends the message, pressing c-END moves you to

the message window.

Both Send Pressing either END or c-END sends the message.

Add Text (The default) Pressing END moves you to the message window.

Pressing c-END sends the message.

Both Add Text Pressing either END or c-END moves you to the message win-

dow.

Pressing END in the message window always sends the message.

zwei:*header-window-nlines* Variable

Profile Option: Number of lines (or fraction) occupied by headers in mail mode

Controls the number of lines in the header window in mail mode. The default is 3.

Page 2484

� zwei:*prompt-for-missing-headers* Variable

Profile Option: Use the minibuffer to read missing headers

zwei:*require-subjects* Variable

Profile Option: Require subjects on outgoing messages

Controls whether or not you are required to supply a Subject: line on messages

you send. The choices are:

Yes (t, the default.) Require a Subject: line on each message.

No (nil) Do not require a Subject: line. You can add one yourself

if you want one.

On bug reports Require a Subject: line on bug reports but not on other mes-

sages.

Initial but not required

 Supply a Subject: line in the generated header for a message,

but do not require that it be used.

zwei:*send-header-format* Variable

Profile Option: Format of headers sent

The choices are: Short, Long, Include personal (the default), and Use original.

zwei:*local-mail-header-force* Variable

Profile Option: Header force for local messages

Controls the format of headers on messages sent on your local system. The possi-

bilities are none, RFC733 (Arpanet standard), Network, and ITS (M.I.T. Incompati-

ble Time Sharing). The default is ITS.

zwei:*local-mail-include-subject* Variable

Profile Option: Local mail starts out with a subject

zwei:*default-reply-to-list* Variable

Profile Option: Default initial Reply-To list.

Allows you to specify a list of recipients of replies to messages.

zwei:*default-cc-list* Variable

Profile Option: Default initial Cc list

Page 2485

Allows you to specify a list of recipients of copies of messages you send.

� zwei:*default-bcc-list* Variable

Profile Option: Default initial Bcc list

Allows you to specify a list of recipients of "blind carbon copies" of messages you

send.

zwei:*default-fcc-list* Variable

Profile Option: Default initial Fcc list

Allows you to specify a list of files to which copies of your messages are sent.

zwei:*default-mail-buffer-major-mode* Variable

Profile Option: Default major mode when composing messages.

Controls the editing mode in which mail buffers and reply buffers start out. The

choices are:

Text

Fundamental

Lisp�

The default is Text. You can set the mode as you can for a Zmacs buffer. See the

section "Zmacs Major Modes".

zwei:*default-draft-file-name* Variable

Profile Option: Default file for saving draft

Allows you to specify a pathname to use for saving draft messages.

zwei:*mail-file-for-drafts* Variable

Profile Option: Mail file to store drafts in

Zmail Options for Replying to Mail

zwei:*reply-mode* Variable

Profile Option: Default reply to

Controls the automatic generation of to and cc fields in the header of a reply. The

default is to reply to all addressees in the original message. Possible reply modes

are:

Page 2486

All Send the reply to everyone who saw the original message.

Headers are:

To: old From

To: old To

Cc: old Cc�

That is, the To: field of the reply becomes the old From: and

To:, and the Cc: field of the reply becomes the old Cc:.

All-Cc Reply is primarily for original sender, but is of interest to all

who saw the original message. Headers are:

To: old From

Cc: old To

Cc: old Cc�

Cc-All

Reply is primarily for original recipients, but is also of interest

to original sender and CC: recipients. Headers are:

To: old To

Cc: old From

Cc: old Cc�

To Like All, but omit the original CC: recipients. Headers are:

To: old From

To: old To�

To-Cc Like All-Cc, but but omit the original CC: recipients. Headers

are:

To: old From

Cc: old To�

Cc-To Like Cc-All, but but omit the original CC: recipients. Headers

are:

To: old To

Cc: old From�

Sender Reply is just for the sender of the message. Headers are:

To: old From�

zwei:*1r-reply-mode* Variable

Profile Option: Default reply with argument of 1 to

Page 2487

Controls the automatic generation of to and cc fields in the header of a reply

when a reply command is given an argument of 1. The default is to reply only to

the sender of the message. For an explanation of the choices: See the section

"Zmail Reply Command".

zwei:*middle-reply-mode* Variable

Profile Option: Default reply to for middle button

Controls the automatic generation of to and cc fields in the header of a reply you

click middle on Reply. The default is to reply to the sender of the message. For an

explanation of the choices: See the section "Zmail Reply Command".

zwei:*reply-window-mode* Variable

Profile Option: Default reply window setup

Two windows (The default.) The message you are replying to is displayed in

the upper window. You compose your reply in the lower win-

dow.

One window The message you are replying to is not displayed.

Yank The message you are replying to is included in your reply.

zwei:*middle-reply-window-mode* Variable

Profile Option: Default reply window setup for middle button

Controls the configuration of the windows in reply mode when you click middle on

Reply. The default is two windows.

zwei:*reply-header-format* Variable

Profile Option: Format of headers inserted for reply

The choices are: Short (the default), Long, Include personal, and Use original.

zwei:*generate-in-reply-to-field* Variable

Profile Option: Automatically generate In-reply-to fields

Controls whether the headers on a reply will contain an In-reply-to: field, refer-

encing the original message. If you leave it yes (t, the default) an In-reply-to:

field is generated. If you change it to no (nil) this field is not generated.

zwei:*dont-reply-to* Variable

Profile Option: People not to reply to

Page 2488

Allows you to specify a list of addresses to avoid sending a reply to automatically.

For example, if a message were broadcast to a large mailing list asking a question,

you probably want to reply only to the sender, not the entire mailing list.

Zmail Options for Including Messages in a Reply

zwei:*one-window-after-yank* Variable

Profile Option: Just show headers and text after yanking in message

Controls the window configuration in a reply when the text of the message being

replied to is included. If you leave this yes (t, the default), only one window is

used after the message being replied to is yanked into the reply. If you change

this to no (nil), both windows are kept, even though the text of the message being

replied to is included in the reply window.

zwei:*prune-headers-after-yanking* Variable

Profile Option: Prune headers of yanked messages

Controls how much of the header information is kept on messages included in

replies. If you leave it yes (t, the default), only the date and from lines are kept. If

you change it to no (nil), the entire header of the included message is kept.

Zmail Options for Forwarding Messages

zwei:*forwarded-message-begin* Variable

Profile Option: Format line before forwarded messages

Allows you to specify a string to use to introduce a forwarded message.

zwei:*forwarded-message-separator* Variable

Profile Option: Format line between forwarded messages

Allows you to specify a string to use in between two forwarded messages.

zwei:*forwarded-message-end* Variable

Profile Option: Format line after forwarded messages

Allows you to specify a string to use after a message being forwarded.

zwei:*forwarded-add-subject* Variable

Profile Option: Forwarded messages are supplied with a subject

Page 2489

zwei:*reformat-forwarded-msgs* Variable

Profile Option: Reformat headers of forwarded messages.

Controls what happens to the headers of messages you forward. The choices are:

Yes The default. The headers are pruned and reformatted.

No The headers are left as in the original message. If you are for-

warding a message to show someone something about its head-

ers, you should set this option to No before forwarding the

message.

zwei:*indent-forwarded-msgs* Variable

Profile Option: Indent text of forwarded messages.

Controls whether a message that you forward is indented 4 spaces from the left

margin, like messages in replies.

The choices are:

Yes The forwarded text is indented 4 spaces from the left margin.

No The default. The text is flush with the left margin, as in the

original.�

Zmail Options for Deleting Messages and Moving Around

zwei:*delete-middle-mode* Variable

Profile Option: Direction to move for click middle on delete

Controls which message to select as current when you delete the current message

using [Delete (M)]. The choices are: Backward (the default), Forward, No,

Forward/Remove, and Backward/Remove.

zwei:*next-after-delete* Variable

Profile Option: Direction to move after delete

Controls which message to select as current when you delete the current message.

The choices are: Backward, Forward (the default), No, Forward/Remove, and

Backward/Remove.

zwei:*next-middle-mode* Variable

Profile Option: Middle button on Next command

Controls the action of [Next (M)]. The choices are:

Page 2490

Next undeleted Selects the next undeleted message.

Next Selects the next message in the sequence, whether or not it

has been marked for deletion.

Next unseen Selects the next unseen message.

Next recent Selects the next message in the recent sequence.

Last undeleted (The default.) Selects the last undeleted message in the se-

quence.

Last Selects the last message in the buffer, whether or not it has

been marked for deletion.

Last unseen Selects the last unseen message in the sequence.

Last recent Selects the last message in the recent sequence.

zwei:*previous-middle-mode* Variable

Profile Option: Middle button on Previous command

Controls the action of [Previous (M)]. The choices are:

Previous undeleted Select the previous undeleted message.

Previous Selects the previous message, whether or not it is marked for

deletion.

Previous unseen Selects the previous unseen message in the sequence.

Previous recent Selects the previous message in the recent sequence.

First undeleted (The default.) Selects the first undeleted message in the se-

quence.

First Selects the first message in the sequence, whether or not it

has been marked for deletion.

First unseen Select the first unseen message in the sequence.

First recent Select the first message in the recent sequence.

zwei:*map-middle-mode* Variable

Profile Option: Middle button on Map command

Controls the action of [Map (M)].

Delete Deletes all messages.

Undelete Undeletes all messages.

Type Types out (displays) all messages in the typeout window.

Find string Shows lines within messages containing the given string. You

can select the message containing a line by clicking on the line

Page 2491

of text. This provides a handy way to search through a collec-

tion for a message you only vaguely remember.

Keywords Puts specified keywords on all messages. Clicking (L), (M), and

(R) on Keywords work just as for [Keywords] in the Zmail

menu. See the section "[Keywords] Zmail Menu Item".

Unkeywords Removes specified keywords from all messages.

Move Moves all messages to the specified file.

Hardcopy Hardcopies all messages.

Forward Forwards all messages (concatenated into one message). See

the section "[Mail] Zmail Menu Item".

Redistribute Redistributes all messages, individually but to the same re-

cipient(s).

Reply Replies to all messages (concatenated into one message).

Concatenate Appends all messages to the first message.

Select conversation Selects messages to which a message in the sequence refers, or

that refer to a message in the sequence, recursively; this is

implemented by zwei:com-zmail-select-all-conversations-by-

references.

Undefined (The default.)

zwei:*summary-mouse-middle-mode* Variable

Profile Options: Middle button on summary window

Controls the action when you click middle on a message header in the summary

window. The default is Delete/Undelete which means if the message is not deleted,

mark it for deletion. If it is marked for deletion, unmark it.

Zmail Option for Ordering Keywords

zwei:*keyword-alist-sort-predicate* Variable

Profile Option: Predicate for sorting keywords in keyword menu

Zmail Option for the Format of Mail Files

zwei:*text-mail-file-separator* Variable

Profile Option: Line between messages in text mail file

Page 2492

Allows you to specify a format control string to be used to separate messages

when you hardcopy a mail file or sequence and have not specified that each mes-

sage be on a separate page.

For example, to get some white space and a row of dashes, you might use some-

thing like this:

(format t "~2&--~%")

See the section "Formatted Output".

Zmail Options for Moving Messages and Creating Collections

zwei:*default-move-mail-file-name* Variable

Profile Option: Default file for moving to a new file

Allows you to specify the pathname of the file to which you usually want to move

messages.

zwei:*delete-after-move-to-buffer* Variable

Profile Option: Delete message when moved into buffer

Controls the automatic deletion of a message from one buffer when it is moved to

another buffer. If you leave it yes (t, the default) the message is deleted from its

original buffer when it is moved to a new one. If you change it to no (nil) the

message appears in both buffers.

zwei:*default-mail-buffer-generation-retention-count* Variable

Profile Option: Generation retention count set on newly created mail files

Controls the automatic deletion of copies of a new mail file. If it is left blank (nil)

no deletion of earlier copies is done. Otherwise, the specified number are kept and

others deleted. The UNIX file system does not handle this variable, so if your mail

is stored on a UNIX system, leave this variable nil.

zwei:*query-before-selecting-empty-sequence* Variable

Profile Option: Confirmation is required to select an empty sequence

zwei:*preserve-msg-references-across-expunge* Variable

Profile Option: Add header fields to other messages when expunging message

Controls whether the backward and forward references among messages in a con-

versation should be preserved when a message is deleted and expunged from the

middle of the conversation. If you leave it no (nil, the default), the references will

not be preserved. If you change it to yes (t), appropriate header fields will be

Page 2493

added to the messages referred to by the deleted message or referring to the delet-

ed message so that the conversation continues to hold together.

Zmail Options for Calendar Mode

zwei:*configure-middle-mode* Variable

Profile Option: Middle button on Configure

Controls the action of clicking middle on Configure. The choices are: Summary on-

ly, Both (the default), Message only, Experimental, Calendar, Month, Four weeks,

Week, Year.

zwei:*calendar-mode-week-starts-on-monday* Variable

Profile Option: The week starts on Monday rather than Sunday in calendar mode

zwei:*delete-expired-msgs* Variable

Profile Option: Automatically delete expired messages

Controls whether or not you are asked before expired reminders in calendar mode

are deleted. The default is per file, meaning that you can set it differently for

each file.

Some of the menu items in the profile display also write information into your

profile. These are:

[Mail Files] Profile Menu Item

[Mail Files] Other Mail Files. Allows you to add files to the list of mail

files to be remembered in your profile.

[Mail Files (M)] Filter associations. Selects a mail file whose filter associations

to edit.

[Mail Files (R)] Pops up a menu of Other Mail Files and Filter associations.�

File Options (Menu)

Select one of your mail files whose file options to edit.

You can set up lists of keywords and associate them with specific mail files or fil-

ters by clicking on [Keywords] in the Profile menu.

[Keywords] Edits keyword list for all your mail files.

[Keywords (M)] Selects a keyword whose filter associations to edit.

[Keywords (R)] Pops up a menu of Mail Files Keywords and Filter associa-

tions.

Page 2494

Header Formats

There are three header formats known to Zmail: RFC733, Network, and ITS. This

section describes the various header fields in each format. You can insert various

header fields into the Headers window, which contains the headers for the mes-

sage being written. See the section "Altering Zmail Header Fields".

A message with bad header format gets the (badheader) property.

Date: The day, date, and time the message was sent. Generated auto-

matically when a message is sent.�

From: The user name and host name of the sender of the message.

Generated automatically. If you choose, you can explicitly pro-

vide this field, in which case a Sender: field is automatically

generated with the user name and host name of the sender.

This is useful if you send a message from a machine logged in

under someone else’s name; give a From: field with your user

name in it.�

To: The user names and possibly host names of the primary recipi-

ents of the message. Depending on the mail server, one can al-

so include names of mailing lists (distribution lists) and file

names in the To: lists. If a mailing list name is included, the

message is sent to everyone on the mailing list; if a filename

is included, the message is sent to the file.�

CC: A list of secondary recipients of the message, in the same for-

mat as the To: field.�

BCC: For "blind carbon copies". The field contains recipient names.

The recipients in a BCC: field do not appear in the copy of the

message that is delivered to the ordinary recipients; they do

appear in the copy that is delivered to BCC: recipients. �

FCC: For filing a copy of a message that is being sent. The recipi-

ents see the field in the message. For example,

FCC: F:>JHW>MAIL>OUTGOING.BABYL�

The file has to exist already; FCC: cannot result in a file being

created.�

BFCC: For filing a "blind" copy of a message that is being sent. The

recipients of the message do not see the BFCC: field. For exam-

ple,

BFCC: F:>JHW>MAIL>OUTGOING.BABYL�

The file has to exist already; BFCC: cannot result in a file be-

ing created.�

Page 2495

File-References: One or more pathnames, separated by commas. This is useful

when you want to direct someone to a file. The pathname be-

comes the default for the Compile File, Load File, Edit File,

Show File, Format File and Hardcopy File commands.

Included messages: A collection of all message ID fields; added by Zmail when

user concatenates messages.�

Included references:

A collection of all "in-reply-to" fields; added by Zmail when

user concatenates messages.�

Forward-References:

Field added by Zmail when the variable zwei:*preserve-msg-

references-across-expunge* is set, so that conversations re-

main intact even when some messages are expunged. See also

Backward-References:.�

Backward-References:

Field added by Zmail when the variable zwei:*preserve-msg-

references-across-expunge* is set, so that conversations re-

main intact even when some messages are expunged. See also

Forward-References:.�

Encrypted: For flagging the message as containing encrypted text. Zmail

generates this header field itself when it is sending a message.

The value of the field is the name of the kind of encryption

that was used.�

Subject: A line of text giving the subject of the message.�

In-reply-to: An identification of the message being replied to. The message

is typically identified by giving the Message-ID:, or, in its ab-

sence, the contents of its Date: and From:fields, but different

mail systems form this field in different ways.�

Sender: The user name and host name under which the message was

sent, when different from the From: field; automatically insert-

ed if a From: field is given (see above).�

Redistributed-to: The recipients of the redistributed message; a list in the same

format as the To: field. Resent-to: is a synonym.�

Redistributed-by: The name of the user who redistributed the message. Resent-

by: is a synonym.�

Redistributed-date:

The date the message was redistributed. Resent-date: is a

synonym.

Page 2496

Expiration-date: A date, intended as the date on which some mail systems will

automatically delete the message.�

Reply-to: An address, in the same format as the To: field. Intended as

the address to which to send replies to this message, when

that is different from the From: or Sender:.�

Message-ID: A unique character string that distinguishes this message from

all others.�

� Supersedes: If you retransmit a message, Zmail gives the message a new

message-id and offers to add a Supersedes: field referring to

the original message. You can control this behavior in your

Zmail Profile by using the zwei:*add-supersedes-and-

comments-when-retransmitting* Zmail Profile Option.

� Comments: A multi-line field whose value is read from the minibuffer. The

profile option zwei:*add-supersedes-and-comments-when-

retransmitting* controls whether or not Zmail asks for permis-

sion to read the Comments: in the minibuffer. If zwei:*add-

supersedes-and-comments-when-retransmitting* is Yes, Zmail

goes directly to reading Comments: in the minibuffer after you

supersede a message. See the section "Zmail Header Formats".

System Dependencies

Disk File Names

The files discussed in this document (mail files, default mail files, inboxes, re-

named inboxes, and source and compiled init files) have distinctive file names that

vary depending upon the host system you use. The following table gives the

names, assuming your user id (login name) is user-id. Except as indicated, all files

are in your standard login directory (homedir). ("LMFS" means Genera’s own file

system.) Names in the column Other mail files are conventional but not required.

System Default mail file Other mail files

LMFS babyl.text *.babyl or *.xmail

UNIX mbox *

or user-id.bb�

TENEX/TOPS-20 user-id.BABYL *.BABYL or *.XMAIL�

ITS user-id BABYL * BABYL or * XMAIL

or user-id RMAIL

�

Page 2497

System Inbox Renamed inbox

LMFS mail.text mail.-zmail-text

UNIX /usr/spool/mail/user-id /usr/spool/mail/user-id.zmail

or ~/.mail ~/.mail/.zmail�

TENEX MESSAGE.TXT;1 MESSAGE.-ZMAIL-TXT�

TOPS-20 MAIL.TXT.1 MAIL.-ZMAIL-TXT�

ITS user-id MAIL user-id _ZMAIL

�

System Source files Compiled file

LMFS zmail-init.lisp zmail-init.bin

UNIX 4.1 zmail-init.l zmail-init.bn

UNIX 4.2 zmail-init.lisp zmail-init.bin�

TENEX/TOPS-20 zmail-init.lisp zmail-init.bin�

ITS ZMAIL > user-id ZMAIL�

If your init file is not compiled, or if you delete your compiled file, rename the

source file to the name in the column Compiled file.

Mail File Formats

Zmail understands five mail file formats: BABYL, RMAIL, KBIN, TENEX, and

UNIX. In most cases, the format is transparent to the user. However, the follow-

ing information is useful if you transfer files between systems.

Zmail recognizes the format of a mail file from its contents, never from its file

name, but with the following limitation: certain formats are only recognized on

certain systems:

Mail file format System(s)

BABYL All

KBIN All�

UNIX UNIX�

RMAIL LMFS, ITS, UNIX�

TENEX TENEX/TOPS-20�

VAX/VMS Not supported at present�

To select a mail file whose format does not satisfy these expectations, use Select

Arbitrary Format Mail File, which allows you to specify the format explicitly. See

the section "Select Arbitrary Format Mail File (m-X) Zmail Command". (Inbox files

have a different format on each system, and can only be read on the type of sys-

tem on which they were written.)

Page 2498

For UNIX, the default file format is RMAIL, so the mail file can be read with ei-

ther Zmail or GNU Emacs. If you want your default mail file to be a BABYL file

(which cannot be processed using the UNIX mail reading program, but which is

more useful when using Zmail), the file user-id.bb must be created in your home

directory and the Mail option in that file set to:

Mail:homedir/mbox/usr/spool/mail/user-id

Binary Format for Storing Mail Files

KBIN format stores messages as binary data rather than text. In addition to the

actual message text, KBIN files contain the parsed representation of the message.

As a result, KBIN files are usually between 30% and 50% larger than BABYL or

RMAIL files. This means that it normally takes between 30% and 50% longer to

save a KBIN file.

However, once a KBIN file is read into your machine, all the information needed

by Zmail to process its contents is already present. Zmail does not have to reparse

the messages which is where most of the time is actually spent while loading mail

files. Thus, KBIN files show a marked improvement in loading times.

The binary format for KBIN files sometimes changes when new versions of Zmail

are compiled. When an old format KBIN file is read into a new version of Zmail, a

message warning you that the file was written with an older version of Zmail is

printed. The file’s format is updated automatically when you write it out again.

Files written with a particular version of Zmail cannot be read in older versions.

Converting Existing Mail Files to KBIN Format

Existing mail files can be converted to use KBIN format by the following proce-

dure:

Enter Zmail and click on [Profile] in the command menu.

1. Click on [File Options] in the profile frame and select a mail file that you

want to convert to KBIN format.

2. If the mail file’s pathname extension reflects its format, Zmail automatically

renames it to KBIN. For example, if your mail file is named KJones.babyl,

Zmail renames it to KJones.kbin. No attempt is made to automatically rename

files named babyl.text. If your mail file is named babyl.text, you should re-

name it yourself to mail.kbin. Do this by clicking on the pathname.

3. Click on the KBIN format.

4. Click on [Do It]. If you have renamed the mail file, Zmail automatically up-

dates any references to it in your profile and reminds you to click on [Save]

to permanently record these changes in your profile. Zmail then announces

that it is converting the mail file’s format and asks you to stand by. If your

mail file is large, the conversion might take some time.�

Page 2499

Repeat these steps for each mail file that you wish to convert to KBIN format.

Then, to make the conversion permanent:

1. Click on [Save] in the Profile Menu. Answer yes to the queries to insert

changes and, optionally, recompile your profile.

2. Click on [Exit] to leave the profile editor.

3. Click on [Save] in the Zmail menu or press S to actually write out the con-

verted mail files.�

Support for Internet domain addressing

Zmail supports the Internet RFC822 domain-addressing formats, for the purpose of

parsing and replying to messages with domain-format addresses in their headers. If

the machine name is registered in the ARPA network host table, that name is

used in the address. If the machine name is not registered, the network address is

used, in the form [address], where address is the four integer numbers which spec-

ify the host in Internet addressing.

Features Not Supported by Zmail

Some mailers and file formats do not support all of the features described in this

document.

UNIX and RMAIL format do not support keywords, properties, or file attributes.

TENEX format does not support keywords or file attributes. Mail buffers for files

in these formats can use these features, but the information is not saved in the

disk copy.

VAX/VMS mail is presently unsupported; that is, VMS format inboxes and mail

files cannot be read or written. However, mail files in any of the four standard

formats can be stored on VMS.

Dictionary of Zmail Commands

dbg:*character-style-for-bug-mail-prologue* Variable

Creates the bug-report banner inserted into the text of bug messages, enabling you

to choose the font. The default is NIL.NIL.TINY, specifying a small font for the

bug-report banner.

To display a bug-report banner in a small font you can type the following:

 (setq dbg:*character-style-for-bug-mail-prologue*

 (si:character-style-for-device-font ’fonts:quantum si:*b&w-screen*))

To display a bug-report banner in a large font you can type the following:

Page 2500

 (setq dbg:*character-style-for-bug-mail-prologue*

 (si:parse-character-style ’(nil nil :huge)))

You can also type the following to specify a particular font:

 (setq dbg:*character-style-for-bug-mail-prologue* ’(nil nil :huge))

. (Kbd) Zmail Command

. (period) Scrolls back to the beginning of the current message.�

c-X 0 (Kbd) Zmail Command

c-X 0 (Kbd) Zero window mode. The Message window on the top-level dis-

play is used for the message being composed. When the c-X 0

command is issued, the screen is restored to its format at top

level, except the Message window displays the headers and text

of the message being written. (See Figure !.)�

Figure 113. Mail Mode Display (Zero-Window Mode)�

Page 2501

c-X 1 (Kbd) Zmail Command

c-X 1 (Kbd) One-window mode. The mail mode display is configured with

two windows, Headers and Mail, used for the headers and text

of the message being written.�

c-X 2 (Kbd) Zmail Command

c-X 2 (Kbd) Two-window mode. The mail mode display is configured with

three windows, Message, Headers, and Mail, which display the

current message (which is the message being replied to, if us-

ing the Reply command), and the headers and text of the mes-

sage being written.�

Add Cc Field Zmail Command

[Add Cc Field] (Editor Menu)

n c-X C (Kbd) Adds another CC: recipient. Positions cursor at the end of the

CC: field, set up to add another name. (Creates a CC: field if

there is not one already.) With an argument n = 0, positions

cursor at beginning of CC: field. With a negative argument,

deletes the CC: field.�

Add Fcc Field Zmail command

[Add Fcc Field] (Editor Menu)

n Add Fcc Field (m-X)

Adds another FCC: recipient. Positions cursor at the end of the

FCC: field, set up to add another name. (Creates an FCC: field

if there is not one already.) With an argument n = 0, positions

cursor at beginning of FCC: field. With a negative argument,

deletes the FCC: field.�

Add From Field Zmail command

[Add From Field] (Editor Menu)

n Add From Field (m-X)

Creates or replaces From: field. Creates a From: field and posi-

tions cursor for entry of user name. If a From: field exists al-

ready, it is deleted and replaced. With an argument n = 0, po-

Page 2502

sitions cursor at beginning of From: field. With a negative ar-

gument, deletes the From: field.

Add File-References Zmail Command

[Add File Reference Field] (Editor Menu)

Add File References (m-X)

Creates a File-References: field and positions the cursor for

entry of a pathname or pathnames separated by commas. Path-

names in the file-references field can be operated on directly

from Zmail by the Zmail file manipulation commands:

Compile File (m-X)

Edit File (m-X)

Format File (m-X)

Hardcopy File (m-X)

Load File (m-X)

Show File (m-X)�

Add In-reply-to Field Zmail command

[Add In Reply To Field] (Editor Menu)

Add In Reply To Field (m-X)

Creates In-reply-to: field. Creates an In-reply-to: field speci-

fying the message being replied to. This command can be used

only if mail mode was entered using one of the Reply com-

mands. You can control the generation of [In-reply-to:] fields in

your Profile. See the variable zwei:*generate-in-reply-to-field*.

Add Message References Zmail Command

Add Message References (m-X)

Add references to the current message. Prompts for a refer-

ence or references. Terminate by pressing END. Normally, typ-

ing a message reference is too cumbersome, however, so you

can click Left on a message in the summary area to use its

Message-ID immediately, or you can click Middle on a message

in the summary area to have its Message-ID inserted into the

minibuffer. Using Mouse Middle is especially useful if you

mean to add several message references at once because you

do not have to reissue this command several times  you can

just accumulate all of the references in the minibuffer at once

and then finally press END.�

Page 2503

Add More Text Zmail Command

Add More Text (Editor Menu)

c-X A (Kbd) Select the Mail window.�

Add References Field Zmail Command

Add References Field (Editor Menu)

Add References (m-X)

Adds the message-id of each message in the current sequence

to the message being composed.�

Add Subject Field Zmail command

[Add Subject Field] (Editor Menu)

n c-X S (Kbd) Creates or replaces Subject: field. Creates a Subject: field and

positions cursor for entry of text. If a Subject: field exists al-

ready, delete and replace it. With an argument n = 0, positions

cursor at beginning of Subject: field. With a negative argu-

ment, deletes the Subject: field.�

Add To Field Zmail command

[Add To Field] (Editor Menu)

n c-X T (Kbd) Adds another To: recipient. Positions cursor at the end of the

To: field, set up to add another name. (Creates a To: field if

there is not one already.) With an argument n = 0, positions

cursor at beginning of To: field. With a negative argument,

deletes the To: field.�

Append Conversation By References (m-X) Zmail Command

Append Conversation by References (m-X)

Append messages to which this message refers, or which refer

to this message, recursively.�

Append To Referenced Message (m-X) Zmail Command

Page 2504

Append To Referenced Message (m-X)

Appends this message to the referenced message.�

Apropos (m-X) Zmail Command

Apropos (m-X) Prompts you for a character string and returns a list of the

m-X commands containing that string in their name or the first

line of their help documentation. You can use Apropos (m-X) in

mail or edit mode also.�

Bug (m-X) Zmail Command

Bug (m-X) Send a bug report. Prompts for the name of a bug list to send

to, then puts you into mail mode with the To: field set to that

name. The mail window is selected and the information from

your herald identifing what version of the software you are us-

ing is inserted at the beginning of the message. You can now

type in your bug report and send the message.

You can control the character style of the herald information

by setting the value of dbg:*character-style-for-bug-mail-

prologue*. See the variable dbg:*character-style-for-bug-mail-

prologue*.

C (Kbd) Zmail Command

C (Kbd) Continue the most recently aborted message.�

� Change Mail File Options (m-X) Zmail Command

Brings up a menu of the options for the current Zmail mail file. This is the same

menu that you get when you click on [File Options] in the Zmail profile. See the

section "Zmail Profile Options".

Change Subject Pronouns Zmail Command

[Change Subject Pronouns] (Editor Menu)

Change Subject Pronouns(m-X)

Page 2505

Fix up the pronouns in the Subject: field of a reply. "I" is replaced by "you," "you"

by "I," "mine" by "yours," "yours" by "mine."�

Check for New Mail (m-X) Zmail Command

Check for New Mail (m-X)

Checks in the foreground for new mail in the inbox(es) associ-

ated with the default buffer. This is similar to what the back-

ground process does periodically. In addition to printing a

message, this command prevents the background process from

telling you about the same new mail. Thus the command can

also be used as a way of "noticing" new mail that you might

have read in the editor or with Show Mail (m-X). The next "you

have new mail" message from the background refers to really

new mail.�

Click Middle on Summary Line Zmail Command

Click Middle on Summary Line (Summary Window)

Toggle the deleted property of the message whose summary

line was clicked on. That is, delete a nondeleted message, un-

delete a deleted message. Do not select the message as current

message. If the current message is being deleted, move to the

next undeleted message. See the section "Zmail Message Dele-

tion Commands".

Compile File (m-X) Zmail Command

Compile File (m-X) Prompts for a pathname and compiles the file specified by the

pathname. The default is the first pathname specified in the

File-References: header field.�

[Continue] Zmail Menu Item

[Continue] Continue the most recently edited message, whether sent or

aborted. See the section "Continuing Completed or Aborted

Zmail Messages".

[Continue (M)] Continue the most recently aborted message.

[Continue (R)] Pop up a menu offering Sent Drafts, Unsent Drafts, or All

Drafts. Clicking on one of these offers a list of the messages

you have composed in your current Zmail session. The mes-

Page 2506

sages are identified by their headers; see Figure !.) Click on a

message to continue it. Two other items on the menu are [Re-

store draft file] and [Restore draft message]. See the section

"Saving and Restoring Zmail Message Drafts".�

� [Restore Draft Message]

Enters mail mode with the Headers and Mail windows restored

from the current message, if it is a draft message. If it is not,

flashes the screen and ignores the Continue command.

[Restore Draft Message (R)]

Waits for you to click on a draft message in the summary win-

dow or type a message number in the mini-buffer, then enters

mail mode with the Headers and Mail windows restored from

that message. (If the selected message is not a draft message,

Zmail flashes the screen and ignores the Continue command.)�

[Restore Draft File]

Prompts for a filename of a saved draft and enters mail mode

with the Headers and Message windows restored from the file.

Figure 114. [Continue (R)]�

D (Kbd) Zmail Command

n D (Kbd) Deletes message n. If n is negative or if it is greater than the

number of messages in file, Zmail complains "Argument out of

range". If n is omitted, D deletes the current message.

c-X commands available in Zmail

Page 2507

Zmail now has the appropriate presentation types to allow it to prompt for mes-

sage sequences in a fashion compatible with prompting for buffer names in Zmacs.

That is, you can just type the filename instead of the complete pathname. In addi-

tion, in most cases, when you are asked for a mail file buffer, you can also enter

the name of any mail file mentioned in your Zmail profile that is not loaded yet.

Try pressing HELP when Zmail prompts you for sequences to see what is accept-

able.

Thanks to the above change, Zmail now has c-X commands:

c-X B or [Select] (zwei:com-zmail-select-sequence)

Selects a message sequence. If you invoke it from the key-

board, it prompts for a sequence name in the minibuffer. Click-

ing Left selects the previously selected sequence. Clicking Mid-

dle creates a new collection by filtering. Clicking Right dis-

plays a menu of existing sequences, unloaded mail files, and

special actions such as Read/Create file, Mark Survey, and so

on.

c-X K (zwei:com-zmail-kill-sequence)

Kills a message sequence. It prompts for a sequence name in

the minibuffer. If you ask to kill the current sequence, this

command asks for the name of another sequence select as the

current sequence. If you ask to kill a mail file buffer, you are

asked either to save it first or to confirm that you picked the

proper sequence.

c-X c-B (zwei:com-zmail-list-sequences)

Lists the current message sequences.

c-X c-F (zwei:com-zmail-edit-mail-file)

Edits a mail file. It prompts for the pathname of a mail file in

the minibuffer and reads that mail file into a Zmail mail file

buffer. If the mail file does not exist, an empty mail file buffer

is created which, when saved, creates the mail file with the re-

quested pathname.

c-X c-R (zwei:com-zmail-examine-mail-file)

Examines an existing mail file. It prompts for the pathname of

a mail file in the minibuffer, reads that mail file into a Zmail

mail file buffer, and then disables saving of the buffer. The

mail file must already exist.

c-X c-S (zwei:com-zmail-save-mail-file)

Saves the current mail file. Without a numeric argument, it

expunges deleted messages from the current mail file buffer

and writes the updated buffer to the mail file. With a numeric

argument, it starts saving the current mail file in a back-

ground process. Deleted messages are not expunged. The Abort

Background Save command can be used to stop the background

save.

Page 2508

c-X c-sh-F (zwei:com-zmail-edit-file)

Edits a file. Prompts in the mini-buffer for a pathname (the

default is the first pathname if the File References Field, if

any) and selects Zmacs to edit the file.�

In addition to the above, c-m-L now invokes zwei:com-zmail-select-previous-

sequence. When you give c-m-L a zero numeric argument, it prompts for a se-

quence name in the minibuffer after listing the possible sequences. The entries in

the listing are, of course, mouse sensitive.

c-D (Kbd) Zmail Command

c-D (Kbd) Delete current message and move to previous undeleted mes-

sage, like clicking [Delete (M)].�

Decode ECO (m-X) Zmail Command

Decode ECO (m-X)�

Turns an ascii encoded ECO message back into a temporary file and then offers to

load that file. You get an error if the file is not a distribution file.

Decrypt Text (m-X) Zmail Command

Decrypt Message (m-X)

Prompts for the encryption key and then displays an encrypted

message as plain text. By this operation, you are only viewing

the plain text form; use a numeric argument to store the plain

text version in the mail file.

Delete Duplicate Messages (m-X) Zmail Command

Delete Duplicate Messages (m-X)

Delete duplicated messages from the mail file, retaining only

the first copy of a duplicated message. Two messages are du-

plicates if and only if they have the same From:, Date:, To: (if

any), Cc: (if any), and Subject: (if any) fields. (The other head-

ers and the text of the message are not checked.) Duplicate

messages can arise from merging two mail files, for example.

See the section "Zmail Message Deletion Commands".

You can automatically delete duplicate messages from your new

mail by adding the following form to your Zmail init file after

the automatically generated forms:

(login-setq *insert-inbox-hooks* ’(:delete-duplicates-new))�

Page 2509

Then each time your inbox is read, those new messages are

searched for duplicates and the duplicates eliminated. Note:

since this only searches the new messages, if a message al-

ready exists in your mail file and a new copy arrives, this du-

plication will not be detected.�

[Delete] Zmail Menu Item

[Delete] Delete current message and move to next undeleted message.

(Do not move if this is last message.) You can select the direc-

tion for the move after deleting the current message in your

profile. See the variable zwei:*next-after-delete*.

[Delete (M)] Delete current message and move to previous undeleted mes-

sage. (Do not move if this is first message.) You can select the

direction for the move after delete in your profile. See the

variable zwei:*delete-middle-mode*.

[Delete (R)] Pop up a menu of:

Backward Delete current message and move to previ-

ous undeleted message.

Forward Delete current message and move to next

undeleted message.

Remove Remove message from this temporary mail

file.

No Delete current message and do not move.�

Delete Conversation By References (m-X) Zmail Command

Delete Conversation By References (m-X)

Deletes all the messages in a conversation.�

Delete Referenced Messages (m-X) Zmail Command

Delete Referenced Messages (m-X)

Deletes the referenced messages.

Describe Command (m-X) Zmail Command

Page 2510

Describe Command (m-X)

Prompts for the name of a m-X command and displays its help documentation.

Disable Saves for Buffer (m-X) Zmail Command

Disables saves for a buffer.

E (Kbd) Zmail Menu Item

E (Kbd) Expunges the current sequence, that is removes all the mes-

sages marked for deletion.�

Edit File (m-X) Zmail Command

Edit File (m-X) Prompts for a pathname and creates an editor buffer with the

specified file in it for editing. The default is the first path-

name specified in the File-References: header field.�

This command uses the current message’s first file reference as the default when

asking for the file to be loaded into Zmail.

Encrypt Text (m-X) Zmail Command

Encrypt Text (m-X) Encrypts a message. Use it after you have completed the mes-

sage draft but before you send it. Zmail prompts for an encryp-

tion key that the recipient must provide in order to decrypt the

message. This key can consist of plain alphanumeric text only.

Punctuation or other funny characters are ignored. Upper and

Lower case are equivalent. It converts the draft to a form that

you cannot read. Decrypt Text is also available for message

drafts. Both of these commands appear on the draft editor

menu.�

Enable Saves for Buffer (m-X) Zmail Command

Enables saves for a buffer.

END (Kbd) Zmail Command

END (Kbd) Add more text or send the message. If typed while in the Mes-

sage or Headers window, selects the Mail window to allow you

to add more text. If the Mail window is already selected, press-

ing END sends the message. See the section "Leaving Mail

Page 2511

Mode in Zmail". (If typed while in the Message window in zero

window mode, sends the message.)�

F (Kbd) Command

F (Kbd) Forwards the current message (using

zwei:com-zmail-forward). See the description of the Forward

option of [Mail (R)].�

c-F (Kbd) Zmail Command

c-F (Kbd) Prompts for a string and selects the next message containing

that string (using zwei:com-zmail-find-string).�

Find String (m-X) Zmail Command

Find String (m-X) Prompts for a string in the minibuffer and finds the next mes-

sage containing that string (in text or header) and selects it. If

it cannot find a message containing the given string, it flashes

the screen.�

Format File Zmail Command

Format File (m-X)�

Formats the file associated with the pathname you specify. c-U m-X Format File

formats the file and sends it to a printer. The default pathname is the first path-

name specified in the File-References: header field. If no File-References: field

exists, the default is the current mail file.

Forward (m-X) Command

Forward (m-X) Send a message with current message as its text. Puts you in

mail mode with headers window selected. Cursor is prompting

you to specify the To: field. The Subject: field is initialized as

"[PJF: Forwarded]" (if the original message was from PJF). The

mail window contains the headers and text of the current mes-

sage, followed by a (nonblinking) cursor. Supply the To: field,

edit or add headers and text as you wish, and send the mes-

sage. Forwarding differs from Redistributing or Redirecting in

that a new message (with its own unique message id) is creat-

ed.

Page 2512

(Note: The forwarded message (that is, the current message) is

given the (forwarded) property.)�

G (Kbd) Zmail Command

G (Kbd) Reads in your new mail. If your old mail is currently read into

Zmail, your new messages are appended or prepended to that

buffer. If you are just starting a Zmail session, your new mail

is read in and then your old mail is appended or prepended to

it. Appending or prepending are controlled by your Zmail pro-

file. See the variable zwei:*new-mail-file-append-p*.

If your current buffer is not your primary mail file and the

buffer has no associated inbox, Zmail prompts for an inbox to

read for the current buffer. Inboxes can be associated with

mail files other than your primary file by using the [File Op-

tions] Profile Menu item.�

[Get Inbox] Zmail Menu Item

[Get Inbox] Reads in your new mail. If your old mail is currently read into

Zmail, your new messages are appended or prepended to that

buffer. If you are just starting a Zmail session, your new mail

is read in and then your old mail is appended or prepended to

it. Appending or prepending are controlled by your Zmail pro-

file. See the variable zwei:*new-mail-file-append-p*. You can

have Zmail delete duplicate messages from your new mail

when your inbox is read. See the section "Delete Duplicate

Messages (m-X) Zmail Command".

If your current buffer is not your primary mail file and the

buffer has no associated inbox, Zmail prompts for an inbox to

read for the current buffer. Inboxes can be associated with

mail files other than your primary file by using the [File Op-

tions] Profile Menu item.

[Get Inbox (M)] Prompts for an inbox name to read into the current buffer.

Use this command to recover from file computer crashes that

write your inbox in a nonstandard place.

Caution: if you specify a file that is not in the proper format 

for example, if you type the name of your primary mail file 

you are in trouble. Zmail becomes caught in an error loop, and

has to be reloaded (or the machine cold booted).

(Remember, the file you specify is the inbox  the file where

new mail lives  not the mail file, which is where old mail

resides.)

Page 2513

[Get Inbox (R)] Pops up a menu of your mail files. You specify the file for

which to read the inbox. That buffer is selected and its inbox

is read.

H (Kbd) Zmail Command

H (Kbd) Scrolls back to the top ("Head") of the current message.�

Hardcopy All Command

Hardcopy All (m-X) Hardcopies all the messages in the current se-

quence. Note that you can also click Right on [Map

Over] and select [Hardcopy] for copying all mes-

sages in the current sequence.�

Hardcopy File Zmail Command

Hardcopy File (m-X)�

Sends the file associated with the pathname you specify to the default printing de-

vice. The default is the first pathname specified in the File-References: header

field. If there is no File-References: field, the default is the current mail file.

Hardcopy Message (m-X) Zmail Command

Hardcopy Message (m-X) Hardcopies the current message.�

Insert File (m-X) Zmail Command

Insert File (m-X) Prompts for a pathname and inserts the contents of the file in

the mail buffer.�

J (Kbd) Zmail Command

n J (Kbd) Jumps to message number n, even if it is marked for deletion.

If n is omitted, jumps to the first message in the sequence. Z J

jumps to the last message in the sequence.�

Page 2514

[Jump] Zmail Menu Item

[Jump] Jumps to the message selected based on the filter of the last

jump command. There is no initial default, so the first time

you want to use jump in a new Zmail session you must click

right for the filter menu.

[Jump (M)] Selects an arbitrary message from the message stack. Does

nothing if the stack is empty. See the section "Moving Among

Zmail Messages Using the Message Stack". Otherwise, displays

summary lines for the elements of the message stack, partially

overlaying the summary window. (The message numbers dis-

played are meaningless, but if the current message is on the

stack, it is indicated by the usual arrow.) The summary lines

are mouse sensitive; clicking Left on a line selects the corre-

sponding message. Pressing ABORT aborts the Jump command;

typing or clicking on any other command aborts Jump and exe-

cutes that command. (See Figure !.)

Figure 115. [Jump (M)]�

[Jump (R)] Pops up the filter selection menu. You select a filter to use to

choose the message to which to jump.�

[Keywords] Zmail Menu Item

[Keywords] Adds the last used keywords to the current message. There is

no initial default so the first time you want to add keywords to

a message in a Zmail session you must click right for the

menu. See the section "Setting Zmail Keywords".

[Keywords (M)] Adds the appropriate keywords to the current message auto-

matically. "Appropriate" is determined using a filter-keyword al-

ist, similar to the alist used by the referenced-message com-

mands. Each filter is associated with a list of keywords; click-

Page 2515

ing middle on [Keywords] adds the keywords corresponding to

all filters which the message satisfies. The mouse documenta-

tion line tells you which keywords are to be added, so you can

check first. If none are to be added, the mouse documentation

line shows nothing for [Keywords (M)].�

� [Keywords (R)] Pops up a highlighted menu of your keywords, in addition to

the entry [New] for adding a new keyword. If you have never

specified keywords for any messages, the menu contains only

three items: [Do It], [Abort], and [New]. Click on [New] and

type a keyword. The keyword appears on the menu, highlight-

ed. Click on [Do It] and the keyword appears in braces on the

summary line of the message. Keywords are stored in the mail

files of the messages they are attached to. You can specify

keyword/mail file associations explicitly in your Profile. See the

section "Zmail Profile Options".

Figure 116. Keywords Menu�

L (Kbd) Zmail Command

L (Kbd) "Labels" the current message. Prompts in the minibuffer for

keywords for the current message (using zwei:com-zmail-

keywords). You can use the mouse to click on a message in

the summary window to add that message’s keywords to the

current message.

A history of keywords is maintained, so you can use c-m-Y and

m-Y to yank back keywords previously typed in that minibuffer.

List Sequences (m-X) Zmail Command

List Sequences m-X Lists all the sequences in your current Zmail session, as well

as any mail files saved in your profile that have not yet been

read in.�

Load File (m-X) Zmail Command

Page 2516

Load File (m-X) Prompts for a pathname and loads the specified file into the

Lisp environment. The default is the first pathname specified

in the File-References: header field.�

M (Kbd) Command

M (Kbd) Send a message. Puts you into mail mode, with the headers

window selected. See the section "Sending Your Mail". See the

section "Mail Mode in Zmail".

c-X M (Kbd) Zmail Command

c-X M (Kbd) Enters mail mode recursively; the window configuration re-

mains the same, but the Headers and Mail windows are reini-

tialized as if the Mail command had just been executed (Head-

ers window contains the word "To:" followed by a blinking cur-

sor; Mail window is empty.) Exiting recursive mail (either by

sending the message or by aborting) returns to the higher lev-

el mail.�

Mail Menu Item

[Mail] Send a message. Puts you into mail mode, with the headers

window selected. See the section "Sending Your Mail". See the

section "Mail Mode in Zmail".

[Mail (M)] Send a bug report. Pop up a menu of program names and

[Other]. Clicking on a program name puts you into mail mode,

with the To: field set up to send a bug report about that pro-

gram. Clicking on [Other] prompts for the name of a bug list

to send to, then puts you into mail mode. In either case, the

mail window is selected; the first several lines of text identi-

fies what version of the software you are using. You can now

type in your bug report and send the message. See the section

"Adding Bug Lists to Zmail".

[Mail (R)] Pop up a menu of: �

Bug Send a bug report. Use [Bug] to send report to same bug list

as last report; use [Bug (R)] for menu of programs. See de-

scription of [Mail (M)]. See the section "Adding Bug Lists to

Zmail".

Mail Send an ordinary message, like clicking left on [Mail].

Page 2517

Forward Send a message with current message as its text. You are

placed in mail mode with the headers window selected, and the

cursor positioned after to:. The text of the current message is

placed in the mail window inside the delimiters for forwarded

messages specified in your profile. See the variable

zwei:*forwarded-message-begin*. You enter the recipient(s)

and then press END, which leaves you in the mail window so

you can add comments to the text of the message if you so de-

sire. Pressing END again sends the forwarded message.

Redistribute Redistribute the current message to other recipients. You are

prompted for a new recipient or recipients (separated by com-

mas) to whom to send the message.

Local Create a new message in the current mail file. A new message

draft is created with an Fcc: destination of the current inbox.

(See Figure !.)

Figure 117. Local Mail�

You are placed in mail mode with the headers window selected,

and the cursor positioned after "Subject:". Type the subject of

the message, press END, then the text.

Local messages never actually get sent as messages; they are

just added to your mail file. They are useful for making notes

to yourself.�

Mail ECO (m-X) Zmail Command

Mail ECO (m-X)�

Sends an ECO as a mail message. It prompts for a file containing an encoded

ECO. If the file is not yet encoded for mailing, Mail ECO offers to encode it

(prompting for a pathname to use to hold the encoded ECO). The encoded ECO is

then placed in a message buffer. You can add any comments and terminate the

message with END as for any other mail message.

Make Encoded ECO File (m-X) Zmail Command

Page 2518

Make Encoded ECO File (m-X)�

Encodes a file for distributing as an ECO. It prompts for a source file and an out-

put pathname to hold the encoded result.

[Map Over] Zmail Menu Item

Performs an operation on all messages in the current sequence.

[Map Over] Performs the last map over operation. There is no initial de-

fault so in a new Zmail session you must first click right for

the menu.

[Map Over (M)] You can specify an operation from the menu provided by [Map

Over (R)] to put on this key in your profile. See the variable

zwei:*map-middle-mode*.

[Map Over (R)] Pops up a menu of operations to perform on all messages in

the current sequence:�

Delete Deletes all messages.

Undelete Undeletes all messages.

Type Types out (displays) all messages in the typeout window.

Find string Prompts for a string and shows those lines within messages

that contain the given string. You can select the message con-

taining the string by clicking on the line of text. This provides

a handy way to search through a collection for a message you

only vaguely remember. See the section "Occur (m-X) Zmail

Command".

Keywords Puts specified keywords on all messages. Clicking (L), (M), and

(R) on Keywords work just as for [Keywords] in the Zmail

menu. See the section "[Keywords] Zmail Menu Item".

Unkeywords Removes specified keywords from all messages.

Move Moves all messages to the specified file.

Hardcopy Hardcopies all messages.

Forward Forwards all messages (concatenated into one message). See

the section "[Mail] Zmail Menu Item".

Redistribute Redistributes all messages, individually but to the same re-

cipient(s).

Reply Replies to all messages (contatenated into one message).

Concatenate Appends all messages to the first message.

Select conversation

Selects messages to which a message in the sequence refers, or

Page 2519

that refer to a message in the sequence, recursively; this is

implemented by zwei:com-zmail-select-all-conversations-by-

references.

[Move] Zmail Menu Item

[Move] Moves the current message to the same buffer as last [Move].

There is no initial default so the first time in a Zmail session

that you want to move a message, you must click right on

[Move] for the menu. Whether or not the moved message is

deleted from its original buffer is determined by your profile

(the default is delete). See the variable zwei:*delete-after-

move-to-buffer*.

[Move (M)] Moves the current message to a buffer based on the filter it

satisfies. If the current message does not satisfy any of your

predefined filters, nothing is offered in the mouse documenta-

tion line for the middle click.

[Move (R)] Moves the current message to the buffer specified from a

menu of all the mail sequences in your current Zmail, any mail

files stored in your profile but not yet read into Zmail (see the

section "Saving a List of Mail Files"), and five other options:�

New Collection Starts a new mail collection, prompting for a name for the col-

lection, and copies the current message to that collection.

Recycled Collection

Starts a temporary mail collection and copies the current mes-

sage to that collection. See the section "Creating a Mail Collec-

tion Starting with a Single Message".

Read/Create File Prompts for a mail file, creating the file if it does not exist,

and moves the current message to that file.

Just Text Prompts for a file name and moves the current message to

that file as simple text for editing with Zmacs.

Hardcopy Hardcopies the current message.�

Move In Place Of Referenced Message (m-X) Zmail Command

Move In Place Of Referenced Message (m-X)

Moves this message to where the referenced message is, and

deletes the referenced message.�

Move to Default Previous Point (m-X) Zmail Command

Page 2520

n Move to Default Previous Point (m-X)

With an argument n, performs the same rotation as n

c-m-SPACE and makes n the new default argument. Without an

argument, uses the default. (The initial default is 3.)�

Move to Point (m-X) Zmail Command

n Move to Point (m-X)

n c-m-SPACE (Kbd) Without an argument, exchanges the current message and the

top of the message stack. (The top of the stack is popped into

the current message and the old setting of the current mes-

sage is pushed onto the stack.) With an argument n > 1, ro-

tates the top n entries of the list formed from the current

message followed by the message stack. (n = 2 is equivalent to

no argument.) With an argument of 1, rotates the whole list.

Negative arguments rotate the other way.�

An example: if n is 3, Stack[1] is the top of stack, and Stack[2] is the element just

below the top of stack, then:

Old Stack New Stack

new current message old Stack[1]

new Stack[1] old Stack[2]

new Stack[2] old current message�

N (Kbd) Zmail Command

n N (Kbd) Selects the nth next undeleted message in the current se-

quence. If n is omitted, selects the next undeleted message.�

c-N (Kbd) Zmail Command

n c-N (Kbd) Selects the nth next message in the sequence, whether or not

it is marked for deletion. If n is omitted, selects the next mes-

sage, whether or not it is deleted.�

[Next] Zmail Menu Item

[Next] Select the next undeleted message in the current sequence.

Page 2521

[Next (M)] Selects the last undeleted message in the current sequence.

You can set the action for this click to any of the possible mes-

sage selection options as in the menu for [Next (R)]. See the

variable zwei:*next-middle-mode*.

[Next (R)] Pops up a menu of choices:�

Next undeleted Selects the next undeleted message.

Next Selects the next message in the sequence, whether or not it

has been marked for deletion.

Next unseen Selects the next unseen message.

Next recent Selects the next message in the recent sequence.

Last undeleted Selects the last undeleted message in the sequence.

Last Selects the last message in the buffer, whether or not it has

been marked for deletion.

Last unseen Selects the last unseen message in the sequence.

Last recent Selects the last message in the recent sequence.

O (Kbd) Zmail Command

O (Kbd) "Outputs" the current message to a file, similar to [Move].

Prompts in the minibuffer for a pathname. The default is tak-

en from your profile. See the variable zwei:*default-move-

mail-file-name*.�

c-X O (Kbd) Zmail Command

c-X O (Kbd) Select another exposed window. Repeated use cycles through

the two or three exposed windows. (Headers and Mail or Mes-

sage, Headers, and Mail.)�

Occur (m-X) Zmail Command

Occur (m-X) Prompts for a string and shows those lines within messages

that contain the given string. You can select the message con-

taining the string by clicking on the line of text. This is a

handy way to search through a collection for a message you

only vaguely remember. It is like the Find String option in the

[Map Over] menu. See the section "[Map Over] Zmail Menu

Item".�

Page 2522

[Other] Zmail Menu Item

[Other] Repeats the last command given. There is no initial default so

the first time you want to use one of these commands you

must click right to get the menu.

[Other (M)] No option has been assigned to this mouse gesture.

[Other (R)] Pops up a menu of additional commands. Currently it includes:�

Show File Prompts for a filename and shows the file in the typeout win-

dow.

Hardcopy Hardcopies the current message. Clicking left on Hardcopy us-

es the default printing device. Clicking right pops up a menu

that allows you to select the device and other parameters. The

device selected becomes the default for subsequent hardcopy

commands.

Rename Sequence

Promps for a name and renames the current sequence to that

name.

Whois Prompts for a user-id or surname and shows the information in

that person’s namespace entry. If you specify name@host, it

searches the namespace and contacts host to obtain the infor-

mation. It uses the ARPANET Name protocol so if your site is

on the ARPANET, you can access ARPANET name servers.�

P (Kbd) Zmail Command

n P (Kbd) Selects the nth previous undeleted message in the current se-

quence. If n is omitted, selects the previous undeleted message.�

c-P (Kbd) Zmail Command

n c-P (Kbd) Selects the nth previous message in the sequence, whether or

not it is marked for deletion. If n is omitted, selects the previ-

ous message, whether or not it is deleted.�

zwei:preload-zmail &rest files Function

Starts up Zmail, loading in files.

(zwei:preload-zmail "wombat:>kjones>mail.text")�

This gets the mail loading operation underway while you are doing something else.

Page 2523

� These are the keyword options to zwei:preload-zmail:

:find-file Find the file and load it in for processing.

:examine-file Finds the file and reads it into Zmail but in read only mode.�

As an example, the following form can be included in your LISPM-INIT to preload

several mail files into Zmail with some of them being read only:

(zwei:preload-zmail ’(:find-file "y:>palter>mailboxes>palter.xmail")

 ’(:find-file "y:>palter>mailboxes>reminders.xmail")

 ’(:examine-file "y:>palter>mailboxes>junk.xmail")

 ’(:examine-file "y:>palter>mailboxes>digest.xmail"))�

� :hang-when-deexposed

Controls the use of the Zmail background process. Zmail reads

and parses the files in the background. If (:hang-when-

deexposed t) is included at the end of the zwei:preload-zmail

form, the Zmail background stops after reading the mail files

in question without parsing the contained messages. The back-

ground parsing will commence as soon as Zmail is selected.

The default for :hang-when-deexposed is nil, so use of

zwei:preload-zmail without specifying :hang-when-deexposed

causes mail parsing to begin in the background as soon as the

loading is finished.

As an example of the use of :edit-all-mail-files, the form

(zwei:preload-zmail ’(:examine-mail-file #p"LARRY-BIRD:>Palter>mailboxes>digests.kbin")

 :edit-all-mail-files)�

will preload Palter’s digest kbin file with saving disabled and then preload all the

other mail files listed in his profile.

Zmail’s Edit File command, which is used to ask Zmacs to edit a file usually refer-

enced by the current message, is bound to c-X c-sh-F at top level.

[Previous] Zmail Menu Item

[Previous] Selects the previous undeleted message in the current se-

quence.

[Previous (M)] Selects the first undeleted in the current sequence. You can

set the action for this click to any of the possible message se-

lection options as in the menu for [Previous (R)]. See the vari-

able zwei:*previous-middle-mode*.

[Previous (R)] Pops up a menu of choices:�

Previous undeleted

Select the previous undeleted message.

Page 2524

Previous Selects the previous message, whether or not it is marked for

deletion.

Previous unseen Selects the previous unseen message in the sequence.

Previous recent Selects the previous message in the recent sequence.

First undeleted Selects the first undeleted message in the sequence.

First Selects the first message in the sequence, whether or not it

has been marked for deletion.

First unseen Select the first unseen message in the sequence.

First recent Select the first message in the recent sequence.

[Profile] Zmail Menu Item

[Profile] Puts you in the Profile window so you can edit your Zmail init

file and alter the various profile options. See the section "Zmail

Profile Options". See the section "Customizing Zmail".�

q (Kbd) Zmail Command

Q (Kbd) Expunge and save loaded mail files just like [Save], then re-

turn from Zmail to the window from which it was called.�

[Quit] Zmail Menu Item

[Quit] Expunge and save loaded mail files just like [Save], then re-

turn from Zmail to the window from which it was called.

[Quit (R)] Pop up a menu of save and exit options. (See Figure 107.)

The menu has two columns; one entry in each column is high-

lighted. The Save column has the following options:

• Don’t Save - Do not save any files before exiting.

• Ask - Pop up an Expunge/Save/Kill menu to determine which

files to expunge, save, or kill. See the description of [Save

(R)].

• Save - Expunge and save loaded mail files like [Save].�

The Exit column has the following options:

Page 2525

• Quit - Return from Zmail to the window from which it was

called, burying the Zmail window.

• Logout - Log out from the machine, then return to the call-

ing window.�

Initially, Save and Quit are highlighted; this combination is

equivalent to clicking left on [Quit]. Clicking on an unhigh-

lighted entry highlights it and unhighlights the others in its

column. Clicking on Do It does the saving and exiting indicat-

ed in the menu; clicking on Abort aborts the Quit command.

R (Kbd) Zmail Command

R (Kbd) Starts a reply to the current message. With an argument of 1,

replies only to the sender of the message. You can set the be-

havior of reply commands with an argument of 1 in your pro-

file. See the variable zwei:*1r-reply-mode*. The numeric argu-

ments accepted are:

argument Reply Window Mode/Reply Mode

n = 1 Two-windows/Sender.

n = 2 Two-windows/All.

n = 3 Yank/All.�

See the section "Zmail Reply Command".

c-R (Kbd) Zmail Command

c-R (Kbd) Puts you in an editing window with the current message. This

is the same as clicking left on the message window. The head-

ers of the message are expanded to their full form in the edit-

ing window.�

Redirect Message (m-X) Command

Redirect Message (m-X)

Redirects a message to a different group or individual. It

prompts for recipients to be removed from the recipient list,

then for recipients to be added, and finally for a comment ex-

plaining the redirection. Then it emends the message, adding

the new recipients, removing any you indicated should be re-

moved, and inserting any comment you supplied about the

redirection. It sends this emended message to the new recipi-

Page 2526

ents and sends a second message to the original recipients, ref-

erencing the original message and informing them that it has

been redirected. It also revokes the original message (See the

section "Revoke Message (m-X) Zmail Command".) Finally, it

updates the recipient fields of the message in your current se-

quence and prompts you to reply to the redirected message

immediately.

Redirecting a message is different from redistributing a mes-

sage in that it reroutes the message and any subsequent con-

versation to a new set of people. Redistributing just sends out

additional copies of the original message, it does not automati-

cally include the new recipients in any subsequent conversa-

tion. Redirecting is particularly useful for tracking bug mes-

sages and directing them to the appropriate mailing lists.

The redirected message (that is, the current message) is given

the (redirected) property; but this property is not written out

for Babyl files.�

Redistribute Message (m-X) Command

Redistribute Message (m-X)

Redistribute the current message to other recipients. Prompts

in the mode line for entry of the recipients of the redistributed

message. The recipients you specify receive a copy of the cur-

rent message with three additional header fields (Redistribut-

ed-to:, Redistributed-by:, and Redistributed-date:) describing

the redistribution. Redistributing differs from Forwarding in

that the original message is passed on, with its original mes-

sage id, to additional recipients; no new message is created.

Redirecting (See the section "Redirect Message (m-X) Zmail

Command".) is similar to Redistribute except that it also

reroutes the entire conversation and is a two step process,

some recipients are removed and others added.

(Note: The redistributed message (that is, the current mes-

sage) is given the (redistributed) property.)�

Redo (m-X) Zmail Command

Redo (m-X) Undoes the effect of the last Undo (m-X).�

Rename Sequence (m-X) Zmail Command

Page 2527

Rename Sequence (m-X)

Prompts for a new name for the sequence. If the sequence is a

buffer with an associated file name, Rename Sequence renames

the file.�

Repeat Last Matching MiniBuffer Command (m-X) Zmail Command

Repeat Last Mini Buffer Command (m-X)

c-m-sh-Y Repeat Last Matching Minibuffer Command

Yanks back and repeats the last minibuffer command that in-

cludes a string you specify. m-sh-Y yanks back previous com-

mands that contain the same string.

Repeat Last MiniBuffer Command (m-X) Zmail Command

Repeat Last Mini Buffer Command (m-X)

c-m-Y Repeat Last Minibuffer Command

Repeats a recent minibuffer command. It yanks the displayed

default if there is one; otherwise, it yanks the last thing typed

in this context. A numeric argument n yanks the nth previous

one. An argument of 0 lists the history of elements typed in

the minibuffer.

For a similar command with string-matching, see the section

"Repeat Last Matching MiniBuffer Command (m-X) Zmail Com-

mand".

m-Y yanks successively earlier mini buffer commands.�

[Reply] Zmail Menu Item

[Reply] Starts a reply to the current message with the reply window

mode Two-windows and the reply mode All. See the section

"Zmail Reply Command".

[Reply (M)] Starts a reply to the current message with the window mode

Two-windows and the reply mode Sender.

Page 2528

[Reply (R)] Pop up a three-column menu of reply options.

The first column offers choices for recipients of the reply. The

second column offers window configurations. The third column

controls the pruning of headers on included messages. Initially,

All, Two-windows, and Prune are highlighted; this combination

is equivalent to using [Reply]. Clicking on an unhighlighted en-

try highlights it and unhighlights the others in its column.

Clicking on Do It enters mail mode; clicking on Abort aborts

the Reply command. You can set the initial choices that appear

on the menu in your Zmail init file. See the section "Zmail Op-

tions for Replying to Mail ". See the section "Zmail Options for

Including Messages in a Reply".

Restore Draft File Zmail Menu Item

[Restore Draft File] (Editor Menu)

c-X c-R (Kbd) Restores a previously saved draft. The current contents of the

Headers and Mail windows are lost.�

Revoke Message (m-X) Zmail Command

Revoke Message (m-X)

Pops up a menu of all the messages sent in the current Zmail

session. You select the one you wish to revoke by clicking on it

with the mouse. The last choice in the menu is Revoke message

in current sequence. Clicking on this choice permits you to se-

lect a message to revoke by message number or by clicking on

it in the summary window. If the message to be revoked ap-

pears in one of your loaded mail files, it is marked for dele-

tion.

Revoke Message adds a revoke message to the inbox of each of

the recipients of the message to be revoked, that is a message

whose header says Revoke Message and gives the message id.�

S (Kbd) Zmail Command

S (Kbd) Expunge (that is, get rid of all messages marked for deletion) and save

all loaded mail files that have been modified since the last save, see the

section "Zmail Message Deletion Commands". Because it first expunges

the mail sequences, thereby destroying information, and because it can

be a time consuming operation if your mail files are large, S asks for

confirmation before proceeding. You can turn off this query in your

Page 2529

Zmail profile by setting the option "Ask permission before executing time

consuming and/or destructive commands" to No; see the variable

zwei:*ask-before-executing-dangerous-zmail-commands*.

[Save] Zmail Menu Item

[Save] Expunge (that is, get rid of all messages marked for deletion)

and save all loaded mail files that have been modified since

the last save. See the section "Zmail Message Deletion Com-

mands".

[Save (M)] Expunge the current mail file or sequence.

[Save (R)] Pop up a multiple choice Expunge/Save/Kill window. (See Fig-

ure 106.)

Each row of the menu lists a loaded mail file and boxes for

three choices: Expunge, Save, and Kill. An x in the Expunge

box means expunge the file; an x in the Save box means save

the file; and an x in the Kill box means kill the loaded copy 

not the disk copy  of the file, that is, make Zmail forget

about the file. The initial configuration of x’s and blanks shows

what using [Save] would do, which is to expunge files with

deleted messages and save files modified since the last save.

Clicking left or right on a box complements its status, remov-

ing an x if present, adding one if not. Marking a file for ex-

punging or saving clears the Kill box; marking a file for

killing clears the Save and Expunge boxes. Clicking on Do It

performs the selected Expunge, Save, and Kill operations; click-

ing on Abort aborts the Save files command.�

Save Current Buffer (m-X) Zmail Command

Save Current Buffer (m-X)

Checks to see if the current sequence has been modified and

saves it if necessary. It does not do an expunge before saving.�

Save Draft as Message Zmail Command

[Save Draft As Message] (Editor Menu)

Save Draft As Message (m-X)

c-X c-m-S (Kbd) Saves the text of the message being composed as a message.

To specify a specific buffer, specify a numeric argument of 2.

If the message has already been saved, Zmail does not resave

Page 2530

it unless you specify a numeric argument of 4 (or c-U). The

arguments actually are actually dealt with bit-wise, so an argu-

ment of 6 has the combined effect of an argument of 2 and an

argument of 4.

Save Draft As Message (m-X) prefers the current sequence over

the default sequence if the current sequence happens to be a

buffer.

Save Draft File Zmail Menu Item

[Save Draft File] (Editor Menu)

c-X c-S (Kbd) Saves the message being composed in a disk file. The first

time it is used, it prompts for entry of a filename; subsequent-

ly, it uses the same filename.�

[Select] Zmail Menu Item

[Select] Selects the previously selected mail collection. There is no ini-

tial default so the first time in a Zmail session that you want

to select another mail file, you must click right on [Select] for

the menu.

[Select (M)] Selects messages by a filter, using the Filter Selection Display.

See the section "Selecting Zmail Filters".

[Select (R)] Selects the mail sequence specified from a menu of all the

mail sequences in your current Zmail, any mail files stored in

your profile but not yet read into Zmail (see the section "Sav-

ing a List of Mail Files"), and four other options:�

Read/Create File Prompts for a mail file, creating the file if it does not exist.

Examine File Prompts for a mail file and reads it in No Save mode.

Mark Survey Allows you to select messages by their summary lines to create

a new collection. See the section "Creating a Mail Collection by

Marking Individual Messages".

Filter Pops up the Filter Selection Display. See the section "Selecting

Zmail Filters".

Select All Conversations By References (m-X) Zmail Command

Select All Conversations By References (m-X)

Selects messages to which a message in the sequence refers, or

that refer to a message in the sequence, recursively; this is

implemented by zwei:com-zmail-select-all-conversations-by-

Page 2531

references. It is equivalent to appending together all se-

quences gotten from Select Conversation By References (m-X)

for each message in the current sequence. An argument gives

a menu of universes to search. The command defaults to load-

ed files. You can also perform this operation using [Map Over

(R) / Select Conversation].�

Select Arbitrary Format Mail File (m-X) Zmail Command

Select Arbitrary Format Mail File (m-X)

Prompts for a mail file and then for the format to read that

file in. Use this command if you need to read or create a mail

file that is not in the standard format for the machine on

which it is stored.�

Select Conversation By References (m-X) Zmail Command

Select Conversation by References (m-X)

Defines a conversation and selects it as a collection. This com-

mand is very similar to Select References. �

Select Referenced Message (m-X) Zmail Command

Select Referenced Message (m-X)

Selects the referenced message as current.�

Select References (m-X) Zmail Command

Select References (m-X)

Creates a mail collection of all messages referenced by the cur-

rent message. The collection also includes messages referenced

by the referenced messages, messages referenced by them, and

so forth.�

Show Draft Dispositions (m-X) Zmail Command

Show Draft Dispositions (m-X)

Displays a list of the messages you have sent in your current

session, including to whom the message was sent, the subject

Page 2532

line, the time and date of transmission, and which mail server

handled the message. Drafts of messages that have been sent

can be retrieved for retransmission. See the section "Continu-

ing Completed or Aborted Zmail Messages". Clicking right on a

draft offers a menu that lets you revoke the draft.

Show File (m-X) Zmail Command

Show File (m-X)�

Prompts for a pathname and displays the specified file. The default is the first

pathname specified in the File-References: header field.

Show Mail (m-X) Zmail Command

Show Mail (m-X) A command for showing your inbox file. It uses the standard

mail pathname for your home directory. When no new mail has

been delivered recently, it reports "No new mail". This com-

mand uses Show File. �

Show Printer Status Zmail Command

Show Printer Status (m-X)

Prompts for the name of a printer and displays its print queue.�

[Sort] Zmail Menu Item

[Sort] Sorts the current sequence using the same sort keys as the

previous sort. The default is Forward by Date.

[Sort (M)] No option has been assigned to this mouse gesture.

[Sort (R)] Pops up a highlighted menu of sort keys.

You can sort Forward or Backward and by several other keys.

Selecting Backward by Date sorts your mail into "most recent

first" order.�

Start Background Save (m-X) Zmail Command

Start Background Save (m-X)

Checks to see if the current sequence has been modified and

saves it in the background if necessary.�

Page 2533

Figure 118. [Sort (R)] Menu�

Start/End of Summary Window Commands

The commands, m-X Start of Summary Window (c-m-<) and m-X End of Summary

Window (c-m->) move the summary window to the beginning and end of the cur-

rent sequence without affecting the current message.

[Survey] Zmail Menu Item

Displays the summary lines of messages in the current sequence. The display is

mouse sensitive. See the section "Zmail Message Summary Line".

[Survey] Displays summary lines of all the messages in the current se-

quence. This is an easy way to semi-automatically scroll

through all your messages.

[Survey (M)] Displays summary lines of the messages in the same conversa-

tion as the current message.

[Survey (R)] Pops up the filter selection menu so that you can specify a fil-

ter to select the summary lines to be displayed. See the section

"Selecting Zmail Filters".

c-SPACE (Kbd) Zmail Command

c-SPACE Push or pop the message stack, depending on the argument. There are

three meaningful forms:

c-SPACE Push the current message onto the stack. (Does not change the

current message.) The stack can hold up to eight elements;

pushing onto a full stack causes the bottom element to be lost.

A message is automatically pushed on the stack by Zmail

whenever you use a command that causes or can cause move-

ment from the current message, except the following:

Page 2534

N, c-N

P, c-P

D, c-D

[Next] or [Previous]

[Delete], [Delete (M)], or [Delete (R)]

[Next (R)]  ([Next] and [Next undeleted] options.)

[Previous (R)] 

 ([Previous] and [Previous undeleted] options.)

n J  (When n is equal to the current message number.)

Clicking left on the summary line of the current message.�

None of these commands moves very far from the current

message, unless they move over a long string of deleted mes-

sages. Also, none of the message stack commands automatically

push a message on the stack.

c-U c-SPACE Pop the top message from the message stack and make it the

current message. (The element popped is also tucked back un-

der the stack as the new bottom element.) If the stack is emp-

ty Zmail flashes the screen.

c-U c-U c-SPACE Pop the top message from the message stack and discard it.

The setting of the current message does not change. (The ele-

ment popped is also tucked back under the stack as the new

bottom element.) If the stack is empty Zmail flashes the

screen.�

U (Kbd) Zmail Command

n U (Kbd) Undeletes message number n. If n is negative or larger than

the number of messages in file, it complains "Argument out of

range". If message n is not deleted, it complains "Message not

deleted." If you omit n, it is the same as [Undelete]. See the

section "[Undelete] Zmail Menu Item". See the section "Zmail

Message Deletion Commands".

[Undelete] Zmail Menu Item

[Undelete] (Menu) Start at current message and searches backward for a deleted

message, undeletes it, and select it as the current message.

Complain "No deleted messages" if there are none. [Undelete

(M)] and [Undelete (R)] are the same as clicking left on [Un-

delete]. See the section "Zmail Message Deletion Commands".

Undigestify (m-X) Zmail Command

Page 2535

Undigestify (m-X) Converts a "standard arpanet" digest message into smaller

messages. These messages are inserted into the current buffer

right after the digest message. A References: header is added

to the original message pointed to all the exploded messages,

allowing use of the conversation commands to select the digest

messages into a collection, delete them all, and so forth.�

Undo (m-X) Zmail Command

Undo (m-X) Undoes the last nontrivial, potentially destructive command;

Using Undo (m-X) successively undoes earlier and earlier com-

mands.

For example, after using the Sort menu command, Undo (m-X)

restores the previous order of messages in the file.�

Write Draft File Zmail Menu Item

[Write Draft File] (Editor Menu)

c-X c-W (Kbd) Saves the message being composed in a disk file. Prompts for

entry of a filename.�

c-X Y Prune Yanked Headers Zmail Command

c-X Y (Kbd)

[Prune Yanked Headers] (Editor Menu)

Deletes the less essential headers of a message that was

yanked in via c-X c-Y. Leaves only the Date: and From: head-

ers; these are sufficient to identify the message. The profile

option Prune headers of yanked messages controls the automatic

pruning of message headers yanked into a reply. See the vari-

able zwei:*prune-headers-after-yanking*. The default is to

not prune headers.�

c-X c-Y (Kbd) Yank Replied Messages Zmail Command

n c-X c-Y (Kbd) Yanks the message(s) being replied to into the buffer. (Used

most often when replying to the current message.) If in two-

window mode, go into one-window mode. Indent the yanked

message unless an argument n is given. The arguments to c-X

c-Y control the indentation and the pruning of headers, as fol-

lows:

Page 2536

Argument Options

none Indentation, pruning per the Prune headers

of yanked messages profile option.

1 No indentation, pruning per Prune headers

of yanked messages.

2 Indentation, pruning per reverse of Prune

headers of yanked messages.

3 No indentation, pruning per reverse of

Prune headers of yanked messages.

Yank Current Message (m-X) Zmail Command

Yanks Current Message (m-X)

Yanks the current message into the message being composed.�

Converse

Introduction to Converse

Converse is a facility for communicating interactively with other logged-in users. A

message sent with Converse pops up on the screen of the recipient almost instan-

taneously. The recipient has the choice of replying right in the pop-up window, en-

tering Converse to reply, or doing nothing.

The Converse interactive message editor is operated by a window with its own

process. Converse keeps track of all of the messages that you have received or

sent. The Converse window shows all of the messages that have been sent or re-

ceived since the machine was cold booted.

Messages sent between you and another user are organized into a conversation.

Conversations are separated from each other by a thick black line. Within each

conversation are all messages, outgoing and incoming, arranged in chronological

order, and separated by thin black lines.

You can use Converse to look at conversations, send messages, and receive mes-

sages. Converse is built on the Zwei editor, so you can edit your message as you

type it, or pick text up and move it around between one message and another, or

among messages, files, and pieces of mail.

To enter Converse, do one of the following:

• Press SELECT C.

• Give the Command Processor command Select Activity Converse.

Page 2537

• Evaluate (zl:qsend).

• Click on [Select / Converse] in the System menu.

• Answer C in the Converse pop-up window when a message arrives.

Using Converse

Sending and Replying to Messages with Converse

When you enter Converse for the first time, the window is empty except for a

blank message at the top of the screen, starting with To: (see Figure !).

Figure 119. A Fresh Converse Window�

You start a message by filling in a recipient after the To:, pressing RETURN and

then typing the message text. It is not necessary to know what machine the person

is using, but if you do know and give the recipient as name@host the message is

sent considerably faster, since it is not necessary to search the namespace to find

the machine (see Figure !). To send the finished message, press END.

Page 2538

Figure 120. A Converse Message About to be Sent�

When the message has been sent successfully, it appears as part of a conversation.

A blank message remains at the top of the screen, and just below that, a heavy

black line delimits the message(s) of the conversation you just started. Just below

the heavy black line is another blank message, but this one has the name of the

person to whom you sent the message filled in. Below this blank message, separat-

ed by a thin black line, the message you just sent appears, with the date and time

it was sent.

When the person to whom you sent the message replies, the reply appears in the

conversation above the message you sent, and below the blank message. (See Fig-

ure 121 .) Your cursor is left in the blank message so you can reply easily.

You use regular editor commands to move around in the Converse window. Two

commands, specific to Converse, are particularly useful: c-m-] (move to next con-

versation) and c-m-[(move to previous conversation).

You exit from Converse by pressing ABORT or by selecting another window. You can

also press c-END when sending a message to send the message and exit from Con-

verse.

To start a conversation, enter Converse, go to the top of the Converse window and

fill in the blank message, starting with the To: line to specify the new recipient.

Page 2539

Figure 121. A Converse Conversation�

Finish by pressing END to send the message. To send the message and exit Con-

verse, finish by pressing c-END.

To send a message as part of an existing conversation, find that conversation in

Converse and fill in the blank message at the beginning of the conversation, fin-

ishing by pressing END to send the message, or by pressing c-END to send the mes-

sage and exit Converse.

You do not have to be in the main Converse window to receive messages. Converse

will deliver a message to you in any window. Since this might be annoying, you

can customize what happens when a message arrives by using the variable

zwei:*converse-mode*. See the section "Customizing Converse".

When you are in a window other than Converse and a new message arrives, a win-

dow pops up at the top of the screen displaying the message. You can respond R to

type in a reply, N (for "no action") to make the message window deexpose, or C to

enter Converse. Entering Converse has several advantages: you can look over the

previous messages in the conversation, and you can use the Zwei editor to help

you construct a reply. See Figure !.

Page 2540

Converse remembers all messages that you send or receive, even if you did not use

the main Converse window to send them or reply to them.

Figure 122. A Converse pop-up window

Converse lets you know as soon as a message comes in, by beeping or flashing the

screen, and if it is supposed to notify you, it does so without waiting for the main

Converse process to wake up. In pop-up mode, if the pop-up message window is al-

ready in use, an incoming message causes the message window to beep or flash

but not to display the message. This is necessary since only one message at a time

should pop up. When the message window is deexposed it is reexposed immediately

with the new message in it.

If the main Converse window is exposed, a new message is shown there with its

conversation; it is never shown via a notification or a pop-up message window. If

the main Converse window is exposed but its process is busy (typically, when it is

in the Debugger or in an editor command and waiting for typein), Converse beeps

or flashes but does not display the message. You can display the message by clear-

ing the Converse process. You can usually clear the Converse process by pressing

ABORT.

Converse Commands

Converse has several commands for managing your conversations.

HELP Displays a summary of Converse commands.

END Sends the current message. The behavior of this key can be

changed by the variable zwei:*converse-end-exits*.

c-END Sends the current message and exits from Converse. The be-

havior of this key can be changed by the variable

zwei:*converse-end-exits*.

ABORT Exits Converse.�

Page 2541

c-M Mails the current message instead of sending it. This is useful

if Converse reports that the person to whom you want to send

the message is not logged in anywhere.

c-m-[Moves to the previous conversation.

c-m-] Moves to the next conversation.

Delete Conversation (m-X)

Deletes the current conversation from the Converse window.

Write Buffer (m-X) Writes the entire Converse buffer (all conversations) to a file.

It prompts for a pathname.

Write Conversation (m-X)

Writes only the current conversation to a file. It prompts for a

pathname.

Append Buffer (m-X)

Appends the entire Converse buffer (all conversations) to the

end of a file. It prompts for a pathname.

Append Conversation (m-X)

Appends only the current conversation to the end of a file. It

prompts for a pathname.

Regenerate Buffer (m-X)

Rebuilds the structure of the Converse buffer. This might be

necessary if you damage the buffer in some way, for instance

by removing one of the black lines separating conversations.

Some error messages might ask you to give this command and

try again. The message you are currently typing might be lost,

but you can prevent this by putting the text on the kill ring by

marking it and using m-W before issuing the m-X Regenerate

Buffer command.

Lisp Listener Commands for Converse

Command Processor Commands for Converse:

Send Message Command

Send Message recipient�

Sends a Converse message to the specified recipient.

recipient user or user@host. The person to whom to send the message. If

@host is omitted, all Symbolics machines on your network are

Page 2542

polled to locate user. �

Send Message prompts for text to send as a Converse message. END terminates and

sends the message. See the section "Converse".

Show Messages Command

Show Messages keywords�

Displays the contents of the specified Converse conversations.

keywords :Direction, :From, :Mention Empty Sequences, :More Process-

ing, :Order, :Output Destination, :Query, :Recent, :Start, :Stop,

:Summarize, :To�

:Direction {Incoming, Outgoing, All, or Default} Whether to show incom-

ing messages, outgoing messages, or all. The Default is Incom-

ing.

:From {user-or-address} Show messages from this user or address.

:Mention Empty Sequences

{Yes, No} Whether to mention empty message sequences, for

example, you have sent messages to someone but the person

did not reply. The default is No, not to mention this. If it is

Yes, you see "No messages from so-and-so".

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Order {Forward, Reverse} How to order the message presentation

within each conversation. The default is Forward, that is, most

recent first.

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No} Whether to ask about each conversation. The default

is Yes, to ask.

:Recent {Yes, No} Whether to consider only the most recently ex-

changed messages in each conversation.

Page 2543

:Start {number} Number of first message to show in a conversation.

If there are fewer then number messages in the conversation,

that conversation is skipped.

:Stop {number} Number of last message to show in a conversation.

:Summarize {Yes, No} Whether to show the entire message or just a sum-

mary. The default is No, to show the entire message. If yes,

messages are mentioned but not shown.

:To {user-or-address} Show messages to this user or address.�

Lisp Functions to Control Converse:

zwei:qsends-off &optional (gag-message t) Function

Refuses interactive messages. If you give it a string argument, gag-message, the

variable zwei:*converse-gagged* is set to this string and the string is returned to

anyone who tries to send a message to you. Otherwise, they just get a note saying

that you are not accepting messages. zwei:qsends-on turns sends back on and

clears zwei:*converse-gagged*.

zwei:qsends-on Function

After using zwei:qsends-off to notify interactive message senders that you are not

accepting messages, zwei:qsends-on allows interactive messages to be received

again.

net:notify-local-lispms &optional message &key (:error-p) (:report) (:output-stream)

Function

Sends message to all Symbolics machines at your site based upon information it

gets from the namespace database about the Symbolics machines at the local site.

message should be a string; if it is not provided, the function prompts for a mes-

sage. Each recipient receives the message as a notification, rather than as an in-

teractive message.

Keyword arguments are:

:error-p

Setting this keyword to t enables the function to report all errors encountered.

Specifying nil (default) for this keyword enables the function to ignore all errors

encountered.

:report

Setting this keyword to t (default) enables the function to report whether it suc-

ceeded in delivering the message. Specifying nil enables the function to only report

failures in delivering messages.

Page 2544

:output-stream

Using this keyword enables you to redirect output to a specific stream.

zl:qsend &optional destination message Function

Sends interactive messages to users on other machines on the network.

destination is normally a string of the form name@host, to specify the recipient. If

you omit the @host part and give just a name, zl:qsend looks at all the Symbolics

machines at your site to find any that name is logged into. If the user is logged in

to one Symbolics machine, it is used as the host; if more than one, zl:qsend asks

you which one you mean. If you leave out destination altogether, doing just

(zl:qsend), Converse is selected as if you had pressed SELECT C.

message should be a string. For example:

(qsend kjones@wombat "Want to go to lunch?")�

If message is omitted, zl:qsend asks you to type in a message. You should type in

the contents of your message and press END when you are done.

The input editor is used while you type in a message to zl:qsend. So you get some

editing power, although not as much as with full Converse (since the latter uses

Zwei). See the section "Editing Your Input". zl:qsend predates Converse and is re-

tained for compatibility.

print-sends &optional (stream zl:standard-output) Function

Prints out all messages you have received (but not messages you have sent), in

forward chronological order, to stream. Converse is more useful for looking at your

messages, but this function predates Converse and is retained for compatibility.

zl:qreply &optional text Function

Sends a reply to the Converse message received most recently. You can supply a

string as the text of the message or omit it and let zl:qreply prompt for it. It re-

turns a string of the form "user@host", indicating the recipient of the message.

This function predates Converse and is retained for compatibility.

Customizing Converse

The following variables allow you to customize Converse’s behavior. You can set

them in your init file.

zwei:*converse-mode* Variable

Controls what happens when an interactive message arrives. It should have one of

the following values:

Page 2545

:pop-up (This is the default.) A message window pops up at the top of

the screen, displaying the message. You are asked to type R

(for Reply), N (for Nothing), or C (for Converse). If you type R,

you can type a reply to the message inside the message win-

dow. When you press END, this reply is sent to whomever sent

the original message to you, and the pop-up message window

window disappears. If you type N, the message window disap-

pears immediately. If you type C, the Converse window is se-

lected. The input editor is used while you reply to a message

in the pop-up message window, so you get some editing power,

although not as much as with full Converse.

:auto The Converse window is selected. This is the window that

shows you all of your conversations, letting you see everything

that has happened, and letting you edit your replies with the

full power of the editor. With this window selected, you can re-

ply to the message that was sent, send new messages, partici-

pate in other conversations, or edit and write out messages or

conversations. You can exit with c-END or ABORT (c-END sends

a message and exits; ABORT just exits), or you can select a new

window by any of the usual means (such as the FUNCTION or

SELECT keys).

:notify A notification is printed, telling you that a message arrived

and from whom. If you want to see the message, enter Con-

verse by pressing SELECT C. There you can read the message

and reply if you want to.

:notify-with-message

A notification is printed, which includes the entire contents of

the message and the name of the sender. If you want to reply,

you can enter Converse.

zwei:*converse-append-p* Variable

If the value is nil (the default), a new message is prepended to its conversation. If

the value is t, a new message is appended to its conversation.

zwei:*converse-beep-count* Variable

The value is the number of times to beep or flash the screen when a message ar-

rives. The default value is two. Beeping or flashing occurs only if the Converse

window is exposed or if the value of zwei:*converse-mode* is :pop-up or :auto.

(Otherwise, notification tells you about the message and includes the usual beeping

or flashing.)

zwei:*converse-end-exits* Variable

Page 2546

Controls the behavior of END and c-END. If zwei:*converse-end-exits* is set to nil,

the default, END sends the message and you remain in Converse. c-END sends the

message and exits Converse. Setting zwei:*converse-end-exits* to t reverses this,

so that c-END sends the message and remains in Converse and END sends and ex-

its.

